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“Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne

pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. Si nous connaissions

exactement les lois de la nature et la situation de l’univers à l’instant initial, nous pourrions

prédire exactement la situation de ce même univers à un instant ultérieur. Mais, lors même que

les lois naturelles n’auraient plus de secret pour nous, nous ne pourrons connâıtre la situation

initiale qu’approximativement. Si cela nous permet de prévoir la situation ultérieure avec la

même approximation, c’est tout ce qu’il nous faut, nous disons que le phénomène a été prévu,

qu’il est régi par des lois; mais il n’en est pas toujours ainsi, il peut arriver que de petites

différences dans les conditions initiales en engendrent de très grandes dans les phénomènes

finaux; une petite erreur sur les premières produirait une erreur énorme sur les derniers. La

prédiction devient impossible et nous avons le phénomène fortuit.”

Jules-Henri Poincaré – Science et Méthode, 1908
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Chapter 1

Introduction

The Atmosphere plays an important role in weather and climate systems, including the hydro-

sphere (Oceans), cryosphere (ice and snow), lithosphere (soil) and biosphere (living systems).

All these components interact with each others [8]. The Atmosphere is also well known to be

a chaotic system with an enormous number of degrees of freedom and with many scales of mo-

tions, both in space and time: its predictability has a finite time horizon [31]. In this context, to

accurately estimate the state of the system we need to extract as much information as possible

from observational data, when available, and from the equations governing the evolution of the

system, to the extent they are known: that’s the goal of Data Assimilation, a fundamental

step for Numerical Weather Prediction (NWP). In order to develop new theoretical work, we

address the problem of data assimilation in chaotic systems in the framework of Lorenz’s three

variable convective model (1963). The aim is to develop data assimilation schemes applicable

to different contexts and computationally affordable in operational environments.

1.1 A historical perspective

It was a Norwegian meteorologist, Vilhelm Bjerknes, who first realized in 1904 that weather

forecasts were actually an initial value problem, to be solved by integrating the set of governing

equations of the atmosphere, starting from an accurate estimate of initial conditions obtained

from observations. This was the first explicit recognition that the future state of the atmo-

sphere can be completely, deterministically calculated by its initial state and known boundary

conditions, together with seven equations: Newton’s equations of motion (three equations for

the three velocity components), the continuity equation (conservation of mass), the equation

of state for ideal gases, the first law of thermodynamics (conservation of energy) and a con-

servation equation for water mass [16]. Bjerknes was able to persuade Norwegians to build
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a network of surface observation stations, founded the renown Bergen School of synoptic and

dynamic meteorology and proposed the famous polar front theory of cyclogenesis.

Lewis F. Richardson suggested in 1922 to integrate numerically the equations of motion of

the atmosphere and described how exactly this could be done. His first attempt of weather

forecast was actually unsuccessful, but did not diminish the value of his seminal work. The

increasing development of observational network on one hand, and the introduction of reliable

computing machines on the other, boosted a new interest on Richardson’s approach.

An important issue to address was balancing of initial conditions: if they are not in quasi-

geostrophic balance1, inertia-gravity waves will arise and propagate horizontally. After a while,

they will drastically reduce their amplitude, leaving a field in quasi-geostrophic balance: this

process is called geostrophic adjustment. The time scale for this process to take place is of the

order2 of f−1, approximately 12h [16]. Moreover, in Richardson’s first attempt, the integration

of the equations resulted in computational instability, due to a violation of Courant-Friedricks-

Lewy (CFL) condition, which requires that the time step must be smaller than the grid size

divided by the speed of the fastest waves (sound waves, moving at about 340 m/s).

To address these problems, in 1948-49 Jule C. Charney and Eliassen introduced “filtered”

equations of motion, based on quasi-geostrophic balance — i.e. slowly varying, so filtering out

gravity and sound waves — and based on pressure fields alone. In 1950 Charney, R. Fjørtoft and

J. von Neuman performed on ENIAC, one of the first computers built3, the first historical 24h

weather forecast using a barotropic one-layer filtered model: the results were encouraging. The

initial values, though, were still set by subjective analysis, relying on judgments of experienced

analysts. In 1949 Panofsky made the first attempt to overcome subjective analysis by an

automatic procedure, called objective analysis, albeit the term “objective” actually depends on

the algorithms used. This procedure used a polynomial expansion to fit all the observations of

several grid-points in a given area.

The first operational numerical weather forecast were issued in Sweden by Rossby and his

group in September 1954. In the meanwhile, new advances were introduced by Gilchrist and

Cressman (1954), who used a polynomial expansion, too, but with a local rather than areal

1The quasi-geostrophic equations hold for large scale, low-frequency motions, except low latitudes [1].
2The Coriolis parameter f ≈ 2Ω sinϕ0, where Ω is the earth’s angular velocity, and ϕ0 the latitude.
3The ENIAC (Electronic Numerical Integrator And Computer) was built in 1946. It was indeed not the

first computer ever built and operating. The first fully functional, freely programmable computers of the world
was actually the German Konrad Zuse’s Z1, Z2 and Z3, electro-mechanical machines built between 1936 and
1941. The next generation used vacuum tubes: the Atanasoff-Berry Computer, built in 1939 at Iowa State
University, USA, and the British Colossus, operating since December 1943 in Bletchley Park, Milton Keynes,
UK. Both Zuse and Atanasoff-Berry computers were conceptual milestones in Computer Science, because the
former introduced the idea of programmable machines and the latter the use of the binary system and other
innovations. Nevertheless, it was the Colossus that had a truly enormous impact in the mankind history, because
it helped a lot in defeating Nazism: it was used during World War II to decrypt the most important messages
transmitted between the German Army Field marshals and their Central High Command in Berlin.
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fit of observations: the idea of radius of influence was born. At each grid point they used a

polynomial function to approximate the fields, taking into account only the observations near

the grid point, i.e. within the radius of influence. Two more elements, introduced by the same

authors, were later adopted in successive works: automatic check for data quality, and an a

priori estimate of the analysis, obtained from a previous numerical forecast. This preliminary

estimate is now referred to as background field, first guess field, or prior estimate.

During these pioneering efforts by meteorologists to run reliable NWP models, it quickly

turned out that the accuracy of a model strongly depends on spatial resolution. In general,

the higher the resolution, the higher the accuracy of the model, but — of course — the higher

the computational cost as well. That’s because, due to computational stability requirements,

doubling the 3-dimensional space resolution also requires to double the time resolution. This

implies a 24 factor for the total computational cost (three spatial and one time dimensions). As

a result, grinding atmospheric models has always been a challenging task for supercomputers,

and the model size has always been driven, in turn, by the available computing capacity.

Further improvements came along: in 1955 Bergthorsson and Doos developed an analysis

method that eventually became known as “successive correction”. They reduced the computa-

tional cost of the interpolating procedures by specifying an a priori weight for each observation,

weight to be determined on a statistical basis.

Thompson in 1961 proposed to take full advantage of the propagation of information from

well observed regions to data-void ones. A quite usual situation in the global observing system

is the presence of zones where new observations are regularly available (e.g. densely populated

regions) and regions where new observational data are scarce (e.g. oceans and deserts). An

objective analysis can be made for the former areas, and some sort of educated guess for the

latter. Then the integration of a NWP model will provide a forecast valid at the next observation

time. Now we have new observations from data-rich areas and model-output data for data-poor

ones: information has propagated.

When computers became sufficiently fast, scientists turned to primitive equations instead

of filtered ones, and introduced regional models (or Local Area Models, LAMs) side by side to

General Circulation Models (GCMs), a GCM setting the boundary conditions for the regional

one. Thus, a regional model can be used for short range forecast only, as its high quality

initial conditions will be lost due to the “information advection” of the ever changing boundary

conditions driven by the GCM. Furthermore, as a consequence of increasing computing power,

now meteorologists no more tend to use the hydrostatic approximation — in which vertical

acceleration is neglected versus the gravitational one — for regional models.
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1.2 Data Assimilation

In his pioneering paper cited in the section above [4], Charney stressed the need of objective

analysis of meteorological data, not to rely upon time-consuming human activities and subjec-

tive interpretations. This process is nowadays referred to as Data Assimilation (DA): its goal

is to produce an optimal, automatic estimate of the state of a dynamical system from incom-

plete, noisy observations and (approximate) knowledge of the laws governing the evolution of

the system. In the initialization of forecast models of the Ocean and the Atmosphere, DA is

performed cyclically. A new term, Data Assimilation Cycle, has been introduced to describe

this cyclic procedure, that encompasses the following steps:

• Quality control of observational data

• Objective analysis

• Initialization of the forecast model

• Short-range forecast to be used to estimate the next background field

Quality control is a very delicate step, because it has been shown that the analysis can be

highly sensitive to quality control decisions [8]. Generally speaking, datum quality is checked

against its neighbors, and a further requirement of spatial and temporal consistency is asked to

be fulfilled. Observations can be checked against the background, too.

Objective analysis step exploits both the available observational data, yo, and the back-

ground field, xb, numerically computed in the previous observation time. Obtaining the back-

ground or first guess “observations” is a matter of interpolating the model forecast to the

observational stations: model variables are converted to observed variables. First guess “ob-

servations” are so H(xb), where H is the operator performing the required interpolation and

conversion from model variables to observation space. It should be noted that the operator H

is not a linear one, in general. The difference yo −H(xb) between the observations and the first

guess “observations” is usually called observational increment or innovation [16]. The analysis

state xa is computed by adding the innovation to the model background field, with weights W

to be determined by estimating statistical error covariances of the forecast and the observations:

xa = xb + W
[

yo − H(xb)
]

(1.1)

Many analysis techniques, such as Successive Correction Method (SCM), Optimal Interpolation

(OI), 3-dimensional variational analysis (3D-Var) and Kalman Filter (KF) use eq. 1.1, but with

different ways to calculate the weights W .
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Figure 1.1: A 6-hours data assimilation cycle for weather forecasts. Analyses are computed
every 6 hours, typically at 0000 ZT, 0600 ZT, 1200 ZT, 1800 ZT.

After calculating the analysis state xa, the forecast model can be initialized to obtain the

routine forecast xf : this is actually the aim of the entire procedure. The numerical short-

range forecast to estimate the background field for the next observation time is usually the

output of a high resolution model that implements primitive equations. This model, called

assimilation model, has a complex set of parameterizations such that, if no new observations

become available, the model climate — computed by time-averaging a long run of the model —

will approximate the true climate. Short-range numerical forecast, typically 6-h ahead, replaced

the simple use of climatology as background field.

One approach to assimilate observations at various time is 4D-Var (e.g. Lewis and Derber

[17], Courtier and Talagrand [7]). This assimilation system is the operational DA scheme used

at ECMWF and Météo-France, among other important meteorological centers.

1.3 Framing the problem

This work is focused in data assimilation on chaotic systems. In order to introduce chaotic sys-

tems, in this section we will briefly describe the general properties of conservative and noncon-

servative systems; then we will survey the basics of dissipative and chaotic systems, attractors,
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Lyapunov vectors and exponents, and the bred vectors. We will also provide classic examples

of chaotic dynamical systems, described both by differential equations and maps.

1.3.1 Basic features of chaotic systems, a historical note

The fundamental property of a chaotic system is the sensitive dependence on initial conditions,

discovered by Jules-Henri Poincaré in 1897 for a simplified three-body problem: a planetary

system including 2 stars and a small “asteroid” [16]. Later in a remarkable 1908 monograph —

Science et Méthode — he wrote down these basic concepts about chaos (Livre premier, § IV):

“A very small cause which escapes our notice determines a considerable effect that

we cannot fail to see, and then we say that the effect is due to chance. If we knew

exactly the laws of nature and the situation of the universe at the initial moment,

we could predict exactly the situation of the same universe at a succeeding moment.

But even if it were the case that the natural laws had no longer any secret for us, we

could still know the situation only approximately. If that enables us to predict the

succeeding situation with the same approximation, that is all we require, and

we will say that the phenomenon has been predicted, that it is governed by the laws.

But it is not always so; it may happen that small differences in the initial conditions

produce very great ones in the final phenomena. A small error in the former will

produce an enormous error in the latter. Prediction becomes impossible and we have

the fortuitous phenomenon.” – Jules-Henri Poincaré, 1908

Albeit this note was written in 1908, it has never become dated. Thanks to the increasing

computational capability of computers, the meteorologist Edward N. Lorenz, now Professor

Emeritus at Massachusetts Institute of Technology, “rediscovered” chaos in early 60s while

examining a relatively simple mathematical model of weather. That’s the same we will survey

in section 1.4 below.

1.3.2 Conservative, nonconservative dynamical systems

Generally speaking, a dynamical system changes its state depending on time. A dynamical

system that evolves continuously in time is known as a flow [19]. It can be described by a set

of differential equations giving the evolution of the state of the system, knowing its previous

states:

ẋ = F(x) (1.2)
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where x(t) = (x1(t), x2(t), . . . , xN (t)) is the N -dimensional vector — depending on time t —

describing the state of the system at time t: the vector x(t) can be unambiguously mapped,

through a bijection, to a point in the phase space of the system. The term ẋ = dx
dt is the time

derivative of x(t) and F(x) = (F1(x), F2(x), . . . , FN (x)) is a N -dimensional vector function of

the state x of the system. Given the initial state x(0) we can deterministically calculate the

trajectory, or orbit, x(t) of the system for all future times. Here the time variable t is continuous.

In a system where particles move without friction, called Hamiltonian system, the Liouville’s

theorem (see subsection 1.3.5) assures that the volume of any subset of points in the phase space

is conserved: if each point of the initial subset is evolved forward in time, the resulting set of

points has the same volume as the initial one. So the system is also called conservative. In a

nonconservative system, instead, time evolution does not preserve volumes in phase space.

1.3.3 Probability Density Functions and Liouville equation

In a dynamical system of the form dx
dt = F(x, t), there could be uncertainties due to a bad esti-

mation of initial conditions, or even a bad knowledge of the model used: a statistical approach

is a standard practice. The probability density function (PDF) associated to the continuous

variable x(t) can be thought of as the set of possible realizations in the phase space of the

outcome of the model:

ρ = ρ(x(t), t) (1.3)

If the PDF is Gaussian — an usual assumption in data assimilation — it is completely defined

by the mean of the state x(t) and by the second moment about the mean, i.e. its variance:

〈x〉 ≡
∫

· · ·
∫ +∞

−∞
xρ(x(t), t) dx (1.4)

〈

(x − 〈x〉)2
〉

≡
∫

· · ·
∫ +∞

−∞
(x− < x >)2 ρ(x(t), t) dx (1.5)

The Liouville equation (LE) is the probabilistic description of the time-dependent evolution

of an ensemble of solutions of the numerical model dx
dt = F(x, t) from different initial conditions

[9]. It governs the time evolution of the PDF ρ (x(t), t) associated to the model state x(t). It

may be written in a simplified form as follows:

∂ρ

∂t
+ ∇ · ρF = 0 (1.6)
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or in the more complete form:

∂ρ (x(t), t)

∂t
+

N
∑

i=1

∂

∂xi

[

ρ (x(t), t) F i (x(t), t)
]

= 0 (1.7)

where F i is the i-th component of the vector function F. The Liouville equation is a conservation

equation: it states that the local change of ρ — in a particular point of the phase space —

must be equal to the net flux of realizations across the faces of an infinitesimal volume around

the point under examination; equivalently, Liouville equation means that phase space integral

of the realization density is a constant with respect to time. It is an inhomogeneous partial

differential equation, linear in the PDF ρ, which is the single dependent variable.

1.3.4 The Markov processes and the Fokker-Planck equation

If our dynamical system is forced by some sort of stochastic noise, that could arise from our

model’s misrepresentation, the general equation reads:

dx(t)

dt
= F(x(t),q(t), t) (1.8)

where q(t) is the vector of random disturbances. If q(t) is a Markov process its probability law

in the future does only depend on the given state, not on how the system reached that state.

An example of Markov process is the Brownian motion

x(tn) = x(tn−1) + w(tn) (1.9)

where w is a white Gaussian forcing. A few examples of Brownian motions, with standard

deviation of the Gaussian forcing σ = 1, are shown in Fig. 1.2.

Furthermore, if in eq. 1.8 q(t) represents an additive white Gaussian forcing function, we

can write [15]:

dx(t)

dt
= F(x(t), t) +

dq(t)

dt
(1.10)

because the white Gaussian noise can be thought of as the derivative of Brownian motion [15].

Equation 1.10 is sometimes called the Langevin equation. It can be shown that, being q(t) a

Markov process, so it is x(t). We can now write the solution of 1.10 in the form

x(t) = M [x(t0)] + q(t) (1.11)

The Fokker-Planck equation (FPE) describes the evolution of the PDF associated to these
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Figure 1.2: A set of Brownian processes starting at x(0) = 0. The random forcing has zero
mean and standard deviation σ = 1.
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stochastic systems: it includes a random term — such as for example a model error — in the

Liouville equation 1.7. This term has the form of a diffusion component:

∂ρ (x(t), t)

∂t
= −

N
∑

i=1

∂
[

ρ (x(t), t) F i (x(t))
]

∂xi
+

1

2

N
∑

i,j=1

∂2
[

ρ (x(t), t) (Q)
i,j

]

∂xi∂xj
(1.12)

where the first sum refers to the drift and the second to diffusion: the Fokker-Planck equation

describes the time evolution of a PDF due to both of them. The matrix Q is the stochastic

noise covariance matrix. It should be noted that the FPE is a linear in ρ, which is the only

dependent variable.

1.3.5 The Liouville Theorem

As we already mentioned in subsection 1.3.2, the Liouville Theorem (LT) states that a con-

servative system ẋ = F(x) conserves in time the volumes of any subset of points in the phase

space. In nonconservative systems, instead, this does not occur: in particular, as we will prove

below, an initial volume V0 = V (0) of a given phase space region D0 shrinks according to [26, 2]:

dV

dt

∣

∣

∣

∣

t=0

=

∫

D0

∇ ·F(x) dx (1.13)
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If ∇ · F(x) does not depend on the vector x, eq. 1.13 simplifies:

dV

dt

∣

∣

∣

∣

t=0

= ∇ ·F
∫

D0

dx (1.14)

dV0

dt
= V0∇ ·F (1.15)

Rearranging and integrating from time t0 = 0 to t:

∫ V

V0

dV0

V0
= ∇ ·F

∫ t

t0

dt (1.16)

ln
V

V0
= t∇ ·F (1.17)

So finally, in this particular case:

V (t) = V0 et∇·F (1.18)

Proof of eq. 1.13. In the phase space of a dynamical system described by equation 1.2 we

can define the phase flux gt:

gt : x(0) → x(t) (1.19)

and, by definition of Jacobian ∂gtx

∂x
, ∀t we have:

V (t) =

∫

D0

det

(

∂gtx

∂x

)

dx (1.20)

For t → 0:

gt(x) = x + F(x) t + O(t2) (1.21)

Thus

∂gtx

∂x
= I +

∂F

∂x
t + O(t2) (1.22)

But for any N × N square matrix A = (aij) and for t → 0 it holds the following relation:

det (I + At) = 1 + t tr (A) + O(t2) (1.23)

where tr (A) =
∑N

i=1 aii is the trace of the matrix A. So we have:

det

(

∂gtx

∂x

)

= 1 + t tr

(

∂F

∂x

)

+ O(t2) (1.24)
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Now we notice that, of course:

tr

(

∂F

∂x

)

=

N
∑

i=1

∂Fi

∂xi
= ∇ · F (1.25)

so eq. 1.20 becomes:

V (t) =

∫

D0

[

1 + t ∇ · F + O(t2)
]

dx (1.26)

which proves equation 1.13. If the divergence ∇ · F = 0, the phase flux gt preserves the

volumes: ∀t, V (t) = V (0) and the Liouville theorem has been proved. Because of that volume

independence on time, the system is called conservative.

1.3.6 Dissipative systems, attractors and strange attractors

Systems which exhibit volume contraction in phase space are called dissipative, because com-

monly friction, viscosity or other processes dissipating energy are involved. The volume contrac-

tion proves also the existence of a bounded attracting set of points, the attractor, toward which

converge all trajectories, after an appropriate transient time: if we consider initial conditions

in an adequate region of phase space, for increasing time t they will eventually converge to the

attractor.

More formally, an attractor is a closed set A satisfying the following properties [31]:

• A is an invariant set: any trajectory x(t) starting in A will remain in A for all time:

∀x(t), x(0) ∈ A ⇒ x(t) ∈ A, ∀t

• A attracts an open set of initial conditions: this means that A attracts all trajectories

starting sufficiently close to it: ∃B, with B an open set, so that x(0) ∈ B ⇒ d(x(t), A) → 0

as t → ∞, where d(x(t), A) is the distance from x(t) to A. The largest B is called the

basin of attraction of A

• A is minimal: no proper subset of A will satisfy the above properties

In many cases, as for example the Lorenz’s 1963 convective system (see below), we have a

strange attractor: the “strangeness” refers to the sensitive dependence on initial conditions of

the nonperiodic flow, though initially strange attractors were called in such a way because of

their common fractal dimensionality [31]. A solution which is stable in the sense of Lyapunov

means that any other solution sufficiently close to it will remain close for increasing time. Thus

“sensitive dependence on initial conditions”means actually “unstable in the sense of Lyapunov”.

It can be shown that a solution possessing Lyapunov stability must be a periodic or quasi-

periodic one [19].
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The Lorenz’s 1963 system clearly shows a lack of periodicity, as we can see for example in

Fig. 1.13 below, which in turn implies a limited predictability of the system because of sensitive

dependence on initial conditions [19]. The general behavior is chaotic, even if we can always

find unstable periodic orbits arbitrarily close to aperiodic ones [32].

1.3.7 Small perturbations dynamics, tangent linear model, adjoint

model

Lyapunov instability is a matter of small perturbation growth. A small perturbation δx(t) of a

trajectory x(t) is assumed to evolve in a linear way. That is:

δx(tk+1) = Mkδx(tk) (1.27)

which is the Tangent Linear Model (TLM). Here the operator Mk, that depends on time tk, is

an operator linearized around the base-trajectory. It is called the resolvent, or propagator, of

the TLM. Since Mk is an operator defined on real numbers, its adjoint is simply its transpose,

the operator MT
k .

In order to justify eq. 1.27, consider a nonlinear discrete model that can be written as a set

N nonlinear coupled ordinary differential equations

dx

dt
= F(x) (1.28)

where x is an N -dimensional vector and F an N -dimensional vector function. The model is

written in differential form. When a time-difference scheme is chosen, eq. 1.28 becomes a set

of difference equations. If for example a Crank-Nicholson approach is implemented, this set of

equations would be of the form [16]:

x(tk+1) = x(tk) + ∆t ·F
(

x(tk) + x(tk+1)

2

)

(1.29)

So we can integrate eq. 1.28 running the model between an initial time t0 and a final time t,

by recursively using eq. 1.29: the solution x(t) will depend on initial conditions only:

x(t) = M [x(t0)] (1.30)

which depends only on time t0. Here the operator M — that in general is nonlinear — represents

the time integration between t0 and t.
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If we add a small perturbation δx(t0) to the reference model integration x(t0) we can write:

M [x(t0) + δx(t0)] = M [x(t0)] +
∂M

∂x
δx(t0) + O

[

δx(t0)
2
]

(1.31)

= x(t) + δx(t) + O
[

δx(t0)
2
]

(1.32)

where we are using 1.30 and the small perturbation dynamics:

δx(t) =
∂M

∂x
δx(t0) (1.33)

= M δx(t0) (1.34)

that is the same as eq. 1.27. Here M = ∂M
∂x

is the N × N matrix called the resolvent or

propagator of the tangent linear model, and propagates an initial small perturbation at time t0

to a perturbation at time t. Since it is linearized from t0 to t, M depends on reference trajectory

x(t) but not on perturbation δx(t0). The linearized evolution of δx(t0) will be given by

dδx(t)

dt
=

∂F [x(t)]

∂x
δx(t) ∀t ∈ [t0, t] (1.35)

where ∂F[x(t)]
∂x

is the Jacobian of F. This system (eq. 1.35) defines the tangent linear model in

differential form [16].

1.3.8 Lyapunov vectors and Lyapunov exponents

In order to have a more precise, quantitative idea of the “sensitive dependence on initial condi-

tions”, we will summarize the concepts of Lyapunov vectors and Lyapunov exponents.

Let’s consider a trajectory on the attractor (after an appropriate transient time): here a

state at time t is described by the vector x(t). Now we consider a very close point, x(t)+ δx(t),

where δx(t) is a separation vector whose initial length δx(0) is very small. We are interested in

how δx(t) will grow. One finds [31] that close trajectories, starting on a sphere of infinitesimal

radius, diverge exponentially fast:

‖δx(t)‖ ' ‖δx(0)‖ eλt (1.36)

where λ is called the global leading (or largest) Lyapunov exponent. It describes the long term

growth of the resulting hyper-ellipsoid, and can be estimated by [16]:

λ = lim
t→+∞

1

t

[

lim
δx(0)→0

ln

∥

∥

∥

∥

δx(t)

δx(0)

∥

∥

∥

∥

]

(1.37)
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In practice, the leading Lyapunov exponent is computed as follows:

• we perturb the vector trajectory x(t) with an infinitesimal random vector δx(t)

• we evolve it from time t to time t + ∆t using the Tangent Linear Model:

δx(t + ∆t) = M δx(t) (1.38)

where we dropped — for sake of lighter notations — the obvious dependence of M on t

and ∆t

• we repeat the previous step for a long time, scaling down at regular intervals the pertur-

bation vector to avoid computational overflow

Other Lyapunov exponents can be computed in the same way, except that we must periodi-

cally perform a Gramm-Schmidt orthogonalization to the set of perturbations that defines the

shrinking hyper-ellipsoid: otherwise, they all will converge to the first Lyapunov exponent. It

should be noted, indeed, that for an N -dimensional system there are N Lyapunov exponents:

an initially infinitesimal N -dimensional hyper-sphere will be distorted, due to the evolution of

the system, in an infinitesimal hyper-ellipsoid. If we define δix(t), i = 1, ..., N the length of the

N principal axis of this hyper-ellipsoid, then λi will be their growth rates, and equation 1.36

will be replaced by:

‖δix(t)‖ ' ‖δix(0)‖ eλit (1.39)

For large t the stretching of the hyper-ellipsoid will be driven by the most positive λi. Since

the Lyapunov exponents depend weakly on the trajectory, we must actually average on many

different points to get an estimate of λi:

λi = lim
t→+∞

1

t

[

lim
δix(0)→0

ln

∥

∥

∥

∥

δix(t)

δix(0)

∥

∥

∥

∥

]

(1.40)

The Lyapunov exponents defined so far, are global property of the flow: we are often inter-

ested in local dynamic properties. So we define the leading Local Lyapunov Vector (LLV) at

time t: it is the vector e towards which converge all random perturbation δx(t − ∆T ), started

a long time ∆T before t. It may be defined using the Tangent Linear Model:

e(t) = lim
∆T→+∞

M(t − ∆t, t) δx(t − ∆t) (1.41)

After computing the leading local Lyapunov vector, the corresponding local Lyapunov exponent

may be computed from the change of its norm.
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Another feature which is related to the Lyapunov exponents is the dimensionality of the

attractor. The Kaplan-Yorke dimension of the system is defined by:

D ≡ k +
λ1 + λ2 + . . . + λk

|λk+1|
(1.42)

where λ1 > λ2 > . . . > λN are the Lyapunov characteristic exponents in decreasing order and

k is the integer for which λ1 + λ2 + . . . + λk > 0 and λ1 + λ2 + . . . + λk + λk+1 < 0.

An intuitive justification of eq. 1.42 is the following. The sum of all the exponents is

the rate at which the volume of the hyper-ellipsoid will increase or decrease: it will be zero

for conservative systems and negative for dissipative ones. If we consider an N -dimensional

box containing the attractor, the sum λ1 + λ2 + . . . + λk of the first k Lyapunov exponents

accounts for the rate at which will increase or decrease the k-dimensional hyper-volume of the

projection of an infinitesimal hyper-ellipsoid on the k-dimensional face of the box. If λ1 > 0

but λ1 + λ2 < 0, then the projection of the hyper-ellipsoid on one edge of the box will grow,

while the projection on a 2-dimensional face will shrink: we may expect the attractor to consist

of complex curves, without surfaces.

On the other hand, if λ1 + λ2 > 0 but λ1 + λ2 + λ3 < 0, then the projection of the

hyper-ellipsoid on a 2-dimensional face of the box will grow, while the projection on a 3-

dimensional face will shrink: we may expect the attractor to consist of complex surfaces, but

no 3-dimensional manifolds. In general, if λ1+λ2+ . . .+λk > 0 and λ1+λ2+ . . .+λk+λk+1 < 0

the attractor may be thought of as consisting of complex k-dimensional manifolds [19].

A stable system will have all Lyapunov exponents less or equal to zero, while a chaotic one,

whether dissipative or not, will have at least one positive Lyapunov exponent. Furthermore,

a chaotic bounded flow must have a zero Lyapunov exponent, with the corresponding local

Lyapunov vector aligned to the trajectory.

1.3.9 Bred vectors

Bred vectors (BVs) represent finite amplitude perturbations. Lyapunov vectors (LVs), instead,

represent infinitesimal perturbations by definition.

The BVs are computed in a similar manner as the LVs, but using the nonlinear model and

a finite renormalization amplitude [16]:

• we perturb the vector trajectory x(t) with a given finite amplitude random vector δx(t);

this random perturbation is introduced only once, at the beginning of the breeding cy-

cle. The size of the initial perturbation is the only tunable parameter of the breeding
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procedure, and in operational NWP models it can be used to filter out unwanted fast

instabilities, such as convection or even Brownian motion;

• we evolve the resulting perturbed trajectory by using the nonlinear model M ; the same

will be done for the unperturbed trajectory. At fixed time interval ∆t we subtract the

unperturbed trajectory from the unperturbed one:

δx(t + ∆t) = M(x(t) + δx(t)) − M(x(t)) (1.43)

where we dropped again the obvious dependence of the nonlinear model M on t and ∆t.

• we scale down the resulting difference by dividing it by its amplification factor, in order

to keep its size the same as the initial one.

As we can see from their definition, BVs are closely related to leading Local Lyapunov Vectors

(LLVs), since after an infinite breeding time, infinitesimal amplitude bred vectors are identical

to LLVs. They share some features, such as the independence on the norm and on the rescaling

time, but not others: for example, even without orthogonalization, BVs don’t converge to a

single leading BV, because of nonlinearity.

1.3.10 Dynamical systems described by maps

Also very important are those dynamical systems where the time is a discrete variable. In such

a case the dynamical system is described by an N -dimensional map

xn+1 = G(xn) (1.44)

where n is the discrete time variable, xn is the N -dimensional state vector of the system and

G is the N -dimensional vector function of the state vector xn; i.e. G evolves the state vector

xn at time n, into the new state vector xn+1 at time n + 1. It should be noted that a map can

be created by any flow, described by eq. 1.2, simply by observing the flow only at regular time

intervals.

As an example of a one-dimensional nonlinear map, consider the logistic map:

xn+1 = r xn(1 − xn) (1.45)

which is a simple population dynamics model akin to the classic logistic equation:

dx

dt
= r x(1 − x) (1.46)
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Bifurcation diagram for the logistic map

Figure 1.3: Bifurcation diagram for the Logistic map, 0 ≤ r ≤ 4.

that describes the logistic population growth [22]. Here r is the intrinsic per capita growth

rate, and x is the population density with respect to the total carrying capacity, i.e. 0 ≤ x ≤ 1.

The logistic map is chaotic with the parameter r = 4, but it actually displays many different

behaviors depending on the value of parameter r: we can have stable, periodic or chaotic

solutions. For example, as we can see in the bifurcation diagram shown in Figures 1.3, 1.4 and

1.5, we have a period 1 solution for 0 < r < 3, while for r = 3 we note the first bifurcation

from period 1 to period 2. We observe another bifurcation from period 2 to period 4 when

r = 1 +
√

6=3.45. The onset of chaos occurs at r ' 3.57, but there are also other periodic

windows, as for example the period 3 window at r = 1 + 2
√

2 = 3.83. The values of the

parameter r for which we have a periodic behavior is an infinite number of finite intervals,

while the values for which it is chaotic, with 3.57 < r ≤ 4, form a Cantor set [19].

The bifurcation diagram for the logistic map shown in Figures 1.3, 1.4 and 1.5 — with

different zoom windows — have been obtained by plotting as a function of the parameter r a

set of values for xn resulting as the evolution of a random value x0: we iterated many times,

and discarded the first points corresponding to the transient time, before the convergence to

the attractor.

The logistic map is not invertible, because each points — except the maximum — has not

a unique past. Its Lyapunov exponent is λ = 0.693147 = ln 2.
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Figure 1.4: Bifurcation diagram for the Logistic map, 2.8 ≤ r ≤ 4. Notice the period-3 window
around r = 3.83.
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Figure 1.5: Bifurcation diagram for the Logistic map, a zoom. We can observe the self-similarity
properties of this diagram.
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Figure 1.6: Hénon map: strange attractor for classical parameters a and b (see text).
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An example of a two-dimensional, dissipative map is the following Hénon map [12][31]:











xn+1 = yn + 1 − a x2
n

yn+1 = b xn

(1.47)

This map, shown in Fig. 1.6, is also chaotic with the two canonical parameter a = 1.4, b =

0.3. Its attractor is shown below: they have been plotted 100,000 dots after a transient of

10,000 time step, with a starting point (x0, y0) = (0, 0). The Jacobian J of a generic map

(xn+1, yn+1) = (f(xn, yn), g(xn, yn)) is:

J =







∂f
∂xn

∂f
∂yn

∂g
∂xn

∂g
∂yn






(1.48)

For the Hénon map we have |det(J)| < 1 for all xn:

| det(J)| = | det







−2axn 1

b 0






| = | − b| < 1

If −1 < b < 1 — as in the case of classic parameter b = 0.3 — this means that the Hénon map

is area contracting by a constant factor |b| for each iteration.
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1.4 Lorenz’s three dimensional chaotic system (1963)

The Lorenz’s three dimensional model (1963), hereafter referred to L63, was found by the

MIT meteorologist Edward N. Lorenz in early 60s by studying a simplified version of a set of

equations modelling a convective fluid motion driven by heating from below.

1.4.1 The equations

The flow occurs in a uniform depth layer of fluid, and the temperature difference between upper

and lower surfaces has a constant value ∆T . The system has a steady-state solution, where

no motion occurs and the temperature varies linearly with depth. If, depending on physical

conditions, the solution is unstable, a convective motion will arise [18]. In case the motion is

completely vertical, with no deviations, if the upper and lower boundaries are taken to be free

and an abrupt truncation is performed, the system turns out to simplify in a set of 3 equations

only.

Thus, today L63 is known as a dynamical system described by the following dimensionless

equations:















































dx
dt = σ(y − x)

dy
dt = rx − y − xz

dz
dt = xy − bz

(1.49)

where σ = 10, r = 28, b = 8
3 are positive parameters and t represents the dimensionless time

[18]. In these equations the variables x, y, z depend on time alone. In our experiments, we

will set the integration step ∆t = 0.01, and the numerical integration method will be a second

order Runge-Kutta scheme (see Appendix A).

A qualitative comparison among three popular numerical integration schemes, (1-st order)

Euler, 2-nd order Runge-Kutta and 4-th order Runge-Kutta, is shown in Figures 1.7 and 1.8

for a particular case. The initial condition is on the attractor set and is the same for all

schemes: (x0, y0, z0) = (14.2041, 15.0165, 34.7172). In both plots the numerical integration is

performed 1000 integration steps ahead, with a time step ∆t = 0.01. Since they are different

order integration schemes, of course they lead to slightly different evolutions of the system.

Due to the chaotic dynamics of the system, these differences tend to amplify. A generic initial

condition won’t be in the attractor set of the system: it will need a transient time to converge

to it: so, in practice, in our plots (see Figures 1.9, 1.10, 1.11, 1.12) we set a transient time of
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Figure 1.7: Lorenz’s 1963 model: a comparison among 1-st order Euler, 2-nd and 4-th order
Runge-Kutta schemes for 1000 time steps ∆t = 0.01. The initial point belongs to the attractor
and is the same for all schemes: (x0, y0, z0) = (14.2041, 15.0165, 34.7172).
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Figure 1.8: Lorenz’s 1963 model: a comparison among 1-st order Euler, 2-nd and 4-th order
Runge-Kutta schemes for the variable x. The initial point belongs to the attractor and is the
same for all schemes: (x0, y0, z0) = (14.2041, 15.0165, 34.7172).
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Figure 1.9: Lorenz’s 1963 model attractor.
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10,000 integration steps.

In Fig. 1.16 we show the so called Lorenz map, where the (n + 1)-th local maximum of

zmax(n + 1) is plotted versus zmax(n), the previous one. See also Fig. 1.15. Note that actually

the Lorenz map is not actually a well defined function, since there may be more than one output

zmax(n + 1) for an input zmax(n) [31], depending on the other variables x and y. So it has a

thickness, that prevents us to use this map to deterministically forecast the state of the system.

On the other hand it should also be noticed that sometimes there are dots in the map well

apart from the great bulk of the other dots. Figure 1.16 has been obtained with a 50×106 time

steps integration after a 10,000 time steps transient, and it contains more than 600,000 dots.

1.4.2 The meaning of variables and parameters

In particular, the parameter σ is the Prandtl number4, and its value is σ = 10, which is typical

for cold water or approximately twice that of warm water[30][18]; r is the ratio Ra/Rc between

the Rayleigh number5 Ra and its critical value Rc. The critical value r for instability of steady

4The Prandtl number is the ratio of viscosity and thermal conductivity of the fluid.
5The Rayleigh number describes the kind of heat transfer within a fluid: below a critical value for that fluid

we have basically conduction; over the critical value convection will set up, and the bulk of heat transfer will be
due to it.
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Figure 1.10: Lorenz’s 1963 model attractor projected on xz plane.
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Figure 1.11: Lorenz’s 1963 model attractor projected on xy plane.
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Figure 1.12: Lorenz’s 1963 model attractor projected on yz plane.
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Figure 1.13: Lorenz’s 1963 model: time dependence of x.
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Figure 1.14: Lorenz’s 1963 model: time dependence of y.
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Figure 1.15: Lorenz’s 1963 model: time dependence of z.
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Figure 1.16: Lorenz’s 1963 map: values of the relative maximum zmax(n) and successive relative
maximum zmax(n + 1). See Fig. 1.15.
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convection to occur is r = 470/19 = 24.74 [18]. So, a value of r = 28 is slightly supercritical and

the flow exhibits unstable convection. The parameter b = 8/3 is proportional to the geometry

of the convective cell. For the meaning of the 3 variables x, y and z, let’s quote Lorenz himself

[18]:

“In these equations x is proportional to the intensity of the convective motion,

while y is proportional to the temperature difference between the ascending and

descending currents, similar signs of x and y denoting that warm fluid is rising

and cold fluid is descending. The variable z is proportional to the distortion of

the vertical temperature profile from linearity, a positive value indicating that the

strongest gradients occur near the boundaries.”

Incidentally, note that an initial condition x = y = z = 0 means that the convective system

exhibits no convection, and we have a stable “periodic” trajectory.

This system was derived by Lorenz as a drastically simplified model of convection rolls in

a fluid heated from below in a gravitational field, but the same equations can also be derived

for other physical systems: the equations also exactly describe, for example, the motion of a

specific water-wheel [31].
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1.4.3 Why it is so important: chaos implies limited predictability

Despite its apparent simplicity, the Lorenz’s deterministic, nonlinear system exhibits a chaotic

dynamics: the solutions oscillate in an irregular way, never exactly repeating themselves and

bounded in a particular region of phase space [31, 26]. There are no analytic solutions of the

system, so the solutions have to be found by numerical integration only. Lorenz felt that the

really important finding was the fact that under fairly general conditions a lack of periodicity

implied limited predictability [19]. We deal with this problem even for deterministic flows such

as, for example, the NWP models. A fortiori the atmosphere itself has a finite horizon of

predictability, which Lorenz estimated to be approximately two weeks. That is due to deep,

dynamical reasons — the chaotic behavior of the system — and cannot be overcome by increased

power of computational devices.

1.4.4 Lyapunov exponents, dimensionality and doubling time

Lorenz’s system L63 is a nonlinear but autonomous system: in eq. 1.2 the function F does

not depend explicitly on time. L63 is also a dissipative, nonconservative system, i.e. the time

evolution does not preserve volumes in phase space. In general, a volume V (t) of a phase space

region D shrinks according to 1.13:

dV

dt

∣

∣

∣

∣

t=0

=

∫

D

∇ · F(x) dx

For L63 the divergence of the flow is:

∇ · F = −(σ + 1 + b) (1.50)

and an initial volume V (0) in phase space will shrink according to eq. 1.18:

V (t) = V (0) exp [−t (σ + 1 + b)] (1.51)

= V (0) exp(−13.67 t) (1.52)

The Lorenz’s system has three Lyapunov exponents, which drive its dynamical features:

λ1 = 0.9056 (1.53)

λ2 = 0 (1.54)

λ3 = −14.5723 (1.55)
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Since λ1 + λ2 > 0 and λ1 + λ2 + λ3 < 0, the Kaplan-Yorke dimension of the attractor of the

system (eq. 1.42) is:

D = 2 +
λ1 + λ2

|λ3|
(1.56)

= 2.06215 (1.57)

The doubling time is the average time after which a small perturbation will double. It may

be calculated from eq. 1.36 coupled with the largest Lyapunov exponent λ1 in the following

way:

2 ‖δ0‖ = ‖δ0‖ eλ1τdouble (1.58)

=⇒ λ1τdouble = ln 2 (1.59)

=⇒ τdouble =
ln 2

0.9065
= 0.7646 (1.60)

1.5 The aim of this study

As we stated in section 1.2, the goal of Data Assimilation is to produce an optimal estimate

of the state of a dynamical system from incomplete, noisy observations and (approximate)

knowledge of the laws governing the evolution of the system. An important application is the

initialization of forecast models of the Atmosphere and Ocean.

In this work we address the problem of data assimilation in chaotic systems in the frame-

work of Lorenz’s three variable convective model. The aim is to investigate the theory for

an advanced formulation of the Assimilation in the Unstable Subspace (AUS, see section 2.3),

a data assimilation scheme relying upon the system’s dynamics which is applicable to differ-

ent contexts and computationally affordable in operational environments. AUS has already

provided encouraging results with realistic models and observational configurations. The low

dimensionality of the model used here allows for the direct comparison with a “golden standard”

data assimilation scheme, the Extended Kalman Filter, and for development of the theory.

1.6 Notation and conventions

Throughout this study and regardless to the scheme under consideration, we will conform to

the notation proposed by Ide et al. [14], widely used by the scientific community for data

assimilation.
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1.6.1 Model space and observational space

The evolution of a dynamical discrete system from time tk to time tk+1 is described by the

equation

xf (tk+1) = Mk [xa(tk)] (1.61)

where the column vector xf (tk+1) is the forecast state at time tk+1 and the column vector

xa(tk) is the analysis state at time tk. Both have dimension N and are defined in the model

space SMod: if the system is described by K variables at L locations, then N = K × L. If we

have M observations of the state of the system, we can define the observations column vector

yo, and its observational space Sob, i.e.: yo ∈ Sob. In an operational context, in general the

available observations are much less than the dimensionality of the NWP model, so M � N .

The assimilation algorithm, aimed at initializing our model with the analysis state xa, can be

thought of as an application F , that combines both the forecast state xf and the observations

yo to provide the analysis state xa:

F : SMod × Sob −→ SMod (1.62)

(xf ,yo) 7−→ xa (1.63)

In this work we will follow the common practice introduced by Rutherford in 1972 [14], who

proposed xb = xf , since forecast states had become better background fields than climatology.

Other choices may be taken for the vector field xb, for example by averaging over an ensemble

of different forecasts.

1.6.2 The observation operator H and its linear approximation H

The observation operator H is defined in the model space SMod:

H : SMod −→ Sob (1.64)

It transforms an N -dimensional state vector x ∈ SMod into an “observational” M -dimensional

vector. Its structure contains all mathematical and physical relations allowing for an a priori

estimate of the observations: of course, in general H is not linear. But the nonlinear operator

H can be linearized around the trajectory x, which we assume it’s well approximated by our

forecast trajectory xf , with

H(x + δx) = H(x) + H δx (1.65)
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where δx is a small perturbation of the state and H may be represented by an M ×N matrix,

whose elements are [16]:

(H)ij =
∂Hi

∂xj
with i ∈ {1, . . . , M}, j ∈ {1, . . . , N} (1.66)

So the operator H is the Jacobian of the operator H , and transforms vectors in model space

into their corresponding vectors in observation space. Its transpose HT transforms vectors in

observation space into vectors in model space.

Note that, if the operator H is linear, by definition of linearity it holds:

H(x + δx) = H(x) + H δx (1.67)

and, by using eq. 1.65, we have

H = H (1.68)

1.6.3 Error vectors

The model operator Mk in eq. 1.61 evolves the state from time tk to time tk+1. If xt(tk) is the

true state of the system at time tk, the corresponding analysis error and the forecast error will

be the column vectors

ηa(tk) = xa(tk) − xt(tk) (1.69)

ηf (tk) = xf (tk) − xt(tk) (1.70)

These errors are defined in the model space SMod.

Generally speaking, even the observation operator H may be misrepresented:

ηH(tk) = yt(tk) − Hxt(tk) (1.71)

where yt(tk) is the vector of true values of the observed variables at time tk. The vector ηH is

defined in the observational space Sob, as well the observational error:

ηo(tk) = yo(tk) − Hxt(tk) (1.72)

The observational error ηo implicitly includes the measurements error, the observation operator

misrepresentation and the model’s error of representativeness due to subgrid-scale processes not

represented in our grid-averaged values of the model and analysis [16].
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The model error between the times tk and tk+1 is defined by

ηM (tk) = Mk

[

xt(tk)
]

− xt(tk+1) (1.73)

Rearranging it with eq. 1.61, xf (tk+1) = Mk [xa(tk)], we have:

xf (tk+1) − xt(tk+1) = Mk [xa(tk)] − Mk

[

xt(tk)
]

+ ηM (tk) (1.74)

The lhs is the forecast error at time tk+1. So, assuming Mk [xa(tk)]−Mk [xt(tk)] to be a small

term, we can calculate the new forecast error with the tangent linear model Mk:

ηf (tk+1) = Mkηa(tk) + ηM (tk) (1.75)

1.6.4 Error covariance matrices

Now we can define from the above column vectors their covariance matrices, built by right-

multiplying each of them by its transpose and taking the expectation values. In practice, the

expectation values are estimated by averaging on many cases. The analysis error covariance

matrix Pa, the forecast error covariance matrix Pf and the observation error covariance matrix

R then read:

Pa =< ηa(ηa)T > (1.76)

Pf =< ηf (ηf )T > (1.77)

R =< ηo(ηo)T > (1.78)

More explicitly:

Pa =



















< ηa
1ηa

1 > < ηa
1ηa

2 > · · · < ηa
1ηa

N >

< ηa
2ηa

1 > < ηa
2ηa

2 > · · · < ηa
2ηa

N >

...
...

. . .
...

< ηa
Nηa

1 > < ηa
Nηa

2 > · · · < ηa
Nηa

N >



















(1.79)

Pf =



















< ηf
1 ηf

1 > < ηf
1 ηf

2 > · · · < ηf
1 ηf

N >

< ηf
2 ηf

1 > < ηf
2 ηf

2 > · · · < ηf
2 ηf

N >

...
...

. . .
...

< ηf
Nηf

1 > < ηf
Nηf

2 > · · · < ηf
Nηf

N >



















(1.80)
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R =



















< ηo
1η

o
1 > < ηo

1η
o
2 > · · · < ηo

1η
o
M >

< ηo
2η

o
1 > < ηo

2η
o
2 > · · · < ηo

2η
o
M >

...
...

. . .
...

< ηo
Mηo

1 > < ηo
Mηo

2 > · · · < ηo
Mηo

M >



















(1.81)

Since each vector depends on time tk all the above error covariance matrices depend on time tk

as well. Note also that Pa and Pf are N ×N matrices, while R is an M ×M one. Note that the

observation error covariance matrix R can be actually thought of as including three components

[16]: instrument error covariance matrix Rinstr, the representativeness error covariance matrix

Rrepr, both assumed to be uncorrelated, and the observation operator H error covariance matrix

RH :

R = Rinstr + Rrepr + RH (1.82)

From eq. 1.75, ηf (tk+1) = Mkηa(tk) + ηM (tk), we have [14]:

P
f
k+1 =

[

Mkηa(tk) + ηM (tk)
] [

Mkηa(tk) + ηM (tk)
]T

(1.83)

= MkP
a
kM

T
k + Qk (1.84)

where the term Qk refers to the model error covariance matrix between the times tk and tk+1.

It is defined, in a similar way as Pa, Pf and R, by the model error ηM (tk):

Q =< ηM (ηM )T > (1.85)

(here we dropped the subscript k). That is:

Q =



















< ηM
1 ηM

1 > < ηM
1 ηM

2 > · · · < ηM
1 ηM

N >

< ηM
2 ηM

1 > < ηM
2 ηM

2 > · · · < ηM
2 ηM

N >

...
...

. . .
...

< ηM
N ηM

1 > < ηM
N ηM

2 > · · · < ηM
N ηM

N >



















(1.86)
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1.6.5 Operators and vectors: a low dimensional example

As an example, consider a 3-dimensional space model SMod and a 2-dimensional observation

space Sob: the truth vector is 3× 1, with components expressed in term of the grid points e, f,

g (see Fig. 1.17):

xt =













xt
e

xt
f

xt
g













(1.87)

and similarly for analysis, background and forecast column vectors:

xa =
[

xa
e xa

f xa
g

]T
(1.88)

xb =
[

xb
e xb

f xb
g

]T
(1.89)

xf =
[

xf
e xf

f xf
g

]T

(1.90)

The observation vector, instead, is a 2 × 1 one expressed in term of the observation points 1

and 2 (see Fig. 1.17 again):

yo =







yo
1

yo
2






(1.91)

The analysis and forecast covariance matrices are:

Pa =













pa
ee pa

ef pa
eg

pa
fe pa

ff pa
fg

pa
ge pa

gf pa
gg













(1.92)

Pf =













pf
ee pf

ef pf
eg

pf
fe pf

ff pf
fg

pf
ge pf

gf pf
gg













(1.93)

while the observation error covariance matrix will be:

R =







r11 r12

r21 r22






(1.94)

If measurements error at different locations are uncorrelated, R will be a diagonal matrix.

The linearized observation operator H projects vectors in model space SMod (grid points)

into vectors in observation space Sob (observation points). Its components may be simple
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Figure 1.17: A simple case: 3 grid points (e, f, g) and 2 observations (1, 2).

interpolation coefficients:

H =







h1e h1f h1g

h2e h2f h2g






(1.95)

So for example the background values at observation points are the following vector yb:

Hxb =







h1e h1f h1g

h2e h2f h2g



















xb
e

xb
f

xb
g













(1.96)

=







yb
1

yb
2






= yb (1.97)

In Kalman Filter (see subsection 2.2.1) we will also have the term:

PfHT =













pf
ee pf

ef pf
eg

pf
fe pf

ff pf
fg

pf
ge pf

gf pf
gg

























h1e h2e

h1f h2f

h1g h2g













=













pf
e1 pf

e2

pf
f1 pf

f2

pf
g1 pf

g2













(1.98)

that is a grid to observation points approximation, by interpolation, of the forecast error co-

variance matrix Pf ; as for example in pf
e2 = pf

eeh2e + pf
efh2f + pf

egh2g. We will also see the

term:

HPfHT =







h1e h1f h1g

h2e h2f h2g



















pf
ee pf

ef pf
eg

pf
fe pf

ff pf
fg

pf
ge pf

gf pf
gg

























h1e h2e

h1f h2f

h1g h2g













=







pf
11 pf

21

pf
12 pf

22






(1.99)

which in turn is an approximation by back interpolation of the forecast error covariance matrix

Pf between observation points [16].
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We will also find the gain matrix

K = PfHT
[

HPfHT + R
]−1

(1.100)

that is an N × M matrix. In this low dimensional example it’s 3 × 2:

K =













pf
e1 pf

e2

pf
f1 pf

f2

pf
g1 pf

g2





























pf
11 pf

21

pf
12 pf

22






+







r11 r12

r21 r22

















−1

(1.101)
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Chapter 2

Data Assimilation: state of the

art

A NWP forecast is an initial value problem coupled with a boundary problem: carefully ini-

tialized and with the appropriate boundary conditions, a NWP model outputs the atmospheric

evolution (forecast). Of course, to improve the quality of the forecast we need to better estimate

the initial conditions, or the present state of the system. As we already stated in paragraph

1.2, the purpose of Data Assimilation in NWP models is “using all the available information, to

determine as accurately as possible the state of the atmospheric (or oceanic) flow” (Talagrand,

1997, [16]). The available information is a statistical combination of (noisy) observations and a

short-range forecast.

In this chapter we will survey the most important techniques devised to combine these in-

formations, without any attempt to be exhaustive. In particular, we will talk about Variational

and Sequential assimilation techniques. The former has been applied since the early 70s, greatly

enhanced at the end of the 80s, and still largely used in operational contexts. The latter have

an appealing probabilistic approach, but their implementation in realistic geophysical models

turns out to be problematic, for reasons to be discussed below.

2.1 Variational assimilation

In the variational method basically the problem is to find a model trajectory which best fit

the observational data within a given time interval τ , often called assimilation window, while

satisfying the dynamical constraints: in the strong constraints formulation the constraints have

to be satisfied exactly; in the weak constraints formulation they have to be satisfied only ap-
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proximately [8]. Since the model equations are deterministic, all we need is the initial state and

the boundary conditions, and the variational problem may be restated from a constrained to

an unconstrained form. Thus, the idea is to find the initial state x(t0) which evolution under

the model equations best fit the observational data within the assimilation window.

In practice, we are looking for the initial state x(t0) that minimizes a so called cost function,

which is a scalar functional of the trajectory x(t), to be minimized under the model equations

constraint 1.2. The cost function J (x(t)) is defined as the sum of the squares of the distance

between x(t) and the forecast state xf (t) weighted by the inverse of the forecast error covariance

matrix Pf (t), plus the distance between the “first guess” observations Hx(t) and the true

observations yo(t), weighted by the inverse of the observations error covariance matrix R [16].

J (x(t)) =
1

2

[

x(t) − xf (t)
]T (

Pf (t)
)−1 [

x(t) − xf (t)
]

+

+
1

2
[Hx(t) − yo(t)]T R−1 [Hx(t) − yo(t)] (2.1)

2.1.1 Maximum likelihood approach

Let’s see a maximum likelihood motivation for eq. 2.1. Consider first, as an illustrative example,

a 1-dimensional problem: we have two independent temperature observations T1 and T2, both

assumed to have normally distributed errors with standard deviations σ1 and σ2. The analysis

temperature T is the most likely value, given the two observations T1 and T2 and their statistical

errors. The cost function, in this particular case, is:

J(T ) =
1

2

[

(T − T1)
2

σ2
1

+
(T − T2)

2

σ2
2

]

(2.2)

The probability distribution of an observation T1 given a true value T and a standard

deviation σ1 for T1 is

pσ1(T1|T ) =
1√

2πσ1

e
− (T1−T )2

2σ2
1 (2.3)

A similar relation holds for T2:

pσ2(T2|T ) =
1√

2πσ2

e
− (T2−T )2

2σ2
2 (2.4)

The likelihood of a true value T given an observation T1 with a standard deviation σ1 is given

by [16]:

Lσ1(T |T1) = pσ1(T1|T ) =
1√

2πσ1

e
− (T1−T )2

2σ2
1 (2.5)

and — in the same way — the likelihood of a true value T given an observation T2 with a
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standard deviation σ2 is:

Lσ2(T |T2) = pσ2(T2|T ) =
1√

2πσ2

e
− (T2−T)2

2σ2
2 (2.6)

Since the two observations T1 and T2 are independent, the likelihood of a true value T given

both T1 and T2 is the product:

Lσ1σ2(T |T1, T2) = Lσ1(T |T1) · Lσ2(T |T2) (2.7)

=
1√

2πσ1

e
− (T1−T )2

2σ2
1

1√
2πσ2

e
− (T2−T )2

2σ2
2

=
1

2πσ1σ2
e
− (T1−T )2

2σ2
1

− (T2−T)2

2σ2
2 (2.8)

Thus, given the two measurements T1 and T2 and their standard deviations σ1 and σ2, we can

find the most likely value of T by maximizing the likelihood 2.8, or even its logarithm:

max
T

ln Lσ1σ2(T |T1, T2) = max
T

[

constant − (T1 − T )2

2σ2
1

− (T2 − T )2

2σ2
2

]

(2.9)

This maximization leads to the minimization of

J(T ) =
1

2

[

− (T1 − T )2

σ2
1

− (T2 − T )2

σ2
2

]

(2.10)

which is the cost function 2.1 for this simplified case.

Let’s consider now the more general cost function (eq. 2.1): we define the likelihood of

the true state x(t) given the forecast field xf (t) (used as background field) or given the new

observations yo in the following way [16]:

LPf (x|xf ) = pPf (xf |x) =
1

(2π)N/2|Pf |1/2
e
− 1

2

h

(xf−x)
T
(Pf)

−1
(xf−x)

i

(2.11)

LR(x|yo) = pR(yo|x) =
1

(2π)M/2|R|1/2
e−

1
2 [(y

o−Hx)T R−1(yo−Hx)] (2.12)

where N is the number of components of the vectors x(t) and xf (t), while M is that of the

vector yo. The joint likelihood, being independent the forecast xf and the new observations

yo, is the product of the two Gaussian likelihoods:

L(x|xf ,yo) = LPf (x|xf )LR(x|yo) (2.13)

=
e
− 1

2

h

(xf−x)
T
(Pf)

−1
(xf−x)

i

− 1
2 [(y

o−Hx)T
R

−1(yo−Hx)]

(2π)(N+M)/2|Pf |1/2|R|1/2
(2.14)
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The most likely analysis state xa, which maximizes the joint likelihood and its logarithm as

well, also minimizes the cost function 2.1.

2.1.2 Bayesian approach

Let’s go back to our simplified 1-dimensional case, discussed in subsection 2.1.1: there is also

a Bayesian derivation for 2.10. We made the observation T1 (the forecast state in the assimila-

tion cycle) with an a priori probability distribution of the truth — that is, before the second

observation:

pT1σ1(T ) =
1√

2πσ1

e
− (T1−T )2

2σ2
1 (2.15)

The Bayes Theorem for the a posteriori probability of the truth given the new measurement

T2 is:

pσ2(T |T2) =
pσ2(T2|T ) pT1σ1(T )

pσ2(T2)

=

1√
2πσ2

e
− (T2−T)2

2σ2
2

1√
2πσ1

e
− (T1−T )2

2σ2
1

pσ2(T2)
(2.16)

Since the denominator

pσ2(T2) =

∫

T∗

1√
2πσ2

e
− (T2−T∗)2

2σ2
2 dT ∗

is independent of T , maximizing the a posteriori probability 2.16 means maximizing the loga-

rithm of the numerator, that leads again to the minimization of the cost function 2.10.

In the more general case (eq. 2.1), we suppose that the truth vector x(t) is the result of a

stochastic process defined by the following a priori probability distribution function, given the

forecast field xf (t) (used as background):

pPf (x) =
1

(2π)N/2|Pf |1/2
e
− 1

2

h

(xf−x)
T
(Pf)

−1
(xf−x)

i

(2.17)

When we get new observations yo, the Bayes theorem gives us the a posteriori probability:

p(x|yo) =
pR(yo|x) pPf (x)

p(yo)
(2.18)

where p(yo) is the climatological observations distribution. Eq. 2.18 gives:

p(x|yo) =

e
−

1
2

»

(yo
−Hx)T

R−1(yo
−Hx)+(xf

−x)
T
(Pf)

−1
(xf

−x)
–

(2π)(N+M)/2|R|1/2|Pf |1/2

p(yo)
(2.19)
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Since p(yo) does not depend on the current state x(t), the maximum of the a posteriori proba-

bility 2.19 will coincide with the maximum numerator, or with the minimum of the cost function

2.1.

2.1.3 3D-Var scheme

The analysis state that minimizes the cost function J(x) in eq. 2.1 is given by:

∇xJ(xa) = 0 (2.20)

If we assume that the analysis is a good approximation to the truth and to the observations,

we can linearize the observation operator H around the background, or around the forecast if

we use this as the background field:

yo − H(x) = yo − H [xf + (x − xf )] (2.21)

= yo − H(xf ) − H(x− xf ) (2.22)

After dropping the time dependence for sake of clarity, we can rearrange the expression for the

cost function:

J (x) =
1

2

[

x − xf
]T (

Pf
)−1 [

x − xf
]

+
1

2
[H(x) − yo]

T
R−1 [H(x) − yo] (2.23)

=
1

2

[

x − xf
]T (

Pf
)−1 [

x − xf
]

+

+
1

2
[yo − H(xf ) − H(x − xf )]TR−1[yo − H(xf ) − H(x− xf )] (2.24)

=
1

2

[

x − xf
]T (

Pf
)−1 [

x − xf
]

+
1

2

[

x − xf
]T

HTR−1H
[

x − xf
]

+

+
1

2

[

H(xf ) − yo
]T

R−1H
[

x − xf
]

+
1

2

[

x − xf
]T

HTR−1
[

H(xf ) − yo
]

+

+
1

2

[

H(xf ) − yo
]T

R−1
[

H(xf ) − yo
]

(2.25)

and see that it’s a quadratic function of the analysis increment x − xf . Now, consider the

general quadratic function

F (x) =
1

2
xT Ax + vT x + k (2.26)

where x and v are vectors of the same N -dimensional vector space, A is an N × N symmetric

matrix and k is a scalar. It can be shown [16] that its gradient is

∇xF (x) = Ax + v (2.27)
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So, for the cost function 2.25 the gradient with respect to x is the same as that with respect to

x− xf :

∇J(x) =
[

(

Pf
)−1

+ HTR−1H
]

(

x − xf
)

+ HTR−1
[

H(xf ) − yo
]

(2.28)

In order to minimize it and to calculate the analysis state xa, we set ∇J(xa) = 0, so:

[

(

Pf
)−1

+ HTR−1H
]

(

xa − xf
)

= HTR−1
[

yo − H(xf )
]

(2.29)

or alternatively:

xa = xf +
[

(

Pf
)−1

+ HTR−1H
]−1

HTR−1
[

yo − H(xf )
]

(2.30)

The last equation can be expressed in term of the analysis increment δxa = xa − xf and the

innovation δyo = yo − H(xf ):

δxa =
[

(

Pf
)−1

+ HTR−1H
]−1

HTR−1δyo (2.31)

which is the solution of the variational analysis problem, called 3D-Var. It can also be shown

that
[

(

Pf
)−1

+ HTR−1H
]−1

HTR−1 = PfHT
[

HPfHT + R
]−1

(2.32)

so that

δxa = PfHT
[

HPfHT + R
]−1

δyo (2.33)

or equivalently:

xa = xf + PfHT
[

HPfHT + R
]−1 [

yo − H(xf )
]

(2.34)

Subtracting the true state vector xt in both lhs and rhs, we get an expression for the analysis

error:

ηa = ηf + PfHT
[

HPfHT + R
]−1 [

yo − H(xf )
]

(2.35)

If we define the gain matrix

K = PfHT
[

HPfHT + R
]−1

(2.36)

the equations 2.33 and 2.34 become:

δxa = K δyo (2.37)

xa = [I− KH ]xf + Kyo (2.38)
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If the forecast error ηf is small, we can linearize the observation operator H and the equation

H(x + δx) = H(x) + H δx holds true; so equation 2.35 yields:

ηa = ηf + Kyo − KH(xf ) (2.39)

= ηf + Kyo − KH(xt + xf − xt) (2.40)

= ηf + Kyo − KH(xt + ηf ) (2.41)

= ηf + Kyo − KH(xt) − KH(ηf ) (2.42)

= [I − KH] ηf + K δyo (2.43)

Since we may assume that the forecast error and the observation error are uncorrelated, the

analysis covariance matrix may be written as follows:

Pa = < ηa(ηa)T > (2.44)

= [I− KH]Pf [I − KH]T + KRKT (2.45)

= [I− KH]Pf (2.46)

where the last equation has been derived by inserting into eq. 2.45 the expression for the gain

matrix K = PfHT
[

HPfHT + R
]−1

. Indeed, from eq. 2.45 we have:

Pa = [I− KH]Pf − [I− KH]PfHTKT + KRKT (2.47)

= [I− KH]Pf −
[

PfHT − KHPfHT
]

KT + KRKT (2.48)

Now, the two last terms in eq. 2.48 actually vanish, because

K = PfHT
[

HPfHT + R
]−1 ⇐⇒ KR = PfHT − KHPfHT (2.49)

2.2 Sequential assimilation

The sequential assimilation methods have a probabilistic approach to estimate the state of a

system. The basic idea is to project information ahead in time and to assimilate observational

data when available. We don’t need to compute the adjoint model: sequential assimilation

schemes are suitable for different models.

In the following subsections we will talk about Kalman Filter for linear systems and Extended

Kalman Filter for nonlinear ones. In the end, we will drop a note about the very promising

Ensemble Kalman Filter.
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2.2.1 Kalman Filter

The Kalman Filter, hereafter referred to as KF, was first formulated by Kalman (1960) and

Kalman and Bucy (1961), so sometimes it is called Kalman-Bucy Filter. The KF deals with

linear stochastic dynamical systems where noisy observations are taken at discrete times. It is

an optimal recursive data processing algorithm, where ’optimal’ refers to the fact that it uses all

available information we can provide: it processes all measurements, when available, regardless

of their precision, by using [23]:

• the knowledge of the dynamics of the system and measurement device dynamics

• the statistical description of the system noises, measurement errors and model error

• any available information about initial conditions of the system

• it does not need old data to be kept in storage

The KF is basically a set of equations that implements a prediction-correction estimator: if

some conditions are met, the estimator minimizes the estimated error covariance [23]. If the

conditions are not fully satisfied, often the KF still works quite well. A sketch description of

how it works is shown in Fig. 2.1: the prediction stage consists of the first two equations, which

basically project ahead the analysis state and the analysis error covariance matrix, providing

the forecast vector and the forecast error covariance matrix. The correction stage consists of

further three equations, and takes advantage of new observations to provide the new analysis

vector and the analysis error covariance matrix. Then, recursively, a new projection ahead is

performed till new observations become available.

Let’s consider a linear discrete stochastic dynamical system of the form of the eq. 1.11, i.e.

xt
k+1 = Mxt

k + qk+1 (2.50)

Here the linear model operator M projects information ahead from time tk to time tk+1, so

actually

M = M(tk, tk+1) (2.51)

We will use this simplified notation in equations below. The term qk+1 in eq. 2.50 is a white

Gaussian noise with zero mean and covariance matrix Qk+1, namely

< qk+1 > = 0 (2.52)

Qk+1 = < qk+1q
T
k+1 > (2.53)
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and may represent subgrid-scale processes not resolved by the model [14]. Under these condi-

tions the KF is described by the following set of equations:

x
f
k+1 = Mxa

k (2.54)

P
f
k+1 = MPa

kM
T + Qk+1 (2.55)

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1 (2.56)

xa
k+1 = (I − Kk+1H)xf

k+1 + Kk+1y
o
k+1 (2.57)

Pa
k+1 = (I − Kk+1H)Pf

k+1 (2.58)

where, following usual conventions:

xt is the true state

xa is the analysis state

xf the forecast state

yo the observation vector

Pa the analysis error covariance matrix

Pf the forecast error covariance matrix

R the observational error covariance matrix

H the (possibly nonlinear) observation operator

H the linearized observation operator (it transforms vectors in model space to vectors

in observation space)

M the linear model operator

Q the forecast model error covariance matrix

K the gain matrix

I the identity matrix.

Subscripts in the KF equations indicate the time steps where new observations are available.

If we compute the expectation value of eq. 2.50 we get:

< xt
k+1 > = < Mxt

k + qk+1 > (2.59)

= < Mxt
k > (2.60)

= M < xt
k > (2.61)
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Figure 2.1: How the Kalman Filter works.

or, in the usual data assimilation notation:

x
f
k+1 = Mxa

k (2.62)

which is eq. 2.54. It should be noticed that, due to linearity of this special case, if the initial

PDF is Gaussian, so it will remain for any future time: we can have a complete description of

the future PDF by its mean and covariance. So we need the covariance matrix Pf evolution,

from time tk to time tk+1. It can be derived by rearranging the forecast error definition, together

with the linearity of the model operator M, and by using equations 2.50, 2.62:

η
f
k+1 = x

f
k+1 − xt

k+1 (2.63)

= Mxa
k − Mxt

k − qk+1 (2.64)

= M(xa
k − xt

k) − qk+1 (2.65)

= Mηa
k − qk+1 (2.66)

Since qk+1 is a white Gaussian noise with zero mean, the expectation value of η
f
k+1 reads:

< η
f
k+1 >= M < ηa

k > (2.67)
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Now, if the analysis error and the model error are uncorrelated, multiplying η
f
k+1 by its trans-

pose and taking the expectation value, we get:

P
f
k+1 = < η

f
k+1(η

f
k+1)

T > (2.68)

= < (Mηa
k − qk+1)(Mηa

k − qk+1)
T > (2.69)

= M < ηa
k(ηa

k)T > MT + < qk+1(qk+1)
T > (2.70)

= MPa
kM

T + Qk+1 (2.71)

which is eq. 2.55.

The analysis state is computed as in 3D-Var assimilation scheme, eq. 2.34

xa = xf + Kk+1

[

yo − H(xf )
]

(2.72)

or even

xa = [I − Kk+1H ]xf + Kk+1y
o (2.73)

where the Kalman gain Kk+1 is defined by

Kk+1 = PfHT
[

HPfHT + R
]−1

(2.74)

The analysis error covariance matrix is given by eq. 2.46, i.e.:

Pa = (I − Kk+1H)Pf
k+1 (2.75)

2.2.2 Extended Kalman Filter

One of the methods devised to address the problem of estimating the initial conditions for a

forecast model is the Extended Kalman Filter (EKF), where the term ’extended’ refers to the

Kalman Filter’s approximation for nonlinear systems.

The EKF is described by the following set of equations (see for example [14]):

x
f
k+1 = Mxa

k (2.76)

P
f
k+1 = MPa

kM
T + Qk (2.77)

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1 (2.78)

xa
k+1 = (I − Kk+1H)xf

k+1 + Kk+1y
o
k+1 (2.79)

Pa
k+1 = (I − Kk+1H)Pf

k+1 (2.80)
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where we used the common conventions as for the KF, and the nonlinear model operator

M . Here M is no longer the linear model operator, but the Tangent Linear Model operator.

Subscripts indicate the time steps where new observations are available and, again, we dropped

them for operators M , M, H , H.

For EKF, due to the lack of linearity of the model operator M , equation 2.66 for the forecast

error is no longer valid; nonetheless it may be rewritten in an approximate form, by using the

tangent linear model operator and equation xt
k+1 = Mxt

k + qk+1:

η
f
k+1 = x

f
k+1 − xt

k+1 (2.81)

= Mxa
k − Mxt

k − qk+1 (2.82)

' M(xa
k − xt

k) − qk+1 (2.83)

So, since

η
f
k+1 ' Mηa

k − qk+1 (2.84)

is only an approximate expression, the corresponding expression for the forecast error covariance

matrix (eq. 2.71) will be approximate as well:

P
f
k+1 ' MPa

kM
T + Qk (2.85)

The EKF, after an initial transient, should give both the best linear unbiased estimate of the

state of the system and its error covariance. But if the system is (locally) highly nonlinear, or

should the observations be not adequately frequent, the linearization may become a hypothesis

which is not actually fulfilled: that can jeopardize the stability of the filter and the filter

may diverge [16]. Furthermore, for realistic NWP model the EKF can not be implemented

due to both the prohibitive computational costs in estimating the covariance matrices and the

uncertainties about the model error.

2.2.3 Ensemble Kalman Filter

In the Ensemble Kalman Filter (EnKF) approach, proposed by Evensen in 1994 [10], an ensem-

ble of Nens data assimilation cycles are run simultaneously and independently: all of them as-

similate the same set of observations, but for each member of the ensemble it will be added a dif-

ferent random perturbation to the observations. This ensemble can be used to estimate the fore-

cast error covariance matrix Pf : after computing the analysis state xa
j (tk), j ∈ {1, . . . , Nens},
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for each member of the ensemble, we can obtain the forecast states:

x
f
j (tk+1) = M j

k xa
j (tk) j ∈ {1, . . . , Nens} (2.86)

the ensemble average
〈

xf (tk+1)
〉

and an estimate of the forecast error covariance matrix, a sort

of average of the Nens forecast error covariance matrices, e.g.:

P
f
k+1 ' 1

Nens − 1

Nens
∑

j=1

[

x
f
j (tk+1) −

〈

xf (tk+1)
〉

] [

x
f
j (tk+1) −

〈

xf (tk+1)
〉

]T

(2.87)

This will actually tend to underestimate the forecast error covariance matrix Pf : other estimate

can be devised [16].

The EnKF approach has many advantages, among which:

• since typically Nens is somewhere between 10 and 100, the computational cost of EnKF is

increased by the same factor with respect to 3D-Var, for example. But it’s much smaller

compared to that of an EKF

• EnKF does not need a linear or adjoint model

• it does not even require the linearization of the evolution of the forecast error covariance

matrix Pf

Despite EnKF is not yet implemented in operational NWP forecast, it seems nowadays one of

the most promising assimilation schemes for the future.

2.3 AUS: Assimilation in the Unstable Subspace

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi

in 2004 [33], hereafter referred to as TU, and developed by Trevisan, Uboldi and Carrassi

[34, 35, 3], to minimize the analysis and forecast errors by exploiting the flow-dependent in-

stabilities of the forecast-analysis cycle system, which may be thought of as a system forced

by observations. In the AUS scheme the assimilation is obtained by confining the analysis in-

crement δxa = xa − xf in the unstable subspace of the forecast-analysis cycle system so that

it will have the same structure of the dominant instabilities of the system. In such a way the

dynamically unstable components, present in the forecast error, which are responsible for error

growth, are in principle systematically reduced or eliminated. The unstable subspace will be

estimated by breeding on the data assimilation system (BDAS), a technique to be discussed

below. TU showed that AUS is a reliable and efficient approach in the 40 variables Lorenz 1996
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model [20], while the subsequent studies proved the same for different, more realistic models

and observational configurations, including a Quasi-Geostrophic model with 14784 degrees of

freedom [3], and a high dimensional, primitive equation ocean model with 301120 degrees of

freedom [35]; the experiments encompassed fixed and “adaptive”, or “targeted”, observations.

In these contexts, the AUS-BDAS dynamical system approach greatly reduces the analysis er-

ror, with reasonable computational costs for data assimilation with respect, for example, to a

prohibitive full Extended Kalman Filter approach. This is a follow-up study in which we will

revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective

model.

In practice, in the same spirit as of the EKF approach (equations 2.76-2.80), the AUS

assimilation algorithm is aimed at finding a simplified form of the forecast covariance matrix

Pf by exploiting the local unstable structures of the forecast-analysis cycle system, which in

turn are estimated by BDAS. Once Pf has been estimated, an approximated gain matrix K may

be computed, so finally — with some knowledge of the observational error covariance matrix

R and the observation operator H — we can estimate the analysis vector xa.

2.3.1 AUS: how it works

The forecast error is regarded as made of two components, the first on the unstable subspace,

and the other one on the complementary subspace [35]:

ηf = Eγ + ξ (2.88)

where the matrix E stores in its columns the normalized estimated unstable directions, the

column vector γ represents the forecast error component in the unstable basis: so Eγ is the

linear combination of the unstable directions that represents the forecast error component on

the unstable subspace. The correspondent forecast covariance matrix may be derived:

Pf = < ηf (ηf )T > (2.89)

= E < γγT > ET + E < γξT > + < ξγT > ET + < ξξT > (2.90)

If we set Γ =< γγT >and assume that the forecast error component in the complementary

subspace is small, we can neglect in eq. 2.90 all term containing ξ, and the Pf may be approx-

imated:

Pf ' EΓET (2.91)
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The corresponding gain matrix is approximated as well:

K = PfHT (HPfHT + R)−1 (2.92)

' EΓETHT (HEΓETHT + R)−1 (2.93)

where R is the usual observational error covariance matrix and H is the Jacobian of the possibly

nonlinear observation operator H . The analysis vector expression reads:

xa = xf + K
[

yo − H(xf )
]

(2.94)

' xf + EΓETHT (HEΓET HT + R)−1
[

yo − H(xf )
]

(2.95)

The approximated equation 2.91, written by neglecting the component of Pf out of the unstable

subspace spanned by the basis vector stored in the matrix E, results in a gain matrix K

computed in a subspace (eq. 2.93). The resulting analysis of eq. 2.95 reduces the error

component in such subspace [35].

If M is the tangent linear propagator (between time tk to time tk+1, [3]) we can write down:

MEk = Ek+1Λk

where Λk is the matrix whose diagonal elements are the amplification factors, exp
(

∫ tk+1

tk
λi(t) dt

)

,

where λi are the local Lyapunov exponents, in decreasing order, corresponding to the i-th col-

umn vector of Ek. The forecast error will then evolve according to:

η
f
k+1 = Ek+1ΛkE

−1
k ηa

k (2.96)

2.3.2 AUS: a simple example

For example, if the state vector has dimension 3, the number of observations each assimilation

step is 2 and the number of unstable directions is 2, the 3 × 2 matrix E is:

E =













e11 e12

e21 e22

e31 e32













(2.97)
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where e1 = [e11 e21 e31]
T and e2 = [e12 e22 e32]

T are the 2 unstable directions. The 2 × 1

column vector γ is

γ =







γ1

γ2






(2.98)

so the 3 × 1 product Eγ is

Eγ =













e11 e12

e21 e22

e31 e32



















γ1

γ2






(2.99)

=













e11γ1 + e12γ2

e21γ1 + e22γ2

e31γ1 + e32γ2













(2.100)

The forecast error covariance matrix is 3 × 3:

Pf ' EΓET (2.101)

'













e11 e12

e21 e22

e31 e32



















γ1

γ2






[γ1 γ2]







e11 e21 e31

e12 e22 e32






(2.102)

where Γ is the 2 × 2 matrix

Γ =







γ1

γ2






[γ1 γ2] (2.103)

=







γ1γ1 γ1γ2

γ1γ2 γ2γ2






(2.104)

As we already mentioned in subsection 1.6.5 for a similar case, the observation error covariance

R is 2 × 2, the observation operator H is 2 × 3, and the gain matrix K is 3 × 2.

2.3.3 Refresh procedure

After the analysis, part of the information in the bred vectors, used to estimate the unstable

structures of the system, will be no longer available: that’s why a “refresh” procedure may

improve our capabilities to capture the system’s instabilities. “Refresh” means that a new

random perturbation is introduced in the place of bred vectors already used in assimilation;

which in turn may be simply discarded or “recycled” by adding them to the other vectors.
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Which is the better strategy depends on the complexity of our system, and an “in between”

approach may be also implemented [35].

2.3.4 Using a single bred vector for assimilation

When we use a single bred vector to estimate the unstable 1-dimensional subspace, the matrix

E reduces to a single column vector e, the matrix Γ becomes the scalar γ2 and the expressions

discussed in subsection 2.3.1 for forecast error, forecast error covariance matrix and gain matrix

reduce to:

ηf = eγ + ξ (2.105)

Pf ' γ2 e eT (2.106)

K = γ2 e eTHT (γ2 HeeTHT + R)−1 (2.107)

2.3.5 Adaptive observation strategy

The basic idea underlying adaptive, or targeted, observations is to take measurements where

the unstable structures have the maximum amplitude. The same structures exploited to locate

adaptive observations are used to estimate the Pf , K and analysis state xa, through equations

2.91, 2.93 and 2.95 respectively. This approach has been already tested in previous works by

Trevisan, Uboldi and Carrassi and proved to be highly efficient in realistic contexts [33, 34, 3].

2.4 BDAS: Breeding on the Data Assimilation System

Breeding on the Data Assimilation System (BDAS) is a method devised to estimate the un-

stable structures of the data assimilation system, that can be thought of as a system forced

by observations. It is a modified formulation of breeding: the basic idea of BDAS is to breed

initially random perturbations of the analysis and to impose them the same dynamics as the

analysis-forecast solution, including assimilation of the observations whenever available. The

perturbations need to be evolved for a sufficiently long time for a reliable estimate of the insta-

bilities: the corresponding time is the breeding time.

2.4.1 Standard breeding method

The breeding method is a nonlinear, finite-amplitude generalization of the algorithm used to

compute the leading Lyapunov vector: as we already mentioned in subsection 1.3.9, bred vectors

are indeed closely related to Local Lyapunov Vectors. This is the basic idea: A small pertur-
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bation of the state, if its amplitude is periodically scaled down to be kept small, will evolve

in a linear combination of unstable directions [35]. These directions are estimated by integrat-

ing the nonlinear model and by using one or more perturbed states. In realistic geophysical

models the normalization amplitude, the length of the breeding time and the frequency of the

normalization procedure may be tuned to filter out unwanted instabilities, such as convection

[16].

In practice, standard breeding works as follows. Given a dynamical system in the form

of a flow, a breeding cycle is started by adding a random initial perturbation with a fixed

initial amplitude, which is introduced only once, at the beginning of the procedure. The same

nonlinear model is integrated from the unperturbed (“control”) and from the perturbed initial

conditions. At regular time intervals the control forecast is subtracted from the perturbed

forecast, and the resulting difference is scaled down to the initial amplitude. Then it is added

to the corresponding new analysis or model state [16]. The forecast state can be computed by

x
f
k+1 = Mxa

k (2.108)

and the perturbation dynamics will be described by

δxf
k+1 = M δxa

k (2.109)

where M is the model and M = M(x(t)) its Jacobian evaluated around the forecast trajectory

x(t), ∀t ∈]tk, tk+1].

2.4.2 BDAS: how it works

Since BDAS is a particular implementation of the breeding method, it shares with it the basic

principles, i.e. the evolution, by using the nonlinear model, of a random initial perturbation

added to the control trajectory. In the analysis step we have observational data to assimilate,

and the evolved random initial perturbation will undergo the assimilation procedure.

Whenever observations become available, the analysis state is computed by

xa
k+1 = [I− KH ]xf

k+1 + Kyo
k+1 (2.110)

or even, using eq. 2.108:

xa
k+1 = [I − KH ]M xa

k + Kyo
k+1 (2.111)

where K is the gain matrix and H is the (possibly nonlinear) observation operator. The
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expression 2.110 is the same in Kalman Filters and 3D-Var schemes. The perturbation equation

for the system undergoing observational forcing reads:

δxa
k+1 = [I − KH] δxf

k+1 (2.112)

= [I − KH]M δxa
k (2.113)

where we used the linearized observation operator H, i.e. the Jacobian of the observation

operator H . Breeding on the Data Assimilation System is based, rather than on eq. 2.109,

on eq. 2.113, in which the matrix operator [I − KH] has a general stabilizing effect: the

assimilation will reduce the amplifying components of the error.

So, basically: in an assimilation system where observations are available once in a while,

during the forecast time the free system instabilities dominate the error growth; in the analysis

step the assimilation of observations will in general reduce some fast-growing components of

the error.

Another important issue is the breeding time, i.e. the time needed for the perturbations

to capture the most unstable structures. It can not be infinite, but should be long enough to

provide a meaningful (set of) bred vector(s). Typically, the breeding time ∆t is longer than the

assimilation window τ , and often is set as a multiple of τ :

∆t = nτ (2.114)

2.4.3 BDAS, an example of practical implementation

Just to focus on a specific example, let’s suppose that we deal with a simple low dimensional

system for which the breeding time ∆t = 2τ , where τ = tk+1 − tk is the fixed assimilation

window. We assume that:

• the unstable subspace is estimated by using a single bred vector

• we can discard bred vector after use

If tk is the previous assimilation step, we use the general equation 1.34, that is:

δx(t) =
∂M

∂x
δx(tk) = M δx(tk), t ∈ [tk, tk+1] (2.115)

to estimate the evolution of the perturbation δx(t), for t spanning from the previous assimi-

lation step tk up to the new one tk+1. At new assimilation step tk+1 we will use the evolved

perturbation δx(tk−1) to estimate the unstable direction of the system, after which it is dis-
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Table 2.1: Breeding on the Data Assimilation System: introducing the perturbations and esti-
mating the unstable subspace. This is a specific example in which the breeding time is ∆t = 2τ ,
where τ = tk+1 − tk is the assimilation window.
.

Time introduced evolving used to assimilate undergoing

and then discarded assimilation

tk−1 δx(tk−1) — evolved δx(tk−3) evolved δx(tk−2)

tk−1 < t ≤ tk — δx(tk−2) & δx(tk−1) — —

tk δx(tk) — evolved δx(tk−2) evolved δx(tk−1)

tk < t ≤ tk+1 — δx(tk−1) & δx(tk) — —

tk+1 δx(tk+1) — evolved δx(tk−1) evolved δx(tk)

tk+1 < t ≤ tk+2 — δx(tk) & δx(tk+1) — —

tk+2 δx(tk+2) — evolved δx(tk) evolved δx(tk+1)

carded. The already grown perturbation δx(tk) will undergo the same assimilation process

used to evaluate the new analysis state. Furthermore, a new random perturbation δx(tk+1) is

introduced (refresh, see subsection 2.3.3), to be used at assimilation step tk+3. Let’s summarize:

In the particular example at hand, with a breeding time ∆t = 2τ , we will recursively follow

this procedure (see Table 2.1):

1. At each new assimilation step tk+1:

(a) We exploit the evolved perturbation δx(tk−1), previously introduced at time tk−1 and

assimilated at time tk, to estimate the dominant part of the forecast error covariance

matrix P
f
k+1

(b) After using, the evolved perturbation δx(tk−1) is discarded

(c) At the same time tk+1, through the same assimilation scheme we calculate both the

analysis state of the system xa
k+1 and assimilate the perturbation δx(tk), introduced

the previous assimilation time tk and evolved for all t ∈ ]tk, tk+1]
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(d) Furthermore, also at time tk+1, we randomly perturb the analysis state xa
k+1 with a

new, small vector δx(tk+1); that’s the refresh

2. For all t ∈ ]tk+1, tk+2]:

(a) We evolve this new perturbation δx(tk+1) with the same dynamics of the system,

that is M = M(xa
k+1), with the TLM operator M evaluated along the forecast

trajectory x(t)

(b) We evolve also δx(tk), that was introduced at time tk and that underwent to evolution

for t ∈ ]tk, tk+1] as well as an assimilation procedure at the assimilation step tk+1

(see item 1.c)

(c) We let the new perturbation δx(tk+1) grow for a suitable time before use, in this

example for a breeding time ∆t = 2τ , so it will be used at assimilation time tk+3.

Since the time interval ∆t is greater than the assimilation window τ , the evolved

perturbation δx(tk+1) will undergo to the assimilation process at time tk+2. The as-

similation will be done by using the perturbation δx(tk), evolved and yet assimilated

at previous assimilation step tk+1

3. At assimilation step tk+2 the cycle is repeated

Throughout this work we will use a single bred vector δx(tk). When it is ready, after a breeding

time ∆t = 2τ , it is assumed to capture the most unstable structure of the forced system. It

may be normalized or not, depending on the particular scheme adopted: if not normalized, an

opportune initial length has to be chosen.
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Chapter 3

Assimilation in the Lorenz 63

model: comparison among

different methods

In the context of Lorenz convective 3-dimensional model (1963), we will run observation system

simulation experiments in a perfect model setting and, in section 3.6, with some kind of model

error as well.

In section 3.2, we will describe the algorithms used for different flavors of Extended Kalman

Filters, while in section 3.3 we will do the same for different AUS assimilation schemes with

increasing capabilities. We will then illustrate the results in section 3.4. In section 3.5 we will

show some examples about the different behavior of the EKF and AUS assimilation schemes in

some specific circumstances. Finally, in section 3.6, we will test our methods in the presence of

model error.

3.1 Experimental setups

Since we are mainly interested in comparing different data assimilation schemes in critical

circumstances, we choose hard setups for our experiments. Basically we will perform three kind

of experiments, concerning:

• Synchronization to the “truth”

• Noisy observations

• Model error
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In synchronization experiments we will qualitatively show for a few typical cases the capabilities

to converge to the truth for the EKF, the Evensen’s flavor of EKF (see section 3.2), and the

best-performance AUS scheme (see section 3.3). In particular we will use a mix of perfect or

quasi-perfect observations (σ2 = 0, σ2 = 0.01 or σ2 = 0.1) with long or very long assimilation

windows (τ = 0.25 or τ = 0.6). In these case studies we will observe only the y variable, which

is the most valuable one.

In noisy observation experiments the goal is to show the average RMS analysis and forecast

error for all the different DA schemes with a long assimilation window (τ = 0.25) and noisy

observations (σ2 = 2). The results shown are the mean values of 100,000 assimilations, with

3 or 2 variables observed. When 2 observations are used, the most valuable two (y and z) are

used for the EKF schemes, while for the AUS schemes we will use two adaptive observations

(see subsection 2.3.5). Similar trials with different noisy observations (σ2 = 1 or σ2 = 0.1) will

be performed, with 3 observed variables.

In model error experiments, first we will perform trials by adding a random error to the

model equations at each integration step, then we will test the effects of systematic error by

varying one model parameter. For these experiments the results shown are the mean values of

20,000 assimilations.

3.2 Extended Kalman Filters

When the EKF is applied to a strongly nonlinear system, such as Lorenz’s three variables model,

filter divergence can occur.

Different empirical techniques have been devised to overcome this difficulty: Evensen in

1997 added a term Q akin to the model error covariance term in EKF [11]; Yang et al. in 2006

perturbed the analysis error covariance matrix and inflated the background error covariance

matrix [36].

3.2.1 EKF

The assimilation window is set to τ = 0.25, which is a quite large value for this dynamical

system: due to the limits of the linear approximation, in these conditions the EKF tends to

have poor performances with respect to other assimilation schemes, and often filter divergence

occurs.

These experiments are based on standard EKF equations 2.76-2.80, with the covariance
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matrix Q set to zero, so:

x
f
k+1 = Mxa

k (3.1)

P
f
k+1 = MPa

kM
T (3.2)

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1 (3.3)

xa
k+1 = (I − Kk+1H)xf

k+1 + Kk+1y
o
k+1 (3.4)

Pa
k+1 = (I − Kk+1H)Pf

k+1 (3.5)

Here the observation operator is the same as its Jacobian H = H. If we observe 3 variables

at each assimilation step, H will reduce to the identity 3 × 3 matrix:

Hxyz = I =













1 0 0

0 1 0

0 0 1













(3.6)

If we observe 2 variables, they will be y and z, the most useful. The operator H will be

Hyz =







0 1 0

0 0 1






(3.7)

3.2.2 Evensen’s version of EKF

In Evensen [11], where the model is considered perfect, standard EKF equations 2.76-2.80 are

still used, but the covariance matrix Q, an additive term akin to the model error covariance,

is used as a correction to avoid filter divergence. The matrix Q has been estimated after

optimization:

Q =













0.1491 0.1505 0.0007

0.1505 0.9048 0.0014

0.0007 0.0014 0.9180













(3.8)

3.2.3 Yang’s version of EKF

In Yang et al. (2006) the analysis error covariance has been perturbed and the background

error covariance inflated [36]:

• Random noise: small random perturbations uniformly distributed between 0 and 1, and

multiplied by µ = 0.1 (when 3 variables are observed) or µ = 0.2 (when 2 variables are
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observed) are added to the diagonal of the analysis error covariance matrix obtained with

the EKF at every assimilation step

• Inflation: the background error covariance is inflated by a factor of 1 + δ = 1.1, prior to

the analysis step

Once the empirical parameters have been optimized for a specific assimilation interval and obser-

vation noise variance, these techniques provide satisfactory results, particularly for sufficiently

short assimilation intervals.

3.3 Assimilation in the Unstable Subspace: further devel-

opments

In this section we will apply, to the L63 dynamical system, different formulations of the AUS

scheme, with increasing capabilities. We use a single unstable vector of the analysis-forecast

system, estimated by BDAS (see section 2.4). So the recurrence equations are [3]:

x
f
k+1 = Mxa

k (3.9)

P
f
k+1 = γ2 ek+1 eT

k+1 (3.10)

Kk+1 = γ2
k+1ek+1(Hek+1)T

[

γ2
k+1(Hek+1)(Hek+1)T + R

]−1
(3.11)

xa
k+1 = (I − Kk+1H)xf

k+1 + Kk+1y
o
k+1 (3.12)

Pa
k+1 = (I − Kk+1H)Pf

k+1 (3.13)

where the symbols have the usual meaning as in EKF equations, except for:

• the normalized column vector ek+1, that is the single unstable unit vector, at assimilation

step tk+1, estimated by BDAS. The bulk of the forecast error covariance matrix P
f
k+1 is

computed in the unstable 1-dimensional subspace defined by the unit vector ek+1, and

assumed to be small in the complementary subspace

• the amplitude of the forecast error γ

Note also that here the observation operator H is actually linear (we simply observe a variable

or not) and it has then been replaced by its linearized version: H = H. The analysis covariance

matrix Pa
k+1 (eq. 3.13) has been shown here for completeness, but it’s not actually used in the

estimate of the successive P
f
k+2.
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A key problem in AUS is the estimate of the amplitude of the forecast error γ. We begin in

subsection 3.3.1 with a very basic AUS-γ0 approach, where no use of observations is made in the

estimate of γ, then in subsection 3.3.2 we introduce a new estimate of γ from observations, that

will be used in subsection 3.3.3. Then a new formulation of AUS is introduced in subsections

3.3.4 and 3.3.5.

3.3.1 AUS-γ0: no use of observations in the estimate of the forecast

error amplitude

This DA scheme is a simplified formulation of the AUS approach. The main reason why we

implement this assimilation scheme is to show that we actually need a way to estimate the

amplitude γ of the forecast error in the unstable subspace from observations. In this assimilation

scheme, instead, we simply optimize the initial amplitude α used in the re-normalization of the

random perturbation. By breeding on the data-assimilation system (BDAS), we obtain the

perturbation in the unstable 1-dimensional subspace, whose amplitude is γ, at the time it

is used in the assimilation. During the forecast steps this perturbation will amplify and its

amplitude will be reduced at assimilation time.

Let’s suppose that the breeding time has been chosen equal to 2 assimilation windows: the

unstable vector may need more time than a single assimilation window to grow and to capture

the instability of the flow. So, at each assimilation step tk+1 (see Table 2.1):

• we use in the assimilation process the vector γ ek+1, i.e. the evolution, through the tangent

linear model propagator, of the random perturbation α δxk−1 introduced two assimilation

steps earlier, that underwent also the assimilation process in the previous step tk through

the (I − KkH) operator

• in the same way, we assimilate the observations in the trajectory obtained by adding α δxk

to the control at the previous assimilation step. The evolved perturbation will be used at

the next assimilation step, time tk+2, to estimate P
f
k+2

• we introduce a new perturbation α δxk+1, where δxk+1 is a random vector whose compo-

nents are Gaussian, with zero mean and standard deviation 1; its evolution will be used

at assimilation step tk+3, after having undergone the assimilation process at time tk+2

The parameter α needs to be tuned. In the present application the optimized value is α = 1.

The estimate of the forecast error covariance matrix is

P
f
k+1 = γ2 ek+1 eT

k+1 (3.14)
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The Kalman gain, in the same spirit as in the EKF, is

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1 (3.15)

It will be used to estimate the analysis state, by correcting the forecast state, via the

xa
k+1 = (I − Kk+1H) x

f
k+1 + Kk+1y

o
k+1 (3.16)

and the analysis covariance matrix

Pa
k+1 = (I − Kk+1H)Pf

k+1 (3.17)

The unstable vector δxk, introduced at the previous assimilation step tk, will be corrected as

well:

δxa
k = (I − Kk+1H) Mδxk−1 (3.18)

3.3.2 Estimate of the amplitude γ of the forecast error from observa-

tions

An estimate of the amplitude γ of the forecast error in a single unstable direction e can be

obtained in the following way, by rearranging the definition of the forecast error and by assuming

that the bulk of it is along the vector e:

Hηf = H(xf − xt) = −d + ηo (3.19)

xf − xt = γe + δf (3.20)

H(xf − xt) = γHe + δHf (3.21)

where we dropped the subscripts k + 1 referring to the assimilation time and where

d = yo − Hxf innovation

ηo = yo − Hxt observational error

ηf = xf − xt forecast error
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The vector f spans the subspace complementary of the unstable subspace. So:

γHe + δHf = −d + ηo (3.22)

Now, if we left-multiply by eTHT :

γeT HT He + δeT HT Hf = −eT HT d + eTHT ηo (3.23)

Neglecting the terms δeT HT Hf and eTHT ηo (which is zero, on average), we obtain the following

estimate of γ:

γ ' −(eT HT He)−1eT HTd (3.24)

Our estimate of Pf is the same as in eq. 2.106, but with this new estimate of γ:

Pf ' γ2e · eT (3.25)

This new estimate of γ also affects the corresponding gain matrix (see eq. 2.107):

K ' γ2 e eTHT (γ2 HeeTHT + R)−1 (3.26)

Accordingly, the analysis increment of eq. 2.95 becomes:

δxa = xa − xf = K (yo − Hxf ) (3.27)

= γ2eeT HT (γ2HeeTHT + R)−1(yo − Hxf ) (3.28)

= e c (3.29)

In equation 3.29, c is a scalar coefficient.

When the assimilation interval is sufficiently long with respect to the typical doubling time

and the forecast error becomes large with respect to the observation error, the estimate of γ

from observations leads to significant improvement of assimilation performance.

3.3.3 AUS-γ: using the estimate of γ from observations

In this scheme we use the same approach as in AUS-γ0, but with three important improvements:

• The unstable direction e (normalized to 1), which is again estimated via BDAS, is esti-

mated by evolving an infinitesimal perturbation δxk−1, so that we can expect the per-

turbed trajectory to still be on the attractor (or at least not far from it)

• An estimate of the amplitude of the forecast error γ from observations, as described in
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subsection 3.3.2; the amplitude of the forecast error is intended to be in the unstable

direction e

• A new estimate of P
f
k+1

The second and third improvements have been discussed in subsection 3.3.2: after estimating

the amplitude of the forecast error γ from observations, the forecast error covariance matrix

will be

P
f
k+1 = γ2 ek+1 eT

k+1 (3.30)

The gain matrix will be computed with

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1 (3.31)

which is formally the same as eq. 3.15, but the better estimate of P
f
k+1 will in turn provide the

following better approximated expression, already mentioned in eq. 3.26:

Kk+1 = γ2 ek+1 eT
k+1H

T (γ2 Hek+1 eT
k+1H

T + R)−1

We are now able to compute the analysis state xa
k+1 and the analysis covariance matrix Pa

k+1

through equations 3.16 and 3.17, as usual.

It will be shown in section 3.4 that this algorithm will greatly enhance the performance of

AUS scheme.

3.3.4 Iterating

This assimilation scheme is a further improvement to AUS-γ. After calculating the coefficient

c at time tk+1 (eq. 3.29), we apply at the previous analysis state xa
k the perturbation ∆xa

k =

c exp(−
∫ tk+1

tk
λ(t) dt)ek that, if the error behaved linearly, would lead exactly to the analysis

xa
k+1 obtained from the analysis increment expression (3.27-3.29). In fact, from time tk to tk+1,

we have:

Mek = exp

(∫ tk+1

tk

λ(t) dt

)

ek+1 (3.32)

where λ(t) is the leading local Lyapunov exponent. Therefore:

M∆xa
k = c exp

(

−
∫ tk+1

tk

λ(t) dt

)

Mek (3.33)

= c exp

(

−
∫ tk+1

tk

λ(t) dt

)

exp

(∫ tk+1

tk

λ(t) dt

)

ek+1 (3.34)

= c ek+1 (3.35)
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We now integrate the system nonlinearly from this new estimate of the previous analysis state

xa
k, evolve the perturbation ek following the updated nonlinear trajectory from tk to tk+1

and perform the final analysis at time tk+1. This procedure is hereafter referred to as AUS-

iterating: it is a major improvement with respect to the AUS-γ scheme.

3.3.5 Iterating and using a quasi-static Pf in stable zones of the at-

tractor

This technique is a refinement of AUS-iterating. If the dynamical system is passing through a

zone of the attractor where there are stable trajectories, i.e. where they do not diverge, we can

assume that errors do not actually grow.

So, in these stable situations (where the amplification factor during forecast step is ≤ 1) we

use a quasi-static, diagonal Pf . If:

‖M δxk‖ < ‖δxk‖ (3.36)

then we set:

P
f
k+1 = a2

{‖M δxk‖
‖δxk‖

}2

I (3.37)

where M δxk is the evolution from time tk to tk+1 of the perturbation δxk, which in turn is

the evolution of a random perturbation, introduced at time tk−1, which has grown from time

tk−1 to tk and undergone an assimilation process at time tk. The coefficient a2 is proportional

to the square of the average analysis error. In particular, it has been chosen

a2 =
1

2
< ηa >2 (3.38)

where ηa is the analysis error. This procedure is hereafter referred to as AUS-iterating+: it

provides the best performances.

3.4 Comparing results

In this section we will compare the performances of the different assimilation schemes under

investigation. In the following remarks we will use the acronyms of Table 3.1.

We will begin with some case studies of synchronization to the truth with a perfect or quasi-

perfect observation (the variable y) and a long assimilation window; then we will deal with
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Table 3.1: The different data assimilation schemes under investigation with their main features.

EKF pure EKF

EKF-Evensen Evensen’s EKF, with an optimized Q [11]

EKF-Yang Yang’s EKF, with random noise in Pa and inflation [36]

AUS-γ0 AUS with no use of observations for the estimate

of the amplitude of the forecast error γ; Pf = γ2eeT

AUS-γ AUS with γ = −(eT HT He)−1eT HTd, Pf = γ2eeT

AUS-iterating AUS-γ with iterations

AUS-iterating+ AUS-iterating with static P
f
k+1 if amplification factor ≤ 1

during forecast step

shorter assimilation windows and noisy observations in different configurations.

3.4.1 Synchronization: one perfect or quasi-perfect observation, case

studies

In this subsection we present a few case studies about synchronization with truth for perfect

or quasi-perfect observations, for different assimilation windows. The case studies shown have

been chosen for the clarity of the resulting plots and because they are neither particularly ad-

vantageous nor pathological for any assimilation scheme. We’re going to compare only EKF,

EKF-Evensen and AUS-iterating assimilation schemes, which do not need any tuning of pa-

rameters. We will notice that all of them eventually converge to the truth, but AUS-iterating

converges faster than EKF or EKF-Evensen. Furthermore, for critical situations, in terms of

assimilation window length or observational error amplitude, AUS-iterating still converges to

the truth in cases when the EKF or EKF-Evensen do not.

It’s known that, even with a single perfect observation only, the EKF may synchronize with

the truth, if the assimilation window is not too long. This is shown in Fig. 3.1, where we

observe y with no observational error (σ2 = 0) with assimilation window τ = 0.25. You can

notice how AUS-iterating DA scheme converges much faster.

The pure EKF and the EKF-Evensen version give the same results for σ2 = 0, since the

gain matrix and the analysis vector will reduce in both cases to the same simpler expression.
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Figure 3.1: Synchronization with truth for both EKF/EKF-Evensen and AUS-iterating assim-
ilation schemes. The only observed variable is y with variance σ2 = 0 and assimilation window
τ = 0.25

From the Kalman gain expression (eq. 2.78):

Kk+1 = P
f
k+1H

T (HP
f
k+1H

T + R)−1

if the matrix R = 0, in observation space:

HKk+1 = HP
f
k+1H

T (HP
f
k+1H

T )−1 (3.39)

= I (3.40)

Thus, from the analysis state expression (eq. 2.79):

xa
k+1 = (I − Kk+1H)xf

k+1 + Kk+1y
o
k+1

we get:

Hxa
k+1 = yo

k+1 (3.41)

Just for example, in Figures 3.2-3.5 the EKF and EKF-Evensen solution are shown for x and

the assimilation performance for σ2 = 0 and assimilation window τ = 0.6. The vertical dotted
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Figure 3.2: EKF and EKF-Evensen (same plot in these conditions, see text and eq. 3.40) find
it hard to synchronize with truth. The only observed variable is y with variance σ2 = 0 and
assimilation window τ = 0.6

line is the time of the last observation. In Figures 3.6-3.10 the same is shown for σ2 = 0.01

and assimilation window τ = 0.6 while Figures 3.11-3.15 show the case with σ2 = 0.1 and

assimilation window τ = 0.25.

We can see that, when synchronization occurs for all DA schemes, AUS-iterating has the

most rapid convergence to the truth; when it does not occur, AUS-iterating has an overall better

performance. Furthermore, there are circumstances in which AUS-iterating synchronizes to the

truth while neither EKF nor EKF-Evensen do.

3.4.2 Noisy observations with variance σ2
= 2

These experiments are performed with the following setup:

• A 105 assimilations statistics

• 3 or 2 noisy observations at each assimilation step, with variance σ2 = 2 ⇒ σ = 1.414

• an assimilation window τ = 0.25
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Figure 3.3: AUS-iterating: synchronization with truth. The only observed variable is y with
variance σ2 = 0 and assimilation window τ = 0.6
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Figure 3.4: EKF/EKF-Evensen and AUS-iterating RMS errors. While the former fail to con-
verge to the truth, the latter synchronizes very quickly. The only observed variable is y with
variance σ2 = 0 and assimilation window τ = 0.6
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Figure 3.5: EKF/EKF-Evensen and AUS-iterating RMS errors: a zoom of the previous Fig.
3.4.
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Figure 3.6: EKF: the only observed variable is y with variance σ2 = 0.01 and assimilation
window τ = 0.6; in this case and in these conditions the EKF fails to synchronize to the truth.
Note also the bad performance around time 14.
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Figure 3.7: EKF-Evensen: the only observed variable is y with variance σ2 = 0.01 and assimi-
lation window τ = 0.6. A better performance than pure EKF.
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Figure 3.8: AUS-iterating: the only observed variable is y with variance σ2 = 0.01 and assimi-
lation window τ = 0.6. A far better performance.
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Figure 3.9: EKF, EKF-Evensen and AUS-iterating RMS errors: respective performances. The
only observed variable is y with variance σ2 = 0.01 and assimilation window τ = 0.6
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Figure 3.10: EKF, EKF-Evensen and AUS-iterating RMS errors: a zoom of the previous Fig.
3.9.
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Figure 3.11: EKF does not synchronize with truth. The only observed variable is y with variance
σ2 = 0.1 and assimilation window τ = 0.25
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Figure 3.12: EKF-Evensen does not synchronize with truth. The only observed variable is y
with variance σ2 = 0.1 and assimilation window τ = 0.25
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Figure 3.13: AUS-iterating does not synchronize with truth. The only observed variable is y
with variance σ2 = 0.1 and assimilation window τ = 0.25
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Figure 3.14: The only observed variable is y with variance σ2 = 0.1 and assimilation window
τ = 0.25: in these conditions, no assimilation scheme under investigation actually converge to
the truth, but AUS-iterating has a better performance than EKF-Evensen, which in turn is far
better than pure EKF.
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Figure 3.15: A zoom of the previous Fig. 3.14. Even if the global performance of EKF is
poor because of filter divergence, this does not mean that EKF is always worse than others DA
schemes for all times; while the global performance of AUS-iterating is globally better.

When 2 observations are used, the most valuable two (y and z) are used for the EKF schemes;

for the AUS schemes two adaptive observations are used (see subsection 2.3.5). In Figures 3.16-

3.20 we show the average RMS analysis error distributions for 3 and 2 observed variables, and

the forecast error distribution at time T+0.25, T+0.5 and T+0.75, where T is the assimilation

time. All distributions are simply truncated at RMS error equal to 10.

These distributions show that not only AUS-iterating schemes are better — on average

— than competitors, but their right tails are much less populated, too: the regime’s changes

tracking capability has been highly improved.

Numerical results are also shown in Tables 3.2 and 3.3: we can see that the AUS-iterating

schemes outperform the other techniques, with even an average RMS analysis error well below

the observations standard deviation. Similar relative performances can be seen for the average

RMS forecast error. A further conclusion may be drawn: from the results of AUS-γ0 and AUS-γ

schemes, we see that the proposed estimate of the forecast error amplitude from observations

is really helpful, since it greatly boosts the assimilation performance.
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Table 3.2: RMS analysis error, an average over 100,000 assimilations. 3 and 2 noisy observations
with variance σ2 = 2 ⇒ σ = 1.414. Assimilation window τ = 0.25.

assimilation technique τ = 0.25, 3 obs τ = 0.25, 2 obs
EKF 15.5 15.6

EKF-Evensen 1.72 1.79
EKF-Yang 3.77 3.90
AUS-γ0 7.02 7.37
AUS-γ 2.27 2.52

AUS-iterating 1.38 1.58
AUS-iterating+ 1.16 1.33

Table 3.3: RMS forecast error, an average over 100,000 assimilations. The mean RMS analysis
error is the same as in Table 3.2 and is shown here again for comparison. 3 noisy observations
with variance σ2 = 2 ⇒ σ = 1.414. Assimilation window τ = 0.25.

Assimilation <RMS analysis error> <RMS forecast error>
technique

@ T+0.25 @ T+0.50 @ T+0.75
EKF 15.5 16.6 16.9 16.9

EKF-Evensen 1.72 3.27 6.26 7.24
EKF-Yang 3.77 5.36 6.97 7.64

AUS-γ0 7.02 8.81 10.4 11.1
AUS-γ 2.27 3.79 6.23 7.33

AUS-iterating 1.38 2.75 4.94 5.61
AUS-iterating+ 1.16 2.33 4.06 4.71
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Figure 3.16: RMS Analysis Error distribution: an average on 100,000 assimilations with an
assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 2
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Figure 3.17: RMS Analysis Error distribution: an average on 100,000 assimilations with an
assimilation window τ = 0.25, 2 noisy observations with variance σ2 = 2
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Figure 3.18: RMS Forecast Error distribution @ time=T+0.25: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 2
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Figure 3.19: RMS Forecast Error distribution @ time=T+0.50: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 2
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Figure 3.20: RMS Forecast Error distribution @ time=T+0.75: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 2

3.4.3 Noisy observations with variance σ2
= 1

Now we’re going to diminish the variance of the observational error. Since the relative perfor-

mance are similar, we will only show the results for 3 observations probing. So the experimental

context is:

• A 100,000 assimilations statistics

• 3 noisy observations at each assimilation step, with variance σ2 = 1

• an assimilation window τ = 0.25

The results, shown in Table 3.4 and in Figures 3.21-3.24, confirm those with σ2 = 2. Note

that EKF is still under-performing, and still experiencing frequent filter divergence.

3.4.4 Noisy observations with variance σ2
= 0.1

Let’s continue to lower observational noise variance: all the experiments are now performed

under the following conditions:

• A 100,000 assimilations statistics
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Table 3.4: RMS analysis and forecast error, an average over 100,000 assimilations. 3 noisy
observations with variance σ2 = 1. Assimilation window τ = 0.25.

Assimilation <RMS analysis error> <RMS forecast error>
technique

@ T+0.25 @ T+0.50 @ T+0.75
EKF 15.2 16.3 16.6 16.6

EKF-Evensen 1.30 2.39 4.94 5.93
EKF-Yang 0.99 1.78 3.04 3.63

AUS-γ0 3.55 4.93 6.65 7.50
AUS-γ 1.42 2.52 4.56 5.57

AUS-iterating 0.96 1.94 3.77 4.39
AUS-iterating+ 0.80 1.63 3.07 3.65
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Figure 3.21: RMS Analysis Error distribution: an average on 100,000 assimilations with an
assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 1
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Figure 3.22: RMS Forecast Error distribution @ time=T+0.25: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 1
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Figure 3.23: RMS Forecast Error distribution @ time=T+0.50: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 1
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Figure 3.24: RMS Forecast Error distribution @ time=T+0.75: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 1

• 3 noisy observations each assimilation step, with variances σ2 = 0.1 ⇒ σ = 0.316

• an assimilation window τ = 0.25

The results are shown in Table 3.5 and in Figures 3.25-3.28, where all distributions are simply

truncated where RMS error is equal to 5.

3.4.5 Root Mean Square forecast error: time dependence

Now we show the average time growth of RMS analysis error. The average is computed on

100000 assimilation steps. There are 3 variables observed, each assimilation window τ = 0.25.

At time t = 0 the curves show the average RMS analysis error (see Tables 3.3, 3.4 and 3.5).

The plots are listed on the basis of the variance of the observational error:

• In the 1st plot, Fig. 3.29: σ2 = 2

• in the 2nd plot, Fig. 3.30: σ2 = 1

• in the 3rd plot, Fig. 3.31: σ2 = 0.1

The EKF curve has been intentionally plotted only in the first one. Again, the AUS-iterating

schemes, in particular AUS-iterating+, set the benchmark.

84



Table 3.5: RMS analysis and forecast error, an average over 100,000 assimilations. 3 noisy
observations with variance σ2 = 0.1 ⇒ σ = 0.316. Assimilation window τ = 0.25.

Assimilation <RMS analysis error> <RMS forecast error>
technique

@ T+0.25 @ T+0.50 @ T+0.75
EKF 15.0 16.0 16.4 16.4

EKF-Evensen 0.49 0.79 1.86 2.67
EKF-Yang 0.25 0.53 1.21 1.62
AUS-γ0 0.54 1.02 1.99 2.74
AUS-γ 0.36 0.72 1.56 2.20

AUS-iterating 0.30 0.61 1.37 1.85
AUS-iterating+ 0.26 0.52 1.14 1.53
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Figure 3.25: RMS Analysis Error distribution: an average on 100,000 assimilations with an
assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 0.1
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Figure 3.26: RMS Forecast Error distribution @ time=T+0.25: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 0.1
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Figure 3.27: RMS Forecast Error distribution @ time=T+0.50: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 0.1
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Figure 3.28: RMS Forecast Error distribution @ time=T+0.75: an average on 100,000 assimi-
lations with an assimilation window τ = 0.25, 3 noisy observations with variance σ2 = 0.1
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Figure 3.29: RMS analysis and forecast error: an average on 100,000 assimilation steps, assim-
ilation window τ = 0.25, 3 variables observed with variance σ2 = 2 ⇒ σ = 1.414.
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Figure 3.30: RMS analysis and forecast error: an average on 100,000 assimilation steps, assim-
ilation window τ = 0.25, 3 variables observed with variance 1.

3.5 Some illustrative examples

In this section we show some examples of noisy data assimilation, outputs of the different

schemes probed in this work: in subsection 3.5.1 we present a case study with the same truth

trajectory of the system (the variable x only), and the assimilation performances of our DA

schemes. In subsection 3.5.2 we show a 3D plot of the AUS technique with some comments,

while in subsection 3.5.3 we provide a step by step description AUS-iterating schemes.

3.5.1 Comparing AUS with EKF assimilation schemes: case study

In Figures 3.32-3.38 we show, for the same case, the solution for the variable x and the analysis

performed. The vertical green line shows the time of the last observation available for the

assimilation. The experiment setup is:

• assimilation window τ = 0.25

• 3 variables observed with error variance σ2 = 2

We can see that, in this context, the EKF tends not to capture the regime changes, which is

consistent with the average results over 100,000 assimilations shown in Table 3.3. EKF-Evensen
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Figure 3.31: RMS analysis + forecast error: an average on 100,000 assimilation steps, assimi-
lation window τ = 0.25, 3 variables observed with variance σ2 = 0.1 ⇒ σ = 0.316.

Figure 3.32: EKF assimilation scheme: solution for x. The green line shows the time of the last
observation available.
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Figure 3.33: EKF-Evensen assimilation scheme: solution for x.
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Figure 3.34: EKF-Yang assimilation scheme: solution for x.
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Figure 3.35: AUS-γ0 assimilation scheme: solution for x.
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Figure 3.36: AUS-γ assimilation scheme: solution for x.
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Figure 3.37: AUS-iterating assimilation scheme: solution for x.
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Figure 3.38: AUS-iterating+ assimilation scheme: solution for x.
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Figure 3.39: How AUS-γ assimilates observations.
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and EKF-Yang perform definitely better, particularly the former. As for the AUS schemes we

can appreciate the improvements from the under-performing AUS-γ0 up to AUS-iterating.

Note that EKF-Evensen has here a better performance in the forecast period than the AUS-

iterating techniques, but this is not the general case: as already mentioned in Table 3.3, the

average performance of EKF-Evensen is worse than that of AUS-iterating, both for analysis

error and for forecast error.

3.5.2 AUS-γ: a 3D example

In Fig. 3.39 we show what is the essence of the AUS approach. We choose:

• a very long assimilation window, τ = 0.8

• only one observed variable: y

• perfect observation, σ2 = 0

In the plot, the blue trajectory is the truth, the red one is the AUS-γ assimilation trajectory.

The red circles, labelled with t = 0, mark the beginning of both trajectories. The black circles

(t = T ) show the same trajectories after one assimilation window, and the green circles (t = 2T )

one assimilation window ahead. The black vectors are the bred vectors estimated by BDAS
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Figure 3.40: A qualitative comparison between EKF and AUS-γ.
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(see section 2.4) and evolved by the Tangent Linear Model operator, plotted every ∆t = 0.05.

When t = T the assimilation is done along the corresponding bred vector, assumed to capture

the most unstable structure of the system (see section 2.3).

In Fig. 3.40 we show, as an example, the 3D comparison between EKF and AUS-γ, in the

following context:

• a very long assimilation window, τ = 0.8

• all 3 variables observed

• noisy observations, with σ2 = 2

Here the bred vectors for AUS-γ have not been plotted for sake of clarity. The initial condition

is the same for all schemes. After each DA technique does its job for 3 assimilation windows,

we plot the trajectories starting from the the red circles (t = 0). The blue trajectory is the

truth, the red one is the AUS-γ trajectory, while the green one is that of EKF. Both EKF and

AUS-γ are far from the truth, at the beginning, but at t = T (black circles) the EKF is not

able to capture the regime change, while AUS-γ does.
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Figure 3.41: The zone of the attractor considered in the next Figure 3.42.
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3.5.3 AUS-iterating: a step by step description

In Fig. 3.41 a 3D plot of the L63 system has been shown, with the highly unstable zone of the

attractor, which is enlarged in Fig. 3.42. Here we set:

• a long assimilation window, τ = 0.25

• 2 adaptive observations

• noisy observations, with σ2 = 2

The blue trajectory is the truth. The green star is the forecast state, with which the first

analysis can be computed (red circle); the red trajectory is the “first-attempt” forecast tra-

jectory. Black vectors are the bred vector estimated by BDAS (see section 2.4) and evolved

by the Tangent Linear Model operator, plotted every ∆t = 0.05. When a new observation

becomes available, a new assimilation can be done. In the iteration we go back to the pre-

vious assimilation step, correct the previous analysis according to equations 3.28-3.29 and to

∆xa
k = c exp(−

∫ tk+1

tk
λ(t) dt)ek (see subsection 3.3.4), and compute the final forecast trajectory

(the green one). Of course new bred vectors are computed as well, but are shown only in Fig.

3.43 (in magenta).
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Figure 3.42: How AUS-iterating works: a zoom of previous Fig. 3.41.
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Figure 3.43: More details on AUS-iterating assimilation scheme, including the evolving unstable
vectors in the final forecast trajectory, recomputed after iteration.
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3.6 Adding two types of Model Error

We now wish to run experiments with some kind of model error in the equations of our L63

system. In subsection 3.6.1, we will start by simply adding a random term to each equation

and at each integration step. In subsection 3.6.3, we will introduce a systematic error in our

model by changing the value of the parameter r, which drives the convection instability (see

subsection 1.4.2).

In short, we will compute the “true” trajectory of the system, we will get noisy observations

of the true state of the system, but we will perform data assimilation using an imperfect model.

3.6.1 Random error

In these experiments we will simulate a systematic model error by adding, at each integration

step dt = 0.01, a random term in the model equations (eq. 1.49):

”Truth” System















































dx
dt = σ(y − x)

dy
dt = rx − y − xz

dz
dt = xy − bz

(3.42)

Assimilation Model















































dx
dt = σ(y − x) + ε1

dy
dt = rx − y − xz + ε2

dz
dt = xy − bz + ε3

(3.43)

where ε1, ε2, ε3 are random additive terms, normally distributed with standard deviation A ×

0.1σ, with the parameter A assuming different values.
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Table 3.6: Random error in the assimilation model: 3 observations with variance σ2 = 2 ⇒
σ = 1.414 each assimilation window τ = 0.25. It is shown the mean RMS analysis error, an
average over 20000 assimilations, for the different DA schemes.
.

3 obs

assimilation technique A = 0 A = 1 A = 2
EKF 15.6 15.5 15.7

EKF-Evensen 1.71 1.73 1.77
EKF-Yang 3.54 7.80 9.98

AUS-γ0 7.02 8.87 11.0
AUS-γ 2.24 2.72 3.89

AUS-iterating 1.35 1.94 2.75
AUS-iterating+ 1.15 1.80 2.44

3.6.2 Random error: comparing performances

All the experiments are performed under the following conditions:

• A 20,000 assimilations statistics

• 3 or 2 noisy observations with variance σ2 = 2

• an assimilation window τ = 0.25

• random additive terms ε123 are added at each integration step dt = 0.01. They are

normally distributed with standard deviation A× 0.1σ ; the parameter A will assume the

values A = 1 and A = 2

• in the 2 observation experiments, we will observe the two most convenient variables, y

and z, for EKF schemes. For AUS schemes, we will observe the two variables associated

with the two largest components of the unstable vector

• In EKF-Evensen scheme, the term Q is the same as in eq. 3.8

• In EKF-Yang, no further tuning of the parameters has been done: the algorithm is the

same as in experiments without model error

We show the results in Tables 3.6 and 3.7. The case with A = 0, i.e. without random error

at all, is shown here for reference (even if it was already shown in paragraph 3.4 with a longer

statistics).

The best AUS schemes are quite robust with respect to almost all the others. EKF-Evensen

is actually more stable under these conditions, but it needs an estimate of the model error

covariance matrix Q.
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Table 3.7: Random error in the assimilation model: 2 observations with variance σ2 = 2 ⇒
σ = 1.414 each assimilation window τ = 0.25. We show the mean RMS analysis error, an
average over 20000 assimilations.

2 obs

assimilation technique A = 0 A = 1 A = 2
EKF 15.5 15.6 15.6

EKF-Evensen 1.78 1.82 1.92
EKF-Yang 3.67 7.08 9.47
AUS-γ0 7.46 9.35 10.9
AUS-γ 2.50 3.04 4.19

AUS-iterating 1.54 2.22 3.27
AUS-iterating+ 1.28 2.11 3.07

3.6.3 Systematic error

In these experiments we will simulate a systematic error by augmenting the value of the pa-

rameter r in the model equations (eq. 1.49). As we have already seen in subsection 1.4.2, the

parameter r is related to the intensity of the convection instability. We have to keep in mind

that a value r = 28 is a slightly supercritical value for unstable convection to occur. Thus the

equations to be used are:

”Truth” System















































dx
dt = σ(y − x)

dy
dt = rx − y − xz

dz
dt = xy − bz

(3.44)

Assimilation Model















































dx
dt = σ(y − x)

dy
dt = (r + ∆r)x − y − xz

dz
dt = xy − bz

(3.45)

The term ∆r will introduce a systematic error in the equations used for data assimilation, by

increasing the instability of convective motion in the model.
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Table 3.8: Systematic error in the assimilation model, r = 28 (i.e. no error, for reference),
r = 30, r = 33. Three observations with variance σ2 = 2 each assimilation window τ = 0.25. It
is shown the mean RMS analysis error, an average over 20,000 assimilations.
.

3 obs

assimilation technique r = 28 r = 30 r = 33
EKF 15.6 16.7 17.6

EKF-Evensen 1.71 1.74 1.86
EKF-Yang 3.54 11.4 13.9
AUS-γ0 7.02 11.5 14.6
AUS-γ 2.24 3.91 8.01

AUS-iterating 1.35 2.53 4.90
AUS-iterating+ 1.15 2.24 3.87

3.6.4 Systematic error: comparing performances

All the experiments are performed under the following conditions:

• A 20,000 assimilations statistics

• 3 or 2 noisy observations with variance σ2 = 2

• an assimilation window τ = 0.25

• systematic errors ∆r = 0 (for reference), ∆r = 2 and ∆r = 5

• in the 2 observation experiments we will observe the two most convenient variables, y and

z, for EKF schemes; while for AUS schemes we will observe the two variables associated

with the two largest components of the unstable vector

• In EKF-Evensen scheme, the term Q is the same as in eq. 3.8

• In EKF-Yang, no further tuning of the parameters has been done: the algorithm is the

same as in experiments without model error

We show the results in Tables 3.8 and 3.9. The case with r = 28, i.e. without systematic error,

is included here for comparison (even if it was already shown in paragraph 3.4 with a longer

statistics).

As for random error, all schemes considered turn out similar results: the EKF-Evensen

scheme does outperform the others, but it needs an estimate of the model error covariance,

which is not easy to do in realistic models. In these contexts, the best AUS schemes are still

quite robust.
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Table 3.9: Systematic error in the assimilation model, r = 28 (i.e. no error, for reference),
r = 30, r = 33. Two observations with variance σ2 = 2 each assimilation window τ = 0.25. It
is shown the mean RMS analysis error, an average over 20000 assimilations.
.

2 obs

assimilation technique r = 28 r = 30 r = 33
EKF 15.5 16.9 17.9

EKF-Evensen 1.78 1.81 1.96
EKF-Yang 3.67 10.9 13.8

AUS-γ0 7.46 11.6 14.8
AUS-γ 2.50 4.26 8.21

AUS-iterating 1.54 2.76 5.38
AUS-iterating+ 1.28 2.53 4.88
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Chapter 4

Conclusions

In this work we focused on the data assimilation problem for the highly nonlinear, chaotic

Lorenz’s 63 system. Specifically, we tried to estimate the state of the system given a set of

noisy observations at regular time intervals and the equations of the model.

In the contexts we have examined, including those with a model error, we have seen that

Assimilation in the Unstable Subspace (AUS) once again has shown better efficiency than other

advanced data assimilation schemes. Furthermore, at least for sufficiently long assimilation

windows, our proposed approach for the estimate of the forecast error amplitude leads to a

significant improvement of the assimilation performance. In the cases we have considered,

the iterating extension of AUS improves over the standard AUS. In particular, it boosts the

efficiency of regime’s changes tracking, with a low computational cost.

Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned

for the specific model at hand. In NWP models, tuning of parameters — and in particular an

estimate of the model error covariance matrix Q — may turn out to be quite difficult. The

estimate of Q, on the other hand, is at the basis of the good performance of the Evensen model

in particular in the presence of model error. As a final remark, we should note that the proposed

approach may well be implemented in operational NWP models.

103





Appendices





Appendix A

Euler and Runge-Kutta

numerical integration methods

The Runge-Kutta methods are used to numerically approximate the solution of ordinary dif-

ferential equations: they have much better performances with respect to the first order Euler

method.

The kind of problems we want to solve is the following. Let’s suppose we have a vector x

and a vector function f(x) so that:

d

dt
x = f(x) (A.1)

Given the initial condition x(t0) = x0, we wish a systematic way to approximate the solution

x(t).

A.1 First order Euler method

The formula for the Euler method to advance a solution from tn to tn+1 ≡ tn + ∆t, that is to

estimate x(tn +∆t) ' xn+1 given xn, comes straightforwardly from the definition of derivative:

xn+1 = xn + f(xn)∆t + O(∆t2) (A.2)

where the error E = |x(tn + ∆t) − xn+1| will tend to zero with ∆t, i.e. E ∝ ∆t.

In the Euler method the solution xn+1, advanced through an interval ∆t, is computed with

the derivative information f(xn) calculated at the initial time tn only: it is not recommended

for practical use because it is not so accurate, if compared to other methods, and it’s not even

very stable, too.
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A.2 RK2: second order Runge-Kutta scheme

A better convergence to zero of the error can be obtained with the 2nd order Runge-Kutta

scheme, also known as improved Euler method, where the error E = |x(tn+∆t)−xn+1| ∝ (∆t)2.

Here the solution xn+1 is computed by using an average for the derivative:

xn+1 = xn +
1

2
(k1 + k2) + O(∆t3) (A.3)

where

k1 = f(xn)∆t (A.4)

k2 = f(xn + k1)∆t = f(x̃n+1)∆t (A.5)

The meaning of k1, k2 and x̃n+1 is the following:

• k1 is a trial step to evaluate (xn+1 − xn) through the Euler method, as in eq. A.2; the

first evaluation of xn+1 has been called x̃n+1

• k2 is another estimate of (xn+1−xn) through the same Euler method, but using f(x̃n+1),

which is the derivative in the estimated end of the time interval

So RK2 (eq. A.3) exploits an average between the derivative f(xn) calculated at the initial

time tn and the derivative f(x̃n+1) = f(xn + k1) which is an estimate of the derivative f(xn+1)

calculated at the final time.
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A.3 RK4: fourth order Runge-Kutta scheme

We need not limit ourselves to the second order. A very popular Runge-Kutta method is the

fourth order one, in which the error E = |x(tn + ∆t) − xn+1| ∝ (∆t)4. Here we use a weighted

average for the derivative:

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4) + O(∆t5) (A.6)

where

k1 = f(xn)∆t (A.7)

k2 = f

(

xn +
1

2
k1

)

∆t (A.8)

k3 = f

(

xn +
1

2
k2

)

∆t (A.9)

k4 = f (xn + k3)∆t (A.10)

Higher order RK schemes are conceivable, but not necessarily better: they need more com-

putational efforts.
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Appendix B

Normalization factors for random

variables

If x is a random variable with standard deviation σ and Probability Density Function (PDF):

P (x) =
1√
2π σ

exp

(

− x2

2σ2

)

(B.1)

and x is a vector whose components are random with standard deviation σ and the same PDF,

it can be shown that:

∫ +∞

−∞
|x|P (x)dx =

√

2

π
σ 1-Dimensional case

∫ ∫ +∞

−∞
‖x‖P (x1)P (x2)dx1dx2 =

√

π

2
σ 2-Dimensional case

∫ ∫ ∫ +∞

−∞
‖x‖P (x1)P (x2)P (x3)dx1dx2dx3 =

√

8

π
σ 3-Dimensional case
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Appendix C

EKF, 1-Dimensional example

In the Extended Kalman Filter, if the system is described by a single variable only, the forecast

and analysis covariance matrices and Kalman gain reduce to scalars.

C.1 Forecast and analysis covariance matrices

From Extended Kalman Filter equations, we have:

Kk =
pf

k

σ2 + pf
k

(C.1)

pf
k = αkpa

k−1 (C.2)

pa
k = (1 − K)pf

k =
σ2pf

k

σ2 + pf
k

(C.3)

Let’s find forecast and analysis covariance matrices step by step:

p0 ≡ pa
0

pf
1 = α1p0

pa
1 =

σ2pf
1

σ2 + pf
1

=
σ2α1p0

σ2 + α1p0

pf
2 = α2p

a
1 =

σ2p0α1α2

σ2 + α1p0

pa
2 =

σ2pf
2

σ2 + pf
2

=
σ2p0α1α2

σ2 + p0(α1 + α1α2)

pf
3 = α3p

a
2 =

σ2p0α1α2α3

σ2 + p0(α1 + α1α2)

pa
3 =

σ2pf
3

σ2 + pf
3

=
σ2p0α1α2α3

σ2 + p0(α1 + α1α2α3)
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...
...

pf
k =

σ2p0α1α2 . . . αk

σ2 + p0(α1 + α1α2 + α1α2α3 + . . . + α1α2 . . . αk−1)
=

σ2p0

∏k
j=1 αk

σ2 + p0(
∑k−1

i=1

∏i
j=1 αj)

pa
k =

σ2p0α1α2 . . . αk

σ2 + p0(α1 + α1α2 + α1α2α3 + . . . + α1α2 . . . αk)
=

σ2p0

∏k
j=1 αk

σ2 + p0(
∑k

i=1

∏i
j=1 αj)

Kk =
pa

k

σ2

In these equations we have also showed the result for Kalman gain Kk, that can be easily

computed from Kk =
P f

k

σ2+P f
k

. The analysis, background and observational errors are bound by

the following general equation [16]:

εa = εb + (B−1 + HTR−1H)−1HTR−1(εo − Hεb) (C.4)

In this 1-dimensional example, if H = 1 and R = σ2 it becomes:

εa = εb +
σ−2

(pf
k)−1 + σ−2

(εo − Hεb)

= εb +
pf

k

pf
k + σ2

(εo − εb)

= (1 − Kk)εb + Kkεo

If αk = α = constant > 1, then

lim
k→∞

pf
k = σ2(α − 1) (C.5)

lim
k→∞

pa
k = σ2 α − 1

α
(C.6)

lim
k→∞

Kk =
α − 1

α
(C.7)

Indeed:

lim
k→∞

pf
k = lim

k→∞

σ2p0α
k

σ2 + p0(α + α2 + . . . + αk−1)

= lim
k→∞

σ2p0α
σ2

αk−1 + p0

(

1
αk−2 + . . . + 1

α + 1
)

=
σ2α

(

1
1− 1

α

)

= σ2(α − 1)
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and

lim
k→∞

pa
k = lim

k→∞

σ2p0α
k

σ2 + p0(α + α2 + . . . + αk)

= lim
k→∞

σ2p0

σ2

αk + p0

(

1
αk−1 + 1

αk−2 + . . . + 1
α + 1

)

=
σ2

(

1
1− 1

α

)

= σ2 α − 1

α

for if α > 1 then 1/α < 1. So:

lim
k→∞

Kk =
σ2(α − 1)

σ2 + σ2(α − 1)

=
α − 1

α

or, equivalently:

lim
k→∞

(1 − Kk) =
1

α

C.2 Lyapunov exponents for free and forced systems

Now we redefine α as the error growth (instead of the analysis error growth), so now 1−K ≈ 1
α2 ,

or 1 − K ≈ exp(−2λτ). The error growth of the forced system will be:

efτ = (1 − K)eλτ (C.8)

where f and λ are the greatest Lyapunov exponents of the forced and free systems respectively.

So, if αk = α = constant > 1:

efτ = (1 − K)eλτ

=
1

e2λτ
eλτ

= e−λτ

⇒ f = −λ

If αk are not constant the results are almost the same. If α � 1 then 1 − K ≈ 0, or K ≈ 1,
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so the forecast will be almost ignored and the analysis error covariance matrix will tend to the

observational error: pa = σ2(1 − 1/α) ≈ σ2.

If we diminish the observational interval τ (τ −→ 0):

pa = σ2(1 − exp(−2λτ)) −→ 0 (C.9)
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Appendix D

Inverse and pseudo-inverse

matrices

An inverse matrix can be defined for square matrices only. The pseudo-inverse matrix, instead,

is a generalization that can also be defined for rectangular matrices.

D.1 Inverse matrix

Given an N × N square matrix A, the inverse matrix A−1 , if it does exist, has the same

dimensions as A and is such that

A−1A = AA−1 = I (D.1)

where I is the N ×N identity matrix. The matrix A has the inverse matrix A−1 if and only if

A is non-singular, i.e.:

det(A) = |A| 6= 0 (D.2)

The matrix A−1 can be written as follows:

A−1 =
1

|A| C
T (D.3)
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where

CT =



















c11 c21 · · · cN1

c12 c22 · · · cN2

...
...

. . .
...

c1N c2N · · · cNN



















(D.4)

is the transpose of cofactor matrix of A.

Example. Given a 3 × 3 non-singular matrix A

A =













a11 a12 a13

a21 a22 a23

a31 a32 a33













(D.5)

with det(A) = |A| 6= 0, the cofactor matrix C is

C =















































+ det







a22 a23

a32 a33






− det







a21 a23

a31 a33






+ det







a21 a22

a31 a32







− det







a12 a13

a32 a33






+ det







a11 a13

a31 a33






− det







a11 a12

a31 a32







+ det







a12 a13

a22 a23






− det







a11 a13

a21 a23






+ det







a11 a12

a21 a22





















































so it transpose is

CT =

























+(a22a33 − a32a23) −(a12a33 − a32a13) +(a12a23 − a22a13)

−(a21a33 − a31a23) +(a11a33 − a31a13) −(a11a23 − a21a13)

+(a21a32 − a31a22) −(a11a32 − a31a12) +(a11a22 − a21a12)
























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and the inverse matrix A−1 is

A−1 =
1

|A|

























+(a22a33 − a32a23) −(a12a33 − a32a13) +(a12a23 − a22a13)

−(a21a33 − a31a23) +(a11a33 − a31a13) −(a11a23 − a21a13)

+(a21a32 − a31a22) −(a11a32 − a31a12) +(a11a22 − a21a12)

























Lastly, we recall some other useful facts: it can be shown that if the matrix A can be written

as a product, then the inverse matrix A−1 can be expressed in term of the product of the inverse

matrices:

A = BC =⇒ A−1 = C−1B−1 (D.6)

If the matrix A admits the inverse A−1 then we have:

(AT )−1 = (A−1)T (D.7)

(kA)−1 = k−1A−1 (D.8)

D.2 Pseudo-inverse matrix

Given an M ×N matrix A, the pseudo-inverse A+ has the same dimension as AT , and satisfies

the following relations:

AA+A = A (D.9)

A+AA+ = A+ (D.10)

(AA+)∗ = AA+ =⇒ AA+ is hermitian (D.11)

(A+A)∗ = A+A =⇒ A+A is hermitian (D.12)

where A∗ is the conjugate transpose of the matrix A, i.e. the matrix computed by taking the

transpose of A and then the complex conjugate of each element. If the matrix A is real, then

A∗ = AT . Should exist the inverse of A∗A, then

A+ = (A∗A)−1AT (D.13)

If it does exist the inverse A−1 of the matrix A, then it can be shown that A−1 = A+.
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Example. Given a 3 × 2 real matrix A

A =













1 0

2 5

7 3













then its pseudo-inverse A+ is

A+ =







0.0389 −0.0994 0.1657

−0.0354 0.2377 −0.0629







which satisfies the four properties above:

(AA+)T = AA+ =













0.0389 −0.0994 0.1657

−0.0994 0.9897 0.0171

0.1657 0.0171 0.9714













(A+A)T = A+A =







1 0

0 1







Furthermore, since

AT A =







54 31

31 34







then

(AT A)−1 =







0.0389 −0.0354

−0.0354 0.0617







and

A+ = (ATA)−1AT =







0.0389 −0.0994 0.1657

−0.0354 0.2377 −0.0629






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