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ABSTRACT

The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented
embankment section along Secchia River (Cavezzo (MQO)) in the period from 2017 to 2018 and the
quantification of the performance of the direct and indirect simulations in terms of observed-simulated
behavior.

The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different
soil-hydraulic models have been adopted and compared.

The parameters of the different hydraulic models are calibrated using a local optimization method based on
the Levenberg - Marquardt algorithm implemented in the Hydrus package. The indirect estimations of the
model parameters are obtained from the minimization of an objective function starting from an initial set
of the parameters and a dataset of observation points from in situ monitoring.

The calibration program is carried out using different types of dataset of observation points, different
weighting distributions, different combinations of optimized parameters and different initial sets of
parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when
applied to a complex geotechnical problem as the case study (transient hydraulic and atmospheric
boundary conditions, multilayered section, long period of simulation).

At first a qualitative then a quantitative methodology, by means of a set of proper indices/metrics, have
been presented to investigate the behaviour of the large pool of indirect simulations in order to identify the
optimized set/s of parameters and the hydraulic model that better simulates the bank behavior.

The predictive capabilities of the optimized models have been tested in the validation phase upon a new
simulation period (2018-2019) and a quantitative estimation of the direct simulations performance is
carried out similarly to what has been done in the calibration phase.

The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere
interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil
belongs to the West Charlestown Bypass embankment, part of the State Highway 23, Newcastle, Australia,
that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize
the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia.

The research activity included the design and realization of a specific large scale apparatus for laboratory
experiments. Local suction measurements at certain intervals of depth and radial distances from the root
bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments
are then reproduced numerically using the commercial code Hydrus 2D that allows to simulate the plant
root water uptake (RWU) contribution. Laboratory data are used to calibrate the RWU parameters and the
parameters of the hydraulic model. In parallel, the physical and hydraulic properties of the investigated soil
have been obtained by proper laboratory tests.
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wetting front propagates upwards. The effects of the RWU of the plant on the pore pressure distribution
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Figure 84: The first graph reports the Relative Humidity in the upper boundary, the second graph the depth
from the soil surface of the imposed water table. The pore pressure values in time recorded by the installed
sensors on the side of the root bulb (1, 2, 3, 4, 5) in the different testing phases are reported in the third
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GENERAL INTRODUCTION TO THE MAIN TOPICS OF THE RESEARCH (PARTS | AND i)

The research project focuses on two main topics:

- The modelling of the hydraulic and retention behaviour of an instrumented bank section along
Secchia River (Cavezzo (MQ)) under transient seepage conditions. The soil hydraulic properties for
different hydraulic models are calibrated using an optimization algorithm based on the Levenberg-
Marquardt method implemented in the commercial code Hydrus 2D by Pc-Progress. The calibration
process is carried out considering various assumptions on observation datasets, different weighting
distributions, combination of optimized parameters and initial guess of the parameters. The
research is configured as an in-depth study of the potentialities and limits of the use of the inverse
analysis method when applied to a complex geotechnical problem as the presented case study. A
methodological approach for quantifying the quality of predictions of a large pool of indirect
simulations is presented in order to identify the optimized set/s of parameters and the hydraulic
model that better simulates the riverbank behaviour. The calibration and validation processes are
firstly presented in theory then applied practically to the large set of available indirect simulations.
The presented research project has been carried out in Bologna University, School of Engineering,
under the supervision of prof. Guido Gottardi and dr Carmine Gerardo Gragnano.

The topic that has been briefly presented here will be discussed in every detail in PART | of the present
thesis.

- The RMS project focuses on the investigation of the effects of the evapo-transpiration contribution
of plants on the spatial and temporal distribution of pore water pressure in soil by means of the
design and realization of a large-scale apparatus. The apparatus consists of a garden bed with a
plant in the middle; sensors monitoring the soil water potential at certain depths and radial
distance from the root bulb are installed. Different boundary conditions are imposed to the
laboratory apparatus and experimental data are collected in time. The laboratory experiments are
reproduced numerically using the commercial code Hydrus 2D by Pc-Progress. An in-depth
calibration of the soil hydraulic properties by means of inverse analysis and the elaboration of a
RWU spatial distribution initially by means of spatial distribution functions available in literature
(Vrugt et al, 2001) then using experimental laboratory data are reported. Potentialities and limits in
the use of available root spatial distribution functions are discussed. The presented research
project has been carried out during the research period in the Priority Research Centre for
Geotechnical Science and Engineering, University of Newcastle, Australia under the supervision of
prof. Olivier Buzzi.

The topic that has been briefly presented here will be discussed in every detail in PART Il of the present
thesis.

Looking at similarities and differences between the two investigated case studies:

-both the topics are hydro-thermal-mechanical problems.
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-the riverbank in PART | is subjected to unsaturated conditions as effect of river level fluctuations while the
large scale apparatus in PART Il is subjected to variable soil saturation subsequent to water level
imposition.

-the riverbank is subjected to transient seepage conditions, the large scale apparatus when boundary
conditions are applied is subjected to a transient seepage until the establishment of steady state
conditions.

-for both the case studies, the mechanical and hydraulic parameters are dependent on soil saturation and
for the large scale apparatus also on the root bulb influence.

-the riverbank section is a multi-layered domain and soil vertical and horizontal intrinsic heterogeneity is
encountered within the same layer while the large scale apparatus is filled with homogeneous soil and a
single layer has to be investigated. Riverbank soil heterogeneity is a topic not addresses in the research and
layers are assumed as homogeneous considering the average of the hydraulic parameters obtained from
laboratory tests for each layer.

-the installed sensors in the riverbank section collect monitoring data of water potential and water content
in time, while in the large scale apparatus only water potential data are recorded.

-to model the behaviour of the riverbank section it is relevant to consider the soil hysteretic behaviour
while for the RMS project the root water uptake by plant transpiration has to be computed with higher
accuracy.

-in the large scale apparatus the boundary conditions are imposed (water level on the bottom boundary
and relative humidity on the upper boundary). In the riverbank section boundary conditions are controlled
(as the hydrometric water level of the river), partly controlled (atmospheric boundary conditions controlled
by means of a meteorological station, simplifications are adopted for the computation of the
evapotranspiration contribution), or uncontrolled (as in the bottom boundary of the model). From all this,
we can understand the different complexity of the two problems: in the RMS project all the variable are
controlled (temperature, humidity, suction, radiation, wind, water level imposed, lateral boundary
conditions) due to the fact that is a laboratory experiment while in the riverbank project uncertainties on
the boundary conditions are greater as in the majority of the in situ experiments.

-the evapo-transpiration contribution due to vegetation cover has been addressed in both the project but
with a different degree of accuracy: in the RMS project the focus is on the plant activity so the degree of
accuracy is extremely high while in the riverbank section the lack of experimental information leads to the
adoption of simplifications.

-both the projects use input hydraulic parameters obtained by laboratory tests (evaporation tests) but
obtained with different techniques: in the RMS project tensiometer and chilled mirror device (WP4 by
Decagon Device) readings and the hand spry method have been used to investigate the SWRC while for the
riverbank project the soil moisture release curve Hyprop by Meter and WP4.

-a calibration procedure has been applied to both the projects but with a different degree of complexity:
the RMS project requires the optimization of one single layer (6 hydraulic parameters) while for the
riverbank section the optimization of 4 layers (24 to 40 parameters). Given the lower complexity of the
laboratory experiment of PART Il and the lower number of indirect simulations performed, the evaluation
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procedure used is simpler and quicker with respect to the one of PART | even if based on the same
indices/metrics and the same base concepts.

-the calibration procedure applied to the riverbank project focuses on the optimization of the hydraulic
parameters while in the RMS project on the optimization of hydraulic parameters and RWU spatial
parameters.

-both the projects have as final goal the elaboration of a reliable pore water pressure distribution in certain
time instants of the simulation that could be used as initial conditions for future stability analysis. Stability
analysis could be performed on the investigated bank section along Secchia River and, for the RMS project,
on the embankment along West Charlestown Bypass in Newcastle city which showed stability problems
and long stem plantings have been proposed as in situ interventions. Stability analyses have not been
performed in the present thesis and they stand as future developments of the research.

From this brief presentation, the strong connections between the two main topics of the research could be
deduced. Both the topics are moving inside the same field, unsaturated soil mechanics and modelling of the
water dynamics in transient conditions. While PART Il focuses mainly on the simulation of the seepage
phenomenon and the pwp distribution in close proximity of a root bulb to reproduce the conditions that
usually occur in the first meter of soil, in PART | the focus is on the simulation of the pwp distribution in the
riverbank body below the first meters of soil where the influence of the plants transpiration and
evaporation from the soil surface are minimal. This is due to a lower number of information available from
in situ monitoring that does not allow an accurate simulation of the evapo-transpirative contribution.
Despite the fact that the chosen plant in PART Il does not match the typical riparian vegetation in the Po
Basin, the experimental setup and following procedure of RWU parameters calibration could be applied
easily also to the case study of the riverbank section and its vegetative cover. The information obtained in
the laboratory experiments could be integrated in a possible future numerical model of the investigated
riverbank in terms of evapo-transpirative contribution in time to be applied uniformly on the vegetated
atmospheric boundary or more precisely punctually in the domain in proximity of each riparian plant. The
choice of which approach has to be used depends on the accuracy that is targeted. Finally, the two models,
simulating the seepage in the bank body and the evapo-transpirative phenomenon close to the soil surface,
together are able to capture in a very accurate way the pwp distribution in time of the investigated
geotechnical problem (riverbank section subjected to transient boundary conditions). The pwp distribution,
matching with accuracy the real monitored phenomena in the most interesting time instants of the
simulation, could be imported as initial conditions for riverbank stability analyses which are the final
purpose of these detailed numerical analyses. From all this, it is possible to understand that both the topics
have the same ultimate goal and each of them has potentialities which balance the limits of the other.
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1 INTRODUCTION TO PART |

River floods are a worldwide natural hazards with huge socio - economic impacts that are expected to rise
in time due to population increase (urbanisation of flood-prone territory), economic growth (increase of
property values), climate change (Tanoue et al, 2016), improvement in collecting and reporting flood
disasters (Peduzzi et al, 2009) and less awareness of the population about natural risks. Flood, as defined by
Directive 2007/60/EC (European Directive) is the temporary coverage of areas by water from rivers,
streams, canals, lakes and sea for coastal areas. The present dissertation mainly focuses on floods from
rivers and torrents.

The risk drivers used to understand and interpret these complex phenomena are “hazard”, “exposure”,
“vulnerability” and “resilience”. The summary definitions of these concepts are given in the following for
sake of clarity.

The concept of “hazard” is linked to the possible occurrence of a phenomenon, process or human activity
that may cause health impacts, injuries, loss of lives, environmental degradation and economic losses.
Hazards could act alone or in combination, in one episode or more episodes sequential in time, and are
defined by their location, origin, magnitude, frequency and probability. Hazard is often and incorrectly
overlaid to the concept of risk, but it’s currently recognized that hazard is only a factor of the overall risk.

“Exposure” refers to people, property, infrastructure, housing, systems and all the human activities located
in the hazard-prone areas that could be potentially affected. “Vulnerability’”’ refers to the characteristic of a
community, human activity, system or area that makes it susceptible of hazard damages. Vulnerability is
multidimensional in its nature because it includes physical, social, economic, environmental, cultural and
institutional factors. Often “exposure” is mistakenly associated with the term “vulnerability”. Exposure is a
necessary but not sufficient factor of the risk. It is possible to be exposed but not vulnerable (e.g. adopting
mitigation measures that zero the vulnerability in exposed areas susceptible of hazards).

The “resilience” is the ability of a community, society, system to recover from the consequences of an
hazard in a short time and in an efficient manner restarting vital infrastructures and services. All the
controlling risk factors (”hazard”, “exposure”, “vulnerability’) change temporally and geographically and a
huge effort has been done in the past years to assess the spatial-temporal characteristic of the flood hazard
under actual and possible future climatic scenarios at the global scale (Tanoue et al, 2016, Ward et al, 2013,
Hirabayashiet al, 2013, Winsemius et al,2016, among others). The final goal is the elaboration of a global
risk map to guide disaster risk reduction policies aimed at preventing new disaster risks and reducing

existing ones, contributing to resilience strengthening and a future sustainable development of countries.

Italy has experienced a strong delay in the promulgation of norms addressed to natural hazard risk
reduction (landslides and floods) in urban planning. Law n° 183 (May,18,1989) is the first national
regulation that identifies the hydrographic basin as a territorial entity to be addressed and coordinated as a
whole by the Basin Authority by means of a Basin Plan. Despite that, the law has full implementation only
after the catastrophic event of Sarno (May,5,1998). L. 267/1998 gives acceleration on the individuation and
classification of the areas subjected to hydrogeological hazards and the elaboration of PAI (Plans for the
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Hydrogeological Asset of Basins). Directive 2007/60/CE (Floods directive - FD) implemented in Italy with the
Decree 49 (23/2/2010) defined new common lows across Europe for the evaluation and management of
the flood risk introducing three hydraulic hazard and risk scenarios and the Management Plans of the flood
risk.

In 2008, the Italian Institute for Environmental Protection and Research (ISPRA) has been established
(Decree n° 112 of 25 June 2008). In 2015, in the field of the hydrogeological risk, ISPRA mapped the entire
national territory using the information collected by Basin authorities, Regions and independent provinces
according to three scenarios (P1,P2,P3).

In 2017 ISPRA updated the flood hazard map of the national territory using the same different risk
scenarios (Trigila et al, 2018): P3, with return time between 20 and 50 years (frequent floods), P2 with a
return time between 100 and 200 years (average probability of flood occurrence) and P1 (low probability of
floods or extreme event scenarios). The conclusions that could be drawn from this study are extremely
alarming: 4,1% of the national territory has a P3 hydraulic hazard, 8,4% a P2 and 10,9% a P1 flood
probability. Emilia Romagna, region in the northern Italy, has a territorial extension of 22452 km” and
possesses the Italian primacy of the highest rate of territory in danger (11,1%P3;45,7%P2, 35,5%P1) (Trigila
et al, 2018; Trigila et al, 2015). The considerable extension of area with P2 hazard in E.R. is connected to the
main and secondary natural hydrographic network and the dense network of artificial drainage channels
(Trigila et al, 2015).

To meet the need to better manage the hydrogeological risk, Italian public bodies were established in order
to be in charge of large river basins, carrying out infrastructure maintenance and risk mitigation
interventions, funding research activities for early warning systems and emergency plans. AlPo (the
interregional agency for the Po River) deals with the management of the Po River and its basin which covers
a huge surface (74 000 km?) divided between six different Italian regions and host a population of about 16
million of people.

1_1 AN OVERVIEW OF THE PROBLEM

The construction of embankments along river banks or costal area is a very old practice probably dating
back to the dawn of civilization. The main function of these earthen retaining structures is to limit a
seepage process through it, which is guaranteed by a low or very low permeability of the construction
materials used. For this reason fine-grained materials with a low or very low fraction of coarse-grain
material are used. In the majority of the cases, for the construction of artificial embankments, the material
chosen is the one available on site, in order to limit the cost of the intervention. To increase the levee
performance, sometimes a cover or an inner layer with better characteristic is chosen and a compaction
phase is used to reduce the hydraulic permeability of the soil. A natural slope has to be addressed with
even more care due to the higher spatial variability that is likely to be encountered in the inner layers. Even
within a so-called ” homogeneous layer”, soil properties usually show certain variability.

Compacted soil, typical of river embankments and transportation infrastructures, is unsaturated in the
construction phase, but due to microstructure changes (loading), hydrometric fluctuation of the river level
and weather and vegetation conditions (rainfall, evaporation and transpiration contributions) their degree
of saturation could change considerably in time (Bicalho et al, 2018). The same conclusion could be
extended to natural soils. Since the key parameter in slope stability is the soil strength which varies with
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suction, water content and degree of saturation, it is of primary importance to have a good and reliable
estimation of the spatial and temporal distribution of these variables (Rocchi et al, 2018a). However this
problem seems yet a huge task for research and standard geotechnical studies because it requires site
monitoring and advanced laboratory tests (Gragnano et al, 2018). The development of high capacity
tensiometers (Mendes et al, 2008) and the use of instrumentations developed for agricultural purposes for
the monitoring of superficial soils (Bittelli, 2011) and applied to monitor deeper soil layers are useful tools
to achieve this goal (Rocchi et al, 2018b).

As suggested by Gottardi et al (2016), initial and boundary conditions have to be assessed properly because
they can influence strongly global safety conditions. The design of earthen structures is entrusted to
stability analyses based on simplified hypothesis such as steady state conditions associated with the
expected flooding peak and the limiting situations of dry and total saturation during rapid drawdown of the
river (Dapporto et al, 2003; Calabresi et al, 2013), disregarding issues related to soil partial saturation. All
these assumptions lead to over-conservative results in terms of probability of failure (Gottardi and
Gragnano, 2016). The assumption of steady state conditions equal to the maximum peak expected could be
reasonable for coarse-grained embankment but not for fine-grained soil for which the penetration of the
saturation line is poor and the embankment remains mostly in unsaturated conditions (Calabresi et al,
2013). For this reason, fine-grained soil embankment fears persistent flooding event of moderate water
level instead of high water level occurred in a short period of time (Calabresi et al, 2013). Moreover, Rinaldi
et al (2004) underlines the importance of taking into consideration in bank stability analysis the complex
interaction between confining pressure given by the river and the pore water distribution in the bank.
Another crucial aspect is the estimation of the transpiration contribution given by plants and the root
reinforcement effect on slope stability due to an increase in soil shear strength.

The global picture that comes out from the present literary review is of a very complex geotechnical
problem, with a number of variable aspects to take into consideration for a reliable stability analysis
elaboration. Among other aspects the highly complex relation between infiltration, water content and pore
pressure change that is non-linear and hysteretic (Toll et al, 2016).

Realistic hypothesis on initial conditions and on transient boundary conditions (transient seepage
conditions) together with an in depth study of unsaturated and heterogeneous soils should be at the base
of any reliable risk susceptibility analysis (Gottardi and Gragnano, 2016).

Recently, a consistent number of studies has focused on positive and negative pore water pressure (Simon
et al, 2000; Rinaldi and Casagli, 1999 among others) incorporating their contributions in banks stability.
These new discoveries allow reconsidering the simplified hypothesis previously adopted in various bank
stability methods (Rinaldi et al, 2004). In practice, slope stability is assessed using numerical analysis
performed by means of Limit Equilibrium Analysis, Finite or Discrete Element Methods. Finite Element
Methods are used to determine the solution in terms of pore water pressure and water content
distribution calculated for each node of a specific domain.
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1_2 PROJECT BACKGROUND AND AIMS

The evaluation of model behaviour and performance is performed commonly comparing observed and
simulated data and investigating the closeness between them. Observed data are obtained by field
measurements made within the domain.

But, the general approach, based on the inspection simulated-observed data, allows the modeller to
formulate a subjective assessment of the model behaviour, usually dependent on the systematic or timing
over or under-prediction of the model. To evaluate objectively model behaviour, it is necessary to make a
mathematical estimate of the error between simulated and observed data. The majority of the evaluations
of model behaviour performed in literature are carried out presenting only graphical comparison and
subjective assessments. The diagnosis that can be made from a graph need to be supported by quantitative
measures.

Statistical metrics such as efficiency criteria, accuracy criteria, model selection criteria, statistical
significance criteria represent powerful means to perform vigorously a model evaluation. The importance
of using a large number of metrics has been already stated in different research field but there is a general
lack of guidance in how to select the actual metrics to use. Each metric has specific pros and cons which
have to be taken into consideration during model evaluation. In fact different metrics put emphasis on
different systematic or dynamic behavioural error of the model. It is therefore important to compare the
relative importance and suitability of each of these techniques to evaluate model prediction.

Several reasons lead to evaluate the performance of the model using sets of metrics/indices:

(1) It is necessary to estimate quantitatively the model ability to reproduce historic data. In other words, it
is necessary to evaluate the performance of a direct simulation based on observation points (laboratory or
in situ data). The use of a set of metrics/indices in these cases gives insights on:

e The type of data that are better or worse represented by the model (for example suction or water
content information).

e In which temporal periods of the simulation the phenomena are better or worse represented (for
example which flood events, which off-peak periods..) in order to focus the effort of a calibration
phase on those periods of greater interest for the purposes of a certain study.

e  Which observation points (sensors) are better or worse represented by the model in order to
understand if the problem is related 