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1

Introduction

Cancer development is a complex process involving almost all the layers
of biological hierarchies, from genome to gene regulatory network and sig-
nalling between cancer cell and its micro-environment. However, at its foun-
dations cancer is an evolutionary process.

During the lifetime of an organism, its cells naturally undergo a random
mutational process. As a consequence, some cells can acquire a selective
advantage, i.e. an increased reproduction rate, on the others. When a cell
acquires a set of mutations that allows it to proliferate without control, its
progeny has the potential of invading tissues and metastasize [79].

In the last decades, cancer genome wide studies provided strong evidence
supporting the contribution of somatic mutations to tumour development.
Cancer genomes display on average from tens to hundreds somatic muta-
tions, comprising single-base substitutions, deletions and insertions of one
or a more bases as well as chromosomal abnormalities. At the same time,
however, these studies highlighted a wide heterogeneity in mutational pat-
terns, across and within cancer types, to the extent that two different tumours
almost never show an identical somatic mutation profile or, sometimes, a
single mutation in common. Moreover, not all somatic mutations found in
cancer genomes are involved in the development of the disease. While the
so called driver mutations confer a selective advantage to cancer cell and are
positively selected during cancer evolution,passengers mutations do not con-
fers growth advantage and do not contribute to cancer development [83].

A challenge of past and current research has been the identification of
tumour-causing mutations. However, it is increasingly acknowledged that
cancer is a perturbation of cell state, resulting from the interplay of dysfunc-
tional molecular constituents and efforts are needed to understand the mech-
anisms by which a genetic alteration pattern results in a specific phenotype.
Moreover, without a systemic view of cancers it remains difficult to develop
therapeutic strategies for treating them [21].

Uncovering interactions among genetic alterations and understanding their
consequences at multiple scales is thus central in modelling genotype- phe-
notype associations.
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In this thesis we focused on some statistical and physical methods which
attempt to tackle the problem of cancer genetic heterogeneity and its rela-
tionship to higher level biological properties.

Recently, systematic experimental screens have made available several
reconstructions of the network of interactions among macromolecular con-
stituents of the cell. Such network, often referred to as the interactome, al-
lows to gain a system level view of mutational patterns, providing a frame-
work to understand how mutations act together to give rise to the cancer
phenotype.

A mutation often result in the impairment of a protein function and, from
a network point of view, it can be seen as a node removal. It is thus of interest
to study how cancer related alterations impact the global network topology.

Since different reconstructions of the interactome exist, we collected from
the web twenty interactome reconstructions, selected among the most widely
used in genomic integration studies and, in the first chapter of this thesis, we
compare them from a topological perspective by analysing their global and
local properties. We then study their overall resilience under nodes pertur-
bation and we compare the impact of random node deletions to removal of
cancer related genes derived from mutational data of several cancer types.

Notwithstanding their daunting heterogeneity, cancer genetic alterations
are thought to impact some specific gene groups. In other words, one ex-
pects that, instead of being caused by specific gene mutations, cancer stems
from the impairment of one or more biological functions due to mutations of
genes taking part in them. This hypothesis, along with the observation that
different patterns of mutations lead to different responses to treatments and
in turn in different survival outcomes, highlights the importance of stratify-
ing patients based on their genetics and cytogenetic alterations.

To this end, in the second chapter, we focus on hierarchical non paramet-
ric bayesian methods. Latent topic models, such as Latent Dirichlet Alloca-
tion and Hierarchical Dirichlet Process allow to model hidden structures in
the data and fit well with the hypothesis that cancer mutations impact spe-
cific gene groups in different proportions.

In the second part of the chapter, we study a cohort of 2043 patients af-
fected by Myelodysplastic Syndromes, characterized by a panel of more the
fifty genetic mutations and chromosomal abnormalities. By applying Hier-
archical Dirichlet Process and Bayesian Networks, we draw a picture of the
genetic landscape of the disease.

From a more general perspective, the view of cancer as an evolutionary
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process frequently implies the assumption of a direct and univocal genotype-
phenotype relationship. However, as for cell differentiation, such genetic de-
terministic view is not sufficient to account for several experimental obser-
vations as, for example, the similarity of gene expression patterns in cancer
with different mutational profiles [46].

In the third chapter, we focus on the hypothesis of cancer as an abnormal
attractor in the epigenetic landscape of the cell. In the first part, we set the
mathematical framework of gene regulatory networks and we introduce the
concept of epigenetic landscape. Since, recently, the introduction of single
cell sequencing made available gene expression profiles of thousands of cells,
we study the connection between the empirical distribution of cell in the gene
expression state space with network laplacian based manifold reconstruction
techniques and their application for inferring the epigenetic landscape from
data.
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Chapter 1

Interactome Reconstructions
Topology Comparison and
Resilience

1.1 Introduction

In the cell, proteins interact with one another and with other molecular com-
ponents, such as metabolites and nucleic acids, to perform biological process.
Genetic alterations can lead to disruptions of some of these processes which,
in turn, result in higher phenotypic effects, for example increased cell repro-
duction rate and cancer [4, 46].

Understanding how a given genetic alteration pattern links to a specific
phenotype, i.e. inferring genotype-phenotype maps, is a central task to ex-
plain the genetic architecture of complex diseases. To this end, the character-
ization of the complex web of macromolecular interactions occurring within
human cells, usually referred as the interactome, is essential since it allows to
capture systems-level patterns (e.g. active network regions, disease modules)
and go beyond the knowledge attainable analysing each genetic perturbation
as if it affected the phenotype by acting independently [21, 52].

As a map to guide our understanding of how alterations perturb the sys-
tem as a whole, the interactome is currently being used in several approaches
and many network-based methods have been developed to solve problems
in integrative analyses, namely, to understand molecular behaviours, to find
disease subtypes and to predict an outcome or phenotype [8, 55]. Indeed,
the interactome represents a powerful framework to integrate omics datasets
[14, 13, 82, 27, 87].

Loosely, the interactome can be defined as a graph where each node rep-
resents a gene product (generally a protein) and an edge represents some
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kind of, directed or undirected, interaction (e.g molecular docking) between
two of them.

In contrast to human genome and transcriptome, the interactome is not
uniquely defined and several recontructions of it can be defined depending
on the nature of interactions considered. Moreover, even when interactions
are of a specific kind, for example biophysical PPI, their mapping is still far
from completeness [60]. For this reason, a unique reference model is not
available for the interactome and, currently, different reconstructions exist.

1.1.1 Gene-Centered Interactomes

All interactome reconstructions are gene-centered. Nodes are gene identifiers
and edges represent different types of interactions involving genes and gene
products, see figure 1.1.

  

GENE

GENE
GENE

GENE PRODUCTS

INTERACTIONS

GENE – CENTERED

INTERACTOME

FIGURE 1.1: Gene-Centered Interactome Representation. Since
to each gene can be associated different gene products (orange
dots), e.g different protein isoforms, the gene-centered view, at
the cost of losing some information, allows to simplify network
analysis and integration of omics datasets which usually carry

information at gene level.

This representation simplifies the many types of players (e.g. DNA se-
quence, protein isoforms) and interactions (PPI, protein-DNA) actually in-
volved, providing a useful model to integrate many other data types that are
attributable to genes, like the scores (e.g. p-values, fold-changes, etc.) emerg-
ing from omics assays.

In such gene-centerd view, a node represents the gene itself or any of its
products, while edges accommodate both biophysical (direct) and functional
(indirect) interactions.
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Biophysical interactions mainly include PPI and protein-DNA interactions
(PDI). Therefore, a PPI between genes A and B represents any PPI between
any pair of products of the two genes; while a PDI between A and B indicates
the binding between any protein encoded by A to gene B.

Functional interactions represent any type of biological relation between
two genes which does not involve a direct contact, for example: co-expression
relations, genetic interactions and links between enzymes that catalyse adja-
cent reactions in metabolic pathways.

Gene-centered interactomes differ in terms of types of interactions in-
cluded, data sources and assembling procedure. Among those available in
current literature, we distinguished three classes:

• High-throughput biophysical interactomes (HTBP), state-of-the art in terms
of reconstructing the interactome in a biological model, where PPIs are
detected by means of a high-throughput assays [60] (for example, yeast
two hybrid screening or affinity purification followed by mass spec-
trometry and co-fractionation).

• Integrative interactomes (ITC),which integrate data from both primary
databases and meta-databases. Primary databases collect experimental
data from small and large scale studies, while meta-databases integrate
and unify interactions from multiple primary databases.

• Integrative-predictive interactomes (IP), which contain interactions col-
lected from multiple sources as well as predicted interactions, hypoth-
esized on the basis of a series of evidences, principally co-expression,
co-participation in molecular pathways or even co-occurrence in scien-
tific publications [80].

In such heterogeneous and incomplete scenario, which lacks a reference
model, it is not trivial to decide which interactome or interactomes is most
appropriate given a research task (for example, cancer mutated gene pri-
oritization). To guarantee a good coverage of the totality of the genes, it
is common to perform network-based analysis using interactomes defined
combining multiple sources [14]. In some works, the results obtained using
different interactomes on the same data are compared assessing the variation
of the studied outcome (e.g. tumor stratification [43]) or joined in a consen-
sus [56]. However, quite often, a single interactome is used [82]. Recently, a
benchmark on the performance of several interactomes on a particular task,
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namely disease prioritization, found that the choice of interactome matters
greatly [44].

In the first part of this chapter, we study the topological properties of
20 interactomes reconstructions to shed light on their heterogeneity, redun-
dancy and specificity from topological and applicative perspectives. In sec-
tion 1.2 we introduce the database considered. We then compare them in
terms of degree distribution, centrality, clustering and sharing of hubs in sec-
tion 1.3. In the second part of the chapter, we try to characterize interactome
resilience, that is, how topology is affected by multiple gene failures and in
particular by cancer related gene alterations.

The knowledge emerging from our analyses summarizes the current sit-
uation and can be useful to guide the choice of interactomes in future appli-
cations.

1.2 Interactomes Databases Collection and Harmo-
nization

We selected a panel of 19 interactomes comprehensive of the most widely
used interactomes in the literature and representative of the three classes in-
troduced above. In addition, since HTBP interactomes suffer from a high rate
of false negative interactions detection and are generally more sparse the the
others, we studied the interactome resulting from their union (acronym BUN
in table 1.1). In Table 1.1, are reported interacrome version, class and size.
For sake of brevity, in the following we will refer to interactomes using the
assigned acronyms (ID).

The original genes or protein identifiers chosen by the authors of each
interactome (Entrez Gene id, gene symbols, Uniprot, Ensembl transcript, En-
semble gene, Ensemble protein, iRefIndex icrogid) were mapped to Entrez
gene identifiers. Mappings between Entrez Gene identifiers and other iden-
tifiers were collected from Entrez Gene FTP site ftp://ftp.ncbi.nih.gov/

gene (26/02/2019), Uniprot FTP site https://www.uniprot.org/downloads,
R package biomaRt (26/02/2019), and, where available, by the authors of
the interactomes (STRING: https://string-dborg/mapping_files/entrez,
iRefIndex: https://irefindex.vib.be/wiki/index.php). Some interactomes
included a minor number of interactions involving identifiers from non hu-
man species that we discarded.

ftp://ftp.ncbi.nih.gov/gene
ftp://ftp.ncbi.nih.gov/gene
https://www.uniprot.org/downloads
https://string-dborg/mapping_files/entrez
https://irefindex.vib.be/wiki/index.php
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Apart from the four HTBP interactome, that were independently derived,
the remaining interactomes share interaction sources databases.

All interactomes included a largest connected component (LCC), which
involved more than the 99% (median value) of the total genes of the interac-
tome, and a few minor components: only the LCCs were considered for our
study.

The two interactomes derived from STRING and designated as S04T and
S07T were obtained selecting only the links with confidence score 0.4 and 0.7,
respectively. The other two interactomes derived from STRING, S04 and S07,
were obtained recalculating the confidence score without the contribution
of text mining, by means of the script provided at http://string-db.org/
download/combine_subscores.py.

When multiple pairs of Ensembl protein identifiers, characterized by dif-
ferent STRING confidence scores, mapped to the same pair of Entrez gene
identifiers, the highest score was considered as representative of the interac-
tion between the two genes. iRefIndex complexes were transformed into a
list of binary interactions following the so-called spoke model (interactions
occur only between the bait protein and each of the others) if the bait pro-
tein was indicated, and, otherwise, to the matrix model (all-pairs interac-
tions) (see https://irefindex.vib.be/wiki/index.php/README_MITAB2.6_

for_iRefIndex_15.0).

http://string-db.org/download/combine_subscores.py
http://string-db.org/download/combine_subscores.py
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1.3 Overall Properties

Comparing and classifing networks from a global perspective is a central
problem in network science. Global properties can be defined as statistical
properties of the network as a whole, as, for example, the degree distribu-
tion, the mean network connectivity or the mean distance between nodes.
Networks with similar global properties, and in turn dynamical systems de-
fined on them, often share similar behaviours. For example, networks with
the same degree distributions show analogous diffusion [64] and synchro-
nization patterns [74] or resilience under node or link removal [26].

However, when two networks are two partial reconstructions of the same
underlying physical system, as is the case for the interactomes, also a local
structure comparison is of interest. In fact, when a significant number of in-
teractions lacks, global properties could differ but some local properties, as
for example the centrality or the neighbourhood of a specific node, could be
preserved. In what follow we will first compare the 20 interactome from a
general topological perspective.

As a first step, we compared interactomes in term of sizes and overlaps
of nodes and links. As shown in figure 1.2, they show relevant variations
in terms of genes and interactions, not only between classes, as expected by
the different designing principles, but also within the same class. For ex-
ample, the HTBP class includes interactomes containing a number of genes
ranging approximately from 3000 to 11000; a number, this latter, comparable
with that of the smallest interactome of integrative-predictive class (FP60).
Integrative and integrative-predictive interactomes are comparable in terms
of gene number (from 11000 to 19000), but on average integrative-predictive
interactomes have a higher link density (from 20 to 50 links per node on av-
erage).

Mutual overlaps of nodes and links are shown in figure 1.3. Dot size
and color are proportional to interactions and nodes overlap respectively. As
expected, integrative interactomes that share interaction sources, i.e. links
derived from common databases, have many links and nodes in common,
for example CP and IR. On the other side, HTBP interactomes, due to their
independent derivation and different experimental techniques, prone to a
high rate of false negative, have a small mutual overlap [60].

The portion of the exome covered by all of the interactomes is relatively
small and only 1021 genes out of 20630 (⇠ 5%) are shared among all of them.
Moreover, the similarity of interactome reconstructions on this common core
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FIGURE 1.2: Number of interactions versus number of genes.
Dot size is proportional to network density, i.e. n.Link

n.Nodes

FIGURE 1.3: Mutual link and node overlap for each interactome
pair. Dot size (colour) is proportional to the ratio between the
number of links (node) shared by two interactomes and the to-
tal number of links (nodes) in one of them. Note that the matrix
is not symmetric: a column gives how much that interactome is
represented by the other while a row gives how much it repre-

sents the others.

varies greatly as shown in figure 1.4.
Higher density is associated with lower mean distance and higher clus-

tering, with low density HTBP class on one side and ST04 on the other. Clus-
tering is lower than 0.1 for most of the interactomes with less than 24 links
per node on avarage (with the exception of CF and DMND), while for the
others covers a wide range (0.2-0.7), see figure 1.5. Since the interactome is
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FIGURE 1.4: For each interactome, maximum and minimum
fraction of sheared link (with respect to all others) on the com-

mon core of 1021 genes.

often claimed to be scale-free, we compared these quantities with those of
Barabasi-Albert network model (BA) of the same density finding relevant
differences. The mean distances and clustering coefficients of interactomes
are always higher than those of BA nets. Moreover, the clustering coefficient
of interactomes is highly variable while in BA nets it is almost constant (see
figure 1.19 in Appendix).

FIGURE 1.5: Mean Distance and mean clustering coefficient as
function of link density. In the left panel dot size is proportional

to the diameter of the interactome.

1.4 Degree Distribution

A central global property of a network is its degree distribution since it en-
codes many information about network physical properties.
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On one hand, systems taking place on networks with similar degree dis-
tribution share common properties, such as diffusion or resilience. On the
other hand, in evolving networks, the shape of the degree distribution is of-
ten related to the mechanism underlying their evolution. For example, the
Barabasi-Albert model predicts a scale-free stationary degree distribution for
evolving networks with preferential attachments [9] and many feature of the
degree distribution of biophysical PPI interaction networks are reproduced
by the duplication-divergence model and its variants [70, 49].

Interactomes and protein-protein interaction networks are often claimed
to be scale-free [8]. A network is scale free if its degree distribution P(k)
follows a power law:

P(k) µ k�a (1.1)

where k is the degree and a > �1. The power law distribution has a
heavy tail and is invariant under scale transformations so that’s not possible
to define a ’typical’ scale of network degree. In a log-log plot power law is
characterized by a linear trend.

Actually, real interactome reconstructions, as the majority of real world
networks [18], do not show a power law trend in the whole degree range.

The typical shape of a real interactome is shown in figure 1.6 along with
a scale free network with the same number of nodes and links and same a
exponent. The linear trend (in log-log scale) is typically observed only for an
intermediate range of degree values, while a saturation (i.e. a higher number
than expected) is observed for low degrees and a cut-off (i.e. a lower number
than expected) is observe for high degree. The degree distributions of the
interactome databases considered are reported in figure 1.18 in the appendix
of this chapter.

1.4.1 Testing the Scale-Free Hypothesis

Even though interactomes are not genuine scale-free nets, testing if the scale-
free hypothesis holds, at least for a sufficiently wide degree range, and if it is
consistent across different reconstructions, can shed light on the nature and
organization of the web of macromolecular interactions in the cell.

To this end, we fitted the overall degree distribution of each interactome
recontruction with a power-law following the method proposed by Clauset
et Al. [25] and implemented in the R package poweRlaw [37].
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FIGURE 1.6: Typical Degree Distribution of PPI network (red
dots) and Degree distribution (blue squares) of a network with
the same number of nodes and links and degree sequence ex-
tracted from a power law with the same exponent of the PPI
(log-log scale). The three regions highlight low degree satura-
tion, scale free behaviour and high degree cut-off range. The
inset show a pure power law with a linear trend on the whole

degree range

This method is based on the hypothesis that the degree distribution fol-
lows a power law for degree greater then some threshold value Kmin and
jointly estimates Kmin and the power law exponent a. For a discrete power
law, the maximum likelihood estimator (MLE) for a, fixed Kmin, is given by:

â = 1 + n

"
n

Â
i

ln
xi

K� 0.5

#�1

(1.2)

where xi are the empirical data points. To estimate Kmin the MLE for a is
computed varying K in the range [0, max(Degree)]. Kmin is the K which min-
imizes the Kolmogorov-Smirnoff (KS) distance between the data and fitted
model cumulative density function. Since increasing K decreases the num-
ber of data points available for the fit of a, a minimum number of points in
the tail is required for not to discard the power law hypothesis.

Goodness-of-fit was assessed by a semi-parametric bootstrap procedure.
A fixed number, Nbs of synthetic distributions is generated in the following
way:
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• for degree lower than the estimated Kmin, points are bootstrapped from
the empirical data,

• for degree higher than the Kmin, points are sampled from the best fit
power law distribution.

Than, for each synthetic distribution fit, the KS statistics is computed. A
p-value is defined as the fraction of times the KS of the fit of the synthetic
distributions is greater than that for the empirical data fit. Therefore, a high
p-value indicates that the power law fits real data as good as synthetic data
and cannot be rejected.

Finally, uncertainties on Kmin and a are estimated sampling (with replace-
ment) from the original data set and re-estimating the parameters.

The scale free hypothesis was tested based on several criteria proposed
in a recent comprehensive survey on scale-free networks [18]. Since our in-
teractomes are all simple and undirected networks, we introduced a simpli-
fied version of the taxonomy proposed therein. We stratified interactomes in
three different levels of plausibility of the scale free distribution hypothesis:

• None: interactomes for which the semi-parametric bootstrap has a p-
value lower than 0.1, showing that the power law must be rejected.

• Weak: interactomes such that power law distribution cannot be re-
jected, i.e. semi-parametric bootstrap has a p-value grater than 0.1, and
such that the fitted tail (data points xi > Kmin) contains at least 200
nodes.

• Strong: Interactomes satisfying weak constraints, such that no other
distribution are favoured (i.e., better fits data) on the power law in the
same degree range and with a power law exponent a in the range 2 <

a < 3.

The picture resulting from analysis is quite heterogeneous. Figure 1.7 re-
ports the estimated a with against the bootstrap p-value.

For six interactomes, in the INT and IP classes, the power law hypothe-
sis must be rejected, having a zero p-value. All other interactomes show at
least weak evidence for scale-freeness, for some degree range, with a p-value
grater than 0.1 and a tail which contains more that 200 nodes. To test for
strong evidence, power law hypothesis was compared with two alternative
distribution: lognormal and exponential.
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FIGURE 1.7: Evidence for scale-free hypothesis. Power law fit-
ted exponent a vs bootstrap p-value. Colour indicates interac-
tome class. Shape indicates if there exists a distribution which

fits data better then power law.

Criteria for strong evidence are satisfied only by CF and BX in the HTBP
class. NCBI, DMND (ITC class) and MN (IP) have an exponent in the range
[2, 3], consistent (within the error bars) with that of CF and BX (see figure 1.8).
However, for this interactomes, power law fit is not significantly favoured on
exponential fit. For the union of HTBP and IR the power law is favoured on
alternatives and thus the evidence for these interactomes can be considered
stronger than for others even though their exponent is not in the range [2, 3].
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FIGURE 1.8: Estimated value of a exponent for each interac-
tome. Error bars are computed with a bootstrap re-sampling
of the empirical distribution, as described in the main text

(Nrep = 1000, n = n.of nodes of the interactome).

1.5 Shared Hubs

Network hubs are nodes with a high centrality. The reason why we are inter-
ested in hubs is two folded. First, even though not all interactomes are power
law distributed and almost all of them show a high degree cut-off, their dis-
tributions has a heavy-tailed nature, so that nodes with high degree are rare
but still have a high impact on their global topology [8]. Moreover, the high
degree cut-off can be a consequence of limitations in the experimental tech-
niques, as for the case of HTPB class.

Second, hubs play a central role in network-based gene prioritization, in
particular they are crucial in network propagation algorithms which have
been applied successfully to disease genes and genetic modules identification
[27, 14, 56].

In this section, we investigate to which extent hubs are shared among the
20 interactomes reconstructions. In other words, we study how many hubs
of a given reconstruction are hubs in the others. Moreover, we study if the
number of hubs in the intersection is significant compared to chance.

To this aim, for each reconstruction, we defined hubs as the top 2 per-
centiles (right tail) of the degree distribution. For each interactome pair, we
computed the intersections of hubs and we tested its significance with respect
to a hypergeometric distribution null model.

Quantitatively, when considering the the top 2 percentile about 900 genes
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occur in at least 2 interactome when, 32 when considering at least 12 interac-
tomes and none of the hubs is shared by more than 16 interactomes. The most
recurrent hub is the histone deacetylase 1 (HDAC1, < d >= 360), which is in-
cluded in the first 2 percentiles of 16 interactomes and available in all of them;
followed by E1A binding protein p200 (EP300, < d >= 542.5), BRCA1 DNA
repair associated (BRCA1, < d >= 376), heat shock protein 90 alpha fam-
ily class A member 1 (HSP90AA1, < d >= 433), tumor protein p53 (TP53,
< d >= 553) and heat shock protein family A (Hsp70) member 8 (HSPA8,
< d >= 433), which appear in at least 17. In parenthesis is reported the aver-
age hub degree. The fraction of shared hubs is reported in figure 1.9 for each
pair.
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FIGURE 1.9: Fraction of shared hubs (top 2 percentile) for each
interactome pair.

1.5.1 Null Model Comparison

Given the number of common hubs between two interactomes, a question is
if this number is significative with respect to chance. To test this significance,
we developed a simple null model based on the hypergeometric distribution.
In particular, given two set of elements (in our case the sets of nodes of two
interactomes) with a non empty intersection (the common nodes), the model
gives the probability of choosing the same k elements by randomly draw
from the two sets.
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Hypergeometric Distribution

Given a population of size N made of two classes, where K objects belong
to class A and N � K to class B, the hypergeometric distribution describes the
probability of k successes, i.e. draws belonging to class A, in n draws without
replacement. The distribution function is given by:

p(k) =
(K

k)(
N�K
n�k )

(N
n )

(1.3)

and has the following properties:

< k >=
nK
N

(1.4)

Var =< k2 > � < k >2=
n(N � n)K(N � K)

N2(N � 1)
(1.5)

In the limit N � n it is well approximated by a binomial distribution.

Networks with Different Sets of Nodes

Given a pair of network, A and B, let VA and VB be their sets of nodes with,
respectively, NA and NB elements. Let NC be the number of nodes in the
common core, VC = VA \VB.
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FIGURE 1.10: Illustrative representation of the intersection null
model to characterize hubs sharing of interactomes reconstruc-

tions with respect to chance.

We are interested in the following question. Choosing randomly nA nodes
from VA and nB nodes from VB, which is the probability, p(k), for the inter-
section between the two sample to have dimension equal to k?
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In other words, if we call the two samples SA and SB, we are interesting
in finding the probability distribution:

p(k) = p(k; NA, NB, NC, nA, nB) = p(|SA \ SB| = k) (1.6)

where | · | counts the number of elements in a set. We can think to the
problem as two independent extractions in the following way:

• in the first extraction we are interested in the probability, pA(kA) of
finding kA nodes of VC in nA draws from VA, without replacement. In
other terms, we want to find:

pA(kA) = p(|SA \VC| = kA)

It turns out that pA is an hyper-geometric with the following parame-
ters :

pA(kA) =
(NC

kA
)(NA�NC

nA�kA
)

(NA
nA
)

(1.7)

• If we call I = SA \VC, I is a subset of VB. Then, in the second extraction
we are interested in the probability, p(k|kA), that, in nB draws from VB

without replacement, k vertex belong to I (|I| = kA). As before, p(k|kA)

is an hyper-geometric distribution:

p(k|kA) =
(kA

k )(
NB�kA
nB�k )

(NB
nB
)

(1.8)

p(k) can be written in in following form:

p(k) =
nA

Â
kA=0

p(k|kA)p(kA) (1.9)

It is possible to show that (see below):

< k >=
NCnAnB
NANB

(1.10)

Networks with the Same Set of Nodes

If network A and network B as the same set of nodes we have:

VA = VB = VC (1.11)
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NA = NB = NC = N (1.12)

Equation 1.7 do not make sense since VC and VA are the same set.
We have to compute the probability of finding k elements of a class with

nA elements (corresponding to the draws from the network A), performing
nB draws without replacement from the set of nodes of network B, which is
a set of dimension N. This is given by an hyper-geometric distribution:

p(k) =
(nA

k )(
N�nA
nB�k )

(N
nB
)

(1.13)

which for the same number of draws from network A and network B, i.e.
nA = nB = n, becomes:

p(k) =
(n

k)(
N�n
n�k )

(N
n )

(1.14)

with mean value:

< k >=
n2

N
(1.15)

We computed, for each interactome pair, the p-value of the measured in-
tersection with respect to the above model. In figure 1.11 are reported two
examples of the null model distribution and the observed intersection. As
expected, the significance of the overlap is high for most interactome pairs
(p-value < 0.01). However, this is not the case for the HTBP interactome
class. In particular, the intersections between CF and HU with other HTBP
reconstructions show a high p-value (fig. 1.11, top panel).

1.6 Local Properties Comparison

While global properties concern the network as a whole, local properties
encode information at the level of the single node or link. Studying in-
teractome reconstructions, the interest in local properties is two sided. In-
teractome reconstructions should encode the same underlying network, i.e.
the real network of gene product interactions, and the same gene (node)
should have similar local properties in different reconstructions. Moreover,
network-based omics data analysis exploit local relationship between genes,
for example to find disease modules or prioritizing genes. Since results are
strongly dependent on the choice of the interactome, a better knowledge of
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FIGURE 1.11: Examples of the null distributions for two inter-
actome pairs. Blue line is the null model mean, red line is the
observed intersection. Top panel shows CF-HU pair (high p-

value). Bottom panel shows MN-BX pair (low p-value).

the relationships among local properties of different reconstructions can be a
guide to asses network-based studies general validity and reproducibility.

Centrality can be generally defined as the importance of a node or a link
in the network. Depending on the feature of interest several centrality mea-
sures have been defined. We based our analysis on the following four node-
centered measures:

• Degree: for general undirected graph is the sum of the weights wij of
the ki links connected to a node i:

D(i) =
k

Â
j=0

wij (1.16)

For unweighed graphs, for which wij = 1 8i, j, D(i) = ki.

• Betweenness [32]: given a connected graph, a path between two nodes
is a sequence of links which joins them. A shortest path is a path for
which the number of links is minimum. If, sphk is the number of short-
est paths between every node pair (h, k) in the network and sphk(i)
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is the number of shortest paths passing through i, the betweenness of
node i is defined as:

B(i) = Â
h 6=k

Nhk(i)
Nhk

(1.17)

• Closeness [76] for a node i let’s call lsp(i, j) the length of the shortest
path from node i to j. The closeness of node i is:

C(i) =
1

Âj lsp(i, j)
(1.18)

• k-Spectral [71] the network Laplacian is defined as L = D� A, where
A is the adjacency matrix and D is the diagonal degree matrix (Dii =

Âj Aij = ki). L encodes key topological (for example, the Fiedler value)
and physical information (e.g., it enters in the description of heat trans-
port and diffusive processes on networks).

The family of k-Spectral node centrality aims to measure the impact of
the deformation associated to a node, on the laplacian matrix. If A is
the adjacency matrix of an undirected network, a deformation of the
network with respect to node i is defined as:

B(i)
kl =

8
<

:
Akl for(k, l) 2 {(i, ·), (·, i)}

0 otherwise
(1.19)

if L̃ is the laplacian of the deformation, the laplacian of the deformed
original network is L + eL̃. The k- spectral centrality is defined as:

sk
i = |l0k(0)| (1.20)

where lk(e) is the kth non null eigenvalue associated to the laplacian of
the deformed graph. It turns out that for a node deformation:

sk
i =

k

Â
j=1

Aij(ni(0)� nj(0))2 (1.21)

where n(0) is the k-th eigenvector of L. In the following we will use the
1-spectral centrality.
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1.6.1 Results

Local properties comparison was performed on each interactome and on the
corresponding subnetwork, defined by the 1021 genes in common to all in-
teractomes and the links among such genes in the considered interactome. In
order to test the local similarities, we computed the Spearman’s correlation
between the aforementioned measures between nodes shared by each couple
of interactomes.

We observed a high correlation and a similar distribution of correlation
values (medians close to 0.43) for all the centrality measure apart from spec-
tral centrality (figure 1.12-B).

  

1.0 00.5

Spearman correlation

BA

FIGURE 1.12: Left: Spearman Correlation of the Degree for each
interactome pair. Other centrality measures show the same cor-
relation pattern. Right: Boxplot of centralities correlation val-

ues.

The correlation analysis, figure 1.12(A), revealed that the four variants of
STRING form a group on their own. On one hand, they show a high similar-
ity among themselves, meaning that including text-mining derived interac-
tions and varying confidence score did not affect significantly the local struc-
ture of the network: gene ranking by centrality is similar even if the links in
S04 are twice as many than S07, an interesting observation since they have
different global properties and degree distributions. On the other hand, they
are much less correlated with other interactomes meaning that their local
topology is different, even from interactomes of comparable size and density
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which have a high overlap with them (e.g. FP60). Another group comprises
INT interactomes (with the exception of MN) and IBMP. This result reflects
the fact that many of them share the same interaction sources.

A third group comprises the HTBP interactomes. Despite their global
similarities, they show very different intra-class centrality profiles probably
reflecting the different experimental techniques used and the high number of
false negative of this techniques, as suggested by [60]. They are also poorly
correlated with interactomes of other classes, even with those interactomes
that use them as interaction sources. However, the correlation of their union,
show a higher level of correlation with IBPs. FP60 and MN (integrative-
predictive and integrative) are less correlated (⇠ 0.5), similarly to HTBP, even
when they show a significant overlap with other interactomes (for examples,
MN with IR).

A similar picture is obtained when we compute centrality considering
only the 1021 genes shared by all 20 interactomes..
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1.7 Network Resilience To Cancer Mutations

As mentioned in the introdution, cancer phenotypes are the outcome of a
process of accumulation of genetic alterations by which some cells acquire
a selective advantage on normal cells and spread across the healthy tissue.
In the last decade, large scale genome wide studies (e.g, the TCGA project)
have identified an increasingly large number of genes associated to cancer,
shading light on its genetic basis.

Cancer is not the outcome of alterations of one or few specific genes. It is
a the perturbation of cell state resulting from the interplay of dysfunctional
molecular constituents [46]. The same cancer can originates from completely
different sets of mutations and a wild heterogeneity of mutational landscapes
its observed across patients and cancer types [20, 83].

Such variability hampers the efforts to link cancer genotype to phenotype.
It is thus crucial to uncover interdependencies among gene alterations, i.e.
how they ’collaborate’ to give rise to cancer. A first step in this direction is
to study regularities of disease genes location on biological networks as, for
example, their proximity to hubs or their tendency to form disease modules
[8, 43, 21].

Recent advances in experimental techniques [60] to uncover interactions
among cell constituents, made available a number of different maps of bio-
logical interactions, among them the most studied in the interactome.

As mantioned above, the human interactome is a network where each
node represents a gene and an edge represents some kind of interaction be-
tween two genes or their products. In this context, a mutation can be seen
as the removal of a node (e.g. a misfolded protein) or in the disruption of an
interaction. In other words, a mutation is a network failure which affects the
flow of biological information in the cell [50, 92].

Resilience, or fault tolerance, quantify to which extent a network changes
when one or more nodes (or links) are removed. The lower the change the
higher the resilience.

In the context of biological networks, several resilience measures have
recently been proposed. While some of them focus on overall resilience to
sebsequent random nodes and links removals [53, 92] others try to asses the
impact of specific perturbations on the network information flow [12].

In this section, we integrate information from several interactomes recon-
structions with cancer mutational datasets to study the impact on the inter-
actome of cancer mutations. Moreover, since interactomes reconstructions
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differs in terms of size and types of the interactions included, we compare
the 20 databases introduced above characterizing their resilience to random
nodes removal with respect to other network models.

1.7.1 Results

Networks are an efficient way to characterize the overall architecture of in-
teractions among cell molecular constituents giving a picture of their global
interdependencies. Studying to which extent the topology of a biological
network is affected by failures, i.e. the removal of nodes or links, allows to
advance hypothesis on the loss of biological functions and the increase of the
risk of diseases.

We studied the resilience of the interactome networks under successive
node deletions by means of a resilience measure which sizes the level of net-
work fragmentation when an increasing fraction f of its nodes is removed.
Fixed f , network fragmentation was quantified by a modified Shannon Di-
versity:

S0( f ) = � 1
log(N)

c

Â
i=1

[pilog (pi)� f ] (1.22)

where c is the number of disconnected components and pi their relative
size. The overall network resilience is defined as:

R = 1� 2
Z 1

0
S0( f )d f (1.23)

and takes values in [0, 1]. The higher R the more stable the network.
In figure 1.13 is reported an illustrative example of the link between net-

work fragmentation, S0 and R (for details on the definition of S0 and R see
Appendix 1.8).

We studied the overall resilience of the selected 20 reconstructions of the
human interactome under two different failure schemes:

• Random Failures: nodes to remove where chosen randomly with uni-
form distribution.

• Targeted Failures: nodes with a specific property where chosen with
higher probability.
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FIGURE 1.13: Left: Illustrative example of modified Shannon
diversity S0 as a function of the fraction of removed nodes f .
The higher the network fragmentation the higher S0. R is lower
when the integral of S0 in [0, 1] in greater. Right: Node re-
moval schemes. In random removal nodes are chosen with a
uniform probability while in targeted removal, ’target’ nodes

are removed with higher probability.

1.7.2 Interactome Resilience to Random Nodes Failure

We compared interactome reconstructions resilience under random nodes re-
moval. In figure 1.14 is reported resilience as a function of link density. As
expected more dense networks are, in general, more resilient.

  
FIGURE 1.14: Interactome resilience as a function of link den-
sity. Colour indicates interactome class. Red = HTBP, blue =

INT, black= ITP

We compared interactome resilience with respect to regular lattices (RL),
Erdos-Ranyi (ER) and Barabasi-Albert (BA) network. Since S0( f ) depends on
link density we compared each reconstruction to the above network models
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with the same density. Figure 1.15 show the typical trend of S0( f ) for in-
teractome reconstructions and the related network models. Fixed f , S0( f ) is
minimum when only one connected component in present. Continuous line
in figure 1.15 is the theoretical S0( f ) for a network of complete graph.

We observe that, while regular and fully random graph start to disaggre-
gate when more than half of their nodes is removed, interactomes start to
break up much earlier, after the removal of few random nodes indicating a
higher brittleness.

FIGURE 1.15: Comparison of Shannon diversity as a function
of the fraction of removed nodes f of 3 different network mod-
els with the same link density of Bioplex interactome. Dotted
curves: 2D lattice, Erdos-Renyi Graph, Barabasi-Albert Prefer-
ential Attachment, Interactome. Continuous line: theoretical

Shannon diversity for one component network.

1.7.3 Impact of Cancer Mutations on Interactome Resilience

Having characterized the resilience of interactome recontructions to random
nodes failures, we were interested in the impact of cancer related genes re-
moval on the interactome topology, compared to random genes. We set up
a removal scheme where most mutated gene associated to a given cancer
were chosen with higher probability. If cancer mutations are not randomly
distributed on the interactome, one would expect a change in the global re-
silience.

From the TCGA database (https://tcga-data.nci.nih.gov) we collected
mutational datasets of three cancer types: Acute Myeloid Lekuemia (LAML),
Prostate Adenocarcinoma (PRAD) and Lung Adenocarcinoma (LUAD). Since

https://tcga-data.nci.nih.gov
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cancer mutational landscape is heterogeneous and the number of mutations
per patients vary wildly among tumours, we chose these tumours types to
cover the whole spectrum of mutational frequencies (see Table 1.2). For each
tumour, we removed highly mutated samples (outliers) and we retained only
genes present in at least one interactome.

TABLE 1.2: TCGA Cancer Mutational Datasets

LAML PRAD LUAD

n. of patients 136 484 567
n. of mutated genes 1760 9146 18675

median n. of mutations 14 33 232

For each tumor we computed the frequency of mutation for each gene
and assigned a probability of being removed proportional to its mutation
frequency.

FIGURE 1.16: Resilience of each interactome recostraction un-
der random and cancer related genes removal.

For all interactome reconstructions we observed a lower resilience to can-
cer mutations even thought with relevant variations among them and de-
pending on the cancer type (figure 1.16). This result is in line with the ’local
hypothesis’ which states that mutated genes involved in the same disease
tend to be neighbours on the interactome. Moreover, highly mutated cancer
genes tends to be node with high degree with grater impact on the global
network topology. Interestingly, the only exception to the overall picture is
STRING with a 0.4 confidence score and with text mining derived interac-
tions.
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FIGURE 1.17: S0( f ) under random and cancer related genes re-
moval for DMND interctome.

1.8 Conclusions

Currently available models of the human interactomes are incomplete. Given
the increasing importance of network-based analyses of omics datasets, we
compared 20 interactomes, including the three main types: high-throughput
biophysical, integrative and integrative-predictive. We gave a picture of topo-
logical properties which revealed a relevant structural heterogeneity among
the interactomes under study. Such heterogeneity goes beyond interactome
size (number of genes and interactions) or density, and involves degree dis-
tribution shape and clustering coefficient.

Some interactomes showed a strong evidence in favour of being scale-free
networks, while for others such definition is questionable. This is not sur-
prising, since the debate about the “scale-freeness” of networks that model
the interactome is still open.We found a significant overlap of hubs among
interactomes when compared to random a random null model. However,
considering that the studied interactomes can be seen as models of the same
underlying reality, the observed overlap might be considered not satisfactory
in some cases and indicates some relevant discrepancies on genes that play
the role of hubs. The observation that the most shared hubs tend to have
higher degrees might reflect a correlation between the amount of available
evidences supporting the interactions and the relevance of a gene in one or
more diseases.
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Centrality measures revealed three groups of interactomes. The four ver-
sions of STRING keep a high similarity among themselves, despite the differ-
ences in interaction type and confidence. This similarity reflects a specificity
in local properties in comparison to other interactomes of similar type and
size (i.e., FP60 and IBW). The majority of integrative interactomes (MN ex-
cluded) and IBW forms a second group, which very likely reflects the use of
common sources of interactions. Third, the specificity of the four HTBP in-
teractomes reflects the different experimental approaches used to detect the
interactions.

Despite their wide differences, interactome reconstructions show com-
mon patterns of resilience under both random node and mutated node re-
moval. With respect to the other network model considered, all reconstruc-
tions, show higher brittleness indicating their higher modularity. On the
other hand, the much lower resilience to cancer mutations highlights their
not random distribution on the network supporting the hypotheses that can-
cer mutations impacts neighbouring nodes with higher probability.
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Degree Distribution of Interactomes

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●●

●●●
●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●

●●
●●
●●
●
●

●
●●

●

●

●

●
●
●
●

●

●

●

−7.5

−5.0

−2.5

0.0

0 1 2 3 4 5
log(k)

lo
g(
CD

F)

BX
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●●●●●

●
●●●●

●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●
●
●●
●

●
●

●
●
●●

●
●

●
●

●

●

●

●−8

−6

−4

−2

0

0 1 2 3 4
log(k)

lo
g(
CD

F)

CF
●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●
●
●
●
●

●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

HURI
●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

−8

−6

−4

−2

0

0 2 4
log(k)

lo
g(
CD

F)

QU

●
●

●
●

●
●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

DMND
●

●
●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●
●

●
●
●

●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

HN
●

● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

HP
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

IR

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

NCBI
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

FP60
●

●
●

●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

MN
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●
●

●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S04

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S04T
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●●
●●●
●
●
●
●
●
●
●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S07
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●●●
●●●●●●●●●
●
●
●
●
●
●

●
●
●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S07T
●

●
●

●
●

●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●
●
●
●
●
●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

BN

●
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

CP
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0.0 2.5 5.0 7.5
log(k)

lo
g(
CD

F)

IBMP
●

●
●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

INTC
●

●
●

●
●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

UNION

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●●

●●●
●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●

●●
●●
●●
●
●

●
●●

●

●

●

●
●
●
●

●

●

●

−7.5

−5.0

−2.5

0.0

0 1 2 3 4 5
log(k)

lo
g(
CD

F)

BX
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●●●●●

●
●●●●

●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●
●
●●
●

●
●

●
●
●●

●
●

●
●

●

●

●

●−8

−6

−4

−2

0

0 1 2 3 4
log(k)

lo
g(
CD

F)

CF
●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●
●
●
●
●

●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

HURI
●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

−8

−6

−4

−2

0

0 2 4
log(k)

lo
g(
CD

F)

QU

●
●

●
●

●
●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

DMND
●

●
●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●
●

●
●
●

●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

HN
●

● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

HP
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

IR

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

NCBI
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

FP60
●

●
●

●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

MN
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●
●

●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S04

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S04T
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●●
●●●
●
●
●
●
●
●
●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S07
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●●●
●●●●●●●●●
●
●
●
●
●
●

●
●
●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

S07T
●

●
●

●
●

●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●
●
●
●
●
●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

BN

●
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6 8
log(k)

lo
g(
CD

F)

CP
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●

●

●

●

●

●−10.0

−7.5

−5.0

−2.5

0.0

0.0 2.5 5.0 7.5
log(k)

lo
g(
CD

F)

IBMP
●

●
●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

INTC
●

●
●

●
●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

−10.0

−7.5

−5.0

−2.5

0.0

0 2 4 6
log(k)

lo
g(
CD

F)

UNION

FIGURE 1.18: Interactome reconstructions degree distribution
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BA properties comparison

FIGURE 1.19: Comparison of mean distance and global clus-
tering coefficient of interactome reconstructions and a Barbasi-
Albert scale free network with the same number of nodes and

link density (red dots are interactomes).

Calculation of Null Model Mean

Let us recall the following property of the binomial coefficient:

k
✓

K
k

◆
= K

✓
K� 1
k� 1

◆
(1.24)

The mean of the distribution p(k) is given by:
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Using two times relation 1.24, we have:
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Applying relation ?? to both binomial coefficients in the denominator:
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Noting that the summation is of the form:

nA

Â
kA=0

nB

Â
kB=0

p(kB|kA)p(kA) = 1 (1.28)

we have:
< k >=

NCnAnB
NANB

(1.29)

Global Network Resilience

Global Network Resilience was defined following [92]. Let’s call I a net-
work of N nodes. If we remove a fraction f of nodes from I, the network
is fragmented in a set of c components of different sizes. Let’s call si, with
i = 1, . . . , c, the number of nodes in the i-th component.

The Shannon Diversity for the resulting components set is defined as:

S(I f ) = �
1

log(N)

c

Â
i

pilogpi (1.30)

where pi = si
N and I f denotes the set of componets originating from I

when a fraction of nodes f is removed. The factor 1
log(N) is introduced to

allows the comparison of interactomes of different size [92].
In this definition, each removed node is a component of size s = 1 and the

corresponding p is p(1) = 1/N, so that the contribution to S of the n = N f
removed nodes is given by:

S = N

� 1

log(N)
· 1

N
log
✓

1
N

◆�
f = f (1.31)

since the contribution to S is fixed and equal to f , we can define a shifted
Shannon Diversity S0 as:

S0(I f ) = S(I f )� f (1.32)
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In a connected networx, S0 has minimum, S0 = 0, at f = 0 and f = 1. We
define the overall network resilience R(I) as:

R(I) = 1� 2
Z 1

0
S0( f )d f (1.33)

so that R takes values in the range [0, 1].

Maximum Resilience

For a network I of N nodes, after removal of n = N f nodes, the minimum
possible shifted Shannon Diversity, S0, is obtained when only a giant compo-
nent of dimension (N � n) is present, in this case, the summation in 1.30 has
only one term and S0(I f ) is given by:

S0(I1
f= n

N
) = � 1

log(N)


N � n

N
log
✓

N � n
N

◆�
(1.34)

Substituting n = N f we have:

S(I1) = �
1

log(N)
(1� f )log(1� f ) (1.35)

In figure 1.20 is reported S(I1) varying N. Fixed f , S(I1)! 0 for N ! •.

FIGURE 1.20: Minimum Shannon Diversity varying f for dif-
ferent values of N. N = 1000 (top line), 5000, 10000, 15000

(bottom line)
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Chapter 2

Statistical Methods for Cancer
Genome Landscaping

Introduction

Cancer is an evolutionary process where subsequent mutations confer to can-
cer cells a selective advantage on the others, causing the spreading of the dis-
ease in the tissues. Despite its genetic roots, cancer is not the direct outcome
of specific gene mutations. It is a complex disease, where different patterns
of mutations lead to altered cell functions which, in turn, results in cancer
phenotypes [89].

For this reason, tumours show a high mutational heterogeneity and rarely
two different patients have the same mutational profile [83].

Mutational heterogeneity is at the basis of different responses to treat-
ment and different survival of patients. In the growing field of personalized
medicine [7], finely characterize cancers genomics, stratifying patients based
on their genotype and uncovering gene interactions [65] are central tasks to
better tailor medical treatments.

To this aim, the choice of clustering method has a key role since the model
encodes our hypothesis on the hidden structure structure underlying data.

In this chapter, we introduce bayesian methods for cancer genome land-
scaping.

We will focus on nonparametric models based on the Dirichlet Process.
The advantage of using a nonparametric approach to clustering is that it al-
lows not to specify a priori the unknown number of clusters letting the model
to adapt its complexity to data.

We will start by introducing finite mixture models and their nonparamet-
ric generalization, the Dirichlet Process mixture model. We will then introduce
Latent Dirichlet Allocation (LDA), a parametric model originally introduced
with the aim of classifying text documents based on their content [16].
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LDA generalizes mixtures allowing to model more complex data struc-
tures where clusters of features can be shared among samples. As we will
see this flexibility is particularly useful in modelling cancer genotypes where
we expect some genes categories to take part in different proportions in each
genotype. Since LDA is a parametric model, still requiring to fix a priori the
number of clusters categories, we introduce its nonparametric extension, the
Hierachical Dirichlet process (HDP).

In the second part of the chapter, we apply Hierachical Dirichlet pro-
cess to clustering of cancer genotypes characterizing a cohort of almost 2000
Myelodispastic syndrome patients.

2.1 Mixture Models

For completeness let’s start by recall some basic notion of bayesian statistics.
In bayesian modelling one have to specify a model m(q) for the data, with

a number of free parameters q which in general is a vector. If we call D0 the
observable data, then:

P(D0|m, q) (2.1)

is the likelihood, the probability of the data given the model and the parame-
ters.

Since in bayesian statistics parameters are random variable, the model
m(q) is fully specified once a prior distribution over the range of parame-
ters, P(q), is defined. In other words, a fully specified model defines a joint
probability distribution over the observable data and parameters P(D0, q|m) =

P(D0|m, q)P(q|m).
Once fixed the model we would know how observation data D modify

our initial hypothesis on the distribution on parameters space, i.e. how the
prior is modified by observations. This is done by computing the posterior
distribution:

P(q|D) =
P(D|m, q)P(q)

P(D)
(2.2)

A fully specified bayesian model, is a generative process. It reflects our
hypothesis on how date arose, specifying the joint probability of observed
and hidden variable. Computing the posterior allows to ’revert’ the process,
i.e. allows infer the distributions of hidden variable that likely generated the
observed data. Before introducing the finite mixture model as a generative
model for the data, we introduce the Beta and the Dirichlet distributions since
their are central in what follows.
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Beta and Dirichlet Distributions

The Beta distribution is a continuous univariate probability distribution de-
fined on the interval [0, 1]:

Beta(p; a, b) =
pa�1(1� p)b�1

B(a, b)
(2.3)

where, a and b are two shape parameters, and:

B(a, b) =
G(a)G(b)
G(a + b)

(2.4)

The multivariate generalization of the Beta distribution to K dimensions,
is the Dirichlet distribution, Dir(p; a):

Dir(p; a) =
G(Âi ai)

’i ai

K

’
i=1

pai�1
i (2.5)

where a is a K dimensional vector of shape parameters, ai, and E(pi) =
ai

Âi ai
.

Dir(p; a) is defined on the K dimensional simplex, DK:

DK = {(p1, p2, . . . , pK) : pi � 0; Â
i

pi = 1} (2.6)

We note that, intuitively, a draw from a Dir(p; a) of dimension K can be
seen as breaking a stick, of length one, in K parts of random lengths, ai being
the expectation value of the length of part i. The Beta is the special case for
K = 2.

The Beta and the Dirichlet Distribution will have a central role in what
follows since they are the conjugate priors of the Binomial and of Multinomial
or Categorical distributions, respectively. In particular, given the observations,
yi 2 D, the Dirichlet posterior of a multinomial with Dirichlet prior, Dir(a),
is a Dirichlet distribution with parameters:

a0j = aj + Â
yi2D

yij (2.7)

Moreover, the Beta is at the basis of the stick-breaking construction of the
Dirichlet Process.
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2.1.1 Finite Mixture Model

A finite mixture model assumes assumes that observed data belong to a fixed
number, K, of different unobserved clusters and, given a cluster, observations
follow a cluster specific distribution, F(xi|qj) for j 2 {1, . . . , K}. The proba-
bility density has the form:

p(xi|p, q) =
K

Â
j=1

pjF(xi|qj) (2.8)

where p = (p1, . . . , pK) and pj is the weight of cluster j and qj is the
vector of parameters of F.

This intuition can be modelled as a generative process.
To fully specify the model we have to put priors on the parameters: the

mixture weights p and the qj. The natural choice for the prior on p is the
Dirichlet distribution since it is defined on the K-simplex (i.e., Âj pj = 1) and
is the conjugate prior of the categorical distribution. The choice of the prior
on q, H, depends on the specific form of F(xi|qj).

The complete generative model is defined by the following steps:

• a vector of weights, one for each cluster, is generated randomly accord-
ing to a Dirichlet distribution with hyperparameter a:

p ⇠ Dir(a) (2.9)

• parameters for each cluster, j, are generated randomly:

qj ⇠ H (2.10)

• then, for each observation, xi:

– a cluster assignment variable, zi 2 {1, . . . , K}, is drawn:

zi ⇠ Cat(p) (2.11)

Cat(p) is the categorical distribution, i.e. a multinomial, Mult(p, n),
with n = 1.

– xi, is drawn from the cluster specific distribution:

xi|zi ⇠ F(qzi) (2.12)
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We note that the first two steps, where p and qj for j 2 {1, . . . , K} are
chosen randomly from their priors, amount to draw a random discrete dis-
tribution on the parameter space of the form:

G(k) =
K

Â
j=1

pjdqj (2.13)

where:

dqj(x) =

(
1 if x = q

j

0 otherwise

dqj(x) is called a probability atom.
G(k) places K atoms at points qj in the space of the parameters (qj ⇠ H)

and associate a mass probabilities, pj to each of them (p ⇠ Dir(a)).
In figure 2.1 is reported an illustrative example for G with K = 3 and

qj 2 R2. This formulation will be useful in the following when introducing
the Dirichlet process.

  

θ (1 )

θ (2)

p

FIGURE 2.1: Random discrete probability distribution gener-
ated by randomly choose the vector of cluster weights, p (or-
ange sticks length) and the parameters of the cluster specific

distributions, qj (locations of atoms is R2).

Finite Multinomial Mixture for Cancer Genotypes Modelling

As a simple example and to introduce some notation useful in what follows,
let’s introduce an application of finite mixture model to cluster cancer geno-
types.

Suppose we have observations of mutational status of m different genes
for n cancer patients. The genotype of patient i is the vector gi = (gi

1, . . . , gi
m),

where gi
v = t means that the gene v is mutated t times in sample i. We want
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to cluster patients based on their pattern of mutations. To to this end, we
have to make hypothesis on the structure underlying data.

A finite mixture of multinomials assumes that K different ’genomic’ classes,
or gene groups, exist, each being characterized by different probabilities of
mutation of the m genes. Moreover, they assume that each patient belong to
only one class. An illustrative example of the mixture model data structure
is reported in figure 2.2.

  

Genes

  ...

Sample 1

Genotype

 ...

Sample n

Sample 2

FIGURE 2.2: Structure underlying cancer genotypes encoded
in the finite multinomial mixture model. The model reflects the
hypothesis that the n genotypes arise from two different classes,
each class being characterized by different probabilities of mu-
tation of the m genes (left). Note that, in a genotype, mutations
(right) comes from only one component. The parameters of the
two multinomial, q1; q2, encode the probability of mutation per
gene per class. The mixture weights summarize the proportion

of classes in the dataset.

If we call qj = (qj1, . . . , qjm), the vector of gene mutation probabilities of
class j, the probability of observing a genotype g, fixed the class, is given by
a multinomial distribution:

F(g|qj) µ
m

’
v=1

q
gv
jv (2.14)

As other clustering methods, finite mixtures have the drawback that the
usually unknown number of clusters, K, has to be fixed a priori and several
models with different K has to be compared a posteriori.

Moreover, modelling cancer genotypes we expect the existence of gene
groups shared among cancer patients and cancer types. Bayesian non para-
metric setting allows to overcome the former problem, while Latent Dirichlet
Allocation and Hierarchical Dirichlet Process generalize mixture models al-
lowing genotypes to share gene from different groups.
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2.1.2 Nonparametric Bayesian Methods

A central problem in bayesian statistics is to select the right model complex-
ity, i.e., how many parameters are needed to capture the important structure
of a dataset without overfitting [35].

In parametric methods, model comparison is performed explicitly a pos-
teriori. Given the data, D, the probability of a model mi is given by the Bayes
rule:

P(mi|D) =
P(D|mi)P(mi)

P(D)
(2.15)

Assuming a flat prior on models, P(mi), P(mi|D) is proportional to the
evidence, the probability of the data given the model i:

P(D|mi) =
Z

P(D|q, mi)P(q|mi)dq (2.16)

Comparing two different models, the model with higher evidence is bet-
ter.

In other words, if we see the evidence as the probability of generating the
dataset D by choose randomly parameters of model i, too complex models
are unlikely to generate that particular data set at random since the proba-
bility is spread over a large parameter space, on the other side too simple
models have low probability of generating that dataset at random.

Even tough many techniques have been developed based on this approach,
its main drawback is that the evidence is hard to compute.

On the other side, bayesian nonparametric approach reflects the fact that
constraining the number of parameters do not fit our prior beliefs about the
data generating process and allows a model to have an infinite number of
parameters.

In nonparametric methods, the appropriate model complexity is deter-
mined directly from data. Loosely, we can think that they pose a prior distri-
bution on model complexities that is sharpened by computing the posterior.

In clustering methods model complexity is primary related to the number
of expected clusters K. In a nonparametric setting, on one side, we allow the
a priori number of clusters to be infinite and the other side, computing the
posterior, only a finite number of clusters will be associated with non zero
weights.

Before introducing in more details the theory of infinite mixture mod-
elling we can sketch briefly the idea underlying them.



46 Chapter 2. Statistical Methods for Cancer Genome Landscaping

Introducing finite mixture models, we have shown that the random choices
of mixture weights, p, from the Dirichlet Prior and of the cluster specific dis-
tributions, q

j

for j 2 {1, 2, . . . , K} from the prior H is equivalent to generate
a random probability distribution of the form:

G(k) =
K

Â
i=1

pidqi (2.17)

In an infinite mixture, we have to assign p and q
j

to a countably infinite
number of clusters. The Dirichlet process (DP) is a prior which generates
random discrete distribution with a countably infinite number of probability
’atoms’ (figure 2.3). In other words, a draw from a DP is a distribution of the
form:

G(•) =
•

Â
i=1

pidqi (2.18)
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FIGURE 2.3: Intuitive representation of a draw from a Dirichlet
process. It generates a discrete probability distribution with a

countable infinite number of probability atoms.

2.1.3 The Dirichlet Process

The Dirichlet Process is a stochastic process which generates random discrete
distribution with a countably infinite number of probability atoms. Here, we
first introduce more formally the notions of probability atoms and random
measures and later we introduce the stick-breaking construction of the DP.
Let X be a set and (A1, A2, . . . ) a disjoint partition of X. A measure µ on X is a
function from the subsets of X to R+ with the property µ([n An) = Ân µ(An).
An atomic measure, µ = dq, places a unit mass at point q, such that:

dq(A) =

(
1 if q 2 A

0 otherwise
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Since linear combinations of measures, with non negative coefficients, are
measures, dq can be used to build more general discrete measures of the form:

µ =
K

Â
i=1

widqi (2.19)

with wi � 0. Moreover, if µ(X) = 1 we a have a probability measure. The
DP generates random discrete probability measures with a countably infinite
number of probability atoms:

G(•) =
•

Â
i=1

pidqi (2.20)

Going back to the case of the finite mixture of K components, we saw that
the discrete random distribution was generated in two step. First generating
the K weights pi from the Dirichlet distribution, then generating the param-
eters qj for the cluster specific distribution from their prior H. Similarly, a DP
process can be built in two step:

• choosing atoms location randomly from a base distribution, usually
called base distribution, H, with support on the on the parameter space,

• building a process which generates an infinite number of weights that
sum to one.

There are several equivalent ways to generate the distribution weights.
Below we introduce the Stick-Breaking process and the Chinese Restaurant
Process. A schematic representation is reported in figure 2.4.

The Stick-Breaking Construction

The stick-breaking process [1] generates the weights as an infinite collection
of fragments of a stick of initial length 1, figure 2.4:

• we start with a stick of length l1 = 1 and we break it at a random point,
b1 ⇠ Beta(1, a):

p1 = b1 (2.21)

• the remaining part has length l2 = 1� b1. We repeat the stick-breaking
removing a proportion b2 ⇠ Beta(1, a):

p2 = b2l2 = b2(1� b1) (2.22)
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θ (2)
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Stick – Breaking (GEM)

FIGURE 2.4: Stick-breaking representation of the Dirichlet Pro-
cess. Atoms locations are drawn from the base distribution G0
(here a uniform distribution). Atoms weights are assigned with

the stick-breaking construction.

the length of part is l3 = (1� b1)� b2(1� b1) = (1� b1)(1� b2). We
can thus define a recurrence formula for the weights pi:

8
>><

>>:

p1 = b1

pi = bi

(c�1)

’
k=1

(1� bk)

The stick-breaking process defines a distribution on the infinite vector of
weights usually referred to as GEM(a):

p ⇠ GEM(a) (2.23)

The parameter a of the Beta(1, a) distribution is called concentration pa-
rameter of the DP. To understand its meaning recall that the expectation value
of Beta(1, a) is:

EBeta =
1

1 + a
(2.24)

Changing a changes the mean fraction of the stick to be removed at each
step. Low a correspond to high probability mass in few atoms, as a grows
probability is spread over an increasing number of atoms.

The Chinese Restaurant Process

Suppose we have a set of n points, a set of subset of them is called a partition
[1]. For example, if n = {1, 2, 3, 4, 5} a partition of n is {{1}, {2, 3}, {4, 5}}.
Let’s call p(k) a partition of n points.
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We have seen that stick-breaking process generates an the infinite vector
of weights. p, that sums to one. Once we have the weights, a random par-
tition of n points can be generated by assigning each point to a group i with
probability proportional to pi. Thus the GEM define indirectly a distribution
on partitions of the n points.

Differently from stick-breaking, the chinese restaurant process (CRP) gen-
erates directly random partitions of n points and thus defines a probability
distribution on partitions. As usual, let’s introduce the CRP by using the
metaphor of a restaurant, where tables represents clusters and customers
represent data points, a random partition is generated as follows: suppose
we have an infinite number of unoccupied tables. Customers arrive at the
restaurant one at a time. The first customer seats at a random table. Follow-
ing customers choose:

• an unoccupied table with probability proportional to a constant a

• an occupied table with probability proportional to the number of cus-
tomers sitting at that table.

After k customers have arrived at the restaurant, let’s call |t| the number
of them sitting at table t. Formally, the probability of k + 1 costumer to join a
table t, P(k + 1! t|p(k)), is given by:

P(k + 1! t|p(k)) =

8
><

>:

|t|
a + k

if t is already occupied
a

a + k
otherwise

When all the n costumers have arrived at the restaurant, the process has
generated a random partition of them across the tables. Different realizations
of the CRP random process define different random partitions, so we can
write:

pn ⇠ CRP(a, n) (2.25)

note that 1
a has the role of concentration parameter: the higher a the

higher the number of different clusters. The explicit expression for the CRP
probability of a partition on n points in K clusters p(n) is easily obtainable:

PCRP(pn) =
aK

a(a + 1) . . . (a + n� 1) ’
t2{1,...,K}

(|t|� 1)! (2.26)
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The Posterior Dirichlet Process

Given the generative model:

G ⇠ DP(a, G0) (2.27)

qi|G ⇠ G for i = 1, . . . , N (2.28)

The posterior Dirichlet process is given by:

G|q = DP

 
a + N;

a

a + N
G0 +

a
a + N

N

Â
i=1

dqi

!
(2.29)

2.1.4 Dirichlet Process Mixture Model

Once defined the Dirichlet process prior, The DP mixture model has the same
generative structure of finite mixtures:

• a random probability distribution with an infinite number of atoms, G
is drawn from a DP:

G ⇠ DP(a, G0) (2.30)

• for each observation, xi a vector of parameters qi, is generated ran-
domly from G:

qi ⇠ G for i = 1, . . . , N (2.31)

• xi is drawn the cluster specific distribution F:

xi|qi ⇠ F(qi) for i = 1, . . . , N (2.32)

2.2 Latent Dirichlet Allocation and Hierarchical DP

Mixture models, applied to genotype clustering, assume that mutated genes
in a specific patient come from the same underlying group. In other words,
the hypothesis is that there is a one-to-one correspondence between groups
of mutated genes and patients genotypes. This hypothesis can be satisfac-
tory when analysing different cancer types, which are characterised, at least
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partially, by different gene sets. However, it is somewhat restrictive in other
situations, when we would allow gene groups to be shared among patients.

To better understand this point, let’s do a simplified example (see figure
2.5): suppose a given tumour arises when three different molecular pathways
are impaired by mutations, each pathway being characterized by the genes
that take part in it. The impairment of a pathway can be caused by mutations
in different genes and patients will show different mutational patterns, com-
prising different mutated genes from the three gene groups. Mixture models
would not be able to capture this complexity.

The Latent Dirichlet Allocation (LDA) and its non parametric counter-
part, the Hirarchical Dirichlet process (HDP) are a generalization of mixture
models that allows gene clusters to be shared among patients.

  

MIXTURE MODEL

LDA HDP MODEL

Genotype 1

Genotype 2

Genotype ...

Genotype 1

Genotype 2

Genotype ...

Genes

Biological 
Module/Pathway

Genotype 1

Genotype 2

Genotype ...

Genotype 1

Genotype 2

Genotype ...

Genes

FIGURE 2.5: Schematic representation of the differences be-
tween MM and LDA - HDP data structure. While for MM a
genotype has mutations from a single cluster, LDA-HDP allows
clusters to be shared. This is a more biological plausible hy-
pothesis since we expect a cancer to be originated from from

the impairment of different biological pathways/modules.

2.2.1 Latent Dirichlet Allocation

LDA was developed in the context of topic modelling with the aim of clus-
ter text documents based on their content [17]. A document could be, for
example, a scientific article. A corpus is a set of documents. LDA is built on
two hypothesis: each document in a corpus is a mixture of several topics and
topics are shared among documents in different proportions. For example, if
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we assume that our documents are scientific articles in cancer computational
genetics there will be three main topics: cancer, computer science and genetics.
Depending on the specific article there will be more words related to one or
the other topic.

Topic modelling assumes documents are bags of words, i.e what matters is
only the number of occurrences of each word. A dictionary is the set which
comprises all the words in the documents of a corpus. Formally, a topic can
be defined as a probability distribution over the words in the dictionary. So,
for example, the topic cancer defines a probability distribution on the dictio-
nary which puts high probability on words about cancer (e.g, tumour, metas-
tasis, diagnosis, etc.).

LDA defines a generative process assuming that each document is gener-
ated as follows:

• An a priori fixed number of topics, k, is generated. Formally this means
that k distributions over the words in the dictionary are chosen.

• for each document in the corpus, randomly choose a weight for each
topic, i.e a distribution over topics

• for each word in the document:

– randomly draw a topic with probability proportional to the topic
weights

– randomly draw a word with probability given by the topic distri-
bution aver the vocabulary

It is important to note that LDA do not have any prior information about
topics structure. They are encoded in the co-occurrences of words in the
documents and emerge from model inference.

Let’s introduce LDA formally, using the notation introduced above for
cancer genotype modelling.

A cancer genotype is given by gi = (gi
1, gi

2, . . . , gi
m) where m is the number

of genes considered. If gene v is mutated t times, gi
v = t.

LDA supposes the existence of an a priori fixed number of gene groups
K. Each group is characterized by different probability of mutation per gene
and each patient genotype is built by choosing genes from some, or all, the
K classes in different proportions. Modelling genotype, we assume that the
probability of mutation of gene v in group k, is a multinomial with parame-
ters qkv for v = 1, . . . , m. Then, the LDA generative process is:
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• K multinomial distribution over the m genes, with vector of parameters
qj, are choosen from a Dirichlet distribution prior:

qj ⇠ Dir(a) for j = 1, . . . , K (2.33)

where a 2 Rm
+.

• for each genotypes i, a vector of weights pi is drawn from a Dirichlet
prior :

pi ⇠ Dir(a0) (2.34)

where a0 2 RK
+

• for each mutation, k, in the genotype:

– randomly draw a gene group with probability proportional to pi:

zk|pi ⇠ Cat(p) (2.35)

– randomly draw a gene to be mutated with probability given by the
selected gene group distribution:

gk|zk ⇠ Cat(qzk) (2.36)

LDA is a parametric model in that it specify a fixed number of parameters
and in particular the usually unknown number of topics K. Its non paramet-
ric generalization, is the Hierachical Dirichlet Process.

2.2.2 The Hierachical Dirichlet Process

The Hierachical Dirichlet Process is the nonparametric extension of LDA and
allows not to fix a priori the number of expected gene groups. As in the DP,
K is determined directly from the data. The step from LDA to HDP can be
easily understood, as in the case of finite mixtures and DP, in terms of random
probability distributions. If we consider the first two step of LDA:

• drawing K group specific distributions over the the genes:

qj ⇠ Dir(a) for j = 1, . . . , K (2.37)
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• for each genotype, draw a the vector of group weights:

pi ⇠ Dir(a0) (2.38)

we can see that they are equivalent to randomly choose, for each genotype
i, a discrete distribution,Gi

(K), of the form:

Gi
(K) =

K

Â
k=1

pkdqk (2.39)

The first step, common to all documents, choose the atom locations, qk

while the second step choose for each document a different vector of weights.
Intuitively, the shift to the nonparametric setting can be done by replac-

ing, for each genotype the finite random measure, Gi
(K), with a discrete infi-

nite random measure:

Gi
(•) =

•

Â
k=1

pkdqk (2.40)

Gi
(•) can be generated by placing a Dirichlet process prior DP(a, G0) on

it.
However, for a general base distribution G0, different draws from DP(a, G0)

would have different set of probability atoms, without possibility of shear-
ing clusters between genotypes. The key step is then to enforce the genotype
specific distribution, Gi

(•), to share the same probability atoms. This can
be done by choosing them from a discrete base distribution which is itself
drawn from a Dirichlet process, DP(µ, H). With this assumptions, the HDP
generative process is:

G0 ⇠ DP(µ, H) (2.41)

Gi ⇠ DP(a, G0) for i 2 genotypes (2.42)

qiv|Gi ⇠ Gi for each muatation v in genotype i (2.43)

giv|qiv ⇠ Mult(qiv) for each muatation v in genotype i (2.44)



2.3. Bayesian Networks 55

The number of hierarchical steps is not limited, for example if it is known
a priori that genotypes belong to different classes (e.g., different tumour type
or subtypes) other hierarchical levels can be added.

2.3 Bayesian Networks

Given a set of random variables a Bayesian Networks (BN) is a graphical way
to represent causal probabilistic dependencies among them, i.e. how the
value taken by a given variable influences the probability of the others.

They main hypothesis underlying BN is that the joint probability distri-
bution (j.p.d.) over a set of variables can be represented as a Directed Acyclic
Graph (DAG), a directed graph with no loops. DAG nodes represent random
variables, with the associated probability distribution, Pi and links represent
causal dependences between variable pairs. For example, an arrow from
node A to node B is a probabilistic directed dependence of B on A. Directed
dependence means that the probability of the child node B is influenced by
the value taken by its parent A. The link is associated to the conditional prob-
ability distribution P(B|A).

The assumption of a DAG structure implies that the probability of vari-
able i given its parents, is independent of its non descendent nodes. This
independence assumption provide a factorization of the j.p.d.

Let’s illustrate BN for modelling mutational interdependencies among
gene mutations. Given a set of genes (g1, . . . , gm), we consider the presence of
mutations on gene v to be a random variable with p(gv = tv) being the prob-
ability of observing tv mutations on v. The probability for a genotype g is
given by the joint probability distribution P(g1 = t1, . . . , gm = tm). Moreover,
the conditional probability P(gv|gi) expresses the mutational probability of
gene v when gene i is mutated.

Specifying a directed acyclic graph structure among mutation probabili-
ties amounts to specify probabilistic causal relations among them, building
a hierarchy where parent mutation in parent genes constraint probability of
child genes.
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2.4 Myelodysplastic Syndromes Genomic Landscap-
ing

2.4.1 Introduction

Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders char-
acterized by peripheral blood cytopenias due to ineffective hematopoiesis
and increased risk of evolution into acute myeloid leukemia (AML) [2]. Cur-
rent disease classification provided by the World Health Organization (WHO)
mainly uses morphological features to define MDS categories, leading to a
clinical overlap between subtypes and to low inter-observer reproducibility
in the evaluation of marrow dysplasia [6, 30].

MDS range from indolent conditions to cases rapidly progressing into
AML [62]. Therefore, a risk-adapted strategy is needed in such heteroge-
neous disorders. Currently, individual disease-related risk is assessed by In-
ternational Prognostic Scoring System (IPSS, later revised as IPSS-R) based
on clinical and hematological features [61, 38]. While IPSS/IPSS-R are ex-
cellent tools for clinical decision-making, these scoring systems have their
own weaknesses and may fail to capture reliable prognostic information at
an individual patient level [31].

Biologically, the development of MDS is driven by mutations on genes
involved in RNA splicing, DNA methylation, chromatin modification, tran-
scriptional regulation and signal transduction [22, 67, 90, 68]. Many pa-
tients have additional mutations that span a wide range of cancer genes,
with high patient-to-patient variation. Chromosomal abnormalities (includ-
ing copy number alterations, chromosomal translocations and complex kary-
otype) also contribute to MDS pathophysiology [78]. Despite recent pro-
gresses in understanding the disease biology, MDS with isolated 5q dele-
tion is the only category defined by a specific genomic abnormality in the
current WHO classification2 and only few genotype-phenotype associations
have been reported until now, mainly referring to the close relationship be-
tween mutations in SF3B1 gene and MDS subtypes with ring sideroblasts.

In myeloid malignancies, a progressive shift is underway, where classifi-
cations based on clinical and morphologic criteria are being complemented
by introducing genomic features which are closer to the disease biology and
better capture clinical-pathological entities [39, 69, 34]. Moreover, as mu-
tations are often responsible for the disease phenotype, they may represent
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strong predictors of clinical outcomes [39, 69, 34]. Comprehensive analy-
ses of large patient populations are warranted to correctly define specific
genotype-phenotype correlations and to estimate the independent effect of
each genomic abnormality on clinical outcome. Here, we aimed to define
a new genomic classification of MDS and to improve individual prognos-
tic assessment moving from scoring systems based on clinical parameters to
models including genomic information.

2.4.2 Material and Methods

Study populations

We studied a retrospective international cohort of 2043 patients affected with
MDS according to 2016 WHO criteria, from EuroMDS consortium and an
independent cohort of 318 patients prospectively diagnosed at Humanitas
Research Hospital, Milan Italy. Overall frequency of mutations and chromo-
somal abnormalities is reported in figure 2.6. Variant allele frequency (VAF)
of mutations related to the main gene functions involved in MDS (drivers)
are reported in figure 2.7.

FIGURE 2.6: Frequency of mutations and chromosomal abnor-
malities in the cohort of 2043 patients, stratified according to

type (missense, nonsense, affecting a splice site, or other).

HDP clustering

In order to identify MDS molecular subtypes we carried out Dirichelet Pro-
cess Clustering (DP) following the current state of the art works [39, 69, 34].
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FIGURE 2.7: Driver mutations VAF in the cohort of 2043 pa-
tients (25-75 percentiles and ranges).

The HDP infinite multinomial mixture model allows to capture broad de-
pendencies among all gene mutations assuming them to be extracted from
a hierarchical mixture of multinomials. The rational underlying the model
is that we expect mutations to be clustered together according to the spe-
cific molecular mechanism at work in a given tumor. Using an infinite mix-
ture with DP prior, instead of finite mixture, allows not to specifying a pri-
ori the number of mutations categories which, instead, is inferred from the
data. To carry out the analysis we used the R package HDP available online
https://github.com/nicolaroberts/hdp.

The input data consists of a patients by genes binary matrix. The geno-
type of a patient is a row of the matrix: mathb f g = (g1, . . . , gn) ; where n is
the number of features per patient, i.e., 12 cytogenetic and 47 genomic vari-
ables. Gij is a binary variable which denotes the presence or absence of i-th
alteration. Missing data where imputed with several methods with not sig-
nificant differences on final results.

We carried out Monte Carlo Markov Chain (MCMC) sampling of DP pos-
terior for 4 different initial conditions (n. of different chains). For each chain
we discarded the first 3000 iterations and we sampled 4000 realizations at
intervals of 20 iterations.

https://github.com/nicolaroberts/hdp
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Starting from the raw clusters classes are built by grouping them into
components according to the following conditions:

• clusters are merged if their cosine similarity is above a give threshold
(0.95 in our case)

• clusters are assigned to component 0 if they have no significant data
categories or sample exposure.

Components 1-5 account for the 97% of the data while component 0 ac-
counts for data that cannot be explained by the model. The model found a
mixture of 5 components, plus an additional one of unexplained data. Figure
2.8 reports the box plot of the distributions of data items in each component,
i.e. the weight of each component in the mixture while figure 2.9 summarizes
the mean distribution of data categories for each component (class), i.e. the
mean parameters the multinationals forming the data structure.

FIGURE 2.8: Left: number of data items (mutations or cytoge-
netic alterations) in each of the 6 components for each sample

of the MC. Right: Components weights boxplot.

Bayesian Network Analysis

We used Bayesian Networks (BN) to define in a more comprehensive way
the relationships between genomic abnormalities in MDS. As for HDP clus-
tering, we included gene mutations and cytogenetic abnormalities as random
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FIGURE 2.9: Mean distribution of data categories for each com-
ponent resulting from the HDP applied to MDS learning cohort.
Each distribution gives the mean parameters of a multinomial

of the mixture (component 0 accounts for unexplained data).

variables in the model and we investigated conditional dependency among
them. Given the training data we estimated the network structure (S) and
the parameters of the JPD in the BN. We inferred the network structure from
data using the GOBNILP software [28]. Given a set of random variables,
GOBNILP assigns a score (based on data) to each Directed Acyclic Graph
and choose the structure which maximizes the score (according to previous
literature [39] we set the maximum number of parents to 3).
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For each variable in which conditional dependency was found (i.e. a link
in the inferred structure is present), the definition of mutually exclusivity
was used to define a significant negative dependency, while the definition of
co-occurrence was used to define a positive dependency, see figure 2.10.

FIGURE 2.10: Co-occurrence (green) and mutual exclusivity
(brown) of mutations and cytogenetic abnormalities in the pa-

tients cohort.

2.4.3 Definition of a genomic classification of myelodysplas-
tic syndromes

To identify genomic subgroups among MDS we applied Hirerchial Dirichlet
processes. We identified six components, each describing a specific distribu-
tion of random variables included in the model (i.e., cytogenetic abnormali-
ties and gene mutations, see figure 2.8 and 2.9).

Importantly, genomic features of the 6 components are not (or minimally)
overlapping. Each patient was characterized by a weight vector indicating
the contribution of each of the 6 components to its genome.
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We clustered patients based on the Euclidean distance between weight
vectors and performing a hierarchical agglomerative clustering. We obtained
8 groups (clusters) defined according to specific genomic features 2.11 Dom-
inant genomic features of each group were described through Bayesian net-
works. Multivariate logistic regression analysis was applied to compare clin-
ical and hematological characteristics among different groups, while Kaplan-
Meier and Cox multivariable were used to compare clinical outcome (overall
survival). Only results showing p � 0.05 were reported. figure 2.12.One
group included patients without specific genomic profiles; strikingly all the
remaining groups were deeply characterized by a single (in some cases two)
component of Dirichlet processes (figure 2.11).

In many groups dominant genomic features included splicing gene mu-
tations. We identified two groups (1 and 6) in which dominant features were
SF3B1 mutations, older age, presence of ring sideroblasts and transfusion-
dependent anemia (Figure 2.12 and 2.13).

Group 6 included patients with ring sideroblasts and isolated SF3B1 muta-
tions (except for co-mutation patterns including TET2, DNMT3A and JAK/
STAT pathways genes [JAK2, CALR, MPL]), characterized by isolated ane-
mia, normal/high platelet count, single or multilineage dysplasia and very
low percentage of bone marrow blasts (median value 2%).

Group 1 included patients with SF3B1 with co-existing mutations in other
genes (mainly ASXL1 and RUNX1), characterized by anemia associated with
mild neutropenia and thrombocytopenia, multilineage dysplasia and higher
bone marrow blast percentage with respect to group 6 (7% vs. 2%, p <

0.0001).
In group 3 and group 5, dominant genomic features were represented by

SRSF2 mutations. In these groups the most frequently reported chromosomal
abnormality was trisomy 8.

Group 3 included patients with SRSF2 and concomitant TET2 mutations.
Patients presented single cytopenia (anemia in most cases) and higher mono-
cyte absolute count with respect to the other groups (p < 0.0001). Bone mar-
row features include multilineage dysplasia and excess blasts (median 8%).
Group 5 was characterized by SRSF2 mutations with co-existing mutations
in other genes (mainly ASXL1, RUNX1, STAG2, IDH2 and EZH2). Patients
presented two or more cytopenias, multilineage dysplasia and excess blasts
(median 11%, significantly higher with respect to group 3, p = 0.0031).

Group 4 dominant features included U2AF1 mutations associated with
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FIGURE 2.11: MDS patient Ward clustering using Euclidean
distances of DP outcomes. Top-left panel: the dendogram cut
from ward clustering of DP components for the clustering of
MDS patients. Remaining panels: Average weight distribution
of genomic categories per group. The 8 groups of the 2043 pa-
tients are labeled from 0 to 7 (in such fashion group 0 is self-

explanatory).

deletion of chromosome 20q and chromosome 7 abnormalities. Patients pre-
sented a higher rate of transfusion-dependent anemia with respect to the
other groups (p ranging from 0.023 to < 0.0001). Bone marrow features in-
cluded multilineage dysplasia and excess blasts in most cases.

Group 2 was characterized by TP53 mutations and/or complex karyotype,
mainly including abnormalities in chromosome 5, 7, 8, 11, 12, 17 and 20. Most
cases presented with two or more cytopenias (with high rate of transfusion-
dependency) and excess blasts (Figure 2.12 and2.13).
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Group 7 included patients with AML-like mutation patterns (most includ-
ing DNMT3A, NPM1, FLT3, IDH1 and RUNX1 genes). Patients are charac-
terized by two or more cytopenias (with high rate of transfusion-dependency)
and excess blasts, in most cases ranging between 15 and 19%.

Finally, group 0 included MDS without specific genomic profiles, figure
2.12. These patients were characterized by younger age, isolated anemia with
low rate of transfusion-dependency, normal or reduced bone marrow cellu-
larity (with respect to age-adjusted normal ranges), absence of ring siderob-
lasts and low percentage of marrow blasts (median value 2%)(figure 2.13).

A significantly heterogeneous distribution of WHO 2016 disease subtypes
was observed through the new groups defined by specific genomic features
(p < 0.0001), figure 2.14. Interestingly, this new classification of MDS ac-
counted for genomic heterogeneity of patients stratified according to WHO
criteria. This was particularly evident for MDS with isolated 5q deletion.
HDP and hierarchical clustering classified these 75 patients into group 1 and
group 6: subjects with none or one mutation (mainly including SF3B1gene)
were clustered into group 6, while those with 2 or more mutations or TP53
mutations were classified into group 1. MDS with 5q deletion included in
group 6 showed lower rate of transfusion-dependency and lower percentage
of marrow blasts with respect to patients classified into group 1 (p = 0.0043
and < 0.0001, respectively).

Then we focused on the distribution of mutation hotspots of splicing
genes. No significantly different distribution of SF3B1 and SRSF2 hotspots
was noticed among genomic MDS subgroups; in patients with U2AF1 mu-
tations, p.S34F missense variant was mainly associated with bone marrow
blast percentage > 10% (p = 0.0199). These findings provide the proof of
concept for a new classification of MDS based on entities defined according
to specific genomic features. In figure 2.14 we provided a diagram to clas-
sify patients in the appropriate category on the basis of individual genomic
profile.
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FIGURE 2.12: Genetic groups in Euro MDS cohort and their
relationship with WHO category (according to 2016 classifica-
tion) and overall survival. According to a Dirichelet process
clustering algorithm, patients could be classified into eight dis-
tinct genetic groups on the basis of the presence or absence
of mutations and chromosomal abnormalities: group 0) MDS
without recurrent genomic abnormalities; group 1) MDS with
ring sideroblasts with SF3B1 coexisting mutations; group 2)
MDS with TP53 mutations and complex karyotype; group 3)
MDS with SRSF2 mutations and concomitant TET2 mutations;
group 4) MDS with U2AF1 mutations and del 20q; group 5)
MDS with SRSF2 mutations and concomitant ASXL1, RUNX1
and NRAS pathway mutations; group 6) MDS with ring sider-
oblasts and SF3B1 isolated mutation; group 7) MDS with eb and
AML-like mutations. These genetic MDS groups significantly
differ both in WHO MDS categories distribution both in cumu-

lative probability of overall survival.
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FIGURE 2.13: Extrapolation of genomic landscape through
Bayesian Networks of MDS genetic groups. The size of each
node accounts for the number of correspondent genomic or cy-
togenetic alterations. The color of each link reflects odds ra-
tio (shades of brown represent mutual exclusivity while shades
of green color degree co-occurrence). The thickness of edges
grows with increasing significance of mutual exclusivity/co-

occurrence between alterations.
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FIGURE 2.14: Wide-ranging genomic heterogeneity of WHO
MDS categories according to 2016 update (in relation to genetic
MDS groups). D) Diagram to correctly classify patients in the
appropriate MDS group on the basis of individual genomic pro-

file..
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Chapter 3

Network Laplacian Cell Dynamics
Inference

3.1 Cell Gene Expression Dynamics and Cancer At-
tractors

In the cell, genes mutually regulate each other expressions. The complex
structure of cell regulatory interactions is encoded by the Gene Regulatory
network (GRN) where a link is a regulatory relationship between two genes
[78].

If we assign to each node of the GRN a function, xi(t), which encodes
the level of expression of the gene, as a result of mutual regulations, xi(t)
develops in time. This coordinated evolution of gene expression levels finally
leads to a stable pattern of expression of all genes, i.e. a steady state [45].

Considering the expression state space, the space of all possible gene ex-
pression patterns, a stable state is an attractor point and, intuitively, can be
thought of as the bottom of a potential well. Evolutionary trajectories which
pass through its proximity, i.e. its basin of attraction, eventually converge to
the attractor.

A complex gene regulatory network can have a great number of such at-
tractor states, each characterized by a basin of attraction, giving rise to a land-
scape in the state space, referred to as Epigenetic Landscape. Stable gene expres-
sion patterns are valleys while hills represent unstable states. The potential
landscape is determined by the structure of the GRN, which is encoded in
the genome and it is the same for all the cells in a given organism.

This view, based on the notion of Weddington’s epigenetic landscape,
explains how the same genome can give rise to different and ’discrete’ cell
types. The gene expression pattern of a progenitor multipotent stem cell, can
be thought of as a point with high potential in the landscape. It evolves in
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time, driven by regulatory relationships and noise, until it ends up in one of
the possible stable or metastable attractors, corresponding to completely or
partially differentiated cell types [46].

In other words, each cell type expresses a gene expression pattern char-
acteristic of a particular attractor, or valley in the landscape, and a switching
between cell types is a transition between valleys.

3.1.1 Cancers as Attractors in State Space

Cancer is generally viewed as an evolutionary process. In an organism, cells
naturally acquire gene mutations. Some mutations lead to cell death while
others are inherited by cell progeny and accumulate during the organism
lifetime.

While the majority of acquired mutations are passengers, i.e. have no ef-
fects on the phenotype, some of them, usually referred to as drivers, increase
the proliferation capability of mutated cells on normal cells. Usually, this re-
productive advantage is limited but, when a cell acquires a mutational bur-
den, that allows it to proliferate autonomously, it can invade tissues.

The hypothesis underlying the view of cancer development as an ’accu-
mulation’ of mutations is that a genotype maps directly to a phenotype. In other
words, it assumes implicitly that the global effect of a set of mutations is the
’sum’ of the effects of single mutations.

Genome wide studies have revealed a great heterogeneity of cancer mu-
tational patterns and rarely two cancers share the same set of mutations. Fol-
lowing the above hypothesis, one would expect the same heterogeneity in
cancer gene expression profiles. From gene expression profiling experiments
it turns out, however, that cancers expression patterns are much less hetero-
geneous than mutational profiles and often, given a cancer, transcriptomes
allow the identification of few distinct tumour subtypes [46, 47].

These observations lead to the hypothesis of cancer as an anomalous cell
type, originating from the transition of a cell in an attractor on the gene ex-
pression landscape which is normally unused by physiological cell. Since the
GRN, which defines the gene expression landscape, is extremely complex, in-
volving thousands of genes and gene interactions, the existence of attractors
that are usually inaccessible but still associated with viable phenotypes is
reasonable [46].

The GRN architecture is defined by regulatory relationships among genes.
In this context, a mutation corresponds to the removal of a network node or
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link or to a change in the strength of an interaction. When a mutation occurs,
the GRN topology is modified and in turn the regulatory landscape changes.
Thus, on one hand, mutations could affect the transition probabilities be-
tween attractors or even give rise to new, not physiological attractors. On
the other hand, one can think that, completely different mutational patterns
could facilitate the transition to the same cancer attractor, giving explanation
to the existance of well defined cancer gene expression patterns dispite the
high mutational heterogeneity [57, 58, 47].

3.1.2 Reconstructing the Epigenetic Landscape

Given these premises, it would be of great interest to reconstruct the epige-
netic landscape which regulate differentiation and dynamics of cells in differ-
ent tissues to test whether cancer cells can actually be associated to abnormal
attractors and to study their relation with ’physiological’ cell types.

To this aim, current experimental and theoretical efforts point in two di-
rections. On one side, one aims to reconstruct the gene regulatory network
by inferring experimentally pairwise gene regulations. However, the com-
plexity of regulatory interactions is overwhelming and current technologies
do not allow to test them systematically [78, 40].

As a consequence, while some gene regulatory circuits have been mapped
with sufficient accuracy, the mapping of the whole GRN it is still far from
completeness [40]. Nevertheless, this approach has been applied with suc-
cess to model the dynamics of particular gene circuits, for example to study
transition to apoptosis in cancer and healty cell [58].

On the the other side, the epigenetic landscape and its dynamics can be
inferred indirectly from single cell gene expression data [77]. The rapidly
maturing technology of single cell RNA sequencing (scRNA-seq) allows to
capture the gene expression status at the level of individual cells. In other
words, it enables to measure the abundance of mRNA for all the genes in the
cell exome.

Since RNA sequencing is a destructive measurement, it gives no infor-
mation of the evolution of the gene expression pattern in time. RNA-seq
profiles are static snapshot of a cell state. However, since scRNA-seq is a
high-throughput technique, it can be applied systematically to thousands of
cells providing a gene expression cell population snapshot [86].

Intuitively, we can suppose that observing the steady distribution of an
ensemble of cells, that are at different time points of their dynamic evolution,
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is equivalent to observe the evolution of a single cell in time. In other words,
a population snapshot is a distribution in the gene expression state space
that have to reflect the cell regulatory mechanism. With this assumption, it is
possible to infer, at least partially, the underlying epigenetic landscape.

In recent years, several methods for reconstructing cell dynamics from a
static large ensemble of single cell snapshots have been developed [77]. Some
of them try to tackle the problem by finding an accurate and scalable dimen-
sionality reduction method that allows, for example, to identify bifurcation
in cell development or assign a differentiation pseudo-time [63, 23], while
others start from a stochastic physical model of cell dynamics [86].

Nevertheless, the two approaches are intimately related. In particular, a
fruitful connection between stochastic dynamical system and dimensionality
reduction has been pointed out starting from the work of Belkin and Nyogi
which establishes a connection between the optimal embedding of graph and
smooth manifold and their laplacian operator [11, 10]. Recently, this connec-
tion has been made more precise by the works of Ting et Al. [81] and Weinreb
et Al. [86] which discovered a tight relation between general diffusion pro-
cess on a manifold and the random walk laplacian of the network built from
a sampling of a probability distribution defined on the manifold.

In the following, we introduce the mathematical framework to study the
epigenetic landscape and the concept of quasi-potential. We than introduce
the connection between diffusion processes on manifold and the discrete net-
work laplacian of the neighbourhood network built on a sampling of the dif-
fusion stationary distribution. Finally, we apply these concepts to a simple
two dimensional toy model.

3.1.3 Cell Dynamics Description

The qualitative description of cell dynamics and epigenetic landscape can be
formalized in the framework of stochastic dynamical systems [46, 85].

If we denote the cell state at time t as x(t) = (x1(t), . . . , xn(t)), where
xi(t) is the expression level of the i-th gene at time t then, cell dynamics can
generally described by the system:

ẋ(t) = F(x(t)) (3.1)

where F(x(t)) is the system driving force and encodes gene expression
regulatory relationships, i.e.the gene regulatory network. fi(x(t)) for i =
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1, 2 . . . expresses the variation in time of the expression of gene i as a function
of the expression of the other genes.

Since gene expression is affected by stochastic fluctuations, one can intro-
duce a noise term h(x, t) in equation 3.1:

ẋ(t) = F(x(t)) + h(x, t) (3.2)

The amplitude of fluctuations is given by the autocorrelation hh(x, t)h(x, t0)i
= 2DSd(t� t0) where D is the diffusion coefficient and S is the diffusion ten-
sor, if the noise is isotropic S = I.

The expression vector x(t) is a random variable with probability distribu-
tion p(x, t) evolving in time according to the Fokker-Planck equation:

∂p(x, t)
∂t

= r · j(x, t) (3.3)

where:

j(x, t) = F(x)p(x, t)�r · (DSp(x, t)) (3.4)

The stationary probability distribution pst(x, t)) satisfy:

r · jst(x, t) = 0 (3.5)

The divergence of the flux is zero in one of the following cases :

• detailed balance with jst = 0. In this case, the driving force can be
written as a gradient of a potential, assuming S = I for the sake of
clarity, we have:

F(x) = D
rpst

pst
= �rUst (3.6)

where the potential is defined as Ust(x) = �D · log(pst(x)). In other
word, at equilibrium, when no net flux is present in the system, the
potential defines the steady state probability.

• steady state with jst 6= 0. In general, in this case F cannot be de-
rived from a potential. However, making use of the potential U defined
above we can decompose F as:

F = �rUst + Fst = D
rpst

pst
+

jst
pst

(3.7)
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where jst is the steady state flux. Note that, since r · jst = 0, the non-
gradient part of the force has a curl nature (since in general for a vector
field A we have: r · (r⇥ A) = 0).

Decomposition of the Force Field

Given a dynamical system of the form of equation 3.1, in general, when the
dimension is greater than one, it is not possible to derive the force field from
a potential, i.e. F 6= �rU. However, it is possible to decompose F as the
gradient of a scalar field plus a remainder term:

F = �rŨ + Fr (3.8)

Such decomposition in not unique and we can look for a function Ũ which
satisfy specific properties. Since we are interested in transitions between
steady states of the system, one can look for a decomposition where Ũ has
the role of a quasi-potential, in the sense that it encodes the transition barriers
between the stable states of the system, while Fr does not enter the efforts
needed for the transitions.

In particular, Ũ encodes transition barriers if it satisfies the following cri-
teria [91]:

• characterize the stability of the system. In other words, according to the
definition of Lyapunov:

8
<

:

dŨ
dt < 0 for x 6= x

s

dŨ
dt = 0 for x = x

s
(3.9)

• is related to the transition rate between two stable points through the
Freidlin–Wentzell action.

It turns out [91] that a decomposition with these properties has to be a
normal decomposition in the sense that:

rŨ · Fr = 0 (3.10)
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We are interested in how the decomposition based on the steady state
distribution of equation 3.7 relates to the normal decomposition. Substituting
3.7 in the Fokker-Planck equation, we have:

∂

∂t
e�

Ust
D = Dr2e�

Ust
D + Dr ·

⇣
rUste�

Ust
D

⌘
�r ·

⇣
Fste�

Ust
D

⌘
(3.11)

which gives:

rU · Fst = DrFst (3.12)

thus, since the two fields are not orthogonal, the decomposition based on
the steady state distribution of the Fokker-Planck equation is not a normal
decomposition and in general does not satisfy the conditions required by a
quasi-potential. However, when D, i.e. the noise, tends to zero this decompo-
sition tends to the normal decomposition and the scalar field Ust can be used
as a proxy for the normal quasi-potential. One can think such approximation
to apply when the noise in small compared to the driving force.

An ensemble of single cell sequencing snapshot is a sampling from the
steady distribution, pst. In the following, we explore the link between the
nearest neighbours graph built on a sampling from pst and the diffusion-drift
process associated with the potential Ust(x) = �D · log(pst(x)).

We will see that the markov chain associated to the network random walk
laplacian approximates, in the high sampling limit, a the continuous diffu-
sion process with drift term given by the gradient of potential Ust providing
an approximation for computing transition probability between gene expres-
sion states.

3.2 Connections between Diffusion on Networks
and Manifolds

3.2.1 Network Laplacians

Given a network G(V, E), directed or undirected, with n vertices and m links
there are two alternative ways to represent it in a matrix form, the adjacency
matrix and the incidence matrix.

The adjacency matrix, A, is a n⇥ n square matrix that has elements Aij = 1
if nodes i and j are neighbours and zero otherwise.
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The incidence matrix,r is an m⇥ n matrix whose rows represent links and
columns represent nodes. The j-th element of the l-th row isrl j = 1 if l is an
incoming link of node j, while rl j = �1 if l is an out-coming link of node j.

If fi for i 2 V is a function defined on network nodes, the incidence matrix
associates to each link the difference of the values of f at the two end-points
of the link:

Dl = Â
i
rli fi (3.13)

r can be considered a "discrete differential" operator on the graph and it
appears natural to define the analogous of the continuous Laplacian operator
on a graph as follow:

∂ · ∂ f  ! rT ·r f = L f (3.14)

L is called Unnormalized or Combinatorial Laplacian of the network. Note
that it is symmetric and that L = D� A:

L = rT ·r = D� A =

2

664

d1 �a12 . . .
�a21 d2 . . .

...
... . . .

3

775 (3.15)

where D is the diagonal degree matrix. Moreover, we have:

(L f )i = Â
j⇠i

�
fi � f j

�
(3.16)

that is, the laplacian of a function at a node i is the sum of the differences
between the function at i and the function at its neighbours [15].

If the network is weighed, with W the matrix if weights, the combinatorial
Laplacian it’s easily generalized by the weighed Laplacian:

Lw = Dw �W (3.17)

where Dw
ii = Âi⇠j wij. In the following, if the graph is weighed, we will

refer to Dw and Lw with the same symbols used for unweighed networks, D
and L.

A matrix closely related to the unnormalized Laplacian is the random walk
or Diffusive Laplacian, Lrw, representing the average difference between a
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node i and its neighbours:

(Lrw f )i =
1
di

Â
j⇠i

�
fi � f j

�
(3.18)

For a weighed network, Lrw is related to the combinatorial laplacian by
the relation:

Lrw = LD�1 = (D�W)D�1 = I �WD�1 (3.19)

The random walk laplacian is similar to the symmetric random walk Lapla-
cian, Lsym, defined as [24]:

Lsym =

8
>><

>>:

1 i = j
� 1p

didj
i ⇠ j

0 otherwise

It is related to L through the relation:

Lsym = D�
1
2 LD�

1
2 (3.20)

and is similar to Lrw:

Lsym = D
1
2 LrwD�

1
2 (3.21)

from this last properties follow that Lrw has the same eigenvalue of Lsym

and if v is an eigenvector of Lrw with eigenvalue l, then q = D�1/2
v is an

eigenvector of Lsym with the same eigenvalue. Since Lsym is positive semidef-
inite it has non negative eigenvalues 0 = l0  l1  l2  . . . .

3.2.2 Network Laplacians and Embedding

A network embedding is a representation of a network in an m dimensional
Euclidean space, Rm, such that nodes that are close on the graph are mapped
to neighbouring points on Rm.

The simplest examples of graph embeddings are the graphic representa-
tions of network on the paper. They are embeddings in R2 and different plot
layout correspond to different embedding maps.

Given a connected weighed graph G(V, E, w) where V is the set of n ver-
tices, E the set of edges and w are the edge weights and an Euclidean space
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Rm an optimal mapping aims to assigns to each vertex i a set of m coor-
dinates yi = (y1

i , . . . , ym
i ) which minimizes the Euclidean distance between

neighbouring nodes [10]:

min
y Â

i,j
|yi � yj|2wij (3.22)

For each node pair the distance is weighed by the link weight, wij. If
YT = (y1, . . . , yn), from the definition of the weighed network laplacian, L =

D�W, follows that:

Â
i,j

|yi � yj|2wij = tr(YT LY) (3.23)

To remove arbitrary scaling factors, minimization is carried out adding
the constraint YTDY = I. Since L is positive semidefinite, the matrix Y which
minimizes the trace is the matrix whose columns are the m eigenvectors with
lowest eigenvalues, given by the generalized eigenvalue problem:

Ly = lDy (3.24)

Since the lowest eigenvector, f0, is the constant vector, the graph embed-
ding is given by the matrix [ f1, . . . , fm] where the elements of the i-th row are
the embedding coordinates of node i.

Embedding for Smooth Manifolds

It can be shown that the same arguments hold for a smooth manifolds [10].
Given a smooth manifold, S , of dimension s, embedded in Rt one can

look, as in the case of networks, for an optimal embedding of M in a lower
dimensional space.

If f : S ! R is a map from the manifold to the real line, two points x,z on
the manifold are mapped to f (z) and f (z) on R.

An optimal map should minimize | f (z)� f (z)|. It turn out that f is opti-
mal when:

min f

Z

S
|r f (x)|2 =

Z

S
L( f ) f (3.25)

were the second equivalence follows from the Stockes theorem and L is
the Laplace-Beltami operator of the manifold. L is positive semidefinite with
non-negative eigenvalues and the term on the left is minimum when f is
an eigenfunction of the Laplace-Beltrami operator. Since the spectrum of L
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is discrete, the embedding for S in an euclidean space of dimension m, is
given by the first m non-constant eigenfunctions (i.e., relative to eigenvalues
li > 0):

x! ( f1(x), . . . , fm(x)) (3.26)

3.2.3 Graph Approximation of the Laplace-Beltrami Opera-
tor on a Manifold

If we have a set of data points (x1, . . . , x

n

) with x

i

2 Rt and we assume that
they lie on a submanifold S of the space Rt we could ask how to find an
optimal embedding of the submanifold from sampled data. A solution is
to build a network whose nodes are data points and such that the network
laplacian, L = D�W, approximates the Laplace-Beltrami on the manifold.

Belkin and Nyogi [10, 11] proposed the following connection based on
the heat equation on a manifold:

∂p(x, t)
∂t

+ Lp(x, t) = 0 (3.27)

assuming p(x, 0) = f (x) the solution, can be written in terms of the of the
heat kernel (Green function for eq. 3.27), Kt(x, y):

p(x, t) =
Z

S
Kt(x, y) f (y) (3.28)

for small t, Kt can be approximated by a Gaussian on the manifold:

Kt(x, y) ⇡ (4pt)
�m

2 e
�kx�yk2

4t (3.29)

and:

p(x, t) ⇡
Z

S
(4pt)

�m
2 e

�kx�yk2
4t f (y)dy (3.30)

The Laplace-Beltrami operator can thus be approximated as:

L f (x) = �∂p
∂t
⇡ 1

t


f (x)� (4pt)

m
2

Z

S
e
�kx�yk2

4t f (y)dy
�

(3.31)

The above equation gives an explicit representation of the action of the
laplacian on the function f .

Given the data points,(x1, . . . , x

n

), supposed to be a sampling from the
manifold, the above expression can be approximated around the point x

i

by approximating the integral on S with the ’average’ on the first k nearest
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neighbours of x

i

(note that the contribution of points far from x

i

decrease
exponentially) :

L f (x

i

) ⇡ 1
t

2

4 f (x

i

)� 1
k
(4pt)

m
2 Â

xj2[k]i
e
�kxi�xjk

2

4t f (x

j

)

3

5 (3.32)

where the sum is on the set of nearest neighbours of x

i

, denoted [k]i.
Since f can be any function, we can take f (x

i

) = Const such that the
Laplacian is zero. Putting 1

k (4pt)
m
2 = a, from equation 3.32 we have:

a =

2

4 Â
xj2[k]i

e
�kxi�xjk

2

4t

3

5
�1

(3.33)

If we consider now the weighed kNN network of data points with W
being the weight matrix and f (x

i

) = fi the function on the i-th node, such
that f = ( f (x1), . . . , ( f xn)), the heat equation on the network, reads:

d f

dt
= �L f (3.34)

where:

(L f )i = fi �Â
j

wij f j (3.35)

where (L f )i is the i-th elements of the image of f through L, the network
Laplacian. We can see the following correspondence:

wij ()
1
a

e
�kxi�xjk

2

4t (3.36)

3.2.4 Connection Between Laplace-Beltrami and Lrw

Random Walk on Networks

A random walk on a network is defined as follow. Let G = (V, E, W) be a
network where W is the weight matrix. If at the t-th time step a particle is at
at a node v, it moves to a neighbouring site k of v with probability pij =

wvk
dv

,
where dv = Âj wvj is the degree of the node.

We denote by pt
i the probability of being at i at time t. The matrix of

transition probabilities (pT) is given by:

pT
ij =

( wij
di

i ⇠ j
0 : otherwise
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If D is the diagonal degree matrix and W is symmetric, the transition
matrix P = WD�1. Note that P is a stochastic matrix:

Â
j

pij = 1 and pij � 0 (3.37)

Defining p

t = (pt
1, . . . , pt

n) the vector of node probabilities at time t, its
the evolution is given by:

p(t + Dt) = Pp(t) (3.38)

Starting from the initial distribution p

0, after a time t = kDt we have:

p(t = kDt) = Pk
p

0 (3.39)

with the stationary distribution:

pst =
d

2 Âij wij
(3.40)

pst is proportional to the degree vector, d = (d1, . . . , dn), and does not
depend on the initial distribution p

0.

Lazy Random Walk

To derive the continuous time random equation, it is convenient to consider
a variation of random walk sometimes referred to as lazy random walk. At
each step, with probability 1� b, a particle stays at the current vertex and
with probability b it jumps to another node. The evolution of the probability
is given by:

p(t + Dt) = bPp(t) + (1� b)Ip(t) = P̃p(t) (3.41)

with:

p̃ij =

(
1� b i = j
pijb i 6= j

It is possible to show that equations 3.38 and 3.41 have the same stationary
distribution.
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Continuous Time Random Walk

Let’s derive the continuous time version of the evolution equation. In the
limit Dt ! 0 we expect that the probability for a particle of changing state
tends to zero. Starting from eq. 3.41 and assuming the expansion for the
coefficient b = b0Dt + o(Dt), the transition probabilities become:

p̃ij(Dt! 0) =

(
1� b0Dt + o(Dt) i = j
pijb0Dt + o(Dt) i 6= j

with the condition:

Â
i

p̃ij(t) = 1 (3.42)

The probability of being at node i at time t + Dt can be written as:

pi(t + Dt) = Â
j

pj(t)pijb0Dt + (1� b0Dt)pi(t) (3.43)

which gives:

pi(t + Dt)� pi(t)
Dt

= b0 Â
j

pjpij � pi = b0 Â
j

⇥
pij � dij

⇤
pj(t) (3.44)

Recalling the definition of random walk Laplacian of the network:

Lrw = (D�W)D�1 = I �P! lrw
ij = dij � pij (3.45)

Connection to Manifold Laplacian

Introducing the vectorial notation p(t) = (p1, . . . , pn), in the limit Dt ! 0,
we have:

dp(t)
dt

= �b0Lrw
p(t) (3.46)

The action of Lrw on a vector f is:

(Lrw
f )i = fi �Â

j
pij f j (3.47)
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where (Lrw
f )i is the i-th elements of the image of f through Lrw. Recalling

the action of the Laplacian of a manifold on a function f for t! 0:

L f (x

i

) ⇡ 1
t

2

64 f (x

i

)�
Âxj2[k]i e

�kxi�xjk
2

4t f (x

j

)

ai

3

75 (3.48)

where:

ai =

2

4 Â
xj2[k]i

e
�kxi�xjk

2

4t

3

5
�1

(3.49)

Comparing equations 3.47 and 3.48 we can put:

pij =
e
�kxi�xjk

2

4t

ai
(3.50)

It turn out that the right hand side satisfies the properties required from
the transition matrix of being time independent and stochastic. From the
definition of ai we have:

• time independence,

pij =
e

1
4t e�kxi�xjk2

e
1
4t Âxj2[k]i e�kxi�xjk2 =

e�kxi�xjk2

Âxj2[k]i e�kxi�xjk2 (3.51)

• column normalization (stochastic matrix),

Â
j

pij =
1

Âxj2[k]i e�kxi�xjk2 Â
xj2[k]i

e�kxi�xjk2
= 1 (3.52)

Moreover, recalling that pij =
wij

Âj wij
, where wij are the is the link weights

we have:

wij = e�kxi�xjk2
(3.53)

This observations highlights that, given n points (x1, . . . , xn) from a mani-
fold S embedded in Rt and the kNN network of the points with link weights
given by equation 3.53 the diffusive laplacian, Lrw, of the network approximate
the Laplace-Beltrami operator on the manifold.
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Decomposition along Diffusion Eigenfunction

The solution of the diffusion equation 3.46 is given by:

p(t) = eLrwt
p(0) (3.54)

where we put b0 = 1 for convenience. Considering the eigenvalue prob-
lem for Lrw:

Lrw
v = lv (3.55)

since Lrw is similar to Lsym which is positive semidefinite, it has non neg-
ative eigenvalues 0 = l0  l1  l2  . . .

If we write p(t) and p(0) as linear combinations of the eigenvectors of
Lrw we can decompose the solution of 3.54 as:

p(t) = Â
i

ai(t)vi (3.56)

p(0) = Â
i

ai(0)vi (3.57)

From equation 3.54 and 3.56 we have:

dai(t)
dt

= �liai(t) (3.58)

which has the solution:

ai(t) = e�li tai(0) (3.59)

Equation 3.56 can be rewritten as:

p(t) = a0(0)e�l0t
v0 + a1(0)e�l1t

v1 + . . . (3.60)

If the graph is connected then li > 0 for all i > 0 and the stationary
solution of equation 3.60 for t ! • is unique and is proportional to the
eigenvector with null eigenvalue.

The components of the solution along the eigenvectors with positive eigen-
values are transient states since they tend to zero as t approaches infinity. The
decay time constant of the component along the eigenvector vi is propor-
tional to the inverse of li.



3.2. Connections between Diffusion on Networks and Manifolds 85

3.2.5 Deeper Relation Between Random Walk Laplacian and
Diffusion on Manifold

A deeper relation between the random walks on network and diffusive pro-
cesses on a manifold S has been recently established by Ting et Al. [81]. In
particular, they show that the random walk laplacian of a neighbourhood
graph built on points sampled from a distribution defined on a smooth man-
ifold, converges, in the high sampling limit, to the generator of a specific
diffusion process on the manifold. Moreover, the establish a connection be-
tween the form of the kernel function used to built the graph and the drift
and diffusion term of the continuous diffusion process. We resume briefly
their results below.

Let S be a smooth m-dimensional manifold in Rb and p a density defined
on the manifold. Given a set of n points, {xi}n, sampled i.i.d. from p, one can
build a neighbourhood graph assuming a general kernel function, Kn(x, y):

Kn(x, y) = w
(n)
x (y)K0

 
ky� xk
hr(n)x (y)

!
(3.61)

where wx(y) assigns the weight to the link between points located at x
and y and K0 is in general a non-smooth kernel function. rx(y) is a band-
width function, which defines the maximum distance for two nodes to be
neighbours in the network. For example, for a kNN graph rx(y) is the dis-
tance to the k-th neighbour.

The random walk laplacian, Lrw, of the resulting neighbourhood graph
tends, in the high sampling limit, to the generator, G, of diffusion process on
the manifold:

dXt = µ(x)dt + s(Xt)dWt

� Lrw
n f ���!

n!•
G f

where the diffusion and drift terms of the process are given by:

µ(x) = rx(x)2
✓
rp(x)

p(x)
+
rw(x)
w(x)

+ (m + 2)
ṙx(x)
rx(x)

◆
(3.62)

s(x)s(x)T = rx(x)2
I (3.63)

In other words, the continuous time Markov chain associated to the net-
work random walk laplacian (see equation 3.45) approximates, when the
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number of network nodes grows, to the above diffusion process.
It is of interest to apply these results to specific network constructions, in

particular kNN and r-neighbourhood network:

• in r-neighbourhood network K0 = I(|x| < r). The bandwidth func-
tion is thus rx(y) = r = Const and ṙx(y) = 0, Moreover, assuming a
constant weight function rw(x) = 0 and we have:

µ(x) =
rp(x)

p(x)
(3.64)

s(x)sT(x) = I (3.65)

3.3 Inference of Cell Regulatory Landscape

We have seen in section 3.1.3 that cell regulatory dynamics can be modelled
as a dynamical system with noise:

ẋ(t) = F(x(t)) + h(x, t) (3.66)

If pst is the stationary distribution of the Fokker-Plank equation associated
with the above system, than the potential:

Ust = �D · log(pst) (3.67)

is, in the zero noise limit, a quasi-potential, which encodes the transition
probability between the attractor valleys of the landscape defined by F.

An ensemble of single cell measurements, can be viewed as a sampling
from the stationary distribution pst. As shown in equation 3.65, the Markov
chain associated to the random walk laplacian of the r-neighbourhood graph
of data points approximates a diffusion process on the potential Ust = �D ·
log(pst), in the high sampling limit.

Recalling equation 3.60, the eigenvector of Lrw with zero eigenvalue is
the stationary distribution of the Markov chain defined by Lrw, while eigen-
vectors with non-zero eigenvalue are associated to diffusive transient states.
Studying the eigenvalue problem associated to Lrw is thus a way to charac-
terize the regulatory landscape from a ’single cell’ population snapshot.

Below we illustrate these results with a toy model example.
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3.3.1 Toy Model

We studied a two dimensional toy model of the regulatory landscape, de-
scribed by the following equations:

dx1
dt

= f1 + h1 = �
⇣

2x3 + 2y3 � 9(x + y)� 1
⌘
+ h1 (3.68)

dx2
dt

= f2 + h2 = �
⇣

2x3 � 2y3 � 11(x� y) + 1
⌘
+ h2 (3.69)

where hi are the noise terms. The normal decomposition of the system is
given by [45]:

Unorm =

✓
�5(x2 + y2) +

1
2
(x4 + y4) + xy + x

◆
(3.70)

Fnorm
x = 10x� 2y3 � x (3.71)

Fnorm
y = �10x + 2y3 + y + 1 (3.72)

In figure 3.1 is reported the potential Unorm(x, y). The system has four
potential wells of different depth separated by four saddle points, while the
remainder force is, at each point, perpendicular to the gradient of the poten-
tial.

Simulation and Landscape Inference

Since we would to infer the property of the potential from a sampling of the
stationary distribution, we simulated the stochastic evolution of the system
3.69 with a simple stochastic Euler scheme. We carried out 100 simulations
(2 · 106 time steps) with random starting points in the range x = [�3, 3], y =

[�3, 3]. For each simulation we discarded the first 105 time steps.
We sampled n = 600 random points from the simulated stationary distri-

bution and we built the r-neighbourhood graph (the choice of the bandwidth
r does not affect results significantly).

The spectrum of the random walk laplacian (figure 3.2) highlights a spec-
tral gap after the lowest four eigenvalues. Since the magnitude of an eigen-
value gives the exponential decay time constant of the relative eigenvec-
tor, eigenvector with lowest eigenvalues are related to stable (l0 = 0) and
metastable states (l1, l2, l3) of the system.
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FIGURE 3.1: Quasi-potential Unorm resulting from the normal
decomposition of the the toy model system (eq. 3.69). It
has four attractors located approximately at A = (�2, 2),B =
(�2,�2),C = (2,�2),D = (2, 2) and four saddle points be-

tween them.

From figure 3.3, we see that for l = 0 the eigenvector retrieves the poten-
tial Unorm. Moreover, the eigenvectors relative to the lowest non zero eigen-
values are related to the four landscape valleys. In particular, the two deeper
valleys (more stable states) are associated to a lower eigenvalue (l1).
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FIGURE 3.2: Spectrum of the random walk laplacian Lrw of the
r-neighbourhood network of points sampled from the simu-

lated stationary distribution of the toy model system.

FIGURE 3.3: Logarithm of the eigenvector with zero eigenvalue
versus the driving potential Unorm.
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λ0 = 0 λ1 = 7.2 ⋅ 10−3

λ2 = 2.0 ⋅ 10−2 λ3 = 2.8 ⋅ 10−2

FIGURE 3.4: Eigenvectors with lowest eigenvalues of the ran-
dom walk laplacian of the r-neighbourhood network. The color
of each node of the network gives the eigenvector elements for
that node (red high, purple low). Network was plotted with

Fruchterman-Reingold force-directed layout.
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Conclusions

In this work we presented some methods to address the problem of cancer
mutational heterogeneity and its relation with the genotype-phenotype map-
ping form different perspectives.

In the first part, we tackled the problem of relating cancer mutational pat-
terns to higher level biological functions. To this end, in the first chapter, we
studied the resilience of the cell macromolecular interaction network treat-
ing mutations as network perturbations. We found that all the interactome
reconstructions considered, are much more brittle to tumour mutations in
comparison to random gene mutations. Even though the interactome is far
from capturing many expect of cell dynamics, this result highlights the ’coop-
erative’ nature of cancer mutations and the relevance of their characterization
with respect to higher biological levels.

In the second chapter, we presented non parametric models in the con-
text of unsupervised detection of cancer molecular subtypes, highlighting
their flexibility in modelling complex data structures. As a case study, we ap-
plied these methods to a cohort of 2043 patients affected by Myelodysplastic
Syndromes finding a meaningful correspondence between the unsupervised
mutational classes and biological functions relevant to the development of
the the disease.

The second part of the work was inspired by the work of Huang and
Kauffman [46, 47] in which they point out the similarities between the devel-
opment of cancer and normal cells suggesting the hypothesis of cancer as an
abnormal cell type. In there view, mutations act by modifying the cell epi-
genetic landscape and facilitating the transition of a cell to a cancer attractor.
The advent of single cell sequencing made this hypothesis testable by exper-
iments. To this end, in the last chapter we reviewed the relations between
mathematical models of the epigenetic landscape and network based dimen-
sionality reduction methods and we show the ability of laplacian based meth-
ods to infer the quasi potential of two dimensional toy model of the epige-
netic landscape. Since these methods are computationally scalable, future
work will be their application to real high dimensional single cell sequencing
datasets of both normal and cancer cell to test whether cancer can effectively
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be associated to abnormal attractor of the cell regulatory landscapes.





95

Bibliography

[1] A Gentle Introduction to the Dirichlet Process, the Beta Process and Bayesian
Nonparametrics. Lecture Notes, 2015.

[2] Lionel Adès, Raphael Itzykson, and Pierre Fenaux. “Myelodysplastic
syndromes”. In: The Lancet 383.9936 (2014), pp. 2239–2252. DOI: 10 .
1016/S0140- 6736(13)61901- 7. URL: https://doi.org/10.1016/
S0140-6736(13)61901-7.

[3] Joaquim Aguirre-Plans et al. “GUILDify v2.0: A Tool to Identify Molec-
ular Networks Underlying Human Diseases, Their Comorbidities and
Their Druggable Targets”. In: Journal of Molecular Biology 431.13 (2019),
pp. 2477 –2484. ISSN: 0022-2836. DOI: https://doi.org/10.1016/j.
jmb.2019.02.027. URL: http://www.sciencedirect.com/science/
article/pii/S0022283619301172.

[4] S. E. Ahnert. “Structural properties of genotype-phenotype maps”. In:
Journal of The Royal Society Interface 14.132 (2017), p. 20170275. DOI: 10.
1098/rsif.2017.0275. URL: https://royalsocietypublishing.org/
doi/abs/10.1098/rsif.2017.0275.

[5] Gregorio Alanis-Lobato, Miguel A. Andrade-Navarro, and Martin H.
Schaefer. “HIPPIE v2.0: enhancing meaningfulness and reliability of
protein–protein interaction networks”. In: Nucleic Acids Research 45.D1
(2016), pp. D408–D414. ISSN: 0305-1048. DOI: 10.1093/nar/gkw985.
URL: https://doi.org/10.1093/nar/gkw985.

[6] Daniel A. Arber et al. “The 2016 revision to the World Health Orga-
nization classification of myeloid neoplasms and acute leukemia”. In:
Blood 127.20 (May 2016), pp. 2391–2405. ISSN: 0006-4971. DOI: 10.1182/
blood- 2016- 03- 643544. URL: https://doi.org/10.1182/blood-
2016-03-643544.

[7] Euan A. Ashley. “Towards precision medicine”. In: Nature Reviews Ge-
netics 17.9 (2016), pp. 507–522. DOI: 10.1038/nrg.2016.86. URL: https:
//doi.org/10.1038/nrg.2016.86.

https://doi.org/10.1016/S0140-6736(13)61901-7
https://doi.org/10.1016/S0140-6736(13)61901-7
https://doi.org/10.1016/S0140-6736(13)61901-7
https://doi.org/10.1016/S0140-6736(13)61901-7
https://doi.org/https://doi.org/10.1016/j.jmb.2019.02.027
https://doi.org/https://doi.org/10.1016/j.jmb.2019.02.027
http://www.sciencedirect.com/science/article/pii/S0022283619301172
http://www.sciencedirect.com/science/article/pii/S0022283619301172
https://doi.org/10.1098/rsif.2017.0275
https://doi.org/10.1098/rsif.2017.0275
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0275
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0275
https://doi.org/10.1093/nar/gkw985
https://doi.org/10.1093/nar/gkw985
https://doi.org/10.1182/blood-2016-03-643544
https://doi.org/10.1182/blood-2016-03-643544
https://doi.org/10.1182/blood-2016-03-643544
https://doi.org/10.1182/blood-2016-03-643544
https://doi.org/10.1038/nrg.2016.86
https://doi.org/10.1038/nrg.2016.86
https://doi.org/10.1038/nrg.2016.86


96 BIBLIOGRAPHY

[8] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. “Net-
work medicine: a network-based approach to human disease”. In: Na-
ture Reviews Genetics 12.1 (2011), pp. 56–68. DOI: 10.1038/nrg2918. URL:
https://doi.org/10.1038/nrg2918.

[9] Barabási, Albert-László and Albert, Réka. “Emergence of Scaling in
Random Networks”. In: Science 286.5439 (1999), pp. 509–512. DOI: 10.
1126/science.286.5439.509. URL: https://science.sciencemag.
org/content/286/5439/509.

[10] M. Belkin and P. Niyogi. “Laplacian Eigenmaps for Dimensionality Re-
duction and Data Representation”. In: Neural Computation 15.6 (2003),
pp. 1373–1396. ISSN: 0899-7667. DOI: 10.1162/089976603321780317.

[11] Mikhail Belkin and Partha Niyogi. “Towards a theoretical foundation
for Laplacian-based manifold methods”. In: Journal of Computer and
System Sciences 74.8 (2008), pp. 1289 –1308. ISSN: 0022-0000. DOI: https:
/ / doi . org / 10 . 1016 / j . jcss . 2007 . 08 . 006. URL: http : / / www .
sciencedirect.com/science/article/pii/S0022000007001274.

[12] Matteo Bersanelli et al. “Frailness and resilience of gene networks pre-
dicted by detection of co-occurring mutations via a stochastic perturba-
tive approach”. In: Scientific Reports 10.1 (2020), p. 2643. DOI: 10.1038/
s41598-020-59036-w. URL: https://doi.org/10.1038/s41598-020-
59036-w.

[13] Matteo Bersanelli et al. “Methods for the integration of multi-omics
data: mathematical aspects”. In: BMC Bioinformatics 17.2 (2016), S15.
DOI: 10.1186/s12859-015-0857-9. URL: https://doi.org/10.1186/
s12859-015-0857-9.

[14] Matteo Bersanelli et al. “Network diffusion-based analysis of high -
throughput data for the detection of differentially enriched modules”.
In: Scientific Reports 6.1 (2016), p. 34841. DOI: 10.1038/srep34841. URL:
https://doi.org/10.1038/srep34841.

[15] Stadler Peter F. Biyikoglu Turker Leydold Josef. Laplacian Eigenvectors
of Graphs. Lecture Notes in Mathematics. Springer, 2007.

[16] David M. Blei. “Probabilistic Topic Models”. In: Communications of the
ACM 55 (2012). DOI: 10.1145/2133806.2133826.

[17] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet
Allocation”. In: J. Mach. Learn. Res. 3 (2003), pp. 993–1022. ISSN: 1532-
4435.

https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://science.sciencemag.org/content/286/5439/509
https://science.sciencemag.org/content/286/5439/509
https://doi.org/10.1162/089976603321780317
https://doi.org/https://doi.org/10.1016/j.jcss.2007.08.006
https://doi.org/https://doi.org/10.1016/j.jcss.2007.08.006
http://www.sciencedirect.com/science/article/pii/S0022000007001274
http://www.sciencedirect.com/science/article/pii/S0022000007001274
https://doi.org/10.1038/s41598-020-59036-w
https://doi.org/10.1038/s41598-020-59036-w
https://doi.org/10.1038/s41598-020-59036-w
https://doi.org/10.1038/s41598-020-59036-w
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1038/srep34841
https://doi.org/10.1038/srep34841
https://doi.org/10.1145/2133806.2133826


BIBLIOGRAPHY 97

[18] Anna D. Broido and Aaron Clauset. “Scale-free networks are rare”. In:
Nature Communications 10.1 (2019), p. 1017. DOI: 10.1038/s41467-019-
08746-5. URL: https://doi.org/10.1038/s41467-019-08746-5.

[19] Garth R. Brown et al. “Gene: a gene-centered information resource at
NCBI”. In: Nucleic Acids Research 43 (2014), pp. D36–D42. ISSN: 0305-
1048. DOI: 10.1093/nar/gku1055. URL: https://doi.org/10.1093/
nar/gku1055.

[20] Rebecca A. Burrell et al. “The causes and consequences of genetic het-
erogeneity in cancer evolution”. In: Nature 501.7467 (2013), pp. 338–
345. DOI: 10.1038/nature12625. URL: https://doi.org/10.1038/
nature12625.

[21] Hannah Carter, Matan Hofree, and Trey Ideker. “Genotype to pheno-
type via network analysis.” In: Curr Opin Genet Dev 23.6 (2013), pp. 611–
621. DOI: 10.1016/j.gde.2013.10.003.

[22] Mario Cazzola, Matteo G. Della Porta, and Luca Malcovati. “The ge-
netic basis of myelodysplasia and its clinical relevance”. In: Blood 122.25
(2013), pp. 4021–4034. ISSN: 0006-4971. DOI: 10.1182/blood-2013-09-
381665. URL: https://doi.org/10.1182/blood-2013-09-381665.

[23] Huidong Chen et al. “Single-cell trajectories reconstruction, exploration
and mapping of omics data with STREAM”. In: Nature Communications
10.1 (2019), p. 1903. DOI: 10.1038/s41467-019-09670-4. URL: https:
//doi.org/10.1038/s41467-019-09670-4.

[24] Fan R. K. Chung. Spectral Graph Theory. CBMS Regional Conference
Series in Mathematics. AMS, 1997.

[25] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-
Law Distributions in Empirical Data”. In: SIAM Review 51.4 (2009),
pp. 661–703. DOI: 10 . 1137 / 070710111. eprint: https : / / doi . org /
10.1137/070710111. URL: https://doi.org/10.1137/070710111.

[26] Reuven Cohen et al. “Resilience of the Internet to Random Breakdowns”.
In: Phys. Rev. Lett. 85 (21 2000), pp. 4626–4628. DOI: 10.1103/PhysRevLett.
85.4626. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
85.4626.

[27] Lenore Cowen et al. “Network propagation: a universal amplifier of
genetic associations”. In: Nature Reviews Genetics 18.9 (2017), pp. 551–
562. DOI: 10.1038/nrg.2017.38. URL: https://doi.org/10.1038/nrg.
2017.38.

https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1093/nar/gku1055
https://doi.org/10.1038/nature12625
https://doi.org/10.1038/nature12625
https://doi.org/10.1038/nature12625
https://doi.org/10.1016/j.gde.2013.10.003
https://doi.org/10.1182/blood-2013-09-381665
https://doi.org/10.1182/blood-2013-09-381665
https://doi.org/10.1182/blood-2013-09-381665
https://doi.org/10.1038/s41467-019-09670-4
https://doi.org/10.1038/s41467-019-09670-4
https://doi.org/10.1038/s41467-019-09670-4
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://link.aps.org/doi/10.1103/PhysRevLett.85.4626
https://link.aps.org/doi/10.1103/PhysRevLett.85.4626
https://doi.org/10.1038/nrg.2017.38
https://doi.org/10.1038/nrg.2017.38
https://doi.org/10.1038/nrg.2017.38


98 BIBLIOGRAPHY

[28] James Cussens and Mark Bartlett. GOBNILP.

[29] Jishnu Das and Haiyuan Yu. “HINT: High-quality protein interactomes
and their applications in understanding human disease”. In: BMC Sys-
tems Biology 6.1 (2012), p. 92. DOI: 10.1186/1752- 0509- 6- 92. URL:
https://doi.org/10.1186/1752-0509-6-92.

[30] M G Della Porta et al. “Minimal morphological criteria for defining
bone marrow dysplasia: a basis for clinical implementation of WHO
classification of myelodysplastic syndromes”. In: Leukemia 29.1 (2015),
pp. 66–75. DOI: 10.1038/leu.2014.161. URL: https://doi.org/10.
1038/leu.2014.161.

[31] M G Della Porta et al. “Validation of WHO classification-based Prog-
nostic Scoring System (WPSS) for myelodysplastic syndromes and com-
parison with the revised International Prognostic Scoring System (IPSS-
R).” In: Leukemia 29.7 (2015), pp. 1502–1513. DOI: 10.1038/leu.2015.
55. URL: https://doi.org/10.1038/leu.2015.55.

[32] Linton C. Freeman. “A Set of Measures of Centrality Based on Between-
ness”. In: Sociometry 40.1 (1977), pp. 35–41. ISSN: 00380431. URL: http:
//www.jstor.org/stable/3033543.

[33] Javier Garcia-Garcia et al. “Biana: a software framework for compiling
biological interactions and analyzing networks”. In: BMC Bioinformat-
ics 11.1 (2010), p. 56. DOI: 10.1186/1471-2105-11-56. URL: https:
//doi.org/10.1186/1471-2105-11-56.

[34] Moritz Gerstung et al. “Precision oncology for acute myeloid leukemia
using a knowledge bank approach”. In: Nature Genetics 49.3 (2017),
pp. 332–340. DOI: 10.1038/ng.3756. URL: https://doi.org/10.
1038/ng.3756.

[35] Zoubin Ghahramani. “Bayesian non-parametrics and the probabilistic
approach to modelling”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371.1984 (2013). DOI:
10.1098/rsta.2011.0553. URL: https://royalsocietypublishing.
org/doi/abs/10.1098/rsta.2011.0553.

[36] Susan Dina Ghiassian, Jörg Menche, and Albert-László Barabási. “A
DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a
Systematic Analysis of Connectivity Patterns of Disease Proteins in
the Human Interactome”. In: PLOS Computational Biology 11.4 (2015),

https://doi.org/10.1186/1752-0509-6-92
https://doi.org/10.1186/1752-0509-6-92
https://doi.org/10.1038/leu.2014.161
https://doi.org/10.1038/leu.2014.161
https://doi.org/10.1038/leu.2014.161
https://doi.org/10.1038/leu.2015.55
https://doi.org/10.1038/leu.2015.55
https://doi.org/10.1038/leu.2015.55
http://www.jstor.org/stable/3033543
http://www.jstor.org/stable/3033543
https://doi.org/10.1186/1471-2105-11-56
https://doi.org/10.1186/1471-2105-11-56
https://doi.org/10.1186/1471-2105-11-56
https://doi.org/10.1038/ng.3756
https://doi.org/10.1038/ng.3756
https://doi.org/10.1038/ng.3756
https://doi.org/10.1098/rsta.2011.0553
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0553
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0553


BIBLIOGRAPHY 99

pp. 1–21. DOI: 10.1371/journal.pcbi.1004120. URL: https://doi.
org/10.1371/journal.pcbi.1004120.

[37] Colin S. Gillespie. “Fitting Heavy Tailed Distributions: The poweRlaw
Package”. In: Journal of Statistical Software 64.2 (2015), pp. 1–16.

[38] Peter L. Greenberg et al. “Revised International Prognostic Scoring Sys-
tem for Myelodysplastic Syndromes”. In: Blood 120.12 (2012), pp. 2454–
2465. ISSN: 0006-4971. DOI: 10.1182/blood- 2012- 03- 420489. URL:
https://doi.org/10.1182/blood-2012-03-420489.

[39] Jacob Grinfeld et al. “Classification and Personalized Prognosis in Myelo-
proliferative Neoplasms”. In: New England Journal of Medicine 379.15
(2018), pp. 1416–1430. DOI: 10.1056/NEJMoa1716614. URL: https://
doi.org/10.1056/NEJMoa1716614.

[40] Heonjong Han et al. “TRRUST v2: an expanded reference database of
human and mouse transcriptional regulatory interactions”. In: Nucleic
Acids Research 46.D1 (2017), pp. D380–D386. ISSN: 0305-1048. DOI: 10.
1093/nar/gkx1013. URL: https://doi.org/10.1093/nar/gkx1013.

[41] Pierre C. Havugimana et al. “A Census of Human Soluble Protein Com-
plexes”. In: Cell 150.5 (2012). DOI: 10.1016/j.cell.2012.08.011. URL:
https://doi.org/10.1016/j.cell.2012.08.011.

[42] Marco Y. Hein et al. “A Human Interactome in Three Quantitative Di-
mensions Organized by Stoichiometries and Abundances”. In: Cell 163.3
(2015), pp. 712 –723. ISSN: 0092-8674. DOI: https://doi.org/10.1016/
j.cell.2015.09.053. URL: http://www.sciencedirect.com/science/
article/pii/S0092867415012702.

[43] Matan Hofree et al. “Network-based stratification of tumor mutations”.
In: Nature Methods 10.11 (2013), pp. 1108–1115. DOI: 10.1038/nmeth.
2651. URL: https://doi.org/10.1038/nmeth.2651.

[44] Justin K. Huang et al. “Systematic Evaluation of Molecular Networks
for Discovery of Disease Genes”. In: Cell Systems 6.4 (2018), pp. 484 –
495. ISSN: 2405-4712. DOI: https://doi.org/10.1016/j.cels.2018.
03.001. URL: http://www.sciencedirect.com/science/article/pii/
S2405471218300954.

[45] Sui Huang. “The molecular and mathematical basis of Waddington’s
epigenetic landscape: A framework for post-Darwinian biology?” In:
BioEssays 34.2 (2012), pp. 149–157. DOI: https://doi.org/10.1002/

https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1371/journal.pcbi.1004120
https://doi.org/10.1182/blood-2012-03-420489
https://doi.org/10.1182/blood-2012-03-420489
https://doi.org/10.1056/NEJMoa1716614
https://doi.org/10.1056/NEJMoa1716614
https://doi.org/10.1056/NEJMoa1716614
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1016/j.cell.2012.08.011
https://doi.org/10.1016/j.cell.2012.08.011
https://doi.org/https://doi.org/10.1016/j.cell.2015.09.053
https://doi.org/https://doi.org/10.1016/j.cell.2015.09.053
http://www.sciencedirect.com/science/article/pii/S0092867415012702
http://www.sciencedirect.com/science/article/pii/S0092867415012702
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1038/nmeth.2651
https://doi.org/10.1038/nmeth.2651
https://doi.org/https://doi.org/10.1016/j.cels.2018.03.001
https://doi.org/https://doi.org/10.1016/j.cels.2018.03.001
http://www.sciencedirect.com/science/article/pii/S2405471218300954
http://www.sciencedirect.com/science/article/pii/S2405471218300954
https://doi.org/https://doi.org/10.1002/bies.201100031
https://doi.org/https://doi.org/10.1002/bies.201100031


100 BIBLIOGRAPHY

bies.201100031. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/bies.201100031.

[46] Sui Huang, Ingemar Ernberg, and Stuart Kauffman. “Cancer attractors:
A systems view of tumors from a gene network dynamics and devel-
opmental perspective”. In: Seminars in Cell & Developmental Biology 20.7
(2009), pp. 869 –876. DOI: https://doi.org/10.1016/j.semcdb.2009.
07.003.

[47] Sui Huang and Stuart Kauffman. “How to escape the cancer attractor:
Rationale and limitations of multi-target drugs”. In: Seminars in Cancer
Biology 23.4 (2013), pp. 270 –278. DOI: https://doi.org/10.1016/
j.semcancer.2013.06.003. URL: http://www.sciencedirect.com/
science/article/pii/S1044579X13000540.

[48] Edward L. Huttlin et al. “The BioPlex Network: A Systematic Explo-
ration of the Human Interactome”. In: Cell 162.2 (2015), pp. 425–440.
DOI: 10.1016/j.cell.2015.06.043. URL: https://doi.org/10.1016/
j.cell.2015.06.043.

[49] I. Ispolatov, P. L. Krapivsky, and A. Yuryev. “Duplication-divergence
model of protein interaction network”. In: Phys. Rev. E 71 (6 2005),
p. 061911. DOI: 10.1103/PhysRevE.71.061911. URL: https://link.
aps.org/doi/10.1103/PhysRevE.71.061911.

[50] Harry C. Jubb et al. “Mutations at protein-protein interfaces: Small
changes over big surfaces have large impacts on human health”. In:
Progress in Biophysics and Molecular Biology 128 (2017), pp. 3 –13. ISSN:
0079-6107. DOI: https://doi.org/10.1016/j.pbiomolbio.2016.10.
002. URL: http://www.sciencedirect.com/science/article/pii/
S0079610716300311.

[51] Ekta Khurana et al. “Interpretation of Genomic Variants Using a Uni-
fied Biological Network Approach”. In: PLOS Computational Biology 9.3
(2013), pp. 1–9. DOI: 10.1371/journal.pcbi.1002886. URL: https:
//doi.org/10.1371/journal.pcbi.1002886.

[52] Yoo-Ah Kim, Dong-Yeon Cho, and Teresa M. Przytycka. “Understand-
ing Genotype-Phenotype Effects in Cancer via Network Approaches”.
In: PLOS Computational Biology 12.3 (2016), pp. 1–15. DOI: 10.1371/
journal.pcbi.1004747. URL: https://doi.org/10.1371/journal.
pcbi.1004747.

https://doi.org/https://doi.org/10.1002/bies.201100031
https://doi.org/https://doi.org/10.1002/bies.201100031
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.201100031
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.201100031
https://doi.org/https://doi.org/10.1016/j.semcdb.2009.07.003
https://doi.org/https://doi.org/10.1016/j.semcdb.2009.07.003
https://doi.org/https://doi.org/10.1016/j.semcancer.2013.06.003
https://doi.org/https://doi.org/10.1016/j.semcancer.2013.06.003
http://www.sciencedirect.com/science/article/pii/S1044579X13000540
http://www.sciencedirect.com/science/article/pii/S1044579X13000540
https://doi.org/10.1016/j.cell.2015.06.043
https://doi.org/10.1016/j.cell.2015.06.043
https://doi.org/10.1016/j.cell.2015.06.043
https://doi.org/10.1103/PhysRevE.71.061911
https://link.aps.org/doi/10.1103/PhysRevE.71.061911
https://link.aps.org/doi/10.1103/PhysRevE.71.061911
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2016.10.002
https://doi.org/https://doi.org/10.1016/j.pbiomolbio.2016.10.002
http://www.sciencedirect.com/science/article/pii/S0079610716300311
http://www.sciencedirect.com/science/article/pii/S0079610716300311
https://doi.org/10.1371/journal.pcbi.1002886
https://doi.org/10.1371/journal.pcbi.1002886
https://doi.org/10.1371/journal.pcbi.1002886
https://doi.org/10.1371/journal.pcbi.1004747
https://doi.org/10.1371/journal.pcbi.1004747
https://doi.org/10.1371/journal.pcbi.1004747
https://doi.org/10.1371/journal.pcbi.1004747


BIBLIOGRAPHY 101

[53] Brennan Klein et al. “Resilience and evolvability of protein-protein in-
teraction networks”. In: bioRxiv (2020). DOI: 10.1101/2020.07.02.
184325. eprint: https://www.biorxiv.org/content/early/2020/07/
02/2020.07.02.184325.full.pdf. URL: https://www.biorxiv.org/
content/early/2020/07/02/2020.07.02.184325.

[54] Max Kotlyar et al. “In silico prediction of physical protein interactions
and characterization of interactome orphans”. In: Nature Methods 12.1
(2015), pp. 79–84. DOI: 10.1038/nmeth.3178. URL: https://doi.org/
10.1038/nmeth.3178.

[55] Vessela N. Kristensen et al. “Principles and methods of integrative ge-
nomic analyses in cancer”. In: Nature Reviews Cancer 14.5 (2014), pp. 299–
313. DOI: 10.1038/nrc3721. URL: https://doi.org/10.1038/nrc3721.

[56] Mark D M Leiserson et al. “Pan-cancer network analysis identifies com-
binations of rare somatic mutations across pathways and protein com-
plexes.” In: Nat Genet 47.2 (2015), pp. 106–114. DOI: 10.1038/ng.3168.

[57] Chunhe Li and Jin Wang. “Quantifying Cell Fate Decisions for Differ-
entiation and Reprogramming of a Human Stem Cell Network: Land-
scape and Biological Paths”. In: PLOS Computational Biology 9.8 (2013),
pp. 1–14. DOI: 10.1371/journal.pcbi.1003165. URL: https://doi.
org/10.1371/journal.pcbi.1003165.

[58] Chunhe Li and Jin Wang. “Quantifying the underlying landscape and
paths of cancer”. In: Journal of The Royal Society Interface 11.100 (2014),
p. 20140774. DOI: 10.1098/rsif.2014.0774. URL: royalsocietyorg/
doi/abs/10.1098/rsif.2014.0774.

[59] Katja Luck et al. “A reference map of the human binary protein interac-
tome”. In: Nature 580.7803 (2020), pp. 402–408. DOI: 10.1038/s41586-
020-2188-x. URL: https://doi.org/10.1038/s41586-020-2188-x.

[60] Katja Luck et al. “Proteome-Scale Human Interactomics”. In: Trends in
Biochemical Sciences 42.5 (2017), pp. 342–354. DOI: 10.1016/j.tibs.
2017.02.006. URL: https://doi.org/10.1016/j.tibs.2017.02.006.

[61] Luca Malcovati et al. “Diagnosis and treatment of primary myelodys-
plastic syndromes in adults: recommendations from LeukemiaNet”.
In: Blood 122.17 (2013), pp. 2943–2964. ISSN: 0006-4971. DOI: 10.1182/
blood- 2013- 03- 492884. URL: https://doi.org/10.1182/blood-
2013-03-492884.

https://doi.org/10.1101/2020.07.02.184325
https://doi.org/10.1101/2020.07.02.184325
https://www.biorxiv.org/content/early/2020/07/02/2020.07.02.184325.full.pdf
https://www.biorxiv.org/content/early/2020/07/02/2020.07.02.184325.full.pdf
https://www.biorxiv.org/content/early/2020/07/02/2020.07.02.184325
https://www.biorxiv.org/content/early/2020/07/02/2020.07.02.184325
https://doi.org/10.1038/nmeth.3178
https://doi.org/10.1038/nmeth.3178
https://doi.org/10.1038/nmeth.3178
https://doi.org/10.1038/nrc3721
https://doi.org/10.1038/nrc3721
https://doi.org/10.1038/ng.3168
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1098/rsif.2014.0774
royalsocietyorg/doi/abs/10.1098/rsif.2014.0774
royalsocietyorg/doi/abs/10.1098/rsif.2014.0774
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1182/blood-2013-03-492884
https://doi.org/10.1182/blood-2013-03-492884
https://doi.org/10.1182/blood-2013-03-492884
https://doi.org/10.1182/blood-2013-03-492884


102 BIBLIOGRAPHY

[62] Luca Malcovati et al. “Prognostic Factors and Life Expectancy in Myelo
dysplastic Syndromes Classified According to WHO Criteria: A Ba-
sis for Clinical Decision Making”. In: Journal of Clinical Oncology 23.30
(2005), pp. 7594–7603. DOI: 10.1200/JCO.2005.01.7038. URL: https:
//doi.org/10.1200/JCO.2005.01.7038.

[63] Eugenio Marco et al. “Bifurcation analysis of single-cell gene expres-
sion data reveals epigenetic landscape”. In: Proceedings of the National
Academy of Sciences 111.52 (2014), E5643–E5650. ISSN: 0027-8424. DOI:
10.1073/pnas.1408993111. URL: https://www.pnas.org/content/
111/52/E5643.

[64] Naoki Masuda, Mason A. Porter, and Renaud Lambiotte. “Random
walks and diffusion on networks”. In: Physics Reports 716-717 (2017).
Random walks and diffusion on networks, pp. 1 –58. ISSN: 0370-1573.
DOI: https://doi.org/10.1016/j.physrep.2017.07.007. URL: http:
//www.sciencedirect.com/science/article/pii/S0370157317302946.

[65] Nigel J. O’Neil, Melanie L. Bailey, and Philip Hieter. “Synthetic lethality
and cancer”. In: Nature Reviews Genetics 18.10 (2017), pp. 613–623. DOI:
10.1038/nrg.2017.47. URL: https://doi.org/10.1038/nrg.2017.47.

[66] Sandra Orchard et al. “The MIntAct project—IntAct as a common cura-
tion platform for 11 molecular interaction databases”. In: Nucleic Acids
Research 42.D1 (2013), pp. D358–D363. ISSN: 0305-1048. DOI: 10.1093/
nar/gkt1115. URL: https://doi.org/10.1093/nar/gkt1115.

[67] E. Papaemmanuil et al. “Somatic SF3B1 Mutation in Myelodysplasia
with Ring Sideroblasts”. In: New England Journal of Medicine 365.15 (2011),
pp. 1384–1395. DOI: 10.1056/NEJMoa1103283. URL: https://doi.org/
10.1056/NEJMoa1103283.

[68] Elli Papaemmanuil et al. “Clinical and biological implications of driver
mutations in myelodysplastic syndromes”. In: Blood 122.22 (2013). ISSN:
0006-4971. DOI: 10.1182/blood-2013-08-518886. URL: https://doi.
org/10.1182/blood-2013-08-518886.

[69] Elli Papaemmanuil et al. “Genomic Classification and Prognosis in Acute
Myeloid Leukemia”. In: New England Journal of Medicine 374.23 (2016).
PMID: 27276561, pp. 2209–2221. DOI: 10.1056/NEJMoa1516192. eprint:
https://doi.org/10.1056/NEJMoa1516192. URL: https://doi.org/
10.1056/NEJMoa1516192.

https://doi.org/10.1200/JCO.2005.01.7038
https://doi.org/10.1200/JCO.2005.01.7038
https://doi.org/10.1200/JCO.2005.01.7038
https://doi.org/10.1073/pnas.1408993111
https://www.pnas.org/content/111/52/E5643
https://www.pnas.org/content/111/52/E5643
https://doi.org/https://doi.org/10.1016/j.physrep.2017.07.007
http://www.sciencedirect.com/science/article/pii/S0370157317302946
http://www.sciencedirect.com/science/article/pii/S0370157317302946
https://doi.org/10.1038/nrg.2017.47
https://doi.org/10.1038/nrg.2017.47
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1056/NEJMoa1103283
https://doi.org/10.1056/NEJMoa1103283
https://doi.org/10.1056/NEJMoa1103283
https://doi.org/10.1182/blood-2013-08-518886
https://doi.org/10.1182/blood-2013-08-518886
https://doi.org/10.1182/blood-2013-08-518886
https://doi.org/10.1056/NEJMoa1516192
https://doi.org/10.1056/NEJMoa1516192
https://doi.org/10.1056/NEJMoa1516192
https://doi.org/10.1056/NEJMoa1516192


BIBLIOGRAPHY 103

[70] Romualdo Pastor-Satorras, Eric Smith, and Ricard V. Solé. “Evolving
protein interaction networks through gene duplication”. In: Journal of
Theoretical Biology 222.2 (2003), pp. 199 –210. ISSN: 0022-5193. DOI: https:
//doi.org/10.1016/S0022-5193(03)00028-6. URL: http://www.
sciencedirect.com/science/article/pii/S0022519303000286.

[71] Scott D. Pauls and Daniel Remondini. “Measures of centrality based on
the spectrum of the Laplacian”. In: Phys. Rev. E 85 (6 2012), p. 066127.
DOI: 10.1103/PhysRevE.85.066127. URL: https://link.aps.org/
doi/10.1103/PhysRevE.85.066127.

[72] Sara Rahmati et al. “pathDIP: an annotated resource for known and
predicted human gene-pathway associations and pathway enrichment
analysis”. In: Nucleic Acids Research 45.D1 (2016), pp. D419–D426. ISSN:
0305-1048. DOI: 10.1093/nar/gkw1082. URL: https://doi.org/10.
1093/nar/gkw1082.

[73] Sabry Razick, George Magklaras, and Ian M. Donaldson. “iRefIndex: A
consolidated protein interaction database with provenance”. In: BMC
Bioinformatics 9.1 (2008), p. 405. DOI: 10.1186/1471-2105-9-405. URL:
https://doi.org/10.1186/1471-2105-9-405.

[74] Francisco A. Rodrigues et al. “The Kuramoto model in complex net-
works”. In: Physics Reports 610 (2016). The Kuramoto model in complex
networks, pp. 1 –98. ISSN: 0370-1573. DOI: https://doi.org/10.1016/
j.physrep.2015.10.008. URL: http://www.sciencedirect.com/
science/article/pii/S0370157315004408.

[75] Thomas Rolland et al. “A Proteome-Scale Map of the Human Interac-
tome Network”. In: Cell 159.5 (2014), pp. 1212–1226. DOI: 10.1016/j.
cell.2014.10.050. URL: https://doi.org/10.1016/j.cell.2014.
10.050.

[76] Gert Sabidussi. “The centrality index of a graph”. In: Psychometrika 31.4
(1966), pp. 581–603. DOI: 10.1007/BF02289527. URL: https://doi.org/
10.1007/BF02289527.

[77] Wouter Saelens et al. “A comparison of single-cell trajectory inference
methods”. In: Nature Biotechnology 37.5 (2019), pp. 547–554. DOI: 10.
1038/s41587-019-0071-9. URL: https://doi.org/10.1038/s41587-
019-0071-9.

https://doi.org/https://doi.org/10.1016/S0022-5193(03)00028-6
https://doi.org/https://doi.org/10.1016/S0022-5193(03)00028-6
http://www.sciencedirect.com/science/article/pii/S0022519303000286
http://www.sciencedirect.com/science/article/pii/S0022519303000286
https://doi.org/10.1103/PhysRevE.85.066127
https://link.aps.org/doi/10.1103/PhysRevE.85.066127
https://link.aps.org/doi/10.1103/PhysRevE.85.066127
https://doi.org/10.1093/nar/gkw1082
https://doi.org/10.1093/nar/gkw1082
https://doi.org/10.1093/nar/gkw1082
https://doi.org/10.1186/1471-2105-9-405
https://doi.org/10.1186/1471-2105-9-405
https://doi.org/https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/https://doi.org/10.1016/j.physrep.2015.10.008
http://www.sciencedirect.com/science/article/pii/S0370157315004408
http://www.sciencedirect.com/science/article/pii/S0370157315004408
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1007/BF02289527
https://doi.org/10.1007/BF02289527
https://doi.org/10.1007/BF02289527
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9


104 BIBLIOGRAPHY

[78] Julie Schanz et al. “New Comprehensive Cytogenetic Scoring System
for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute
Myeloid Leukemia After MDS Derived From an International Database
Merge”. In: Journal of Clinical Oncology 30.8 (2012), pp. 820–829. DOI:
10.1200/JCO.2011.35.6394. URL: https://doi.org/10.1200/JCO.
2011.35.6394.

[79] Michael R. Stratton, Peter J. Campbell, and P. Andrew Futreal. “The
cancer genome”. In: Nature 458.7239 (2009), pp. 719–724. DOI: 10.1038/
nature07943. URL: https://doi.org/10.1038/nature07943.

[80] Damian Szklarczyk et al. “STRING v11: protein–protein association
networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets”. In: Nucleic Acids Research 47.D1
(2018), pp. D607–D613. ISSN: 0305-1048. DOI: 10.1093/nar/gky1131.
URL: https://doi.org/10.1093/nar/gky1131.

[81] Daniel Ting, Ling Huang, and Michael I. Jordan. “An Analysis of the
Convergence of Graph Laplacians”. In: Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning. Omni-
press, 2010, pp. 1079–1086. ISBN: 9781605589077.

[82] Ítalo Faria do Valle et al. “Network integration of multi-tumour omics
data suggests novel targeting strategies”. In: Nature Communications 9.1
(2018), p. 4514. DOI: 10 . 1038 / s41467 - 018 - 06992 - 7. URL: https :
//doi.org/10.1038/s41467-018-06992-7.

[83] Bert Vogelstein et al. “Cancer Genome Landscapes”. In: Science 339.6127
(2013), pp. 1546–1558. ISSN: 0036-8075. DOI: 10.1126/science.1235122.
eprint: https://science.sciencemag.org/content/339/6127/1546.
full.pdf. URL: https://science.sciencemag.org/content/339/
6127/1546.

[84] Cuihong Wan et al. “Panorama of ancient metazoan macromolecular
complexes”. In: Nature 525.7569 (2015), pp. 339–344. DOI: 10 . 1038 /
nature14877. URL: https://doi.org/10.1038/nature14877.

[85] Jin Wang. “Landscape and flux theory of non-equilibrium dynamical
systems with application to biology”. In: Advances in Physics 64.1 (2015),
pp. 1–137. DOI: 10 . 1080 / 00018732 . 2015 . 1037068. eprint: https :
//doi.org/10.1080/00018732.2015.1037068. URL: https://doi.
org/10.1080/00018732.2015.1037068.

https://doi.org/10.1200/JCO.2011.35.6394
https://doi.org/10.1200/JCO.2011.35.6394
https://doi.org/10.1200/JCO.2011.35.6394
https://doi.org/10.1038/nature07943
https://doi.org/10.1038/nature07943
https://doi.org/10.1038/nature07943
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/s41467-018-06992-7
https://doi.org/10.1038/s41467-018-06992-7
https://doi.org/10.1038/s41467-018-06992-7
https://doi.org/10.1126/science.1235122
https://science.sciencemag.org/content/339/6127/1546.full.pdf
https://science.sciencemag.org/content/339/6127/1546.full.pdf
https://science.sciencemag.org/content/339/6127/1546
https://science.sciencemag.org/content/339/6127/1546
https://doi.org/10.1038/nature14877
https://doi.org/10.1038/nature14877
https://doi.org/10.1038/nature14877
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1080/00018732.2015.1037068


BIBLIOGRAPHY 105

[86] Caleb Weinreb et al. “Fundamental limits on dynamic inference from
single-cell snapshots”. In: Proceedings of the National Academy of Sciences
115.10 (2018). ISSN: 0027-8424. DOI: 10.1073/pnas.1714723115. URL:
https://www.pnas.org/content/115/10/E2467.

[87] Jingwen Yan et al. “Network approaches to systems biology analysis of
complex disease: integrative methods for multi-omics data”. In: Brief-
ings in Bioinformatics 19.6 (2017), pp. 1370–1381. ISSN: 1477-4054. DOI:
10 . 1093 / bib / bbx066. eprint: https : / / academic . oup . com / bib /
article - pdf / 19 / 6 / 1370 / 27119423 / bbx066 . pdf. URL: https : / /
doi.org/10.1093/bib/bbx066.

[88] Xinping Yang et al. “Widespread Expansion of Protein Interaction Ca-
pabilities by Alternative Splicing”. In: Cell 164.4 (2016), pp. 805–817.
DOI: 10.1016/j.cell.2016.01.029. URL: https://doi.org/10.1016/
j.cell.2016.01.029.

[89] Song Yi et al. “Functional variomics and network perturbation: con-
necting genotype to phenotype in cancer”. In: Nature Reviews Genet-
ics 18.7 (2017), pp. 395–410. DOI: 10.1038/nrg.2017.8. URL: https:
//doi.org/10.1038/nrg.2017.8.

[90] Kenichi Yoshida et al. “Frequent pathway mutations of splicing ma-
chinery in myelodysplasia”. In: Nature 478.7367 (2011), pp. 64–69. DOI:
10.1038/nature10496. URL: https://doi.org/10.1038/nature10496.

[91] Joseph Xu Zhou et al. “Quasi-potential landscape in complex multi-
stable systems”. In: Journal of The Royal Society Interface 9.77 (2012),
pp. 3539–3553. DOI: 10.1098/rsif.2012.0434. URL: https://royalsociety.
org/doi/abs/10.1098/rsif.2012.0434.

[92] Marinka Zitnik et al. “Evolution of resilience in protein interactomes
across the tree of life”. In: Proceedings of the National Academy of Sci-
ences 116.10 (2019), pp. 4426–4433. ISSN: 0027-8424. DOI: 10.1073/pnas.
1818013116. eprint: https://www.pnas.org/content/116/10/4426.
full.pdf. URL: https://www.pnas.org/content/116/10/4426.


	Interactome Reconstructions Topology Comparison and Resilience
	Introduction
	Gene-Centered Interactomes

	Interactomes Databases Collection and Harmonization
	Overall Properties
	Degree Distribution
	Testing the Scale-Free Hypothesis

	Shared Hubs
	Null Model Comparison
	Hypergeometric Distribution
	Networks with Different Sets of Nodes
	Networks with the Same Set of Nodes


	Local Properties Comparison
	Results

	Network Resilience To Cancer Mutations
	Results
	Interactome Resilience to Random Nodes Failure
	Impact of Cancer Mutations on Interactome Resilience 

	Conclusions
	Maximum Resilience


	Statistical Methods for Cancer Genome Landscaping
	Mixture Models
	Beta and Dirichlet Distributions
	Finite Mixture Model
	Finite Multinomial Mixture for Cancer Genotypes Modelling 

	Nonparametric Bayesian Methods
	The Dirichlet Process
	The Stick-Breaking Construction
	The Chinese Restaurant Process
	The Posterior Dirichlet Process

	Dirichlet Process Mixture Model

	Latent Dirichlet Allocation and Hierarchical DP
	Latent Dirichlet Allocation
	The Hierachical Dirichlet Process

	Bayesian Networks
	Myelodysplastic Syndromes Genomic Landscaping
	Introduction
	Material and Methods
	Study populations
	HDP clustering
	Bayesian Network Analysis

	Definition of a genomic classification of myelodysplastic syndromes


	Network Laplacian Cell Dynamics Inference
	Cell Gene Expression Dynamics and Cancer Attractors
	Cancers as Attractors in State Space
	Reconstructing the Epigenetic Landscape
	Cell Dynamics Description
	Decomposition of the Force Field


	Connections between Diffusion on Networks and Manifolds 
	Network Laplacians
	Network Laplacians and Embedding
	Embedding for Smooth Manifolds

	Graph Approximation of the Laplace-Beltrami Operator on a Manifold
	Connection Between Laplace-Beltrami and Lrw
	Random Walk on Networks
	Lazy Random Walk
	Continuous Time Random Walk
	Connection to Manifold Laplacian
	Decomposition along Diffusion Eigenfunction

	Deeper Relation Between Random Walk Laplacian and Diffusion on Manifold

	Inference of Cell Regulatory Landscape
	Toy Model
	Simulation and Landscape Inference



	Bibliography

