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Deep Scene Understanding with Limited Training Data

by Pierluigi ZAMA RAMIREZ

Scene understanding by a machine is a challenging task due to the profound
variety of nature. Nevertheless, deep learning achieves impressive results
in several scene understanding tasks such as semantic segmentation, depth
estimation, or optical flow. However, these kinds of approaches need a large
amount of labeled data, leading to massive manual annotations, which are
incredibly tedious and expensive to collect. In this thesis, we will focus on
understanding a scene through deep learning with limited data availability.
First of all, we will tackle the problem of the lack of data for semantic segmen-
tation. We will show that computer graphics come in handy to our purpose,
both to create a new, efficient tool for annotation as well to render synthetic
annotated datasets quickly. However, a network trained only on synthetic
data suffers from the so-called domain-shift problem, i.e. unable to general-
ize to real data. Thus, we will show that we can mitigate this problem using
a novel deep image to image translation technique. In the second part of the
thesis, we will focus on the relationship between scene understanding tasks.
We argue that building a model aware of the connections between tasks is
the first building stone to create more robust, efficient, performant models
that need less annotated training data. In particular, we demonstrate that we
can decrease the need for labels by exploiting the relationship between vi-
sual tasks. Finally, in the last part, we propose a novel unified framework for
comprehensive scene understanding, which exploits the synergies between
tasks to be more robust, efficient, and performant.
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Chapter 1

Introduction

1.1 Computer Vision and Deep Learning

What does it mean to see? Being aware of what is and where it is by looking.
This would be the answer that most people would give to this question. In
other words, Vision is the process of discovering from images what is present
in the world and where it is [7]. If we think about it, it is incredible how
our brain can instantaneously elaborate all the information coming from the
world, in all its details, colors, and beauty, achieving a complete understand-
ing of what and where things are. This is possible because our brain has the
extraordinary capacity of finding extremely rich representation [8] of all this
immense amount of information.

Computer vision is a multidisciplinary science that strives to give ma-
chines the ability to see [9]. As we can imagine, this is incredibly challenging
due to the profound variety and complexity of the nature around us. In the
last 70 years, thousands of scientists tried to approach this problem from dif-
ferent perspectives, from physiology, philosophy, psychology, engineering,
computer science, and artificial intelligence.

Early approaches tried to find deductive models of nature, starting from
strong assumptions of it. However, none of these techniques were able to
achieve a high degree of understanding of the scene. On the other hand, in
the last two decades, machine learning techniques [10] started to be a promis-
ing approach for designing systems with a human-level understanding of
imagery. Machine learning systems can learn rich representations directly
from data, which, in our case, are images, but they require a massive quan-
tity of data to work. Nevertheless, nowadays, cameras are everywhere, on
mobile phones, on personal computers, etc. Moreover, thanks to social me-
dia and the internet, we dispose of an immense number of images depicting
the world around us. Thanks to this large availability of data, machines can
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learn directly from the world, and they are moving towards a comprehensive
understanding of it.

Among Machine Learning approaches, Deep Learning [11], thanks to Neu-
ral Networks, has revolutionized computer vision research and set forth a
general framework to address a variety of visual tasks, to understand what
is in the scene (e.g. semantic segmentation), to perceive where things are
(e.g. depth estimation), to even understand how they are moving (e.g. op-
tical flow) from images. In this thesis, we use deep learning approaches in
several scene understanding tasks, with a special emphasis on semantic seg-
mentation.

Despite these approaches’ unquestionable power, most of them are super-
vised techniques, needing thousands of labels to be trained. In the last years,
several approaches try to mitigate the need for labels. For instance, for depth
estimation or optical flow, we devised self-supervised methods that can learn
directly from images, leveraging on geometric constraints. However, we can-
not rely on any geometric information for semantic segmentation, and we
still need labels. In the next section, we present the semantic segmentation
task and various solutions for addressing the data problem.

1.2 Semantic Segmentation and the Data Problem

Understanding what is inside the scene is the first fundamental step towards
intelligent autonomous systems. Many technologies such as autonomous
driving, medical imaging, and industrial robots need to know precisely what
is in the world to take any action or decision.

In computer vision, semantic scene understanding is widely studied and
addressed at different granularities [12]. As shown in Figure 1.1, given a
reference image, we can perform:

• Image classification: understanding the objects in the image

• Object detection: classification and detection of each object

• Semantic segmentation: classification of each pixel of the image

• Instance segmentation: identification of pixel associated to different in-
stances of the same class

• Panoptic segmentation: combination of the previous two
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PeoplePeoplePeoplePeople

FIGURE 1.1: Semantic Scene Understanding at different gran-
ularities. From left to right: classification, object detection, se-
mantic segmentation, instance segmentation, panoptic segmen-

tation.

As stated above, nowadays, state-of-the-art approaches for semantic seg-
mentation are based on deep learning and neural networks. These methods
can achieve impressive results, reaching almost human-like performances.
However, they suffer from the so-called domain-shift problem [13], where a
model learned on a source data distribution (i.e. the training dataset) can-
not to generalize to new unseen target data distributions. To give a practical
example of this problem, let us imagine an autonomous driving car, whose
vision system has been trained to drive only in California and then use the
same system in a different country, for instance, Italy. There are many differ-
ences between the two countries, such as traffic signs and landscape. Thus,
our system likely fail to recognize these elements, with catastrophic conse-
quences, both for the driver and people around.

For this reason, although pixel-wise labeling is an extremely tedious and
time-consuming process (e.g. approximately 3 hours for a 2048× 1024 image
[14]), many datasets have been created. For instance, we find Cityscapes [14],
Apolloscapes [15], Mapillary [16] for autonomous driving, PASCAL VOC
[17], ADE20K [18] for indoor scenes, [19] for human parsing, LiTS [20]for
medical imaging. In light of these considerations, many recent works try to
find ways to make the labeling process less painful and time-consuming or
extract the knowledge from other sources with transfer learning, to reduce
the amount of manually annotated data required.

In the following two sections, we describe two approaches investigated
in this thesis to tackle the data problem. Firstly, we describe that it is possible
to speed up data collection thanks to computer graphics techniques, by creat-
ing efficient annotation tools or by creating synthetic simulations of the real
world. Moreover, we show that it is possible to mitigate the domain-shift
problem of synthetic-data by using image-to-image translation techniques.
Secondly, we describe that it is possible to exploit the relationship between
visual tasks to decrease the need for labels and obtain more powerful models.
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1.3 Creating Data with Computer Graphics

Computer graphics is the science that aims at generating images through
a computer. Several computer vision works exploit computer graphics to
produce an accurate simulation of the real world, to train and test algorithms.
[21, 22, 23].

In the first part of this thesis, we show that computer graphics techniques
may help us speed up collecting new labeled data. In chapter 4 we inves-
tigate a new technique that combines virtual reality and gamification with
3D reconstruction techniques to make labeling as easy and fun as playing a
videogame. In chapter 5 we explore the possibility of obtaining labels for
computer vision directly from the rendering of 3D synthetic models. In the
last years, several synthetic datasets have been obtained in this way [24, 25].
However, though this strategy allows us to collect a large number of labeled
images in a short amount of time, the domain-shift between synthetic and
real data is significant. Though modern computer graphics can produce
high-quality synthetic images that resemble the real world, renderings are
still very different from real pictures in several aspects such as colors, tex-
tures, sensor noise, the shape of objects, and countless other factors. There-
fore, in chapter 5 we propose to decrease the domain shift across real and
synthetic data with image-to-image translation techniques. In particular, we
propose to employ semantic information to improve the existing state-of-the-
art approaches for image-to-image translation.

1.4 Transferring Knowledge Across Tasks

When we perceive a scene, our brain provides us a comprehensive under-
standing of it. We understand the semantics, the geometry, the motion of
things jointly. These properties of the scene are tightly correlated one to an-
other. For instance, the semantic of an object is strictly connected to its ge-
ometry and its way of moving. However, most state-of-the-art methods are
approaching any single task, in isolation, ignoring the potentially beneficial
relationship among them. Alternatively, a model aware of these relation-
ships demands less supervision, uses less computation, and behaves in more
predictable ways. Incorporating such a structure is the first stepping stone
towards developing provably efficient comprehensive/universal perception
models.
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In the second part of the thesis, we show that it is possible to exploit this
relationship across tasks to decrease the need for labels. Moreover, transfer-
ring knowledge across tasks is not helpful only for semantic segmentation,
but it can be beneficial to a large set of visual tasks. For instance, performing
depth estimation can decrease the need for semantic labels and vice-versa. In
chapter 8 and chapter 9 we show a general framework to transfer knowledge
across visual tasks to decrease the need for data leveraging on an auxiliary
synthetic domain. Moreover, in chapter 10, we demonstrate the effective-
ness of our framework in the standard benchmark for unsupervised domain
adaptation for semantic segmentation achieving state-of-the-art results.

1.5 Comprehensive Scene Understanding and Multi-

Task Learning

In the last part of the thesis, we make a further step towards the exploita-
tion of visual task dependencies. We argue that jointly performing several
tasks is key to boost performances and decrease computation requirements.
We show that exploiting semantic information can be beneficial to several
other visual tasks such as depth estimation, optical flow, camera pose estima-
tion, or motion segmentation. In chapter 13 we show a first study showing
that it is possible to exploit the synergies between depth and semantic to im-
prove the former task, achieving state-of-the-art results with respect to previ-
ously published methods. In this preliminary investigation we still use some
ground-truth labels for semantic segmentation. Finally, in chapter 14 we pro-
pose a unified framework for comprehensive scene understanding. Using
the semantic information, we improve depth, optical flow, camera pose, and
motion segmentation. Exploiting the synergy among these tasks allows the
framework to be more robust, accurate, and lightweight (i.e., running in real-
time on a standard GPU). Moreover our methodology can be trained without
any manually annotated labels.

1.6 Structure of the thesis

To summarize the structure of the thesis is as follows:
Part 1 - Creating Data with Computer Graphics We present here some

methodologies that employ computer graphics to generate annotations rapidly:
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• chapter 4 - 3D Semantic Labeling with Virtual Reality: we present here the
novel tool for semantic segmentation with Virtual Reality

• chapter 5 - Image to Image Translation for Synthetic to Real Adaptation: we
present here the novel methodology for image-to-image translation to
decrease the domain-shift between synthetic and real data.

Part 2 - Transferring Knowledge Across Tasks for Domain Adaptation We
propose our novel framework AT/DT that exploits the relationships between
tasks to decrease the need for labels.

• chapter 8 - Learning Across Tasks and Domains: we present here the main
AT/DT framework.

• chapter 9 - Learning Good Features to Transfer Across Tasks and Domains:
We extend the AT/DT framework in case of structured tasks such as
semantic and depth.

• chapter 10 - AT/DT in Unsupervised Domain Adaptation for Semantic Seg-
mentation: we apply AT/DT in the standard unsupervised domain adap-
tation for semantic segmentation benchmark by transferring self-supervised
depth to semantic.

Part 3 - Comprehensive Scene Understanding with Multi-Task Learning In
this part we deepen the idea of exploiting the relationships among tasks to
obtain robust, accurate and light models.

• chapter 13 - Geometry and Semantics: we report the preliminary study on
self-supervised depth and semantic segmentation in a multi-task learn-
ing framework showing that semantic helps depth estimation.

• chapter 14 - Geometry, Semantics and Motion: we extend the previous
chapter considering more scene understanding tasks. We show that we
can build a robust, accurate, real-time model that can be trained with-
out any manually annotated label by exploiting the synergies between
different tasks.
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Chapter 2

Deep Scene Understanding

Scene understanding is the process, often real-time, of perceiving, analyzing,
and elaborating an interpretation of a 3D dynamic scene observed through
sensors, typically cameras. Examples of scene understanding tasks from RGB
images are visualized in Figure 2.1. As already outlined in chapter 1, nowa-
days, deep networks are the standard approach to address these tasks. In this
section, we will review the essential works concerning scene understanding
with deep neural networks. In particular, we will review the state-of-the-art
methods for semantic segmentation, depth estimation, and optical flow, three
tasks addressed in this thesis.

FIGURE 2.1: Example of scene understanding tasks from RGB
images (G): semantic segmentation(A), depth estimation(B),
normal estimation(C), Object Detection(D), visual odometry(E),

optical flow(F)
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2.1 Semantic Segmentation

Semantic Segmentation is the task of estimating the class for each pixel of the
image. It is a fundamental problem in scene understanding that was tackled
since the the advent of machine learning in computer vision.

While most early proposals relied on hand-crafted features together with
classifiers like Random Forests [26] or Support Vector Machines [27], nowa-
days pixel-level semantic segmentation approaches mainly exploit fully con-
volutional neural networks [28]. Compared to previous methods, the present-
day strategy’s key advantage concerns the ability to automatically learn a bet-
ter feature representation, mainly focusing on contextual information. A
popular trend in semantic segmentation is to employ encoder-decoder ar-
chitectures. The encoder is in charge of extracting low-resolution features
from high-resolution inputs while the decoder should recover fine object de-
tails from the feature representation to yield a high-resolution output map
[28, 29, 30, 31]. Early deep learning methods attempted to encode different
context information levels from images by leveraging on multi-scale predic-
tion models [32, 33, 34], whereby the same architecture takes inputs at dif-
ferent scales so as to extract features at different contextual levels. Another
popular trend of early methods was to refine results of the segmentation net-
works by encoding long-range context information exploiting Conditional
Random Fields (CRF) either as a post-processing module [35] or as an inte-
gral part of the network [36]. On the other hand, following methods such as
[37] try to extract context information at different levels and scales by relying
on spatial pyramid pooling [38]. More recently, popular architecture such as
Deeplab [35, 39, 40] deployed atrous-convolutions rather than the standard
convolution operator to extract higher resolution features while keeping a
large receptive field to capture long-range information [41, 42]. Even though
all previous methods achieved already impressive performance in Semantic
Segmentation, further improvements were realized thanks to recent devel-
opments in Auto Machine Learning (AutoML) [43, 44] by leveraging archi-
tectural search to achieve state-of-the-art accuracy. An alternative research
path deals with real-time semantic segmentation networks. In this space,
[45] deploys a compact and efficient network architecture, [46] proposes a
two paths network to attain fast inference while capturing high-resolution
details. DABNet [47] finds an effective combination of depth-wise separa-
ble filters and atrous-convolutions to reach a good trade-off between effi-
ciency and accuracy. [48] employs cascaded sub-stages to refine results while
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FCHardNet [49] leverages on a new harmonic densely connected pattern to
maximize the inference performance of larger networks.

2.2 Depth Estimation

Depth estimation is the task of estimating the distance from the camera for
each pixel of an image. It is an essential task in scene understanding, and it
is key to unlock exciting applications such as autonomous driving, 3D scene
reconstruction, and augmented reality. In robotics, depth is a crucial prereq-
uisite to perform multiple tasks such as navigation and planning.

In particular, single view depth estimation [50, 51, 52, 53] has gained
much more popularity recently thanks to the increasing availability of bench-
marks [54, 55].

The work by Garg et al.[56] represents the first, pivotal step in this di-
rection, proposing a network for monocular depth estimation by deploying,
at training time, view reconstruction loss together with actual stereo pairs
as supervision. Then, Godard et al.[57] introduced bilinear warping [58]
alongside with more robust reconstruction losses, thereby achieving state-of-
the-art performance for monocular depth estimation. This approach was ex-
tended to embedded systems [59], using a virtual trinocular setup at training
time [60] or a GAN framework [61], Kuznietsov et al.[62] trained a network in
a semi-supervised manner, by merging the unsupervised image reconstruc-
tion error with the contribution from sparse depth ground-truth labels. Other
works improved results using proxy labels from SGM [63, 64] or guidance
from visual odometry [65].

While the techniques mentioned above require rectified stereo pairs at
training time, Zhou et al.[66] proposed to train a network to infer depth from
video sequences. This network computes a reconstruction loss between sub-
sequent frames and, at the same time, predicts the relative poses between
adjacent frames. Therefore, this method enables a fully-monocular setup
whereby stereo pairs are no longer required for training. However, this strat-
egy comes to a price in performance [66], delivering less accurate depth es-
timations compared to [57] and predicting depth-maps up to a scale factor.
More recent works aimed at improving the video-sequence supervision ap-
proach because of its easiness of use, introducing 3D point-cloud alignment
[67], differentiable visual odometry [68], or normal consistency [69]. Nev-
ertheless, none of them outperform the synergy of stereo supervision and
network model deployed by Godard et al. [57].
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A novel trend introduced by recent works [70, 71, 72, 73, 74, 75] model
rigid and non-rigid components using the projected depth, relative camera
transformations, and optical flow to handle independent motions, which can
also be estimated independently in the 3D space [76, 77]. In [78], the authors
show how to learn camera intrinsics together with depth and ego-motion to
enable training on any unconstrained video. In [79, 80, 81], reasoned design
choices such as a minimum reprojection loss between frames, self-assembled
attention modules, and auto-mask strategies to handle the static camera or
dynamic objects proved to be very effective.

Supervision from stereo and video has also been combined [82, 79], possi-
bly improved by proxy supervision from stereo direct sparse odometry [74].
Uncertainty modeling for self-supervised monocular depth estimation has
been studied in [83].

Finally, lightweight networks aimed at real-time performance on low-
power systems have been proposed within self-supervised [59, 84] as well
as supervised [85] learning paradigms.

2.3 Optical Flow Estimation

The optical flow problem concerns estimation of the apparent displacement
of pixels in consecutive frames, and it is useful in various applications such
as, e.g. , video editing [86, 87] and object tracking [88]. Initially introduced by
Horn and Schunck [89], this problem has traditionally been tackled by vari-
ational approaches [90, 91, 92]. More recently, Dosovitskiy et al.[93] showed
the supremacy of deep learning strategies in this field. Then, other works
improved accuracy by stacking more networks [94] or exploiting traditional
pyramidal [95, 96, 97] and multi-frame fusion [98] approaches. Unfortu-
nately, obtaining even sparse optical flow labels is extremely challenging,
which renders self-supervision from images highly desirable. For this rea-
son, an increasing number of methods propose to use image reconstruction
and spatial smoothness [99, 100, 101] as main signals to guide the training,
while paying particular attention to occluded regions [102, 103, 104, 105, 106,
107].
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Part I

Creating Data with Computer
Graphics
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Chapter 3

Initial Remarks

Training a neural network requires data. Generating ground-truth data is the
main bottleneck when using this technology, both for research and industry.
Indeed, when facing a new task or scenario, the first step is always collecting
enough data to train the neural model properly. However, the annotation
process is incredibly time-consuming in pixel-wise tasks such as semantic
segmentation and even harder for geometric tasks such as depth estimation
or optical flow. Computer graphics comes in handy for this, for instance, by
helping in building new efficient and user-friendly annotation tools. Indeed,
in chapter 4 we propose a new efficient labeling tool based on virtual reality
to speed-up the annotation process. Given a 3D reconstruction of a scene we
can load it into a virtual world and we can move around intuitively. More-
over, the practical game-style interface enlarge the pool of user being able to
use our framework, paving the way for new kind of post-processing based
on multi-player integration to automatically refine results.

Nevertheless, apart from the tool’s efficiency, manually annotating data
for each task and scenario is not scalable. Thus, a recent trend is to use com-
puter graphics for creating a virtual simulation of the real world. From this
simulation, we can produce thousands of ground-truths in few minutes of
computation. Nowadays, computer graphics engines can create incredibly
realistic simulations. However, synthetic data still differ from real ones for
several factors such as illumination, the sensor noise, or unrealistic 3D mod-
els. Thus, training a neural network on synthetic data produces degraded
results when tested on real scenarios because of the domain-shift problem.
In chapter 5 we propose a novel technique to mitigate the domain-shift prob-
lem when training on simulated data (chapter 5). In particular, we employ
style-transfer techniques to improve the realism of synthetic images. Pecu-
liar to our approach is the use the semantic information to improve the style-
transfer quality.
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In the following sections we review some works relevant to this part of
the thesis.

3.1 Semantic Segmentation Datasets

Obtaining a large amount of labeled data is crucial to achieving good perfor-
mance in deep learning algorithms. Thus, even though annotating a dataset
is a tedious and time-consuming process, several datasets featuring 2D im-
ages annotated with semantic labels are available. In the case of outdoor ur-
ban scenarios, the most popular are KITTI [108] and Cityscapes [109], which,
yet, contain a relatively small number of images semantically annotated by
hand. They were two of the first datasets proposed in this area (urban out-
door), so the focus was more on the quality of the data rather than the anno-
tation process’s scalability. The Mapillary dataset [16] includes many more
images, though the labeling was still performed image by image by hand.
The same is true for some indoor datasets, such as [110] and [111]. Although
smart graphical tools are used to produce frame-by-frame annotations, the
magnitude of the available images is only slightly higher. Indeed, annotat-
ing each 2D image by hand is not scalable.

Conversely, [112] shows an efficient pipeline for indoor environments.
They propose a pipeline composed of three steps: RGBD scan, 3D recon-
struction, and 3D labeling showing the increased speed by translating the
annotation process in 3D. In [113] such procedure is formally extended with a
projection module which, based on known camera poses, brings the 3D labels
into 2D. The label projection approach was then exploited in other datasets,
such as [114] and [115]. It can be observed that leveraging on 3D reconstruc-
tion and camera tracking to facilitate labeling may be thought of as shifting
the cost of labeling each individual image toward the complexity of the re-
quirements necessary to obtain a suitable dataset (tracked camera) and a 3D
annotation tool. This benefit is even more evident in synthetic datasets, such
as [23, 116, 117], where obviously both camera tracking and 3D reconstruc-
tion are no longer external elements but inherent to the rendering engine and
we just need to annotate and render thee 3D model. Following this trend [15,
118, 119] have proposed large urban outdoor 2D-3D datasets. The annota-
tion task is performed on point clouds, and semantically labeled images are
attained by projection.

However, when dealing with 3D annotation, the most used tools are open-
source software such as Blender or Meshlab, which require expertise in 3D
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modeling. Some authors have expressly addressed this by proposing smart
solutions. In [120], the authors have proposed an interactive procedure where
the user can physically touch the object in the scene to label it. Moreover,
they exploit region growing techniques to color large parts of the scene ex-
peditiously. In [121], the authors build a physical device able to reproduce
the pipeline where the user navigates the environment in Augmented Real-
ity, using a laser pointer to identify the homogeneous areas of the scene and
assign them a correct label. Differently, in chapter 4 we introduce a Virtual
Reality framework to navigate the reconstructed environments. We provide
the user with a series of intuitive gamification tools to label the scene expedi-
tiously. To the best of our knowledge, ours is the first method that allows for
labeling very-large-scale scenes in a short time by a VR approach.

Another strategy to collect labeled data is to leverage computer graphics
engines to build a virtual simulation of the real world, and render synthetic
images. In this way, in only a few minutes of computation, we can collect
thousands of images and corresponding labels such as semantic, depth, or
optical flow maps. Synthetic datasets such as Synthia [24] and Carla [25]
were obtained by producing ad-hoc 3D simulations for an autonomous driv-
ing scenario. In [21] the authors extract render-layers information from the
famous video-game Grand Theft Auto V (GTAV). Nevertheless, using only
synthetic data for training a models lead to poor performances in real scenar-
ios. For this reason we review essential works for Domain Adaptation that
explicit address the domain-shift issue.

3.2 Domain Adaptation

Domain Adaptation is the research topic that address the domain-shift prob-
lem [122, 123, 124]. This field aims at learning models that turn out robust
when tested on data sampled from a domain different from the training one.

Throughout the years, adaptation has been performed at different levels,
addressing mainly the image classification task. The typical trend for domain
adaptation for image classification is to learn a domain-invariant or domain-
aligned feature space. Early approaches try to model a shared feature space
across domains by relying on statistical metrics such as MMD [125, 126, 127].
Later, some works proposed to align domains by adversarial training [128,
129, 130, 131]. Recently [132] noticed that aligning feature norms to an arbi-
trarily large value results in better transferability across domains.
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However, when dealing with dense tasks such as semantic segmenta-
tion, domain adaptation approaches designed for classification typically fail.
Thus, several approaches address explicitly domain adaptation for dense
tasks, such as semantic segmentation. We can divide most of these methods
into two categories: feature-level and pixel-level. Feature-level methods [133,
127, 130, 134, 128, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144] try to align
the feature representation extracted from CNN across different datasets, usu-
ally, again, by using adversarial training. On the other hand, pixel-level ap-
proaches [145, 146, 147] convert the source image into a target-style image
relying on recent image-to-image translation generative networks [148, 149].
Subsequent works [150, 151, 152, 153, 154, 155, 156, 157, 158] take the best of
the worlds and operate at both pixel and feature level.

More recently, a new research line focuses on Self-Training [159], where a
semantic classifier is fine-tuned directly on the target domain, using its pre-
dictions as pseudo-labels. [160, 161, 162] cleverly set class-confidence thresh-
olds to mask wrong predictions. [163, 164, 165] propose to use pseudo-labels
with different regularization techniques to minimize both the inter-domain
and intra-domain gap. On the other hand, [166] synthesizes new samples
for the target domain by cropping objects from source images using ground
truth labels and pasting them onto target images.

In chapter 5, we propose a novel pixel-level approach that exploits se-
mantic discriminators to improve the image-to-image translation process.
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Chapter 4

3D Semantic Labeling with Virtual
Reality

FIGURE 4.1: Virtual Reality view of a 3D reconstruction from
KITTI sequence. Left image: RGB visualization of the virtual
world. Middle image: label palette and empty voxelization.

Right image: partially labeled environment.

In this chapter we propose Shooting Labels, a novel tool based on Virtual
Reality (VR) to ease the dense 3D semantic labeling, so as to gather 3D and
2D data endowed with semantic annotations. To the best of our knowledge,
ours is the first system which allows for handling efficiently large-scale 3D
semantic labeling processes, such as labeling whole city blocks. Moreover,
by exploiting Virtual Reality to make the task of labeling as easy and fun as
playing a video-game, our approach remarkably reduces the expertise neces-
sary to work with 3D semantic labeling tools. The immersive experience pro-
vided by VR technologies allows the user to physically move around within
the scenario she/he is willing to label and interact with objects in a natural
and engaging way. The user is transported into a large virtual environment
represented as 3D meshes, where surfaces can be colored semantically in a
highly captivating way (see. Figure 4.1 in-game visualizations).

The full fledged gamification of our tool empowers a larger community
to undertake this type of activity and enables the possibility to obtain much
more annotated data. For this reason, our tool features a multi-player post-
processing procedure wherein we integrate results of several annotators to
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1. SPLIT 2. VOXELIZE

POINTCLOUD

MESH

4. EXPORT3. VR LABELING

5. MULTI-PLAYER INTEGRATION 

.

.

.

6. FILLING

PRE-PROCESSING IN-GAME

POST-PROCESSING

FIGURE 4.2: The six steps of the Shooting Labels pipeline. 1-
Splitting 3D data (a mesh or point cloud) into chunks to opti-
mize visualization in the VR environment. 2- In case of point
clouds, voxelization enables real time rendering and reduces
memory footprint 3- Semantic labeling by Virtual Reality. 4-
Exporting annotated data into the original format 5- Integrat-
ing multi-player results to improve labeling and assess about
the reliability of the labels (optional). 6- Filling of unlabeled

elements (optional).

both improve accuracy and compute a labeling uncertainty map which pro-
vides information about the reliability of the produced ground truth.

Our open source framework is based on Unity1, Blender2 and open3D
[167].

4.1 VR Labeling Tool

In this section we describe the key features of our tool. Shooting Labels works
with the most popular 3D representations, such as point cloud and meshes,
which can be obtained by any kind of 3D reconstruction technique. More-
over, with our tool we can also load a 3D scene pre-labeled by any other

1https://unity.com/
2https://www.blender.org/

https://unity.com/
https://www.blender.org/
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technique (e.g. a CNN for 3D semantic segmentation) in order to refine it.
As shown in Figure 4.2, our pipeline can be summarized into 6 main steps
grouped into 3 stages, with the first stage dealing with Pre-processing of the
input 3D Data, the second with In-Game labeling and the third with Post-
processing of the labeled 3D data.

4.1.1 Pre-Processing of the Input 3D Data

Meshes and point clouds obtained by 3D reconstruction techniques typically
consist of millions of vertices which can hardly be rendered in real-time in
a VR environment. For this reason, with both meshes and point clouds we
employ a Level Of Detail strategy to mitigate the computational demand. As
illustrated in the first step of Figure 4.2, we split meshes and point clouds in
several chunks, saving each chunk at 3 different resolutions. During a VR
labeling session, objects closer to the player are loaded at a higher resolution
than those farther away. Furthermore, as point clouds cannot be managed
by the Unity gaming engine, we voxelize them (see Figure 4.2) in order to
obtain a friendly visualization both in term of light computation and user-
experience during navigation. To perform voxelization we set a discretiza-
tion step and, for each position of the dense 3D grid, build a cube mesh if
that volume contains a minimum number of points (e.g. > 5).

4.1.2 In-Game Labeling

3D meshes are loaded into the Virtual World and the user can explore and
label the environment. The player can teleport or physically move around
the scene to reach each portion of the environment. The following features
have been implemented to enhance and simplify the user experience:

• Geometric and RGB visualization

• Unlabeled Face Visualization

• Level of Detail (LOD)

• Labeling Granularity

• Export of Final Results

Geometric and RGB Visualization To assign a semantic label to a mesh,
the user paints on the geometric view of the object (Figure 4.1 central picture).
However, in the 3D reconstruction objects may be difficult to disambiguate
without color cues. To address this, in case of meshes, we directly visualize
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the RGB version of the mesh if available. As for point clouds, we noticed
that coarse RGB voxelizations can lead the user to misunderstand the scene.
Thus, we visualize directly the RGB point cloud, building a mesh object for
each point to enable visualization of this type of data also within the Unity
rendering system (Figure 4.1 left image). We did not employ this kind of
visualization during labeling because the interaction with this type of data
can be extremely slow. However, we obtain smooth rendering performances
for only the visualization.

Unlabeled Face Visualization Reaching some portion of the 3D space
can be hard (e.g small hidden faces), or the user might wish to visualize the
progress of its labeling. Thus, we keep track of the faces labeled by the user
and, at any moment, allow the user to visualize only the faces still unlabeled.

Level of Detail As already mentioned, we implement a Level Of Detail
(LOD) optimization to enable real-time rendering of large-scale scenarios.
For each chunk obtained by splitting the mesh we keep 3 versions at differ-
ent LOD and dynamically load at high resolution only the meshes within an
action range. The user can interact only with the meshes at highest resolu-
tion, those closer to him, thereby significantly alleviating the overall compu-
tational burden.

Labeling Granularity A user may require different labeling resolution
degrees so as to, e.g., colour either large surfaces or small details. Therefore,
she/he can choose between a pool of different weapons which feature differ-
ent action ranges, thereby enabling either a more precise or faster labeling.
The user chooses the current label from a color palette (Figure 4.1, central
picture) and when shooting toward a direction we color each face within the
weapon action range of the first hit face. When hitting a face, in Unity we
know only the hit face and we must find each face up to a range. As analyz-
ing all faces of the scene can be extremely slow, thus impractical for real time
rendering, we search between the faces belonging only to the the same object
chunk.

Exporting Final Results At the end of VR Labeling phase we can save the
progress or export the annotated mesh. During export chunks are merged
together into the original mesh. In case the source data was a point cloud,
we assign to each 3D point the label of the corresponding voxel.
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4.1.3 Post-Processing of the Labeled 3D Data

Once the labeled data have been exported, the tool offers some optional post-
processing step.

Multi-Player Integration The gamification process potentially enlarge the
pool of possible users of our tool. Thus, we can exploit the redundancy of la-
beling to predict the most confident label for each face or point. Let us denote
as S our mesh or point cloud, composed by several elements, e, i.e. faces or
points respectively. For each element e ∈ S we define asH its corresponding
histogram of labels, as assigned to it by different players. We can assign to
each element e its most confident label by simply finding the most frequent
label:

e = argmax(H), e ∈ S (4.1)

Label Uncertainty Since the annotation process by a single user may con-
tain errors, we might wish to know the uncertainty associated with each la-
bel.

Given n annotators we can easily get the label probability distribution
P = H

n for each element e. From the probability distribution we can calculate
its entropy:

E = −∑ p log p (4.2)

The entropy of that distribution can be treated as the uncertainty of the la-
beling for that element, ue. We can leverage this uncertainty to decide which
points should be considered noisy ground truth in the annotation process.
Moreover, we could exploit it to refine only the high entropy elements both
manually or by means of suitable algorithms.

Filling Some users may decide to label only partially the whole scenario.
Moreover, during the pre-processing we may lose information about few
faces where no labels will be available. For these reasons, Shooting Labels
provides a function for automatic filling missing elements based on their
neighborhood. We define Sunlabeled the set of elements without any label
assigned and Slabeled the set of elements with a label assigned such as S =

Slabeled ∪ Sunlabeled. Given one point sunlabeled ∈ Sunlabeled, we can find its K
closest elements slabeled ∈ Slabeled and their labels, and build the histogram H
of labels of its neighborhood. Then we can easily infer its label:

y = argmax(H) (4.3)
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Multi-Player Integration Multi-Player Integration and Filling
Label Uncertainty by Multi-Player 

Labeling
Multi-Player Integration and Filling Exploiting 

Uncertainty

FIGURE 4.3: Qualitative comparison of different combination
of post-processing steps. From left to right: results after only
the multi-player integration step; multi-player integration and
filling steps without label uncertainty; label uncertainty map;
multi-player integration and uncertainty aware filling. We can
notice that the fourth image have much smoother edges than
the second one thanks to exploitation of the uncertainty map.

In a multi-player setting we can leverage the uncertainty information to
further improve the precision and accuracy of the labeling by semantically
filling also high uncertainty elements by means of their neighborhood. More
precisely, given a fixed uncertainty threshold thu, we consider unlabeled ele-
ments that have their uncertainty us above thu:

Ŝlabeled = {s ∈ Slabeled|us > thu} (4.4)

Ŝunlabeled = Sunlabeled ∪ Ŝlabeled (4.5)

For each ŝunlabeled ∈ Ŝunlabeled we can find its neighborhood composed by
its K closest elements ek. For each ek we know its labels yk and its uncertainty
information uk. Thus, we can build a weighted histogram of labels for the
considered neighborhood, Hu, collecting the votes for each label multiplied
by their own uncertainty.

At this point the label of ŝunlabeled will be y = argmax(Hu).
Obtaining 2D Segmentations We leverage the 3D segmentation to pro-

duce 2D segmentations of known RGB images. If a specific set of images
comes along its intrinsic and extrinsic camera parameters we can seamlessly
render the segmentation through the Blender render engine.
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2 76.37 90.29 72.45 88.16 80.87 60.76 77.36 82.39 62.20 85.65 69.43 94.56 76.90
3 74.15 93.53 71.19 80.28 67.14 50.12 66.80 80.43 56.56 86.31 70.02 94.31 72.41
4 - 90.07 70.74 80.12 58.78 44.89 64.32 80.60 38.79 84.72 68.93 88.44 62.00
5 77.69 89.10 35.99 77.76 56.09 41.87 46.90 33.36 40.49 80.95 44.25 91.76 56.77

Integr. 81.46 94.80 77.34 87.02 79.46 64.27 75.35 89.68 57.70 89.83 74.93 94.47 79.26

TABLE 4.1: Comparison between single player and multi-
player results on the Matterport 3D dataset [115]. Best results

in bold.

4.2 Experimental Results

4.2.1 Efficiency and Accuracy of the Tool

To evaluate the efficiency and performance of our tool we tested it on the
Matterport 3D dataset [168]. To perform the evaluation we considered the la-
beling provided by Matterport as our ground truth. Their labeling has been
attained through a series of refinement steps based on several different tools
and expertises. They first produced a coarse annotation with a first tool for
planar surface labeling, then they used the ScanNet crowd-sourcing inter-
face by Dai et al. [113] to “paint” triangles and name all object instances of
the house. Finally a team of 10 expert annotators refined, fixed and verified
the quality of the final labeling. In ours tests we labeled an entire Matterport
house3 made out of 6 rooms based on the 13 classes of objects defined in [169]
(eigen13 categories). We exploit the mapping provided by Matterport from
their labeling to eigen13 to obtain ground truths used for testing. They pro-
vide face-wise labels since ground truth are meshes. Therefore, we evaluated
our results using a mean intersection over union weighted on the area of the
faces:

IoUc
f aces =

ATP

ATP + AFN + AFP
, c ∈ Cl (4.6)

mIoU f aces =
1
N ∑

c∈Cl
IoUc

f aces (4.7)

where Cl is the set of classes, N is the total number of classes, ATP, AFN, AFP

represent the total area of the true positive, false negative and false positive
faces respectively for a class c. Furthermore, we provide the percentage of

3Matterport House ID: 2t7WUuJeko7
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FIGURE 4.4: Matterport 3D dataset. From left to right: RGB
mesh, ground-truth provided by Matterport, Uncertainty map
by multi-user integration, best results obtained with our tool.
Red circles: errors in the Matterport ground-truth (table as fur-
niture, windows as table) avoided by labeling with our tool.

White circles: high uncertainty labels (e.g. 3D boundaries).

area of faces annotated Alabeled over the total area of the labeled ground truth
Atotal.

Perc.Area =
Alabeled
Atotal

% (4.8)

Single Player and Multi-Player Integration Results
We evaluated the annotation of 5 different players without any expertise

in 3D modeling. We compared their results with the ground truth provided
by Matterport. The results are shown in Table 4.1. The average time needed
for the labeling was about of 2.5 hours. Even though there are users who
achieved low labeling performances (player 4 and 5), we notice that integrat-
ing results of all players yield the best overall performances of 79.26% mIoU,
surpassing the accuracy of each single user. As we wanted to analyze what
are the most common errors in labeling, we inspected qualitatively each sin-
gle player results noticing that most frequent errors are correlated with 3D
object boundaries and ambiguous object. Therefore, we manually investi-
gate also the GT provided by Matterport finding the same types of errors. In
Figure 4.4, we circled in white the errors on object boundaries while in red
the completely mismatching object between our labeling and the Matterport
ground truth. In second row we note that a window (Blue Label) was labeled
as a Table (Red Label) in the Matterport GT while with our tool we did not
encounter that error. We also found a case of an ambiguous object where
a stool has been labeled as an Object (Light Blue Label) by the Matterport
ground truth while as a chair by our users (Green Label). These ambiguities
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FIGURE 4.5: Evaluation at different threshold of uncertainty.
The more noisy labels we discard the higher mIoU wrt Matter-

port3D ground truth.

and errors in both labeling might be the main cause of achieving lower mIoU
score in our labeling and therefore, discarding them with our uncertainty
information should lead to better overall performances.

Uncertainty Map Evaluation By integrating the results of several users
we computed the label uncertainty map shown in the third column of Fig-
ure 4.3 and Figure 4.4. As we wish to evaluate the quality of our labeling,
we analyzed the performances of our labeled mesh at different uncertainty
thresholds. In Figure 4.5 we show the mIoU and the Perc.Area labeled at
different uncertainty thresholds. For each threshold we evaluated the mIoU
only on the elements with lower uncertainty than the threshold. We see that
the higher the threshold the lower the mIoU, symptom of a good uncertainty
map. In Figure 4.4 the third column are the uncertainty maps of the label-
ing where warmer color represents higher uncertainty. We notice that while
white circled error are always correlated to high uncertainty, red circled er-
rors might have low uncertainty. This happens because there are object that
the majority of the annotators labeled in the same way while they are labeled
different in Matterport ground truth which is correlated to an error in the
Matterport ground truth (Windows labeled as a Table).

Filling Results w/ or w/o Uncertainty Table 4.2 shows the results of the
filling step in various setting. The first five rows report the results obtained
by applying filling immediately after the single player annotation. These
rows highlight that we were able to fill all the unlabeled faces obtaining
Perc.Area of 100% and slightly lower performance. We can see a similar trend
also in multi-player integration result where we score a 76.11% mIoU while
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1 73.77 95.18 68.09 82.94 78.04 56.28 73.79 85.56 54.29 86.13 71.58 100 75.06
2 75.90 90.28 65.55 84.69 78.31 55.44 76.00 67.00 58.60 84.05 68.19 100 73.09
3 73.21 93.23 67.00 77.54 65.27 48.08 65.57 75.25 52.64 84.46 68.68 100 70.09
4 - 88.86 57.47 73.92 54.73 39.56 59.50 68.01 30.52 80.93 65.67 100 56.29
5 71.56 88.82 35.13 73.79 54.49 38.55 46.13 32.30 38.50 78.59 43.89 100 54.71

Integr. 80.33 94.70 70.27 83.00 77.90 57.98 74.51 82.94 53.86 87.85 73.85 100 76.11

Integr.0.5 80.36 94.71 70.30 83.02 77.94 57.99 74.58 82.86 53.95 87.87 73.86 100 76.13
Integr.0.65 77.97 94.85 70.15 82.13 77.84 57.24 74.71 85.28 50.65 87.91 74.78 100 75.77
Integr.0.8 75.17 94.40 68.62 81.10 77.91 55.62 73.21 81.91 47.40 87.13 70.27 100 73.89

TABLE 4.2: Comparison between filling single users, multi-
player integration and multi-player integration based on label
uncertainty on the Matterport 3D dataset [115]. Best results of
filling without uncertainty in bold. Best result of filling integra-

tion using uncertainty in red.

gaining a +5.53% on the Perc.Area labeled and losing only the 3.15% in mIoU
with respect to the results without filling. The last three rows report the re-
sults of filling by exploiting the uncertainty map and using different thresh-
old levels, i.e. 0.5, 0.65 and 0.8 respectively, with the best results of 76.13%
mIoU attained with threshold 0.5. The decreasing trend with higher thresh-
old can be explained thinking that using an higher threshold corresponds
with considering good a lot of uncertain elements making filling too diffi-
cult and noisy. Figure 4.3 depicts a qualitative comparison between filling
strategies. From left to right we can see the labeled mesh before the filling,
the mesh filled without uncertainty, the uncertainty map and filling exploit-
ing uncertainty. We highlight how, though the increase in performance in
uncertainty aware filling is small, the qualitative results highlight a much
smoother labeling.

3D to 2D Projection Figure 4.6 illustrate qualitative results of the 2D la-
bels obtained by projecting 3D labels. Given availability of the RGB image
(top left image) and its associated camera intrinsic and extrinsic parameters,
we can configure the Blender rendering engine and position the virtual cam-
era in order to obtain the 2D render of the scene. Peculiarly to our tool, we
can also provide a 2D uncertainty map by projecting the 3D uncertainty map.
Bottom left and right images are rendered from the filled mesh with (right)
or without (left) exploiting uncertainty. We can notice that the right image
has smoother edges and several blobs are less noisy. The render took place in
approximately 1 second on a GTX 1080 Ti, much less than the hours needed
by manual pixel-wise annotation.
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FIGURE 4.6: Matterport3D: projection of 3D labels into 2D la-
bels. Top Left: RGB image with known camera pose. Bottom
Left: 2D labels from a semantically filled mesh without exploit-
ing uncertainty. Top Right: 2D uncertainty map. Bottom Right.
2D labels from a semantically filled mesh by exploiting uncer-

tainty.

Large Scale Outdoor Labeling We evaluated the effectiveness of our tool
in a challenging outdoor scenario: the Kitti Odometry Dataset [108]. We used
the provided 3D Lidar data of a static sequence4, consisting of more than
1000 images equipped with ground truth camera poses. We reconstructed the
point cloud, then voxelized and labeled it by our tool. Then, we were able to
annotate the whole sequence in approximately 8 hours, a much shorter time
compared to other non-VR tool such as [119] which needed about 51 hours
for each sequence. Moreover, we could obtain the 2D semantic segmentation
associated with the 1000 RGB input images in a few minutes of rendering.
Figure 4.7 reports qualitative results dealing with our 3D labeling and exam-
ples of projected 3D labels.

4.3 Conclusions and Future Works

We have proposed the first 3D semantic labeling tool based on Virtual Reality
(VR). Our tool exploits VR alongside with gamification to ease and expedite

4Kitti Sequence 2011_09_30_drive_0020_sync
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FIGURE 4.7: 3D and 2D Labeling from a Kitti sequence. Top
Left: RGB point cloud. Bottom Left: labeled point cloud ob-
tained by using our tool. Right: RGB images and projected se-

mantic labels

3D semantic labeling of large scale scenarios and enlarge the pool of possible
annotators to people without any knowledge about 3D modeling. The tool
works with the most popular 3D data structures, such as meshes and point
clouds. Moreover, we have shown how to integrate results from multiple
users in order to achieve an overall better performance as well as uncertainty
map of the labeling process. We have also demonstrated how to integrate
the uncertainty map in the labeling process in order to further improve the
results.

We argue that the label uncertainty information may also be leveraged
while training deep neural networks for semantic segmentation, e.g. so as to
weight the labels in the loss based on their associate uncertainty, as proposed
in some recent works dealing with stereo vision [170]. Moreover, availability
of uncertainty maps may foster the design of novel performance evaluation
metrics which would take into account the uncertainty of labels.
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Chapter 5

Image to Image Translation for
Synthetic to Real Adaptation

Many recent works [21, 171, 24, 25] have proposed to deploy synthetic train-
ing images generated by state-of-the-art computer graphics techniques to ob-
tain for free, during the rendering process, different kinds of annotations. Yet,
such synthetic training samples turn out significantly different from the real
images processed at test time, which implies a well-known issue, referred to
in the machine learning literature as domain shift.

Promising works like [130, 129, 127] try to learn models which extract the
same kind of features across the two domains. While this strategy seems suc-
cessful for tasks like classification, it does not scale to dense structured domain
adaptation [172] where the improvement gained by feature alignment is still
modest. Alternatively, [145, 173] work directly on the training data trying to
shrink the gap between synthetic and real images by transforming the first to
make them look real using image-to-image generative adversarial networks.
However, since they do not enforce any kind of constraint on the geometric
consistency between input and output, these approaches can easily produce
artifacts and distortions. Beside harming the realism of the generated images,
artifacts could easily render annotations created for the synthetic images use-
less, especially for pixel-level labeling task where even a few pixels shift may
invalidate the annotation.

In this chapter we propose a novel approach based on image-to-image
domain translation by GANs while explicitly training the system to keep
the semantic structure of the scene. The intuition behind our formulation
is that forcing the generator network to keep the semantic structure of the
image acts as a regularizer enforcing overall consistency of image appear-
ance and producing images that look more realistic and exhibit less artifacts.
For example, according to our formulation a "tree" can change its appear-
ance but it should still be recognizable as a "tree" across domains. To enforce
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GTA GTA → Cityscapes

= =

GAN

FIGURE 5.1: On the right an image generated applying our
semantically aware GAN on a synthetic image from the GTA
dataset [21] (left) to make the latter look more realistic. Lower
right corner: zoomed crops to highlight how our semantically
aware GAN can transform images across domains preserving

the semantic structure of the scene.

the semantic constraint we train a discriminator network not only to classify
the domain (real/fake) but also to solve the task of semantic segmentation
on the synthetic domain (i.e. , we do not need labels in the real target do-
main). Moreover, we introduce an appearance reconstruction loss to further
regularize the generation process and help preserving small details. To asses
upon effectiveness of our proposal we transform synthetic images obtained
from the synthetic GTA datasets [21] to look similar to the real images of
the Cityscapes [14] dataset. Figure 5.1 shows on the right column a quali-
tative example generated by our method using as input the corresponding
synthetic images depicted on the left. We will show how those images can be
used to train a model to solve the problem of semantic segmentation yielding
promising result with respect to the use of synthetic images.

5.1 Proposed Method

In this section we present our proposal for domain adaptation exploiting se-
mantic information. We consider the problem of unsupervised and unpaired
pixel-level domain adaptation from a source to a target domain. We define as
Xs , Ys the provided source data and associated semantic labels whilst as Xt

the provided target data, but without any available target labels. Our goal is
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FIGURE 5.2: Schematic representations of the proposed net-
work architecture. In dark blue and orange images from the
source domain and target domain respectively. Dual color
framed images are obtained by our adaptation method. In pur-

ple the use of the semantic maps.

to transform source images so to resemble target images while maintaining
the semantic content of the scene during the generation process. A schematic
representation of our method is shown in Figure 5.2.

5.1.1 Architecture

Inspired by [149], we adopt a cycle architecture consisting of two genera-
tors and two semantic discriminators. The first generator, GS→T, introduce a
mapping from the source to the target domain and produces target samples
which should deceive the discriminator DT. The discriminator DT, instead,
learns to distinguish between adapted source and true target samples. On
the other hand, the second generator, GT→S, learns the opposite mapping
from source to target data, while the second discriminator Ds distinguish
between adapted target and true source samples. Furthermore, peculiarly
to our work, both semantic discriminators act not only as classifiers but also
as semantic segmentation networks. Thus, we add a second decoder to DT

and DS obtaining DSsem and DTsem . The features extracted by the last encoder
layer of the discriminators are used to generate both the semantic map and
the domain classification score.

5.1.2 Training

We train our system to minimize multiple losses:
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Adversarial Loss
We apply adversarial losses [174] to both mapping functions S → T and
T → S. To be concise, we define here only source to target adversarial loss,
being equivalent to its inverse.

Ladv = Ext∼XT [log(Dt(xt))] (5.1)

Exs∼Xs [log(1− Dt(Gs→t(xs)))] (5.2)

GS→T tries to generate images that look similar to images from domain
T while DT tries to distinguish between adapted source samples GS→T(xS)

and real target samples XT. GS→T seek to minimize this objective against DT

which instead tries to maximize it.
Semantic Discriminator Loss

We train both discriminators, DSsem and DTsem , to perform semantic segmenta-
tion employing source labels. DTsem will be trained on adapted source images,
while DSsem will be trained directly on source images. We used a pixel-wise
cross entropy loss H(p, q) as in standard segmentation networks:

Lsem = H(DSsem(GS→T(XS)), YS) + H(DSsem(XS), YS) (5.3)

Weighted Reconstruction Loss
We exploit the cyclic L1 reconstruction loss proposed in [149] for target sam-
ples where we do not have any label. Regarding source samples, we weight
each pixel proportionally to the probability of not belonging to its semantic
class. Our weighting term acts as a regularization where the network usu-
ally fail adaptation introducing artifacts, forcing the least frequent classes to
be reconstructed preserving input appearance:

Lrec = ||GS→T(GT→S(xT)))− xT||1 (5.4)

(1− w)||GT→S(GS→T(xS)))− xS||1 (5.5)

w is a weight mask with the same resolution of the source image. Defined
C as the set of possible classes, each weight wi,j represents the likelihood of a
class among all synthetic dataset:

wi,j =
npixel ∈ c

npixel
, c ∈ C (5.6)

.
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(a) Source (b) CycleGAN (c) Ours (d) Target
GTA GTA→ Cityscapes GTA→ Cityscapes Cityscapes

FIGURE 5.3: Image generated by CycleGan [149](b) and our
semantics-aware GAN (c) for the GTA to Cityscapes domain

alignement task

Final Loss
We train our discriminators and generators to minimize the following losses:

LD = −Ladv + λsemLsem (5.7)

LG = Ladv + λsemLsem + λrecLrec (5.8)

λsem and λrec are hyper-parameters that control the relative importance of
domain classification, weighted reconstruction and semantic segmentation.
Across all our experiments we will use λsem = 1 and λrec= 3.

5.2 Experimental Results

We conduct a series of tests to assess the effectiveness of our method in pro-
ducing realistic images and verify if they are suitable for training deep learn-
ing models.

5.2.1 Datasets Creation

We have used as synthetic source domain the GTA dataset [21], that fea-
tures 22K realistic synthetic images obtained from the Grand Theft Auto
videogame enriched with perfect pixel level annotations for semantic seg-
mentation. As target real images we have used the Cityscapes dataset [14]
featuring 5000 images acquired during real driving sessions around Ger-
many and annotated with precise pixel level labels for semantic segmenta-
tion. Among all available images we have used the training split as our tar-
get samples during training, while we have kept the validation split to mea-
sure performance of different semantic segmentation networks. We did not



34 Chapter 5. Image to Image Translation for Synthetic to Real Adaptation

use the test split since the labels are not publicly available. We chose these
two datasets as they provide annotations for the same set of semantic classes
and feature domains where the biggest difference concern the shift from syn-
thetic to real images. We used ResNet as our generator networks and U-Net
[30] as our discriminator. Using the loss formulation described in subsec-
tion 5.1.2 we have trained our GAN to transform images from the GTA [21]
to the Cityscapes [14] domain for 300k steps using Adam as optimizer, 0.0001
for learning rate and batch size 2. We cropped our input images to 512x512.
During the training process we have used images and labels from GTA and
only images from Cityscapes, i.e. , our method does not require annotations
from the real/target domain but only from the source one. Once trained, we
used the generator to transform synthetic images from the training dataset
to produce an aligned GTA dataset that should resemble images from the real
Cityscapes domain. On Figure 5.3 we depict some qualitative example of
images produced by our GAN (column (c)) together with the corresponding
input from the GTA dataset (column (a)) and some exemplar images from the
Cityscapes, target, dataset (column (d)). To better show the effectiveness of
our semantic aware GAN, we also report images obtained by training a Cy-
cleGAN network [149] that does not use any semantic clues at training time
(column (b)). By comparing our images (column (c)) with those produced by
CycleGAN (column (b)) it turns out clearly that, unlike previous approaches
(i.e. , column (b)), our novel formulation can preserve the semantic content
and avoid introduction of artifacts. Moreover, the introduction of seman-
tic constraints during the training process helps to produce sharper edges
in the final image, which increases the quality of the images compared to
CylceGAN. We have also applied our GANs to entire video sequences from
the GTA domain and verified that the network can easily maintain temporal
consistency even if it has only been trained on individual frames. 1

5.2.2 Semantic Segmentation

Figure 5.3 shows how our network can produce visually appealing images.
In the following we demonstrate that our adapted images can be used to train
a neural network to obtain much better performance on the target domain
w.r.t the corresponding synthetic ones.

Focusing on semantic segmentation, we have trained a standard FCN8s
[28] on the original GTA synthetic images and on our aligned dataset. We

1https://youtu.be/wIpFcKLviYQ
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Source [133] 31.9 18.9 47.7 7.40 3.10 16.0 10.4 1.00 76.5 13.0 58.9 36.0 1.00 67.1 9.50 3.70 0.00 0.00 0.00 21.2 -
[133] 70.4 32.4 62.1 14.9 5.40 10.9 14.2 2.70 79.2 21.3 64.6 44.1 4.20 70.4 8.00 7.30 0.00 3.50 0.00 27.1 -

Source [135] 18.1 6.80 64.1 7.30 8.70 21.0 14.9 16.8 45.9 2.40 64.4 41.6 17.5 55.3 8.40 5.0 6.90 4.30 13.8 22.3 -
[135] 74.9 22.0 71.7 6.00 11.9 8.40 16.3 11.1 75.7 13.3 66.5 38.0 9.30 55.2 18.8 18.9 0.00 16.8 16.6 28.9 -

Source [175] 26.0 14.9 65.1 5.50 12.9 8.90 6.00 2.50 70.0 2.90 47.0 24.5 0.0 40.0 12.1 1.50 0.0 0.0 0.0 17.9 54.0
[175] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8 82.8

Source Ours 43.3 11.9 54.3 3.42 11.96 9.63 10.74 5.23 68.3 6.39 46.84 30.02 2.07 33.1 7.72 0.00 0.00 0.00 0.00 18.2 60.4
Ours 85.4 32.8 78.0 21.0 9.35 26.1 18.0 8.71 82.2 22.1 71.2 51.4 13.4 79.5 16.0 13.5 7.83 10.1 0.03 34.2 84.4

TABLE 5.1: Comparison between domain adaptation methods
for semantic segmentation on the Cityscapes validation set.
Middle section reports mIoU score per class, final two columns
aggregated performance across the whole dataset, best results

highlighted in bold.

(a) Input (b) GT (c) GTA (d) GTA→ Cityscapes

FIGURE 5.4: Segmentation results on the Cityscapes dataset for
a FCN8s network trained only on synthetic data from the GTA

dataset (c) and on our GTA adapted dataset (d).

tested both on the validation set of Cityscapes and reported the result in Ta-
ble 5.1. For all our tests, we have initialized the feature extractor of the FCN8s
with the publicly available VGG16 weights trained on the Imagenet dataset,
then performed 100000 training iterations using batch 4, Adam optimizer
and 0.0001 as learning rate. We trained networks on 1024x1024 cropped im-
ages.

To compare the networks we report two different metrics: the mean intersection-
over-union (from now on shortened mIoU) computed following the guide-
lines of the Cityscapes benchmark [14] and the overall pixel accuracy (short-
ened acc), i.e. , the percentage of correctly predicted pixel labels. We also re-
port detailed scores for each semantic class to highlight for which categories
our image augmentation scheme is more effective. We compare the results
obtained by our domain adaptation method with alternatives recently pro-
posed in literature: the feature-level alignment method of [133], the curricu-
lum style domain adaptation approach of [135] and the pixel level alignment
introduced in [175]. In Table 5.1 for all methods we report the performance
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achieved by training the very same FCN8s network [28] both before and after
domain alignment, the former marked using Source in the method column.
For each row we report per class mIoU and aggregated performance across
the whole dataset (last two columns). Concerning aggregated mIoU score,
we can see how our proposal can outperform both [135, 133] while being
comparable with [175]. Moreover, considering pixel accuracy, our proposal
compares favourably even to [175]. Considering the performance achieved
before and after domain adaptation, our proposed pixel level alignment can
provide an impressive +16.9 gain in mIoU and a +24 in Acc., that, once again,
compares favourably to [133, 135] and is comparable to [175]. Looking at
class scores, we observe how our proposal can achieve the best absolute per-
formances on 10 classes out of 19, including some key ones for autonomous
driving like road (+42.1 gain between before and after alignment), car (+46.4)
and person (+21.4). We still lose something compared to other proposals on
less common classes (e.g. , bus, motorcycle and bicycle), we think that this
might be due to the dataset used not having enough samples of the target
classes to effectively teach to the generator how to realistically render them.
Even though our proposal performs comparably to [175], we would like to
stress out how our adaptation method can be trained end-to-end instead of
relying on separate training steps for the different parts.

In Figure 5.4 we also report some qualitative examples of the improve-
ment in segmentation attainable by training on our adapted GTA images (col-
umn (d)) compared to a purely synthetic training set (column (c)). Even if the
results in column (d) are still far form optimal, most of the mistakes visible in
column (c) are completely gone and the overall structure of the scene is more
accurately segmented. Moreover, we can notice visually how the larger im-
provement concerns the segmentation of road (colored purple), cars (colored
blue) and people (colored red).

5.2.3 Ablation Study

In subsection 5.2.2 we have proven that the images generated by our pro-
posal can effectively be used to train a semantic segmentation network so
as to nearly double its performance compared to using synthetic data only.
In this section, instead, we investigate more in depth on how each compo-
nent of our proposal contributes to the final result. Purposely, we trained
different architectures, keeping the comparison as fair as possible by main-
taining the same training protocol. We report the results of these tests in
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Test mIoU Acc.

(a) Synthetic 18.23 60.43
(b) GAN+Sem. 29.45 78.13
(c) GAN+Sem+weight. 31.33 79.85
(d) Cycle [149] 29.43 79.20
(e) Cycle+sem+weight. 34.27 84.48

TABLE 5.2: Ablation study on the different component of our
semantic aware GAN. Best results in bold.

Table 5.2. We first investigated the performance of training a semantic seg-
mentation network on images adapted by a simple GAN[174]. As we ob-
tained results even worse than our baseline network (a), we decided to not
report them in Table 5.2. We then trained a GAN framework enriched with
our semantic discriminator. Comparing line (b) with (a) we can clearly see
how adding our semantics-aware discriminator not only allows to success-
fully train the GAN system but also results in a +11.22% mIoU, thus testify-
ing how semantic information can successfully regularize training. We then
added our weighted L1 reconstruction loss between source and adapted im-
age (c) slightly improving performances by a +1.88% mIoU. We then trained
a standard CycleGAN [149] with no semantic clue demonstrating how hav-
ing two pairs of generator and discriminator is extremely effective to stabilize
training of a GAN framework, as shown by (d) reaching comparable results
to (b). Finally (e) reports the performance achievable by our full proposal
that deploys the CycleGAN network combined with the semantics-aware
discriminator and our semantic weighting system, achieving remarkable per-
formance: +16.04% mIoU and +24.05% Acc. with respect to our baseline(a).
We argue that, our novel network structure and loss function allow us to
produce realistic images with adversarial training, and at the same time pre-
serve structural coherence between input and output thanks to the enforced
semantic consistency leading to good domain adaptation performance.
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Chapter 6

Final Remarks

In this part of the thesis, we have investigated the lack of data for training
deep neural networks. Since manual annotation is a tedious, time-consuming,
and not scalable job, we investigated strategies to address this problem, par-
ticularly for semantic segmentation.

In chapter 4 we have proposed a novel tool to efficiently gather 3D and 2D
semantic labels by exploiting virtual reality. We showed that our tool is prac-
tical and easy to use, enlarging the user pool that can utilize it. Moreover, our
tool employs a gamification strategy to ameliorate the labeling experience.

In chapter 5 we have addressed another possible solution: avoid man-
ual annotation and using computer graphics simulations. We have have
proposed a novel pixel-level domain adaptation technique to mitigate the
domain-shift problem between real and synthetic data. Notably, we have em-
ployed a semantically aware image-to-image translation network to shrink
the gap between synthetic and real data. Our novel network structure and
loss function can successfully produce realistic images thanks to its adversar-
ial component. Moreover, we can preserve structural coherence between in-
put and output thanks to the enforced semantic consistency. We have tested
our proposal for domain adaptation from synthetic to real images in the con-
text of semantic segmentation. Nevertheless, we could use the same process
to address different tasks, e.g. object detection, or different type of domain
shifts, e.g. different seasons, different sensors, or different weather condi-
tions.

Overall, we have shown that computer graphics is a powerful tool that
can be used to gather annotation efficiently. In the following part of the the-
sis, we will deepen this strategy but from a different perspective. In par-
ticular, we aim at mitigating the domain-shift using the knowledge coming
from synthetic data annotated for different tasks. We will show that a model
aware of more tasks will be more robust across domains, more accurate and
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memory efficient as well as computationally faster than a model trained only
on a single task.
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Part II

Transferring Knowledge Across
Tasks for Domain Adaptation
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Chapter 7

Initial Remarks

Deep learning has revolutionized computer vision research and set forth a
general framework to address various visual tasks (e.g. , classification, depth
estimation, semantic segmentation, . . . ). A common framework suggests a
close relationship between different tasks that should be exploitable to alle-
viate the dependence on massive labeled training sets. Unfortunately, most
state-of-the-art methods ignore these connections and instead focus on a sin-
gle task by solving it in isolation through supervised learning on a specific
domain (i.e. , dataset). Should the domain or task change, standard practice
would require acquiring a new annotated training set followed by retraining
or fine-tuning the model.

However, any deep learning practitioner can testify that the effort to an-
notate a dataset is usually quite substantial and does vary significantly across
tasks, potentially requiring ad-hoc acquisition modalities. Hence, the ques-
tion we try to answer is: would it be possible to deploy the relationships between
tasks to remove the dependence for labeled data on new domains?

A partial answer to this question has been provided by [176], which for-
malizes the relationships between tasks within a specific domain into a graph
referred to as Taskonomy. This knowledge can be used to improve perfor-
mance within a fully supervised learning scenario, though it is not clear how
well it may generalize to new domains and to which extent it may be de-
ployed in a partially supervised scenario (i.e. , supervision on only some
tasks/domains). The generalization to new domains is addressed in the do-
main adaptation literature [123], that, however, works under the assumption
of solving a single task in isolation, therefore ignoring potential benefits from
related tasks.

We fuse the two worlds by explicitly addressing a cross-domain and cross-
task problem where on one domain (e.g. , synthetic data) we have annota-
tions for many tasks, while in the other (e.g. , real data) annotations are
available only for a specific task, though we wish to solve many.
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FIGURE 7.1: Our AT/DT framework transfers knowledge
across tasks and domains. Given two tasks (1 and 2) and two
domains (A and B), with supervision for both tasks in A but
only for one task in B, we learn the dependency between tasks
in A and exploit this knowledge in B to solve task 2 without the

need of supervision.

Purposely, in this part of the thesis we will show a new ‘Across Tasks and
Domains Transfer framework’ (shortened as AT/DT) which learns in a spe-
cific domain a function G1→2 to transfer knowledge between a pair of tasks.
We will see that, after the training phase, the same transfer function can be
applied in a new domain to solve the second task while relying on supervi-
sion only for the first. A schematic representation of AT/DT is pictured in
Figure 7.1.

In chapter 8 we will describe the main aspects of AT/DT, and we will
prove its effectiveness on a challenging autonomous driving scenario where
we address the two related tasks of depth estimation, and semantic segmen-
tation [1]. We will show that our framework allows the use of fully super-
vised synthetic datasets (i.e. , Synthia [177], and Carla [25]) to drastically
boost performance on partially supervised real data (i.e. , Cityscapes [14]
and Kitti [108, 178]). Finally, we will also demonstrate how AT/DT is robust
to sub-optimal scenarios where we use only a few annotated real samples or
noisy supervision by proxy labels [179, 180, 170].

Then, in chapter 9, we will extend this framework, improving the trans-
ferability of learned features across tasks and domains in case of structured
tasks such as semantic segmentation and depth estimation. We leverage two
intuitions: 1. The transfer function still suffer from a domain-shift problem.
Thus, we reduce the domain misalignment at the input level of the transfer
network. 2. Some tasks can contain only partial information about the struc-
ture of the scene. Thus, we propose to train on an auxiliary task to enrich
feature representation.
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Finally, in chapter 10 we will show an application of AT/DT in the Unsu-
pervised Domain Adaptation (UDA) benchmark for semantic segmentation
(i.e. the same of previous chapter). In particular, we will highlight how plug-
ging the depth information with AT/DT into any existing UDA method leads
to superior performances.

In the following section we report some works relevant for this part of the
thesis.

7.1 Transfer Learning

The existence of related representation within CNNs trained for different
tasks has been highlighted since early works in the field [181]. These early
findings have motivated the use of transfer learning strategy to bootstrap
learning across related tasks. For example, object detection networks are
typically initialized with ImageNet weights [182, 183, 184], although [185]
has recently challenged this paradigm. Recently Zamir et. al. [176] have
tried to formalize and deploy the idea of reusing information across training
processes by proposing a computational approach to establish relationships
among visual tasks represented in a taxonomy. Pal et. al. [186], propose to
use similar knowledge alongside meta-learning to learn how to perform a
new task within a zero-shot scenario. Both [176] and [186] assume a shared
domain across the addressed task, while we directly target a cross-domain
scenario. Moreover, [176] assumes full supervision to be available for all
tasks while [186] zero supervision for the target task. Differently, AT/DT
leverages full supervision for all tasks in one domain and only partial super-
vision in a different (target) domain.

7.1.1 Task and Domain Adaptation

Adapting the knowledge across tasks or domains are sub-cases of the gen-
eral transfer learning literature. Most existing approaches address either task
adaptation or domain adaptation independently. Nevertheless, a few works
have proposed to tackle these two problems jointly. [134, 187] were the first
papers to propose a cross-tasks and cross-domains adaptation approach, con-
sidering as tasks different image classification problems. On the contrary, in
AT/DT we expand the concept of task adaptation by considering diverse vi-
sual tasks as done in [176].
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Chapter 8

Learning Across Tasks and
Domains

8.1 Across Task and Domain Transfer Framework

We wish to start with a practical example of the problem we are trying to
solve and how we address it. Let us consider a synthetic and a real domain
where we aim to solve the semantic segmentation task. Annotations come
for free in the synthetic domain while are rather expensive in the real one.
Domain adaptation comes handy for this; however, we wish to go one step
further. May we pick a closely related task (e.g. , depth estimation) where an-
notations are available in both domains and use it to boost the performance
of semantic segmentation on real data? To achieve this goal we train deep
networks for depth and semantic segmentation on the synthetic domain and
learn a mapping function to transform deep features suitable for depth esti-
mation into deep features suitable for semantic segmentation. Then we apply
the same mapping function on samples from the real domain to obtain a se-
mantic segmentation model without the need of semantic labels in the real
domain. In the remainder of this section, we formalize the AT/DT frame-
work.

8.1.1 Common Notation

We denote with Tj a generic visual task defined as in [176]. Let us assume
X k to be the set of samples (i.e. , images) belonging to domain k and Y k

j to
be the paired set of annotations for task Tj. In our problem we assumes to
have two domains, A and B, and two tasks, T1 and T2. For the two tasks we
have complete supervision in A, i.e. , YA

1 and YA
2 , but labels only for T1 in

B, i.e. YB
1 . We assume each task Tj to be solvable by a deep neural network

Nj, consisting in a feature encoder Ej and a feature decoder Dj, such that
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FIGURE 8.1: Overview of the AT/DT framework. (1) We train
network NA∪B

1 to solve T1 (red) with supervision in domain A
(orange) and B (blue) to obtain a shared feature representation
across domains, highlighted by blue and orange strips. (2) We
train a network NA

2 to solve T2 (green) on A where labels are
available. (3) We learn a network G1→2 that transform features
from T1 to T2 on samples from A. (4) We apply the transfer

network on B to solve T2 without the need for annotations.

ŷj = Nj(x) = Dj(Ej(x)). The network is trained on domain k by minimizing
a task-specific loss on annotated samples (xk, yk

j ) ∼ (X k,Y k
j ). The result of

this training is a network trained to solve Tj using samples from X k that we
denote as Nk

j .

8.1.2 Overview

Our work builds on the intuition that if two tasks are related there should
be a function G1→2 : T1 → T2 that transfer knowledge among them. But
what does transferring knowledge actually means? We will show that this
abstract concept can be implemented by transferring representations in deep
feature spaces. We propose to first train two task specific networks, N1 and
N2, then approximate function G1→2 by a deep neural network that trans-
forms features extracted by N1 into corresponding features extracted by N2

(i.e. , G1→2 : E1(x) → E2(x)). We train G1→2 by minimizing a reconstruction
loss on A, where we have complete supervision for both tasks, and use it on
B to solve T2 having supervision only for T1.
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Our method can be summarized into the four steps pictured in Figure 8.1
and detailed in the following sections:

1. Learn to solve task T1 on domains A and B.

2. Learn to solve task T2 on domain A.

3. Train G1→2 on domain A.

4. Apply G1→2 to solve T2 on domain B.

8.1.3 Solve T1 on A and B

A network N1 can be trained to solve task T1 on domain X k by minimizing a
task specific supervised loss

LT1(ŷ
k
1, yk

1); ŷk
1 = N1(xk). (8.1)

However, training one network for each domain would likely result in dis-
joint feature spaces; we, instead, wish to have similar representation to ease
generalization of G1→2 across domains. Therefore, we train a single network,
NA∪B

1 , on samples from both domains, i.e. , X k = X A ∪ X B. Having a com-
mon representation ease the learning of a task transfer mapping valid on both
domains though training it only on A. More details on the impact of having
common or disjoint networks are reported in subsection 8.4.2.

8.1.4 Solve T2 on A

Now we wish to train a network to solve T2, however, for this task we can
only rely on annotated samples from A. The best we can do is to train a NA

2

minimizing a supervised loss

LT2(ŷ
A
2 , yA

2 ); ŷA
2 = N2(xA). (8.2)

8.1.5 Train G1→2 on A

We are now ready to train a task transfer network G1→2 that should learn
to remap deep features suitable for T1 into good representations suitable for
T2. Given NA∪B

1 and NA
2 we generate a training set with pairs of features

(EA∪B
1 (xA), E2(xA)) obtained feeding the same input xA to NA∪B

1 and NA
2 .

We use only samples from A for the training set as it is the only domain
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where we are reasonably sure that the two networks perform well. We opti-
mize the parameters of G1→2 by minimizing the reconstruction error between
transformed and target features

LTr = ||G1→2(EA∪B
1 (xA))− EA

2 (xA)))||2, (8.3)

At the end of the training G1→2 should have learned how to remap deep
features from one space into the other.

Among all the possible splits (E, D) obtained cutting N at different lay-
ers, we select as input for G1→2 the deepest features, i.e. , those at the lowest
spatial resolution. We make this choice because deeper features tend to be
less connected to a specific domain and more correlated to higher level con-
cepts. Therefore, by learning a mapping at this level we hope to suffer less
from domain shift when applying G1→2 on samples from B. A more in depth
discussion on the choice of E is reported in subsection 8.4.1.

8.1.6 Apply G1→2 to solve T2 on B

Now we aim to solve T2 on B. We can use the supervision provided for T1

on B to extract good image features (i.e. , EA∪B
1 (xB) ). Then use G1→2 to

transform these features into good features for T2, and finally decode them
through a suitable decoder DA

2 . The whole system at inference time corre-
sponds to:

ŷB
2 = DA

2 (G
A
1→2(EA∪B

1 (xB))) (8.4)

Thus, thanks to our novel formulation, we can learn through supervision
the dependencies between two tasks in a source domain and leverage on
them to perform one of the two tasks in a different target domain where
annotations are not available.

8.2 Experimental Settings

We describe here the experimental choices made when testing AT/DT.
Tasks. To validate the effectiveness of AT/DT, we select as T1 and T2 se-

mantic segmentation and monocular depth estimation. In subsection 8.4.7, we
report some promising results also using as T1 semantic segmentation and as
T2 normal estimation. We minimize a cross entropy loss to train a network
for semantic segmentation while we use a L1 regression loss to train a net-
work for monocular depth estimation. We choose these tasks to evaluate our
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framework since they are closely related, as highlighted in recent works [1,
188, 189], and of clear interest in many practical settings such as, e.g. , au-
tonomous driving. Moreover, as they require a structured output, they can
be addressed by a similar network architecture with the only difference be-
ing the number of filters in the final layer: as many as the number of classes
for semantic segmentation, just one for depth estimation and three in case of
normal estimation.

Datasets. We consider four different datasets, two synthetic ones, and
two real ones. We pick synthetic datasets as A to learn the mapping across
tasks thanks to availability of free annotations. We use real dataset as B to
benchmark the performance of AT/DT in challenging realistic conditions.
As synthetic datasets we have used the six video sequences of the Synthia-
SF dataset [177] (shortened as Synthia) and rendered several other sequences
with the Carla simulator [25]. For both datasets, we have split the data into
a train, validation, and test set by subdividing them at the sequence level
(i.e. , we have used different sequences for train, validation, and test). As
for the real datasets, we have used images from the Kitti [190, 108, 178] and
Cityscapes [14] benchmarks. Concerning Kitti, we have used the 200 im-
ages from the Kitti 2012 training set [190] to benchmark depth estimation
and 200 images from the Kitti 2015 training set with semantic annotations
recently released in [191]. As for Cityscapes, we have used the validation
split to benchmark semantic segmentation and all the images in the training
split. When training depth estimation networks on Cityscapes, following a
procedure similar to [170] we generate proxy labels by filtering SGM [192]
disparities through confidence measures (left-right check).

Network Architecture. Each task network is implemented as a dilated
ResNet50 [193] that compresses an image to 1/16 of the input resolution to
extract features. Then we use several bilinear up-sample and convolutional
layers to regain resolution and get to the final prediction layer. All the layers
of the network feature batch normalization. We implement the task transfer
network (G1→2) as a simple stack of convolutional and deconvolutional lay-
ers that reduce the input to 1/4 of the input resolution before getting back to
the original scale.

Evaluation Protocol. For each test we select two domains (i.e. , two
datasets, referred to asA and B) and one direction of task transfer, e.g. , from
T1 to T2. We will use Sem. → Dep. when mapping features from semantics
to depth and Dep. → Sem. when switching the two tasks. For each config-
uration of datasets and tasks we use AT/DT to train a cross-task network
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(G1→2) following the protocol described in subsection 8.1.2, then measure its
performance for T2 on B. We compare our method against a Baseline obtained
training a network with supervision for T2 inA (i.e. , NA

2 ) and testing it on B.
Moreover, we report as a reference the performance attainable by a Oracle (i.e.
, a network trained with supervision on B). We perform all the evaluation at
the original image resolution for Cityscapes, Carla and Synthia. Instead, for
Kitti, we consider a central crop with size 320× 1216 due to the varying size
of images.

Metrics. Our semantic segmentation networks predict eleven different
classes corresponding to those available in the Carla simulator plus one ad-
ditional class for ‘Sky’. To measure performance, we report two different
global metrics: pixel accuracy, shortened Acc. (i.e. , the percentage of pix-
els with a correct label) and Mean Intersection Over Union, shortened mIoU
(computed as detailed in [14]). To provide more insights on per-class gains
we also report the IoU (intersection-over-union) score computed indepen-
dently for each class.

When testing the depth estimation task we use the standard metrics de-
scribed in [51]: Absolute Relative Error (Abs Rel), Square Relative Error (Sq
Rel), Root Mean Square Error (RMSE), logarithmic RMSE and three δ accu-
racy scores (δα being the percentage of predictions whose maximum between
ratio and inverse ratio with respect to the ground truth is lower than 1.25α).

8.3 Experimental Results

In this section we report some experimental results made to evaluate AT/DT.

8.3.1 Depth to Semantics

Following the protocol detailed in section 8.2, we first test AT/DT when
transferring knowledge from the monocular depth estimation task to the seman-
tic segmentation task, and report the results in Table 8.1. In this setup, we
have supervision for both tasks in A while only for depth estimation in B.
Therefore, for each configuration, we report the results obtained performing
semantic segmentation on B without any domain-specific supervision.

We begin our investigation by studying the task transfer in a purely syn-
thetic environment, where we can have perfect annotations for all tasks and
domains, i.e. , we use Synthia and Carla as A and B, respectively. The re-
sults obtained by AT/DT and a transfer learning baseline are reported in
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(a) Synthia Carla Baseline 63.94 54.87 15.21 0.03 13.55 12.78 52.73 27.34 4.88 50.24 79.73 34.12 73.36
Synthia Carla AT/DT 73.57 62.58 26.85 0.00 17.79 37.30 35.27 52.94 17.76 62.99 87.50 43.14 80.00

(b) Synthia Cityscapes Baseline 6.91 0.68 0.00 0.00 2.47 9.14 3.19 8.90 0.81 25.93 26.86 7.72 28.49
Synthia Cityscapes AT/DT 85.77 29.40 1.23 0.00 3.72 14.55 1.87 8.85 0.38 42.79 67.06 23.24 64.03

(c)
Carla Cityscapes Baseline 71.87 36.53 3.99 6.66 24.33 22.20 66.06 48.12 7.60 60.22 69.05 37.88 74.61
Carla Cityscapes AT/DT 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37

- Cityscapes Oracle 95.65 77.72 33.02 37.63 65.45 42.087 89.36 89.99 41.36 86.81 89.22 68.02 93.56

TABLE 8.1: Experimental results of Dep.→ Sem. scenario. Best
results highlighted in bold.

Table 8.1-(a). Comparing the two rows we can clearly see that our method
boost performance by +9.02% and +6,64%, for mIoU and Acc, respectively,
thanks to the additional knowledge transferred from the depth estimation
task.

The same performance boost holds when considering a far more chal-
lenging domain transfer between synthetic and real data, i.e. , Table 8.1-(b)
(Synthia→ Cityscapes) and Table 8.1-(c) (Carla→ Cityscapes). In both sce-
narios, our AT/DT improves the two averaged metrics (mIoU and Acc.) and
most of the per class scores, with gain as large as +78,86% for the Road class
in (b). Overall AT/DT consistently improves predictions for the more inter-
esting classes in autonomous driving scenarios, e.g. , Road, Person. . . . The
main difficulties for AT/DT seems to deal with transferring knowledge for
classes where depth estimation is particularly hard (e.g. , Vegetation, where
synthetic data have far from optimal annotations, or thin structures like Poles
and Fences). Indeed our model in Table 8.1-(c) is still far from the perfor-
mance obtainable by the same Oracle network trained with supervision on B
for T2. However we wish to point out that in this scenario we do not use any
annotation at all on the real Cityscapes data, since we automatically gener-
ate noisy proxy labels for depth from synchronized stereo frames following
[170].

The top row of Figure 8.2 show qualitative results on Cityscapes where
AT/DT produces clearly better semantic maps than the baseline network.

8.3.2 Semantics to Depth

Following the protocol detailed in section 8.2, we test AT/DT when trans-
ferring features from semantic segmentation to monocular depth estimation. In
this setup, we have complete supervision for both tasks in A and only for
semantic segmentation in B. For each configuration we report in Table 8.2
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Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(a) Synthia Carla Baseline 0.632 8.922 13.464 0.664 0.323 0.578 0.733
Synthia Carla AT/DT 0.316 5.485 11.712 0.458 0.553 0.785 0.880

(b)
Carla Cityscapes Baseline 0.667 13.500 16.875 0.593 0.276 0.566 0.770
Carla Cityscapes AT/DT 0.394 5.837 13.915 0.435 0.337 0.749 0.899

Cityscapes Cityscapes Oracle 0.176 3.116 9.645 0.256 0.781 0.921 0.969

(c)
Carla Kitti Baseline 0.500 10.602 10.772 0.487 0.384 0.723 0.853
Carla Kitti AT/DT 0.439 8.263 9.148 0.421 0.483 0.788 0.891

- Kitti Oracle 0.265 2.256 5.696 0.319 0.672 0.859 0.939

TABLE 8.2: Experimental results of Sem.→ Dep. scenario. Best
results highlighted in bold.

Input Baseline AT/DT GT

FIGURE 8.2: Qualitative results for A: Carla to B: Cityscapes.
First row shows Dep.→ Sem. scenario while second row shows
Sem. → Dep. setting. From left to right RGB input, baseline

predictions, AT/DT predictions, ground-truth images.

the results obtained performing monocular depth estimation on B without
any domain-specific supervision.

The first pair of rows (i.e. , Table 8.2-(a)) reports results when transfer-
ring knowledge across two synthetic domains. The use of knowledge com-
ing from semantic features helps AT/DT to predict better depths resulting in
consistent improvements in all the seven metrics with respect to the baseline.
The same gains hold for tests concerning real datasets (i.e. , Table 8.2-(b) with
Cityscapes and Table 8.2-(c) with Kitti), where the deployment of AT/DT al-
ways results in a clear advantage against the baseline. We wish to point out
how on Table 8.2-(c) we report a result where AT/DT use very few annotated
samples from B (i.e. , only the 200 images annotated with semantic labels re-
leased by [191]). Comparing Table 8.2-(c) to Table 8.2-(b) we can see how
the low data regime of Kitti results in slightly smaller gains, as also testified
by the difference among oracle performances in the two datasets. Neverthe-
less AT/DT consistently yields improvements with respect to the baseline
for all the seven metrics. We believe that these results provide some assur-
ances on the effectiveness of AT/DT with respect to the amount of available
data per task. Finally, the bottom row of Figure 8.2 shows qualitative results
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(a) Baseline 71.87 36.53 3.99 6.66 24.33 22.20 66.06 48.12 7.60 60.22 69.05 37.88 74.61
(b) AT/DT 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37
(c) CycleGAN 81.58 39.15 6.08 5.31 30.22 21.73 77.71 50.00 8.33 68.35 77.22 42.33 80.93
(d) AT/DT + CycleGAN 85.19 41.37 5.44 3.02 29.90 24.07 71.93 58.09 7.53 70.90 77.78 43.20 81.92

TABLE 8.3: Experimental results of integration with domain
adaptation techniques. We show results of A: Carla to B:
Cityscapes and Dep. → Sem. scenario. Best results highlighted

in bold.

Lower is better Higher is better
Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(a) Baseline 0.667 13.499 16.875 0.593 0.276 0.566 0.770
(b) AT/DT 0.394 5.837 13.915 0.435 0.337 0.749 0.899
(c) CycleGAN 0.943 27.026 21.666 0.695 0.218 0.478 0.690
(d) AT/DT+CycleGAN 0.563 10.789 15.636 0.489 0.247 0.668 0.861

TABLE 8.4: Experimental results of comparison and integra-
tion with domain adaptation techniques. We show results ofA:
Carla to B: Cityscapes and Sem. → Dep. scenario. Best results

highlighted in bold.

on monocular depth estimation on Cityscapes: we can clearly observe how
AT/DT provides significant improvements over the baseline, especially on
far objects.

8.3.3 Integration with Domain Adaptation

All the results of subsection 8.3.1 and subsection 8.3.2 are obtained learning a
mapping function across tasks in a domain and deploying it in another one.
Therefore, both the transfer network G1→2 and the baseline we consider, can
indeed suffer from domain shift issues. Fortunately, the domain adaptation
literature provides several different strategies to overcome domain shifts that
are complementary to our AT/DT. We provide here some preliminary results
on how the two approaches may be combined together.

We consider a pixel-level domain adaptation technique, i.e. , CycleGan
[149], that transforms images from B to render them more similar to those
fromA. We train CycleGAN to transform images from Carla (A) to Cityscapes
(B) and vice-versa. The network is trained using the original author imple-
mentation for 200k steps on random image crops of 400× 400 pixels. We use
the same hyper-parameters settings as proposed in the original paper.
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Cityscapes CityscapesLikeCarla Carla

FIGURE 8.3: Images obtained applying CycleGAN to make
Cityscapes samples similar to those of Carla. From left to
right: samples from Cityscapes, corresponding image from
CityscapesLikeCarla obtained by CycleGAN, similar samples

from Carla

Once trained, we transform the Cityscapes dataset into the Carla style
generating a new CityscapesLikeCarla dataset which we will call BlikeA do-
main (see Figure 8.3). The baseline is then obtained by testing NA

2 with the
validation set of BlikeA. To integrate AT/DT with CycleGAN, we train a
NA∪{BlikeA}

1 on both A and BlikeA at step 1 of AT/DT. Then, at step 4, to
infer the predictions for T2 on B, we employ the validation set of BlikeA as
done for the baseline. To summarize we train the shared source network on
samples obtained from A and BlikeA, then we test all networks on the test
set of BlikeA (i.e. , Cityscapes images transformed to look like those from
Carla).

In Table 8.3, we report results obtained for a Dep. → Sem. scenario us-
ing Carla as A and Cityscapes as B. The pixel level domain alignment of
CycleGAN (row (c)) proves particularly effective in this scenario, yielding a
huge boost when compared to the baseline (row (a)), even greater then the
gain granted by AT/DT (row (b)). However, we can see how the best av-
erage results (i.e. , mIoU and Acc.) can be obtained combining our cross
task framework (AT/DT) with the pixel level domain adaptation provided
by CycleGAN (row (d)). Considering the scores on single classes, instead,
there is no clear winner among the four considered methods, with different
algorithms providing higher accuracy for different classes. In Table 8.4 we
report results obtained on a Sem. → Dep. scenario using the same pair of
domains and the same four methods. Surprisingly, when targeting depth es-
timation CycleGAN (row (c)) is not as effective as before and actually worsen
significantly the performance of the baseline (row (a)). Our AT/DT is instead
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BlikeA inputs Baseline CycleGAN AT/DT AT/DT+CycleGAN

FIGURE 8.4: Qualitative results on the Cityscapes dataset in
a Sem. → Dep. scenario (first row) and Dep. → Sem. sce-
nario (second row). From left to right: BlikeA inputs, pre-
dictions obtained by a transfer learning baseline, by a do-
main adaptation baseline (CycleGAN[149]), by our framework
(AT/DT) and by our framework aided by domain adaptation

(AT/DT+CycleGAN).

more robust to the task being addressed and in this scenario can improve the
baseline when combined with CycleGAN (row (d)) and obtain the best over-
all results when applied alone (row (a)).

In Figure 8.4 we show some qualitative results obtained when combining
AT/DT together with the pixel level domain adaptation obtained through
CycleGAN. Comparing the results in the Sem. → Dep. scenario (first row)
with those obtained in a Dep. → Sem. scenario (second row) we can see
how CycleGAN is very effective when targeting the semantic segmentation
tasks, much less effective when targeting a depth estimation task. AT/DT,
instead, consistently produce better predictions than the baseline in both the
considered tasks.

8.4 Additional Experiments

We report additional tests to shine light on some of the design choices made
when developing AT/DT. Moreover, we show an experimental study fo-
cused on highlighting the importance of G1→2, in particular comparing our
proposal to an end-to-end multi-task network featuring a shared encoder and
two task dependent decoders.

8.4.1 Study on the Transfer Level

For all the previous tests we split N between E and D at the layer correspond-
ing to the lowest spatial resolution. We pick this split based on the intuition
that deeper layers yield more abstract representations, thus less correlated
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FIGURE 8.5: Study on feature level for task transfer from Syn-
thia to Cityscapes and Dep. → Sem. scenario. Deeper levels

correspond to higher generalization performances.

to specific domain information, while lower level features are more domain
dependent. Therefore, learning G1→2 between shallower layers should lead
to less generalization ability across domains. To validate this intuition, we
run experiments aimed at measuring performance for the Dep. → Sem. sce-
nario (Synthia → Cityscapes) when varying the network layer at which we
split N into E and D. We consider four different feature levels correspond-
ing to residual blocks at increasing depth in ResNet50. For each of them
we train a transfer network on domain A and then measure mIoU and Acc.
testing on unseen images from A (i.e. DA

2 (G
A
1→2(EAuB

1 (xA)))) and B (i.e.
DA

2 (G
A
1→2(EAuB

1 (xB)))). The results are plotted in Figure 8.5.
Considering Acc. (top plot) we can see how in-domain performance are

almost equivalent at the different feature levels (orange line), while cross-
domain performance increase when considering deeper feature levels (blue
line). This pattern is even more pronounced when considering mIoU (bot-
tom plot), where in-domain performance actually decreases alongside with
deeper feature, whilst cross-domain performance increases. These results
validate our intuition that deeper features are less domain specific and may
lead to better generalization to unseen domains.

8.4.2 Shared vs Non-Shared N1

Throughout this work we have always trained a single network for T1 with
samples from A and B. The rationale behind this choice is to have a single
feature extractor for both domains such that G1→2 trained only on samples
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Shared Domain mIoU Acc.

7 A 61.73 97.02
3 A 65.41 97.53

7 B 6.42 29.36
3 B 23.24 (+16.82) 64.03 (+34.67)

TABLE 8.5: Study on Shared vs Not-Shared NA∪B
1 . We show a

A: Synthia to B: Carla and Dep.→ Sem. scenario. Performance
improvement highlighted in bold.

Batchnorm Domain mIoU Acc.

7 A 72.48 98.09
3 A 65.41 97.53

7 B 22.75 58.29
3 B 23.24 (+0.49) 64.03 (+5.74)

TABLE 8.6: Ablation Study on Batch Normalization. We show
a A: Synthia to B: Cityscapes and Dep. → Sem. scenario. Per-

formance improvement highlighted in bold.

from A would be able to generalize well to samples from B as they are sam-
pled from a similar distribution.

Here we experimentally validate this intuition by comparing a shared
NA∪B

1 against the use of two separate networks, one trained on samples from
A (NA

1 ) and the other with samples from B (NB
1 ). We consider a Dep.→ Sem.

scenario where we use Synthia as domainA and Cityscapes as B. In Table 8.5
we report the mIoU and Acc. achieved on unseen samples from the two do-
mains. On the training domain A both methods are able to obtain good re-
sults, slightly better for the shared network, probably thanks to the higher
variety of data used for training. However, when moving to the completely
different domain B, it is clear that maintaining the same feature extractor is
of crucial importance to be able to use the same G1→2. This test suggests the
interesting findings that feature extracted by the exact same network archi-
tecture trained for the exact same tasks in two different domains are quite
different. Therefore to correctly apply G1→2 we need to take into account
these difficulties.

8.4.3 Batch Normalization

We investigate the impact on performance of using task networks with or
without batch normalization layers [194]. Our intuition is that the introduc-
tion of batch normalization yields more similar features across domains and
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Synthia NA
2 99.23 87.16 92.67 28.62 48.53 63.54 85.02 88.92 52.67 96.91 98.39 76.52 98.45

Synthia AT/DT 98.34 76.09 84.99 1.06 29.25 45.57 80.15 85.72 25.31 95.53 97.45 65.41 97.53

TABLE 8.7: Experimental results of Dep.→ Sem. scenario using
as domain A the Synthia dataset. Best results highlighted in

bold.

Lower is better Higher is better
A Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Synthia NA
2 0.138 1.212 4.759 0.825 0.864 0.952 0.970

Synthia AT/DT 0.135 1.271 5.061 0.634 0.863 0.958 0.977

TABLE 8.8: Experimental results of Sem.→ Dep. scenario using
as domain A the Synthia dataset. Best results highlighted in

bold.

smaller numerical values, making the training of G1→2 easier and numeri-
cally more stable. In Table 8.6 we report results for the Dep.→ Sem. scenario
when employing Synthia as A and Cityscapes as B. As expected, batch nor-
malization yields representations more similar between domains, thus lead-
ing to better generalization performances on B. Counter-intuitively, we also
notice that results on A are worse with batch normalization, perhaps due to
mapping features from T1 to T2 being harder when these lay within a more
constrained space.

8.4.4 Train domain performance of G1→2

Our framework has to overcome two nuisances to effectively address the
lacking of supervision in the target task and domain: translation of features
between tasks and change of domain. In this section, we are interested in iso-
lating the impact of the first nuisance, which will also provide some hints on
the importance of the second one. In other words, we are trying to answer the
question: How well are we effectively learning to translate deep representations?

To focus only on the effectiveness in transferring representations, we con-
sider a test set of images from A and compare AT/DT and NA

2 (the network
trained on domain A for T2). As the test data are sampled from the same
domain as the training data, we do not have errors due to the domain shift
and can use the gap in performance between the two algorithms as a mea-
sure of the effectiveness of our framework in transferring representations.
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Sem.→ Dep. Dep.→ Sem.

FIGURE 8.6: t-SNE [195] plots of deep features computed onA.
Pink denotes the features extracted for T1, i.e. EA∪B

1 (xa). Blue
features extracted for T2, i.e. EA

2 (xa). Red the prediction ob-
tained by the feature transfer network G1→2(EA∪B

1 (xa)). There-
fore, the red points are the transformations of the pink points
according to G1→2. With an ideal G1→2 red and blue points
would perfectly overlap, here we can see that unfortunately this
is not the case. Nevertheless our transfer function successfully

transform pink features to make them closer to blue ones.

As we wish to evaluate both semantic segmentation and depth estimation,
we select the Synthia domain as A, for which we have all labels available,
and Cityscapes as B. In Table 8.7 we report the results when transferring
deep representations in the Dep. → Sem. scenario, while in Table 8.8 in the
Sem.→ Dep. scenario.

Table 8.7 shows how transferring deep representations from T1 to T2 with
AT/DT results in a small loss in performance compared to NA

2 . In particu-
lar, the largest performance drops are related to classes dealing with small
objects, like ‘Fence’, ‘Poles’ and ‘Traffic Sign’, that might get lost transferring
features at the smallest spatial resolution in the network. These results sug-
gest that a multi-scale transfer strategy would be a direction worth exploring
in future work to better recover small details upon transferring representa-
tions. Nevertheless, the comparisin between the final pixel accuracy (Acc.)
highlights that AT/DT loses only 1% though relying on a feature extractor
trained for a different task.

In Table 8.8 AT/DT obtains again performance close to NA
2 . For some

metrics, it even delivers better performance than NA
2 . This somewhat sur-

prising result can be explained by the difference between the training sets:
AT/DT uses as feature extractor NA∪B

1 , which has been trained with sam-
ples from both A and B, i.e. with a larger and more varied training set than
that used by NA

2 . Therefore, the encoder of NA∪B
1 might learn a more general
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(c) Carla Cityscapes Baseline 71.87 36.53 3.99 6.66 24.33 22.20 66.06 48.12 7.60 60.22 69.05 37.88 74.61

(c) Carla Cityscapes No Transfer 84.82 33.15 1.00 1.79 6.30 14.26 69.91 40.32 1.84 65.67 73.49 35.69 79.53
Carla Cityscapes AT/DT 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37

TABLE 8.9: Experimental results of Dep.→ Sem. scenario. Best
results highlighted in bold.

feature extractor than that of NA
2 , this resulting in better performance when

applied on unseen data. AT/DT can successfully leverage on this better fea-
ture extractor and obtain slightly better performance when transferring them
to T2.

The same reasoning may be applied to the results of Table 8.7. However,
in this case, the shared encoder of NA∪B

1 has been partially trained with noisy
ground truth depth labels on samples from B. The introduction of noise in
the training process might harm the learning of NA∪B

1 and explain the small
gap in performance. Moreover, as stated above, due to the transferring of
features at low resolution, AT/DT might struggle to transfer small image
structures (e.g. , ‘poles’, ‘traffic sign’. . . ). However, wrong predictions on this
kind of small structures do not arm much the depth estimation metrics (i.e.
, few pixels are considered), though they have a larger impact on the mIoU
metric considered for semantic segmentation. Finally, as stated in [1], the
advantages yielded by semantic information to depth estimation are larger
than the gains attainable going in the other direction, thus motivating the
slight difference in performance across the two scenarios.

Overall, the results reported in Table 8.8 and Table 8.7 show that our
framework is indeed learning to transfer deep representations effectively and
that it is possible to approximate G1→2 by a neural network like that we pro-
pose in this work. This is further validated in Figure 8.6, where we report
two t-SNE[195] plots of deep features extracted by NA∪B

1 (in pink), NA
2 (in

blue) alongside with the features transformed by G1→2 (in red). All features
are computed on image samples from the test set described above, i.e. sam-
ples unseen at training time. Therefore, G1→2 takes as input pink points and
produces red points that should be as close as possible to the blue points.
Indeed, the two plots show how our task transfer network can successfully
produce features suitable for T2.
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Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(b) Carla Cityscapes Baseline 0.667 13.500 16.875 0.593 0.276 0.566 0.770

(b) Carla Cityscapes No Transfer 0.615 17.578 19.924 0.533 0.284 0.646 0.845
Carla Cityscapes AT/DT 0.394 5.837 13.915 0.435 0.337 0.749 0.899

TABLE 8.10: Experimental results of Sem. → Dep. scenario.
Best results highlighted in bold.

8.4.5 Importance of G1→2

We report results of additional tests to further assess the importance of G1→2

in our cross tasks and domains adaptation. Purposely, we consider a single
network made out of one encoder, EA∪B

1,2 and two decoders, DA∪B
1 and DA

2 .
DA∪B

1 is trained with samples from A and B for T1. DA
2 is trained with sam-

ples from A for T2. Finally, EA∪B
1,2 is trained together with the two heads with

both tasks and domains. Therefore we consider a single feature extractor
which yields a shared representation for both tasks and domains without the
need to learn a transfer function between tasks. We will refer to this configu-
ration as the No Transfer setting.

We evaluate No Transfer for both Dep. → Sem. and Sem. → Dep. settings
from Carla to Cityscapes and compare it to AT/DT and the transfer learn-
ing baseline. Table 8.9 and Table 8.10 report results for Dep. → Sem. and
Sem. → Dep. settings respectively. For Sem. → Dep. our method outper-
forms No Transfer for all metrics, and indeed this alternative is even worse
than the baseline for Sq. Rel. and RMSE. On the other hand, for Dep.→ Sem.
our method achieves better performances in the majority of the classes and
for the mIoU, while No Transfer provides the best pixel accuracy. We ascribe
this result to No Transfer providing the highest IoU for the road class, which
represents the vast majority of pixels in an autonomous driving scenario.
However this good performance does not translate to other classes such that
No transfer achieves the worst mIoU, even less than the baseline. These re-
sults confirm the importance of learning a mapping function (e.g. , G1→2)
between features to transfer representations between tasks.

8.4.6 Shared Decoder and Separate Encoders for N1

In subsection 8.4.2 we highlighted how learning a common representation for
T1 is crucial to learn a transfer function which generalize across domains. In
this additional test we show that to learn a good shared representation across
domains for one task, we need to share both encoders and decoders in NA∪B

1 .
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Shared Encoders mIoU Acc.

7 11.55 56.79
3 23.24 (+11.69) 64.03 (+7,24)

TABLE 8.11: Study on Shared Decoder with Non Shared En-
coders for NA∪B

1 . We show a A: Synthia to B: Carla and
Dep. → Sem. scenario. Performance improvement highlighted

in bold.

RGB input Baseline AT/DT

FIGURE 8.7: Qualitative results on Cityscapes dataset in a
Sem. → Norm. scenario. From left to right: RGB input, predic-
tion obtained by a transfer learning baseline and by our frame-

work (AT/DT).

For this reason we train a different version of NA∪B
1 with a shared decoder

but two encoders, one trained only on A and the other only on B. Table 8.11
compares this architecture to AT/DT for Synthia to Cityscapes in the Dep.→
Sem.scenario. Indeed training a shared encoder allows the representation to
be more closely related resulting in better performance.

8.4.7 Additional tasks

In Figure 8.7 we report additional qualitative results when using as T1 seman-
tic segmentation and as T2 normal estimation, with Carla asA and Cityscapes
as B. The results confirm the findings of the semantic to depth scenario, with
AT/DT producing clearly better prediction than the baseline network. We re-
port only qualitative results due to the lack of annotations to validate normal
estimation on the real Cityscapes data.



65

Chapter 9

Learning Good Features to Transfer
Across Tasks and Domains

In this chapter we expand and improve our original framework shown in
chapter 8 by performing two types of feature alignment to ease the learning
of a mapping function between them. We align feature representations across
domains using a novel norm discrepancy alignment loss that constrain the
feature space by penalizing features with very different norms in a spatially
aware manner. At the same time, we align feature representations across
tasks by using them as inputs to solve a common auxiliary task. This extra
task can be very simple as it only acts as a bridge between the source and the
target one by forcing the deep features extracted to solve them to share the
same encoding and semantic content.

We test the effectiveness of this extension in the same tasks as the origi-
nal framework, monocular depth estimation and semantic segmentation. We
argue that both tasks need to reason about the borders of the objects. For
instance, in semantic segmentation we need to reason about class borders, in
depth estimation we need to estimate discontinuities related to objects at dif-
ferent depths. Thus, we select as auxiliary bridge task edge detection. More-
over, the generalization performance of state of the art models for this task
[196] are good enough to allow to use them for proxy supervision avoiding
the need for extra labels. We evaluate the extended framework in a similar
setting to the previous one, using a fully supervised and completely syn-
thetic domain (i.e. , the Carla simulator [25]) to improve the performance on
a partially labeled real one (i.e. , Cityscapes [14]).

9.1 Extended ATDT

We describe here the additional improvement made to AT/DT in order to
achieve better transferability across tasks and domains. We use the same



66Chapter 9. Learning Good Features to Transfer Across Tasks and Domains

FIGURE 9.1: Two task transfer scenarios: on the left, the depth-
to-semantic case; the opposite on the right. Red circles high-
light image details that are needed to perform the second task
but are not present in the first one. We propose to incorporate
relevant details of the scene within deep features by exploiting
an auxiliary edge detection task, with the aim of making these

representations easier to transfer across tasks and domains.

mathematical notation as reported in subsection 8.1.1. A graphical overview
of the additional improvements is depicted in Figure 9.2.

9.1.1 Feature Alignment Across Domains

In order to achieve good performances, it is crucial to have a G1→2 which
generalize well in a target unseen domain B even if trained only source data
from A. Domain Adaptation (DA) literature already offers several ways to
accomplish this. One may act on the input space [147], on the feature space
[130] or on the output space of the network [136]. In our case though, both
input and output space of G1→2 are high dimensional latent spaces and, as
reported in [136], unsupervised domain adaptation techniques tend to fail
when applied to such spaces for dense tasks. However, we can address the
domain shift directly on the input space of G1→2 since in our framework it
boils down to the feature space of N1, where partial alignment is already
achieved by simultaneous supervised training on A and B. We can further
diminish the domain-shift between the two feature spaces by regularizing
them, enforcing that f1 features extracted from E1 inA and B have similar L2

norms across channels. We preserve spatial information while calculating the
norms assuming that the two domains contains scenes with similar structure
(as it is the case for autonomous driving applications). Starting from features
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FIGURE 9.2: Features alignment strategies across tasks and do-
mains. We train jointly the networks N1, N2 and a shared aux-
iliary decoder Daux. We train N1 to solve T1 on images from
domains A and B using a supervised loss LT1 for T1 alongside
a novel feature Norm Discrepancy Alignment loss LNDA which
helps better aligning the features computed by N1 across the
two domains. We train N2 using a supervised loss LT2 for T2 on
images from B. Daux is trained to solve an auxiliary task Taux
using the loss Laux and based on the features computed by E1

on images from A and B as well as by E2 on images from B.

f A
1 and f B

1 of dimensions H×W×C, where H, W and C are the height, width
and channels of the feature maps respectively, we calculate the L2 norm along
the C axis and we minimize the absolute difference between each spatial lo-
cation i, j along the H and W dimensions. Formally our NDA Loss is defined
as follows:

LNDA =
1

W × H

H

∑
i=1

W

∑
j=1
||| f A

1i,j
||2 − || f B

1i,j
||2| (9.1)

9.1.2 Feature alignment across tasks

We have previously shown a practical solution to improve the generalization
across domains of our mapping. However, we want to go a step further and
align features also across tasks to ease the learning of a mapping function.
We believe that, f1 should contain as much information as possible, even if
they are not strictly needed to solve T1, because they could be useful for T2.
For this reason, while training networks for T1, we simultaneously train a
decoder to solve an auxiliary task Taux to enrich representations. However,
though multi-task learning of T1 and Taux can help to encode more relevant
information in the T1 features f1, it does not guarantee that the decoder D2
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used at inference time on the transferred features from T1 to T2, f1→2, can
make proper use of them if it has been trained only to solve T2 in isolation.
Taux can be used to this end and learn to solve it with the same decoder Daux

also from features f2 computed by E2.
In detail, given auxiliary task labels YA

aux and YB
aux for A and B, we train

N1 and N2 simultaneously with an auxiliary decoder Daux using an auxiliary
loss Laux. Therefore, we obtain auxiliary predictions in the following way:
yaux,k = Daux(Ek(x)), k ∈ [1, 2]. Again, we feed images of both domains
through E1, while we pass only images from A through E2. We do not pass
images belonging to B through E2 while training Daux since this would be the
only supervision for E2 on B and it may skew E2 output to be more effective
on Taux than on T2.

9.2 Experimental Settings

FIGURE 9.3: From left to right: RGB input image of domain A
, depth prediction from N1, edges from f1, semantic segmenta-
tion from N2 and edges from f2. Task features f1 and f2 encode
richer details than strictly needed to solve either task as we can

recover all edges from both of them.

Tasks. We fix T1 and T2 to be monocular depth estimation or seman-
tic segmentation. These two visual tasks can be addressed using the same
base architecture and changing only the final layer. Semantic segmentation
is solved by minimizing a cross entropy loss, monocular depth estimation
by minimizing a L1 loss. We select edge detection as our Taux since this task
has many advantages. First, from an implementation point of view, it can be
solved using again the same decoder as T1 and T2. Second, since our main
goal is to improve transferability of features among tasks, we force features
for T1 to contain as many details as possible of the scene, even if they are not
strictly needed to solve T1. To make a concrete example, we can think about
the case of T1 being depth estimation and T2 semantic segmentation. Fea-
tures f1 used to compute depth can ignore boundaries between semantically
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distinct regions of the image that are not needed to correctly predict depth,
as shown in Fig. 9.1 (e.g. , legs or tyres touching the ground, or between
street signs and poles). Therefore, even if fed to a perfect G1→2, f1 may not
contain all the information needed to restore the semantic structure of the
image. By solving edge-detection, instead, we force the network to extract
additional information from the image, not normally encoded when training
depth features in isolation. We define Laux as a L2 loss for training the edge
decoder.

Datasets. We set A and B to be the synthetic and real datasets, respec-
tively. We use asA a collection of images generated with the Carla simulator
[25], while as B the Cityscapes dataset [14]. We generate a new version of the
Carla dataset w.r.t. the one used to evaluate the original AT/DT to reduce
the gap between synthetic and real scenes, using FOV of 100◦ and collecting
3500, 500, and 1000 images for training, validation, and testing respectively.
For each image, we store the associated depth and semantic labels easily pro-
vided by the simulator. Finally, we use a pre-trained state-of-the-art neural
network[196] (trained on datasets different from A and B) as an off-the-shelf
black-box edge detector to extract the edges from bothA and B to be used as
proxy labels when learning Taux.

Architecture. We use the same architecture as described in section 8.2 to
solve each task. The two encoders are also used to capture good features for
edge detection, which is solved using Daux, that shares the same architecture
as the decoders used in N1 and N2. G1→2 is a simple CNN made out of 6
pairs of convolutional and batch normalization layers with kernel size 3×
3 which, differently from the original AT/DT version, do not perform any
downsampling or upsampling operation.

Evaluation protocol. During the first step of the training, i.e. , training N1

and N2, we found to be extremely relevant to monitor the performance of the
two networks. Indeed, we have observed that the more effective is N2 on the
downstream task, the higher is the final performance of our method and that
the same reasoning may be applied on N1 when trained on A and B: better
results lead to a superior domain adaptation method.

During the training phase of the transfer network, the model is evaluated
on the validation set of Carla. Of course, it is possible that the global op-
timum for Carla is not the global optimum for Cityscapes. Yet, we cannot
use data from the target domain neither for hyper-parameters tuning nor for
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early stopping, because these data would not be available in a real case sce-
nario. Therefore, the Cityscapes validation set is only used at test time to
measure the final performances of our adaptation method.

We use the same metrics described in section 8.2 to evaluate the extended
framework.
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Carla CS Source 78.99 38.81 1.34 5.80 24.02 24.47 71.98 52.23 5.57 65.17 59.10 38.86 78.58
Carla CS ATDT 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

CS CS Transfer Oracle 89.69 48.05 11.46 29.58 59.68 35.84 85.83 85.57 34.03 78.17 85.54 58.50 88.84
- CS Oracle 96.74 78.28 29.26 40.78 72.39 51.28 90.69 91.94 58.92 86.33 89.23 71.44 93.90

TABLE 9.1: Experimental results of Dep. → Sem. scenario.
Source stands for N2 trained on A and tested on B, Transfer
Oracle represents G1→2 trained only on B, Oracle refers to N2

trained and tested on B. Best results highlighted in bold.

FIGURE 9.4: Qualitative results of the Dep. → Sem. scenario.
From left to right: RGB image, ground truth, baseline trained

only on domain A, ours.

9.3 Experimental Results

We provide results for two different settings: transferring features from depth
estimation to semantic segmentation (Sec. 9.3.1) as well as from semantic seg-
mentation to depth estimation (Sec. 9.3.2).

In both scenarios, as already mentioned, we used edge detection as auxil-
iary task, motivated by the idea that either semantic segmentation and depth
estimation can benefit from edge information. Fig. 9.3 shows that with our
multi-task learning protocol we are able to restore all the details of the scene
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from both f1 and f2, proving that N1 and N2 learned to encode richer infor-
mation than strictly needed to solve T1 and T2.

Lower is better Higher is better
A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Carla CS Source 0.7398 15.169 14.774 0.641 0.406 0.650 0.781
Carla CS ATDT 0.3928 4.9094 12.363 0.444 0.372 0.757 0.923

CS CS Transfer Oracle 0.2210 2.2962 9.032 0.275 0.669 0.914 0.972
- CS Oracle 0.1372 1.6214 8.566 0.244 0.816 0.938 0.976

TABLE 9.2: Experimental results of Sem. → Dep. scenario.
Source stands for N2 trained on A and tested on B, Transfer
Oracle represents G1→2 trained only on B, Oracle refers to N2

trained and tested on B. Best results highlighted in bold.

FIGURE 9.5: Qualitative result of the Sem. → Dep. scenario.
From left to right: RGB image, ground truth, baseline network

trained only on domain A, ours.

9.3.1 Depth to Semantics

In this setup, denoted as Dep.→ Sem., the goal of our framework is to trans-
form depth features into semantic segmentation features. This mapping is
learned using Carla as domain A and Cityscapes as domain B. We report
results in Tab. 9.1: the first row shows results obtained with no adaptation
(i.e. , training N2 on Carla and testing it directly on Cityscapes), while from
the second row we can see that our final framework yields 51.28% mIoU
and 87.57% Acc with an improvement of +12.48% and +8.99% respectively in
terms of mIoU and Acc wrt to the baseline.

Furthermore, as we are transferring features from another task, it is worth
trying to investigate on the upper bound in performance due to the inherent
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transferability of the features between the two tasks. Thereby, we train G1→2

using only Cityscapes to learn a mapping function in a supervised fashion
as explained in Sec. 9.1.2 on B and testing on the validation set of B. These
results are shown in the third row of the table (denoted as Transfer Oracle):
given a transfer architecture, there seems to be an upper bound in perfor-
mance due to the nature of the two tasks, which in the considered setting
amounts to a 58.5% mIoU. Thus, our proposal shows a gap that is only about
-7.2% mIoU. We also report the performance of N2 trained on B and tested
on B to show the absolute upper bound (last row of the table, denoted as
Oracle).

Some qualitative results dealing with the Dep. → Sem. scenario are de-
picted in Fig. 9.4. It is possible to appreciate the overall improvement of
our method wrt the baseline, either in flat areas (e.g. , roads, sidelwalks and
walls), in objects shapes (e.g. , cars and persons) or in fine-grained details
(e.g. , poles and traffic signs).

9.3.2 Semantics to Depth

In this setup, which we define as Sem.→ Dep., the goal of our framework is
to transform semantic features into depth features. This mapping is learned
using Carla as domain A and Cityscapes as domain B.

Results are reported in Tab. 9.2. Similarly to the Dep.→ Sem. scenario, in
the first row we show results with no adaptation (denoted as Source), while
the second row presents the ones obtained with our framework. In Fig. 9.5,
we show some qualitative results of the Sem. → Dep. scenario. While pre-
dictions look quite noisy in the background, we can see a good improvement
in the foreground area thanks to our method. Shapes are recovered almost
perfectly, both for big and small objects, even with difficult subjects like the
crowd in the bottom row. Additionally, our method enables a remarkable
enhancement of the prediction smoothness.

9.4 Additional Experiments

In the following sections, we study the effectiveness of each implementation
choice.
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Carla CS 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Carla CS X 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21
Carla CS X 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77
Carla CS X X 90.57 48.46 7.37 12.27 41.16 31.90 81.96 72.77 23.44 77.85 76.33 51.28 87.57

TABLE 9.3: Ablation study in the Dep. → Sem. scenario. Best
results highlighted in bold. Edge refers to the framework
trained with our details-aware features. NDA refers to the

framework trained with our NDA loss.

9.4.1 Contribution of Taux and NDA Loss

We start by studying the effect of introducing in our framework the auxiliary
task and the NDA Loss, analyzing their contribution either when used sepa-
rately or combined together. The second and the third row of Tab. 9.3 report
results obtained in the Dep.→ Sem. setting respectively when integrating in
our method exclusively the auxiliary task (i.e. , edge detection) or the NDA
loss. We can see that both techniques bring in an improvement of about +2%
in terms of mIoU wrt to the plain version of AT/DT (first row). Interestingly,
though, from the last row of the table we can see that edge detection and
the NDA loss result complementary when combined, providing an overall
improvement of +3.34% mIoU.

Fig. 9.6 presents some zoomed-in qualitative results: we can see how
small details such as poles or car shapes are recovered with our method wrt
results obtained without Taux and NDA loss.

FIGURE 9.6: Zoomed results in a Dep. → Sem. scenario. From
left to right: plain AT/DT without edge and NDA, our com-
plete framework, ground truth. We notice how our method is

able to recover fine-grained details of the output.
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Autoencoder 90.68 50.12 7.45 9.08 31.40 29.43 78.72 68.51 12.95 74.67 75.68 48.07 86.31
Edge detection 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

TABLE 9.4: Comparison between autoencoder and edge detec-
tion as auxiliary tasks in the Dep.→ Sem. scenario. Best results

highlighted in bold.

9.4.2 Effectiveness of edge detection as auxiliary task

In this section, we show empirically that the choice of the proper auxiliary
task is key for the performance of our framework.

In both the Dep.→ Sem. and the Sem.→ Dep. scenarios, we proposed to
use edge detection as an auxiliary task because it captures information about
the shapes of the objects in the input images, and allows for the straightfor-
ward computation of proxy labels. To validate this design choice, we tested
our framework in the Dep.→ Sem. setting, using Daux to simply reconstruct
the input images both from f1 and f2, i.e. , the classical autoencoder setting
(results in Tab. 9.4). Interestingly, using a reconstruction task as the auxiliary
task achieves comparable performances in terms of mIoU over plain AT/DT.
We believe that the autoencoder is a trivial task which does not require the
extraction of informative features about the image, therefore not providing
any additional cues to the downstream task.

9.4.3 Importance of simultaneous training of N1, N2 and Daux

In our experiments we use edge detection as auxiliary task and train a shared
decoder Daux to reconstruct edges of the input image from features extracted
by both E1 and E2. In fact, we argue that this procedure should force E1 to
encode in the extracted features also edges that are not necessary for T1 but
could be relevant for T2. Besides, we believe that simultaneous training of
N1, N2 and Daux is crucial to encourage features coming from E1 and E2 to
encode edge information in the same way, making it easier to learn G1→2.

In Tab. 9.5 we report the ablation study conducted to validate these in-
tuitions. We consider the Dep. → Sem. scenario using the Carla dataset as
domain A and Cityscapes as domain B. The four rows of the table represent
the following training schemes:
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plain AT/DT 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Separate (N1 + edge), N2 87.24 43.30 3.08 10.17 41.77 29.04 81.81 72.35 16.58 77.10 73.10 48.69 85.89
Separate (N1 + edge), (N2 + edge) 88.83 47.31 7.10 8.59 44.53 30.99 83.24 73.54 18.05 78.10 69.66 49.99 86.72
Simultaneous (N1 + N2 + edge) 90.12 48.90 4.18 11.63 37.40 31.98 82.34 71.50 15.11 78.04 80.61 50.16 87.21

TABLE 9.5: Ablation study on the use of edge detection as auxil-
iary task. Best results highlighted in bold. See text for a detailed

explanation of the training protocol used in each row.

1. We report the results obtained by plain AT/DT (i.e. , trained without
Taux and NDA loss) as a baseline.

2. We first train N1 and Daux on both A and B. Then, we train N2 on A.
Finally, we train G1→2 on features extracted by E1 and E2 on domainA.

3. We train N1 and a first D1
aux on both A and B. Then, we train N2 and

a second D2
aux on A. Finally, we train G1→2 on features extracted by E1

and E2 on domain A

4. Our proposed method with a simultaneous training of N1, N2 and a
shared Daux.

The introduction of edge detection as auxiliary task helps in every sce-
nario. In fact, if we use Daux only during training of N1 (second row), we
already see an increase of 0.6% in the overall mIoU. We believe that this is
explained by the presence of edge details (not strictly necessary to solve T1

but relevant for T2) in features extracted by E1. However, G1→2 can have
difficulties in adapting f1 into f2 when the edge information is not explicitly
present in f2. This is confirmed by the result in the third row of the table,
where an additional increase of 1.3% in the overall mIoU is attained by us-
ing two different Daux (one during training of N1 and one during training of
N2). Finally, the best results in terms of mIoU and Acc are achieved by our
method, i.e. , when simultaneously training N1, N2 and a shared Daux. This
shows the benefit of encoding in the same way the edge information in f1

and f2 to enforce feature alignment across tasks.

9.4.4 Alignment strategies for N1

An alternative way to align N1 features between domains to ease the trans-
fer process and favor the generalization of G1→2, is to apply the widely used
adversarial training in feature space. In our settings, this can be done by
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None 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.89 46.01 4.22 11.89 38.20 30.65 77.00 63.68 12.99 74.35 81.16 48.19 85.42
NDA 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

TABLE 9.6: Comparison between NDA loss and adversarial
training to align E1 features. Best results highlighted in bold.

adding a critic that must discriminate whether the features produced by E1

come from A or B. Thus, the encoder E1 not only has to learn a good feature
space for its task, but it is also asked to fool the critic. Afterward, we can pro-
ceed to learn a mapping function G1→2 among tasks as usual. In Tab. 9.6 we
compare this standard DA methodology to our NDA loss. Adversarial train-
ing (second row) does not introduce significant improvements over not per-
forming DA for T1 (first row, it even lowers the pixel-wise accuracy), while
constraining the features extracted by E1 in a norm aligned space (third row)
significantly increases both metrics with respect to the baseline. Our intuition
is that although adversarial training can be useful for domain alignment, it
alters the learned feature space with the goal of fooling the critic, and due
to the instability of adversarial learning, this training objective can lead to
worse performances on the current task. Our NDA loss on the other hands,
acts as a simple regularizer that tries to favor the generalization of the net-
work, thereby it directly helps the network to perform better in the specific
tasks.

9.4.5 Aligning N2 features
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plain AT/DT 89.95 46.77 5.16 10.21 28.93 28.92 77.50 71.37 19.24 75.29 75.12 48.04 85.90
Adv. 89.36 46.03 5.59 8.22 36.45 25.44 75.15 72.29 12.69 74.12 75.79 47.38 85.31
NDA 44.94 23.82 3.81 2.09 30.74 24.21 42.08 68.84 11.69 35.67 11.10 27.18 56.17

TABLE 9.7: Results of aligning output space of E2 in a Dep. →
Sem. scenario. Best results highlighted in bold.

We tried to perform feature alignment across domains also on the features
f2 extracted by E2, by either deploying adversarial training or imposing our
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NDA loss. The idea is to favor the generalization of G1→2 by making not
only alignment in its input space (i.e. , the features produced by E1, aligned
with our NDA loss) more homogeneous, but also its output space, i.e. , the
features produced by E2. However, the setting is not completely symmetric:
when learning E2, we do not have supervision available for B, and the only
loss shaping the feature space for its images is the alignment loss. We believe
this to be the reason why aligning N2 features turned out always detrimental
to performance, as shown in Tab. 9.7 and discussed below.

In the first row, we report the results provided by plain AT/DT (no NDA,
no aux), in the second those obtained by adversarial training on the features
f2 using the same procedure as described in the previous section for f1. We
can observe that not only adversarial training does not improve (like adver-
sarial training applied to E1) but it even decreases the overall mIoU of 0.7%
compared to the baseline. Finally, in the third row, we report the results ob-
tained by our NDA loss on f2, like we did successfully on f1: the NDA loss
destroys the feature space of T2 when applied in this context, as vouched by
the drop of 20% in the overall mIoU wrt to plain AT/DT.

We formulate the following hypothesis to explain these results: both ad-
versarial training and NDA perform a comparison between fA2 and f B2 . While
fA2 are shaped also by the supervision of T2, f B2 are evolved only according
to the additional loss we impose, as we do not have supervision for T2 on B.
However, E2 is shared across domains, and therefore may be pushed to pro-
duce worse representations for both domains while it tries to accomplish the
adversarial objective or the NDA loss minimization for B. If this happens,
mappings learned by G1→2 from fA1 to fA2 will hallucinate worse features for
T2 on B. To understand why adversarial training leads to a small decrease in
performances compared to the use of NDA loss, we ought to consider that
adversarial training implies a discriminator that cannot be easily fooled by
totally degenerated features, while, without any additional constrain from
task supervision, the NDA loss can yield totally collapsed representations.

9.4.6 Aligning G1→2 features

Although feature alignment didn’t turn out beneficial when training N2, one
may still expect to obtain better hallucinated features if the representations
obtained when transferring fA1 and f B1 are aligned. We empirically found out
that even though output space aligning strategies deployed when training
G1→2 can lead to improvements in performance, input space alignment using
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- NDA 42.97 19.60 2.31 1.36 4.21 15.74 18.42 11.77 7.19 36.72 38.99 18.12 43.63
- Adv 90.80 48.91 6.16 11.84 35.32 30.29 78.78 71.17 18.51 75.66 75.03 49.32 86.43
- NDA + Adv 91.03 48.93 6.14 12.24 35.91 31.05 77.93 70.28 16.65 75.50 74.47 49.10 86.28
NDA Adv 90.67 49.49 5.54 12.29 36.73 28.49 78.28 70.19 22.05 76.47 76.35 49.69 86.73
NDA - 91.21 50.16 5.14 13.78 36.99 32.10 77.72 73.38 23.47 76.67 72.67 50.30 86.77

TABLE 9.8: Results of aligning input and output space of G1→2
in a Dep.→ Sem. scenario. Best results highlighted in bold.

our NDA loss deployed when training N1 is more effective than them. More-
over, combining input and output space alignment techniques does not lead
to further improvements. We performed this ablation study in the Dep. →
Sem. scenario using Carla as A and Cityscapes as B. Results of these experi-
ments are reported in Tab. 9.8.

First, we applied our NDA loss to the output-space of G1→2. Similarly to
previous section, we notice that, without having supervision on B, the rep-
resentations extracted from G1→2 for its images collapsed into a single value,
yielding a drastic drop in transfer performance (row 1). We also tried to align
the output-space features by training G1→2 alongside a discriminator in an
adversarial fashion. We wanted to fool the discriminator in order to generate
indistinguishable features fromA or B. We noticed that this strategy allow us
to reach good overall performances with a 49.32 mIoU on Cityscapes (second
row). Moreover, we thought that as adversarial training provides a supervi-
sion on B, using the NDA loss in combination with adversarial loss could
avoid feature collapse for B while reaching a better overall alignment be-
tween A and B. However, we notice that the combination of the two losses
lead us to slightly worse results than adversarial training only (rows 2 vs
3). Finally, since we noticed that using adversarial loss on the output space
lead us to good overall performances, we tested the combination of input
space alignment, through NDA loss applied when training N1, and output
space alignment, through adversarial training for G1→2. However, the com-
bination of these two methods achieves worse performance than using only
NDA alignment loss on input space (rows 5 vs 6).
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Chapter 10

AT/DT in Unsupervised Domain
Adaptation for Semantic
Segmentation

In previous chapters, we showed that, with AT/DT, it is possible to train a
CNN to hallucinate deep features learned to address one task into features
amenable to another task related to the former.

Inspired by previous findings, we argue that monocular depth estima-
tion could be an excellent task to gather additional knowledge useful to ad-
dress semantic segmentation in Unsupervised Domain Adaptation (UDA)
settings. First of all, a monocular depth estimation network makes predic-
tions based on 3D cues dealing with the appearance, shape, relative sizes,
and spatial relationships of the stuff and things observed in the training im-
ages. This suggests that the network has to predict geometry by implicitly
learning to understand the scene semantics. Indeed, chapter 13 as well as
other works [197, 198, 199] show that a monocular depth estimation network
obtains better performances if forced to learn a semantic segmentation task
jointly. Moreover, previous experiments in chapter 8 show that depth can
help semantics alike. Indeed, it is possible to learn a mapping in both di-
rections between features learned to predict depth and per-pixel semantic
labels. It is also worth observing how depth prediction networks tend to ex-
tract accurate information for regions characterized by repeatable and sim-
ple geometries, such as roads and buildings, which feature strong spatial and
geometric priors (e.g. the road is typically a plane in the bottom part of the
image) [57, 79, 63, 64]. Therefore, on the one hand, predicting accurately the
semantics of such regions from depth information alone should be possible.
On the other, a semantic network capable of reasoning on the scene geometry
should be less prone to mistakes caused by appearance variations between
synthetic and real images, the key issue in UDA for semantic segmentation.
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FIGURE 10.1: D4 can be plugged seamlessly into any exist-
ing method to improve UDA for Semantic Segmentation. Here
we show how the introduction of D4 can ameliorate the per-
formance of two recent methods like Ltir [157] and Stuff and

Things [158].

Despite the above observations, injection of geometric cues into UDA
frameworks for semantic segmentation has been largely unexplored in litera-
ture, except for a few proposals, which either assume the availability of depth
labels in the real domain [200], a very restrictive assumption, or can lever-
age on depth information only in the synthetic domain due to availability of
cheap labels [201, 202, 203]. In this respect, we set forth an additional consid-
eration: nowadays, effective self-supervised procedures allow for training
a monocular depth estimation network without the need for ground-truth
labels [79, 56, 204].

Based on the above intuitions and considerations, in this chapter, we
show that, thanks to self-supervision, we can deploy depth information from
both synthetic and unlabelled real images in order to inject geometric cues
in UDA for semantic segmentation. Purposely, we adapt the knowledge
learned to pursue depth estimation into a representation amenable to seman-
tic segmentation with AT/DT. As the geometric cues learned from monocu-
lar images yield semantic predictions that are often complementary to those
attainable by current UDA methods, as illustrated in Figure 10.1 we realize
our proposal as a depth-based add-on, dubbed D4 (Depth For), which can be
plugged seamlessly into any UDA method to boost its performance.

Finally, we also follow a recent trend in UDA for semantic segmentation,
the Self-Training (ST), which consists of further fine-tuning the trained net-
work by its predictions [160, 161, 165, 205, 164, 162]. We propose a novel
Depth-Based Self-Training (DBST) approach, which deploys once more the
availability of depth information for real images to build a large and varied
dataset of plausible samples to be deployed in the Self-Training (ST) proce-
dure.
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We will show that our framework can improve many state-of-the-art meth-
ods by a large margin in two UDA for semantic segmentation benchmarks,
where networks are trained either on GTA5 [21] either or SYNTHIA VIDEO
SEQUENCES [24] and tested on Cityscapes [14]. Moreover, we show that
our DBST procedure enables us to distill the whole framework into a single
ResNet101 [206] and achieve state-of-the-art performance.

FIGURE 10.2: From top to bottom: ground truth, semantics
from depth, semantics by LTIR [157]. The semantic labels pre-
dicted from depth are more accurate than those yielded by
UDA methods in regularly-shaped objects (such as the wall in
the left image and the sidewalk in the right one), whilst UDA ap-
proaches tend top perform better on small objects (see the traffic

signs in both images).

10.1 Method

In Unsupervised Domain Adaptation (UDA) for semantic segmentation one
wishes to solve semantic segmentation in a target domain, B, though labels
are available only in another domain, referred to as source domain A. In the
following we describe the two ingredients to better tackle this problem. In
subsection 10.1.1 we show how to use AT/DT to transfer information from
self-supervised monocular depth to semantic segmentation and merge this
knowledge with any UDA method (D4-UDA, Depth For UDA). Then, in sub-
section 10.1.2 we introduce a Depth-Based Self-Training strategy (DBST) to
further improve semantic predictions while distilling the whole framework
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FIGURE 10.3: Overview of D4. RGB images are first pro-
cessed by two different semantic segmentation engines to pro-
duce complementary predictions that are then combined by a
weighted sum which accounts for the relative strengths and
weaknesses of the two engines (Equation 10.3). During the next
step, referred to as DBST, predictions from D4-UDAi are used
to synthesize augmented samples by mixing portions of differ-
ent images according to depth and semantics. The augmented
samples are exploited to train a final model, so as to distill the

whole pipeline into a single network.

into a single CNN. We follow the mathematical notation reported in subsec-
tion 8.1.1.

10.1.1 D4 (Depth For UDA)

Semantics from Depth. As explained above we want to use AT/DT to trans-
fer knowledge from depth to semantic. However, AT/DT assumes availabil-
ity of ground-truth labels for the first task (depth estimation in this setting)
also in B (real images). As pointed out previously, this assumption dose not
comply with the standard UDA for semantic segmentation problem formu-
lation, which pertains availability of semantic labels for source images (A)
alongside with unlabelled target images (B). To address this issue we pro-
pose here to rely on depth proxy-labels attainable from images belonging to
both A and B without the need of any ground-truth information. In par-
ticular, we propose to deploy one of the recently proposed deep neural net-
works, such as [79], that can be trained to perform monocular depth estima-
tion based on a self-supervised loss that requires availability of raw image
sequences only, i.e. without ground-truth depth labels. Thus, we will follow
the following protocol. First, we train a self-supervised monocular depth es-
timation network on both A and B. Then, we use this network to generate
depth proxy-labels for both domains. Finally, we train AT/DT following the
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protocol exposed in section 8.1 using the previously computed depth proxy-
labels to train N1. In the following, we will refer to such predictions as se-
mantics from depth because they concern semantic information extracted from
features amenable to perform monocular depth estimation.

Combine with UDA. Figure 10.2 compares semantic predictions obtained
from depth by the protocol described in the previous sub-section and from
a recent UDA method. The reader may observe a clear pattern: predictions
from depth tend to be smoother and more accurate on objects with large and
regular shapes, like road, sidewalk, wall and building. However, they turn out
often imprecise in regions where depth predictions are less informative, like
thin things partially overlapped with other objects or fine-grained structures
in the background. As UDA methods tend to perform better on such classes
(see Figure 10.2), our D4 approach is designed to combine the semantic knowl-
edge extracted from depth with that provided by any chosen UDA method
in order to achieve more accurate semantic predictions.

Depth information helps on large objects with regular shapes, which usu-
ally account for the majority of pixels in an image, and a whole dataset alike.
On the contrary, UDA methods perform well in predicting semantic labels
for categories that typically concern much smaller fractions of the total num-
ber of pixel in an image and dataset, like e.g. the traffic signs in Figure 10.2.
This orthogonality suggests that a simple yet effective way to combine the se-
mantic knowledge drawn from depth with that provided by UDA methods
consists in a weighted sum of predictions, with weights computed according
to the frequency of classes in A (the domain where semantic labels are avail-
able). As weights given to UDA predictions (wuda) should be larger for rarer
classes, they can be computed as:

wuda = [w1
uda, . . . , wC

uda] where wi
uda =

1
ln(δ + f i)

(10.1)

where C denotes the number of classes and f i = ni

tot denotes their frequencies
at the pixel level, i.e. the ratio between the number ni of pixels labelled with
class i in A and the total number tot of labelled pixels in A. Akin to com-
mon practice, we set the constant δ to 1.02 in our experiments. Equation 10.1
is the standard formulation introduced in [45] to compute bounded weights
inversely proportional to the frequency of classes. Accordingly, weights ap-
plied to semantic predictions drawn from depth (wdep) are given by:

wdep = [w1
dep, ..., wC

dep] where wi
dep = 1− wi

uda. (10.2)
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FIGURE 10.4: The rightmost column is a training sample syn-
thesized by copying pixels from left column into the central
one. Pixels are chosen according to their semantic class and
stacked according to their depths (third row). For example, the
two small persons in the left pair are copied behind the one in
the middle column. The white pixels in the depth maps repre-
sent areas that cannot be copied into other samples due to their

depth being too large.

Thus, at each pixel of a given image we propose to combine semantics
from depth and predictions yielded by any chosen UDA method as follows:

ŷ f = wdep · φT(ŷdep) + wuda · φT(ŷuda), (10.3)

where ŷ f is the final prediction, ŷdep and ŷuda are the logits associated with
semantics from depth and the selected UDA method, respectively, φT de-
notes the softmax function with a temperature term T that we set to 6 in our
experiments.

As illustrated in Figure 10.3, the formulation presented in Equation 10.3
and symbolized as

⊕
can be used seamlessly to plug semantic informa-

tion extracted from self-supervised monocular depth into any existing UDA
method. We will refer to the combination of a given UDA method with our
D4 with the expression D4-UDA. Experimental results reported in subsec-
tion 10.2.3 show that, indeed, all recent s.o.t.a. UDA methods do benefit
significantly from the complementary geometric cues brought in by D4.
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AdaptSegNet [136] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.6 32.5 35.4 3.9 30.1 28.1 42.4 85.6
D4-AdaptSegNet + DBST 93.1 53.0 85.1 42.8 27.3 35.8 43.9 18.5 85.9 39.0 89.9 63.0 31.6 86.6 39.8 36.7 0 42.4 35.0 50.0 90.3

MaxSquare [207] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.2 34.5 44.3 86.9
D4-MaxSquare + DBST 92.9 51.2 84.7 43.5 22.2 35.7 42.5 20.0 86.2 42.0 90.0 63.7 33.0 86.9 45.5 50.9 0 42.2 41.4 51.3 90.3

BDL [156] 88.2 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 89.2
D4-BDL + DBST 93.2 52.6 86.4 44.1 31.2 36.5 42.4 36.1 86.3 41.0 89.8 63.3 37.4 86.3 42.8 57.8 0 40.3 37.9 52.9 90.7

MRNET [163] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3 88.3
D4-MRNET + DBST 93.2 51.6 86.1 45.9 24.5 37.9 47.4 40.4 85.3 37.5 89.6 64.7 39.8 85.8 41.1 53.2 8.9 17.1 33.4 51.7 90.0

Stuff and things* [158] 90.2 43.5 84.6 37.0 32.0 34.0 39.3 37.2 84.0 43.1 86.1 61.1 29.9 81.6 32.3 38.3 3.2 30.2 31.9 48.3 88.8
D4-Stuff and things + DBST 93.3 54.0 86.5 46.4 32.3 37.7 45.2 39.5 85.5 39.4 90.0 63.7 32.8 85.5 32.0 39.5 0 37.7 35.5 51.4 90.5

FADA [139] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2 88.9
D4-FADA + DBST 93.9 58.2 86.4 45.9 29.6 36.9 44.6 27.0 86.3 39.4 90.0 64.9 41.0 85.8 34.6 51.2 9.9 24.2 37.3 52.0 90.7

LTIR [157] 92.9 55.0 85.3 34.2 31.1 34.4 40.8 34.0 85.2 40.1 87.1 61.1 31.1 82.5 32.3 42.9 3 36.4 46.1 50.2 90.0
D4-LTIR + DBST 94.2 59.6 86.9 43.9 35.3 36.9 45.7 36.1 86.2 40.6 90.0 65.9 38.2 84.4 33.3 52.4 13.7 46.2 51.7 54.1 91.0

TABLE 10.1: Results on GTA5→Cityscapes. When available, checkpoints provided by authors are used. * denotes method
retrained by us.
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10.1.2 DBST (Depth-Based Self-Training)

We describe here our proposal to further improve semantic predictions and
distill the knowledge of the entire system into a single network easily de-
ployable at inference time. First, we predict semantic labels for every image
in B by our whole framework (i.e. D4 alongside a selected UDA method,
referred to as D4-UDA); then, we use these labels to train a new model on
B. This procedure, also known as Self-Training [159], has become popular in
recent UDA for semantic segmentation literature [160, 161, 165, 205, 164, 162]
and consists in training a model by its own predictions, referred to as pseudo-
labels, sometimes through multiple iterations. The novelty of our approach
concerns the peculiar ability to leverage on the depth information available
for the images in B to generate plausible new samples.

Running D4-UDA on B yields semantic pseudo-labels for every image in
B. Yet, as described in subsection 10.1.1 (Semantics from Depth), each image
in B is also endowed with a depth prediction, provided by a self-supervised
monocular depth estimation network. We can take advantage of this infor-
mation to formulate a novel depth-aware data augmentation strategy whereby
portion of images and corresponding pseudo-labels are copied onto others so
as to synthesize samples for the Self-Training procedure. The crucial differ-
ence between similar approaches presented in [208, 166] and ours consists in
the deployment of depth information to steer the data augmentation proce-
dure towards generating plausible samples. Indeed, a first intuition behind
our method deals with semantic predictions being less accurate for objects
distant from the camera: as such predictions play the role of labels in Self-
Training, we are lead to prefer picking closer rather than distant regions in
order to generate training samples. Moreover, we reckon certain kinds of
objects, like e.g. persons, vehicles, poles, traffic signs, to be more plausibly
transferable across different images as they tend to be small and less bound
to specific spatial locations. For example, a piece of road or building from
another image would more unlikely merge seamlessly into a given one with
respect to a pedestrian or vehicle.

Given N randomly selected images xn fromB, with n ∈ {1, . . . , N}, paired
with semantic pseudo-labels sn and depth predictions dn, we augment x1, by
copying on it pixels from the set X src = {x2, · · · , xN}. For each pixel of
the augmented image we have N possible candidates, one from x1 itself and
N − 1 from the images in X src. We filter such candidates according to two
criteria: the predicted depth should be lower than a threshold t and the se-
mantic prediction should belong to a predefined set of classes, C∗. Hence, we
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define the set of depths of the filtered candidates at each spatial location p as:

Dp = {dn
p | dn

p < t ∧ sn
p ∈ C∗} n ∈ {1, . . . , N}. (10.4)

In our experiments, for each image the depth threshold t is set to the 80th

percentile of the depth distribution, so as to avoid selecting pixels from the
farthest objects in the scene, while C∗ contains classes: pole, traffic light, traffic
sign, person, car, rider, truck, bus, train, motorbike, bicycle, wall and fence, which
we found more amenable to synthesize plausible training samples. Then, we
synthesize a new image xz and corresponding pseudo-labels sz, by assigning
at each spatial location p the candidate with the lowest depth, so that objects
belonging to different images do overlap plausibly into the synthesized one:

xz
p = xk

p sz
p = sk

p (10.5)

k =

1, Dp = ∅

n s.t. dn
p = minDp, Dp 6= ∅

(10.6)

In Figure 10.4 we depict our depth-based procedure to synthesize new
training samples, considering, for the sake of simplicity, the case where N is
2.

Hence, with the procedure detailed above, we synthesize an augmented
version of B, used to distill the whole D4-UDA framework into a single
model by a Self-Training process. This dataset is much larger and exhibits
more variability than the original B. Due to its reliance on depth informa-
tion, we dub our novel technique as DBST (Depth-Based Self-Training). The
results reported in subsection 10.2.3 prove its remarkable effectiveness, both
when used as the final stage following D4 as well as when deployed as a
standalone Self-Training procedure applied to any other UDA for semantic
segmentation method.

10.2 Experiments

10.2.1 Implementation Details

Network Architectures. We use Monodepth2 [79] to generate depth proxy-
labels for the procedure described in Sec. 10.1.1. We change the AT/DT
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AdaptSegNet* [136] 75.6 78.0 89.7 28.5 3.4 76.0 28.5 85.1 27.2 55.3 46.6 0 49.5 86.9
D4-AdaptSegNet + DBST 88.0 80.2 95.1 66 .8 5.7 80.4 33.2 87.3 33.2 60.9 52.4 0 56.9 90.7

MaxSquare* [207] 72.4 79.2 89.2 36.0 4.6 75.7 31.5 84.9 30.7 55.8 45.8 8.6 51.2 87.3
D4-MaxSquare + DBST 88.1 80.1 95.0 66.6 6.0 79.4 34.4 86.7 36.3 60.8 47.2 8.4 57.4 90.6

MRNET* [163] 84.6 79.7 93.9 56.3 0 80.5 35.4 88.9 27.2 59.4 56.3 0 54.5 90.0
D4-MRNET + DBST 88.3 79.0 95.0 67.0 5.9 78.6 36.2 86.7 31.0 60.6 47.5 0 56.3 90.2

TABLE 10.2: Results on the SYNTHIA-SEQ→Cityscapes bench-
mark. * denotes method retrained by us.

framework respect to the one used in chapter 8 to this new setting by deploy-
ing the popular Deeplab-v2 [209] for depth estimation and semantic segmen-
tation networks. Both networks consist of a backbone and an ASPP module
[209], which substitute, respectively, the encoder and decoder used in chap-
ter 8. The backbone is implemented as a dilated ResNet50 [193]. We also use
the transfer function without the downsampling and upsampling operations
as in section 9.2. More precisely, the transfer function is realized as a simple
6-layers CNN with kernel size 3× 3 and Batch Norm [194]. Following the
recent trend in UDA for semantic segmentation [136, 207, 156, 163, 158, 139,
157], during DBST we train a single Deeplab-v2 [209] model, with a dilated
ResNet101 pre-trained on Imagenet [210] as backbone.

Training Details. Our pipeline is trained on one NVIDIA Tesla V100
GPU with 16GB of memory. In every training and test phase we resize in-
put images to 1024×512, with the exception of DBST, when we first perform
random scaling and then random crop with size 1024×512. During DBST
we use also color jitter to avoid overfitting on the pseudo-labels. The depth
and the transfer network are optimized by Adam [211] with batch size 2 for
70 and 40 epochs, respectively, while the semantic segmentation network is
trained by SGD with batch size 2 for 70 epochs.The final model obtained by
DBST is trained again with SGD, batch size 3 and for 30 epochs. We adopt the
One Cycle learning rate policy [212] in every training, setting the maximum
learning rate to 10−4 but in DBST, where we use 10−3.
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Method UDA D4-UDA UDA + DBST D4-UDA + DBST

AdaptSegNet [136] 42.4 46.7 46.0 50.0
MaxSquare [207] 44.3 48.0 48.1 51.3

BDL [156] 48.5 49.6 51.7 52.9
MRNET [163] 48.3 49.6 50.0 51.7

Stuff and Things* [158] 48.3 49.1 50.4 51.4
FADA [158] 49.3 49.9 51.4 52.0
LTIR [157] 50.2 51.1 53.1 54.1

TABLE 10.3: Impact on performance of the two components of
our proposal (D4, DBST) when applied separately or jointly to
selected UDA methods on GTA5→Cityscapes. * indicates that
the method was retrained by us. Results are reported in mIoU.

10.2.2 Datasets

We briefly describe the datasets adopted in our experiments, pointing the
reader to the Supplementary Material for additional details. We use two syn-
thetic datasets: GTA5 [21, 171] and SYNTHIA [24]. Since our method requires
video sequences to train Monodepth2 [79], we use the split SYNTHIA VIDEO
SEQUENCES (SYNTHIA-SEQ) in the experiments involving the SYNTHIA
dataset. As for real images, we leverage on the Cityscapes dataset [14].

10.2.3 Results

We report here experimental results obtained in two domain adaptation bench-
marks, i.e. GTA5→Cityscapes and SYNTHIA-SEQ→Cityscapes, which show
how the combination with our D4 method allows to boost performance of re-
cent UDA for semantic segmentation approaches.

GTA5→Cityscapes. Table 10.1 reports results on the most popular UDA
benchmark for semantic segmentation, i.e. GTA5→Cityscapes, where meth-
ods are trained on GTA5 and tested on Cityscapes. We selected the most
relevant UDA approaches proposed in the last years [136, 207, 156, 163, 158,
139, 157], using training checkpoints provided by authors whenever avail-
able. We report per-class and overall results in terms of mean intersection
over union (mIoU) and pixel accuracy (Acc), when each method is either
used stand-alone or deployed within our proposal (i.e. D4 + DBST). The
reader may notice how every recent UDA method does improve consider-
ably if combined with our proposal, despite the variability of their stand-
alone performances. Indeed, Adaptsegnet [136], which yields about 42% in
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FIGURE 10.5: From left to right: RGB image, prediction from
UDA method, prediction from D4-UDA + DBST, GT. The top
two rows deal with GTA5→Cityscapes, the other two with
SYNTHIA-SEQ→Cityscapes. Selected methods are, from top
to bottom: LTIR [157], BDL [156], MaxSquare [207] and MR-
NET [163]. In all these examples our proposal can ameliorate
dramatically the output of the given stand-alone method, espe-
cially on classes featuring large and regular shapes, like road in

rows 1-3, sidewalk in rows 2-4 and wall in row 2.

terms of mIoU, reaches 50% when embedded into our framework. Likewise,
LTIR [157], currently considered one of the s.o.t.a. UDA methods, improves
in mIoU from 50.2% to 54.1%. Analyzing Table 10.1 more in detail, we can
observe that our method produces a general improvement for all classes, al-
though we experience a certain performance variability for some of them
(such as train, motorbike and bicycle), probably due to noisy pseudo-labels
used during DBST. Conversely, our method yields consistently a significant
gain on classes characterized by large and regular shapes, namely road, side-
walk, building, wall and sky, which validates our intuition on the effective-
ness of a) the geometric cues derivable from depth to predict the semantics
of these kind of objects and b) the methodology we propose to leverage on
these additional cues in UDA settings. This behavior is also clearly observ-
able from a qualitative perspective in Fig. Figure 10.5. Finally, we point out
that, to the best of our knowledge, the performance figure obtained by D4-
LTIR + DBST, i.e. 54.1% mIoU (last row of Table 10.1) establishes the new
state-of-the-art for the GTA5→Cityscapes benchmark.

SYNTHIA-SEQ→Cityscapes. Akin to common practice in literature we
present results also on the popular SYNTHIA dataset. Due to our pipeline
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Method D4-UDA Self-Training DBST

D4-BDL [156] 49.6 50.1 52.9
D4-MRNET [163] 49.6 50.3 51.7

D4-Stuff and Things [158] 49.1 49.4 51.4
D4-FADA [139] 49.9 50.0 52.0
D4-LTIR [157] 51.1 51.5 54.1

TABLE 10.4: Comparison between DBST and baseline Self
Training. Results are reported in terms of mIoU on

GTA5→Cityscapes.

requiring video sequences to train the self-supervised monocular depth esti-
mation network, we select the SYNTHIA VIDEO SEQUENCES split for train-
ing and the Cityscapes dataset for testing. We will refer to this setting as
to SYNTHIA-SEQ→Cityscapes. To address SYNTHIA-SEQ→Cityscapes we
re-trained the UDA methods for which the code is available and the training
procedure is more affordable in terms of memory and run-time requirements,
namely AdaptSegNet [136], MaxSquare [207] and MRNET [163]. The results
in Table 10.2 show that all the selected UDA approaches exhibit a substan-
tial performance gain when coupled with our proposal, with a general im-
provement in all classes. In particular, similarly to the results obtained in
GTA5→Cityscapes, we observe a consistent improvement for classes related
to objects with large and regular shapes (as depicted also in Figure 13.4), with
the only exception of a slight performance drop for the class building when
using MRNET [163] (last row of Table 10.2). We argue that our approach is
relatively less effective with MRNET [163] as, unlike AdaptSegNet [136] and
MaxSquare [207], it yields already satisfactory results in those classes which
are usually improved by the geometric clues injected by D4.

10.2.4 Ablation study

In this section we report the main ablation studies of our work. Additional
analysis in the supplementary material.

Impact of the individual contributions. In Table 10.3, we analyse the
impact on the performance yielded by the two main contributions of this ap-
proach, i.e. injection of geometric cues into UDA methods by D4 and DBST.
Purposely, we select the GTA5→Cityscapes benchmark and, for each of the
UDA methods considered in Table 10.1, we report the mIoU figures obtained
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by a) using the stand-alone UDA method, b) combining it with D4, c) apply-
ing DBST directly on the stand-alone method and d) embedding the method
into our full pipeline. Thus, we can observe that each of our novel contribu-
tions allow for improving the performance of the most recent UDA methods
by a large margin. Moreover, as shown in the last column of Table 10.3, when
deployed jointly so as to realize our whole proposal, D4 and DBST further en-
hance the performances of the any selected method suggesting that they are
complementary.

Effectiveness of DBST. In Table 10.4 we compare our DBST against an
alternative Self-Training procedure. We select five UDA methods with ap-
pealing performances on GTA5→Cityscapes and combine each of them with
our D4, reporting the obtained mIoU figures in the second column. Seeking
for a viable Self-Training algorithm, we considered those originally proposed
together with each method. Yet, we found experimentally that none of the
original Self-Training procedure could yield a further performance improve-
ment. This can be explained by the fact that these Self-Training algorithms
rely on modeling the uncertainty of the original method for which they are
designed and this tends to fail when UDA methods get merged with D4.
This leads us to consider a baseline Self-Training procedure, which consists
in simply fine-tuning the model by its own predictions on the images of the
target domain. Thus, in Table 10.4 we compare this baseline Self-Training
to DBST (third and fourth column respectively). The figures in Table 10.4
highlight how our DBST procedure consistently provides a much larger per-
formance improvement than the considered baseline Self-Training. As the
only difference between the two procedures concerns the dataset employed
in the fine-tuning process, the results in Table 10.4 prove the effectiveness of
DBST in generating a large and varied set of plausible training samples more
amenable to Self-Training than the original images belonging to the target
domain.
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Final Remarks

In this part of the thesis, we have shown that visual tasks are tightly corre-
lated one to another, and this correlation can be used to ameliorate the need
for labeled data. In chapter 8 we proposed AT/DT showing that it is possi-
ble to learn a mapping function to transform deep representations suitable
for specific tasks into others amenable to different ones. AT/DT allows for
leveraging on easy to annotate domains to solve tasks in scenarios where an-
notations would be costly. We have demonstrated the validity of our frame-
work with thorough experiments in several tasks and domains.

Then, in chapter 9 we extended the base version of AT/DT addressing
its main weaknesses. In particular, to improve AT/DT performance, we in-
troduced two novel feature alignment strategies operating at the tasks and
domains level. Precisely, we have shown that for dense tasks such as seman-
tic segmentation and depth estimation, encoding the scene structure in the
latent space via an auxiliary edge detection task is key to ease generalization
and obtain sharp predictions.

Finally, in chapter 10 we showed a practical application of AT/DT demon-
strating that it is complementary to the whole domain adaptation literature
and it can be integrated with it. In particular, we have shown that it is pos-
sible to exploit self-supervised monocular depth estimation in UDA prob-
lems to obtain accurate semantic predictions for objects with strong geomet-
ric priors (like roads and buildings). These findings highlight the possibility
of transferring the knowledge gathered by auxiliary tasks learned by self-
supervision to better tackle UDA for semantic segmentation, paving the way
for novel research directions.

In conclusion, we think that these results can be extended in generality.
We believe that the relationships among visual tasks to reduce the need for
data is a novel and appealing research direction. Indeed, we can create more
robust and general deep perception models, extending the applicability of
these methods in the real world.
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Chapter 12

Initial Remarks

In the last part of the thesis, we showed that visual tasks are tightly con-
nected and that we can leverage these correlations to decrease the need for
training labels. Nevertheless, here, we want to make a further step by asking
ourselves a new question: Can we deploy tasks’ relationships to build more robust
and performant models for comprehensive scene understanding? In other words,
by merging more tasks, how much can we gain in terms of accuracy, memory
efficiency, computational time, and data requirements?

To address this question, in chapter 13 we report a preliminary study on
monocular depth estimation and semantic segmentation. In previous chap-
ters, we have already shown that these two tasks are tightly correlated one to
another, and we can leverage this connection to improve the generalization
of neural networks. However, we would like to investigate if we can build a
better architecture by exploiting these synergies in a single domain scenario.
We consider monocular self-supervised depth estimation because it can be
trained efficiently without any ground-truth. We presuppose to have stereo-
pairs as supervision. On the other hand, we assume to have few labels for
semantic segmentation for this early study. From the results of this chapter,
we can evince that we can boost depth estimation performances thanks to
semantic segmentation. Indeed, the depth network enriched by semantic in-
formation can reason about the high-level content of the image, mitigating
problems such as texture-less areas or ambiguous object’s borders.

However, we would like to further investigate the advantages deriving
from multi-task awareness. Thus, in chapter 14 we make some further steps
starting from previous findings. First of all, we move to self-supervised
depth estimation from video sequences because it is easier to utilize in real
scenarios respect to stereo pairs (i.e. we need a traditional monocular cam-
era). In this type of scenario comes straightforward to reason dynamic scenes



98 Chapter 12. Initial Remarks

and motion. Hence, we consider the main pixel-wise tasks that can be per-
formed from a monocular video sequence: depth estimation, semantic seg-
mentation, motion segmentation, camera pose estimation, and optical flow.
Thus, we propose a new framework to address jointly all these scene un-
derstanding tasks. We demonstrate that by leveraging on the dependencies
among tasks, we can obtain a more robust, efficient, and accurate model
than those trained on each task in isolation. Moreover, by leveraging self-
supervision for geometry and distillation for semantics, our multi-task frame-
work can be trained without using even a single manually annotated sample.

In the following section, we discuss some related works for this part of
the thesis.

12.1 Multi-task Learning

The goal of multi-task learning is to solve many tasks simultaneously. By
pursuing this rather than solving the tasks independently, a neural network
should use more information to obtain more robust and reliable predictions.
Moreover, we obtain models that can produce several outputs in a single run
[213, 214, 215].

Many works try to tackle several tasks jointly [213, 189]. For example,
[189] showed that by learning to weigh each task loss correctly, multi-task
learning methods could outperform separate models trained individually.
Recently, [216] proposes a technique to improve the performances of multi-
ple single task networks imposing consistency across them during training.
Moreover, to effectively accomplish multi-task learning, the relationship be-
tween the deployed tasks must be considered. Again Taskonomy [176] pro-
vides hints on this topic, building a correlation graph among visual tasks. In
this part of the thesis, we address the possibility of exploiting the synergy be-
tween the geometry and semantics (chapter 13) or geometry, semantics, and
motion of a scene (chapter 14).

Semantic segmentation and depth estimation. We can infer a scene’s
depth by a single image mostly because of context and prior semantic knowl-
edge. Recent works explored the possibility to learn both tasks with either
full supervision [217, 32, 218, 219, 220, 197, 221] or supervision concerned
with semantic labels only [222]. Unlike other works, in chapter 13 we pro-
pose the first architecture trained by self-supervision on stereo pairs and ex-
ploiting semantic labels.
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Semantic segmentation and optical flow. Joint learning of semantic seg-
mentation and optical flow estimation has been already explored [223]. More-
over, scene segmentation [224, 225] is required to disentangle potentially
moving and static objects for focused optimizations. Differently, [226] lever-
ages on optical flow to improve semantic predictions of moving objects. Pe-
culiarly w.r.t. previous work, in chapter 14 we propose a novel self-distillation
training procedure guided by semantics to improve occlusion handling in a
comprehensive scene understanding multi-task framework.
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Geometry and Semantics

In this chapter we propose to train a CNN architecture to perform both se-
mantic segmentation and depth estimation from a single image. By opti-
mizing our model jointly on the two tasks, we enable it to learn a more ef-
fective feature representation which yields improved depth estimation accu-
racy. We rely on the unsupervised image re-projection loss [57] to pursue
depth prediction whilst we let the network learn semantic information from
the observed scene by supervision signals from pixel-level ground-truth se-
mantic maps. Thus, with respect to recent work [57], our proposal requires
semantically annotated imagery, thereby departing from a totally unsuper-
vised towards a semi-supervised learning paradigm (i.e. unsupervised for
depth and supervised for semantics). Yet, though manual annotation of per-
pixel semantic labels is tedious, it is much less prohibitive than collecting
groundtruth depths. Besides, while the former task may be performed off-
line after acquisition, as recently proposed for some images of the KITTI
dataset [227], one may very unlikely obtain depth labels out of already col-
lected frames.

Thus, we propose the integration of unsupervised monocular depth es-
timation with supervised semantic segmentation. By applying this novel
paradigm, we improve a state-of-the-art encoder-decoder depth estimation
architecture [57]. We introduce an additional decoder stream based on the
same features as those deployed for depth estimation and trained for seman-
tic segmentation; thereby, the overall architecture is trained to optimize both
tasks jointly. Moreover, we also propose a novel loss term, the cross-domain
discontinuity loss Lcdd, aimed at enforcing spatial proximity between depth
discontinuities and semantic contours.

Experimental results on the KITTI dataset prove that tackling the two
tasks jointly does improve monocular depth estimation. For example, Fig-
ure 13.1 suggests how recognizing objects like cars (c) can significantly ame-
liorate depth estimation (d) with respect to a depth-from-mono approach
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(a) (b)

(c) (d)

FIGURE 13.1: Joint depth from mono and semantic segmenta-
tion. (a) Input image, (b) depth map by state-of-the-art method
[57], (c) semantic and (d) depth maps obtained by our network.

lacking any awareness about scene semantics (b). It is also worth highlight-
ing that, unlike all previous unsupervised frameworks in this field, our pro-
posal delivers not only the depth map (Figure 13.1 (d) ) but also the semantic
segmentation of the input image (Figure 13.1, (c)).

13.1 Method

Estimating the distance of objects from a camera through a single acquisi-
tion is an ill-posed problem. While other techniques can effectively measure
depth based on features extracted from different view points (e.g. , binocular
stereo allows for triangulating depth from point matches between two syn-
chronized frames), monocular systems cannot rely on geometry constraints
to infer distance unambiguously. Despite this lack of information, modern
deep learning monocular frameworks achieved astounding results by learn-
ing effective feature representations from the observed environment. Com-
mon to latest work in this field [50, 51, 57, 66] is the design of deep encoder-
decoder architectures, with a first contractive portion progressively decimat-
ing image dimensions to reduce the computational load and increase the re-
ceptive field, followed by an expanding portion which restores the original
input resolution. In particular, the encoding layers learn a high level fea-
ture representation crucial to infer depth. Although it is hard to tell what
kind of information the network is actually learning at training time, we ar-
gue semantics to play an important role. Recent works like [57, 66] some-
how support this intuition. Indeed, although the authors trained and evalu-
ated their depth estimators on the KITTI dataset [178], a preliminary training
on CityScapes [109] turned out beneficial to achieve the best accuracy with
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FIGURE 13.2: Schematic representations of the proposed net-
work architecture and semi-supervised learning framework. A
single encoder (green) is shared between a depth (blue) and a
semantic (red) decoder. The depth decoder is optimized to min-

imize Ld and Lcdd, the semantic decoder to minimize Ls.

both frameworks, despite the very different camera setup between the two
datasets. Common to the datasets is, in fact, the kind of sensed environment
and, thus, the overall semantics of the scenes under perception. This observa-
tion represents the main rationale underpinning our proposal. By explicitly
training the network to learn the semantic context of the sensed environment
we shall expect to enrich the feature representation resulting from the encod-
ing module and thus obtain a more accurate depth estimation. This may be
realized by a deep model in which a single encoder is shared between two
decoders in charge of providing, respectively, a depth map and a semantic
segmentation map. Accordingly, minimization of the errors with respect to
pixel-level semantic labels provides gradients that flow back into the encoder
at training time, thereby learning a shared feature representation aware of
both depth prediction as well as scene semantics. According to our claim,
this should turn out conducive to better depth prediction.
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Inspired by successful attempts to predict depth from a single image, we
design a suitable encoder-decoder architecture for joint depth estimation and
semantic segmentation. The encoder is in charge of learning a rich feature
representation by increasing the receptive field of the network while reduc-
ing the input dimension and computational overhead. Popular encoders for
this task are VGG [228] and ResNet50 [229]. The decoder restores the orig-
inal input resolution by means of up-sampling operators followed by 3× 3
convolutions linked by means of skip connections with the encoder at the
corresponding resolution. As illustrated in Fig. 13.2, to infer both depth
and semantics we keep relying on a single encoder (green) and replicate the
decoder to realize a second estimator. The two decoders (blue, red) do not
share weights and are trained to minimize different losses, which deal with
the depth prediction (blue) and semantic segmentation (red) tasks. While the
two decoders are updated by different gradients flows, the shared encoder
(green) is updated according to both flows, thereby learning a representation
optimized jointly for the two tasks. We validate our approach by extend-
ing the architecture proposed by Godard et al.[57] for monocular depth es-
timation: the encoder produces two inverse depth (i.e., disparity) maps by
processing the left image of a stereo pair. Then, the right image is used to ob-
tain supervision signals by warping the left image according to the estimated
disparities, as explained in the following section.

Figure 13.3 shows how the shared representation used to jointly tackle
both tasks enables to reconstruct better shapes when estimating depth (e)
thanks to the semantic context (d) learned by the network compared to stan-
dalone learning of depth (c) as in [57].

13.1.1 Loss functions

To train the proposed architecture, we rely on the following multi-task loss
function

Ltot = αdLd + αsLs + αcddLcdd (13.1)

which consists in the weighted sum of three terms, namely the depth (Ld),
semantic (Ls) and cross-domain discontinuity (Lcdd) terms. As shown in in Fig.
13.2, each term back-propagates gradients through a different decoder: in
particular, Ld and Lcdd through the depth (blue) decoder whilst Ls through
the semantic (red) decoder. All gradients then converge so to flow back into
the shared (green) encoder.
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(a)

(b) (c) (d) (e)

FIGURE 13.3: Example of improved depth estimation enabled
by semantic knowledge. (a) input image, (b) region extracted
from the scene, (c) depth map predicted by [57], depth (d) and
semantic (e) maps predicted by our framework. We can clearly
notice how the the structure of the guard rail is better preserved

by our method (e) compared to [57] in (c).

Depth term
The depth term, Ld, in our multi-task loss is computed according to the

unsupervised training paradigm proposed by Godard et al.[57]:

Ld = βap(Ll
ap + Lr

ap) + βds(Ll
ds + L

r
ds) + βlr(Ll

lr + L
r
lr) (13.2)

where the loss consists in the weighted sum of three terms, namely the
appearance, disparity smoothness and left-right consistency terms. The first term
measures the image re-projection error by means of the SSIM [230] and L1
difference between the original and warped images, I and Ĩ:
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The smoothness term penalizes large disparity differences between neigh-
boring pixels along the x and y directions unless these occur in presence of
strong intensity gradients in the reference image I
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Finally, the left-right consistency enforces coherence between the predicted
disparity maps, dl and dr, for left and right images:
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lr =

1
N ∑

i,j
|dl

i,j − dr
i,j+dl

i,j
| (13.5)
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As proposed in [57], in our learning framework Ld is computed at four
different scales.

Semantic term
The semantic term Ls within our total loss is given by the standard cross-

entropy between the predicted and groundtruth pixel-wise semantic labels:

Ls = C(pt, pt) = H(pt, pt) + KL(pt, pt) (13.6)

where H denotes the entropy and KL the KL−divergence. The semantic
term, Ls, is computed at full resolution only.

Cross-domain discontinuity term
We also introduce a novel cross-task loss term aimed at enforcing an ex-

plicit link between the two learning tasks by leveraging on the ground-truth
pixel-wise semantic labels to improve depth prediction. We found that the
most effective manner to realize this consists in deploying the observation
that depth discontinuities are likely to co-occur with semantic boundaries.
Accordingly, we have designed the following cross-domain discontinuity, Lcdd,
term:

Lcdd =
1
N ∑

i,j
sgn(|δxseml

i,j|)e
−||

δxdl
i,j

dl
i,j
||
+ sgn(|δyseml
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−||
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dl
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||

(13.7)

where sem denotes the ground-truth semantic map and d the predicted
disparity map. Differently from the smoothness term Ll

ds in the disparity
domain, the novel Lcdd term detects discontinuities between semantic labels
encoded by the sign of the absolute value of the gradients in the semantic
map. The idea behind this loss is that there should be a gradient peak be-
tween adjacent pixels belonging to different classes. Nevertheless, we do not
care about its magnitude since the numeric labels do not have any mathe-
matical meaning.

13.2 Experimental results

In this section, we compare the performance of our semi-supervised joint
depth estimation and semantic segmentation paradigm with respect to the
proposal by Godard et al.[57]. As discussed in section 13.1, our method as
well as the baseline used in our experiments, i.e. [57], require rectified stereo
pairs at training time. Suitable datasets for this purpose are thus CityScapes
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[109] and KITTI [108], which provide a large number of training samples, i.e.
about 23k and 29k rectified stereo pairs respectively. However, our method
requires also pixel-wise groundtruth semantic labels at training time, which
limits the actual amount of training samples available for our experiments. In
particular, CityScapes includes about 3k finely annotated images, while the
KITTI 2015 benchmark made available pixel-wise semantic groundtruths for
about 200 images [227]. Therefore, to carry out a fair evaluation of the actual
contribution provided by semantic information in the depth-from-mono task
to the baseline fully unsupervised approach, we trained both methods based
on the reduced datasets featuring stereo pairs alongside with semantically
annotated left frames.

13.2.1 Implementation details

We adhere to the original training protocol by [57], scheduling 50 epochs on
the CityScapes dataset and 50 further on the KITTI 2015 images. For quanti-
tative evaluation, we split the KITTI 2015 dataset into train and test sets, pro-
viding more details in the next section. We train on 256×512 images using
a batch dimension of 2, we set the previously introduced hyper-parameters
as follows: αd = 1, αs = 0.1, αcdd = 0.1, βap = 1, βlr = 1, βds = 1

r (be-
ing r the down-sampling factor at that resolution) and γ = 0.85. Models are
trained using Adam optimizer [211], with β1 = 0.9, β1 = 0.999 and ε = 10−8.
The initial learning rate is set to 10−4, halved after 30 and 40 epochs. We per-
form data augmentation on input RGB images, in particular random gamma,
brightness and color shifts sampled within the ranges [0.8,1.2] for gamma,
[0.5,2.0] for brightness, and [0.8,1.2] for each color channel separately. More-
over we flip images horizontally with a probability of 50%. If the flip occurs,
the right image in the stereo pair becomes the new reference image and we
do not provide supervision signals from semantics (as right semantic maps
are not available in the datasets). We implemented our network with both
VGG and ResNet50 encoders, as in [57]. The semantic decoder adds about
20.5M parameters, resulting in nearly 50 and 79 million parameters for the
two models (31 and 59, respectively, for [57]).

13.2.2 Monocular depth estimation: evaluation on KITTI 2015

We quantitatively assess the effectiveness of our proposal on the KITTI 2015
training dataset for stereo [178]. It provides 200 synchronized pairs of images
together with groundtruth disparity and semantic maps [227]. As already
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mentioned, to carry out a fair comparison between our approach and [57],
we can use only these samples and thus the numerical results reported in our
paper cannot be compared directly with those in [57]. Then, we randomly
split the 200 pairs from KITTI into 160 training samples and 40 samples used
only for evaluation1. We measure the accuracy of the predicted depth maps
after training for 50 epochs on CityScapes and then fine-tuning for 50 more
epochs on the samples selected from KITTI.

Table Table 13.1 reports quantitative results using VGG or ResNet50 as
backbone encoder. Each model, one per row in the table, is trained with four
different strategies:

• Ld uses only the depth term as loss (i.e., equivalently to the baseline
approach by Godard et al.[57]).

• Ld+Ls adds the semantic term to the depth term.

• Ld+Ls+Lcdd minimizes our proposed total loss function (Equation 13.1).

• Ld+Lcdd minimizes only the losses dealing with the depth decoder.

The table provides results yielded by the four considered networks accord-
ing to standard performance evaluation metrics [57] computed between esti-
mated depth d and groundtruth D.

This ablation highlights how introducing the second decoder trained to
infer semantic segmentation maps, significantly improves depth prediction
according to all performance metrics for both type of encoder. Moreover,
adding the cross-domain discontinuity term, Lcdd, leads in most cases to fur-
ther improvements. On the other hand, minimizing Ld and Lcdd alone leads
to inferior performance compared to the baseline method. We obtain the best
configuration according to all metrics using ResNet50 when both Ls and Lcdd

are minimized alongside with the depth term Ld.
Moreover, we also evaluated the output obtained by all models after per-

forming the post-processing step proposed by [57], that consists in forward-
ing both the input image I and its horizontally flipped counterpart Î. This
produces two depth maps dI and d Î , the latter is flipped back obtaining d̂ Î

and averaged with the former, in order to reduce artifacts near occlusions.
We can notice that the previous trend is confirmed. In particular, the full loss

1The testing samples, belonging to the KITTI 2015 dataset, are: 000001, 000003, 000004,
000019, 000032, 000033, 000035, 000038, 000039, 000042, 000048, 000064, 000067, 000072,
000087, 000089, 000093, 000095, 000105, 000106, 000111, 000116, 000119, 000123, 000125,
000127, 000128, 000129, 000134, 000138, 000150, 000160, 000161, 000167, 000174, 000175,
000178, 000184, 000185 and 000193.
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Lower is better Higher is better
Encoder pp Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Ld [57] VGG 0.160 2.707 7.220 0.239 0.837 0.928 0.966
Ld+Ls VGG 0.155 2.511 6.968 0.234 0.841 0.931 0.968

Ld+Ls+Lcdd VGG 0.154 2.453 6.949 0.235 0.844 0.931 0.967
Ld+Lcdd VGG 0.161 2.758 7.128 0.240 0.841 0.928 0.964

Ld [57] VGG 3 0.149 2.203 6.582 0.223 0.844 0.936 0.972
Ld+Ls VGG 3 0.147 2.229 6.583 0.223 0.847 0.938 0.972

Ld+Ls+Lcdd VGG 3 0.145 2.040 6.362 0.221 0.849 0.938 0.971
Ld+Lcdd VGG 3 0.150 2.278 6.539 0.225 0.843 0.934 0.970

Ld [57] ResNet 0.159 2.411 6.822 0.239 0.830 0.930 0.967
Ld+Ls ResNet 0.152 2.385 6.775 0.231 0.843 0.934 0.970

Ld+Ls+Lcdd ResNet 0.143 2.161 6.526 0.222 0.850 0.939 0.972
Ld+Lcdd ResNet 0.155 2.282 6.658 0.232 0.840 0.932 0.968

Ld [57] ResNet 3 0.148 2.104 6.439 0.224 0.839 0.936 0.972
Ld+Ls ResNet 3 0.144 2.050 6.351 0.220 0.849 0.938 0.972

Ld+Ls+Lcdd ResNet 3 0.136 1.872 6.127 0.210 0.854 0.945 0.976
Ld+Lcdd ResNet 3 0.144 1.973 6.199 0.217 0.849 0.940 0.975

TABLE 13.1: Ablation experiments on KITTI 2015 evaluation
split, using different configurations of losses, encoders and
post-processing (pp). Best setup highlighted in bold for each

configuration.

Lower is better Higher is better
Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Zhou et al. [66] 0.286 7.009 8.377 0.320 0.691 0.854 0.929
Mahjourian et al. [67] 0.235 2.857 7.202 0.302 0.710 0.866 0.935

Yin et al. [231] 0.236 3.345 7.132 0.279 0.714 0.903 0.950
Godard et al. [57] 0.159 2.411 6.822 0.239 0.830 0.930 0.967

Ours 0.143 2.161 6.526 0.222 0.850 0.939 0.972

TABLE 13.2: Comparison with other self supervised method
on KITTI 2015 evaluation split. Both [57] and our method use

ResNet50 encoder.

Ld + Ls + Lcdd leads to the best result on most scores. Furthermore, includ-
ing the post-processing step allows the VGG model trained with our full loss
to outperform the baseline ResNet50 architecture supervised by traditional
depth losses only. This fact can be noticed in Table 13.1 comparing row 7
with row 13, observing that the former leads to better results except for δ3

metric.
To further prove the effectiveness of our proposed method we compare it

with other self-supervised approach as [231],[66],[67]. Thus, we have ran ex-
periments with the source code available from [231],[66],[67] using the same
testing data as for [57] and our method. Table 13.2 shows the outcome of
this evaluation. We point out that we used the weights made available by
the authors of [231],[66],[67], trained on a much larger amount of data (i.e.,
the entire Cityscapes and KITTI sequences, some of them overlapping with
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the testing split as well) w.r.t. the much lower supervision provided to our
network. Despite this fact, monocular supervised works [231],[66],[67] per-
form poorly compared to both [57] and our approach, confirming our semi-
supervised framework to outperform them as well. We also point out that
our test split relies on high-quality ground-truth labels for evaluation, avail-
able from KITTI 2015 stereo dataset, while the Eigen split used to validate
[231],[66],[67] provides much worse quality depth measurements, as also ar-
gued by the authors of [57].

As our final test we also compare our method with the recent multi-task
learning approach by Kendall et al. [232]. Differently from our approach,
they jointly learn depth, semantic and instance segmentation in fully super-
vised manner. They run experiments Tiny Cityscapes, a split obtained by
resizing the validation set of Cityscapes to 128 × 256 resolution. To com-
pare our results to theirs we have taken our ResNet50 model trained on
Cityscapes and validated it following the same protocol. Their depth-only
model (trained supervised) achieves 0.640 inverse mean depth error, drop-
ping to 0.522 when trained to tackle semantic and instance segmentation as
well. Our ResNet50 network (trained unsupervised) starts with 1.705 error
for depth-only, dropping to 1.488. Thus, the two approaches achieve 22%
and 15 % improvement respectively. We point out that, besides relying on
supervised learning for depth, [232] exploits both semantic and instance seg-
mentation, requiring additional manually annotated labels, while we only
enforce our cross-domain discontinuity loss.

Figure 13.4 depicts a qualitative comparison between the depth maps pre-
dicted by [57] and our semi-supervised framework. In the figure, from top to
bottom, we consider images 000019 and 000095 belonging to our evaluation
split. We can observe how explicitly learning the semantics of the scene helps
to correct wrong depth estimations, especially on challenging objects. For ex-
ample, we can notice how depth maps predicted by our frameworks provide
better car shapes thanks to the contribution given by the semantic. This fact
is particularly evident in correspondence of reflective or transparent surfaces
like car windows as reported on image 000095. Moreover, the quality of thin
structures like poles is improved as well, as clearly perceivable by looking at
frame 000019.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIGURE 13.4: Qualitative comparison between [57] and our
proposal on KITTI 2015 evaluation split [178]. (a) Input image,
(b) depth map by [57], (c) and (d) semantic and depth maps by
our approach. Both models use Resnet50 as encoder. From top
to bottom, results concerning images 000019, 000087 and 000095

belonging to our evaluation split.

13.2.3 Semantic segmentation: evaluation on KITTI 2015

Although our proposal is aimed at ameliorating depth prediction by learn-
ing richer features exploiting semantics, our network also delivers a semantic
segmentation of the input image. To gather hints about the accuracy of this
additional outcome of our network, we evaluated the semantic maps gen-
erated on the same KITTI evaluation split defined before. Differently from
the monocular depth estimation task, results concerning semantic segmen-
tation are quite far from the state-of-the-art. In particular, we obtain 88.51%
and 88.19% per-pixel accuracy, respectively, with models based on VGG and
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ResNet50. We ascribe this to our architecture - inspired by [57] - being opti-
mized for unsupervised depth prediction, whereas different design choices
are often found in networks pursuing semantic segmentation (i.e., atrous
convolutions, SPP layers ...). We also found that training the basic encoder-
decoder for semantic segmentation only yields to 86.72% and 88.18% per-
pixel accuracy with VGG and ResNet50, respectively. Thus, while semantics
helps depth prediction inasmuch as to outperform the state-of-the-art within
the proposed framework, the converse requires further studies as the ob-
served improvements are indeed quite minor.
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Chapter 14

Geometry, Semantics and Motion

In this chapter, we propose the first-ever framework for comprehensive scene
understanding from monocular videos. As highlighted in Figure 14.1, our
multi-stage network architecture, named ΩNet, can predict depth, semantics,
optical flow, per-pixel motion probabilities and motion masks. This comes
alongside with estimating the pose between adjacent frames for an uncal-
ibrated camera, whose intrinsic parameters are also estimated. Our train-
ing methodology leverages on self-supervision, knowledge distillation and
multi-task learning. In particular, peculiar to our proposal and key to perfor-
mance is distillation of proxy semantic labels gathered from a state-of-the-art
pre-trained model [43] within a self-supervised and multi-task learning pro-
cedure addressing depth, optical flow and motion segmentation. Our train-
ing procedure also features a novel and effective self-distillation schedule for
optical flow mostly aimed at handling occlusions and relying on tight inte-
gration of rigid flow, motion probabilities and semantics. Moreover, ΩNet
is lightweight, counting less than 8.5M parameters, and fast, as it can run at
nearly 60 FPS and 5 FPS on an NVIDIA Titan Xp and a Jetson TX2, respec-
tively. Our model is able to achieve state-of-the-art performances in several
tasks such as self-supervised monocular depth estimation, optical flow esti-
mation among monocular multi-task frameworks and motion segmentation.

(a) (b) (c)

(d) (e) (f)

FIGURE 14.1: Given an input monocular video (a), our network
can provide the following outputs in real-time: depth (b), opti-
cal flow (c), semantic labels (d), per-pixel motion probabilities

(e), motion mask (f).
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Camera Network

Depth Semantic Network

Optical Flow Network

Self-Distilled
Optical Flow Network

Proxy Semantic Network

K
Monocular Sequence

Single-view Image

𝑆𝐹𝑡⟶𝑠

𝐹𝑡⟶𝑠

𝐷𝑡
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FIGURE 14.2: Overall framework for training ΩNet to predict
depth, camera pose, camera intrinsics, semantic labels and op-

tical flow. In red architectures composing ΩNet.

14.1 Overall Learning Framework

Our goal is to develop a real-time comprehensive scene understanding frame-
work capable of learning strictly related tasks from monocular videos. Pur-
posely, we propose a multi-stage approach to learn first geometry and se-
mantics, then elicit motion information, as depicted in Figure 14.2.

14.1.1 Geometry and Semantics

Self-supervised depth and pose estimation. We propose to solve a self-
supervised single-image depth and pose estimation problem by exploiting
geometrical constraints in a sequence of N images, in which one of the frames
is used as the target view It and the other ones in turn as the source image
Is. Assuming a moving camera in a stationary scene, given a depth map Dt

aligned with It, the camera intrinsic parameters K and the relative pose Tt→s
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between It and Is, it is possible to sample pixels from Is in order to synthe-
sise a warped image Ĩt aligned with It. The mapping between corresponding
homogeneous pixels coordinates pt ∈ It and ps ∈ Is is given by:

ps ∼ KTt→sDpt K
−1pt (14.1)

Following [66], we use the sub-differentiable bilinear sampler mechanism
proposed in [58] to obtain Ĩt. Thus, in order to learn depth, pose and camera
intrinsics we train two separate CNNs to minimize the photometric recon-
struction error between Ĩt and It, defined as:

LD
ap = ∑

p
ψ(It(p), Ĩt(p)) (14.2)

where ψ is a photometric error function between the two images. How-
ever, as pointed out in [79], such a formulation is prone to errors at occlu-
sion/disocclusion regions or in static camera scenarios. To soften these is-
sues, we follow the same principles as suggested in [79], where a minimum
per-pixel reprojection loss is used to compute the photometric error, an au-
tomask method allows for filtering-out spurious gradients when the static
camera assumption is violated, and an edge-aware smoothness loss term is
used as in [233]. Moreover, we use the depth normalization strategy pro-
posed in [68]. See supplementary material for further details.

We compute the rigid flow between It and Is as the difference between
the projected and original pixel coordinates in the target image:

Frigid
t→s (pt) = ps − pt (14.3)

Distilling semantic knowledge. The proposed distillation scheme is mo-
tivated by how time-consuming and cumbersome obtaining accurate pixel-
wise semantic annotations is. Thus, we train our framework to estimate se-
mantic segmentation masks St by means of supervision from cheap proxy
labels Sp distilled by a semantic segmentation network, pre-trained on few
annotated samples and capable to generalize well to diverse datasets. Avail-
ability of proxy semantic labels for the frames of a monocular video enables
us to train a single network to predict jointly depth and semantic labels. Ac-
cordingly, the joint loss is obtained by adding a standard cross-entropy term
Lsem to the previously defined self-supervised image reconstruction loss LD

ap.
Moreover, similarly to [1], we deploy a cross-task loss term, LD

edge (see sup-
plementary), aimed at favouring spatial coherence between depth edges and
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semantic boundaries. However, unlike [1], we do not exploit stereo pairs at
training time.

14.1.2 Optical Flow and Motion Segmentation

Self-supervised optical flow. As the 3D structure of a scene includes station-
ary as well as non-stationary objects, to handle the latter we rely on a classical
optical flow formulation. Formally, given two images It and Is, the goal is to
estimate the 2D motion vectors Ft→s(pt) that map each pixel in It into its cor-
responding one in Is. To learn such a mapping without supervision, previous
approaches [102, 105, 70] employ an image reconstruction loss LF

ap that min-
imizes the photometric differences between It and the back-warped image
Ĩt obtained by sampling pixels from Is using the estimated 2D optical flow
Ft→s(pt). This approach performs well for non-occluded pixels but provides
misleading information within occluded regions.

Pixel-wise motion probability. Non-stationary objects produce system-
atic errors when optimizing LD

ap due to the assumption that the camera is the
only moving body in an otherwise stationary scene. However, such system-
atic errors can be exploited to identify non-stationary objects: at pixels be-
longing to such objects the rigid flow Frigid

t→s and the optical flow Ft→s should
exhibit different directions and/or norms. Therefore, a pixel-wise probabil-
ity of belonging to an object independently moving between frames s and t,
Pt, can be obtained by normalizing the differences between the two vectors.
Formally, denoting with θ(pt) the angle between the two vectors at location
pt, we define the per-pixel motion probabilities as:

Pt(pt) = max{1− cos θ(pt)

2
, 1− ρ(pt)} (14.4)

where cos θ(pt) can be computed as the normalized dot product between the
vectors and evaluates the similarity in direction between them, while ρ(pt)

is defined as

ρ(pt) =
min{‖Ft→s(pt)‖2, ‖Frigid

t→s (pt)‖2}
max{‖Ft→s(pt)‖2, ‖Frigid

t→s (pt)‖2}
, (14.5)

i.e. a normalized score of the similarity between the two norms. By taking the
maximum of the two normalized differences, we can detect moving objects
even when either the directions or the norms of the vectors are similar. A
visualization of Pt(pt) is depicted in Figure 14.3(d).
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Semantic-aware Self-Distillation Paradigm. Finally, we combine seman-
tic information, estimated optical flow, rigid flow and pixel-wise motion prob-
abilities within a final training stage to obtain a more robust self-distilled op-
tical flow network. In other words, we train a new instance of the model
to infer a self-distilled flow SFt→s given the estimates Ft→s from a first self-
supervised network and the aforementioned cues. As previously discussed
and highlighted in Figure 14.3(c), standard self-supervised optical flow is
prone to errors in occluded regions due to the lack of photometric informa-
tion but can provide good estimates for the dynamic objects in the scene.
On the contrary, the estimated rigid flow can properly handle occluded ar-
eas thanks to the minimum-reprojection mechanism [79]. Starting from these
considerations, our key idea is to split the scene into stationary and poten-
tially dynamics objects, and apply on them the proper supervision. Pur-
posely, we can leverage several observations:

1. Semantic priors. Given a semantic map St for image It, we can binarize
pixels into static Ms

t and potentially dynamic Md
t , with Ms

t ∩Md
t = ∅.

For example, we expect that points labeled as road are static in the 3D
world, while pixels belonging to the semantic class car may move. In
Md

t , we assign 1 for each potentially dynamic pixel, 0 otherwise, as
shown in Figure 14.3(e).

2. Camera Motion Boundary Mask. Instead of using a backward-forward
strategy [71] to detect boundaries occluded due to the ego-motion, we
analytically compute a binary boundary mask Mb

t from depth and ego-
motion estimates as proposed in [234]. We assign a 0 value for out-of-
camera pixels, 1 otherwise as shown in Figure 14.3(f).

3. Consistency Mask. Because the inconsistencies between the rigid flow
and Ft→s are not only due to dynamic objects but also to occluded/inconsistent
areas, we can leverage Equation 14.4 to detect such critical regions. In-
deed, we define the consistency mask as:

Mc
t = Pt < ξ, ξ ∈ [0, 1] (14.6)

This mask assigns 1 where the condition is satisfied, 0 otherwise (i.e.
inconsistent regions) as in Figure 14.3(g).

Finally, we compute the final mask M, in Figure 14.3(h), as:
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 14.3: Overview of our semantic-aware and self-
distilled optical flow estimation approach. We leverage seman-
tic segmentation St (a) together with rigid flow Frigid

t→s (b), teacher
flow Ft→s (c) and motion probabilities Pt (d), the warmer the
higher. From a) we obtain semantic priors Md

t (e), combined
with boundary mask Mb

t (f) and consistency mask Mc
t (g) de-

rived from (d) as in Equation 14.6, in order to obtain the final
mask M (h) as in Equation 14.7.

M = min{max{Md
t , Mc

t}, Mb
t } (14.7)

As a consequence, M will effectively distinguish regions in the image
for which we can not trust the supervision sourced by Ft→s, i.e. inconsis-
tent or occluded areas. On such regions, we can leverage our proposed
self-distillation mechanism. Then, we define the final total loss for the self-
distilled optical flow network as:

L = ∑ αrφ(SFt→s, Frigid
t→s ) · (1−M)

+ αdφ(SFt→s, Ft→s) ·M + ψ(It, ĨSF
t ) ·M (14.8)

where φ is a distance function between two motion vectors, while αr and
αd are two hyper-parameters.

14.1.3 Motion Segmentation

At test time, from pixel-wise probability Pt computed between SFt→s and
Frigid

t→s , semantic prior Md
t and a threshold τ, we compute a motion segmenta-

tion mask by:

Mmot
t = Md

t · (Pt > τ), τ ∈ [0, 1] (14.9)

Such mask allows us to detect moving objects in the scene independently
of the camera motion. A qualitative example is depicted in Figure 14.1(f).
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14.2 Architecture and Training Schedule

In this section we present the networks composing ΩNet (highlighted in red
in Figure 14.2), and delineate their training protocol. We set N = 3, using
3-frames sequences.

14.2.1 Network architectures

We highlight here the key traits of each network.
Depth and Semantic Network (DSNet). We build a single model, since

shared reasoning about the two tasks is beneficial to both [1, 222]. To achieve
real-time performance, DSNet is inspired to PydNet [59], with several key
modifications due to the different goals. We extract a pyramid of features
down to 1

32 resolution, estimating a first depth map at the bottom. Then, it
is upsampled and concatenated with higher level features in order to build a
refined depth map. We repeat this procedure up to half resolution, where two
estimators predict the final depth map Dt and semantic labels St. These are
bi-linearly upsampled to full resolution. Each conv layer is followed by batch
normalization and ReLU, but the prediction layers, using reflection padding.
DSNet counts 1.93M parameters.

Camera Network (CamNet). This network estimates both camera intrin-
sics and poses between a target It and some source views Is(1 ≤ s ≤ 3, s 6= t).
CamNet differs from previous work by extracting features from It and Is in-
dependently with shared encoders. We extract a pyramid of features down
to 1

16 resolution for each image and concatenate them to estimate the 3 Euler
angles and the 3D translation for each Is. As in [78], we also estimate the
camera intrinsics. Akin to DSNet, we use batch normalization and ReLU af-
ter each layer but for prediction layers. CamNet requires 1.77M parameters
for pose estimation and 1.02K for the camera intrinsics.

Optical Flow Network (OFNet). To pursue real-time performance, we
deploy a 3-frame PWC-Net [96] network as in [105], which counts 4.79M
parameters. Thanks to our novel training protocol leveraging on semantics
and self-distillation, our OFNet can outperform other multi-task frameworks
[73] built on the same optical flow architecture.

Table 14.1 and Table 14.2 report a detailed specification of the layers build-
ing up the DSNet and CamNet modules respectively. For each layer, we re-
port kernel size (K), stride (S) and number of input/output channels. As for
OFNet and the proxy semantic network, a thorough description can be found
in [105] and [235] respectively.
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Layer K S In/Out Input

Deep feature extractor (DSE)

conv1a 3 2 3/16 input
conv1b 3 1 16/16 conv1a
conv2a 3 2 16/32 conv1b
conv2b 3 1 32/32 conv2a
conv3a 3 2 32/64 conv2b
conv3b 3 1 64/64 conv3a
conv4a 3 2 64/128 conv3b
conv4b 3 1 128/128 conv4a
conv5a 3 2 128/256 conv4b
conv5b 3 1 256/256 conv5a

Estimator (E)

conv1 3 1 i_channels/64 input
conv2 3 1 64/48 conv1
conv3 3 1 48/32 conv2
conv4 3 1 32/16 conv3

Context (C)

disp1 3 1 i_channels/64 input
disp2 3 1 64/32 disp1
disp3 3 1 32/16 disp2
disp 3 1 16/1 disp2

Disparity and Semantic Tower

conv5 3 1 i_channels/16 E(conv5b)
disp5 3 1 i_channels//1 C(conv5)
conv4 3 1 i_channels/16 E(conv4b, disp5 ↑)
disp4 3 1 i_channels//1 C(conv4, conv5 ↑) + disp5 ↑
conv3 3 1 i_channels/16 E(conv3b, disp4 ↑)
disp3 3 1 i_channels//1 C(conv3, conv4 ↑) + disp4 ↑
conv2 3 1 i_channels/16 E(conv2b, disp3 ↑)
disp2 3 1 i_channels//1 C(conv2, conv3 ↑) + disp3 ↑
conv1 3 1 i_channels/16 E(conv1b, disp2 ↑)
disp1 3 1 i_channels//1 C(conv1, conv2 ↑) + disp2 ↑
sem 3 1 i_channels//1 C(conv1, conv2 ↑) + disp2 ↑

TABLE 14.1: Detailed structure of the DSNet modules in ΩNet.
The symbol "," means concatenation, while ↑ indicates upsam-

pling.

14.2.2 Training Protocol

Similarly to [70], we employ a two stage learning process to facilitate the
network optimisation process. At first, we train DSNet and CamNet simul-
taneously, then we train OFNet by the self-distillation paradigm described
in 14.1.2. For both stages, we use a batch size of 4 and resize input im-
ages to 640 × 192 for the KITTI dataset (and to 768 × 384 for pre-training
on Cityscapes), optimizing the output of the networks at the highest resolu-
tion only. We also report additional experimental results for different input
resolutions where specified. We use the Adam optimizer [211] with β1 = 0.9,
β2 = 0.999 and ε = 10−8. As photometric loss ψ, we employ the same func-
tion defined in [233]. When training our networks, we apply losses using as
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Layer K S In/Out Input

Deep feature extractor (DFE)

conv1a 3 2 3/16 input
conv1b 3 1 16/16 conv1a
conv2a 3 2 16/32 conv1b
conv2b 3 1 32/32 conv2a
conv3a 3 2 32/64 conv2b
conv3b 3 1 64/64 conv3a
conv4a 3 2 64/128 conv3b
conv4b 3 1 128/128 conv4a

Pose Estimator

conv1a 3 1 i_channels/128 DFEt, DFEs
conv1b 3 2 128/128 conv1a
conv2a 3 1 128/256 conv1b
conv2b 3 2 256/256 conv2a

pose 1 1 256/6*N conv2b

Intrinsic Estimator

focals 1 1 i_channels/2 conv2b
offsets 1 1 i_channels/2 conv2b

TABLE 14.2: Detailed structure of the CamNet modules in
ΩNet. The symbol "," means concatenation, while ↑ indicates

upsampling.

Is both the previous and the next image of our 3-frame sequence. Finally, we
set both τ and ξ to be 0.5 in our experiments.

Depth, Pose, Intrinsics and Semantic Segmentation. In order to train
DSNet and CamNet we employ sequences of 3 consecutive frames and se-
mantic proxy labels yielded by a state-of-the art architecture [44] trained on
Cityscapes with ground-truth labels. We trained DSNet and CamNet for
300K iterations, setting the initial learning rate to 10−4, manually halved af-
ter 200K, 250K and 275K steps. We apply data augmentation to images as in
[233]. Training takes ∼ 20 hours on a Titan Xp GPU.
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Lower is better Higher is better
Method M A I CS Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Godard et al.[79] 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Godard et al.[79] (1024× 320) X 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Zhou et al.[80] X 0.121 0.837 4.945 0.197 0.853 0.955 0.982
Mahjourian et al.[234] X 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Wang et al.[68] X 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Bian et al.[81] X 0.128 1.047 5.234 0.208 0.846 0.947 0.970
Yin et al.[70] X X 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Zou et al.[71] X X 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Chen et al.[72] X X 0.135 1.070 5.230 0.210 0.841 0.948 0.980
Luo et al.[75] X 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Ranjan et al.[73] X 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Xu et al.[77] X X 0.138 1.016 5.352 0.217 0.823 0.943 0.976
Casser et al.[76] X 0.141 1.026 5.290 0.215 0.816 0.945 0.979
Gordon et al.[78] X X 0.128 0.959 5.230 - - - -

ΩNet(640× 192) X X 0.126 0.835 4.937 0.199 0.844 0.953 0.982
ΩNet(1024× 320) X X 0.125 0.805 4.795 0.195 0.849 0.955 0.983
ΩNet(640× 192) X X X 0.120 0.792 4.750 0.191 0.856 0.958 0.984
ΩNet(1024× 320) X X X 0.118 0.748 4.608 0.186 0.865 0.961 0.985

TABLE 14.3: Depth evaluation on the Eigen split [51] of KITTI [108]. We indicate additional features of each method.
M: multi-task learning, A: additional information (e.g. object knowledge, semantic information), I: feature extractors pre-

trained on ImageNet [210], CS: network pre-trained on Cityscapes [14].
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Optical Flow. We train OFNet by the procedure presented in 14.1.2. In
particular, we perform 200K training steps with an initial learning rate of
10−4, halved every 50K until convergence. Moreover, we apply strong data
augmentation consisting in random horizontal and vertical flip, crops, ran-
dom time order switch and, peculiarly, time stop, replacing all Is with It to
learn a zero motion vector. This configuration requires about 13 hours on a
Titan Xp GPU with the standard 640× 192 resolution. We use an L1 loss as
φ. Once obtained a competitive network in non-occluded regions we train a
more robust optical flow network, denoted as SD-OFNet, starting from pre-
learned weights and the same structure of OFNet by distilling knowledge
from OFNet and rigid flow computed by DSNet using the total mask M and
416× 128 random crops applied to Ft→s, Frigid

t→s , M and RGB images. We train
SD-OFNet for 15K steps only with a learning rate of 2.5× 10−5 halved after
5K, 7.5K, 10K and 12.5K steps, setting αr to 0.025 and αd to 0.2. At test-time,
we rely on SD-OFNet only.

14.3 Experimental results

Using standard benchmark datasets, we present here the experimental vali-
dation on the main tasks tackled by ΩNet.

14.3.1 Datasets.

We conduct experiments on standard benchmarks such as KITTI and Cityscapes.
We do not use feature extractors pre-trained on ImageNet or other datasets.
For the sake of space, we report further studies in the supplementary mate-
rial (e.g. results on pose estimation or generalization).

KITTI (K) [236] is a collection of 42,382 stereo sequences taken in urban
environments from two video cameras and a LiDAR device mounted on the
roof of a car. This dataset is widely used for benchmarking geometric under-
standing tasks such as depth, flow and pose estimation.

Cityscapes (CS) [14] is an outdoor dataset containing stereo pairs taken
from a moving vehicle in various weather conditions. This dataset features
higher resolution and higher quality images. While sharing similar settings,
this dataset contains more dynamics scenes compared to KITTI. It consists of
22,973 stereo pairs with 2048× 1024 resolution. 2,975 and 500 images come
with fine semantic
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Lower is better Higher is better
Resolution Learned Intr. [78] Norm. [68] Min. Repr. [79] Automask [79] Sem. [44] Pre-train Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

640× 192 - - - - - - 0.139 1.056 5.288 0.215 0.826 0.942 0.976
640× 192 X - - - - - 0.138 1.014 5.213 0.213 0.829 0.943 0.977
640× 192 X X - - - - 0.136 1.008 5.204 0.212 0.832 0.944 0.976
640× 192 X X X - - - 0.132 0.960 5.104 0.206 0.840 0.949 0.979
640× 192 X X X X - - 0.130 0.909 5.022 0.207 0.842 0.948 0.979
640× 192 † X X X X - - 0.134 1.074 5.451 0.213 0.834 0.946 0.977
640× 192 X X X X X - 0.126 0.835 4.937 0.199 0.844 0.953 0.980

416× 128 X X X X X X 0.126 0.862 4.963 0.199 0.846 0.952 0.981
640× 192 X X X X X X 0.120 0.792 4.750 0.191 0.856 0.958 0.984
1024× 320 X X X X X X 0.118 0.748 4.608 0.186 0.865 0.961 0.985

TABLE 14.4: Ablation study of our depth network on the Eigen split [51] of KITTI. †: our network is replaced by a ResNet50
backbone [70].
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14.3.2 Monocular Depth Estimation

In this section, we compare our results to other state-of-the-art proposals and
assess the contribution of each component to the quality of our monocular
depth predictions.

Comparison with state-of-the-art. We compare with state-of-the-art self-
supervised networks trained on monocular videos according to the protocol
described in [51]. We follow the same pre-processing procedure as [66] to
remove static images from the training split while using all the 697 images
for testing. LiDAR points provided in [236] are reprojected on the left in-
put image to obtain ground-truth labels for evaluation, up to 80 meters [56].
Since the predicted depth is defined up to a scale factor, we align the scale of
our estimates by multiplying them by a scalar that matches the median of the
ground-truth, as introduced in [66]. We adopt the standard performance met-
rics defined in [51]. Table 14.3 reports extensive comparison with respect to
several monocular depth estimation methods. We outperform our main com-
petitors such as [70, 71, 72, 73] that solve multi-task learning or other strate-
gies that exploit additional information during the training/testing phase
[76, 77]. Moreover, our best configuration, i.e. pre-training on CS and using
1024 × 320 resolution, achieves better results in 5 out of 7 metrics with re-
spect to the single-task, state-of-the-art proposal [79] (and is the second best
and very close to it on the remaining 2) which, however, leverages on a larger
ImageNet pre-trained model based on ResNet-18. It is also interesting to note
how our proposal without pretraining obtains the best performance in 6 out
of 7 measures on 640× 192 images (row 1 vs 15). These results validate our
intuition about how the use of semantic information can guide geometric rea-
soning and make a compact network provide state-of-the-art performance
even with respect to larger and highly specialized depth-from-mono meth-
ods.

Ablation study. Table 14.4 highlights how progressively adding the key
innovations proposed in [78, 79, 68] contributes to strengthen ΩNet, already
comparable to other methodologies even in its baseline configuration (first
row). Interestingly, a large improvement is achieved by deploying joint depth
and semantic learning (rows 5 vs 7), which forces the network to simultane-
ously reason about geometry and content within the same shared features.
By replacing DSNet within ΩNet with a larger backbone [70] (rows 5 vs 6)
we obtain worse performance, validating the design decisions behind our
compact model. Finally, by pre-training on CS we achieve the best accuracy,
which increases alongside with the input resolution (rows 8 to 10).
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Method Cap (m) Abs Rel Sq Rel RMSE RMSE log

Godard et al.[79] 0-8 0.059 0.062 0.503 0.082
ΩNet† 0-8 0.060 0.063 0.502 0.082
ΩNet 0-8 0.062 0.065 0.517 0.085

Godard et al.[79] 0-50 0.125 0.788 3.946 0.198
ΩNet† 0-50 0.127 0.762 4.020 0.199
ΩNet 0-50 0.124 0.702 3.836 0.195

Godard et al.[79] 0-80 0.132 1.044 5.142 0.210
ΩNet† 0-80 0.134 1.074 5.451 0.213
ΩNet 0-80 0.126 0.835 4.937 0.199

TABLE 14.5: Depth errors by varying the range. †: our network
is replaced by a ResNet50 backbone [70].

Depth Range Error Analysis. We dig into our depth evaluation to explain
the effectiveness of ΩNet with respect to much larger networks. Table 14.5
compares, at different depth ranges, our model with more complex ones [79,
70]. This experiment shows how ΩNet superior performance comes from
better estimation of large depths: ΩNet outperforms both competitors when
we include distances larger than 8 m in the evaluation, while it turns out less
effective in the close range.

14.3.3 Semantic Segmentation

In Table 14.6, we report the performance of ΩNet on semantic segmenta-
tion for the 19 evaluation classes of CS according to the metrics defined in
[14, 29]. We compare ΩNet against state-of-the art networks for real-time se-
mantic segmentation [49, 47] when training on CS and testing either on the
validation set of CS (rows 1-3) or the 200 semantically annotated images of
K (rows 4-6). Even though our network is not as effective as the considered
methods when training and testing on the same dataset, it shows greater gen-
eralization capabilities to unseen domains: it significantly outperforms other
methods when testing on K for mIoUcategory and pixel accuracy, and provides
similar results to [49] for mIoUclass. We relate this ability to our training pro-
tocol based on proxy labels (P) instead of ground truths (S).

Moreover, as we have already effectively distilled the knowledge from
DPC [44] during pre-training on CS, there is only a slight benefit in training
on both CS and K (with proxy labels only) and testing on K (row 7). Finally,
although achieving 46.68 mIoU on fine segmentation, we obtain 89.64 mIoU
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Method Train Test mIoU Class mIoU Cat. Pix.Acc.

DABNet [47] CS(S) CS 69.62 87.56 94.62
FCHardNet [49] CS(S) CS 76.37 89.22 95.35
ΩNet CS(P) CS 54.80 82.92 92.50

DABNet [47] CS(S) K 35.40 61.49 80.50
FCHardNet [49] CS(S) K 44.74 68.20 72.07
ΩNet CS(P) K 43.80 74.31 88.31

ΩNet CS(P) + K(P) K 46.68 75.84 88.12

TABLE 14.6: Semantic segmentation on Cityscapes (CS) and
KITTI (K). S: training on ground-truth, P: training on proxy la-

bels.

for the task of segmenting static from potentially dynamic classes, an impor-
tant result to obtain accurate motion masks.

In Table 14.7 and Table 14.8 we dig into the motivation behind our better
generalization with thorough experiments. We train on CityScapes and test
on KITTI, reporting in Table 14.7 the IoU for the 19 classes, the mIoUclass

and the pixel Acc. In Table 14.8 we report the IoU for the 7 categories and
the mIoUcategory. We refer with CS(S) methods trained on 2975 CityScapes
images and with CS(P) methods trained on 22,973 proxy labels produced by
[235]. To evaluate the performance of [47, 49] we used the official code and
pre-trained weights available online. Our DSNet differs from other methods
by three factors: 1) the architecture, 2) the training protocol exploiting proxy
labels instead of ground truths and 3) the joint reasoning about geometry and
semantics.

Regarding the tests on KITTI, our architecture trained only for seman-
tic segmentation, namely Semantic Network or SNet, achieves good perfor-
mance in Acc. but turns out worse than [49] for other metrics. On the other
hand, it is worth to notice that training SNet with CS(P) allows our method to
achieve a great performance boost in all metrics with respect to CS(P) (rows
8 vs 9). Finally, we can notice how DSNet achieves results comparable to
SNet. This confirms the findings in [1], that joint reasoning about depth and
semantics is more beneficial to the former task.
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DABNet [47] CS(S) CS 97.05 82.86 91.01 48.20 55.56 59.30 63.12 72.76 91.58 61.24 93.50 77.96 54.70 93.28 53.06 71.01 27.77 56.00 72.91 69.62 94.62
FCHardNet [49] CS(S) CS 97.39 84.40 92.31 53.83 62.90 64.28 68.21 78.06 91.85 59.82 94.91 80.81 60.55 94.85 72.70 82.15 76.45 59.97 75.49 76.37 95.35

ΩNet(SNet) CS(S) CS 93.69 65.66 83.46 23.57 20.57 40.11 35.32 47.77 86.62 44.22 89.94 56.00 23.00 84.98 17.22 1.22 0.00 17.11 52.82 46.49 89.56
ΩNet(SNet) CS(P) CS 95.97 77.23 87.96 38.37 42.62 47.82 48.15 60.44 89.73 54.97 92.62 65.87 36.96 90.57 25.19 0.06 0.00 25.53 61.06 54.80 92.45

ΩNet(DSNet) CS(P) CS 96.00 77.46 88.30 41.84 41.68 48.74 47.80 59.24 89.61 53.89 92.57 66.29 38.61 90.61 27.39 0.37 0.00 18.01 62.78 54.80 92.50

DABNet [47] CS(S) K 79.02 19.07 58.38 18.04 30.73 40.61 44.24 41.67 80.87 48.76 76.61 13.39 0.17 63.30 21.32 8.21 19.81 1.29 7.04 35.40 80.50
FCHardNet [49] CS(S) K 75.66 32.65 78.51 13.16 28.46 51.33 57.16 55.58 81.06 45.59 91.43 23.84 12.19 58.86 24.91 34.89 68.71 4.66 11.38 44.74 72.07

ΩNet(SNet) CS(S) K 83.31 33.39 66.57 12.15 20.18 44.20 37.76 32.35 84.46 58.79 88.70 24.66 13.55 76.09 12.62 2.09 0.10 1.15 12.64 37.09 84.94
ΩNet(SNet) CS(P) K 88.73 47.85 77.01 19.72 30.65 47.34 53.63 43.16 86.65 67.97 94.49 24.81 29.39 80.68 14.88 0.53 0.00 3.05 12.30 43.31 88.76

ΩNet(DSNet) CS(P) K 87.89 46.64 77.48 18.55 29.65 48.73 51.12 40.52 86.66 63.54 95.06 29.79 34.74 82.03 12.77 0.63 0.00 7.60 18.82 43.80 88.31

TABLE 14.7: IoU on 19 training classes, mIoUclass and pixel accuracy (Acc.) results of ΩNet against state of the art method
training on CS and tested on CS or K. Better generalization from CS to K thanks to our proxy labels training protocol.
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Method Train Test flat construction object nature sky human vehicle mIoUcategory

DABNet [47] CS(S) CS 97.93 91.69 65.90 92.03 93.50 79.59 92.25 87.56
FCHardNet [49] CS(S) CS 98.19 92.55 70.77 92.27 94.91 82.31 93.54 89.22

ΩNet(SNet) CS(S) CS 96.34 84.29 44.37 86.85 89.94 60.13 83.77 77.96
ΩNet(SNet) CS(P) CS 97.40 88.80 53.61 90.19 92.62 69.08 88.47 82.88

ΩNet(DSNet) CS(P) CS 97.38 88.76 53.91 89.93 92.57 69.27 88.61 82.92

DABNet [47] CS(S) K 83.41 59.07 46.41 84.30 76.61 17.05 63.61 61.49
FCHardNet [49] CS(S) K 80.89 75.35 58.68 88.11 91.43 24.62 58.33 68.20

ΩNet(SNet) CS(S) K 87.93 63.92 45.79 85.47 88.70 31.02 69.95 67.54
ΩNet(SNet) CS(P) K 91.97 74.95 52.29 89.80 94.49 29.28 81.83 73.52

ΩNet(DSNet) CS(P) K 91.42 74.84 53.35 89.36 95.06 35.45 80.69 74.31

TABLE 14.8: IoU on 7 training categories and, mIoUcategory results of ΩNet against state of the art method training on CS
and tested on CS or K. Better generalization from CS to K thanks to our proxy labels training protocol.
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14.3.4 Proxy Semantic Network

We evaluate the performance of the proxy semantic network. We employ
DPC [235], pre-trained on CityScapes with the 2975 training ground truths.
We report in Table 14.9 the testing results on the 500 and 200 images belong-
ing to CityScapes validation set and the KITTI training datasets, respectively.
Even though DPC [235] achieves impressive performance both on CityScapes
as well as in generalizing to KITTI, it is a huge network unable to run in real-
time (i.e. , it approximately delivers 3.5 fps on 768× 384 images).

Method Train Test mIoUclass mIoUcategory Acc.
DPC[44] - Proxy CS(S) CS 80.22 90.73 95.99
DPC[44] - Proxy CS(S) K 58.75 81.30 90.21

TABLE 14.9: Semantic segmentation performances of the proxy
semantic network [235] on CS and K datasets.

Priors Evaluation on KITTI
When we produce the priors used during training and, at prediction time,

to create the Mmot
t , we split the 19 classes in static and potentially dynamic

ones according to the following scheme:

1. Static: road, sidewalk, building, wall, fence, pole, traffic light, traffic
sign, vegetation, terrain, sky

2. Potentially dynamic: person, rider, car, truck, bus, train

As among our objectives is to obtain a good motion segmentation mask, we
are interested in evaluating the quality of our semantic segmentation predic-
tions in terms of how they are amenable to producing good estimated priors
according to the mapping defined above. We evaluate our DSNet trained on
CityScapes+KITTI in the 200 KITTI images which provides semantic labels.
We obtain a pixel accuracy of 98.50% while a 98.40% IoU for the static classes
and a 80.99% for the potentially dynamic classes for a global 89.64% mIoU. It
is worth noticing that, even though our segmentation is not able to perform
a precise class segmentation, it yields excellent binary priors that turns out
key to performance for motion segmentation.

14.3.5 Optical Flow

In Table 14.10, we compare the performance of our optical flow network with
competing methods using the KITTI 2015 stereo/flow training set [108] as
testing set, which contains 200 ground-truth optical flow measurements for
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train test

Method Dataset Noc All F1 F1

Meisteret al.[102] - C SYN + K - 8.80 28.94% 29.46%
Meister et al.[102] - CSS SYN + K - 8.10 23.27% 23.30%
Zou et al.[71] SYN + K - 8.98 26.0% 25.70%
Ranjan et al.[73] SYN + K - 5.66 20.93% 25.27%

Wang et al.[238] ** K - 5.58 - 18.00%

Yin et al.[70] K 8.05 10.81 - -
Chen et al.[72] † K 5.40 8.95 - -
Chen et al.[72] (online) † K 4.86 8.35 - -
Ranjan et al.[73] K - 6.21 26.41% -
Luo et al.[75] K - 5.84 - 21.56%
Luo et al.[75] * K - 5.43 - 20.61%
ΩNet (Ego-motion) K 11.72 13.50 51.22% -
OFNet K 3.48 11.61 25.78% -
SD-OFNet K 3.29 5.39 20.0% 19.47%

TABLE 14.10: Optical flow evaluation on the KITTI 2015
dataset. †: pre-trained on ImageNet, SYN: pre-trained on SYN-
THIA [237], *: trained on stereo pairs, **: using stereo at testing

time.

evaluation. We exploit all the raw K images for training, but we exclude the
images used at testing time as done in [71] , to be consistent with experi-
mental results of previous self-supervised optical flow strategies [70, 71, 72,
73]. From the table, we can observe how our self-distillation strategy allows
SD-OFNet to outperform by a large margin competitors trained on K only
(rows 5-11), and it even performs better than models pre-initialized by train-
ing on synthetic datasets [237]. Moreover, we submitted our flow predictions
to the online KITTI flow benchmark after retraining the network including
images from the whole official training set. In this configuration, we can ob-
serve how our model achieves state-of-the-art F1 performances with respect
to other monocular multi-task architectures.

14.3.6 Pose Estimation

We validate the performance of our framework on pose estimation on the
KITTI odometry split, which provides ground-truth camera poses obtained
with IMU/GPS readings for 11 driving sequences, indexed from 00 to 08 for
training and 09-10 for testing purposes. As in [79], we have not changed our
architecture for this specific task but simply trained it from scratch on new
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training sequences without known intrinsic parameters. We compare our
model with learned camera intrinsic parameters with several monocular self-
supervised methods on the two sequences of KITTI odometry test split. All
of the results, summarized in 14.11, are evaluated by optimizing the scaling
factor to align with the ground-truth to address the inherent scale ambiguity.

Method Frames Sequence 09 Sequence 10

Zhou et al.[66] 5 0.021 ± 0.017 0.020 ± 0.015
Ranjan et al.[73] 5 0.012 ± 0.007 0.012 ± 0.008
Yin et al.[70] 5 0.012 ± 0.007 0.012 ± 0.009
ORB-Slam 3 0.014 ± 0.008 0.012 ± 0.011
Casser et al.[76] 3 0.011 ± 0.006 0.011 ± 0.010
Zou et al.[76] 3 0.017 ± 0.007 0.015 ± 0.009
Luo et al.[75] 3 0.013 ± 0.007 0.012 ± 0.008
Godard et al.[79] 2 0.017 ± 0.008 0.015 ± 0.010
Ours † 2 0.020 ± 0.013 0.017 ± 0.011

TABLE 14.11: Absolute Trajectory Error (ATE) of pose estima-
tion evaluated on the KITTI odometry split sequences 09-10.
†indicates strategies trained with unkwnown camera intrinsics.

14.3.7 Motion Segmentation

In Table 14.13 we report experimental results for the motion segmentation
task on the KITTI 2015 dataset, which provides 200 images manually an-
notated with motion labels for the evaluation. We compare our methodol-
ogy with respect to other state-of-the-art strategies that performs multi-task
learning and motion segmentation [73, 75, 238] using the metrics and evalua-
tion protocol proposed in [75]. It can be noticed how our segmentation strat-
egy outperforms all the other existing methodologies by a large margin. This
demonstrates the effectiveness of our proposal to jointly combine semantic
reasoning and motion probability to obtain much better results. We also re-
port, as upper bound, the accuracy enabled by injecting semantic proxies [44]
in place of ΩNet semantic predictions to highlight the low margin between
the two.

Moreover, in Figure 14.4, we present an ablation study dealing with the
motion segmentation task. In Table 14.13, to be consistent with other method-
ologies, we set the threshold τ used for the evaluation to 0.5. However, we
point out that a careful tuning of such threshold can improve the overall mo-
tion segmentation accuracy. In particular, we can notice how the best config-
uration for our predictions is obtained using a larger threshold. Indeed, we
found out that the best trade-off between the mean accuracy and the mean
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IoU is achieved by setting the threshold value to 0.7 (in this case the Mean
Acc is 0.91 while Mean IoU is 0.77).

FIGURE 14.4: Mean Acc. and mIoU varying the threshold used
to compute the motion segmentation Mmot

t .

Finally, we conduct an additional study to evaluate our motion segmen-
tation masks only on pixels belonging to Cars, as proposed in [73]. In Ta-
ble 14.12 we evaluate the IoU for static and dynamic cars yielded by ΩNet
and [73] on the 200 KITTI images endowed with ground truth for the motion
segmentation task. We notice that our Mmot

t outperforms [73] in all metrics
(rows 1 vs 2 and 3) for all thresholds. Moreover, we point out that in this
test configuration the contribution given to the motion segmentation by our
estimated semantics is almost negligible as car regions are already extracted
by using KITTI ground truths. Therefore, we test also our motion probability
Pt alone, showing that it is superior to [73] even without the help provided
by the estimated semantics.

Method Threshold Overall Static Cars Moving Cars

Ranjan [73] - 56.94 55.77 58.11

ΩNet Mmot
t 0.5 63.98 64.16 63.79

ΩNet Mmot
t 0.7 63.97 64.15 63.79

ΩNet Pt 0.5 63.67 62.58 64.77
ΩNet Pt 0.7 62.66 58.42 66.89

TABLE 14.12: Motion Segmentation Results. IoU scores on
KITTI 2015 training dataset images computed only over car pix-

els.
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Method Pixel Acc. Mean Acc. Mean IoU f.w. IoU

Yang et al.[74] * 0.89 0.75 0.52 0.87
Luo et al.[75] 0.88 0.63 0.50 0.86
Luo et al.[75] * 0.91 0.76 0.53 0.87
Wang et al.[238] (Full) ** 0.90 0.82 0.56 0.88
Ranjan et al.[73] 0.87 0.79 0.53 0.85
ΩNet 0.98 0.86 0.75 0.97

ΩNet (Proxy [44]) 0.98 0.87 0.77 0.97

TABLE 14.13: Motion segmentation evaluation on the KITTI
2015 dataset. *: trained on stereo pairs, **: using stereo at test-

ing time.

14.3.8 Runtime analysis

Finally, we measure the runtime of ΩNet on different hardware devices, i.e.
a Titan Xp GPU, an embedded NVIDIA Jetson TX2 board and an Intel i7-
7700K@4.2 GHz CPU. Timings averaged over 200 frames. Moreover, as each
component of ΩNet may be used on its own, we report the runtime for each
independent task. As summarized in Table 14.14, at 640× 192, our network
runs in real-time on the Titan Xp GPU and at about 2.5 FPS on a standard
CPU. It also fits the low-power NIVIDA Jetson TX2, achieving 4.5 FPS to
compute all the outputs. Moreover, it can be noticed how ΩNet achieves
real-time results (i.e. 27.9) on the Titan Xp GPU even with the largest image
size 1024 × 320, reaching about 2 FPS on the Jetson Tx2 embedded device
with the same input configuration.

416× 128 640× 192 1024× 320

W D DS OF Cam O D DS OF Cam O D DS OF Cam O

Jetson TX2 15 20.2 17.9 8.9 54.1 7.1 12.5 10.3 6.5 49.2 4.5 6.4 5.3 3.2 26.31 2.0
i7-7700K 91 10.9 9.1 11.0 60.1 5.5 5.0 4.2 4.9 31.4 2.4 1.9 1.6 1.8 13.2 0.9
Titan XP 250 250.7 212.4 152.6 550.7 90.5 170.2 134.1 94.1 446.7 57.4 86.0 64.5 44.5 251.0 27.9

TABLE 14.14: Runtime analysis on different hardware devices.
For each device we report the power consumption in Watt and
the FPS by varying input resolution. D: Depth, S: Semantic, OF:

Optical Flow, Cam: camera pose, O: Overall architecture.

14.3.9 Results on a YouTube Video

Furthermore, to prove that our network can be trained on unconstrained
monocular sequences with unknown camera parameters and without se-
mantic ground-truth labels, we downloaded from YouTube an online video
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captured by a moving camera consisting of 130K images depicting an ur-
ban scenario. Then, we generated proxy semantic labels using [235] and
trained ΩNet(DSNet) to learn depth, pose, semantics and camera intrinsics.
Figure 14.5, show qualitative results yielded by ΩNet on this unconstrained
monocular video.

FIGURE 14.5: Qualitative results of ΩNet on a raw YouTube
video. From left to right, we show the input images of a monoc-
ular sequence, the single-view depth and semantic predictions

and, finally, the optical flow estimate.





137

Chapter 15

Final Remarks

In this part of the thesis, we have shown how leveraging task synergies in a
single-domain multi-task framework fashion allows achieving better perfor-
mance with lighter models and less supervision.

First of all, in chapter 13 we have focused on the joint learning of the ge-
ometry and semantics of the scene. We have proposed a deep learning archi-
tecture to improve unsupervised monocular depth estimation by leveraging
semantic information. Moreover, we have shown how training our architec-
ture end-end to infer semantics and depth jointly enables us to outperform
the state-of-the-art approach for unsupervised monocular depth estimation
[57].

Then, in chapter 14 we have extended our goal, by understanding the
scene in a more comprehensive manner with a joint learning of geometry, se-
mantics, and motion. In particular, we have proposed the first real-time net-
work for comprehensive scene understanding from monocular videos. Our
framework can estimate depth, optical flow, semantic segmentation, camera
pose, and motion masks at about 60 FPS on high-end GPU and 5FPS on em-
bedded systems. Moreover, we train our framework without any ground-
truth data, using a mixture of self-supervision, a novel learning procedure
based on semantic proxy labels distillation, and a semantic-aware self-distillation
of optical-flow information. Thanks to this original paradigm, we have demon-
strated state-of-the-art performance on standard benchmark datasets for depth,
optical flow, and motion segmentation.

In conclusion, while in the second part of the thesis we have shown that
we can exploit the correlation between visual tasks to achieve better gener-
alization across domains, here we have shown that we can also boost per-
formance and efficiency in a single domain scenario, still using no ground-
truths for supervision. These findings support the hypothesis that leveraging
on tasks dependencies is the key to unleash the power of deep learning. In-
deed, we can craft models that are more robust, more accurate, and lighter
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while requiring less supervision to be trained.
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Part IV

Final Remarks
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Chapter 16

Conclusions

In this thesis, we have investigated on the utilization of deep learning for
scene understanding in situations where data are scarcely available.

In the first part, we have demonstrated that it is possible to employ com-
puter graphics to speed up data collection for semantic segmentation by cre-
ating new efficient annotation tools or by synthetic renderings.

In chapter 4 we have proposed a novel tool based on virtual reality to
make the annotation process less tedious and time-consuming. With our
game-style interface, we enlarge the pool of users able to utilize our software.
Thus, we can gather multiple annotations of the same scene in short-times.
For the above reason, we also have proposed a novel post-process algorithm
to auto-refine the annotated data.

In chapter 5, instead of using computer graphics as an efficient human-
computer interface, we have investigated a different kind of approach. We
explored the possibility of using synthetic data rendered from a simulation
of the world and the domain-shift problem of using such data. We propose a
novel image-to-image translation technique to mitigate this problem. Pecu-
liarly to our work, we use semantic information to preserve the image con-
tent before and after the translation process. Notably, we have shown several
experiments where we dramatically improve the style-transfer results, reduc-
ing the artifacts introduced by traditional approaches. Moreover, we have
shown how training on our transformed data can decrease the performance
gap between synthetic and real data.

In the last two parts of the thesis, we have investigated a novel research
direction: employing the relationships between visual tasks (e.g. semantic
segmentation and depth estimation) to obtain more general and accurate
models.

In the second part of this manuscript, we have explored the possibility of
using these relationships to decrease the need for labeled data. In chapter 8
we propose AT/DT, a novel framework that transfer the knowledge across



142 Chapter 16. Conclusions

tasks and domains. As done in chapter 5 we consider two domains, syn-
thetic and real. However, this time we consider multiple tasks at once. We
have shown that we can learn the correlation between deep features learned
by two task-specific CNNs (e.g. semantic and depth networks) by another
network that we call transfer network. Surprisingly, the transfer network
generalizes well across domains, showing that we can decrease the domain-
shift by exploiting the relationship between visual tasks.

Based on these findings, we also propose an improved version of AT/DT,
reported in chapter 9. Here we focus on the significant weaknesses of AT/DT
in the particular scenario of having two dense tasks such as semantic seg-
mentation and depth estimation. We propose two techniques to improve the
transfer function quality by aligning its inputs across tasks and domains.

Finally, in chapter 10 we employ AT/DT also in the benchmark for un-
supervised domain adaptation for semantic segmentation. We choose depth
estimation as a pretext-task because we have already noticed its strict corre-
lation with semantic segmentation and because it can be trained with self-
supervision. We notice that transferring the knowledge from depth to se-
mantics with AT/DT brings complementary information to standard domain
adaptation techniques. Thus, we propose a technique to merge the knowl-
edge transferred across task with AT/DT and domain adaptation methods.
We can achieve state-of-the-art results in the benchmark through the pro-
posed merging strategy and a novel self-training protocol.

In the third part of the thesis, we examined the possibility of exploit-
ing the relationship between visual tasks to obtain more accurate and effi-
cient models, still in the context of a low-data regime but in a single-domain
scenario. In chapter 13 we have shown that learning depth and semantic
together by a single neural network leads to improved performance in the
depth estimation task. We already highlighted the existence of a correlation
between the two tasks in previous experiments. However, we have shown
here that we can use this relationship to improve the accuracy of the model
when learning them jointly. Notably, we train our model self-supervised for
depth estimation and only a few semantic segmentation labels.

In chapter 14, we extend the previous idea and we learn a single model for
a comprehensive scene understanding, trying to exploit the synergy among
several visual tasks. We consider a video sequence as inputs and the several
tasks: depth, pose, and normal estimation jointly with motion and seman-
tic segmentation. Our multi-task model can achieve state-of-the-art perfor-
mances in depth, optical flow, and motion segmentation without training on
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any manually annotated labels. Moreover, our framework is lightweight and
can run in real-time on a standard GPU.

In conclusion, this thesis proposes several approaches for scene under-
standing, with only a few annotated data. We argue that the results also
highlight another crucial finding: modeling the relationships between visual
tasks is the first essential step to craft models for a comprehensive scene un-
derstanding that are more robust, more accurate, and need less supervision.
We hypothesize that incorporating such multi-task knowledge is key to have
models that can be safely applied to the real world. Therefore, we propose
to deepen these discoveries in the future to find a universal framework for
scene understanding hope that our findings may pave the way for further
research towards a more systematic and unified approach aimed at solving
many visual tasks jointly so as to fully leverage on their synergies and boost
the ability of deep models to pursue comprehensive scene perception with-
out any explicit supervision.
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