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Abstract

Growing popularity of the highly capable small- and nano-satellites, driven by com-
ponents miniaturization, face new technological challenges and at the same time provides
new opportunities for the whole space sector. Low cost of nanosatellites launches make
them accessible. Reliability is an exigency: especially challenging is design and test-
ing of Attitude and Determination Control Systems (ADCS). Demand for nanosatellites-
dedicated attitude control algorithms and careful performance assessment of the space-
crafts motivates the research work presented in this thesis.

In the first part of the manuscript, development and assessment of the three degreesof-
freedom ADCS testbed for nanosatellites testing is described. The facility was developed
within the Microsatellites and Space Microsystems Lab at University of Bologna, and
designed to meet strict low-cost requirements. The facility includes several integrated
subsystems to simulate the on-orbit environment: i) an air-bearing based, three degree of
freedom platform with automatic balancing system, ii) a Helmholtz , iii) a Sun simulator,
and iv) a metrology vision system . Experimental assessment of the subsystems guarantee
necessary level of performance.

Control law design for smallsats is addressed in the second part. Limited power avail-
ability and reliability makes magnetic actuation particularly suited for ADCS design, but,
the control system faces inherent underactuation. To overcome the intrinsic limits of ex-
isting control designs, a novel approach to the three-axis attitude control of a magnetically
actuated spacecrafts is proposed, based on hybrid systems theory. A local H-inf regulator
with guaranteed performance and a global nonlinear controller used for ensuring global
stability and robustness, are combined. Hybrid control theory is employed to develop a
mixed continuous-discrete controller able to switch between different feedbacks. Ana-
lytical results are verified by means of realistic numerical simulations: errors on the state
comply with the computed bounds and stability is guaranteed.
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1
Introduction

The twenty-first century saw the opening of a new era of the space race thanks to
commercial rocket launches, substantial reduction of the cost to LEO (Jones, 2018) and
renewed interest of industry companies such as SpaceX, OneWeb, Telesat, Amazon, Boe-
ing in providing broadband satellite internet,disaster prevention services, earth monitor-
ing, disaster prevention services. The sector growth is driven by new technological de-
velopments: perhaps the most notable is the miniaturization of electronic devices.

Dimension reduction of satellite hardware components, such as thrusters, attitude
control systems, batteries, antennas, sensors and payloads, paved the way to highly ca-
pable small satellites. With size and weight being only a fraction of conventional satel-
lites, the growing success of small satellites is due primary to low deployment cost and
short development time (Gregorio and Alimenti, 2019). Smallsats first became popular
in the academia, where keeping their development, launch, and operation costs as low as
possible was the main requirement. This was achieved mainly through components stan-
dardization (Villela et al., 2019). Popularity of small satellites led to the development of
standard launchers and platforms, further reducing the costs (Crisp et al., 2015): space
became closer and more accessible to smaller companies and institutions.

Small satellites can be classified according to their weight:

- femto-satellites: less than 0.1 kg
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- pico-satellites: 0.1-1 kg

- nano-satellites: 1 - 10 kg

- micro-satellites: 10-100 kg

- mini-satellites: 100-1000 kg

as well as by form-factor. CubeSat standard, proposed in 1999 by Jordi Puig-Suari and
Bob Twiggs for educational purposes (Puig-suari et al., 2001), emerged as the most pop-
ular one: more than 65% of all launched small satellites belong to this class (Bok et al.,
2020); the share is 90% if only nano-satellites are considered (Kulu, 2020). 1U is the
basic unit for the CubeSat satellite, defined as 10 cm × 10 cm × 10 cm cube of 1.33
kg: see Figure 1.1 for the exploded view of a 1U CubeSat. The cubic form was cho-
sen to guarantee easy integration and sufficient surface area for solar power generation,
while providing better space-thermal stability. Designed to cost less then 1000 $ (Saeed
et al., 2020), now it can be build by using entirely off-the-shelf commercial components
(Davoli et al., 2019). Due to the small dimensions and standardized deployers (originally
proposed P-POD and equivalent interfaces such as ISIPOD, NLAS, T-POD, see Swart-
wout (2013)), large number of satellites can be placed on the same launcher. Moreover,
International Space Station (ISS) is intensively used for CubeSats launches.

Starting from the 1U design, CubeSats of different sizes have been proposed (from
0.25U to 16U). Thanks to the low cost, CubeSats became popular for both commercial
and scientific tasks. Choosing a CubeSat as target platform shorten the sketch to proto-
type time, hence developers can focus on payload integration and scientific mission. The
number of launches is growing even faster than expected (Villela et al., 2019), with more
than 1200 CubeSats launched over past 20 years (Kulu, 2020; Villela et al., 2019; Bok
et al., 2020). Multi-satellite mission are of growing importance, with ongoing investiga-
tion on the use of CubeSat constellations to provide global connectivity, see surveys in
Gregorio and Alimenti (2019) and Saeed et al. (2020). Meanwhile, formation-flying mis-
sions, where the satellites are controlled by a common control law, are employed mainly
for earth observation and technological demonstration (Bandyopadhyay et al., 2015).

Socket-on-the-chip (SoC) approach allows extreme miniaturization at relatively low
price thanks to adoption of up-to-date COTS components, but have a drawback: no or
limited flight heritage. In fact, CubeSats missions have a high failure rate of 25 % (Villela
et al., 2019), with even higher failure rate for technology demonstration missions with 46
% ( as provided by Polat et al. in 2016, the statistics are continuously updating).
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Chapter 1. Introduction

Figure 1.1: UWE-4 CubeSat exploded view (Kramer et al., 2020)
.

As the smallsats becomes more complex, the risks of failure is growing. Along with
the performance, reliability of small satellites must be increased to make nanosatellites
an accepted platform for scientific payloads and commercial applications (Langer and
Bouwmeester, 2016). On-orbit repair is almost impossible, since the costs would vastly
exceed that of the total satellite production and launch, especially for smallsats. Success-
ful on-orbit repairs have been made only to inhabited orbital stations, the Solar Maximum
Mission and the Hubble Space Telescope. It is therefore essential to the potential satellite
malfunctions be identified before their launch.

Attitude Determination and Control System (ADCS) is one of the most complex and
sensitive subsystems of a satellite as it controls its orientation and provides pointing and
maneuvers capabilities. ADCS ensures safety at the most critical initial mission stages
and is responsible for correct operations of the satellite (Gavrilovich, 2018). Increas-
ing complexity of ADCS hardware and control algorithms (Xia, 2017; Xie et al., 2016),
along with the extensive use of COTS components and reduced development time, makes
the ADCS careful pre-flight assessment of paramount importance (Martin, 2018). Its dy-
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1.1. ADCS ground testing

Figure 1.2: Share of small sats by use (Bok et al., 2020)
.

namic and static performances is potentially limiting and risk factors for future nanosatel-
lite missions.

1.1 ADCS ground testing

Software and hardware pre-flight ground verification aims at demonstrating and cer-
tifying satellites components, systems and safety functions operability. For a reliable
testing the satellite shall be placed in conditions close to the on-orbit one. Small orga-
nizations, like academic institutions, seldom have access to specialized and expensive
testing facilities, and often underestimate the importance of ground testing. Insufficient
testing is one of the reasons of nanosatellites high failure rate. To provide smallsats devel-
opers with appropriate testing guidelines, several test requirements have been developed
in past two decades (Cho et al., 2012). Only recently an ISO standard have been approved
(ISO 19683:2017 : Space systems — Design qualification and acceptance tests of small
spacecraft and units).

In this thesis, we will focus on ADCS related facilities, which can be classified as sim-
ulators and testbeds: the first ones are used mainly for studying control laws, meanwhile
the second ones for assessing integrated hardware equipment, i.e Hardware-in-The-Loop
testing. Several on-orbit environment aspects needs to be simulated, as ADCS can possi-
bly rely on magnetic field, sunlight and stars position.
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Chapter 1. Introduction

- Sunlight: sun simulators spans from correctly sized lamp to precisely calibrated
light sources and specific optical systems, and are designed in function of the
ADCS sun sensor. Specifications for sun simulators are provided by ASTM (2010)
standard. The classification is done by spectral content, spatial uniformity and
temporal stability.

- Stars position: starry sky simulations is a challenging task, as the latest generations
of star trackers (a device that measures the positions of stars) feature widened range
of functionality: reliable simulations need for complex hardware and software so-
lutions (Rufino et al., 2013).

- Magnetic field: since both attitude determination and control are likely to rely on
magnetic field, it’s highly desirable the simulator to be equipped with system ca-
pable to cancel the local Earth and provide an arbitrary magnetic field. A common
device, used in the wide range of applications were controlled magnetic field is
necessary, is the Helmholtz cage (Trout, 1988). Made of Helmholtz coils, these
can be easily constructed as basically consist of two identical circular coils of wire
with identical electrical currents flowing in the same direction, with a common axis
and placed at a distance approximately equal to the radii of the coil. To provide
three-axis control, three couples of coils are employed. The generated magnetic
field can be computed analytically and sized so as to guarantee certain level of
uniformity in the volume of interest (Da Silva et al., 2019).

- Micrograviy: disturbance-free rotational and/or planar dynamics are necessary for
HIL testing, but are challenging to achieve in laboratory environment. Micrograv-
ity simulator is the core subsystem of the testing facility, necessary for dynamic
attitude simulations.

1.1.1 Dynamic simulators

Simulators providing microgravity environment have been developed since the beg-
ging of the space race: there are several open documentary references from early 60s
(Bachofer and Seaman, 1964; Smith, 1964; Fornoff, 1967). Perhaps the simplest way to
provide low torque environment is based on wire suspension: the prototype is suspended
on cable attached to a low friction joint, so as to provide 1-DOF. Large assemblies can be
tested on gravity offload systems : counter-weights are used to offload weight and com-
pensate the gravity by applying tension force (Han et al., 2010). Differences between
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1.1. ADCS ground testing

on-orbit and terrestrial environments calls for more complex systems, especially for crit-
ical operations, such as docking and rendezvous: see Wilde et al. (2019) for historical
and recent developments in this field.

Since large rotational and planar freedom is needed for the ADCS HIL tests, the sim-
pler and most common solution adopted are air bearings (Schwartz et al., 2003). Flowing
pressurized air through several orifices or a porous surfaces, air film is formed. The air
operates as a lubricant and provides very small friction between two contact surfaces. If
contact surfaces are flat, two translation and one rotational (around the yaw axis) degree-
of-freedom are provided( see Rybus and Seweryn for more examples and details on this
type of simulators).

The same principles applies to spherical air bearings, employed to provide friction-
less rotational dynamics with unconstrained rotation over one, two or even three axes.
Most facilitates where disturbance-free rotational dynamics are required relies on this
solutions, with main examples described in Schwartz et al. (2003) survey. Unconstrained
motion over three axes can be achieved by placing under test a floating sphere ( see Wang
et al.; Jovanovic and Pearce; Prado-Molina et al.; Culton et al. for some of solutions
available in the literature) or more sophisticated designs, for example involving robotic
arm (Gavrilovich et al., 2015). Most common setups can be categorized in three broad
configurations, namely table-top , dumbbell and umbrella, shown in Figure 1.3. While
dumbbell layout provides unconstrained rotational motion about two axes, table-top is
the simplest and lightest design choice, coming at the cost of limited tilt angles.

Planar and rotational air bearings can be combined to achieve all 6-DOF. To provide
motion on vertical direction, complex solution may be necessary, as a matched variable-
mass counterbalance system proposed in Saulnier et al. (2014). See Nakka et al. (2018)
for more examples of 6-DOF simulators.

1.1.2 Nanosatellites testing facilities

Despite ADCS simulators are certainly not a new concept, legacy solutions developed
for larger satellites testing cannot be employed for smallsats mainly due to the unaccept-
ably high level of residual perturbations. As the number of nanosatellites developers
increases, the need for dedicated ADCS testbeds is growing. Almost all existing imple-
mentations integrates spherical air-bearings, as the most cost-effective solution.

As the hosted satellite getting smaller, the target residual environmental disturbance
torque drops and the facility characterization clearly becomes of great importance. The
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Chapter 1. Introduction

Figure 1.3: From top to bottom: tabletop, umbrella and dumbell air bearing platform setup
(Schwartz et al., 2003).

largest disturbance torque affecting spherical air-bearing test benches is the one due
to gravity (Kwan et al., 2015; Prado et al., 1998; Thomas et al., 2018): to reduce the
gravitational torque, the unbalance vector, defined as the distance between the center of
mass (CM) and the center of rotation (CR), must be minimized. Static balancing can be
achieved by weighting masses, but the deformation of the platform due to temperature
change (Prado et al., 1998) and ansioelasticity (Kim and Agrawal, 2009; Xiang et al.,
2015) could be source of dynamic disturbance. Careful design and material choice are
crucial, but not sufficient (Xiang et al., 2015).

Gravitational torque must be specifically addressed to guarantee reliable simulations
(Gavrilovich et al., 2015), as it can be canceled only partially by design, and manual
balancing does not guarantee a priori performance level (Prado et al., 1998; Young, 1998).
Stiffening of the floating platform and dedicated balancing systems lead to further weight
growth, which in turn is proportional to the residual gravitational disturbance torque. The
outcome are contrasting simulator design requirements:

- moments of inertia must be similar to that of the simulated/tested spacecraft;

- weight have to be limited;

9



1.1. ADCS ground testing

- platform and system design must be robust to reduce sagging;

- dumb masses for fine balancing have to be provided;

- dedicated balancing system is highly desirable.

The trade-off is particularly challenging for smallsats as the target disturbance torque
and moments of inertia are scaled down. For such facilities, only few attempts to show
ground-to-flight simulations traceability are reported (Sternberg et al., 2018), highlight-
ing the difficulty to achieve reliable on-ground simulations. Indeed, the external torque
acting on a nanosatellite in Low Earth Orbit can be as low as 10−6 Nm (Cortiella et al.,
2016; Sutherland et al., 2017).

A remarkable example of nanosatellites testing facilities is the CubeSat three axes
simulator (CubeTAS) developed by the Naval Postgraduate School (NPS) with collab-
orations from UC Santa Cruz Chesi et al. (2015). The CubeSat-scale air bearing in-
corporates an automatic mass balancing system that aligns the composite system CM
with the air bearing’s CR (Chesi et al., 2014). Experimental results demonstrated capa-
bilities of the testbed to successfully simulate CubeSat rotational dynamics, as well as
perform three-axis stabilization maneuvers (Lee et al., 2018). The system also includes
a Helmholtz cage for three-axis magnetic field simulation, and experimental magnetic
detumbling was presented in Cervettini et al. (2020).

At the Laboratory of Application and Innovation in Aerospace Science (LAICA),
University of Brasilia, a tabletop-style air bearing facility have been designed (Silva et al.,
2019). A Helmotz cage provides controlled magnetic field, and despite the use of COTS
and self-developed components, good system performance was reached.

Another tabletop-style air bearing platform for CubeSat HIL testing have been pro-
posed by York University in Toronto (Ustrzycki et al., 2011). Manual balancing system
cause large gravitational torques evident from testing; however, control algorithms were
successfully tested. A Helmholtz cage is foreseen, but no results on experiments em-
ploying controlled magnetic field are available. Similar solution including an automatic
balancing system have been proposed by Virginia Tech Space Simulations Laboratory in
Wolosik (2018), and by Air Force Institute of technology Tibbs (2015).

To overcome rotational constraints of tabletop air-bearing, an original design have
been developed at the Laboratory of Informatics, Robotics and Microelectronics at the
University of Montpellier (Gavrilovich et al., 2015). Unconstrained motion about three
axis is provided by a peculiar design. Four air bearings with the rotors distributed on a
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(a) CubeTAS simulator (Chesi et al.,
2015); (b) LAICA facility (Da Silva et al., 2019);

(c) Testbed developed at the University of
Montpellier (Gavrilovich, 2018);

Figure 1.4: Nanosatellites testing facilities.

spherical envelope that surrounds the model spacecraft, which is intended to be a Cube-
Sat. The stators are distributed on an external sphere attached to a robotic arm, which
must ensure the facing between the stator and its rotor during spacecraft rotational mo-
tion. The concept requires a robotic arm to adjust its orientation depending on the space-
craft attitude determined by attitude sensors.
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1.1.3 Facility verification

Especially for in-house developments, the verification of each environmental feature
simulated within an ADCS facility is fundamental, yet often overlooked. In particular:

- For the magnetic field, accuracy and homogeneity in the operative volume should
be verified.

- For the sunlight, spectral content, temporal stability and spatial uniformity, which
can be subdivided in divergence and intensity uniformity, have to be measured.

- Disturbances affecting the rotational dynamics shall be characterized. As the sources
of disturbances could be very different in static and dynamic setting, and depend
on time/temperature/simulation scenario, they have to be evaluated separately. In
spherical air-bearings, unbalance torque is the largest and most addressed in the
literature.

- A ground truth attitude shall be provided by a system with known performance,
which most of the time consists of an external vision system.

- Star simulators are still very uncommon: verification process depends on the spe-
cific implementation.

Solutions reported in the literature are characterized by partial verification of the sys-
tem performance. Among the performance indexes, one of the most challenging to esti-
mate and to comply with is the disturbance torque. Facilities with verified performance
suited for nanosatellites testing are mentioned hereafter:

- for the NPS facility, results of the balancing and rated accuracy of the vision system
are provided. Balancing is evaluated by kinetic energy variance reduction (Chesi
et al., 2014). However, the 71 % variance reduction cannot be used to estimate
the residual disturbance torque; nevertheless, the facility have been successfully
employed for attitude control law testings (Lee et al., 2018).

- for the LAICA facility, results on the magnetic field homogeneity and balancing
system performance are presented. However, the residual gravitational disturbance
is estimated to be more than 20 mNm (Da Silva et al., 2019).
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- In Kato et al. (2014), FACE facility at DLR, Germany, is described. Helmholtz
cage accuracy is evaluated . The balancing procedure guarantee high performance,
however the total weight is too high for reliable nanosatellites testing .

- The simulator developed at Virginia university (Thomas et al., 2018) implements an
offline balancing procedure. No experimental results are provided, but the residual
disturbance torque is expected to be higher than 7.6 mNm (Wolosik, 2018).

- The balancing procedure proposed in Young (1998) and tested on a smallsat simu-
lator provides residual torque in the order of 4.9 mNm .

- The procedure proposed by Young have been further developed by Prado et al.
(1998). Thanks to a feedback law and robustified carbon-fiber platform, a residual
static disturbance torque of 2 mNm has been achieved.

- The CM estimation algorithm proposed in Gavrilovich et al. (2015) shows high
performance in simulations, providing residual unbalance torque in the order of
5 · 10−5 Nm. However, high friction torque of 0.02 Nm, owed to the simulator
structure, precluded experimental verification of the system performance.

- In Wu et al. (2014), accuracy data for the vision system of an air bearing testbed for
spinning satellites developed at the Surrey Space Center are provided, with attitude
and angular speed determination accuracy respectively of 0.06° and 0.15°/s. No
information on other environmental aspects are provided.

The facilities characteristics are summarized in Table 1.1. As it possible to see, sus-
bsystems verification is mostly incomplete and none of them reached the ≈ 10−6 Nm
residual disturbance target.

1.1.4 The Dynamic Testbed for CubeSats facility at University of
Bologna

During the past four years, a Three-Degrees of Freedom Dynamic Testbed for Cube-
Sats (DTC) facility have been developed at the Microsatellites and Space Microsys-
tems (µ3S) laboratory of the Department of Industrial Engineering at the University of
Bologna. Due to the large variety of nanosatellite missions, e.g., Earth observation, in-
orbit demonstration (IOD), remote sensing, astronomical observation, wherever on or be-
yond Earth orbit, a single facility could hardly fit the needs of the entire range of ADCS
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Table 1.1: ADCS testing facilities overview

Facility
Environment aspect Metrology

SystemControlled
Magnetic
Field

Sun simu-
lator

Residual disturbance
torque

Chesi et al.
(2014)

X X Not enough info Stereo VS

Young (1998) - - > 4.9 · 10−3 Nm -

Prado et al.
(1998)

- - > 2 · 10−3 Nm -

Da Silva et al.
(2019)

X - Est.: > 2 · 10−4 Nm -

Gavrilovich et al.
(2015)

- - > 0.02Nm -

Wolosik (2018) X - Est.: > 7.6 · 10−3 Nm -

Kato et al. (2014) X X Not enough info IMU

Wu et al. (2014) - - - Stereo VS

hardware combinations testing. Through DTC development, we considered as the target
application scenario the one of nanosatellite missions in Low Earth Orbit (LEO) for re-
mote sensing, IOD, or Earth observation, whose pointing requirements often fall in the
range from tens of arcminutes to one degree (Werner et al., 2018; Gerhardt et al., 2016;
Mero et al., 2015).

The 1U and 3U CubeSat sizes were used as reference, as the most common (Bok et al.,
2020); nevertheless the facility can host nanosatellites of size up to 6U, or not necessarily
compliant to the CubeSat standard. The core of the testbed is a table-top air bearing
platform with custom design, whose function is to hold the nanosatellite mock-up under
test; it includes an automatic balancing system with shifting masses actuated by linear
motors. A programmable CubeSat mockup is available for simulations and control laws
testing. Other subsystems includes a Helmholtz cage for geomagnetic field simulation, a
Sun simulator, and a metrology vision system for ground-truth attitude measurement.
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1.1.5 Objectives and contributions

Several aspects of DTC have been designed and implemented by the author as part of
work presented in this thesis. Development of the table-top platform, the automatic mass
balancing system, the overall facility commissioning and experimental verification will
be presented in this thesis work. Strict budget constraints led the design choices towards
reduced complexity, making extensive use of low-end off-the-shelf hardware.

Similar facilities, described in Section 1.1.3, miss any performance verification or
focuses on testing of one or two specific subsystems at most. To the best of author’s
knowledge, none of the existing works approaches the testbed integration with systematic
performance verification for all its subsystems, see Table 1.1. When available, residual
disturbance torque is estimated indirectly and most of the time is larger than the target
one.

The automatic balancing system developed for DTC relies on three sliding masses,
actuated independently by three electric motors, to create a three-dimensional mass dis-
placement for fine balancing. A microcontroller and an IMU complete the setup.

A novel feedback control algorithm was designed to achieve high-precision balanc-
ing in two steps: the first part of the procedure automatically adjusts the location of the
sliding masses to eliminate the unknown offset between the center of rotation and the
center of mass in the plane orthogonal to the gravity vector. Then, the inertia parameters
and the remaining offset component are estimated by collecting free oscillating platform
data. Sampled data are processed offline through a batch least squares (LSQ) algorithm,
implemented in MATLAB environment. The entire procedure is then iterated to incre-
mentally refine the unbalance compensation, assuming the inertia known from the first
iteration estimate.

To reduce anisoelasticity torques, efficient structural design is a key approach. A
mechanical structure for supporting the satellite and all the components necessary for the
testbed operations was designed to guarantee minimal deformation torque. The choice
of platform material and design are a trade-off between elasticity and reduced inertia
values. Amagnetic material have been employed whenever possible, and high-end COTS
air-bearing by Physikal Instruments guarantee limited disturbance torque.

To estimate the design and balancing system effectiveness, the disturbance torque
acting on the free oscillating platform after balancing is estimated by inspection of the
angular momentum variation. The testing procedure guarantees a reduction of the resid-
ual torque down to less than 5 ·10−5Nm. This objective is reached by comparing, through
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extensive numerical and experimental testing, alternative control techniques and data pro-
cessing strategies, and by combining them to maximize the performances.

Throughout the facility commissioning, a user-friendly software interface was also
developed, which allows setting of the desired magnetic field, control gains for the auto-
matic balancing algorithm, and other system parameters.

Eventually, a COTS CubeSat mockup was integrated in the facility: the platform with
the installed mockup was used as a simulator for experimental testing of attitude control
laws.

1.2 Nanosatellites attitude control

Whereas nanosatellites places a whole set of new challenges on the ADCS design, the
choice of actuators is limited by strict system requirements. Among the actuators which
are suited for smallsats, magnetorquers are particularity attractive due to low weight,
energy efficiency, long lifetime, and high reliability.

Magnetorquers, or magnetic rods, creates a magnetic dipole that interacts with the
external magnetic field, thus are suited for Earth orbiting missions. The magnetic actua-
tion is cheap and suitable for a smooth modulation of the control torque. These actuators
do not induce unwanted coupling with the flexible modes, differently from thrusters and
mechanical actuators (Silani and Lovera, 2005; Avanzini and Giulietti, 2012). Widely
used for the detumbling (Desouky and Abdelkhalik, 2020), or in combination with dif-
ferent types of actuation (De Angelis et al., 2016), they became increasingly popular:
about 40 % of flown nanosatellites have magnetic rods for active magnetic attitude con-
trol (Bouwmeester and Guo, 2010). However, due to the time variation of magnetic field
and instantaneous underactuation of a magnetically actuated spacecraft, attitude control
is hindered by several limitations, addressed in many publications in the last decades,
categorized and reviewed in detail in Silani and Lovera (2005) and Ovchinnikov and
Roldugin (2019).

Despite the large number of publications, magnetic attitude control is still an open
field since low pointing errors and robustness are difficult to achieve at the same time:
engineers and researchers seek for novel approaches to overcome the intrinsic limitations.
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1.2.1 Magnetic attitude control techniques

Magnetic actuators can be used for variety of control tasks: detumbling (Avanzini and
Giulietti, 2012), momentum damping (Stickler and Alfried, 1974) and spin-axis pointing
(Avanzini et al., 2014). However, robust global asymptotic attitude stabilization of a
satellite actuated by solely magnetorquers is hindered by several obstructions, related to
the inherent underactuation. Rigid body attitude topology precludes the existence of a
globally stabilizing continuous feedback (Mayhew et al., 2011), and even local asymp-
totic stabilization by continuous feedback is impossible in case of underactuation (Bhat
and Bernstein, 2000).

Magnetic field variation due to the orbital motion provides controllability under some
non-restrictive assumptions (Bhat, 2005). If controllability necessary assumptions are
satisfied, a straightforward way to address underactuation is by analyzing the averaged
linear dynamics (Stickler and Alfried, 1974). The time-varying model of the magneti-
cally actuated spacecraft is replaced with an approximate time invariant one. However,
the stability has to be verified a-posteriori, and closed-loop performance is limited. Al-
ternatively, since the Earth magnetic field is essentially that of a magnetic dipole, the
quasi-periodic variability of the geomagnetic field along the orbit can be exploited, and
the system approximated to be time periodic (Lovera, 2000). Local dynamics were
studied through the optimal periodic control theory in Wiśniewski (2000) and Lovera
et al. (2002), among others. The resulting feedback system is locally asymptotically
stable but requires burdensome solution of a periodic Riccati equation. For satellites
with open-loop stable configurations, such solution is shown to converge to a constant
value and onboard computation and storage can be avoided (Wiśniewski, 2000; Psiaki,
2000). However, stability must be checked a-posteriori by Floquet theorem. Despite the
above challenges, flight results proved the feasibility of 3-axis magnetic control for mini-
and micro-satellites (Chasset et al., 2013). More recently, nonlinear control design for
magnetically actuated spacecrafts was considered assuming a not necessarily periodic
variation of the geomagnetic field. Averaging theory for nonlinear systems was used in
(Lovera and Astolfi, 2004) to show that a PD-like controller is almost globally stable for
sufficiently small gains. Global stability comes at the cost of gains limited by design,
as a consequence of averaging, which leads to large convergence time. A projected PD
controller with state dependent time-variant gains has been proposed in (Invernizzi and
Lovera, 2019), with improved performances in comparison to constant gains.

Nevertheless, system uncertainties and external disturbances severely degrade the
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performance of projected PD controllers, motivating the quest for robust controllers. In-
ertia uncertainties alone were addressed in Celani (2015). Joint the magnetic field and
inertia parameters uncertainties have been addressed in an optimal way in Rodriquez-
Vazquez et al. (2015) by solving a sequence of finite horizon problems, but no external
torque have been considered.

In the assumption of linearized dynamics, robustness to disturbances can be achieved
through the H-inf approach. A H-inf controller is proposed in Lovera (2000) to guar-
antee matched disturbances rejection. In Zanchettin and Lovera (2011), an H-inf locally
robust, asymptotically stabilizing controller is designed through the tuning of a structured
constant-gain controller. However, global stability is not provided.

1.2.2 Uniting control problem

In the existing works on magnetic attitude control, local optimal solutions are op-
posed to global controllers. In this respect, uniting of local and global controllers may
be pursued to achieve precise control nearby an operating point while maintaining desir-
able global stability properties. In general, the uniting control problem cannot be solved
by considering only continuous feedbacks (Prieur, 2001), and switching between con-
trol laws is not straightforward, since the union of two stable laws can be unstable or
non-robust (Liberzon, 2003). Robustness can be addressed by adding hysteresis to the
switching laws (Prieur, 2001), taking advantage of regions where both controllers are
appropriate. The uniting control problem with hysteresis can be cast into the more gen-
eral framework of hybrid systems, i.e. systems with mixed continuous—discontinuous
dynamics (Goebel et al., 2012). In this case each controller, possibly hybrid itself, is
designed to operate in appropriately designed regions of the state space and a mecha-
nism acting as a “supervisor” switches between them through a logic variable, so that
the state is driven to the desired set (Sanfelice et al., 2008). Such an approach was fol-
lowed in Mayhew et al. (2011), to develop a hybrid PD controller for a fully actuated
spacecraft, which provides global attitude stabilization and overcome attitude state space
parametrization topological obstruction. This type of control has been shown to be ro-
bust with respect to external disturbances, thanks to a memory variable and a hysteresis
region.
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1.2.3 Objectives and contributions

Inspired by the idea of uniting two controllers, the author proposed a novel approach
to the three-axis attitude control of a magnetically actuated spacecraft based on hybrid
systems theory. The approach envisaged seeks to mitigate the limitations of existing so-
lutions to the attitude control of a magnetically actuated spacecraft, by designing a hybrid
controller which matches exactly a locally optimal one in a neighborhood of the origin,
ensuring at the same time global stability and robustness. This is achieved by designing a
supervisor which selects, as function of the state, the most appropriate between two con-
trollers and embedding a hysteresis region which prevents multiple switching to occur.
The controllers’ domains are designed according to appropriate input–output functions,
with disturbance being the input. For the local controller, the input/output function is
chosen as the H-inf norm of the frequency response operator, as proposed in Zanchettin
et al. (2013). Far from the origin, a projected, PD hybrid controller derived from the
one in Hu and Zhang (2018) is instead employed, whose input–output gain function is
computed after analyzing its Input-to-State stability (ISS) properties.

The resulting hybrid controller is shown to be global, robust and optimal in the
neighbourhood of the origin. Hybrid control theory is employed to develop a mixed
continuous-discrete controller able to switch between different feedbacks. Controllers’
domains are designed according to appropriate input–output functions and to the mag-
nitude of disturbances affecting the system. As a result, global attitude stability is en-
sured, while achieving local optimality and robustness against bounded disturbances,
both matched and unmatched by the control action, and measurement noise. Analytical
results are verified by means of realistic numerical simulations: the state errors comply
with the computed bounds and stability is guaranteed for conservative assumptions on
the magnitude of the unmatched disturbances.

Even though the bare pointing accuracy is not improved with respect to the one of
the local controller alone, the proposed approach provides some remarkable advantages,
such as guaranteed level of performance in case of peak disturbances and stability for
any initial condition. This work presents, to the best of the authors’ knowledge, the first
control law satisfying these characteristics for a magnetically actuated spacecraft. As
such, it is also intended to bring deserved visibility to hybrid control within the space
engineering community.
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1.3 Outline

In the Chapter 2 mathematical models, rigid body dynamics/kinematics and control
theory are presented. In Part 2, development of the ground testing facility is addressed.
Whole facility design and each subsystem are described in Chapter 3. In Chapter 4,
novel automatic mass balancing subsystem design is presented, together with numerical
simulations and experimental testing results. In the last part of the thesis, we focus on
attitude control of smallsats. Novel attitude control algorithm is developed in Chapter 5.
In Chapter 6, research results and achievements are summarized.
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2
Preliminaries

In this chapter, the mathematical models and control theory concepts that provides
the necessary background to the topics presented in the following chapters are briefly
discusses. Basic notions and the description of the attitude control problem are intro-
duced.

Notation and frames of reference used throughout the work are introduced in Section
2.1. In Section 2.2, the kinematic and dynamic models of a rigid body are presented along
with attitude representations. The attitude dynamics of a rigid body equipped with mov-
ing shifting masses is described in Sections 2.3. In Sections 2.4 model of magnetically
actuated spacecraft is described in case linearized and nonlinear models are considered.

Control fundamentals and definitions the reader should be familiar with are sum-
marized in Section 2.5. These includes tools for the analysis of Linear Time Periodic
(LTP) systems and definitions of stability. Section 2.6 is dedicated to mixed continu-
ous/discontinuous (hybrid) systems and to the extended stability concept for those.

In the last Section 2.7, environmental models are discussed and formulas for the com-
putation of disturbances torques are presented.
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2.1 Notation and reference frames

In this work, bold symbols, such as v, indicate vectors, and plain lower case symbols
"v" indicate scalars. Given v ∈ R3, we define the skew-symmetric operator operator
[v]×, which acts on v as follows:

[v]× =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 , (2.1)

and [v]×a represents the cross product of vectors v and a. v̂ represents the unit vector
in the direction of v. We denote vi and vb a generic vector v ∈ R3 defined, respectively,
in the inertial reference frame Fi and body reference frame Fb. Rb

i indicates a rotation
matrix from inertial to body reference frame. If not otherwise specified, all vectors are
indicated in body reference frame for simplicity.

2.1.1 Coordinate reference frames

In this work, following coordinate reference frames are used:

- Earth-Centered Inertial frame (ECI): the origin of this frame is in the center of
the Earth. This reference frame is denoted by i: êi,x axis is parallel to the vernal
equinox direction, êi,z axis coincides with Earth rotation axis and it is northward
directed, and êi,y completes an orthogonal right-handed frame. For Earth orbiting
spacecraft, Fi is an inertial frame.

- Principal axes body frame: body frame is centered at the body center of mass. Prin-
cipal axes frame is a specific body-fixed reference frame whose axes are coincident
with the principal axes of inertia. We denote the coordinate axes of body reference
frame by êb,x, êb,y and êb,z.
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2.2 Rigid body kinematics and dynamics

In this section well known fundamentals about rigid body motion are briefly recalled.
The presented material is taken form Hughes (1986); Schaub and Junkis (2009); Wie
(2008).

2.2.1 Attitude representation

There are several possible ways, each with its own advantages and disadvantages,
of representing attitude of a reference frame with respect to another. Three possible
representation will be briefly discussed: Direction Cosine Matrix (DCM), Euler angles,
and Euler parameters (quaternions).

Direction Cosine Matrix

Suppose we have a vector v ∈ R3 with known components in body reference frame
Fb = [êTb,x êTb,y êTb,z], denoted as vb ∈ R3. To determine its representation vi in Fi =
[êTi,xêTi,yêTi,z] , we have to use rotations. Since:

v = vTb Fb = vTi Fi, (2.2)

we need a way to express Fi in terms of Fb. It can be done by a 3 × 3 rotation matrix
Rb
i ∈ SO(3):

Fb = Rb
iFi. (2.3)

Thus, to compute vi, we just need to determine Rb
i :

vb = Rb
ivi. (2.4)

The rotation matrix Rb
i , referred to simply as R in the following, is named DCM

or Direction Cosine Matrix, as the components of the rotation matrix are the direction
cosines between the two sets of reference axes, and is given by:

Rb
i =


Cθxx Cθxy Cθxz

Cθyx Cθyy Cθyz

Cθzx Cθzy Csθzz

 (2.5)
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where Cθxy is the cosine of the angle between the x-axis of the body frame and the y-axis
of the inertial frame.

Euler Angles

The Euler angles is a class of minimal sets of parameters for representation of the
angular orientation. Each Euler angle describes a rotation about one axis of the reference
frame, which leads to an intuitive geometric interpretation. Three principal rotations can
fully describe three-dimensional rotations (Hughes, 1986):

R(θ) ≡ Rc′′ (θ3)Rb′ (θ2)Ra(θ1). (2.6)

Ra(θ1) indicates a θ1 rotation about the a-axis of the reference frame, Rb′ (θ2) in-
dicates a rotation of θ2 about the axis b′ of the new frame resulting from the previous
rotation, and Rc′′ (θ3) is the rotation about c′′ axis of last intermediate frame. The choice
and order of the axes ‘a/b/c’ of each elementary rotation are arbitrary as their correspond-
ing principal axes, as long as none of the two successive rotations are about the same axis.
θ = [θ1 θ2 θ3]T is the vector of Euler angles.

In this work, the 1-2-3 sequence of rotation is employed:

- The first rotation is a roll of angle φ around the inertial êix axis;

- The next rotation is a pitch around the intermediate y′-axis of angle θ;

- The last rotation , yaw, is of angle ψ around the z′′-axis.

Starting from the vector θ = [φ θ ψ]T , it is possible to define the corresponding DCM
in the following way:

R(θ) =


CψC θ CψSθSφ+SψCφ −CψSθCφ+SψSφ

−SψC θ −SψSθSφ+CψCφ SψSθCφ+CψSφ

Sθ −C θSφt C θCφ

 , (2.7)

with C indicating a cosine function and S a sine function.

Euler parameters

As it is well known, the Euler angles representation suffers from singularities, and it is
not suited for numerical implementations of the spacecraft dynamics. Based on the Euler
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Theorem, stating that the most general motion of a rigid body with fixed point is a rotation
about a fixed axis ê by an angle Φ, a four variable, singularities-free representation of the
attitude is defined, named Euler parameters or quaternions. Euler parameters are defined
as follows:

q =



q1

q2

q3

q4


=

qe
q4

 =

ê sin Φ
2

cos Φ
2

 (2.8)

where qe is the vector part that includes three of the parameters, and q4 is the auxiliary
scalar parameter, and must satisfy the following constraint:

q2
1 + q2

2 + q2
3 + q2

4 = 1. (2.9)

Using the quaternion, DCM matrix can be defined as follow:

R(q) =


q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (2.10)

If Euler parameters/DCM attitude representation is known, roll, pitch, and yaw angle
can be directly computed as follows:

φ = arctan −R32
R33

θ = arcsinR31

ψ = arctan −R21
R11

.

(2.11)

2.2.2 Rotational kinematics

Rotational kinematics is the description of the orientation of a body that is in a
rotational motion, and it does not involve any force associated with motion. We call
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2.2. Rigid body kinematics and dynamics

ω = [ω1 ω2 ω3]T the absolute angular velocity vector. By deriving Eq.2.8, the rotational
kinematics of a body with fixed center of rotation are given by:

q̇ = 1
2Ωq = 1

2



0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


q. (2.12)

The Eq. 2.12 can be rearranged as follows:

q̇e = −1
2 (ω × qe) + 1

2q4ω

q̇4 = −1
2ω

Tqe

. (2.13)

2.2.3 Rigid body dynamics

Rotational dynamics in an inertial frame are considered in the following. Let us define
the total angular momentum h, computed as:

h = Jω (2.14)

where J is the inertia matrix. It’s always possible to define a rigid body reference frame
such as the resulting J matrix is diagonal. The angular momentum dynamic equation of
a rigid body about its center of mass is given by:

ḣ =
{
dh

dt

}
i

=
{
dh

dt

}
b

+ ω × h = τ tot (2.15)

where τ tot is the vector of all external torque acting on the body. Substituting the Eq.
2.14 into Eq. 2.15 and assuming a rigid body, we get dynamics equation:

Jω̇ + ω × Jω = τ tot. (2.16)
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2.3 Model of a rotating platform with integrated balanc-
ing system

In this section we outline the mathematical model for the system dynamics of an
air-bearing platform with automatic balancing system, common to several other works,
see for example Chesi et al. (2014) and Gavrilovich et al. (2015). The plane-balancing
control problem is equivalent to stabilizing the hanging equilibrium point of a 3D pendu-
lum (Chaturvedi et al., 2005), where the rotating platform is assimilated to a rigid body
equipped with linearly moving point masses. The CR is fixed to a point in the inertial
coordinate system Fi, whose z axis is taken parallel to the local vertical. The IMU is
aligned with the platform reference frame Fb, centered at CR, and the balance masses
can move only along a set of mutually orthogonal unit axes defined by Fa, fixed with
respect to the platform body reference one.

The relative orientation between frames is described by quaternion q or equivalently
by a rotation matrix R, and the rotational kinematics of the platform are function of the
absolute angular velocity ω. The rotation matrix R can be expressed as a function of
the quaternion following the equation 2.10. The gravity vector g is expressed in body
reference frame as:

g = gĝ = gR(q)êi,z (2.17)

where g is the gravity vector magnitude and êi,z = [0 0 1]T . In spherical air bearing
design we have to take into account the offset vector roff , computed as follows:

roff = rCM − rCR (2.18)

where rCR is the position vector of the center of rotation and rCM indicates the center
of mass. Since CR is inertially fixed, from now on it will be used as the origin of the
reference system, hence roff = rCM . The offset vector produces a gravitational torque:

τCM = mtotg × rCM (2.19)

where mtot is the total mass of free-to-rotate body. The torque produced by rCM can be
compensated by placing a balance mass mb,tot at distance rb:
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2.3. Model of a rotating platform with integrated balancing system

τ u = mb,totg × rb, (2.20)

where rb is set so as to provide τ u = τCM .
Let us rewrite the dynamic equations Eq. 2.14 and Eq. 2.15 considering the action of

τCM and τ u. The total angular momentum of the platform with moving masses is:

h = Jω +
3∑
i=1
rb,i ×mb,iṙb,i (2.21)

where the inertia matrix J is the sum of the platform inertia in body reference frame
without balance masses JS , plus the contribution due to the masses themselves, assumed
to be punctiform:

J = JS +
3∑
i=1

(−mb,i [rb,i×] [rb,i×]) . (2.22)

The angular momentum derivative is equal to:

ḣ+ ω × h = rCR ×mtotg
b + τ u, (2.23)

The rightmost term of Eq. 2.21 can be safely neglected if the dynamical contribution
of the balancing masses is small enough. Following Chesi et al. (2014), the rotational dy-
namics of the simulator about CR, subject to gravity torque can be expressed as follows:

Jω̇ = −ω × Jω +mtotg rCM ×RT ê3 + τ u. (2.24)

Note that Eq. 2.24 does not account for the angular momentum variation due to the
temporal derivative of J , which is assumed to be negligible, due to the small stepper mo-
tors displacement speed.The only control torque available is due to the balancing masses,
which is clearly constrained to lie in the direction normal to both the masses position vec-
tor and to the gravitational field direction. Once a control law is designed which provides
a stabilizing τ u, the control mass displacement components rb required to generate the
desired torque can be computed according to :

rb = g × τ u
‖g‖2mb

. (2.25)
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2.4 Dynamical model of the magnetically actuated space-
craft

Consider an inertially pointing rigid spacecraft, aimed at aligning a principal body
axes frame (BF) to the Earth-centered inertial (ECI) frame. In here, q or, equivalently
rotation matrix Rb

i ∈ SO(3), indicates the attitude of the BF with respect to the ECI
frame. ω is the absolute angular velocity of the spacecraft expressed in BF. The rigid
body dynamics are governed by Eulers’s equations 2.14 and 2.15:

Jω̇ = −ω × Jω + τmc + τ d (2.26)

where J is the spacecraft inertia matrix, τmc is the control torque, τ d is the sum of
external disturbance torques. For a magnetically actuated spacecraft, the only control
torque available is the one generated by interaction between the on-board control dipole
momentmc and the Earth magnetic field b (t) = [b1 (t) , b2 (t) , b3(t)] through:

τmc = mc × b (t) (2.27)

where we highlight that magnetic field vector is time-dependent.
Clearly, no control torque can be generated along the geomagnetic field vector, thus

leading to instantaneous underactuation of the system. Given a desired control input, u,
the magnetic dipole required to generate control torque projected on the plane perpendic-
ular to the geomagnetic field can be computed from:

mc = b(t)× u
‖b(t)‖2 . (2.28)

2.4.1 Linearized model

Considering a reduced order state xr =
[
qTe , ω

T
]T

, the equations of motion can be
linearized around the target attitude 06×1 as in Yang (2012):

ẋr = Axr +

 03×3

B1(t)

mc +

03×1

τ d

 = Axr +B (t)mc +Bdτ d (2.29)
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2.4. Dynamical model of the magnetically actuated spacecraft

where B (t) is the control matrix, Bd = [0T3×1IT3×1]T is the disturbance input matrix and
for a diagonal inertia matrix J = diag(J1, J2, J3), A,B1(t) are given by:

A =

03×3 0.5I3×3

03×3 03×3

 , B1 (t) =


0 b3(t)

J1
− b2(t)

J1

−b3(t)
J2

0 b1(t)
J2

b2(t)
J3

−b1(t)
J3

0

 . (2.30)

2.4.2 Controllability of the nonlinear dynamics and of the linearized
dynamics

The underactuated direction continuously changes with respect to the body axes sys-
tem when the spacecraft moves along the orbit. Derived the linearized EOMs, it’s possi-
ble to compute analytically the condition necessary for the controllability.

Definition 2.4.1. For a system ẋ = f (x, t) + h (x, t)u, define the reachable set
R (x0, t0) as the set of all the states x̄ ∈ Rn for which there exist an input f : R→ Rn,u

s.t. solution φ of the system exist for which φ(t) = x̄ for some t ≥ t0

Definition 2.4.2. A dynamical system ẋ = f(x,u, t), with f : Rn × Rm × R → Rn,
is said to be accessabile if, for all x ∈ Rn, t0 ∈ R, R (x0, t0) has a nonempty interior
and strongly accessible if it has a nonempty interior for every t > t0. The system is
controllable ifR (x0, t0) 6= ∅ ∀ x0 and t0.

If the variation of the magnetic field is at least almost-periodic, the three-axis attitude
control is achievable and purely magnetic control is possible (Wiśniewski, 2000). In
Yang (2016), the necessary assumptions for the controllability of the linearized system
are reduced to a small number of sufficient conditions, summarized in Lemma 2.4.1.

Lemma 2.4.1. Assume a magnetically controlled spacecraft with diagonal inertia matrix
J = diag (J1, J2, J3). The linearized dynamics of the satellite are controllable if:

- The satellite is not located on the magnetic Equator;

- the following conditions hold: J2 6= J3, 6J3 (J3 − J1) 6= J2(J1 − J2 + J3).

The necessary conditions for the controllability of the nonlinear dynamics are defined
in Theorem 2.4.2 (see Bhat (2005) for the proof).
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Lemma 2.4.2. The attitude dynamics of a magnetically controlled spacecraft in a closed
Keplerian orbit that does not lie in the geomagnetic equatorial plane are strongly acces-
sible and controllable.

2.5 Control theory preliminaries

In this section, we briefly present stability notions, taken from Khalil (1996), and
tools necessary for the analysis of the Linear Time Varying (LTV) and Linear Time Pe-
riodic(LTP) systems (Yakubovich and Starzhinskii, 1975) which will be used later in the
text.

2.5.1 Stability notions

Among several notions of stability existing in the literature, Lyapunov stability is
particularly popular. Instead of analyzing all the possible system trajectories, it concerns
with the dynamical properties of the system and provides an upper bound within which
the motion of a stable system must remain (Khalil, 1996). Floquet theory relies on Lya-
punov theorem to provide stability necessary conditions for time-periodic systems.

Input-to-state and input-to-output stability concern with the boundedness respectively
of the state and of the output of a system under the action of a bounded inputs. These con-
cepts can be very useful for the analysis of systems under the action of disturbances. Both
the above notions are used in the following chapters and are briefly recalled hereafter.

Lyapunov stability

We are going to look at general ordinary differential equations of the following type:

ẋ(t) = f(t,x(t)) (2.31)

where t is the only independent variable. We denote the equilibrium points of the Eq.
2.31 all the x̄ ∈ Rnsuch that f(t, x̄) = 0 for all t ≥ t0. We denote as periodic any
solution x to 2.31 for which there exists T ≥ 0 such that x(t) = x(t + T ) for all
t ∈ [t0,∞]. In the following we will assume x̄ = 0, as it does not undermine generality.
Stability in the sense of Lyapunov is defined as follows:

Definition 2.5.1. A solution x(t) is Lyapunov stable if ∀ε > 0, ∃δ > 0 such that if
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2.5. Control theory preliminaries

‖x(t0)‖ < δ then ‖x(t)‖ < ε ∀ t ≥ t0, where x(t) is the solution to

ẋ(t) = f(t,x(t)).

Lyapunov’s method allows us to determine whether a differential equation is stable
without knowing anything about what the solutions looks like, so it is ideal for dealing
with nonlinear systems. The method uses a supplementary function V (t,x), called a
Lyapunov function, to determine properties of the asymptotic behavior of solutions to a
differential equation of the general form of Eq. 2.31.

Definition 2.5.2. A function γ : R≥0 → R≥0 is of class G if it is continuous, zero at zero
and non-decreasing.

Definition 2.5.3. A function V is positive (negative) definite if there exist a real-valued
function ρ(r) such that:

1. ρ(r) is class G function and

2. V (t,x) ≥ ρ(‖x‖) [V (t,x) ≤ −ρ(‖x‖)] for all (t,x) ∈ {(t,x) : t0 ≤ t <

∞, ‖x‖ ≤ b < a}.

Definition 2.5.4. A real function V (t,x) is said to admit an infinitesimal upper bound if
∃ h > 0 and a continuous, real-valued, strictly increasing function ψ with ψ(0) = 0 such
that

|V (t,x)| ≤ ψ(‖x‖) for ‖x‖ < h and t ≥ t0.

Theorem 2.5.1. If a continuous function V (t,x) exist, satisfying:

1. V (t,x) is positive definite,

2. V (t,x) admits an infinitesimal upper bound, and

3. δV (t,x)
δt

is negative (semidefinite) definite

then the solution x(t) ≡ 0 of Eq. 2.31 is (stable) asymptotically stable.

If we can find a V satisfying the Theorem 2.5.1, then we can find stable solutions to
the differential equation. Unfortunately, there is no general way to construct V from the
differential equation Eq. 2.31. See Khalil (1996) for more details.

Input-Output-to-state stability

As the previous stability concept is defined for input-free system, new stability con-
cept have been developed for input/output systems (Sontag, 2014).
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Definition 2.5.5. A function β (r, s) ∈ KL if β (0, s) = 0, it is strictly increasing with
respect r for fixed s, it is decreasing with respect s for fixed r, and lims→∞ β (r, s)→ 0.

Given a measurable function d(·), we define its infinity norm ‖d‖∞ ≡ ess supt≥0‖d(t)‖.
If ‖d‖∞ 6∞, then d ∈ L∞. Consider a time varying system

ẋ(t) = f(t,x(t),d(t)) (2.32)

where x is the state and d is the disturbance. Input-to-state stability is defined as follow-
ing:

Definition 2.5.6. System ẋ(t) = f(t,x(t),d(t)) is said to be Input-to-State stable if
there exists a function γiss ∈ G and a function βiss ∈ KL such that, for each d(t) ∈ L∞
and x (0) ∈ Rn the solution of the system satisfies:

‖x(t)‖ ≤ max{βiss (x (t0) , t− t0) , γiss(‖d‖∞)} ∀t ≥ t0 ≥ 0.

2.5.2 LTP systems and Floquet Stability Theory

Consider a homogeneous continuous-time LTV system represented by (Yakubovich
and Starzhinskii, 1975):

ẋ(t) = A(t)x(t),x(t0) = x0 (2.33)

wherex(t) is the state vector. Consider, as a special case of LTV systems, a homogeneous
T-periodic LTP system, s. t. A(t+ T ) = A(t).

Then, the state transition matrix is defined as:

Φ(t+ T, t0) = Φ(t, t0)Φ(t0 + T, t0) (2.34)

If the state transition matrix is evaluated at the end of a period, Φ(t0 + T, t0), is also
called a Monodromy matrix. The theorem below is known as the Floquet-Lyapunov The-
orem (or more commonly as Floquet’s Theorem) Yakubovich and Starzhinskii (1975):

Theorem 2.5.2. Let Φ(t0+T, t0) be the state transition matrix of the system in Eq. (2.15)
with T-periodic Ac(t). Then, there exist a constant Ψ and an invertible and continuous
T-periodic ∆(t) with integrable piecewise continuous derivatives, such that Φ(t, t0) =
∆(t)etΓ and ∆(0) = In×n.

The eigenvalues of the monodromy matrix, Φ(t0 + T, t0), are called the system’s
“characteristic multipliers”, while those of Ψ in Theorem 2.5.2 are called the system’s
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“characteristic (Floquet) exponents”. Theorem 2.5.3 below, also adapted from Yakubovich
and Starzhinskii (1975) and based on the convergence properties of a matrix exponential,
provides a useful stability analysis tool for LTP systems.

Theorem 2.5.3. The solution x(t) ≡ 0 of the homogeneous system in Eq. 2.33 with
T-periodic A(t) is stable if and only if its Floquet exponents have non-positive real parts,
or equivalently, if its characteristic multipliers are within the unit circle.

2.6 Modeling hybrid systems

We briefly recall some fundamental concepts of hybrid systems, following the formal-
ism in Sanfelice et al. (2008). The tools provided by hybrid system theory are employed
to construct the controller in Chapter 5.

Hybrid systems are dynamical systems exhibiting both continuous and discrete be-
havior. By having states that can evolve continuously or discretely, hybrid dynamical
systems permit modeling of wide range of systems, with applications in robotics, auto-
motive systems, power systems, biological systems, to list a few. A key motivation for
studying hybrid systems lies in their applicability to the robust stabilization of nonlinear
systems.

Numerous frameworks for modeling and analyzing hybrid systems have appeared
in literature. These includes the works of Tavernini; Lygeros et al.; van der Schaft and
Schumacher, among others. Herein, we consider the hybrid framework presented in
Goebel et al. (2012), where the continuous dynamics (or flows) of a hybrid system are
modeled using differential inclusions while the discrete dynamics (or jumps) are captured
by difference inclusions.

A hybrid systemH is defined by the following objects:

• a set C ∈ Rn called the flow set;

• a set D ∈ Rn called the jump set;

• a flow map F : Rn ⇒ Rn (or f : Rn → Rn) which governs the continuous
evolution when the state falls in the flow set C;

• a jump map G : Rn ⇒ Rn (or g : Rn → Rn) which governs the evolution when
the state falls in the jump set D.
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A generic hybrid systemH = (C, f,D, g), with single-valued mapping and differen-
tial or difference inclusions, is then defined as:

H :


ẋ=f (x) x ∈ C ⊂ Rn

x+=g(x) x ∈ D ⊂ Rn

(2.35)

where x is the state, ẋ = f(x) represents the continuous dynamics and x+ = g (x)
denotes discrete dynamics.

Trajectories of a hybrid system are, conveniently, functions of two parameters: an
ordinary time parameter t ∈ [0,+∞), which is incremented continuously as flows occur,
and a discrete time parameter j ∈ {0, 1, 2, . . .}, which is incremented at unitary steps
when jumps occur. The conditions determining whether a trajectory of a hybrid system
should flow or jump are captured by subsets C and D. The pairs (t, j) parameterize the
solutions φ(t, j) ofH.

The solutions of a hybrid system are defined on an extended time domain set E ⊂
R≥0×Z≥0, named hybrid time domain, by functions that satisfy the conditions suggested
by Definition 2.6.2 and are called hybrid arcs:

Definition 2.6.1. A hybrid time domain S ⊂ R≥0 × N is the union of time intervals
[tj, tj+1] × j , where the sequence {tj}j≥0 is nondecreasing, with the last interval, if it
exists, possibly in the form [t, T ), with T finite or T =∞ .

Definition 2.6.2. A function φ : domφ → Rn is a hybrid arc if domφ is a hybrid time
domain and, for each map j ∈ N, t → φ(t, j) is locally absolutely continuous.

Definition 2.6.3. A solution to H with initial condition x(0, 0) ∈ C ∪D is a hybrid arc
satisfying:

- For each j ∈ N and almost all t such that (t, j) ∈ dom (x), of x (t, j) ∈ C, than
ẋ (t, j) ∈ F (x (t, j)).

- For each (t, j) ∈ dom x such that (t, j + 1) ∈ dom (x), if x (t, j) ∈ D, than
x (t, j + 1) ∈ D(x (t, j)).

A solution φ(t, j) is said to be nontrivial if domφ(t, j) contains at least one point
different from (0,0), complete if domφ(t, j) is unbounded, Zeno if it is complete but the
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projection of domφ(t, j) onto R≥0 is bounded, and maximal if it cannot be extended, i.e.,
it is not a truncated version of another solution.

A hybrid system is well posed if it satisfies the hybrid basic conditions:

Definition 2.6.4. A hybrid system satisfies the hybrid basic conditions if the sets C and D
are closed, the mappings F and G are outer semicontinuous and locally bounded , F (x)
is nonempty and convex for all x ∈ C, and G(x) is nonempty for all x ∈ D.

Definition 2.6.5. If the flow map and jump map are single valued, i.e. ẋ = f (x) and
x+ = g (x), the hybrid system satisfies a hybrid basic conditions if the sets C and D are
closed, and mappings f and g are continuous.

If the hybrid systemH is well posed, it inherits several structural and robustness prop-
erties. These properties are necessary to guarantee the asymptotic stability of perturbed
solutions and robustness with respect measurement noise.

Since the setC∪D often does not cover entire Rn, completeness of solutions and local
existence of solutions are sometimes not guaranteed, and a generalization of the standard
stability concepts is necessary. Stability of a compact set is defined in the following
definition.

Definition 2.6.6. • The set A ⊂ Rn is said to be stable if for each ε > 0 , there
exist δ > 0 such that every to H with ‖x (0, 0)‖A ≤ δ , ‖x (0, 0)‖A ≤ ε for all
x (t, j) ∈ dom x.

• The set A is said to be pre-attractive if there exist δ > 0, such that any solution
x to H with initial condition ‖x(0, 0)‖A ≤ δ, is bounded, and, if complete, it
satisfies limt+j→∞ ‖x(t, j)‖A = 0.

• The setA is said to be Globally pre-Asymptotically Stable (GpreAS), if it is stable,
pre-attractive and the attractivity property holds for every possible initial point.

• The set A is said to be Globally Asymptotically Stable (GAS), if it Globally pre-
Asymptotically Stable and every maximal solution is complete.

2.7 On-orbit environment

On-orbit environment model is necessary both for the numerical simulations and fa-
cility subsystems sizing. In this section we will discuss the main environmental aspects
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affecting attitude dynamics of small satellite in LEO orbit, following the models in Wertz
(1978); Sofyal et al. (2018); Montenbruck et al. (2002); Vallado (2000). These can be
used to compute the resulting external disturbances torques, which will be assumed to be
the only ones affecting the spacecraft, as for the nanosatellites the internal disturbance
torques can be neglected (Sofyal et al., 2018).

The external disturbances torques, coming from the action of the aerodynamic drag,
solar pressure and the magnetic field, depends not only on spacecraft position and time,
but also on other factors such as sun activity. Hence, for the computation of disturbance
torque magnitude, worst-case scenario will be considered.

2.7.1 Magnetic field model

Accurate geomagnetic field model is provided by the International Geomagnetic Ref-
erence Field (IGRF). The model consists of a set of coefficients defining the spherical
expansion of magnetic scalar potential and it is periodically updated to account for the
secular variations. For a rotating planet with a conductive fluid core, a dipole magnetic
field is parallel (or antiparallel) to the rotation axis arises. In this way, the geomagnetic
field can be approximated by a magnetic dipole currently tilted at an angle of about 11
degrees with respect to Earth’s rotational axis.

For a spacecraft in LEO orbit in the neighborhood of the equilibrium point, the mag-
netic field can be approximated by a periodic signal. For better accuracy, this can be
estimated by fitting the output form the IGRF model itself (Psiaki, 2000; Lovera, 2000).
Within the magnetic field periodicity assumption, the resulting state-space system de-
scribed by Eq. 2.29 is Linear Time Periodic (LTP).

2.7.2 Disturbance torques

The main disturbances acting on an earth-orbiting spacecraft are:

- gravity-gradient torque, arising due to the action of the gravity field;

- aerodynamic drag, result of the interaction between the spacecraft surface and the
atmosphere;

- residual magnetic dipole torque, due to the interaction between the spacecraft mag-
netic dipole and the earth magnetic field;
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- solar radiation pressure, arising as a result of momentum exchange between the
spacecraft and the electromagnetic radiation of the sunlight.

Gravity-gradient torque

The action of gravity differs across a rigid body: the resulting torque around the CM
can be computed if the spacecraft mass distribution is known (Wertz, 1978):

τ gg = 3ω2
o(êz,b × J êz,b) = µ

R3
gd

(êz,b × J êz,b) (2.36)

where ωo = 2π
Torb

is the orbital angular velocity, Torb the orbital period, êz,b = R(q)[0 0 1]T ,
with µ being the gravitational parameter and Rgd the geocentric distance. The torque is
null for a spherical object, as terms in Eq. 2.36 are parallel. The torque vanishes if the
local vertical coincides with the direction of one of the principal axes of inertia.

The magnitude of the maximum torque the spacecraft could experience is computed
by Sofyal et al. (2018):

‖τ gg‖∞ = 3
2ω

2
o max(‖J3 − J2‖ , ‖J3 − J1‖ , ‖J1 − J2‖). (2.37)

Magnetic dipole torque

Dipole torque arises when a magnetic dipole mres exists on-board, which interacts
with the geomagnetic field creating a disturbance moment. Dipoles may be generated
by electronic instrumentation, especially when there are current loops, and must be ac-
counted for through the design of control algorithm. Main source of on-board magnetic
dipole are:

- permanent magnetism in the spacecraft;

- on-board current loops;

- magnetism or currents induced by external fields.

In practice, we can assume dipole magnitude to be proportional to the spacecraft mass
(Wertz, 1978), and compute the corresponding torque as follows:

τ res = mres × b (2.38)
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where b is the earth magnetic field measured in the body reference frame. The maximum
value of the disturbance torque depends on the magnitude of the residual dipole and of
the earth magnetic field:

‖τ res‖∞ = ‖mres‖ · ‖bres‖ . (2.39)

Magnetic dipole can be generated on purpose so as to provide useful torque by magne-
torquers, which are essentially electromagnets. The generated magnetic dipole depends
on the number of coils nm, vector are of the solenoid Am and the current flowing through
iM :

mc = nmAmim (2.40)

To control the current, often a Pulse Width Modulation (PWM) technique is employed.

Aerodynamic drag torque

For a spacecraft orbit altitude in the range 100km-1000km, an estimation of the aero-
dynamic drag acting upon the satellite is given by the classical fluid dynamics drag equa-
tions. The force acting on the spacecraft depends on the air density ρ, a drag coefficient
CD, the area of the surface facing the flow Asp, and the velocity vector of the spacecraft
v0 (Wertz, 1978):

‖Faero‖ = 1
2CD ρ Aspv

2
0. (2.41)

For a circular orbit, v0 =
√

µ
a

, where a the semi-major axis. The air-density model is
inaccurate and can be highly variable due to the solar activity: especially in low orbits
this disturbance can become critical for the performance and stability of the satellite.
The density of the thermosphere can soar by a factor of 50 during solar maximum, with
a corresponding increase in atmospheric drag.

The aerodynamic torque are modeled as the cross product between a force and the
distance between the point the force is applied (typically the geometric center) and CM:

τ aero = F aero × caero. (2.42)

For a spacecraft with a shape of a rectangular prism, the infinity norm of the aerody-
namic drag can be estimated by (Vallado, 2000):

‖τ aero‖∞ = 1
2CDρ

Asp‖v0‖2min(X, Y, Z)
5 (2.43)

where a Asf is 50% higher than the largest spacecraft surface and (X,Y,Z) are the lengths
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2.7. On-orbit environment

of the prism sides.

Solar radiation pressure torque

Solar radiation pressure upon any satellite’s surface arises due to the exchange of
momentum between the object and any electromagnetic field. For a spacecraft in LEO,
the torque due to solar radiation pressure has usually the smallest magnitude among the
cited ones.

As the aerodynamic torque, solar radiation pressures torques depends on the distance
between the force is applied and the center of mass:

τ srp = F srp × csrp. (2.44)

The solar radiation torque norm can be computed as follows from Montenbruck et al.
(2002):

‖τ srp‖ = CRPAsfPsol

(1.496
1.470

)2 min(X, Y, Z)
5 (2.45)

where CRP radiation pressure coefficient of the satellite and Psol is the solar radiation
momentum flux. The reference area is equal to the one used for the aerodynamic torque.

40



Part II

Ground testing facility
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3
Facility design and overview

In this chapter 1, Three-Degrees of Freedom Dynamic Testbed for CubeSats facility
(see Figure 3.1), developed at University of Bologna, design is briefly described. In the
following, key features are listed.

- Designed for nanosatellites: intended to grow in the near future, this platform class
is appealing due both to the technological challenges and accessibility.

- Functional testing capabilities: a disturbance-free microgravity environment is pro-
vided for dynamical simulations. Design goal was to reduce the residual distur-
bances magnitude down to a value lower than that of the one acting on nanosatel-
lites on orbit;

- ADCS HIL simulations: facility is equipped with features necessary to simulate on-
orbit environment aspects (such as sunlight, magnetic field, ecc) for comprehensive
hardware testing.

- Control laws testing: the facility integrates programmable hardware which can
simulate ADCS functionality.

- Compliant with CubeSats standard: the proposed design makes possible testing of
3rd part developed CubeSats.

1The content of this chapter is largely based on Modenini, Bahu, Curzi, and Togni (2020)
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- Low cost: COTS components were employed, complaint with a cost-cap of 20k
Euro.

Figure 3.1: DTC Facility.

To provide functional testing and HWIL simulations, the following subsystems have
been developed and integrated:

1. a platform with automatic balancing system, to be installed on three-degrees of
freedom air-bearing;

2. a Helmholtz cage for geomagnetic field simulation;

3. a Sun simulator;

4. a metrology vision system for ground-truth attitude generation.
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Chapter 3. Facility design and overview

Apart from the latest, the vision system, the other subsystems were developed and
integrated as part of author’s PhD research.

The facility was design to host CubeSats up to 6U. The satellites hardware and the
balancing system are fixed to a platform mounted on the top of the air bearing. However,
a single setup cannot be used for across the whole 1U - 6U range. The satellite/platform
weight ratio must be maximize, and the balancing masses have to be sized correspond-
ingly. Hence, two different platform for 1U and 3U CubeSats testing have been devel-
oped. Both platforms mounts very similar in concept and appropriately sized automatic
balancing systems.

Figure 3.2: Theia ESAT : 1U educational CubeSat (Space, 2020).

Disturbance torques have to be evaluated throughout the whole facility design. The
target value, given by the time-varying on-orbit environmental torques, can be estimated
based on the satellite and orbit properties: for a CubeSat, it can be as low as 10−6Nm
. Models used to compute this target value and through the on-orbit attitude control
simulations are described in detail in Section 2.7.

The main disturbance torques in air-bearing based simulators are categorized as in
Table 3.1 (Smith, 1964). Though they have been accounted for by design thanks to ana-
lytically models, it is not possible to experimentally estimate the effect of the each torque
source separately (at exception of the air bearing friction). Hence, the total disturbance
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torque acting on the platform is the result of the sum of single contributions, making a
disturbance reduction focused design of paramount importance.

Integration of the ESAT, a 1U COTS educational CubeSat by Theia Space (see Fig-
ure 3.2), is foreseen by design for the 1U platform. The platform is equipped with a
custom triaxial magnetorquers system for magnetic attitude control simulations. The rest
of ESAT hardware provides electrical power management, command and data handling
and WiFi data communication with the server.

Table 3.1: Disturbance torques in ground testing facilities

From the Air Bearing

Source Effect Mitigation strategy Verification

Coupling due to
air layer

Friction and tur-
bine effect

High end COTS component
with very low friction is used

Experimental

From the Environment

Atmosphere
Aerodynamic
Drag

Negligible due to small simu-
lations angular speed

Analytical

Gravity
Gravity torque

Automatic balancing system
for static balance

Experimental

Gravity gradient
Negligible due to small di-
mension of the testbed

Analytical

From the Equipment

Ansioelasticity
Dynamic unbal-
ance

Robust platform design FEM simulations

Magnetic field Magnetic torque Use of amagnetic materials Experimental

Vibrations Dynamic torque Robust mounting -

From the Test system

Mass distribution
change

Dynamic torques Negligible in our design -

All of the facility parts call for experimental verification. In the following sections,
the main design choices, implementation details and verification steps undergone are
described.
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Chapter 3. Facility design and overview

3.1 Helmholtz cage

Magnetic-based attitude control by torque-rods or coils is almost ubiquitously found
on board nanosatellites in Earth orbit (Polat et al., 2016), so controlled geomagnetic field
is often required for ADCS verification. The envelope of our facility is represented by a
triaxial magnetic field simulator, housing a stand with air bearing on the top of it. The
Helmholtz cage is a COTS model Ferronato® BH-1300-3-C, featuring three orthogonal
pairs of coils with 1300 mm diameter. The cage can generate an arbitrary magnetic field
in the range +/-10 Gauss. Magnetic field in-homogeneity is below 1% (5%) in a spherical
volume of 404 (586) mm in diameter, concentric with the coil pairs. The nominal field-to
current ratio is 50.5 µTesla/A, +/-1%.

This COTS equipment was customized for tracking a time varying reference signal:
this is indeed the main application scenario when testing a LEO satellite. The geomag-
netic field experienced by the satellite is an almost periodic signal at the half-orbital
period ( see Section 2.7.1). To provide tracking capabilities, a closed loop system was
implemented, making use of AP539, a high precision flux-gate magnetometer, placed
inside the pedestal support of the articulated system, see Figure 3.1.

3.1.1 Verification process

To test the effectiveness of the closed loop control, we simulated the geomagnetic
field profile experienced by a spacecraft traveling on a circular orbit having 550 km of
altitude and 70° of inclination. The magnetic field profile commanded to the Helmholtz
cage was computed using the IGRF model: the feedback control allowed us to achieve
a matching between the measured and commanded magnetic field below 0.2 % (approx
0.5 mGauss) along the three components Bx, By, Bz. Furthermore, it also allowed to
verify a-posteriori the homogeneity level stated by the manufacturer, which was indeed
retrieved thorough a series of measurements gathered at random locations within the
control volume.

3.2 Sun simulator

Most of LEO nanosatellites are equipped with Sun sensors. A Sun simulator was
embedded in the facility for Sun sensors testing, aimed at delivering a collimated light-
beam resembling the sunlight. Derived from a COTS LED Studio light (Radiate D300,
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3.2. Sun simulator

from Photonia, Italy) with a 300W phosphor-coated led as luminous source, the simulator
has been equipped with a custom collimating Fresnel lens with 400mm diameter. The
distance of the Fresnel lens to the light source has been optimized for maximizing the
beam collimation, through a dedicated test campaign.

Usually, a Sun simulator is classified according to three criteria:

- spectral matching

- spatial uniformity

- temporal stability.

For testing a Sun sensor, other parameters are have to be taken into account, such as the
collimation of the light beam over a wide area, that shall be kept within 0.53°, i.e. the
apparent angular diameter of the Sun at 1AU, and the power flux level (≈1367 W/m2
at 1 A.U.) at the nominal target distance (i.e. the distance from the LED source to the
illuminated target, ≈ 0.75 m in our case).

Most solar simulators make use of Xenon or metal halide discharge bulbs, which are
known to deliver better spectral matching than LED sources. This is achieved, however,
at the expense of a lower efficiency, lower lifetime, and a more complicated power supply
needed to achieve a stable, flicker-free output. For our simulator, the choice of using a
LED source was made, leveraging on its inherently flicker-free output, its high efficiency,
and good matching in the visible part of the spectrum. The main drawback is the near
absence of output in the IR and UV bands, so that spectral matching with the Sunlight
is lost out of the visible band. This is not, however, considered a limiting factor in our
application, as most existing nanosatellite Sun sensors are built upon CMOS, CCD, PSD,
whose response is maximum within the visible band and falls-off rapidly in the IR and
UV wavelengths. On the other hand, photocell-based coarse Sun sensors would be more
affected by the lack of IR and UV bands simulation. Note that the response of these
sensors is also altered by Earth albedo, which is anyway not modeled in the facility.

By using a LED source, one shall not aim at matching the overall solar irradiance,
since a consistent amount of the this is found in the IR and UV bands. Rather, the
LED power has been chosen to match the extra-atmospheric solar illuminance (i.e. the
photometric, visible flux density), which amounts to about 130.000 lux at 1 A.U.
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Chapter 3. Facility design and overview

3.2.1 Optimization and verification process

The validation of the custom design was performed in two steps: first, a test campaign
was carried out for adjusting the distance between the Fresnel lens and the LED source to
obtain the desired collimation level of the light beam. Then, a second test campaign was
performed to assess the temporal stability and spatial uniformity of the collimated beam.
Both test campaigns employed as a sensing device a 1.3 MPx monochromatic CMOS
camera.

The beam divergence is kept below the 0.53° threshold within a 0.35 m diameter
beam. Spatial uniformity was found to be within 10% in a 0.25 m diameter region which
is slightly smaller with respect to the target beam size of 0.3 m. Temporal fluctuations
were found to be within 1% showing high stability, as expected for a led source. See
Modenini et al. (2020) for detailed test campaign description.

Figure 3.3: Detailed view of Sun simulator with collimation device.

3.3 Ground truth vision system

T0 provide independent ground truth data through dynamic simulations, a vision sys-
tem is employed. The metrology system based on monocular camera vision was entirely
developed in-house. The working principle consists of placing a known visual pattern, a
checkerboard, in our set-up, on top of the device under test, which is then imaged using
a calibrated camera. Solving the camera pose with respect to the target is done through
corner points correspondences: this provides the attitude, which is retrieved as part of the
pose solution.
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3.4. Testbed platform

The attitude accuracy was verified in dynamic conditions against an independent
turntable facility for extremely accurate angular motion simulation, leading to a root
mean square error below 0.16° (10 arcmin), one order of magnitude higher than a com-
pact onboard MEMS IMU can provide. As the development of this subsystem was not
part of author’s work, the reader is invited to see Modenini et al. (2020) for further details.

3.4 Testbed platform

The air bearing platform is aimed at supporting the nanosatellite mock-up, allowing
a nearly torque-free rotational motion. The main disturbances affecting such systems are
the aerodynamic torques from bearing and from the environment, anisoelastic torques
arising from the platform, static and dynamic unbalance torques, and torques due to vi-
brations and electromagnetic interaction. Such torques must be limited, by design or by
active systems, down to a level possibly comparable to the level of disturbance torques
expected on orbit. This, in turn, lies typically in the order of 10−6Nm for a 3U CubeSat,
which is an extremely low value to be matched in a ground-based facility.

Reduce the unbalance torque due the distance between the centre of mass (CM) and
the centre of rotation (CR) is challenging: assuming a total rotating mass (platform with
balancing mechanism plus a CubeSat) in the order of 10kg, a matching between the
CR and CM shall be achieved up to 10nm level if we want a torque in the order of
10−6Nm. Such a value is well below the reported performance of existing balancing
systems. This suggests that substantial efforts must be devoted to platform balancing,
and its effectiveness shall be verified a-posteriori by estimating the residual torque acting
on the balanced platform.

Furthermore, even if the static unbalance torque is successfully reduced, anisoelastic-
ity gives origin to deformation of the platform which may lead to a consistent disturbance
torque. The structural deformation of the rotating platform due to its own weight is dif-
ficult to compensate, since making a structure stiffer requires more mass, leading to a
vicious cycle. As a countermeasure, an active compensation system was proposed in Xi-
ang et al. (2015); nevertheless, efficient structural design remains a key approach to the
problem, and it is also the one followed for our facility.

In summary, platform design must account for three functional subsystems:

- the mechanical structure, supporting the satellite and all the components necessary
for the testbed operations, designed to guarantee minimal deformation torque;
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Chapter 3. Facility design and overview

- the automatic balancing system (ABS);

- a satellite mock-up, necessary to provide simulator capabilities.

3.4.1 Platform and mass balancing system sizing

The preliminary platform sizing was driven by analytical tools, using available results
from medium-thick axisymmetric plates theory (Timoshenko and Woinowsky-Krieger,
1959) to compute the plate deformation under the effect of its own weight. Results of
such analysis indicated that a plate alone would get too thick and heavy before having
enough stiffness, thus suggesting for a modified configuration. Nevertheless, plate theory
also indicates that a plate with clamped edges, i.e. whose rotation is constrained, has a
significantly lower bending than one with unconstrained edges (by a factor of about four),
keeping all the rest equal. As a result, any structural element that prevents plate’s edge
rotation, such as lateral walls, would reduce the maximum deformation. Lateral walls
were therefore incorporated in the 3U platform design, as discussed in Section 3.4.2.

An tabletop platform, made of aluminium, was designed so as to satisfy following
requirements:

- accommodate a 1U/3U CubeSat while guaranteeing 3DoF with large rotations;

- limit the anisoelastic torque;

- minimize the mass and inertia tensor.

As discussed in Section 1.1.3, all the testbed components have to be appropriately
sized so as to minimize the total weight. Choice of balancing mass is critical, as it
provides gravitational disturbance torque compensation.

The weight on the top of the air bearing is due to various components:

- payload: hardware under testing or a complete satellite mock-up;

- Automatic Balancing System: motors and drives, batteries, inertial measurement
unit (IMU), a controller board and balancing masses;

- the mechanical structure: is composed by platform, air bearing and all the parts
necessary to the previously listed parts.

The CR position is fixed due to the structure of the air bearing, hence the CM dis-
placement have to be taken into account. It’s done in first place through the platform
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3.4. Testbed platform

design by choosing components displacement such as to guarantee even mass distribu-
tion. Moreover, counterweights are foreseen to reduce larger part of unbalance vector.

Figure 3.4: Balancing system reference frame (Bahu and Modenini, 2020).

The total mass can be computed by following equation:

mtot = mpayload +mABS +mst +mb,tot (3.1)

where mpayload is the mass of the hardware under test, mABS is the mass of the electronic
components of the balancing system, mst is the mass of all mechanical parts and mb,tot

is due to balancing masses. Here mb accounts only for actuated balancing masses. Fixed
one are taken in account by mst term.

As rCM is a three dimensional vector, we need to provide three independently actu-
ated balancing masses, controlled along non-parallel directions. Let’s rb,i be the position
of i-th balancing mass (Kim and Agrawal, 2009):

rb,i = r0b,i + diûi (3.2)

where r0b,i is initial position of the i-th balance mass actuated along three mutually or-
thogonal directions, û1, û2 and û3. The amount of shifting balance masses mb,tot =
mb,1 +mb,2 +mb,3 and their maximum displacement ∆dmax determine the maximum CR
to CM offset, rCM,max, that can be compensated:

mb∆dmax = rCM,maxmtot (3.3)
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Chapter 3. Facility design and overview

where we assume that the three shifting masses are equal mb,1 = mb,2 = mb,3 = mb.
Conversely, the resolution of the balance masses displacement, ∆dmin, defines the

lower bound of the offset vector it’s possible compensate:

∆rCM,i = mb,i∆dmin
mtot

(3.4)

where ∆dmin is the smallest displacement that rCM may undergo along the i-th mass
shifting direction. The balance masses displacement directions are, in turn, assumed to
be mutually orthogonal. Changing ∆di of any of the three masses will induce a net shift
of the overall platform CM equal to (Kim and Agrawal, 2009):

∆rCM = 1
mtot

3∑
i=1

mb,i∆diûi = mb

mtot

∆rb (3.5)

where rb = [rTb,1rTb,2rTb,3]T , see Figure 3.4.

3.4.2 3U Platform design

The platform is designed to accommodate a 3U CubeSat. The dimensions are stan-
dard and equal to 100 × 100 × 340.5 mm, while the mass cannot exceed 4 kg. Balance
masses and their maximum travel determines the maximum CM to CR offset which can
be compensated. In case of a 3U CubeSat, the design specifications limits roff to ± 20
mm on x/y axes and ± 70 m on z axis (Domain, 2009). The larger part of the unbalance
vector is compensated by a coarse balancing procedure:

- plane coarse balancing is done by positioning the payload on the top of the plat-
form;

- spare counterweights can be fixed at the bottom of the platform to reduce the un-
balance on the z-axis ( see Figure 3.5c).

Starting from the guidelines defined in Section 3.4.1, the final design consists of a 12
mm thick octagonal plate with side walls featuring radial elements to enhance flexural
stiffness ( see Figure 3.5a). The rationale behind the shape choice is a trade-off: ideally,
an axisymmetric structure has to be preferred, for having isotropic inertia and stiffness
about any axis of inclination. On the other hand, we needed a shape whose lateral walls
allow to fix firmly the equipment needed for the automatic balancing system (the top sur-
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3.4. Testbed platform

face is occupied by the nanosatellite mock-up). Therefore, we opted for a shape allowing
for flat lateral surfaces while not departing too much from an axisymmetric one.

The platform is made of aluminium and for balancing masses brass was used. The
total platform mass is about 4.5 kg. The maximum tilt angle allowed without interference
with the stand pedestal is ≈ 30° .

(a) CAD rendering of the platform (Bahu
and Modenini, 2020);

(b) Complete platform with CubeSat
Mockup (Modenini et al., 2020);

(c) Counterweights on the bottom of the
platform;
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(d) Sagging torque as a function of the tilt
angle (Modenini et al., 2020);

Figure 3.5: 3U Platform.

The final design was also verified through FEM analysis. Starting from the CAD
model of the octagonal platform, the geometry was meshed using shell elements. Load
condition was prescribed as a uniformly distributed load, simulating the platform own
weight, plus concentrated point masses. These last aimed at accounting for the platform
deformation due to the weight of the other equipment lying on it.

Simulations were repeated at various tilt angles, by rotating the direction of the load
due to weight applied to the geometry. From the computed deformation, the new center of
mass of the whole geometry can be located which, in turn, allows to estimate the gravity
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Chapter 3. Facility design and overview

torque. Figure 3.5d summarizes the outcome of this process, by displaying the deforma-
tion predicted for eleven different tilt angles from 5° to 80°, along with an interpolant
curve.

The ABS system is sized to compensate a residual maximum unbalance rCM,max=2
mm. Larger initial unbalances are compensated manually using the counterweights and
payload manual positioning. ∆dmin depends on the motors characteristics and actuation
system. Since we looks for high accuracy positioning, steppers motors of non-captive
type were used. The design parameters are summarized in Table 3.2

Table 3.2: 3U platform ABS design parameters

Parameter Value

mtot 11 kg

mb 0.11 kg

∆dmin 0.002 mm

rCM,max 2 mm

‖τ d,min‖ < 3.7 · 10−6Nm

For the reported parameters, minimum residual static unbalance torque magnitude is
‖τ d,min‖ = ‖rCM ×mtotg‖ < 3.7 · 10−6 Nm. This is, of course, an ideal lower limit:
backlash in mechanical system, axes misalignment, and measurement errors unavoidably
deteriorate the system performance.

3.4.3 1U Platform design

Design of the 1U CubeSat platform face slightly different challenges. As the dimen-
sion and weight in this case are smaller (100mm × 100mm × 113.5 mm and 1.33 kg),
a more compact platform can be designed. In fact, as the diameter of the air bearing is
150mm and the payload fits within it, almost 45° of tilt is possible. The platform edge
lean on the air bearing envelope, means the deformation torque is negligible and gravity
torque due to sagging is of no concern in this case.

The ABS is still necessary, but the design is simpler in this case. Thanks to the large
weight of the air-bearing hemisphere, equal to 1.475 kg, no counterweights are foreseen.
Instead, coarse balancing is done by accurate platform mounting.
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3.4. Testbed platform

The platform was sized to host ESAT CubeSat. Its weight is 0.439 kg; since two mag-
netorquers are provided only, an additional fastening for a third one have been foreseen.

The balancing system principle is the same as for the 3U platform, and the main
design parameters are listed in Table 3.3. Batteries are placed inside the hemisphere ,see
Figure 3.6b.

Table 3.3: 1U platform ABS design parameters

Parameter Value

mtot 2.875 kg

mb 0.1 kg

rCM,max 1.33 mm

∆dmin 0.002 mm

‖τ d,min‖ < 3.7 · 10−6Nm

(a) CAD rendering of the platform;
(b) Counterweights on the bottom of the
hemisphere;

Figure 3.6: 1U Platform.

3.4.4 Automatic mass Balancing System hardware

The core of the balancing system hardware is made of Arduino components with the
actuation done by three stepper motors. The on-board controller is an Arduino Due for
the 3U platform and a smaller M0 Feather by Adafruit for the 1U platform, both capable
to run the real-time balancing feedback algorithm. Angular velocities and orientation are
provided by Bosch BNO055 Absolute Orientation Sensor. Communication with a server
for data collection and control is granted by a Wi-Fi connection.
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Chapter 3. Facility design and overview

The motors are driven by dedicated drivers and power supply. The IMU embeds
proprietary filtering algorithms whose output is the attitude represented whether through
a Roll-Pitch-Yaw (RPY) rotation sequence or as a quaternion. In-plane balancing requires
wherever the feedback of the tilt angles or the gravity vector in the body reference frame,
as it will be discussed in the following chapter.

Table 3.4: IMU characteristics

Accelerometer

Zero-g Offset Temperature Drift 3.5 mg/K

Zero-g Offset Supply Volt. Drift 2.5 mg/V

Output Noise Density 190 µg/
√
Hz

Sensitivity 1 mg

Cross axis sensitivity (max) 2 %

Gyroscope

Zero-ω Offset Change over Temperature 0.03°/s per K

Zero-ω Offset Supply Volt. Drift 0.1°/s per V

Output Noise rms, BW=47Hz 0.3°/s

Sensitivity 0.0625 °/s

Cross axis sensitivity (max) 3%

The gravity vector is provided by filtered accelerometers measurements or, alterna-
tively, can be computed from the estimated quaternion. Filtering accelerations measure-
ments provides better accuracy in almost-static conditions, as the no angular and linear
accelerations affects the measurements. According to the Table 3.4, there are several
source of error affecting sensor measurements: even in case of perfect bias calibration a
worst-case static measurement error is of 0.2g due to cross-axis sensitivty, which would
provide almost 1.15 ° Roll-Pitch pointing errors. Therefore, the sensor was tested in
static conditions to check the accuracy of the embedded filtering mechanism. The mea-
surement error was found to be less than 0.025g, which leads to tilt angles estimation
errors of about 0.15°.

Tilt angles measurements accuracy provided by attitude estimation algorithm is not
stated at-all in the datasheet: an experimental assessment showed worst case static er-
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3.5. Discussion

ror of 0.7 ° RMS. The gravity vector and attitude are estimated jointly by the sensors:
however, first one is preferable to be used as a feedback.

Inertia parameters estimation is greatly affected by gyroscope data measurements,
which are also retrieved from the IMU. Main limit is the measurement noise, which is
partially filtered out by digital filters implemented on-board.

3.5 Discussion

Despite complete turn-key solutions for ADCS functional testing do exist, in-house
development may be preferred in some cases due to budget constraints. The drawback
of such an approach is that known performance level is hard to be guaranteed. In this
chapter, we outlined the design solutions, implementation steps, and verification strategy
adopted during the development of one such a facility at the University of Bologna. To
simulate various environmental aspects, dedicated subsystems have bee developed and
integrated.

To provide a guaranteed level of performance, extensive verification campaign have
been done. Results after the commissioning phase demonstrated that our testbed achieves:

1. divergence of the Sun simulator light beam of less than 0.5°, spatial stability under
10% , and temporal fluctuations below 1%;

2. dynamic matching of the magnetic field with error below 0.2%;

3. an attitude determination accuracy of the ground-truth, monocular metrology sys-
tem less than 10 arcmin rms.

Residual disturbance torque, a fundamental parameter in the ADCS testing facilities,
will be addressed in the following Chapter 4.
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4
Automatic mass balancing

Reducing the overall torque acting on the testbed is perhaps the biggest challenge
for a dynamic ADCS simulator targeted to nanosatellite class1. In spherical air-bearing
design, the large disturbance torque arising due to CM-CR offset have to be specifically
addressed. As discussed in Section 1.1.2, an automatic balancing system is indispens-
able for nanosatellites testing facilities. However, it comes at the cost of greater system
complexity, extra hardware, and larger mass of the testbed.

Whenever on-board payload or satellite mockup are equipped with torque-providing
actuators, these can be used to feed the system with known control input, making pos-
sible estimation of the unbalance offset by input-output data processing. Least-squares
formulations and Kalman filters for fully actuated designs have been proposed in Kim
and Agrawal (2009); Schwartz and Hall (2004). Alternatively, as the actuated balance
mass provides a control action, they can be used as actuators themselves (Chesi et al.,
2014; Prado et al., 1998), which is the approach followed in this work. Since the torque
that can be generated by the balance masses is physically confined in the direction per-
pendicular to the gravity field, the disturbance torque acting on the same subspace can be
compensated by a feedback law. This plane balancing step is followed by estimation of
dynamics parameters and of the residual unbalance along the local vertical.

1The content of this chapter is largely based on Bahu and Modenini (2020).
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4.1. Dynamic model and simulations environment

Since the implementations and algorithms reported in the literature do not provide
sufficient gravitational torque reduction for a nanosatellites testing facility ( see Section
1.1), a novel balancing procedure has been developed, consisting of the following parts:

- a feedback control law for in-plane horizontal balancing of the platform, discussed
in Section 4.2;

- an identification strategy for estimating the residual vertical offset plus system in-
ertia, illustrated in Section 4.3;

- a verification procedure, aimed at estimating the disturbance torque acting on the
free oscillating platform after balancing, from inspection of the angular momentum
variation, see Section 4.4.

For the above operations, attitude and angular velocity measurements are required.
These are greatly affected by errors such as white noise, drift, and random walk. Due
to mass, size and budget constraints, a MEMS IMU was employed to provide such mea-
surements (see Section 3.4.4). The limited performance of the sensors is one of the main
challenges to overcome, calling for accurate algorithms design/tuning and an extensive
verification process.

4.1 Dynamic model and simulations environment

As part of the air bearing testbed validation, a numerical model was implemented in
Matlab/Simulink environment. The model allows the user to develop test scenarios for
the air bearing testbed and simulate its rotational dynamics. Numerical simulations were
performed for both platforms described in Chapter 3, conceived for 1U and 3U CubeSats,
by setting the appropriate mass, inertia and geometric parameters.

For the 3U platform, a scenario without payload has been considered. In this setup,
mtot = 6.870 kg, with the a-priori inertia matrix computed from the CAD model of the
platform:

JCR,3U =


5.70 0 0.17

0 5.97 0.01

0.17 0.01 9.67

 · 10−2 kg/m2. (4.1)
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For 1U platform setup with integrated satellite mockup, th total mass is 2.875 kg and
the a-priori inertia matrix is:

JCR,1U =


0.771 0 0.014

0 0.986 0

0.014 0 0.758

 · 10−2 kg/m2. (4.2)

The software includes models of sensors, actuators and disturbance torques. The
stepper motors mechanical parameters can be found in Section 3.3 and Section 3.2. Sat-
uration on rbal is set to limit the maximum allowable travel, motor step resolution and
backlash are set to 0.002 mm and motor dynamics are approximated by a first order sys-
tem with τ=0.01s. Limits to the motors maximum speed and acceleration have been
determined experimentally, resulting to 2000 steps/s and 1000 steps/s2 respectively.

Sensors readings are corrupted by random measurement noise and bias according
to the respective specifications, which proved to be consistent with the measurement
variances retrieved from experimental data. The control loop sampling frequency is set
equal to the update frequency of the slowest sensor in the IMU, namely 20 Hz.

Dissipative effects acting on the tabletop platform are also modeled. These are mainly
of two kinds: the friction of the pressurized air bearing support mechanism, and the aero-
dynamic drag of the moving parts. The resulting torque dampens the air bearing’s angular
rate and will eventually return it to rest, unless control torques are applied. Following the
model described in Kwan et al. (2015), in the simulation software the torque produced
by air friction is computed as a function of the norm of the angular rate. The air bear-
ing friction parameters were estimated by fitting the data of the platform forced to spin
around a single body axis.

4.2 In-plane balancing

The goal of the in-plane balancing is to align the body axis êz to the local vertical ĝ.
If the body axes dynamics are sufficiently slow, the dynamic equations can be decoupled
through linearization near the origin, and a controller can be designed by classical control
tools, using either gravity vector g or the attitude estimate as feedback variables: this
approach was used at first. To overcome the limits of the linearized model, a nonlinear
controller is proposed in Section 4.2.2, which considers a projected control law on the
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subspace orthogonal to the gravity direction, i.e. the reachable subspace by the control
gravity torque.

4.2.1 Decoupled dynamics and linear control law

Starting from the mathematical model outlined in Section 2.3, and assuming the iner-
tia matrix is diagonal with respect to the chosen body reference frame, J = diag(Jx, Jy, Jz),
the governing dynamics equations are (de Ruiter, Anton H.J.; Damaren and Forbes,
2013):

Jxω̇x + (Jz − Jy)ωyωz = mtot (rCR,ygz − rCR,zgy) + τu,x

Jyω̇y + (Jx − Jz)ωxωz = mtot (rCR,zgx − rCR,xgz) + τu,y

Jzω̇z + (Jy − Jx)ωxωy = mtot (rCR,xgy − rCR,ygx) + τu,z.

(4.3)

The disturbance torque due to rCM needs to be perfectly compensated by the con-
troller and is considered to be slowly varying. Only the first two equations can be con-
sidered, since τu,z is null in the target position. Let [φ θ ψ]T be the RPY attitude repre-
sentation, where φ is the roll angle, θ is the pitch angle and ψ the yaw angle. We define
the output error vector ye = [φ θ]T . The components of gravity vector are computed by:

gx = ‖g‖ cos θ gy = ‖g‖ cosφ gz =
√
‖g‖ − (gx)2 − (gy)2. (4.4)

If small angles and rates are assumed, the nonlinear dynamics described by Eq. 4.3
can be linearized. In this case, the control problem can be solved by two controllers PIDx

and PIDy, designed to stabilize the following second-order dynamic equations:

Jxφ̈ = mtot (rCM,ygz − rCM,zgy) + PIDx (φ)

Jyθ̈ = mtot (rCM,zgx − rCM,xgz) + PIDy (θ) .
(4.5)

These equations can be asymptotically stabilized by PID controllers. For small-angle
approximation, θ = gx

‖g‖ and φ = gy

‖g‖ , and ye =
[
gx

‖g‖
gy

‖g‖

]T
can be used as feedback. This

assumption is reasonable , as tilt angles are restricted due to limited angular excursions
of the table-top design. Tilt angle estimation through acceleration feedback is expected
be more accurate (see Section 3.4.4), thus it will be employed in the plane balancing
experimental assessment in the following chapter.
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At the equilibrium point, gx, gy = 0:

0 = 1
Jx

(mtotrCM,ygz + PIDxφ )

0 = 1
Jy

(−mtotrCM,xgz + PIDyθ) .
(4.6)

The above equations show that, in steady state, any plane unbalance (rCM,x, rCM,y) re-
sults to a constant disturbance torque which must be compensated by the integral action.
Since the control action is achieved by balancing masses, the planar balancing is pre-
served until the balancing masses position holds.

4.2.2 Nonlinear control law for planar balancing

The main limitation of the linear approximation is its potential instability in case the
feedback stabilizing effect is overcome by large nonlinearities (Khalil, 1996). To cope
with slow actuators and unmodelled dynamics, low gains must be chosen possibly leading
to large closed-loop time constants and undesired system trajectories. To overcome these
issues, it will be shown that for the considered underactuated system a partial attitude
control is still possible, and a novel nonlinear control law with proved asymptotic stability
in absence of disturbances is proposed. The practical usefulness in the presence of an
unbalance torque will be then verified both through simulations and experiments.

Plane balancing can be regarded as a single-axis pointing problem where the pointing
direction is coincident with the under-actuated one, since the objective is driving the
system to a pure spin condition with the z body-axis aligned to the local vertical direction.

First, the disturbance free single-axis pointing case will be analyzed, i.e. when rCM =
0. To develop a stabilizing control law, let us define a projection operator:

Pp =
[
I − ĝĝT

]
. (4.7)

It is then possible to decompose the angular speed vector by means of the projection
operator as follows:

ωp = Ppω ,ωg = ω − ωp. (4.8)

We now consider the admissible control feedback:

τ u = −Kpĝ × êz −Kdωp (4.9)
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4.2. In-plane balancing

where Kd being a positive scalar. The control torque is defined on the plane orthogonal
to ĝ, so that the corresponding mass displacement rb can always be computed through
Eq. 2.24.

Consider the candidate Lyapunov function:

V = 1
2ω

TJω + 1
2Kp (ĝ − êz)T (ĝ − êz) (4.10)

where Kp is a positive scalar. V is positive definite and equate zero for the system at rest,
with êz||ĝ. Along the trajectories of the system, the time derivative of V is defined as
follows:

V̇ = ωTJω̇ −Kpêz
T ˙̂g = ωT (τ u − ω × Jω) +Kpêz

Tω × ĝ =

= ωTτ u +Kpω
T ĝ × êz = ωT (τ u +Kpĝ × êz) . (4.11)

In deriving Eq. 4.11, we made use of the vector kinematic equation ˙̂g = −ω × ĝ.
The feedback proposed in Eq. 4.9 makes V̇ semi-definite negative, according to:

V̇ = −Kdω
Tωp = −Kd (ωp + ωg)T ωp = −Kdω

T
pωp. (4.12)

To show V̇ is semi-negative defined, we shall inspect the closed-loop dynamics to show
that in the convergence set ĝ × êz must be null, which is the desired z-axis pointing
condition. The closed loop dynamics under Eq. 4.9 and within the convergence set
ωp = 0 is:

Jω̇ = −Kpĝ × êz − ωg × Jωg. (4.13)

The right-hand side of the equation is the sum of two vectors orthogonal to ĝ, thus
any non-null combination of them would lead to Jω̇⊥g. However, this would lead ω out
of the convergence set, as any non-null ω̇ shall lie parallel to ĝ. Thus, in the given set,
ω̇ = 0. For this to hold, ĝ × êz must be parallel to ωg × Jωg, that is, êz ‖ Jωg. If the
chosen body axes are principle axes of inertia, J is diagonal, and êz ‖ Jωg may occur
only if ωg is parallel to êz, leading to:

ĝ × êz = ωg × Jωg = 0. (4.14)

which proves the desired pure spin around êz ‖ ĝ.
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Eq. 4.9 is suitable for reorienting a balanced platform, but when rCM 6= 0, it fails to
lead ĝ×êz to zero. It is well known that, when full actuation is available, a system subject
to a bounded disturbance torque, such as the static unbalance we want to compensate, can
be stabilized by adding an integral feedback (Schaub and Junkis, 2009). To this end, we
introduce a new state variable:

ip =
∫ t

0
Kpĝ × êzdt, (4.15)

and modify the feedback law according to:

τ u = −Kpĝ × êz −Kdωp −KdKIip. (4.16)

The rationale lies in that, if one can verify that the feedback control drives the integral
variable to a finite limit, then ĝ× êz must have settled to zero, which in turn requires also
ωp = 0 due to the kinematics of ĝ. If the system converges to a pure spin around êz||ĝ,
the only non-zero component of rCM must lie along the vertical axis, which means that
planar balancing is achieved.

The validity of the above assumption and the practical effectiveness of Eq. 4.16 have
been checked through simulations and experiments, as detailed in following chapter.

4.2.3 Numerical simulations

The linear feedback defined in Eq. 4.5, and the nonlinear one of Eq. 4.16 were
implemented in the Simulink simulation environment for performance assessment. Re-
sults obtained with accelerometer measurements feedback only will be presented, as it
guarantees greater accuracy (see Section 3.4.4). Actuators and sensors models have been
included in the environment used for simulations, described in Section 4.1.

The goal of plane balancing procedure is to compensate rCM,x and rCM,y by aligning
êz, i and êz, b axes, or, equivalently, by driving roll and pitch angles to zero. Residual
offset vector depends on mass balancing system design (see Section 3.4.1) and tilt angles
estimation error (see Section 3.4.4).

Assuming motor resolution as the only static error source, a lower limit of the offset
vector can be computed as ∆rCM,i,3U = 3.24 · 10−8m and ∆rCM,i,1U = 6.96 · 10−8m per
axis for 3U and 1U platforms respectively. The error introduced by the IMU is slightly
more difficult to estimate, and will be evaluated by simulations.

Gain selection for the PID controller was performed exploiting existing MATLAB
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Figure 4.1: Step response of the closed loop linear system.

built-in tools for linear systems tuning. For achieving sufficient disturbance rejection,
high phase margin and large settling times are set. Large settling time prevents the motor
dynamics, not accounted for by the controller design, to undermine stability. Nonlinear
controller gains Kp, Ki, Kd were set equal to the tuned PID controller ones.

By design rCM is expected to lie within a certain range after manual balancing. Fol-
lowing Tables 3.2 and 3.3, offset vector at time zero rCM,0 = [1 1 − 2]T was assumed.
Prescribing a negative rCM,z guarantees a stable pendulum-like motion.

In Table 4.1, gains for a 1 rad/s bandwidth and a phase margin of 80° are summa-
rized. Z-axis gains are reported only for the nonlinear controller, as the third motor is not
employed in case the linear one is used. The linear closed loop system response is shown
in Figure 4.1. The time constant is ≈ 100 seconds, providing a control input complaint
with stepper motor velocity limits.

Simulations were first performed assuming error-free measurements. Initial roll and
pitch angles are set to be 30°, which is the maximum allowable excursion for the 3U
platform. For small initial angular speed ‖ω(0)‖ < 0.01°/s, asymptotic stability is
provided for both controllers. In Figures 4.2b and 4.2a, attitude errors for 1U and 3U
platforms respectively are shown.

Since the qualitative behavior is very similar, in the following only the results for the
3U platform will be presented if not otherwise stated.
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Table 4.1: Controllers gains

3U platform gains

PID and Nonlinear Controller Nonlinear Controller

Kpx 1.3 · 10−2 Kpy 1.37 · 10−2 Kpz 2.22 · 10−2

Kdx 5.62 · 10−2 Kdy 5.9 · 10−2 Kdz 9.57 · 10−2

Kix 7.53 · 10−4 Kiy 7.9 · 10−4 Kiz 13 · 10−4

1U platform gains

PID and Nonlinear Controller Nonlinear Controller

Kpx 2.3 · 10−3 Kpy 2.3 · 10−3 Kpz 2.1 · 10−3

Kdx 9.8 · 10−3 Kdy 10 · 10−3 Kdz 9.3 · 10−3

Kix 1.31 · 10−4 Kiy 1.33 · 10−4 Kiz 1.24 · 10−4

Lower limit of the residual unbalance is in the order of 10−8 m, as expected, and
is reached in less than 700 s. RPY angles are shown in Figure 4.3a. The effects of the
assumed actuator model are visible in Figure 4.3b where commanded and actual positions
of balancing mass are compared on the x axis for both the nonlinear and PID controllers.
The difference between the commanded position and the actual one is significant only
through the transient, but as soon as the transient expires the error becomes negligible.

Measurement errors affects mostly static performance. In Figure 4.4a, rCM evolution
is shown. The attitude error is less than 0.5°, with a residual unbalance vector in the order
on 10−6m, equivalent to 10−4Nm disturbance torque, too high to guarantee for reliable
ADCS testing. By iterating the balancing procedure it is possible to further reduce the
residual unbalance: for smaller rCM,z, the attitude error affects less the offset vector
compensation. In Figure 4.4b, rCM evolution is shown in case initial offset rCM,0 =
[1 1 −2]T ·10−5m is assumed. For additional balancing iterations, the residual unbalance
approach the limit value ‖rCM,i‖ = 2 ·10−7m . At this point, gyros performance becomes
the limiting factor, and even in case of perfect balancing on z axis, disturbance torque is
expected to be higher than 2 · 10−5Nm.

In case slow convergence time is acceptable, nonlinear and PID controllers provides
similar performance, although the plane balancing must be repeated several times even
for a single balancing procedure, leading to more than 10 minutes of continuous stepper

67



4.2. In-plane balancing

motors operations. With higher gains and lower settling time, stability is provided by the
nonlinear controller only. Setting the bandwidth 1.5 rad/s, the steady state is reached in
less than 100 seconds in case of nonlinear control, as shown Figures 4.5a and 4.5b. On
the other hand, the PID controller leads to system instability, as the motors fails to follow
the reference (see Figure 4.5c).

Overall, the nonlinear controller shows better performance for a broad range of initial
conditions, therefore, it has been preferred for the subsequent experimental validation
phase.
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Figure 4.2: Plane balancing simulations with ideal measurements
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Figure 4.3: Mechanical nonlinearities.
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Figure 4.4: Simulations of plane balancing for 3U platform
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Figure 4.5: Plane balancing of 3U platform with high gains.
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4.3 Estimation of vertical offset and system inertia

The control laws presented in the previous section compensate only two components
of the offset vector. The residual unbalance along the local vertical has then to be esti-
mated, jointly with the inertia parameters of the platform as a-priori CAD values could
be not sufficiently accurate.

Existing approaches for parameters identification in automatic balancing systems
consider whether the joint estimate of the inertia matrix and CR-to-CM offset vector
for a one-stage balancing (Xu et al., 2015; Gavrilovich et al., 2015; Kim and Agrawal,
2009), or the estimation of the vertical offset after planar balancing in a dual-stage pro-
cedure, assuming the inertia known (Chesi et al., 2014). Our application lies somehow in
between those: after the balancing on the x-y plane is achieved, it is possible to rely on
the partial knowledge of the unbalance vector for a more accurate estimation of the last
component of the offset vector and of the elements of the inertia tensor. Since in our de-
sign no external actuation is available other than the shifting masses, the approach used is
based on sampling free oscillating rotations. Sampled data are processed offline through
a batch least squares (LSQ) algorithm, implemented in MATLAB environment. The only
torque acting on the system is therefore supposed to be the gravitational disturbance.

4.3.1 Batch estimation

The identification problem can be cast in a linear least squares estimation framework
such as:

Hx = b (τ ext) (4.17)

where τ ext is the external torque, H is the observation matrix, and x is the vector of
the dynamic parameters to be identified: x =

[
jT rTCM

]T
= [Jxx Jyy Jzz Jxy Jxz Jyz

rCM,x rCM,y rCM,z]T . However, if no actuation is available, as for a freely oscillating
platform, the right-hand side of Eq. 4.17 is identically zero, which would require solving
equations for the null space of matrix H . This, in turn, would allow to estimate x only
up to an unknown scaling of all its elements. A possible solution has been proposed in
Gavrilovich et al. (2015): the authors show that such a drawback can be overcome when
the dynamic parameters are computed with respect to a freely chosen point O, which
differs from both CM and CR. Then, the six inertia parameters and three unbalance vector
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components are estimated jointly. This is not necessary, however, in our case, since
we can rely on the partial knowledge of the unbalance vector provided by the planar
balancing, after which rCM,x rCM,y are ideally null. As rCM,x rCM,y are known, the
estimation problem can be reformulated as a constrained least squares problem:

Hx = 0

s.t. : Bx = c.

(4.18)

This way, the scaling ambiguity is removed. The system dynamics can be written in
the matrix framework of Eq. 4.18, as:

[Ω (ω̇ ) + [ω̃] Ω (ω)|mtot [g̃]]

 j

rCM

 = 0 (4.19)

where Ω is a 3x6 matrix rearranging the elements of ω or ω̇. The constraints for the
known values of rCM,x rCM,ycan be enforced by setting:

B =

01×6 1 0 0

01×6 0 1 0

 , c =

0

0

 . (4.20)

A drawback of this formulation lies in the need of the angular accelerations, which
are computed from numerical differentiation of noisy angular rate samples, thus being
potentially highly inaccurate. As the dynamics of the free-oscillating body is relatively
slow, high frequency random noise can be partially removed by filtering the data through
e.g., a SGF. As suggested in Gavrilovich et al. (2015), a different formulation can be
obtained by integrating Eq. 4.20. In this case angular accelerations are no more required
and data samples integration gives some degree of robustness with respect to random
noise: [

Ω
(
ωb

)
+
∫

[ω̃] Ω
(
ωb
)∣∣∣∣mtot

∫
[g̃]
]  j

rCM

 = 0. (4.21)

In collecting data for solving Eq. 4.21 one should trade-off between two counter-
opposing requirements: on one side, collecting as many data as possible shall enhance the
parameter observability. On the other hand, too long time frame may lead to a degraded

74



Chapter 4. Automatic mass balancing

estimate, due to the increasing impact of the unmodeled torques. The performance of the
two alternative solutions are compared through simulations in the following section.

4.3.2 Numerical simulations

The estimation of the residual unbalance vector component and inertia parameters
relies on data collected from simulation of free oscillations processed through a batch
LSQ estimator. The two formulations introduced in previous section, namely the standard
formulation with the angular rate filtered through SGF, Eq. 4.19, and the derivative-free,
integral formulation, Eq. 4.21, are compared. They are referred to as LSQ-SGF and
LSQ-INT, respectively. In general, parameters observability from free oscillations is
enhanced when the motion features high accelerations and angular rates, as it guarantee
better signal/noise ratio.

Sample outputs from the two algorithms for 3U platform are depicted in Figure 4.6,
obtained assuming ‖rCM‖ = 5 · 10−5 m. rCM,x and rCM,y are assumed to be null. The
sampling time is of 0.05 seconds. Clearly, LSQ-SGF outperforms LSQ-INT: estimation
errors on the principal inertia moments are around 1% for the former, while can be as
high as 5% for the latter. Remarkably, both algorithms lead to an estimation error for
rCM,z in the order of 10−6m, which would possibly lead to unacceptably high distur-
bance torque. This result indicates that, due to the measurement errors and unmodelled
dynamics, multiple iterations may be necessary before sufficiently accurate results can be
achieved. As shown in Figure 4.7, very similar results are obtained for the 1U platform,
hence only the bigger 3U will be considered hereafter.

If the offset estimated with a first iteration is compensated by adjusting accordingly
the position of the balancing masses, an additional, refined balancing iteration can be
attempted. In doing so, however, we verified that the LSQ estimation as proposed in Eq.
4.19 and in Eq. 4.21 is no more effective when trying to estimate jointly the inertia and the
residual unbalance. On the other hand, assuming the inertia known, additional constraints
can be included to Eq. 4.20 for improving the estimate of the residual unbalance rCM,z

only. An iterated parameter estimation stage can thus be envisaged: in a first iteration,
the LSQ batch filter estimates both inertia and unbalance vector; for successive iterations,
after the plane balancing is repeated, an LSQ fed with the inertia matrix estimated through
the first stage can be employed for refined rCM,z estimation.

The iterative approach improves the rCM,z estimation accuracy, with an error in the
order of 10−8 m, as shown in Figures 4.8a and 4.8b. The inertia matrix is assumed to be
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4.3. Estimation of vertical offset and system inertia

known with an uncertainty of 2 %.
To verify the performance of the whole procedure, for iterative simulations ‖rCM,xy‖ =

2 · 10−7 m is set, as the expected lower limit of the plane balancing.As a result, rCM,z

estimation accuracy drops down to 1 · 10−7 m (see Figure 4.8c ).
In summary, the outcome of the simulations in Sections 4.3.2 and 4.2.3 suggest that

several balancing iterations, from coarser to finer, are necessary for achieving adequate
performance: usually after three iterations the disturbance torque due to the unbalance is
reduced down to 2 · 10−5 Nm , with no further improvements.
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Figure 4.6: 3U parameters LSQ estimation comparison.
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Figure 4.8: Numerical simulation of the rCM,z estimation by constrained LSQ.

4.4 Disturbance estimation

For small angular speed, aerodynamic torque and torque due to air-bearing friction
are negligible. The torque due to the interaction between the platform residual magnetic
dipole and the Earth magnetic field can be compensated thanks to the available Helmholtz
cage. Within these assumptions, unbalance can be considered as the main contributor
to the overall disturbance, hence estimating the total torque acting on the platform is
equivalent to verify the effectiveness the balancing procedure. However, independently
from evaluation approach, accurate inertia matrix estimate must be provided.

To evaluate the torque acting on the platform, one can inspect the variation of the
kinetic energy: indeed, for a perfectly balanced and dissipation-free system, the kinetic
energy Ekin should be constant in time. Kinetic energy can be easily evaluated from
the gyroscope measurements, provided the knowledge of the inertia matrix, through the
formula 2Ekin = ωTJω. The periodic variation due to the pendulum-like motion of
the platform can be decoupled from the slow exponential decay due to the air-bearing
friction. However, the disturbance torque due to the residual unbalance cannot be directly
estimated from the kinetic energy variation, and thus can be used only as additional tool
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4.4. Disturbance estimation

for fast qualitative balancing accuracy evaluation.
The disturbance torque acting on the system can be instead estimated from the varia-

tion of the angular momentum, as per the dynamic equation:

τ d = Jω̇ + ω × Jω, (4.22)

where torque due to the unbalance can be considered as the main contributor to the overall
τ d.

Eq. 4.22 requires differentiation of the angular rate measurements, which we per-
formed using Savitzky-Golay filtering. The choice of data pre-filter is justified by the
very slow dynamics which is expected in case of small residual unbalance, so that high
frequency measurement noise can be effectively removed.

Numerical simulations showed this approach to be reliable for estimating torques
down to the order of 10−6Nm. In case of smaller torques, the error due to the mea-
surement errors and inertia matrix uncertainty renders the estimation unreliable. As an
example, in Figure 4.9 the estimated disturbance torque computed according to Eq. (27)
against the true one is compared, for rCM = [4 4 14]T · 10−8m and with inertia moments
uncertainty of 1%.
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Figure 4.9: Numerical simulation of the residual disturbance estimation after balancing (Bahu
and Modenini, 2020).
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4.5 Experimental verification

The proposed balancing procedure and disturbance torque estimation algorithm have
been verified through experiments using the 3U testbed platform described in Chapter
3. The first step, plane balancing, runs in real-time onboard the microcontroller. The
parameter estimation, instead, is performed offline, by collecting the free-oscillation data
through the IMU, with sampling frequency 20Hz. Thanks to a Wi-Fi link, the data col-
lected are sent to a desktop computer for processing.

As suggested by the numerical simulations, an iterative procedure has been found
to be necessary to guarantee good balancing performance. In our experiments, each
balancing iteration consists of an in-plane balancing, followed by a parameter estimation
stage.

4.5.1 Platform balancing

For the in-plane balancing, the nonlinear control law in Eq. 4.9 is employed. Initial
conditions for the experiment consist of the platform manually positioned at a rest, hence
tilted, attitude. Control gains are the one summarized in Table 4.1.

In the first iteration, inertia parameters estimation is performed through the LSQ-SGF
technique. As outlined in Section 4.3, zero unbalance on x-y plane is assumed. This as-
sumption is used as a constraint in the least squares homogeneous equation. Since inertia
matrix identification benefits from a high unbalance torque, which excites wide oscilla-
tions, a large unbalance on z-axis shall be used. Free oscillations of the platform are then
sampled, starting from initial angular speeds applied manually to the platform. Collected
data are processed through the LSQ filter, which generally guarantees convergence in
less than 100 seconds. Figure 4.10a depicts the estimated principal moments of inertia
of the 3U platform, which are compared to their a-priori values computed from the CAD
model, showing a mismatching of about 5%.

The unbalance vector components are compensated, and a new iteration begins. Plane
balancing is repeated and residual rCM,z estimated, this time assuming the inertia known
and set equal to the first iteration estimate. The procedure can be further iterated, as
long as the i-th rCM,z estimate is smaller than the (i-1)-th one, meaning that the unbal-
ance vector is being reduced. In case no significant difference in the estimated value is
found, the balancing is ended, and the residual disturbance torque estimated to validate
the balancing procedure. Inertia parameters estimation for the 1U platform is shown in
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4.11a. In this case no reliable CAD estimation values are available. The overall process
is summarized in Fig. 4.12.
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Figure 4.10: 3U parameters experimental estimation.
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Figure 4.11: 1U parameters experimental estimation.
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Figure 4.12: Iterative balancing procedure (Bahu and Modenini, 2020).

Table 4.2: Convergence history of the parameters identification step.

Iteration 3U principal inertia
moments [kgm2]

3U es-
timated
vertical
offset [m]

1U principal inertia
moments [kgm2]

1U es-
timated
Vertical
offset [m]

1

[5.57 5.78 9.17] · 10−2

1.66 · 10−4

[8.84 8.92 6.77] · 10−3

4.15 · 10−4

2 2.50 · 10−6 7.41 · 10−6

3 6.19 · 10−7 1.34 · 10−6

It was found through experiments that after three balancing iterations the oscillation
period becomes extremely long and the residual rCM,z estimation does not improve any
further below a threshold of ≈ 7 · 10−7m/ ≈ 2 · 10−6m. A sample output of the rCM,z

estimation during a fine balancing iteration for a 3U and 1U are shown in Figures 4.10b
and 4.11b respectively, while the outcome of the identification across the three iterations
is summarized in Table 4.2.

4.5.2 Experimental residual disturbance estimation

The effectiveness of the balancing is checked first by comparing the kinetic energy
variation during free platform oscillations before and after balancing. As shown in Fig.
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4.13, three balancing iterations reduces the kinetic energy variation by about 98% for the
3U platform. Nevertheless, a more convenient indicator is the magnitude of the residual
disturbance torque acting on the system after balancing, which can be estimated with the
method described in Section 4.4. The outcome of the estimate is shown in Fig. 4.14a
for the 3U platform and Fig. 4.14b for the 1U platform. The upper bound of the torque
magnitude was found to be about 5 · 10−5Nm, while its root mean squared value is 2.5 ·
10−5Nm. These values, despite being one order of magnitude higher than the theoretical
lower bound of the unbalance torque alone, set by the mass displacement resolution,
compares favorably with respect to the outcome from similar studies, see Table 1.1
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Figure 4.14: Balancing effectiveness evaluation.

4.6 Magnetic detumbling

The balancing procedure effectiveness was verified in a HWIL simulation. Tthe
COTS CubeSat mockup integrated on the 1U platform was used for a magnetic attitude
control experiment. The test case foresee angular speed damping, corresponding to the
on-orbit detumbling.
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Soon after being separated from the launcher, the spacecraft needs to damp the rota-
tional kinetic energy imparted by the separation system. This operation can be done by
magnetic actuation alone through the so called B-dot control law:

mc = −k db/dt (4.23)

wheremc is the control dipole and b is the magnetic field vector measurement. This con-
trol law is very simple, needs only magnetic field vector and is robust to measurements
biases.

Complete damping by means of magnetic actuation alone is not possible for a static
magnetic field, as no torque can be exerted along the b direction. Hence, time-varying
magnetic field experienced by the spaceraft on the orbit was simulated by means of the
Helmholtz cage. The magnetic field model for a 500 km polar orbit is computed fol-
lowing the IGRF model. Damping time constant is in the order of hours for this type
of orbit. However, in laboratory environment, air-bearing friction torque would dump
the angular speed in much smaller time. To provide faster dumping by magnetic actu-
ation, magnetic field time variance was speed up by factor of 50. Angular speed com-
ponents through the experiment are shown in Fig. 4.15a. The initial angular speed is
ω(0) = [−0.03, −0.04, 0.7]rad/s2, and magnetorquers are activated at t=10 s.

The platform is subjected to the action of other torques. Oscillation on the x- and y-
axes are due to the residual disturbance torque. In Fig 4.15b, the action of the air bearing
friction and aerodynamic torque can be appreciated by observing the dash-dotted line.
For a freely oscillating platform angular speed still slowly decay. However, the action of
the damping algorithm is clear, as biggest part of the angular speed is damped in a short
time.

4.7 Discussion

In this chapter, a two-step, iterative procedure for reducing the gravitational torque
acting on an attitude dynamic testbed based on air bearing is presented and experimen-
tally tested. Two iterations, at least, are envisaged: a first one, for large unbalance vector
compensation and inertia parameters estimation, followed by a fine balancing iteration.
Each iteration consists of two stages: a real-time in-plane balancing, followed by an
estimation of dynamic parameters.

For the in-plane balancing, real-time feedback control is employed. A novel nonlinear
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(a) Angular speed vector;

(b) Angular speed norm in case of free oscillation and damping;

Figure 4.15: Experimental detumbling.

feedback for single axis pointing, robust to unmodeled disturbances, is developed and
compared to a linearized PID controller.

Once the plane balancing is performed, two components of the unbalance vector are
compensated. After the first plane balancing iteration, the residual center of gravity off-
set, together with an estimate of the inertia matrix elements, are obtained through a batch
LSQ estimator. Pre-processing of the angular rate measurements using a Savitzki-Golay
filter was found to be of paramount importance for achieving good estimates. For the
following balancing iterations, inertia parameters are used as constraints for accurate
residual vertical offset estimation.

For the experimental validation of the balancing procedure, kinetic energy and an-
gular momentum variations were analyzed. A residual disturbance torque smaller than
5 ·10−5 Nm was retrieved from experimental verification. The experimental results show
the facility capabilities in highly demanding magnetic attitude control scenario.
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5
Attitude stabilization of a magnetically

actuated spacecraft

In this chapter , a novel approach to the three-axis attitude stabilization of a magnet-
ically actuated spacecrafts is described1. The proposed control laws is designed within
a hybrid framework. Due to the actuators type, the system model described in Section
2.4 is instantaneously underactuated and time-varying, so that low pointing errors and ro-
bustness are difficult to achieve at the same time. To provide both properties, two control
laws and a supervisor for switching between them are employed. As discussed in Sec-
tion 2.7.1, the magnetic field affecting the spacecraft can be assumed to be time periodic,
allowing a time-independent model to be developed in a hybrid framework in Section
5.1.

For the design of the local control law, the H-inf regulator with guaranteed perfor-
mance proposed in Zanchettin et al. (2013) is used, as described in Section 5.3. For the
global controller in Section 5.4, previous results based on averaged theory proposed in
Lovera and Astolfi (2004) are extended to provide ISS properties in Section 5.4.4. The re-
sulting nonlinear controller provides global stability and robustness with respect bounded
disturbances.

1The content of this chapter is largely based on: Bahu and Modenini (2021)
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The stabilization is accomplished by uniting two controllers through a hybrid supervi-
sor which governs the switching between the two, see Section 5.5. Analytical results are
verified by means of realistic numerical simulations in Section 5.6. The control algorithm
advantages and disadvantages are discussed in Section 5.7.

5.1 Magnetically actuated spacecraft model in a hybrid
framework

The nonlinear system under analysis is continuous and time-dependent. For an iner-
tially pointing spacecraft travelling on a circular orbit, the experienced geomagnetic field
can be approximated as a periodic signal with period equal to half the orbital one, Torb/2.
This is strictly true only for a magnetic dipole, but can be applied to the geomagnetic field
as well after fitting of the IGRF model data (see Section 2.7). Thanks to this assumption,
the input matrix can be described as state-dependent with respect to an auxiliary variable
ν, and the plant becomes time-independent in the hybrid framework. Then, jumps occur
whenever ν equals Torb/2. The hybrid plant state is xp =

[
qT ,ωT , ν

]T
whose dynamics

reads:

H :


ẋp = fp(xp,u) =

fc(xp) + v(xp)u

1

 (q,ω, ν,u) ∈ Cp =: Rnp × [0, Torb/2]× Rm

x+
p = gp(xp) (q,ω, ν,u) ∈ Dp =: Rnp × [Torb/2]× Rm

(5.1)
where Hp is the hybrid plant, Cp and Dp are the flow and jump set of the plant, q,ω,u

are defined as before and np = 7,m = 3. From Section 2.4, the continuous part of the
system is defined by:

fc (xp) =


−1

2 (ω × qe) + 1
2q4ω

−1
2ω

Tqe

−J−1ω × Jω

 v (xp) =

 03×3

Bh(ν)

 . (5.2)

where Bh(ν) is a singular matrix defined as:
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Bh (ν) = J−1Γ (ν) = J−1
(

[b(ν)]× [b (ν)]×,T

||b (ν)||2

)
, (5.3)

with Γ (ν) being a projection matrix and [b (ν)]×,T is the transpose of the skew-symmetric
matrix [b (ν)]×.

The jump map is designed as:

gp (xp) =


q

ω

0

 . (5.4)

5.2 Attitude stabilization control problem

The goal in attitude stabilization is to drive [qT ,ωT ]T to [[0 0 0 1]T , [0 0 0]T ]T . The
control problem in hybrid framework is summarized in the following proposition:

Proposition 1. Given a target set Ap = [[0 0 0 1]T , [0 0 0]T , [0, T ]]T , design a hybrid
supervisorHK such that:

1. the set Ap is Globally Asymptotically Stable in case of no external disturbances;

2. maximal solutions of closed the loop system are complete and converge to a neigh-
borhood of Ah in the presence of small measurement noise, unmodelled dynamics
and external disturbances with guaranteed level of performance.

A supervisorHK designed as above, makes Ap globally robustly stable.

In the proposed approach, the task is accomplished by uniting two controllers κ0 :
Rnc → Rm and κ1 : Rnc → Rm, where nc is the controller state dimension. The two
controllers are chosen such that:

• κ0 guarantees local asymptotic stability of the origin ofHp and local optimality.

• κ1 guarantees global asymptotic stability of the origin ofHp and robustness.

Then, Proposition 1 can be solved by supervising control technique described in Sec-
tion 5.5, through a hybrid supervisor which governs the switching between the two. The
supervisors relies on a hysteresis region to avoid undesirable switching and chattering.
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5.3 Local linear control law

For linearized dynamics described in Section 2.4.1, we adopt a local robust controller
with guaranteed H∞ performance that have been proposed in Zanchettin et al. (2013),
which is briefly recalled hereafter. It consists of a projection-based feedback u = Kxr,
where the constant-gain matrix K is designed so as to provide a guaranteed level of
disturbance attenuation. To this end, a performance index is defined as the H∞ norm of
the input/output transfer function Fyw. In time domain and for the considered class of
systems, the H∞ norm is equivalent to the L2 gain of Fyw:

‖Fyw‖∞ = sup
w∈L2

‖y‖2
‖w‖2

(5.5)

where w is the input of interest, assumed be equal to total disturbance τ d in the consid-
ered case, and y is the performance output measure:

y =


I3×3

03×3

σK

 = Cxr (5.6)

where σ being a design parameter introduced to limit the control effort and xr is the state
of linearized dynamics, defined in Section 2.4.1.

The operator Fyw represents the closed-loop transfer function:

Fyw =

A+BK I3×3

C 03×3

 . (5.7)

Provided the LTP system is stable, a frequency domain representation of Fyw can be
obtained by expanding the dynamic matrices in complex Fourier series and computing
their Toeplitz transformations, see Zhou et al. (1999). A frequency domain operator Fσyw
can then be defined, similarly to the frequency analysis of LTI systems.

First, define the Exponentially Modulate Periodic (EMP) signal emp(t) of period T =
2pi/ΩT and modulation s:

emp(t) = ∑
k∈Z emp,ke

skt, sk = s+ jkΩT , (5.8)
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equivalently represented by Emp = [ ... emp,−2 emp,−1 emp,0 emp,1 emp,2 ... ]T , where emp,k
is the k-th harmonic coefficient. The EMP signals are a general form of periodic ones,
which are the a special case with s = 0.

For a stable LTI sysyem (A,B,C,D), complex Fourier series expansions is defined
by means of EMP representation. For a dynamical matrix A (and similarly for B,C,D):

A (t) =
∑
m∈Z

Ame
jmΩT t (5.9)

where Am are the Fourier coefficients and ΩT = 2π
T

. Define a Toeplitz transformation of
A(t):

A = T {(A (t)} =



. . .
...

...
...

· · · A0 A2 A2 · · ·

· · · A1 A0 A1 · · ·

· · · A2 A1 A0 · · ·
...

...
...

. . .


. (5.10)

Define Toeplitz transformations of B,C,D as B, C and D and the input/output Har-
monic Transfer Function (HTF):

Fyw (s) = C (sI − (A−N ))−1 B +D (5.11)

where N = blkdiag{inΩTI}, n ∈ Z, i is the imaginary unit and ΩT = 4π
T

. For practical
purpose, truncation of double-infinite, time-invariant operator Fyw can be considered for
approximated input/output H∞ norm transfer function. Eq. 5.5 is valid also for a LTP
system (Zhou et al., 1999) , and it’s possible to find an approximated value by analyzing
asymptotically equivalent LTI representation. See Zhou and Hagiwara (2005) for more
details.

To minimize ‖Fyw(s)‖∞, the gain matrix K needs to be tuned, under stability con-
straints on the characteristics multipliers of the monodromy matrix. These can be com-
puted as described in Section 2.5. The control problem is formalized as:

min
K
‖Fyw(s)‖∞ subject to ρ(ψA+B(t)K) < 1. (5.12)
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5.4. Global nonlinear control law

Since the resulting cost function is non-smooth, a randomized iterative optimization
algorithm is employed to solve the minimization problem, as described in Zanchettin
et al. (2013).

5.4 Global nonlinear control law

The global stability for a magnetically actuated spacecraft can be achieved, in a
disturbance-free case, through a projected, PD-like, nonlinear control law. This result
was proved in Lovera and Astolfi (2004) by means of the averaging technique. We will
extend the result and show the input-to-state stability for the averaged nonlinear dynam-
ics described in Section 2.4 with respect to bounded disturbances, starting from the ISS
properties of a fully actuated system as provided in Hu and Zhang (2018).

Once ISS of the nonlinear averaged system subject to a PD-like feedback is provided,
semi-global practical asymptotic stability of the actual system will be shown recalling
the results in Nešić and Teel (2001).

5.4.1 Averaging of the nonlinear systems

Averaging theory applies to systems with system dynamics which can be divided in
different time scales, i.e when time-variance period is small with respect to the dynamics.
If the system can be expressed as functions of a small parameter ε > 0:

ẋ = f (t,x, ε) , (5.13)

and continuity of solutions with respect the initial conditions holds, the following theo-
rem applies (Khalil, 1996).

Theorem 5.4.1. Let f (t,x, ε) and its partial derivatives with respect to (x, ε) up to the
second order be continuous and bounded for f (t,x, ε) ε [0, ∞)×D0× [0, ε0], for every
compact set D0 ∈ D, where ε > 0 and D ∈ Rn is a domain. If there exists a limit:

fav (x) = lim
T→∞

1
T

∫ t+T

t
f (s,x, ε) |ε=0ds, (5.14)

and a function βav ∈ KL, ∀ T > T ? > 0, for some T ?:

| 1
T

∫ t+T

t
f(t,x, 0)− fav(x)| < βav(max(|x|, 1), T ), (5.15)
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then fav (x) is called a time invariant average of f (t,x, ε).

If the origin x = 0 ∈ D is an exponentially stable equilibrium point of the averaged
system and the initial condition of the system lies in the compact subset of the region of
attraction, then there exists ε∗ such that for all 0 < ε < ε∗, x(t, ε) is defined and for a
function α ∈ K:

x (t, ε)− xav (εt) = O (α (ε)) ∀ t ε [0,∞). (5.16)

Moreover, if f (t, 0, ε) = 0 for all (t, ε) ε [0,∞)× [0, ε0], the origin is an exponen-
tially stable equilibrium point of the actual system.

The closeness of trajectories of the averaged and actual systems follows after rear-
ranging the former so as to differ from the latter by a small perturbation (in parameter ε),
see Khalil (1996). The general result is that GAS of the averaged system implies uniform
semi-global practical stability of the actual system:

Definition 5.4.1. The system ẋ = f (t,x, ε) is semi-globally asymptotically practically
stable in ε if there exists β ∈ KL and for each pair of strictly positive real ρ,Ωx there
exists ε∗ s.t for all ε ∈ (0, ε∗) the solution satisfy |x (t)| ≤ β (x (0) , t− t0)+ρ whenever
x (0) < Ωx.

However, in case of an exogenous signal, such as input disturbance, no results on the
performance are provided by the above theorem. To provide performance index in case
of disturbances, Input-to-State notion for L∞ stability analysis presented in Section 2.5
has been extended in the context of averaging (Nešić and Teel, 2001).

Let us extend the average definition presented in Theorem 5.4.1, rearranged with
respect to a time variable s = εt:

Definition 5.4.2. A locally Lipschitz function fsa : Rn×Rm → Rn is said to be a strong
average of f (s,x,w) if there exists a class KL function βav and a T ∗ > 0 such that
∀t ≥ 0, ∀w ∈ L∞, ∀T ≥ T ∗, the following holds:∣∣∣∣∣ 1T

∫ t+T

t
[fsa (x,w (s))− f (s,x,w (s)] ds

∣∣∣∣∣ ≤ βav (max {|x| ,w, 1}, T ) , (5.17)

and is defined as ẋ = fsa (x,w (s)).

Assume system Eq. 5.13 can be rearranged in presence of input w with respect to a

97



5.4. Global nonlinear control law

time variable s as follows:

δx

δs
= F (s,x) + g(x,w). (5.18)

It was shown by Teel et al. (1998) that, if there exists an average of F (s,x), denoted
by Fav(x), then fsa(x,w) = Fav(x)+g(x,w) satisfies the above definition of the strong
average. In this case computing the strong average is as difficult as computing the average
for a system without disturbances.

The concept of Lyapunov-ISS gain can now be introduced.

Definition 5.4.3. Let γ̃ ∈ G. A time-invariant system ẋ = f(x,w) is said to be
Lyapunov-ISS with gain γ̃ if there exists a function V : Rn → R≥0, α1, α2, α3 ∈ K∞, γ ∈
G s.t. α−1

1 ◦ α2 ◦ γ(s) 6 γ̃(s) for all s ≥ 0 and, for all (x,w):

α1(|x|) 6 V (x) 6 α2(|x|)

|x| ≥ γ(|w|)⇒ δV
δx
f(x,w) 6 −α3(|(|x)).

(5.19)

As a time invariant system is Lyapunov-ISS if and only if it is ISS, the following
theorem implies ISS with gain γ̃ for the actual system:

Theorem 5.4.2. If the strong average of Eq. 5.18 exists and is Lyapunov-ISS with gain
γ̃, then there exists a KL class function βsa and there exist any strictly positive real
numbers Ωx,Ωd, ι, there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) the solutions of the
system satisfy:

|x(t)| = max{βsa(x(t0)), t), γ̃(‖w‖∞)}+ ι,∀t ≥ t0 = 0. (5.20)

Whenever |x(t)| 6 Ωx,‖w‖∞ 6 Ωd, the system is semi-globally practically (in the
parameter ε) ISS with gain γ̃.

The above theorem states that ISS of a strong average implies semi-global practical
ISS of the actual system.

5.4.2 Nonlinear averaged controller

Spacecraft dynamics can be casted in form of Eq 5.13 by a coordinate change ξ =[
ξT1 , ξ

T
2

]T
= [qT , ωT/ε]T :
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ż1 = εW (ξ1)ξ2r

Jξ̇2 = ε (−ξ2 × Jξ2) + 3 ε ω2
o(êz,b × J êz,b)− εΓ (t) Γ−1

av u

(5.21)

where
˙̂Γav = 1

t
Γ− 1

t
Γ̂av and Γ̂av (0) = Γ(0), ˙̂Γav = 1

t

∫ T

0
Γ (t) dt. (5.22)

It was shown in Lovera and Astolfi (2004) that the controllability of the original
system is provided if the following condition is satisfied:

Γ̄ = limT →∞ 1
T

∫ T

0
S
(
b̃ (t)

)
ST

(
b̃ (t)

)
dt > 0 (5.23)

where b̃ (t) = A(q)T b(t)
||b(t)|| , and that the closed loop system can be rendered GAS for some

ε∗, 0 < ε < ε∗, by the following feedback control law:

u = −J−1(εkvω + ε2kpq), (5.24)

with kv and kp positive constants.
For the proof, authors’ of Lovera and Astolfi (2004) considered the following Lya-

punov function:

V1 = 1
2kp

(
ξT1 ξ1 + (ξ14 − 1)2

)
+ (J0ξ2)T A (ξ1)T Γ̄−1A(ξ1) (J0ξ2) (5.25)

where J0 = A (q)T JA(q), whose derivative was shown to become negative semidefinite
using the feedback Eq. 5.24 and in the absence of disturbances.

However, the continuous feedback Eq. 5.24 has two drawbacks, namely a) it is not
robust with respect to arbitrarily small measurement noise due to the unwinding phe-
nomenon, and b) in case of a disturbance torque τ d different from zero, the asymptotic
stability is no longer guaranteed. These two drawbacks will be addressed in Section 5.4.3
and 5.4.4 respectively.

5.4.3 Hybrid nonlinear averaged controller

Due to topological obstruction of the attitude representaion space SO(3), there is no
continuous feedback providing GAS, as robustness with respect arbitrarily small exter-
nal disturbances and measurement noise cannot be provided. In practice, semi-global
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5.4. Global nonlinear control law

asymptotic stability is provided. The issue have been solved in Mayhew et al. (2011),
through adding an auxiliary parameter h, and defining the following hybrid feedback:

u = −J−1 (εkvω + ε2kphqe) if (q,ω, h) ∈ C

h+ = gh(h) = −h if (q,ω, h) ∈ D
(5.26)

with the flow and jump sets defined as C = {(q,ω, h) ∈ S3 × R3 ×H : hq4 > −δ} and
D = (q,ω, h) ∈ S3 × R3 ×H : hq4 ≤ −δ, for all 0 < δ < 0.4, h ∈ H = −1, 1. The
h parameter provides a hysteresis region, so as to avoid so called unwinding phenomena.
Logical hysteresis is shown in Fig. 5.1. For a rising signal, the output value change at
input value of 0.4. For a falling signal , the output value change at input value 1.

Figure 5.1: Logical hysteresis switching
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5.4.4 ISS of the averaged non-linear dynamics

Since the averaged system is fully actuated, robustness by ISS property can be shown
as in Hu and Zhang (2018). By Theorem 5.4.2, ISS of the average provides practical
stability of the nominal system, hence a performance index for the actual system.

Theorem 5.4.3. Consider the averaged, fully actuated system. Suppose the disturbance
is bounded with ‖τ d‖∞ ≥ τ d,max, then the system is forward-complete and there exist
functions βh ∈ KL, γh ∈ G such that the system is Input-To-State stable with respect τ d
with gain function:

γh =

√√√√λmax (P2)
λmin (P1)


√

3 (1 + c2
l )

λmin (Q) + cγ

 (5.27)

where λmax and λmin denote, respectively, the maximum and minimum eigenvalues of
the matrix argument, cγ is an arbitrarily small constant and cl must be small enough to
guarantee that the Lyapunov function:

V2 =
(
ε2kp + clεkv

) [
(1− hq4)2 + qTe qe

]
+ clhq

T
e Jω + 1

2ω
TJω (5.28)

is positive definite. P1 and P2 are matrix bounds on V2:

xTr

 (ε2kp + clεkv)I3×3 −0.5εclλmax(J)I3×3

−0.5εclλmax(J)I3×3 0.5ε2λmin(J)I3×3

xr =

= xTr P1xr ≤ V ≤ xTr P2xr =

xTr

4(ε2kp + clεkv)I3×3 0.5εclλmax(J)I3×3

0.5εclλmax(J)I3×3 0.5ε2λmax(J)I3×3

xr
(5.29)

and Q is defined as:

Q =

clε
2kp 0

0 εkv − 3
2clλmax (J)

 . (5.30)

.

Remark 5.4.1. The constants cγ, cl are necessary for the analysis and do not affect the
controller definition
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5.5. Hybrid supervisor design

Remark 5.4.2. the arbitrarily small constant cγ guarantees the region defined by gain γh
can be reached in finite time.

Proof 5.4.3.1. Only a sketch will be outlined here, see Hu and Zhang (2018) for details.
First, global boundness of ω is proved, by showing that the Lyapunov function derivative
reads V̇2 = −ωTJω when the system is given the feedback Eq. 5.24. Next, xr is shown
to enter in finite time a small region Ωxr, which depends on τ d,max. The Lyapunov func-
tion is shown to decrease in the jump set D, and is shown that its derivative is negative
definite on the flow set C for all xr outside Ωxr and for allQ defined as in Theorem 5.4.3.
Since V2 is monotonically decreasing both in the flow and jump sets as long as xr /∈ Ωxr,
Ωxr is reached in a finite time and with a finite number of jumps.

Theorem 5.4.3 provides a bound on the state norm of the averaged system valid after
some time t∗, through computation of the gain function γh. This bound is a function
of the disturbance L-infinity norm, the principal moments of inertia of the spacecraft,
and the controller parameters kp, kv, ε. For the actual system, semi-globally practical
asymptotic stability is guaranteed if the strong average of the system exists, as shown in
Section 5.4.1.

5.5 Hybrid supervisor design

To solve the uniting problem, a supervisor must be designed. The supervisor selects
the most appropriate controller depending on the value of the plant state so as the feed-
back u renders the target set robustly GAS. The choice of the controller is governed by a
discrete, auxiliary variable z ∈ {0, 1} ≡ Z. A block diagram of the resulting closed loop
system is depicted in Figure 5.2.

The resulting controller is hybrid, since it has continuous and discrete dynamics, and
is defined as:

H :


ż = 0 (z,xp) ∈ Cs := ⋃

z∈Z(CSz × {z})

z+ = gs(z,xp) (z,xp) ∈ Ds := ⋃
z∈Z(DSz × {z})

(5.31)

where gs (z,xp) is the supervisor jump map. The definition of the flow and jump sets for
each controller CSz , DSz and of the jump map gs shall guarantee that (gs (z,xp)×xp) ⊂
Cs ∪Ds for each (z, xp) ∈ Ds. Ds1 and Cs0 have to defined so as to guarantee that the
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Figure 5.2: Supervisory control closed loop system.

solutions starting inside Ds1 with z = 0 remain in a closed set that is a strict subset of
Cs0 . To guarantee asymptotic stability, Cs0 must be a sufficiently small neighbourhood of
the origin and Ds1 have to be small neighbourhood of the origin strictly contained in Cs0 .
Then, the first part of Proposition 1, i.e. GAS of the origin, is satisfied if the following
assumption on the existence of Lyapunov functions holds.

Assumption 5.5.1. For the control laws κ0, κ1, there exist two continuous differentiable
functions Wz : Rn → R≥0 and α1, α2 ∈ K∞ such that, for z = 0, 1 α1

(
|xp|A

)
≤

Wz (xp) ≤ α2
(
|xp|A

)
∀xp ∈ Rn satisfying the following properties:

• There exists an open neighbourhood U0 of the origin and a function ρ0 ∈ PD such
that 〈∇W0(xp), f(xp, κ0(xp))〉 ≤ −ρ0(|xp|A) ∀xp ∈ U0.

• There exists a function ρ1 ∈ PD such that 〈∇W1(xp), f(xp, κ1(xp))〉 ≤ −ρ1(|xp|A)
∀xh ∈ Rn.

To provide GAS, the supervisor is designed as follows. Consider a constant c0 such
that LW0 (c0) := {xp ∈ Rnp : W0 (xp) ≤ c0} ⊂ U0. Let the jump set of the global
controller DS1 ⊂ Lw0 (c0) be a compact set containing the origin on its interior. Take
the flow set of the global controller CS1 = Rn/DS1 , the flow set of the local controller
CS0 = U0 and the jump set of local controller DS0 = Rnp/U0 .

Theorem 5.5.1. Take the supervisor of the form eq. 5.31 defined by the flow and jump
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sets and by dynamics:

C: = {(z,xp) : z ∈ {0, 1} ,xp ∈ CSz}, Ds := {(z,xp) : z ∈ {0, 1} ,xp ∈ DSz}

Hs :


ż = 0

z+ = 1− z.
(5.32)

Proof 5.5.1.1. See Theorem 3.18 and Proposition 3.30 in Goebel et al. (2012).

If Assumption 5.5.1 is satisfied, the supervisorHs makes setAp globally pre-asymptotically
stable (see the definition of GpreAS in Section 2.6)

Before addressing how Assumption 5.5.1 can be satisfied, we first need to design the
supervisor so that switching occurs at most once for every initial condition. This can be
ensured by an appropriate choice of the flow and jump sets, CSz and DSz , for z = 0, 1,
as follows. Set CS1 is chosen to be the entire state space since the nonlinear controller
κ1 is globally stable. Set CS0 is defined as the region of stability of the linear controller
κ0 which, in this work, has been estimated via numerical simulations. Define the jump
set DS1 = {xr :

∥∥∥∥[qTe ωT ]T ∥∥∥∥
2
6 γh · τd,max + ρ}. For an arbitrarily small ρ, it was

shown previously that there exist ε∗ s.t the spacecraft driven by the controller κ1 will
eventually reach this region for all ε ∈ (0, ε∗). The jump set DS0 must contain DS1

and can be selected as large as the region of stability of the linear controller CS0 . The
difference between DS0 and DS1 determines the hysteresis region. To guarantee that the
disturbances will not drive the system to a switching when the linear controller active,
DS0 must contain the region defined by ‖Fyw‖∞ · τd,max.

To prove that Assumption 5.5.1 is satisfied, assume no disturbances affect the sys-
tem. For the local controller, the existence of Lyapunov function W0 is guaranteed by
the stability condition on the characteristics multipliers of the monodromy matrix, see
Section 2.5. On the other hand, W1 is simply equal to the Lyapunov function defined
in Theorem 5.4.3. Since both Lyapunov functions are bounded by constants multiplied
by a square of the state norm, common bounds k1, k2 can always be found such that
k1 ‖xp‖2 ≤ Wi (x) ≤ k2 ‖xp‖2, ∀x ∈ Rn with k1, k2 > 0. To show that all the maximal
solutions of the hybrid closed loop systemHcl are complete, we notice that the supervisor
defined by Theorem 5.5.1 guarantees that every maximal solution ends up in CS0 and no
maximal solution starting in CS0 ends up in Rn/CS0 . The closed loop system with z = 0
is locally (asymptotically) stable with unbounded domxp, flowing in between jumps of
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ν. It follows that every maximal solution is complete.
Robustness is provided for any ‖τ d‖∞ 6 τd,max and any xp(0, 0) since:

• The global controller guarantees practical global stability with region of attraction
DS1 ⊂ Lw0

(c1).

• The local controller guarantees stability over a region Lw0(c0), with Lw0 (c1) ⊂
Lw0(c0).

• All trajectories starting inside Lw0 (c1) are ensured to remain inside U0.

In practice, thanks to the hysteresis region the system will stabilize within maximum two
jumps. By design, trajectories starting in DS1 cannot reach DS0 in presence of bounded
disturbances and Proposition 1 is thus satisfied.

5.6 Simulations of hybrid magnetic attitude control law

To address the performance of the magnetic hybrid controller, a Matlab-based simu-
lation environment was developed. Attitude and orbit dynamics of a spacecraft traveling
on a nearly polar, circular low Earth orbit, are modeled as in Invernizzi and Lovera (2019)
and Rodriquez-Vazquez et al. (2015).

Main spacecraft, orbit and disturbances properties are summarized in Table 5.1. The
total disturbance τ d acting on the spacecraft is the sum of the torques due to gravity
gradient, aerodynamic drag, residual magnetic dipole and solar radiation pressure, which
have been computed according to the models described in Section 2.7.

The spacecraft inertia properties are known, the gravity gradient torque magnitude is
estimated by Eq. 2.37 and is ≈ 1.25 · 10−6Nm. The residual magnetic dipole, inducted
mainly by the internal current loops, is expected to be of the order of mres = mtot ·
10−3Am2/kg (Cortiella et al., 2016). As the maximum intensity of the earth magnetic
field is bmean = [0.0734 0.2107 0.2145]T · 10−4T , following Eq. 2.39 the magnitude of
the disturbance torque can be estimated by ‖τ res‖∞ = 1.38 · 10−6Nm. Relatively high,
it could become dominating disturbance at nominal conditions; however, it is matched
by the control input and hence can be compensated almost perfectly.

It is assumed that the distance of the geometric center to the gravity center does not
exceed caero/csrp 6 0.1m, a valid assumption for the considered class of satellites (Cor-
tiella et al., 2016).The aerodynamic properties influence the stability properties of the
satellite, and could the very limiting factor for underactuated control design (Sutherland
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et al., 2017). In the following, the effects of different aerodynamic designs of the space-
craft will be studied by means of Monte-Carlo simulations. The maximum aerodynamic
torque can be computed by Eq. 2.43: the air density at solar maximum is expected to be
ρ = 1 ·10−12kg/m3 (Montenbruck et al., 2002; Wertz, 1978) . Similarly, maximum solar
radiation torque is computed by Eq. 2.45: it has almost negligible effect.

The maximum control torque depends on the on-board magnetorquers: it is assumed a
maximum dipole of 2.5Am2. The magnitude of the maximum control torque is therefore
‖u‖max ≈ 8 · 10−5Nm. The matched disturbance is one order of magnitude smaller, and
does not affect static error. The unmatched disturbance effect can be estimated by means
of the analysis done in the previous sections.

The magnetic field along the orbit is computed through the IGRF model. Angular
rates, attitude angles and geomagnetic field data fed to the controller are corrupted by
zero-mean white noise having standard deviations respectively equal to 0.01°/s, 0.1° deg
and 6 nT . The sampling time is set to one second. Inertia moments uncertainty of 1%
has also been simulated. Note that very conservative assumptions have been adopted in
modelling the disturbances, leading to high magnitudes of the unmatched torques, i.e.
the aerodynamic and solar radiation pressure ones.

The gain matrix K for the local controller κ0 was computed following the procedure
described in Section 5.3, yielding to:

K =


−0.183 0.002 0.004 −22.24 0.183 0.473

0.004 −0.019 0.182 0.314 −1.592 15.383

−0.002 −0.182 −0.019 −0.187 −17.911 −1.85

 . (5.33)

Parameters used for the nonlinear controller κ1 are:

ε = 0.001; kp = 5 ; kd = 10; δ = 0.1; (5.34)

which, according to Eq. 5.27, lead to γh · ‖τ d‖∞ = 0.351 for cγ = 0, ρ = 0. We chose
DS1 = xp : ‖xcr‖ 6 0.4. This bound guarantee the local region can be reached in finite
time. The rationale of this choice is twofold: a low value provides a large hysteresis
region and stability of the linear controller. It was verified through simulations that local
controller attraction region U0 is larger than the chosen set DS1 .
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Table 5.1: Simulation parameters

Spacecraft and orbit properties

Inertia matrix J = diag ([1.28 1.12 0.57]) kgm2

Orbit inclination 88 degree

Orbit height ≈ 600km

Maximum control dipole 2.5 Am2

Onboard residual dipole 0.1 Am2

Magnitude of centre of pressure off-
set

0.1 m

Disturbances parameters

Disturbance type Maximum norm

Gravity gradient 1.25 · 10−6 Nm

Residual magnetic torque 2.38 · 10−6Nm

Aerodynamic drag torque 1.65 · 10−6Nm

Solar radiation pressure torque 8.51 · 10−7Nm

Total disturbance 6.13 · 10−6Nm

Set DS0 must be larger than U0 = xp : ‖xr‖ 6 ‖Fyw‖∞ · ‖τ d‖∞ = 0.514. Starting
from this assumption, it was found through the simulations that the linear controller per-
forms better than the nonlinear one in the following region xp : ‖xr‖ 6 1, which is cho-
sen as the jump set DS0 . In Fig. 5.3 (a), the attitude response of the hybrid controller for
the disturbance-free case is shown, with initial angular speedω(0) = (0.1 0.1 0.1) rad/s
. As expected, asymptotic stability is achieved in the absence of disturbances. In Fig. 5.3
(b), the norm of the reduced state is shown. When the state norm threshold of 0.4 (dash-
dot line) is crossed, the supervisor switches to controller κ0.

Fig. 5.4 depicts the attitude of the system driven by the supervising controller in
presence of disturbances, starting from the same initial conditions. In this case, the hy-
brid controller maintains the roll-pitch-yaw error angles below ≈ 25°. As expected, the
switching time is almost unaffected, as it mainly depends on the initial angular rate.

In Fig. 5.5 a comparison of the pure nonlinear (solid line) and supervised (dashed
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Figure 5.3: Disturbance-free case (a) attitude (b) reduced state norm

0 1 2 3 4 5 6 7 8 9 10

Orbits

-150

-100

-50

0

50

100

150

A
tt

it
u

d
e

 (
d

e
g

)

Roll angle

Pitch angle

Yaw angle

Figure 5.4: Attitude evolution of the spacecraft in case of disturbances

line) controllers is shown. The trajectory is the same until DS1 boundary (dash-dot line)
is reached, when the hybrid controller switches from κ1 to κ0. After switching, the
local controller outperforms the pure non-linear one in maintaining the state closer to the
origin, thereby confirming the rationale behind the use of united controllers.

The time history of the control magnetic dipole along the same simulation, computed
by the Eq. 2.28, is shown in Fig. 5.6 . In the first part all the available torque is em-
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5.7. Discussion

ployed by the nonlinear controller to dissipate the spacecraft kinetic energy, saturating
the dipole. This behaviour guarantees the fastest possible angular speed damping. The
transient is followed by a steady-state, where the linear controller is active. In steady-
state, magnetorquers are maintained far from saturation: this outcome is to be expected,
since the control effort of κ0 is limited by design within the definition of the performance
index, Eq. 5.5.

To investigate how the system performance is affected by disturbances, a sensitivity
analysis was done by analysing the system trajectories with respect to random variations
in the direction of the aerodynamic and solar radiation pressure centers, magnetic dipole
and initial angular speed. The maximum disturbance norm and control gains are kept
constant throughout the simulations. Results of a series of 1000 Monte Carlo runs, ex-
pressed in terms of maximum attitude error angle after the transient, are shown in Fig. 5.7
with random aerodynamic center and solar pressure center by the histogram distribution
of such angle. For all simulations, only one switching from κ1 to κ0 occurs, as required
by the design of the supervisor.

Overall, the performance of the hybrid controller proved to comply with the design
objectives: for all simulations, pointing errors remain bounded, and the state norm re-
mains inside region U0, according to the bounds predicted by the H∞ norm of the in-
put/output operator for κ0. When compared to existing solutions for the purely magnetic
spacecraft attitude control, the hybrid controller developed herein compares favourably.
It leads to pointing errors in line with those of existing locally optimal controllers (Ovchin-
nikov and Roldugin, 2019; Chasset et al., 2013), which are in turn better than those of
typical nonlinear controllers (Invernizzi and Lovera, 2019). As far as convergence time
is concerned, it largely depends on the magnitude of the initial angular speed. In our
simulations, convergence is achieved in about one orbit, soon after the switching from
κ1 to κ0 occurs. Note that, in existing implementations, local magnetic controllers are
usually enabled following a detumbling phase (Silani and Lovera, 2005), which there-
fore assumes a role similar to the one played by κ1 in our hybrid controller. In such case,
however, the angular velocity bound is set heuristically.

5.7 Discussion

Robust and global three-axis attitude control of inertial-pointing satellite by means of
solely magnetic actuation is proposed. The control goal is achieved thanks to a uniting
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Figure 5.7: Pointing errors with random aerodynamic center and solar pressure center

control design: a local optimal and or global robust controllers are implemented together
with a hybrid supervisor. Hybrid framework aims at overcoming topological obstructions
and time dependence.

Controllers domains are designed according to appropriate input-output functions and
to the magnitude of disturbances affecting the system. Averaged control theory is applied
to the nonlinear controller to find Input-to-State gain. H-inf norm of the linear controller
provides respective performance index for local control law.

Numerical simulations results shows that robustness and performance requirments are
satisfied. The hybrid controller brings remarkable advantages: GAS is provided, along
with a systematic approach for solving the uniting controllers problem, analytical tools
for robustness analysis and guaranteed performance for a known disturbance level.
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6
Conclusions and Perspectives

The rising popularity of the small- and nano-satellites poses new challenges in front
of the scientific community. The low-cost nanosatellites development philosophy may
undermine their reliability. The reliability of the ADCS, an inherently complex and often
underdeveloped subsystem in the considered satellites class, was addressed in this work.

In the first part of the manuscript, design of a dynamic testbed for ADCS verification
is described. The development was done with CubeSat form-factor in mind. However, the
facility is quite flexible in terms of ADCS applications testability, as it can host nanosatel-
lite mock-up of different size and control modes (such as zero momentum, momentum
bias, spinning bus), while allowing for variable sunlight and magnetic field intensity.

Budget constraints led the design choices towards a low hardware complexity. These
includes, for example, employing a customized LED studio light rather than a COTS Sun
simulator, and opting for a simpler monocular vision system, rather than a COTS multi-
camera solution. In doing so, the hardware cost of the entire facility was kept within the
budget constraints, yet obtaining adequate performances. These were achieved, in turn,
by developing:

- a custom designed rotating platforms, with reduced structural deformation, for 1U
and 3U CubeSats testing;

- feedback controlled, magnetic field simulator;
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- a collimation system for the LED light for sun simulations, whose divergence and
spatial uniformity have been experimentally verified;

- a custom monocular vision system for ground truth attitude-generation;

- an automatic balancing system.

A novel balancing procedure was designed and implemented on the testbed. Per-
formance assessment of the automatic mass balancing system has been addressed both
by numerical simulations and experimentally. Through the simulations, effects of main
sources of measurement noise, system uncertainties, and unmodelled disturbances have
been analyzed, allowing to identify the algorithms combination leading to the most effec-
tive balancing. This was then implemented on embedded real-time hardware, requiring
no actuators other than simple linear stages, and experimentally tested, providing a resid-
ual torque of less than 5 · 10−5 Nm.

The experimental subsystems verification results confirm that adequate performance
for nanosatellite ADCS ground-based simulators can be reached even with low-cost hard-
ware, with the automatic balancing system being effective in reducing the disturbance
torque down to the hardware-dependent limit.

In the second part of the thesis, attitude control by means of solely magnetic actuation
is addressed. The control problem is inherently complex: instantaneous underactuation
and time variance threat the stability properties of the closed loop system. At the same
time, due to unmatched time-varying disturbances which cannot be compensated, low
pointing errors are difficult to achieve.

To solve this problem, a novel control law was developed: by means of a hybrid
supervisor, uniting of an optimal local regulator and a robust global control law was
performed. Global attitude stability is ensured, while achieving local optimality and
robustness against bounded disturbances, both matched and unmatched by the control
action, and measurement noise. Global asymptotic stability was proved thanks to the
properties of the designed supervising algorithm and then verified through Monte Carlo
simulations.

Starting from the research work described in this thesis, possible future developments
are identified. Several improvements of the facility are ongoing:

• integration of higher-end sensors, as a first step towards further reduction of the
residual disturbance torque;
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• further structural optimization of the rotational support for reducing its weight
without impacting the flexural rigidity;

• development and implementation of new control laws for planar balancing to en-
hance the robustness against system uncertainties;

• development of simulator software and hardware, for attitude control and determi-
nation algorithms HIL testing.

As the described facility is now fully commissioned, the proposed hybrid attitude
control law can be implemented on-board of the simulator and experimentally tested.
Further analysis on the proposed algorithm is ongoing, in particular the selection of the
switching bounds can be done in an optimal way by analyzing the input-output functions.

Since the proposed approach shows the great potential that hybrid control theory has
in solving challenging problems, such as the one of the underactuated spacecraft atti-
tude control, it can be employed to design attitude control laws based on different actu-
ators. Indeed, supervised control allows combining multiple controllers, thus exploiting
their respective benefits, and provides tools for handling efficiently the discrete dynamics
which arises from such a combination. In addition, the developed facility makes possi-
ble to test new algorithms experimentally, thus providing better understanding of their
performance and capabilities.
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