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DOTTORATO DI RICERCA IN MATEMATICA

Ciclo XXXIII

Settore Concorsuale: 01/A3
Settore Scientifico Disciplinare: MAT/05

Low codimensional intrinsic regular submanifolds

in the Heisenberg group Hn

Presentata da: Francesca Corni

Coordinatore Dottorato:
Chiar.mo Prof.
Fabrizio Caselli

Supervisore:
Chiar.mo Prof.
Bruno Franchi

Co-supervisore:
Chiar.mo Prof.

Francesco Serra Cassano

Esame finale anno 2021





Abstract

The thesis mainly concerns the study of intrinsically regular submanifolds of low codi-
mension in the Heisenberg group Hn, called H-regular surfaces of low codimension, from
the point of view of geometric measure theory. We consider an H-regular surface of Hn

of codimension k, with k between 1 and n, parametrized by a uniformly intrinsically dif-
ferentiable map acting between two homogeneous complementary subgroups of Hn, with
target subgroup horizontal of dimension k. In particular the considered submanifold is
the intrinsic graph of the parametrization. We extend various results of Ambrosio, Serra
Cassano and Vittone, available for the case when k = 1. We prove that the uniform intrin-
sic differentiability of the parametrizing map is equivalent to the existence and continuity
of its intrinsic differential, to the local existence of a suitable approximating family of
Euclidean regular maps, and, when the domain and the codomain of the map are orthog-
onal, to the existence and continuity of suitably defined intrinsic partial derivatives of the
function. Successively, we present a series of area formulas, proved in collaboration with
V. Magnani. They allow to compute the (2n + 2 − k)-dimensional spherical Hausdorff
measure and the (2n+2−k)-dimensional centered Hausdorff measure of the parametrized
H-regular surface, with respect to any homogeneous distance fixed on Hn.

Furthermore, we focus on (G,M)-regular sets of G, where G and M are two arbitrary
Carnot groups. Suitable implicit function theorems ensure the local existence of an in-
trinsic parametrization of such a set, at any of its points. We prove that it is uniformly
intrinsically differentiable.

Finally, we prove a coarea-type inequality for a continuously Pansu differentiable func-
tion acting between two Carnot groups endowed with homogeneous distances. We assume
that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu
differential is everywhere surjective.





Sintesi

La tesi riguarda principalmente lo studio delle sottovarietà intrinsecamente regolari nel
gruppo di Heisenberg Hn, chiamate superfici H-regolari di codimensione bassa, dal punto
di vista della teoria geometrica della misura. Consideriamo una superfice H-regolare di
codimensione k, con k compreso tra 1 ed n, parametrizzata da una funzione uniformemente
intrinsecamente differenziabile che agisce tra due sottogruppi omogenei complementari di
Hn, con sottogruppo di arrivo orizzontale di dimensione k. In particolare, la superficie
considerata è il grafico intrinseco della parametrizzatione. Generalizziamo vari risultati
di Ambrosio, Serra Cassano e Vittone, validi per il caso k = 1. Dimostriamo che la
differenziabilità intrinseca uniforme della parametrizzazione è equivalente all’esistenza e
continuità del suo differenziale intrinseco, all’esistenza locale di una successione di mappe
regolari dal punto di vista Euclideo che approssimano opportunamente la funzione, e,
quando dominio e codominio della mappa sono ortogonali, all’esistenza e continuità di
derivate parziali intrinseche, opportunamente definite, della funzione. Successivamente,
presentiamo una serie di formule dell’area, ottenute in collaborazione con V. Magnani.
Esse permettono di calcolare la misura di Hausdorff sferica (2n + 2 − k)-dimensionale
e la misura di Hausdorff centrata (2n + 2 − k)-dimensionale della superficie H-regolare
parametrizzata, rispetto ad una qualsiasi distanza omogenea fissata su Hn.

In seguito, ci concentriamo sugli insiemi (G,M)-regolari di G, dove G e M sono
due gruppi di Carnot arbitrari. Adeguati teoremi della funzione implicita, assicurano
l’esistenza locale di una parametrizzazione intrinseca per un tale insieme, ad ognuno dei
suoi punti. Nella tesi dimostriamo che tale mappa è uniformemente intrinsecamente dif-
ferenziabile.

Infine, dimostriamo una disuguaglianza di tipo coarea per una mappa continuamente
Pansu differenziabile che agisce tra due gruppi di Carnot dotati di distanze omogenee.
Assumiamo che gli insiemi di livello della funzione siano uniformemente Ahlfors regolari
dal basso e che il differenziale di Pansu sia ovunque suriettivo.





Introduction

A Carnot group G is a finite dimensional connected, simply connected, nilpotent Lie
group such that the Lie algebra of the left invariant vector fields on G, Lie(G), is stratified,
namely it can be written as a finite direct sum of linear subspaces V1, . . . , Vκ such that

Lie(G) = V1 ⊕ · · · ⊕ Vκ

and
[V1, Vi] = Vi+1 for 1 ≤ i ≤ κ− 1, Vκ 6= {0}, [V1, Vκ] = {0}.

In the literature, Carnot groups are also referred to as stratified groups. A Carnot group
G is naturally endowed with a family of left translations {lx}x∈G, where lx(y) = x · y for
every y ∈ G. We equip G with a graded left invariant Riemannian metric g, namely a
Riemannian metric with respect to which the subspaces V1, . . . , Vκ are orthogonal and all
left translations are isometries. The stratification of the Lie algebra allows to introduce
a family of anisotropic dilations on G, {δt}t>0, that makes G a homogeneous group in
the sense of [FS82]. The Lie algebra of G can be identified with the tangent space at the
identity element of the group TeG, so that the first layer V1 of Lie(G) individuates by
left translation a subbundle HG of the tangent bundle called the horizontal bundle of G.
More precisely, if we fix a basis (X1, . . . , Xm1) of V1, the fiber of HG at x is defined as

HxG = span(X1(x), . . . , Xm1(x)) ⊂ TxG;

in other words HG is a smooth distribution of subspaces. By the definition of Carnot
group, the subspace V1 generates by Lie bracket the whole Lie(G). This Lie-generating
condition is related to various mathematical research fields, like subelliptic PDEs, non-
holonomic mechanics and optimal control theory, and it has been referred to in the lit-
erature as Chow’s condition, Hörmander’s condition, total non-holonomicity, or, simply,
bracket generating condition. A horizontal curve on G is an absolutely continuous curve
γ : [0, 1] → G such that γ′(t) ∈ Hγ(t)G for almost every t ∈ [0, 1]. We consider the hori-
zontal curves as the unique admissible ones along which it is possible to move on G. More
in general, given a smooth manifold M and a prescribed smooth distribution of subspaces
∆ ⊂ TM , an admissible curve is an absolutely continuous curve tangent at almost every
point to ∆. The relation between the possibility of connecting two points of M through
an admissible curve and the validity of the Chow’s condition for the set of smooth vector
fields whose value lies at every point in ∆, has been investigated for a long time. During
the same period, Rashevsky and Chow prove indipendently in [Ras38] and [Cho39] that if
∆ satisfies the Chow’s condition, then any two points of M can be joined by an admissible
curve. Therefore, since in our context V1 Lie-generates Lie(G), for any couple of points
x, y ∈ G, there exists a horizontal curve that connects them. This connectivity property
allows to equip G with a so-called Carnot-Carathéodory distance, denoted by dc, that is
defined for every couple of points x, y ∈ G as the infimum of the lengths of the horizontal
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curves joining x and y. Thanks to the results of Chow and Rashevsky, this set of curves
is non empty and dc is finite. The metric space (G, dc) is non-Riemannian at any scale:
G is a sub-Riemannian manifold. The topological dimension q of (G, dc) is always smaller
than or equal to its Hausdorff dimension, that is Q =

∑κ
i=1 idim(Vi): this is a peculiarity

of sub-Riemannian geometry, in fact the two dimensions coincide if and and only if κ = 1,
hence if G is commutative.

The origin of the terminology “Carnot group” goes back to a paper of Carathéodory
of 1909, [Car09], where the author models a thermodynamic process as a curve on Rn
connecting two states and then he considers the adiabatic curves as the admissible ones.
The heath exchanged during a process is represented by the integral of a one-form θ along
the curve representing the involved process, therefore an admissible curve is a curve along
which θ vanishes at every point. This model represents a Carnot-Carathéodory space,
where ∆ can be defined as the distribution of the subspaces of Rn on which θ vanishes.
In this context Carnot raised the first accessibility problem, individuating two states that
cannot be connected by an adiabatic process; this observation related his name to Carnot
groups.

We need to stress that Carnot groups are not just examples of sub-Riemannian mani-
folds, they play a privileged role in this context. They can be seen as infinitesimal models
for sub-Riemannian manifolds, as Euclidean spaces are local models for Riemannian mani-
folds. In fact, a suitable blow-up limit of a sub-Riemannian manifold at a regular point is a
Carnot group, therefore Carnot groups are the natural tangent spaces to sub-Riemannian
manifolds [Mit85, Bel96, MM00]. For valuable introductions to sub-Riemannian geometry
and Carnot groups the reader can refer to [Str86, Gro96, Mon02, BLU07, CDPT07, LD15,
LD17, ABB20] and to the references therein.

The research in analysis on sub-Riemannian manifolds, and, in particular, on Carnot
groups, has been developed along various directions. We recall below some of the main
investigated themes, providing for any topic some related references. Surely the fol-
lowing lists are incomplete, our aim is to give a flavour of the wide available related
literature, without any ambition of completeness. Among the various research lines
we highlight the study of solutions of elliptic PDEs [H6̈7, RS76, BLU07] and degen-
erate elliptic PDEs [Bon69, Fol73], optimal control theory [AR04, Rig05, FR10, Jea14,
Rif14], the problem about the existence and regularity of geodesics [Mon02, LS95, LM08,
Mon14b, LD15], the theory of Sobolev spaces and its connection with Poincarè-type in-
equalities [Jer86, FGW94, FSSC97, HK00, CMPSC16], the theory of singular integrals
[CM14, Fä19, CFO19a], contact and CR geometry [DT06], fractal geometry [BRSC03,
BTW09, MV19], the development of mathematical models for portions of the visual cor-
tex [CS06, SCP08, CS10] and the application of Carnot groups to computer science [NY17,
NY18, NY20]. Indeed, many researches have focused on the extension of the concepts of
geometric measure theory on Carnot groups and, in general, on sub-Riemannian mani-
folds. In particular we recall the study about the Besicovitch covering property [Rig04,
LDR17, GR19, LDR19], the theory of BV functions and Caccioppoli sets [CDG94, FGW94,
GN96, Amb01, FSSC01, Amb02, FSSC03a, AKLD09, AGM15] and the subsequent inves-
tigations about isoperimetric inequalities and isoperimetric sets, [Pan82b, GN96, LR03,
LM05, RR06, DGN08b, RR08, MR09, Mon14a], the theory of minimal surfaces [Pau04a,
BASCV07, CHY07, DGN08a, MSCV08, DGNP09, CCM09, Rit09, DGNP10, HRR10,
SCV14, Mon14a], the various approaches to the study of the regularity of submani-
folds [FSSC03b, ASCV06, CM06, FSSC07, Vit08, BV10, BSC10a, LM11, Mag13, FMS14,
Koz15, MTV15, BCSC15, FS16, SC16, DD17, ADDDLD20, Vit20] and to the study of rec-
tifiable sets [AK00, MSC01, FSSC01, FSSC02, Mag06b, Ser08, AKLD09, MSSC10, CT15,
Rig19, CFO19b, Fä19, DLDMV19, FOR20, CMT20], the theory of currents and differen-
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tial forms [Rum94, FT15, BFP16, BFP20], the development of suitable area and coarea
formulas in Carnot groups [Pan82a, MSC01, Mag01, Mag02b, FSSC07, MV08, LDM10,
Mag11b, KV13, FSSC15, Mag15, MV15, Mag19, JNGV20]. The contributions of this the-
sis fall into the two categories related to the study of the regularity of submanifolds and
to the development of correlated area and coarea formulas. The main characters of our
study are intrinsically regular submanifolds in Carnot groups, that are usually referred to
as intrinsic regular submanifolds, with particular attention to the ones of the Heisenberg
group Hn, n ≥ 1, studied from the point of view of geometric measure theory. Therefore
the material, both the known one and the new one, is organized in order to emphasize
the role of the several presented concepts in relation with this main topic. We present
the original results provided by the thesis explaining at the same time its structure. The
original contributions are proved in Chapters 4, 5, 6 and 7.

In Chapter 1 we collect some preliminary classical notions before introducing the spe-
cific setting of Carnot groups. In particular, we present the definition and a brief introduc-
tion to the space of vector fields on a smooth manifold, the notion of abstract Lie algebra,
the notion of Lie group and the connection between the two, through the concept of left
invariant vector field, the definition and some fundamental properties of the exponential
map, the notions of homogeneous Lie algebra and homogeneous Lie group and, finally, we
provide a synthetic exposition about sub-Riemannian manifolds.

In Chapter 2 we introduce Carnot groups and, in particular, the Heisenberg group
Hn, that is the simplest example of a non commutative Carnot group. For more detailed
introductions to this theme the reader can refer to [FS82, CDPT07, BLU07, SC16] and to
the references therein. Through the identification of G with Lie(G), based on the properties
of the exponential map and on the Baker-Campbell-Hausdorff formula, we consider a
Carnot group G = (G, [·, ·], ·) as a finite dimensional, nilpotent, stratified Lie algebra
(G, [·, ·]), G = V1 ⊕ · · · ⊕ Vκ, endowed with the group product · defined on G by the
Baker-Campbell-Hausdorff operation associated with (G, [·, ·]). In particular the group G
is considered as a vector space. When necessary, it is possible to fix suitable coordinates
of G by choosing a basis adapted to the stratification, so that G can be identified with
the space Rq, endowed with a polynomial group product and a Lie algebra structure.
In Section 2.3 we describe the peculiar structure of the Heisenberg group Hn and we
introduce suitable coordinates on it, then in Section 2.4 we present the definition and the
main properties of homogeneous distances on Carnot groups, namely distances such that
d(x, y) = d(z · x, z · y) for every x, y, z ∈ G and d(δt(x), δt(y)) = td(x, y) for every x, y ∈ G
and t > 0. Given a homogeneous distance d, we define the norm ‖x‖ := d(x, 0) for x ∈ G.
Notice in particular that the Carnot-Carathéodory distance dc is homogeneous and then it
is equivalent to any other homogeneous distance defined on G. In Section 2.5, we consider
G as a measure space, hence we present some measures that can naturally be taken in
consideration on a Carnot group. We present the notions of α-Hausdorff measure Hα
and α-spherical Hausdorff measure Sα, built through Carathéodory’s construction with
respect to a fixed homogeneous distance, and the one of α-centered Hausdorff measure Cα,
due to [RT88]. In addition, we introduce the α-Euclidean Hausdorff measure HαE , again
built through Carathéodory’s construction but now with respect to the Riemannian norm
associated with the fixed Riemannian metric g on G. We conclude the chapter presenting
two abstract differentiation theorems, proved in [FSSC15] and [Mag15]. They will play a
fundamental role in Chapter 6.

Chapter 3 is devoted to a detailed description of the structure of a Carnot group G, both
from outside, in relation with other Carnot groups through appropriate morphisms, and
from within, in regard with homogeneous subgroups, which are natural structures arising
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within G according to its group structure. In particular, we illustrate some fundamental
tools of the differential calculus, on and within a Carnot group, developed in the last
thirty years. When it is possible, we organize these tools in a scheme that retraces the
plan of the corresponding concepts in the Euclidean setting. For the material about h-
homomorphisms and Pansu differentiability we mainly refer to [FS82, Pan89, Mag02a,
Mag13], while for the references concerning homogeneous subgroups, intrinsic graphs,
intrinsic Lipschitz continuity and intrinsic differentiability we follow [FSSC03b, FSSC05,
FSSC06, FSSC07, AS09, FSSC11, FMS14, FS16, SC16]. We start by presenting, in Section
3.1, the definition of homogeneous subgroup: a (Lie) subgroup W ⊂ G is homogeneous
if δt(w) ∈ W for every w ∈ W and t > 0. Two complementary subgroups of G are two
homogeneous subgroups W,V ⊂ G such that W∩V = {0} and W ·V = G. If, in addition,
W is normal, we write G = WoV. If G is the product of two complementary subgroups
G = W · V, any element x ∈ G can be written as the (ordered) product of a unique
element πW(x) ∈ W, and a unique element πV(x) ∈ V. As a consequence, the two group
projections πW : G → W and πV : G → V related to the splitting G = W · V are well
defined. In Section 3.1.1 we focus on the properties of some suitable Hausdorff measures
concentrated on a homogeneous subgroup. Contextually, we present some results related
to the splitting of G = V ·W as a product of a homogeneous linear subspace V , that is
not necessarily a subgroup, and a homogeneous normal subgroup W. These results, which
retrace analogous results proved in [Mag20], will be useful in Chapter 7. In Section 3.2
we consider two Carnot groups, G and M, equipped with homogeneous distances, and
we introduce the family of h-homomorphisms, i.e. homogeneous group homomorphisms,
between G and M. We state and discuss the fundamental notion of Pansu differentiability,
due to Pansu [Pan89]: given an open set Ω ⊂ G and a point x ∈ Ω, a map f : Ω → M
is Pansu differentiable at x if it can be approximated, close to x, with respect to the
homogeneous distances, by a h-homomorphism Df(x) : G → M, which is called the
Pansu differential of f at x. If, in particular, f is Pansu differentiable at every point
of Ω and the Pansu differential is continuous, we say that f ∈ C1

h(Ω,M). Section 3.3
contains a brief introduction to the theory of functions of bounded variation and locally
finite perimeter sets in Carnot groups. The contributions of the thesis do not rely in
particular on these concepts, but they are preliminary to understand the state of the art
about intrinsic regular hypersurfaces in Carnot groups. Sections 3.4 and 3.5 are devoted
to the notion and the properties of intrinsic graphs, due to Franchi, Serapioni and Serra
Cassano [FSSC03b, FSSC07]. Actually, a theory of regularity has been developed for maps
acting between two complementary subgroups of a Carnot group. We sketch here just the
concepts underlying the main definitions. We consider two complementary subgroups of
a Carnot group G = W · V and a map φ : U → V, with U ⊂W. The intrinsic graph of φ
is the set

graph(φ) = {w · φ(w) : w ∈ U}.

We call graph map of φ the map Φ : U → G, Φ(w) := w · φ(w). The term “intrinsic” has
a precise meaning in this context. It is used to emphasize concepts that are invariant with
respect to left translations and anisotropic dilations, therefore, in this sense, an intrinsic
object fits the Carnot group structure. For instance, if we fix a point x ∈ G there exists
a well defined map φx : Ux → V, where Ux ⊂ W is a suitable set depending on U and x,
such that lx(graph(φ)) = graph(φx). Assume now that U is (relatively) open. A map φ is
said to be intrinsic Lipschitz if there exists an appropriately defined homogeneous cone,
whose (left) cosets by points of graph(φ) do not intersect the intrinsic graph of φ, except
for the vertex. In other words, we say that φ is intrinsic C-Lipschitz, for some positive
number C, if for every w,w′ ∈ U , ‖πV(Φ(w′)−1 · Φ(w))‖ ≤ C‖πW(Φ(w′)−1 · Φ(w))‖. A
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map L : W → V is intrinsic linear if graph(L) is a homogeneous subgroup. If we fix a
point w̄ ∈ U , we say that the function φ is intrinsically differentiable at w̄ if there exists (a
left coset of) a homogeneous subgroup that approximates graph(φ) at Φ(w̄) with respect
to the homogeneous distance fixed on G, namely if there exists an intrinsic linear map
dφw̄ : W→ V, called the intrinsic differential of φ at w̄, such that

‖dφw̄(w)−1 · φΦ(w̄)−1(w)‖ = o(‖w‖) (1)

as ‖w‖ → 0, for w ∈ UΦ(w̄)−1 . Moreover, if the approximation (1) holds uniformly close
to w̄, we say that φ is uniformly intrinsically differentiable at w̄ (Definition 3.5.29). We
end Chapter 3 with Section 3.6, which is dedicated to some recent remarkable progresses
presented in [FMS14, FS16, NY18, Vit20], arised from the study of intrinsic Lipschitz
maps φ acting between two complementary subgroups, with one dimensional target space.

In Chapter 4 we present the main characters of our investigation: intrinsic regular
submanifolds within a Carnot group. This research topic originated by the necessity of
stating “good” notions of submanifold and rectifiable set in a Carnot group, that is to
say searching for definitions that suit the algebraic homogeneous structure of a Carnot
group. In fact, the classical notions of regular surface and rectifiable set in a general
metric space, due to [Fed69], are not appropriate to achieve this aim (for instance one can
refer to [AK00]). This consideration opened the path towards the introduction of several
innovative notions. We start by presenting H-regular surfaces in the Heisenberg group
Hn, following [FSSC07, SC16] and the references therein. We distinguish low dimensional
H-regular surfaces and low codimensional ones. Since the thesis will mainly focus on the
latter ones, here we sketch only their definition.

Definition 1. A set Σ ⊂ Hn is an H-regular surface of codimension k, with 1 ≤ k ≤ n,
if for every x̄ ∈ Σ there exist an open set Ω such that x̄ ∈ Ω ⊂ Hn, and a continuously
Pansu differentiable map f ∈ C1

h(Ω,Rk) such that Σ∩Ω = f−1(0) and such that the Pansu
differential Df(x) is a surjective map for every x ∈ Ω.

A suitable implicit function theorem by Franchi, Serapioni, and Serra Cassano per-
mits to deduce that for any H-regular surface Σ ⊂ Hn there exists locally a homogeneous
horizontal subgroup V of Hn such that, for every homogeneous subgroup W ⊂ Hn com-
plementary to V, Σ is locally the intrinsic graph of a unique continuous function acting
between W and V. The notion of H-regular surface has then been extended in [Mag13]
from the Heisenberg group to a generic Carnot group, through the notions of (G,M)-
regular sets of G and of M, presented in Section 4.2, where G and M are arbitrary Carnot
groups. We mainly focus on (G,M)-regular sets of G.

Definition 2. If G and M are Carnot groups, a set Σ ⊂ G is a (G,M)-regular set of G if for
every x̄ ∈ Σ there exist an open set Ω, such that x̄ ∈ Ω ⊂ G, and a function f ∈ C1

h(Ω,M)
such that Σ ∩Ω = f−1(0) and, for every x ∈ Ω, the Pansu differential Df(x) is surjective
and there exists a homogeneous subgroup V complementary to kerDf(x).

Thanks to an implicit function theorem proved by Magnani, according to the notation
of Definition 2, Σ is locally the intrinsic graph of an intrinsic Lipschitz map φ : U → V,
where U is a relatively open subset of ker(Df(x̄)). In Section 4.3, still according to the
notation of Definition 2, we assume that V is a homogeneous subgroup complementary
to ker(Df(x̄)) for every x̄ ∈ Σ and that Σ is parametrized as the intrinsic graph of a
function ψ : U → V, where U ⊂ W is a relatively open set and W is an homogeneous
subgroup complementary to V. Notice that the existence of such a parametrizing map ψ
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is ensured by a recent result in [JNGV20]. Then, we prove that ψ is uniformly intrinsi-
cally differentiable on U , namely that it is uniformly intrinsically differentiable at every
point w ∈ U (Theorem 4.3.7). The proof relies on the explicit verification of the defini-
tion, and on a geometric characterization, of uniform intrinsic differentiability in Carnot
groups. This is the first original contribution of this thesis. We dedicate Section 4.4 to
the family of regular submanifolds investigated by Kozhevnikov in [Koz15], we call these
sets (G,M)K-regular submanifolds. They can be seen as a generalization of (G,M)-regular
sets of G. The research about these submanifolds is still at an early stage and, for this
reason, it is a rich source of open questions and interesting phenomena. In Section 4.5
we see how the definitions of H-regular surface and intrinsic Lipschitz graph have been
applied to state suitable definitions of intrinsically rectifiable set, often referred to in the
literature as intrinsic rectifiable set, in the Heisenberg group. In particular, we present
(k,H)-rectifiable sets of Hn and (k,HL)-rectifiable ones. We sketch how analogous defini-
tions can be introduced in a generic Carnot group. We end the chapter with Section 4.5.1
providing a presentation of the very recent available results about a theory of uniform, or
quantitative, rectifiability in the Heisenberg group. In particular, we expose some details
about the results presented in [NY18], that can be considered the starting point of the
development of this theory. For more details please refer to [Fä19] and to the references
therein.
In Chapter 5 we present the results of [Cor19]. Arena and Serapioni in [AS09] charac-
terized locally any k-codimensional H-regular surface, with 1 ≤ k ≤ n, as the intrinsic
graph of a uniformly intrinsically differentiable map φ : U ⊂ W → V acting between two
complementary subgroups, W and V, of Hn, with W normal of dimension 2n + 1 − k, V
horizontal of dimension k and U ⊂W open set. Comparing this result with the Euclidean
implicit function theorem, it is quite natural to consider the uniform intrinsic differen-
tiability of the parametrizing map φ as the analogue of the Euclidean C1-regularity of a
map acting between two linear subspaces whose direct sum is the whole Euclidean space
Rn. Then, it is quite natural to conjecture the existence of a characterization of the uni-
form intrinsic differentiability of φ in terms of the existence and continuity of the intrinsic
differential of φ or of suitably defined intrinsic partial derivatives of φ. This conjecture
has been positively aswered for k = 1 in [ASCV06, BSC10a, BSC10b, SC16, DD20a], the
results of which are presented in Section 5.2. The analogous problem has been addressed
to in [CMPSC14, BCSC15, ABC16a, ABC16b, DD20b] for the case when φ is an intrinsic
Lipschitz continuous map. Exploiting techniques similar to the ones used in [ASCV06]
and in [BSC10b], we generalize various results of Ambrosio, Serra Cassano and Vittone,
that were proved for a uniformly intrinsically differentiable function φ : U → V, where
U ⊂W is a relatively open set and V is a horizontal homogeneous subgroup of dimension
1, orthogonal and complementary to W. In particular, we extend various outcomes of
[ASCV06] and [SC16] to the case when the target homogeneous subgroup V of φ is still
horizontal and orthogonal to W, but of dimension k with 1 ≤ k ≤ n. Notice that any
horizontal homogeneous subgroup of Hn is necessarily of dimension between 1 and n. We
start by setting suitable coordinates, in Section 5.1: we fix an orthonormal basis B of
Hn and we identify W with R2n+1−k and V with Rk through the two bases B ∩W and
B ∩ V. The map φ is then suitably identified in coordinates with a function, here again
denoted by φ, that acts from an open subset of R2n+1−k to Rk. Any intrinsic linear map
L : W→ V can be identified with a k× (2n−k) real matrix ML ∈Mk,2n−k(R). Therefore,
if a map φ : U ⊂ W → V is intrinsically differentiable at a point w ∈ U we can consider
the matrix associated in this way with the intrinsic differential dφw of φ at w, that is
Dφφ(w) := Mdφw , and we call it the intrinsic Jacobian matrix of φ at w. If a map φ is
C1 (in the Euclidean sense), then it is uniformly intrinsically differentiable on U and for
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every w ∈ U ,

Dφφ(w) =

W φ
1 φ1(w) . . . W φ

2n−kφ1(w)

. . . . . . . . .

W φ
1 φk(w) . . . W φ

2n−kφk(w)

 ,
where {W φ

j }j=1,...,2n−k is a family of 2n − k vector fields on R2n+1−k (Definition 5.1.14).
The first and the last n − k vector fields of this family are smooth and they are simply
the corresponding smooth vector fields of the basis of Lie(W) suitably read in coordinates.
The k central ones, instead, are nonlinear vector fields, whose coefficients depend on φ,
and whose behaviour reminds to the Burger’s operator. The main results of Chapter 5
are presented in Section 5.3 (precisely in Proposition 5.3.21 and in Theorem 5.3.24) and
they can be summarized in the following characterization. Let W, V be two orthogonal
complementary homogeneous subgroups of Hn, with V horizontal subgroup of dimension
k, with 1 ≤ k ≤ n. Let U ⊂W be a relatively open set, let φ : U → V be a function and
set Σ = graph(φ), then the following conditions are equivalent.

(i) φ is uniformly intrinsically differentiable on U .

(ii) There exist an open set Ω of Hn and a function f ∈ C1
h(Ω,Rk) such that Σ = {x ∈

Ω : f(x) = 0} and Df(x)|V : V→ Rk is a homogeneous group isomorphism for every
x ∈ Σ.

(iii) φ ∈ C0(U) and, for every a ∈ U and j ∈ {1, . . . , 2n − k}, there exist ∂φjφ(a) ∈
Rk, i.e. a k-dimensional vector of real numbers

(
α1,j . . . αk,j

)
∈ Rk such that

for every integral curve γj : (−δ, δ) → Ω of W φ
j such that γj(0) = a, the limit

limt→0
φ(γj(t))−φ(a)

t exists and it is equal to
(
α1,j . . . αk,j

)T
and for every j =

1, . . . 2n− k the map
∂φjφ : U → Rk,

is continuous. For every a ∈ U , we call the elements ∂φjφi(a), for i = 1, . . . , k, of
the vectors ∂φjφ(a), for j = 1, . . . , 2n− k, the intrinsic partial derivatives of φ at a.

(iv) φ is intrinsically differentiable on U and the function Dφφ : U → Mk,2n−k(R) is
continuous.

(v) For every point a ∈ U , there exist a positive number δ > 0, a family of maps
{φε}ε>0 ⊂ C1(Iδ(a),Rk), where Iδ(a) = {x ∈ R2n+1−k : |ai − xi| < δ for i =
1, . . . , 2n+1−k}, and a continuous matrix-valued function M : Iδ(a)→Mk,2n−k(R)
such that φε → φ and Dφεφε →M uniformly on Iδ(a) as ε→ 0.

In this direction of research some studies have been carried out after [Cor19]. We dedicate
Section 5.4 to a brief summary of the recent results available in the literature, presented
in [ADDDLD20, ADDD20]. The last section of Chapter 5, Section 5.5, is devoted to the
proof of the first area formula presented in this thesis. We consider on Hn the (2n+2−k)-
centered Hausdorff measure C2n+2−k

∞ , built with respect to the homogeneous distance d∞,
introduced in [FSSC07]. We take in consideration, as before, a uniformly intrinsically
differentiable map φ : U ⊂ W → V with W and V orthogonal complementary subgroups
of Hn, V horizontal subgroup of dimension k, with 1 ≤ k ≤ n, and U ⊂ W relatively
open set, and we set Σ = graph(φ). Combining the characterization above with results in
[FSSC07] and [FSSC15], we obtain an area formula for the measure C2n+2−k

∞ xΣ in terms
of the intrinsic derivatives of the components of φ along the integral curves of the vector
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fields W φj , namely in terms of the intrinsic derivatives of φ on U (Theorem 5.5.5). For
every Borel set B ⊂ Σ

C2n+2−k
∞ (Σ ∩B) =

∫
Φ−1(B)

Jφφ(w) dH2n+1−k
E (w) (2)

where, for every w ∈ U , Jφφ(w) is the intrinsic Jacobian of φ (Definition 5.5.3) at w
defined as

Jφφ(w) =

√√√√1 +
k∑
`=1

∑
I∈I`

(Mφ
I (w))2,

where for every ` ∈ {1, . . . , k}, I` is the set of multi-indexes

{(i1, . . . , i`, j1, . . . , j`) ∈ N2` : 1 ≤ i1 < i2 < · · · < i` ≤ 2n− k, 1 ≤ j1 < j2 · · · < j` ≤ k}

and for I = (i1, . . . , i`, j1, . . . , j`) ∈ I`

Mφ
I (w) = det

∂φi1φj1(w) . . . ∂φi`φj1(w)
. . . . . . . . .

∂φi1φj`(w) . . . ∂φi`φj`(w)

 .

In Chapter 6 we present the results of [CM20], obtained in collaboration with Prof.
V. Magnani of the University of Pisa. The main aim of the chapter is to present some
area formulas for the spherical Hausdorff measure of a regularly parametrized H-regular
surface of low codimension, namely of a uniformly intrinsically differentiable graph of low
codimension in Hn. In Sections 6.1 and 6.2 we introduce some preliminary notions, among
which the concept of extrinsic differentiability for a map f : W→ Rk, where W is a normal
homogeneous subgroup of Hn. From a formal point of view, this notion has been obtained
through a slight modification of the notion of intrinsic differentiability, nevertheless it
allows to prove a suitable chain rule (Theorem 6.2.2), that makes extrinsic differentiability
a bridge between the two notions of Pansu and intrinsic differentiability. In Section 6.3 we
prove the core of the area formulas (Theorem 6.3.4). We consider a uniformly intrinsically
differentiable map φ : U ⊂W→ V acting between two complementary subgroups W and
V of Hn, with V horizontal subgroup of dimension k, 1 ≤ k ≤ n, and U ⊂ W relatively
open. The intrinsic graph of φ, Σ = graph(φ), can always be written as a level set of a map
f ∈ C1

h(Ω,Rk), with Ω ⊂ Hn open set, such that for every y ∈ Σ, Df(y)|V : V → Rk is
a homogeneous group isomorphism, and consequently JVf(y) := J(Df |V(y)) > 0. Let us
fix an orthonormal basis (v1, . . . vk) of V and an orthonormal basis (wk+1, . . . , w2n, e2n+1)
of W, and let us set V = v1 ∧ · · · ∧ vk and W = wk+1 ∧ · · · ∧w2n ∧ e2n+1. We introduce a
measure µ associated to Σ on Hn: for every Borel set B ⊂ Hn

µ(B) := ‖V ∧W‖g
∫

Φ−1(B)

JHf(Φ(w))

JVf(Φ(w))
dH2n+1−k

E (w),

where ‖ · ‖g is the Riemannian norm associated with the metric g on the multivectors of
Hn and for every x ∈ Ω

JHf(x) := J(Df(x)) = ‖∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)‖g,

where ∇Hfi(x) denotes the horizontal gradient of the i-th component of f at x. We
compute the (2n + 2 − k)-Federer density of the measure µ at any fixed point of the
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surface x ∈ Σ, θ2n+2−k(µ, x), with respect to an arbitrary homogeneous distance d on Hn.
We prove that it is equal to the spherical factor βd(Tan(Σ, x)) of the intrinsic subgroup
tangent to the surface at the point x, that is

θ2n+2−k(µ, x) = βd(Tan(Σ, x)) = max
z∈B(0,1)

H2n+1−k
E (Tan(Σ, x) ∩ B(z, 1)),

where B(z, r) denotes the metric closed ball centered at z of radius r with respect to the
distance d. The proof of this “upper blow-up” theorem is preceded by a delicate lemma
about the Jacobian of a restricted group projection related to two semidirect splittings of
the Heisenberg group Hn, WoV and MoV sharing a common horizontal homogeneous
subgroup V. Slightly simplifying the computation of the Federer density of µ on Σ, we
compute the value of the (2n+ 2−k)-centered density of the measure µ at any fixed point
x ∈ Σ, θ2n+2−k

c (µ, x), proving that

θ2n+2−k
c (µ, x) = H2n+1−k

E (Tan(Σ, x) ∩ B(0, 1)).

Finally, Section 6.4 contains a series of area formulas for Σ. In fact, combining the value
of the Federer density of µ on Σ with a result of [Mag15], we deduce that (Theorem 6.4.1),
for every homogeneous distance d on Hn, for every measurable set B ⊂ Σ

µ(B) =

∫
B
βd(Tan(Σ, x)) dS2k+2−k(x). (3)

If, in addition, the distance d preserves some symmetries, namely d is (2n+1−k)-vertically
symmetric (Definition 6.1.2) or multiradial (Definition 6.1.5), the formula simplifies. In
this case, by suitable results of [Mag18, Mag20], the spherical factor βd(Tan(µ, x)) is a
geometric constant ωd(2n+1−k) that depends only on the distance d and on the topological
dimension of Tan(Σ, x), that in our case equals 2n+1−k for every x ∈ Σ. Normalizing the
spherical Hausdorff measure as S2n+2−k

d := ωd(2n+ 1− k)S2n+2−k, formula (3) simplifies
to

S2n+2−k
d xΣ = µxΣ.

Moreover, if we assume W and V to be orthogonal, it is possible, adopting suitable co-
ordinates, to rewrite the measure µ uniquely in terms of the intrinsic derivatives of the
parametrization φ (Theorem 6.4.4), as we did in the proof of (2). Actually, in this case, if
the distance d is (2n+ 1− k)-vertically symmetric or multiradial, the spherical Hausdorff
measure of Σ can be computed, for any Borel set B ⊂ Σ, as

S2n+2−k
d (B) =

∫
Φ−1(B)

Jφφ(w) dH2n+1−k
E (w).

Exploiting an analogous path, combining the value of the centered density of the measure µ
on Σ with a result of [FSSC15], we obtain an area formula that joins µ and the (2n+2−k)-
centered Hausdorff measure of Σ, with respect to any homogeneous distance d (Theorem
6.4.5): for every Borel set B ⊂ Σ

µ(B) =

∫
B
H2n+1−k
E (Tan(Σ, x) ∩ B(0, 1)) dC2k+2−k(x).

In addition, we observe that for every homogeneous distance whose unit metric ball B(0, 1)
is convex

S2n+2−kxΣ = C2n+2−kxΣ.
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The last chapter of the thesis, Chapter 7, is devoted to the proof of a coarea-type
inequality for a class of continuously Pansu differentiable mappings with everywhere sur-
jective differential acting between two Carnot groups, presented in [Cor20]. We started to
deepen this theme during a visiting period at Université Paris-Sud, under the supervision
of Prof. P. Pansu. The validity of the coarea formula for Lipschitz maps between two
arbitrary Carnot groups, endowed with homogeneous distances, is an open problem in
the context of geometric measure theory in Carnot groups. In this setting, the more gen-
eral available result, besides a general coarea estimate for Lipschitz maps between metric
spaces, due to [Fed69], is a coarea-type inequality, proved in [Mag02b]. In particular, if G
and M are two Carnot groups, of Hausdorff dimension Q and P and topological dimension
q and p, respectively, endowed with homogeneous distances, if A ⊂ G is a measurable set
and f : A→M is a Lipschitz map, by [Mag02b],∫

M
SQ−P (f−1(m) ∩A)dSP (m) ≤

∫
A
CP (Df(x))dSQ(x), (4)

where CP (Df(x)) is the coarea factor of Df(x) (Definition 7.2.1) that plays the role of
the Jacobian of the Pansu differential and incorporates the contribute of the homogeneous
distances fixed on G and M. In this context, the main challenge consists of replacing
inequality (4) by an equality. After collecting, in Sections 7.1 and 7.2, some preliminary
notions about packing measures, coarea factor and local Ahlfors regularity, in Section 7.3
we prove the following coarea-type inequality (Theorem 7.3.4). Let f ∈ C1

h(G,M) be a
function and assume that Df(x) is surjective at every x ∈ G. Assume that there exist two
constants r̃, C > 0 such that for SP -a.e. m ∈ M the level set f−1(m) is r̃-locally C-lower
Ahlfors (Q−P )-regular with respect to SQ−P , i.e. that for every 0 < r < r̃ and x ∈ f−1(m),
SQ−P (f−1(m)∩B(x, r)) ≥ CrQ−P . Then there exists a constant L = L(C,G, p) such that
for every measurable set A ⊂ G,∫

A
CP (Df(x))dSQ(x) ≤ L

∫
M
SQ−P (f−1(m) ∩A)dSP (m). (5)

The proof of this inequality has been inspired by an abstract procedure presented in
[Pan20], where it is used to prove a coarea inequality for maps acting from a metric
space to a measure space, for packing-type measures. In Section 7.4, as an application of
inequality (5), we propose some new results about the slicing of a subset of G by the level
sets of a map f for which (5) holds. In addition, we compare our result with some available
related ones presented in [Koz15] and [JNGV20], stressing that the assumption about the
uniform local lower Ahlfors regularity of the level sets of the map f is not pointless and
that it can be meant as a substitute of the existence of a suitable splitting of G.
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Chapter 1

Preliminary notions

The aim of this chapter is to introduce, in a synthetic way, some useful definitions
and results needed to understand the setting in which the contributions of the thesis
take place. In particular we collect some information about vector fields, Lie algebras, Lie
groups and sub-Riemannian manifolds. One can refer to any book of differential geometry.
Good introductions, aimed at subsequent topics, are also provided by the first chapters of
[Ric03] and [BLU07].

1.1 Vector fields

In this section we recall some classical notions of differential geometry.

Definition 1.1.1. A topological space M is locally Euclidean of dimension n if for every
point p ∈ M there is a neighbourhood U of p such that there exists a homeomorphism
φ from U onto an open subset of Rn, φ : U → Rn. We call the pair (U, φ) a chart or a
coordinate chart (at p).

Definition 1.1.2. A topological manifold is a Hausdorff, second countable, locally Eu-
clidean space. It is said to be of dimension n if it is locally Euclidean of dimension n.

Definition 1.1.3. Two charts (U, φ), (V, ψ) of a topological manifoldM are C∞-compatible
if the two maps

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are smooth.

Definition 1.1.4. Given a locally Euclidean space M , an atlas of M is a collection
A = {(Uα, φα)} of pairwise C∞-compatible charts that cover M , i.e. such that M =

⋃
α Uα.

In particular, an atlas is said to be maximal if it is not contained in a larger atlas, in
other words, if A′ is any other atlas of M containing A, then A′ = A.

Definition 1.1.5. A smooth manifold is a topological manifold M endowed with a max-
imal atlas.

Definition 1.1.6. If M and N are smooth manifolds, of dimension m and n, respectively,
a map f : M → N is smooth if, for every chart (U, φ) of M and (V, ψ) of N , the map

ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V ))→ Rn

is smooth.
The map f is a diffeomorphism if it is a bijective smooth map whose inverse f−1 is smooth.

13
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Let us fix a smooth manifold M of dimension n. We recall the notion of smooth
vector bundle over M . Roughly speaking it is a smoothly varying family of vector spaces,
parametrized by M .

Definition 1.1.7. Given any map π : E → M , for every point p ∈ M the fiber of E at
p is the inverse image π−1(p) := π−1({p}). The fiber of E at p is often denoted by Ep.
For any two maps π : E → M and π′ : E′ → M with the same target space M a map
φ : E → E′ is said to be fiber-preserving if φ(Ep) = E′p for all p ∈M .

Definition 1.1.8. A surjective smooth map φ : E →M between two manifolds is said to
be locally trivial of rank r if

(i) each fiber π−1(p) has the structure of a vector space of dimension r;

(ii) for each p ∈M , there are an open neighbourhood U ⊂M of p and a fiber-preserving
diffeomorphism φ : π−1(U)× Rk such that for every q ∈ U the restriction φ|π−1(q) :
π−1(q)→ {q} × Rr is a vector space isomorphism.

Definition 1.1.9. A smooth vector bundle of rank r is a triple (E,M, π) consisting of two
manifolds E and M and a surjective smooth map π : E →M that is locally trivial of rank
r. By a slight abuse of language, we say that E is a vector bundle over M .

Definition 1.1.10. Let E be a vector bundle over M . A (smooth) subbundle of E is a
collection {∆p}p∈M such that for every p ∈M , ∆p is a linear subspace of the vector fiber
Ep of E such that tp∈M∆p is a smooth vector bundle over M , and we denote it by ∆.

Fix now a point p ∈M and consider the set of all open neighbourhoods of p in M

Up =: {U ⊂M : U open set, p ∈ U}.

Definition 1.1.11. Let p be a point of M and consider two open sets U, V ∈ Up. If we
consider two functions f ∈ C∞(U), g ∈ C∞(V ), we say that f ∼p g if and only if there
exists W ∈ Up such that f |W = g|W .

Notice that ∼p is an equivalence relation on the union of the families of functions
belonging to C∞(U), for U ranging over the elements of Up. We denote the quotient of
this union with respect to the relation ∼p by C∞p (M). This object has a natural structure
of vector space. The equivalence class of a function f with respect to ∼p, [f ]∼p ∈ C∞p (M),
will be denoted by f . Essentially then, by f we denote the class of those functions that
coincide close to p.

Definition 1.1.12. Let p ∈ M , we say that a function D : C∞p (M) → R is a derivation
at p if it is R-linear and satisfies the Leibniz rule, i.e. for all f, g ∈ C∞p (M),

D(fg) = D(f)g(p) + f(p)D(g).

Definition 1.1.13. The set of derivations at p is called the tangent space of M at p

TpM := {D : C∞p (M)→ R : D is a derivation at p}. (1.1)

For each p ∈ M , TpM is a vector space over R. Let us briefly recall how the choice
of a chart (U, φ) at a point p of the manifold gives in a standard way a local system
of coordinates on M close to p. Let us denote by ri the usual i-th coordinate map on
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Rn, ri : Rn → R, for i = 1, . . . , n, then we denote the maps xi := ri ◦ φ : U → R, for
i = 1, . . . , n, and we introduce for every f ∈ C∞p (M)

∂

∂xi

∣∣∣
p
f :=

∂

∂ri

∣∣∣
φ(p)

(f ◦ φ−1).

For every i = 1, . . . , n, ∂
∂xi

∣∣
p

is a derivation at p. In addition,
(

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

)
is a basis

of TpM .

Definition 1.1.14. A curve on M is a continuous function c : (a, b)→M , with (a, b) ⊂ R.
One usually requires that 0 ∈ (a, b) and in this case the point p = c(0) is called the initial
point, or starting point, of the curve c.

Let (U, φ) be a coordinate chart at some point p ∈ M and let a < 0 < b. Let
c : (a, b) → U be a smooth curve and fix t ∈ (a, b). The velocity vector of c at t, denoted
by c′(t), is a derivation at c(t) defined as follows

c′(t) :=
n∑
i=1

(xi ◦ c)′(t)
∂

∂xi

∣∣∣
c(t)

=
n∑
i=1

y′i(t)
∂

∂xi

∣∣∣
c(t)
,

where yi := xi ◦ c = ri ◦ φ ◦ c : (a, b)→ R for i = 1, . . . , n.
There is a one-to-one correspondence between the smooth curves on M of initial point p
and the derivations at p, namely the tangent vectors of M at p. The correspondence is
realized associating with any derivation D ∈ TpM , a smooth curve c : (−ε, ε) → R, for
some ε > 0, of initial point p such that c′(0) = D. It is enough to choose a curve c of
initial point p such that Df = d

dt

∣∣
t=0

f(c(t)) for f ∈ C∞p (M). Notice that a similar c is
not unique.

Definition 1.1.15. The disjoint union of the tangent spaces of M is a bundle called the
tangent bundle of M and it is denoted by TM

TM :=
∐
p∈M

TpM.

We denote by πTM : TM → M the canonical projection from the tangent bundle to
the manifold

πTM : TM →M, πTM (v) = p if v ∈ TpM.

Remark 1.1.16. We defined TM as a set. Actually, one endows TM with a structure of
smooth manifold that makes it a smooth vector bundle over M . Since we will not need
more details, we do not report here the whole explicit construction, the reader can refer
for example to [Tu11, Sections 12.1, 12.2].

Definition 1.1.17. A subbundle ∆ of the tangent bundle TM is also called a distribution
of subspaces on M .

Definition 1.1.18. Let M and N be two smooth manifolds. Consider a smooth map
F : M → N and a point p ∈M . The differential of F at p is the linear map

dEF (p) : TpM → TF (p)N

such that for every D ∈ TpM and f ∈ C∞F (p)(N)

dEF (p)(D)(f) = D(f ◦ F ).
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Remark 1.1.19. A small remark about our choice of notation: dEF (p) stands for Eu-
clidean differential of F at p. Someone might argue that this writing is unusual or su-
perabundant, but in the next chapters many different notions of differentiability will be
introduced, so we reserve simpler notation for the more recent concepts that will be some
of the main characters of the thesis.

Definition 1.1.20. A vector field on M is a map X : M → TM such that πTM ◦X = IdM ,
i.e. such that

X(p) ∈ TpM for every p ∈M.

We denote the set of vector fields on M by Vect(M).

Remark 1.1.21. In the literature the name “vector field” is sometimes reserved for the
objects that here will be called smooth vector fields. We do not make any preliminary
assumption on the regularity of vector fields. The choice of this line of presentation is
motivated by the fact that, in the next chapters, a family of vector fields whose coefficients
are only continuous will play a crucial role to state our results.

If we fix a chart (U, φ) of M at a point p0, then a vector field X can be locally written
in coordinates, i.e. we can consider for every p ∈ U

X(p) =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣
p
,

where ai(p), i = 1, . . . , n, are suitable real numbers. The maps ai : U → R for i = 1, . . . , n
are called the coefficients of X. Then, if we denote by X̃ the vector field X considered with
respect to a variable varying on the space of parameters φ(U) ⊂ Rn, i.e. X̃ = X ◦ φ−1 :
φ(U)→ TM , we obtain for every p ∈ U

X̃(φ(p)) = (X ◦ φ−1)(φ(p)) = X(p) =
n∑
i=1

ai(p)
∂

∂xi

∣∣∣
p

=

n∑
i=1

(ai ◦ φ−1)(φ(p))
∂

∂xi

∣∣∣
p

=

n∑
i=1

bi(φ(p))
∂

∂xi

∣∣∣
p
,

where we have introduced the maps bi := ai ◦ φ−1 : φ(U) → R for i = 1, . . . , n. In
particular, the maps bi are the coefficients of X read in the system of coordinates given
by the fixed coordinate chart.

Definition 1.1.22. The regularity of a vector field X ∈ Vect(M) is the regularity of
its coefficients ai for i = 1, . . . , n, i.e. it is the Euclidean regularity of the maps bi for
i = 1, . . . , n.

More explicitly, if the coefficients ai are smooth, we call X a smooth vector field, and
then X is what in the literature is called a smooth section of the tangent bundle. If the
coefficients ai are continuous we call X a continuous vector field, and so on. We denote
by Vect∞(M) the set of smooth vector fields on M .

Remark 1.1.23. There exists an alternative interpretation of the space Vect∞(M). If
X ∈ Vect∞(M), then X can be seen as an R-linear function

X : C∞(M)→ C∞(M)
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that satisfies the Liebniz rule, i.e. for every f, g ∈ C∞(M)

X(fg) = X(f)g + fX(g).

More precisely, if we fix a coordinate chart (U, φ), a vector field X =
∑n

i=1 ai
∂
∂xi
∈

Vect∞(M) and a map f ∈ C∞(M), Xf is the smooth map on M

Xf(q) =

q∑
i=1

ai(q)
∂f

∂xi

∣∣∣
q

for every q ∈ U.

Definition 1.1.24. Let X ∈ Vect(M) and let p0 ∈M , an integral curve of X starting at
p0 is an everywhere differentiable curve c : (a, b)→ M , with a < 0 < b, that is a solution
of the following Cauchy problem{

c′(t) = X(c(t)) t ∈ (a, b)

c(0) = p0

(1.2)

If c is a solution of (1.2), we denote c by γXp0
. An integral curve c : (a, b) → M is said

maximal if it does not exists any real open interval I such that (a, b) ⊂ I and such that
there exists an integral curve of X starting at p0 defined on I.

Remark 1.1.25. Notice that γXp0
can be non-unique.

Consider a vector field X ∈ Vect(M) and let us fix a coordinate chart (U, φ) at a point
p0 ∈ M such that φ(p0) = 0 (clearly, this assumption is not restrictive). We read X in
local coordinates as above X̃ : φ(U)→ TM , X̃(φ(p)) =

∑n
i=1 bi(φ(p)) ∂

∂xi

∣∣
p
. If we consider

a curve c : (a, b)→M , we can read also c in coordinates as follows

φ ◦ c : (−ε, ε)→ Rn, φ ◦ c(t) = (y1(t), . . . , yn(t)) := y(t).

Then we can restate the condition given by the system (1.2) in coordinates: we can write
for every t ∈ (a, b)

c′(t) =

n∑
i=1

y′i(t)
∂

∂xi

∣∣∣
c(t)

X(c(t)) = X̃(φ ◦ c(t)) =

n∑
i=1

bi(φ ◦ c(t))
∂

∂xi

∣∣∣
c(t)

=

n∑
i=1

bi(y(t))
∂

∂xi

∣∣∣
c(t)
.

Therefore, since { ∂
∂xi

∣∣
p
}i=1,...,n is a basis of TpM for every p ∈ M , we can determine the

solutions of the Cauchy problem (1.2) by solving the following system of ODEs{
y′i(t) = bi(y(t)) t ∈ (a, b), for i = 1, . . . , n

yi(0) = 0 for i = 1, . . . , n.
(1.3)

Thanks to the formulation in (1.3), the classical theory of ODEs provides some information
about the existence and uniqueness of the integral curves of the vector field X. We
highlight some of this information that will be needed later on. First of all, by the Cauchy-
Lipschitz Theorem about the existence and uniqueness of the solutions of ODEs, it is
possible to state some facts. If we assume X ∈ Vect(M) to be smooth (or even just locally
Lipschitz), once fixed a starting point p0 ∈M , there exists a unique maximal integral curve
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of X starting at p0, γXp0
, that is a solution of (1.2) and is defined on a maximal interval Ip0

containing 0. Moreover, for every compact subset K ⊂ U , there exists a positive εK > 0
such that γXp0

is defined for every |t| < εK for every p0 ∈ K (i.e (−εK , εK) ⊂ Ip0 for every

p0 ∈ K). Moreover we know that γXp0
is continuous with respect both to p0 ∈ U and to

X ∈ Vect∞(M). On the other side, by the Peano’s existence Theorem about the solutions
of ODEs, we can deduce some information about the existence of integral curves also for
the case when the vector field X is less regular than locally Lipschitz. In fact, if we assume
the vector field X to be continuous, then, once fixed an initial point p0, the existence of
an integral curve γXp0

solution of (1.2) is still ensured, nevertheless its uniqueness is not
guaranteed any more. We refer the reader to [Mus05, Theorem 1], where some useful
precise information about the length of the intervals on which the integral curves are
defined is also collected.

Definition 1.1.26. Let us consider two vector fields X,Y ∈ Vect∞(M). The commutator
between X and Y is the smooth vector field [X,Y ] obtained as follows: for every f ∈
C∞(M)

[X,Y ](f) = X(Y (f))− Y (X(f)).

Hence, for every chart (U, φ) of M , if X =
∑n

i=1 ai
∂
∂xi

and Y =
∑n

i=1 bi
∂
∂xi

, with
coefficients ai, bi : U → R, i = 1, . . . , n.

[X,Y ] := XY − Y X =

n∑
j=1

(
n∑
k=1

(
ak

∂

∂xk
bj − bk

∂

∂xk
aj

))
∂

∂xj
.

Definition 1.1.27. Let M and N be smooth manifolds. Let F : M → N be a smooth
map and let X, Y be smooth vector fields respectively on M and N . The vector fields X
and Y are said F -related if, for every p ∈M ,

dEF (p)(X(p)) = Y (F (p)).

Lemma 1.1.28. [BLU07, Lemma 2.1.37] Let M , N be smooth manifolds and let F : M →
N be a smooth map. Let X1, Y1 be two smooth F -related vector fields and let X2, Y2 be
two smooth F -related vector fields, then [X1, X2] and [Y1, Y2] are F -related.

1.2 Lie algebras and Lie groups

Definition 1.2.1. A Lie algebra a (over R) is a (real) vector space endowed with a bilinear
map, called commutator or Lie bracket

[·, ·] : a× a→ a

that satisfies the following properties

(i) antisymmetry: [a, b] = −[b, a], for every a, b ∈ a;

(ii) Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, for every a, b, c ∈ a.

Definition 1.2.2. A subalgebra of a is a linear subspace s ⊂ a closed with respect to the
Lie bracket, i.e. such that for all a, b ∈ s, [a, b] ∈ s.

Given a set of elements a1, . . . , ak ∈ a, the smallest subalgebra of a containing a1, . . . , ak
is called the Lie subalgebra generated by a1, . . . , ak. We denote it by sa(a1, . . . , ak).
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We collect below some classical definitions about Lie algebras. Let a be a Lie algebra.
Given two subsets A and B of a we introduce [A,B] := {[a, b] : a ∈ A, b ∈ B}.

(i) a is abelian if [a, b] = 0 for every a, b ∈ a.

(ii) a is nilpotent if there is a natural number κ such that [. . . [[a1, a2], a3], . . . ], aκ] = 0
for every a1, . . . , aκ ∈ a. The minimum number κ for which this property is satisfied
is called the step of a.

(iii) The center of a is the set of elements a ∈ a such that [a, b] = 0 for every b ∈ a.

(iv) a is graded if it is the direct sum of a finite number of linear subspaces, a = V1 ⊕
· · · ⊕ Vκ such that [Vi, Vj ] ⊂ Vi+j if i+ j ≤ κ and [Vi, Vj ] = 0, otherwise.

(v) a is stratified if it is graded, thus a = V1 ⊕ · · · ⊕ Vκ, and the first layer V1 generates
the other layers by Lie bracket, i.e. if

Vj+1 = [V1, Vj ]

for every integer j ≥ 1, and [V1, Vκ] = 0.

Definition 1.2.3. A Lie group (G, ·) is a smooth manifold endowed with a group operation
· such that the product map · : G × G → G, (x, y) → x · y and the inverse map with
respect to the product i : G→ G, i(x) = x−1 are smooth.

We denote by e the identity element of G with respect to the group product.

Definition 1.2.4. A (Lie) subgroup H ⊂ G is a subgroup such that, if we consider the
inclusion J : H ↪→ G, the differential of J at every x ∈ H, dEJ(x) : TxH → TxG, is an
injective mapping, and such that the product map and the inverse map of G restricted to
M are smooth.

Definition 1.2.5. Let a and b be two Lie algebras. A homomorphism of Lie algebras is
a linear application L : a→ b such that

[L(a), L(b)]b = L([a, b]a) ∀a, b ∈ a,

where by [·, ·]a and [·, ·]b we denote the Lie brackets of a and b, respectively. If L is
bijective, it is an isomorphism of Lie algebras.

Given two Lie groups with their group operations (G1, ?1) and (G2, ?2) a homomor-
phism of Lie groups is a smooth map L : G1 → G2 such that

L(g1 ?1 g2) = L(g1) ?2 L(g2) ∀g1, g2 ∈ G1.

Moreover L is an isomorphism if it is a diffeomorphism and a group isomorphism.

Definition 1.2.6. Given a Lie group G, we naturally associate with any point x ∈ G the
left translation denoted by lx

lx : G→ G, lx(y) = x · y.

Notice that lx is a diffeomorphism for every x ∈ G.

Definition 1.2.7. Let G be a Lie group and let X be a smooth vector field on G, X is
said left invariant if it is lx-related with itself for every x ∈ G. Equivalently, if for every
x ∈ G,

dElx(X) = X,
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namely if for every x, y ∈ G

dElx(y)(X(y)) = X(x · y) = X(lx(y)).

By Lemma 1.1.28, the linear subspace of Vect∞(G) of the left invariant vector fields
on a Lie group G is closed with respect to the Lie bracket, hence it is a Lie (sub)algebra.
It is called the Lie algebra of G and we denote it by Lie(G). Depending on the situation,
we will indicate by Lie(G) also the vector space underlying the Lie algebra.

Let us recall a standard fact.

Proposition 1.2.8. [Ric03, Theorem 4.3] When two Lie groups G1, G2 are connected
and simply connected, they are isomorphic if and only if their Lie algebras are isomorphic.

We call a simply connected Lie group nilpotent if its Lie algebra is nilpotent, abelian
if its Lie algebra is abelian and, in analogous way, all definitions about Lie algebras are
transferred on the corresponding Lie groups.

Definition 1.2.9. Let G be a Lie group. A left invariant measure on G is a measure µ
such that for every measurable set B ⊂ G and every x ∈ G

µ(lx(B)) = µ(B).

Proposition 1.2.10. For any locally compact topological group G there exists, up to
positive scalar multiples, a unique non-zero Radon left invariant measure µ on G. The
measure µ is called the Haar measure of G.

Example 1.2.11. Since any Lie group G is locally compact, if one individuates a non-zero
left invariant Radon measure on G, necessarily it is the Haar measure of G.

1.3 Exponential map and homogeneous Lie groups

In this section we consider a Lie group G and we focus on the relation between G and
its Lie algebra Lie(G). The family of left translations {lx}x∈G allows to individuate some
canonical one-to-one correspondences between the tangent space TeG at the unit element
e of the group G, the tangent space TxG at any point x ∈ G and the Lie algebra Lie(G) of
the left invariant vector fields on G. Let us describe more explicitly these correspondences.

(i) For every x ∈ G, the differential of the left translation lx at the origin

dElx(e) : TeG→ TxG

is an isomorphism that moves canonically the vectors of TeG onto the vectors of
TxG.

(ii) By the left invariance of the elements of Lie(G), the following map is a canonical
isomorphism

Ψ : TeG→ Lie(G), Ψ(v) = X,

where X is the unique smooth left invariant vector field such that X(e) = v.
Notice that, by definition, a left invariant vector field is completely determined by
the value that it takes at the unit element, hence Ψ is well defined.

The correspondences above allow, when needed, to identify in a natural way TeG with
TxG or with Lie(G). Moreover, they allow to equip in a natural way any tangent space
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TxG with a structure of Lie algebra. In particular, the commutator [v, w]e between two
vectors v, w ∈ TeG is defined considering the commutator between the corresponding left
invariant vector fields in the Lie algebra as

[v, w]e := [Ψ(v),Ψ(w)].

Thus, it is immediate to guess the definition of the commutator [·, ·]x on TxG, that can be
naturally introduced through the differential of left translations: for every v, w ∈ TxG

[v, w]x := [dElx−1(x)(v), dElx−1(x)(w)]e.

Let us go back for a while to consider some definitions on a generic smooth manifold M
of dimension n.

Definition 1.3.1. A vector field X ∈ Vect(M) is said to be complete if for every p ∈ M
there exists an integral curve of X starting at p defined on the whole R.

Definition 1.3.2. Let X be a smooth complete vector field on M . The flow of X is a
family of functions

{ϕt : M →M | t ∈ R}

such that

(i) ϕ0(p) = p for every p ∈M ;

(ii) d
dtϕt(p)

∣∣
t=t0

= X(ϕt0(p)) for every p ∈M and t0 ∈ R.

Roughly speaking, ϕt(p) denotes the point of M that we reach starting from a point
p ∈ M and moving for a time t on the integral curve of X that passes through p, that
is unique, since we have assumed X to be smooth. By [BLU07, Lemma 1.2.23] one can
deduce the following Lemma.

Lemma 1.3.3. Any left invariant vector field on G is complete.

Definition 1.3.4. A one-parameter group of G is a smooth Lie group homomorphism
γ : R→ G, i.e. it is a smooth map γ such that γ(s+ t) = γ(s) · γ(t) for every s, t ∈ R.

By [Ric03, Theorem 3.4] (refer also to [BLU07, Corollary 1.2.24]) the following result
holds.

Proposition 1.3.5. Let {ϕt}t∈R be the flow generated on G by a left invariant vector field
X. Then ϕt is defined at every point of G for every t ∈ R. Moreover γXe (t) = ϕt(e) is a
one-parameter group and

ϕt(x) = x · ϕt(e) = x · γXe (t) ∀x ∈ G, ∀t ∈ R.

On the other side, given any one-parameter group γ(t) of G, there is a left invariant vector
field X whose flow is given by ϕt(x) = x · γ(t) for every t ∈ R and x ∈ G.

Proposition 1.3.5 states a remarkable one-to-one correspondence between the Lie alge-
bra of G, Lie(G), and the space of the smooth Lie group homomorphisms from R to G. In
particular, we can associate any vector field X ∈ Lie(G) with the (unique) integral curve
of X starting at the unit element e, that we have denoted by γXe (t) := ϕt(e) for t ∈ R.
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Notice that γXe is a homomorphism from R to G. According to these considerations, we
have substantially described the following function, that is called the exponential map

exp : Lie(G)→ G

X 7→ γXe (1).

The exponential map exp is a local diffeomorphism close to the origin, since its differential
at the unit element is dEexp(e) = Ψ−1 and then clearly it coincides with IdLie(G), once
that TeG is identified with Lie(G) through Ψ, as described above.

Remark 1.3.6. For any left invariant vector field X, for all t, s ∈ R, it holds

γtXe (s) = γXe (ts). (1.4)

Therefore, from (1.4) we have for all t ∈ R

exp(tX) = γtXe (1) = γXe (t).

Let us introduce the notions of homogeneous Lie algebra and homogeneous Lie group.

Definition 1.3.7. Let V be a real vector space. A family of endomorphisms of V , {δt}t>0,
is called a set of dilatations on V if there are real numbers αj > 0 and linear subspaces
Wαj of V such that V is the direct sum of the Wαj , and

δt|Wαj
= tαjIdWαj

for every j.

Definition 1.3.8. Let a be a Lie algebra and let {δt}t>0 be a set of dilatations on the vector
space underlying a, that we still denote by a. If, for every t > 0, δt is an automorphism of
a, the pair (a, {δt}t>0) is called a homogeneous Lie algebra. A homogeneous Lie group is a
connected Lie group G endowed with a family of automorphisms {Dt}t>0 such that Lie(G)
is homogeneous with respect to the set of dilations {δt}t>0, where for t > 0, δt = dE(Dt)(e).

Remark 1.3.9. If a = V1 ⊕ · · · ⊕ Vκ is a graded Lie algebra, the linear dilations

δt(v) = tjv for v ∈ Vj ,

for j = 1, . . . , κ, for t > 0, are automorphisms, hence any graded Lie algebra canonically
inherits a homogeneous structure.

1.4 Sub-Riemannian manifolds

Let us consider a smooth manifold M and consider a smooth subbundle ∆ of the
tangent bundle TM . In other words, ∆ is a distribution of subspaces, namely, we recall,
any point p ∈M is associated with a subspace of the tangent space ∆p ⊂ TpM that varies
continuously as p varies on M .

Definition 1.4.1. Let M be a smooth manifold and consider a smooth subbundle ∆ of
the tangent bundle TM . If I ⊂ R is a real interval, a curve γ : I ⊂ R → M is called
∆-admissible if it is absolutely continuous and

γ̇(t) ∈ ∆γ(t)
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for almost every t ∈ I.

Definition 1.4.2. Let M be a smooth manifold and consider a smooth subbundle ∆ of
the tangent bundle TM . If for every couple of points p, q ∈M there exists a ∆-admissible
curve that connects p and q, we call M a ∆-connected manifold. In this case M is called
a Carnot-Carathéodory space or a CC-space.

Definition 1.4.3. Let M be a smooth manifold and consider a smooth subbundle ∆ of
the tangent bundle TM . A quadratic form g on TM ,

g : TM → [0,∞), (v, w)→ g(p)(v, w) for v, w ∈ TpM, p ∈M

such that the restriction g|∆ is Lipschitz regular on ∆ is a sub-Riemannian metric on M .
The triple (M,∆, g) is called a sub-Riemannian manifold.

One can think of a sub-Riemannian manifold as a couple (M,∆) composed of a smooth
manifold M and a distribution of subspaces ∆, endowed with a metric g on M that is
regular enough to state in a reasonable way a notion of length of a ∆-admissible curve.
This notion of length, in turn, allows to define a sub-Riemannian distance on M .

Definition 1.4.4. Let (M,∆, g) be a sub-Riemannian manifold and let γ : I ⊂ R → M
be a ∆-admissible curve. We define the length of γ as

length(γ) :=

∫
I

√
g(γ(t))(γ̇(t), γ̇(t))dt.

Remark 1.4.5. Notice that Definition 1.4.4 is just one of the possible definitions that
one can give of the length of a ∆-admissible curve. Alternative natural possibilities have
been explored in [Mon01], where, at the same time, it is proved that most of them are
equivalent.

Definition 1.4.6. Let M be a smooth manifold and let ∆ be a smooth subbundle of the
tangent bundle TM . We denote by Γ(∆) the set

Γ(∆) = {X ∈ Vect∞(M) : X(p) ∈ ∆p for every p ∈M}.

Let us consider the Lie algebra generated by Γ(∆) with respect to the commutator of
smooth vector fields, namely sVect∞(M)(Γ(∆)). We say that ∆ satisfies the Chow-Hörman-
der’s condition if at any point p ∈M ,

{X(p) : X ∈ sVect∞(M)(Γ(∆))} = TpM.

In a natural way, we can translate this condition on a set of vector fields as follows.

Definition 1.4.7. Given X1, X2, . . . , X` smooth vector fields on a smooth manifold M
of dimension n. We denote by ∆(X1, . . . , X`) the distribution of subspaces such that for
every p ∈M

(∆(X1, . . . X`))p = span(X1(p), . . . , X`(p)).

We say that the set of vector fields (X1, X2, . . . , X`) satisfies the Chow-Hörmander’s con-
dition if ∆(X1, . . . , X`) satisfies the Chow-Hörmander’s condition.

The following accessibility theorem has been independently proved by Chow and Ra-
shevsky in [Cho39] and [Ras38], respectively.
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Theorem 1.4.8 (Chow-Rashevsky’s theorem). Let M be a smooth manifold and consider
a smooth subbundle ∆ of the tangent bundle TM that satisfies the Chow-Hörmander’s
condition. Then M is ∆-connected, hence it is a Carnot-Carathéodory space.

Those Carnot-Carathéodory spaces which are also sub-Riemannian manifolds are in-
teresting objects in the study of metric spaces, since one can equip them with a distance
in a natural way, following a path analogous to the one that permits to define the classical
Riemannian distance. In fact, if we consider a CC-space that is also a sub-Riemannian
manifold (M,∆, g) and if we consider two points p, q ∈ M , by Theorem 1.4.8, the set of
∆-admissible curves connecting p and q is not empty and we have introduced a suitable
definition that allows to evaluate the length of each of these curves. Hence it is quite
natural to introduce the following definition.

Definition 1.4.9. Let (M,∆, g) be a sub-Riemannian manifold. Let us consider two
points p, q ∈ M ; we denote by Γp,q the set of ∆-admissible curves γ : [0, T ] → M for
some T > 0 such that γ(0) = p, γ(T ) = q. We call Carnot-Carathéodory distance or
CC-distance between p and q the number

dc(p, q) = inf{length(γ) : γ ∈ Γp,q}.

The study of sub-Riemannian manifolds is very intriguing. In this thesis, we focus on
some particular examples of CC-manifolds, non-Riemannian at any scale from the metric
point of view, but at the same time endowed with a rich algebraic structure of transla-
tions and dilations. In particular, we focus on Carnot groups endowed with homogeneous
distances. The leading motivation to develop geometric measure theory on these metric
spaces is that they are the natural starting point towards the comprehension of more gen-
eral settings: homogeneous Carnot groups are infinitesimal models for sub-Riemannian
manifolds. In fact, the blow-up at a regular point of a sub-Riemannian manifold is a
Carnot group [Mit85, Bel96].



Chapter 2

Carnot groups

In this chapter we present the definition of Carnot group, following [Pan89]. We
introduce the notion of homogeneous distance on a Carnot group, and, successively, mainly
following [SC16], we collect the definitions and some properties of various interesting
measures that can be naturally considered on these metric spaces. About our strategy
of presentation, when we introduce a definition, we generally specialize it below in the
setting of the Heisenberg group, Hn, that is the simplest example of a non-commutative
Carnot group. This stylistic choice is supported by two main motivations. First, most of
the original results proved in the next chapters will be valid limited to the setting of the
Heisenberg group, so we think that it is worthy to make the reader familiarize with the
special form of the concepts in this setting, that allows to work in more explicit terms.
The second point is that we think that explaining at once what happens in a particular
simple model can be an useful tool in order to better understand how things work in more
general situations.

2.1 Carnot groups

Definition 2.1.1. A graded group G is a connected, simply connected, nilpotent Lie group
whose Lie algebra Lie(G) is graded, i.e. there exist linear subspaces V1, V2, . . . , Vκ such
that Lie(G) = V1 ⊕ · · · ⊕ Vκ and [Vi, Vj ] ⊂ Vi+j for every i, j positive integers, Vκ 6= {0}
and Vj = {0} for j > κ.

Definition 2.1.2. A Carnot group G is a connected, simply connected, nilpotent Lie group
whose Lie algebra Lie(G) is stratified, i.e. there exist linear subspaces V1, V2, . . . , Vκ such
that

Lie(G) = V1 ⊕ · · · ⊕ Vκ
and

[V1, Vi] = Vi+1 for 1 = 1, . . . , κ− 1, Vκ 6= {0}, [V1, Vκ] = {0}.

We introduce some notions related to a generic Carnot group G, assuming the notation
of Definition 2.1.2 and the following one, to be valid throughout the whole thesis, when
nothing different is specified.

The number κ is called the step of the group. We set m0 = 0 and, for j = 1, . . . , κ, we
set

mj := dim(Vj).

25
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For j = 0, . . . , κ, we set

hj :=

j∑
i=0

mi.

The topological dimension of G is denoted by q := hκ =
∑κ

i=1mj .

Definition 2.1.3. The natural number Q :=
∑κ

i=1 imi =
∑κ

i=1 idim(Vi) is called the
homogeneous dimension of G.

Theorem 2.1.4. [CG90, Theorem 1.2.1] If G is a connected, simply connected, nilpotent
Lie group, the exponential map

exp : Lie(G)→ G

is an analytic global diffeomorphism.

Let us introduce an important operation on a nilpotent Lie algebra.

Definition 2.1.5. [BLU07, Definition 2.2.11] Given a nilpotent Lie algebra (a, [·, ·]), we
define the Baker-Campbell-Hausdorff operation associated with (a, [·, ·]) as

H : a× a→ a,

H(X,Y ) = X + Y +
1

2
[X,Y ] +

∑
j≥3

cj(X,Y ) (2.1)

where for every j ∈ N, cj(X,Y ), up to constants, is a finite sum of commutators of X and
Y of length j.

We define also c2(X,Y ) = 1
2 [X,Y ], so that, if necessary, H(X,Y ) can be written in

a more compact form. Notice that, since we have assumed a to be nilpotent, the sum
H(X,Y ) is finite for every X,Y ∈ a. For the precise form of the functions cj one can refer
to [BLU07, Definition 2.2.11] or to [Var84, Lemma 2.15.3]. For the sake of simplicity, we
do not report it here, since we will not need more explicit details. We just recall that if
a = V1 ⊕ · · · ⊕ Vκ is a graded Lie algebra, then the maps cj : a× a→ a are homogeneous,
i.e. for every j = 2, . . . , κ and for every X,Y ∈ a and t > 0,

cj(tX, tY ) = tjcj(X,Y ).

The following proposition illustrates the fundamental role of the Baker-Campbell-Hausdorff
operation in the study of Carnot groups. It will be, together with Theorem 2.1.4, a key
result in order to represent G in a convenient way.

Proposition 2.1.6. [CG90, Theorem 1.2.1] Let G be a Carnot group, then the Baker-
Campbell-Hausdorff formula holds, i.e. for every X,Y ∈ Lie(G)

exp(X) · exp(Y ) = exp(H(X,Y ))

where H is the Baker-Campbell-Hausdorff operation (2.1) associated with Lie(G).

The stratification of Lie(G) naturally induces a one-parameter family of anisotropic
dilations that makes Lie(G) a homogeneous Lie algebra.

Definition 2.1.7. If G is a Carnot groups, for every t > 0 the dilation δt associated with
t is the linear automorphism of Lie(G) such that δt(v) = tiv if v ∈ Vi for i = 1, . . . , κ.
Through the exponential map, one can transfer the notion of dilation on the group G: we
denote again by δt the map exp ◦ δt ◦ exp−1 : G→ G.



2.2 Identifications of Carnot groups 27

Remark 2.1.8. For every v, w ∈ G and for every s, t > 0 the following properties hold

(i) δt ◦ δs = δts;

(ii) δt(vw) = δt(v) · δt(w).

2.2 Identifications of Carnot groups

The main goal of this section is to describe how we think of a Carnot group G.

Definition 2.2.1. A basis (X1, . . . , Xq) of Lie(G) is called adapted (to the stratification)
if (Xhj−1+1, . . . , Xhj ) is a basis of Vj for every j = 1, . . . , κ.

If we fix a Carnot group G and an adapted basis (X1, . . . , Xq) of Lie(G), the group G
can be identified with Rq through the following map

ϕ : G→ Rq, ϕ

(
exp

(
q∑
i=1

xiXi

))
= (x1, . . . , xq). (2.2)

More explicitly, one can identify G with Rq identifying any point x ∈ G with ϕ(x) =
(x1, . . . , xq), so that one denotes by x = (x1, . . . , xq) the generic element of G. These
coordinates are called exponential coordinates.

The described identification between G and Rq is the most traditional one used in
the literature. Nevertheless we prefer to adopt a slightly different compatible approach.
Although perhaps it was already implied in many related papers, like [Mag01], the explicit
employement of this point of view in our line of research is quite recent and we think it
is worthwile, since an initial effort of abstraction is rewarded by the possibility of working
on a Carnot group without setting a specific coordinate system, when it is not needed.
Moreover, it allows to dispose directly on the group of some tools that are generally proper
of its Lie algebra, like, for example, the concept of orthogonality. This point of view is
shared for example by the papers [Mag11b, LM11, MTV15, Mag19, JNGV20, LDMR20,
Mag20]. We describe below in detail the identifications that will be used in this thesis.

2.2.1 Carnot groups as vector spaces

Let us consider a Carnot group G = (G, ·) and let us denote the Lie algebra of G
by Lie(G) = (g, [·, ·]). Notice that in this and in the following subsection, we need to
distinguish between Lie algebras and their own underlying vector spaces. Let us introduce
the following binary operation ∗ on g: for every X,Y ∈ g,

X ∗ Y := H(X,Y ), (2.3)

where H : g× g → g is the Baker-Campbell-Hausdorff operation in (2.1) associated with
Lie(G). The following two results justify our successive point of view.

(i) By [BLU07, Theorem 2.2.13] (see also [Ric03, Theorem 4.2]) the space

M := (g, ∗)

is a Lie group and it is isomorphic to the group G. Moreover, the exponential map
exp : M → G is a Lie group isomorphism since it is a diffeomorphism and, by
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Theorem 2.1.6, for every X,Y ∈M,

exp(X ∗ Y ) = exp(X) · exp(Y ).

The identity element of M with respect to ∗ is the null vector, and we denote it by
0.

(ii) By [BLU07, Corollary 2.2.15] (see also [Ric03, Theorem 4.2]), the Lie algebra of M,
Lie(M) = (m, [·, ·]) is isomorphic to (g, [·, ·]) through the Lie algebras isomorphism

Ψ : g→ m, Ψ(v) = X, (2.4)

where X ∈ m is the unique ∗-left invariant vector field such that X(0) = v (we have
identified g with T0G as usual).

Remark 2.2.2. Let us consider the exponential map associated with M

expM : Lie(M)→M.

For every v ∈ M, denoting by V := Ψ(v), the ∗-left invariant vector field such that
V (0) = v, we get that expM(tV ) = tv for every t ∈ R. In fact if we consider the curve
γ(t) := tv, it is immediate to observe that γ(0) = 0 and that for every t,

γ̇(t) = v

V (γ(t)) = V (tv) = dEltv(0)(V (0)) = dEltv(0)(v) =
d

ds
(ltv(sv))

∣∣∣
s=0

=
d

ds
(tv ∗ sv)

∣∣∣
s=0

=
d

ds
H(tv, sv)

∣∣∣
s=0

=
d

ds
((t+ s)v)

∣∣∣
s=0

= v.

Hence γ(t) is the unique solution of the Cauchy problem{
γ̇(t) = V (γ(t)) t ∈ R
γ(0) = v

hence, by the definition of exponential map, expM(V ) = γ(1) = 1v = v. For more
information about the map expM, we refer the reader to [BLU07, Theorem 2.2.24].

Remark 2.2.3. As a combination of Theorems 2.1.4 and 2.1.6 applied to M, with Remark
2.2.2 and with the definition and the properties of the map Ψ in (2.4), one can deduce
that expM, as a map between the spaces m and g, coincide with the inverse of Ψ. In
addition, it is both a Lie algebra and a Lie group isomorphism, once Lie(M) is endowed
with the Baker-Campbell-Hausdorff operation associated to the standard commutator of
Vect∞(M).

As a consequence of all these observations, we are allowed to identify the two groups
M and G, so that the exponential map exp reduces to the identity map and the elements
of the group can be thought as vectors of a vector space. To summarize, the Carnot group
G can be thought as the object (g, ∗, [·, ·]), where, if needed, we can identify (g, [·, ·]) with
the Lie algebra of the Lie group (g, ∗). We resume our considerations as follows.

We think any Carnot group G as a finite dimensional vector space (G, ·, [·, ·])
equipped with both a Lie algebra structure and a Lie group structure. For
every x, y ∈ G, the product x ·y equals H(x, y), where H is the Baker-Campbell-
Hausdorff operation in (2.1) associated with (G, [·, ·]). As it is usual in vector
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spaces, G is naturally identified with the tangent space T0G. If necessary we
can identify (G, [·, ·]) with the Lie algebra of (G, ·) through the map Ψ in (2.4).

2.2.2 Carnot groups in coordinates

Let us see how one can fix suitable coordinates on a Carnot group G.
Fix an adapted basis B = (v1, . . . , vq) of G (i.e. a basis such that (vhj−1+1, . . . , vhj ) is

a basis of Vj for every j = 1, . . . , κ) and consider the isomorphism of vector spaces

πB : G→ Rq, πB

(
q∑
i=1

xivi

)
= (x1, . . . , xq). (2.5)

We define through πB a binary operation ♦ on Rq: for x, y ∈ Rq

x♦y := πB(π−1
B (x) · π−1

B (y)).

We denote again by δt the automorphism πB ◦ δt ◦ π−1
B of Rq.

The product ♦ on Rq has the polynomial form presented in the next proposition,
deduced by the form of the Baker-Campbell-Hausdorff formula (Definition 2.1.5). We refer
the reader to [BLU07, Proposition 2.2.22] and [SC16, Proposition 2.3] for more details.

Proposition 2.2.4. For all x, y ∈ Rq

x♦y = x+ y +Q(x, y) (2.6)

where
Q = (Q1, Q2, . . . , Qq) : Rq × Rq → Rq

with components Qj : Rq ×Rq → R for every j ∈ {1, . . . , q} that are homogeneous polyno-
mials with respect to the intrinsic dilations such that for every x, y ∈ Rq and t > 0

Qj(δt(x), δt(y)) = tiQj(x, y) if j ∈ {hi−1 + 1, . . . ,hi}.

Moreover, for every x, y ∈ Rq, the mappings Qj satisfy the following properties

(i) Qj(x, y) = 0 for j = 1, . . . , h1 and Qj(x, 0) = Qj(0, y) = Qj(x, x) = Qj(x,−x) = 0
for j = h1 + 1, . . . , q.

(ii) Q is antisymmetric, i.e. Q(x, y) = −Q(−y,−x) .

(iii) Qj(x, y) = Qj(x1, . . . , xhi−1
, y1, . . . , yhi−1

) if j ∈ {hi−1 + 1, . . . ,hi}.

As a consequence, the inverse of an element x = (x1, . . . , xq) ∈ Rq with respect to the
product ♦ is x−1 = (−x1, . . . ,−xq), while the identity element is the null vector, that we
denote again by 0.

Again by [BLU07, Theorem 2.2.22], one can deduce the following facts, that justify
our successive identifications

(i) L := (Rq,♦) is a Lie group.

(ii) (G, ·) is isomorphic, as a Lie group, to L through the map πB.

(iii) The Lie algebra Lie(G) is isomorphic to the Lie algebra of L, Lie(L) = (l, [·, ·])
through dEπB. Moreover, if, for every i = 1, . . . , q, we denote by Pi ∈ l the ♦-left
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invariant vector field such that Pi(0) = ei, where (e1, . . . , eq) is the canonical basis
of Rq, then

dEπB(Vi) = Pi.

where Vi is the ·-left invariant vector field of Lie(G) such that Vi(0) = vi.

(iv) The exponential map expL : l → L is a linear isomorphism (of vector spaces) such
that

expL

(
q∑
i=1

piPi

)
= (p1, . . . , pq) =

q∑
i=1

piei.

We equip Rq with the following structure of Lie bracket [·, ·]L, so that (l, [·, ·]) and
(Rq, [·, ·]L) are isomorphic Lie algebras through expL: for (x1, . . . , xq), (y1, . . . , yq) ∈ Rq,

[(x1, . . . , xq), (y1, . . . , yq)]L = [

q∑
i=1

xiei,

q∑
i=1

yiei]L := expL([

q∑
i=1

xiPi,

q∑
i=1

yiPi]). (2.7)

Remark 2.2.5. If we identify through expL the two vector spaces l ' L, and Lie(G) with
(G, [·, ·]) through Ψ, we can read dEπB(0) as equal to πB : G→ Rq. Observe then that the
commutator (2.7) equals

[(x1, . . . , xq), (y1, . . . , yq)]L = πB([π−1
B (x1, . . . , xq), π

−1
B (y1, . . . , yq)]),

so that ♦ coincides with the binary operation that can be defined on Rq by the Baker-
Campbell-Hausdorff operation associated with the Lie bracket [·, ·]L, i.e. for any x, y ∈ Rq,
x♦y = H(x, y), where H here denotes the map in (2.1) associated with (Rq, [·, ·]L).

To summarize, we can identify both the two isomorphic Lie groups (Rq,♦) and (G, ·)
and the two Lie algebras (Rq, [·, ·]L) and (G, [·, ·]) through the map πB . We resume our
considerations as follows.

When we fix an adapted basis B of a Carnot group G, by (G, ·, [·, ·]) we
mean (Rq,♦, [·, ·]L)) and we call it G in adapted coordinates with respect to B.
More explicitly, we consider that we have identified G with Rq through πB,
where Rq is endowed, at the same time, with the Lie group structure given
by the polynomial product in (2.6) and the Lie algebra structure given by the
commutator (2.7).

Remark 2.2.6. Recall that, analogously to what we said in the previous section, if nec-
essary we identify the Lie algebra of (Rq,♦) with (Rq, [·, ·]L) through the map Ψ relative
to (Rq,♦), that associates any vector v ∈ Rq with the ♦-left invariant vector field X such
that X(0) = v.
Moreover we can observe that, given a Carnot group G in adapted coordinates with re-
spect to a fixed adapted basis B = (v1, . . . , vq), one can always find, again through Ψ, an
adapted basis of the Lie algebra Lie(G) composed of vector fields with polynomial coeffi-
cients. In fact, by the left invariance of the vector fields and by the polynomial form of the
group product given by Proposition 2.2.4 it is enough to consider, for i = 1, . . . , q, the left
invariant vector field Xi ∈ Lie(G) such that Xi(0) = vi (and we recall that vi is identified
with the i-th vector ei of the canonical basis of Rq).

If we consider G in adapted coordinates with respect to an adapted basis, for any t > 0
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the dilation δt is the map δt : G→ G,

δt(x1, . . . , xq) = (tx1, . . . , txh1 , t
2xh1+1, . . . , t

2xh2 , . . . , t
κxhκ−1+1, . . . , t

κxq).

From now on, in order to simplify the notation, given a Carnot group G, we denote the
product of two points x, y ∈ G as

xy := x · y.

2.3 The Heisenberg group

In this section we introduce the Heisenberg group Hn, along with special suitable
adapted coordinates through which we identify Hn with R2n+1. Often, people in the
literature refer to Heisenberg groups using the plural form, stressing the fact that every
natural number n ∈ N is associated with a different group Hn. We prefer to use the
singular form, implicitly assuming that we have fixed a priori an arbitrary value of n.
This choice is not restrictive for our purposes, since from our point of view, neither the
algebraic structure nor the group structure substantially changes when n changes. When
we need to refer to H1, we call it the first Heisenberg group. The Heisenberg group is
the simplest example of a non-commutative Carnot group. Our presentation follows for
instance the approach of [Mag11b].

The Heisenberg group can be represented as a direct sum of two linear subspaces

Hn = H1 ⊕H2

with dim(H1)= 2n and dim(H2)= 1, endowed with a symplectic form ω on H1 and a fixed
nonvanishing element

e2n+1 ∈ H2. (2.8)

We denote by πH1 and πH2 the canonical projections onH1 andH2, respectively, associated
with the direct sum. We can give to Hn a structure of Lie algebra by setting

[x, y] = ω(πH1(x), πH1(y)) e2n+1. (2.9)

Then the Baker-Campbell-Hausdorff formula ensures that

xy = x+ y +
[x, y]

2
(2.10)

defines a Lie group operation on Hn. We fix a symplectic basis (e1, . . . , e2n) of (H1, ω),
namely

ω(ei, en+j) = δij , ω(ei, ej) = ω(en+i, en+j) = 0

for every i, j = 1, . . . , n, where δij is the Kronecker delta. Thus, considering the vector
e2n+1 given in (2.8), we obtain a basis

B = (e1, . . . , e2n+1). (2.11)

We call any basis of the form (2.11) a Heisenberg basis. We will use B to consider Hn in
adapted coordinates, through the linear isomorphism associated with B

πB : Hn → R2n+1, πB(x) = (x1, . . . , x2n+1) (2.12)

for x =
∑2n+1

j=1 xjej . We can read the given Lie product on Hn in adapted coordinates
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with respect to B (i.e. on R2n+1) as follows

[(x1, . . . , x2n+1), (y1, . . . , y2n+1)] = πB

(
[

2n+1∑
i=1

xiei,

2n+1∑
i=1

yiei]

)

=

(
0, . . . , 0,

n∑
i=1

(xiyi+n − xi+nyi)

)

then the group product takes in coordinates the following form

(x1, . . . , x2n+1)(y1, . . . , y2n+1) =

(
x1 + y1, . . . , x2n+1 + y2n+1 +

n∑
i=1

xiyi+n − xi+nyi
2

)
. (2.13)

Moreover, taking in consideration the product (2.13), in our coordinates we obtain the
following basis of left invariant vector fields: for x = (x1, . . . , x2n+1)

Xj(x) = ∂xj −
1

2
xj+n∂x2n+1 j = 1, . . . , n

Yj(x) = ∂xn+j +
1

2
xj∂x2n+1 j = 1, . . . , n

T (x) = ∂x2n+1 .

(2.14)

They clearly constitute a basis (X1, . . . , X2n+1) of Lie(Hn) such that Xj(0) = ej for every
j = 1, . . . , 2n + 1. Any linear combination of X1, . . . , X2n is a left invariant horizontal
vector field of Hn. For t > 0, the dilation δt is the linear mapping δt : Hn → Hn such that

δt(x1, . . . , x2n+1) = (tx1, . . . , tx2n, t
2x2n+1).

2.4 Metrics on Carnot groups

We endow Carnot groups with suitable distances, so that we consider them as metric
spaces.

Definition 2.4.1. Let G be a Carnot group. A left invariant metric on G is a Riemannian
metric such that all left translations of the group are isometries.

If g is a left invariant metric on G, we denote the Riemannian left invariant norm
associated with g by ‖ · ‖g. Since G is identified with T0G, a left invariant metric can
be naturally defined fixing a scalar product on G. In particular, we fix a graded scalar
product 〈·, ·〉 on G, i.e. a scalar product that makes the subspaces V1, . . . , Vκ orthogonal.
By left translation, we extend in a left invariant way the fixed scalar product to a graded
left invariant metric that we denote by g on G: for every x ∈ G and v, w ∈ TxG we set

g(x)(v, w) := 〈dE(lx−1)(x)(v), dE(lx−1)(x)(w)〉.

If we fix an orthonormal adapted basis (e1, . . . , eq) of G and we consider G in adapted
coordinates with respect to the fixed basis, then, the Riemannian norm ‖ · ‖g coincides on
the vectors of G with the Euclidean norm, that we denote by | · |. We recall that | · | is
well defined since G is automatically meant as Rq in adapted coordinates with respect to
the fixed adapted basis.
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Now we are ready to follow the very natural path towards the introduction of a metric
that makes G a non-Riemannian metric space at any scale. As usual, we adopt the
notation of Definition 2.1.2. As we observed in Section 1.3, it is natural to identify the Lie
algebra Lie(G) with the tangent space T0G. As a consequence, the first layer, V1, that is
a linear subspace of Lie(G), can be identified with a linear subspace of T0G. Since all left
translations are diffeomorphisms, we can consider for every x ∈ G the following subspace
of TxG

HxG := dElx(0)(V1).

The disjoint union of these subspaces, for x ∈ G, HG =
∐
x∈G dElx(0)(V1) is a subbundle

of the tangent bundle TG and we call it the horizontal bundle. We introduce below a
more precise definition.

Definition 2.4.2. Let G be a Carnot group. Let (X1, X2, . . . , Xq) be an adapted basis of
Lie(G). We call horizontal bundle of G the bundle

HG := span(X1, X2, . . . , Xm1),

hence for every x ∈ G the fiber of HG at x is the subspace of TxG

HxG = span(X1(x), X2(x), . . . , Xm1(x)).

Remark 2.4.3. Notice that by previous observations HG is an object independent of the
choice of the adapted basis fixed in Definition 2.4.2.

Definition 2.4.4. A vector field X ∈ Lie(G) is horizontal if X(x) ∈ HxG for every x ∈ G.

Definition 2.4.5. Let G be a Carnot group and let HG be its horizontal bundle. An
absolutely continuous curve on G is called horizontal if it is HG-admissible.

In the notation of Definition 2.1.2, for any adapted basis (X1, . . . , Xq) of Lie(G), the
set of the first m1 vector fields (X1, X2, . . . , Xm1) is a basis of V1 that generates the
whole Lie algebra of G by Lie bracket, i.e.

sLie(G)(X1, X2, . . . , Xm1) = Lie(G),

or, equivalently, for every x ∈ G, sTxG(X1(x), X2(x), . . . , Xm1(x)) = TxG. This means
that the set of vector fields (X1, . . . , Xm1) satisfies the Chow-Hörmander’s condition, then,
by Theorem 1.4.8, G is HG-connected, thus (G, HG) is a Carnot-Carathéodory space. The
left invariant metric g satisfies all the properties to say that (G, HG, g) is a sub-Riemannian
manifold. Hence a Carnot-Carathéodory distance dc associated with HG is naturally well
defined on G, according to Definition 1.4.9. The metric space (G, dc) is conceptually easy
to interpret. One can imagine that it is possible to move on G only along a family of
selected admissible directions, i.e. horizontal vector fields, which correspond to admissible
paths, i.e. horizontal curves. Then the distance dc between two points of G can be regarded
as the minimum possible time one needs to move from one of the two points to the second
one, walking exclusively on admissible paths. Nevertheless, for practical computations,
the distance dc is truly not very convenient. Luckily, for many of our purposes, dc can be
regarded just as the first remarkable example of a homogeneous distance on G.

Definition 2.4.6. A distance d : G × G → G is called a homogeneous distance if it is
left invariant, i.e. d(zx, zy) = d(x, y) for every x, y, z ∈ G, and homogeneous of degree one
with respect to anisotropic dilations, i.e. d(δt(x), δt(y)) = td(x, y) for every x, y ∈ G and
t > 0.



34 2. Carnot groups

Given a homogeneous distance d on G, we introduce the following norm

‖ · ‖ : G→ R, ‖x‖ := d(x, 0).

By the left invariance of d, ‖x‖ = ‖x−1‖ for every x ∈ G and by the homogeneity of
d, ‖δt(x)‖ = t‖x‖ for every x ∈ G and t > 0. We call a norm that satisfies these two
properties a homogeneous norm.

All homogeneous distances are equivalent.

Proposition 2.4.7. [Mag02a, Proposition 2.3.37] Let d1, d2 be two homogeneous distances
on G, then they are equivalent, i.e. there exist two positive constants K1,K2 > 0 such that
for every x, y ∈ G

K1d1(x, y) ≤ d2(x, y) ≤ K2d1(x, y).

Proposition 2.4.8. [Mag02a, Proposition 2.3.39] The Carnot-Carathéodory distance is
a homogeneous distance.

One of the mostly used homogeneous distances in the literature is the metric d∞ defined
for all x, y ∈ G as

d∞(x, y) = ‖y−1x‖∞,

where the homogeneous norm ‖ · ‖∞ is defined, for x =
∑κ

i=1 x
j ∈ G, with xj ∈ Vj , as

‖x‖∞ := max{εj |xj |1/j , j = 1, . . . , κ}

where ε1 = 1, εj ∈ (0, 1] are positive constants depending on the group structure (see
[FSSC03a, Theorem 5.1]). This homogeneous distance is very convenient to deal with
explicit calculations.

Any homogeneous distance induces on G the Euclidean topology, nevertheless the
metric space (G, dc) or, equivalently, G endowed with any fixed homogeneous distance, is
non-Riemannian at any scale. Later on, we will discuss more carefully this observation,
but a first hint of this non-equivalence can be already seen in the following proposition.
We recall that we endowed G with the left invariant Riemannian graded metric g, hence,
in order to interpret the following proposition, we fix an adapted orthonormal basis of G,
(e1, . . . , eq) so that we can think G in adapted coordinates. Then, as we said, we denote
by | · | the Euclidean distance on G (equivalently it is the left invariant norm ‖ · ‖g on T0G,
once G is identified with T0G).

Proposition 2.4.9. [SC16, Proposition 2.15] Let G be a Carnot group of step κ endowed
with a homogeneous distance d. Then

(i) A ⊂ (G, d) is bounded if and only if A ⊂ (G, | · |) is bounded.

(ii) For each compact set F ⊂ G there exists a positive constant CF such that

C−1
F |x| ≤ d(x, 0) ≤ CF |x|

1
κ ∀x ∈ F.

(iii) The identity map id : (G, d)→ (G, | · |) is a homeomorphism.

More precisely, the following estimate holds.

Proposition 2.4.10. [BLU07, Proposition 5.15.1] Let G be a Carnot group of step κ and
let d be a homogeneous distance. Then, for every compact set F ⊂ G, there is a constant
cF > 0 such that for every x, y ∈ F

1

cF
|x− y| ≤ d(x, y) ≤ cF |x− y|

1
κ .
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2.4.1 Metrics on the Heisenberg group

We fix on Hn a scalar product 〈·, ·〉 that makes the Heisenberg basis B = (e1, . . . , e2n+1)
fixed in (2.11) orthonormal. In the sequel, any Heisenberg basis will be understood to be
orthonormal. We denote by | · | the norm induced by 〈·, ·〉 on Hn; notice that it coincides
with the Euclidean norm on Hn considered in adapted coordinates, i.e. on R2n+1. The
symmetries of the Heisenberg group are detected through the isometry

J : H1 → H1,

that is defined on the Heisenberg basis

J(ei) = en+i and J(en+i) = −ei

for all i = 1, . . . , n. It is then easy to check that

〈x, y〉 = ω(x, Jy) and J2 = −I

for all x, y ∈ H1.

As we described above for a general setting, by identifying T0Hn with Hn and by
left translating the fixed scalar product 〈·, ·〉 on Hn we obtain a graded left invariant
Riemannian metric g on Hn and as usual the associated Riemannian norm is denoted by
‖ · ‖g.
The norm ‖ · ‖∞ on Hn is defined for every x ∈ Hn as

‖(x1, . . . , x2n+1)‖∞ := max{|(x1, . . . , x2n)|, |x2n+1|
1
2 }.

Remark 2.4.11. A homogeneous norm frequently used in the literature in the Heisenberg
group is the Cygan-Korányi norm: for every (x1, . . . , x2n+1) ∈ Hn,

‖(x1, . . . , x2n+1)‖K :=
√
|(x1, . . . , x2n)|4 + |x2n+1|2. (2.15)

Remark 2.4.12. Notice that the identification of Hn in adapted coordinates with R2n+1

is somehow independent of the choice of the Heisenberg basis. More precisely, if we
consider two different Heisenberg bases, the group Hn in adapted coordinates with respect
to the two bases gives the same R2n+1, in the sense that both the identifications give the
product (2.13) on R2n+1. In other words, R2n+1 endowed with the product (2.13) and with
the Euclidean norm, represents Hn in adapted coordinates with respect to any arbitrary
Heisenberg basis.

2.5 Measures on Carnot groups

Consider a Carnot group G equipped with a homogeneous distance d. We denote by
Bd(x, r) and Bd(x, r) the metric open ball and the metric closed ball, respectively, centered
at x ∈ G of radius r > 0

Bd(x, r) := {y ∈ G : d(x, y) < r}, Bd(x, r) := {y ∈ G : d(x, y) ≤ r}.

When it is clear from the context, we drop the index d.
We denote the Euclidean open and closed balls on G by BE(x, r) and BE(x, r), respectively.
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Given a set A ⊂ G, we define its diameter as

diamd(A) = sup{d(x, y) : x, y ∈ A}.

Also in this case, when it is possible the index d will be omitted.
We consider now G in adapted coordinates with respect to a fixed adapted basis

(e1, . . . , eq). From the point of view of measures, first of all we can consider the Lebesgue
measure Lq on G.

Remark 2.5.1. We will refer to the measure Lq also for a Carnot group G not explicitly
in adapted coordinates. In this case, when we refer to the measure Lq on G we consider
the measure (π−1

B )]Lq, implicitly assuming that we have fixed an orthonormal adapted
basis B of G, so that the map πB in (2.5) is well defined.

The Lebesgue measure Lq is left invariant and homogeneous.

Proposition 2.5.2. [SC16, Proposition 2.19] If G is a Carnot group of topological di-
mension q and homogeneous dimension Q, the Lebesgue measure Lq is the Haar measure
of the group, then for every measurable set E ⊂ G and for every x ∈ G

Lq(lx(E)) = Lq(E).

Moreover, for every t > 0,
Lq(δt(E)) = tQLq(E).

By Proposition 2.5.2, it follows that for every x ∈ G and r > 0

Lq(Bd(x, r)) = Lq(lx(δr(Bd(0, 1))) = rQLq(Bd(0, 1)).

Moreover, since Lq is a Radon measure homogeneous with respect to the family of anisotropic
dilations, the Lebesgue measure of the boundary of balls is null, i.e. Lq(∂Bd(x, r)) = 0 for
every x ∈ G and r > 0 (see [SC16, Proposition 2.8]).

Remark 2.5.3. Notice that for every homogeneous distance d, diamd(Bd(x, r)) = 2r for
all x ∈ G and r > 0 (see again [SC16, Proposition 2.8]).

Remark 2.5.4. If g is the left invariant graded Riemannian metric that we have fixed on
G, the Riemannian volume vg on G coincides with Lq (for more details refer to [Mag02a,
Proposition 2.3.47]).

Let us introduce various Hausdorff-type measures on a Carnot group. These measures
arise as results of different applications of the process that we are going to describe below,
called Carathéodory’s construction. For more details please refer to [Fed69, Section 2.10].

Definition 2.5.5 (Carathéodory’s construction). Let F ⊂ P(G) be a non-empty family
of closed subsets of a Carnot group G, equipped with a homogeneous distance d. Let
ζ : F → R+ be a function such that 0 ≤ ζ(S) < ∞ for any S ∈ F . If δ > 0 and A ⊂ G,
we define

φδ,ζ(A) = inf


∞∑
j=0

ζ(Bj) : A ⊂
∞⋃
j=0

Bj ,
diam(Bj)

2
≤ δ, Bj ∈ F

 , (2.16)

the measure of A resulting by Carathéodory’s construction is the limit

lim
δ→0

φδ,ζ(A) = sup
δ>0

φδ,ζ(A).
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If F coincides with the family of all closed subsets of G and ζ(B) =
(

diamd(B)
2

)α
we

call
Hα(A) := sup

δ>0
φδ,ζ(A)

the α-Hausdorff measure of A.

If F coincides with the family of closed balls with respect to the distance d, that we
denote by Fb, and ζ(Bd(x, r)) = rα we call

Sα(A) := sup
δ>0

φδ,ζ(A)

the α-spherical Hausdorff measure of A.

If F coincides with the family of all closed sets, and for α ∈ {1, . . . , q} we set

cα = Lα({x ∈ Rα : |x| ≤ 1}) = Lα(BE(0, 1)) and ζ(B) = cα

(
diamE(B)

2

)α
,

we call
HαE(A) := sup

δ>0
φδ,ζ(A)

the α-Euclidean Hausdorff measure.

Remark 2.5.6. Notice that generally, in the literature, in the definition of Carathéodory’s
construction, (2.16) is substituted by

ψδ,ζ(A) = inf


∞∑
j=0

ζ(Bj) : A ⊂
∞⋃
j=0

Bj , diam(Bj) ≤ δ, Bj ∈ F

 .

Clearly, for every ζ and δ > 0, φδ,ζ(A) = ψ2δ,ζ(A), hence the limit measures built through
Carathéodory’s construction with respect to φδ,ζ or ψδ,ζ are equal. Nevertheless, we prefer
to state the formulation of Definition 2.5.5 through condition (2.16) since later on, for
instance in the last chapter of the thesis, we will need to compare various different measures
introduced through Carathéodory’s construction, with F = Fb, with some packing-type
measures. These comparisons will be easier if we put the constraint on the length of the
radius of covering balls instead of on their diameter.

All measures obtained through Carathéodory’s construction are Borel regular. Since d
is a homogeneous distance, for all m > 0, for all measurable set A ⊂ G and for all x ∈ G

Hm(A) = Hm(lx(A)),

Sm(A) = Sm(lx(A)).

Moreover, for every t > 0 we have

Hm(δt(A)) = tmHm(A),

Sm(δt(A)) = tmSm(A),

refer to [SC16, (2.40)] for more details.
Let us now recall the definition of Hausdorff (or metric) dimension of a a set.

Definition 2.5.7. Let G be a Carnot group endowed with a homogeneous distance d. Let



38 2. Carnot groups

A be a subset of G. We call Hausdorff dimension, or metric dimension, of A the number

dimH(A) = inf{t ∈ [0,∞) : St(A) = 0}.

The Hausdorff dimension of G can be individuated through the Ahlfors regularity of
G. It coincides with the homogeneous dimension of G.

Definition 2.5.8. Let (X, d) be a metric space, let µ be a Radon measure on X and fix
N ∈ N. The measure space (X, d, µ) is said Ahlfors regular of dimension N if there exist
two real numbers c1, c2 > 0 such that for every x ∈ X and r > 0

c1r
N ≤ µ(Bd(x, r)) ≤ c2r

N .

Proposition 2.5.9. Let G be a Carnot group of homogeneous dimension Q equipped with
a homogeneous distance d, then (G, d, SQ) is Ahlfors regular of dimension Q.

Directly, it follows that dimH(G) = Q.

Remark 2.5.10. The measures HQ and SQ are left invariant on G. Moreover, by Propo-
sition 2.5.9, they are Radon and non-zero and then they are Haar measures on G. We
observed above that the Haar measure of G is unique, up to a constant. As a consequence,
HQ and SQ are equal, up to positive constants, to Lq.

For our purposes, it is useful to recall also a less known Hausdorff-type measure, first
introduced in [RT88]. Given α ∈ [0,∞) we define the α-centered Hausdorff measure Cα of
a set A ⊂ G as

Cα(A) = sup
E⊂A
Dα(E)

where Dα(E) = limδ→0+Dαδ (E), and, in turn, for every δ ∈ (0,∞), Dαδ (E) = 0 if E = ∅
and if E 6= ∅

Dαδ (E) = inf

{∑
i

rαi : E ⊂ ∪iBd(xi, ri), xi ∈ E, diamd(Bd(xi, ri)) ≤ δ

}
.

For every α > 0, also the centered Hausdorff measure Cα is Borel regular ([FSSC15, Lemma
2.2]), left invariant and homogeneous of degree α with respect to intrinsic dilations δt. In
addition, all the homogeneous measures that we have introduced are equivalent. More
precisely, for every α > 0

Hα ≤ Sα ≤ Cα ≤ 2αHα (2.17)

(see [FSSC15, Remark 2.3] and references therein). Let us recall some important re-
sults, that will be fundamental to make comparisons between different measures obtained
through Carathéodory’s construction.

Proposition 2.5.11. [Fed69, Theorem 2.10.17(i)] Let G be a Carnot group endowed with
a homogeneous distance d. Assume that F is the family of the closed subsets of G or the
family of the closed metric balls of G with respect to d. Let us consider ζ and φδ,ζ as in
Definition 2.5.5. Consider a subset A ⊂ G. If there exist t > 0 and δ > 0 such that

µ(A ∩ S) ≤ tζ(S)

whenever S ∈ F and diam(S) ≤ δ, then

µ(A) ≤ t sup
δ>0

φδ,ζ(A).



2.5 Measures on Carnot groups 39

Now we introduce two notions of density of a Borel regular measure in a Carnot group
and we report below two corresponding abstract differentiation theorems.

Definition 2.5.12. Let us consider a Carnot group G endowed with a homogeneous
distance d. Let α > 0, x ∈ G and let µ be a Borel regular measure on G. We define the
(upper) α-centered density of µ at x

θαc (µ, x) := lim sup
r→0

µ(Bd(x, r))
rα

.

Theorem 2.5.13. [FSSC15, Theorem 3.1] Let α > 0 and let µ be a Borel regular measure
on G such that there exists a countable open covering of G, whose elements have µ-finite
measure. Let A ⊂ G be a Borel set. If Cα(A) <∞ and µxA is absolutely continuous with
respect to CαxA, then θαc (µ, ·) : G → [0,∞] is a Borel measurable function on A and for
every Borel set B ⊂ A

µ(B) =

∫
B
θαc (µ, x) dCα(x).

Let us introduce the notion of Federer density. As the centered density, it is a suitable
limit superior of the ratio between the measure we wish to differentiate and the gauge of
the spherical measure with respect to the class of balls, see [Mag15].

Definition 2.5.14. Let Fb be the family of closed metric balls with positive radius in G
endowed with a homogeneous distance d. Let α > 0, x ∈ G and let µ be a Borel regular
measure on G. We call (spherical) α-Federer density of µ at x the real number

θα(µ, x) = inf
ε>0

sup

{
µ(B)

r(B)α
: x ∈ B ∈ Fb, diam(B) < ε

}
.

This density naturally appears in representing Borel regular measures absolutely con-
tinuous with respect to the α-spherical Hausdorff measure. Actually the following theorem
is obtained by applying [Mag15, Theorem 11] to the metric space (G, d), as in [Mag19,
Theorem 7.2].

Theorem 2.5.15 ([Mag15, Theorem 11]). Let α > 0 and let µ be a Borel regular measure
on G such that there exists a countable open covering of G whose elements have µ finite
measure. If A ⊂ G is a Borel set, then θα(µ, ·) is a Borel function on A. In addition, if
Sα(A) <∞ and µxA is absolutely continuous with respect to SαxA, then for every Borel
set B ⊂ A we have

µ(B) =

∫
B
θα(µ, x) dSα(x).

Remark 2.5.16. Centered density and Federer density do not always coincide. In [Mag15]
Magnani provides an example of this phenomenon: in the first Heisenberg group H1,
equipped with its Carnot-Carathéodory metric dc, there are a Radon measure µ, a set
A ⊂ H1 and two constants 0 < k1 < k2 such that µxA is absolutely continuous with
respect to S2xA and for all x ∈ A

θ2
c (µ, x) = k1 < k2 = θ2(µ, x)

and for all t ∈ (k1, k2)
µ(A) > tS2(A).
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Chapter 3

Differential Calculus on and
within Carnot groups

The goal of this chapter is to present many deep notions and results that nowadays
are considered well-established tools to do research about geometric analysis in Carnot
groups. Our presentation is organized in order to retrace the path of the classical calcu-
lus in Euclidean spaces, replacing the Euclidean notions with corresponding generalized
definitions in Carnot groups, when they are available. We start from the concept of homo-
geneous subgroup, that can be thought as the analogue of the concept of linear subspace
in Euclidean spaces. Then we introduce the notion of splitting of a Carnot group as the
product of two complementary subgroups. According to our comparison, this notion is
the analogue of writing an Euclidean space as a direct sum of two linear subspaces. We
introduce then the family of the h-homomorphisms, whose name stands for homogeneous
homomorphisms, between two Carnot groups. They generalize the concept of linear map
between two Euclidean spaces. We individuate two particular families of injective and
surjective h-homomorphisms, called h-monomorphisms and h-epimorphisms, respectively.
Successively, we focus our attention on the notion of Pansu differentiability, introduced in
[Pan89], that is a relevant generalization of the Euclidean differentiability to maps acting
between two Carnot groups. Afterwords, we collect the definition and some fundamen-
tal properties of continuously Pansu differentiable maps. Then we provide a very short
introduction to the theory of functions of bounded variation and of Caccioppoli sets in
Carnot groups. The aim of this section is to provide, without any ambition of complete-
ness, the basic ideas of this deep theory in order to prepare the reader to understand
the state of the art about the study of regular hypersurfaces in Carnot groups, that will
be, for instance, the starting point of the last section of this chapter. We move then
to introduce intrinsic graphs, i.e. group-theoretical graphs of mappings acting between
two complementary subgroups. We report and discuss various notions of regularity for
intrinsic graphs. They have been introduced by Franchi, Serapioni and Serra Cassano
and deeply investigated in the last twenty years in a long series of papers among which
[FSSC06, ASCV06, FSSC07, AS09, FSSC11, FMS14, FS16, SC16]. This part of the pre-
sentation will be quite detailed, since intrinsic graphs will be the main characters of our
research in the next chapters. We reserve the final section to describe some recent available
results about intrinsic graphs of intrinsically regular functions, keeping the main focus on
the family of maps whose target space is a one dimensional homogeneous subgroup. We
devote special attention to this setting since, how we will try to convey to the reader,
it can often be considered a promising starting point for future researches towards more
general settings.

41



42 3. Differential Calculus on and within Carnot groups

When nothing different is specified, G denotes a Carnot group endowed with a homo-
geneous distance d. By ‖ · ‖ we denote the homogeneous norm associated with d.

3.1 Homogeneous subgroups and complementary subgroups

Homogeneous subgroups are Lie subgroups closed with respect to anisotropic dilations.

Definition 3.1.1 (Homogeneous subgroup). Let G be a Carnot group. A homogeneous
subgroup W ⊂ G is a Lie subgroup such that

δt(w) ∈W

for every w ∈W and t > 0.

More in general, an homogeneous set is a set E ⊂ G such that δt(E) ⊂ E for every
t > 0.

Remark 3.1.2. By the classical theory of Lie groups, since G is simply connected and
nilpotent, the exponential map gives a standard one-to-one correspondence between Lie
subgroups of a Carnot group and Lie subalgebras of its Lie algebra. Hence, according to
the identifications that we introduced in the previous chapter, the set of the homogeneous
subgroups of a Carnot group G coincides with the set of the homogeneous subalgebras of
G.

Remark 3.1.3. Homogeneous subgroups are in particular homogeneous linear subspaces
of G. In addition, every homogeneous subgroup W of a Carnot group G = V1 ⊕ · · · ⊕ Vκ
can be written as a direct sum of linear subspaces

W = N1 ⊕ · · · ⊕Nκ,

where Ni is a subspace of Vi for i = 1, . . . , κ (see for instance [Mag13, Theorem 7.2]). The
homogeneous dimension of W is the number

∑κ
i=1 i(dim(Ni)).

The topological dimension of a subgroup is its dimension as vector space and it is
always smaller or equal to its homogeneous dimension, that, in turn, coincides with its
Hausdorff dimension with respect to any homogeneous distance fixed on G.

Definition 3.1.4. A homogeneous subgroup W is called horizontal if W ⊂ V1.

Remark 3.1.5. Any horizontal subgroup V ⊂ G is commutative. More precisely, a
horizontal subgroup V is a subalgebra contained in the first layer V1, hence, necessarily
it is abelian, then, by the form of the product (2.3), V is commutative as a subgroup. In
particular, the topological dimension of a horizontal subgroup coincides with the metric
one. Hence, if we denote by k this value, V is isomorphic and isometric to Rk.

Definition 3.1.6. A homogeneous subgroup W is called vertical if for some 1 ≤ ` ≤ κ,

W = N` ⊕ V`+1 ⊕ · · · ⊕ Vκ,

where N` is a linear subspace of V`.

Remark 3.1.7. Every vertical subgroup is normal, namely xwx−1 ∈ W for every x ∈ G
and w ∈ W. An homogeneous subgroup W is normal if and only if it is an ideal with
respect to the Lie algebra structure, i.e. [x,w] ∈ W for every x ∈ G, w ∈ W (refer for
instance to [Var84, Theorem 2.13.5]).
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Remark 3.1.8. Throughout the whole thesis, if W is a homogeneous subgroup of a Carnot
group G, when we consider an open (resp. closed) set U ⊂ W we mean a relatively open
(resp. closed) set in W.

Definition 3.1.9 (Complementary subgroups). Given two subgroups W, V of a G. We
call them complementary subgroups if they are two homogeneous subgroups such that
W ∩ V = {0} and G = WV.

If W is a normal subgroup, the product WV is semidirect. In this case we write
G = WoV. If W and V are both normal, WV is a direct product and we write G = W×V.

Remark 3.1.10. According to our identifications, for instance by Proposition [Mag13,
Proposition 7.6], two subsets W,V ⊂ G are complementary subgroups such that G = WV
if and only if they are two homogeneous subalgebras such that G = W⊕ V.

Remark 3.1.11. By Remark 3.1.10, if a Carnot group G is the product of two comple-
mentary subgroups G = WV and V is one-dimensional, then V is necessarily horizontal
and the product is semidirect.

Remark 3.1.12. If a Carnot group G = WV is the product of two complementary
subgroups W and V such that W is normal, then V is a Carnot group. See [Mag13,
Proposition 8.2] or [AM20a, Remark 2.1] for more details.

Definition 3.1.13. If a Carnot group G = WV is the product of two complementary
subgroups W and V, then for every x ∈ G there exist unique two elements xW ∈ W and
xV ∈ V such that x = xWxV. We call group projections on W and V, respectively, the two
mappings

πW : G→W, πW(x) = xW, πV : G→ V, πV(x) = xV.

Remark 3.1.14. It is a standard fact that if G = WV, then also G = VW, hence the
notion of being complementary subgroups does not depend on the order under which
the two homogeneous subgroups are taken. Nevertheless, the definition of the projection
mappings πW and πV relative to a splitting G = WV depends on that order. Later on it
will be necessary to introduce some more precise notation to better specify the splitting
with respect to which the group projections are meant.

Remark 3.1.15. Given a generic splitting of G as the product of two complementary
subgroups W and V, the group projections πW and πV are not necessarily Lipschitz maps,
with respect to the homogeneous distance of G restricted to subgroups. For instance, by
[FS16, Proposition 2.19], the Lipschitz continuity of the projection πV is guaranteed only
when G = WoV is a semidirect product and, vice versa, πW is Lipschitz continuous when
V is normal. Nevertheless, notice that by [FS16, Proposition 2.17] the group projections
πW and πV, read in coordinates, are always polynomial maps, hence they are in particular
C∞ maps.

Remark 3.1.16 (Subgroups in the Heisenberg group). It is easy to realize that any
homogeneous subgroup W of the Heisenberg group Hn is either horizontal, i.e. W ⊂ H1,
or vertical, i.e. H2 ⊂ W. If W is horizontal and if we denote its dimension by k, surely
1 ≤ k ≤ n. On the other side, W is normal if and only if it is vertical.

Assume now that Hn is the product of two complementary subgroups W and V, Hn =
WV. The structure of Hn permits to deduce some features of V and W. Necessarily, one
of the two subgroups, for instance W, contains the second layer H2, then it is vertical,
and consequently normal. As a consequence, the second one, V, is surely a horizontal
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subgroup, and then it is commutative. Then the topological dimension of V, that we
denote by k, equals the homogeneous one, and k has to be strictly smaller than n+ 1. As
a consequence, the topological dimension of W equals 2n+ 1− k, while the homogeneous
one is equal to 2n+ 2− k.

When we have a splitting, the following useful propositions hold.

Proposition 3.1.17. [FS16, Proposition 2.12] If G = WV is the product of two comple-
mentary subgroups, there exists a constant c0 = c0(W,V) > 0 such that

c0(‖w‖+ ‖v‖) ≤ ‖wv‖ ≤ ‖w‖+ ‖v‖ (3.1)

for all w ∈W, v ∈ V.

Proposition 3.1.18. [FS16, Corollary 2.15] Let G = WV be the product of two comple-
mentary subgroups, then

c0‖πV(x)‖ ≤ dist(x,W) ≤ ‖πV(x)‖

for all x ∈ G, where c0 = c0(W,V) is the constant given by Proposition 3.1.17 and
dist(x,W) = inf{d(x,w) : w ∈W}.

3.1.1 Measures on homogeneous subgroups

We collect in this section some considerations about suitable measures concentrated on
homogeneous subgroups. Let G be a Carnot group endowed with a homogeneous distance
d and let W ⊂ G be a homogeneous subgroup of topological dimension n and Hausdorff
dimension N . Since W is a linear subspace of G, the Lebesgue measure Ln coincides with
the Hausdorff measure HnE on the measurable subsets of W.

Remark 3.1.19. We slightly abused of the notation in the previous sentence, so let us
explain it more carefully. In particular, we can fix an orthonormal basis (b1, . . . , bn) of W
and then, considering the isometry

iW : W→ Rn, iW

(
n∑
i=1

xibi

)
= (x1, . . . , xn), (3.2)

we obtain the relation
(iW)](HnExW) = Ln. (3.3)

Clearly this process can be exploited for any homogeneous subgroup. Hence, we say that
the measures Ln and HnE coincide in the sense expressed by (3.3). Actually, when we refer
to the measure Ln on the subsets of W, we implicitly refer to the measure HnExW.

By taking in consideration the explicit polynomial form of the product (given in
adapted coordinates by Proposition 2.2.4), it is clear that the Jacobian of any left trans-
lation of the group lx : G→ G is unitary at any point, for every x ∈ G. Clearly, this keeps
on being true for the restricted family of translations lw|W : W → W, with w ∈ W, and
this implies that HnE is a left invariant measure on W, equipped with the group product
of G restricted to W, i.e.

HnE(B) = HnE(lw(B))

for every measurable set B ⊂ W and every w ∈ W. Again working by coordinates, in
[FS16, Lemma 2.20] (see also [Ser08, Lemma 4.7]) it is proved by explicit computation
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that the Jacobian of the restricted dilation δt|W is tN , at any point of W, for every t > 0.
Thus, the measure HnExW is N -homogeneous with respect to the family of dilations δt|W,
for t > 0, hence for every x ∈W we have

HnE(B(x, t) ∩W) = tNHnE(B(x, 1) ∩W).

Since d is a left invariant distance, also the Hausdorff measures SNxW and HNxW
are left invariant on W. Moreover they are Radon measures. In fact, since the measure
HnE is N -homogeneous, it is Ahlfors N -regular on W, therefore there are two constants
0 < c < C such that

cHnE(B) ≤ HN (B) ≤ CHnE(B)

for every Borel set B ⊂ W (see for instance [Hei01, Exercise 8.11]). Taking into account
the basic comparisons between the Hausdorff measure and the spherical Hausdorff measure
(refer to (2.17)), we infer that both SNxW and HNxW are non-zero and locally finite. For
a reference about the previous considerations, one can refer also to [JNGV20, Lemma 3.1].
Then, by the uniqueness of the Haar measure of W, there exist two constants C1 and C2

such that for every measurable subset B ⊂W,

HnE(B) = C1SN (B) HnE(B) = C2HN (B). (3.4)

By left invariance and homogeneity, the two constants in (3.4) can be computed as

C1 =
HnE(B(0, 1) ∩W)

SN (B(0, 1) ∩W)
and C2 =

HnE(B(0, 1) ∩W)

HN (B(0, 1) ∩W)
.

Again by [FS16, Lemma 2.20], the Jacobian of the map

σx : W→W, σx(w) := πW(xw)

is unitary at any point for every x ∈ G. This consideration and the homogeneity of HnE
imply that, if W is complemented, namely if there exists a homogeneous subgroup V ⊂ G
complementary to W, setting c := Ln(πW(B(0, 1))) we have

Ln(πW(B(x, r)) = crN (3.5)

for all balls B(x, r) ⊂ G. The property (3.5) gives a control on the measure of pro-
jected sets through the group projection πW relative to the splitting G = WV and this is
quite surprising, since, if V is not a normal subgroup, the group projection πW can be a
non-Lipschitz map between G and W, endowed with the restriction of the homogeneous
distance d (see Remark 3.1.15).

Let us now collect three lemmas about a splitting of a Carnot group as the product
of a normal homogeneous subgroup W and a homogeneous linear subspace V , that is not
necessarily required to be a subgroup. These results have been proved in [Mag18, Lemmas
9.2, 9.3, 9,4] (see also [Mag20, Lemmas 3.3, 3.4, 3.5]), where nevertheless W was assumed
to be a vertical subgroup. Since we slightly weaken the hypotheses of the original three
lemmas, we report their proofs.

Lemma 3.1.20. Let G be a Carnot group, let V ⊂ G be a homogeneous linear subspace
and let W be a normal homogeneous subgroup such that G = V ⊕W, then the map

F : V ×W→ G, F (v, w) = vw
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is a diffeomorphism. Moreover, its inverse map T : G→ V ×W is defined by

T (x) = (PV (x),ΠW(x)),

where PV : G→ V is the linear projection related to the direct sum V ⊕W and ΠW(x) :=
PV (x)−1v.

Proof. Since the differential of F at (0, 0) is a linear isomorphism, F is a diffeomor-
phism from a neighbourhood of (0, 0) to a neighbourhood of 0 ∈ G. Since F (δtv, δtw) =
δt(F (v, w)) for every t > 0, v ∈ V and w ∈W, F is a surjective diffeomorphism onto G.

Now we consider
vw = v′w′,

where v, v′ ∈ V and w,w′ ∈W. By the Baker-Campbell-Hausdorff formula, we have

v + w +
κ∑
j=2

cj(v, w) = v′ + w′ +
κ∑
j=2

cj(v
′, w′). (3.6)

Since W is a normal subgroup, it is an ideal of G and then

w +
κ∑
j=2

cj(v, w), w′ +
κ∑
j=2

cj(v
′, w′) ∈W.

Now we apply PV to equation (3.6) and we obtain that

v = PV (vw) = PV (v′w′) = v′.

Then one can write any element x ∈ G as x = PV (x)ΠW(x).

Lemma 3.1.21. Let G be a Carnot group, let V ⊂ G be a homogeneous linear subspace
and let W be a normal homogeneous subgroup such that G = V ⊕W, then for every v ∈ V

v + W = vW.

Proof. By the Baker-Campbell-Hausdorff formula and the fact that W is an ideal with
respect to the Lie algebra structure of G for every w ∈ W it holds that cj(v, w) ∈ W for
every j = 2, . . . , κ and then

vw = v + w +
κ∑
j=2

cj(v, n) ∈ v + W.

Hence vW ⊂ v + W. On the other side we can apply Lemma 3.1.20 to v + w obtaining
that v + w = PV (v + w)ΠW(v + w) = vΠW(v + w) ∈ VW, then v + W ⊂ vW.

Proposition 3.1.22. If G is a Carnot group and W is a normal homogeneous subgroup
of topological dimension n, then for every x ∈ G, we have

HnE(B) = HnE(lx(B))

for every measurable set B ⊂W.

Proof. We consider x ∈ G and the map lx|W : W → G. First of all, by Lemma 3.1.21 we
know that lx(W) = xW = x+ W. In fact, by the Baker-Campbell-Hausdorff formula, for
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w ∈W we get

lx(w) = lx|W(w) = x+ w +
κ∑
j=2

cj(x,w) ∈ x+ W.

Since W is normal, it is an ideal with respect to the Lie algebra structure of G and then

cj(x,w) ∈W for every j = 2, . . . , κ. (3.7)

The subgroup W can be written as

W = W1 ⊕ · · · ⊕Wκ

with Wi linear subspace of Vi for every i = 1, . . . , κ. Clearly
∑κ

j=1 dim(Wj) = dim(W).

Let us now consider the homogeneous subspace L := W⊥ and notice that

L = L1 ⊕ · · · ⊕ Lk

where Li, for every i = 1, . . . , κ is a linear subspace of Vi such that Vi = Li ⊕Wi.
Let us now fix an adapted orthonormal basis (e1 . . . , eq) of G such that for every ` =
0, . . . , κ− 1

(eh`+1, . . . , eh`+dim(L`+1)) is a basis of L`

and
(eh`+dim(L`+1)+1, . . . , eh`+1

) is a basis of W`.

We denote by IL and IW the sets of indexes

IL := {j ∈ {1, . . . , q} : ej ∈ L} IW := {1, . . . , q} \ IL.

From now one we consider G in adapted coordinates with respect to the fixed basis
(e1, . . . , eq). Let us compute explicitly the left translation restricted to W, lx|W, where
x =

∑q
j=1 xjej ∈ G. We consider w ∈W

w =
∑
j∈IW

wjej =

κ−1∑
`=0

h`+1∑
j=h`+dim(L`+1)+1

wjej ∈W.

By reading the Baker-Campbell-Hausdorff formula in adapted coordinates, i.e. by applying
Proposition 2.2.4, the translation lx(w) has the following form

lx(w) = x+ w +Q(x,w) =
∑
j∈IL

(xj +Qj(x,w))ej +
∑
j∈IW

(xj + wj +Qj(x,w))ej ,

where the map Q is
Q = (Q1, Q2, . . . , Qq) : G×G→ G

where Qj : G×G→ R for j ∈ {1, . . . , q} are the components of Q.
By the form of the product in coordinates, for every j ∈ {1, . . . , q}, if j ∈ {h`+1, . . . , h`+1}
for some ` ∈ {0, . . . , κ− 1}, then

Qj(x,w) depends only on {xs}s≤h` , {wi}i∈IW ,i≤h` . (3.8)
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Moreover, by (3.7) we can deduce that

Qj(x,w) = 0 for every j ∈ IL.

Hence we can explicitly rewrite lx as lx(w) = ((xw)1, . . . , (xw)q), with

(xw)j = xj for j ∈ IL
(xw)j = xj + wj +Qj(x,w) for j ∈ IW .

(3.9)

Now we consider the two isometries

T : W→ Rn

T (w) = (wdim(L1)+1, . . . , wh1 , wh1+dim(L2)+1, . . . , wh2 , . . . , . . . , whκ−1+dim(Lκ)+1, . . . , wq),

for w =
∑

j∈IW wjej and
R : x+ W→ Rn,

R(x+w) = (wdim(L1)+1, . . . , wh1 , wh1+dim(L2)+1, . . . , wh2 , . . . , . . . , whκ−1+dim(Lκ)+1, . . . , wq),

if w =
∑

j∈IW wjej and we take in consideration the map

F := R ◦ lx ◦ T−1 : Rn → Rn.

In particular, setting η = (η1, . . . , ηn) ∈ Rn, we explicitly have

F (η1, . . . , ηn) =(η1, . . . , ηdim(W1),

ηdim(W1)+1 +Qh1+dim(L2)+1(x, T−1(η)), . . . , ηdim(W1)+dim(W2) +Qh2
(x, T−1(η)),

. . . ,

η∑κ−1
i=1 dim(Wi)+1 +Qhκ−1+dim(Lκ)+1(x, T−1(η)), . . . , ηn +Qq(x, T

−1(η))).

Hence, for i = 1, . . . , n, if j ∈ {1, . . . ,dim(W1)}

∂Fj
∂ηi

(·) = δi,j .

On the other hand, if j ≥ dim(W1) + 1, there is an integer ` = `(j) ∈ {1, . . . , κ− 1} such
that

∑`
p=1 dim(Wp) + 1 ≤ j ≤

∑`+1
p=1 dim(Wp) and

∂Fj
∂ηi

(·) = δi,j +
∂Qh`+dim(L`)+m(x, T−1(·))

∂ηi
,

where m is the integer m = j −
∑`

p=1 dim(Wp) (surely 1 ≤ m ≤ dim(W`+1)) and δi,j is
the Kronecker delta. The crucial observation now is that, by the definition of the map T
and by (3.8), if i >

∑`
p=1 dim(Wp),

∂Qh`+dim(L`)+m(x, T−1(·))
∂ηi

= 0,

then, if i ≥ j, since j >
∑`

p=1 dim(Wp), surely

∂Fj
∂ηi

(·) = δi,j .
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Then we can conclude that at any point of Rn the Jacobian of F is JF = 1.
Since T and R are isometries we have

R]HnE = Ln (T−1)]Ln = HnE .

Then F preserves the Lebesgue measure Ln and we can conclude the proof as follows

HnE(lx(B)) = R]HnE(F ◦ T (B)) = Ln(F (T (B))) = Ln(T (B))

= (T−1)]Ln(B) = HnE(B).
(3.10)

3.2 Pansu differentiability

The notions and the results about Pansu differentiability in this section originate
mainly by the work of Pansu [Pan89] and by the ideas presented therein. In this section
we consider two Carnot groups endowed with homogeneous distances (G, d1), (M, d2), of
topological dimension p and q and Hausdorff dimension Q and P , respectively. The groups
G and M are direct sums of linear subspaces as follows

G = V1 ⊕ · · · ⊕ Vκ M = W1 ⊕ · · · ⊕Wϑ.

We denote by δ1
t and δ2

t the intrinsic anisotropic dilations of G and M, respectively,
associated with the scale t > 0. As usual we consider both G and M equipped, respectively,
with a graded left invariant Riemannian metric.

3.2.1 Homogeneous homomorphisms

Definition 3.2.1. A map L : G→M is a h-homomorphism, that stands for homogeneous
homomorphism, if it is a group homomorphism such that L(δ1

t (x)) = δ2
t (L(x)) for any

x ∈ G and t > 0.

Remark 3.2.2. According to our usual identifications, L : G→ M is a group homomor-
phism if and only if it is a Lie algebra homomorphism. Hence, any group homomorphism
is, in particular, a linear map.

We denote by Lh(G,M) the family of h-homomorphisms from G to M.

Remark 3.2.3. For every t > 0, δ1
t ∈ Lh(G,G).

Remark 3.2.4. If L : G→M is a h-homomorphism, it is immediate to verify that ker(L)
is a normal homogeneous subgroup.

Given two h-homomorphisms L, T ∈ Lh(G,M), we define the distance

dLh(G,M)(L, T ) := sup
x∈B(0,1)

d2(L(x), T (x))

and we denote by ‖L‖Lh(G,M) := dLh(G,M)(L, I), where I : G → M is the map that
associates with any point of G the unit element of M, I(x) ≡ 0 for every x ∈ G.

Notice that, if we fix two adapted orthonormal bases (v1, . . . , vq) ⊂ G and (w1, . . . , wp) ⊂
M, we can consider G and M in adapted coordinates with respect to the two fixed bases,
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as we said above. Any h-homomorphism L is in particular a linear map from G to M.
When q ≥ p, we call the Jacobian of L the number

JL :=
√

det(LL∗),

where L∗ denotes the adjoint map L∗ : M → G of L. The Jacobian JL is the Euclidean
algebraic Jacobian of L from Rq to Rp, or, equivalently, it is the Jacobian of L between
the two Lie algebras G and M, with respect to the graded scalar products fixed on G and
M.

Proposition 3.2.5. [Mag02a, Theorem 3.1.12] Any h-homomorphism L : G → M is
Lipschitz and satisfies the following contact property

L(Vj) ⊂Wj for j = 1, . . . , κ. (3.11)

Remark 3.2.6. In particular, if M is the commutative group Rp, hence if M = W1 = Rp,
then

L(Vj) = {0} for j = 2, . . . , κ.

In this case, L : G → Rp can be identified in coordinates with a p ×m1 matrix ML with
real coefficients such that for every x ∈ G,

L(x) = ML · (π(x))T , (3.12)

where · denotes the matrix product and π denotes the orthogonal projection on the first
layer V1 of G: π : G→ V1, π(x1, . . . , xq) := (x1, . . . , xm1).

Remark 3.2.7. Any Lie algebra homomorphism L : G → M that satisfies the contact
property (3.11) is a h-homomorphism.

Definition 3.2.8 (h-isomorphism). An invertible h-homomorphism L : G → M is called
a h-isomorphism.

For more details about the properties of h-homomorphisms, we refer the reader to
[Mag02a, Section 3.1] or to [Mag01, Section 3.1]. Now we introduce two particular families
of injective and surjective h-homomorphisms presented in [Mag13, Definition 2.5].

Definition 3.2.9 (h-monomorphism). Let L : G → M be a h-homomorphism. L is a
h-monomorphism if it has a left inverse that is also a h-homomorphism.

These objects have been characterized by their property of factorizing codomain. Ac-
tually, requiring the existence of a left inverse is a stronger condition than requiring injec-
tivity.

Proposition 3.2.10. [Mag13, Lemma 7.11] Let L : G → M be a h-homomorphism and
let H be its image, then L is a h-monomorphism if and only if L is injective and there
exists a normal subgroup K ⊂ G complementary to H.

Definition 3.2.11 (h-epimorphism). Let L : G → M be a h-homomorphism. L is a
h-epimorphism if it has a right inverse that is also a h-homomorphism.

These objects have been characterized by their property of factorizing domain. Actu-
ally, requiring the existence of a left inverse is a stronger condition than requiring surjec-
tivity.
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Proposition 3.2.12. [Mag13, Lemma 7.10] Let L : G → M be a h-homomorphism and
let K be its kernel, then L is an h-epimorphism if and only if L is surjective and there
exists a homogeneous subgroup H ⊂ G complementary to K.

If L : G→M is a h-epimorphism, the restriction L|H is a h-isomorphism.

Remark 3.2.13. If L : G→M is a h-homomorphism and there exists a homogeneous sub-
group V ⊂ G such that T := L|V : V→M is a h-isomorphism, then L is a h-epimorphism
since T−1 is a right inverse of L. In particular V and ker(L) are complementary sub-
groups of G and any point x ∈ G can be written as x(T−1(L(x)))−1T−1(L(x)), with
x(T−1(L(x)))−1 ∈ ker(L) and T−1(L(x)) ∈ V.

For more details about h-monomorphisms and h-epimorphisms, please refer to [Mag13].

3.2.2 Pansu differentiable functions

We set ‖x‖1 := d1(x, 0), for every x ∈ G, and ‖x‖2 := d2(x, 0), for every x ∈M.

Definition 3.2.14. Let Ω be an open set in G, let f : Ω→M be a function and let x̄ ∈ Ω.
We say that f is Pansu differentiable at x̄ if there exists a h-homomorphism L : G → M
that satisfies

‖L(x̄−1y)−1f(x̄)−1f(y)‖2 = o(‖x̄−1y‖1) as ‖x̄−1y‖1 → 0. (3.13)

If condition (3.13) is verified, we call L the Pansu differential of f at x̄ and we denote it
by Df(x̄).

Proposition 3.2.15. [Mag02a, Proposition 3.2.2] If f is Pansu differentiable at a point
x̄, the Pansu differential Df(x̄) is unique, and consequently it is well defined.

Pansu differentiability is a natural generalization of the Euclidean differentiability of
maps acting between two Euclidean spaces to functions acting between two Carnot groups.
A convincing evidence in support of this fact is a Rademacher-type theorem available in
this context, the following Pansu-Rademacher Theorem.

Theorem 3.2.16. [Pan89, Theorem 2] Let Ω ⊂ G be an open set and let f : Ω→M be a
function. If f is Lipschitz, then it is Pansu differentiable at Lq-almost every point x ∈ Ω.

Remark 3.2.17. Theorem 3.2.16 has been generalized in [Mag02a] to the case when Ω is
any measurable subset of G.

An immediate consequence of Theorem 3.2.16 is the following Corollary.

Corollary 3.2.18. [Sem96, Theorem 7.1] A non-commutative Carnot group G of topo-
logical dimension q, endowed with a homogeneous distance d, is not bi-Lipschitz equivalent
to the Euclidean space Rq.

We sketch the proof of this result, that is an immediate consequence of Theorem
3.2.16. If we assume, by contradiction, the existence of a bi-Lipschitz map f : G → Rq,
by Theorem 3.2.16 f is Pansu differentiable almost everywhere on G and Df(x) is a bi-
Lipschitz h-homomorphism such that Df(x)(Vj) = {0} for every 2 ≤ j ≤ κ, for almost
every x ∈ G. Then, for almost every x ∈ G, dim(ker(Df(x))) = dim(V2⊕· · ·⊕Vκ) > 0 and
we get a contradiction with the fact that Df(x) is bi-Lipschitz. Hence, we can conclude
that it cannot exist a bi-Lipschitz map between G and Rq.
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Definition 3.2.19. Let us consider an open set Ω ⊂ G. We say that f : Ω → M is
continuously Pansu differentiable on Ω if f is Pansu differentiable at every point of Ω and
the function Df : Ω → Lh(G,M) is continuous. The family of all continuously Pansu
differentiable mappings is denoted by C1

h(Ω,M).

Continuously Pansu differentiable functions are a generalization of C1-regular Eu-
clidean mappings. In respect with continuously Pansu differentiable maps, the following
holds.

Proposition 3.2.20. Let Ω ⊂ G be an open set and let f ∈ C1
h(Ω,M), then the function

‖Df‖Lh(G,M) : Ω→ R, x→ ‖Df(x)‖Lh(G,M) is continuous on Ω.

Now, we collect some results about the case when M = Rp.

Definition 3.2.21. Let Ω ⊂ G be an open set and let f : Ω→ R be a continuous function.
Fix a point x ∈ Ω and a vector v ∈ V1. Let Xv ∈ Lie(G) be the unique left invariant
vector field on G such that Xv(0) = v. If there exists the limit

lim
t→0

f(xexp(tXv))− f(x)

t
= lim

t→0

f(x(tv))− f(x)

t
∈ R (3.14)

we call it the horizontal partial derivative at x along Xv and we denote the value of the
limit (3.14) by Xvf(x).

The continuity of the Pansu differential has been characterized in terms of the existence
and continuity of horizontal partial derivatives.

Proposition 3.2.22. If Ω ⊂ G is an open set and f : Ω→ Rp is a map, f is continuously
Pansu differentiable on Ω if and only if it is continuous and, for every x ∈ Ω and for
every j = 1, . . . , p, for every horizontal vector field Xv ∈ Lie(G) (or equivalently for every
v ∈ V1), the horizontal derivative Xvfj(x) exists and the mapping Xvfj : Ω → R is
continuous on Ω.

A slightly different analogous characterization has also been proved. The map f :
Ω → Rp is continuously Pansu differentiability if and only, for any horizontal vector
field Xv, the horizontal derivatives Xvfj , for j = 1, . . . , p, are continuous in the sense of
distributions. The proofs of the two characterizations are analogous and can be obtained
through adaptations of the proof of [FSSC01, Proposition 5.8] (see also [Mag13, Theorem
1.1]).

Definition 3.2.23. Let Ω ⊂ G be an open set and let f ∈ C1
h(Ω,R). We call horizontal

gradient of f at x ∈ Ω the unique horizontal vector ∇Hf(x) ∈ V1 such that

Df(x)(z) = 〈∇Hf(x), z〉

for every z ∈ V1.

Remark 3.2.24. Assume (v1, . . . , vq) to be any adapted orthonormal basis of G and let us
call Xj ∈ Lie(G) the left invariant vector field such that Xj(0) = vj , for every j = 1, . . . , q,
then

∇Hf(x) =

m1∑
i=1

Xif(x)vi.
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Definition 3.2.25 (Horizontal Jacobian matrix). Let us consider an open set Ω ⊂ G, a
map f : Ω → Rp and a point x ∈ Ω. Assume (v1, . . . , vq) to be any adapted orthonormal
basis of G and let us denote by Xj ∈ Lie(G) the left invariant vector field such that
Xj(0) = vj for j = 1, . . . , q. Then we call horizontal Jacobian matrix of f at x, and we
denote it by JHf(x), the matrix MDf(x) ∈ Mp,m1(R) individuated by equation (3.12) in
Remark 3.2.6 applied to L = Df(x), i.e.

JHf(x) =

X1f1(x) . . . Xm1f1(x)
. . . . . . . . .

X1fp(x) . . . Xm1fp(x)

 .

Remark 3.2.26. Consider an orthonormal basis (v1, . . . , vq) of G. We can identify, as
usual, G with Lie(G) through the map that associates any vector v ∈ G with the left
invariant vector field Xv such that Xv(0) = v. Then, if we have a function f ∈ C1

h(Ω,R),
the horizontal gradient ∇Hf ∈ C0(Ω, V1), ∇Hf(x) =

∑m1
i=1Xvif(x)vi is automatically

identified with the continuous horizontal left invariant vector field

∇Hf ∈ C0(Ω, HG), ∇Hf(x) =

m1∑
i=1

Xvif(x)Xvi(x) ∈ HxG.

Let us set some preparatory definitions to state Theorem 3.2.30, that will be used
multiple times throughout the thesis. Roughly speaking, it states that continuous Pansu
differentiability implies in some sense the uniform convergence of limit (3.13) on small
enough sets (the meaning of the terms ”uniform” and ”small enough” can be better un-
derstood by comparing (3.13) with (3.16)).

Definition 3.2.27. [Mag13, Definition 4.11] Let f : K → Y be a continuous function
from a compact metric space (K, d1) to a metric space (Y, d2). We define the modulus of
continuity of f on K as

ωK,f (t) = max
x,y∈K

d1(x,y)≤t

d2(f(x), f(y)).

Remark 3.2.28. In the statement of Theorem 3.2.30, and also later on, we will refer to
two geometrical constants c = c(G, d) and H = H(G, d), that can be associated with any
Carnot group G endowed with a homogeneous distance d. In order to achieve our results,
the exact value of these constants will not be relevant. Hence, since their definition
is very technical, for the sake of accuracy, we refer to [Mag13, Lemma 4.9, Definition
4.10] for a precise evaluation; here we limit ourselves to explain heuristically their role.
Roughly speaking, they are needed to state condition (3.15) in Theorem 3.2.30 that can be
translated, in the notation of the theorem, as follows: given any two points x, y ∈ Ω1, one
wants to be sure that any horizontal curve connecting x and y is completely contained in
Ω2. The two constants are then defined in order to be the right ones to ensure that (3.15)
implies this desired geometric property. Here we just highlight that c and H depend only
on the group G and on the distance d.

Remark 3.2.29. Consider an open set Ω ⊂ G and a mapping f : Ω ⊂ G → M; for
j = 1, . . . , ϑ, we call Fj := πWj ◦f , where πWj : M→Wj is the orthogonal projection onto
the j-th layer of M. If f is Pansu differentiable at x ∈ Ω, by [Mag13, Theorem 4.12], the
maps Fj are Pansu differentiable at x and, in particular, DF1(x) = πW1 ◦Df(x) (where
DF1 : Ω→W1).
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Theorem 3.2.30. [Mag13, Theorem 1.2] Let (G, d1) and (M, d2) be two Carnot groups
endowed with homogeneous distances. Let κ be the step of G, let Ω ⊂ G be an open set
and consider a map f ∈ C1

h(Ω,M). Let Ω1,Ω2 ⊂ G be two open subsets of G such that Ω2

is compactly contained in Ω and

{x ∈ G : dist(x,Ω1) ≤ cHdiam(Ω1)} ⊂ Ω2, (3.15)

where c = c(G, d1) and H = H(G, d1) are the geometric constants discussed in Remark
3.2.28. Then there exists a constant C, only depending on G, maxx∈Ω2

‖DF1(x)‖Lh(G,W1)

and on ωΩ2,DF1
(diam(Ω2)) such that

‖Df(x)(x−1y)−1f(x)−1f(y)‖2
‖x−1y‖1

≤ C[ωΩ2,DF1
(cHd1(x, y))]1/κ

2
(3.16)

for every x, y ∈ Ω1 with x 6= y.

Remark 3.2.31. By [Mag13, Theorem 1.1], if f is continuously Pansu differentiable, then
x→ DF1(x) is a continuous map from Ω to Lh(G,W1), and so by Proposition 3.2.20, the
modulus of continuity ωΩ2,DF1

(s) goes to zero as s goes to zero.

One can use Theorem 3.2.30 to prove the following.

Proposition 3.2.32. If Ω ⊂ G is an open set, any map f ∈ C1
h(Ω,M) is locally Lipschitz.

Proof. Let us fix x̄ ∈ Ω. By Theorem 3.2.30 we have

lim
ε→0

sup
x,y∈B(x̄,ε)

‖Df(x)(x−1y)−1f(x)−1f(y)‖2
‖x−1y‖1

= 0 (3.17)

By the continuity of the Pansu differential it holds that, when ε goes to zero, every
x ∈ B(x̄, ε) goes to x̄ and then for every x, y ∈ B(x̄, ε)

‖Df(x̄)(x−1y)−1Df(x)(x−1y)‖2
‖x−1y‖1

≤ dLh(G,M)(Df(x̄), Df(x))→ 0 (3.18)

as ε→ 0. Hence

lim
ε→0

sup
x,y∈B(x̄,ε)

‖Df(x̄)(x−1y)−1f(x)−1f(y)‖2
‖x−1y‖1

= 0. (3.19)

Combining (3.17) and (3.18), we can choose ε = ε(x̄) > 0 such that for every x, y ∈ B(x̄, ε)

‖Df(x̄)(x−1y)−1f(x)−1f(y)‖2
‖x−1y‖1

≤ 1,

we can deduce that f is Lipschitz on B(x̄, ε), since for every x, y ∈ B(x̄, ε)

d2(f(x), f(y)) ≤ (1 + ‖Df(x̄)‖Lh(G,M))d1(x, y).

Remark 3.2.33. Property (3.19) has been referred to in [JNGV20, Proposition 2.4] as
strictly Pansu differentiability of f at x̄. In particular, Julia, Nicolussi Golo and Vittone
proved that f ∈ C1

h(Ω,M) if and only if it is strictly Pansu differentiable on Ω, i.e. if
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(3.19) holds for every x̄ ∈ Ω. We refer also the reader to the interesting discussion in the
introduction of [ADDDLD20] about the analogous property of Euclidean C1-regular maps
in the Euclidean setting.

We complete this subsection by reporting an extension theorem for continuously Pansu
differentiable maps. We will see that the following Whitney-type theorem is an useful tool
in order to study intrinsic submanifolds in Carnot groups. We report below the more
general available version of the result, that works for functions acting from a closed subset
of a generic Carnot group F ⊂ G to any Euclidean space Rp. The first version of the
theorem was presented for the case when G = Hn and p = 1 in [FSSC01, Theorem 6.8],
and successively it was extended in [FSSC03a, Theorem 2.14] to the case when G is a
generic Carnot group and p = 1. A version of the latter result involving a control on the
modulus of continuity of horizontal derivatives is proved in [VP06]. For a proof for the
case of maps between two Euclidean spaces refer for instance to [EG92, Theorem 6.5].

Theorem 3.2.34. [DD17, Theorem 2.3.8] Let G be a Carnot group endowed with a ho-
mogeneous distance d. Let F ⊂ G be a closed set. Let f : F → Rp be a continuous
function and let g : F → Mp,m1(R) be a continuous matrix-valued map. We define for
every x, y ∈ G

R(x, y) :=
f(x)− f(y)− g(y) · (π(y−1x))T

‖y−1x‖
,

where · denotes the usual matrix product. If K ⊂ F is a compact set and δ > 0, we define

ρK(δ) := sup{|R(x, y)| : x, y ∈ K, 0 < ‖x−1y‖ < δ}.

Assume that
ρK(δ)→ 0 as δ → 0 for every compact set K ⊂ F,

then there exists f̃ ∈ C1
h(G,Rp) such that,

f̃ |F = f, ∇H f̃ |F = g.

3.3 BV functions and finite perimeter sets on Carnot group

In this section we provide a coincise introduction to the theory of sets of locally finite
perimeter in Carnot groups, usually called locally finite H-perimeter sets. To be precise,
the new results we are going to present in the following chapters do not rely on the
theory of locally finite H-perimeter sets. Nevertheless, we think that the concepts of this
section may help the reader to understand the state of the art in the context of regular
submanifolds in Carnot groups. In fact, powerful tools of this deep theory have often
been used in the literature to study the features of intrinsic regular hypersurfaces, i.e.
one-codimensional intrinsic regular submanifolds. Nowadays the same tools can be seen
as one of the frontiers of research on regular submanifolds in Carnot groups. For example,
many projects about extending the validity of a result proved for regular hypersurfaces to
higher codimensional regular submanifolds, can be translated in the research of alternative
tools that can substitute results coming from the theory of locally finite H-perimeter sets.
More material about these sets can be found in [DG54] and [DG55] for subsets of Euclidean
spaces and in [CDG94, FGW94, GN96, FSSC96, FSSC01, FSSC02, FSSC03a] for finite
H-perimeter subsets of Carnot groups.

Let Ω ⊂ G be an open subset of a Carnot group G. Let (v1, . . . , vq) be an adapted
orthonormal basis of G and denote as above by Xj ∈ Lie(G) the left invariant vector field
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such that Xj(0) = vj for every j = 1, . . . , q. We denote the set of smooth horizontal
compactly supported sections on Ω by

C∞0 (Ω, HG) :=

{
φ =

m1∑
i=1

φiXi : φi ∈ C∞h (Ω,R), spt(φ) is compact

}
.

Analogously, we can denote by Ck0 (Ω, HG), for k ∈ N, the set of the compactly supported
sections with components in Ckh(Ω,R).

Definition 3.3.1. Let φ be a section in C1
0 (Ω, HG), where Ω is an open set of G. If

Xjφ ∈ L1
loc(G) for every j = 1, . . . ,m1, we define the horizontal divergence of φ as

divHφ :=

m1∑
i=1

Xjφj .

Definition 3.3.2. A function f : Ω → R is said a function of bounded variation in Ω if
f ∈ L1(Ω, HG) and

‖∇Hf‖(Ω) := sup

{∫
Ω
fdivHφ dLq : φ ∈ C1

0 (Ω, HG), |φ(x)| ≤ 1 for all x ∈ Ω

}
<∞.

The normed space of bounded variation functions in Ω is denoted by BVH(Ω). The space
BVH,loc(Ω) is the set of functions in BVH(U) for each U b Ω.

Riesz’s representation theorem provides the proof of the following structure Theorem
for BVH,loc functions, namely that if f ∈ BVH,loc, the total variation ‖∇Hf‖ is a Radon
measure ([CDG94, FSSC96]).

Theorem 3.3.3. If f ∈ BVH,loc(Ω), then ‖∇Hf‖ induces a Radon measure on Ω, still de-
noted by ‖∇Hf‖. Moreover, if f ∈ BVH,loc(Ω) there exists a ‖∇Hf‖-measurable horizontal
section σf : Ω→ HG such that |σf (y)|y = 1 for ‖∇Hf‖-a.e. y ∈ Ω, and∫

Ω
fdivHφ dLn =

∫
Ω
〈φ, σf 〉 d‖∇Hf‖

for every φ ∈ C1
0 (Ω, HG).

Remark 3.3.4. As a consequence of Theorem 3.3.3, the notion of horizontal gradient
∇Hf can be extended from regular functions to functions f ∈ BVH(Ω) defining ∇Hf as
the vector valued measure

∇Hf := σfx‖∇Hf‖ = (−(σf )1x‖∇Hf‖, . . . ,−(σf )m1x‖∇Hf‖)

where (σf )j are the components of σf with respect to the moving basis Xvj .

One of the key advantages provided by the use of bounded variation functions is that
the space BVH,loc maintains the properties of compactness [GN96] and lower semiconti-
nuity of the total variation with respect to L1 convergence [FSSC96] that hold for the
corresponding maps in Euclidean metric spaces.

Theorem 3.3.5. If G is a Carnot group, BVH,loc(G) is compactly embedded in Lmloc(G)

for 1 ≤ m < Q
Q−1 where Q is the homogeneous dimension of G.
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Theorem 3.3.6. Let G be a Carnot group and Ω ⊂ G be an open set. Let f, fk ∈ L1(Ω),
k ∈ N, be such that fk → f in L1(Ω), then

lim inf
k→∞

‖∇Hfk‖(Ω) ≥ ‖∇Hf‖(Ω).

Definition 3.3.7. Let G be a Carnot group and let Ω ⊂ G be an open set. A measurable
set E ⊂ G is said of locally finite H-perimeter in Ω or is called a H-Caccioppoli set if its
characteristic function 1E belongs to BVH,loc(Ω). In this case we call H-perimeter of E
the measure

|∂E|H := ‖∇H1E‖,

and we call generalized horizontal outward H-normal to ∂E in Ω the horizontal vector
field

νE := σ1E . (3.20)

An important tool about Caccioppoli sets in geometric measure theory is the isoperi-
metric inequality, that is valid also in this context. It has been proved in [GN96].

Theorem 3.3.8. Let G be a Carnot group endowed with a homogeneous distance and
denote by q the topological dimension of G and by Q the metric one. Then, there exists a
positive constant C such that for any H-Caccioppoli set E ⊂ G, for any x ∈ G and r > 0

min{Lq(E \B(x, r)),Lq(B(x, r) \ E)}
Q−1
Q ≤ C|∂E|H(B(x, r)).

A global version of Theorem 3.3.8 is also available (see [SC16, Theorem 3.41] for more
details). We recall also the notion of reduced boundary in this sub-Riemannian context.

Definition 3.3.9. Let G be a Carnot group endowed with a homogeneous distance d
and let E ⊂ G be a set of locally finite H-perimeter. Let νE be the generalized inward
H-normal. A point x ∈ G belongs to the H-reduced boundary of E, denoted by ∂∗HE, if
the following conditions hold.

(i) For any r > 0, |∂E|H(B(x, r)) > 0.

(ii) There exists the limit

lim
r→0

1

|∂E|H(B(x, r))

∫
B(x,r)

νE d|∂E|H .

(iii) The value of the limit in (ii) is

lim
r→0

1

|∂E|H(B(x, r))

∣∣∣∣∣
∫
B(x,r)

νE d|∂E|H

∣∣∣∣∣ = 1.

The H-reduced boundary of E is invariant under left translation, in the sense that for
x0, x ∈ G

x0 ∈ ∂∗HE ⇔ lx(x0) ∈ ∂∗H(lxE)

and also
νE(x0) = νlxE(lx(x0)).

In this sense the notion of H-reduced boundary is intrinsic.
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3.4 Intrinsic graphs

In this section we recall the definitions and results about intrinsic graphs of func-
tions acting between two homogeneous complementary subgroups. We present them as
preparatory tools towards the definition of regular submanifold in Carnot groups. From
this perspective, intrinsic graphs will be presented endowed with well-established prop-
erties and suitable notions of regularity. Nonetheless we stress that, from an historical
point of view, they originated from [FSSC07, Theorem 1], and, more precisely, for the
case of one-codimensional graphs in the Heisenberg group, from [FSSC01, Theorem 6.5]
and in Carnot groups from [FSSC03b, Theorem 2.1]. Then, their introduction is actually
successive to the definitions of G-regular hypersurface (Definition 4.2.1) and H-regular
surface (Definitions 4.1.1 and 4.1.8). We decided to postpone the presentation of regular
submanifolds to the next chapter, collocating it after the one regarding intrinsic graphs,
since we prefer to follow, as much as possible, an analogy with the Euclidean path. For
more information about the theory of intrinsic graphs one can refer for instance to [SC16],
to [FS16] and to the references therein. These two references provide a rich introduction
to the theory.

By G we denote, as usual, a generic Carnot group endowed with a homogeneous
distance d.

Definition 3.4.1. Let G = WV be the product of two complementary subgroups, let
U ⊂W be a set and let us consider a function φ : U → V. The intrinsic graph of φ is the
set

graph(φ) := {wφ(w) : w ∈ U}.

The map Φ : U → G, Φ(w) := wφ(w) is called the graph map of φ.

Remark 3.4.2. Actually, Definition 3.4.1 is not the most general definition of intrinsic
graph available in the literature. In particular, it requires the existence of a splitting of
G as the product of two complementary subgroups G = WV. The original definition of
intrinsic graph is satisfied by a larger family of objects, we report it here for the sake of
completeness. Let V be a homogeneous subgroup of a Carnot group G. A subset S ⊂ G
is called a V-graph if S intersects any (left) coset of V at at most at one point, i.e. if for
every ξ ∈ G there exists at most one point x = x(ξ) ∈ G such that

S ∩ ξV = {x},

where ξV = {ξv : v ∈ V}. If V admits a complementary homogeneous subgroup W, this
definition coincides with the given one (Definition 3.4.1). Nevertheless, not every V-graph
is the intrinsic graph of some function acting between two complementary subgroups. For
example we can consider the family of T-graphs in the Heisenberg group Hn, where T = H2

is the center of Hn. A T-graph has the following form in coordinates

S = {(x1, x2, . . . , x2n, ψ(x1, x2, . . . , x2n))} ⊂ Hn,

with ψ : H1 → T. The left cosets of T are parametrized on H1, nevertheless T does
not have any complementary subgroup since it is a vertical homogeneous subgroup of
dimension one, then any homogeneous subgroup candidate to be complementary to T
should be horizontal of topological dimension 2n, but this is not possible (see Remark
3.1.16). This means that it does not exist any function φ acting from a complementary
subgroup of T to T such that S = graph(φ). Nevertheless, T-graphs remain interesting
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objects of research, see for instance [SCV14, NGSC19].

The notion of graph is intrinsic, in the sense that both left translations and dilations
send an intrinsic graph on a new intrinsic graph, i.e. on the intrinsic graph of a well defined
function, different from the one defining the original graph, but acting between the same
complementary subgroups.

Proposition 3.4.3. [FS16, Proposition 2.21] Let us consider G = WV as the product of
two complementary subgroups. Let U ⊂W be a set and let us consider a map φ : U → V.
Then the following hold

(i) for all t > 0, δt(graph(φ)) = graph(φt), with

φt : δt(U)→ V, φt(η) = δt(φ(δ1/t(η)));

(ii) for all x ∈ G, lx(graph(φ)) = graph(φx), with

φx : Ux → V, φx(η) = πV(x−1η)−1φ(πW(x−1η))

where Ux = {πW(lx(w)) ∈ U : w ∈ U} ⊂ W. We call the map φx the translation of
φ at x.

If W is a normal subgroup, the formula of the translation φx can be simplified (refer
for example to [FS16, Remark 2.23]).

Definition 3.4.4. Let G = W o V be the semidirect product of two complementary
subgroups. Let us consider a point x ∈ G and define the map σx : W→W as follows

σx(η) := πW(lx(w)) = xw(πV(x))−1.

Given a set U ⊂ W and a function φ : U → V, the translation of φ at x, φx, can be
simplified as

φx : σx(U)→ V, φx(w) = πV(x)φ(x−1ηπV(x)) = πV(x)φ(σx−1(η)). (3.21)

Remark 3.4.5. Notice that the map σx is invertible on W and we have

σx−1(η) = x−1ηπV(x−1)−1 = x−1ηπV(x) = σ−1
x (η),

then we may also write for η ∈ σx(U)

φx(η) = πV(x)φ(σ−1
x (η)) = πV(x)φ(x−1ηπV(x)). (3.22)

3.5 Regularity of intrinsic graphs

Various notions of regularity have been introduced by Franchi, Serapioni and Serra
Cassano for functions acting between two complementary subgroups and, consequently,
for their respective intrinsic graphs (see [FSSC03b, FSSC05, ASCV06, FSSC06, FSSC07,
AS09, FSSC11, FMS14, FS16]). The leading common idea is again to introduce intrinsic
notions, hence notions that respect the group’s structure, i.e. notions invariant under left
translations and dilations. The three authors developed the notions of intrinsic Lipschitz
continuity and intrinsic differentiability. Roughly speaking, a function acting between two
complementary subgroups is intrinsic Lipschitz if its intrinsic graph does not intersect the
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left cosets, by points of the graph, of an appropriately defined homogeneous cone, except
that at the vertex. A function is intrinsically differentiable when its intrinsic graph admits
an appropriately defined tangent homogeneous subgroup at a considered point.

3.5.1 Cones and intrinsic Lipschitz functions

Definition 3.5.1. Let V be a homogeneous subgroup of a Carnot group G. Let x be a
point of G and α ∈ [0, 1]. We call cone with axis V, vertex x and opening α the set

X(x,V, α) := xX(0,V, α),

where
X(0,V, α) := {y ∈ G : dist(y,V) ≤ α‖y‖},

where dist(y,V) = inf{‖v−1y‖ : v ∈ V}.

Following the path established by the related literature, we state another definition
of intrinsic (closed) cone, that is, in a precise way, equivalent to the previous one. The
first assumption in this case is that G can be splitted as a product of two complementary
subgroups.

Definition 3.5.2. Let G = WV be the product of two complementary subgroups. Let x
be a point of G and let β ≥ 0. We call (W,V)-cone with basis W, axis V, opening β and
vertex x the set

CW,V(x, β) := xCW,V(0, β),

where
CW,V(0, β) := {y ∈ G : ‖πW(y)‖ ≤ β‖πV(y)‖}.

Remark 3.5.3. We can observe that

V = X(0,V, 0) = CW,V(0, 0),

G = X(0,V, 1) = ∪β>0CW,V(0, β).

The (W,V)-cones are homogeneous sets, i.e. they are invariant under dilations, since
for every α > 0 and t > 0,

δt(CW,V(0, α)) = CW,V(0, α). (3.23)

The two families of cones that we have introduced are equivalent in the following sense.

Proposition 3.5.4. [FS16, Proposition 3.1] Let G = WV be the product of two comple-
mentary subgroups. Then for every α ∈ (0, 1), there exist β ≥ 1, depending on α, W and
V, such that

CW,V

(
x,

1

β

)
⊂ X(x,V, α) ⊂ CW,V(x, β).

for every x ∈ G.

Remark 3.5.5. In particular, we want to highlight a property proved as a step of the
proof of [FS16, Proposition 3.1]. The authors show that for every β > 0 it is possible to
choose α ∈ (0, 1) such that for every x ∈ G

X(x,V, α) ⊂ CW,V(x, β).
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An intrinsic Lipschitz map is a function whose intrinsic graph does not intersect the
cosets of an intrinsic cone of positive opening with vertex on the graph, except for the
vertex.

Definition 3.5.6. Let G = WV be the product of two complementary subgroups and L
be a positive constant. Let U ⊂W be an open set, a function φ : U → V is called intrinsic
L-Lipschitz if for every L̃ > L,

graph(φ) ∩ CW,V

(
x,

1

L̃

)
= {x} ∀x ∈ graph(φ).

We denote by Lip(φ) the infimum of the positive constants L such that φ is L-Lipschitz.

We say that graph(φ) is intrinsic L-Lipschitz if φ is intrinsic L-Lipschitz. Moreover, we
simply say that a function φ : W → V is intrinsic Lipschitz if there exists some constant
L > 0 such that φ is intrinsic L-Lipschitz.

Remark 3.5.7. By Proposition 3.5.4 (refer also to Remark 3.5.5) the fact that φ is
intrinsic Lipschitz is equivalent to say that there exists α ∈ (0, 1) such that

graph(φ) ∩X(x,V, α) = {x} ∀x ∈ graph(φ).

According to [FS16, Theorem 3.2], left translations and intrinsic dilations of intrinsic
Lipschitz graphs are intrinsic Lipschitz graphs, hence the use of the word “intrinsic” in
this context is appropriate.

Remark 3.5.8. By taking in consideration the definition of (W,V)-cone, Definition 3.5.2,
we can rewrite Definition 3.5.6 as follows. Let G = WV be the product of two complemen-
tary subgroups and let L be a positive constant. Let U ⊂ W be an open set, a function
φ : U → V is intrinsic L-Lipschitz if and only if

‖πV(Φ(w′)−1Φ(w))‖ ≤ L‖πW(Φ(w′)−1Φ(w))‖ (3.24)

for every w,w′ ∈ U . Moreover, if W is a normal subgroup, (3.24) can be rephrased as

‖φ(w′)−1φ(w)‖ ≤ L‖φ(w′)−1w′−1wφ(w′)‖ (3.25)

for every w,w′ ∈ U .

The object ‖φ(w′)−1w′−1wφ(w′)‖ will play a role in our results, this justify the following
definition. This object is usually called the graph distance between w and w′, for w,w′ ∈ U .
Nevertheless, notice that it is not a distance (it is not even symmetric).

Definition 3.5.9. Let G = W o V be the semidirect product of two complementary
subgroups. Let U ⊂ W be an open set and let φ : U → V be a continuous function. We
call graph distance the following map

dφ : U × U → R+, dφ(w,w′) = ‖πW(Φ(w′)−1Φ(w))‖ = ‖φ(w′)−1w′−1wφ(w′)‖ (3.26)

Remark 3.5.10. In the literature it is often used the following symmetrized variant of
the graph distance, in the notation of Definition 3.5.9

Dφ : U × U → R+

Dφ(w,w′) =
1

2

(
‖πW(Φ(w)−1Φ(w′))‖+ ‖πW(Φ(w′)−1Φ(w))‖

)
=

1

2
(dφ(w′, w) + dφ(w,w′)).
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For our purposes, working with the non symmetric version dφ is equivalent to work with
Dφ. In fact, by [SC16, Proposition 4.60], the notion of intrinsic Lipschitz continuity can
be equivalently stated in terms of Dφ or in terms of dφ since the following conditions are
equivalent

(i) φ is intrinsic L-Lipschitz for some positive constant L.

(ii) There is a positive constant L′ such that for every w,w′ ∈ U

‖φ(w′)−1φ(w)‖ ≤ L′Dφ(w,w′).

By [FS16, Remark 3.6], if φ is an intrinsic Lipschitz function, Dφ is a quasi-distance (i.e.
a distance satisfying a weaker triangular inequality) on any compact subset of U .

Intrinsic Lipschitz continuity has been characterized in various ways.

Proposition 3.5.11. [FS16, Proposition 3.3] Let G = WV be the product of two comple-
mentary subgroups and let L be a positive constant. Let U ⊂W be an open set, a function
φ : U → V is intrinsic L-Lipschitz if and only if

‖φx−1(w)‖ ≤ L‖w‖

for every x ∈ graph(φ) and w ∈ Ux−1.

Intrinsic Lipschitz maps are not metric Lipschitz, but they are 1
κ -Hölder continuous.

Proposition 3.5.12. [FS16, Proposition 3.8] Let W, V be complementary subgroups of
a Carnot group G of step κ. If φ : U ⊂ W → V is an intrinsic L-Lipschitz function, for
some L > 0, then

(i) for all R > 0, there is a constant C1 = C1(W,V, R, φ) > 0 such that

φ(B(0, R) ∩ U) ⊂ B(0, C1)

(ii) φ is 1
κ -Hölder continuous on the bounded subsets of U , i.e. for every R > 0, there

exist a constant C2 = C2(G,W,V, R, L,C1) > 0 such that

‖φ(w̄)−1φ(w)‖ ≤ C2‖w̄−1w‖
1
κ ∀w, w̄ ∈ U ∩ B(0, R).

Let us recall a crucial property of intrinsic Lipschitz graphs: they are Ahlfors regular.

Proposition 3.5.13. [FS16, Theorem 3.9] Let G = WV be the product of two comple-
mentary subgroups. Let N be the Hausdorff dimension of W and let L > 0. If φ : W→ V
is an intrinsic L-Lipschitz function, there is a constant c = c(W,V) > 0 such that(

c0

1 + L

)N
rN ≤ SN (graph(φ) ∩ B(x, r)) ≤ c(1 + L)NrN

for all x ∈ graph(φ) and r > 0, where the constant c0 = c0(W,V) is the constant given by
Proposition 3.1.17.

Remark 3.5.14. The proof of Proposition 3.5.13 in [FS16] is based on local arguments.
Let us now assume that φ is defined from an open set U ⊂W to V and set w ∈ U . Assume
that, for a positive constant r̃ > 0, πW(B(Φ(w), r̃)) ⊂ U , then for any 0 < r < r̃ we get
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that SN (graph(φ) ∩ B(Φ(w), r)) ≥
(
c0(W,V)

1+L

)N
rN . For instance one can refer to [Ser08,

Lemma 4.8].

As a consequence of Proposition 3.5.13, if U ⊂ W is an open set, N is the Hausdorff
dimension of W and φ : U → V is an intrinsic Lipschitz map, the Hausdorff dimension
of graph(φ) equals N , i.e. it coincides with the Hausdorff dimension of the homogeneous
subgroup that contains the domain of φ. This consideration is not true anymore if U is
not open, thus if it has Hausdorff dimension lower that N .

Remark 3.5.15. Intrinsic Lipschitz continuity is a property somehow independent of the
choice of the homogeneous subgroup on which a fixed graph is parametrized. Assume
that, as in Definition 3.5.6, G = WV is a product of two complementary subgroups and
φ : U ⊂W→ V is an intrinsic L-Lipschitz map for some L > 0. Assume now that L is an
other homogeneous subgroup of G complementary to V such that G = LV, and assume
that there exist an open set U ′ ⊂ L and a function ψ : U ′ → V such that

graph(φ) = graph(ψ).

Then, by Remark 3.5.7 ψ is intrinsic L̃-Lipschitz for some positive constant L̃ (that can
depend on W, V, L and L).

Remark 3.5.16. Since all homogeneous distances are bi-Lipschitz equivalent on a Carnot
group, replacing a homogeneous norm with another one in our definitions of cones gives
rise to the same class of intrinsic Lipschitz functions. A different definition of intrinsic
Lipschitz continuity, limited to intrinsic graphs of codimension 1 in the Heisenberg group,
i.e. to maps acting between two complementary subgroups with one dimensional target
space, has been proposed by Naor and Young in [NY18, Section 2.3]. We will give some
more details about their notion later on, in Section 3.6.

3.5.2 Intrinsic differentiability and uniform intrinsic differentiability

In this section, we focus on the notion of intrinsic differentiability for maps acting
between two complementary subgroups. As we said above, a map is intrinsically differen-
tiable if its intrinsic graph can be approximated by (a left coset of) a tangent homogeneous
subgroup. This requirement is quite natural if the reader accepts that the right analogue
of linear subspaces in Euclidean spaces are homogeneous subgroups in Carnot groups.

Definition 3.5.17. Let G = WV be the product of two complementary subgroups. A
function L : W → V is said intrinsic linear if L is defined on the whole W and graph(L)
is a homogeneous subgroup of G.

Intrinsic linear functions have been algebraically characterized.

Proposition 3.5.18. [FMS14, Proposition 3.1.3] Let G = WV be the product of two
complementary subgroups. A function L : W→ V is intrinsic linear if and only if

(i) L(δt(w)) = δt(L(w)) ∀w ∈W, ∀t > 0;

(ii) L(w1w2) = (πV(L(w1)−1w2))−1L(πW(L(w1)−1w2)) for every w1, w2 ∈W.

Proposition 3.5.19. [AS09, Proposition 3.23] If Hn = WoV is the semidirect product
of two complementary subgroups, a map L : W → V is intrinsic linear if and only if it is
a h-homomorphism, i.e. if
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(i) L(δt(w)) = δt(L(w)) for every w ∈W and t > 0.

(ii) L(w1w2) = L(w1)L(w2) for all w1, w2 ∈W.

We recall some properties of intrinsic linear functions that will be useful later on.

Proposition 3.5.20. [FMS14, Proposition 3.1.5] Let G = WV be the product of two
complementary subgroups.

(i) If L : W → V is intrinsic linear, then graph(L) is a homogeneous subgroup comple-
mentary to V, hence G = graph(L)V.

(ii) If L is a homogeneous subgroup of G such that L and V are complementary subgroups
of G, then there is a unique intrinsic linear function L : W → V such that L =
graph(L).

Proposition 3.5.21. [FMS14, Proposition 3.1.6] Let G = WV be the product of two
complementary subgroups and L : W→ V be an intrinsic linear map. Then, L is intrinsic
Lipschitz continuous and Lip(L) = sup‖w‖=1‖L(w)‖.

Definition 3.5.22. Let G = WV be the product of two complementary subgroups. Let
U ⊂W be an open set and let φ : U → V be a function. Let w̄ ∈ U and define x = w̄φ(w̄).
The function φ is intrinsically differentiable at w̄ if there exists an intrinsic linear map
L : W→ V such that

‖L(w)−1φx−1(w)‖ = o(‖w‖) (3.27)

as ‖w‖ → 0, w ∈ Ux−1 . If the function L exists, it is unique. We call it the intrinsic
differential of φ at w̄ and we denote it by dφw̄.

Remark 3.5.23. Let us focus on the case when G = W o V is a semidirect product
of complementary subgroups. In this case through a quite standard change of variables,
performed for instance in [AS09, Proposition 3.25(ii)], condition (3.27) is equivalent to ask
that

‖dφw̄(φ(w̄)−1w̄−1wφ(w̄))−1φ(w̄)−1φ(w)‖ = o(dφ(w, w̄))

as dφ(w, w̄)→ 0. For explicit computations one can refer also to [SC16, Proposition 4.76].

Intrinsic differentiability has been geometrically characterized by the existence of a
tangent homogeneous (affine) subgroup to the intrinsic graph of a function.

Definition 3.5.24. [FMS14, Definition 3.2.6] Let G = WV be the product of two com-
plementary subgroups. Let U be an open subset of W and let φ : U → V be a function.
Let us fix w̄ ∈ U and consider the point x̄ = w̄φ(w̄) ∈ graph(φ). Let T be a homogeneous
subgroup of G. The coset x̄T is a tangent (affine) subgroup or tangent coset to graph(φ)
at x̄ if for every ε > 0 there is λ = λ(ε) > 0 such that

graph(φ) ∩ {y ∈ G : ‖πW(x̄−1y)‖ < λ(ε)} ⊂ X(x̄,T, ε).

Remark 3.5.25. The notion of tangent coset to graph(φ) is invariant under left trans-
lations. This means that x̄T is the tangent coset to graph(φ) at x̄ if and only if T is the
tangent coset to graph(φx̄−1) at 0. Therefore, the notion of tangent coset (and then, in
light of the following proposition, also the notion of intrinsic differentiability) is intrinsic.

Theorem 3.5.26. [FMS14, Theorem 3.2.8] Let G = WV be the product of two comple-
mentary subgroups. Let U be open subset of W and let φ : U → V be a map. Then the
following hold.
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(i) If φ is intrinsically differentiable at w̄ ∈ U , we set T := graph(dφw̄), then

(i1) T is a homogeneous subgroup;

(i2) T and V are complementary subgroups of G;

(i3) x̄T is the tangent coset to graph(φ) at x̄ = w̄φ(w̄).

(ii) Conversely, if x̄ = w̄φ(w̄) ∈ graph(φ) and if there is a set T such that (i1), (i2), (i3)
hold, then φ is intrinsically differentiable at w̄ and dφw̄ is the unique intrinsic linear
function such that graph(dφw̄) = T.

We report also the following geometrical characterization of intrinsic differentiability
in the Heisenberg group in terms of the existence and uniqueness of the blow-up limit of
the intrinsic graph of the considered function. It is related to Theorem 3.5.26 and it has
been proved in [FSSC11, Theorem 4.15], We think that it illustrates a fruitful point of
view to visualize the notion of intrinsic differentiability.

Theorem 3.5.27. Let Hn = WoV be the product of two complementary subgroups. Let
U be open subset of W and let φ : U → V be a map. Let w̄ ∈ graph(φ) and set x̄ = w̄φ(w̄).
Then φ is intrinsically differentiable at w̄ if and only if there is a vertical subgroup T,
complementary to V, such that

lim
t→0+

δ 1
t
(lx̄−1(graph(φ)) = T,

in the sense of the Hausdorff convergence on compact subsets on Hn.

Remark 3.5.28. The proof of Theorem 3.5.27 substantially relies on Theorem 3.5.26,
therefore it could be extended verbatim to a generic Carnot group.

Now we introduce a strengthened notion of intrinsic differentiability, the uniform in-
trinsic differentiability, introduced for the first time in [AS09, Definition 3.16]. For the
form that we adopt of this concept in the following definition, please refer to [DD20a,
Definition 3.3].

Definition 3.5.29. Let G = WV be the product of two complementary subgroups. Let
U ⊂W be an open set, let w̄ ∈ U and let φ : U → V be a function. The map φ is uniformly
intrinsically differentiable at w̄ if there exists an intrinsic linear map L : W→ V such that

lim
δ→0

sup
‖w̄−1w′‖<δ

sup
0<‖w‖<δ

‖L(w)−1φΦ(w′)−1(w)‖
‖w‖

= 0 (3.28)

with w′ ∈ U,w ∈ UΦ(w′)−1 , where Φ is the graph map of φ. We say that the map φ is
uniformly intrinsically differentiable on U if it is uniformly intrinsically differentiable at
any point of U .

Remark 3.5.30. Clearly, in the notation of Definition 3.5.29, if φ is uniformly intrinsically
differentiable at w̄, then φ is intrinsically differentiable at w̄ and L = dφw̄.

Remark 3.5.31. When we refer to Definition 3.5.29, we will not always specify that
w′ ∈ U and w ∈ UΦ(w′)−1 . In fact, since we focus on an infinitesimal limit, we can implicitly
assume that δ is small enough so that B(w̄, δ) ∩W ⊂ U and B(0, δ) ∩W ⊂ UΦ(w′)−1 .

Remark 3.5.32. If G = WoV is the semidirect product of two complementary subgroups,
by a quite standard change of variables, to which we referred to also in Remark 3.5.23, one
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can deduce that a map φ : U → V is uniformly intrinsically differentiable at a point w̄ ∈ U
if and only if there exists an intrinsic linear map L : W→ V such that for w,w′ ∈ U

lim
r→0

sup
w′∈B(w̄,r)

sup
{w: 0<dφ(w,w′)<r}

‖L(φ(w′)−1w′−1wφ(w′))−1φ(w′)−1φ(w)‖
dφ(w,w′)

= 0. (3.29)

This is equivalent to ask that φ is intrinsically differentiable at w̄ and for w,w′ ∈ U

lim
r→0

sup
w′∈B(w̄,r)

sup
{w: 0<dφ(w,w′)<r}

‖dφw̄(φ(w′)−1w′−1wφ(w′))−1φ(w′)−1φ(w)‖
dφ(w,w′)

= 0. (3.30)

Remark 3.5.33. Observe that by the estimates of [FS16, Lemma 2.13], for every compact
subset F ⊂ U there exist two constants C1, C2 > 0, such that for every w,w′ ∈ F

C1‖w′−1w‖κ ≤ dφ(w,w′) ≤ C2‖w′−1w‖
1
κ .

Hence, condition (3.29) turns out to be equivalent to the following

lim
r→0

sup
w,w′∈B(w̄,r)∩U

w 6=w′

‖L(φ(w′)−1w′−1wφ(w′))−1φ(w′)−1φ(w)‖
dφ(w,w′)

= 0. (3.31)

Uniform intrinsic differentiability implies local intrinsic Lipschitz continuity.

Proposition 3.5.34. [AS09, Proposition 3.17] Let W, V be complementary subgroups of
a Carnot group G. Let U ⊂W be an open set. Consider a function φ : U → V uniformly
intrinsically differentiable on U . Then for every w̄ ∈ U , there is r > 0 such that φ is
intrinsic Lipschitz on B(w̄, r) ∩ U .

3.5.3 Intrinsic difference quotients

In this section we report a characterization of intrinsic Lipschitz continuity presented
in [Ser17]. In the Euclidean setting the notion of Lipschitz function can be characterized
through the boundedness of the difference quotients of the function itself. Serapioni has
investigated an analogous point of view for intrinsic Lipschitz maps developing the notion
of intrinsic difference quotients. For more details about the characterization of intrinsic
Lipschitz continuity presented in this section please refer, beyond [Ser17], to [FSSC06,
Section 3.2], [AS09, Section 5] or [FS16, Section 3.2].

Definition 3.5.35. Let G = WV be the product of two complementary subgroups. Let
U ⊂W be an open set and let φ : U → V be a map. Let W ∈ Lie(W) and set w̄ = W (0).
Let us assume that 0 ∈ U and φ(0) = 0. The intrinsic difference quotient ∆Wφ(0, t) of φ
at 0 ∈ U along W is defined as

∆Wφ(0; t) := δ 1
t
φ(δt(exp(W ))) = δ 1

t
φ(δt(w̄))

for all t > 0 such that δt(w̄) ∈ U . This definition is then extended to any point w ∈ U .
Fix w ∈ U and consider the corresponding point on the graph y := wφ(w) ∈ graph(φ),
then 0 ∈ Uy−1 and φy−1(0) = 0, and we define the intrinsic difference quotient of φ at w
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along W as
∆Wφ(w; t) : = ∆Wφy−1(0; t)

= δ 1
t
(φy−1(δt(exp(W )))

= δ 1
t
(φy−1(δt(w̄)))

for all t > 0 such that δt(w̄) ∈ Uy−1 .

Remark 3.5.36. We can write this definition more explicitly through the formula that
relates φy−1 and φ. In the notation of Definition 3.5.35, the intrinsic difference quotient
of φ at w along W is

∆Wφ(w; t) = δ 1
t

(
(πV(φ(w)δt(w̄)))−1φ(wπW(φ(w)δt(w̄)))

)
for all t > 0 such that wπW(φ(w)δt(w̄)) ∈ U . For explicit computations refer to [Ser17,
Definition 3.7].

Proposition [Ser17, Proposition 3.11], reported below, gives us a characterization of
intrinsic Lipschitz maps in terms of the boundedness of their intrinsic difference quotients.

Proposition 3.5.37. Let G = WV be the product of two complementary subgroup. Let
U ⊂ W be an open set and φ : U → V be a function. The following statements are
equivalent.

(i) φ is intrinsic L-Lipschitz on U .

(ii) There is a constant L > 0 such that, for all W ∈ Lie(W) and for all w ∈ U , setting
w̄ = W (0),

‖∆Wφ(w, t)‖ ≤ L‖w̄‖,

for all t > 0 such that wπW(φ(w)δt(w̄)) ∈ U .

Basically then, intrinsic Lipschitz functions correspond to functions with equibounded
intrinsic difference quotients, as metric Lipschitz functions correspond to functions with
equibounded incremental ratios.

Remark 3.5.38. For some Carnot groups, in order to prove the intrinsic Lipschitz conti-
nuity of a function, it is enough to prove that the intrinsic difference quotients along the
vector fields corresponding to horizontal vectors in W ∩ V1 are bounded. The Heisenberg
group, for instance, is a group in which this phenomenon can be observed [Ser17, Theorem
3.21]. This is not obvious in general, since if W is a homogeneous subgroup, it is surely
graded but it is not always a Carnot group, i.e. W∩V1 does not always Lie bracket-generate
the whole W. For more details about this idea please refer to [Ser17].

Moving a step forward according to the leading idea of Serapioni’s approach, one
can observe that the natural definition of continuously (Euclidean) differentiable function
can be stated through the existence and continuity of partial derivatives. Exploiting an
analogous point of view in Carnot groups for uniform intrinsic differentiability is a very
complicated problem and it has been deeply studied in a long series of papers. One step
was taken in [Ser17, Section 3.3] (see Remark 5.1.16). A contribute to this line of research
is provided by Chapter 5 of this thesis.
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3.6 The one-codimensional case and beyond

In this section our initial focus are intrinsic graphs of maps φ : U → V acting between
two complementary subgroups W and V of a generic Carnot group G, with V of dimension
one, and U ⊂W open set. We reserve a proper section for this class of graphs since they
have been the main objects of research of a huge amount of studies. One of the reasons
that fuels this interest arises from a simple key observation. When we assume that a
homogeneous subgroup V is one-dimensional, it can be naturally identified with (R,+),
so that it is natural to endow the subgroup V with an order relation. This observation
allows us to use many suitable tools to work in this situation and makes this setting a
forerunner for the study of geometric measure theory on generic intrinsic graphs. Consider
two complementary subgroups W, V of a generic Carnot group G = WV with V one
dimensional. Consider an open subset U ⊂W, a function φ : U → V and a vector v ∈ V1

such that V = span(v). The map φ can be identified with the unique real-valued mapping
ϕ : U → R that satisfies

φ(w) = ϕ(w)v

for every w ∈ U . We can define the supergraph E+
φ and the subgraph E−φ of φ as follows

E+
φ = {w(tv) : w ∈ U , t > ϕ(w)},

E−φ = {w(tv) : w ∈ U , t < ϕ(w)}.

Now we are ready to take a brief round-up of the main interesting recent results that have
been proved in this setting. A Mc Shane-type extension theorem for intrinsic Lipschitz
graphs is available.

Theorem 3.6.1. [FS16, Theorem 4.1] Let G = WV be the product of two complementary
subgroups, with V of dimension one. Let B ⊂W be a Borel subset of W and let φ : B → V
be an intrinsic L-Lipschitz function. Then, there exist a map φ̃ : W → V and a constant
L̃ = L̃(L,G,W,V) ≥ L such that φ̃ is intrinsic L̃-Lipschitz on W and φ̃(w) = φ(w) for all
w ∈ B.

An analogous extension theorem has been proved in the Heisenberg group by Naor
and Young [NY18, Theorem 27], according to a slightly modified notion of intrinsic Lips-
chitz continuity, introduced through a small change in the definition of intrinsic cone. For
many homogeneous distances the family of intrinsic Lipschitz maps considered by Naor
and Young coincides with the one that we have considered in this thesis. Naor and Young’s
extension Theorem exactly retraces Theorem 3.6.1. The improvement consists of the fact
that the intrinsic Lipschitz constant of the extended function φ̃ can be chosen equal to the
intrinsic Lipschitz constant of the starting map φ, so this constant does not increase (see
also Remark 4.5.11).
An other generalized Mc-Shane type extension theorem has recently been proved by Vit-
tone [Vit20, Theorem 1.5]. It is a generalization of Theorem 3.6.1 to the case of co-
horizontal intrinsic Lipschitz graphs in a generic Carnot group G, i.e. intrinsic graphs of a
map φ : U ⊂W→ V, where G is the product of two complementary subgroups G = WV
and V is horizontal of dimension k. The proof of [Vit20, Theorem 1.5] is obtained through
a new innovative characterization of intrinsic Lipschitz continuity for maps whose target
space is a horizontal homogeneous subgroup V, proved in [Vit20, Theorem 1.4]. More
explicitly, the author proved that any co-horizontal graph, like graph(φ), coincides with
the level set of an Euclidean Lipschitz map f : G→ Rk satisfying a condition of uniform
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coercivity, i.e. such that there exists some δ > 0 such that

〈f(xv)− f(x), v〉 ≥ δ|v|2 for every v ∈ V and x ∈ G,

(for the case k = 1 previous results had been proved in this direction, see [Vit12, Definition
1.1, Theorem 3.2]). This approach opens the possibility of dealing with intrinsic Lipschitz
graphs from outside. Indeed, this is an interesting starting point to extend arguments
and techniques typically used for low codimensional intrinsic regular submanifolds, like
H-regular surfaces of low codimension (see Chapter 4), to lower regular submanifolds, i.e.
to low codimensional intrinsic Lipschitz graphs.
For the sake of completeness, we mention also a Mc-Shane extension theorem very recently
proved by Di Donato and Fässler [DDF20, Theorem 1.2]. The two authors proved that,
if W ⊂ Hn is a horizontal subgroup and V is a homogeneous subgroup complementary to
W, for every L ≥ 0 there exists a constant L′, depending on n, on dim(V) and on L such
that every intrinsic Lipschitz function φ : U ⊂ W → V, U ⊂ W, can be extended to an
intrinsic L′-Lipschitz map φ̃ : W→ V, such that φ = φ̃ on U .

The subgraph of an intrinsic Lipschitz map with one dimensional target space is a set
of locally finite H-perimeter.

Theorem 3.6.2. [FMS14, Theorem 4.2.9] Let G = WV be the product of two comple-
mentary subgroups, with V of dimension one. If φ : W→ V is an intrinsic Lipschitz map,
its subgraph E−φ is a set of locally finite H-perimeter.

Theorem 3.6.2, along with Theorem 3.6.1, was the key starting point to prove a series
of interesting results, the most relevant of which is surely the following Rademacher-type
Theorem for intrinsic Lipschitz maps. It has been proved in [FSSC11, Theorem 4.29] in
the setting of the Heisenberg group and then it has been generalized to groups of type ?
in [FMS14].

Definition 3.6.3. A Carnot group G = V1 ⊕ V2 ⊕ · · · ⊕ Vκ is of type ? if there exists a
basis (v1, . . . , vm1) of V1 such that

[vj , [vj , vi]] = 0 for every i, j = 1, . . . ,m1.

All step-2 Carnot groups are of type ?. One can prove that there exist Carnot groups
of type ? of any step.

Theorem 3.6.4. [FMS14, Theorem 4.3.5] Let G be a Carnot group of type ? of topological
dimension q and let G = WV be the product of two complementary subgroups, with V of
dimension one. Let U ⊂ W be an open set and let φ : U → V be an intrinsic Lipschitz
function, then φ is intrinsically differentiable (Lq−1xW)-almost everywhere on U .

One of the main tools used to prove Theorem 3.6.4 is a blow-up result valid at almost
every point of the intrinsic graph of the considered intrinsic Lipschitz map φ. In particular,
the authors prove that the blow-up of the subgraph of φ, E−φ , at each point of its H-reduced
boundary exists, is unique and is a vertical half-space (i.e. an half-space whose boundary
is a vertical subgroup). This permits to deduce the intrinsic differentiability of φ at all the
points of the form πW(x) ∈W for some point x ∈ ∂?HE

−
φ . Finally, the proof is substantially

completed by observing that almost every point of the graph of φ belongs to the H-reduced
boundary of the subgraph and observing that the group projection πW on W preserves
full-measure sets.
Theorem 3.6.4 cannot be easily extended to a generic Carnot group. For instance, a well-
known counterexample [FSSC03a, Example 3.2] describes a locally finite H-perimeter set
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E in the Engel group (that is the simplest step-3 Carnot group) such that 0 ∈ ∂?HE but
the blow-up at 0 fails, in the sense that the blow-up of E at 0 is not a vertical half-space.
By the scheme of its proof it is also clear that Theorem 3.6.4 relies on deep results coming
from the theory of locally finite H-perimeter sets. As a consequence, its proof cannot
be easily extended to intrinsic Lipschitz graphs of codimension higher than one, even in
the Heisenberg group. One more problem is that, unlike what happens in the Euclidean
setting, working by coordinates is not fruitful, since the coordinates of an intrinsic Lipschitz
function are not necessarily intrinsic Lipschitz.
Nevertheless, recently Vittone proved a generalization in the Heisenberg group Hn of
Theorem 3.6.4 to intrinsic Lipschitz maps with target space a horizontal subgroup V
with 1 ≤ dim(V) ≤ n; see [Vit20, Theorem 1.1]. His innovative and very deep proof
substantially relies on three main ingredients (on top of the extension theorem for intrinsic
Lipschitz maps that we already discussed):

(i) an approximation result for intrinsic Lipschitz graphs by (Euclidean) smooth uni-
formly intrinsic Lipschitz maps whose domain is an entire homogeneous subgroup
[Vit20, Theorem 1.6];

(ii) the first original result available for one-codimensional intrinsic Lipschitz graphs,
[FSSC11, Theorem 4.29];

(iii) some delicate tools coming from the theory of currents in the Heisenberg group, that
are objects defined through the complex of differential forms introduced by Rumin
in [Rum94].

The involvement of the language of Heisenberg currents, that are very difficult to handle,
makes the proof quite technical. For good introductions to this theme one can also refer
to [FSSC07, Section 5] and [FT15].
For the sake of completeness, we recall that a Rademacher-type theorem has recently
been proved by Antonelli and Merlo in [AM20a]. It holds for intrinsic Lipschitz functions
φ : U ⊂W→ V, where W and V are complementary subgroups of a Carnot group G, such
that V is a normal homogeneous subgroup. Its proof substantially relies on the Pansu-
Rademacher theorem, that in this context is applied to the graph map Φ : U → G. For
example, [AM20a, Theorem 1.1] permits to deduce that if Hn = V oW is the semidirect
product of two complementary subgroups, and then W is horizontal of dimension 1 ≤
dim(W) ≤ n, any intrinsic Lipschitz map φ : U → V, where U ⊂ W is an open set, is
Ldim(W)-a.e. intrinsically differentiable.
In view of the described context, one could naturally wish to extend the proof of [Vit20,
Theorem 1.1] to every intrinsic Lipschitz graph in an arbitrary Carnot group, so that to
prove the general validity of the Rademacher’s theorem for intrinsic Lipschitz maps. In this
respect, a first observation could be that, in order to deal with Carnot groups not of type
?, one should first provide an alternative proof of the original Theorem 3.6.4. In fact, a
proof that can be extended to more general settings would be needed since, how we already
stressed, relying on a blow-up theorem at the points of the H-reduced boundary of the
subgraph of an intrinsic Lipschitz map of codimension 1 is not possible even in the Engel
group, that is the simplest step-3 Carnot group. One could then reconsider the project,
and decide to focus first on those settings in which Theorem 3.6.4 is verified to hold, hence,
for instance, Carnot groups of step 2. Nevertheless even a similar project is destined to
fail: very recently Julia, Nicolussi Golo and Vittone in [JNGV21] showed explicitly that
is possible to build nowhere intrinsically differentiable intrinsic Lipschitz maps in suitable
Carnot groups, among which suitable Carnot groups of step 2. For instance, it is possible
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to build a 2-codimensional intrinsic Lipschitz graph in H1×R such that, at any of its points,
there exist infinite blow-ups, and none of them is a homogeneous subgroup. Hence, not
only Vittone’s proof cannot be extended to the very general setting of Carnot groups but,
actually, the conjecture about the general validity of the Rademacher’s theorem for all
intrinsic Lipschitz functions is false, even in Carnot groups of step 2.

Further available results about intrinsic regular one-codimensional graphs will be pre-
sented later, precisely in Sections 4.5.1 and 5.2. We decided not to gather all these results
together for two different motivations. First, Section 4.5.1 focuses on results connected
with uniform intrinsic rectifiability in the Heisenberg group, hence we prefer to collocate
all the related discussions close to the definition of intrinsic rectifiable set. On the other
side, we postpone the presentation of the results of Section 5.2 since Chapter 5 will be
entirely devoted to the generalization of those results. We will adopt a quite different
point of view from the one that characterized the current section. The underlying spirit
will be to prove various characterizations of the intrinsic regularity of a map φ in terms
of the regularity of a vector-valued function (or, depending on the involved dimensions,
of a matrix-valued function), called the intrinsic gradient (or, respectively, the intrinsic
Jacobian matrix ), denoted by ∇φφ (or, respectively, by Dφφ), that represents the intrinsic
differential of φ.
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Chapter 4

Regular submanifolds in Carnot
groups

A typical problem of geometric measure theory in metric spaces is to individuate an
appropriate definition of regular submanifold, or regular surface. The classical notion goes
back to Federer, that defined a “good” surface in a metric space as the image of an open
subset of an Euclidean space through a (metric) Lipschitz map.
A strong motivation supporting the need of understanding how regular submanifolds in
Carnot groups can be considered, is the necessity of stating a suitable definition of recti-
fiability in these spaces. Rectifiable sets were introduced in the 1920’s by Besicovitch and
in 1947 in general dimension by Federer [Fed69, 3.2.14]. Successively this theme has been
deepened in general metric spaces by Ambrosio and Kircheim in [AK00]. According to
Federer’s original definition, a k-dimensional rectifiable set is a set that can be covered,
up to a negligible set, by a countable union of Lipschitz images of subsets of Rk (i.e.
k-dimensional Federer’s “good” submanifolds). Unfortunately, these classical notions of
regular surface and rectifiable set do not suit Carnot group geometry because, roughly
speaking, open subsets of Rk are not always appropriate to be used as parameter spaces
for k-dimensional submanifolds within a Carnot group G. For example, Ambrosio and
Kirchheim in [AK00, Theorem 7.2] showed that in H1, for k = 2, 3, 4, for any Lipschitz
map f : A ⊂ Rk → H1, it holds that Hk(f(A)) = 0, namely H1 is k-purely unrectifiable
(see also [Mag04b]).

In the Euclidean space Rn, as a consequence of the Rademacher’s theorem, an equiv-
alent way to define a k-dimensional rectifiable set is to require that it can almost all
be covered by a countable union of k-dimensional C1-regular submanifolds, i.e. images
through C1-regular maps of open subsets of Rk. In analogous way, we would like to state
a suitable notion of rectifiability in Carnot groups following (at least separately) both the
path involving Lipschitz continuity and the one involving C1-regularity. Therefore we need
first to individuate suitable intrinsic notions of C1 and Lipschitz regular submanifolds.
One of the first ideas that could come to mind is to define regular submanifolds as Eu-
clidean C1-regular submanifolds embedded in a Carnot group. For our purposes, this is
not a good point of view, since these objects are not always regular from the point of view
of the group structure. If we consider, for instance, a C1 (Euclidean) regular hypersurface
Σ embedded in a Carnot group G, there could exist on Σ the so-called characteristic points,
i.e. points x ∈ Σ where the horizontal fiber at x is contained in the Euclidean tangent
space, i.e. HxG ⊂ TxΣ, hence a sort of transversality condition fails. Characteristic points
are singular with respect to the metric structure of G, in particular, the blow-up of Σ at
a characteristic point is not a subgroup, and this is an unpleasant occurrence according
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to Carnot group natural structure. We search for a definition of regular submanifold that
respects more carefully the structure of the group. In the Euclidean space Rn, a regular
submanifold of arbitrary dimension k can be equivalently defined as a subset of Rn that is,
locally, either the Euclidean graph of a C1-regular function φ : Rk → Rn−k or a level set
of a C1-regular function f : Rn → Rn−k with continuous surjective differential. In Carnot
group both these two strategies can be mimicked, so that regular submanifolds can be de-
fined as level sets (or images, depending on the dimension) of continuously non-degenerate
Pansu differentiable functions f acting between two Carnot groups or as intrinsic regular
graphs of functions acting between two complementary subgroups of a Carnot group. At
first sight, it could seem that these two approaches, even if developed through appropriate
notions of regularity, do not give equivalent results. Nevertheless, in many cases, this first
impression is disproved by suitable implicit function theorems.

In this chapter we provide a summary of the available definitions of intrinsic regular
submanifolds in Carnot groups. They have been introduced mimicking the Euclidean no-
tions through the concept of Pansu differentiability. We enrich the picture proving some
new related results. The material is organized in order to introduce first the available def-
inition in the Heisenberg group, and successively the notions in a generic Carnot group.
In this perspective, H-regular surfaces will be our starting point. We focus on the notions
both of low dimensional and low codimensional H-regular surface (Definitions 4.1.1 and
4.1.8). Introduced and deeply investigated by Franchi, Serapioni and Serra Cassano in a
long series of papers (the first of which is [FSSC07]), they have been the first objects to be
candidate for the role of regular submanifolds in the Heisenberg group. The leading idea
of this definition is to individuate subsets of the Heisenberg group equipped at any point
with a tangent plane and a transversal plane, and to require that both of them are left
cosets of homogeneous subgroups that vary in a continuous way as the considered point
varies on the surface.
Following the same philosophy, we move then to focus on more general settings and we
present the notions of (G,M)-regular sets of G and of M, where G and M are two generic
Carnot groups (Definitions 4.2.8 and 4.2.6). These objects have been described in an or-
ganic way by Magnani in [Mag13], where their properties have been deeply studied. They
can be considered as the natural generalization of the concept of H-regular submanifold
from the Heisenberg group to any generic Carnot group. We dedicate a preliminary section
to present G-regular hypersurfaces of a generic Carnot group, introduced in [FSSC03b].
In this thesis we consider them as (G,M)-regular sets of G, for M = R, but, for the sake
of accuracy, we stress that theirs is the first notion of intrinsic regular submanifold in a
Carnot group presented in the literature.
We prove then Theorem 4.3.7 that is an original contribution of this thesis. Starting from
the implicit function Theorem 4.2.13, we prove that, given two Carnot groups G and M,
any (G,M)-regular set Σ of G is locally the intrinsic graph of a uniformly intrinsically
differentiable function. In particular, we prove that the intrinsic parametrization of Σ
provided by the implicit function Theorem 4.2.15 is uniformly intrinsically differentiable.
Successively, we briefly present the wider and wilder family of regular submanifolds intro-
duced by Kozhevnikov in [Koz15], we will call them (G,M)K-regular submanifolds (Defi-
nition 4.4.1). In [Koz15] the author approaches the formulation of a definition of regular
submanifold within a Carnot group in a way slightly different from the one described
above. In broad terms, he retraces the previous definitions giving up the requirement
that the transversal space to the submanifold has to be a homogeneous subgroup comple-
mentary to the tangent subgroup. When compared to the available investigations about
(G,M)-regular sets, the research about (G,M)K-regular submanifolds is at a very initial
and early stage. In particular, up to now, it has been deepened only for a subclass of
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(G,M)K-regular submanifolds called co-Abelian surfaces, introduced in [BK14].
We conclude the chapter by presenting some notions of intrinsically rectifiable set, usu-
ally referred to as intrinsic rectifiable sets, in the Heisenberg group (Definitions 4.5.2 and
4.5.4). They are a natural application of the definitions of H-regular surface and intrinsic
Lipschitz graph, respectively. We follow the approach proposed by Franchi, Serapioni,
Serra Cassano, that, up to now, is the most developed one in this line of research. In
particular for the definition of intrinsic rectifiable set in the Heisenberg group, and, more
in general, in Carnot groups, one can refer to [FSSC01] for sets of codimension 1 and to
[FSSC07, FSSC11, MSSC10] for sets of generic dimension. We give also a glance of the
available notions of intrinsic rectifiability in a generic Carnot group. For the sake of com-
pleteness, we stress that a different formulation of rectifiability in Carnot groups has been
proposed by Pauls, paired with a different concept of regular submanifold (see [Pau04b,
Definition 4.1]). In particular, Pauls considers as regular submanifolds the images in G
of Lipschitz maps defined, not on some Euclidean space Rk, as was required in Federer’s
definition, but on a subgroup of G. We will not deepen this theme in the thesis but we
want to highlight that the relation between the two proposed definitions of intrinsic recti-
fiable set is still far from being clear and it is an open problem on which many researches
are nowadays actively concentrated. In particular, Antonelli and Le Donne have recently
shown, in [ALD20], that in a generic Carnot group Pauls’ rectifiability is not equivalent
to Franchi, Serapioni, Serra Cassano’s one. On the other side, it has been proved that on
some families of regular sets the two notions coincide (refer to [CP06, BV10, DDFO19]).
In continuity with the topic of intrinsic rectifiability, the last section is dedicated to some
very recent remarkable results regarding the starting development of a theory of uniform
or quantitative intrinsic rectifiability in the Heisenberg group.

4.1 H-regular surfaces

An initial detailed study of H-regular surfaces has been carried out in [FSSC07], where
an implicit function theorem and an area formula for the centered Hausdorff measure of
these objects, with respect to the distance d∞, have been proved. In the same work,
following the Rumin complex [Rum94], the authors exploit their results to introduce the
first notions of the theory of Heisenberg currents. It is necessary to distinguish H-regular
surfaces, according to their dimensions, in the two families of low dimensional and low
codimensional ones. We will discuss why the two definitions cannot be extended one to
cover the other one. Nevertheless, at the end of this section it will be clear to the reader
that it is possible to see all the objects satisfying one of the two definitions, under a com-
mon light. In fact, all these objects have been characterized as sets that are locally the
intrinsic graph of a uniformly intrinsically differentiable map. This allows to unify the
two definitions of low dimensional and low codimensional H-regular surfaces under a com-
mon theoretical approach. Actually, the concept of intrinsic graph was individuated by
Franchi, Serapioni and Serra Cassano proving an implicit function theorem for H-regular
hypersurfaces, i.e. H-regular surfaces of codimension one ([FSSC01, Theorem 6.5]). The
authors realized that the natural parametrization of an H-regular hypersurface can be
exactly realized by the notion of intrinsic graph, and therefore they understood that this
notion is the right one to be stated in homogeneous group contexts to generalize the defini-
tion of Euclidean graph. A small remark about terminology: a careful reader may already
noticed that we use the term “surface” as a synonym of the term “submanifold”, this will
be done in the whole thesis. This choice is quite common also in the related literature.
To indicate one-codimensional submanifolds people usually use the term hypersurface.
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4.1.1 H-regular surfaces of low dimension

Low dimensional H-regular surfaces retrace Federer’s original idea of surface. In fact,
the intrinsic regular surfaces of Hn of dimension k, with 1 ≤ k ≤ n, are images of con-
tinuously Pansu differentiable functions, with injective Pansu differential, defined from an
open subset of the Euclidean commutative group Rk to Hn. Since continuously Pansu
differentiable maps are locally Lipschitz, these objects really satisfy Federer’s idea of sub-
manifold.

Definition 4.1.1. Let 1 ≤ k ≤ n, a set Σ ⊂ Hn is a H-regular surface of dimension
k if for every x̄ ∈ Σ there are two open sets V ⊂ Rk, Ω ⊂ Hn with x̄ ∈ Ω, and a
function f : V → Ω such that f is injective, f ∈ C1

h(V,Ω) and the Pansu differential
Df(x) : Rk → Hn is injective for each x ∈ V , such that

Σ ∩ Ω = f(V ).

Remark 4.1.2. Definition 4.1.1 cannot be extended to the case when k ≥ n+ 1. If fact,
if we assume by contradiction that k ≥ n + 1, the Pansu differential at any point x ∈ V ,
Df(x) : Rk → Hn is an injective h-homomorphism and Df(x)(Rk) ⊂ H1 is a homogeneous
commutative subalgebra, then k ≤ n so that we reach a contradiction.

Let us introduce the definition of homogeneous tangent cone, that can be thought as
the set of all those vectors in some sense tangent to a set A at a point x.

Definition 4.1.3. Let A ⊂ Hn and choose a point x ∈ A. We call homogeneous tangent
cone of A at x the set

Tan(A, x) =
{
ν ∈ Hn : ν = lim

h→∞
δrh(x−1xh), for some sequences (rh)h∈N > 0,

(xh)h∈N ⊂ A, lim
h→∞

xh = x
}
.

(4.1)

The homogeneous tangent cone of an H-regular surface of low dimension, at any of its
points, is individuated by the following proposition.

Proposition 4.1.4. [FSSC07, Theorem 3.5] Let 1 ≤ k ≤ n and let Σ ⊂ Hn be a k-
dimensional H-regular surface. Moreover, let x ∈ Σ ∩ Ω and f be as in Definition 4.1.1.
If f(w̄) = x, then

Tan(Σ, x) = {Df(w̄)(w) : w ∈ Rk} = Df(w̄)(Rk).

Moreover, H-regular surfaces of low dimension are Euclidean regular surfaces and the
homogeneous tangent cone of a low dimensional H-regular surface, at any of its point,
coincides with the Euclidean tangent space. Infact, again by [FSSC07, Theorem 3.5], the
following holds.

Proposition 4.1.5. Let Σ ⊂ Hn be a k-dimensional H-regular surface, with 1 ≤ k ≤ n,
then Σ is an Euclidean k-dimensional submanifold of Hn of class C1. Moreover, for every
x ∈ Σ, the Euclidean tangent space of Σ at x coincides with the homogeneous tangent cone
of Σ at x, i.e. it holds that for every x ∈ Σ

TxΣ = Tan(Σ, x).

If Σ is an H-regular surface of low dimension, its spherical Hausdorff measure is com-
parable to its Euclidean Hausdorff measure.
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Proposition 4.1.6. [FSSC07, Theorem 3.5] Let Σ ⊂ Hn be a k-dimensional H-regular
surface, with 1 ≤ k ≤ n, then SkxΣ is comparable to HkExΣ.

Remark 4.1.7. Notice that the proof of Proposition 4.1.6 is based on a general area for-
mula for Lipschitz maps acting between two Carnot groups, proved in [Mag02a, Theorem
4.3.4] (see also [Pau04b, Theorem 3.3]). In fact, if f is a defining map for Σ at a point
x̄ ∈ Σ, as in Definition 4.1.1, f is a (injective) locally Lipschitz map between Rk and Hn.

4.1.2 H-regular surfaces of low codimension

Unlike low dimensional H-regular surfaces, low codimensional H-regular surfaces, i.e.
regular submanifolds of low codimension in the Heisenberg group, are not Euclidean reg-
ular surfaces in Hn. A set Σ ⊂ Hn is a regular surface of codimension k, with 1 ≤ k ≤ n,
if it is locally a level set of a Pansu differentiable function f from Hn to Rk, with Pansu
differential both continuous and surjective.

Definition 4.1.8. Let Σ ⊂ Hn be a set and let 1 ≤ k ≤ n. We say that Σ is a H-regular
surface of codimension k if for every x̄ ∈ Σ there exist an open set Ω ⊂ Hn such that
x̄ ∈ Ω and a function f = (f1, . . . , fk) ∈ C1

h(Ω,Rk) such that

(i) Σ ∩ Ω = {x ∈ Ω : f(x) = 0};

(ii) ∇Hf1(x) ∧ · · · ∧ ∇Hfk(x) 6= 0 for all x ∈ Ω.

Remark 4.1.9. If Σ ⊂ Hn is a k-codimensional H-regular surface, with 1 ≤ k ≤ n, we
will also call it a (2n+ 1− k)-dimensional H-regular surface.

Remark 4.1.10. Definition 4.1.8 could theoretically be extended to the case when k ≥
n + 1. Nevertheless, the constraint usually required to k, i.e. that 1 ≤ k ≤ n, originates
more from the ideas underlying the definition than from the definition itself. Let us
explain more carefully this concept. As we explained in the introduction of this chapter,
we want to individuate regular surfaces as sets equipped at any point with a tangent
plane and a transversal plane such that both of them are left cosets of homogeneous
subgroups. Requiring (ii) of Definition 4.1.8, we require that at any point x ∈ Ω the
Pansu differential Df(x) : Hn → Rk is surjective and then that ker(Df(x)), that plays
the role of the tangent space (see Proposition 4.1.13), is a homogeneous vertical subgroup
of Hn of dimension 2n+ 1− k. In addition, when k ≤ n, by Proposition 4.1.21, requiring
(ii) is equivalent to ask that ker(Df(x)) admits a complementary homogeneous subgroup,
which plays the role of the transversal homogeneous subspace. By the form of the couples
of complementary subgroups of Hn, any subgroup complementary to ker(Df(x)) has to
be horizontal, and then commutative, and if we denote its dimension by k, necessarily k
has to be smaller or equal than n.

Remark 4.1.11. As we said, if 1 ≤ k ≤ n, a k-dimensional H-regular surface Σ is an
Euclidean submanifold of R2n+1 of class C1. Instead, a k-codimensional H-regular surface,
can be very irregular from the Euclidean point of view. For instance, in [KSC04], it is
shown the construction of an H-regular hypersurface that is an Euclidean fractal. In
particular, the authors build an H-regular surface with Euclidean Hausdorff dimension
equal to 2.5 in (H1, | · |).

Remark 4.1.12. On the other side, there exist embedded Euclidean C1-regular surfaces
Σ in Hn that are not H-regular. For example, if Σ is an Euclidean regular embedded
hypersurface, on Σ could exist the so-called characteristic points, that are points x ∈ Σ
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for which HxHn ⊂ TxΣ. In fact, if Σ is the zero level set of some function f ∈ C1(Ω,R) ⊂
C1
h(Ω,R) and x ∈ Ω with f(x) = 0, it is not guaranteed that ∇Hf(x) 6= 0, even if
∇f(x) 6= 0. We will return on characteristic points in Remark 4.2.20.

The homogeneous tangent cone of an H-regular surface of codimension k, with 1 ≤
k ≤ n, has been characterized as follows.

Proposition 4.1.13. [FSSC07, Proposition 3.29] If Σ is an H-regular surface of codi-
mension k, with 1 ≤ k ≤ n, and f ∈ C1

h(Ω,Rk) is a defining function of Σ as in Defini-
tion 4.1.8, then for all x ∈ Σ ∩ Ω, we have

Tan(Σ, x) = kerDf(x).

We refer to Chapter 5, Section 5.5, and to Chapter 6 for results about the Hausdorff
measure of low codimensional H-regular surfaces in Hn. Here we limit ourself to say that
a suitable area formula to compute the (2n + 2 − k)-centered Hausdorff measure an H-
regular surface of codimension k, 1 ≤ k ≤ n, with respect to the distance d∞ is proved in
[FSSC07, Theorem 4.1] (see also [SC16, Theorem 4.50]).

4.1.3 From H-regular surfaces to intrinsic graphs

Low-dimensional H-regular surfaces are locally intrinsic regular graphs.

Theorem 4.1.14. [AS09, Theorem 4.2] Let 1 ≤ k ≤ n. The following conditions are
equivalent:

(i) Σ ⊂ Hn is an H-regular surface of dimension k.

(ii) For every x ∈ Σ there exists an open set Ω such that x ∈ Ω and such that Σ ∩ Ω
is the intrinsic graph of a uniformly intrinsically differentiable function φ acting
from a subset of a k-dimensional horizontal subgroup V to a homogeneous subgroup
complementary to V in Hn.

We will focus in a more detailed way on the result analogous to Theorem 4.1.14 avail-
able for low codimensional H-regular surfaces, since they will be the main characters of
the original contributions presented in the next chapters. Let us introduce some notions,
preliminary to state an implicit function theorem for low-codimensional regular surfaces
in the Heisenberg group.

Definition 4.1.15. Given an open subset Ω ⊂ Hn and a function f : Ω → Rk Pansu
differentiable at a point x ∈ Ω, we define the horizontal Jacobian of f at x as

JHf(x) := ‖∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)‖g,

where ‖ · ‖g denotes the Riemannian norm associated with our fixed left invariant metric
g on the multivectors of Hn.

Definition 4.1.16. Given an open subset Ω ⊂ Hn and a function f : Ω → R Pansu
differentiable at a point x ∈ Ω, if V is a homogeneous subgroup, we define ∇Vf(x) ∈ V
the unique vector such that

Df(x)(z) = 〈∇Vf(x), z〉 for every z ∈ V.
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Definition 4.1.17. Given an open subset Ω ⊂ Hn and a function f : Ω → Rk Pansu
differentiable at a point x ∈ Ω, if V ⊂ G is a homogeneous k-dimensional subgroup, we
call the horizontal Jacobian of f with respect to V at x the number

JVf(x) := ‖∇Vf1(x) ∧ · · · ∧ ∇Vfk(x)‖g.

Remark 4.1.18. Assume that V ⊂ H1 is a horizontal k-dimensional homogeneous sub-
group and consider an orthonormal basis (v1, . . . , v2n, e2n+1) of Hn such that (v1, . . . , vk)
is a basis of V. Set Xj ∈ Lie(G) the left invariant vector field such that Xj(0) = vj , for
j = 1, . . . , 2n. Let f : Ω ⊂ Hn → R be a Pansu differentiable map at x ∈ Ω, then

∇Vf(x) =
k∑
i=1

Xif(x)vi. (4.2)

Moreover, it is immediate to verify that JHf(x) = J(Df(x)) and, taking (4.2) in consid-
eration, that

JVf(x) =

∣∣∣∣∣∣det

X1f1(x) . . . Xkf1(x)
. . . . . . . . .

Xkf1(x) . . . Xkfk(x)

∣∣∣∣∣∣ = | det([Xifj(x)]i,j=1,...,k)| = J(Df(x)|V).

The following implicit function theorem is proved in [FSSC07, Theorem 3.27]. Some
previous versions are available: the theorem has first been presented in [FSSC03b, Theo-
rem 2.1] for one-codimensional intrinsic regular hypersurfaces in Carnot groups (see also
[FSSC01, Theorem 6.5] where it is limited to the setting of the Heisenberg group). A more
general proof is presented in [CM06, Theorems 1.1, 1.2]. A remarkable result of this type
in general Carnot groups is [Mag13, Theorem 1.4]. We will report and use it later on. The
most general analogous result in the framework of Carnot groups is the recent [JNGV20,
Lemma 2.10]. It will be useful later on, in the last chapter of this thesis.

Theorem 4.1.19 (Implicit function theorem). Let Ω ⊂ Hn be an open set, let f ∈
C1
h(Ω,Rk) be a function and consider a point x0 ∈ Ω such that JHf(x0) > 0. Then there

exists a horizontal k-dimensional subgroup V such that JVf(x0) > 0. We set Σ = {x ∈
Ω : f(x) = f(x0)} and we fix a homogeneous subgroup W complementary to V. Setting
πW(x0) = w0 and πV(x0) = υ0, there exist an open set Ω′ ⊂ Ω ⊂ Hn, with x0 ∈ Ω′, an
open set U ⊂ W with w0 ∈ U and a unique continuous function φ : U → V such that
φ(w0) = υ0 and

Σ ∩ Ω′ = {wφ(w) : w ∈ U}.
We stress once more that the introduction of the concept of intrinsic graph originated

by the proof of this implicit function theorem. In particular, the proof of Theorem 4.1.19
is the result of the combination of [FSSC07, Proposition 3.13] and [FSSC07, Proposition
3.25], that we report below under the names of Proposition 4.1.20 and Proposition 4.1.21,
respectively.

Proposition 4.1.20. Let Ω ⊂ Hn be an open set, let f ∈ C1
h(Ω,Rk) be a function and

consider a point x0 ∈ Ω. Assume there exists a horizontal k-dimensional subgroup V such
that JVf(x0) > 0. We set Σ = {x ∈ Ω : f(x) = f(x0)} and we fix a homogeneous subgroup
W complementary to V. Setting πW(x0) = w0 and πV(x0) = υ0, there exist an open set
Ω′ ⊂ Ω ⊂ Hn, with x0 ∈ Ω′, an open set U ⊂ W with w0 ∈ U and a unique continuous
function φ : U → V such that φ(w0) = υ0 and

Σ ∩ Ω′ = {wφ(w) : w ∈ U}.
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Proposition 4.1.21. Let Ω ⊂ Hn be an open set, let f ∈ C1
h(Ω,Rk) be a function and con-

sider a point x0 ∈ Ω such that JHf(x0) > 0. Then there exist a horizontal k-dimensional
subgroup V and an open neighbourhood of x0, Ω′ ⊂ Hn such that JVf(x) > 0 for every
x ∈ Ω′.

Let us focus on the regularity of the parametrization φ individuated by the Theorem
4.1.19. In particular, being an H-regular surface of codimension k, with 1 ≤ k ≤ n is truly
equivalent to be locally the intrinsic graph of a uniformly intrinsically differentiable map
defined on a normal homogeneous subgroup of Hn of topological dimension 2n+ 1− k.

Theorem 4.1.22. [AS09, Theorem 4.2] Let 1 ≤ k ≤ n, the following conditions are
equivalent:

(i) Σ ⊂ Hn is an H-regular surface of codimension k.

(ii) For all x ∈ Σ there exists an open set Ω such that x ∈ Ω and Σ ∩ Ω is the intrinsic
graph of a uniformly intrinsically differentiable function φ acting from a subset of
a normal subgroup W of Hn of topological dimension 2n + 1 − k to a homogeneous
subgroup complementary to W in Hn.

Then in particular, by Theorem 4.1.22 one can deduce the following.

Theorem 4.1.23. In the hypotheses of Theorem 4.1.19, φ is uniformly intrinsically dif-
ferentiable on U .

By Theorems 4.1.14 and 4.1.22, the objects satisfying either Definition 4.1.1 or Defi-
nition 4.1.8 can be locally seen as intrinsic graphs of uniformly intrinsically differentiable
maps. In this sense the point of view of intrinsic regular graphs can be used to introduce
a unitary definition of regular submanifold in the Heisenberg group. This point of view
has been explicitly practised by Serapioni in [Ser08, Section 5], where a suitable notion of
intrinsic regular submanifold has been proposed, already set in a generic Carnot group,
[Ser08, Definition 5.1]. In particular, in a generic Carnot group the form of homogeneous
subgroups and of the possible couples of complementary subgroups can be various. Hence,
a unique number is not sufficient to carry all the information about the dimension of a
regular submanifold (or, equivalently, of a rectifiable set), as it is not enough to carry
all the information about the dimension of a homogeneous subgroup. This is the reason
for which, in the following definition, Serapioni identifies the dimension of a regular sub-
manifold through a pair of natural numbers. This stresses the discrepancy between the
topological and the Hausdorff dimension of a homogeneous subgroup.

Definition 4.1.24. Let G be a Carnot group. Let n and N be natural numbers such that
n ≤ N .

(i) A set Σ ⊂ G is an intrinsic Lipschitz (n,N)-submanifold if for every x ∈ Σ, there
are a positive r > 0, two complementary subgroups W,V of G, where W is a ho-
mogeneous subgroup of topological dimension n and metric dimension N , and an
intrinsic Lipschitz function φ : U → V, with U ⊂W, such that

Σ ∩ B(x, r) = graph(φ).

(ii) A set Σ ⊂ G is an intrinsic (n,N)-submanifold if for every x ∈ Σ, there are a pos-
itive r > 0, two complementary subgroups W,V of G, where W is a homogeneous
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subgroup of topological dimension n and metric dimension N , and a uniformly in-
trinsically differentiable function φ : U → V, with U ⊂W, such that

Σ ∩ B(x, r) = graph(φ).

By Proposition 3.5.34, any intrinsic (n,N)-submanifold of G is a intrinsic Lipschitz
(n,N)-submanifold.

Remark 4.1.25. According to Definition 4.1.24 and to Theorems 4.1.14 and 4.1.22, if
1 ≤ k ≤ n, an H-regular surface of dimension k is an intrinsic (k, k)-submanifold. An
H-regular surface of codimension k, instead, is an intrinsic (2n + 1 − k, 2n + 2 − k)-
submanifold. In addition, taking into account the form of the homogeneous subgroups in
Hn (Remark 3.1.16), these two families of intrinsic submanifolds exhaust all the possible
intrinsic submanifolds of the Heisenberg group Hn satisfying Definition 4.1.24, i.e. the
family of the subsets Σ ⊂ Hn for which there exist a couple of natural numbers n and N
such that Σ is a (n,N)-intrinsic submanifold of Hn. Since, again by Theorems 4.1.14 and
4.1.22, any intrinsic submanifold of Hn is an H-regular surface, the family of H-regular
surfaces coincide with the one of intrinsic submanifolds in Hn, according to Definition
4.1.24.

We conclude this section with the definition of parametrized H-regular surface ([CM20,
Definition 2.12]).

Definition 4.1.26 (Parametrized H-regular surface). Let Σ ⊂ Ω be an H-regular surface
and assume that there exist a factorization of Hn as the product of two complementary
subgroups Hn = WV, an open set U ⊂W and a continuous mapping φ : U → V such that
Σ = {wφ(w) : w ∈ U}. We say that Σ is a parametrized H-regular surface with respect to
(W,V). We call φ a parametrization of Σ.

Moreover, we can highlight some sufficient conditions that one can require on a defining
map f of a low codimensional H-regular surface Σ in order to be sure that Σ is parametrized
(refer to [CM20, Proposition 2.5]).

Proposition 4.1.27. Let Ω ⊂ Hn be an open set. Let f ∈ C1
h(Ω,Rk), with 1 ≤ k ≤ n,

let x0 ∈ Ω, set Σ = f−1(f(x0)) and suppose that for some k-dimensional horizontal
subgroup, V ⊂ Hn, JVf(x) > 0 for all x ∈ Σ. If W ⊂ Hn is any normal subgroup such
that Hn = WoV, then Σ is a parametrized H-regular surface with respect to (W,V). In
addition, if φ : U → V is a parametrization of Σ, with U ⊂ W open set, φ is unique and
uniformly intrinsically differentiable.

Proof. The proof follows by exploiting the local parametrization given by the implicit
function Theorem 4.1.19 (more precisely by Proposition 4.1.20). The uniqueness of the
parametrization follows again from Theorem 4.1.19. The uniform intrinsic differentiability
of the parametrization follows from Theorem 4.1.22 (more precisely, see Theorem 4.1.23).

4.2 (G,M)-regular sets

Before introducing (G,M)-regular sets, we briefly recall the very first example of a def-
inition of an intrinsic regular surface of a generic Carnot group presented in the literature.
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4.2.1 G-regular hypersurfaces

From the historical point of view, H-regular surfaces have been preceded by the no-
tion of G-regular hypersurface, introduced by Franchi, Serapioni and Serra Cassano in
[FSSC03b, 1.6] in a generic Carnot group G (and before, limited to the setting of the
Heisenberg group, in [FSSC01, Definition 6.1]). Basically they are (q − 1)-dimensional
intrinsic regular surfaces of G.

Definition 4.2.1. A set Σ ⊂ G is a G-regular hypersurface if for every x̄ ∈ Σ, there exists
an open set Ω ⊂ G such that x̄ ∈ Ω, and a function f ∈ C1

h(Ω,R) such that

(i) Σ ∩ Ω = f−1(0);

(ii) ∇Hf(x) 6= 0 for every x ∈ Ω.

Any G-regular hypersurface is the boundary of a H-Caccioppoli set ([FSSC03b, The-
orem 2.1]). In fact, this definition of hypersurface is the starting point of a series of
papers [FSSC01, FSSC02, FSSC03b, FSSC03a] whose main aim is the proof of a fun-
damental De Giorgi’s structure theorem for locally finite H-perimeter sets in a Carnot
group of step 2 [FSSC03a, Theorem 3.9]. In particular the three authors show that if G
is a Carnot group of step 2 and E ⊂ G is a H-Caccioppoli set, then ∂?HE is (Q − 1)-
dimensional G-rectifiable, according to [FSSC03a, Definition 2.33], namely ∂?HE can be
covered, up to a HQ−1-negligible set, by a contable union of compacts subsets of G-
regular hypersurfaces. G-regular hypersurfaces share many of the properties of H-regular
surfaces of low codimension in Hn, since, in particular, Hn-regular hypersurfaces coincide
with H-regular surfaces of codimension 1. An implicit function theorem for G-regular
hypersurfaces is available [FSSC03b, Theorem 2.1], the homogeneous tangent cone to a
G-regular hypersurface has been characterized [FSSC03b], suitable area formulas for the
perimeter measure, the (Q − 1)-centered Hausdorff measure and (Q − 1)-spherical Haus-
dorff measure, with respect to a homogeneous distance, of these sets have been discussed
[FSSC01, FSSC03a, FSSC03b, Mag05, FSSC15, Mag17], and a study of the relation be-
tween C1 Euclidean hypersurfaces embedded in G and G-regular hypersurfaces has been
carried out [Bal03, FSSC03b, Mag06b] (see also Remark 4.2.20). Nevertheless, we do not
want to discuss these objects on their behalf, but we want to include them in a larger
drawing about regular submanifolds in Carnot groups. Precisely, we consider them as a
particular case of (G,M)-regular sets, defined in the next section (refer to Remark 4.2.10).
The following two remarks aim at this direction.

Remark 4.2.2. Let us consider a G-regular hypersurface Σ ⊂ G. Consider a point x̄ ∈ Σ
and a defining function f of Σ at x̄, as in Definition 4.2.1. By (ii), for every x ∈ Ω,
∇Hf(x) 6= 0, hence span(∇Hf(x)) ⊂ V1 is a homogeneous subgroup complementary to
kerDf(x). Therefore, surely Df(x) is a h-epimorphism.

Remark 4.2.3. Notice that the family of G-regular hypersurfaces is non-empty for every
Carnot group G. This is due to the fact that there exists always a one-dimensional
subalgebra, namely a one-dimensional subgroup, contained in the first layer of G, V1. It
is enough to consider the span of a non-null vector v ∈ V1.

4.2.2 (G,M)-regular sets

We present the generalization of H-regular surfaces to regular submanifolds of Carnot
groups proposed in [Mag13]. We restrict definitions and results of [Mag13] to the case
when the group that we will denote by M is stratified, i.e. is a Carnot group. They were
originally stated for the case when M is just graded (see Remark 4.2.11).
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Definition 4.2.4 (h-quotient and h-embeddings). Let G and M be two Carnot groups.
We say that M is an h-quotient of G if there exists a normal homogeneous subgroup W ⊂ G
such that G/W is h-isomorphic to M. We say that G h-embeds into M if there exists a
homogeneous subgroup V of M which is h-isomorphic to G.

Remark 4.2.5. By [Mag13, Proposition 11.1], M is a h-quotient of G if and only if there
exists a surjective h-homomorphism L : G→M. It is also easy to check that G h-embeds
into M if and only if there exists an injective h-homomorphism T : G→M.

Definition 4.2.6 ((G,M)-regular set of M). Let G and M be two Carnot groups such that
G h-embeds into M. We say that a subset Σ ⊂M is (G,M)-regular, or that Σ is a (G,M)-
regular set of M if for every point x̄ ∈ Σ, there exist two open neighbourhoods Ω ⊂ M
of x̄ and V ⊂ G of 0 ∈ G and a continuously Pansu differentiable topological embedding
f : V →M, such that Σ∩Ω = f(V ) and Df(x) : G→M is an h-monomorphism for every
x ∈ V .

Remark 4.2.7. H-regular surfaces of dimension k, with 1 ≤ k ≤ n, coincide with
(Rk,Hn)-regular sets of Hn.

Definition 4.2.8 ((G,M)-regular set of G). Let G and M be two Carnot groups such
that M is a h-quotient of G. We say that a subset Σ ⊂ G is (G,M)-regular, or that Σ is a
(G,M)-regular set of G if for every point x̄ ∈ Σ, there exist an open neighbourhood Ω ⊂ G
of x̄ and a continuously Pansu differentiable map f : Ω → M such that Σ ∩ Ω = f−1(0)
and Df(x) : G→M is a h-epimorphism for every x ∈ Ω.

Remark 4.2.9. H-regular surfaces of codimension k, with 1 ≤ k ≤ n, coincide with
(Hn,Rk)-regular sets of Hn. In fact, the definition of (G,M)-regular set of G is a gener-
alization of Definition 4.1.8. In the Heisenberg group, if we assume that Ω ⊂ Hn is an
open set and we consider a map f ∈ C1

h(Ω,Rk), with 1 ≤ k ≤ n, by Proposition 4.1.21
assuming that Df(x) is surjective at some x ∈ Ω is equivalent to assume the existence of
k horizontal vectors v1, . . . , vk ∈ H1 such that [vi, vj ] = 0 for all i, j ∈ {1, . . . , k} and such
that V = span(v1, . . . , vk) is a horizontal subgroup complementary to ker(Df(x)). This
ensures that for every x ∈ Ω′ ∩ f−1(0), for some open set Ω′ ⊂ Ω, if we assume Df(x)
to be surjective, it is automatically verified that Df(x) is a h-epimorphism; this is not
guaranteed in a generic setting, hence for maps acting between two Carnot groups (see
Section 4.4).

Remark 4.2.10. By Remark 4.2.3, R is a h-quotient of any Carnot group G. Moreover,
by Remark 4.2.2, G-regular hypersurfaces coincide with (G,R)-regular sets of G.

Remark 4.2.11. As we hinted above, all the definitions of this section were originally
stated, in [Mag13], for the case when G is a Carnot group and M is just a graded group.
In particular, the definition of Pansu differentiability (Definition 3.2.14) can be easily
extended to maps acting between two graded groups. Also Theorems 3.2.30 and 4.2.13
have been proved in [Mag13] for continuously Pansu differentiable maps from a Carnot
group to a graded group. Nevertheless, in the sequel we will mainly focus on (G,M)-regular
sets of G and, by [Mag13, Proposition 8.2], for these sets it is not restrictive to assume
that M is stratified, i.e. that M is a Carnot group. We stress that for (G,M)-regular sets
of M this is not true.

If a set Σ is a (G,M)-regular set of G or of M, we simply call it a (G,M)-regular set.
The definitions and the characterizations about homogeneous tangent cones have been

generalized to (G,M)-regular sets.
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Definition 4.2.12. Let A ⊂ G and consider a point x ∈ A, we call homogeneous tangent
cone of A at x the set

Tan(A, x) =
{
ν ∈ G : ν = lim

h→∞
δrh(x−1xh), for some sequences (rh)h∈N > 0,

(xh)h∈N ⊂ A, lim
h→∞

xh = x
}
.

(4.3)

By [Mag13, Theorem 1.7], if Σ ⊂M is a (G,M)-regular set of M, x̄ ∈ Σ, f ∈ C1
h(V,M)

is a defining function for Σ at x̄ as in Definition 4.2.6 and f(w̄) = x̄, then

Tan(x̄,Σ) = Df(w̄)(G).

If Σ ⊂ G is a (G,M)-regular set of G, x̄ ∈ Σ and f ∈ C1
h(Ω,M) is a defining function for

Σ at x̄ as in Definition 4.2.8, then

Tan(x̄,Σ) = ker(Df(x̄)).

Every (G,M)-regular set of G is locally an intrinsic Lipschitz graph. This is ensured by
the following implicit function theorem.

Theorem 4.2.13. [Mag13, Theorem 1.4] Let G and M be two Carnot groups endowed
with homogeneous distances. Let Ω ⊂ G be an open set and let f ∈ C1

h(Ω,M). Consider
x0 ∈ Σ := {x ∈ Ω : f(x) = 0} and assume that Df(x0) is a h-epimorphism. Let us set
W := kerDf(x0) and let V be a homogeneous subgroup complementary to W. Then there
exist two open sets Ω′ ⊂ G, U ⊂W and a map φ : U ⊂W→ V such that

graph(φ) = Σ ∩ Ω′.

In addition, there exists a constant k > 0 such that for every w,w′ ∈ U

‖φ(w′)−1φ(w)‖ ≤ k‖φ(w′)−1w′−1wφ(w′)‖, (4.4)

where ‖ · ‖ denotes the homogeneous norm associated to the homogeneous distance fixed on
G.

Remark 4.2.14. Since W is a normal homogeneous subgroup, by Remark 3.5.8 condition
(4.4) can be rephrased saying that φ is intrinsic k-Lipschitz.

Theorem 4.2.13 has been recently improved by the following theorem, whose content
follows from [JNGV20, Lemma 2.10] (read in light of Proposition 3.5.20).

Theorem 4.2.15. Let G and M be two Carnot groups and let Ω ⊂ G be open. Let
f ∈ C1

h(Ω,M) be a function and fix x0 ∈ Ω. Assume that Df(x0) is a h-epimorphism
and consider a subgroup V complementary to ker(Df(x0)). Fix a homogeneous subgroup
W complementary to V. Write x0 = w0v0 with respect to the splitting WV. Then there
exist an open set U ⊂ W, with w0 ∈ U , and a continuous map φ : U → V such that
f(wφ(w)) = f(x0) for every w ∈ U .

Remark 4.2.16. The main improvement brought from our point of view by Theorem
4.2.15 to Theorem 4.2.13, in the notation of Theorem 4.2.15, is the possibility of choosing
W as any arbitrary homogeneous subgroup complementary to V: W does not need to
coincide with ker(Df(x0)).

Remark 4.2.17. For the sake of completeness, we remark that Theorem 4.2.13 has been
extended by Kozhevnikov in [Koz10, Theorem 2] to prove the local existence of a suitable
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intrinsic graph parametrization of the level sets of a suitably regular mapping acting be-
tween two Carnot manifolds endowed with their Carnot-Carathéodory distances. Carnot
manifolds are connected smooth Riemannian manifolds that extend the concept of Carnot
group. Many notions regarding Carnot groups have been extended to these structures.
In fact, from a local viewpoint, the geometry of a Carnot manifold, in the first order ap-
proximation with respect to the Carnot-Carathéodory metric, is modelled as the geometry
of a nilpotent graded Lie group. Moreover, the tangent space at each point of a Carnot
manifolds has the structure of Carnot group.

Remark 4.2.18. Actually, Theorems 4.2.13 and 4.2.15 imply that, according to Definition
4.1.24, any (G,M)-regular set of G is an intrinsic Lipschitz (q − p,Q− P )-submanifold of
G, where q and p are the topological dimensions and Q and P the metric dimensions of G
and M, respectively. We will improve this remark in the next section, Section 4.3, showing
that any (G,M)-regular set of G is an intrinsic (q − p,Q− P )-submanifold.

For the sake of completeness, we recall that an implicit function theorem analogous to
4.2.13, is available also for (G,M)-regular sets of M but we do not report it here since it
will not be needed in the sequel. For more details please refer to [Mag13, Theorem 1.5].

Remark 4.2.19. If G is a Carnot group and 1 ≤ k ≤ n, where n is the maximum of the
dimensions of the commutative subalgebras of G, then any (Rk,G)-regular set of G is a
k-dimensional Euclidean C1-submanifold ([Mag13, Theorem 12.1]).

Remark 4.2.20. Let Σ ⊂ G be a C1-regular (Euclidean) hypersurface. As we said above,
a point x ∈ Σ is called a characteristic point if HxG ⊂ TxΣ. The presence of characteristic
points is the reason why regular (Euclidean) hypersurfaces are not always (G,R)-regular
sets (i.e. G-regular hypersurfaces). Many researches about the negligibility of the charac-
teristic set, i.e. the set of characteristic points, in various contexts have been carried on.
Since the horizontal vector fields on G, generate a non-integrable distribution, by the
Frobenius theorem the set of characteristic points is small, namely has empty interior.
Many results about its smallness have been obtained assuming different regularity hypothe-
ses on the surfaces and considering different measures to estimate the size of the character-
istic set. For instance one can refer to [Der71, Der72, Bal03, FSSC03a, DGN03, Mag06b].
In particular, in [Mag06b], it has been proved that for all C1-regular embedded hyper-
surfaces, the set of the characteristic points is negligible with respect to the (Q − 1)-
dimensional (homogeneous) Hausdorff measure.
Successively, developing a theory of degree of vectors and multivectors in Carnot groups,
the notion of characteristic point has been extended, first, through the notion of horizontal
point, [Mag06b] to (G,Rk)-regular sets (necessarily for small vales of k), and then, finally,
through the notion of point of not-maximum pointwise degree, to C1-regular submanifolds
of any dimension embedded in a Carnot group (for more details refer to [MV08, Section
2], [Mag19, Section 2] and to the references therein). This latter definition allowed to
prove various area formulas for the spherical Hausdorff measures of those C1-regular Eu-
clidean embedded submanifolds of a Carnot group that belong to some classes which are
individuated by suitable algebraic conditions that ensure the negligibility of the set of
points of not-maximum degree with respect to the homogeneous Hausdorff measure. This
is exactly the spirit of the approaches adopted for example in [MV08, LDM10, Mag19]
(the first two papers concern C1,1-regular submanifolds). In fact, all the proofs of the
area formulas presented in the cited papers rely on two main steps: a blow-up result for
the considered embedded regular submanifold at the points of maximum degree and a
negligibility condition about the set of points of not-maximum degree.
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Remark 4.2.21. Given two Carnot groups G and M, if Σ ⊂ M is a (G,M)-regular set
of M, by the definition of (G,M)-regular set of M, the Hausdorff measure of Σ can be
computed exploiting the available area formula for Lipschitz maps acting between two
Carnot groups [Mag02a, Theorem 4.3.4] (whose proof relies on the Pansu-Rademacher
theorem, Theorem 3.2.16).
If Σ ⊂ G is a (G,M)-regular set of G, various area formulas for Σ are available for the case
when M = R, i.e. for (G,R)-regular sets [FSSC15, Mag17], where G is a generic Carnot
group (see also [FSSC03b, ASCV06, DD20a, ADDDLD20]). Notice that these specific
regular hypersurfaces are boundary of finite H-perimeter sets [FSSC03b], in fact many
of the cited papers develop area formulas for the H-perimeter of Σ. In Section 5.5 of
Chapter 5 (relying on results of [FSSC07]) and in Chapter 6 (developing new tecniques)
we prove various area formulas for regularly parametrized (Hn,Rk)-regular sets of Hn, for
1 ≤ k ≤ n. In respect to the latter setting, the unique previous available result is an area
formula for the centered Hausdorff measure of Σ [FSSC07]. Recently, a very general area
formula for parametrized (G,M)-regular sets of G has been proved in [JNGV20] (for more
information we refer the reader to Section 6.5).

4.3 Uniform intrinsic differentiability of parametrizations

By Remark 4.1.25, the family of the H-regular surfaces of Hn coincides with the one of
the intrinsic submanifolds of Hn satisfying Definition 4.1.24, i.e. the family of those subsets
Σ ⊂ Hn for which there exists a couple of natural numbers n and N such that Σ is a (n,N)-
intrinsic submanifold of Hn. In this section we focus on the analogous relationship between
(G,M)-regular sets of G and intrinsic (q − p,Q − P )-submanifolds of G, considering two
Carnot group G and M of topological dimensions p and q and homogeneous dimensions
Q and P , respectively.

Let us synthesize the situation emerged by the previous sections. Both H-regular
surfaces of low dimension (Definition 4.1.1) and low-codimension (Definition 4.1.8) can
be locally seen as intrinsic graphs of uniformly intrinsically differentiable maps and both
(G,M)-regular sets of G and M (Definitions 4.2.6 and 4.2.8) can be locally seen as intrinsic
graphs. Nevertheless, we do not know much about the regularity of the intrinsic graph-
parametrization of (G,M)-regular sets, and, in particular, of (G,M)-regular sets of G.
The strongest information we have is condition (4.4) of Theorem 4.2.13, which ensures
the intrinsic Lipschitz continuity of the parametrizing map individuated by the theorem.
By this information we know that any (G,M)-regular set of G is an intrinsic Lipschitz
(q − p, q − P )-submanifold of G.

From this picture a natural question arises: is it true that, analogously to what
happens in the Heisenberg group, being a (G,M)-regular set of G is equivalent
to be locally the intrinsic graph of a uniformly intrinsically differentiable map?
We answer to one half of this question proving that any (G,M)-regular set of G is locally
the intrinsic graph of a uniformly intrinsically differentiable map (and consequently it is
an intrinsic (q− p,Q−P )-submanifold of G). Nevertheless, we do not manage to provide
a complete answer to the question, proving the conjectured equivalence. In other words
we leave to be understood if any uniformly intrinsically differentiable graph of G is a
(G,M)-regular set of G for some suitable Carnot group M.

Let us start by recalling [DD20a, Theorem 4.1] which is the most general complete
available answer to our question in the literature. A previous answer limited to the setting
of the Heisenberg group was provided by [AS09, Theorem 4.2] (namely Theorems 4.1.14
and 4.1.22). In particular, the following theorem gives positive answer to the question
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for (G,Rk)-regular sets of G, for k not larger than the maximum possible dimension of a
horizontal homogeneous subgroup of G.

Theorem 4.3.1. Let G = WV be the product of two complementary subgroups, with
V horizontal of dimension k. Let v1, . . . , vk be commuting vectors in G such that V =
span(v1, . . . , vk) and denote by Xi ∈ Lie(G) the left invariant vector field such that Xi(0) =
vi, for i = 1, . . . , k. Let U ⊂W be an open set, let φ : U → V be a function and consider
Σ = graph(φ). Then, the following conditions are equivalent.

(i) There are Ω ⊂ G open set, and f = (f1, ..., fk) ∈ C1
h(Ω,Rk) such that Σ = {x ∈ Ω :

f(x) = 0} and det([Xifj(y)]i,j=1,...,k) 6= 0, for all y ∈ Σ.

(ii) φ is uniformly intrinsically differentiable on U .

Remark 4.3.2. The proof of (ii) ⇒ (i) of Theorem 4.3.1 relies on the Whitney-type
extension Theorem 3.2.34. Actually, the main relevant obstacle towards a complete answer
to our question in a general setting is the lack of a more general Whitney-type extension
theorem, i.e. a theorem like Theorem 3.2.34 valid for functions acting from a closed subset
of a Carnot group G to a second Carnot group M. In fact, if we consider the intrinsic graph
of a uniformly intrinsically differentiable map φ acting between two generic complementary
subgroups W, V of G, φ : U ⊂ W → V, in order to retrace the argument used to prove
Theorem 4.3.1, we would need a suitable Whitney-type theorem to prove that the intrinsic
graph of φ is contained in the zero level set of a map f ∈ C1

h(Ω,M), with Ω ⊂ G an open
set and M a suitable stratified group, such that Df(y) is a h-epimorphism for every
y ∈ Ω ∩ graph(φ).

Let us sketch our contribution, whose proof is the goal of the current section. We
consider Σ a (G,M)-regular set of G. By Theorem 4.2.13, according to the notation therein,
Σ is locally parametrized, in a neighbourhood of any point x0 ∈ Σ, by an intrinsic Lipschitz
map φ : U → V with V ⊂ G homogeneous subgroup complementary to W := ker(Df(x0))
(V not necessarily commutative) and U ⊂W open set. In Theorem 4.3.7, we prove that φ
is uniformly intrinsically differentiable on U . Moreover, we prove that this is true also if
W is any homogeneous subgroup of G complementary to V. The proof consists of a direct
verification of the definition of uniform intrinsic differentiability (Theorem 4.3.3) and on
a geometrical characterization of uniform intrinsic differentiability (Theorem 4.3.6).

From now on, we denote by BW(x, r) the open ball relative to W centered at x ∈ W
of radius r > 0, BW(x, r) = B(x, r) ∩ W = {w ∈ W : d(w, x) < r} and we set also
B∗W(x, r) = BW(x, r) \ {x}. Moreover, when nothing different is specified, by ‖ · ‖ we
denote the homogeneous norm associated with the homogeneous distance fixed on G.

Theorem 4.3.3. In the hypotheses of Theorem 4.2.13, φ is uniformly intrinsically dif-
ferentiable at w0 = πW(x0) and the intrinsic differential of φ at w0, dφw0 : W → V, is
dφw0 ≡ 0.

Proof. We want to prove that there is an intrinsic linear function L : W→ V such that

sup
w′∈BW(w0,r)

sup
w∈B∗W(0,r)

‖L(w)−1φΦ(w′)−1(w)‖
‖w‖

→ 0

as r → 0. By a change of variables, taking into account that W = ker(Df(x0)) is a
normal subgroup and recalling that we have set dφ(w,w′) = ‖φ(w′)−1w′−1wφ(w′)‖, we
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can reformulate our goal as proving that

sup
w′∈BW(w0,r)

sup
{w:0<dφ(w,w′)<r}

‖L(φ(w′)−1w′−1wφ(w′))−1φ(w′)−1φ(w)‖
dφ(w,w′)

→ 0

as r → 0. Observe that this is equivalent to prove

sup
w,w′∈BW(w0,r)

w 6=w′

‖L(φ(w′)−1w′−1wφ(w′))−1φ(w′)−1φ(w)‖
dφ(w,w′)

→ 0 (4.5)

as r → 0. Let us consider two points w,w′ ∈ BW(w0, r), w 6= w′ with r small enough.
Surely

f(Φ(w′))−1f(Φ(w)) = 0

and then

Df(x0)(Φ(w′)−1Φ(w))−1f(Φ(w′))−1f(Φ(w)) = Df(x0)(Φ(w′)−1Φ(w))−1 (4.6)

hence

‖Df(x0)(Φ(w′)−1Φ(w))−1f(Φ(w′))−1f(Φ(w))‖ = ‖Df(x0)(Φ(w′)−1Φ(w))‖. (4.7)

Now consider that

‖Df(x0)(Φ(w′)−1Φ(w))‖ = ‖Df(x0)(φ(w′)−1φ(w))‖ ≥ η‖φ(w′)−1φ(w)‖, (4.8)

since ‖Df(x0)(v)‖ ≥ η‖v‖ for some η > 0, for some δ > 0 for any v ∈ V ∩ B(0, δ). In fact
if we assume by contradiction for every n ∈ N there is vn ∈ V ∩ B(0, 1

n) such that

1

‖vn‖
‖Df(x0)(vn)‖ ≤ 1

n
(4.9)

then

‖Df(x0)(δ1/‖vn‖(vn))‖ ≤ 1

n
(4.10)

hence by compactness one would find an element v̄ ∈ V such that ‖v̄‖ = 1 and ‖Df(v̄)‖ = 0
so that v̄ ∈ ker(Df(x0)) and this is not possible since V and W are complementary.

On the other side

sup
w,w′∈BW(w0,r)

w 6=w′

‖Df(x0)(Φ(w′)−1Φ(w))−1f(Φ(w′))−1f(Φ(w))‖
‖Φ(w′)−1Φ(w)‖

≤ sup
w,w′∈BW(w0,r)

w 6=w′

(
‖Df(x0)(Φ(w′)−1Φ(w))−1Df(Φ(w′))(Φ(w′)−1Φ(w))‖

‖Φ(w′)−1Φ(w)‖

+
‖Df(Φ(w′))(Φ(w′)−1Φ(w))−1f(Φ(w′))−1f(Φ(w))‖

‖Φ(w′)−1Φ(w)‖

)
→ 0

(4.11)

as r → 0 by the continuity of Df and by Theorem 3.2.30 applied with Ω1 = B(x0, Dr)
for some constant D > 0 and r small enough. By the intrinsic Lipschitz continuity of φ,
stated in (4.4) of Theorem 4.2.13, for any w,w′ ∈ U , if we denote by c0 = c0(W,V) the
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constant given by Proposition 3.1.17, we have

dφ(w,w′) ≤ 1

c0
d(Φ(w),Φ(w′))

≤ 1

c0
(‖φ(w′)−1φ(w)‖+ dφ(w,w′)) ≤ k + 1

c0
dφ(w,w′)

(4.12)

then it holds that

sup
w,w′∈BW(w0,r)

w 6=w′

‖Df(x0)(Φ(w′)−1Φ(w))−1Df(Φ(w′))(Φ(w′)−1Φ(w))‖
dφ(w,w′)

+
‖Df(Φ(w′))(Φ(w′)−1Φ(w))−1f(Φ(w′))−1f(Φ(w))‖

dφ(w,w′)
→ 0

(4.13)

as r → 0.

Hence, combining (4.7), (4.8) and (4.13), we have

sup
w,w′∈BW(w0,r)

w 6=w′

‖φ(w′)−1φ(w)‖
dφ(w,w′)

→ 0 (4.14)

as r goes to zero. Hence, by the comparison between (4.5) and (4.14), φ is uniformly
intrinsically differentiable at w0 and dφw0 is the constant function dφw0 ≡ 0.

Our next step is to prove Theorem 4.3.7. We want to extend the uniform intrinsic
differentiability of φ at w0, ensured by Theorem 4.3.3, and to prove the uniform intrinsic
differentiability of φ on its whole domain. Moreover, we want to prove the uniform intrinsic
differentiability of any parametrization φ of Σ, not necessarily defined on ker(Df(x0)) but
on any possible homogeneous subgroup W complementary to V. In order to do this we
prove a geometrical characterization of uniform intrinsic differentiability analogous to the
characterization of intrinsic differentiability given by Theorem 3.5.26. Let us start by
introducing a suitable definition of uniform tangent coset.

Definition 4.3.4. Let G = WV be the product of two complementary subgroups. Let
U ⊂ W be an open set and let φ : U → V be a function. Let us fix w0 ∈ U and consider
a point x0 = w0φ(w0) ∈ graph(φ). Let T be a homogeneous subgroup of G; the coset x0T
is the uniform tangent (affine) subgroup or uniform tangent coset to graph(φ) at x0 if for
all ε > 0 there is δ = δ(ε) > 0 such that for every y ∈ Φ(BW(w0, δ))

graph(φy−1) ∩ {x ∈ G : ‖πW(x)‖ < δ} ⊂ X(0,T, ε). (4.15)

Remark 4.3.5. If we assume φ to be intrinsic Lipschitz, condition (4.15) can be rephrased
as follows

graph(φy−1) ∩B(0, δ) ⊂ X(0,T, ε). (4.16)

since by Proposition 3.5.11 we have

c0‖w‖ ≤ ‖wφy−1(w)‖ ≤ (1 + Lip(φ))‖w‖ (4.17)

for every w ∈ σy−1(U) and y ∈ graph(φ).

Theorem 4.3.6. Let G = WV be the product of two complementary subgroups. Let
U ⊂ W be an open set, let φ : U → V be a function, let us consider a point w0 ∈ U and
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set x0 = Φ(w0) ∈ graph(φ). The following conditions are equivalent.

(i) φ is uniformly intrinsically differentiable at w0 ∈ U .

(ii) There exists a set T such that

(ii1) T is a homogeneous subgroup;

(ii2) T and V are complementary subgroups of G;

(ii3) x0T is the uniform tangent coset to graph(φ) at x0.

In particular if (i) (and then (ii)) holds, the intrinsic differential dφw0 : W → V is the
unique intrinsic linear function such that graph(dφw0) = T.

Proof. (i) ⇒ (ii). Conditions (ii1) and (ii2) follow from Proposition 5.3.21 (i). Then we
are left to prove (ii3). We know that

sup
y∈Φ(BW(w0,r))

sup
w∈B∗W(0,r)

‖dφw0(w)−1φy−1(w)‖
‖w‖

=

sup
w′∈BW(w0,r)

sup
w∈B∗W(0,r)

‖dφw0(w)−1φΦ(w′)−1(w)‖
‖w‖

→ 0

(4.18)

as r goes to zero. Hence for every ε > 0 there exists r = r(ε) > 0 such that for every
y ∈ Φ(BW(w0, r)) and w ∈ B∗W(0, r),

‖dφw0(w)−1φy−1(w)‖
‖w‖

< ε, (4.19)

thus, for every y ∈ Φ(BW(w0, r)) and w ∈ B∗W(0, r),

dist(wφy−1(w),T) ≤ ‖dφw0(w)−1w−1wφy−1(w)‖
= ‖dφw0(w)−1φy−1(w)‖

≤ ε‖w‖ ≤ ε

c0
‖wφy−1(w)‖,

(4.20)

where c0 = c0(W,V) is the constant given by Proposition 3.1.17. Now we chose δ = δ(ε) =
r(εc0) and we get that for every y ∈ Φ(BW(w0, δ)) and w such that ‖w‖ < δ

dist(wφy−1(w),T) ≤ ε‖wφy−1(w)‖. (4.21)

If fact, when ‖w‖ = 0, w = 0 then (4.21) is automatically verified for every y ∈ Φ(BW(w0, r).
Hence for every y ∈ Φ(BW(w0, δ))

graph(φy−1) ∩ {x ∈ G : ‖πW(x)‖ < δ} ⊂ X(0,T, ε). (4.22)

(ii) ⇒ (i). By Proposition 5.3.21 (ii), it is well defined a unique intrinsic linear function
L : W→ V such that graph(L) = T. We want to prove that

sup
w′∈BW(w0,r)

sup
w∈B∗W(0,r)

‖L(w)−1φΦ(w′)−1(w)‖
‖w‖

= sup
y∈Φ(BW(w0,r))

sup
w∈B∗W(0,r)

‖L(w)−1φy−1(w)‖
‖w‖

→ 0

(4.23)
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as r goes to zero. By our hypothesis, we know that for every ε > 0 there exists r = r(ε) > 0
such that for every y ∈ Φ(BW(w0, r)) and for every w such that ‖w‖ < r,

dist(wφy−1(w),T) ≤ ε‖wφy−1(w)‖. (4.24)

Now we observe that wφy−1(w) = wL(w)L(w)−1φy−1(w) hence wL(w) and L(w)−1φy−1(w)
are, respectively, the components along T and V of wφy−1(w), in the decomposition G =
TV, and so by setting c̃0 = c0(T,V) the constant given by Proposition 3.1.17 and by taking
into account Remark 3.1.18,

c̃0‖L(w)−1φy−1(w)‖ ≤ dist(wφy−1(w),T) ≤ ε‖wφy−1(w)‖. (4.25)

Now notice that for every ε ≤ 1
2 , for every y ∈ Φ(B(w0, r)) and for every w such that

‖w‖ < r
‖φy−1(w)‖ ≤ c‖w‖

for some positive constant c. In fact, let us observe that, by Proposition 3.5.21,

‖φy−1(w)‖ = ‖L(w)L(w)−1φy−1(w)‖ ≤ ‖L(w)‖+ ‖L(w)−1φy−1(w)‖
≤ Lip(L)‖w‖+ ε‖wφy−1(w)‖ ≤ ‖w‖(Lip(L) + ε) + ε‖φy−1(w)‖,

(4.26)

where Lip(L) is the intrinsic Lipschitz constant of L. Hence our claim is achieved by

posing c := 2(2Lip(L) + 1) ≥ Lip(L)+ε
1−ε .

In conclusion, for any ε ≤ 1
2 , for every y ∈ Φ(B(w0, r)), for every w such that ‖w‖ < r,

‖L(w)−1φy−1(w)‖ ≤ ε‖wφy−1(w)‖ ≤ εc

c̃0
‖w‖. (4.27)

Hence, by posing δ = r( εc̃0c ), (i) is proved.

We are now ready to prove the uniform intrinsic differentiability of the parametrization
φ. In particular, now we assume that φ is defined on W, that is required to be any ho-
mogeneous subgroup complementary to V, which in turn is assumed to be a homogeneous
subgroup complementary to ker(Df(x)), for every x ∈ Σ. The result substantially follows
from the combination of Theorem 4.3.3 and Theorem 4.3.6.

Theorem 4.3.7. Let G, M be two Carnot groups endowed with homogeneous distances and
let Ω ⊂ G be an open set. Consider a function f ∈ C1

h(Ω,M) and set Σ = {x : f(x) = 0}.
Let us consider a homogeneous subgroup V ⊂ G such that Df(x)|V : V → M is an h-
isomorphism for every x ∈ Σ and consider a homogeneous subgroup W ⊂ G complementary
to V. Assume that U ⊂ W is an open set and let φ : U → V be a function such that for
some open set Ω′ ⊂ Ω ⊂ G, Σ∩Ω′ = Φ(U). Then φ is uniformly intrinsically differentiable
at any point of U .

Proof. Let us consider a point y ∈ U . Surely Df(Φ(y)) is surjective by our hypothesis
and it is a h-epimorphism, since it is surjective and L := ker(Df(Φ(y))) and V are com-
plementary subgroups. By Theorem 4.2.13, there exist an open set U ′′ ⊂ L, a function
ψ : U ′′ → V and an open set Ω′′ ⊂ G with Φ(y) ∈ Ω′′ such that graph(ψ) = Ω′′ ∩ Σ.
Clearly Ω′∩Ω′′∩graph(ψ) = Ω′∩Ω′′∩graph(φ). We denote by Ψ the graph map of ψ. By
Theorem 4.3.3, ψ is uniformly intrinsically differentiable at wy := πL(Φ(y)) and dψwy ≡ 0.

Notice that graph(dψwy) = L, then by Theorem 4.3.6, Ψ(wy)L is the uniform tangent
coset of graph(φ) at Ψ(wy) = Φ(y). By (4.4) of Theorem 4.2.13, we know that ψ is intrinsic
Lipschitz and Remark 3.5.15 ensures then that also φ is intrinsic Lipschitz (even if the
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Lipschitz constant could change). Therefore, combining Remark 4.3.5 with Definition 4.3.4
(or better with Definition 4.3.4 read in the equivalent form given by Remark 4.3.5) applied
to φ we obtain that Ψ(wy)L = Φ(y)L is the uniform tangent coset of graph(φ) at Φ(y)
and so by applying once more Theorem 4.3.6, φ is uniformly intrinsically differentiable
at y and dφy is the unique intrinsic linear function from W to V whose intrinsic graph
coincides with L = ker(Df(Φ(y)). Since this argument is independent of the choice of the
point y ∈ U , φ is uniformly intrinsically differentiable on U .

Corollary 4.3.8. Let G and M be two Carnot groups and let Ω ⊂ G be an open set. Let
f ∈ C1

h(Ω,M) be a function and set Σ = f−1(0). Assume that there exists a homogeneous
subgroup V of G such that Df(x)|V is a h-isomorphism for every x ∈ Σ. Then, for
any homogeneous subgroup W complementary to V, Σ is parametrized by a uniformly
intrinsically differentiable map φ : U → V with U ⊂W open set, i.e. Σ = graph(φ).

Proof. The existence of the map φ follows by applying, multiple time if necessary, Theorem
4.2.15. Its uniform intrinsic differentiability follows from Theorem 4.3.7.

4.4 (G,M)K-regular submanifolds

In [Koz15] (and partially before, in [BK14]) a more general definition of regular sub-
manifold of a Carnot group has been proposed. We report and briefly discuss it here, since
this point of view could be a valuable starting point for future investigations.

Definition 4.4.1. Let G and M be two Carnot groups. A set Σ ⊂ G is a (G,M)K-regular
submanifold if for every point x̄ ∈ Σ there exist an open neighbourhood of x̄, Ω ⊂ G,
and a function f ∈ C1

h(Ω,M) such that Σ ∩ Ω ⊂ f−1(0) and Df(x) is surjective for every
x ∈ Ω.

Remark 4.4.2. Let G and M be two Carnot groups. By a direct comparison between the
relative definitions, any (G,M)-regular set of G is a (G,M)K-regular submanifold. The
opposite is not true. As an example, we can consider a map

f : H1 → R2, f(x1, x2, x3) = (ax1 + bx1, cx1 + dx2)

with a, b, c, d ∈ R and det

(
a b
c d

)
6= 0. Let us consider Σ = f−1(0) = span(e3). For every

x ∈ Σ, JHf(x) = |det JHf(x)| =
∣∣∣∣det

(
a b
c d

)∣∣∣∣ 6= 0, hence Df(x) is surjective. Therefore,

Σ is an (H1,R2)K-regular submanifold. At the same time, for every x ∈ Σ, ker(Df(x)) =
span(e3) and we have already discussed (see Remark 3.4.2) that this subgroup, that is the
center of the Heisenberg group, cannot be complemented by any homogeneous subgroup.
Thus, Σ is not a (H1,R2)-regular set.

By [Koz15, Theorem 3.1.1], (G,M)K-regular submanifolds are ε-Reifenberg flat with
respect to the kernel of the Pansu differential of the defining map f , i.e. in the notation
of Definition 4.4.1 there is an increasing function ε : (0,∞)→ (0,∞), ε(t)→ 0 for t→ 0+

such that for every x ∈ Ω ∩ Σ and r > 0,

distd1(B(x, r) ∩ Σ, B(x, r) ∩ x ker(Df(x)))

r
≤ ε(r), (4.28)



4.4 (G,M)K-regular submanifolds 93

where for every subsets E1, E2 ⊂ G, the Hausdorff distance between E1 and E2 is defined
as

distd1(E1, E2) := max

{
sup
a∈E2

d1(a,E1), sup
a∈E1

d1(a,E2)

}
,

where d1(a,Ei) = inf{d(a, b) : b ∈ Ei).

Remark 4.4.3. The ε-Reifenberg flatness (4.28) allows to prove that the Hausdorff di-
mension of the level set Σ in Definition 4.4.1 is Q− P , where Q and P are the Hausdorff
dimensions of G and M, respectively ([Koz15, Theorem 3.5.1]). Nevertheless, it is not a
sufficient condition to deduce any regularity of the measures HQ−P on the level set Σ. The
author, in fact, presents in [Koz15, Section 6.2] some irregular examples, showing that it
is possible to build a level set of a continuously Pansu differentiable non-degenerate (i.e.
with surjective Pansu differential) function with zero or infinite Hausdorff measure. If we
consider a (G,M)K-regular submanifold Σ, it is still an open conjecture to understand
if Σ is locally homeomorphic to ker(Df(x)) (see [Koz15, Conjecture 3.4.1]). In [Koz15,
Corollary 6.2.1] the author gives positive answer for G = Hn, M = Rk for 1 ≤ k ≤ 2n.

Now we restrict our attention on a particular class of (G,M)K-regular submanifolds by
assuming that M coincides with the commutative Euclidean group RN , for some natural
number N . The author calls the family of the (G,RN )K-regular submanifolds, for any
N ∈ N, co-Abelian submanifolds (or, more precisely, co-Abelian intrinsic submanifolds).
They have been investigated by Bigolin and Kozhevnikov in [BK14], and successively by
the latter author in [Koz15]. We first report below Theorem 3.1.12 in [Koz15], which
clarifies why, at this state of the art, it is interesting to focus on the particular case when
M is commutative, i.e. on co-Abelian submanifolds.

Theorem 4.4.4. Let Σ ⊂ G be a connected locally closed set. Assume that to each point
y ∈ Σ corresponds a closed homogeneous set Wy, and assume that Wx is a vertical subgroup
of codimension N for some x ∈ Σ. Assume that for every relatively compact subset Σ′ ⊂ Σ
there is an increasing function ε(t)→ 0 for t→ 0+ such that for every y ∈ Σ′ and r > 0,

distd1(B(y, r) ∩ Σ, B(y, r) ∩ yWy)

r
≤ ε(r), (4.29)

then there exist an open neighbourhood Ω of Σ and a map f ∈ C1
h(Ω,RN ), such that

Σ = f−1(0) and ker(Df(y)) = Wy for every y ∈ Σ.

By combining (4.28) and Theorem 4.4.4, it is immediate to observe that co-Abelian
submanifolds are completely characterized in terms of flatness. On the other side, when
the target space M is a generic Carnot group not necessarily commutative, a suitable
Whitney-type extension theorem is not available. This lack is the main obstacle towards
the proof of a generalization of Theorem 4.4.4 to the case when M is not commutative. A
compact set Σ ⊂ G satisfying (4.29) may be not a level set of a function f ∈ C1

h(Ω,M)
with surjective differential on Σ, i.e. may be not a (G,M)K-regular submanifold.

Many other properties of (G,M)K-regular submanifolds, and, in particular, of co-
Abelian submanifolds, have been investigated in [BK14] and [Koz15, Section 3]. For
instance an intensive study about alternative notions of homogeneous tangent cones (Def-
inition 4.2.12) has been carried out, namely positive and negative tangent and paratangent
cones have been considered. Substantial differences among these various notions regard
the possibility of exploring the use of the quantifiers relative to the sequences involved in
Definition 4.2.12.
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Definition 4.4.5. [BK14, Definition 2.4] Let Σ ⊂ G and x ∈ Σ.

• v ∈ G belongs to Tan+
G(Σ, x) (v is an upper tangent vector to Σ in x) if and only if

there exist two sequences (rm)m ⊂ R+, with limm→∞ rm = 0, and (xm)m ⊂ Σ, with
limm→∞ xm = x, such that

lim
m→∞

δ1/rm(x−1xm) = v.

• v ∈ G belongs to Tan−G(Σ, x) (v is a lower tangent vector to Σ in x) if and only if for
every sequence (rm)m ⊂ R+ with limm→∞ rm = 0 there exists a sequence (xm)m ⊂ Σ
with limm→∞ xm = x such that

lim
m→∞

δ1/rm(x−1xm) = v.

• v ∈ G belongs to pTan+
G(Σ, x) (an upper paratangent vector to Σ in x) if and only if

there exist three sequences (rm)m ⊂ R+, with limm→∞ rm = 0, and (xm)m, (ym)m ⊂
Σ, with limm→∞ xm = x, such that

lim
m→∞

δ1/rm(y−1
m xm) = v.

• v ∈ G belongs to pTan−G(Σ, x) (a lower paratangent vector to Σ in x) if and only if for
every sequence (rm)m ⊂ R+, with limm→∞ rm = 0 and every sequence (xm)m ⊂ Σ,
with limm→∞ xm = x, there exists a sequence (ym)m ⊂ Σ such that

lim
m→∞

δ1/rm(y−1
m xm) = v.

Remark 4.4.6. Comparing Definitions 4.2.12 and 4.4.5, it is immediate to observe that
Tan+

G(Σ, x) = Tan(Σ, x).

This multivariate definitions of tangent cones are aimed to distinguish the cases when
at a point of a (G,M)K-regular surface the blow-up limit of the surface exists or does not
exist, in a uniform or non-uniform way, and, at the same time, if it is or it is not unique.

Remark 4.4.7. The following inclusions follow from definitions

pTan−G(Σ, x) ⊂ Tan−G(Σ, x) ⊂ Tan+
G(Σ, x) ⊂ pTan+

G(Σ, x).

These four definitions of cones are then used to provide various interesting geometric
characterizations of (G,RN )K-regular submanifolds, N ∈ N, the most relevant of which
is [BK14, Theorem 1.2], also stated as [Koz15, Theorem 3.3.5]. It is referred to as four
cones theorem. Roughly speaking, this result characterizes co-Abelian submanifolds in
terms of the existence of a unique and “uniform” blow-up at any point of a co-Abelian
surface; moreover, at least at one point of the submanifold the blow-up limit is a vertical
homogeneous subgroup.

Theorem 4.4.8. [BK14, Theorem 1.2] Let Σ ⊂ G be a closed connected set. The following
conditions are equivalent:

(i) Σ is a co-Abelian submanifold of codimension N , namely is a (G,RN )K-submanifold;

(ii) Tangent cones coincide at every point x ∈ Σ:

pTan+
G(Σ, x) = pTan−G(Σ, x). (4.30)
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and there is some point x0 such that pTan+
G(Σ, x0) is a vertical subgroup homogeneous

of codimension N .

Remark 4.4.9. A partial analogous result to Theorem 4.4.8 is also available for (G,M)K-
regular submanifolds [Koz15, Theorem 3.3.3]. In particular, if Σ is a (G,M)K-regular
submanifold, where M is a generic Carnot group, and x ∈ Σ condition (4.30) is valid. Nev-
ertheless, in perfect analogy with the previously discussed results concerning ε-Reifenberg
flatness, a complete characterization of geneneral (G,M)K-regular submanifolds in terms
of the coincidence of the four cones at every point of the surface is not available yet.

It is interesting to highlight that the techniques and the tools adopted to work on
(G,M)K-regular submanifolds are different from the ones “classically” used. This is mainly
due to the lack of an implicit function theorem for (G,M)K-regular submanifolds. In fact,
the more general available implicit function theorem providing the existence of an intrinsic
graph parametrization for a submanifold is [JNGV20, Lemma 2.10], which, in the notation
of Definition 4.4.1, still requires that ker(Df(x)) can be complemented with a homoge-
neous subgroup (or, in equivalent words, that Df(x) is a h-epimorphism). If we consider
a continuously Pansu differentiable function f ∈ C1

h(G,M) with everywhere surjective dif-
ferential, we are sure that, for every x ∈ G, ker(Df(x)) is a normal homogeneous subgroup
of G, but the existence of a complementary subgroup is not guaranteed. One could try to
bypass this lack considering a homogeneous subspace complementary to ker(Df(x)) (see
for instance Lemma 3.1.20), as Kozhevnikov did in order to prove ε-Reifenberg flatness
(4.28), but the existence of an intrinsic graph parametrization is not ensured for such a
splitting.

4.5 Intrinsic rectifiability in the Heisenberg group

The classical notion of rectifiable set in a metric space goes back to Federer.

Definition 4.5.1. [Fed69, 3.2.14] If (X, d) is a metric space, a set E ⊂ (X, d) is said
(countably) Hkd-rectifiable or, simply, k-rectifiable if there is a sequence of Lipschitz func-
tions (fi)i∈N, with fi : Ai ⊂ Rk → (X, d) such that

Hkd

(
E \

⋃
i∈N

fi(Ai)

)
= 0,

where Hkd is the Hausdorff measure on (X, d) with respect to the distance d.

The notion of H-regular surface allows to introduce, mimicking Definition 4.5.1, an
intrinsic notion of rectifiable set in the Heisenberg group. The first definition of intrinsic
rectifiable set has been proposed in the literature for one-codimensional sets, in relation
with the notion of G-regular hypersurface, in connection with the study of the H-reduced
boundary of H-Caccioppoli sets in the Heisenberg group [FSSC01, Definition 6.4] and
successively in a generic Carnot group [FSSC03a, Definition 2.33]. After the development
of the definitions of H-regular surface of any dimension, it has been natural to extend the
first definition to a notion of rectifiable set of arbitrary dimension.

Definition 4.5.2. [MSSC10, Definition 3.11] We say that a set E ⊂ Hn is k-dimensional
H-rectifiable, or (k,H)-rectifiable, if there exists a sequence of k-dimensional H-regular
surfaces (Σi)i∈N such that

Skm
(
E \

⋃
i∈N

Σi

)
= 0,
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where km = k if 1 ≤ k ≤ n and km = k + 1 if n+ 1 ≤ k ≤ 2n.

Remark 4.5.3. [MSSC10, Remark 3.12] From the relations between H-regular subman-
ifolds and Euclidean regular submanifolds , described in the previous sections, it is quite
natural to observe that, if 1 ≤ k ≤ n, (k,H)-rectifiable sets are Euclidean k-rectifiable
and, if n+ 1 ≤ k ≤ 2n, Euclidean k-rectifiable sets are (k,H)-rectifiable. The converse of
both these sentences is false.

Through the notions of (G,M)-regular set, mimicking Definitions 4.5.2, one can analo-
gously introduce notions of intrinsic rectifiable set in a general Carnot group. In particular,
one can introduce (G,M)-rectifiable sets of G as those sets that, up to a negligible set,
can be covered by a countable union of (G,M)-regular sets of G. In this case the negligi-
bility condition would be considered with respect to the measure SQ−P (or equivalently
HQ−P ), where Q = dimH(G) and P = dimH(M). An analogous definition can be stated
for (G,M)-rectifiable sets of M. For precise references, in the literature one can refer to
the definition of (G,Rk)-rectifiable set (of G) [Mag06b, Definition 3.2], to other references
in [Mag06b] and to the definition of countably (G,M)-rectifiable set (of G) in [JNGV20,
Definitions 2.18]. Observe that, by the same arguments valid in the Heisenberg group,
discussed in Remark 4.5.3, for small values of k (in particular when k is smaller that the
maximum of the dimensions of the commutative subalgebras contained in the first layer
of G), (Rk,G)-rectifiable sets of G are Euclidean k-rectifiable [Mag13, Theorem 12.1] and
Euclidean k-rectifiable subsets of G are (G,Rk)-rectifiable sets [Mag06b, Theorem 3.8].
Moreover, a detailed study of k-rectifiable sets of G according to Federer’s definition, for
small k (and (Rk,G)-rectifiable sets of G are in this category), has been recently carried
out in [IMM20] (see also Remark 4.5.6).

By Theorems 4.1.14 and 4.1.22, it is immediate to observe that, in the notation of
Definition 4.5.2, the notion of (k,H)-rectifiable set can be restated requiring that a set
that can be covered, up to a set of Skn- measure zero, by the union of a countable family
of k-dimensional intrinsic graphs of uniformly intrinsically differentiable maps. On the
other hand, as we said above, Franchi, Serapioni and Serra Cassano developed also the
notion of intrinsic Lipschitz graph (Definition 3.5.6), which permits to mimic once more
Definition 4.5.1.

Definition 4.5.4. [SC16, Definition 4.106] Consider a subset E ⊂ Hn. We say that E is
k-dimensional HL-rectifiable, or (k,HL)-rectifiable

• for 1 ≤ k ≤ n, if there exists a sequence of Lipschitz maps (fi)i∈N, fi : Ωi → Hn,
with Ωi ⊂ Rk open set, such that

Sk
(
E \

⋃
i∈N

fi(Ωi)

)
= 0.

• for n + 1 ≤ k ≤ 2n, if there exists a sequence of k-dimensional intrinsic Lipschitz
graphs (Σi)i∈N, Σi = graph(φi) with φi : Ui → Vi, with Ui ⊂Wi such that

Sk+1

(
E \

⋃
i∈N

Σi

)
= 0,

where, for every i ∈ N, Wi and Vi are complementary subgroups of Hn of dimension
2n+ 1− k and k, respectively.
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Remark 4.5.5. For 1 ≤ k ≤ n, (k,H)L-rectifiable sets of Hn are k-rectifiable in the sense
of Federer.

Remark 4.5.6. Intrinsic rectifiable sets have been characterized in several geometrical
ways, according to infinitesimal local arguments. In [MSSC10], when 1 ≤ k ≤ n, (k,HL)-
rectifiable sets in Hn have been characterized by Mattila, Serapioni and Serra Cassano,
by the almost everywhere existence of approximate tangent homogeneous subgroups, or
by the almost everywhere existence of suitable tangent measures of the spherical measure
concentrated on the considered set; when n + 1 ≤ k ≤ 2n an analogous characterization
is proved for (k,H)-rectifiable sets assuming on the set the additional hypothesis of the
positive lower density of the spherical Hausdorff measure concentrated on the set. The first
of these two characterizations has been extended by Idu, Magnani and Maiale in [IMM20]
to the family of k-rectifiable sets of G according to Federer’s definition, i.e. sets that can
be covered, up to a Hk-negligible sets, by Lipschitz images of Rk on G, where G is a
generic Carnot group (with k smaller or equal than the maximum possible dimension of a
horizontal homogeneous subgroup in G). Namely, the authors prove that these sets can be
characterized by the fact that, at almost every of their points, the tangent measures, of the
Hausdorff measure concentrated on the set, are multiples of the Haar measure supported
on horizontal subgroups or, equivalently, by the fact that there exists an approximate
tangent horizontal subgroup almost everywhere.
In [Mer20], Merlo showed that, in a generic Carnot group G, if µ is a Radon measure on G
absolutely continuous with respect to HQ−1, the fact that G can be µ-almost all covered
by countably many (G,R)-regular sets can be characterized in terms of suitable controls
almost everywhere on the lower and upper densities of µ and of the almost everywhere
flatness of its tangent measures, namely in terms of the rectifiability of the measure µ,
according to the author’s definition, which extends the classical Euclidean definition of
rectifiable Radon measure. As an application, the author reaches the first extension of
Preiss’ rectifiability theorem in the Heisenberg group Hn. In the same line of research,
one can refer also to the recent paper by Antonelli and Merlo [AM20b], where the authors
deeply investigated the measures satisfying this new weaker general notion of rectifiability.
Let us state it more explicitely: for a positive integer h, a Radon measure on G is said to
be h-rectifiable, according to Merlo’s definition, if almost everywhere it has positive lower
density and finite upper density and its tangent measures are multiples of the Haar measure
of a h-dimensional homogeneous subgroup (eventually, when necessary, one can also require
that this subgroup belongs to a suitable selected family of homogeneous subgroups, so that
to individuate a precise sub-class of h-rectifiable measures). The authors show that this
notion of rectifiability is strictly weaker than the other ones discussed in this chapter.
As an application of their results, the authors reach the one-dimensional analogue of the
Preiss’ theorem in the first Heisenberg group H1.
These and other characterizations are among the motivations for which Franchi, Serapioni,
Serra Cassano’s notion of intrinsic rectifiability seems to fit better than the other proposed
notions the structure of Carnot groups (refer to the introduction of this chapter for a
discussion about alternative notions of intrinsic rectifiability).

The two Definitions 4.5.2 and 4.5.4 have been extended also to the context of a generic
Carnot group G in [Ser08, Definition 5.2], according to the notions of intrinsic submanifold
stated in Definition 4.1.24.

Definition 4.5.7. Let G be a Carnot group and let n and N be natural numbers, let
n ≤ N .
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(i) A set E ⊂ G is intrinsic (n,N)L-rectifiable if there is a sequence of intrinsic Lipschitz
(n,N)-submanifolds (Σi)i∈N such that

SN
(
E \

⋃
i∈N

Σi

)
= 0.

(ii) A set E ⊂ G is intrinsic (n,N)-rectifiable if there is a sequence of intrinsic (n,N)-
submanifolds (Σi)i∈N such that

SN
(
E \

⋃
i∈N

Σi

)
= 0.

By Proposition 3.5.34, surely intrinsic (n,N)-rectifiable sets are intrinsic (n,N)L-
rectifiable. In other words in particular, if E ⊂ Hn is a (k,H)-rectifiable set, it is clearly
(k,HL)-rectifiable. We would like to know when the opposite is true, and then when the
two intrinsic definitions of rectifiability are equivalent. Even limited to the Heisenberg
group, this is a difficult question. Let us limit ourselves to the Heisenberg group, to
discuss the case when n + 1 ≤ k ≤ 2n. A first partial answer to the question in this set-
ting was furnished by the Rademacher-type Theorem 3.6.4. As we said above, it ensures
that any one-codimensional intrinsic Lipschitz graph is almost everywhere intrinsically
differentiable. This property, combined with Lusin’s and Egoroff’s Theorems, allows to
prove that (2n,HL)-rectifiable sets are always (2n,H)-rectifiable (and this holds also for
Carnot groups of type ? [FMS14, Proposition 4.4.4]). Hence for k = 2n the two definitions
coincide. Recently Vittone extended the proof of the Rademacher’s theorem to all the in-
trinsic Lipschitz graphs of low codimension, as we discussed above. Exploiting this result,
he managed to extend the equivalence of the two definitions of intrinsic (k,H) and (k,HL)-
rectifiable sets to the case when n + 1 ≤ k ≤ 2n − 1, see [Vit20, Corollary 7.4], finally
providing a complete answer to the problem in the Heisenberg group for n+ 1 ≤ k ≤ 2n.
In a generic Carnot group the problem is basically open, except for the few examples of
Carnot groups for which a Rademacher’s theorem is available, as Carnot groups of type
?, that we discussed in Section 3.6 (see [FSSC11] and [FMS14]).

Remark 4.5.8. In [DLDMV19], a recent new line of research is presented. Roughly
speaking, it consists of defining cones in Carnot groups G in a very general way as non-
empty sets E ⊂ G satisfying δt(E) ⊂ E for every t > 0. According to this new more general
definition of cones, mimicking the definition of intrinsic Lipschitz graph, the authors define
in this setting the family of sets that satisfy an outer cone property, i.e. sets Γ ⊂ G for
which there exists an open cone E whose translations by elements in Γ do not intersect
Γ. The authors prove that the H-reduced boundary of every locally finite H-perimeter
set can be covered by countably many sets that satisfy the outer cone property. These
new definitions open a path leading to an innovative definition of rectifiable set in Carnot
groups, possibly weaker than the ”classical” one presented by Franchi, Serapioni and Serra
Cassano.

4.5.1 Towards uniform intrinsic rectifiability

According to the line of research that gives origin to Definition 4.5.4, one-codimensional
intrinsic Lipschitz graphs have been recently used as cornerstones of the starting devel-
opment of a theory of uniform or quantitative rectifiability in Carnot groups, up to now
limited to the setting of the Heisenberg group. The mathematical motivations leading this
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research arises mainly from harmonic analysis. For example, in Euclidean spaces, quanti-
tative rectifiability is strongly related to the problem of characterizing those sets that are
removable for Lipschitz harmonic functions or those sets E ⊂ Rn for which the Dirich-
let problem is solvable with boundary value belonging to a proper space Lp(Hn−1

E x∂E)
space, for some p < ∞. An accessible introduction to this theme is provided by [Fä19],
where the reader can find also a rich collection of references about the motivations and
the main outcomes of the theory. We limit ourselves to give a flavour of the first inno-
vative techniques used in this setting. One of the first steps in this direction has been
moved in [NY18]. In order to determine the approximation ratio of the Goemans-Linial
algorithm for the Sparsest Cut Problem, which was a long-standing open problem about
numerical optimization, Naor and Young developed powerful tools about geometric mea-
sure theory in the Heisenberg group. Regarding [NY18] from this perspective, the more
significant result of the paper is that, considering a subset E ⊂ Hn, if (E,Ec, ∂E) is locally
a (2n + 1)-Ahlfors regular triple, ∂E admits an intrinsic corona decomposition. Roughly
speaking, this means that one can associate with any small scale, up to infinitesimal scales,
a suitable partition of the boundary ∂E, in such a way that each element of any partition
(called cube) is quantitatively close to an intrinsic Lipschitz graph, so that, overall, ∂E is
locally close, in a scale-invariant quantitative manner, to an intrinsic Lipschitz graph. In
addition, the intrinsic Lipschitz constants of the approximating intrinsic Lipschitz graphs
can be uniformly controlled, introducing suitable quantitative control parameters. In the
Euclidean settings, the existence of a corona decomposition is one of the possible defi-
nitions of uniformly rectifiable set, hence one can think of uniform rectifiability as of a
quantitative scale-invariant notion of rectifiability. We dedicate below some space to ex-
plain the innovative techniques used in [NY18] more in detail. We try to maintain as much
as possible the notation of the original paper, even if it does not always coincide with the
one mostly used in this thesis.

By Hn we will denote as usual the Heisenberg group and we consider it endowed with a
homogeneous distance d. As usual ‖ · ‖ denotes the homogeneous norm associated with d.
A horizontal line is a coset of the form xspan(v), with x ∈ Hn and v ∈ H1. Analogously,
an horizontal plane is a coset hH1 with h ∈ Hn. Planes that are not horizontal are called
vertical.

Remark 4.5.9. Notice that horizontal lines are cosets of one dimensional homogeneous
subgroups and vertical planes are cosets of 2n-dimensional vertical subgroups (while hor-
izontal planes are never subgroups or cosets of homogeneous subgroups).

Definition 4.5.10. Let V ⊂ Hn be a vertical plane. Let W = V ⊥ = span(ν), ν ∈ H1 be
the horizontal line orthogonal to V passing through the origin. For every λ ∈ (0, 1), we
define the cone

Cλ(V ) = {y ∈ Hn : ‖pW (y)‖ > λ‖y‖} (4.31)

where pW is the orthogonal projection on the line W .
Let U ⊂ V be a open set. Given a map φ : U →W , we set Γ := graph(φ) = {wφ(w) : w ∈
U}. The set Γ ⊂ Hn is an intrinsic NY-Lipschitz graph (on V ) if there exists a constant
λ ∈ (0, 1) such that for every x ∈ Γ,

(xCλ(V )) ∩ Γ = ∅.

We call the map φ intrinsic NY-Lipschitz.

If we consider a map φ : U ⊂ V → W , it can be identified with the real-valued map
ψ : U → R such that

ψ(w)ν = φ(w)
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for every w ∈ U . Then the intrinsic graph of φ

Γ = {wφ(w) : w ∈ U} = {w(ψ(w)ν) : w ∈ U}

bounds two half-space of Hn, one of which is the positive half-space

Γ+ = {w(tν) : t ≥ ψ(w)}.

If φ is intrinsic NY-Lipschitz, we say that Γ+ is an intrinsic NY-Lipschitz half-space.

Remark 4.5.11. In [FOR20, Remark 2.5], the authors observe that Definition 4.5.10 is
not equivalent to Definition 3.5.6 for any homogeneous distance on Hn. For instance, if
we compare the two definitions for a map φ : U ⊂ W → V with W and V complemen-
tary orthogonal subgroups of Hn, with V one dimensional, the two definitions of intrinsic
Lipschitz continuity coincide only if Hn is equipped with a homogeneous distance d that
satisfies a sort of convexity property, i.e. if there does not exists any point x ∈ Hn such
that d(x, 0) = ‖πV(x)‖ and πW(x) 6= 0. For example, the distance d∞ does not satisfy this
property, while the distance dc does.

Remark 4.5.12. As we hinted in the previous section, the notion of intrinsic NY-Lipschitz
function allows to prove, through suitable properties of semigroup of the new cones defined
in (4.31), an extension theorem for one-codimensional intrinsic Lipschitz graphs, [NY18,
Theorem 27]. As we said, this theorem can be considered as a strengthening of the
extension theorem presented by Franchi, Serapioni and Serra Cassano in [FSSC11], that
is Theorem 3.6.1.

Limited to this section, we call intrinsic Lipschitz graphs the intrinsic NY-
Lipschitz graphs.

From now until the end of the thesis, when we write a . b, we mean that there exists
some positive constant C such that a ≤ Cb. If C depends on some parameter p, it will be
specified with a subscript. For instance, by a .p b we mean that there exists a constant
C depending on p such that a ≤ Cb. Analogous notations are assumed for &.

Definition 4.5.13 (Regular triple). Fix C, r, s ∈ (0,∞). A Borel subset A ⊂ Hn is
r-locally C-Ahlfors s-regular if for every x ∈ A and ρ ∈ (0, r] we have

ρs

C
≤ Hs(B(x, ρ) ∩A) . Cρs.

In particular we call (E,Ec, ∂E) a (C, r)-regular triple if E,Ec are r-locally C-Ahlfors
(2n+ 2)-regular and ∂E is r-locally C-Ahlfors (2n+ 1)-regular.

Now, we introduce the precise definition of intrinsic corona decomposition step by step
through a series of nested definitions.

Definition 4.5.14. Fix K, s, r ∈ (0,∞). Let m ∈ Z be such that 2m ≤ r < 2m+1.
Consider a Borel set A ⊂ Hn. A s-dimensional (K, r)-cubical patchwork for A is a sequence
of Borel partitions (∆i)

m
i=−∞ such that

(i) for every integer i ≤ m and every Q ∈ ∆i, we have

2i

K
< diam(Q) < K2i

2is

K
< Hs(Q) < K2is;
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(ii) for every two integers i, j ≤ m with i ≤ j the partition ∆i is a refinement of the
partition ∆j , i.e. for every Q ∈ ∆i and Q′ ∈ ∆j , either Q ∩Q′ = ∅ or Q ⊂ Q′;

(iii) for every integer i ≤ m, Q ∈ ∆i and t > 0 we have

Hs(∂≤t2iQ) ≤ Kt
1
K 2is,

where for every ρ > 0,

∂≤ρQ := {x ∈ Q : d(x,A \Q) ≤ ρ} ∪ {x ∈ A \Q : d(x,Q) ≤ ρ}.

We denote by ∆ =
⊔m
i=−∞∆i. We call any element of ∆ a cube. For every integer

i ≤ m, if Q ∈ ∆i, we set σ(Q) = 2i. It can be thought as the side-length of the cube Q.
We will consider A = ∂E for some set E ⊂ Hn. Hence s = 2n+ 1.

Definition 4.5.15. Let D ⊂ ∆ be a collection of cubes; D is N -Carleson if for every
cube Q ∈ ∆, we have ∑

R∈D
R⊂Q

σ(R)2n+1 ≤ N σ(Q)2n+1.

Roughly speaking, this means that if ∆ is a cubical patchwork for A, H2n+1-almost
every point x ∈ A is contained in finitely many elements of D.

Definition 4.5.16. A collection of cubes S ⊂ ∆ is said to be coherent if the following
conditions hold

(i) S has a maximal element with respect to the inclusion, i.e. there exists a unique
cube Q(S) ∈ S such that Q ⊂ Q(S) for every Q ∈ S;

(ii) if Q ∈ S and Q′ ∈ ∆ satisfies Q ⊂ Q′ ⊂ Q(S), then Q′ ∈ S;

(iii) if Q ∈ S then either all the children of Q in {∆i}mi=−∞ belong to S or none of them
does, i.e. if σ(Q) = 2i then either {Q′ ∈ ∆i+1 : Q′ ⊂ Q} ⊂ S or {Q′ ∈ ∆i+1 : Q′ ⊂
Q} ∩ S = ∅.

Definition 4.5.17. Fix K,N, r ∈ (0,∞) and E ⊂ Hn. A (K,N, r)-coronization of ∂E is
a triple (B,G,F) with the following properties. There exists a (K, r)-cubical patchwork
{∆i}mi=−∞ for ∂E such that B ⊂ ∆ (bad cubes) and G ⊂ ∆ (good cubes) partition ∆ into
two disjoint sets, i.e. B∪G = ∆ and B∩G = ∅, and F ⊂ 2G is a collection of sub-collections
of G, called stopping time regions. These sets are required to have the following properties.

(i) B is N -Carleson;

(ii) The elements of F are pairwise disjoint and their union is G;

(iii) each S ∈ F is coherent;

(iv) the set of maximal cubes {Q(S) : S ∈ F} is N -Carleson.

Definition 4.5.18. If U, V,W ⊂ Hn, we define the U -local distance between V and W by

dU (V,W ) = inf{r > 0 : (V 4W ) ∩ U ⊂ nbhdr(∂V ) ∩ nhbdr(∂W )},

where nhbdr(A) = {h ∈ Hn : d(h,A) < r} for every A ⊂ Hn.
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If Q ∈ ∆ and ρ > 0, we define

Nρ(Q) = nbhdρσ(Q)(Q).

Definition 4.5.19 (Intrinsic corona decomposition). Fix K,N, r, λ, θ > 0. Given E ⊂
Hn, the pair (E, ∂E) admits a (K,N, r, λ, θ)-intrinsic corona decomposition if there is a
(K,N, r)-coronization (B,G,F) of ∂E such that for each S ∈ F there is an intrinsic λ-
Lipschitz graph Γ(S) that bounds a Lipschitz half-space Γ+(S), such that for all Q ∈ S
we have

dN4(Q)(Γ
+(S), E) ≤ θσ(Q).

We say that (E, ∂E) admits a (K, r)-intrinsic corona decomposition if for every λ, θ > 0
there exists N = N(λ, θ) such that the pair (E, ∂E) admits a (K,N, r, λ, θ)-intrinsic corona
decomposition. The main result in [NY18], from the point of view of geometric measure
theory is the following theorem.

Theorem 4.5.20. [NY18, Theorem 57] Fix C, r ∈ (0,∞). Let (E,Ec, ∂E) be a (C, r)-
Ahlfors regular triple in Hn. Then there exists K = K(C, n) ∈ (0,∞) such that the pair
(E, ∂E) admits a (K, r)-intrinsic corona decomposition.

Roughly speaking, to give a flavour of the proof, given a set E ⊂ Hn such that
(E,Ec, ∂E) is an Ahlfors regular triple, Naor and Young, adapting ideas by Cheeger
and Kleiner (see for instance [CKN11]), have shown how to build an intrinsic corona de-
composition of ∂E governed by the so-called non-monotonicity of E, i.e. an instrument
that measures how much E is quantitatively locally close to be a half-space and, in par-
ticular, to be a vertical half-space. The concept of non-monotonicity is defined by taking
in consideration, in a quantitative way, some measure-theoretic features of the set of the
intersections of all the horizontal lines of the group with the set E. The strength of
Theorem 4.5.20, in our opinion, relies in the fact that it can be an useful tool to gener-
alize properties of intrinsic Lipschitz graphs to Ahlfors regular triples, or, even more, to
larger families of sets. For instance, Naor and Young followed this approach in order to
prove an isoperimetric-type inequality that involves the vertical perimeter and the mea-
sure H2n+1x∂E of any measurable sets. To better explain our viewpoint, let us concisely
explain what did they prove and let us sketch how the proof of their result is carried out.
For E ⊂ Hn and s ∈ R, let us define

DsE := E 4 E(22se2n+1) ⊂ Hn.

If E, U ⊂ Hn are measurable sets, we introduce the function

v̄U (E) : R→ R, v̄U (E)(s) :=
H2n+2(DsE ∩ U)

2s
.

The local vertical perimeter of E in U is the quantity

‖v̄U (E)‖L2(R) =

√∫ +∞

−∞
(v̄(E)(s))2ds.

If U = Hn, we denote the global vertical perimeter by dropping the sub-index.
The main general result of [NY18] is the following theorem.
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Theorem 4.5.21. [NY18, Theorem 36] If n ≥ 2 and E ⊂ Hn is a measurable set, then

‖v̄(E)‖L2(R) .n H2n+1(∂E). (4.32)

Heuristically speaking, Theorem 4.5.21 says that if it is difficult to leave the set E in
the horizontal directions, then it is difficult to leave E in the vertical direction. This is
substantially due to the fact that the vertical direction e2n+1 is the commutator of couples
of horizontal directions, that can be chosen in n ”independent” ways.
The logical scheme of the proof of Theorem 4.5.21 is the following

(i) approximate, in a measure-theoretical way, any finite H-perimeter set with cellular
sets ([NY18, Lemma 21]). A set is said cellular if it is the union of cosets of the

fundamental closed cell F :=
[
−1

2 ,
1
2

]2n+1
by elements of the discrete Heisenberg

group Hn
Z, zF , with z ∈ Hn

Z.

(ii) “decompose” cellular sets into Ahlfors regular triples ([NY18, Lemma 58]).

(iii) show that any Ahlfors regular triple admits an intrinsic corona decomposition ([NY18,
Theorem 57]).

(iv) prove the inequality (4.32) for intrinsic Lipschitz subgraphs ([NY18, Proposition
41]).

(v) extend the inequality (4.32) to sets locally close to intrinsic Lipschitz subgraphs, i.e.
to sets whose boundary admits an intrinsic corona decomposition ([NY18, Proposi-
tion 55]).

We reported this scheme in order to express that it is a faithful hope that a similar path
could be exploited in order to extend different properties in analogous way.

Remark 4.5.22. For the interested reader, an isoperimetric-type inequality analogous to
the one of Theorem 4.5.21 has been recently proved in [NY20] for the case when E ⊂ H1.
In this case, the norm ‖ · ‖L2(R) of the vertical perimeter has to be replaced by the norm
‖ · ‖L4(R).

In the Euclidean setting, concepts analogous to the ones collected in this section had
been introduced and deeply investigated by David and Semmes ([DS91, DS93a, DS93b]).
In particular, in Rn it is completely clear how for an Ahlfors k-regular closed set E, for
any 1 ≤ k ≤ n, the existence of a corona decomposition can be compared with other
quantitative geometrical concepts such as the weak geometric lemma, the properties of
having big projections or of having big pieces of Lipschitz graphs. For precise definitions,
please refer to [DS91]. In the context of the Heisenberg group the algebraic structure of the
group makes things more delicate. In particular there is a strong difference between vertical
and horizontal objects (planes, lines). Strongly inspired by Naor and Young’s techniques,
Chousionis, Fässler, Orponen, Rigot (see for instance [FOR20, CFO19b, Rig19]) moved
on to develop quantitative concepts analogous to the Euclidean ones, on top of the one
of intrinsic corona decomposition, related to quantitative scale-invariant rectifiability in
Hn. For instance we refer to the weak geometric lemma, to the properties of having big
vertical projections or big pieces of intrinsic Lipschitz graphs. The complete knowledge of
the relations among these notions is still far from being clear, even for one-codimensional
sets. The line of research devoted to get a complete development of a theory of uniform
rectifiability in Carnot groups is now very active.
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Chapter 5

H-regular surfaces of low
codimension

By the comparison between the Euclidean implicit function theorem and Theorem
4.1.19, the uniform intrinsic differentiability of maps acting between two complementary
subgroups of the Heisenberg group, seems to be the analogue of the Euclidean C1-regularity
of maps acting between two linear subspaces whose direct sum is the Euclidean space
Rn. Then, it is natural to conjecture that, analogously to what happens for Euclidean
C1-regular functions, uniform intrinsic differentiability can be characterized in terms of
the existence and continuity of appropriately defined intrinsic partial derivatives. In this
chapter, we give a positive answer to this conjecture in the Heisenberg group, presenting
the results of [Cor19]. After fixing in Section 5.1 a suitable choice of coordinates, we reserve
Section 5.2 to describe the state of the art in this direction of research for the case when
k = 1. For this situation in fact many results are available in the literature. In Section
5.3 we generalize some of the results presented in Section 5.2. In particular, we provide
various characterizations of uniformly intrinsically differentiable maps φ : U ⊂ W → V
acting between two complementary subgroups such that Hn = WV, with U open set and
V horizontal subgroup: if we denote by k the dimension of V, our new results regard
the case when 1 < k ≤ n. Roughly speaking, considering such a map φ, in Proposition
5.3.21, we prove the equivalence between the uniform intrinsic differentiability of φ and
the existence, at any point a ∈ U , of a family of C1-regular maps that approximate
uniformly the map φ, and whose intrinsic differentials approximate uniformly the intrinsic
differential of φ, on a proper neighbourhood of a. The second main result is Theorem
5.3.24 that states that the uniform intrinsic differentiability of φ is equivalent to the
existence and continuity of the intrinsic partial derivatives of φ (Definition 5.3.8), that
are suitably defined derivatives of the components of φ along a family of nonlinear vector
fields (Definition 5.1.14) whose coefficients depend on the map φ. Finally, still in Theorem
5.3.24, we prove that the uniform intrinsic differentiability of the map φ is equivalent to
the existence and continuity of the intrinsic differential of φ, dφw : W → V, with respect
to w ∈ U . The proofs of the main results are quite nested and articulated, then we have
organized them in multiple subsections, the titles of which are meant to lead the reader
towards the main final goals. A precise generalization to arbitrary Carnot groups of the
results in [Cor19] has been recently proposed in [ADDDLD20]. In this paper, the authors
proved characterizations, analogous to the ones presented in this chapter, of uniformly
intrinsic differentiability for maps acting from a normal homogeneous subgroup W to a
horizontal subgroup V complementary to W in an arbitrary Carnot group G. We collect
some more details about [ADDDLD20] in a proper section, Section 5.4, where we report

105



106 5. H-regular surfaces of low codimension

also a brief summary of the results of [ADDD20]. We conclude the chapter presenting in
Section 5.5 an area formula for the centered Hausdorff measure of the intrinsic graph of a
uniformly intrinsically differentiable map, with respect to the distance d∞. It is the first
area formula, for intrinsic regular graphs of codimension higher than 1, involving uniquely
the intrinsic partial derivatives of the map that parametrizes the considered graph.

We highlight that the results established before [Cor19] for intrinsic regular maps
φ : U ⊂ W → V acting between two complementary subgroups of Hn, W and V, with V
horizontal such that 1 < dim(V) ≤ n, are a few. They have been proved by Kozhevnikov
in [Koz15, Chapter 4] and by Di Donato in [DD20a, Section 4]. As we said in Section 3.6,
recently Vittone presented in [Vit20] an extension theorem, an approximation theorem
and a Rademacher-type theorem valid in this situation.

In this chapter we assume that Hn is endowed with the homogeneous distance d =
d∞, then ‖ · ‖ stands for ‖ · ‖∞. This choice is related to the necessity of setting a
homogeneous distance that permits to deal with explicit computations in coordinates.
Since all homogeneous distances are equivalent, for our purposes it will not be restrictive
to have fixed a particular one.

5.1 Setting and notation

We start by restating the notion of uniform intrinsic differentiability and the related
concepts in the Heisenberg group in terms of appropriately fixed coordinates. Throughout
the whole chapter, we assume that Hn is the semidirect product of two complementary
subgroups Hn = Wo V with W orthogonal to V. Since W is normal, by Remark 3.1.16,
V has to be horizontal, thus dimension 1 ≤ dim(V) ≤ n. The following proposition, that
is [CM20, Proposition 2.8], ensures that under these assumptions we can always find a
Heisenberg basis adapted, in some sense, to the factorization.

Proposition 5.1.1. Let Hn = WoV be a semidirect product. Assume that the horizon-
tal subgroup V is spanned by an orthonormal basis of horizontal vectors v1, . . . , vk ∈ H1

and assume that W is orthogonal to V. Then there exist 2n − k horizontal vectors
vk+1, . . . , vn, w1, . . . , wn ∈ H1 such that (vk+1, . . . , vn, w1, . . . , wn, e2n+1) is an orthonor-
mal basis of W and (v1, . . . , vn, w1, . . . , wn, e2n+1) is a Heisenberg basis of Hn.

Proof. Since V is commutative, an element v = J(w), with v, w ∈ V, satisfies

|v|2 = 〈v, J(w)〉 = −ω(v, w) = 0,

therefore V ∩ J(V) = {0}. We set wi = J(vi) ∈ W for i = 1, . . . , k and define the
2k-dimensional subspace

S1 = V⊕ J(V) ⊂ H1.

We notice that dim(S⊥1 ∩ H1) = 2(n − k). If k < n, we pick a vector vk+1 ∈ S⊥1 ∩ H1 of
unit norm and define wk+1 = J(vk+1). It is easily observed that both wk+1 and vk+1 are
orthogonal to S1, so that (v1, . . . , vk+1, w1, . . . , wk+1, e2n+1) is a Heisenberg basis of

S2 ⊕ span {e2n+1} ,

where we have defined S2 = V⊕ span {vk+1} ⊕ J(V⊕ span {vk+1}). Indeed, the previous
subspace has the structure of a (2k + 3)-dimensional Heisenberg group. One can iterate
this process until a Heisenberg basis of Hn is found.
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From now on, we fix the Heisenberg basis (v1, . . . , vn, w1, . . . , wn, e2n+1) provided by
Proposition 5.1.1 and we consider Hn in adapted coordinates with respect to this basis.
Since we will work by coordinates, without loss of generality, according to Remark 2.4.12
we can assume that vi = ei and wi = en+i for i = 1, . . . , n, where B = (e1, . . . , e2+1) is the
Heisenberg basis we had fixed at the beginning (in (2.11)).
We set, as in (2.14)

Xi = Xei for i = 1, . . . , n

Yi = Xei+n for i = 1, . . . , n

T = Xe2n+1

(5.1)

where Xei ∈ Lie(Hn) denotes the unique left invariant vector field such that Xei(0) = ei.
We can identify V with Rk and W with R2n+1−k through the following diffeomorphisms

iV : V→ Rk, iV

(
k∑
i=1

xiei

)
= (x1, . . . , xk),

iW : W→ R2n+1−k,

iW

(
τe2n+1 +

n∑
i=k+1

(xiei + yiei+n) +

k∑
i=1

ηiei+n

)
= (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ).

Furthermore, we move on R2n+1−k and Rk the structures of homogeneous group of W
and V, respectively, in such a way that iW and iV are group isomorphisms. Therefore,
we may identify the subgroup (W, ·, δt|W) with the homogeneous group (R2n+1−k, ?, δ?t ),
where for every a, b ∈ R2n+1−k and t > 0

a ? b := iW(i−1
W (a)i−1

W (b)) δ?t (a) := iW(δt(i
−1
W (a))).

Analogously, we may identify (V, ·, δt|V) with the commutative group (Rk,+, dt), where
by dt we denote the Euclidean isotropic dilation associated with the parameter t > 0.

Besides transferring the structure of homogeneous group from W to R2n+1−k, we can
also push forward on R2n+1−k, through iW, the linear vector fields that generate Lie(W).
In fact, we set

X̃j = (iW)∗(Xj) = ∂xj −
1

2
yj∂τ for j = k + 1, . . . , n

Ỹj = (iW)∗(Yj) = ∂ηj for j = 1, . . . , k

Ỹj = (iW)∗(Yj) = ∂yj +
1

2
xj∂τ for j = k + 1, . . . , n

T̃ = (iW)∗(T ) = ∂τ .

Let us consider now an open set Ũ ⊂ W and a map φ̃ : Ũ → V. Let U denote the open
subset of R2n+1−k corresponding to Ũ , that is

U := iW(Ũ) ⊂ R2n+1−k

and let φ denote the map corresponding to φ̃, that is

φ := iV ◦ φ̃ ◦ i−1
W : U → Rk.

Vice versa, if we start by considering an open subset U ⊂ R2n+1−k and a map φ : U → Rk,
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we denote by Ũ the open set of W corresponding to U , that is Ũ := i−1
W (U) ⊂W, and we

set φ̃ : Ũ → V, φ̃ := i−1
V ◦ φ ◦ iW to denote the map corresponding to φ.

Remark 5.1.2. The map φ is basically φ̃ read in some specific coordinates, associated to
the fixed basis, through the maps iV and iW (compare for example these maps with the
map considered in (3.2)). In the next chapter we will not need this distinction any more,
hence we will basically identify φ with φ̃, directly denoting by φ the map acting between
two homogeneous subgroups W and V. Actually in fact, we will mainly work without
fixing coordinates.

We want to interpret, in the coordinates that we have fixed, the notions we set in the
previous chapters for maps φ̃ acting between W and V. More precisely, we consider a
mapping φ, that acts from an open set U ⊂ R2n+1−k to Rk. It corresponds as described
above to the map φ̃ from Ũ ⊂ W to V. We want to focus on the definitions of intrin-
sic differentiability, and on related notions, and to individuate for each notion the right
condition one has to ask to the map φ in order to be sure that φ̃ satisfies the considered
definition.

Consider an open set U ⊂ R2n+1−k and a function φ

φ : U → Rk, (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) 7−→ (φ1, , . . . , φk),

where we have set φj = φj(xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) for every j ∈ {1, . . . , k}.
We restate the notion of graph map for φ as

Φ := Φ̃ ◦ i−1
W ,

where Φ̃ denotes the usual graph map of φ̃, Φ̃(w) = wφ̃(w), for w ∈ Ũ . More explicitly

Φ : U → Hn, Φ(a) = Φ̃(i−1
W (a)) = i−1

W (a)(i−1
V (φ(a)) (5.2)

then, if a = (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ),

Φ(xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)

= i−1
W (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)φ̃(i−1

W (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

= i−1
W (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)

(i−1
V ◦ φ ◦ iW)(i−1

W (xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

= (0, . . . , 0, xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)(φ1, . . . , φk, 0, . . . , 0)

=

(
φ1, . . . , φk, xk+1 . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −

1

2

k∑
i=1

ηiφi

)
.

Notice that Φ(U) = Φ̃ ◦ i−1
W (iW(Ũ)) = Φ̃(Ũ) = graph(φ̃). We call this object the intrinsic

graph of φ and we denote it by graph(φ) := Φ(U), so that graph(φ) = graph(φ̃).

Now, we translate the notion of graph distance dφ̃ : Ũ × Ũ → R in the corresponding
definition of graph distance on U × U , dφ : U × U → R: for every a, b ∈ U

dφ(a, b) := dφ̃(i−1
W (a), i−1

W (b)) = ‖πW(Φ̃(i−1
W (b))−1Φ̃(i−1

W (a))‖ = ‖πW(Φ(b)−1Φ(a))‖. (5.3)
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Thus, in particular, if we have

a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1 . . . , yn, τ),

b = (x′k+1, . . . , x
′
n, η
′
1, . . . , η

′
k, y
′
k+1, . . . , y

′
n, τ
′),

(5.4)

and, for j ∈ {1, . . . , k}, we set φj = φj(a), φ′j = φj(b) and

ξ := (xk+1 − x′k+1, . . . , xn − x′n, η1 − η′1, . . . , ηk − η′k, yk+1 − y′k+1, . . . , yn − y′n) ∈ R2n−k,

then, by direct computations we get

dφ(a, b) = max{ |ξ|, |τ − τ ′ +
k∑
j=1

φ′j(η
′
j − ηj) + σ(x, y, x′, y′)|

1
2 }, (5.5)

where x, y, x′, y′ ∈ Rn−k are the vectors x = (xk+1, . . . , xn), y = (yk+1, . . . , yn), x′ =
(x′k+1, . . . , x

′
n), y′ = (y′k+1, . . . , y

′
n) ∈ Rn−k and σ(x, y, x′, y′) := 1

2

∑n
j=k+1(xjy

′
j − x′jyj).

Remark 5.1.3. By the equality (5.5), one can deduce that for any compact subset F ⊂ U ,
there is a positive constant c, depending on F , such that for every a, b ∈ F with |a−b| < 1

dφ(a, b) ≤ c|b− a|
1
2 .

In fact, if we define ∆ := maxp∈F |p| and for every j = 1, . . . , k, Mj := maxp∈F |φj(p)|, by
direct computations

dφ(a, b) ≤
√
|ξ|+

√
|τ − τ ′|+

k∑
j=1

√
|φ′j(η′j − ηj)|+

√√√√1

2

n∑
j=k+1

|xjy′j − x′jyj |

≤

2 +
k∑
j=1

√
Mj +

√
(n− k)∆

√|b− a|.
Definition 5.1.4. We call a function L : R2n+1−k → Rk ?-linear if it is a homogeneous
homomorphism between (R2n+1−k, ?, δ?t ) and (Rk,+, dt), i.e. if for every a, b ∈ R2n+1−k

and t > 0,
L(a ? b) = L(a) + L(b) and L(δ?t (a)) = tL(a).

Remark 5.1.5. By taking in consideration Remark 3.5.19, it is immediate to verify that
a map L : R2n+1−k → Rk is ?-linear if and only if the corresponding map L̃ = i−1

V ◦L◦ iW :
W→ V is intrinsic linear.

We are finally ready to restate in coordinates the notions of intrinsic differentiability
and uniform intrinsic differentiability. By | · | we denote the Euclidean norm on Rk.
Definition 5.1.6. Let U ⊂ R2n+1−k be an open set and φ : U → Rk be a map. Consider
a point a0 ∈ U , we say that φ is intrinsically differentiable at a0 if there exists a ?-linear
function L : R2n+1−k → Rk such that

lim
a→a0

|φ(a)− φ(a0)− L(a−1
0 ? a)|

dφ(a, a0)
= 0. (5.6)

We call the function L the intrinsic differential of φ at a0 and we denote it by dφa0 . We
say that φ is intrinsically differentiable on U if it is intrinsically differentiable at any point
a ∈ U .
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Remark 5.1.7. Observe that, for k = 1, this definition coincides with the definition of
W φ-differentiability stated in [ASCV06].

Let a = (a1, . . . , a2n+1−k) ∈ R2n+1−k be a point and let us pick a positive constant
δ > 0. We define the square open δ-neighbourhood centered at a in R2n+1−k as

Iδ(a) := {p = (p1, . . . , p2n+1−k) ∈ R2n+1−k : |pi − ai| < δ for i = 1, . . . , 2n+ 1− k}.

We use this notation to re-state in coordinates the stronger notion of uniform intrinsic
differentiability as well.

Definition 5.1.8. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a function.
Consider a point a0 ∈ U , we say that φ is uniformly intrinsically differentiable at a0 if
there exists a ?-linear function L : R2n+1−k → Rk such that

lim
r→0

sup
a,b∈Ir(a0),

a6=b

{
|φ(b)− φ(a)− L(a−1 ? b)|

dφ(b, a)

}
= 0. (5.7)

We say that the map φ is uniformly intrinsically differentiable on U if it is uniformly
intrinsically differentiable at every point a ∈ U .

Remark 5.1.9. The role of the squares Ir(a) could be equivalently played by the Eu-
clidean balls of R2n+1−k. Nevetheless, we maintain the use of square neighbourhoods in
continuity with [ASCV06].

Remark 5.1.10. It is immediate to verify that Definitions 5.1.6 and 5.1.8 satisfy the
desired correspondences: if Ũ ⊂ W is an open set, φ̃ : Ũ → V is a map and we fix
a point w0 ∈ Ũ , then φ̃ is (uniformly) intrinsically differentiable at w0 if and only if φ
is (uniformly) intrinsically differentiable at a0 = iW(w0) ∈ U . Moreover, in this case,
dφa0 = iV ◦ dφ̃w0 ◦ i−1

W . To better compare Definitions 3.5.29 and 5.1.8, we refer the reader
to Remark 3.5.33 and to the fact that for every 0 < r < 1, and for every a0 ∈ U , by direct
computations, the following inclusions holds

Ir(a0) ⊂ iW(B(a0, (2n− k)
√
r) ∩W) iW(B(a0, r) ∩W) ⊂ Ir(a0).

Moreover, observe that, since V is horizontal, and then commutative, it is isometric to Rk
and then the homogeneous norm ‖ · ‖ restricted to V coincides with the Euclidean norm
on Rk, which we have denoted by | · | in (5.6) and (5.7).

By [DD20a, Proposition 3.4], any ?-linear function L : R2n+1−k → Rk is identified in
a natural way with a well defined k× (2n− k) matrix, which we denote by ML, such that
for every a ∈ R2n+1−k

L(a) = ML · (π(a))T ,

where · denotes the matrix product and π denotes the orthogonal projection from R2n+1−k

to R2n−k on the first 2n− k components.

Then, if we consider an open set U ⊂ R2n+1−k and a function φ : U → Rk intrinsically
differentiable at a point a ∈ U , we define the intrinsic Jacobian matrix of φ at a as the
matrix associated with the intrinsic differential of φ at a

Dφφ(a) := Mdφa .

If φ is intrinsically differentiable on U , we can take in consideration the function that
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associates every point of a ∈ U with the intrinsic Jacobian matrix of φ at a

Dφφ : U →Mk,2n−k(R).

Uniform intrinsic differentiability implies the continuity of the intrinsic Jacobian matrix.

Proposition 5.1.11. [DD20a, Proposition 3.7] Let U ⊂ R2n+1−k be an open set and let
φ : U → Rk be a function uniformly intrinsically differentiable on U , then the function

Dφφ : U →Mk,2n−k(R)

is continuous.

Now we specialize Theorem 4.3.1 to the case of the Heisenberg group, to which we are
interested to in this chapter. The content of the following result (limited to the Heisenberg
group) was substantially contained already in [AS09, Theorem 4.2] (see Theorem 4.1.22
and Proposition 4.1.27), where, nevertheless, it was not explicitly stated condition (5.8),
that will be useful later on for our purposes.

Theorem 5.1.12. Let Hn = WoV be the product of the two complementary subgroups

W = span(ek+1, . . . , e2n+1) V = span(e1, . . . , ek).

Let Ũ ⊂W be an open set, φ̃ : Ũ → V be a continuous function and Σ = graph(φ̃). Then
the following conditions are equivalent

(i) there are Ω ⊂ Hn open set and f = (f1, ..., fk) ∈ C1
h(Ω,Rk) such that Σ = {x ∈ Ω :

f(x) = 0} and JVf(x) = |det([Xifj(x)]i,j=1,...,k)| > 0 for all x ∈ Σ.

(ii) φ̃ is uniformly intrinsically differentiable on Ũ .

We report a brief sketch of the scheme of the proof of Theorem 5.1.12, following the
proofs in [DD17, Theorem 3.1.1] (one can refer also to [DD20a, Theorem 4.1]. Our aim is
to highlight some details that will be useful later on.

Let us start by (i)⇒ (ii). Consider an open set Ω in Hn and a function f ∈ C1
h(Ω,Rk)

as in (i). By Theorem 4.1.19, there exist an open set Ũ ⊂ W and a unique intrinsic
continuous parametrization φ̃ : Ũ → V, that corresponds as above to a map φ : U → Rk,
with U ⊂ R2n+1−k, such that Σ = graph(φ). By (i), at any point a ∈ U the horizontal
Jacobian matrix JHf(Φ(a)) of f at Φ(a) is of maximum rank k and, in particular, the
following k × k matrix (that represents Df(Φ(a))|V) is invertible

Xf(Φ(a)) :=

X1f1(Φ(a)) . . . Xkf1(Φ(a))
. . . . . . . . .

X1fk(Φ(a)) . . . Xkfk(Φ(a))

 .

We introduce also the k × (2n− k) matrix (that represents Df(Φ(a))|W)

Yf(Φ(a)) :=

Xk+1f1(Φ(a)) . . . Xnf1(Φ(a)) Y1f1(Φ(a)) . . . Ynf1(Φ(a))
. . . . . . . . . . . . . . . . . .

Xk+1fk(Φ(a)) . . . Xnfk(Φ(a)) Y1f1(Φ(a)) . . . Ynfk(Φ(a))

 .

By the combination of some direct computations with a Morrey-type inequality, it is
proved that the parametrization φ is uniformly intrinsically differentiable at every point
a ∈ U and that for every a ∈ U

Dφφ(a) = −(Xf(Φ(a)))−1Yf(Φ(a)). (5.8)
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On the other side, to prove that (ii)⇒ (i) we start by considering a function φ̃ : Ũ ⊂
W → V that corresponds as above to a map φ : U → Rk, with U ⊂ R2n+1−k, uniformly
intrinsically differentiable on U . Thus, by applying the Whitney-type Theorem 3.2.34, it is
possible to individuate a function f ∈ C1

h(Ω,Rk), where Ω ⊂ Hn is an open set containing
Φ(U), such that for every a ∈ U

f ◦ Φ(a) = 0

and such that the horizontal Jacobian matrix of f at every point of the intrinsic graph of
φ, Φ(a) with a ∈ U , has the following form

JHf(Φ(a)) = ( Ik | −Dφφ(a) ), (5.9)

where by Ik we indicate the identity matrix of dimension k. Equivalently Xf(Φ(a)) = Ik
(hence JVf(Φ(a)) = 1) and Yf(Φ(a)) = −Dφφ(a).

Remark 5.1.13. If we consider an open set U ⊂ R2n+1−k and a continuously (Euclidean)
differentiable function φ : U → Rk, then φ is uniformly intrinsically differentiable on U .
It is not difficult to convince ourselves of this claim. In fact, let us consider the map

f : Hn → Rk, fi(x) := xi − φi(iW(πW(x))) for i = 1, . . . , k.

Observe that f(graph(φ)) = 0 and that f ∈ C1(Hn,Rk). By the continuity of its par-
tial derivatives, and consequently of its horizontal derivatives, clearly f ∈ C1

h(Hn,Rk).
Then, combining the uniqueness of the intrinsic parametrization, ensured by Theorem
4.1.19, with Theorem 5.1.12 it is immediate to conclude that φ is uniformly intrinsically
differentiable on U .

Definition 5.1.14. Given an open set U ⊂ R2n+1−k and a continuous function φ : U →
Rk, let us define the following family of 2n− k first order operators

W φ
j :=


X̃j+k j = 1, . . . , n− k
∇φi := ∂ηi + φi∂τ j = n− k + 1, . . . , n i = j − (n− k)

Ỹj−(n−k) j = n+ 1, . . . , 2n− k.
(5.10)

We can identify them with vector fields of R2n+1−k in the usual way. Notice that the
first and the last n−k vector fields have smooth coefficients, while the k central ones have
just continuous coefficients and their form reminds to the Burger’s operator.

Remark 5.1.15. The vector fields {W φ
j }j=1,...,2n−k defined in (5.10) are projected vector

fields in the sense that they correspond to the projections of the vector fields of the
canonical basis of the Lie algebra of W, projected through the (Euclidean) differential of
the group projection πW at the points of the intrinsic graph of φ: for every a ∈ U

W φ
j (a) =

{
dEπW(Φ(a))(Xj+k(Φ(a)) for j = 1, . . . , n− k
dEπW(Φ(a))(Yj−k(Φ(a)) for j = n− k + 1, . . . , 2n− k

This observation was presented in [Koz15, Definition 4.2.12] (in a coordinate free manner),
where a family of continuous projected vector fields analogous to (5.10) had been defined
for any intrinsic Lipschitz map from W to V, where W and V are complementary subgroups
of a generic Carnot group G such that G = WoV. This is a crucial point in order to extend
the arguments adopted in the Heisenberg group to the settings of generic Carnot groups
(see for instance [ADDDLD20]). Please refer to [Koz15, Section 4.6] or [ADDDLD20,
Example 3.4] for explicit computations.
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Remark 5.1.16. The family of the vector fields (5.10) was individuated also by Serapioni
in [Ser17, Section 3.3], computing, in the notation of Definition 5.1.14, the limit as t goes
to zero of the intrinsic difference quotients ∆Wφ(w; t) at the points w ∈ U of the map
φ along a vector field W that varies in the set {Xk+1, . . . , Xn, Y1, . . . , Yn}. In particular,
Serapioni calls for w ∈ U and W ∈ Lie(W)

DWφ(w) = lim
t→0+

∆Wφ(w; t) = lim
t→0+

∆−Wφ(w; t) (5.11)

the intrinsic directional derivative of φ at w along W , if the two limits in (5.11) exist
and are equal. The author proved, through explicit computations, that, if the intrinsic
directional derivatives DWφ(w) exists along every W ∈ {Xk+1, . . . , Xn, Y1, . . . , Yn} at a
point w ∈ U , then for every j = 1, . . . , k[

DXiφ(w)
]
j

= DXiφj(w) = W φ
i−nφj(w) for i = k + 1, . . . , n[

DYiφ(w)
]
j

= DYiφj(w) = W φ
i+(n−k)φj(w) for i = 1, . . . , k[

DYiφ(w)
]
j

= DYiφj(w) = W φ
n+iφj(w) for i = k + 1, . . . , n

The vector fields of the family in (5.10) can be individuated also through the following
proposition, that can be meant as a confirm of the fact that they individuate the right
candidate directions on which one could define suitable intrinsic partial derivatives of φ.

Proposition 5.1.17. Let U ⊂ R2n+1−k be an open set. If φ : U → Rk is a continuously
(Euclidean) differentiable function on U and a ∈ U , then

Dφφ(a) =

W φ
1 φ1(a) . . . W φ

2n−kφ1(a)

. . . . . . . . .

W φ
1 φk(a) . . . W φ

2n−kφk(a)

 . (5.12)

Proof. Since φ is continuously differentiable in the Euclidean sense, by the smoothness
of the group product, the graph map Φ has the same regularity. Moreover, by Remark
5.3.5, φ is uniformly intrinsically differentiable on U . Then in particular we can choose
a function f ∈ C1(Ω,Rk), and then f ∈ C1

h(Ω,Rk), defined on an open neighbourhood
Ω containing Φ(U), such that f(Φ(a)) = 0 for every a ∈ U and such that Xf(Φ(a)) is
invertible at every point a ∈ U (for instance f can be chosen as in Remark 5.1.13). More
explicitly we get that for every point a = (xk+1, . . . xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ U

f

φ1, . . . , φk, . . . , xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −
1

2

k∑
j=1

φjηj

 = 0, (5.13)

where for j ∈ {1, . . . , k} we have set φj = φj(a). Let us first briefly expose our strategy.
We fix some point a ∈ U and we differentiate the equation (5.13) at a with respect to
the variables xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ . Then we re-order the equations
that we obtain, in order to recover the derivatives of φ along the vector fields W φ

j (notice
that they exist in the classical sense since φ is continuously Euclidean differentiable). We
complete the proof observing that the left hand side of (5.12) is equal to the left hand side
of (5.8), and then it coincides with the intrinsic Jacobian matrix of φ at a.

Let us move to explicit computations. In order to simplify the notation, we will not
specify that the derivatives of the components of f , the fj , are computed at Φ(a) ∈ Ω while
the derivatives of the components of φ, the φj , are computed at a ∈ U , this clearly follows
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from the (Euclidean) chain rule. Moreover, we think that it is clear to which coordinates
the symbol ∂xi refers, depending if it is applied to a coordinate of the map f(x1, . . . , x2n+1)
in Hn or to a coordinate of the mapping φ(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . yn, τ) in R2n+1−k.
Let us differentiate (5.13), for ` = k + 1, . . . , n and j = 1, . . . , k we get

∂x`(fj ◦ Φ)(a) =

k∑
i=1

(∂xifj)(∂x`φi) + ∂x`fj + ∂x2n+1fj

(
−1

2

k∑
i=1

ηi∂x`φi

)
= 0 (5.14)

∂y`(fj ◦ Φ)(a) =
k∑
i=1

(∂xifj)(∂y`φi) + ∂x`+nfj + ∂x2n+1fj

(
−1

2

k∑
i=1

ηi∂y`φi

)
= 0 (5.15)

for j, ` = 1, . . . , k

∂η`(fj ◦ Φ)(a) =

k∑
i=1

(∂xifj)(∂η`φi) + ∂x`+(n−k)fj + ∂x2n+1fj

(
−1

2

k∑
i=1

(ηi∂η`φi + φ`)

)
= 0 (5.16)

∂τ (fj ◦ Φ)(a) =

k∑
i=1

(∂xifj)(∂τφi) + ∂x2n+1fj + ∂x2n+1fj

(
−1

2

k∑
i=1

ηi∂τφi

)
= 0. (5.17)

now we consider for ` = 1, . . . , k, the equation obtained computing (5.16)+φ`(5.17)

k∑
i=1

(∂xifj)(φ`∂τφi + ∂η`φi) + ∂x`+(n−k)
fj + φ`∂x2n+1fj

− 1

2
∂x2n+1fj

(
k∑
i=1

(
ηi∂η`φi + φ` + φ`

k∑
i=1

ηi∂τφi

))

=

k∑
i=1

(∂xifj)(∇φ`φi) + ∂x`+(n−k)
fj + φ`∂x2n+1fj −

1

2
∂x2n+1fj

(
k∑
i=1

ηi∇φ`φi + φ`

)
= 0

that coincides with

k∑
j=1

(Xifj(Φ(a))∇φ`φi(a) + ∂x`+(n−k)
fj +

1

2
φ`(∂x2n+1fj(Φ(a)))

=
k∑
j=1

(Xifj(Φ(a))∇φ`φi(a) + Y`+nfj(Φ(a)) = 0,

We have assumed that that det([Xifj(Φ(a))]i,j=1,...,k) 6= 0 and then that this system can
be solved, thus, for every ` = 1, . . . , k, one can explicitly compute the column

∇φjφ(a) =

∇φ`φ1(a)
. . .

∇φ`φk(a)

 = −(Xf(Φ(a)))−1

Y`+nf1(Φ(a))
. . .

Y`+nfk(Φ(a))

 .

Now, proceeding in an analogous way computing for ` = k + 1, . . . , n, the equations
(5.14)−1

2η`−k(5.17) and (5.15)+1
2φ`−k(5.17), we obtain respectively

k∑
i=1

Xifj(Φ(a))X̃`φi(a) +X`fj(Φ(a)) = 0
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and
k∑
i=1

Xifj(Φ(a))Ỹ`φi(a) + Y`fj(Φ(a)) = 0.

Thus, for ` = k + 1, . . . , n, we get

X̃`φ =

X̃`φ1(a)
. . .

X̃`φk(a)

 = −(Xf(Φ(a)))−1

X`f1(Φ(a))
. . .

X`fk(Φ(a))


and

Ỹ`φ =

Ỹ`φ1(a)
. . .

Ỹ`φk(a)

 = −(Xf(Φ(a)))−1

Y`f1(Φ(a))
. . .

Y`fk(Φ(a))

 .

5.2 One-codimensional intrinsic regular graphs

Now we resume the state of the art about the case when V is of dimension one. Then,
according to the previous stated correspondences, we consider an open set U ⊂ R2n and
a map φ : U → R. In this case the definition of intrinsic differentiability for φ equals the
definition of W φ-differentiability stated in [ASCV06]. The intrinsic Jacobian matrix at a
point a ∈ U , Dφφ(a), is a (2n − 1)-vector that we call the intrinsic gradient of φ at a,
and we denote it by ∇φφ(a). Relevant results have been presented by Ambrosio, Bigolin,
Serra Cassano and Vittone [ASCV06, BSC10a, BSC10b]; we resume them in the following
theorem.

Theorem 5.2.1. Let U ⊂ R2n be an open set and let φ : U → R be a continuous function.
Then, the following conditions are equivalent.

(i) φ is uniformly intrinsically differentiable on U .

(ii) There exists w ∈ C0(U,R2n−1) such that

(W φ
1 φ, . . . ,W

φ
2n−1φ) = w

in distributional sense on U .

(iii) There exists w ∈ C0(U,R2n−1) and a family of functions {φε}ε>0 ⊂ C1(U) such that

φε → φ and ∇φεφε → w

uniformly on every open set U ′ b U as ε goes to zero.

Remark 5.2.2. Notice in particular that in point (ii) of Theorem 5.2.1, the intrinsic

gradient of φ is considered in distributional sense, i.e. the derivatives W φ
j φ are interpreted

in distributional sense for j = 1, . . . , 2n − 1. This is immediate for j = 1, . . . , n − 1 and
j = n + 1, . . . , 2n − 1. In order to see W φ

nφ as a distribution, it is enough to exploit the
Leibniz rule, and to rewrite

W φ
nφ = ∂ηφ+ φ∂τφ = ∂ηφ+ ∂τ

(
φ2

2

)
.
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Remark 5.2.3. Please refer to [ADDDLD20, Remark 4.14] for a careful discussion about
point (iii) of Theorem 5.2.1. In fact, the authors noticed an imprecision in the proof of
(i) ⇒ (ii) of [ASCV06, Theorem 5.1]. Nevertheless the proof can be fixed adapting the
approximation argument explained in the proof of [MV12, Theorem 1.2].

In [SC16] (relying on results of [ASCV06, BSC10a, BCSC15]), the author prove two
further relevant characterizations, that we resume in the following theorem.

Theorem 5.2.4. [SC16, Theorem 4.95] Let U ⊂ R2n be an open set and let φ : U → R
be a function. The following conditions are equivalent:

(i) φ is uniformly intrinsically differentiable on U .

(ii) φ ∈ C0(U) and for every a ∈ U , for every j ∈ {1, . . . , 2n− 1}, there exists ∂φjφ(a),

i.e. a real number ∂φjφ(a) such that for every γj : (−δ, δ)→ Ω integral curve of W φ
j

with γj(0) = a, the limit limt→0
φ(γj(t))−φ(γj(0))

t exists, it is equal to ∂φjφ(a) and the
map ∂φjφ : U → R is continuous.

(iii) φ is intrinsically differentiable on U and the map ∇φφ : U → R2n−1 is continuous.

In particular, notice that Theorems 5.2.1 and 5.2.4 provide characterizations of the
uniform intrinsic differentiability of a map φ in terms of different suitable notions of
continuous weak solution φ : U → R of the first order non-linear system

(W φ
1 φ, . . . ,W

φ
2n−1φ) = w on U, (5.18)

for a prescribed continuous map w ∈ C0(U,R2n−1). In fact, condition (ii) of Theorem
5.2.4, can be rephrased, according to the literature, saying that φ is a broad solution of
the system (5.18).
A generalization of these results to one-codimensional uniformly intrinsically differentiable
graphs in Carnot groups of step 2 has been proved by Di Donato [DD20a]. The goal of the
current chapter is to generalize Theorems 5.2.1 and 5.2.4 in the Heisenberg group to the
case when 1 ≤ dim(V) ≤ n. In particular our main results will be presented in Proposition
5.3.21 and Theorem 5.3.24.
Characterizations analogous to the ones in Theorem 5.2.4 have been proved for intrinsic
Lipschitz functions. A result in the Heisenberg group about the existence of a smooth ap-
proximation for intrinsic Lipschitz maps with target homogeneous subgroup of dimension
1, along with their intrinsic gradient, (analogous to (iii) of Theorem 5.2.1) has been proved
by Citti, Manfredini, Pinamonti and Serra Cassano [CMPSC14, Theorem 1.7]. On the
other side, in [BCSC15] Bigolin, Caravenna and Serra Cassano have considered suitably
defined weak continuous solutions φ : U → R of the system (5.18), assuming now that w
is not a continuous function any more, but just a bounded map w ∈ L∞(U,R2n−1). We
summarize in the following theorem the results of [BCSC15]. In order to do this, we need
to precise the distinction between the space L∞(U,R2n−1) and the space of all the possible
representatives L∞(U,R2n−1), i.e. the space of measurable bounded functions from U to
R2n−1.

Theorem 5.2.5. [BCSC15, Theorem 1.2] Let U ⊂ R2n be an open set and let φ : U → R
be a continuous function. The following conditions are equivalent

(i) φ is intrinsic locally Lipschitz.
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(ii) There exists w ∈ L∞(U,R2n−1) such that

(W φ
1 φ, . . . ,W

φ
2n−1φ) = w (5.19)

in distributional sense on U .

(iii) φ is a broad solution of system

(W φ
1 φ, . . . ,W

φ
2n−1φ) = w

on U , i.e. there exists a Borel function ŵ ∈ L∞(U,R2n−1) such that:

(iii1) w(a) = ŵ(a) for L2n-a.e. a ∈ U ,

(iii2) for every continuous vector field W φ
j (for j = 1, . . . , 2n − 1) and for every

integral curve γj : (−δ, δ) → U of W φ
j , φ ◦ γj is absolutely continuous and

satisfies for a.e. s ∈ (−δ, δ)

d

ds
φ(γj(s)) = ŵi(γ

j(s)).

A very deep correlated investigation about the weak continuous solutions of the system
(5.19), from many different points of view, has been carried on also by Alberti, Bianchini
and Caravenna in [ABC16a] and [ABC16b]. They approach system (5.19) as a scalar
balance law with quadratic flux and bounded source term. In fact, the authors reduce the
study of the intrinsic gradient, and consequently of the system (5.19), to the study of the
central equation involving the Burger’s type first order operator where the non-linearity
concentrates, that is

W φ
nφ = ∂ηφ+ φ∂τφ = wn ∈ L∞(U,R) (5.20)

which in distributional terms reads as

∂ηφ+ ∂τ

(
φ2

2

)
= ω,

where ω is a prescribed map in L∞(U,R). In particular, the main results of [BCSC15,
ABC16a, ABC16b] follow from the comparison, in respect with (5.20), between the Eu-
lerian viewpoint, obtained interpreting the equation in distributional sense, the broad
viewpoint (as in (iii) of Theorem 5.2.5), obtained reducing the equation to an infinite di-
mensional system of ODEs along characteristics, and the Lagrangian viewpoint, obtained
reducing the equation to an infinite dimensional system of ODEs along a chosen family of
characteristics, which is called a Lagrangian parametrization.
A partial generalization of Theorem 5.2.5 to one-codimensional intrinsic Lipschitz graphs
in Carnot groups of step 2 has been provided by Di Donato in [DD20b]. How one can
imagine, one of the main tools that permits to generalize results concerning intrinsic dif-
ferentiability to results about intrinsic Lipschitz continuity is Theorem 3.6.4. This is why
we can unbalance ourselves to foresee that the Rademacher-type result recently presented
by Vittone in [Vit20] will soon allow to extend the results of the next section to the case of
intrinsic Lipschitz functions (or, equivalently, to extend Theorem 5.2.5, at least partially,
to the case when 1 < dim(V) ≤ n).
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5.3 Characterizations of uniform intrinsic differentiability

This section is devoted to the extension of the characterizations presented in Theorems
5.2.1 and 5.2.4 to the case when 1 < dim(V) ≤ n. In particular, in this section we present
the results of [Cor19].

5.3.1 Uniform intrinsic differentiability implies the existence of a local
approximation

We start by proving that the uniform intrinsic differentiability of a map φ implies
the existence of a suitable approximating family of Euclidean C1-regular functions at any
point of the domain.

Proposition 5.3.1. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a function
uniformly intrinsically differentiable on U . Then, for every a ∈ U there are a number
δ = δ(a) > 0 such that Iδ(a) b U and a family of functions {φε}ε>0 ∈ C1(Iδ(a),Rk) such
that

φε → φ,

Dφεφε → Dφφ

uniformly on Iδ(a) as ε→ 0.

Proof. The proof mirrors the one of [FSSC03b, Theorem 2.1]. Without any loss of gen-
erality, one can assume that a = 0 and Φ(a) = 0. By Theorem 5.1.12, any uniformly
intrinsically differentiable function φ locally parametrizes a H-regular submanifold, hence
there exist r > 0 and a function f ∈ C1

h(B(0, r),Rk) such that

f ◦ Φ(w) = 0 for every w ∈ Iδ̄(0),

where δ̄ > 0 is small enough to have the inclusion Φ(Iδ̄(0)) ⊂ B(0, r). Moreover, again by
Theorem 5.1.12, the horizontal Jacobian matrix of f has rank k and, in particular, we can
assume that det((Xf)(y)) > 0, for every y ∈ B(0, r′), for some r′ ≤ r. Then we consider
the map f : B(0, r′)→ Rk, x 7−→ (f1(x), . . . , fk(x)) and an Euclidean Friedrichs’ mollifier
ρε. For every 0 < ε < dist(B(0, r′),Hn \ B(0, r)), we convolve the components of the
function f with ρε and we set

fε : B(0, r′)→ Rk, x 7−→ (fε,1(x), . . . , fε,k(x)),

where fε,i(x) := fi ∗ ρε for i = 1, . . . , k. Since the fi are continuous mappings we know
that the maps fε,i converge uniformly on B(0, r′) to fi, for any i = 1, . . . , k, as ε goes
to zero, hence the fε converge uniformly to f . In this proof, in order to have a simpler
notation, we set Xj = Yj−(n−k) for j = n − k + 1 . . . , 2n − k. We want to prove that for
i = 1, . . . , k and j = 1, . . . , 2n − k the derivatives Xjfε,i uniformly converge to Xjfi on
B(0, r′) as ε goes to zero. Surely (Xjfi) ∗ ρε converge to Xjfi uniformly on B(0, r′), as ε
goes to zero. Then we can write

Xjfε,i = (Xjfi) ∗ ρε − ((Xjfi) ∗ ρε −Xjfε,i),

and in order to conclude our claim it is enough to prove that (Xjfi) ∗ ρε − Xjfε,i go
uniformly to zero as ε goes to zero. We report the prove for i = 1, j = 1, for other choices
of i and j the argument works in analogous way. Consider a point x ∈ B(0, r′), then

(X1f1) ∗ ρε(x)−X1fε,1(x) =
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=

∫
|x−y|<ε

(
∂y1 −

1

2
yn+1∂y2n+1

)
f1(y)ρε(x− y)dy

−
(
∂x1 −

1

2
xn+1∂x2n+1

)∫
|x−y|<ε

f1(y)ρε(x− y)dy

integrating by parts,

=

∫
|x−y|<ε

f1(y)

(
∂x1 −

1

2
yn+1∂x2n+1

)
ρε(x− y)dy

−
∫
|x−y|<ε

f1(y)

(
∂x1 −

1

2
xn+1∂x2n+1

)
ρε(x− y)dy

=

∫
|x−y|<ε

f1(y)

(
−1

2
yn+1∂x2n+1 +

1

2
xn+1∂x2n+1

)
ρε(x− y)dy

=

∫
|x−y|<ε

(f1(y)− f1(x))

(
−1

2
yn+1∂x2n+1 +

1

2
xn+1∂x2n+1

)
ρε(x− y)dy +

+ f1(x)

∫
|x−y|<ε

(
−1

2
yn+1∂x2n+1 +

1

2
xn+1∂x2n+1

)
ρε(x− y)dy

= I1(x) + f1(x)I2(x).

First, we consider I2(x). We change the sign and we put the derivative on the variable y,

I2(x) =

∫
|x−y|<ε

1

2
(−yn+1 + xn+1)∂x2n+1ρε(x− y)dy

= −
∫
|x−y|<ε

∂

∂y2n+1

(
1

2
(−yn+1 + xn+1)ρε(x− y)

)
dy = 0

since the support of y 7−→ 1
2(−yn+1 +xn+1)ρε(x− y) is contained in B(x, ε). If we call w1

the modulus of continuity of f1, we get

|I1(x)| =

∣∣∣∣∣
∫
|x−y|<ε

(f1(y)− f1(x))

(
1

2
(−yn+1 + xn+1)

)
∂

∂y2n+1
ρε(x− y)dy

∣∣∣∣∣
≤ w1(ε)

1

2
ε max
|x−y|≤ε

∣∣∣∣ ∂

∂y2n+1
ρε(x− y)

∣∣∣∣Cε2n+1 → 0

when ε→ 0. This concludes the proof, then Xjfε,i → Xjfi uniformly on B(0, r′) as ε→ 0.

To summarize, up to now, we have built a family of functions {fε}ε>0 ∈ C1(B(0, r′),Rk)
such that

fε → f

JHfε → JHf,

uniformly on B(0, r′) as ε goes to zero. Now we want to use the (Euclidean) implicit
function theorem on the mappings fε in order to obtain a family of functions φε ∈ C1(Iδ(0))
such that φε → φ uniformly on Iδ(0), for some δ suitably smaller that δ̄. For appropriately
small h1, . . . , hk, δ, the following map γ

γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) :=

= (0, . . . , 0, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)(s1e1) . . . (skek)

= (s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −
1

2

k∑
j=1

sjηj)
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is a diffeomorphism from a neighbourhood [−h1, h1]×, . . . ,×[−hk, hk]×Iδ(0) onto a neigh-
bourhood of 0 ∈ R2n+1. We set the two compositions on [−h1, h1]×, . . . ,×[−hk, hk]×Iδ(0)

gε(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) :=

fε(γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

and
g(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) :=

f(γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)).

Let us compute, for every i ∈ {1, . . . , k},

∂gε
∂si

(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)

=
∂fε
∂si

(γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)) =

=
∂fε
∂si

s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −
1

2

k∑
j=1

sjηj


=


∂fε,1
∂si

(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ − 1
2

∑k
j=1 sjηj)

. . .
∂fε,k
∂si

(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ − 1
2

∑k
j=1 sjηj)


=


∂fε,1
∂xi
− 1

2ηi
∂fε,1
∂x2n+1

. . .
∂fε,k
∂xi
− 1

2ηi
∂fε,k
∂x2n+1


=

Xifε,1(γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))
. . .

Xifε,k(γ(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

 .

Now, if we set

w = (s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ [−h1, h1]×, . . . ,×[−hk, hk]×Iδ(0),

we can summarize our computation as
∂gε,1
∂s1

(w) . . .
∂gε,1
∂sk

(w)

. . . . . . . . .
∂gε,k
∂s1

(w) . . .
∂gε,k
∂sk

(w)

 =


∂fε,1
∂s1

(γ(w)) . . .
∂fε,1
∂sk

(γ(w))

. . . . . . . . .
∂fε,k
∂s1

(γ(w)) . . .
∂fε,k
∂sk

(γ(w))


=

X1fε,1(γ(w)) . . . Xkfε,1(γ(w))
. . . . . . . . .

X1fε,k(γ(w)) . . . Xkfε,k(γ(w))


and, according to the previously introduced notation, we have denoted this matrix by
Xfε(γ(w)). By the previously proved uniform convergence of the horizontal derivatives,
we know that Xfε → Xf on B(0, r′) as ε→ 0. Hence if the parameters h1, . . . , hk, δ are
small enough to guarantee that γ([−h1, h1]× · · · × [−hk, hk]× Iδ(0)) ⊂ B(0, r′), for every
point

(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Iδ(0),



5.3 Characterizations of uniform intrinsic differentiability 121

the function

(s1, . . . , sk) ∈ [−h1, h1]× · · · × [−hk, hk]→ g(s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)

is a diffeomorphism, since
det(Xf(γ(w)) > 0

for w = (s1, . . . , sk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ [−h1, h1]× · · · × [−hk, hk]×
Iδ(0). By the uniform convergence of the horizontal derivatives, at least for ε small enough,
we can suppose that

det(Xfε(γ(w)) 6= 0

for every w ∈ [−h1, h1]× · · · × [−hk, hk]× Iδ(0).
Now, we can apply to the maps gε = fε ◦ γ : [−h1, h1]× · · · × [−hk, hk]× Iδ(0)→ Rk the
Euclidean implicit function theorem and we get that for every ε > 0 there exists a function

φε : Iδ(0)→ [−h1, h1]× · · · × [−hk, hk] ⊂ Rk,

(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)→ (φε,1, . . . , φε,k).

with φε ∈ C1(Iδ(0),Rk), where we have denoted for i = 1, . . . , k,

φε,i = φε,i(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ),

such that for every (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Iδ(0),

gε(φε,1, . . . , φε,k, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)

=fε(γ(φε,1, . . . , φε,k, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

=fε(φε,1, . . . , φε,k, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −
1

2

k∑
j=1

ηjφε,j))

=fε(Φε(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

where Φε is the graph map of φε, hence for every ε,

fε(graph(φε)) = 0.

Now we want to prove that the family of maps φε ∈ C1(Iδ(0),Rk) converges uniformly
to φ on Iδ(0) as ε → 0. We proceed assuming by contradiction that there exist σ > 0, a
sequence

((xhk+1, . . . , x
h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h))h∈N ⊂ Iδ(0)

and a sequence (εh)h∈N, converging to zero as h going to infinity, such that

|φεh(xhk+1, . . . , x
h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h)− φ(xhk+1, . . . , x
h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h)| ≥ σ.

By compactness, we suppose that, up to a subsequence, we have the convergences

(xhk+1, . . . , x
h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h)→ (x̄k+1, . . . , x̄n, η̄1, . . . , η̄k, ȳk+1, . . . , ȳn, τ̄) ∈ Iδ(0)

and that

φεk(xhk+1, . . . , x
h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h)→ (φ0,1, . . . , φ0,k) ∈ [−h1, h1]×· · ·×[−hk, hk]
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as h goes to infinity. Hence

0 = gεh(φεh,1, . . . , φεh,k, x
h
k+1, . . . , x

h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h)

= fεh(γ(φεh,1, . . . , φεh,k, x
h
k+1, . . . , x

h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h))

→ f(γ(φ0,1, . . . , φ0,k, x̄k+1, . . . , x̄n, η̄1, . . . , η̄k, ȳk+1, . . . , ȳn, τ̄))

as h goes to ∞.
But at the beginning we had chosen f such that for every point

(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Iδ(0),

f(Φ(xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ))

=f(γ(φ1, . . . , φk, xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ)) = 0.

Since, once fixed the map f , the intrinsic parametrization φ is unique, then necessarily

φ0,j = φj(x̄k+1, . . . , x̄n, η̄1, . . . , η̄k, ȳk+1, . . . , ȳn, τ̄)

for any j = 1, . . . , k. At the same time this is not possible, since we have assumed that φεk
and φ keep a distance of at least σ on the sequence (xhk+1, . . . , x

h
n, η

h
1 , . . . , η

h
k , y

h
k+1, . . . , y

h
n, τ

h),
h ∈ N, and then this has to be valid also at the limit. Then we have reached a contradiction
and we can conclude that φε converges to φ uniformly on Iδ(0) as ε→ 0.

Let us now prove the uniform convergence of the intrinsic Jacobian matrices of the
maps φε. Observe that for every ε > 0, φε is the intrinsic parametrization of fε, hence we
know that for every b ∈ Iδ(0),

Dφεφε(b) = −(Xfε(Φε(b)))
−1(Yfε(Φε(b))).

Since we have proved that for every i = 1, . . . , k and j = 1, . . . , 2n−k the derivatives Xjfε,i
converge uniformly to Xjfi on B(0, r′) as ε→ 0, and since we are sure that det((Xfε(y))

is far from being zero for every y ∈ γ([−h1, h1]× · · ·× [−hk, hk]× Iδ(0)) ⊂ B(0, r′), we get
that Dφεφε(b) = −(Xfε(Φε(b)))

−1(Yfε)(Φε(b)) converge to −(Xf(Φ(b)))−1(Yf(Φ(b)))
uniformly on Iδ(0). Now, to conclude the proof, it is enough to observe that, according to
(5.8) of the proof of Theorem 5.1.12,

−(Xf(Φ(b)))−1(Yf(Φ(b))) = Dφφ(b).

5.3.2 The existence of an approximation implies the existence of a family
of exponential maps

We need to give meaning to the action of the vector fields W φ
j on the components of φ.

In order to do this, we consider the behaviour of φ along the integral curves of the vector
fields W φ

j . When we assume that the map φ is only continuous, the integral curves of the

vector fields W φ
j for j = n − k + 1, . . . , n, are not unique in general. Nevertheless, once

we fix an initial point, the existence of at least one of these integral curves is ensured by
the Peano’s Theorem. The reader can refer for instance to [Mus05, Theorem 1]. For this
reason, the authors in [ASCV06] introduced the notion of a family of exponential maps.
We generalize the definition to our setting.

Definition 5.3.2 (Family of exponential maps). Let U ⊂ R2n+1−k be an open set and
let φ : U → Rk be a continuous function. We assume that for any a ∈ U there exist
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0 < δ2 < δ1 such that for each j = 1, . . . , 2n− k there exists a map

γj : [−δ2, δ2]× Iδ2(a)→ Iδ1(a)

(s, b) 7−→ γjb (s)

such that:

(i) γjb := γj(·, b) ∈ C1([−δ2, δ2], Iδ1(a)) for any b ∈ Iδ2(a);

(ii) γ̇jb (s) = W φ
j (γjb (s)) ∀s ∈ [−δ2, δ2], γjb (0) = b.

(iii) There exist k × (2n − k) continuous functions ωi,j : U → R, with i = 1, . . . , k,
j = 1, . . . , 2n− k, such that for each s ∈ [−δ2, δ2],

φi(γ
j
b (s))− φi(γ

j
b (0)) =

∫ s

0
ωi,j(γ

j
b (r))dr. (5.21)

From now on, γjb (s) will also be denoted by expa(sW
φ
j )(b). The family of mappings

{γj}j=1,...,2n−k is called a family of exponential maps at a.

Remark 5.3.3. Because of the left invariance of the vector fields W φ
i for j = 1, . . . , n −

k, n+ 1, . . . , 2n− k, one must have that for j ∈ {1, . . . , n− k}

expa(sW
φ
j )(b) = b ? iW(exp(sXj+k)) = b ? sej

and for j ∈ {n+ 1, . . . , 2n− k}

expa(sW
φ
j )(b) = b ? iW(exp(sYj−(n−k))) = b ? sej ,

where, by (e1, . . . , e2n−k, e2n−k+1) we denote the canonical basis of R2n−k+1.

Remark 5.3.4. If we have a family of exponential maps at a, for any c ∈ R2n−2k such
that c = (c1, . . . , cn−k, cn+1, . . . , c2n−k), there is an exponential map at a also for the vector
field

Vc =
n∑

j=k+1

cj−kX̃j + cj+n−kỸj =
n∑

j=k+1

cj−kW
φ
j−k + cj+n−kW

φ
j−k+n

in the sense that there is a continuous map γc : [−δ2, δ2] × Iδ2(a) → Iδ1(a) and there are
k continuous maps ωc,i : U → R, for any i ∈ {1, . . . , k}, such that for every s ∈ [−δ2, δ2]

and b ∈ Iδ2(a),

γ̇c(s, b) = Vc(γc(s, b)) =

n∑
j=k+1

cj−kX̃j(γc(s, b)) + cj+n−kỸj(γc(s, b))

γc(0, b) = b

φi(γc(s,B))− φi(γc(0, b)) =

∫ s

0
ωc,i(γc(r, b))dr.

For instance, one can take expa(sVc)(b) = γc(s, b) := b?
(∑n−k

j=1 s(cjej) +
∑2n−k

j=n+1 s(cjej)
)

and ωc,i =
∑n−k

j=1 cjωi,j +
∑2n−k

j=n+1 cjωi,j .



124 5. H-regular surfaces of low codimension

Remark 5.3.5. If the function φ is continuously differentiable (in the Euclidean sense) on
U , there exists a family of exponential maps at every point a ∈ U . In fact, once we fix an
initial point b ∈ U , by the Cauchy-Lipschitz theorem, for any j = 1, . . . , 2n−k there exists
a unique maximal integral curve γjb : (−δ, δ) → U of W φ

j starting at b (for some δ > 0).

Then, to verify (i) and (ii) of Definition 5.3.2, it is enough to define expa(tW
φ
j )(b) = γjb (t)

and to observe that for every j the map expa(tW
φ
j )(b) is defined on [−δ2,j , δ2,j ]× Iδ2,j (a),

for a sufficiently small δ2,j , with values in Iδ1(a) b U (for a fixed δ1 > 0). Then one can
chose δ2 as the minimum of the δ2,j . In this case the role of the function ωi,j in (iii) of
Definition 5.3.2 is played by the derivative of the i-th component of φ, φi, read on the
unique integral curve γjb : the maps ωi,j can be defined for i = 1, . . . , k, j = 1, . . . , 2n − k
for every (s̄, b) ∈ [−δ2, δ2]× Iδ2(a) as

ωi,j(γ
j
b (s̄)) =

d

ds
φi(γ

j
b (s))

∣∣∣
s=s̄

so that they verify (iii) of Definition 5.3.2.

If a continuous function φ : U → Rk, along with its intrinsic Jacobian matrix, can
be uniformly approximated by a family of continuously Euclidean differentiable functions,
along with their intrinsic Jacobian matrices, respectively, then for every point a in U there
exists a family of exponential maps at a.

Proposition 5.3.6. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. Let us assume that there exist a family of functions {φε}ε>0 ⊂ C1(U) and a
continuous matrix-valued function M ∈ C0(U,Mk,2n−k(R))

M : U →Mk,2n−k(R),

a 7−→M(a) =

m1,1(a) . . . m1,2n−k(a)
. . . . . . . . .

mk,1(a) . . . mk,2n−k(a)


such that

φε → φ uniformly U ′

Dφεφε →M uniformly on U ′
(5.22)

for every U ′ b U as ε → 0. Then for every a ∈ U there exists a family of exponential
maps at a, hence there exist 0 < δ2 < δ1 such that for each ` = 1, . . . , 2n − k and for
all (s, b) ∈ [−δ2, δ2] × Iδ2(a), there exists expa(sW

φ
` )(b) ∈ Iδ1(a) ⊂ U . Moreover the

continuous functions of (iii) in Definition 5.3.2 coincide with the corresponding elements
of the matrix M , i.e.

ωi,`(b) := mi,`(b) =
d

ds
φi(expa(sW

φ
` )(b))

∣∣
s=0

for i = 1, . . . , k and ` = 1, . . . , 2n− k.

Proof. The proof mirrors the one of of [ASCV06, Lemma 5.6]. We work by taking in
consideration separately the coordinates of φ, so that we have the following convergence

φε,i → φi,

uniformly on U ′ for every open subset U ′ b U as ε goes to zero, for every i = 1, . . . , k.
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Fix a point a ∈ U . For any of the first and the last (n − k) vector fields W φ
j , i.e.

for W φ
j , for j = 1, . . . , n − k, n + 1, . . . , 2n − k, the exponential map at a, expa(sW

φ
j (b))

can be defined as the unique integral curve starting at b of the vector field W φε
j = W φ

j

for every ε since the coefficients of these vector fields do not depend on the maps φε,
since they coincide, for every ε, with the vector fields X̃j and Ỹj for j = k + 1, . . . , n.
Of course, their coefficients are smooth and hence locally Lipschitz so, once fixed an
initial point b = (xk+1,b, . . . , xn,b, η1,b, . . . , ηk,b, yk+1,b, . . . , yn,b, τb), there exists one unique

maximal well defined integral curve of W φ
j starting from b (refer to Remark 5.3.3). Let us

work explicitly, as an example, on the field X̃j for a fixed j ∈ {n+ 1, . . . , 2n− k}. We can
define

expa(tW
φ
j−n)(b) = expa(tX̃j)(b) = γjb (t) := b ? tej−k

= (xk+1,b, . . . , xj,b + t, . . . , xn,b, η1,b, . . . , ηk,b, yk+1,b, . . . , yn,b, τb −
1

2
yj,bt).

Moreover, expa(tW
φ
j−n)(b) is defined on [−δ2, δ2] × Iδ2(a) for a sufficiently small δ2 with

values in Iδ1(a) ⊂ U (with δ1 > 0 fixed), then (i) and (ii) of Definition 5.3.2 are satisfied
by construction. By the fundamental theorem of calculus, for every ε > 0 and (t, b) ∈
[−δ2, δ2]× Iδ2(a) we have

φε,i(γ
j
b (t))− φε,i(γ

j
b (0)) =

∫ t

0
X̃jφε,i(γ

j
b (r)))dr

=

∫ t

0
W φε
j φε,i(γ

j
b (r)))dr =

∫ t

0
[Dφεφε(γ

j
b (r)))]i,jdr.

(5.23)

Letting ε going to zero, thanks to the hypothesis of uniform convergence on Iδ1(a), we get

φi(γ
j
b (s))− φi(γ

j
b (0)) =

∫ s

0
mi,j(γ

j
b (r))dr,

hence, thanks to the fundamental theorem of calculus we can set for i = 1, . . . , k and
j = 1, . . . , n− k, n+ 1, . . . , n+ k,

ωi,j(b) :=
d

dt
φi(expa(tW

φ
j )(b))

∣∣
t=0

= mi,j(b)

and they satisfy (iii) of Definition 5.3.2.

We consider now the k “central” vector fields W φ
` = ∇φj = ∂ηj + φj∂τ for ` = n− k+

1, . . . , n (we have set j = `− (n− k)). Fix j ∈ {1, . . . , k}. Let us consider for every ε > 0
the solution (γjε)b of the Cauchy problem:

{
(γ̇jε)b(s) = ∂ηj + φε,j((γ

j
ε)b(s))∂τ = ∇φε,j ((γjε)b(s))

(γjε)b(0) = b
(5.24)

We are dealing for every ε with vector fields with C1 coefficients, hence we can uniquely
solve the Cauchy problem (5.24), getting for each fixed ε and b a unique maximal solution.
Then there is a solution map

γjε : [−δ2,j(ε), δ2,j(ε)]× Iδ2,j(ε)(a)→ Iδ1(a),
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with δ1 > 0 and δ2,j(ε) ≥ max

{
δ1
2 ,

δ1
2‖φε,j‖L∞(Iδ1

(a))

}
. This estimate on the parameter

δ2,j(ε) follows from the Peano’s estimate on the existence interval of the solution to (5.24).

Remark 5.3.7. Let us give some more details about the way in which one can fix the
parameters δ1 and δ2,j(ε), referring to the classical Peano’s theorem (refer for instance
to [Mus05, Theorem 1]). One can fix 0 < δ1 < 1 such that Iδ1(a) b U . Fix then
0 < δ1

2 < δ1. Then for every b ∈ I δ1
2

(a), BE(b, δ12 ) ⊂ I δ1
2

(b) b Iδ1(a) b U . We set

‖φε,j‖ = ‖φε,j‖L∞(Iδ1 (a))
= max

Iδ1 (a)
|φε,j(y)|. Then for every ε > 0 the time of existence of

the maximal solution is at least δ1
2 max{1,‖φε,j‖} , so that we can fix δ2,j(ε) = min{ δ12 ,

δ1
2‖φε,j‖}.

Now, if we fix a positive number M > 0, there exists some ε0 = ε0(j) > 0 such that
for every ε ≤ ε0

‖φε,j − φj‖ ≤M,

where ‖ · ‖ denotes the norm in L∞(Iδ1(a)). Hence for every ε ≤ ε0 we have

‖φε,j‖ ≤ ‖φε,j − φj‖+ ‖φj − φε0‖+ ‖φε0‖ < M +M + max
U
|φε0 | := Nj . (5.25)

Hence the maps {φε,j}ε≤ε0 are equibounded. We get that, for every 0 < ε ≤ ε0, δ2,j(ε) ≥
δ1

2 max {1,‖φε,j‖} ≥
δ1

2 max {1,Nj} , so we can chose a common value of existence time 0 < δ2,j <

δ2,j(ε) for every ε ≤ ε0. Hence we can consider the family of maps {γjε}ε≤ε0 defined on a

common non-degenerating compact set: [−δ2,j , δ2,j ]× Iδ2,j (a).

More explicitly, if b = (xk+1,b, . . . , xn,b, η1,b, . . . , ηk,b, yk+1,b, . . . , yn,b, τb) ∈ Iδ2,j (a), and
t ∈ [−δ2,j , δ2,j ] we have

(γjε)b(t) =

(
xk+1,b, . . . , xn,b, η1,b, . . . , ηj,b + t, . . . , ηk,b, yk+1,b, . . . , yn,b, τb +

∫ t

0

φε,j((γ
j
ε)b(r))dr

)
,

then it is immediate to observe that each component of (γjε)b(t) can be bounded indepen-
dently of ε, b and t on [−δ2, δ2]× Iδ2(a). Hence the {γjε}ε≤ε0 are equibounded. Since, by
the uniform convergence of their derivatives on Iδ1(a), they are also uniformly continuous
on [−δ2, δ2]× Iδ2(a), we can then apply the Ascoli-Arzelà Theorem and we can extract a
subsequence of {γjε}ε≤ε0 , {γjεh}h∈N that converges uniformly on [−δ2,j , δ2,j ]× Iδ2,j (a) to a
function γj , when h goes to infinity. For every h we have

(γjεh)b(s) = (γjεh)b(0) +

∫ s

0
(γ̇jεh)b(r)dr

= b+

∫ s

0
∇φεh ,j((γjεh)b(r))dr

and

φεh,i((γ
j
εh

)b(s))− φεh,i((γ
j
εh

)b(0) =

∫ s

0
∇φεh ,jφεh,i((γ

j
εh

)b(r))dr

for i = 1, . . . , k. Now, letting h go to infinity, since all the convergences are uniform on
[−δ2,j , δ2,j ]× Iδ2,j (a) as h→∞ we can exchange limits and integrals and we get that

γjb (s) = b+

∫ s

0
∇φj (γjb (r))dr
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and that

φi(γ
j
b (s))− φi(γ

j
b (0)) =

∫ s

0
mi,j(γ

j
b (r)))dr,

where mi,j is the (i, j)-th element of the continuous matrix-valued function to which by

hypothesis the sequence Dφεφε converges uniformly on Iδ1(a) as ε goes to zero.

The whole path can be carried out for every j = 1, . . . , k in order to individuate a map
γj associated with ∇φj defined from [−δ2,j , δ2,j ] × Iδ2,j (a) to Iδ1(a) for suitable δ2,j > 0.
Since we have k possible values of j, to satisfy Definition 5.3.2 it is enough to choose δ2

as the minimum of the δ2,j . By the fundamental theorem of calculus we can finally define

for i = 1, . . . , k, j = n− k + 1, . . . , n and t ∈ [δ2, δ2], b ∈ Iδ2(a)

expa(tW
φ
j )(b) := γ

j−(n−k)
b (t)

ωi,j(b) :=
d

dt
φi(expa(tW

φ
j )(b))

∣∣
t=0

= mi,j(expa(0W
φ
j )(b)) = mi,j(b).

These maps satisfy condition (iii) of Definition 5.3.2.

Finally, it is enough to observe that choosing δ2 as the minimum between the one
individuated in the first part of the proof and the one individuated in the second part of
the proof, we have built a family of exponential maps at a.

5.3.3 Intrinsic derivatives

Let us stress again that for j = 1, . . . , n − k, n + 1, . . . , 2n − k, once we fix an initial
point a ∈ U , the integral curve of W φ

j starting at a is unique by the Cauchy-Lipschitz
theorem. For j = n−k+1, . . . , n, instead, we lose the uniqueness; the existence is ensured
by the Peano’s Theorem, since the coefficients of W φ

j are continuous. Hence, if we only
assume that φ is continuous, the value of the limit (5.26) depends a priori on the choice
of the integral curve. Then, it makes sense to introduce the following definition.

Definition 5.3.8. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. Let a be a point in U . Given j ∈ {1, . . . , 2n − k}, we say that φ has ∂φj -
derivative at a if and only if there exists a vector

(
α1,j . . . αk,j

)
∈ Rk such that for any

γj : (−δ, δ) → U integral curve of W φ
j such that γj(0) = a, the limit lims→0

φ(γj(s))−φ(a)
s

exists and is equal to
(
α1,j . . . αk,j

)T
. We denote it by

∂φjφ(a) =

∂φjφ1(a)
. . .

∂φjφk(a)

 :=

α1,j

. . .
αk,j .

 .

for j = 1, . . . , 2n− k.

Nevertheless, if the function φ is intrinsically differentiable at a point a ∈ U , the limit

lims→0
φi(γ

j(s))−φi(γj(0))
s does not depend on the choice of the integral curve of W φ

j , γj ,

starting at a = γj(0).

Proposition 5.3.9. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. Let a ∈ U , assume that φ is intrinsically differentiable at a and let Dφφ(a) be
the intrinsic Jacobian matrix of φ at a. Let j ∈ {1, . . . , 2n− k} and let

γj : [−δ, δ]→ U
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be an arbitrary integral curve of the vector field W φ
j , with γj(0) = a. Then, for any

i ∈ {1, . . . , k} we have

lim
s→0

φi(γ
j(s))− φi(γj(0))

s
= [Dφφ(a)]i,j . (5.26)

Proof. Let us consider the point

a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ).

If j = 1, . . . , n − k, W φ
j is X̃j+k, if j = n + 1, . . . , 2n − k, W φ

j is Ỹj−(n−k). In both cases

the integral curve γj of W φ
j with γj(0) = a is unique; it is then immediate to verify that

for s ∈ [−δ, δ]
dφ(γj(s), a) = dφ(γj(s), γj(0)) = |s|.

In fact, let us consider for instance j ∈ {1, . . . , n− k}, then we have

γj(s) =

(
xk+1, . . . , xj + s, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ −

1

2
yjs

)
and

dφ(γj(s), a) = dφ(γj(s), γj(0))

= max{|s|, |τ − 1

2
yjs− τ

+ σ((xk+1, . . . , xj + s, . . . , xn), (yk+1 . . . , yn), (xk+1, . . . , xn), (yk+1 . . . , yn))|
1
2 }

= max{|s|, | − 1

2
yjs+

1

2
(xj + s)yj −

1

2
xjyj |

1
2 } (5.27)

= |s|.

Let us now assume that j ∈ {n− k+ 1, . . . , n} and then that γj is an integral curve of the
vector field ∇φ` = ∂η` +φ`∂τ for ` = j−(n−k). As already pointed out, the integral curve
γj can fail to be unique, nevertheless, it has the following integral form for s ∈ [−δ, δ]

γj(s) =

(
xk+1, . . . , xn, η1, . . . , η` + s, . . . , ηk, yk+1, . . . , yn, τ +

∫ s

0
φ`(γ

j(r))dr

)
.

On the other hand, φ is intrinsically differentiable at a, then

lim
w→a

|φ(w)− φ(a)−Dφφ(a) · (π(a−1w))T |
dφ(w, a)

= 0.

Hence, there exist two positive constants C, r such that

|φ(w)− φ(a)| ≤ Cdφ(w, a) ∀w ∈ B(a, r) ∩W (5.28)

(for more details about (5.28) please refer to [SC16, Remark 4.75, Proposition 4.76]).
Then, unless we restrict the domain of the curve γj , we can assume that γj is defined
on an interval [−δj , δj ] such that the previous inequality holds for w = γj(s) for any
s ∈ [−δj , δj ]:

|φ(γj(s))− φ(γj(0))| ≤ Cdφ(γj(s), a) ∀s ∈ [−δj , δj ].
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Hence, for every i = 1, . . . , k

|φi(γj(s))− φi(γj(0))| ≤ |φ(γj(s))− φ(γj(0))| ≤ Cdφ(γj(s), a),

∀s ∈ [−δj , δj ]. Then we study dφ(γj(s), a) for s ∈ [−δj , δj ]

dφ(γj(s), a) = max{|s|, |
∫ s

0
φ`(γ

j(r))dr + φ`(a)(−s)|
1
2 }

= max{|s|, |
∫ s

0
φ`(γ

j(r))− φ`(a)dr|
1
2 }

≤ max{|s|, C
1
2 |s|

1
2 ( sup
s∈[−δj ,δj ]

dφ(γj(s), a))
1
2 }

≤ max{|s|, C
2
|s|+ 1

2
sup

s∈[−δj ,δj ]
dφ(γj(s), a)}.

(5.29)

Therefore
dφ(γj(s), a) ≤ C2|s|, (5.30)

where C2 = max{1, C}. Hence∣∣∣∣∣∣
φ1(γj(s))− φ1(a)− [Dφφ(a)]1,js

. . .
φk(γ

j(s))− φk(a)− [Dφφ(a)]k,js

∣∣∣∣∣∣
|s|

=

∣∣φ(γj(s))− φ(γj(0))−Dφφ(a) · (sfj−n+k)
∣∣

|s|

=
|φ(γj(s))− φ(γj(0))−Dφφ(a) · π(a−1γj(s))T |

|s|

≤ C2
|φ(γj(s))− φ(γj(0))−Dφφ(a) · π(a−1γj(s))T |

dφ(γj(s), a)
.

(5.31)

where fj−n+k ∈ M2n−k,1(R) denotes the (j − n + k)-th element of the canonical basis of
R2n−k. Now, thanks to the intrinsic differentiability of φ at a, (5.31) goes to zero as s
tends to zero and we get the thesis.

By Proposition 5.3.9, it is not difficult to deduce the following conditions.

Corollary 5.3.10. Given an open set U ⊂ R2n+1−k and a C1-regular (Euclidean) function
φ : U → Rk, then for every a ∈ U we have

Dφφ(a) =

ω1,1(a) . . . ω1,2n−k(a)
. . . . . . . . .

ωk,1(a) . . . ωk,2n−k(a)

 , (5.32)

where ωi,j : U → R, for i = 1, . . . , k, is the map

ωi,j(a) =


X̃j+kφi(a) for j = 1, . . . , n− k
∇φ`φi(a) = ∂η`φi(a) + φ`(a)∂τφi(a) for j = n− k + 1, . . . , n, ` = j − (n− k)

Ỹj−(n−k)φi(a) for j = n+ 1, . . . , 2n− k.

=
d

ds
φi(γ

j(s))
∣∣∣
s=0
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where γj : [−δ, δ]→ U is an integral curve of W φ
j such that γj(0) = a.

Corollary 5.3.11. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. Let a ∈ U and assume that φ is intrinsically differentiable at a. Then, for every
j = 1, . . . , 2n−k, there exists the intrinsic partial derivative ∂φjφ(a) and it equals the j-th
column of the intrinsic Jacobian matrix Dφφ(a)

∂φjφ(a) =

∂φjφ1(a)
. . .

∂φjφk(a)

 =

 [Dφφ(a)]1,j
. . .

[Dφφ(a)]k,j .


5.3.4 The existence of an approximation implies a Hölder-type regular-

ity

A uniformly intrinsically differentiable map satisfies locally a Hölder-type regularity of
order 1

2 .

Proposition 5.3.12. Let U ⊂ R2n+1−k be an open set, let φ : U → Rk be a function
and assume that φ is uniformly intrinsically differentiable on U . Then for every open set
U ′ b U

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|

1
2

: b, b′ ∈ U ′, 0 < |b′ − b| ≤ r

}
= 0. (5.33)

Proof. Let us consider an arbitrary point a ∈ U . By the uniform intrinsic differentiability
of φ and by Proposition 3.5.34, there is a positive R = R(a) > 0 such that IR(a) b U and
φ is intrinsic Lipschitz on IR(a). Then, by Remark 5.1.3, for every b, b′ ∈ IR(a), there is

a positive constant c = c(a) such that, if |b′ − b| < 1, dφ(b, b′) ≤ c|b′ − b|
1
2 . Now, let us

observe that

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|

1
2

: b, b′ ∈ IR(a), 0 < |b′ − b| ≤ r

}
= 0. (5.34)

In fact, assume by contradiction that (5.34) is not true. Then there exist some positive
constant ε > 0 such that for every n ∈ N there are bn, b

′
n ∈ IR(a) such that 0 < |b′n−bn| ≤ 1

n
and

|φ(b′n)− φ(bn)|
|b′n − bn|

1
2

≥ ε > 0.

By compactness, up to a subsequence, we can assume that bn and b′n converge to some
point b∗ ∈ IR(a) ⊂ U as n goes to ∞. Let us now consider for every n ∈ N

|φ(b′n)− φ(bn)|
|b′n − bn|

1
2

≤ |φ(b′n)− φ(bn)− dφa(b−1
n ? b′n)|

dφ(b′n, bn)

dφ(b′n, bn)

|b′n − bn|
1
2

+
|dφa(b−1

n ? b′n)|
|b′n − bn|

1
2

.

It converges to zero as n goes to ∞ by the intrinsic differentiability of φ at a and by the
following estimate

|dφb∗(b−1
n ? b′n)|

|b′ − b|
1
2

=
|Dφφ(b∗) · (π(b−1

n ? b′n))T |
|b′ − b|

1
2

≤ ‖D
φφ(b∗)‖|b′n − bn|√
|b′n − bn|

≤ ‖Dφφ(b∗)‖
√
|b′n − bn| → 0
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as n goes to ∞; by ‖Dφφ(b∗)‖ we have denoted the norm of the matrix Dφφ(b∗).
The thesis (5.33) follows from a standard compactness argument.

Remark 5.3.13. In the literature condition (5.33) of the previous proposition has been
also referred to as little Hölder continuity of order 1

2 on U ′ or 1
2 -little Hölder continuity of

the map φ on U ′, for instance one can refer to [Lun95, Section 0.2]. The space of functions
defined on an open set U ⊂ Rn to Rk for some n, k ∈ N, which satisfy condition (5.67) on

every open set U ′ b U , is usually denoted by h
1
2
loc(U,R

k).

The following theorem is the key tool to prove that the existence of a local uniform
approximation of a function φ through a family of C1-regular functions as the one in
Proposition 5.3.1, implies a further regularity in every direction and, in particular, gives
a Hölder-type control of order 1

2 along the vertical direction.

Proposition 5.3.14. Let I ⊂ R2n+1−k be a rectangle, let φ ∈ C1(I,Rk) and consider the
map intrinsic Jacobian matrix Dφφ ∈ C0(I,Mk,2n−k(R)). For a ∈ I

Dφφ(a) =

ω1,1(a) . . . ω1,2n−k(a)
. . . . . . . . .

ωk,1(a) . . . ωk,2n−k(a)

 ,

where, for any i = 1, . . . k,

ωi,`(a) =


X̃`+kφi(a) for ` = 1, . . . , n− k
∇φjφi(a) = ∂ηjφi(a) + φj(a)∂τφi(a) for ` = n− k + 1, . . . , n, j = `− (n− k)

Ỹ`−(n−k)φi(a) for ` = n+ 1, . . . , 2n− k.

Given a fixed rectangle I ′ b I, for any other rectangle I ′′ such that I ′ b I ′′ b I, there
exists a function

α : (0,∞)→ [0,∞)

depending on k, on I ′′, on {‖φj‖L∞(I′′)}j=1,...,k, on ‖Dφφ‖L∞(I′′) and on the modulus of
continuity of the maps {ωj,j+(n−k)}j=1,...,k on I ′′, such that the limit limr→0 α(r) = 0 and,
for r sufficiently small,

sup

{
|φ(a)− φ(b)|
|a− b|1/2

: a, b ∈ I ′, 0 < |a− b| ≤ r
}
≤ α(r).

Proof. The proof is inspired to the proof of [ASCV06, Proposition 5.8].
For ` = n − k + 1, . . . , n we set j = ` − (n − k), so that j ∈ {1, . . . , k}. We set

K := supa∈I′′ |a|, Mj := ‖φj‖L∞(I′′) and N := ‖Dφφ‖L∞(I′′). We call βj the modulus of
continuity of ωj,j+(n−k), on I ′′, that is a continuous increasing function βj : (0,∞)→ [0,∞)
such that |ωj,j+(n−k)(a)−ωj,j+(n−k)(b)| ≤ βj(|a−b|) for all a, b ∈ I ′′, with limr→0 βj(r) = 0.
We introduce k + 1 rectangles such that I ′ b J1 b J2 · · · b Jk+1 b I ′′. We set I ′ = J0,
and, for any a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Ji (for i = 0, . . . , k − 1), for
j ∈ {1, . . . , k}, we consider the integral curves:{

γ̇ja(t) = ( ∂
∂ηj

+ φj(γ
j
a(t))

∂
∂τ )(γja(t)) = ∇φj (γja(t))

γja(ηj) = a.
(5.35)

Thanks to the Cauchy-Lipschitz theorem, these are well defined and γja ∈ C1([ηj −
εi+1,j , ηj + εi+1,j ]) for a certain constant εi+1,j that depends on Ji and Ji+1 (in particular
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εi+1,j depends on the distance between the two boundaries ∂Ji and ∂Ji+1). We can choose,

for all j = 1, . . . , k, εi+1,j > 0 such that γja(t)([ηj − εi+1,j , ηj + εi+1,j ]) ⊂ Ji+1 for every
a ∈ Ji (the choice is uniform in a). If a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Ji
we get, for t ∈ [ηj − εi+1,j , ηj + εi+1,j ],

γja(t) =

(
xk+1, . . . , xn, η1, . . . , ηj + (t− ηj), . . . , ηk, yk+1, . . . , yn, τ +

∫ t

ηj

φj(γ
j
a(s))ds

)
. (5.36)

Denoting τ ja(t) = τ +
∫ t
ηj
φj(γ

j
a(s))ds we also have

τ̇ ja(t) = φj(γ
j
a(t)), τ̈ ja(t) =

d2

d2t
τ ja(t) =

d

dt
φj(γ

j
a(t)) = ωj,j+(n−k)(γ

j
a(t)).

Let us now set

δj(r) := max{r1/4, 2
√

2kβj(r + 4kMjr1/4)}.

We will prove that

θ(r) : = sup

{
|φ(a)− φ(b)|
|a− b|1/2

: a, b ∈ I ′, 0 < |a− b| ≤ r
}

≤

 k∑
j=1

δj(r)

+

√√√√ k∑
j=1

Mj

 k∑
j=1

δj(r)

+ kNr1/2

(5.37)

for r sufficiently small. The thesis will follow directly from this inequality.
In order to prove (5.37), we proceed by contradiction.
Let us first consider a and b as below. Later on, the result will be extended to a and b in
I ′ of generic coordinates. Set

a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ I ′

b = (xk+1, . . . , xn, η
′
1, . . . , η

′
k, yk+1, . . . , yn, τ

′) ∈ I ′
(5.38)

such that |a− b| is sufficiently small and assume that

|φ(a)− φ(b)|
|a− b|1/2

>
k∑
j=1

δj +

√√√√ k∑
j=1

Mj

 k∑
j=1

δj

+ k2Nr1/2 (5.39)

where δj = δj(|a− b|). Notice that the functions δj are monotonically increasing.
For j = 1, . . . , k, we call δ′j = δj(|τ ′− τ |) ≤ δj . We obtain that, thanks to the definition of
δj ,

βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/2/δj)
δ2
j

≤
βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/2/δ′j)

δ′2j

≤ βj(|τ ′ − τ |+ 4kMj |τ ′ − τ |1/4)

δ′2j

≤
δ′2j
8k

1

δ′2j
=

1

8k
.

(5.40)
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We now consider

c = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ
′) ∈ I ′.

Notice that a and c differ only for the vertical coordinate and c and b for the horizontal
ones. In particular

|a− c|1/2 = |τ − τ ′|1/2

|c− b|1/2 = |(η1 − η′1, . . . , ηk − η′k)|1/2.
(5.41)

Since we are proceeding by contradiction let us continue from (5.39)

k∑
j=1

δj +

√√√√ k∑
j=1

Mj

 k∑
j=1

δj

+ kNr1/2

<
|φ(a)− φ(b)|
|a− b|1/2

≤ |φ(a)− φ(c)|
|a− b|1/2

+
|φ(c)− φ(b)|
|a− b|1/2

≤ |φ(a)− φ(c)|
|τ − τ ′|1/2

+
|φ(c)− φ(b)|

|(η1 − η′1, . . . , ηk − η′k)|1/2

≤
∑k

j=1 |φj(a)− φj(c)|
|τ − τ ′|1/2

+

∑k
j=1 |φj(c)− φj(b)|

|(η1 − η′1, . . . , ηk − η′k)|1/2

:= R1 +R2.

(5.42)

We reach a contradiction by showing that

(i) R1 ≤
∑k

j=1 δj ;

(ii) R2 ≤
√∑k

j=1Mj(
∑k

j=1 δj) + kNr1/2.

Let us prove (i). We show (i) showing that for any a, c ∈ Jk (hence in particular, for
a, c ∈ I ′), when a and c differ only for the vertical coordinate, R1 ≤

∑k
j=1 δj . In particular,

we prove that for any j the following holds,

|φj(a)− φj(c)|
|τ − τ ′|1/2

≤ δj .

Then let us fix j ∈ {1, . . . , k} and consider a and c ∈ Jk as before and let us assume that
τ > τ ′ and let us assume by contradiction that

|φj(a)− φj(c)|
|τ − τ ′|

1
2

> δj . (5.43)

Consider the maps γja and γjc . For any t ∈ [ηj − εk+1,j , ηj + εk+1,j ] we have

τ ja(t)− τ jc (t)

= τ − τ ′ +
∫ t

ηj

[τ̇ ja(ηj)− τ̇ jc (ηj) +

∫ s

ηj

[τ̈ ja(r)− τ̈ jc (r)]dr]ds

= τ − τ ′ + (t− ηj)(φj(a)− φj(c)) +

∫ t

ηj

∫ s

ηj

ωj,j+(n−k)(γ
j
a(r))− ωj,j+(n−k)(γ

j
c (r))drds
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≤ τ − τ ′ + (t− ηj)(φj(a)− φj(c)) + (t− ηj)2 sup
r∈[ηj ,t]

βj(|γja(r)− γjc (r)|) (5.44)

≤ τ − τ ′ + (t− ηj)(φj(a)− φj(c)) + (t− ηj)2βj(|τ − τ ′|+ 2Mj |t− ηj |)

since by the fundamental theorem of calculus and by the triangle inequality the following
holds

|γja(r)− γjc (r)| ≤ |γja(ηj)− γjc (ηj)|+ |r − ηj |(‖τ̇ ja‖+ ‖τ̇ jc ‖)
≤ |τ − τ ′|+ 2Mj |t− ηj |,

(5.45)

where by ‖ · ‖ here we have denoted the norm in ‖ · ‖L∞(I′′).
Now, if (φj(a)− φj(c)) > 0, we set

t := ηj − 2k
(τ − τ ′)1/2

δj
(5.46)

or otherwise

t := ηj + 2k
(τ − τ ′)1/2

δj
. (5.47)

We can take a and b close enough so that 2k(τ − τ ′)1/4 ≤ εk+1,j , since, according to the
definition of δj , we have

2k(τ − τ ′)1/4 ≥ 2k
(τ − τ ′)1/2

δj

= |t− ηj |
(5.48)

Hence, for r small enough, let us start assuming that (φ(a) − φ(c)) > 0 and then, for t
given by (5.46), the last terms in (5.44) equals

τ − τ ′ +

(
−2k

(τ − τ ′)1/2

δj

)
(φj(a)− φj(c))

+

(
−2k

(τ − τ ′)1/2

δj

)2

βj

(
|τ − τ ′|+ 2Mj

∣∣∣∣∣−2k
(τ − τ ′)1/2

δj

∣∣∣∣∣
)
.

(5.49)

By contradiction we had assumed (5.43) to be true, i.e. that
|φj(a)−φj(c)|
|τ−τ ′|1/2 > δj . Then (5.49)

can be estimated from above by

τ − τ ′ + (−2k((τ − τ ′)1/2)
|τ − τ ′|1/2

(φj(a)− φj(c))
(φj(a)− φj(c))

+ 4k2
(τ − τ ′)
δ2j

βj

(
|τ − τ ′|+ 2Mj

∣∣∣∣−2k
(τ − τ ′)1/2

δj

∣∣∣∣)

= τ − τ ′ + (−2k((τ − τ ′)1/2)(τ − τ ′)1/2 + 4k2(τ − τ ′)
βj

(
|τ − τ ′|+ 4kMj

(τ−τ ′)1/2
δj

)
δ2j

≤ τ − τ ′ − 2k(τ − τ ′) +

(
4k2

(τ − τ ′)
8k

)
= τ − τ ′ − 2k(τ − τ ′) +

1

2
k(τ − τ ′)

=
2− 3k

2
(τ − τ ′) < 0

(5.50)

since k ≥ 1. This is not possible since it would imply that the two integral curves of ∇φj
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starting at a and c meet each other at some point on the plane (ηj , τ).
The study of the case (5.47) for (φj(a)− φj(c)) < 0 gives an identical result.

Hence, for our choice of a and c, R1 ≤
∑k

j=1 δj .
Let us now prove (ii). By contradiction we assume that

R2 >

√√√√ k∑
j=1

Mj

 k∑
j=1

δj

+ kNr1/2. (5.51)

First of all we define for j = 2, . . . , k

d1 : = γ1
b (η1)

dj : = γjdj−1
(ηj).

(5.52)

(remember that γjb (η
′
j) = b).

The points b, d1, . . . , dk are vertices of a piecewise regular ”polygonal” curve connecting b
and dk. The segments of this curve are built following the integral curves of the vector
fields ∇φj for time η′j − ηj , for j = 1, . . . , k. It turns out that

dk = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ
′′)

for a certain well defined τ ′′.
If, for every j ∈ {1, . . . , k}, |η′j − ηj | is sufficiently small, we get that dk is well defined and
belongs to Jk. We can compute for every i = 1, . . . , k,

|φi(b)− φi(dk)| ≤ |φi(b)− φi(d1)|+ |φi(d1)− φi(d2)|+ · · ·+ |φi(dk−1)− φi(dk)|

=

∣∣∣∣∣
∫ η1

η′1

ωi,1(γ1
b (t))dt

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
∫ ηk

η′k

ωi,k(γ
k
dk−1

(t))dt

∣∣∣∣∣
≤ N |η1 − η′1|+ · · ·+N |ηk − η′k|
≤ kN |(η1 − η′1, . . . , ηk − η′k)|.

(5.53)

Let us set now b = d0 and compute

|τ ′ − τ ′′| =

∣∣∣∣∣∣τ ′ − τ −
k∑
j=1

∫ ηj

η′j

φj(γ
j
dj−1

(t))dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
j=1

∫ ηj

η′j

φj(γ
j
dj−1

(t))

∣∣∣∣∣∣
≤

k∑
j=1

Mj |ηj − η′j |

≤

 k∑
j=1

Mj

 |(η1 − η′1, . . . , ηk − η′k)|.

(5.54)
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Now, by (5.51) and (5.53), we get

k∑
i=1

|φi(c)−φi(dk)| ≥
k∑
i=1

(|φi(c)− φi(b)| − |φi(b)− φi(dk)|)

>

√√√√ k∑
j=1

Mj

 k∑
j=1

δj

+ kNr1/2

 |(η′1 − η1, . . . , η
′
k − ηk)|1/2

− kN |(η′1 − η1, . . . , η
′
k − ηk)|

≥

√√√√ k∑
j=1

Mj

 k∑
j=1

δj

+ kNr1/2 − kN |(η′1 − η1, . . . , η
′
k − ηk)|1/2


|(η′1 − η1, . . . , η

′
k − ηk)|1/2.

(5.55)

If |(η′1 − η1, . . . , η
′
k − ηk)|1/2 ≤ |a− b|

1
2 ≤ r1/2 , we get that the last term in (5.55) can be

estimated from below by√√√√ k∑
j=1

Mj

 k∑
j=1

δj

 |(η′1 − η1, . . . , η
′
k − ηk)|1/2 ≥ |τ ′ − τ ′′|1/2

 k∑
j=1

δj

 . (5.56)

Therefore, we have proved that for c, dk ∈ Jk,∑k
i=1 |φi(c)− φi(dk)|
|τ ′ − τ ′′|1/2

>
k∑
j=1

δj ,

which is not possible (for what we proved before) for any a, c ∈ Jk.
Let us now consider the more general case when when a, b ∈ I ′

a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ),

b = (x′k+1, . . . , x
′
n, η
′
1, . . . , η

′
k, y
′
k+1, . . . , y

′
n, τ
′).

We want to exploit what we have proved before. In order to do this we move along the
integral curves of the vector fields X̃j , Ỹj for j = k + 1, . . . , n in order to make coincide
the variables xj and yj . We then define

a∗ : = expa

 n∑
j=k+1

((x′j − xj)W
φ
j−k + (y′j − yj)W

φ
j+(n−k))

 (a)

= a ?

 n∑
j=k+1

((x′j − xj)ej + (y′j − yj)ej+n)

 ,

where x = (xk+1, . . . , xn), y = (yk+1, . . . , yn), x′−x = (x′k+1−xk+1, . . . , x
′
n−xn), y′−y =

(y′k+1 − yk+1, . . . , y
′
n − yn) ∈ Rn−k. Hence

a∗ = (x′k+1, . . . , x
′
n, η1, . . . , ηk, y

′
k+1, . . . , y

′
n, τ + σ(x, y, x′ − x, y′ − y))
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and

|φi(a)− φi(a∗)| = |
∫ 1

0

n∑
j=k+1

((x′j − xj)ωi,j−k(expa(tW
φ
j−k)(a))

+ (y′j − yj)ωi,j+(n−k)(expa(tW
φ
j+(n−k))(a))dt|

≤ N(n− k)(|x′ − x|+ |y′ − y|)
≤ 2N(n− k)|a− b|.

(5.57)

Hence

|φ(a)− φ(a∗)| ≤
k∑
i=1

|φi(a)− φi(a∗)|

≤ 2k(n− k)N |a− b|.

(5.58)

If we consider

|σ(x, y, x′ − x, y′ − y)| =

∣∣∣∣∣∣12
n∑

j=k+1

((x′j − xj)yj − xj(y′j − yj))

∣∣∣∣∣∣ ≤ K(n− k)|a− b|,

since it is controlled by the norm |a − b|, we can assume r sufficiently small, and hence
a, b sufficiently close, such that a∗ ∈ I ′. Then we get

|a∗ − b| ≤ |(η′1 − η1, . . . , η
′
k − ηk)|+ |τ ′ − τ |+ |σ(x, y, x′ − x, y′ − y)|

≤ 2|a− b|+K(n− k)|a− b|
= (2 +K(n− k))|a− b|.

(5.59)

Now

|φ(a)− φ(b)|
|a− b|1/2

≤ |φ(a)− φ(a∗)|
|a− b|1/2

+
|φ(a∗)− φ(b)|
|a− b|1/2

≤ 2(n− k)kN |a− b|
|a− b|1/2

+

(
1

2 +K(n− k)

)
|φ(a∗)− φ(b)|
|a∗ − b|1/2

,

(5.60)

so we are in the particular case we had at the beginning. The last term of (5.60) can then
be estimated from above by

2(n− k)kN |a− b|1/2 +

(
1

2 +K(n− k)

)
α′(|a∗ − b|1/2)

≤ 2(n− k)kN |a− b|1/2 +

(
1

2 +K(n− k)

)
α′((2 +K(n− k))|a− b|1/2),

(5.61)

which goes to zero when b goes to a. This concludes our proof.

5.3.5 The continuity of intrinsic derivatives implies a Hölder-type reg-
ularity

Let us modify the hypotheses of Proposition 5.3.14. Notice that the existence and
continuity of the intrinsic derivatives of φ, ∂φjφ : I → Rk for j = 1, . . . , 2n − k would be
enough to satisfy the hypotheses of the next proposition.

Proposition 5.3.15. Let I ⊂ R2n+1−k be a rectangle. Let φ : I → Rk be a continuous
function and assume that there exist k × (2n− k) continuous functions wi,` : I → R such



138 5. H-regular surfaces of low codimension

that for every i, . . . , k and ` = 1, . . . , 2n − k, for every γ` : [−δ, δ] → I integral curve of

the vector field W φ
` the following holds

d

dt
φi(γ

`(t)) = wi,`(γ
`(t)) (5.62)

for any t ∈ [−δ, δ]. Given a fixed rectangle I ′ b I, for any other rectangle I ′′ such that
I ′ b I ′′ b I, there exists a function

α : (0,∞)→ [0,∞)

which depends on k, on I ′′, on {‖φj‖L∞(I′′)}j=1,...,k, on ‖[ωi,j ]i,j‖L∞(I′′) and on the modulus
of continuity of the maps {ωj,j+(n−k)}j=1,...,k, on I ′′, such that limr→0 α(r) = 0 and, for r
sufficiently small,

sup

{
|φ(a)− φ(b)|
|a− b|1/2

: a, b ∈ I ′, 0 < |a− b| ≤ r
}
≤ α(r).

Proof. The proof is analogous to the one of Proposition 5.3.14, therefore we keep the same
notation. Unique change is that now we reset the variable N to denote the norm in L∞(I ′′)
of the matrix containing as (i, j)-th element the value of the maps ωi,j at the considered
point, N := ‖[ωi,j ]i,j‖L∞(I′′). In this setting we lose the uniqueness of the integral curves

of ∇φj for j = 1, . . . , k. This lack of uniqueness is replaced by the condition (5.62) on the
integral curves of the vector fields ∇φj . We still denote by γja an arbitrarily chosen integral
curve of∇φj (j = `−(n−k)) of initial point a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈
Ji such that γja(ηj) = a. We assume as before that γja it is defined on [ηj−εi+1,j , ηj+εi+1,j ]
such that γj([ηj − εi+1,j , ηj + εi+1,j ]) ⊂ Ji+1. The loss of uniqueness implies that two such
integral curves could indeed meet each other, so the previous contradiction obtained in
(5.50) would no longer hold in this case. Therefore, we have to replace it with a different
contradiction. We present a new suitable contradiction argument inspired by an argument
used in [BSC10b]. Suppose, for the sake of simplicity, that j = 1.

As we did in the proof of Proposition 5.3.14, in order to obtain (5.50), we fix as
above a, c ∈ Jk and we assume that they only differ for their vertical coordinate (we
assume again τa = τ > τ ′ = τc). Then in the proof of Proposition 5.3.14, we proved that if
φ1(a)−φ1(c) < 0, there exists t̄ ∈ [η1, η1+εk+1,j ] (or t̄ ∈ [η1−εk+1,j , η1] if φ1(a)−φ1(c) > 0)
such that

τ1
a (t̄)− τ1

c (t̄) < 0,

while τ1
a (η1) = τ > τ ′ = τ1

c (η1). We can then define

t∗ := sup{t ∈ [η1, η1 + εk+1,1] : t ≤ t̄, τ1
a (t) > τ1

c (t)}.

We have 0 < t∗ < t̄ ≤ η1 + εk+1,1 and, by continuity, τ1
a (t∗) = τ1

c (t∗), hence

γ1
a(t∗) = γ1

c (t∗).

Let us prove that φ1(γ1
a(t∗)) 6= φ1(γ1

c (t∗)), so that we will obtain a new contradiction
and the thesis can be obtained mirroring verbatim the remaining part of the proof of
Proposition 5.3.14. Clearly, the second order derivatives of τ ja and τ jc are replaced by the
maps ωj,j+(n−k). Remember that if φ1(a) − φ1(c) < 0, we assumed that (5.43), i.e. that
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φ1(a)− φ1(c) < −δ1

√
τ − τ ′, hence

φ1(γ1
a(t∗))−φ1(γ1

c (t∗)) = φ1(a)− φ1(c) +

∫ t∗

η1

ω1,n−k+1(γ1
a(s))− ω1,n−k+1(γ1

c (s))ds

≤ φ1(a)− φ1(c) + (t∗ − η1)β1(|τ − τ ′|+ 2M1|t∗ − η1|)
≤ φ1(a)− φ1(c) + (t̄− η1)β1(|τ − τ ′|+ 2M1|t̄− η1|)

keeping in mind (5.43) and (5.47),

< − δ1

√
τ − τ ′ + 2k

β1(|τ − τ ′|+ 2M1|t̄− η1|)
δ1

√
τ − τ ′

≤ − δ1

√
τ − τ ′ + 2k

β1(|τ − τ ′|+ 4kM1

√
|τ − τ ′|/δ1)

δ1

√
τ − τ ′ =

if δ1 < 1 (and we can choose r small enough such that δj < 1 for any j = 1, . . . , k)

= 2δ1

√
τ − τ ′

(
−1

2
+ k

β1(|τ − τ ′|+ 4kM1

√
|τ − τ ′|/δ1(r))

δ2
1

)

< 2δ1

√
τ − τ ′

(
−1

2
+

k

8k

)
< 0.

(5.63)

This proof, after small modification, works also for the case when φ1(a) − φ1(c) > 0,
starting from φ1(γ1

c (t∗))− φ1(γ1
a(t∗)) and using hypotheses (5.43), and (5.46); of course it

works also for the curves γja and γjc , for j = 2, . . . , k, so that∑k
j=1 |φj(a)− φj(c)|

|τ − τ ′|
1
2

≤
k∑
j=1

δj .

Hence (ii) has to be valid, and we can resume verbatim the proof of Proposition 5.3.14
from (5.51).

By a standard compactness argument we get the following.

Proposition 5.3.16. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function such that there are k × (2n− k) continuous functions ωi,j : U → R such that for
every i = 1, . . . , k and j = 1, . . . , 2n− k, for every integral curve γj : [−δ, δ]→ U integral

curve of the vector field W φ
j the following holds

d

dt
φi(γ

j(t)) = wi,j(γ
j(t)),

for any t ∈ [−δ, δ]. Then, if we fix an open set U ′ b U , we know that for any open U ′′

such that U ′ b U ′′ b U there exists a function

α : (0,∞)→ [0,∞)

which depends on U ′′, on k, on {‖φj‖L∞(U ′′)}j=1,...,k, on ‖[ωi,j ]i,j‖L∞(U ′′) and on the mod-
ulus of continuity of the maps {ωj,j+(n−k)}j=1,...,k on U ′′, such that limr→0 α(r) = 0 and,
for r sufficiently small,

sup

{
|φ(a)− φ(b)|
|a− b|1/2

: a, b ∈ U ′, 0 < |a− b| ≤ r
}
≤ α(r). (5.64)
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5.3.6 Characterizations of uniform intrinsic differentiability

Proposition 5.3.17. Let U ⊂ R2n+1−k be an open set, let φ : U → Rk be a continuous
function and let a, b ∈ U be two generic points

a = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ), b = (x′k+1, . . . , x
′
n, η
′
1, . . . , η

′
k, y
′
k+1, . . . , y

′
n, τ
′).

Set

ξ := (xk+1 − x′k+1, . . . , xn − x′n, η1 − η′1, . . . , ηk − η′k, yk+1 − y′k+1, . . . , yn − y′n),

and consider the following function, ρφ, that is analogous of the one considered in [ASCV06]

ρφ(a, b) := max{|ξ|, |τ − τ ′ + 1

2

k∑
j=1

(φ′j + φj)(η
′
j − ηj) + σ(x, y, x′, y′)|

1
2 }, (5.65)

where σ(x, y, x′, y′) := 1
2

∑n
j=k+1(xjy

′
j−x′jyj), φj := φj(a) and φ′j := φj(b) for j = 1, . . . , k.

If there exists a constant c > 0 such that

|φ(a)− φ(b)| ≤ c ρφ(a, b)

for every a, b ∈ U , then φ is intrinsic Lipschitz.

Proof. If

|φ(a)− φ(b)| ≤ c|(xk+1 − x′k+1, . . . , xn − x′n, η1 − η′1, . . . , ηk − η′k, yk+1 − y′k+1, . . . , yn − y′n)|

the thesis is valid. Let us then consider the case when

|φ(a)− φ(b)| ≤ c |τ − τ ′ + 1

2

k∑
j=1

(φ′j + φj)(η
′
j − ηj) + σ(x, y, x′, y′)|

1
2

= c |τ − τ ′ +
k∑
j=1

φ′j(η
′
j − ηj) +

1

2

k∑
j=1

(φj − φ′j)(η′j − ηj) + σ(x, y, x′, y′)|
1
2

for any ε > 0

≤ c

dφ(a, b) +
1

2

k∑
j=1

∣∣∣∣(φj − φ′j) ε(η′j − ηjε

)∣∣∣∣
1
2


≤ c

dφ(a, b) +
k∑
j=1

(
1

4
ε|φj − φ′j |+

1

4

|η′j − ηj |
ε

)
≤ c

(
dφ(a, b) + k

1

4
ε|φ(a)− φ(b)|+ k

1

4

dφ(a, b)

ε

)
.

We denoted by | · | both the Euclidean norm on R and on Rk. If we now fix ε = 2
ck , we

finally get

|φ(a)− φ(b)| ≤ 2

(
c+

k2c2

8

)
dφ(a, b).
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Proposition 5.3.18. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be an intrinsic
Lipschitz function. Then, there exists a constant c > 0 such that

ρφ(a, b) ≤ c dφ(a, b)

for every a, b ∈ U

Proof. By direct computations , we have

ρφ(a, b) ≤ d(Φ(a),Φ(b))

= ‖Φ(b)−1Φ(a)‖
≤ dφ(a, b) + |φ(a)− φ(b)|
≤ (1 + Lip(φ)) dφ(a, b).

(5.66)

The existence of a family of exponential maps and a 1
2 -Hölder-type regularity of the

map are sufficient to ensure uniform intrinsic differentiability.

Theorem 5.3.19. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. If for a certain a ∈ U there exist 0 < δ2 < δ1 and a family of exponential maps
at a

expa(sW
φ
` )(b) : [−δ2, δ2]× Iδ2(a)→ Iδ1(a)

for ` = 1, . . . , 2n− k, and if

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|1/2

: b, b′ ∈ U ′, 0 < |b′ − b| ≤ r
}

= 0 (5.67)

for every open set U ′ b U , then φ is uniformly intrinsically differentiable at a. Moreover,
in this case, the (i, `)-th component [Dφφ(a)]i,` of the intrinsic Jacobian matrix of φ at a
equals

[Dφφ(a)]i,` =
d

ds
φi(expa(sW

φ
` )(a))

∣∣
s=0

for i = 1, . . . , k and ` = 1, . . . , 2n− k.

Remark 5.3.20. Notice that, according to the proof below, hypothesis (5.67) can be
localized in the sense that one can substitute (5.67) with the following condition

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|1/2

: b, b′ ∈ Ir(a), b 6= b′
}

= 0. (5.68)

Condition (5.68) better highlights the fact that the uniform intrinsic differentiability of φ
at a is a local property.

Proof. We set

a = (x̄k+1, . . . , x̄n, η̄1, . . . , η̄k, ȳk+1, . . . , ȳn, τ̄) ∈ U,
b = (xk+1, . . . , xn, η1, . . . , ηk, yk+1, . . . , yn, τ) ∈ Iδ0(a),

b′ = (x′k+1, . . . , x
′
n, η
′
1, . . . , η

′
k, y
′
k+1, . . . , y

′
n, τ
′) ∈ Iδ0(a),

(5.69)

for δ0 small; surely

|(x′k+1 − xk+1, . . . , x
′
n − xn, η′1 − η1, . . . , η′k − ηk, y′k+1 − yk+1, . . . , y

′
n − yn)| ≤ 2(2n− k)δ0. (5.70)
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Just to simplify the computation we assume that η′i ≥ ηi, for i = 1, . . . , k.
Let us define the smooth vector field

X̄ :=

n∑
j=k+1

(x′j − xj)W
φ
j−k + (y′j − yj)W

φ
j+(n−k) =

n∑
j=k+1

(x′j − xj)X̃j + (y′j − yj)Ỹj .

We start moving from b to the point

b∗0 := expa(X̄)(b) = b ?

 n∑
j=k+1

(x′j − xj)ej−k + (y′j − yj)ej+(n−k)


(recall that ej denotes the j-th vector of the canonical basis of R2n+1−k, see Remark

5.3.4). Then we move for a time η′1− η1 along the exponential map at a of W φ
n−k+1 = ∇φ1

with initial point b∗0. We reach a point b∗1 and then we move for a time η′2 − η2 along the

exponential map at a of W φ
n−k+2 = ∇φ2 with initial point b∗1. We denote by b∗2 the endpoint

of this two-piecewise integral curve and we iterate this process setting for j = 0, . . . , k− 1

b∗j+1 : = expa((η
′
j+1 − ηj+1)W φ

(n−k)+j+1)(b∗j )

= expa((η
′
j+1 − ηj+1)∇φj+1)(b∗j ).

The coordinates of b∗k equal the ones of b′, except for the vertical one denoted by τ∗k :

τ∗k = τ +
k∑
j=1

∫ η′j−ηj

0
φj(expa(r∇φj )(b∗j−1))dr + σ(x, y, x′, y′), (5.71)

where σ(x, y, x′, y′) is the same defined in (5.5). The point b∗k belongs to a square
ICδ0+Dδ2

0
(a) for some positive constant C and D. In fact

|τ∗k − τ̄ | = |τ +
k∑
j=1

∫ η′j−ηj

0
φj(expa(r∇φj )(b∗j−1))dr + σ(x, y, x′, y′)− τ̄ |

≤|τ − τ̄ |+
k∑
i=1

(η′i − ηi) max
Iδ1(a)

|φi|+
1

2
|

n∑
i=k+1

(xi(y
′
i − yi)− yi(x′i − xi))|

≤|τ − τ̄ |+
k∑
i=1

(η′i − ηi) max
Iδ1(a)

|φi|+
1

2
|

n∑
i=k+1

((xi − x̄i + x̄i)(y
′
i − yi)− (yi − ȳi + ȳi)(x

′
i − xi))|

≤|τ − τ̄ |+
k∑
i=1

|η′i − ηi|max
Iδ1(a)

|φi|+
1

2

n∑
i=k+1

(|xi − x̄i|+ |x̄i|)|y′i − yi|+ (|yi − ȳi|+ |ȳi|)|x′i − xi|

≤|τ − τ̄ |+
k∑
i=1

(η′i − ηi) max
Iδ1(a)

|φi|

+
1

2

n∑
i=k+1

((|x̄i|+ δ0)(|y′i − ȳi|+ |yi − ȳi|) + (|ȳi|+ δ0)(|x′i − x̄i|+ |xi − x̄i|))

≤ δ0 +

k∑
i=1

δ0 max
Iδ1(a)

|φi|
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+
1

2

n∑
i=k+1

((|x̄i|+ δ0)(2δ0) + (|ȳi|+ δ0)(2δ0))

< Cδ0 +Dδ2
0 .

Now, we can consider that

φ(b′)− φ(b) = φ(b′)− φ(b∗k) +
k∑
i=1

(φ(b∗i )− φ(b∗i−1)) + φ(b∗0)− φ(b)

= φ(b′)− φ(b∗k) +
k∑
i=1

(φ(expa((η
′
i − ηi)∇φi)(b∗i−1))− φ(b∗i−1)) + φ(b∗0)− φ(b)

=φ(b′)− φ(b∗k) +
k∑
j=1


∫ η′j−ηj

0 ω1,j+(n−k)(expa(r∇φj )(b∗j−1))dr

. . .∫ η′j−ηj
0 ωk,j+(n−k)(expa(r∇φj )(b∗j−1))dr

 (5.72)

+
n∑

j=k+1


∫ 1

0 (x′j − xj)ω1,j−k(expa(rX̄)(b))dr

. . .∫ 1
0 (x′j − xj)ωk,j−k(expa(rX̄)(b))dr


+

n∑
j=k+1


∫ 1

0 (y′j − yj)ω1,j+(n−k)(expa(rX̄)(b))dr

. . .∫ 1
0 (y′j − yj)ωk,j+(n−k)(expa(rX̄)(b))dr

 .

For i = 1, . . . , k and ` = 1, . . . , 2n − k, we denote as usual by ωi,` the maps in (iii) of
Definition 5.3.2.
Claim 1. For any i = 1, . . . , k, for ` = n − k + 1, . . . , n, j = ` − (n − k) (and then for
j = 1, . . . , k)∫ η′j−ηj

0
ωi,`(expa(r∇φj )(b∗j−1))dr = ωi,`(a)(η′j − ηj) + o(|η′j − ηj |) as δ0 → 0.

Let us prove Claim 1. Fix i ∈ {1, . . . , k} and consider for every j∫ η′j−ηj

0
ωi,`(expa(r∇φj )(b∗j−1))− ωi,`(a)dr + ωi,`(a)(η′j − ηj).

We want to prove that

lim
δ0→0

1

η′j − ηj

∫ η′j−ηj

0
ωi,`(expa(r∇φj )(b∗j−1))− ωi,`(a)dr = 0.

Let us first show that

|ωi,`(b∗0)− ωi,`(a)| = o(1) as δ0 → 0.

In fact, we have

|ωi,`(b∗0)− ωi,`(a)| ≤ |ωi,`(b∗0)− ωi,`(b)|+ |ωi,`(b)− ωi,`(a)|
≤ βi,`(|b∗0 − b|) + βi,`(|b− a|),
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where βi,` is the modulus of continuity of ωi,`. Let us now observe that the two terms
go to zero. Indeed, ωi,` is continuous by hypothesis. Since (5.70) holds, we know that
|(x′, y′) − (x, y)| → 0 as δ0 → 0, and we can then find a real number δ̄ > 0 such that
|(x′, y′)− (x, y)| ≤ cδ0 < δ for δ0 < δ̄. Hence

lim
δ0→0

|ωi,`(b∗0)− ωi,`(b)| = 0.

Moreover, when δ0 goes to zero, b and b′ get closer and closer to a, so when δ0 goes to
zero, |b− a| goes to zero too.
Once we fix p ∈ {1, . . . , k}, we get

1

η′p − ηp

∫ η′p−ηp

0
ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,n−k+p(a)dr

=
1

η′p − ηp

∫ η′p−ηp

0
ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,n−k+p(b

∗
p−1)dr

+

p∑
i=2

(ωi,n−k+p(b
∗
k−1)− ωi,n−k+p(b

∗
k−2))) + ωi,n−k+p(b

∗
0)− ωi,n−k+p(a)

≤ sup
r∈[0,η′p−ηp]

|ωi,n−k+p(expa(r∇φp)(b∗p−1))− ωi,p(b∗p−1)|

+

p∑
i=2

|(ωi,n−k+p(b
∗
k−1)− ωi,n−k+p(b

∗
k−2)))|+ |ωi,n−k+p(b

∗
0)− ωi,n−k+p(a)|,

which goes to zero as δ0 tends to zero, by what we have already proved and by the fact
that if δ0 goes to zero, then |η′j − ηj | goes to zero for j = 1, . . . , p. Hence |ωi,n−k+p(b

∗
k−1)−

ωi,n−k+p(b
∗
k−2)| ≤ βi,n−k+p(|b∗k−1 − b∗k−2|) goes to zero. We finally reach the conclusion

from the absolute continuity of ωi,n−k+p(expa(r∇φ1)(b∗p−1)) on [0, η′p− ηp] and then Claim
1 is proved.
Since Claim 1 holds, we can rewrite (5.72) as

φ(b′)− φ(b∗k) +
k∑
j=1

ω1,j+(n−k)(a)(η′j − ηj) + o(|η′j − ηj |)
. . .

ωk,j+(n−k)(a)(η′j − ηj) + o(|η′j − ηj |)


+

n∑
j=k+1

ω1,j−k(a)(x′j − xj) + o(|x′j − xj |)
. . .

ωk,j−k(a)(x′j − xj) + o(|x′j − xj |)


+

n∑
j=k+1

ω1,j+(n−k)(a)(y′j − yj) + o(|y′j − yj |)
. . .

ωk,j+(n−k)(a)(y′j − yj) + o(|y′j − yj |)



= φ(b′)− φ(b∗k) +



ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)





x′k+1 − xk+1

. . .
x′n − xn
η′1 − η1

. . .
η′k − ηk

y′k+1 − yk+1

. . .
y′n − yn





5.3 Characterizations of uniform intrinsic differentiability 145

+


∑n

j=k+1 o(|x′j − xj |) + o(|y′j − yj |) +
∑k

j=1 o(|η′j − ηj |)
. . .∑n

j=k+1 o(|x′j − xj |) + o(|y′j − yj |) +
∑k

j=1 o(|η′j − ηj |)



= φ(b′)− φ(b∗k) +



ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)





x′k+1 − xk+1

. . .
x′n − xn
η′1 − η1

. . .
η′k − ηk

y′k+1 − yk+1

. . .
y′n − yn


+

o(dφ(b, b′))
. . .

o(dφ(b, b′))


as δ0 goes to zero, since |x′j − xj | ≤ dφ(b, b′), |y′j − yj | ≤ dφ(b, b′), |η′j − ηj | ≤ dφ(b, b′).
The same argument yields that

φ(b′)− φ(b) ≤ φ(b′)− φ(b∗k)

+



ω1,1(a) ω1,2(a) . . . ω1,2n−k(a)
ω2,1(a) ω2,2(a) . . . ω2,2n−k(a)
. . .
. . .
. . .

ωk,1(a) ωk,2(a) . . . ωk,2n−k(a)





x′k+1 − xk+1

. . .
x′n − xn
η′1 − η1

. . .
η′k − ηk

y′k+1 − yk+1

. . .
y′n − yn


+

o(ρφ(b, b′))
. . .

o(ρφ(b, b′))

 .
(5.73)

In order to get the thesis, we are left to prove that

|φ(b′)− φ(b∗k)| = o(dφ(b, b′)) as δ0 → 0. (5.74)

To prove this, it is enough to show that

|φ(b′)− φ(b∗k)| = o(ρφ(b, b′)) as δ0 → 0. (5.75)

In fact, if (5.75) holds, we can apply (5.73) to get that

lim
δ0→0

sup
b,b′∈Iδ0 (a)

b 6=b′

{
|φ(b′)− φ(b)−M(a) · (π(b−1 · b′))T |

ρφ(b′, b)

}
= 0, (5.76)

where M(a) is the k×(2n−k) matrix [M(a)]i,j = ωi,j(a) for i = 1, . . . , k, j = 1, . . . , 2n−k.
Now, this implies (for instance refer to [AS09, Proposition 3.17]) that for every b, b′ ∈
Iδ0(a), there exists a constant c > 0 such that

|φ(b)− φ(b′)| ≤ c ρφ(b, b′). (5.77)

By Propositions 5.3.17 and 5.3.18, inequality (5.77) implies that there exists a constant
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c2 > 0 such that for every b, b′ ∈ Iδ0(a), ρφ(b, b′) ≤ c2dφ(b, b′), and therefore for every
b, b′ ∈ Iδ0(a),

0 ≤ 1

c2

|φ(b)− φ(b∗k)|
dφ(b, b′)

≤
|φ(b)− φ(b∗k)|
ρφ(b, b′)

.

This means that if we prove (5.75), then (5.74) will follow.
Let us start by adapting an argument by [ASCV06, Theorem 5.7]:

|φ(b′)− φ(b∗k)|
ρφ(b, b′)

=
|φ(b′)− φ(b∗k)|
|τ ′ − τ∗k |1/2

|τ ′ − τ∗k |1/2

ρφ(b, b′)

=
|φ(b′)− φ(b∗k)|
|b′ − b∗k|1/2

|τ ′ − τ∗k |1/2

ρφ(b, b′)

≤ υφ(Cδ0 +Dδ2
0)
|τ ′ − τ∗k |1/2

ρφ(b, b′)
,

(5.78)

where the function

υφ(δ) := sup

{
|φ(a′)− φ(a′′)|
|a′ − a′′|1/2

: a′ 6= a′′, a′, a′′ ∈ Iδ(a)

}
(5.79)

goes to zero if δ → 0 by the second hypothesis, (5.67).

In order to achieve the proof of (5.75), we need to show that
|τ ′−τ∗k |

1/2

ρφ(b,b′) is bounded close to

a. By (5.65) and (5.71),

|τ − τ∗k | = |τ ′ − τ − σ(x, y, x′, y′)−
k∑
j=1

∫ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))dr|

= |τ ′ − τ − σ(x, y, x′, y′)−
k∑
j=1

∫ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))dr

+
1

2

k∑
j=1

(φj(b
′) + φj(b))(η

′
j − ηj)−

1

2

k∑
j=1

(φj(b
′) + φj(b))(η

′
j − ηj)|

≤ ρφ(b, b′)2 + | −
k∑
j=1

∫ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))dr

+
1

2

k∑
j=1

(φj(b
′) + φj(b))(η

′
j − ηj)|

= ρφ(b, b′)2 + | −
k∑
j=1

∫ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))dr

+
1

2
(

k∑
j=1

(φj(b
′)− φj(b∗j ) + φj(b

∗
j ) + φj(b

∗
j−1)− φj(b∗j−1) + φj(b))(η

′
j − ηj)|

≤ ρφ(b, b′)2

+ | −
k∑
j=1

(

∫ η′j−ηj

0

φj(expa(r∇φj )(b∗j−1))dr +
1

2
(φj(b

∗
j ) + φj(b

∗
j−1))(η′j − ηj))|

+ |1
2

(

k∑
j=1

(φj(b
′)− φj(b∗j ) + φj(b)− φj(b∗j−1))(η′j − ηj)|.

(5.80)
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For any j, by Claim 1, at least for δ0 small enough, we have

| −
∫ η′j−ηj

0
φj(expa(r∇φj )(b∗j−1))dr +

1

2
(φj(b

∗
j ) + φj(b

∗
j−1))(η′j − ηj))|

= | −
∫ η′j−ηj

0
φj(expa(r∇φj )(b∗j−1))− φj(b∗j−1)dr +

1

2
(φj(b

∗
j )− φj(b∗j−1))(η′j − ηj))|

= | −
∫ η′j−ηj

0

∫ r

0
ωj,j+(n−k)(expa(s∇φj )(b∗j−1))ds dr

+
1

2
(η′j − ηj)

∫ η′j−ηj

0
ωj,j+(n−k)(expa(r∇φj )(b∗j−1))dr|

= O(|η′j − ηj |2)

= O(ρφ(b, b′))2.

Hence we can estimate the last line of (5.80) from above by

ρφ(b, b′)2 + Cρφ(b, b′)2 + |1
2

(
k∑
j=1

(φj(b
′)− φj(b∗j ) + φj(b)− φj(b∗j−1))(η′j − ηj)|.

We are left to estimate

|1
2

(
k∑
j=1

(φj(b
′)− φj(b∗j ) + φj(b)− φj(b∗j−1))(η′j − ηj)|

= |1
2

k∑
j=1

{(φj(b′)− φj(b∗k)) +
k−1∑
i=j

(φj(b
∗
i+1)− φj(b∗i ))

+ (φj(b)− φj(b∗0)) +

j−2∑
i=0

(φj(b
∗
i )− φj(b∗i+1))}(η′j − ηj)|

≤ 1

2

k∑
j=1

{|φj(b′)− φj(b∗k)|+
k−1∑
i=j

|φj(b∗i+1)− φj(b∗i )|

+ |φj(b)− φj(b∗0)|+
j−2∑
i=0

|φj(b∗i )− φj(b∗i+1)|}(η′j − ηj).

(5.81)

Let us then estimate the different components of (5.81).

• First of all, for a fixed j = 1, . . . , k

|1
2

(φj(b
′)− φj(b∗k))(η′j − ηj)|

=
1

2

|φj(b′)− φj(b∗k)|
|τ ′ − τ∗k |1/2

|τ ′ − τ∗k |1/2|η′j − ηj |

≤ 1

2
υφj (Cδ0 +Dδ2

0)|τ ′ − τ∗k |1/2|η′j − ηj |.

(5.82)

Of course the function υφj (δ) goes to 0 when δ goes to 0 again by the second hy-
pothesis.
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We can estimate the last line of (5.82) from above by

1

4
(υφj (Cδ0 +Dδ2

0)2|τ ′ − τ∗k |+ |η′j − ηj |2). (5.83)

If b and b′ become sufficiently close, then also b, b′, a become sufficiently close, as
well as b, to b∗k. In other words, for every ε > 0, there exists δε,j > 0 such that
if δ ∈ (0, δε,j ], υφj (δ)

2 ≤ ε, then, when δ0 < δε,j is small enough, we can estimate
(5.83) from above by

1

4
(ε|τ ′ − τ∗k |+ |η′j − ηj |2) ≤ 1

4
ε|τ ′ − τ∗k |+ const (ρφ(b, b′))2.

For instance, we can fix ε = 2, and if we take δ small enough, we can carry this
contribute to the left hand side of (5.81).

• We can now consider for any fixed j = 1, . . . , k

1

2
|(φj(b)− φj(b∗0))(η′j − ηj)|

=
1

2
|η′j − ηj ||φj(b)− φj(b∗0)|

=
1

2
|η′j − ηj |

n∑
j=k+1

(|x′j − xj |(ωi,j(a) + o(1)) + |y′j − yj |(ωi,n+j(a) + o(1)))

≤ 1

2
c2|η′j − ηj ||(x′ − x, y′ − y)|

≤ 1

2
c2|η′ − η||(x′ − x, y′ − y)|

≤ 1

4
c2|η′ − η|2 +

1

4
|(x′ − x, , y′ − y)|2

≤ C2(ρφ(b, b′))2.

• Let us now fix j ∈ {1, . . . , k} and i ∈ {0, . . . , j − 2, j, . . . , k − 1} and we want to
estimate

|1
2

(φj(b
∗
i+1)− φj(b∗i ))(η′j − ηj)| =

1

2
|φj(expa((η′i+1 − ηi+1)∇φi+1)(b∗i ))− φj(b∗i )||η′j − ηj |

=
1

2
|
∫ η′i+1−ηi+1

0

ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))dr||η′j − ηj |

≤ 1

2
|
∫ η′i+1−ηn+1

0

ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i )dr||η′j − ηj |

+ |ωj,i+1+(n−k)(b
∗
i )||η′i+1 − ηi+1||η′j − ηj |

≤ 1

2

(
sup

r∈[0,η′i+1−ηi+1]

|ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i )|

+ |ωj,i+1+(n−k)(b
∗
i )|
)
|η′i+1 − ηi+1||η′j − ηj |

≤ 1

4
(|η′i+1 − ηi+1|2 + |η′j − ηj |2)·

·
(

sup
r∈[0,η′i+1−ηi+1]

|ωj,i+1+(n−k)(expa(r∇φi+1)(b∗i ))− ωj,i+1+(n−k)(b
∗
i )|+ |ωj,i+1+(n−k)(b

∗
i )|
)

≤ C3(ρφ(b, b′))2(o(1) + ωj,i+1+(n−k)(b
∗
i )) as δ0 → 0.
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Combining the three estimates that we obtained with equation (5.81), we finally get (5.75),
from which the thesis follows.

We are now ready to prove the first characterization.

Proposition 5.3.21. Let U ⊂ R2n+1−k be an open set and let φ : U → Rk be a continuous
function. Then the following statements are equivalent.

(i) φ is uniformly intrinsically differentiable on U .

(ii) For every a ∈ U , there exist δ > 0 such that Iδ(a) b U , a family of functions
{φε}ε>0 ⊂ C1(Iδ(a),Rk) and a matrix-valued function M ∈ C0(Iδ(a),Mk,2n−k(R))
such that

φε → φ

Dφεφε →M

uniformly on Iδ(a) as ε goes to zero.

Proof. (i)⇒ (ii). This follows from Proposition 5.3.1.

(ii)⇒ (i). Since (ii) implies that the hypotheses of Theorem 5.3.19 are satisfied at any
point a ∈ U , Theorem 5.3.19 will conclude the proof. In fact, the existence of a family of
exponential maps at any point a ∈ U is a direct consequence of Proposition 5.3.6 applied
to U = Iδ(a). Condition (5.67) instead follows substantially from Proposition 5.3.14. The
crucial observation is that, by (ii), we can estimate uniformly with respect to ε both
‖φε,i‖L∞(I′′), for i = 1, . . . , k, and ‖Dφεφε‖L∞(I′′) for any rectangle I ′′ b Iδ(a). Moreover
for every point a and any rectangle I ′′ b Iδ(a) we can choose a modulus of continuity
for Dφεφε on I ′′ independent of ε by the uniform convergence of the intrinsic Jacobian
matrices Dφεφε. Then for every two rectangles I ′ b I ′′ b Iδ(a) there exists a function not
depending on ε

α : (0,∞)→ [0,∞)

such that limr→0 α(r) = 0 and for every ε

sup

{
|φε(b′)− φε(b)|
|b′ − b|1/2

: b, b′ ∈ I ′, 0 < |b′ − b| ≤ r
}
≤ α(r). (5.84)

Hence

sup

{
|φ(b′)− φ(b)|
|b′ − b|1/2

: b, b′ ∈ I ′, 0 < |b′ − b| ≤ r
}
≤ α(r), (5.85)

Then, in order to prove that (5.67) is satisfied one can conclude applying a standard
compactness argument (anyway notice that, by Remark 5.3.20, condition (5.85) would be
sufficient to apply Theorem 5.3.19).

Theorem 5.3.22. Let U ⊂ R2n+1−k be an open set, let φ : U → Rk be a function and set
Σ = graph(φ). Then the following are equivalent.

(i) φ is uniformly intrinsically differentiable on U .

(ii) φ ∈ C0(U) and for every a ∈ U there exist the intrinsic derivative ∂φjφ(a) for every
j = 1, . . . 2n− k, the functions

∂φjφ : U → Rk,
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are continuous on U and for every open set U ′ b U it holds that

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|1/2

: b, b′ ∈ U ′, 0 < |b′ − b| ≤ r
}

= 0. (5.86)

(iii) φ is intrinsically differentiable on U , the map Dφφ : U →Mk,2n−k(R) is continuous
on U and for every open set U ′ b U it holds that

lim
r→0+

sup

{
|φ(b′)− φ(b)|
|b′ − b|1/2

: b, b′ ∈ U ′, 0 < |b′ − b| ≤ r
}

= 0. (5.87)

(iv) There are an open set Ω ⊂ Hn and a map f ∈ C1
h(Ω, Rk) such that Σ = {x ∈ Ω :

f(x) = 0}, JVf(x) = | det([Xifj(x)]i,j=1,...,k)| > 0, for all x ∈ Σ.

Proof. (i)⇔ (iv). This equivalence is exactly the content of Theorem 5.1.12.
(i) ⇒ (iii). By Proposition 5.1.11 the map φ is intrinsically differentiable at every

point of U and Dφφ : U → Mk,2n−k(R) is a continuous map. The Hölder-type condition
(5.87) follows from Proposition 5.3.12.

(iii) ⇒ (ii). The map φ is continuous since it is intrinsically differentiable (see for
instance [FMS14, Proposition 3.2.3]). The existence of the intrinsic partial derivative
∂φjφ(a) ∈ Rk for every j = 1, . . . , 2n− k, at every point a ∈ U , follows from the intrinsic
differentiability of φ at every point of U and, in particular, by Proposition 5.3.9. The
continuity of the intrinsic partial derivatives ∂φjφ : U → Rk follows again from Proposition
5.3.9 combined with the fact that we have assumed Dφφ(a) to be a continuous map with
respect to a ∈ U .

(ii) ⇒ (i). It follows from Theorem 5.3.19, since (ii) implies that the hypotheses of
Theorem 5.3.19 are satisfied. In particular, we have to convince ourselves that the existence
and continuity of the intrinsic derivatives ∂φjφ : U → Rk implies the existence of a family
of exponential maps at every a ∈ U . Fix some a ∈ U . For any point b belonging to any
neighbourhood Iδ(a) b U of a ∈ U , there exists at least one integral curve of the vector

field W φ
j , j ∈ {1, . . . , 2n−k} starting at b on which we can use the chain rule (5.21) setting

the continuous maps needed to satisfy (iii) of Definition 5.3.2 as ωi,j = ∂φjφi : U → R. In
fact, since the chain rule holds for all the integral curves by hypothesis, we can choose, for
every starting point b, an arbitrary curve that will play the role of the exponential map at
a expa( ·W φ

j )(b) (this can be done for every j = 1, . . . , 2n− k) and we can use this family
of arbitrarily chosen integral curves as a family of exponential map at a in order to apply
Theorem 5.3.19. In particular, since U is open, once we fix a ∈ U , we fix an arbitrary
δ1 > 0 such that Iδ1(a) b U and one can choose 0 < δ3 <

1
2δ1 such that for every point

b ∈ Iδ3(a), the integral curves starting at b exist on a common interval of time [−δ2, δ2] for
δ2 > 0 appropriately small (how much small will depends on δ3, surely δ2 ≤ δ3). Hence,
any integral curve starting at b ∈ Iδ2(a) exists at least for an interval of time [−δ2, δ2].

Remark 5.3.23. The equivalence (iv) ⇔ ((ii) + (iii)) had already been proved by
Kozhevnikov in his Phd thesis (see [Koz15, Theorem 4.3.1]), in the more general con-
text of (G,Rk)-regular sets of G, with G generic Carnot group and k sufficiently small.
We have reported here our proof, which is more direct. Moreover, here we proved also that
(ii) and (iii) are independentely equivalent for low codimensional H-surfaces in Hn. More-
over, taking into account Di Donato’s results, we manage to relate explicitly the results in
[Koz15] to the notions of intrinsic differentiability and uniform intrinsic differentiability.

Moreover, by taking in consideration Proposition 5.3.16, we obtain a stronger result.
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Theorem 5.3.24. Let U ⊂ R2n+1−k be an open set, let φ : U → Rk be a function and set
Σ = graph(φ). Then the following conditions are equivalent

(i) φ is uniformly intrinsically differentiable on U .

(ii) φ ∈ C0(U), for every a ∈ U there exist the intrinsic partial derivative ∂φjφ(a), for
j = 1, . . . 2n− k, and the functions

∂φjφ : U → Rk,

are continuous on U .

(iii) φ is intrinsically differentiable on U and the map Dφφ : U →Mk,2n−k(R) is contin-
uous on U .

(iv) There are an open set Ω ⊂ Hn and a map f = (f1, ..., fk) ∈ C1
h(Ω,Rk) such that

Σ = {x ∈ U : f(x) = 0} and JVf(x) = | det([Xifj(x)]i,j=1,...,k)| > 0 for all x ∈ Σ.

Proof. The proof is analogous to the one of Theorem 5.3.22: by taking into account
Proposition 5.3.16 we can simplify conditions (ii) and (iii). In particular, if φ is uniformly
intrinsically differentiable, by Proposition 5.1.11 φ is intrinsically differentiable on U and
its intrinsic Jacobian matrix Dφφ : U → Mk,2n−k(R) is a continuous function. Hence,
by Proposition 5.3.9, φ is differentiable on every integral curve γj of the vector field
W φ
j , for every j = 1, . . . , 2n − k, and, for every i = 1, . . . , k and j = 1, . . . , 2n − k,

d
dtφi(γ

j(t)) = [Dφφ(γj(t))]i,j , then the intrinsic partial derivative ∂φjφi : U → R exists
and ∂φjφi(a) = [Dφφ(a)]i,j for every a ∈ U and [Dφφ(a)]i,j : U → R is a continuous
map. The continuity of the intrinsic partial derivatives guarantees that the hypotheses of
Proposition 5.3.16 are satisfied and then in particular permits to deduce that φ satisfies
the condition of 1

2 -little Hölder continuity in (5.86) so that one can finally conclude by
applying Theorem 5.3.19 (in particular, the existence of a family of exponential maps at
every point a ∈ U can be deduced by the existence and continuity of the intrinsic partial
derivatives of φ, repeating verbatim the argument used to prove (ii) ⇒ (i) in Theorem
5.3.22).

Remark 5.3.25. Let us notice that Theorem 5.2.1 (i),(iii) can be seen as a corollary of
Theorem 5.3.21. Analogously Theorem 5.2.4 can be seen as a corollary of Theorem 5.3.24.

Remark 5.3.26. We did not work from a distributional point of view. In particular, we
did not obtain any characterization analogous to (ii) of Theorem 5.2.1. This is due to the
fact that we did not manage to perform considerations analogous to the ones in Remark
5.2.2. In particular, we fail to give distributional meaning to all the writings of the form
W φ
j φi, or to suitable linear combinations of them with a view to reducing a system of

the form W φ
j φi = ωi,j , j = 1, . . . , 2n − k, i = 1, . . . , k, for prescribed continuous maps

ωi,j ∈ C0(U,R), to an equivalent ones that could be read in distributional sense. One can
refer to [BSC10a, BCSC15, ABC16a, ABC16b] where this point of view in codimension
one has been fully explored, as we discussed in Section 5.2.

5.4 Further advances in the literature

Further results in this direction of research have been presented after [Cor19]. We
provide a summary of the more recent available ones, proved by Antonelli, Di Donato,
Don and Le Donne in [ADDDLD20] and by the first three authors in [ADDD20]. We
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expose their results exploiting the concepts introduced in this chapter. Our aim is to give
to the reader a flavour of the main outcomes of the two papers without any ambition
of completeness or strictness. We take now advantage of the opportunity to express our
gratitude to the four authors for having pointed out to us an imprecision in the first version
of [Cor19]. The presentation has been explicitly fixed in the previous chapter: please refer
to [ADDDLD20, Remark 4.14] for more details. We explain the results of [ADDDLD20] in
coordinates, while in the original papers many definitions and the main results are stated
in a free-coordinates fashion.

The main generalization of our results is [ADDDLD20, Theorem 1.6] which can be seen
as an extension of the content of Proposition 5.3.21 and Theorem 5.3.22 to the setting of a
generic Carnot group G splitted as the product of two complementary subgroups G = WV,
with V horizontal. First of all, the authors introduce, in [ADDDLD20, Definition 1.3], a
family of projected vector fields associated with a continuous map defined on an open
set U ⊂ W, φ : U → V acting between two complementary subgroups W and V of a
generic Carnot group G, with V horizontal (the same vector fields had been individuated
in [Koz15, Definition 4.2.12]). For every W ∈ Lie(W) the projected vector field on U
corresponding to W is defined as

Dφ
W (w) := dE(πW)(Φ(w))(W (Φ(w)),

for every w ∈ U .
Then, we consider an adapted basis (b1, . . . , bq) of G such that (b1, . . . , bk) is a basis of V
and (bk, . . . , bq) is a basis of W, where by q we denote as usual the topological dimension on
G and by k the topological dimension of V. We identify, as we did in our context in Section
5.1, V with Rk and W with Rq−k through the fixed bases. For the sake of simplicity, here
we do not distinguish between φ and φ̃, V and Rk and W and Rq−k, we identify them and
we denote them respectively by φ, W and V. Consider the associated basis {Wj}j=1,...,q−k
of Lie(W), such that, for j = 1, . . . , q − k, Wj is the left invariant vector field such
that Wj(0) = bj+k so that a precise ordered family of continuous projected vector fields

{Dφ
Wj
}j=1,...,q−k is individuated, and Wj ∈ Lie(W) ∩ V1 if and only if j = 1, . . . ,m1 − k.

Then, mimicking for instance [BSC10b, Definition 1.1], the authors substantially say
that a continuous map φ : U → V is a broad? solution of the system

Dφ
Wj
φi = ωi,j for i = 1, . . . , k, j = 1, . . .m1 − k on U (5.88)

for prescribed maps ωi,j ∈ C0(U,R), if there exists a family of exponential maps relative

to the family of projected vector fields {Dφ
Wj
}Wj∈Lie(W)∩V1

at any point of U . Here, for

the sake of simplicity, if there exist some maps ωi,j ∈ C0(U,R) such that φ is a broad?

solution of the system (5.88), we say that φ is broad? regular on U .
The authors introduce, in [ADDDLD20, Definition 1.5] the notion of vertically broad?

hölder regularity for the map φ (refer also to [Koz15, Theorem 4.3.1]). A function φ is
vertically broad? hölder if for every point a0 in the domain U of φ there exist a neighbour-
hood Ua0 of a0 and a positive δ > 0 such that for every a ∈ Ua0 and for every projected

vector fields Dφ
Wj

with Wj ∈ Lie(W) ∩ Vd for every d > 1, there exists an integral curve

γ : [−δ, δ]→ U of Dφ
Wj

starting at a, such that

lim
r→0

{
|φ(γ(t))− φ(γ(s))|

|t− s|
1
d

: t, s ∈ [−δ, δ], 0 < |t− s| ≤ r

}
= 0, (5.89)



5.5 Centered Hausdorff measure of low codimensional H-regular surfaces 153

where by ‖ · ‖ we denote a generic homogeneous norm on G.
We are now ready to state the characterization. By [DD20a, Theorem 4.1] it was already
known that being a (G,Rk)-regular set of G is equivalent to be locally the intrinsic graph of
a uniformly intrinsically differentiable map φ : U ⊂ W → V, with G = WV, V horizontal
and k-dimensional. In [ADDDLD20, Theorem 1.6], the authors prove that a map φ : U →
V is uniformly intrinsically differentiable if and only if φ is vertically broad? hölder and,
either it is broad? regular on U , or there are continuous maps ωi,j ∈ C0(U,R), for every
j = 1, . . . ,m1−k and i = 1, . . . , k, such that at any point a ∈ U there exist a positive δ > 0
and a family of smooth functions φε ⊂ C∞(B(a, δ),V) such that φε converges uniformly

over B(a, δ) to φ and, Dφε
Wj

(φε)i converges uniformly to ωi,j as ε goes to zero. This result
are a generalization of Propositions 5.3.21 and 5.3.22.

Successively, in the same paper, the authors present [ADDDLD20, Theorem 1.7], that
is a generalization of Theorem 5.3.24 to the setting of Carnot groups of step 2, where
such a group G is seen as the product of two complementary subgroups G = WV, with
V horizontal of dimension one. In this precise case, they prove that, as we proved The-
orem 5.3.24 through Proposition 5.3.15, it is possible to repeat all the characterizations
of Theorem [ADDDLD20, Theorem 1.6] for a uniformly intrinsically differentiable map
φ : U ⊂ W → V, removing, from all the items where it appears, the hypothesis of verti-
cally broad? hölder regularity. As a consequence, in Carnot groups of step 2, as happens
in the Heisenberg group, the uniform intrinsic differentiability of hypersurfaces is uniquely
determined by the behaviour of their parametrizing map φ along the horizontal direc-
tions (more precisely, along the directions individuated by the vector fields projected by
Lie(W)∩V1). The key point of the proof is that the broad? regularity along the projected
horizontal directions (that, in turn, is guaranteed by the existence of a family of smooth
locally approximating maps) automatically allows to prove the needed broad? Hölder-type
regularity of φ along the vertical directions. Please refer to [ADDDLD20, Section 5] for
a careful comparison between [ADDDLD20, Proposition 5.2], [BSC10b, Theorem 3.2] and
Proposition 5.3.15, that is [Cor19, Proposition 4.9]. A counterexample in [Koz15, Exam-
ple 4.5.1] set in the Engel group, that is the simplest example of a Carnot group of step
3, shows that it is not possible to extend this method in order to remove the vertically
broad? hölder regularity hypothesis in a generic Carnot group.

Moving a step further, in [ADDD20] the authors consider G a step-2 Carnot group
splitted as the product of two complementary subgroups W and V, where V is a one-
dimensional subgroup. They consider maps φ : U ⊂ W → V, with U ⊂ W open set,
and they give a distributional meaning to the system (5.88) for prescribed maps ωi,j ∈
C0(U,R). The authors prove that φ is a distributional solution of (5.88) if and only if it
is a broad? solution of (5.88) if and only if it is a broad solution of (5.88), i.e. roughly
speaking, if the existence and continuity of the intrinsic derivatives of φ along the vector
fields Dφ

Wj
, for Wj ⊂ Lie(W) ∩ V1, are guaranteed. By intrinsic derivatives here we mean

derivatives opportunely defined in this context analogously to how we defined the intrinsic
derivatives in our setting, that is the Heisenberg group.

5.5 Centered Hausdorff measure of low codimensional H-
regular surfaces

We prove in this subsection an area formula for parametrized H-regular surfaces of
low codimension. In the next chapter, by the introduction of new arguments, we will
provide a detailed generalization of this formula and really more. We will prove area
formulas for both the centered and, especially, for the spherical Hausdorff measures of
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low codimensional parametrized H-regular surfaces, with respect to any homogeneous
distance. We decided anyway to report briefly this first partial result, whose proof easily
follows reinterpreting [SC16, Theorem 4.50](see also [FSSC07, Theorem 4.1] and [FSSC15])
in the light of the results proved in the current chapter. This choice is due to the fact that
the one we are going to present is the very first area formula completely stated in terms of
the intrinsic derivatives of a parametrization φ with target space horizontal of dimension
higher than one. It permits to compute the centered Hausdorff measure of the intrinsic
graph of a uniformly intrinsically differentiable map with respect to the homogeneous
distance d∞. It can be considered as a generalization of [ASCV06, Theorem 1.2], where it
is presented a formula for the centered Haudorff measure of one-codimensional H-regular
surfaces (based on a previous formula for the H-perimeter presented in [FSSC01, Theorem
6.5]). Other extensions of [ASCV06, Theorem 1.2] in the literature are the formulas for
the spherical Hausdorff measure of H-regular hypersurfaces in the Heisenberg group in
[FSSC15, Mag17], of one-codimensional intrinsic Lipschitz graphs in the Heisenberg group
[CMPSC14, Theorem 1.6] and of one-codimensional uniformly intrinsically differentiable
graphs in Carnot groups of step 2 [DD20a, Theorem 5.4].

Let us introduce for any m ∈ {1, . . . , n, n + 2, . . . , 2n + 2} the normalized measure
Cm∞ = ζ∞(m)Cm, where

ζ∞(m) :=

{
ωm if 1 ≤ m ≤ n
2ωm−2 if n+ 2 ≤ m ≤ 2n+ 2,

where ωm denotes the Lebesgue measure of the unit ball in Rm.

Remark 5.5.1. We do not need to define the normalized measure for m = n + 1, since
H-regular surfaces of Hausdorff dimension n+ 1 cannot exist. In fact, H-regular surfaces
of dimension k, have Hausdorff dimension k when 1 ≤ k ≤ n, and k+ 1 when n+ 1 ≤ k ≤
2n+ 1.

Remark 5.5.2. Notice that for any normal homogeneous subgroup W ⊂ Hn of Hausdorff
dimension P 6= n+ 1 and topological dimension p it holds

ζ∞(P ) = HpE(B∞(0, 1) ∩W),

where B∞(0, 1) is the metric closed ball centered at 0 of radius 1 with respect to d∞.

Now, keeping in mind that, given a map φ̃ : Ũ ⊂ W → V, with Hn = WoV product
of complementary subgroups, by φ we denote the corresponding map φ : U → Rk, with
U ⊂ R2n+1−k, in coordinates as we explained above in the chapter, in Section 5.1, we can
state the following definition.

Definition 5.5.3. Let Hn = WoV be a semidirect orthogonal product of complementary
subgroups, with W of dimension 2n+1−k. Let Ũ ⊂W be an open set and let φ̃ : Ũ → V be
an intrinsically differentiable function at a point w̄ ∈ Ũ . We define the intrinsic Jacobian
of φ̃ at w̄ as

J φ̃φ̃(w̄) =

√√√√1 +

k∑
`=1

∑
I∈I`

(Mφ
I (w̄))2,

where for every ` ∈ {1, . . . , k}, I` is the set of multi-indexes

{(i1, . . . , i`, j1, . . . , j`) ∈ N2` : 1 ≤ i1 < i2 < · · · < i` ≤ 2n− k, 1 ≤ j1 < j2 · · · < j` ≤ k}
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and for I = (i1, . . . , i`, j1, . . . , j`) ∈ I` the minor Mφ
I (w̄) is defined as

Mφ
I (w̄) = det

[Dφφ(ā)]j1,i1 . . . [Dφφ(ā)]j1,i`
. . . . . . . . .

[Dφφ(ā)]j`,i1 . . . [Dφφ(ā)]j`,i`

 = det

∂φi1φj1(ā) . . . ∂φi`φj1(ā)
. . . . . . . . .

∂φi1φj`(ā) . . . ∂φi`φj`(ā)

 ,

where ā = iW(w̄) and iW is the map defined in Section 5.1.

By Theorems 4.1.19 and 4.1.23, any H-regular surface of low codimension can be
locally seen as the intrinsic orthogonal graph of a uniformly intrinsically differentiable
map φ̃ : Ũ ⊂ W → V between two homogeneous subgroups such that Wo V. The map
φ̃ corresponds as described above to a map φ : U → Rk, with U ⊂ R2n+1−k. We can
then focus on computing the area of a regularly parametrized surface, that is the intrinsic
graph of φ̃, Σ := graph(φ̃) = graph(φ). If we are able to do this, by a standard covering
argument is it possible to compute the area of any low codimensional H-regular surface.

According to Theorem 4.1.22, we know that there exist an open set Ω of Hn, with
Φ(U) ⊂ Ω, and a function f ∈ C1

h(Ω,Rk) such that Σ = {x ∈ U : f(x) = 0} and such that
JVf(x) = |det(([Xifj(x)]i,j=1,...,k)| > 0 for all x ∈ Σ. Moreover, by the proof of Theorem
5.1.12 one can choose f such that

f ◦ Φ = 0 on U,

JHf(Φ(a)) =
(
Ik | −Dφφ(a)

)
∈Mk,2n−k(R) ∀a ∈ U.

(5.90)

By the choice of f in (5.90), and by the results of Theorem 5.3.24, it turns out that the
horizontal Jacobian matrix of f at every Φ(a) ∈ Φ(U) is given by

JHf(Φ(a)) =

 1 . . . 0 −∂φ1φ1(a) . . . −∂φ2n−kφ1(a)
. . . . . . . . . . . . . . . . . .
0 . . . 1 −∂φ1φk(a) . . . −∂φ2n−kφk(a)

 . (5.91)

From the form of this matrix it is clear that JVf(Φ(a)) = 1 for every a ∈ U .

Let us now resume the substantial content of [FSSC07, Theorem 4.1] (in respect with
the results of [AS09]).

Theorem 5.5.4. Let Hn be the Heisenberg group equipped with the distance d∞. Let W
and V be orthogonal complementary subgroups such that Hn = W o V, and let k be the
dimension of V. Let Ũ ⊂ W be an open set. Let φ̃ : Ũ → V be a uniformly intrinsically
differentiable map and set Σ := graph(φ̃). The map φ̃ corresponds as described above to
a map φ : U ⊂ R2n+1−k → Rk. Consider a function f ∈ C1

h(Ω,Rk) such that Σ = f−1(0)
and such that JVf(x) > 0 for all x ∈ Σ. Then, the (2n+2−k)-centered Hausdorff measure

of Σ = graph(φ) = graph(φ̃) can be computed as

C2n+2−k
∞ xΣ = Φ̃]

((
JHf

JVf
◦ Φ̃

)
H2n+1−k
E xW

)
= Φ]

((
JHf

JVf
◦ Φ

)
L2n+1−kxR2n+1−k

)
. (5.92)

Hence, combining (5.90) with (5.92), it is not difficult to convince ourself of the validity
of the following result.

Theorem 5.5.5. Let Hn be the Heisenberg group equipped with the distance d∞. Let W
and V be orthogonal complementary subgroups such that Hn = W o V, and let k be the
dimension of V. Let Ũ ⊂ W be an open set. Let φ̃ : Ũ → V be a uniformly intrinsically
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differentiable map. If we set Σ := graph(φ̃), then for every Borel set B ⊂ Σ,

C2n+2−k
∞ (B) =

∫
Φ̃−1(B)

J φ̃φ̃(w) dH2n+1−k
E (w). (5.93)

Proof. We call as usual φ : U → Rk the map that corresponds to φ̃. We denote for
any generic point w ∈ W, the corresponding point in coordinates a = iW(w) ∈ U , and
vice versa. Notice that, by definition, for every a ∈ U , Φ(a) = Φ̃(w). We know by
Proposition 5.1.11 that, since φ is a uniformly intrinsically differentiable function, Dφφ is a
continuous matrix-valued function on U , hence it makes sense to integrate its components
which, by Theorem 5.3.24, coincide with the elements [Dφφ(a)]i,j = ∂φjφi(a) for every
i = 1, . . . , k, j = 1, . . . , 2n − k, a ∈ U . By Theorem 5.1.12, we know that, given the
uniformly intrinsically differentiable function φ, its intrinsic graph Σ is the zero-level set
of a function f ∈ C1

h(Ω,Rk), for some open set Ω with Φ(U) ⊂ Ω, such that JVf(x) =
|det([Xifj(x)]i,j=1,...,k)| > 0 for x ∈ Σ. In particular, we choose a map f that satisfies
the relations of condition (5.90). This choice is allowed by the proof of Theorem 5.1.12.
Hence, for every a ∈ U , the horizontal Jacobian matrix of f is

JHf(Φ(a)) =

 1 . . . 0 −∂φ1φ1(a) . . . −∂φ2n−kφ1(a)
. . . . . . . . . . . . . . . . . .
0 . . . 1 −∂φ1φk(a) . . . −∂φ2n−kφk(a)

 (5.94)

and clearly JVf(Φ(a)) = 1. Then, for every a ∈ U , we compute directly

JHf(Φ(a)) = ‖(∇Hf1 ∧ · · · ∧ ∇Hfk)(Φ(a))‖g = J(Df(Φ(a)),

observing that, for every i = 1, . . . , k, we have

∇Hfi(Φ(a)) =
n∑
j=1

(Xjfi(Φ(a)))ej +
n∑
j=1

(Yjfi(Φ(a)))ej

=
k∑
j=1

δi,jej −
2n−k∑
j=1

∂φjφi(a)ej+k ∈ H1,

where δi,j is the Knonecker’s delta. According to the notation in Definition 5.5.3, for every
a ∈ U , we get

JHf(Φ(a)) =

√√√√1 +
k∑
`=1

∑
I∈I`

(Mφ
I (w))2. (5.95)

Let us give some more details about the computation leading to (5.95). We need to
compute the Jacobian of JHf(Φ(a)). The constant 1 in equation (5.95) stands for the
determinant of the identity matrix Ik (it coincides with the coefficient of the k-vector
e1 ∧ · · · ∧ ek). Let us now focus on the second addend in the square root of (5.95). The
index ` ∈ {1, . . . , k} in equation (5.95) highlights the fact that, for every I ∈ I`, we are

computing the minor Mφ
I (w) of a k × k sub-matrix of JHf(Φ(a)) composed by choosing

(i) the first k − ` columns among the first k columns of JHf(Φ(a)) (in particular, for
a given multi-index I = (i1, . . . i`, j1, . . . , j`), these are the columns whose indexes
belong to the set {1, . . . , k} \ {j1, . . . , j`})

(ii) the last ` columns among the 2n − k last columns of JHf(Φ(a)) (in particular, for
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a given multi-index I = (i1, . . . i`, j1, . . . , j`), these are the columns whose indexes
belong to the set {k + i1, . . . , k + i`}).

Hence, we can finally rewrite the area formula (5.92) in the light of our computations, so
that we essentially obtain the following formula

C2n+2−k
∞ (B) =

∫
Φ̃−1(B)

√√√√1 +

k∑
`=1

∑
I∈I`

(Mφ
I (w))2 dH2n+1−k

E (w), (5.96)

which, according to the definition of intrinsic Jacobian (Definition 5.5.3, is an exact
rephrasing of formula (5.93).
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Chapter 6

Area formulas for H-regular
surfaces of low codimension

In this chapter we present the results of [CM20], obtained in collaboration with Prof.
V. Magnani, of the University of Pisa. We will not need anymore to distinguish between
the map φ̃ : W→ V, where Hn = WoV is product of complementary subgroups, and the
corresponding function φ : R2n+1−k → Rk, that was introduced in the previous chapter
to work in suitable coordinates. Hence, from now on, to simplify the notation we will
reserve the notation φ for a generic map acting between two complementary homogeneous
subgroups W to V.

Finding explicit area formulas to compute the Hausdorff measure of regular surfaces
in Carnot groups represents an intriguing problem. Due to the delicate algebraic struc-
ture of groups, the classical methods in general cannot be blindly applied and this is the
main reason why many researches have been recently developed in this direction. We
cite below some contributions organized according to the different approaches adopted
by the authors. The following lists may result incomplete, but the cited results are
just meant as some examples of the wide available related literature. A significative
line of research established general abstract paths, or schemes, that can be followed
in order to derive area formulas for the Hausdorff measure of regular submanifolds in
various precise cases [Mag01, Mag15, FSSC15, LM20]. Some authors proved area for-
mulas to compute the H-perimeter measure of locally finite H-perimeter sets and com-
pared the H-perimeter measure of these regular sets with their Hausdorff-type measures
[FSSC01, FSSC02, FSSC03a, FSSC03b, ASCV06, Mag06b, CMPSC14, Mag17, DD20a,
DD20b, ADDDLD20]. Some others authors have focused on submanifolds satisfying
intrinsic-type regularity, of low dimension [Mag01, Mag02a, Pau04b, FSSC07, AM20a]
and of low codimension [FSSC07, Cor19, CM20, JNGV20, Vit20] while other ones fo-
cused on computing the area of Euclidean C1-regular submanifolds, embedded in Carnot
groups endowed with homogeneous distances, satisfying a negligibility condition on the
generalized set of characteristic points (that, roughly speaking, are the points at which
the blow-up of the surfaces does not behave well, in the sense that it is not necessarily a
subgroup, see [Mag19, (1.8)] and Remark 4.2.20) [MV08, LDM10, Mag11a, Mag19].

The main result of this chapter is a series of area formulas that permit to compute the
spherical Hausdorff measure, with respect to any fixed homogeneous distance, of H-regular
surfaces of low codimension in the Heisenberg group. Precisely, we choose 1 ≤ k ≤ n and
we fix a regularly parametrized H-regular surface Σ of codimension k (Definition 4.1.26),
we associate with Σ a “parametrized measure” µ, using a defining continuously Pansu
differentiable mapping f and an intrinsic regular parametrizing map φ, according to (6.10).

159
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As we said in the previous chapter, the measure µ already appeared in [FSSC07], where the
authors introduced it to prove an area formula for the centered Hausdorff measure of Σ,
see [SC16, Theorem 4.5]. The choice of the measure µ is furthermore justified by Theorem
5.5.5 ([Cor19, Theorem 6.1]), where it is shown how µ can be rewritten uniquely in terms
of the intrinsic derivatives of the parametrizing mapping φ. The main step towards the
proof of our area formula is an upper blow-up theorem (Theorem 6.3.4) to compute the
Federer density of the measure µ at any point of Σ. The terminology “upper blow-up”
goes back to [Mag17], where a Federer density was first computed with applications to
sets of finite H-perimeter in Carnot groups. In our higher codimensional framework, the
proof of the upper blow-up involves some tools: it relies on three key aspects. First,
the intrinsic differentiability of the parametrizing map φ (Theorem 4.1.22) is crucial in
establishing the limit of the set (6.13) in the proof of the upper blow-up. Second, we prove
an “intrinsic chain rule” (Theorem 6.2.2) that permits us to connect the kernel of Df with
the intrinsic differential of φ, according to (6.15). However, to make our chain rule work
we have slightly modified the well known notion of intrinsic differentiability associated
with a factorization, introducing the notion of extrinsic differentiability (Definition 6.2.1).
Third, we establish a delicate algebraic lemma for computing the Jacobian of projections
between vertical subgroups, that are associated with two semidirect factorizations with
the same horizontal complementary subgroup (Lemma 6.3.3).

By combining Theorem 6.3.4 with the abstract measure-theoretic area formula given
by Theorem 2.5.15 ([Mag15, Theorem 11]), we obtain an area formula for Σ (Theorem
6.4.1), involving µ and the spherical measure S2n+2−k with respect to any homogeneous
distance d. In the assumptions of Theorem 6.3.4, for any Borel set B ⊂ Σ we have

µ(B) =

∫
B
βd(Tan(Σ, x)) dS2k+2−k(x).

If the factors of the semidirect product are orthogonal the measure µ can be written
in terms of intrinsic Jacobian, and then in terms of intrinsic partial derivatives of the
parametrization φ of Σ (Theorem 6.4.2). If the distance d is invariant under some classes
of symmetries (Definition 6.1.2) or it is multiradial (Definition 6.1.5), then the area formula
simplifies (Theorem 6.4.4). Precisely, in these cases the spherical factor only depends on
the distance, on the dimension of the surface and on the fixed scalar product on Hn,
becoming a geometric constant. Some additional applications follow from our results. By
a slight modification of the proof of Theorem 6.3.4, we obtain a standard blow-up theorem
computing the centered density of µ at any point of Σ (Theorem 6.3.8). By combining it
with the measure-theoretic area formula for the centered density Theorem 2.5.13 ([FSSC15,
Theorem 3.1]), we obtain an area formula for the centered Hausdorff measure of Σ, that
extends the one of [FSSC07] to any homogeneous distance (Theorem 6.4.5). We finally
provide the cases when the spherical measure and the centered Hausdorff measure do
coincide (Corollary 6.4.7).

6.1 Some preliminary notions

We introduce some definitions and known results that will be specifically useful in this
chapter.

Definition 6.1.1 (Spherical factor). Let d be a homogeneous distance on Hn. If W is a
linear subspace of topological dimension p of Hn, then we define the spherical factor of W
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with respect to d as
βd(W) = max

z∈B(0,1)
HpE(W ∩ B(z, 1)).

When we deal with a homogeneous distance d that preserves suitable symmetries the
spherical factor can become a geometric constant. The following definition detects those
homogeneous distances giving a constant spherical factor. It extends [Mag17, Defini-
tion 6.1] to higher codimension.

Definition 6.1.2. Let d be a homogeneous distance on Hn and let p = 1, . . . , 2n + 1.
If p = 1 or p = 2n + 1, then we automatically say that d is p-vertically symmetric. If
2 ≤ p ≤ 2n, we say that d is p-vertically symmetric if the following conditions hold. We
refer to the fixed graded scalar product 〈·, ·〉 and we assume that there exists a family
E ⊂ O(H1) of isometries such that for any couple of p-dimensional subspaces S1, S2 ⊂ H1,
there exists L ∈ E that satisfies the condition L(S1) = S2. Taking into account that H1

and H2 are orthogonal, we introduce the class of isometries

O = {T ∈ O(Hn) : T |H2 = IdH2 , T |H1 ∈ E}.

Then we say that d is p-vertically symmetric if the following holds:

• πH1(B(0, 1)) = B(0, 1) ∩ H1 = {h ∈ H1 : θ(|πH1(h)|) ≤ r0} for some monotone
non-decreasing function θ : [0,+∞)→ [0,+∞) and r0 > 0,

• T (B(0, 1)) = B(0, 1) for all T ∈ O.

More information on p-vertically symmetric distances in general stratified homogeneous
groups can be found in [Mag18], or in the recent derived paper [Mag20]. For instance, the
sub-Riemannian distance in the Heisenberg group H1 is 2-vertically symmetric.

The next theorem specializes to the Heisenberg group [Mag20, Theorem 1.1]. In fact,
according to the terminology of [Mag20, Definition 1.2], Theorem 6.1.3 states that any
homogeneous p-vertically symmetric distance is rotationally symmetric with respect to
the family of p-dimensional vertical homogeneous subgroups.

Theorem 6.1.3. If p = 1, . . . , 2n + 1 and d is a homogeneous p-vertically symmetric
distance on Hn, then the spherical factor βd(W) is constant on every p-dimensional vertical
subgroup W ⊂ Hn.

The previous theorem motivates the following definition.

Definition 6.1.4. If we have the class of the p-dimensional homogeneous subgroups Dp
and βd(S) remains constant as S ∈ Dp, then we denote the spherical factor by ωd(p),
without indicating the special class of subgroups.

Definition 6.1.5 ([Mag20, Definition 5.1]). Let d be a homogeneous distance on Hn.
We say that d is multiradial if there exists a function θ : [0,+∞)2 → [0,+∞), which is
continuous and monotone non-decreasing on each single variable, with

d(x, 0) = θ(|πH1(x)|, |πH2(x)|).

The function θ is also assumed to be coercive in the sense that θ(x)→ +∞ as |x| → +∞.

Proposition 6.1.6. If d : Hn × Hn → [0,∞) is multiradial, then it is also p-vertically
symmetric for every p = 1, . . . , 2n+ 1.
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A more general statement can be found in [Mag20, Proposition 5.1]. One may also
check that both d∞ and the Cygan-Korányi distance (2.15) are multiradial.

It is also possible to find conditions under which the spherical factor has a simpler
representation. The next theorem is established in [Mag18] (or refer to [Mag20, Theorem
1.4]).

Theorem 6.1.7. If p = 1, . . . , 2n+ 1 and d is a homogeneous distance on Hn whose unit
ball B(0, 1) is convex, then for every p-dimensional vertical subgroup W

βd(W) = HpE(W ∩ B(0, 1)).

6.2 Extrinsic differentiability in Heisenberg groups

Now we introduce the notion of extrinsic differentiability for a map acting from a
normal homogeneous subgroup W ⊂ Hn to Rk. It can be considered as a bridge between
intrinsic differentiability and Pansu differentiability. In particular, this notion permits to
prove a useful chain rule (Theorem 6.2.2). By a direct comparison, one can observe that
extrinsic differentiability is a slight modification of the notion of intrinsic differentiability.

Definition 6.2.1. Let W be a vertical subgroup of Hn, let U ⊂W be an open set and let
F : U → Rk with w̄ ∈ U . We fix any horizontal subgroup V ⊂ Hn such that Hn = WoV
and we choose v ∈ V. We define x = w̄v in Hn and the corresponding translated function

Fx−1(w) = F (σx(w))− F (w̄)

for w ∈ σx−1(U), where for any y ∈ Hn, σy is the map introduced in Definition 3.4.4,
that is σy(m) = πW(ym) = yw(πV(y))−1, for every m ∈W. We say that F is extrinsically
differentiable at w̄ with respect to (W,V, x) if there exists an h-homomorphism L : W→ Rk
such that

|Fx−1(w)− L(w)|
‖w‖

→ 0 as w → 0. (6.1)

The uniqueness of L allows us to denote it by dW,V
x F .

The terminology extrinsic differentiabilty arises from the fact that, in the notation of
Definition 6.2.1, the subgroup V and the point x cannot be detected by the information
we have on F . They are actually artifically added from outside.

One could refer to Definition 6.2.1 and think that the factor V as metric space replaces
Rk. Then in this case essentially one considers a map F as F : U ⊂ W → V, w̄ ∈ U
and one can choose the point v as v = F (w̄) ∈ V, so that x = w̄F (w̄) ∈ Hn. In this
case the numerator of (6.1) could be rewritten as d(Fx−1(w), L(w)), then condition 6.1
would coincide precisely with the condition of intrinsic differentiability of the map F at
the point w̄. Then, in this situation, the “extrinsic differentiability” of F at w̄ with respect
to (W,V, x), would express the intrinsic differentiability of F at w̄.

We have introduced this notion in order to make sense of the following chain rule involv-
ing intrinsic differentiability. Somehow extrinsic and intrinsic differentiability compensate
each other in the following theorem.

Theorem 6.2.2 (Chain rule). Let Hn = WoV be a semidirect product. Let us consider
two open sets U ⊂ W, Ω ⊂ Hn and two functions f : Ω → Rk, φ : U → V. Assume that
Φ(U) ⊂ Ω, where Φ, as usual, denotes the graph function of φ. Let us consider xW ∈ U
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and set x = Φ(xW). If f and φ are Pansu differentiable at x and intrinsically differentiable
at xW, respectively, then the composition F = f ◦ Φ : U → Rk, given by

F (u) = f(uφ(u)) for all u ∈ U,

is extrinsically differentiable at xW with respect to (W,V, x). For every w ∈W the formula

dW,V
x F (w) = Df(x)(wdφxW(w)) (6.2)

holds. If in addition f(wφ(w)) = c for every w ∈ U and some c ∈ R, then we obtain

ker(Df(x)) = graph(dφxW). (6.3)

Proof. Let us first show that F is extrinsically differentiable at xW with respect to (W,V, x).
We define

L(w) = Df(x)(wdφxW(w)) = Df(x)(w) +Df(x)(dφxW(w))

for w ∈W, that is an h-homomorphism. For w small enough, we have

|Fx−1(w)− L(w)|
‖w‖

=
|f(xwx−1

V φ(xwx−1
V ))− f(x)− L(w)|
‖w‖

=
|f(xwφx−1(w))− f(x)−Df(x)(wdφxW(w))|

‖w‖

≤ |f(xwφx−1(w))− f(x)−Df(x)(wφx−1(w))|
‖w‖

+
|Df(x)(wφx−1(w))−Df(x)(wdφxW(w))|

‖w‖
.

Let us consider the last two addends separately:

|f(xwφx−1(w))− f(x)−Df(x)(wφx−1(w))|
‖w‖

=
|f(xwφx−1(w))− f(x)−Df(x)(wφx−1(w))|

‖wφx−1(w)‖
‖wφx−1(w)‖
‖w‖

→ 0

as ‖w‖ → 0, by the Pansu differentiability of f at x and by the validity of

‖wφx−1(w)‖
‖w‖

≤ 1 +
‖φx−1(w)‖
‖w‖

= 1 +

∥∥∥∥ dφxW ( w

‖w‖

)∥∥∥∥+
‖dφxW(w)−1φx−1(w)‖

‖w‖
≤ Cx

for all w 6= 0 and sufficiently small. It is indeed a consequence of the intrinsic differentia-
bility of φ at xW. For the second addend, the previous intrinsic differentiability yields

|Df(x)(dφxW(w)−1φx−1(w))|
‖w‖

=

∣∣∣∣Df(x)

(
dφxW(w)−1φx−1(w))

‖w‖

)∣∣∣∣→ 0

as w → 0. This complete the proof of the first claim and also establishes formula (6.2).

Let us now assume the constancy of w → f(wφ(w)) on U . Since we have proved that
F is extrinsically differentiable at xW with respect to (W,V, x), being in this case Fx−1

identically vanishing, we obtain

dW,V
x F (w) = o(‖w‖)
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as w → 0. Therefore, for any u ∈W, we have

‖Df(x)(δtudφxW(δtu))‖ = o(t)

as t→ 0. Due to the h-linearity, it follows that

Df(x)(udφxW(u)) = 0.

We have proved the inclusion graph(dφxW) ⊂ ker(Df(x)) of homogeneous subgroups with
the same dimension, hence formula (6.3) is established.

The proof of the following proposition is a simple application of Theorem 6.2.2.

Proposition 6.2.3. Let Hn = W o V with V horizontal k-dimensional homogeneous
subgroup. Let φ : U → V, where U ⊂ W be open, and assume that φ is everywhere
intrinsically differentiable. Let Σ = {wφ(w) : w ∈ U} and let f : Ω → Rk be everywhere
Pansu differentiable with

Σ = f−1(f(x0)) ∩ (UV)

for some x0 ∈ Ω. If JHf(x) > 0 for all x ∈ Σ, then JVf(x) > 0 for all x ∈ Σ.

Proof. We consider x = wφ(w), so by Theorem 6.2.2 the function F = f ◦Φ is extrinsically
differentiable at w with respect to (W,V, x) and

0 = dW,V
x F (v) = Df(x)(vdφw(v)) = Df |W(x)(v) +Df |V(x)(dφw(v))

where v ∈ W. If by contradiction Df |V(x) : V → Rk would not be a isomorphism, then
its image T would have linear dimension less than k. Then the previous equalities would
imply that the image of Df |W(x) would be contained in T , hence the same would hold for
the image of Df(x). This conflicts with the fact that Df(x) is surjective.

Proposition 6.2.4. Let φ : U → V, where U ⊂ W is open, and assume that φ is
everywhere intrinsically differentiable. Let Σ = {wφ(w) : w ∈ U} and assume that there
is f ∈ C1

h(Ω,Rk) such that Σ = f−1(f(x0)) ∩ (UV) for some x0 ∈ Ω and JHf(x) > 0 for
all x ∈ Σ, then φ in uniformly intrinsically differentiable.

Proof. By Proposition 6.2.3 JVf(x) > 0 for every x ∈ Σ. Then, by Proposition 4.1.27, φ
is the unique parametrization of Σ with respect to (W,V) and it is uniformly intrinsically
differentiable.

6.3 Low codimensional blow-up in the Heisenberg group

Definition 6.3.1. Let M, W and V be homogeneous subgroups of Hn such that

Hn = MoV = WoV. (6.4)

The semidirect product WoV automatically yields the classical group-projections

πW : Hn →W and πV : Hn → V

such that x = πW(x)πV(x) for every x ∈ Hn. To emphasize the dependence on the
semidirect factorization now we introduce the notation πW,V

W = πW and πW,V
V = πV. The

same holds for MoV. We define also the following restrictions

πW,V
W,M = πW,V

W |M : M→W and πM,VM,W = πM,VM |W : W→M
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Remark 6.3.2. The uniqueness of the factorizations (6.4) implies that both the restric-
tions πW,V

W,M and πM,VM,W are invertible and

πW,V
W,M = (πM,VM,W)−1. (6.5)

In fact, if m ∈M we can write

m = πW,V
W,M(m)πW,V

V,M (m)

so that
m(πW,V

V,M (m))−1 = πW,V
W,M(m).

Then, by the uniqueness of projections

m = πM,VM,W(πW,V
W,M(m)),

and the thesis is proved.

The main result of this section needs the following algebraic lemma.

Lemma 6.3.3. We consider two vertical subgroups M, W of Hn and a k-dimensional
horizontal subgroup V ⊂ Hn such that

Hn = MoV = WoV.

We introduce the multivectors

V = v1 ∧ · · · ∧ vk, W = w1 ∧ · · · ∧ w2n−k ∧ e2n+1, M = m1 ∧ · · · ∧m2n−k ∧ e2n+1,

where (v1, . . . , vk), (w1, . . . w2n−k, e2n+1) and (m1, . . . ,m2n−k, e2n+1) are orthonormal bases
of V, W and M, respectively. Then for every Borel set B ⊂M, we have

(πM,VM,W)]H2n+1−k
E (B) = H2n+1−k

E (πW,V
W,M(B)) =

‖V ∧M‖g
‖V ∧W‖g

H2n+1−k
E (B),

where the projections πM,VM,W and πW,V
W,M have been introduced in Definition 6.3.1. The norms

of V ∧M and V ∧W are taken with respect to the Hilbert structure of Λ2n+1(Hn) induced
by our scalar product on Hn.

Proof. It is clearly not restrictive to relabel the bases of M and W as wk+1, . . . , w2n, e2n+1

and mk+1, . . . ,m2n, e2n+1. We define the isomorphisms iW : W→ R2n+1−k,

iW

(
x2n+1e2n+1 +

2n∑
i=k+1

xiwi

)
= (xk+1, . . . , x2n+1),

iM : M→ R2n+1−k,

iM

(
x2n+1e2n+1 +

2n∑
i=k+1

ximi

)
= (xk+1, . . . , x2n+1)

and iV : V→ Rk

iV

(
k∑
i=i

xivi

)
= (x1, . . . , xk).
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We introduce the map Ψ1 : R2n+1 → Hn,

Ψ1(x1, . . . , x2n+1) =

(
x2n+1e2n+1 +

2n∑
i=k+1

xiwi

)(
k∑
i=1

xivi

)
, (6.6)

and we now verify that JΨ1(x) = ‖V ∧W‖g for every x = (x1, . . . , x2n+1) ∈ R2n+1. In
fact,

Ψ1(x) =

x2n+1e2n+1 +
2n∑

j=k+1

xjwj

 k∑
j=1

xjvj


= x2n+1e2n+1 +

2n∑
j=k+1

xjwj +
k∑
j=1

xjvj +
1

2
ω

 2n∑
j=k+1

xjwj ,
k∑
j=1

xjvj

 e2n+1,

hence

∂xiΨ1(x) = vi +
1

2
ω

 2n∑
j=k+1

xjwj , vi

 e2n+1 = vi + cie2n+1

for suitable constants ci ∈ R, i = 1, . . . , k and

∂xjΨ1(x) = wj +
1

2
ω

(
wj ,

k∑
`=1

x`v`

)
e2n+1 = wj + dje2n+1

for suitable constants dj ∈ R, j = k + 1, . . . , 2n. We may write

∂x1
Ψ1(x) ∧ ∂x2

Ψ1 ∧ · · · ∧ ∂x2n+1
Ψ1(x)

=(v1 + c1e2n+1) ∧ · · · ∧ (vk + cke2n+1) ∧ (wk+1 + dk+1e2n+1) ∧ · · · ∧ (w2n + d2ne2n+1) ∧ e2n+1

=v1 ∧ · · · ∧ vk ∧ wk+1 ∧ · · · ∧ w2n ∧ e2n+1.

We have proved that

∂x1Ψ1(x) ∧ ∂x2Ψ1(x) ∧ · · · ∧ ∂x2n+1Ψ1(x) = v1 ∧ · · · ∧ vk ∧ wk+1 ∧ · · · ∧ w2n ∧ e2n+1.

Taking into account that V = v1 ∧ · · · ∧ vk and W = wk+1 ∧ · · · ∧ w2n ∧ e2n+1, and that

dEΨ1(x)∧dEΨ1(x)∧· · ·∧dEΨ1(x)(e1∧· · ·∧e2n+1) = ∂x1Ψ1(x)∧∂x2Ψ1(x)∧· · ·∧∂x2n+1Ψ1(x),

we have proved that
JΨ1(x) = ‖V ∧W‖g.

We define another map Ψ2 : R2n+1 → Hn,

Ψ2(x1, . . . , x2n+1) =

(
x2n+1e2n+1 +

2n∑
i=k+1

ximi

) k∑
j=1

xivi

 ,

and we observe in the same way that for every x = (x1, . . . , x2n+1) ∈ R2n+1,

JΨ2(x) = ‖V ∧M‖g.
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We introduce the embedding q : R2n+1−k → R2n+1,

q(x1, . . . , x2n+1−k) = (0, . . . , 0, x1, . . . , x2n+1−k)

and the projection p : R2n+1 → R2n+1−k,

p(x1, . . . , x2n+1) = (xk+1, . . . , x2n+1).

For every z ∈ Hn, we observe that

Ψ−1
1 (z) = (iV ◦ πV(z), iW ◦ πW(z)) .

It follows that
i−1
W ◦ p ◦Ψ−1

1 = πW.

If we take any m ∈M, then

πW(m) = i−1
W ◦ p ◦Ψ−1

1 ◦Ψ2 ◦Ψ−1
2 (m)

= i−1
W ◦ p ◦Ψ−1

1 ◦Ψ2 ◦ q ◦ iM(m)

= πW,V
W,M(m).

(6.7)

Let us start by considering the map

Ψ−1
1 ◦Ψ2,

and let us represent Ψ1 as follows

Ψ1(x) =
2n∑

j=k+1

xjwj +
k∑
j=1

xjvj +

x2n+1 +
1

2
ω

 2n∑
j=k+1

xjwj ,

k∑
j=1

xjvj

 e2n+1

=
k∑
j=1

x̃jvj +
2n∑

`=k+1

x̃`w` + x̃2n+1e2n+1

for suitable constants x̃j ∈ R, j = 1, . . . , 2n+1. Then clearly we have the following explicit
form

Ψ−1
1

 k∑
j=1

x̃jvj +
2n∑

`=k+1

x̃`w` + x̃2n+1e2n+1


=

x̃1, . . . , x̃2n, x̃2n+1 −
1

2
ω

 2n∑
j=k+1

x̃jwj ,

k∑
j=1

x̃jvj

 . (6.8)

Now we can consider the change of basis for j = k + 1, . . . , 2n

mj =

k∑
s=1

bsjvs +

2n∑
`=k+1

b`jw` + aje2n+1,

where bsj , b
`
j , aj ∈ R are suitable real numbers for s = 1, . . . , k, ` = k + 1, . . . , 2n.
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Hence

Ψ2(x) =

k∑
j=1

xjvj +

2n∑
j=k+1

xjmj +

x2n+1 +
1

2
ω

 2n∑
j=k+1

xjmj ,

k∑
j=1

xjvj

 e2n+1

=

k∑
s=1

xs +

2n∑
j=k+1

xjb
s
j

 vs +

2n∑
`=k+1

 2n∑
j=k+1

xjb
`
j

w`

+

x2n+1 +
1

2
ω

 2n∑
j=k+1

xjmj ,

k∑
j=1

xjvj

+

2n∑
j=k+1

xjaj

 e2n+1.

Finally we set

x′s = x′s(x1, . . . , x2n) = xs +
2n∑

j=k+1

xjb
s
j for s = 1, . . . , k,

x′` = x′`(x1, . . . , x2n) =
2n∑

j=k+1

xjb
`
j for ` = k + 1, . . . , 2n,

x′2n+1 = x2n+1 +
1

2
ω

 2n∑
j=k+1

xjmj ,
k∑
j=1

xjvj

+
2n∑

j=k+1

xjaj

and considering (6.8) we may write

Ψ−1
1 ◦Ψ2(x) =

x1 +
2n∑

j=k+1

xjb
1
j , . . . , xk +

2n∑
j=k+1

xjb
k
j ,

2n∑
j=k+1

xjb
k+1
j , . . . ,

2n∑
j=k+1

xjb
2n
j , γ(x)


= (x′1, . . . , x

′
2n, γ(x)),

where

γ(x) = x′2n+1 −
1

2
ω

 2n∑
j=k+1

x′jwj ,
k∑
j=1

x′jvj


= x2n+1 +

1

2
ω

 2n∑
j=k+1

xjmj ,
k∑
j=1

xjvj

+
2n∑

j=k+1

xjaj −
1

2
ω

 2n∑
j=k+1

x′jwj ,
k∑
j=1

x′jvj


= x2n+1 + S(x),

with S(x) = S(x1, . . . , x2n). The Jacobian matrix of Ψ−1
2 ◦ Ψ1 at any point x has the
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following form

1 0 · · · 0 b1k+1 b1k+2 · · · b12n 0

0 1 . . .
... b2k+1 b2k+2 · · · b22n 0

... 0
. . .

...
...

... · · ·
...

...
0 0 · · · 1 bkk+1 bkk+2 · · · bk2n 0

0 0 · · · 0 bk+1
k+1 bk+1

k+2 · · · bk+1
2n 0

...
... · · ·

...
...

... · · ·
...

...
0 0 . . . 0 b2nk+1 b2nk+2 · · · b2n2n 0

∂x1S(x) ∂x2S(x) · · · ∂xkS(x) ∂xk+1
S(x) ∂xk+2

S(x) · · · ∂x2nS(x) 1


.

We may write this matrix emphasizing its blocks hence the map Ψ−1
1 ◦Ψ2 is a polynomial

diffeomorphism, whose Jacobian matrix at x has the following form

J (Ψ−1
1 ◦Ψ2)(x) =

 I R1 0
0 R2 0

L1(x) L2(x) 1

 ∈M2n+1,2n+1(R),

where I ∈ Mk,k(R) is the identity matrix Ik, R1 ∈ Mk,2n−k(R), R2 ∈ M2n+1−k,2n+1−k(R)
and L1 : R2n+1 → Rk, L2 : R2n+1 → R2n−k are affine functions.
From the definition of q : R2n+1−k → R2n+1 and p : R2n+1 −→ R2n+1−k, if we consider the
Jacobian matrix corresponding to the composition Ψ−1

1 ◦Ψ2 ◦ q at any point y ∈ R2n+1−k,
J (Ψ−1

1 ◦Ψ2 ◦ q)(y), it is the following matrix R1 0
R2 0

L2(q(y)) 1

 .

Therefore we have

J (p ◦Ψ−1
1 ◦Ψ2 ◦ q)(y) =

(
R2 0

L2(q(y)) 1

)
and then it follows that

J(p ◦Ψ−1
1 ◦Ψ2 ◦ q)(y) = J(Ψ−1

1 ◦Ψ2)(q(y)) = |detR2|. (6.9)

As a consequence, taking into account that

‖V ∧M‖g
‖V ∧W‖g

= J(Ψ−1
1 ◦Ψ2),

the following equalities hold

H2n+1−k
E (B) = L2n+1−k(iM(B))

=
‖V ∧W‖g
‖V ∧M‖g

L2n+1−k(p(Ψ1(Ψ−1
2 (q(iM(B)))))

=
‖V ∧W‖g
‖V ∧M‖g

H2n+1−k
E (i−1

W (p(Ψ1(Ψ−1
2 (q(iM(B)))))

=
‖V ∧W‖g
‖V ∧M‖g

H2n+1−k
E (πW,V

W,M(B)).
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We are now ready to compute the upper blow-up theorem.

Theorem 6.3.4 (Upper blow-up). Let Hn be equipped with a homogeneous distance
d. Consider an H-regular surface Σ, consider an open set Ω ⊂ Hn and a function
f ∈ C1

h(Ω,Rk), with 1 ≤ k ≤ n and assume that Σ ⊂ f−1(0) and that for a k-dimensional
horizontal subgroup V ⊂ Hn, JVf(x) > 0 for every x ∈ Σ. Then if we fix an homogeneous
subgroup W complementary to V such that Hn = W o V, by Proposition 4.1.27 Σ is a
parametrized H-regular surface with respect to (W,V). We call φ : U → V its parametriza-
tion, where U ⊂ W is an open set and Σ = Φ(U) = graph(φ), where Φ : U → Hn

is the graph mapping of φ. Let (v1, . . . vk) ⊂ H1 be an orthonormal basis of V and set
V = v1 ∧ · · · ∧ vk. Consider an orthonormal basis (wk+1, . . . , w2n, e2n+1) of W and define
W = wk+1 ∧ · · · ∧ w2n ∧ e2n+1. Let us introduce the following measure

µ(B) = ‖V ∧W‖g
∫

Φ−1(B)

JHf(Φ(n))

JVf(Φ(n))
dH2n+1−k

E (n) (6.10)

for every Borel set B ⊂ Hn. Then for every x ∈ Σ we have

θ2n+2−k(µ, x) = βd(Tan(Σ, x)).

Remark 6.3.5. The factor ‖V ∧ W‖g can be thought as the contribute given by the
angle between the two subgroups V and W. In fact, when V and W are orthogonal,
‖V ∧W‖g = 1.

Remark 6.3.6. The theorem can be equivalently formulated assuming initially that Σ is
a regularly parametrized H-regular surface with respect to (W,V), with V of dimension k
and 1 ≤ k ≤ n and calling φ : U → V its parametrization, where U ⊂ W is open set and
Σ = Φ(U) = graph(φ). If we assume that φ is everywhere intrinsically differentiable and
we take a map f ∈ C1

h(Ω,Rk) such that Σ ⊂ f−1(0) and JHf(x) > 0 for all x ∈ Σ, then,
by Proposition 6.2.3, JVf(x) > 0 for any y ∈ Σ. Hence we are in the same hypotheses of
Theorem 6.3.4.

Remark 6.3.7. Theorem 6.3.4 holds also if we consider a splitting Hn = WoV with V
horizontal subgroup of dimension k and we consider a uniformly intrinsically differentiable
map φ : U → V, with U ⊂ W open set. In fact, under these hypotheses Theorem 5.1.12
guarantees the existence of a defining function f ∈ C1

h(Ω,Rk), with Ω ⊂ Hn open set such
that f(graph(φ)) = 0 and JVf(x) > 0 for every x ∈ graph(φ).

Proof of Theorem 6.3.4. Let us consider x ∈ Σ. By formula (6.10), for any y ∈ Ω, taking
t > 0 sufficiently small, we can write

µ(B(y, t)) = ‖V ∧W‖g
∫

Φ−1(B(y,t))

JHf(Φ(n))

JVf(Φ(n))
dH2n+1−k

E (n). (6.11)

We denote by ζ ∈ U the element such that

x = Φ(ζ) = ζφ(ζ).

We now perform the change of variables

n = σx(Λt(η)) = x(Λtη)(πV(x))−1 = x(Λtη)(φ(ζ))−1,
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where Λt = δt|W. The Jacobian of Λt is t2n+2−k. It is well known that σx has unitary
Jacobian (see for instance [FS16, Lemma 2.20]). Setting α(x) = JHf(x)/JVf(x), we
obtain that

µ(B(y, t))

t2n+2−k = ‖V ∧W‖g
∫

Λ1/t(σ
−1
x (Φ−1(B(y,t))))

(α ◦ Φ)(σx(Λt(η)))) dH2n+1−k
E (η).

By the general definition of Federer density we obtain that

θ2n+2−k(µ, x) = inf
r>0

sup
y∈B(x,t)
0<t<r

µ(B(y, t))

t2n+2−k

= inf
r>0

sup
y∈B(x,t)
0<t<r

‖V ∧W‖g
∫

Λ1/t(σ
−1
x (Φ−1(B(y,t))))

(α ◦ Φ)(σx(Λt(η))) dH2n+1−k
E (η).

There exists R0 > 0 such that for t > 0 and y ∈ B(x, t) we have the following inclusion

Λ1/t(σ
−1
x (Φ−1(B(y, t)))) ⊂ BW(0, R0), (6.12)

where we have set
BW(0, R0) = B(0, R0) ∩W.

To see (6.12), we write more explicitly the set Λ1/t(σ
−1
x (Φ−1(B(y, t)))), that is{

η ∈ Λ1/t(σ
−1
x (U)) :

∥∥y−1x(Λtη)φ(ζ)−1φ(x(Λtη)φ(ζ)−1)
∥∥ ≤ t} .

It can be written as follows{
η ∈ Λ1/t(σ

−1
x (U)) :

∥∥∥∥(δ1/t(y
−1x))η

(
φ(ζ)−1φ(x(Λtη)φ(ζ)−1)

t

)∥∥∥∥ ≤ 1

}
.

According to (3.21), the translated function of φ at x−1 is

φx−1(η) = πV(x−1)φ(xηπV(x−1)) = φ(ζ)−1φ(xηφ(ζ)−1).

We finally get

Λ1/t(σ
−1
x (Φ−1(B(y, t)))) =

{
η ∈ Λ1/t(σ

−1
x (U)) :

∥∥∥∥(δ1/t(y
−1x))η

(
φx−1(Λtη)

t

)∥∥∥∥ ≤ 1

}
, (6.13)

hence for η ∈ Λ1/t(σ
−1
x (Φ−1(B(y, t))), taking into account the previous equality, we get

η

(
φx−1(Λtη)

t

)
∈ B(0, 2).

By the estimate (3.1), we know that

c0

(
‖η‖+

∥∥∥∥φx−1(Λtη)

t

∥∥∥∥) ≤ ∥∥∥∥η(φx−1(Λtη)

t

)∥∥∥∥ ≤ 2,

hence the inclusion (6.12) holds with R0 = 2/c0. As a consequence, we have

θ2n+2−k(µ, x) <∞.
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There exist a positive sequence (tp)p converging to zero and yp ∈ B(x, tp), for every p ∈ N
such that

‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(yp,tp))))

JHf(Φ(σx(Λtp(η))

JVf(Φ(σx(Λtp(η)))
dH2n+1−kE

E (η)→ θ2n+2−k(µ, x)

as p → ∞. Up to extracting a subsequence, since yp ∈ B(x, tp) for every p ∈ N, there
exists z ∈ B(0, 1) such that

lim
p→∞

δ1/tp(x
−1yp) = z.

For the sake of simplicity, we use the notation

Mx = kerDf(x).

Using the projection introduced in Definition 6.3.1, we set

Sz = πW,V
W,Mx

(Mx ∩ B(z, 1)) ⊂W.

Claim 1. For each ω ∈W \ Sz, there exists

lim
p→∞

1Λ1/tp (σ−1
x (Φ−1(B(yp,tp)))(ω) = 0.

By contradiction, if we had a subsequence of the integers p such that

(δ1/tp(y
−1
p x))ω

(
φx−1(Λtpω)

t

)
∈ B(0, 1),

then by a slight abuse of notation, we could still call (tp)p the sequence such that

(δ1/tp(y
−1
p x))ωdφζ(ω)

(
(dφζ(Λtpω))−1φx−1(Λtpω)

tp

)
∈ B(0, 1) (6.14)

for all p, where we have used the homogeneity of the intrinsic differential dφζ of φ. Indeed,
by Theorem 4.1.27, the function φ is in particular intrinsically differentiable at ζ (see also
Theorems 4.1.22 and 4.1.23). Due to the intrinsic differentiability, taking into account
(6.14) as p→∞, it follows that

ωdφζ(ω) ∈ B(z, 1).

It is now interesting to observe that the chain rule of Theorem 6.2.2 yields

graph(dφζ) = ker(Df(x)) = Mx. (6.15)

As a consequence, ωdφζ(ω) ∈ B(z, 1) ∩Mx and then

ω = πW,V
W,Mx

(ωdφζ(ω)) ∈ πW,V
W,Mx

(Mx ∩ B(z, 1)) = Sz, (6.16)

that is not possible by our assumption. This concludes the proof of Claim 1.

Now we introduce the density function

α(t, η) =
JHf(Φ(σx(Λt(η)))

JVf(Φ(σx(Λt(η)))
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to write

‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(yp,tp))))

α(tp, η) dH2n+1−k
E (η) = Ip + Jp.

The sequence Ip, defined in the following equality, satisfies the estimate

Ip = ‖V ∧W‖g
∫
Sz∩Λ1/tp (σ−1

x (Φ−1(B(yp,tp))))
α(tp, η) dH2n+1−k

E (η)

≤ ‖V ∧W‖g
∫
Sz

α(tp, η) dH2n+1−k
E (η).

Analogously for Jp, we find

Jp = ‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(yp,tp))))\Sz

α(tp, η) dH2n+1−k
E (η)

≤ ‖V ∧W‖g
∫
BW(0,R0)\Sz

1Λ1/tp (σ−1
x (Φ−1(B(yp,tp))))(η) α(tp, η) dH2n+1−k

E (η).

Claim 1 joined with the dominated convergence theorem prove that Jp → 0 as p → ∞,
hence Ip → θ2n+2−k(µ, x). To study the asymptotic behavior of Ip, we first observe that

α(tp, η)→ JHf(x)

JVf(x)
= c(x)

as p→∞. It follows that

θ2n+2−k(µ, x) = lim
p→∞

Ip ≤ ‖V ∧W‖g c(x) H2n+1−k
E (Sz). (6.17)

Claim 2. We set Mx = ker(Df(x)) and we consider Nx = mk+1∧· · ·∧m2n∧e2n+1, where
(mk+1, . . . ,m2n, e2n+1) is an orthonormal basis of Mx. We have

c(x) =
JHf(x)

JVf(x)
=

1

‖V ∧Nx‖g
. (6.18)

Since span{∇Hf1(x), . . . ,∇Hfk(x)} is orthogonal to Mx, it is a standard fact that

mk+1 ∧ · · · ∧m2n ∧ e2n+1 = ∗(∇Hf1(x) ∧ · · · ∧ ∇Hfk(x))λ (6.19)

for some λ ∈ R, see for instance [Mag08, Lemma 5.1]. Here we have defined the Hodge
operator ∗ in Hn with respect to the fixed orientation

e = e1 ∧ . . . e2n ∧ e2n+1

and the fixed scalar product 〈·, ·〉. Precisely, we are referring to the Heisenberg basis
(e1, . . . , e2n, e2n+1), according to Sections 2.3 and 2.4.1. Therefore ∗η is the unique (2n+
1− k)-vector such that

ξ ∧ ∗η = 〈ξ, η〉 e (6.20)

for all k-vectors ξ. Since the Hodge operator is an isometry, we get

|λ| = 1

‖∇Hf1(x) ∧ . . .∇Hfk(x)‖g
. (6.21)
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Due to (6.20) and (6.21), we have

‖V ∧Nx‖g = |λ|‖‖v1 ∧ · · · ∧ vk ∧ (∗(∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)))‖g

=
‖〈v1 ∧ · · · ∧ vk,∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)〉e‖g

‖∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)‖g

=
|〈v1 ∧ · · · ∧ vk,∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)〉|

‖∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)‖g

=
‖∇Vf1(x) ∧ · · · ∧ ∇Vfk(x)‖g
‖∇Hf1(x) ∧ · · · ∧ ∇Hfk(x)‖g

=
JVf(x)

JHf(x)
,

hence establishing Claim 2.

As a result, taking into account (6.17), we have proved that

θ2n+2−k(µ, x) ≤ ‖V ∧W‖g
‖V ∧Nx‖g

H2n+1−k
E (Sz). (6.22)

By Lemma 6.3.3 applied to B = Mx ∩ B(z, 1), the following formula holds

H2n+1−k
E (πW,V

W,Mx
(Mx ∩ B(z, 1))) =

‖V ∧Nx‖g
‖V ∧W‖g

H2n+1−k
E (Mx ∩ B(z, 1)). (6.23)

It follows that

θ2n+2−k(µ, x) ≤ H2n+1−k
E (Mx ∩ B(z, 1)) ≤ H2n+1−k

E (Mx ∩ B(z0, 1)), (6.24)

where z0 ∈ B(0, 1) is chosen such that βd(Mx) = H2n+1−k
E (Mx ∩ B(z0, 1)).

For the opposite inequality, we follow the scheme in the proof of [Mag17, Theorem
3.1]. We consider a specific family of points y0

t = xδtz0 ∈ B(x, t) and fix λ > 1. We have

sup
0<t<r

µ(B(y0
t , λt))

(λt)2n+2−k ≤ sup
y∈B(x,t),
0<t<λr

µ(B(y, t))

t2n+2−k

for every r > 0, therefore

lim sup
t→0+

µ(B(y0
t , λt))

(λt)2n+2−k ≤ θ
2n+2−k(µ, x). (6.25)

We introduce the set

A0
t = Λ1/λt(σ

−1
x (Φ−1(B(y0

t , λt)))

=

{
η ∈ Λ1/λt(σ

−1
x (U)) : η

(
φx−1(Λλtη)

λt

)
∈ B(δ1/λz0, 1)

}
.

The second equality can be deduced by (6.13). Then we can rewrite

µ(B(y0
t , λt))

(λt)2n+2−k = ‖V ∧W‖g
∫
A0
t

α(λt, η)dH2n+1−k
E (η)

=
‖V ∧W‖g
λ2n+2−k

∫
δλA

0
t

α(λt, δ1/λη)dH2n+1−k
E (η)

(6.26)



6.3 Low codimensional blow-up in the Heisenberg group 175

The domain of integration satisfies

δλA
0
t =

{
η ∈ Λ1/t(σ

−1
x (U)) : η

(
φx−1(Λtη)

t

)
∈ B(z0, λ)

}
.

Due to (6.12) and the definition of A0
t , it holds

δλA
0
t ⊂ BW(0, λR0).

Claim 3. For every η ∈ πW,V
W,Mx

(Mx ∩B(z0, λ)), we have

lim
t→0+

1δλA0
t
(η) = 1. (6.27)

The intrinsic differentiability of φ at ζ shows that

η

(
φx−1(Λtη)

t

)
→ ηdφζ(η) as t→ 0.

Taking into account (6.5) and (6.16), we get

πMx,V
Mx,W(η) = ηdφζ(η),

hence our assumption on η can be written as follows

d (ηdφζ(η), z0) < λ.

We conclude that η ∈ δλA0
t for any t > 0 sufficiently small, therefore the limit (6.27) holds

and the proof of Claim 3 is complete.

By Fatou’s lemma, taking into account (6.25) and (6.26) we get

‖V ∧W‖g
λ2n+2−k

∫
πW,V
W,Mx (Mx∩B(z0,λ))

lim inf
t→0

(
1δλA0

t
(η)α(λt, δ1/λη)

)
dH2n+1−k

E (η) ≤ θ2n+2−k(µ, x).

Claim 3 joined with (6.18) yields

1

λ2n+2−k
‖V ∧W‖g
‖V ∧Nx‖g

H2n+1−k
E

(
πW,V
W,Mx

(Mx ∩B(z0, λ))
)
≤ θ2n+2−k(µ, x).

Applying again (6.23), we obtain

1

λ2n+2−kH
2n+1−k
E (Mx ∩B(z0, λ)) ≤ θ2n+2−k(µ, x).

Taking the limit as λ → 1+ and considering the opposite inequality (6.24), the proof is
complete. In fact, it is enough to notice that by Proposition 4.1.13 Mx = Tan(Σ, x).

Slightly modifying the proof of the previous theorem, we obtain the following “centered
blow-up” Theorem. We present the proof without repeating verbatim those parts of the
proof that coincide with the ones of the proof of Theorem 6.3.4, to which we refer for
explicit computations. For this reason, we have decided to name the claims of the following
proof “ Claim 1c” and “Claim 3c”, since they mirror Claim 1 and Claim 3 of the proof of
Theorem 6.3.4, respectively; the letter “c” stands for centered. Claim 2 will still be needed
but its formulation, its proof and its role do not change at all in the proof of Theorem
6.3.8, then we will not rename it, considering it verbatim valid and directly referring the
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reader to the computations of Claim 2 of the proof of Theorem 6.3.4.

Theorem 6.3.8. In the assumptions of Theorem 6.3.4, for every x ∈ Σ, we have

θ2n+2−k
c (µ, x) = H2n+1−k

E (Tan(Σ, x) ∩ B(0, 1)).

Proof. By the definition of θ2n+2−k
c , performing a change of variable analogous to the one

performed in the proof of the Theorem 6.3.4, we obtain

θ2n+2−k
c (µ, x) = lim sup

t→0

µ(B(x, t))

t2n+2−k

= lim sup
t→0

‖V ∧W‖g
∫

Λ1/t(σ
−1
x (Φ−1(B(x,t))))

(α ◦ Φ)(σx(Λt(η))) dH2n+1−k
E (η).

There exists R0 > 0 such that for t > 0 we have the following inclusion

Λ1/t(σ
−1
x (Φ−1(B(x, t)))) ⊂ BW(0, R0), (6.28)

where we have set
BW(0, R0) := B(0, R0) ∩W.

To see this we write, as in the previous proof, more explicitly the set Λ1/t(σ
−1
x (Φ−1(B(y, t))))

as {
η ∈ Λ1/tσ

−1
x (U) :

∥∥∥∥ηφ(ζ)−1φ(Φ(ζ)Λtηφ(ζ)−1)

t

∥∥∥∥ ≤ 1

}
.

Again by the definition of the translated map we obtain that

Λ1/t(σ
−1
x (Φ−1(B(x, t)))) =

{
η ∈ Λ1/tσ

−1
x (U) :

∥∥∥∥ηφx−1(Λtη)

t

∥∥∥∥ ≤ 1

}
, (6.29)

hence for η ∈ Λ1/t(σ
−1
x (Φ−1(B(x, t))), taking into account (6.29) we have established that

η
φx−1(Λtη)

t
∈ B(0, 1).

By the estimate (3.1.17), we have

c0

(
‖η‖+

∥∥∥∥φx−1(Λtη)

t

∥∥∥∥) ≤ ∥∥∥∥ηφx−1(Λtη)

t

∥∥∥∥ ≤ 1,

hence the inclusion (6.28) holds with R0 = 1/c0. As a consequence, we have

θ2n+2−k
c (µ, x) <∞.

Then there exists a positive sequence (tp)p converging to zero such that

‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(x,tp))))

JHf(Φ(σx(Λtp(η))

JV f(Φ(σx(Λtp(η)))
dH2n+1−k

E (η)→ θ2n+2−k
c (µ, x)

as p → ∞. Using the special projection of Definition 6.3.1, we set Mx := kerDf(x) and
we introduce the set

S = πW,V
W,Mx

(Mx ∩ B(0, 1)).

Following verbatim the proof of Theorem 6.3.4 one can easily verify the following claim.
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Claim 1c. For each ω ∈W \ S, we have

lim
p→∞

1Λ1/tp (σ−1
x (Φ−1(B(x,tp)))(ω) = 0.

Then, we can introduce as before the density function α(t, η) = JHf(Φ(σx(Λt(η)))
JVf(Φ(σx(Λt(η))) and we

can write for every p ∈ N

‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(x,tp))))

α(tp, η) dH2n+1−k
E (η) = Ip + Jp,

where

Ip = ‖V ∧W‖g
∫
S∩Λ1/tp (σ−1

x (Φ−1(B(x,tp))))
α(tp, η) dH2n+1−k

E (η)

≤ ‖V ∧W‖g
∫
S
α(tp, η) dH2n+1−k

E (η)

and

Jp = ‖V ∧W‖g
∫

Λ1/tp (σ−1
x (Φ−1(B(x,tp))))rS

α(tp, η) dH2n+1−k
E (η)

≤ ‖V ∧W‖g
∫
BW(0,R0)rS

1Λ1/tp (σ−1
x (Φ−1(B(x,tp))))(η) α(tp, η) dH2n+1−k

E (η).

Again following verbatim the previous proof one can directly verify that Jp → 0 as p→∞
and that

lim
p→∞

Ip ≤ H2n+1−k
E (S).

Hence, exploiting the same arguments adopted in the proof of the previous theorem, we
get

θ2n+1−k
c (µ, x) ≤ H2n+1−k

E (Mx ∩ B(0, 1)). (6.30)

In order to prove the opposite inequality, again we adapt the proof of the previous theorem.
We start by fixing λ > 1. We have

lim sup
t→0+

µ(B(x, λt))

(λt)2n+2−k ≤ θ
2n+2−k
c (µ, x). (6.31)

Then, in analogy with the previous proof, we introduce the set

At = Λ1/λt(σ
−1
x (Φ−1(B(x, λt)))

=

{
η ∈ Λ1/λt(σ

−1
x (U)) : η

(
φx−1(Λλtη)

λt

)
∈ B(0, 1)

}
,

where the second equality can be deduced by (6.29). Then we can rewrite

µ(B(x, λt))

(λt)2n+2−k = ‖V ∧W‖g
∫
At

α(λt, η)dH2n+1−k
E (η)

=
‖V ∧W‖g
λ2n+2−k

∫
δλAt

α(λt, δ1/λη)dH2n+1−k
E (η)

(6.32)
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The domain of integration satisfies

δλAt =

{
η ∈ Λ1/t(σ

−1
x (U)) : η

(
φx−1(Λtη)

t

)
∈ B(0, λ)

}
.

Due to (6.28) and the definition of At, it holds that

δλAt ⊂ BW(0, λR0).

Clearly, the following Claim 3c, which mirrors Claim 3 of the proof of Theorem 6.3.4,
holds.
Claim 3c. For every η ∈ πW,V

W,Mx
(Mx ∩B(0, λ)), we have

lim
t→0+

1δλAt(η) = 1. (6.33)

Then, by Fatou’s lemma, taking into account (6.31) and (6.32) we get

‖V ∧W‖g
λ2n+2−k

∫
πW,V
W,Mx (Mx∩B(0,λ))

lim inf
t→0

(
1δλA0

t
(η)α(λt, δ1/λη)

)
dH2n+1−k

E (η) ≤ θ2n+2−k
c (µ, x).

Claim 3c joined with (6.18) (considering that Claim 2 of the previous proof remains ver-
batim valid) yield

1

λ2n+2−k
‖V ∧W‖g
‖V ∧Nx‖g

H2n+1−k
E

(
πW,V
W,Mx

(Mx ∩B(0, λ))
)
≤ θ2n+2−k

c (µ, x).

Applying again Lemma 6.3.3 as in (6.23), we obtain

1

λ2n+2−kH
2n+1−k
E (Mx ∩B(0, λ)) ≤ θ2n+2−k

c (µ, x).

Taking the limit as λ → 1+ and considering the opposite inequality (6.30), the proof is
complete.

6.4 Area formulas

Combining Theorems 2.5.15 and Theorem 6.3.4 we immediately get the following area
formula.

Theorem 6.4.1 (Area formula). In the assumptions of Theorem 6.3.4, for any Borel set
B ⊂ Σ we have

µ(B) =

∫
B
βd(Tan(Σ, x)) dS2k+2−k(x). (6.34)

If the factors of the semidirect product are orthogonal, the measure µ can be written
in terms of the intrinsic partial derivatives of the parametrization φ of Σ. In the proof of
the following theorem the map φ is though, as in Section 5.1, in coordinates with respect
to a fixed Heisenberg basis. We assume W and V to be orthogonal subgroups, so that
the basis can be chosen as in Proposition 5.1.1, to be sure that the product of Hn read in
coordinates maintains the form (2.13). Thus, we can use all the results of Chapter 5.

Theorem 6.4.2. In the assumptions of Theorem 6.3.4, if in addition W is orthogonal to
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V, then for every Borel set B ⊂ Σ we have∫
B
βd(Tan(Σ, x)) dS2k+2−k(x) =

∫
Φ−1(B)

Jφφ(w) dH2n+1−k
E (w), (6.35)

where Jφφ is the intrinsic Jacobian of φ, introduced in Definition 5.5.3.

Proof. Since W and V are orthogonal, by Proposition 5.1.1 we can fix a Heisenberg ba-
sis (v1, . . . , vk, vk+1, . . . , vn, w1, . . . w2n, e2n+1) such that V = span(v1, . . . , vk) and W =
span(vk+1, . . . , vn, wi, . . . , wn, e2n+1). Our claim then follows by representing the measure
µ in terms of the intrinsic partial derivatives of the parametrization φ of Σ, arguing as in
the proof of Theorem 5.5.5.

Remark 6.4.3. Taking into account Remark 6.3.7, formula (6.35) holds for any uniformly
intrinsically differentiable function φ : U ⊂W→ V, where W and V are two complemen-
tary orthogonal subgroups such that Hn = WoV.

We now restrict our attention to homogeneous distances satisfying particular symme-
tries. Exploiting both Theorem 6.1.3 and Proposition 6.1.6 we obtain simpler versions of
the area formula.

Theorem 6.4.4. Let d be either a (2n+ 1− k)-vertically symmetric distance or a multi-
radial distance of Hn. Then in the assumptions of Theorem 6.3.4, we have

µ = ωd(2n+ 1− k)S2k+2−kxΣ. (6.36)

Therefore, by defining S2n+2−k
d := ωd(2n+ 1− k)S2n+1−k, we have

S2n+2−k
d xΣ = ‖V ∧W‖g Φ]

(
JHf

JVf
◦ Φ

)
H2n+1−k
E xW. (6.37)

In the assumptions of the previous theorem, assuming in addition that W and V are
orthogonal, equation (6.37) can be rewritten for any Borel set B ⊂ Σ as

S2n+2−k
d (B) =

∫
Φ−1(B)

Jφφ(w) dH2n+1−k
E (w), (6.38)

where Jφφ is the intrinsic Jacobian of φ defined in 5.5.3.
By Theorem 2.5.13 and Theorem 6.3.8 we obtain an area formula for the centered

Hausdorff measure of Σ. It is the analogue of Theorem 6.4.1.

Theorem 6.4.5. In the assumptions of Theorem 6.3.4, for any Borel set B ⊂ Σ we have

µ(B) =

∫
B
H2n+1−k
E (Tan(Σ, x) ∩ B(0, 1)) dC2k+2−k(x). (6.39)

Remark 6.4.6. When d = d∞, Theorem 6.4.5 recovers [FSSC07, Theorem 4.1].

Corollary 6.4.7. Let d be a homogeneous distance on Hn such that B(0, 1) is convex. In
the assumptions of Theorem 6.3.4, for every x ∈ Σ we obtain

θ2n+2−k
c (µ, x) = θ2n+2−k(µ, x) and C2n+2−kxΣ = S2n+2−kxΣ. (6.40)

Proof. By Theorem 6.1.7 and Theorem 6.3.8, for every x ∈ Σ we have

βd(ker(Df(x)) = H2n+1−k
E (ker(Df(x)) ∩ B(0, 1)) = θ2n+2−k

c (µ, x).
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Finally, the area formulas (6.34) and (6.39) conclude the proof.

Remark 6.4.8. If we consider the distance d∞ on the Heisenberg group Hn, its metric
unit ball B(0, 1) = B∞(0, 1) is convex. Hence, taking in consideration Remark 5.5.2 and
Theorem 6.1.7, the area formula in Theorem 5.5.5 is consistent with the results of this
section.

Remark 6.4.9. Notice that, combining Theorem 6.4.4 with [Mag11b, Theorem 1.1], we
obtain the following useful coarea formula.
Fix a natural number 1 ≤ k ≤ n. Let d be a (2n + 1 − k)-vertically symmetric distance
on Hn and f : Hn → Rk be a Lipschitz mapping. Then we have∫

Hn
u(x)JHf(x) dx =

∫
Rk

(∫
f−1(y)

u(x) dS2n+2−k
d (x)

)
dy, (6.41)

where u : Hn → [0,∞] is a non-negative measurable function.

6.5 Recent results in the literature

Some progresses in developing formulas to compute the Hausdorff measure of intrinsic
regular graphs in Carnot groups have been done after [CM20]. We collect below, in
particular, some results that we consider the more connected with our direction of research.
A very general area formula for suitably parametrized (G,M)-regular sets of a Carnot
group G, for a suitable Carnot group M, has been proved by Julia, Nicolussi Golo and
Vittone in [JNGV20, Theorem 1.1]. The authors consider a splitting of a Carnot group
G as the product of two complementary subgroups G = WV, with W normal, and a
function φ : U → V, with U ⊂ W open set such that Σ = graph(φ) is a suitable (G,M)-
regular set of G for some Carnot group M. In particular, they assume that for every
point x̄ ∈ Σ, there is a function f ∈ C1

h(Ω,M), with Ω ⊂ G open neighbourhood of x̄,
such that Σ ∩ Ω = f−1(0) and such that, for every x ∈ Ω, Df(x) is a h-epimorphism and
ker(Df(x)) is complementary to V (i.e. Df(x)|V : V → M is a h-isomorphism). They
define for x ∈ Σ ∩ Ω, THx Σ := ker(Df(x)) and they notice that it does not depend on the
choice of f . Then, if N is the homogeneous dimension of W and h : Σ→ [0,∞) is a Borel
function, it holds that∫

Σ
h(y)dψN (y) =

∫
U
h(Φ(w))A(THΦ(w)Σ)dψN (w), (6.42)

where ψN denotes either the Hausdorff measure HN , or the spherical Hausdorff measure
SN with respect to the homogeneous distance of G. The function A(·) is a continuous
map defined on Σ to R and depends only on the homogeneous distance fixed on G, on
W, V and on the homogeneous tangent space THΦ(w)Σ at the point Φ(w) of the graph.

The map A is called area factor, see [JNGV20, Definition 3.2]. The theorem in [JNGV20]
is valid for a wide generality of settings but we remark that in formula (6.42) the area
factor remains only implicitly defined. The natural hope is to be able to compute the area
factor in terms of suitably defined intrinsic derivatives of the parametrizing map φ, as it
has been done for intrinsic regular graphs in the Heisenberg group. Notice, in fact, that,
by Theorem 4.3.7, in the hypotheses of [JNGV20, Theorem 1.1], the map φ is uniformly
intrinsically differentiable on U .

In [ADDDLD20, Proposition 1.8] the authors extend the area formula presented in
[DD20a, Proposition 5.4] to Carnot groups of step 2 (see also the preceding formulas in



6.5 Recent results in the literature 181

[ASCV06, Proposition 2.22] and [FSSC01, Theorem 6.5]). In particular they consider a
map φ : U ⊂W→ V uniformly intrinsically differentiable, with G = WV a Carnot group
of step 2 and V one-dimensional. They prove an area formula to compute the H-perimeter
measure of graph(φ) in terms of the intrinsic derivatives of φ.

Finally, as a consequence of his Rademacher’s theorem that we already discussed,
Vittone derived a Lusin-type Theorem [Vit20, Theorem 1.2], that permits to the author
to generalize to low codimensional intrinsic Lipschitz graphs formula (6.35), which by
Remark 6.4.3 holds for all low codimensional uniformly intrinsically differentiable graphs
in the Heisenberg group. The formula is directly obtained by combining the Lusin-type
result [Vit20, Theorem 1.2] with [CM20, Theorem 1.2]. For a precise statement we refer
the reader to [Vit20, Theorem 1.3].
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Chapter 7

A Coarea-type inequality between
Carnot groups

The purpose of this chapter is to present the results of [Cor20], whose development
has been started during a visiting period at Université Paris-Sud, under the supervision
of Prof. P. Pansu. A long-standing open problem about geometric measure theory in
Carnot groups is the validity of the coarea formula for (metric) Lipschitz maps acting
between two Carnot groups, endowed with homogeneous distances. A very general coarea-
type inequality for Lipschitz maps between two metric spaces is due to Federer [Fed69,
2.10.25]. Restricting the focus on Lipschitz maps between two Carnot groups, Magnani
proved a coarea-type inequality in [Mag02b]. Some stronger results, i.e. some coarea
formulas have been proved for specific situations. For instance, one can refer to [FSSC96,
MSC01] for bounded variation maps acting on an arbitrary Carnot group, to [Pan82a,
Pan82b, Mag04a, Mag06a, Mag08, KV13] for Euclidean (or Riemannian) Lipschitz maps
from a Carnot group to some Rk, to [Koz15, MST18] for C1,α

h -regular mappings from
the Heisenberg group Hn to some Rk, with α > 0 (refer to Remark 7.4.4 for a precise
definition), and to [Mag05, Mag11b] for Lipschitz maps from Hn to Rk, for 1 ≤ k ≤ n. As
usual, these references are only intended to give a flavour of the available results in the
literature. Moreover, a general result has recently been proved in [JNGV20]. The authors
consider two Carnot groups G and M, endowed with homogeneous distances, an open set
Ω ⊂ G and a map f : Ω→M, with Pansu differential Df(x) continuous on Ω. Then, the
coarea formula holds for f if, at every point x ∈ Ω, either Df(x) is a h-epimorphism or
Df(x) is not surjective. A key step in the proof of the coarea formula [JNGV20, Theorem
1.3] is the possibility of exploiting Theorem 4.2.15. In fact, if we fix a value m ∈ M
and we consider a point x ∈ f−1(m) such that Df(x) is surjective, if we assume that
there exists a homogeneous subgroup V complementary to ker(Df(x)) and we choose any
homogeneous subgroup W complementary to V, then there exist an open neighbourhood
Ω ⊂ G of x, an open set U ⊂W and a map φ : U ⊂W→ V such that f−1(m) ∩ Ω is the
intrinsic graph of φ. How we discussed in Section 4.4, it is still not clear how to prove the
existence of an analogous parametrization if we assume the Pansu differential Df(x) only
to be surjective. Nevertheless in this chapter we bypass this lack and we prove a weaker
coarea-type inequality, which permits, under a further regularity condition, to deal with
more general situations. More precisely we prove the following theorem.

Theorem 7.0.1. Let (G, d1), (M, d2) be two Carnot groups endowed with homogeneous
distances, of Hausdorff dimension Q and P and topological dimension q and p, respectively.
Let f ∈ C1

h(G,M) be a function and assume that Df(x) is surjective at every point x ∈ G.
Assume that there exist two constants r̃, C > 0 such that for SP -a.e m ∈ M, the level set

183
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f−1(m) is r̃-locally C-lower Ahlfors (Q − P )-regular with respect to the measure SQ−P .
Then there exists a constant L = L(C,G, p) such that, if Ω is a closed bounded subset of
G, ∫

Ω
CP (Df(x))dSQ(x) ≤ L

∫
M
SQ−P (f−1(m) ∩ Ω)dSP (m).

The factor CP (Df(x)) is the coarea factor of the Pansu differential Df(x) (see Defi-
nition 7.2.1) and it plays the role of the Jacobian of the Pansu differential at x. Clearly
SP denotes the spherical Hausdorff measure built on M with respect to d2, while by SQ
and SQ−P we denote the spherical Hausdorff measures on G with respect to d1. Refer to
Definition 7.2.4 for the notion of locally lower Ahlfors regular set.

The proof of Theorem 7.0.1 is inspired to an abstract procedure presented in [Pan20],
where it is used to prove a coarea-type inequality for functions acting from a metric space
to a measure space, for packing-type measures. An analogous argument involving suitable
packing measures is adapted here to prove Claim 1 of Theorem 7.3.3. It is immediate to
extend Theorem 7.0.1, to the case when Ω is a measurable subset of G (Theorem 7.3.4). As
an example of its generality, notice that Theorem 7.0.1 can be applied to any continuously
Pansu differentiable functions f : H1 → R2 satisfying the requirements. As a corollary of
Theorem 7.0.1, we deduce new results about the slicing of measurable functions by the
level sets of f (Corollaries 7.4.2 and 7.4.3).

We can compare [JNGV20, Theorem 3.1] with Theorem 7.0.1 in terms of regular
submanifolds, exploiting the various notions of regularity introduced in Chapter 4. Both
the results involve two Carnot groups G and M, an open set Ω ⊂ G and a function
f ∈ C1

h(Ω,M). In Theorem 7.0.1 we assume that the Pansu differential Df(x) is surjective
at every x ∈ G. This implies that, for every m ∈ M, the level set f−1(m) is a (G,M)K-
regular submanifold of G. Then we restrict ourselves to the family of functions for which
SP -almost all level sets f−1(m) satisfy our hypothesis of uniform local Ahlfors regularity.
In fact, as we already stressed in Remark 4.4.3, (G,M)K-regular submanifolds do not
necessarily satisfy this measure-theoretic property. The result in [JNGV20, Theorem 3.1],
instead, can be applied, in particular, assuming that the level sets f−1(m) are (G,M)-
regular sets of G, and therefore that they are, at least locally, regular intrinsic graphs.
Hence, in Theorem 7.0.1 the assumption about the uniform local lower Ahlfors regularity
of the level sets of the map f can then be read as a substitute of the existence of a
suitable splitting of G. In fact, this condition is automatically verified if one assumes the
existence of a homogeneous subgroup V ⊂ G complementary to ker(Df(x)) for every point
x ∈ G (Corollary 7.4.9), since, we remark, in this case every level set is locally an intrinsic
Lipschitz graph and, by the results in [FS16], intrinsic Lipschitz graphs are Ahlfors regular,
and then in particular lower Ahlfors regular. We stress that Corollary 7.4.9, by our point
of view, is just an example of an application of Theorem 7.0.1. In fact, as we discussed
above, it can be immediately derived also by the coarea formula in [JNGV20, Theorem
1.3].

7.1 Setting and packings

When nothing different is specified, in this chapter we consider two Carnot groups
endowed with homogeneous distances (G, d1), (M, d2), of topological dimension q and p,
and Hausdorff dimension Q and P , respectively. The groups G and M are direct sums of
linear subspaces as follows

G = V1 ⊕ · · · ⊕ Vκ M = W1 ⊕ · · · ⊕Wϑ.
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By B(x, r) and BM(x, r) we denote the closed metric balls (of center x and radius r) in G
and M, respectively. Analogously, we denote by B(x, r) and BM(x, r) the corresponding
open balls. By δ1

t and δ2
t we denote the intrinsic anisotropic dilations of G and M, respec-

tively. If we have a generic metric ball B of G, hence B = B(x, r) for some x ∈ G and
r > 0, for any number ` > 0, we call the concentric ball `B := B(x, `r).

Definition 7.1.1 (Packing). Let N and ` be two natural numbers, with ` ≥ 1. Let X be
a metric space. An `-packing is a countable collection of closed balls {Bi} such that the
concentric balls `Bi are pairwise disjoint. An (N, `)-packing is a collection of balls {Bi}
which is the union of at most N `-packings

In the previous definition, and from now on, by {Bi} we mean {Bi}i∈N.

Remark 7.1.2. In a doubling metric space it is not restrictive to assume that once fixed a
number ` ≥ 1, there exists a natural number N , only depending on `, such that, for every
δ small enough, there exist (N, `)-packings made of balls of radius smaller that δ that
cover the whole space. For instance, in [Pan20, Remark 3.2] it is proved that if a metric
space X is doubling at small scales, fine coverings that are (N, `)-packings exist, with N
depending only on `. We report here the argument: we fix ` ≥ 1, for any δ > 0 we can fix
some 0 < ε < δ and consider a maximal packing of disjoint balls of radius ε

2 ,
{
B(x, ε2)

}
x∈I

(I is just a suitable countable set of points of the space). Observe that the corresponding
balls of double radius {B(x, ε)}x∈I cover the space. Now we fix one of these balls B(x, ε),
hence a center x ∈ I, and we assume that for some x′ ∈ I, B(x, `ε)∩B(x′, `ε) 6= ∅. Clearly
it must be true that B(x′, ε2) ⊂ B(x, (2` + 1)ε) and this implies that the number of the
balls B(x′, `ε), with x′ ∈ I, overlapping B(x, `ε) is necessarily bounded by the number of
disjoint balls of radius ε

2 contained in B(x, (2` + 1)ε) that in a doubling metric space is
bounded above depending only on `. Then, for some N depending on `, {B(x, ε)}x∈I is a
(N, `)-packing of balls of radius smaller than δ. Of course, for our purposes, it is enough
that the doubling property is satisfied for small values of ε. The argument extends to
packings of balls centered on a subset Ω of the space. In particular, the number N , that
we individuate for packings of the whole space, still works for packings of balls centered
on Ω.

Definition 7.1.3 (Packing pre-measure). Let ` ≥ 1 and N be natural numbers. Let G
be a Carnot group endowed with a homogeneous distance d and let δ > 0 and α > 0. Let
E ⊂ G, we introduce

PαN,`,δ(E) = sup
{ ∞∑
i=1

r(Bi)
α : {Bi} (N, `)-packing of E, E ⊂

∞⋃
i=1

Bi,

Bi centered on E, r(Bi) ≤ δ
}

and we define
PαN,`(E) := inf

δ>0
PαN,`,δ(E).

We define also the following packing-type pre-measure

P̃αN,`,δ(E) = sup

{ ∞∑
i=1

r(Bi)
α : {Bi} (N, `)-packing of E,Bi centered on E, r(Bi) ≤ δ

}
,

and
P̃αN,`(E) := inf

δ>0
P̃αN,`,δ(E).
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In particular, notice that in this case we have not required the packings of E to cover E.

Remark 7.1.4. Let G be a Carnot group endowed with a homogeneous distance d and
let E ⊂ G and α > 0. Let ` ≥ 1 and let N be a natural number such that there exist fine
(N, `)-packings that cover G (see Remark 7.1.2). Then

Sα(E) ≤ PαN,`(E). (7.1)

In fact, for every δ > 0, any (N, `)-packing of E that covers E made of balls centered on
E of radius smaller that δ is a covering of E made of balls of radius smaller than δ, hence
for any δ > 0 we have

φδ,ζ(E) ≤ PαN,`,δ(E),

where φδ,ζ is built as in (2.16) setting F as the family of closed balls Fb and ζ(Bd(x, r)) =
rα. Letting δ go to zero, we get (7.1).

7.2 Coarea factor and some known results

Definition 7.2.1 (Coarea factor). Let L : G→M be a h-homomorphism and let Q ≥ P .
We call coarea factor of L, CP (L), the unique positive constant such that

SQ(B(0, 1))CP (L) =

∫
M
SQ−P (L−1(m) ∩ B(0, 1))dSP (m). (7.2)

Proposition 7.2.2. [Mag02b, Proposition 1.12] In the notation of Definition 7.2.1, the
coarea factor CP (L) is well defined. Moreover, CP (L) is not equal to zero if and only if L
is surjective and in this case it can be computed as follows

CP (L) =
SQ−P (ker(L) ∩ B(0, 1))

Hq−pE (ker(L) ∩ B(0, 1))

SP (BM(0, 1))

Lp(BM(0, 1))

Lq(B(0, 1))

SQ(B(0, 1))
JL

= Z
SQ−P (ker(L) ∩ B(0, 1))

Hq−pE (ker(L) ∩ B(0, 1))
JL,

(7.3)

where we set Z := SP (BM(0,1))
Lp(BM(0,1))

Lq(B(0,1))
SQ(B(0,1))

.

Remark 7.2.3. Observe that Z is a geometrical constant not depending on L.

Proof. Surely, for any r > 0, the restricted dilation δ2
r |L(G) has Jacobian rP

′
, where P ′ =∑k

i=1 idim(L(Vi)). Then for every r > 0

Hp
′

E (BM(0, r) ∩ L(G)) = rP
′Hp

′

E (BM(0, 1) ∩ L(G)),

where p′ is the topological dimension of L(G).
If L is not surjective, P ′ <

∑ϑ
i=1 idim(Wi) = P , then the Hausdorff dimension of L(G) is

less than P and then by (2.17) and (7.2), CP (L) = 0.
Assume now that L is surjective, and set K := L−1(0) = kerL. Surely K is a homogeneous
normal subgroups of topological dimension q− p and K is graded K = K1⊕· · ·⊕Kκ, with
Ki linear subspace of Vi for i = 1, . . . , κ. Reasoning as above for δ1

r |K, we have

Hq−pE (B(0, r) ∩K) = rQ
′Hq−pE (B(0, 1) ∩K),

where Q′ =
∑κ

i=1 idim(Ki). L is a h-homomorphism, and then L(Vi) ⊂ Wi for every
i = 1, . . . , κ. Hence, since we have assumed that L is surjective we know that κ ≥ ϑ,
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dim(Vi) ≥ dim(Wi) and dim(Ki) = dim(Vi)− dim(Wi) for every i = 1, . . . , κ. Then

Q′ =
κ∑
i=1

idim(Ki) =
κ∑
i=1

i(dim(Vi)− dim(Wi)) =
κ∑
i=1

idim(Vi)−
κ∑
i=1

idim(Wi) = Q− P.

Since SQ−P xK and Hq−pE xK are both Haar measures on K (endowed with the product of
G restricted to K) they must coincide up to a constant αQ,P , that is

SQ−P xK = αP,QHq−pE xK, (7.4)

where αP,Q = SQ−P (B(0,1)∩K)

Hq−pE (B(0,1)∩K)
. Now, we fix an arbitrary m ∈ M. We can observe that

L−1(m) = xK = x+ K for any fixed x ∈ G such that L(x) = m. By the left invariance of
the homogeneous distance on G, the measure SQ−P satisfies the following left invariance
property

(lx)]SQ−P xK = SQ−P xxK. (7.5)

At the same time, by Proposition 3.1.22, since K is a normal homogeneous subgroup it
holds that for any x ∈ L−1(m),

(lx)]Hq−pE xK = Hq−pE xxK. (7.6)

Hence, by (7.5) and (7.6), we can substitute K with L−1(m) in (7.4) and, without modi-
fying αQ,P we obtain that for every m ∈ M, and for every x ∈ G such that L(x) = m, it
holds that

SQ−P xL−1(m) = SQ−P xxK = αP,QHq−pE xxK = αP,QHq−pE xL−1(m). (7.7)

Let us now consider the coarea measure νL associated with L on G, defined for every Borel
set B ⊂ G as

νL(B) =

∫
M
SQ−P (B ∩ L−1(m))dSP (m). (7.8)

In particular, by our previous considerations, ν is positive on open bounded sets. Moreover,
by [Fed69, 2.10.25] (see, for instance, [Mag02b, Theorem 1.4]), νL is finite on the sets with
SQ-finite measure. Moreover, by a change of variables involving left translations, νL is left
invariant on G. Then νL is a Haar measure on G and then it coincides with SQ on G up
to a positive constant CP (L), that is

νL = CP (L)SQ.

Let us compute CP (L) explicitly. By the previous observations and by the fact that SP
is proportional to Lp on M we can write∫

M
SQ−P (B(0, 1) ∩ L−1(m))dSP (m) = αQ,PβP

∫
M
Hq−pE (B(0, 1) ∩ L−1(m))dLp(m),

where βP := SP (BM(0,1))
Lp(BM(0,1)) and then, by the Euclidean coarea formula, we get∫
M
SQ−P (B(0, 1) ∩ L−1(m))dSP (m) = αQ,PβPγQ JL SQ(B(0, 1)), (7.9)

where γQ := Lq(B(0,1))
SQ(B(0,1))

. By the comparison between (7.9) and the definition of the coarea
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factor, we get that CP (L) = βPγQαQ,PJL = ZαQ,PJL and then the claimed formula (7.2)
is proved.

Definition 7.2.4. Let (X, d, µ) be a metric measure space, consider a subset E ⊂ X and
two positive numbers α,C > 0. We say that E is locally C-lower Ahlfors α-regular with
respect to µ if there is r̃ > 0 such that for every x ∈ E and 0 < r < r̃,

µ(B(x, r) ∩ E) ≥ Crα.

If we need to stress the value of r̃, we say that E is r̃-locally C-lower Ahlfors α-regular
with respect to µ. If r̃ =∞, we say that E is C-lower Ahlfors α-regular with respect to µ.

In [Mag02b], also relying on a coarea estimate for Lipschitz maps in arbitrary metric
spaces due to Federer [Fed69, 2.10.25], the author proved a coarea-type inequality. We
recall it here, adapting it to our context.

Theorem 7.2.5. [Mag02b, Theorem 2.6] Let A ⊂ G be a measurable set and f : A→ M
be a Lipschitz map, then∫

M
SQ−P (f−1(m) ∩A)dSP (m) ≤

∫
A
CP (Df(x))dSQ(x). (7.10)

7.3 Coarea-type Inequality

We will need the following simple proposition in the proof of our main theorem.

Proposition 7.3.1. Let G be a Carnot group endowed with a homogeneous distance d. Let
W ⊂ G be a homogeneous subgroup of topological dimension n and Hausdorff dimension
N . Then for every Borel set B ⊂W we have

HnE(B) = sup
w∈B(0,1)

HnE(B(w, 1) ∩W) SN (B)

Proof. Let us consider the measure µW := HnExW. Since µW and SNxW are both Haar
measures on W, they coincide up to a positive constant and therefore we can apply The-
orem 2.5.15. Hence we know that µW(A) =

∫
A θ

N (µW, x)SN (x). Let us then compute for
any x ∈W

θN (µW, x) = inf
r>0

sup
{z:x∈B(z,t)}

0<t<r

µW(B(z, t))

tN

notice that for every t > 0 and z ∈ B(x, t),

µW(B(z, t))

tN
=
HnE(zδt(B(0, 1)) ∩W)

tN

=
HnE(x−1zδt(B(0, 1)) ∩ x−1W)

tN

=HnE(δ1/t(x
−1z)B(0, 1) ∩W).

We have used the left invariance of HnExW with respect to the product restricted to W,
and the fact that the Jacobian of the dilation δt restricted to W is tN for every t > 0.
Hence

θN (µW, x) = inf
r>0

sup
{w:d(w,0)≤1}

HnE(B(w, 1) ∩W) = sup
w∈B(0,1)

HnE(B(w, 1) ∩W).
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Before proving our main result, that is Theorem 7.0.1, we make some preliminary
observations referring to the statement of the theorem.

Remark 7.3.2. It is immediate to observe that any continuously Pansu differentiable
function is locally metric Lipschitz (by Proposition 3.2.32), hence by [Mag11b, Theorem
2.1] we know that for every measurable set A ⊂ G the function m→ SQ−P (A ∩ f−1(m))
is SP -measurable. Notice that the measurability of the map x→ CP (Df(x)) follows from
[Mag02b, Theorem 2.6].

Theorem 7.0.1 is a direct consequence of the following result. In fact, it is analogous
to Theorem 7.3.3, where the hypotheses have been slightly weakened even if they are
definitely more technical.

Theorem 7.3.3. Let (G, d1), (M, d2) be two Carnot groups, endowed with homogeneous
distances, of Hausdorff dimension Q, P and topological dimension q, p, respectively. Let
Ω′ be an open subset of G. Let f ∈ C1

h(Ω′,M) be a function and assume that Df(x) is
surjective at every x ∈ Ω′. Let Ω b Ω′ be a closed bounded set such that there exists an
open set Ω′′ and a positive number s > 0 such that Ω′′ is compactly contained in Ω and,
setting Ωs := {x ∈ G : dist(x,Ω) < s} and R := cHdiam(Ωs), we have

Ωs
R := {x ∈ G : dist(x,Ωs) ≤ R} ⊂ Ω′′, (7.11)

where H = H(G, d1) and c = c(G, d1) are the geometric constants that depend on G and
d1 as in Theorem 3.2.30. Assume that there exist two constants r̃, C > 0 such that for
SP -a.e. m ∈ M, the level set f−1(m) is r̃-locally C-lower Ahlfors (Q − P )-regular with
respect to the measure SQ−P . Then there exists a constant L = L(C,G, p) such that∫

Ω
CP (Df(x))dSQ(x) ≤ L

∫
M
SQ−P (f−1(m) ∩ Ω)dSP (m).

Proof. For any δ > 0 and E ⊂ G, we set

Tδ(E) = inf

{ ∞∑
i=1

ζT (Bi) : Bi ∈ Fb, E ⊂
∞⋃
i=1

Bi, r(Bi) ≤ δ

}

with ζT (B(x, r)) = rQ−PSP (f(B(x, r)). We define the measure resulting by Carathéodory’s
construction as

T (E) := sup
δ>0
Tδ(E).

Moreover, we define for any δ > 0 and E ⊂ G

KN,`,δ(E) = sup
{ ∞∑
i=1

ζT (Bi) : {Bi} (N, `)-packing of E, E ⊂
∞⋃
i=1

Bi,

Bi centered on E, r(Bi) ≤ δ
}

and the resulting measure as

KN,`(E) := inf
δ>0
KN,`,δ(E)
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Fix N = N(3,G) the minimum natural number such that there exists fine (N, 3)-packings
of G that cover G itself (see Remark 7.1.2).
Claim 1. There exists a constant T = T (C,G) such that

T (Ω) ≤ KN,3(Ω) ≤ T
∫
M
SQ−P (f−1(m) ∩ Ω)dSP (m).

The first inequality of the claim follows analogously to the usual comparison between the
packing measure and the spherical measure (see Remark 7.1.4).

Let us focus on the second inequality of the claim; we follow the scheme of [Pan20,
Proposition 4.2]. Let δ̄ > 0 and set Ωδ̄ := {x ∈ G : dist(x,Ω) < δ̄}. Let δ > 0 be such

that 0 < δ < min
{
δ̄
3 , r̃
}

. Let {Bi} be a (N, 3)-packing of Ω such that r(Bi) ≤ δ and Bi
are centered on Ω. We fix m ∈M and we consider every index i such that m ∈ f(Bi). We
distinguish the two following cases:

• if m ∈ f(Bi ∩ Ω), we pick xi ∈ Bi ∩ f−1(m) ∩ Ω and we call Bi,m the smallest ball
centered at xi that contains Bi. Observe that Bi,m ⊂ 3Bi, so that, for each m ∈ M,
the collection {Bi,m}i∈{i:m∈f(Bi∩Ω)} is a (N, 1)-packing of f−1(m) ∩ Ω consisting of
balls with radius less or equal than 3δ centered on f−1(m)∩Ω, that covers f−1(m)∩Ω.

• if m /∈ f(Bi∩Ω), we pick xi ∈ Bi∩f−1(m) and we call B′i,m the smallest ball centered

at xi that contains Bi. Observe that xi ∈ f−1(m)∩ (Ωδ̄ \Ω) and that B′i,m ⊂ 3Bi, so
that, for each m ∈M, the collection {B′i,m}i∈{i:m∈f(Bi),m/∈f(Bi∩Ω)} is a (N, 1)-packing

of f−1(m) ∩ (Ωδ̄ \ Ω) consisting of balls with radius less or equal than 3δ centered
on f−1(m) ∩ (Ωδ̄ \ Ω). Notice that it does not necessarily cover f−1(m) ∩ (Ωδ̄ \ Ω).

Then ∑
i

r(Bi)Q−PSP (f(Bi)) =
∑
i

(∫
M

1f(Bi)(m)dSP (m)

)
(r(Bi))Q−P

=

∫
M

∑
i

1f(Bi)(m)(r(Bi))Q−PdSP (m).

(7.12)

Now we can observe that∑
i

1f(Bi)(m)(r(Bi))Q−P =
∑

i∈{i:m∈f(Bi∩Ω)}

(r(Bi))Q−P +
∑

i∈{i:m∈f(Bi), m/∈f(Bi∩Ω)}

(r(Bi))Q−P

≤
∑

i∈{i:m∈f(Bi∩Ω)}

(r(Bi,m))Q−P +
∑

i∈{i:m∈f(Bi), m/∈f(Bi∩Ω)}

(r(B′i,m))Q−P (7.13)

≤ PQ−PN,1,3δ(f
−1(m) ∩ Ω) + P̃Q−PN,1,3δ(f

−1(m) ∩ (Ωδ̄ \ Ω)).

Let us now prove that for SP -a.e. m ∈M the two following conditions hold

PQ−PN,1,3δ(f
−1(m) ∩ Ω) ≤ 2

N

C
SQ−P (f−1(m) ∩ Ωδ), (7.14)

P̃Q−PN,1,3δ(f
−1(m) ∩ (Ωδ̄ \ Ω)) ≤ 2

N

C
SQ−P (f−1(m) ∩ (Ωδ̄ \ Ω)δ). (7.15)

The proofs of (7.14) and (7.15) rely on the hypothesis of Ahlfors regularity of the level
sets f−1(m) for SP -a.e. m ∈M. Let us prove (7.14). Surely we have

PQ−PN,1,δ (f
−1(m) ∩ Ω) ≤ N P̃Q−P1,1,δ (f−1(m) ∩ Ω).
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Now, as we said, we want to exploit our hypothesis about the Ahlfors-regularity of the
level sets f−1(m) for SP -a.e m ∈ M. Remember that we have assumed that 0 < δ < r̃.
For any fixed m ∈ M for which the hypothesis of lower Ahlfors-regularity holds, we can
consider a (1, 1)-packing {Pi} of balls of radius smaller than δ, centered on f−1(m) ∩ Ω
such that ∑

i

r(Pi)Q−P ≥
1

2
P̃Q−P1,1,δ (f−1(m) ∩ Ω).

Then by the Ahlfors-regularity of f−1(m) we have

PQ−PN,1,δ (f
−1(m) ∩ Ω) ≤ N P̃Q−P1,1,δ (f−1(m) ∩ Ω)

≤ 2N
∑
i

r(Pi)Q−P

≤ 2
N

C
SQ−P (f−1(m) ∩ Pi)

= 2
N

C
SQ−P (f−1(m) ∩ Pi ∩ Ωδ)

≤ 2
N

C
SQ−P (f−1(m) ∩ Ωδ),

where Ωδ := {x ∈ G : dist(x,Ω) < δ}. Let us now focus on the proof of (7.15), that is
quite similar. Analogously to what we did before, surely we have

P̃Q−PN,1,δ (f
−1(m) ∩ (Ωδ̄ \ Ω)) ≤ N P̃Q−P1,1,δ (f−1(m) ∩ (Ωδ̄ \ Ω)).

We want to exploit again our hypothesis about the Ahlfors regularity of the level sets
f−1(m) for SP -a.e m ∈ M. For any fixed m ∈ M for which the hypothesis of Ahlfors
regularity holds we can consider a (1, 1)-packing {Di} of balls of radius r(Di) ≤ δ, centered
on f−1(m) ∩ (Ωδ̄ \ Ω) such that∑

i

r(Di)Q−P ≥
1

2
P̃Q−P1,1,δ (f−1(m) ∩ (Ωδ̄ \ Ω)).

Then by the Ahlfors-regularity of f−1(m) we have

P̃Q−PN,1,δ (f
−1(m) ∩ (Ωδ̄ \ Ω)) ≤ N P̃Q−P1,1,δ (f−1(m) ∩ (Ωδ̄ \ Ω))

≤ 2N
∑
i

r(Di)Q−P

≤ 2
N

C
SQ−P (f−1(m) ∩ Di)

= 2
N

C
SQ−P (f−1(m) ∩ Di ∩ (Ωδ̄ \ Ω)δ)

≤ 2
N

C
SQ−P (f−1(m) ∩ (Ωδ̄ \ Ω)δ),

where (Ωδ̄ \ Ω)δ = {x ∈ G : dist(x,Ωδ̄ \ Ω) < δ}.
Now then we can continue by (7.12), and combining it with (7.14) and (7.15) we obtain∑
i

r(Bi)Q−PSP (f(Bi)) ≤ 2
N

C

∫
M
SQ−P (f−1(m)∩(Ωδ̄ \ Ω)δ)+SQ−P (f−1(m)∩Ωδ)dSP (m).

Since this holds for every fixed (N, 3)-packing {Bi} of Ω centered on Ω that covers Ω, we
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obtain

KN,3,δ(Ω) ≤ 2
N

C

∫
M
SQ−P (f−1(m) ∩ (Ωδ̄ \ Ω)δ) + SQ−P (f−1(m) ∩ Ωδ)dSP (m).

Now we let δ go to zero. By monotone convergence theorem, since Ω is closed, for every
m ∈ M, f−1(m) ∩ Ωδ ↘ f−1(m) ∩ Ω and f−1(m) ∩ (Ωδ̄ \ Ω)δ ↘ f−1(m) ∩ (Ωδ̄ \ Ω) as
δ → 0. Thus, we get

KN,3(Ω) ≤ 2
N

C

∫
M
SQ−P (f−1(m) ∩ (Ωδ̄ \ Ω)) + SQ−P (f−1(m) ∩ Ω)dSP (m). (7.16)

Finally, we let δ̄ go to zero and, again since Ω is closed, by monotone convergence theorem
we get

KN,3(Ω) ≤ 2
N

C

∫
M
SQ−P (f−1(m) ∩ ∂Ω) + SQ−P (f−1(m) ∩ Ω)dSP (m)

≤ 2
N

C

∫
M
SQ−P (f−1(m) ∩ Ω) + SQ−P (f−1(m) ∩ Ω)dSP (m)

≤ 4
N

C

∫
M
SQ−P (f−1(m) ∩ Ω)dSP (m).

(7.17)

Then the second inequality of Claim 1 holds for T = T (C,N) = T (C,G) = 4NC . Hence
the proof of Claim 1 is concluded.
From now on, we denote by δit the intrinsic dilations by t > 0, on G for i = 1 and on M
for i = 2, respectively.
Claim 2. If κ is the step of G,

T (Ω) &κ,p

∫
Ω
J(Df(x))dSQ(x).

The proof of Claim 2 is composed of two main steps.
First, we can observe that Df(x) is a continuous function on Ω′, so we can consider the
following measure on Ω′: for any A ⊂ Ω′, µ(A) :=

∫
A J(Df(x))dSQ(x). We want to

compare µ with the Carathéodory’s measure built through coverings of arbitrary closed
balls weighted by the function

ζR(B(x, r)) := J(Df(x))rQ.

We denote this measure by R = supδ>0 φδ,ζR , where, as we said, in the definition of φδ,ζR
we set F = Fb.
We want to prove that there exists r̄ > 0 such that for every 0 < r ≤ r̄ and for every x ∈ Ω,
µ(B(x, r)) . ζR(B(x, r)). In fact, by [Fed69, 2.10.17 (1)], this implies that µ(A) . R(A)
for any A ⊂ Ω (and then also for A = Ω).
Since Ω is closed and bounded, it is compact. The function J(Df(·)) : Ωs → R, x →
J(Df(x)) is a continuous function on a compact set. Let us fix ε = minx∈Ωs

J(Df(x)) > 0;
it is positive since Df(x) is everywhere surjective by hypothesis. Moreover, the map
J(Df(·)) is uniformly continuous, then there exists r′ > 0 such that |J(Df(x))−J(Df(y))| ≤
ε for every |x− y| ≤ r′, x, y ∈ Ωs.
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Let us assume that r̄ < min{r′, s}, x ∈ Ω and 0 < r ≤ r̄, and compute

µ(B(x, r))

J(Df(x))rQ
=

1

rQ

∫
B(x,r)

J(Df(y))

J(Df(x))
dSQ(y)

≤ 1

rQ

∫
B(x,r)

|J(Df(y))− J(Df(x))|
J(Df(x))

dSQ(y) +
1

rQ

∫
B(x,r)

J(Df(x))

J(Df(x))
dSQ(y)

≤ 1

rQ

∫
B(x,r)

ε

minx∈Ωs
J(Df(x))

SQ(y) + SQ(B(0, 1)) = 2SQ(B(0, 1)) = 2b,

where 0 < b = SQ(B(0, 1)) <∞. Hence for any x ∈ Ω and 0 < r ≤ r̄, we have

µ(B(x, r))

J(Df(x))rQ
≤ 2b

and as above µ(Ω) ≤ 2bR(Ω), so that µ(Ω) . R(Ω).

In the second part of the proof, we want to compare T (Ω) withR(Ω), and, in particular,
we want to prove that

R(Ω) .κ,p T (Ω). (7.18)

As we observed above, the measure T is defined as the resulting measure of Carathéodory’s
construction defined with respect to coverings of closed balls weighted by the function

ζT (B(x, r)) = rQ−PSP (f(B(x, r)).

Our strategy relies on the comparison between ζT and ζR. In particular we fix h > 0 such
that h < s and we want to prove that there exists r̄ > 0 such that for every 0 < r ≤ r̄ and
every x ∈ Ωh := {y ∈ G : dist(y,Ω) < h},

ζT (B(x, r)) &k,p ζR(B(x, r)). (7.19)

This would give the desired thesis (7.18).

Let us first define for any x ∈ Ωh and r > 0, the two sets

Ax,r := δ2
1
r

(f(x)−1f(B(x, r)) and Ax := Df(x)(B(0, 1)).

The proof will be composed of various steps, and it will be useful to individuate the two
following conditions:

lim
r→0

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ = 0 for any m ∈M; (7.20)

lim
r→0

sup
x∈Ωh

∣∣SP (Ax,r)− SP (Ax)
∣∣ . (7.21)

Our strategy consists of proving that (7.20) ⇒ (7.21) ⇒(7.19), and then we will conclude
the proof by proving (7.20). Let us start by proving that (7.21) ⇒ (7.19).

Let x ∈ Ωh and consider the homogeneous subspace V (x) := (ker(Df(x))⊥. For every
r small enough

ζT (B(x, r)) = rQ−PSP (B(x, r)) = rQ
SP (f(B(x, r))

rP
= rQ

SP (f(x)−1f(B(x, r))

rP

= rQSP (δ2
1/r(f(x)−1f(B(x, r))),
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hence
ζT (B(x, r))

ζR(B(x, r))
=
SP (δ2

1/r(f(x)−1f(B(x, r))

J(Df(x))
.

Observe that the map Df(x)|V (x) : V (x) → M is injective and surjective and that
J(Df(x)) = J(Df(x)|V (x)), thanks to our choice of V (x). If we denote by πV (x) the
orthogonal projection on V (x), for some geometric positive constant βP (the same used
in the proof of Proposition 7.2.2) we have

SP (Df(x)(B(0, 1))) = βP Lp(Df(x)(B(0, 1))

= βp Lp(Df(x)(πV (x)(B(0, 1)))

= βP J(Df(x)) Lp(πV (x)(B(0, 1))

(7.22)

by the classical Euclidean area formula. In fact, since ker(Df(x)) is a homogeneous normal
subgroup, Lemma 3.1.20 ensures that one can see any element y ∈ G as y = (πV (x)(y))my,

for some my ∈ ker(Df(x)). Observe that for every x ∈ Ωh, V (x) = (ker(Df(x))⊥ is a
linear (homogeneous) subspace of constant topological dimension p > 0, since Df(x) is
surjective at any point x ∈ Ωh, therefore the factor Lp(V (x) ∩ BE(0, 1)) does not depend
on x. Remember now that by Proposition 2.4.9 applied to F = B(0, 1) there exists a
constant CB(0,1) such that

1

CB(0,1)
|x| ≤ ‖x‖1 ≤ CB(0,1)|x|

1
κ ,

where κ is the step of G. Hence

Lp(πV (x)(B(0, 1))) ≥ Lp(V (x) ∩ B(0, 1))

≥ Lp
(
V (x) ∩BE

(
0,

1

(CB(0,1))κ

))
=

1

(CB(0,1))κp
Lp(V (x) ∩ BE(0, 1)) := D(κ, p) > 0.

(7.23)

Hence for every x ∈ Ωh, we have

SP (Ax)

J(Df(x))
≥ GD(κ, p) := D′(κ, p) = D′ > 0.

If we now assume (7.21) to be true, and we fix ε =
D′minx∈Ωh

J(Df(x))

2 > 0, there exists
0 < r̄ ≤ s− h such that for every 0 < r ≤ r̄ and every x ∈ Ωh,∣∣SP (Ax,r)− SP (Ax)

∣∣ ≤ sup
x∈Ωh

∣∣SP (Ax,r)− SP (Ax)
∣∣ ≤ ε.

Thus, for every 0 < r ≤ r̄ and every x ∈ Ωh,

SP (Ax,r) ≥ SP (Ax)− ε,
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so that for every x ∈ Ωh and 0 < r ≤ r̄

ζT (B(x, r))

ζR(B(x, r))
=
SP (Ax,r)

J(Df(x))
≥ SP (Ax)

J(Df(x))
− ε

J(Df(x))

≥ D′ − ε

J(Df(x))
≥ D′ − ε

minx∈Ωh
J(Df(x))

=
D′

2
> 0

(7.24)

by the choice of ε. This concludes the proof of the fact that (7.21) ⇒(7.19).

Second, we prove that (7.20) ⇒ (7.21). Surely, the following holds

lim
r→0

sup
x∈Ωh

∣∣SP (Ax,r)− SP (Ax)
∣∣

≤ lim
r→0

sup
x∈Ωh

∣∣∣∣∫
M

1Ax,r(m)− 1Ax(m)dSP (m)

∣∣∣∣
≤ lim
r→0

∫
M

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ dSP (m).

(7.25)

We want now to apply the Lebesgue dominated convergence theorem exploiting (7.20). In
order to do this, we prove that for r ≤ s− h, for any m ∈M

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ ≤ 21B(0,W )(m) (7.26)

for some constant W > 0. Notice that 21B(0,W ) ∈ L1
SP (M).

First, consider that supx∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ ≤ supx∈Ωh

∣∣1Ax,r(m)
∣∣+supx∈Ωh

|1Ax(m)|.
For any x ∈ Ωh and m ∈ M, if we assume 1Ax(m) = 1, it implies that m = Df(x)(η) for
some η ∈ B(0, 1), then

‖m‖2 = ‖Df(x)(η)‖2 ≤ ‖Df(x)‖Lh(G,M) ≤ max
x∈Ωh

‖Df(x)‖Lh(G,M) =: ‖Df‖Ωh .

For any x ∈ Ωh, r ≤ s − h and m ∈ M, if 1Ax,r(m) = 1, then m = δ2
1/r(f(x)−1f(qr)) for

some qr ∈ B(x, r) ⊂ Ωs. Hence

‖m‖2 = ‖δ2
1/r(f(x)−1f(qr))‖2 = ‖Df(x)(δ1

1/r(x
−1qr))δ

2
1/r(Df(x)(x−1qr))

−1f(x)−1f(qr))‖2
≤ ‖Df(x)(δ1

1/r(x
−1qr))‖2 + ‖δ2

1/r(Df(x)(x−1qr))
−1f(x)−1f(qr)‖2

≤ ‖Df(x)‖Lh(G,M) +K(ωΩ′′,DF1
(Hc(s− h)))

1
κ2

≤ ‖Df‖Ωh +K(ωΩ′′,DF1
(Hc(s− h)))

1
κ2 ,

where ωΩ′′,DF1
is the modulus of continuity of x → DF1(x) defined in Definition 3.2.27

and K is a constant that plays the role of C of Theorem 3.2.30.
Hence

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ ≤ sup

x∈Ωh

1Ax,r(m) + sup
x∈Ωh

1Ax(m)

≤ 1
B(0,‖Df‖Ωh+K(ω

Ω′′,DF1
(Hc(s−h)))

1
κ2 )

(m) + 1B(0,‖Df‖Ωh )(m)

≤ 21
B(0,‖Df‖Ωh+K(ω

Ω′′,DF1
(Hc(s−h)))

1
κ2 )

(m)

and this implies that (7.26) is true, with W = ‖Df‖Ωh + (ωΩ′′,DF1
(Hc(s− h)))

1
κ2 ).
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We can then apply the Lebesgue dominated convergence Theorem to (7.25), and since we
have assumed (7.20) to be true, we obtain (7.21).

We are left to prove (7.20).
By contradiction, we assume (7.20) to be false. Then, there exists at least one element
m ∈M such that the limit

lim
r→0

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣

does not exist or
lim
r→0

sup
x∈Ωh

∣∣1Ax,r(m)− 1Ax(m)
∣∣ > 0.

In both cases, since all the considered elements are positive, there exists at least a positive
infinitesimal sequence (rn)n such that

lim
n→∞

sup
x∈Ωh

∣∣1Ax,rn (m)− 1Ax(m)
∣∣ > 0.

This implies that there exists ñ > 0 such that for every n ≥ ñ,

sup
x∈Ωh

∣∣1Ax,rn (m)− 1Ax(m)
∣∣ > 0 and rn ≤ s− h.

Hence for every n ≥ ñ there exists at least an element xn ∈ Ωh ⊂ Ωh such that∣∣1Axn,rn (m)− 1Axn (m)
∣∣ > 0

and then ∣∣1Axn,rn (m)− 1Axn (m)
∣∣ = 1. (7.27)

Since Ωh is a compact set, the sequence (xn)n converges up to a subsequence to some
x̄ ∈ Ωh. Let us first prove that there exists some n̄ such that for every n ≥ n̄∣∣1Axn,rn (m)− 1Ax̄(m)

∣∣ = 1. (7.28)

Let us then assume by contradiction that there exists a subsequence (xnk)k such that

lim
k→∞

∣∣∣1Axnk ,rnk (m)− 1Ax̄(m)
∣∣∣ = 0 (7.29)

then, on this subsequence, we have∣∣∣1Axnk ,rnk (m)− 1Axnk
(m)

∣∣∣ ≤ ∣∣∣1Axnk ,rnk (m)− 1Ax̄(m)
∣∣∣+
∣∣∣1Axnk (m)− 1Ax̄(m)

∣∣∣ . (7.30)

Let us prove that (7.30) goes to zero as k →∞ and this would give a contradiction with
(7.27). The fact that (7.30) goes to zero follows from the assumption (7.29) and by the
fact that ∣∣∣1Axnk (m)− 1Ax̄(m)

∣∣∣→ 0 as k →∞. (7.31)

Let us prove (7.31). Assume by contradiction that on a subsequence of (xnk)k, (xnk` )`,
for ` sufficiently large, ∣∣∣1Axnk` (m)− 1Ax̄(m)

∣∣∣ = 1. (7.32)

Let us assume m /∈ Ax̄, then m ∈ Axnk` so that m = Df(xnk` )(ηnk` ) for ηnk` ∈ B(0, 1),
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hence we can extract a converging subsequence such that (ηnk`t
)t → η̄ ∈ B(0, 1) and letting

t go to infinity, by the continuity of the differential, we know that m = Df(x̄)(η̄) ∈ Ax̄,
but this is not possible.
So it must be true that m ∈ Ax̄. Hence, by the definition of Ax̄ and the continu-
ity of the Pansu differential, it is true that for some η ∈ B(0, 1), m = Df(x̄)(η) =
lim`→∞Df(xnk` )(η) = lim`→∞X` where for every `, X` := Df(xnk` )(η) ∈ Axnk` . Hence

m ∈ lim sup`→∞Axnk`
, and then 1lim sup`→∞ Axnk`

(m) = lim sup`→∞ 1Axnk`
(m) = 1.

At the same time, by (7.32), m /∈ Axnk`
for ` sufficiently large and this implies that

lim`→∞ 1Axnk`
(m) = 0 = lim sup`→∞ 1Axnk`

(m), which gives a contradiction.

Let us then continue from (7.28). We need to prove that (7.27) is not possible. Since m
is fixed, there are only two possibilities:

m ∈ Ax̄; (7.33)

m /∈ Ax̄. (7.34)

We show that neither (7.33) nor (7.34) can be true. Assume that (7.33) is true, then
m = Df(x̄)(η) for some η ∈ B(0, 1). Then by (7.28) m /∈ Axn,rn for n ≥ n̄ and so clearly
there exists the following limit

lim
n→∞

1Axn,rn (m) = 0. (7.35)

Let us define for any n, qn := xnδ
1
rn(η) ∈ B(xn, rn) ⊂ Ωs. Consider for any n ≥ n̄

δ2
1/rn

(f(xn)−1f(qn))

= Df(x̄)(η)δ2
1/rn

(Df(x̄)(x−1
n qn)−1Df(xn)(x−1

n qn))δ2
1/rn

(Df(xn)(x−1
n qn)−1f(xn)−1f(qn))

and observe that by Theorem 3.2.30, since xn, qn ∈ Ωs and (7.11) holds, then

‖δ2
1/rn

(Df(xn)(x−1
n qn)−1f(xn)−1f(qn))‖2 ≤ K(ωΩ′′,DF1

(cHrn))
1
κ2 → 0

as n→∞ and

‖(Df(x̄)(η))−1Df(xn)(η)‖2 ≤ dLh(G,M)(Df(xn), Df(x̄))→ 0

as n → ∞ by the continuity of Df(x). Hence limn→∞ δ
2
1/rn

(f(xn)−1f(qn)) = m. This
permits to conclude that m ∈ lim supn→∞Axn,rn and so that

lim sup
n→∞

1Axn,rn (m) = 1lim supn→∞ Axn,rn (m) = 1.

At the same time, (7.35) implies that there exists the limit

lim sup
n→∞

1Axn,rn (m) = lim
n→∞

1Axn,rn (m) = 0,

so we reach a contradiction.
Assume now (7.34), then m ∈ Axn,rn for every n ≥ n̄ and then by (7.28), m /∈ Ax̄. For
every n ≥ n̄ there exists qn ∈ B(xn, rn) ⊂ Ωs such that

m = δ2
1/rn

(f(xn)−1f(qn)) = Df(x̄)(δ1
1/rn

(x−1
n qn))Df(x̄)(δ1

1/rn
(x−1
n qn))−1
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Df(xn)(δ1
1/rn

(x−1
n qn))δ2

1/rn
(Df(xn)(x−1

n qn)−1f(xn)−1f(qn))

and again by Theorem 3.2.30 and by continuity of Df we obtain that

m = lim
n→∞

δ2
1/rn

(f(xn)−1f(qn)) = lim
n→∞

Df(x̄)(δ1
1/rn

(x−1
n qn))

that up to a subsequence is equal to Df(x̄)(η) for some η ∈ B(0, 1). Thus m ∈ Ax̄, which
contradicts (7.27). Hence, finally (7.20) is proved and this concludes the proof of Claim 2.
Claim 3. For every x ∈ Ω′,

CP (Df(x)) .q,p,κ J(Df(x)).

Since we have assumed that Df(x) is surjective at every x, by (7.3), we have

CP (Df(x)) = Z
SQ−P (ker(Df(x)) ∩ B(0, 1))

Hq−pE (ker(Df(x)) ∩ B(0, 1))
J(Df(x)).

By Proposition 7.3.1, for any x ∈ Ω′ and for any Borel set B ⊂ ker(Df(x))

SQ−P (B) =
1

supw∈B(0,1)H
q−p
E (ker(Df(x)) ∩ B(w, 1))

Hq−pE (B).

Hence, by taking into account Proposition 2.4.9, we have

SQ−P (ker(Df(x)) ∩ B(0, 1))

Hq−pE (ker(Df(x)) ∩ B(0, 1))

=
1

supw∈B(0,1)H
q−p
E (B(w, 1) ∩ ker(Df(x))

≤ 1

Hq−pE (B(0, 1) ∩ ker(Df(x))

≤ 1

Hq−pE (BE(0, 1
(CB(0,1))

κ )) ∩ ker(Df(x))

=
1

Lq−p(BE(0, 1
(CB(0,1))

κ ) ∩ ker(Df(x))
=: D′′(q, p, κ) > 0.

In the last passage we considered that ker(Df(x)) is a linear subspace of constant topo-
logical dimension q − p.

By combining all the claims the proof is achieved.

It is easy to extend Theorem 7.0.1 to the case in which Ω is a measurable set but not
necessarily compact.

Theorem 7.3.4. Let (G, d1), (M, d2) be two Carnot groups, endowed with homogeneous
distances, of Hausdorff dimension Q, P and topological dimension q, p, respectively. Let
f ∈ C1

h(G,M) be a function and assume Df(x) to be surjective at any point x ∈ G.
Assume that there exist two constants r̃, C > 0 such that for SP -a.e. m ∈ M the level set
f−1(m) is r̃-locally C-lower Ahlfors (Q − P )-regular with respect to the measure SQ−P .
Then there exists a constant L = L(C,G, p) such that, if A ⊂ G is a measurable set,∫

A
CP (Df(x))dSQ(x) ≤ L

∫
M
SQ−P (f−1(m) ∩A) dSP (m).
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Proof. Let us consider an increasing sequence of compact sets in (Ωn)n∈N ⊂ A such that
Ωn ↗ A. Hence by Theorem 7.0.1, there exists L = L(C,G, p) such that for every n ∈ N∫

Ωn

CP (Df(x))dSQ(x) ≤ L
∫
M
SQ−P (f−1(m) ∩ Ωn) dSP (m)

≤ L
∫
M
SQ−P (f−1(m) ∩A) dSP (m),

so if we let n go to ∞, by monotone convergence theorem we get the thesis.

7.4 Applications

Our main theorem allows to prove the following corollaries. We focus on a measurable
set A ⊂ G. Essentially, we slice A by the level sets of a map f satisfying the hypotheses of
Theorem 7.3.4, so that we find out some properties related to A. In particular, we remark
that, doing so, we slice A by (G,M)K-regular submanifolds of G.

Corollary 7.4.1. In the hypotheses of Theorem 7.3.4, let u : A → R be a non-negative
measurable function, then there exists a constant L = L(C,G, p) such that∫

A
u(x)CP (Df(x))dSQ(x) ≤ L

∫
M

∫
f−1(m)∩A

u(x)dSQ−P (x)dSP (m).

Proof. By [EG92, Theorem 7], can write u =
∑∞

k=1
1
k1Ak with Ak measurable sets. By

monotone convergence theorem we have∫
A
u(x)CP (Df(x))dSQ(x) =

∞∑
k=1

1

k

∫
A∩Ak

CP (Df(x))dSQ(x)

≤
∞∑
k=1

1

k
L

∫
M
SQ−P (f−1(m) ∩A ∩Ak)dSP (m)

≤
∞∑
k=1

1

k
L

∫
M

∫
f−1(m)∩A

1Ak(x)dSQ−P (x)dSP (m)

= L

∫
M

∫
f−1(m)∩A

∞∑
k=1

1

k
1Ak(x)dSQ−P (x)dSP (m)

= L

∫
M

∫
f−1(m)∩A

u(x)dSQ−P (x) dSP (m).

(7.36)

Corollary 7.4.2. In the hypotheses of Theorem 7.3.4, let u : A → R be a measurable
function. If we assume that

(i) u is SQ−P -summable on f−1(m) ∩A for SP -a.e. m ∈M,

(ii)
∫
M
∫
f−1(m)∩A |u(x)|dSQ−P (x)dSP (m) <∞,

then u is summable on A.
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Proof. We can write u = u+ − u−. By proceeding analogously to (7.36), considering
Theorem 7.2.5 instead of Theorem 7.0.1, we then obtain that

−
∫
A
u−(x)CP (Df(x))dSQ(x) ≤ −

∫
M

∫
f−1(m)∩A

u−(x)dSQ−P (x)dSP (m). (7.37)

Hence by (7.36) applied to u+, (7.37), and by our hypotheses, we get the following∫
A
u(x)CP (Df(x))dSQ(x) =

∫
A
u+(x)CP (Df(x))dSQ(x)−

∫
A
u−(x)CP (Df(x))dSQ(x)

≤ L
∫
M

∫
f−1(m)∩A

u+(x)dSQ−P (x)dSP (m)−
∫
M

∫
f−1(m)∩A

u−(x)dSQ−P (x)dSP (m)

≤ L
∫
M

∫
f−1(m)∩A

|u(x)|dSQ−P (x)dSP (m) <∞.

Now, it is enough to prove that CP (Df(x)) > 0, for every x ∈ A. This follows from the
facts that J(Df(x)) > 0 for every x ∈ A and that, taking into consideration Proposition
2.4.9, for every x we have the following

SQ−P (ker(Df(x)) ∩ B(0, 1))

Hq−pE (ker(Df(x)) ∩ B(0, 1))

=
1

supw∈B(0,1)H
q−p
E (B(w, 1) ∩ ker(Df(x)))

≥ 1

Hq−pE (B(0, 2) ∩ ker(Df(x)))

=
1

Lq−p(B(0, 2) ∩ ker(Df(x)))

≥ 1

Lq−p(BE(0, 2CB(0,2)) ∩ ker(Df(x)))

=
1

(2CB(0,2))q−p
> 0.

(7.38)

Corollary 7.4.3. In the hypotheses of Theorem 7.3.4, if 1A(x) = 0 for SQ−P -a.e. x ∈
f−1(m), for SP -a.e m ∈M, then 1A(x) = 0 for SQ-a.e x ∈ G.

Proof. It follows from Theorem 7.3.4 and (7.38).

Remark 7.4.4. The hypothesis of Theorem 7.0.1 about the uniform Ahlfors regularity
of the level sets of the map f is not pointless: we stress again that, if we consider f
continuously Pansu differentiable with Pansu differential everywhere surjective on G, the
lower Ahlfors regularity of the level sets is not always guaranteed, even locally. One
can refer to [Koz15, Corollary 6.2.4], where explicit examples of this phenomenon are
presented. Nevertheless, it is still not known if pathological level sets are exceptional.
Hopefully those types of irregularities do not reflect the generic behaviour of level sets. In
addition, in [Koz15], a class of mappings of higher regularity from the Heisenberg group
Hn to the Euclidean space R2n is studied. More precisely, the author considers functions
f ∈ C1,α

h (Hn,R2n) with α > 0, i.e. given a homogeneous distance d on Hn, continuously
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Pansu differentiable maps such that, for every a, b ∈ Hn

dLh(Hn,R2n)(Df(a), Df(b)) . d(a, b)α.

By [Koz15, Corollary 5.5.6], if we assume that the Pansu differential of f is everywhere
surjective, the level sets of f are uniformly locally Ahlfors 2-regular with respect to S2.
Therefore, the validity of the inequality given by Theorem 7.0.1 for this class of regular
functions is ensured by our result. This somehow confirms the coarea-type equality proved
in [Koz15, Theorem 6.2.5]. To summarize, in this setting, we have weakened the hypothe-
ses adopted in [Koz15, Theorem 6.2.5] about the required regularity of the considered
map, passing from C1,α

h -regular maps, with α > 0, to continuously Pansu differentiable
functions. We compensate the lower regularity of the map with the more geometrical
hypothesis about the Ahlfors regularity of its level sets (to be precise Kozhevnikov sub-
stantially could ignore the characteristic sets of the points where the Pansu differential is
not surjective thanks to the results of [Mag02b]). We need to remark that these consider-
ations are limited, up to now, to maps from the Heisenberg group Hn to R2n, about which
more results are available. We recall that for maps f ∈ C1,α

h (Ω,R2n), for some open set
Ω ⊂ Hn, for any α > 0, a coarea formula is proved also in [MST18, Theorem 8.2].

Now we fix again two Carnot groups (G, d1) and (M, d2), endowed with two homoge-
neous distances, of Hausdorff dimension Q, P and topological dimension q, p, respectively.
From now on, for any set Ω ⊂ G, and any real number D > 0 we set

ΩD := {y ∈ G : dist(y,Ω) < D}.

We will consider a map f ∈ C1
h(G,M) with Pansu differential everywhere surjective and

a compact set Ω ⊂ G. We want to see how to apply Theorem 7.0.1 to the particular
geometrical case in which there exists a p-dimensional homogeneous subgroup V comple-
mentary to ker(Df(x)) for any point x of a neighbourhood of Ω, i.e. to the case when the
level sets f−1(m) are not only (G,M)K-regular submanifolds but (G,M)-regular sets of
G. The key point is the possibility to apply in this situation the implicit function theorem
stated in Theorem 4.2.15. Therefore any level set f−1(m), for m ∈ M, can be seen as an
intrinsic Lipschitz graph, and this is a crucial observation, since, by Proposition 3.5.13,
intrinsic Lipschitz graphs are lower Ahlfors regular. In particular, then, since we want to
exploit Theorem 7.3.3, we need to focus on the intrinsic Lipschitz constants of the intrinsic
parametrizing maps of the level sets of f . Our strategy will be to individuate two universal
positive constants R and L, independent of the choice of m ∈M and of x ∈ f−1(m), such
that for every m ∈M and x ∈ f−1(m), f−1(m)∩B(x,R) is an intrinsic L-Lipschitz graph.
Successively, we will deduce through Proposition 3.5.13 the existence of a positive constant
C such that for every m ∈ M, f−1(m) is R-locally C-lower Ahlfors (Q− P )-regular with
respect to SQ−P .

First of all, by modifying the proof of [JNGV20, Lemma 2.9], combining it with an easy
compactness argument and with Theorem 3.2.30, the following proposition immediately
follows.

Proposition 7.4.5. Let us consider a map f ∈ C1
h(G,M) and a compact set Ω ⊂ G.

Assume that there exists a p-dimensional homogeneous subgroup V such that Df(x)|V :
V→M is a h-isomorphism for every x ∈ Ω. Then there exists a constant R > 0 such that
for every x ∈ Ω, for every y ∈ B(x,R), and for every v ∈ V such that yv ∈ B(x,R),

d2(f(y), f(yv)) ≥ R‖v‖1.
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Proof. Notice that our hypotheses imply that V is complementary to ker(Df(x)) for every
x ∈ Ω. Let us proceed by contradiction. Assume that for every n ∈ N there exist xn ∈ Ω,
yn ∈ B(xn,

1
n), vn ∈ V \ {0} such that ynvn ∈ B(xn,

1
n) and

‖f(yn)−1f(ynvn)‖2 <
1

n
‖vn‖1.

Since Ω is compact, up to a subsequence, there exists some x̄ ∈ Ω such that xn → x̄.
Again up to a subsequence, we can assume that there exists v̄ ∈ V, with ‖v̄‖1 = 1 such
that vn

‖vn‖1 → v̄ as n→∞. Now we can consider for every n

‖Df(x̄)(vn)Df(x̄)(vn)−1Df(yn)(vn)Df(yn)(vn)−1f(yn)−1f(ynvn)‖2
‖vn‖1

<
1

n
.

Consider that by Pansu differentiability,

Df(yn)(vn)−1f(yn)−1f(ynvn)

‖vn‖1
→ 0 ∈M,

as n goes to ∞ and by the continuity of the Pansu differential on Ω

‖Df(x̄)(vn)−1Df(yn)(vn)‖2
‖vn‖1

= Df(x̄)

(
vn
‖vn‖1

)−1

Df(yn)

(
vn
‖vn‖1

)
≤ dLh(G,M)(Df(x̄), Df(yn))→ 0

(7.39)

as n goes to ∞, then we can deduce that, letting n go to ∞,

‖Df(x̄)

(
vn
‖vn‖1

)
‖2 → 0

but at the same time it converges also to ‖Df(x̄)(v̄)‖2, hence Df(x̄)(v̄) = 0, and then
v̄ ∈ ker(Df(x̄)). Therefore v̄ ∈ ker(Df(x̄))∩V and ‖v̄‖1 = 1 and this is not possible since
V and ker(Df(x̄)) are complementary subgroups.

The following proposition is a reformulation of [JNGV20, Corollary 2.16] according
to our notation. Proposition 7.4.6 concerns the intrinsic regularity of the level sets of
the considered map f : it allows to deduce the intrinsic Lipschitz continuity of the local
parametrizing maps of all level sets of f . In particular, it provides quantitative information
about the intrinsic Lipschitz constant of the intrinsic parametrizations. From a qualitative
point of view, we could deduce the intrinsic Lipschitz continuity of the parametrization
also by Corollary 4.3.8.

Proposition 7.4.6. Let us consider a map f ∈ C1
h(G,M), a compact set Ω ⊂ G, and

assume that there exists a p-dimensional homogeneous subgroup V such that Df(x)|V :
V → M is a h-isomorphism for every x ∈ Ω. Let R be the constant associated with Ω
provided by Proposition 7.4.5. Fix x̄ ∈ Ω and consider Σ := {y : f(y) = f(x̄)}∩B(x̄, R) =
f−1(f(x̄)) ∩ B(x̄, R). Set L = Lip(f |B(x̄,R)). If we define

C := {0} ∪
⋃
v∈V

B

(
v,
R

L
‖v‖1

)
,

we have
Σ ∩ xC = {x} for every x ∈ Σ. (7.40)
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Proof. We know that d2(f(y), f(yv)) ≤ R‖v‖1 for every y ∈ B(x̄, R) and for every v ∈ V
such that yv ∈ B(x̄, R). Let y ∈ Σ and z ∈ yC, z 6= y, then there exists some v ∈ V such
that z ∈ yB

(
v, RL‖v‖1

)
= B

(
yv, RL‖v‖1

)
, and then d1(z, yv) < R

L‖v‖1. Then

d2(f(y), f(z)) ≥ d2(f(y), f(yv))− d2(f(yv), f(z)) ≥ R‖v‖1 − Ld2(z, yv) > 0

hence f(z) 6= f(y) = f(x̄), then z /∈ Σ, and then for every y ∈ Σ, Σ ∩ yC = {y}.

Remark 7.4.7. In the notation of Corollary 7.4.6, the previous result implies that Σ is
an intrinsic Lipschitz graph, whose intrinsic Lipschitz constant depends on W, V, R and
L. In fact, let us set α := R

R+L so that α
1−α = R

L . Then, for every γ < α,

X (0,V, γ) ⊂ C. (7.41)

In fact, if y ∈ X(0,V, γ), then dist(y,V) ≤ γ‖y‖1 < α‖y‖1. Hence there exists some v̄ ∈ V
such that d1(y, v̄) < α‖y‖1, but by triangle inequality, ‖y‖1 ≤ d(y, v̄)+‖v̄‖1 < α‖y‖1+‖v̄‖1.

Hence ‖y‖1(1− α) < ‖v̄‖1 and so ‖y‖1 < ‖v̄‖1
1−α . Therefore d(y, v̄) < α

1−α‖v̄‖1 = R
L‖v̄‖1 and

hence y ∈ B(v̄, RL‖v̄‖1) ⊂ C. Hence, condition (7.40) implies that for every γ < R
R+L ,

Σ ∩X (x,V, γ) = {x} for every x ∈ Σ. (7.42)

Then, in addition, if there exist two complementary subgroups G = WV, an open set
U ⊂W and a parametrizing function φ : U ⊂W→ V such that graph(φ) ⊂ Σ, combining
Proposition 3.5.4, or better Remark 3.5.5, with (7.42), φ is intrinsic Lipschitz and its
intrinsic Lipschitz constant depends on W, V and α, then on W, V, R and L.

Combining Proposition 7.4.5 with Proposition 7.4.6, we get the following.

Proposition 7.4.8. Let us consider a map f ∈ C1
h(G,M) and a compact set Ω ⊂ G. Let

us assume that there exists a p-dimensional homogeneous subgroup V such that Df(x)|V :
V → M is a h-isomorphism for every x ∈ ΩD for some D > 0. Then there exists a
constant L, such that for every m ∈ M, x ∈ f−1(m) ∩ Ω, the set f−1(m) ∩ B(x,R) is an
intrinsic L-Lipschitz graph, where R is the constant of Proposition 7.4.5 applied to Ω.

Proof. By hypothesis, at any point x ∈ ΩD, kerDf(x) is a normal homogeneous subgroup
complementary to V, hence Df(x) is a h-epimorphism. Assume that R is smaller than
D. Let us fix a homogeneous subgroup W complementary to V. For every m ∈ M and
x ∈ f−1(m)∩Ω, the set f−1(m)∩B(x,R) is contained in the intrinsic graph of a function
φm,x : Um,x ⊂W→ V, for some open set Um,x ⊂W. The map φm,x is given by Theorem
4.1.19, repeatedly applied to different points of f−1(m) ∩ B(x,R), if necessary.

By Remark 7.4.7, f−1(m) ∩ B(x,R) is the intrinsic Lipschitz graph of an intrinsic L-
Lipschitz function φm,x for some constant L depending on R, and on the Lipschitz constant
of f |B(x,R), that can be uniformly controlled by the supx∈Ω Lip(f |B(x,R)) ≤ Lip(f |ΩD) <∞.

As a consequence, the sets f−1(m) ∩ B(x,R), for every m ∈ M and x ∈ f−1(m) ∩ Ω, are
intrinsic L-Lipschitz for some positive L independent of x and m.

Corollary 7.4.9. Let f ∈ C1
h(G,M) be a function, assume that Df(x) is surjective for

every x ∈ G and let Ω ⊂ G be a compact set. Assume that there exists a p-dimensional
subgroup V of G such that Df(x)|V is an h-isomorphism for every x ∈ ΩD for some D > 0.
Set λ = supx∈Ω Lip(f |B(x,R)), where R is the constant given by Proposition 7.4.5 applied
to Ω. Then there exists a constant 1 ≤ T (G, λ,R, p) <∞, such that∫

Ω
CP (Df(x))dSQ(x) ≤ T

∫
M
SQ−P (f−1(m) ∩ Ω)dSP (m).
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Proof. We can assume that R < D. Set W any homogeneous subgroup complementary
to V. By Propositions 7.4.8 and 3.5.13, there exists a constant K > 0 such that for every
m ∈M and x ∈ f−1(m)∩Ω, for every 0 < r < R, SQ−P (f−1(m)∩B(x, r)) ≥ KrQ−P , where
K is a constant depending on c0(W,V) > 0 and on the intrinsic Lipschitz constants of
the parametrizing maps φm,x : Um,x ⊂W→ V of {f−1(m)∩B(x, r)}m∈{m∈M,x∈f−1(m)∩Ω}.
Moreover observe that by Proposition 7.4.8, the maps φm,x are intrinsic L-Lipschitz, for
some constant L independent of m and x. Now notice that our hypotheses imply that the
hypothesis that the level sets f−1(m) are uniformly locally lower Ahlfors (Q− P )-regular
with respect to SQ−P in Theorem 7.0.1 is satisfied (more precisely in Claim 1 on Theorem
7.3.3), hence we can apply our result to this situation, and we directly get the thesis.

Remark 7.4.10. We have seen, in the proof of Corollary 7.4.9, that the existence of
a p-dimensional homogeneous subgroup V complementary to ker(Df(x)) for every point
x ∈ G, implies that the level sets of f are R-locally C-lower Ahlfors (Q − P )-regular
with respect to SQ−P , for some positive constants C and R, locally independent of the
choice of the level set. We want to highlight that the opposite may be false. In fact, there
exist continuously Pansu differentiable maps between two Carnot groups, with everywhere
surjective differential, such that their level sets are lower Ahlfors regular, but at the same
time ker(Df(x)) does not admit any complementary subgroup.

We present a very simple example of this fact in the first Heisenberg group H1, that
is the simplest non-commutative Carnot group. As usual we consider H1 in adapted
coordinates with respect to a orthonormal graded basis (e1, e2, e3) such that [e1, e2] = e3.
Let us consider the map

f : H1 → R2, f(x, y, z) = (ax+ by, cx+ dy), with det

(
a b
c d

)
6= 0.

Observe that f ∈ Lh(H1,R2) and that the Pansu differential of f is constant on H1: for
every x̄ ∈ H1,

Df(x̄) = f,

hence, ker(Df(x̄)) = span(e3) for every x̄ ∈ H1. Notice that span(e3) is a normal ho-
mogeneous subgroup of Hausdorff dimension 2 that does not admit any complementary
subgroup. Let us now focus on the level sets of f . If we fix v ∈ R2 we know that
f−1(v) = wspan(e3) for some fixed w ∈ H1 such that f(w) = v, hence any level set is a
coset of span(e3). Then, by the left invariance and the homogeneity of the homogeneous
distance, the level sets f−1(v) are C-lower Ahlfors 2-regular with respect to S2, for some
positive constant C, independent of the choice of v.
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Carathéodory spaces. Commun. Contemp. Math., 8(5):657–680, 2006.

[CM14] Vasilis Chousionis and Pertti Mattila. Singular integrals on self-similar sets
and removability for Lipschitz harmonic functions in Heisenberg groups. J.
Reine Angew. Math., 691:29–60, 2014.

[CM20] Francesca Corni and Valentino Magnani. Area formula for regular subman-
ifolds of low codimension in Heisenberg groups. arXiv:2002.01433, 2020.

[CMPSC14] Giovanna Citti, Maria Manfredini, Andrea Pinamonti, and Francesco
Serra Cassano. Smooth approximation for intrinsic Lipschitz functions
in the Heisenberg group. Calc. Var. Partial Differential Equations, 49(3-
4):1279–1308, 2014.

[CMPSC16] Giovanna Citti, Maria Manfredini, Andrea Pinamonti, and Francesco
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Math. Soc., 145(688):x+101, 2000.



212 BIBLIOGRAPHY
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