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Abstract

We studied the properties of three different types of omics data: protein domains
in bacteria, gene length in metazoan genomes and methylation in humans. Gene
elongation and protein domain diversification are some of the most important mech-
anisms in the evolution of functional complexity. For this reason, the investigation
of the dynamic processes that led to their current configuration can highlight the
important aspects of genome and proteome evolution and consequently of the evolu-
tion of living organisms. The potential of methylation to regulate the expression of
genes is usually attributed to the groups of close CpG sites. We performed the corre-
lation analysis to investigate the collaborative structure of all CpGs on chromosome
21.

The long-tailed distributions of gene length and protein domain occurrences were
successfully described by the stochastic evolutionary model and fitted with the Pois-
son Log-Normal distribution. This approach included both demographic and envi-
ronmental stochasticity and the Gompertzian density regulation. The parameters
of the fitted distributions were compared at the evolutionary scale. This allowed us
to define a novel protein-domain-based phylogenetic method for bacteria which per-
formed well at the intraspecies level. In the context of gene length distribution, we
derived a new generalized population dynamics model for diverse subcommunities
which allowed us to jointly model both coding and non-coding genomic sequences. A
possible application of this approach is a method for differentiation between protein-
coding genes and pseudogenes based on their length.

General properties of the methylation correlation structure were firstly analyzed
for the large data set of healthy controls and later compared to the Down syndrome
(DS) data set. The CpGs demonstrated strong group behaviour even across the
large genomic distances. Detected differences in DS were surprisingly small, possibly
caused by the small sample size of DS which reduced the power of statistical analysis.
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Introduction

Biological entities from different omics disciplines can be described as dynamics
systems. The omics measurements thus merely record the state of the changing
system at the specific time point. Depending on the system and the feature which
is being studied, the timescale of change can vary from seconds to thousands of
years. As an example, the genome of an organism is stable during its lifetime but
on a larger scale, it results from a myriad of changes which accumulated during the
course of evolution. On the other hand, transcriptome or proteome content of the
cell is constantly changing and consequently, the results of both transcriptomics and
proteomics experiments are time-sensitive. To better understand both the current
state of a dynamic system and dynamic processes which led to it, we develop the
mathematical model of the system.

The mathematical model aims to describe the elements of a system, their states
and their interactions. The model should be sufficiently precise as the representation
of the system but at the same time simple enough to be solvable. Thus to success-
fully model complex systems one has to leave out many details. Viewed at this
higher level, even the systems which are intrinsically deterministic have stochastic
behaviour where stochasticity serves as a “container” for all unaccounted compo-
nents of the system. Due to their complexity, the dynamics of biological systems
thus have to be stochastically modeled [1].

We focus on three different biological systems with the origin in genomics, pro-
teomics and methylomics. In Part I, we study the system of protein domains in
bacteria where we observe the distribution of protein domain abundances. Simi-
larly, in Part II, we observe the distribution of gene length in different metazoan
species. These distributions are important as a measure of the diversity of the sys-
tem recorded at a certain time point of the evolution. Following a different approach
in Part III, instead of the dynamical properties, we model the interactions between
the elements of the methylation system.

As we will observe in Part I and Part II, the distribution of protein domain abun-
dances, as well as the gene length distribution, is long-tailed, with a large number
of occurrences far from the centre of the distribution. It is known that long-tailed
distribution is ubiquitous throughout genomic biology [2]. The occurrence of pro-
tein families and the number of transcripts per protein family are some examples of
long-tailed distributions which are successfully fitted with the power-law function
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[2]. The same type of distribution emerges as the relative species abundance (RSA)
distribution in the context of ecological theories [3]. The RSA distribution has been
extensively studied in the last 80 years resulting in great theoretical developments
[3]. Thus, instead of developing a new framework to explain the mechanisms which
led to the protein domain and the gene length distribution, we interpret them in
the context of population dynamics. Specifically, we employ the model introduced
by Engen and Lande in 1996 [4, 5]. They developed a stochastic model which
includes both additive (demographic) and multiplicative (environmental) stochas-
ticity and where, depending on the assumptions, the RSA distribution is Poisson
Log-Normal or Negative Binomial. With respect to their stochastic model, the pro-
cess of gene elongation, as well as the emergence of protein domains, are explained
by the stochastic growth equation.

In the process of methylation the methyl group is covalently added to the cytosine
(C) nucleotide and this epigenetic modification is well-studied for its potential to
regulate gene expression. The cytosine methylation predominantly occurs at the
CG dinucleotide sequences, and thus the target of methylomics studies are these
so-called CpG sites. One of the available tools, Infinium 450K assay [6], measures
the methylation level of more than 480 000 CpG sites spread across the genome.
Groups of CpG sites are usually analyzed together [7, 8] as it is believed that the
regulatory potential results from their group behaviour. Thus instead of a ∼480 000
independent entities, in the Part III, we observe the system of CpG sites and we
aim to describe the interactions among them.
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Stochastic processes

The materials in this first introductory chapter, unless stated otherwise, are taken
from two textbooks about stochastic processes written by Karlin and Taylor [9, 10].

0.1 Elements of stochastic processes

A stochastic (or random) process is a family of random variables {X(t); t ∈ T}
indexed by a parameter t. To properly define a stochastic process, we need to specify
the state space S, the index parameter T and the dependence relations among the
random variables X(t).

The state space S is the space in which all possible values of random variables
X(t) lie. If S = N0 = {0, 1, 2, . . .}, then we call X(t) a discrete state process. If
S = R, then X(t) is a real-valued stochastic process. As with the codomain of
any function, S is not uniquely defined but usually the appropriate choice for S is
obvious.

The index t, t ∈ T is usually interpreted as time parameter of the process and T is
the set of all times in which we observe the stochastic process. If T = {0, 1, 2, . . .},
then X(t) is a discrete time stochastic process. In this case, we often write Xn

instead of X(t). If T = [0,∞〉, then X(t) is called a continuous time process.
To completely define a stochastic process, we need to specify all finite-dimensional

distributions, that is the joint distributions of the variables (X(t1), . . . , X(tn)), for
all t1, . . . , tn ∈ T and for all n ∈ N. However, if certain special relations among the
random variable X(t) hold, then a definition of a stochastic process becomes much
more concise. These special relations among the variables define different classes of
stochastic processes. Some of the most important classes are stationary processes
and Markov processes, which we will discuss in more details.

Definition (Stationary process). A stochastic process {X(t); t ∈ R} is a station-
ary process if

P (X(t1 + h) ≤ x1, . . . , X(tn + h) ≤ xn) = P (X(t1) ≤ x1, . . . , X(tn) ≤ xn),

for all t1, . . . , tn, h ∈ R and for all n ∈ N. (0.1)
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In particular, a stationary process has stationary increments. In other words, for
any t, h ∈ R the distribution of X(t+ h)−X(t) depends only on the length of h.

0.2 Markov process
A stochastic process with Markov property “suffers” from memorylessness. Roughly
speaking, the future values of the process X(s), s > t conditioned on the present
X(t) are not altered by additional knowledge of the past X(u), u < t. A precise
definition of Markov process is given below.

Definition (Markov process). Markov process is a stochastic process {X(t); t ≥
0} with the following property

P (a < X(t) ≤ b | X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn) =

P (a < X(t) ≤ b | X(tn) = xn), whenever t1 < t2 < · · · < tn < t. (0.2)

Markov chain A Markov process with finite or denumerable state space is called
a Markov chain. If we assume that the Markov chain is stationary, then we can
define transition probabilities

Pij(h) = P (X(t+ h) = j | X(t) = i) (0.3)

The Markov property asserts that Pij(h) satisfies:

1. Pij ≥ 0,

2. ∑j Pij(h) = 1,

3. Pik(h) = ∑
j Pij(h)Pjk(h) (Chapman-Kolmogorov relation).

If additionally, Pij(h) = Pij doesn’t depend on the time difference h, then we
have a homogeneous Markov chain.

0.2.1 Poisson process

Definition (Homogenouos Poisson process). Homogenous Poisson process with
rate λ is a stochastic process {X(t); t ≥ 0} on the nonnegative integers which has
the following properties:

1. X(0) = 0.

2. {X(t)} has independent increments, that is, for every pair of disjoint time
intervals [t1, t2], [t1, t2], with t1 ≤ t2 < t3 ≤ t4, the increments X(t4) −X(t3)
and X(t2)−X(t1) are independent random variables.
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3. P (X(t+ h)−X(t) = 0) = 1− λh+ o(h) as h ↓ 0 (x = 0, 1, 2, . . .).

4. P (X(t+ h)−X(t) = 1) = λh+ o(h) as h ↓ 0.

5. P (X(t+ h)−X(t) ≥ 2) = o(h) as h ↓ 0.

Remark. We say that an arbitrary function f ∈ o(h) if limh↓0
f(h)
h
→ 0.

Markov property The Markov property is a direct consequence of independent
increments. For t1 < t2 < · · · < tn < t, we have

P (X(t) ≤ x | X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn) =
P (X(t)−X(tn) ≤ x− xtn | X(t2)−X(t1) = x2 − x1, . . . , X(tn) = xn) =
P (X(t)−X(tn) ≤ x− xtn | X(tn) = xn) =
P (X(t) ≤ x | X(tn) = xn).

Inhomogeneous Poisson process If instead of a constant, λ(t) : [0,∞〉 →
[0,∞〉 is an integrable function, then we get an inhomogeneous (or nonhomoge-
neous) Poisson process. All of the properties (a)-(e) still hold replacing λ with λ(t)
as does the following relation

X(t+ h)−X(t) ∼ Poisson

(∫ t+h

t
λ(α)dα

)
. (0.4)

0.2.2 Brownian motion

Definition (Brownian motion). Brownian motion is a stochastic process {X(t); t ≥
0} with the following properties:

1. Every increment X(t + h) − X(t) is normally distributed with mean 0 and
variance σ2h with σ2 being a constant.

2. {X(t)} has independent increments, that is, for every pair of disjoint time
intervals [t1, t2], [t1, t2], with t1 ≤ t2 < t3 ≤ t4, the increments X(t4) −X(t3)
and X(t2)−X(t1) are independent random variables.

3. X(0) = 0 and X(t) is almost surely continuous functions of t.

Remark. It can be shown that the paths X(t) of the Brownian motion are nowhere
differentiable.
Remark. If σ2 = 1, then we are talking about standard Brownian motion. An arbi-
trary Brownian motion X(t) with variance parameter σ2 can easily be transformed
to standard Brownian motion with X̃(t) = X(t)/σ. In the following discussions, we
will use notation B(t) for the standard Brownian motion.
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Markov property Similar as in the case of the Poisson process, the Markov
property is a direct consequence of independent increments.

0.3 Diffusion process and stochastic differential
equation

0.3.1 Diffusion process

Diffusion processes constitute an important class of stochastic processes and are
widely used in modeling of many physical, biological, economic or social phenomena.
They can be defined in different ways, but here we use the following definition.

Definition (Diffusion process). Diffusion process is a Markov process {X(t); t ≥
0} whose state space is an interval I with endpoints −∞ ≤ l < r ≤ ∞ with the
following properties:

1. lim
h↓0

1
h
P (|X(t+ h)− x| > ε | X(t) = x) = 0 for every ε > 0 and for all x ∈ I.

2. lim
h↓0

1
h
E [X(t+ h)−X(t) | X(t) = x] = µ(x, t), where µ(x, t) is a continuous

function of x and t.

3. lim
h↓0

1
h
E
[
(X(t+ h)−X(t))2 | X(t) = x

]
= σ2(x, t), where σ2(x, t) ≥ 0 is a

continuous function of x and t.

The function µ(x, t) is called the infinitesimal mean or drift parameter, and
the function σ2(x, t) is called infinitesimal variance or diffusion parameter. In the
following discussion, we will concentrate mostly on time homogeneous cases where
µ(x, t) = µ(x) and σ2(x, t) = σ2(x) are independent of t.

In the study of diffusion processes, hitting times play an important role. Infor-
mally, the hitting time Tz of the state z is a first time the process reaches a state z.
Similarly we can define the hitting time of any subset of a state space S.

Definition (Hitting time). Let {X(t); 0 ≤ t < ζ} be a stochastic process. The
hitting time Tz of z for the process {X(t)} is defined as

Tz =
{
∞, if X(t) 6= z for 0 ≤ t < ζ

inf {t ≥ 0 | X(t) = z} , otherwise.
(0.5)

Regular process A diffusion process is regular if starting from any point in the
interior of I any other point in the interior of I may be reached with positive
probability. A diffusion process {X(t); t ≥ 0} whose state space is an interval I
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with endpoints −∞ ≤ l < r ≤ ∞ is regular if P (Tz <∞ | X(0) = x) > 0 for every
l < x, z < r. In the following discussion, without further mention, we should discuss
only regular diffusion processes.

Brownian motion Brownian motion is a regular diffusion process on the interval
〈−∞,∞〉 with µ(x) = 0 and σ2(x) = σ2, where σ2 is a constant.

Here we state, without proof, two theorems which will be used in the next chap-
ter. For the proof, see [10].
Theorem 1 (Transformation formula for a diffusion process). Let {X(t); t ≥
0} be a regular diffusion process whose state space is an interval I having endpoints
l and r, and suppose {X(t)} has infinitesimal parameters µ(x) and σ2(x). Let g
be a strictly monotone function on I with continuous second derivative g′′(x) for
l < x < r. Then Y (t) = g(X(t)) defines a regular diffusion process on the interval
with endpoints g(l) and g(r), and {Y (t)} has infinitesimal parameters

µY (y) = 1
2σ

2(x)g′′(x) + µ(x)g′(x) (0.6)

σ2
Y (y) = σ2(x) [g′(x)]2 (0.7)

where y = g(x).
Theorem 2. Let {X(t); t ≥ 0} be a time homogeneous regular diffusion process
with infinitesimal mean µ(x) and variance σ2(x) whose state space is an interval
I having endpoints l < r. Let a and b, l < a < b < r, be fixed states with the
corresponding hitting times Ta and Tb. We define T ∗ = min(Ta, Tb) as the first time
the process reaches either a or b. Then a solution to the problem

w(x) = E

[∫ T ∗

0
g(X(s))ds | X(0) = x

]
, a < x < b, (0.8)

where g is a bounded and continuous function, can be written in the form

w(x) =
∫ b

a
G(x, ψ)g(ψ)dψ, (0.9)

where G(x, ψ) is Green function of the process on the interval [a, b] and is given with

G(x, ψ) =


2[S(x)− S(a)][S(b)− S(ψ)]

S(b)− S(a)
1

σ2(ψ)s(ψ) , a ≤ x ≤ ψ ≤ b

2[S(b)− S(x)][S(ψ)− S(a)]
S(b)− S(a)

1
σ2(ψ)s(ψ) , a ≤ ψ ≤ x ≤ b,

(0.10)

where

s(x) = exp
{
−
∫ x [

2µ(ψ)/σ2(ψ)
]
dψ
}
, for l < x < r, (0.11)

S(x) =
∫ x

s(η)dη, for l < x < r. (0.12)
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Problem. If we want to determine the mean time prior to T ∗ that the process spends
in the interval [ψ, ψ+∆〉, we are solving the problem from Theorem 2 for the function

g(x) =
{

1, ψ ≤ x < ψ + ∆,
0, otherwise.

(0.13)

Then the solution can be written in the form

w(x) =
∫ ψ+∆

ψ
G(x, η)dη. (0.14)

Even thought the function g defined in (0.13) is not continuous as required by
Theorem 2, (0.14) can still be obtained by introducing a suitable continuous ap-
proximation function. When ∆→ dψ, we get from (0.14) that G(x, ψ)dψ measures
the expected time prior to T ∗ that the process spends in the infinitesimal interval
[ψ, ψ + dψ〉 given X(0) = x.

0.3.2 Stochastic differential equation (SDE)

Let {B(t); t ≥ 0} be a standard Brownian motion. The “process” dB(t)/dt = W (t)
is called a Gaussian white noise “process”. We should recall that the Brownian
motion paths B(t) are nowhere differentiable and thus the white noise is not a
stochastic process in the usual mathematical sense but an abstraction, the “gen-
eralized stochastic process”. Roughly speaking, dB(t)/dt can be described as a
one-parameter collection of independent Gaussian random variables with mean zero
and infinite variance [11].

The heuristical derivation of a stochastic differential equation (SDE) usually
involves the inclusion of the stochastic white noise in a deterministic differential
equation [11]. Although the white noise process is a mathematical abstraction, it
proved to be a good estimation for a variety of noises or other random processes
that occur naturally in physical and biological contexts. Furthermore, the solution of
SDE, as discuss later, is a diffusion process which makes it amenable to mathematical
analysis.

A classic stochastic differential equation has the following form

dX(t) = f(X(t), t)dt+ g(X(t), t)dB(t). (0.15)

The SDE (0.15) is actually a shorthand for the equation

X(t)−X(t0) =
∫ t

t0
f(X(s), s)ds+

∫ t

t0
g(X(t), t)dB(t). (0.16)

The mathematical ambiguity arises from the random integral∫ t

t0
g(X(t), t)dB(t) (0.17)
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which doesn’t exist in the usual Riemann-Stieltjes sense [11]. Consequently, a vast
number of definitions for (0.17) exist each of which results in a different solution
to the SDE [11]. The two prominent definitions are those associated to Itô and
Stratonovich. We will present only the Itô’s solution to the SDE (0.15). If the Itô’s
interpretation of the random integral (0.17) is used then the solution X(t) to the
SDE (0.15) is a diffusion process with infinitesimal mean

µ(x, t) = f(x, t) (0.18)

and infinitesimal variance
σ2(x, t) = g2(x, t). (0.19)
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Population dynamics

0.4 Relative species abundance (RSA)

In an ecological study of a community, one usually observes different species, each
represented by a certain number of individuals. Some of the observed species are
rare with only a few (or only one) members while others are more common and
represented by many organisms. The number of observed individuals belonging to
a species is called its abundance. The relative abundance is obtained if we divide
it with the total number of individuals found in the community. To study the
properties of a community, we divide the species into abundance classes and study
the distribution of relative species abundances (RSA). The RSA distribution is an
important measure of biodiversity which helps us to understand and classify the
communities.

When we plot histogram of a species abundance distribution with abundances on
the x-axis and number of collected species on y-axis, we observe a “hollow curve”.
More precisely, the distribution is long-tailed and approximately follows a power
law f(n) ≈ Cn−m, where n is an abundance class and C and m are constants. The
“hollow” RSA distribution with many rare species and just a few common species
seems to be universal with no recorded case of a community which deviates from
it [3]. This universal law of ecology inspired a lot of research and RSA has been a
central topic in ecology in the last century [3].

In the beginnings of the RSA theories, Fisher et al. [12] introduced the Log-
Series distribution as a fit for a long-tailed RSA distribution. Soon after, Preston [13]
started plotting the histogram of RSA distributions on logarithmic scale (historically
log2 scale). This allowed for a better examination of rare species and introduced a
diversity since the Preston plots of RSA distributions visually differ among different
communities. In the last 70 years, many new theoretical RSA models were developed
which resulted in new RSA distributions with some of the most prominent ones being
Log-Series, Negative Binomial and Poisson Log-Normal distribution. In their review,
McGill et al. [3] counted more than 40 models which can be divided in five categories:
purely statistical models, branching processes, population dynamics models, niche
partitioning models and spatial distribution models. Interestingly, many of these
models overlap and the same distribution can result from different models with
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non-aligned assumption.

0.5 Population dynamics model for relative species
abundance distribution

Using a stochastic model of population dynamics, Engen and Lande developed a
general class of abundance models where species abundances are generated by an
inhomogeneous Poisson process with rate λ(x). In the first paper [4] they intro-
duces a general model and showed that under certain conditions, the rate λ(x)
follows a Log-Normal distribution. In the second paper [5], under slightly different
assumptions, they proved that the rate λ(x) follows a Gamma distribution. As we
will discuss in more details in the next sections, this means that under the same
framework varying the assumptions of the model we may arrive to both the Poisson
Log-Normal and the Negative Binomial RSA distribution. Moreover, since Log-
Series distribution can be viewed as a special case of Negative Binomial distribution
when dispersion parameter converges to zero, the three important RSA distributions
can be derived from the Engen and Lande’s abundance models.

0.5.1 Engen and Lande’s general abundance model

If we assume that species enter the community at the times generated by inhomoge-
neous Poisson process with rate ω(t) and evolve independently of others, then their
abundances are generated by an inhomogeneous Poisson process with rate

λ(x) =
∫ ∞

0
ω(−t)p(t)f(x; t)dt, (0.20)

where p(t) is a probability that a species hasn’t gone extinct and f(x; t) is a distri-
bution of its density.

Now we let the process for each species be a diffusion process which is a solution
of a stochastic growth equation

dx

dt
= rx− xg(x) + xσr(x)dB(t)

dt
, (0.21)

where σ2
r(x) = σ2

e + σ2
d/x has two components: environmental and demographic

stochasticity. Environmental stochasticity is due to environmental changes which
act simultaneously on all individuals in population and demographic stochasticity
reflects the differences among the individuals inside the population. Then the re-
sulting diffusion process has the infinitesimal mean m(x) and infinitesimal variance
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v(x) given by

m(x) =
[
r + 1

2
σ2
d

x
+ 1

2σ
2
e

]
x− xg(x) (0.22)

v(x) = σ2
dx+ σ2

ex
2. (0.23)

If we additionally assume that the speciation rate ω(t) is a constant, then the
rate λ(x) is given by

λ(x) = 2ω 1
v(x) exp

[∫ x

1

2m(u)
v(u) du

]
. (0.24)

We will prove all of the statements written above in three steps. The following
derivations can be found in Engen and Lande’s paper[4].

Proof (Species abundances are generated by inhomogenous Poisson pro-
cess with rate λ(x)λ(x)λ(x)) We assume that species enter the community at the times
generated by an inhomogeneous Poisson process with rate ω(t) and once they enter
the community they evolve independently of each other. A species which entered
the community at time t is still present in the community at time t+ s, s > 0 with
probability p(s) and, in case it hasn’t gone extinct, its abundance comes from a
distribution with density f(x; s).

Let’s observe two disjoint intervals Ω1 and Ω2 on the positive real axis. We
now fix the time point t0 and define random variables Y1(t) and Y2(t) as a number
of species with abundances in intervals Ω1 and Ω2, respectively, at time t0 which
entered the community in the time interval 〈t, t+δt〉, t < t0. The probability that no
species enter the community in this interval is 1−ω(t)δt+ o(δt) and the probability
that exactly one species enters the interval is ω(t)δt + o(δt). This leads to three
different possibilities for the distribution of (Y1(t), Y2(t))

P (Y1(t) = 1, Y2(t) = 0) = ω(t)p(t0 − t)δt
∫

Ω1
f(x; t0 − t)dx+ o(δt), (0.25)

P (Y1(t) = 0, Y2(t) = 1) = ω(t)p(t0 − t)δt
∫

Ω2
f(x; t0 − t)dx+ o(δt), (0.26)

P (Y1(t) = 0, Y2(t) = 0) = 1− ω(t)p(t0 − t)δt
∫

Ω1∪Ω2
f(x; t0 − t)dx+ o(δt). (0.27)

The equation (0.25) comes from the fact that the Y1(t) = 1 and Y2(t) = 0 if exactly
one species enters the community in the interval 〈t, t + δt〉, doesn’t go extinct by
time t0 and its abundance falls in the interval Ω1 in time t0. All other possibilities
of (Y1(t), Y2(t)) happen with probability o(δt) and are thus neglected.
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We introduce notation Ij(t) for the integrals
∫

Ωj f(x; t0 − t)dx, j = 1, 2, and
notice that I1 + I2 =

∫
Ω1∪Ω2

f(x; t0 − t)dx. Now we calculate the joint moment
generating function for Y1(t) and Y2(t)

E
(
euY1(t)+vY2(t)

)
= 1+(eu−1)ω(t)p(t0−t)I1(t)δt+(ev−1)ω(t)p(t0−t)I2(t)δt+o(δt).

(0.28)
Taking the logarithm and using Taylor series approximation ln(1 + x) ≈ x, we get
the corresponding cumulant generating function

Kt(u, v) = [(eu − 1)I1(t) + (ev − 1)I2(t)] p(t0 − t)ω(t)δt+ o(δt). (0.29)

To find the total cumulant generating function for the number of species with
abundances in Ω1 and Ω2, we split the interval 〈−∞, t0〉 into intervals of length δt.
Because of the species independance, the partial cumulant generating functions of
type (0.29) will be independent and summing them we get

K(u, v) = (eu − 1)
∑

I1(t)ω(t)p(t0 − t)δt+ (ev − 1)
∑

I2(t)ω(t)p(t0 − t)δt+ o(δt),
(0.30)

where sum is taken over the partition of 〈−∞, t0〉 into intervals with length δt. If
we now take the limit when δt→ 0, we obtain the integral

K(u, v) = (eu − 1)ϕ1 + (ev − 1)ϕ2, (0.31)
where

ϕj =
∫ t0

−∞
Ij(t)ω(t)p(t0 − t)dt, j = 1, 2, (0.32)

From the form of the cumulant generating function (0.31), it follows that the number
of species with abundances in Ω1 and Ω2 are independent Poisson random variables
with parameters ϕ1 and ϕ2, respectively.

If, in particular, we choose Ω1 = [x0, x], we get

ϕ1(x) =
∫ t0

−∞

∫ x

x0
f(y; t0 − t)ω(t)p(t0 − t)dydt. (0.33)

Since integrand function is non-negative, by Tonelli’s theorem we are allowed to
change the order of integration. The only requirement is that the integrand product
is measurable with respect to Lebesgue measure, however this is much less strict
assumption than continuity since practically all real functions which can be described
are measurable. Upon change of the order of integration, taking the derivative with
respect to x gives

λ(x) = dϕ1(x)
dx

=
∫ t0

−∞
f(x; t0 − t)ω(t)p(t0 − t)dt, (0.34)
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which after simple substitution can be written in the form

λ(x) =
∫ ∞

0
ω(t0 − t)p(t)f(x; t)dt. (0.35)

Now it follows that the abundances are generated by an inhomogeneous Poisson
process with rate λ(x) given by (0.35). If we observe abundances in present taking
t0 = 0, we get exactly the equation (0.20).

Proof (Solution of the SDE)) To solve the SDE (0.21), we first write it in a
the following concise form

dx

dt
= r′x− xg(x), (0.36)

where r′ = r + σrdB(t)/dt and σ2
r = σ2

e + σ2
d/x. The function g(x) is a density

regulation term and will be discussed later.
Now we introduce the substitution y = ln x. As a result of the substitution, we

have dy = dx/x and x = ey which together with (0.36) gives a SDE for y
dy

dt
= [r − g(ey)] + σr(ey)

dB(t)
dt

. (0.37)

Applying Itô approach, the process y is a diffusion process with infinitesimal mean
r − g(ey) and infinitesimal variance σ2

r(ey). Using the transformation formula for
diffusion processes given by Theorem 1 for x = ey, we get that x is a diffusion
process with infinitesimal mean and variance given by (0.22) and (0.23).

Proof (The rate λ(x)λ(x)λ(x) of Poisson process is given by equation (0.24)) Under
the assumption that the speciation rate ω(t) = ω0 is a constant the equation (0.20)
becomes

λ(x) = ω0

∫ ∞
0

p(t)f(x; t)dt. (0.38)

Let’s now assume that the process for each species is a diffusion process found as a
solution to the SDE (0.21) which has the infinitesimal mean m(x) and variance v(x)
given by (0.22) and (0.23), respectively. Then the integral in the equation (0.38)
multiplied by dx represents the expected time the process is in [x, x + dx〉 and is
called the Green function for the process. If we assume the new species enter the
community at the abundance x0 the Green function is G(x0, x) =

∫∞
0 p(t)f(x; t) and

we have
λ(x) = ω0G(x0, x). (0.39)

Let a and b, a < b be the absorbing barriers for the process. Then the Theorem
2 gives the Green function

G(x0, x) = 2[S(x0)− S(a)][S(b)− S(x)]
S(b)− S(a)

1
v(x)s(x) , (0.40)
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where
s(x) = exp

[
−
∫ x

a

2m(u)
v(u) du

]
(0.41)

and
S(x) =

∫ x

a
s(u)du. (0.42)

For models with density regulation, that is, models where the increasing function
g(x) is included in the SDE (0.21), m(x) becomes negative for large values of x, as
can easily be concluded from the (0.22). Consequently, limx→∞S(x) = ∞. Since
there is no upper theoretical limit for the abundance of a species, the upper barrier
b =∞. Inserting b =∞ in the expression for G(x0, x), we get

G(x0, x) = 2S(x0)− S(a)
v(x)s(x) . (0.43)

Let us define extinction to occur at x = 1, that is, we choose the lower boundary
a = 1. Then we have G(1, x) = 0, meaning a species which enters the community
at abundance 1 immediately goes extinct with probability 1. For this reason, we
assume that species enter the community at the abundances x0 = 1 + δx. Since
S(1 + δx)− S(1) =

∫ 1+δx
1 s(u)du = s(1)δx+ o(δx) as δx→ 0, we have

G(1 + δx, x) = 2 s(1)δx
v(x)s(x) + o(δx), (0.44)

as δx→ 0.
Combining (0.44) with (0.38), we get

λ(x) = 2(ω0δx) s(1)
v(x)s(x) + o(δx). (0.45)

If we now let ω0 → ∞ and δx → 0 so that ω0δx → ω > 0 and using s(1)/s(x) =
exp {

∫ x
1 2m(u)/v(u)du}, the abundance model is given exactly by equation (0.24).

0.5.2 Log-Normal species abundance distribution

To obtain the Poisson process rate λ(x), we need to solve the integral in (0.24).
If we introduce a new variable ε = σ2

d/σ
2
e as a ratio between the demographic and

environmental variance, we get

2
∫ m(u)

v(u) du = 2
∫ r + 1

2
σ2
d+σ2

eu

u
− g(u)

σ2
d + σ2

eu
du


= 2 r

σ2
e

∫ du

u+ ε
+
∫ du

u
− 2 1

σ2
e

∫ g(u)
u+ ε

du

= 2 r
σ2
e

ln (u+ ε) + ln u− 2 1
σ2
e

∫ g(u)
u+ ε

du (0.46)
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Let us now assume that the density regulation is given by Gompertz curve. This
means that the function g(x) is a logarithmic type of function. Keeping in mind
form of the integral (0.46), we choose g(x) = γ ln(x + ε), with γ being a constant.
Now we have

∫
g(u)du/(u+ ε) = (γ/2) ln2(u+ ε) + const. Together with (0.46), we

get

2
∫ x

1

m(u)
v(u) du = ln(x) + 2r

σ2
e

[ln(x+ ε)− ln(1 + ε)]− γ

σ2
e

[
ln2(x+ ε)− ln2(1 + ε)

]
.

(0.47)
Inserting (0.47) in (0.24), we get

λ(x) = αω

x+ ε
exp

[
−1

2
[ln(x+ ε)− r/γ]2

σ2
e/2γ

]
, (0.48)

where

α = 2
σ2
e

exp
 γ

σ2
e

[
ln(1 + ε)− r

γ

]2
 . (0.49)

From the form of (0.48) we recognize that this is a Log-Normal abundance model
with a translation −ε, mean r/γ and variance σ2

e/2γ. Unless a demographic variance
σ2
d is significantly larger that the environmental variance σ2

e , x = ε represents a very
small abundance and for x � ε the translation may be ignored in which case we
have the standard Log-Normal abundance model with

λ(x) ∼ LogNormal

(
µ = r

γ
, σ2 = σ2

e

2γ

)
. (0.50)

Remark. Endgen and Lande [4] showed that certain generalizations of the model,
such as introducing the heterogeneity of the species or normally distributed growth
rate r, still generate a Log-Normal species abundance model.

0.5.3 Gamma type species abundance distribution

Here, as proposed in [5], we derive the resulting Poisson process rate λ(x) for a
different density regulation function g(x) = ηx, where η is a constant. Now the
integral in (0.46) equals∫ g(u)

u+ ε
du = η

∫ u

u+ ε
du

= η [u− ε ln(u+ ε)] + const. (0.51)

Together with (0.46), we have

2
∫ x

1

m(u)
v(u) du = ln(x) + 2r

σ2
e

[ln(x+ ε)− ln(1 + ε)]− 2η
σ2
e

[(x− ε ln(x+ ε))− (1− ε ln(1 + ε))]

= ln(x)− 2η
σ2
e

(x− 1) + 2r + ηε

σ2
e

ln
(
x+ ε

1 + ε

)
(0.52)
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which gives

λ(x) = aω(x+ ε)
2(r+ηε)
σ2
e
−1
e
− 2η
σ2
e

(x+ε)
, (0.53)

where

a = 2e2(1+ε)η/σ2
e

σ2
e(1 + ε)2(r+ηε)/σ2

e
. (0.54)

This distribution is a Gamma distribution with a translation −ε, shape 2(r+ηε)/σ2
e

and rate 2η/σ2
e . Similarly as in the Log-Normal model, unless demographic variance

is much larger than the environmental variance, x = ε represents very small abun-
dances so we can assume that x� ε. In this case, we arrive at the familiar Gamma
abundance model

λ(x) ∼ Gamma

(
α = 2(r + ηε)

σ2
e

, β = 2η
σ2
e

)
. (0.55)

0.5.4 Adding variability of Poisson sampling

Under Engen and Lande’s Poisson abundance model, the relative species abundance
is distributed as λ(x), where λ(x) can be a Log-Normal or Gamma distribution, de-
pending on a chosen density regulation function. To be more precise, the abundances
of species are generated by an inhomoheneous Poisson process with rate λ(x). Let
call this process {N(x);x ≥ 0}. Then probability that a new abundance entering
the “community” of abundances is in the interval [x, x+ dx〉 is

P (N(x+ dx)−N(x) = 1) = λ(x)dx+ o(dx), (0.56)

which means that the RSA distribution has density λ(x).
However, since the RSA distribution is in fact a discrete distribution we consider

λ(x) to be an idealized mean RSA distribution. The empirical RSA distribution
is constructed from a random sample from the population where probability that
a random species will be represented with r individuals is a compound Poisson
distribution with mean λ(x)

Pr =
∫ ∞

0

xre−x

r! λ(x)dx. (0.57)

Speaking roughly, we are summing over the theoretical RSA distribution the prob-
abilities that the species with theoretical RSA λ(x) is represented by r individuals.
The procedure of Poisson sampling was introduced in the beginnings of the RSA
theories [12]. Poisson sampling can be thought of as a process of discretization,
however it has additional advantage of adding the variability of random sampling
into the model [14].
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When we add the variability of Poisson sampling to Engen and Lande’s model,
then the Log-Normal abundance model results in Poisson Log-Normal RSA distri-
bution with scale µ and location σ2

RSA ∼ PoiLN

(
µ = r

γ
, σ2 = σ2

e

2γ

)
. (0.58)

On the other hand, the Gamma abundance model gives a compound Poisson Gamma
RSA distribution, better known as Negative Binomial distribution with dispersion
α > 0 and success rate p ∈ [0, 1]

RSA ∼ NB

(
α = 2(r + ηε)

σ2
e

, p = σ2
e

2η + σ2
e

)
. (0.59)

0.5.5 Log-Series as a limit case of Negative Binomial

To fit the observed long-tailed RSA distributions, in 1943 Fisher [12] introduced the
Log-Series (also known as Logarithmic) distribution. In his derivation, Fisher used
the mixture of Poisson and Gamma distributions and obtained a Negative Binomial
distribution

f(k;α, p) = (k + α− 1)!
k!(α− 1)! (1− p)αpk (0.60)

which he then observed in the limit when dispersion parameter α→ 0 and obtained

f(k;α→ 0, p) = pk

k
. (0.61)

Adding a normalization constant the new Log-Series distribution has a density

f(k; p) = −1
ln(1− p)

pk

k
. (0.62)

In his purely statistical derivations, Fisher didn’t use any theoretical model to
justify the use of Gamma distribution. Nonetheless, the one-parameter Log-Series
distribution fitted data well and even though it is usually outperformed by the newer
RSA models [3], it is still a valuable example of a RSA distribution.
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Part I

Evolutionary model of protein
domains: towards a better

resolution in bacterial taxonomy
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Chapter 1

Introduction

1.1 Protein domains

Proteins are biological macromolecules essential to life. They are the cell’s building
blocks and executors of the majority of the cell’s functions. From a structural point
of view, a protein molecule is made from a long chain of amino acids. There are 20
different amino acids which are coded for directly in an organism’s DNA molecule.
The gene gives instructions on how to create a protein through the processes of tran-
scription and translation. During the transcription the DNA molecule is copied into
RNA which then in the process of translation serves as a template for the synthesis
of the protein. With many details being left out, these are the fundamentals of the
central dogma of molecular biology [15].

As a result of various chemical interactions, the synthesised amino acid sequence
folds into the final three-dimensional conformation of the protein. Interestingly,
experiments indicate that the amino acid sequence contains all of the information
needed for specifying the three-dimensional shape of a protein. The resulting three-
dimensional structure of the protein, its conformation, is crucial for the protein’s
chemistry. Namely, to perform its tasks a protein has to bind to other molecules
and the binding sites of the protein are affected by its conformation [15].

Most proteins are between 50 and 2 000 amino acids long. These large molecules
are often composed of smaller modular units called protein domains which are be-
tween 40 and 350 amino acids long. By definition, protein domains are components
of protein that can fold independently into a compact and stable structure. The
different domains of a protein are often associated with different functions thus
making protein domains the functional units of the protein [15, 16]. It is estimated
that two-thirds of proteins consist of two or more domains in prokaryotes and an
even larger fraction in eukaryotes [16]. On the other end, the same domain can
be a part of multiple proteins. A subset of domains, called protein modules, are
especially dispersed and are found in many different proteins. The omnipresence of
protein modules is a consequence of their special three-dimensional structure which
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facilitated their mobility during the evolution and spread them across the genome
[15].

During the course of evolution, the genes and genomes have evolved to create
the great diversity of life forms on our planet. Inspecting the modifications of the
genes and consequently the encoded proteins, it has been shown that protein three-
dimensional conformation is much more conserved than its sequence of amino acids
[17]. Thus, instead of genes, we look at protein domains as the tools of evolution
which helped to create diverse assembly of proteins from likely an initially relatively
limited set of domains [17]. Domain shuffling/recombination, gene sequence dupli-
cation and divergence are the main mechanisms that allow the outbreak of proteins
with new functionalities, thereby contributing to the emergence of complexity [18].
In the process of evolution, different domains have been duplicated to different ex-
tent. Specifically, the abundances of protein domains families follow the power low
with a few highly abundant domains and many low abundant domains [16]. This
inspires us to investigate the distribution of protein domain abundance within the
population dynamics paradigm. The investigation of the dynamic processes that led
to the current configuration of protein domains can highlight the important aspects
of the proteome evolution and consequently of the evolution of living organisms.

1.2 Evolutionary model of protein domains

In this work, we investigate the evolution of protein domains using the approach
of ecological theory. To correlate the world of protein domains with the usual sub-
jects of ecological studies, we redefine the meaning of species and community. The
communities which we are going to study are proteomes inside which we observe
the protein domains. Thus protein domains have the meaning of species and their
frequencies are so-called species abundances. Using this approach, we obtain the
relative species abundance (RSA) distribution of protein domains.

To model the processes leading to RSA distribution of protein domains, we use
Engen and Lande’s population dynamics model [4, 5] which is described in an in-
troductory Section 0.5. It is assumed that a process for every species is a diffusion
process which solves the stochastic growth equation

dx

dt
= rx− xg(x) + xσr(x)dB(t)

dt
, (1.1)

where r is a constant growth rate, g(x) is a density regulation function and σ2
r(x) =

σ2
e + σ2

d/x is a stochastic variance consisting of environmental and demographic
stochasticity. In the model of protein domains, the growth rate can be interpreted
as rate by which a protein domain species gets a new copy inside the genome. De-
mographic variance captures small differences between different individual domains
which belong to the same protein domain species, while environmental variance
presents larger scale disruptions of the proteome which act on all species of pro-
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tein domains simultaneously. Events such as horizontal gene transfer are an exam-
ple of environmental stochasticity. The role of density regulation g(x) is to keep
species abundance from “exploding”. This is usually a consequence of limited re-
sources in the community, but when talking about proteome it can be interpreted
as the limit in total genome, and consequently proteome, size [19]. We will consider
two different density regulation functions. The first one is a Gompertzian function
g(x) = γ ln(x + ε), where ε = σ2

d/σ
2
e , which leads to the Poisson Log-Normal RSA

distribution
RSA ∼ PoiLN

(
µ = r

γ
, σ2 = σ2

e

2γ

)
. (1.2)

The other type of density regulation with the function g(x) = ηx results in Negative
Binomial RSA distribution

RSA ∼ NB

(
α = 2(r + ηε)

σ2
e

, p = σ2
e

2η + σ2
e

)
. (1.3)

We will also consider the Log-Series RSA distribution as a special case of Negative
Binomial distribution when the dispersion parameter α→ 0.

In our data set, we have protein domain counts for different bacteria. Separately
for every bacterium, we will fit RSA of protein domains with different distributions,
specifically with Log-Series, Negative Binomial and Poisson Log-Normal distribu-
tion. Choosing the model which outperforms the others in most of bacteria, we
infer the theoretical evolutionary model which best describes our data. Moreover,
fitting the RSA protein domain distribution, we will get estimates of distribution
parameters for all bacteria. We will then use these parameters to classify bacteria
and to introduce our RSA phylogenetic method.

1.3 Bacterial phylogeny

To evaluate our approach of bacterial phylogeny, we will compare the results with
bacterial taxonomy and 16S rRNA gene-based bacterial phylogeny. In the taxo-
nomic tree of life, Bacteria is one of the three domains together with Archaea and
Eukarya. Some of the lower taxonomic ranks are phylum, class, order, family, genus
and species. While taxonomic classification of bacteria has well-organised hierar-
chical structure, it lacks the details of phylogenetic approach. This is especially
important on the extremely diverse intraspecies level of bacteria. Twenty years ago
Lan and Reeves [20] wrote about extensive intraspecies variation in bacteria which is
manifested both in genomic and phenotypic differences. As more bacteria have been
sequenced, this became even more apparent. An important aspect of this diversity
are different pathogenic properties of strains belonging to the same bacterial species.
Namely, different strains can infect different hosts [21–23], or even more extremely,
some bacterial species can have pathogenic as well as non-pathogenic isolates [20,
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24]. In the following paragraph, we briefly summarize other methods commonly
used for the phylogenetic reconstruction at the subspecies level.

16S rRNA gene sequence is widely used in bacterial classification since mutations
of hypervariable region of the 16S rRNA gene serve as a good estimate of evolu-
tionary time. However, bacterial classification based on 16S rRNA gene has low
phylogenetic power at the subspecies level where functional diversification of strains
is faster than random mutations of 16S rRNA gene [25]. While there are many
other methods for inferring bacterial phylogenies, some of which are specifically de-
veloped for lower taxonomic levels, there is not one method which is considered to
be the gold standard. In his textbook about phylogenetic inference [26], published
in 2004, Felsenstein estimated there are about 3 000 papers on methods for infer-
ring phylogenies. The most widely used methods can be classified in the following
manner. One class of methods is based on distance matrix. In these type of meth-
ods, the estimates of distances among bacterial molecular sequences are used for
phylogenetic reconstruction. Other prominent methods use maximum parsimony,
maximum likelihood or Bayesian inference in phylogenetic tree reconstruction. In
the background of these methods is the substituton models which describes the
evolution of molecular sequences through the probabilistic modeling of random mu-
tations. But beside the phylogenetic metodology, the appropriate choice of the data
to which it is applied is of great relevance. Different molecular sequences can be
used for the inference. However, the chosen sequences have to satisfy two condi-
tions for the succesful phylogenetic reconstruction: orthologs of sequences have to
be shared by tested bacteria and have to contain the vertical phylogenetic signal.
Approaches of using a sequence of one gene, such as 16S rRNA, may work at higher
taxonomic levels, but are usually too generic to differentiate species or strains. The
popular method which overcomes this problem while still controlling the phylogenic
noise is multilocus sequence analysis (MLSA) [27, 28], the method which simulta-
neously uses sequences of seven housekeeping genes. However, the choice of genes
used by this or similar methods is of great importance since phylogenetic signal is
not equally distributed across the genome and some classes of genes perform better
at phylogenic inference [29]. From this short summary of methods, it is clear that
phylogenic inference in bacteria is a challenging problem, especially at the lower
taxonomic levels where experts should be included at various steps of analysis.
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Chapter 2

Materials and methods

2.1 Data retrieval

This part of work was performed by our collaborators, Dr. Edoardo Saccenti and
Dr. Maria Suarez Diez from the Laboratory of Systems and Synthetic Biology,
Wageningen University Research (the Netherlands). The genome sequences of 3 370
bacteria were downloaded from the NCBI database [30]. Draft genome sequences
were discarded and only the higher quality fully circular genome sequences were
retained. GeneBank files containing genome sequences and existing annotations
were retrieved from the NCBI database and imported into the Semantic Annotation
Platform for Prokaryotes [31] using the EMBL/GBK to RDF SAPP module. De
novo identification of genetic elements (gene calling) was performed using Prodigal
(2.6) [32] with codon table 11. Dedicated SPARQL queries were built to extract
proteins and their sequences from the RDF triplestore used by SAPP to store the
intermediate results. InterProScan [33] was used to identify protein domains in the
corresponding sequences. Due to the high number of distinct protein sequences to be
analyzed, the SURFsara GRID was used (Grid reference) to concurrently analyze the
sequences. Dedicated SPARQL queries were used to retrieve the identified domains
and assign them to the originating protein and bacterial genome. Finally, the matrix
generating module from SAPP was used to generate a matrix containing the number
of instances of the detected domain (domain abundance) for each of the studied
genomes and for each of the identified protein domains. Overall 3 370 bacterial
genomes were analyzed and 13 934 distinct domains were identified.

2.2 Model fitting and selection

Protein domains RSAs were fitted with the Maximum Likelihood Estimation method
implemented in R “sads” package v.0.4.2 [34]. Data were modeled with a truncated
Poisson Log-Normal, a truncated Log-Series and a truncated Negative Binomial
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distribution, so that to test and compare different ecological hypothesis. In all
cases, truncation was performed to exclude the zero abundance class, that is not
observable in empirical data. Two bacterial genomes which couldn’t be fitted due to
extreme RSA distributions are GCA 000200735 and GCA 000831405. After removal
of these bacteria, we proceeded with the analysis of the remaining 3 368 bacterial
genomes. Akaike Information Criterion (AIC) [35] and R-squared were computed
to assess the models performances and for model selection.

2.3 Calculation of RSA model-based distance ma-
trix

Fitting truncated Poisson Log-Normal distribution to protein domain RSA, we ob-
tained estimates µ and σ for 3 368 bacteria. In addition to Poisson Log-Normal pa-
rameters, we calculated protein domain density for every bacteria as ratio between
total number of protein domains present in the genome and the genome length.
RSA distance between each pair of bacteria was calculated as 3D euclidean distance
in the scaled space of µ, σ and protein domain density. Scaling was performed
independently at each dimension subtracting the mean and dividing by standard
deviation.

2.4 Calculation of 16S rRNA gene-based distance
matrix

In order to calculate phylogenetic distanced based on 16S rRNA gene, we used
the silva database [36] to retrieve the 16S rRNA reference sequences of the bacterial
species for which protein domain data were available. For 48 bacteria, the 16S rRNA
sequence was not present, so we considered only the remaining 3 320 bacteria for
the following analysis. Since the same bacterial genome can have multiple different
copies of 16S rRNA gene, as 16S rRNA distance between a pair of bacteria we used
the mean pairwise distance between all pairs of 16S rRNA sequences within two
genomes [37]. The alignment of 16S rRNA sequences and calculation of distances
was performed with mothur [38] “pairwise.seqs” function using default options.

2.5 Comparison of different clustering solutions

For each taxonomic level, we considered only bacteria for which the classification
was known and which belonged to a taxonomic group with at least 10 members. As
a result, we analysed 3 270, 3 148, 3 032, 2 714, 2 139 and 161 bacteria at phylum,
class, order, family, genus and species level, respectively. They belonged to 14, 20,
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48, 63, 54 and 48 different taxonomic groups. Hierarchical clustering was performed
on both RSA and 16S rRNA distance matrices. For RSA clustering we used Ward’s
minimum variance method while for 16S rRNA we used average linkage method. The
Ward’s method was used to minimize the total in-cluster variance [39]. Since this
method is based on Euclidean distance, it couldn’t be applied to 16S rRNA distance
matrix. To get clustering solutions for RSA and 16S rRNA, we cut the hierarchical
tree fixing the number of clusters to the number of taxa at the selected taxonomic
level. Finally, we used the NMI score as a measure of clustering agreement between
the three approaches: RSA, 16S and predefined taxonomy. To calculate the baseline
for the NMI score, we compared the taxonomy with clustering solutions based on
simulations. For the fixed number of clusters and data points, each simulation
assigned random cluster to each data point. Purity of a RSA cluster with respect to
taxonomy is calculated as the ratio between the size of the cluster’s most abundant
taxonomic group and the cluster size. The total purity of the RSA clustering solution
is a weighted average of its clusters’ purities where weight is a cluster size.
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Chapter 3

Results and discussion

3.1 Protein domains RSA follows a Poisson Log-
Normal distribution

The protein domains RSA distributions of 3 368 bacterial genomes were obtained as
detailed in the Materials and methods section. Three evolutionary hypotheses were
tested by fitting the RSA distributions with the Log-Series, the Negative Binomial
and the Poisson Log-Normal distribution (Figure 3.1-a). According to the Akaike
Information Criterion (AIC) [35], in 99.97% of bacteria the selected model was the
Poisson Log-Normal (Figure 3.1-b). This model performed better than both the
Log-Series and the Negative Binomial and described the data well, with an average
R2 of 0.97 and a minimum R2 of 0.86. The results imply that the Gompertzian
density regulation g(x) = γ ln(x+ ε) is better choice for protein domains RSA. The
Gompertzian function is a weaker density regulator than the alternative g(x) = ηx
which leads to the Negative Binomial distribution. This suggests that the over-
abundant protein domains are not strictly regulated as they would be in case of
g(x) = ηx. As a result, we expect to see a heavier long tail of the RSA distribution.
If we calculate the mean abundance of protein domains we notice that the majority
of protein domains have small abundances. Namely, the maximum mean abundance
taken across all bacteria is 10.34. On the other side, when we calculate the maxi-
mum abundance of protein domains we observe some extremely abundant protein
domains which results in heavily long-tailed RSA. Precisely, the mean of maximum
abundance across all bacteria is 536.6.

From the Figure 3.1-a, we may notice that Negative Binomial fit and Log-Series
fit overlap. Since Log-Series distribution is a limiting case of Negative Binomial when
the dispersion parameter tends to zero, this observation implies that the dispersion
parameter of the Negative Binomial distribution is close to zero. The estimated
dispersion parameter has mean 2.67× 10−4 and median 2.62× 10−7 which is in
agreement with the observed overlap.
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(a) Preston plot. (b) AIC differences.

Figure 3.1: (a) Example of protein domains Preston plot fitted with three different
distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series.
Results refer to the bacterial genome GCA 000717515. (b) Distribution of the
difference between the AIC obtained with the Poisson Log-Normal model (PL) and
the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3 368
bacterial genomes.

3.2 Comparing RSA and taxonomy

The Poisson Log-Normal distribution is characterized by two parameters: a scale
parameter µ and a location parameter σ2. By fitting Poisson Log-Normal distribu-
tion to protein domain relative species abundances, we obtain estimates of µ and
σ2 for each bacterium in our data set. The scatter plot of these parameters (Fig-
ure 3.2) shows two properties of our estimates, the negative value of parameter µ
and the negative relationship between σ2 and µ. From the population dynamics
model which led to Poisson Log-Normal RSA distribution, we recall the form of
parameters µ = r/γ and σ2 = σ2

e/2γ, where r is a growth rate, σ2
e is environmental

noise and γ is a positive multiplicative constant from the Gompertzian function.
Negative value of µ implies negative value of the growth rate r . For the fitted

Negative Binomial distribution the dispersion parameter converged to zero. The
dispersion parameter α = 2(r+ ηε)/σ2

e , where ηε > 0, converges to zero only in case
of very small or negative growth rate r confirming our observation about negative r.
The growth rate r can be expressed as difference between a birth rate and a death
rate, r = b−d. This means that the death rate is greater than the birth rate. In the
evolutionary model of protein domains, birth rate b has the meaning of duplication
rate of a certain protein domain species while death rate d is a rate at which these
protein domains die. Since death, or rather deactivation, of protein domain can be a
result of many different events which disrupt the coding sequence of protein domain,
the explanation of the negative r may be in fact that the protein domain death
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happens at faster rate than the duplication of the whole protein domain sequence.
After simple algebraic manipulation of µ and σ2 equations, we obtain the following
relation µ = 2rσ2/σ2

e which explains the negative linear relationship between these
two parameters.

Figure 3.2: Scatter plot of Poisson Log-Normal parameters µ versus σ2 obtained
fitting the protein domains RSAs. Figure shows only those species which are rep-
resented with at least 10 different strains in our data set. There are in total 1 173
bacteria which belong to 48 different species. Different colors represent different
species, as indicated in the legend.

Furthermore, the µ versus σ2 plot shows the presence of roughly parallel stripes,
which suggests a cluster structure of the data (Figure 3.2). When we depict strains
belonging to the same species using the same color, it emerges that the stripes are
related to the bacterial taxonomy. From the RSA model point of view, this indicates
preservation of protein domain dynamics at the species level. Additionally, the
cluster structure of data motivates us to introduce the new approach to bacterial
phylogeny using the estimated parameters µ and σ2.

3.3 Protein domain RSA and evolutionary dis-
tance

To assess the ability of protein domain RSA model in estimating the evolutionary
distance, we compared our results with bacterial taxonomy and 16S rRNA gene-
based phylogeny. Including both taxonomy and phylogeny in comparison may seem
redundant because of their intrinsic connection. Not only is the modern microbial
taxonomy mostly based on 16S rRNA gene [25], but the cutoffs used in 16S rRNA
phylogeny originated from the phenotype-based taxonomy [40]. However, we use
complementary information of both approaches. Taxonomy provides predefined lev-
els of classification together with their phenotypic properties. On the other hand,
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both parameters of RSA model and 16S rRNA gene alignments produce pairwise
distance for each pair of bacteria which allows for comparison between the methods
at arbitrary levels. Moreover, we are especially interested in intraspecies level of
bacteria where phylogeny is necessary for comparison.

Poisson Log-Normal parameters, µ and σ, and the densities of protein domains
are used for calculation of pairwise distances between bacteria. The density serves as
additional estimate of protein domain dynamics describing to which extends is the
whole bacterial genome populated with protein domains. We refer to these distances
as RSA distances. 16S rRNA distances are calculated for aligned sequences of 16S
rRNA genes following the standard procedure [38]. Taxonomic levels included in
comparison are: phylum, class, order, family, genus and species.

Figure 3.3: Comparison between three clustering solutions on different taxonomic
levels: phylum, class, order, family, genus and species (x-axis). NMI scores (y-axis)
are calculated as a measurement of agreement between clusters based on: RSA
method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method
and 16S rRNA gene (green). The boxplots represent the baselines of NMI score and
are based on simulations.

The RSA and 16S rRNA distance matrices were used to perform hierarchical
clustering on bacteria. Discrete system of taxonomic classification implied flat cuts
of hierarchical clusterings. The cuts were done for different taxonomic levels: phy-
lum, class, order, family, genus and species, fixing the total number of clusters.
While enabling the comparison (Figure 3.3), this is arguably not the best way to
utilize the information obtained by hierarchical clustering. At each taxonomic levels
the Normalized Mutual Information (NMI) is used as a measurement of agreement
between different clustering solutions [41]. The theoretical range of the NMI score
is interval [0, 1], but NMI is biased towards clustering solutions with more clusters
and fewer data points [42]. Consequently, the baseline of NMI score in practise is
not zero and relatively high NMI scores can be an artifact caused by the low ratio
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between number of bacteria and number of taxonomic groups. To make comparison
fair, we used simulations to calculate the baseline of NMI, as shown by the boxplots
in Figure 3.3. Looking at colored points in the same figure, we observe that taxon-
omy and phylogeny have expected high agreement. RSA model is not performing
as good, but NMI is still evidently higher than the baseline signifying that the RSA
model captures phylogenetic signal to a certain degree. Particularly, observing the
differences between the obtained NMI and the baseline, we notice that the perfor-
mance of RSA method increases on lower taxonomic levels reaching the maximum
at species level. The total purity of RSA clustering solution at species level is 0.65
signifying that 65% of bacteria are correctly classified by RSA taking taxonomy as
ground truth. However, looking at sizes of clusters and their content we notice that
there are some clusters with only 1 bacteria and that some species are abundant in
multiple clusters. This indicates that cutting hierarchical tree by fixing the total
number of clusters results in information lost. Motivated by this observation and
the fact that RSA method performs the best at the species level, we decided to look
into the intraspecies level of bacteria.

3.4 Short evolutionary distance: identification of
divergent strains

Here we present a few interesting results at the subspecies level identified by the RSA
method. As discussed in the introduction, there are many different phylogenetic
methods specially modeled for bacterial classification. Placing the RSA method
inside the framework of phylogenic inference, it could be classified as distance matrix
method, but keeping on mind that RSA-based distances greatly differ from the
commonly used distances based on multiple sequence alignments. As the first step of
RSA method, we estimate the proteome evolution of a bacterium with two numbers
(µ, σ2) and then using only the three numerical values: µ, σ2 and the protein domain
density, we perform the clustering. Therefore, RSA method is not designed for a
specific taxonomic level or for a certain species and can thus be generally applied
to all species present in our data set. For the following discussion, we considered
only 48 species from our data set which had at least 10 different strains. Since
RSA model is estimating the proteome evolution, we expect to see differences even
between recently diverged strains. The problem we encountered is the validation of
our results at the intraspecies level.

Since the performance of other methods on our data set is out of scope of this
work, we focused on the published literature. But even if the true phylogenetic tree
is known, and existent, we wouldn’t expect for RSA method to perfectly reconstruct
it. Instead, we are focused on finding interesting patterns at the intraspecies level
such as clustering of subspecies or identification of divergent isolates. Below we
discuss 6 bacterial species in more details. For the remaining 42 species we couldn’t
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find any literature explaining the found patterns.

3.4.1 Intraspecies clustering

Different strains of the same bacterial species can have a different host range. Here
we present two examples in which RSA method is able to identify host-based sub-
species separation.

Xanthomonas citri: two subspecies of the plant pathogen
Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A,
a bacterial disease affecting different plants from the genus Citrus. While citrus
canker A infects most citrus species, two of its variants, A* and AW, have a much
more limited host range with XCC pathotype AW infecting only Key lime (C. auran-
tifolia) and alemow (C. macrophylla) [21]. Even though three different pathotypes
of XCC are currently known, in our data set we have only 17 strains of pathotype
A and 5 strains of pathotype AW [21]. RSA-based clustering of 22 XCC strains
identifies two clearly separated clusters (Figure 3.4-a, left) which coincide with two
XCC pathotypes. Concurrently, clustering based on 16S rRNA gene failed to iden-
tify two pathotypes of XCC (Figure 3.4-a, right). This suggests that even though
pathotypes A and AW have different hosts, their diversification is not distant enough
to be reflected by variability of the 16S rRNA gene. On the other hand, protein
domain dynamics of two pathotypes succesfully describe different functions of their
proteomes.

Another important aspect of the citrus canker is geographical spread of the
disease. 22 strains of XCC from our data set have diverse geographical origin.
While all AW strains were sampled from USA, strains of pathotype A originate
from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their
sampling location shows interesting geographical pattern (Figure S1.5). The similar
pattern is obtained by Patane et al. [21] using maximum likelihood tree based on
1785 concatenated unicopy genes. The only strain with different behaviour is jx-6
(GCA 001028285) coming from China. However, this can be explained by the fact
that while protein domains of other 21 strains come from one circular chromosome
and two plasmids, in strain jx-6 only protein domains from the chromosome were
taken into account.

Chlamydia pneumoniae: a different host of the human pathogen
Another bacteria whose host range is identified by the RSA method is Chlamy-
dia pneumoniae (Cpn). This obligate intercellular parasite is wide-spread in hu-
man population causing acute respiratory disease. Besides humans, different animal
species can be infected with Chlamydia pneumoniae. In our data set, we have nine
strains which infect humans (Homo sapiens) and one strain isolated from koala
(Phascolarctos cinereus). Comparison of their 16S rRNA genes shows only a small
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Figure 3.4: (Previous page.) Hierarchical clustering of bacteria at the intraspecies
level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot
shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based
dendrogram on the right. Lines connect the same bacteria from two dendrograms.
The color/type of the line represents the feature of the bacterium it connects. (a)
22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and
AW (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different
tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains
represented with solid line are human (Homo sapiens) pathogens while the one strain
represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains
of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular
chromosomes Chr1 (∼ 3 Mb) and Chr2 (∼ 1 Mb) (magenta). 2 strains have one
∼ 4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1
(∼ 3 Mb), Chr2 (∼ 1 Mb) and Chr3 (∼ 1 Mb) (violet).

distance between the koala strain LPCoLN (GCA 000024145) and human-derived
strains (Figure 3.4-b, right). Incorporating more genomic information, study based
on whole-genome sequencing of four human-derived isolates and strain LPCoLN
[43] observed much higher variation between human and koala-derived strains than
within the human-derived strains. Additionally, they presented strong evidence that
the strain LPCoLN is basal to human isolates. Evolutionary separation of animal
and human isolates is reflected in diverse protein domain evolution of their genomes
and is consequently recognized by the RSA method. RSA-based clustering clearly
separates one animal isolate from the group of highly similar human isolates (Figure
3.4-b, left).

Tissue tropism in Chlamydia pneumoniae was focus of the study conducted by
Weinmaier et al. They compared whole-genome sequences of multiple Cpn strains
isolated from different human anatomical sites using animal isolates as an outgroup
[22]. The human-derived strains can be divided into conjuctival, raspiratory and
vascular based on their tissue of origin. While Weinmaier et al. found a very good
agreement between the anatomical origin of strains and the maximum likelihood phy-
logenetic tree based on all SNPs, they didn’t manage to achieve a clear separation
between anatomical subgroups of Cpn. Morever, small variation in the phlyloge-
netic tree reconstruction method led to somewhat different phylogenetic tree. This
demonstrates how delicate is the process of phylogenetic reconstruction on the low
phylogenetic levels where the differences between bacterial genomes are very subtle.
RSA method (Figure 3.4-b, left) shows certain correlation with bacterial tissue of
origin, but it is also not able to identify a clear pattern. However, since we used
only nine human-derived strains it is hard to draw a meaningful conclusion about
correlation between RSA-based phylogenetic tree and tissue tropism in Cpn.
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3.4.2 Different genome composition

A great difference between two bacterial genomes is undoubtedly linked to different
dynamics of their protein domains. In fact, we observe strong correlation between
parameter σ2 of protein domain RSA distribution and the genome length of bacteria
(Figure S1.1). One explanation for this could be in the definition of the parameter σ2

which is equal to σ2 = σ2
e/2γ. Since smaller genome represents a scarcer environment

for the populations of protein domains, we expect to see stronger density regulation.
The multiplicative constant in the Gompertzian density regulation function γ would
thus be inversely correlated to the genome length of bacteria. Under reasonable
assumption that environmental noise of protein domain dynamics σ2

e is independent
of the genome length, we obtain that parameter σ2 is as well inversely correlated
to γ and as a consequence positively correlated to the genome length. However,
this general trend is lost at the subspecies level where genome lengths are almost
constant (Figure S1.1). Still, there are some bacterial species with great genomic
diversity among strains and here we present two examples.

Vibrio cholerae: a strain with different karyotype composition
The causative agent of cholera disease, bacteria Vibrio cholerae has an interesting
genomic composition. While majority of bacterial genomes consist of one circular
chromosome, Vibrio cholerae is well studied for its bipartite genome. The usual
genome of Vibrio cholerae consists of two chromosomes of unequal size, Chr1 with
length of ∼ 3 Mb and significantly smaller Chr2 with length of ∼ 1 Mb. However,
not all strains of Vibrio cholerae have the same karyotype. Two strains, 1154-74
(GCA 000969235) and 10432-62 (GCA 000969265), underwent the process of chro-
mosomal fusion and have only one ∼ 4 Mb long circular chromosome. Whole genome
comparison showed a high degree of synteny between two single-chromosome strains
and standard two-chromosome strains [44]. On the other hand, strain TSY216
(GCA01045415) has ∼ 1 Mb long replicon in addition to Chr1 (∼ 3 Mb) and Chr2
(∼ 1 Mb). Whole genome comparison with the representative of two-chromosome
Vibrio cholerae strain revealed that Chr1 and Chr2 share almost identical gene con-
tent, but the third replicon does not share conserved regions with Chr1 and Chr2
[45]. From the proteome point of view, we expect for single and two-chromosome
strains to be highly similar while three-chromosome strain should have almost∼ 25%
more coding sequences. This large-scale diversity of Vibrio cholerae proteomes is
recognized by RSA method which clearly identifies strain TSY216 as an outlier
(Figure 3.4-c, left). On the contrary, mutations of 16S rRNA gene don’t reflect
the changes in karyotype if the 16S rRNA gene-carrying chromosome retains high
similarity. Vibrio cholerae strains from our data set have from 7 to 10 copies of 16S
rRNA gene and all of them are located on ∼ 3 Mb long chromosome. Since this
chromosome shows high synteny across all strains, 16S rRNA gene-based clustering
doesn’t identify any significant difference between strains (Figure 3.4-c, right).
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Buchnera aphidicola: a strain with abundance of pseudogenes
We should keep on mind that the RSA method is estimating evolution of proteome
through the dynamics of its protein domain content. While the abundance of protein
domains in bacteria is generally well approximated with their genome length, in real-
ity bacterial proteome and genome represent two different points of view. Interesting
examples of this incogruity are bacterial genomes which have unusually large pro-
portion of pseudogenes which significantly reduces their proteomes. Here we present
results about Buchnera aphidicola, bacterial species which is in mutualistic endosym-
biotic relationship with different aphids (members of superfamily Aphidoidea). As
many endosymbionts, it underwent the process of genome reduction as an adapta-
tion to the host-associated lifestyle and has a genome with length < 1 Mb. One
of the main processes which contributed to genome reduction is gene inactivation
followed by progressive gene disintegration [46]. Pseudogenization is thus an inter-
mediate step between an ancestral complete genome and a modern reduced genome.
Among 13 strains of Buchnera aphidicola in our data set, for 12 of them number of
pseudogenes ranges from 7 to 63 with the thirteenth strain JF98 (GCA 000183305)
having remarkable 176 pseudogenes. Since all strains have a similar total number
of genes (protein coding and pseudogenes), proteome of the strain JF98 is signifi-
cantly smaller. This is detected by the RSA method which identifies strain JF98 as
an obvious outlier (Figure S1.2-a). While RSA-based phylogeny does good job in
detecting a strain with significantly smaller preoteome, it doesn’t perform very well
in host reconstruction. Specifically, RSA-based phylogeny of Buchnera aphidicola
is not congruent with the phylogeny of its hosts, even though it does show certain
correlation. In this regard, 16S rRNA-based clustering performs much better (Fig-
ure S1.2-b). However, this is not surprising since 16S rRNA-based phylogenies of
endosymbionts are in general congruent with the phylogenies of their hosts. The
reason behind the success of 16S rRNA method is the fact that the endosymbiont
and its host co-evolve together from the moment their endosymbiotic relationship
starts [23].

3.4.3 Distinct bacterial isolates

For several species in our data set, RSA-based phylogenic tree indicates outliers.
While we believe that there is a biological reason for these strains to diverge, reading
the literature we were able to explain the clustering pattern for only two such species.
Other possibility for existance of an outlier would be a notable mistake in whole-
genome sequencing. Identification of such a mistake would also be a valuable result,
albeit hard to verify.

Listeria monocytogenes: two clonal strains
Listeria monocytogenes is a food-borne pathogenic bacterium which causes listerio-
sis in humans. From the 48 Listeria monocytogenes strains present in our data set,
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RSA method identifies a subgroup of two strains (Figure S1.3). These two strains,
La111 (GCA 000382925) and N53-1 (GCA 000382945), seem to have very similar
proteome composition which differs from proteome compositions of other strains.
Holch et al. investigated strains La111 and N53-1 in their study of bacterial persis-
tence in Listeria monocytogenes [47]. They found that these two strains which were
isolated 6 years apart from different Danish fish processors, are extremely similar
and collectively different from other analyzed strains based on whole-genome anal-
ysis. Moreover, they found that they differ only in 2 proteins which explains our
results.

Francisella tularensis: an attenuated strain of the pathogenic bacteria
Francisella tularensis is intracellular bacterium which is a causal agent of tularemia.
In our data set we have 25 Francisella tularensis strains from different subspecies:
tularensis, holarctica, mediasiatica and novicida. While neither RSA nor 16S rRNA
perform well in separating subspecies of Francisella tularensis, RSA method iden-
tifies one outlier, strain TIGB03 (GCA 000248415) (Figure S1.4). Unlike other 24
virulent strains, strain TIGB03 is an attenuated tularensis strain. This strain was
described by Modise et al. as an attenuated O-antigen mutant of the virulent strain
TI0902 (GCA 000248435) [24]. Indeed, we notice that 16S rRNA genes of these two
strains are identical (Figure S1.4) and thus 16S rRNA-based clustering is unable to
detect a mutant strain. Comparing whole-genome sequences of strains TIGB03 and
TI0902, Modise et al. found 31 nonsynonymous point mutations and 75.9 kb long
duplicated region in the mutant strain TIGB03. It may seem that this difference in
genome length is the main cause why our method manages to distinguish mutant
strain from the others. However, genome lengths of 25 strains we included in our
study range from 1.86 to 2.05 Mb and the genome of strain TIGB03 is far from
extreme with the length of 1.97 Mp. Thus, we believe that in fact nonsynomymous
mutations led to different proteome composition which is recognized by our method.
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Chapter 4

Conclusion

Engen and Lande’s population dynamics model proved to work well for the protein
domain abundances in bacteria. Poisson Log-Normal fit of the protein domain RSA
distribution outperformed the alternative Negative Binomial and Log-Series fits.
This suggests that the Gompertzian density regulation is a better assumption for
protein domains than the alternative linear regulation function. Since Gompertzian
function has a weaker effect on abundant protein domains, we expect to observe
some very abundant protein domains. This is in fact true, since on average a bacteria
from our data set has at least one protein domain with more than 500 copies in the
bacterial genome. This is in concordance with our prior knowledge about especially
abundant protein domains called protein modules. Another interesting observation
is the overlap of Negative Binomial and Log-Series fitting distribution which suggests
that the dispersion parameter of the Negative Binomial distribution converges to
zero. Interpreting the dispersion parameter in the context of Engen and Lande’s
model, this means that the growth rate r of protein domains is very close to zero
or even negative. The negative growth rate r is as well inferred from the estimated
parameters of the Poisson Log-Normal model. Since the growth rate r is a difference
between the birth rate and the death rate, it seems that protein domain deactivation
is happening at the faster rate than the duplication.

Moreover, estimated parameters µ and σ2 of the Poisson Log-Normal RSA fit
reflect the evolutionary distance of bacteria. This is visible from the cluster structure
of bacteria plotted in the (µ, σ2)-space. Adding the additional parameter of protein
domain density, we defined the RSA phylogenetic distance as Euclidean distance in
the normalized three-dimensional space. The use of Euclidean distance has benefits
in the subsequent analysis because it allows for the use of methods such as Ward’s
minimal variance method which is especially modeled for the Euclidean distance.
RSA phylogeny proves to be in good agreement with both taxonomy and 16S rRNA-
based phylogeny at different taxonomic levels with the best agreement at the species
level.

In this work, we are specially interested in the intraspecies level of bacteria. The
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bacteria shows great diversity at the intraspecies level where certain strains of the
same species can have different phenotypic properties. As an important example,
in some species only some strain are pathogenic. However, this diversity is not
classified by the classical taxonomy. For this reason, at the intraspecies level we
rely on different phylogenetic methods to quantify the differences among bacteria.
Unfortunately, the choice of an appropriate phylogenetic method is not an easy
task. The generic methods, such as 16S rRNA method, which work well for higher
taxonomic ranks usually have low phylogenetic power at the intraspecies level. On
the other hand, phylogenetic methods designed for a special bacterial species may
work well on the species they are designed for, but generally can’t be extended to
other bacterial species. RSA phylogenetic distance is a generic method which can
be applied on any bacterium with sequenced genome. Despite the generality of the
method, it managed to detect some interesting patterns at the intraspecies level
which are in comparison missed by other generic 16S rRNA method.

In certain special cases of intraspecies diversity, the RSA method performs well.
As example, in the case of clear separation of bacterial subspecies, as with Xan-
thomonas citri, the RSA method manages to correctly classify bacteria in the sub-
group. Additionally, great differences in the genome, such as different karyotype
composition or excessive pseudogenization, are reflected in RSA phylogenetic dis-
tance. Finally, the RSA phylogeny works best in separating outlier strains. We
believe that the strength of RSA phylogenetic method is exactly at the intraspecies
level in detecting the outlier strains. In case that the clear phenotypic explana-
tion for the outlier is missing, it may potentially suggest the mistake in genome
sequencing.

Finally, our results suggest that studying the biodiversity of protein domains in
bacteria through the population dynamics RSA model gives interesting insights into
the evolution of bacterial proteome and consequently the evolution of bacteria. The
most interesting result is the new approach to phylogenetic distance which performs
well at the intraspecies level of bacteria.
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Part II

Evolutionary model of gene
length: generalization of Engen

and Lande’s model in presence of
diverse subcommunities
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Chapter 5

Introduction

5.1 The evolution of genome

All living organisms which inhabit our planet are specified by their genomes. A
genome contains the biological information needed to build the organism and main-
tain its biological functions. This information is stored in every cell of the living
organism and is divided into multiple molecules called chromosomes. From the
structural point of view, genome is made of DNA. A molecule of DNA is a linear
polymer built from four nucleotides: adenine (A), cytosine (C), guanine (G) and
thymine (T). In living cells, two linear DNA molecules bond forming a double he-
lix. Chemical bond between two single stranded DNA molecules happens following a
predefined bonding pattern where adenine forms a hydrogen bond with thymine and
cytosine forms a hydrogen bond with guanine. The deterministic bonding pattern
between nucleotides creates A-T and C-G base pairs (bp). The biological informa-
tion stored in a genome sequence is written with these four letters. For it to become
useful for the cell, the written genetic code has to be expressed. The complex pro-
cess of genome expression starts with the transcription. Small pieces of the genome,
called genes, are individually copied into RNA molecules, one stranded polymers
with similar structure as DNA. In case a transcribed gene is coding for a protein,
in the following process of translation a protein is synthesized from the given RNA
template. In more complex organisms, the transcribed RNA usually undergoes a
process of alternative splicing which enables for the same gene to produce multiple
different proteins called splice isoforms [48].

First cellular life forms appeared on our planet billions of years ago (∼3.5 bya).
During the course of evolution, an incredible diversity of life evolved from the sim-
ple polynucleotides. Diversification of increasingly complex genomes is the basis of
the ongoing process of evolution. Genome changes result from the accumulation
of small-scale alterations of the genome sequence. These alterations of short nu-
cleotide sequences in the genome are called mutations. Point mutation occurs when
a single nucleotide is replaced by another nucleotide. The other types of mutations

41



are caused by insertion or deletion of one or a few nucleotides. Mutations generally
arise from errors in DNA replication but can also be caused by different chemical or
physical mutagens. Many mutations are corrected by the cell’s repair mechanisms.
If the remaining mutation proves to be lethal for the cell, it is wiped out from the
genome together with the cell in which it occurred. In other cases, the effect of per-
sisting mutation varies in intensity and it can even be neutral. Other larger in scale
alterations of the genome sequence can happen, such as recombination and transpo-
sition. These two processes result in a rearrangement of the DNA segments within
the genome. For any genome alteration to be inherited, in the case of multicellular
organism, it has to happen in a germ cell. Through the course of evolution, some of
the genome alterations become fixed in the population while others are deleted [48].

From the vast genome sequence, which can reach billions of base pair in length,
we are mostly interested in the small transcribable sections called genes. While an
existing gene gains new functions as a result of gene sequence alterations cause by
mutations, a new gene enters the genome in two different ways. Firstly, it can be
a product of gene duplication. After the duplication, the new gene is “free” from
the selective pressure of evolution and can acquire a new function. Genes can also
be acquired from the other species in the process called lateral gene transfer. In
bacteria and archaea new genes are frequently gained this way. While much less
frequent, lateral gene transfer still happens in eukaryotic species [48].

With the aim to study the evolution of living organisms and to understand the
existence of life, scientist sequenced genomes of multiple species. To make sense
of it, they developed the tools to locate the genes inside the genome and to assign
the function to found genes. To deepen the understanding, many different aspect
of genes are studied such as gene expression levels or gene alternative splicing such
as many complementary information like genome methylation [48]. Among all the
layers of information, one simple gene attribute seems to be a good estimator of
much more complex genetic properties. Grishkevic and Yanai [49] showed that the
gene length together with expression level influences the genetic novelties in human
and mouse. Two mechanisms of genetic novelties, gene duplication and alternative
splicing, are negatively correlated meaning that genes with large genetic families
have small number of splice isoforms. However, if we account for the length of the
gene and its expression level, then the negative correlation is lost. On its own, gene
length is positively correlated with alternative splicing and negatively correlated
with gene family size. Other study showed the negative relationship between the
gene length and genome-wide expression levels [50]. During the evolution the genes
increased in length, due in part to the insertion of transposable elements (TEs) [49].
The gene elongation is considered to be one of the most important mechanisms in the
evolution of functional complexity [51]. It is well known that the mean gene length
is much larger in eukaryots than in prokaryotes. The orthologous genes found both
in prokaryotes and eukaryotes are on average longer in eukaryotes, suggesting that
the genes underwent the process of elongation in their evolutionary path. However,
the average gene length in different eukaryotic species seems to be highly preserved,
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despite the great variability in the lengths of different genes [51]. The distribution of
gene length is long-tailed with many shorter genes and a few especially long genes.
In this work, we study the dynamic processes which led to the observed gene length
distribution in metazoan genomes.

5.2 Evolutionary model of gene length
In all metazoan genomes available at Ensembl [52], we observed the long-tailed gene
length distribution, as will be discussed in the Results. To better understand the
processes which led to it, we employ the population dynamics model for relative
species abundance (RSA) distribution. In this approach, we redefine the meaning of
species and community. The communities which we are going to study are different
metazoan genomes. More precisely, we observe the genome only as a collection of
coding sequences, neglecting the existence of the rest of the genome. This approach
doesn’t violate the assumptions of population dynamics since in a regular population
dynamics study one generally observes only a certain subcommunity, such as animals
or plants. Inside the genome, the nucleotides are interpreted as individuals and genes
as species. All nucleotides in the gene sequence belong to the single gene species and
their number is the abundance of the gene. In other words, the length of a gene is
the abundance of its nucleotides. Using this approach, the gene length distribution
is modeled as the relative species abundance (RSA) distribution.

We use Engen and Lande’s population dynamics model for RSA distribution [4,
5] to model the dynamic processes leading to the gene length distribution. This
model is described in an introductory Section 0.5 and here we discuss only the
interpretation for the gene length dynamics. We assume that new species enter the
community at some rate. If we neglect the effects of the lateral gene transfer, then
the rate by which new genes enter the genome is the rate of gene duplication. A
gene is acquiring mutations from its entry to the genome until its deactivation. The
process of gene elongation is assumed to be a diffusion process which solves the
stochastic growth equation

dx

dt
= rx− xg(x) + xσr(x)dB(t)

dt
, (5.1)

where r is a constant growth rate, g(x) is a density regulation function and σ2
r(x) =

σ2
e + σ2

d/x is a stochastic variance consisting of environmental and demographic
stochasticity. The growth rate can be written as a difference between birth and date
rates r = b − d. Birth rate of a nucleotide base is in fact an insertion rate of a
single nucleotide. Similarly death rate is a deletion rate. In this model, all other
types of mutations are approximated by a single nucleotide insertion and deletion.
Insertions (or deletions) of larger sequences can be described as a sum of multiple
single nucleotide mutation. Demographic stochasticity is due to possible differences
in insertion/deletion rates for four nucleotide bases, while environmental stochas-
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ticity can be caused by recombinational events such as exon shuffling. Namely, in
the case of random recombination the larger genes have greater probability to be
affected.

The role of density regulation g(x) is to keep species abundances from “explod-
ing”. This is usually a consequence of limited resources in the community, but when
talking about genome it can be interpreted as the limit in total genome size [19].
Since the average gene length is highly conserved in different eukaryotic species de-
spite their different evolutionary history [51], it seems that barrier for the length
of a gene exists even though the mechanisms and reasons of its existence are not
clear. We will consider two different density regulation functions. The first one is
a Gompertzian function g(x) = γ ln(x + ε), where ε = σ2

d/σ
2
e , which leads to the

Poisson Log-Normal RSA distribution

RSA ∼ PoiLN

(
µ = r

γ
, σ2 = σ2

e

2γ

)
. (5.2)

The other type of density regulation with the function g(x) = ηx results in Negative
Binomial RSA distribution

RSA ∼ NB

(
α = 2(r + ηε)

σ2
e

, p = σ2
e

2η + σ2
e

)
. (5.3)

We will also consider the Log-Series RSA distribution as a special case of Negative
Binomial distribution when the dispersion parameter α→ 0.

In this work, we analyze ∼300 metazoan gene length distributions. If the pop-
ulation dynamics approach is an appropriate choice for the gene length dynamics,
then we expect to get a good fit with Log-Series, Negative Binomial or Poisson
Log-Normal distribution.

So far, we considered for all genes in a genome to form a single community.
However, there are different groups of genes and for a proper model it is necessary
to better understand their biological functions and their mutual connection.

5.3 Genome as a mixture of different gene types
A typical genome of the multicellular organism consists of two parts: the nuclear
genome and the mitochondrial genome. The mitochondrial genome is a small circular
DNA molecule which has multiple copies and is found inside the mitochondria,
the cell organelle. Nuclear genome is a large DNA molecule divided into multiple
chromosomes [48]. When we refer to the genome in this work, we refer only to the
nuclear genome.

Protein-coding genes are small sections of the genome which contain the instruc-
tions for the protein synthesis. Because of their protein-coding ability, they are the
most studied and best annotated of all gene types. However, there are many other
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important gene types scattered across the genome. The genes which undergo the pro-
cess of transcription, but are not translated into proteins are called noncoding RNA
genes. Noncoding RNAs have many important functions in the cell some of which
have been recently discovered and many which still remain to be found. Noncoding
RNAs shorter than 200 nucleotides are called short noncoding RNAs (sncRNAs) and
the longer ones are called long noncoding RNAs (lncRNAs). Two most important
groups of sncRNAs are ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs). The
rRNAs are components of ribosomes, the structures within which the protein syn-
thesis takes place. The tRNAs are also involved in the process of protein synthesis,
where they carry the amino acids to the ribosomes and ensure that the protein is
correctly synthesized. Some of the other sncRNAs are microRNAs (miRNAs), short
interfering RNAs (siRNAS), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), piwi-interacting RNAs (piRNAs) and vault RNAs. They have diverse
functions inside the cell with some of them controlling the expression of their target
genes. The role of many sncRNAs is still not known and the new discoveries are
constantly being made. The lncRNAs are even more enigmatic and despite the evi-
dence that certain diseases are associated with the transcription of lncRNAs, there
are still doubts in the scientific communities about their usefulness [48]. We may
note that the lncRNA serves as an umbrella term for many different categories of
nonoding RNA which are longer than 200 nucleotides and which may have very
different function [53].

Another important group to consider are the pseudogenes. Pseudogene is a small
section of the genome whose sequence resembles protein-coding gene, but which
doesn’t code for a functional RNA or protein. They are derived from the genes
which lost their protein-coding ability during the evolution. By their origin, they
are divided into nonprocessed and processed pseudogenes. Nonprocessed pseudo-
genes arise from the mutation which disrupted the coding sequence of the gene.
If the mutation happened to the gene which is a part of multigene family, then it
is further call duplicated pseudogenes. In this case the other genes from the gene
family are still active and the event is usually not deleterious to the organism and
a pseudogene is retained. If the mutation happens to the gene which is not part
of the multigene family then the resulting pseudogene is called unitary pseudogene.
Since in the process of pseudogenization the function of the gene is lost the effects
on the organisms can be substantial which makes unitary pseudogenes rare. Pro-
cessed pseudogenes are products of the reverse transcription. They are derived when
the mature mRNA copy of the gene is reinserted into the genome. Consequently,
the processed pseudogenes lack the introns. The pseudogenes are often called the
evolutionary relics and they can be valuable when studying the evolutionary history
of the genome. In the recent years, the growing number of pseudogenes are found
to have important biological role and their significance is being reevaluated by the
scientific community [48, 53].

In an evolutionary study of the genome, it clearly makes sense to consider not
only protein-coding genes but also the short and long noncoding RNAs as well as
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pseudogenes. These groups of genes which inhabit the same genome have inter-
twined evolutionary paths. The pseudogenization process converts once protein-
coding genes into pseudogenes. However, it is not exclusively one-way process since
there are evidences of “resurrected” pseudogenes which regained the protein-coding
ability [54]. On the other hand, a long noncoding RNA can also be a product of “res-
urrected” pseudogene and some of these lncRNAs are reported to be associated with
human diseases [55]. Moreover, several lncRNAs in the human genome originated
from ancestral protein-coding genes [56]. In the future, the definitions of some of
these gene types may change with new discoveries of their functional potential and,
in fact, the scientist are already questioning some of the currently used terminology
[53].

In the literature, the term “gene” is often exclusively used for protein-coding
genes. However, for simplicity, in this work we extend the definition of gene to all
sections of genome which have protein-coding, regulatory or evolutionary relevance.
Thus in the following chapters, we talk about four different gene types/biotypes:
coding genes, short noncoding genes, long noncoding genes and pseudogenes.
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Chapter 6

Materials and methods

6.1 Data retrieval

Gene length data for multiple metazoan species was downloaded from Ensembl, a
genome annotation and dissemination platform. Specifically, data for 170 species
was downloaded from Ensembl release 101 [52] and data for 106 species was down-
loaded from Ensembl Metazoa release 48 [57]. Ensembl Metazoa is part of Ensembl
Genomes which offers data for metazoan non-vertrebate species. For the download-
ing process, we used R “biomaRt” package v.2.44.4 [58] which offers programmatic
access to the Ensembl BioMart data management system [59]. Data for certain
species were not downloaded. Assemblies for which the genome build method was
described as “projection build” were not downloaded. Additionally, some species
had multiple available assemblies of which we downloaded only one. The list of all
such species and the corresponding list of chosen assemblies is given as supplemen-
tary table S2.1. Finally, the data for Saccharomyces cerevisiae which is available
at Ensembl is not downloaded since we were interested only in metazoan genomes.
For each of 276 species, we obtained a table with the list of genes described by the
attributes (“ensembl gene id”, “description”, “chromosome name”, “start position”,
“end position”, “gene biotype”).

Ensembl gene biotypes are divided into multiple groups (coding, pseudogene,
short noncoding RNA, long noncodingRNA). To obtain the definition of different
Ensembl gene biotype groups, we used the Ensembl REST API [60]. The full list
of all gene biotypes found in the data and the groups to which they belong, can be
found in the supplementary table S2.2. As a reference for the chromosome name,
we downloaded the list of toplevel sequences for every species using Ensembl REST
API [60].

For every species, we obtained the taxonomic classification at multiple taxonomic
levels (Phylum, Class, Order, Family, Genus). This information is obtained with the
help of the function taxonomy from the R package “taxize” v.0.9.99 [61] which is
based on the powerful R package “myTAI” v.0.9.2 [62]. The “db” parameter of

47



the “taxonomy” function was set to the NCBI database. A few missing taxonomic
classifications were filled based on The Catalogu of Life [63].

6.2 Data preparation
For every species separately, we cleaned the data in the following steps. Since En-
sembl list of genes may contain multiple transcripts per gene, we firstly kept only
the genes with the unique Ensembl gene ID. Concerning the gene biotypes, we
removed the transposable elements and “TEC” (to be experimentally confirmed)
genes. Based on the list of dowloaded toplevel sequences, we kept only those genes
which are located on the toplevel sequences. For the genome assembly, the toplevel
sequences consist of chromosomes and any unlocalised or unplaces scaffolds which to-
gether define a primary assembly. In this preparation step, 6402 genes were removed
for Homo sapiens, 779 for Mus musculus and 4721 for Danio rerio. Additionally, we
removed all mitochondrial genes.

In this work, the gene length is defined as the number of nucleotide bases (base
pairs) in the gene. It is calculated as the difference between the end and start
position of the gene plus 1.

For the decisions of biological relevance in the steps of data retrieval and data
preparation, we consulted our collaborator Dr. Maria Giulia Bacalini from the
IRCCS Istituto delle Scienze Neurologiche di Bologna (Italy).

6.3 Fitting the gene length distribution for a sin-
gle gene biotype

For every species, genes were divided in four groups based on their biotype: coding,
pseudogene, short noncoding and long noncoding. Each of the biotype groups was
separately analyzed. In case at least 100 genes of a certain biotype were found,
the gene length distribution was fitted with the Maximum Likelihood Estimation
method implemented in R “sads” package v.0.4.2 [34]. Data were modeled with a
truncated Poisson Log-Normal, a truncated Log-Series and a truncated Negative
Binomial distribution, so that to test and compare different ecological hypothesis.
Two species, Mus caroli and Mus pahari, reported error in fitting of protein-coding
genes with Negative Binomial distribution. In total, gene length distribution of
coding, pseudogene, short noncoding and long noncoding genes was successfully
fitted for 274, 153, 267 and 106 species, respectively.

Akaike Information Criterion (AIC) [35] and Kolmogorov-Smirnov (KS) statistic
were computed to assess the models performances and for model selection. The KS
statistic for two empirical cumulative distribution function is given by

KS(F1,n, F2,m) = sup
x
|F1,n(x)− F2,m(x)|, (6.1)
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where n and m are the numbers of observed samples. It is obvious that even for
samples coming from the same distribution, the KS statistic depends on the number
of observed samples. Thus, when calculating the KS statistic, we randomly sampled
100 gene lengths. Then we calculated the KS statistic between this sample and a
sample from the fitted distribution of the same size. Repeating the process 10 times,
we obtained the mean KS statistics (Figure 7.1-b). Using a fixed sample size of 100
was important so that we can compare the values of KS statistic for different species
and different biotypes since some gene length distributions had more than 20000
genes while others had nearly the minimum 100. Finally, we used simulations to
determine the minimum empirically possible value of KS statistic with the number
of observations equal to 100. For 1000 times we drew two samples from the same
Poisson Log-Normal distribution and calculated the KS statistics. The µ and σ2

parameters were based on mean parameter values estimated for different biotypes.
Combining all KS statistics, we got the mean and standard deviations which are
used in the Figure 7.1-b.

6.4 Modeling the RSA distribution in presence
of diverse subcommunities: generalization of
Engen and Lande’s model

Here we discuss the generalization of Engen and Lande’s model [4, 5] when the
community is divided into diverse mutually disjoint subcommunities. Let us assume
that the species are divided into K groups where each group corresponds to a certain
subcommunity. For a random observed species, let pi be the probability that the
species belongs to the ith group. Then the membership to subcommunity is a
categorical random variable with vector of probabilities (p1, . . . , pK),∑K

i=1 pi = 1.
Suppose that every subcommunity grows according to the Engen and Lande’s

model. Then the abundance model for the ith community λi(x), with parameters
of λi(x) depending on the populaton dynamics inside the subcommunity, will be of
Log-Normal or Gamma form depending on the density regulation function.

If we now again observe the total community as the whole, then the abundance
model of the community is a mixture

λ(x) =
K∑
i=1

piλi(x). (6.2)

Adding Poisson sampling variability, as explained in an introductory chapter, the
RSA distribution of the community is the Poisson distribution with the parameter
given with (6.2). However, this is the same as the mixture of Poisson(λi) distribu-
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tions, as is clear from the derivation

Pr =
∫ xre−x

r!

(
K∑
i=1

piλi(x)
)
dx

=
K∑
i=1

pi

∫ xre−x

r! λi(x)dx, (6.3)

where Pr is a probability that the RSA distribution takes value r. If we assume that
the density regulation function for the total community is of Gompertzian type then

RSA ∼
K∑
i=1

pi PoiLN(µi, σi). (6.4)

Similarly, for the linear density regulation function, the RSA is a mixture of Negative
Binomial random variables. The mixture of both Poisson Log-Normal and Negative
Binomial distributions is also possible, in case of different density regulations within
the subcommunities.
Remark. Note that the crucial assumption of this generalization is that the species
are partitioned into mutually disjoint groups. Otherwise, if we were to allow the
possibility of a species which belongs to more subcommunities, the equation (6.2)
wouldn’t hold. As an example, if the same species has the abundance λ1 in one
subcommunity and abundance λ2 in another subcommunity then when observing
total community, this species would have abundance of λ1 + λ2. Thus this model
is not applicable when joining observations from multiple communities with shared
species. However, it is applicable to the gene length RSA model because, by defi-
nition of the species, the nucleotides of one gene can’t belong to different genomic
subcommunities since we observe a gene as unity.

6.5 Bayesian modeling of the gene length distri-
bution

We used Python “pymc3” package v.3.9.3 [64] for the Bayesian data analysis. Since
the Poisson Log-Normal distribution is not implemented in the package, we extended
the package adding our implementation of the Poisson Log-Normal distribution.
The new class PoissonLognormal was defined as a child class of the “pymc3” class
Discrete. For a log-likelihood method of the class, we took the logarithm of the
Bulmer’s approximation of the Poisson Log-Normal probability function [14]

PoiLN(r;µ, σ2) ≈ (2πσ2)−1/2

r
e−

(ln r−µ)2

2σ2

[
1 + 1

2rσ2

{
(ln r − µ)2

σ2 + ln r − µ− 1
}]

.

(6.5)
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The approximation (6.5) is highly accurate for large values of r with the relative
error less than 10−3 when r ≥ 10 [14], while for smaller values of r numerical
calculations should be used instead. However, since the genes are generally longer
than 10 nucleotides, we use the approximation formula (6.5) for all values of r.

Suppose the observed community is a collection of K diverse communities. Then
depending on a chosen population dynamics model, the RSA distribution for the
total community is a mixture of K Poisson Log-Normal or K Negative Binomial
variables. We fit the K-Poisson Log-Normal mixture using the following Bayesian
model [65]

µi ∼ Normal(mu = 0, sd = 10), i = 1, . . . , K

σi ∼ Gamma(mu = 1, sd = 10), i = 1, . . . , K

(p1, . . . , pK) ∼ Dirichlet(a = (α1, . . . , αK))

data ∼
K∑
i=1

pi PoiLN(µi, σ2
i ), (6.6)

where the hyperparameter a specifies our prior belief about relative sizes of the
subcommunities.
Similarly, we define K-Negative Binomial mixture with

µi ∼ Gamma(mu = 104, sd = 103), i = 1, . . . , K

αi ∼ Gamma(mu = 1, sd = 10), i = 1, . . . , K

(p1, . . . , pK) ∼ Dirichlet(a = (α1, . . . , αK))

data ∼
K∑
i=1

piNB(µ = µi, α = αi). (6.7)

The “pymc3” implementation of the Negative Binomial variable is parameterized by
the mean µ = pα

1−p and dispersion α, where p is a success rate.
The same Bayesian models can be used in case of a homogeneous community

with K = 1. In this case the Dirichlet variable is not needed.
We use a traceplot to monitor the convergence of Monte Carlo Markov Chains

(MCMC) [64, 65]. In every performed sampling in this work, we drew 2 000 samples
with the default burin period of additional 000samples.InitializationmethodfortheNUTSsamplerwassetto”jitter+
adapt diag”.T oassessthemodelaccuracy, weperformedtheposteriorpredictivechecks citekruschke2014doingusing“pymc3”functionsample posterior predictivewithdefaultparameters(assuggestedby“pymc3”manual[64]).Thisdistributiondrawssamplesfromtheposteriorpredictivedistributionwhichisthencomparedtotheoriginaldataformodelassessment.

6.5.1 Human, mouse and zebrafish

To fit human and mouse gene length distribution we used Poisson Log-Normal and
Negative Binomial mixture model with K = 3. In both models, we specified a =
(10, 40, 50) as a hyperparameter of Dirichlet distribution. For zebrafish, we used the
same mixtures with K = 2 and Dirichlet hyperparameter a = (10, 90).
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For every distribution fitting, we drew a random subsample from the gene length
distribution of size 3 000 and sampled the trace using the subsample as observed
data.

6.5.2 Mammals: pseudogenes and protein-coding genes

For every mammalian species, we observed two different distributions: gene length
distribution for protein-coding genes (coding distribution) and gene length distri-
bution for both pseudogenes and protein-coding genes (pseudo-coding distribution).
Instead of the whole distributions, we used a random subsample of size 3000 for
MCMC sampling. For coding distribution we used a single Poisson Log-Normal dis-
tribution (K = 1) and for pseudo-coding distribution we used a mixture of Poisson
Log-Normal distributions with K = 2 with Dirichlet hyperparameter a = (40, 60).

To assess the goodness of fit, we calculated Kolmogorov-Smirnov (KS) statistic
and Wasserstein distance between random subsamples of gene length distribution
(n = 3 000) and subsamples from posterior predictive distribution (n = 3 000) .
Gene length subsamples were taken from the genes which weren’t use in model
fitting. The final KS statistic and Wasserstein distance are mean values from 10
repetitions.

To obtain a point estimate of a parameter from Bayesian model, we took the
mean value of its trace.

6.6 Differentiation between pseudogenes and
protein-coding genes

We propose a model for distinguishing between pseudogenes and protein-coding
genes based on their length. From the mixture of pseudogenes and protein-coding
genes, we take a subsample of size n and fit it with Poisson Log-Normal mixture
for K = 2. In case of Bayesian fitting, we then take mean values from posterior
distribution to obtain point estimates µ = (µ1, µ2), σ2 = (σ2

1, σ
2
2) and p = (p1, p2),

with p1 + p2 = 1. The fitted pseudo-coding distribution is

P (r;µ, σ2, p) = p1 PoiLN(r;µ1, σ
2
1) + p2 PoiLN(r;µ2, σ

2
2), (6.8)

where PoiLN(r;µ1, σ
2
1) is a Poisson Log-Normal probability function for parameters

µ1 and σ2
1.

For a new gene coming from pseudo-coding mixture with length r0, the prob-
ability of belonging to the first distribution PoiLN(r;µ1, σ1) follows from Bayes
rule

P (1; r0, µ, σ
2) = p1 PoiLN(r0;µ1, σ

2
1)

p1 PoiLN(r0;µ1, σ2
1) + p2 PoiLN(r0;µ2, σ2

2) (6.9)
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with the similar equation being valid for P (2; r0, µ, σ
2). Then the gene is classified

as pseudogene or coding gene based on the following expression

biotype =
pseudogene, P (1; r0, µ, σ

2) > P (2; r0, µ, σ
2)

coding, otherwise

=
pseudogene, p1 PoiLN(r0;µ1, σ

2
1) > p2 PoiLN(r0;µ2, σ

2
2)

coding, otherwise.
(6.10)

The model is tested for human and mouse genome. We used a subsample (n =
3 000) from the mixed distribution of pseudocoding and protein-coding gene lengths
and fitted it with Poisson Log-Normal mixture with K = 2. The remaining genes
which weren’t used for fitting are used to assess performance of the model. The
same division into training and test set is used to assess the performance of the
logarithmic regression in predicting the gene biotype based on its length.
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Chapter 7

Results and discussion

7.1 Gene length distribution is Poisson
Log-Normal across all biotypes

The gene length distributions for 276 metazoan species were obtained as detailed
in Materials and methods section. The genes were divided in four biotype groups:
coding, pseudogenes, short noncoding and long noncoding. For every species, we
separatelly fitted the gene length distribution for different biotypes. This way we
observed the gene biotypes as different subcommunities of the genome which under-
went separate evolution. For every biotype, we tested three evolutionary hypotheses
fitting the gene length distribution with the Log-Series, the Negative Binomial and
the Poisson Log-Normal distribution. According to the Akaike Information Criterion
(AIC) [35], the Poisson Log-Normal model outperformed both the Negative Binomial
and Log-Series for all biotypes (Figure 7.1-a). Specifically, for protein-coding genes
the Poisson Log-Normal was selected over Negative Binomial in 97.45% species,
and in 89.54%, 96.23% and 98.13% of species for pseudogenes, long noncoding and
short non coding genes, respectively. Moreover, it was selected over Log-Series in
all species for every biotype. The results imply that the Gompertzian density regu-
lation g(x) = γ ln(x+ ε) is a better choice than the alternative g(x) = ηx. Because
of the extreme lengths of certain genes, these results are expected since logarithmic
density regulation has lesser effect on the restrictive evolution of the long genes than
the alternative linear function.

Kolmogorov-Smirnov (KS) statistic was calculated to assess the goodness of fit
of the Poisson Log-Normal model. The KS statistic between two empirical dis-
tributions depends on the number of observations and in case of small number of
observations its empirical minimum is significantly larger than the theoretical zero.
Thus we fixed the number of observations when calculating KS statistics for different
biotypes and we estimates the empirical minimum for the fixed number of obser-
vations. Obtained mean KS statistics for every species are represented by boxplots
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(a) AIC differences. (b) KS statistic.

Figure 7.1: (a) Distribution of the difference between the AIC obtained with
the Poisson Log-Normal model (PLN) and the Log-Series (LS) or the Negative
Binomial (NB) model, separately calculated for protein-coding genes, pseudogenes,
short noncoding genes and long noncoding genes. (b) Distribution of the mean KS
statistic between gene length distribution and the Poisson Log-Normal fit, separately
calculated for different gene biotypes. The dashed red line together with its standard
deviation represents the value of KS statistic between two random samples coming
from the same distribution and can be thought of as the empirical minimum of the
KS values represented in the boxplot.

(Figure 7.1-b), separately for every biotype. We observe that Poisson Log-Normal
fits both protein-coding genes and long noncoding genes well. The fit of pseudogenes
is not as good, probably due to small number of annotated pseudogenes in several
species. Namely, only 787.4 pseudogenes are annotated on average, compared with
20026.9 protein-coding, 2272.3 short noncoding and 2878.8 long noncoding genes
(not taking into account species with less than 100 genes which were discarded be-
fore fitting). Finally, short noncoding genes are not very well fitted by the Poisson
Log-Normal model. Since by definition short non coding genes have length smaller
than 200 nucleotides, their gene length distribution is right-truncated. Since the 200
nucletides is human-made threshold between short and long non-coding genes, from
the population dynamics approach it may make more sense to group all noncoding
genes together.

7.2 Protein-coding gene length distribution shows
evolutionary trend in metazoan species

The length of a gene generally increases in evolutionary time [49]. We estimate the
evolutionary dynamics of gene length with two parameters of Poisson Log-Normal
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distribution, µ and σ. Engen and Lande’s model [4] specifies that µ = r/γ and
σ2 = σ2

e/2γ, where r is a growth rate, γ is a multiplicative constant from Gom-
pertzian function and σ2

e is an environmental variance. To assess our results from the
evolutionary perspective, we plot all species as points in (µ, σ)-space, where µ and σ2

are parameters obtained fitting the protein-coding genes with Poisson Log-Normal
distribution (Figure 7.2). Protein-coding genes were chosen over other biotypes be-
cause of their coding ability. Natural selection makes sequences of protein-coding
genes more preserved in related organisms than the other sequences in the genome
[48]. Moreover, protein-coding genes show the best agreement with Poisson Log-
Normal model across all biotypes (Figure 7.1-b).

Different taxonomic classes shown in Figure 7.2 are not clearly separated by
the µ and σ, but nevertheless the evolutionary trend is evident. More complex
species such as mammals (Mammalia), birds (Aves) and reptiles (Reptilia) have the
largest µ and σ values and roundworms (Chromadorea) have the smallest µ and
σ values. Invertebrates (Arachnida, Insecta, Branchiopoda, Gastropoda) show high
variation in parameters, but with µ smaller than in more complex species. Lastly,
fish (Actinopteri) have µ and σ values between those obtained for invertebrates and
those obtained for mammals, birds and reptiles.

The µ parameter has values in range 〈6.5, 10.5〉 which signifies high ratio between
growth rate r and density regulation constant γ. This is expected since gene species
have high abundance of nucleotides. Namely, taking into account the assumption
that a gene enters the community at the abundance 1, high growth rate is required
for the gene to reach the length of tens of thousands of nucleotides. Manipulating
expressions for µ and σ, we get µ = 2rσ2/σ2

e which explains observed positive
correlation between the µ and σ (Figure 7.2).

7.3 Multimodal gene length distribution corre-
sponds to different biotypes

Because of their intrinsic connection, we now observe subcommunities of different
gene biotypes together as one community. Namely, as discussed in the introduction,
evolutionary paths of different gene biotypes are intertwined. Moreover, short and
long noncoding genes are arbitrary separated with the threshold of 200 nucleotides
and it makes sense to observe them together. To model the joint gene length dis-
tribution for all biotypes, we use the generalization of Engen and Lande’s model in
which different biotypes correspond to diverse subcommunities. The resulting gene
length distribution is thus a mixture of Poisson Log-Normal variables or Negative
Binomial variables, depending on the chosen density regulation function.

In the process of genome annotation, not all gene biotypes are equally covered.
When an assembly of a genome is published, it is just a first version of the assembly
which requires a lot of additional work and multiple revisions. In fact, it can be
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Figure 7.2: Scatter plot of Poisson Log-Normal parameters µ versus σ obtained
fitting the protein-coding gene length distribution. Different colors represent differ-
ent taxonomic classes, as indicated in the legend. Taxonomic classes to which only
one species belongs are grouped together in the class others. In total, 274 species
are represented.

said that the genome is never fully annotated since it is impossible to capture all
the information written in its sequence [48]. As expected, protein-coding genes are
usually of the biggest interest and thus best annotated. Since in this section we
wish to model gene length dynamics for all biotypes, we have to observe a genome
which has good coverage across all biotypes. Human genome as well as the genomes
of model organisms are constantly being updated and are thus well annotated in
comparison to others. Here we observe the genomes of human (Homo sapiens),
mouse (Mus musculus) and zebrafish (Danio rerio).

Human gene length distribution is trimodal (Figure 7.3-a) with the modes cor-
responding to small noncoding genes, pseudogenes and protein-coding genes. The
long noncoding genes lie in-between the pseudo and coding genes, but in the join
mixture they don’t contribute to the separate mode. Mouse gene lengths exhibit
similar pattern as in human (Figure 7.3-c), but the long noncoding genes almost
completely overlap with protein-coding genes. The distribution for zebrafish is bi-
modal (Figure 7.3-e), due to almost nonexistent pseudogenes. Long noncoding genes
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again overlap in length with protein-coding genes.
It is known that the number of pseudogenes is uneven in different metazoan

genomes and that mammals have high number of pseudogenes [54]. The observed
bimodal/trimodal distributions are consequence of these differences in the genome
compositions. While it is obvious why short noncoding genes correspond to the left
mode, it may be less apparent why are pseudogenes shorter than protein-coding
genes. By their origin, pseudogenes can be processed or unprocessed. Processed
pseudogene is a product of the reverse transcripton of the mRNA and is thus lack-
ing introns which explains its short length. Unprocessed pseudogene arises when
the mutation disrupts the coding ability of a duplicated gene. The reason behind
the short length of an unprocessed gene lies in the correlation between duplication
patterns and gene length. Duplications proved to be increasingly incomplete for
longer genes and thus recently duplicated genes are shorter than the average gene
[49]. Consequently, the unprocessed pseudogenes will be shorter in length.

We fitted human and mouse gene length distribution with a mixture of three
Poisson Log-Normal (3-PoiLN) variables and with a mixture of three Negative Bi-
nomial (3-NB) variables. The zebrafish gene length was fitted with the same type
of mixtures of two variables (2-PoiLN and 2-NB). The distribution fitting was per-
formed using Bayesian inference. Both mixtures converged (PoiLN traceplots shown
in Figure S2.1-b,d,f), but the Poisson Log-Normal mixture outperformed the Neg-
ative Binomial. From the comparison of cumulative distribution functions (Figure
7.3-b,d,f) we notice that Poisson Log-Normal fits the data very well, while Nega-
tive Binomial shows divergence in tails. For human and mouse, Negative Binomial
misses the first mode which corresponds to short noncoding genes (S2.1-b,d,f). In
all three cases, the right tail of Negative Binomial is too short and doesn’t fit the
long gene lengths well (Figure S2.1-a,c,e). This is a consequence of the stronger
density regulation in Negative Binomial model which overregulates the extremely
long genes.

7.4 Differentiation between pseudogenes and
protein-coding genes based on the length

The similarity between pseudogenes and their functional paralogs often results in
misannotation of pseudogenes as protein-coding genes by computational genome
annotation systems [66]. Wrongly annotated pseudogenes are problematic for any
subsequent analysis which relies on the correct biotype annotation such as the design
of locus-specific microarrays [66]. Moreover, with new discoveries, the importance
of pseudogenes is being recognized [55] and they aren’t anymore simply discarded
as “junk” DNA. Thus the differentiation between pseudogenes and protein-coding
genes is an important task. Consequently, new computational methods are being
developed for the task of pseudo-coding gene differentiation since the alternative
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: (a) Gene length distribution of different gene biotypes in Homo
sapiens. (b) Comparison of the Negative Binomial and Poisson Log-Normal fit for
the gene length distribution in Homo sapiens using empirical cumulative distribution
functions (CDFs). A fitting distribution is calculated as a sample from posterior
predictive distribution. (c-d) Distribution of gene length for different biotypes and
CDF fit comparison for Mus musculus. (e-f) Distribution of gene length for different
biotypes and CDF fit comparison for Danio rerio.
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manual curation is a time-consuming process. These methods are generally based
on the alignments of the sequence of a putative pseudogene. As an example, Yao et
al. developed the method which uses transcript-based and protein-based sequence
alignments to infer different types of pseudogenes. The PPFINDER method is an-
other alignment-based method which identifies the processed pseudogenes searching
for their parental gene and comparing it to the putative pseudogene [67]. Another
method for the identification of processed pseudogenes PseudoDomain based on pro-
tein domain classification was developed as an alternative to other alignment-based
methods which are problematic in case of a poorly annotated genome [68]. Here we
propose a new pseudo-coding differentiation method based solely on the length of a
gene. While this method by itself is not accurate enough to decide about the gene’s
coding ability, it may be incorporated as the first step of another more complicated
method for pseudogene identification.

For species with high number of pseudogenes, such as human and mouse, the
gene length distribution is trimodal (Figure 7.3-a,c). Classifying genes into differ-
ent biotype groups, we notice that the three modes of distribution correspond to
small noncoding genes, pseudogenes and protein-coding genes, from left to right. If
instead, we observe only pseudogenes and protein-coding genes we get the bimodal
distribution of gene length with the pseudogenes corresponding to the left mode.

A random subsample from the pseudo-coding gene length distribution may be
used to estimate the parameters of the Poisson Log-Normal mixture of two variables.
For a gene coming from the pseudo-coding mixture, we can now easily calculate the
probability of it belonging to the first or to the second variable from the mixture. If
the former probability is greater then the latter, the gene is classified as pseudogene.
Otherwise, it is classified as protein-coding gene. Neglecting the non coding RNA
genes, the pseudo-coding community has two distinctive subcommunities and the
estimated mixture parameters represent differences in the gene length dynamics
between the two subcommunities.

To test our pseudo-coding prediction model, we used human and mouse genome
and compared our PoiLN model with the logistic regression. The 3000 genes were
used as the training set. With the remaining genes, we tested the performance
of both PoiLN method and logistic regression. Since both human and mouse are
well annotated organisms and in lack of a better approach, the Ensembl biotype
classification of a gene was considered to be the true biotype.

The results for human can be found in Table 7.1. Compared to logistic regression,
the PoiLN method shows better balance between the precision and recall statistics in
both the protein-coding and pseudogene prediction and has higher accuracy (0.882
compared to 0.82). Similar results can be found for mouse, with even higher dif-
ference in accuracy (0.888 compared to 0.767, Table S2.3). The precision of PoiLN
method is 0.894 for protein-coding prediction and 0.872 for pseudogene prediction
(taken as average between human and mouse). Overall, PoiLN method outperforms
the logistic regression for both human and mouse.
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Important difference between the two methods is the fact that logistic regres-
sion is a supervised method which depends on the accurate annotation of genes in
the training set while the PoiLN method is unsupervised. This makes the PoiLN
method applicable for genomes with poorly characterized biotypes. However, the
genome still needs to have high enough number of located pseudo-coding genes for
the accurate Poisson Log-Normal mixture fitting. If we use the PoiLN method just
as the first step of a more advanced pseudo-coding classification method, then in-
stead of classification of genes as pseudogenes or as coding genes, one can report the
probability of each biotype which can be used in the future steps of the method.

Table 7.1: Contingency table for coding-pseudogene prediction methods for Homo
sapiens. Two methods are compared, PoiLN method and logistic regression. (i)
Prediction of protein-coding genes. PoiLN method has precision of 0.891 with re-
call of 0.906. Logistic regression has precision of 0.926 with recall of 0.745. (ii)
Prediction of pseudogenes. PoiLN method has precision of 0.87 with recall of 0.85.
Logistic regression has precision of 0.728 with recall of 0.92. (iii) Accuracy of PoiLN
method is 0.882 compared with logistic regression accuracy of 0.82.

PoiLN method logistic regression

true biotype coding pseudo coding pseudo total

coding 16957 1768 13941 4784 18725

pseudo 2085 11810 1116 12779 13895

7.5 Gene length distribution for protein-coding
genes and pseudogenes in mammals

Well annotated mammalian genomes have similar number of pseudogenes and protein-
coding genes [53]. As example, human genome has 20410 protein-coding genes and
15210 pseudogenes. On the other hand, some mammalian genomes have very small
number of annotated pseudogenes. The genome of chimpanzee (Pan troglodytes) has
23521 protein-coding genes and only 485 pseudogenes. The chimpanzee and human
diverged from the common ancestry only 6 million years ago and consequently their
genomes show high similarity with nucleotide sequence identity within the coding
DNA greater than 98.5% [48]. Thus the extremely small number of chimpanzee
pseudogenes is likely caused by incomplete annotation and possibly also by wrong
annotations of pseudogenes as coding genes. To strengthen the argument, mouse has
22506 coding genes and 13656 pseudogenes which is much more similar in number
to human despite their earlier evolutionary divergence.

Comparing the gene length distribution of chimpanzee (Figure 7.4-a) to the
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one for human (Figure 7.3-a), we notice that the distribution in chimpanzee is
also roughly trimodal, but with the middle mode corresponding to protein-coding
genes. Thus we hypothesize that at least some of the pseudogenes in chimpanzee
are wrongly annotated as protein-coding.

We observed that the Poisson Log-Normal parameters obtained for protein-
coding genes follow the evolutionary trend in metazoan genomes (Figure 7.2). For
mammals, being abundant in pseudogenes, we wish to test whether inclusion of both
protein-coding genes and pseudogenes will result in even more evident evolutionary
patterns. For every mammalian species, we fitted protein-coding genes with Poisson
Log-Normal and the pseudo-coding mixture with the mixture of two Poisson Log-
Normal variables. If all mammals were to have similar gene length distribution as
human and mouse, the parameters µ2 and σ2 for the second variable in the Poisson
Log-Normal mixture (µ2 > µ1) would correspond to protein coding genes and would
be similar to the parameters µ and σ of the single Poisson Log-Normal protein-coding
distribution. On the other hand, for gene length distribution similar to chimpanzee,
µ2 and σ2 would in fact be better representatives of true protein-coding genes.

To assess the goodness of fit for both the Poisson Log-Normal (1PLN) fit of
coding genes and Poisson Log-Normal 2-variable mixture (2PLN) for pseudo-coding
genes, we calculated Kolmogorov-Smirnov (KS) statistic and Wasserstein distance
between the data and the fit (Figure 7.4-b,c). The Poisson Log-Normal mixture
fits the pseudo-coding distribution better than the single Poisson Log-Normal fits
only the coding genes. However, this could have been expected simply because of
the greater number of parameters. Nevertheless, small values of both KS statistic

(a) Chimpanzee gene length. (b) KS statistic. (c) Wasserstein dist.

Figure 7.4: (a) Gene length distribution of different gene biotypes in Pan
troglodytes. (b) Distribution of the mean KS statistic for different mammalian
species. Two models are compared, fitting protein-coding genes with Poisson Log-
Normal (1PLN) and fitting pseudogenes and protein-coding genes with mixture of 2
Poisson Log-Normal distributions (2PLN). (c) Distribution of the mean Wasserstein
distance for different mammalian species with the same models as for KS statistic.
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(a) (µ, σ)-plot for PoiLN model. (b) (µ2, σ2)-plot for 2-PoiLN model.

Figure 7.5: Scatter plots of Poisson Log-Normal parameters for 81 mammalian
species. Different colors represent different taxonomic orders, as indicated in the
legend. Taxonomic orders to which only one species belongs are grouped together
in the order others. Human (Homo sapiens) and chimpanzee (Pan troglodytes) are
additionally marked with different symbols. (a) µ and σ are obtained fitting gene
length distribution of protein-coding genes with Poisson Log-Normal. (b) µ2 and σ2
are obtained fitting gene length distribution of protein-coding genes and pseudogenes
with Poisson Log-Normal 2-mixture and they represent the parameters of the second
part of the mixture (µ2 > µ1).

and Wasserstein distance suggest that Poisson Log-Normal mixture fits the pseudo-
coding lengths very well.

To compare our results with taxonomic classification of mammalian species, we
plotted them in both (µ, σ)-space based on Poisson Log-Normal fit of protein-coding
genes (Figure 7.5-a) and in (µ2, σ2)-space based on Poisson Log-Normal mixture fit
of pseudo-coding genes (Figure 7.5-b). The distance between human and chimpanzee
indeed decreased in (µ2, σ2)-space as expected if our hypothesis of wrongly annotated
genes is correct. However, from the visual inspection of plots, the separation of
taxonomic orders is not improved for (µ2, σ2) compared to (µ, σ).

The ratios between intracluster and intercluster distances for different parameter
spaces and for both taxonomic order and taxonomic family are shown in Table
7.2. For random clustering, the expected ratio between intracluster and intercluster
distances is equal to 1 so in all cases species show clustering patterns in concordance
with taxonomy, albeit not very strong. At the order level the best clustering is
achieved in (µ2, σ2)-space, while at family level the best clustering is achieved for
(µ, σ). For well annotated species, that is those species which have total number
of pseudogenes and coding genes greater than 20000, the clustering is in better
agreement with taxonomy. This was expected since for the poorly annotated species
the gene length distribution is not the true representation of the RSA distribution
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based on Engen and Lande’s model. In case of well annotated species, the best
ratio is obtained for taxonomic order classification in the (µ1, σ1, µ2, σ2)-space. The
corresponding dendrogram shows that some taxonomic orders, such as Primates, are
better clustered than the others (Figure S2.2).

The gene length distribution for multiple mammalian species seems to be biased
because of the poor genome annotation and thus the parameters of the Poisson Log-
Normal distribution are just rough approximations of the equations µ = r/γ and
σ2 = σ2e/2γ, where r, µ and σ2

e are parameters from the population dynamics model
for gene length. While this approximation is close enough to identify evolutionary
trend at higher taxonomic ranks (Figure 7.2), at lower taxonomic levels evolutionary
trend is hardly visible. The separation of species at different taxonomic ranks is still
better than in the completely random model (as shown by the ratio of intraclus-
ter and intercluster distance), but not good enough for accurate taxonomy-based
clustering of mammals.

Table 7.2: Ratio between mean intracluster distances and mean intercluster dis-
tances for different clustering solutions. The left table is calculated for all 81 mam-
malian species. The right table is calculated for 61 mammalian species which had
at least 20000 pseudo-coding genes. The distances are calculated in three different
Euclidean spaces: 1PLN=(µ, σ), 2PLN2 =(µ2, σ2) and 2PLN=(µ1, σ1, µ2, σ2). The
clusters are defined as taxonomic orders or as taxonomic families.

mammals mammals (> 2× 104 genes)

1PLN 2PLN2 2PLN 1PLN 2PLN2 2PLN

Order 0.90 0.87 0.89 0.84 0.74 0.71

Family 0.79 0.9 0.81 0.74 0.89 0.8

7.6 The extremely abundant multigene family of
olfactory receptors violates the assumption of
the Poisson Log-Normal model

Olfactory receptor (OR) genes are responsible for detection of odors in the envi-
ronment. The olfaction is essential for survival of many mammals and OR genes
consitute the largest multigene family in mammals characterized by frequent gene
gains and losses [69]. Due to the difference in lifestyle, the OR gene number varies
greatly among species with an extreme example of African elephant which has ∼2000
coding OR genes and > 2200 OR pseudogenes. [69]

We found several mammalian species whose gene length distribution had the
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(a) (b) (c)

Figure 7.6: Gene length distribution for protein-coding genes and pseudogenes,
with olfactory receptor (OR) genes in yellow, for three species: (a) mouse (Mus
musculus), (b) rat (Rattus norvegicus), (c) elephant (Loxodonta africana).

extreme peak at the gene length of ∼e7. This peak proved to correspond to the OR
genes (both protein-coding genes and pseudogenes). For rat (Rattus norvegicus),
based on the Ensembl gene description, we found 1 333 coding OR genes and 48 OR
pseudogenes. The distribution of these genes perfectly matched with the described
peak (Figure 7.6-b). On the other hand, 1 198 coding OR genes and 226 OR pseudo-
genes were found in mouse, but their lengths were much more diverse (Figure 7.6-a).
The OR gene numbers for mouse are in agreement with findings from Niimuri et
al. [69], since they reported 1 130 coding and 236 pseudo OR genes. For the rat,
they found 1 207 coding, and 508 pseudo OR genes (with additional 52 unclassified
pseudo/coding OR genes). The discrepancy in numbers may be due to the wrongly
annotated pseudogenes in the Ensembl database and some yet unrecognized OR
genes. The difference between the “blue” and “yellow” peak in Figure 7.6-b may be
partially due to these missing OR genes and partially due to the other genes of the
same length.

African elephant (Loxodonta africana) has extreme peak at the similar position
as the rat (Figure 7.6-c), yet Ensembl describes only 351 coding genes as OR genes
and none of the pseudogenes. This is in contradiction with the results from Namurii
et al. [69] where they identified extremely expanded OR gene family in the African
elephant. Thus we believe that the extreme “blue” peak in the figure 7.6-c belongs
to the OR genes, despite the missing Ensembl description.

We are not sure if the extreme difference between gene length distribution of
the OR genes in mouse and rat can be caused by sequencing or annotation errors.
However, the OR peaks such as those found in rat and elephant cannot be fitted
with the Poisson Log-Normal distribution. In the Poisson Log-Normal, as well as
Negative Binomial, model we assumed that new genes enter the community in times
specified by Poisson process. The extremely abundant gene families, such as OR
genes in rat and elephant, are violating this assumption since too many genes enter
the genome community in too short time. Thus for the successful Poisson Log-
Normal fitting of such species we would have to remove the OR genes. Since many
OR genes have missing description, we can’t systematically remove them. However,
we keep in mind that the µ and σ parameters for these species are not well-estimated.
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Chapter 8

Conclusion

The population dynamics model developed by Engen and Lande has proved to be
a good choice as the model for gene elongation. For all biotypes, the Poisson Log-
Normal fit outperformed the alternative Negative Binomial and Log-Series fits in
the majority of metazoan genomes. This suggests that the Gompertzian density
regulation function is a better choice than the alternative linear regulation func-
tion. The results are in agreement with observed genes of extreme lengths since
the Gompertizian function has weaker regulatory effect which allows for their emer-
gence. While Poisson Log-Normal fit prevailed as the best of three models for all
biotypes, for short non coding RNAs it showed certain divergence from the true gene
length distribution. This is probably due to the definition of short noncoding RNAs
which limits their length to 200 nucleotides causing the gene length distribution to
be right-truncated. For protein-coding genes and long noncoding RNAs the fit was
very good, while some metazoan genomes which had small number of annotated
pseudogenes showed divergence also for this biotype group.

From the evolutionary perspective, separation of genes into different biotypes
may not be the best approach since their evolutionary paths are intertwined. We
derived the generalization of Engen and Lande’s model for the community with
diverse subcommunities. The assumption is that the subcommunities may have
different dynamics and when observed as a single community the resulting RSA
distribution is a mixture of Poisson Log-Normal or Negative Binomial distributions.
The partition of the community into subcommunities doesn’t include any additional
assumption of independence since in the original Endgen and Lande’s model species
are assumed to be independent of each other. McGill et al. wrote about the mul-
timodal RSA distribution which was reported in a few studies but without any
theoretical derivation for the observed distribution [3]. The multiple modes of the
RSA distribution are observable only on the log scale so the RSA distribution is still
long-tailed. The subcommunities model can be applied for the distribution of gene
length when we observe all biotypes together defining different biotypes as genomic
subcommunities. The mixture of three Poisson Log-Normal variables was a good
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fit for human and mouse gene length distribution. The three modes corresponded
to short noncoding RNAs, pseudogenes and protein-coding genes. For the zebrafish
genome, which has a small number of pseudogenes, the mixture of two Poisson
Log-Normal variables was a good fit. Two modes corresponded to small noncoding
RNAs and protein coding genes. This suggests that the generalization of Engen
and Lande’s model with the Gompertzian density regulation is good model for gene
length distribution with subcommunities corresponding to different biotypes. The
long noncoding RNAs didn’t contribute to the separate mode. Because of their
overlap with the protein-coding genes is it infeasible to infer their contribution to
the mixture model. In fact, it is possible that there are even more subcommunities
in the genome, such as different types of pseudogenes, which are grouped together
in the gene length distribution.

We used the bimodality of gene length distribution for the pseudo-coding mix-
ture to define the classification method. The method differentiates between the
pseudogenes and protein coding genes based on their length and has accuracy of
0.882 in human and 0.888 in mouse. For this method to work it is necessary that
enough pseudogenes and protein-coding genes are located on the genome so that
their gene length distribution is bimodal. The advantage of the method is that it
works in unsupervised manner and is thus not affected by wrongly annotated genes.
Instead of the classification of the gene as coding, the method can also assign the
coding probability to each gene so it can be used in pipeline with other more refined
methods.

Estimated Poisson Log-Normal parameters µ and σ for protein-coding genes
showed evolutionary trend for metazoan genomes. Different taxonomic classes were
clustered together in (µ, σ)-space, with some overlap. The trend was lost at the
lower taxonomic levels for mammalian genomes, thought it outperformed the ran-
dom clustering. The parameters should reflect the evolutionary dynamics of the
protein-coding genes, however some mammalian species have unusual gene length
distributions probably caused by poor annotation. As an example, the gene length
distribution of chimpanzee greatly differs from the one for human, despite their
close evolutionary relations. Additionally, the extremely expanded multigene fam-
ilies, such as olfactory receptor genes in rat and elephant, violate assumptions of
Engen and Lande’s model and thus can’t be fitted with the Poisson Log-Normal,
nor the Negative Binomial, distribution.

The number of the Poisson Log-Normal distributions in the mixture was deter-
mined by visual inspections of the gene length distribution. A possible extension
of our work is to implement the Dirichlet Process Mixture of Poisson Log-Normal
variables. In case of the successful fitting, this model may even detect the hidden
subcommunities in the mixture distribution which are not visible from the histogram
of gene lengths.
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Part III

Characterization of DNA
methylation correlation structure

in Down syndrome: study of
chromosome 21
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Chapter 9

Introduction

The genome of an organism contains coding sequences for all RNA and protein
molecules produced in its cells. While the same DNA information is part of every
cell, we witness great diversity among different cell types of the same organism.
A cell generally expresses only a fraction of its genes, and observed variety of cell
types is caused by different expression patterns. The gene expression can also be
altered as response to the external signals. In theory the expression of a gene can be
controlled at many steps from the transcription to the regulation of protein activity,
however for most genes the initiation of RNA transcription is the most important
point of regulation. The gene transcription can be regulated by specialized proteins
or by the covalent modifications of the DNA sequence [15].

The heritable covalent modifications of the genome are part of epigenome inher-
itance. Epigenetics studies heritable alterations in a cell or organism’s phenotype
that do not involve changes in nucleotide sequence of DNA such as histone modifi-
cations. DNA methylation is another epigenetic mechanism which has potential to
regulate gene expression. In the process of methylation a methyl groups is added
to the cytosine (C) nucleotide which results in covalently altered 5-methylcytosine
(5-mC). This alteration predominantly occurs on cytosines which are part of the
CG dinucleotide. The CG nucleotide is often called CpG site where “p” indicates a
phosphate linkage to distinguish it from a CG base pair. DNA methylation under-
lies the phenomenon of genomic imprinting which is observed in mammals, in which
a gene is expressed depending on whether it was inherited from the mother or the
father [15].

As a result of enzyme activities during the course of evolution, many CG din-
ucleotides disappeared from the genome and the remaining CG dinucleotides are
unevenly distributed in the genome. The selected regions with high density of CG
dinucleotides are called CpG islands (CPI). The human genome contains more than
20 000 CpG islands with the average length of 1 000 nucleotides. CpG islands often
contain gene promoters and their methylation status has a potential to alter the
expression of a gene. Thus the methylation of CpG islands is the main target of
many methylation studies [15].
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Different technologies are available for the interrogation of the methylation sta-
tus of CpG sites. Their chemistry is based on methylation-specific enzyme digestion,
affinity enrichment, chemical treatment with bisulphite (BS) or the combination of
the mentioned techologies [8]. A popular cost-efficient techology for DNA methyla-
tion profiling is Illumina Infinium HumanMethylation450 BeadChip [6] which geno-
types BS-treated DNA to reveal the ratio between methylated and unmethylated
alleles [8]. The Illumina 450K microarray measures methylation levels of more than
480 000 CpG sites across the whole genome [6]. The measured Illumina 450K CpG
sites were carefully selected and they cover 99% of RefSeq genes and 96% of CpG
islands. In total 485 577 sites are interrogated, of which 482 421 CpG sites, 3 091
non-CpG sites (“ch” sites) and 65 random SNPs (rs probes). Additional 850 control
probes are included in the microarray design. The non-CpG sites correspond to
cytosines which may be methylated, but which are not part of the CG dinucleotide.
The beta-values are calculated as the ratio between the intensity of the methylated
allele and the total intensity (specifically β = M/(M + U + 100), where M is in-
tensity of the methylated allele and U is intensity of the unmethylated allele) [6].
The methylation studies, excluding the single-cell methylation studies, measure the
methylation of population of cells. Thus the beta-value of 0.5 can be obtained in
various scenarios, with the extremes when all alleles in all cells are 50% methy-
lated or when 50% of cells are completely methylated while other half is completely
unmethylated [8].

Methylation studies aim to infer the difference in methylation among different
groups of samples. It is possible to inspect individual differentially methylated
CpG sites in case of single-base resolution assays such as Infinium 450K using some
form of the statistical test. However, differentially methylated regions (DMRs) are
usually of greater interest because of the better prediction power. The methods
for DMR detection can be designed for predefined CpG regions or can define their
own CpG regions. CpG islands are a popular choice for methods based on the
analysis of predefined regions. The methods which define novel regions usually find
clusters of CpGs based on their chromosomal proximity testing for different criteria
[8]. Regardless of the chosen method for differential methylation analysis, the great
attention should be payed to the preprocessing steps [70].

Studies of methylation patterns reported the bimodal behaviour where different
clusters of CpG sites tend to be either hypermethylated or hypomethylated, rarely
existing in intermediate states [7]. The observed group behaviour suggests that CpG
sites are not independent, but rather that the methylation profile is guided by the
complicated network structure of CpG sites. In this work, we study the correlation
structure of CpG sites. We observe the general trend of methylation correlation
structure in the control data set with large sample size. Subsequently we compare it
to the methylation correlation structure found for 29 Down syndrome patients, their
unaffected siblings and their mothers. For computational reasons, we restricted our
analysis on the chromosome 21 (HSA21)
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Chapter 10

Materials and methods

10.1 Data retrival and description of data sets

Two DNA methylation data sets were downloaded from the Gene Expression Om-
nibus (GEO) data repository [71]: control data set (accession number GSE87571)
and Down syndrome data set (accession number GSE52588). Both data sets contain
measurements from Illumina Infinium HumanMethylation450 BeadChip [6] for the
whole blood samples which were converted into beta-values.

The control data set has beta values for 728 healthy samples with age ranging
from 14 to 94 years. The big sample size and the wide age span of the control data
set were originally used to study the effects of aging on the human DNA methylome
[72]. The female to male ratio of the data set is 388:340.

The Down syndrome (DS) data set has a family-based structure with measure-
ments from a Down syndrome patient, one unaffected sibling and the mother for
each of 29 families included in the study [73]. We observe these measurements as
three separate data sets of 29 Down syndrome patients (DSP), 29 unaffected siblings
(DSS) and 29 mothers (DSM). The age span of DSP, DSS and DSM is 10-43, 9-52
and 42-83 with the female to male ratio of 11:8, 22:7 and 29:0, respectively.

The description of CpG sites measured by Infinium 450K methylation array was
found in Illumina “HumanMethylation450 15017482 v1-2.csv” manifest file (https:
//support.illumina.com/array/array kits/infinium humanmethylat
ion450 beadchip kit/downloads.html). We additionally downloaded the
list of all UCSC RefSeq genes using UCSC Table Browser [74] and the list of all
UCSC CpG islands using R package “AnnotationHub” v.2.20.2 [75]. R package
“BSgenome.Hsapiens.UCSC.hg19” v.1.4.3. [76] was used to search the DNA se-
quence for the CG dinucleotides and “N” nucleotides which represent part of genome
which is unsequenced. The Infinium 450K methylation array is based on Homo sapi-
ens (human) genome assembly GRCh37 (hg19) [6] and hence the same assembly was
used for all retrieved data.
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10.2 Data preparation and preprocessing
Control and Down syndrome (DS) data sets with beta values were separately pre-
processed following the same steps. We firstly checked for any CpG site which
is not of “cg” or “ch” type and we excluded them together with the CpGs with
missing values thus performing complete-case analysis. We then used the mef-
fil.estimate.cell.counts.from.betas (with reference data set “blood gse35069 com-
plete”) function from R package “meffil” v.1.1.1 [77] to estimate the white blood
cell counts for every sample. In the next step we removed the problematic CpGs.
60 466 CpG sites (file “hm450.hg19.manifest.tsv” file downloaded from http://zw
dzwd.github.io/InfiniumAnnotation#current) were identified as problematic
by Zhou et al. [78] and were recommended to be masked. Additionally, the mul-
timodality of beta-values can indicate that the CpG site is in close proximity to
SNP which is affecting the accuracy of methylation measurement [72]. We used the
implementation of the DBSCAN (density-based spatial clustering of applications
with noise) algorithm [79] from the R package “dbscan” v.1.1-5 [80] to check for
bi-, tri- and multimodality of gender-specific beta-value distribution for every CpG
in control data set. The same multimodal CpGs which were detected and removed
from control data set were later removed from the DS data set. The M-values were
calculated from beta values using the transformation formula M = log2 [β/(1− β)].
M-values were reported to have better performance for a statistical analysis of CpG
methylation values [81]. The beta-values which were equal to zero, if present, were
replaced with the smallest positive beta-value found in the data set prior to M-value
conversion. There weren’t any beta values equal to one, but they could have been
similarly replaced with the maximum beta-value. Finally, we used the “regRCPqn”
algorithm developed by Sala et al. [70] for the renormalization of already prepro-
cessed beta-values. The algorithm aims to mitigate the data set-dependent effects
of preprocessing and thus enables the joint analysis of different data sets.

The controls data set originally contained beta-values for 483 586 CpG sites.
59 598 CpGs (from 60 466 problematic CpGs) were masked and additional 91 multi-
modal CpGs were removed. During the “regRCPqn” renormalization, all sites from
X and Y chromosome were removed and 414 046 CpGs remained. For DS data set
65 SNP probes (rs probes) and 23 437 CpGs with missing values were removed from
the original 485 577 CpG sites. Additional 57 528+91 problematic sites were filtered.
Finally the removal CpGs on X and Y chromosome left 394 792 CpGs.

For the following analysis, only the CpG sites on the human chromosome 21
(HSA21) were kept, 3 691 for control data set and 3 540 for DS data set with 3 536
overlapping CpGs. For control data set, the normalized M-values were fitted to linear
regression model with age, gender and cell counts as independent variables for every
CpG separately. The residuals were calculated as difference between observed and
predicted M-values. For the Down syndrome data set, the residuals were obtained
as the difference between the normalized M-values and the predicted M-values based
on the linear regression model for controls. The 3 691 control residuals and 3 536
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DS residuals were used in the subsequent analyses. Only the overlapping 3 536 CpG
sites were used in comparisons between data sets.

10.3 Characterization of the correlation structure
of CpG sites on HSA21

The correlation between two CpG sites was calculated as a Pearson correlation be-
tween the corresponding residuals. The Pearson correlation was chosen because of
the approximately normal distribution of residuals. Moreover, the Pearson correla-
tion allows us to use the t-test for the significance of correlation.

10.3.1 General characteristics of correlation

The correlation between 3 691 CpG sites was calculated for controls. To assess
the stability of the calculated correlations, we randomly sampled with replacement
728 control subject for 100 times. In each iterations, we calculated correlation
matrix between all 3 691 CpGs. From 100 correlation values, we calculated the
mean (mean bootstrap correlation) and standard deviation (standard deviation of
bootstrap correlation).

To identify the group of highly correlated CpGs, we performed the hierarchical
clustering with the distance measure defined by dist = 1 − max(0, cor) and the
“average” method for clustering. The dendrogram was cut at the 0.5 height.

10.3.2 Partial correlation approach

98 CpG sites were chosen from the resulting hierarchical clusters in the following
manner: 33+15 CpGs were part of two biggest clusters and additional 50 CpGs were
picked from the singletons, clusters with only one member. The function cor2pcor
from the R package ’corpcor’ v.1.6.9 [82] was used to calculate the partial correlation
matrix from the Pearson correlation matrix for the 98 chosen CpG sites.

10.3.3 Testing for significance of correlation

For 3536 CpG sites which remained after the preprocessing steps in both control
and DS data sets, we calculated all 6 249 880 pairwise correlations. P-values for
the two-tailed t-test for correlation, as well as Benjamini-Hochberg and Hochberg
adjusted p-values, were calculated using the function corr.test from the R package
“psych” v.2.0.9 [83]. The significance level of 0.05 was used.
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10.3.4 Estimating the variability of correlation with respect
to the small sample size

To assess the effect of the small sample size on the estimation of correlation, we
randomly sampled 29 from 728 control subject for 100 times. In each iterations,
we calculated correlation matrix between all 3 536 CpGs. From 100 correlation val-
ues, we calculated the mean (mean subsampling correlation) and standard deviation
(standard deviation of subsampling correlation). The sample size of 29 was chosen
based on the sample size of DS data sets.

10.4 Comparison of correlation structure between
DS data sets and controls

For two correlation matrices, M1 and M2, we calculate the correlation matrix dis-
tance [84] with formula

d(M1,M2) = 1− tr(M1 ·M2)
‖M1‖2‖M2‖2

, (10.1)

where tr is a trace operator and ‖.‖2 is Frobenius norm.

10.4.1 Small-variance correlations

We refer to those correlations whose standard deviation of subsampling was smaller
than 0.11 as small-variance correlations. The corresponding CpG sites are thus
called small-variance CpGs. The minimal standard deviation of subsampling for
weak correlations (|r| < 0.2) was 0.1145 and thus the threshold of 0.11 is chosen to
exclude the weak correlations. For the community detection based on the correlation
matrix for small-variance CpGs, we used three different approaches:

• Small-variance unweighted method defines an unweighted network with only
small-variance correlations as edges.

• Positive correlation weighted method defines a weighted network where posi-
tive correlations correspond to weights and negative correlations are neglected.

• Positive correlation unweighted method defines an unweighted network with
all positive correlations as edges.

For the community detection, we used the walktrap.community function from the R
package “igraph” v.1.2.6 [85].
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10.4.2 CpG islands

We visually inspected the correlation structure for all CpG islands on HSA21 which
have at least 3 CpG sites measured both in controls and DS data sets. For this pur-
pose, we plotted next to each other beta-values of the measured CpG sites and cor-
relation matrices for all data sets. Additionally, we calculated the correlation matrix
distances between control, DSP, DSS and DSM correlation matrices. The plotted
beta-values were obtained from the normalized M-values applying the transforma-
tion β = 2M/(2M + 1). On beta-value plots, we additionally plotted the positions of
all CG dinucleotides and the positions of exons. Exon positions were retrieved from
the RefSeq list of genes based on “exonStarts” and “exonEnds” columns. The exons
were included because the role of methylation in alternative splicing was reported
[86], however the exact regulatorx mechanisms are not clear.
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Chapter 11

Results and discussion

11.1 General characteristics of DNA methylation
correlation structure on HSA21

Chromosome 21 (HSA21) is the smallest human chromosome with the total number
of 380 444 CpG sites of which 4 205 are measured by Illumina 450K microarray. The
unsequences DNA of HSA21 spans over two wide regions of nucleotides, 1−9 411 193
and 11 188 130−14 338 129, with the remaining unsequenced regions having the av-
erage length of 30 804 bp. The HSA21 coordinate plots, which we use to show the
chromosomal positions of CpG sites, are covering the region from the first known
CpG site (9 411 552nd nucleotide) till the last known CpG site (48 119 686th nu-
cleotide) instead of the whole chromosome which excludes the first unsequenced
region (Figure 11.1-d,e). The coverage of the Illumina 450K microarray is good for
all sequenced genomic regions except for the additional “gap” before the centar of
the chromosome. Since the choise of Illumina CpG sites was based on several criteria
[6], such as gene and CpG island coverage, this region is probably not populated
with important genomic sequences.

The correlation structure of 3 691 HSA21 CpG sites based on methylation mea-
surements for controls was examined. Generally, the correlation between a pair of
CpG sites decreases with the distance (Figure 11.1-a), however several pairs of CpGs
show high correlation despite the huge base pair distance between them. The CpG
correlation doesn’t seem strictly dependant on the distance with many CpG islands
whose CpG sites are almost completely uncorrelated (an example shown in Figure
11.2-a) and groups of highly correlated CpGs which are spread across the chromo-
some (Figure 11.2-b). Clustering CpGs into groups of highly correlated CpGs with
the average intracluster correlation greater than 0.5, we found 155 clusters of 528
CpGs. The remaining CpG sites remained as single-member clusters. Generally, the
larger clusters contained the CpGs from across the chromosome while the smaller
clusters contained only few close CpGs (Figure S3.1).
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(a) (b) (c)

(d) (e)

Figure 11.1: (a) Correlation versus distance for the pairs of CpG sites on HSA21.
(b) Mean bootstrap correlation versus the correlation. The bootstrap mean is ob-
tained from 100 repetitions of resampling with replacement. (c) Standard bootstrap
deviation of correlation versus correlation. (d) HSA21 coordinates of all CpG sites,
obtained from the sequence of HSA21. (e) HSA21 coordinates of all CpG sites
measured by Illumina HumanMethylation450 BeadChip.

To assess the variability of CpG correlation, we performed random resampling
with replacement of 728 control samples. The calculated mean bootstrap correlation
value was highly similar to the correlation obtained for all 728 samples (Figure 11.1-
b). The standard deviation of bootstrap correlation measurements was compared
with the correlation obtained for all samples (Figure 11.1-c). The smaller values of
correlation showed higher variability while the strong correlation coefficients were
highly preserved.

11.2 Partial correlation ignores the pattern of highly
correlated groups of CpG sites

Penalization methods are often employed for estimation of the inverse covariance ma-
trix (precision matrix) in high-dimensional omics data sets. Two penalty functions
are widely used, the `1 (lasso) penalty [87] which produces sparse precision matrices
and the `2 (ridge) penalty [88] which shrinks the elements of precision matrix pro-
portionally. With many available generalizations of these two methods, the choice
of appropriate penalization method should be carefully considered. When adequate
estimation of precision matrix is obtained, the partial correlation matrix is easily
calculated from the estimate. The exact partial correlation can be obtained only
if the cavoariance matrix is not singular which is not the case in high-dimensional
setting and thus the penalization method is necessary.
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(a) CpG island. (b) Group of highly correlated CpGs.

Figure 11.2: Correlation matrix and HSA21 coordinates for group of CpG sites.
(a) 25 CpGs which belong to CpG island “chr21:34914303-34915906”. Their HSA21
coordinates overlap in the figure. (b) Group of 33 highly correlated CpGs.

The partial correlation measures the correlation between two variables while re-
moving the confounding effect of the remaining controlling variables. Prior to the
choice of penalization method, we decided to assess whether the partial correlation
is the right measurement of correlation between CpG sites. Control data set is high-
dimensional (3 691 > 728) and hence the exact partial correlation can’t be calculated
for all CpGs. However, for a smaller subset of CpGs the exact inverse covariance
matrix and consequently partial correlation matrix can be calculated. For this pur-
pose, 98 CpGs were chosen as detailed in the Materials and methods. Among the 98
CpGs, there were two groups of highly correlated CpGs while the remaining CpGs
were uncorrelated to all other CpGs (Figure 11.3-a, left). The observed correlation
structure of the 98 CpGs is chosen to represent different correlation patterns found
on the whole chromosome.

Comparison between partial correlation and Pearson correlation for pairs of 98
CpGs (Figure 11.3-b) shows that partial correlation decreased both positive and
negative correlations. The partial correlation of originally uncorrelated CpGs and
of those which were strongly correlated is almost the same which makes them in-
distinguishable. In fact, the cluster structure of the chosen CpGs is completely lost
when partial correlation is used instead of Pearson correlation (Figure 11.3-b, right).
The observed over-shrinkage of partial correlation is caused by the presence of highly
correlated groups of CpGs. These CpGs act as confounding variables when partial
correlation is computed so the originally found correlation is removed together with
the confounding effect. This makes the partial correlation a poor choice in presence
of highly correlated clusters of variables. Since highly correlated clusters of CpGs
are present on the HSA21, we decided not to use the partial correlation approach.
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(a) (b)

Figure 11.3: 98 CpG sites were used to compare partial correlation with Pearson
correlation. (a) Pearson correlation matrix (left) and partial correlation matrix
(right) for the same list of 98 CpGs. In respect to Pearson correlation, there were
two clusters of highly correlated CpGs, of size 33 and 15, and 50 CpGs which
weren’t strongly correlated to other CpGs. The HSA21 coordinates of CpGs are
shown belowe the heatmaps, colored by their cluster membership. (b) Scatter plot
of partial correlation versus Pearson correlation for all pairs of the 98 CpGs.

11.3 Testing the significance of correlation

Chromosome 21 has 3 536 CpG sites which were measured in both control and Down
syndrome data set and kept after the preprocessing steps. From the corresponding
6 249 880 pairwise correlations, we needed to identify those which are significant for
the subsequent analysis. Statistically significant correlations may be inferred from
the t-test which tests whether the correlation is significantly different from zero.
The normality of residuals required by the test can be assumed, especially for the
control data set which has large number of samples (n = 728). However, because
high number of correlations were simultaneously tested the multiple comparison
adjustment is necessary.

We used two different approaches to adjust for the high number of correlations
in control data set. The Benjamini-Hochberg (BH) adjustment which controls the
false discovery rate and the Hochberg adjustment which controls the family-wise
error rate [89]. 1 320 802 correlations had BH-adjusted p-value less than 0.05 with
the minimum absolute significant correlation being equal to 0.096. For the Hochberg
adjustment 168 134 correlations were significantly different from zero with the sig-
nificance level of 0.05 and the minimum absolute significant correlation of 0.212.
Thus if we were to use BH adjustment all positive and negative correlations whose
absolute value is greater than 0.096 would be significant with the similar conclusion
about Hochberg adjustment and the 0.212 as the significant correlation threshold.
The observed low significant values of correlation emerge because of the large sample
size of control data set and thus we want to check if they are reproducible for the
data set of smaller sample size such as one of the DS data sets (n = 29).
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(a) (b) (c)

Figure 11.4: Distribution of correlation between CpG sites in DS data sets. (a)
Correlations between all measured CpGs on HSA21. (b) The CpG correlations with
Benjamini-Hochberg adjusted p-value smaller than 0.05. (c) The CpG correlations
with Hochberg adjusted p-value smaller than 0.05

To compare the results with the DS data sets, we plot the distributions of CpG
correlation in different DS data sets, DSP, DSS and DSM, under three condition.
Firstly we compare the distributions for all correlations and then we compare them
only for the correlations which are significant in respect to BH and Hochberg ad-
justment (Figure 11.4-a,b,c, respectively). We observe that Down syndrome distri-
butions were similar in all three versions with the slight difference between DSP
and the other two distributions. Namely, DSP distribution had lower number of
low correlations (|r| < 0.2) and consequently higher number of strong correlations
(|r| > 0.5) than DSS and DSM. The difference was more pronounced in the case of
strong family-wise Hochberg adjustment. This suggests that the DSP correlations
are in better agreement with control data set than correlations calculated for DSS
or DSM. Namely, as the multiple comparison adjustment for controls becomes more
restrictive, the corresponding DSP correlations increase in absolute value. However,
the observed difference is too small to make a definitive conclusion.

11.4 Problem with the small sample size of the
Down snydrome data set

The comparison between correlation values in control data set and in one of DS
data sets shows great variability for all three DS data sets (Figure 11.5-a,b,c). In
general, only correlations which are very high in controls (|r| > 0.5) are preserved
in DS data sets. Comparing the correlations among the DS data sets we observe a
similar pattern where only the high correlations seem to be constant, but the shape
of correlation points in [−1, 1]×[−1, 1]-space is different (Figure S3.2-a). Because of
the larger sample size the correlation distribution in controls is narrower than in DS
data sets so the observed difference in shapes is expected.
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Figure 11.5: Comparison of correlation among different data sets for all measured
CpG pairs on HSA21. (a) DSP vs. controls. (b) DSS vs. controls. (c) DSM vs.
controls. (d) Random subsample of 29 controls versus the remaining 699 control
samples.

Since the observed variability is present in all DS data sets, it can’t be caused by
Down syndrome condition. To test if the variability is caused by the small sample
size of DS data sets or by the difference in the data collection and normalization
which wasn’t removed by preprocessing and renormalization, we randomly selected
29 control samples and compared them to the remaining 699 samples (Figure 11.5-d)
and to the DS data sets (Figure S3.2-b). CpG correlation values for the random
subsample again show great variability in respect to the correlations calculated for
the larger (699) sample size, but the shape for all correlations is less dispersed than
in case of DS data sets. This suggests that the major cause of the variability is
in the small sample size, however some variability is still caused by the differences
between control data set and Down syndrome data set. These differences which

(a) (b) (c)

Figure 11.6: (a) Scatter plot of standard deviation of CpG correlation subsam-
pling versus CpG correlation. The subsampling was repeated for 100 times, each
time taking random subsample of 29 control samples from. The red horizontal line
represent standard deviation of subsampling equal to 0.11. (b) The CpG correla-
tions with Benjamini-Hochberg adjusted p-value smaller than 0.05 are plotted in
red. (c) The CpG correlations with Hochberg adjusted p-value smaller than 0.05
are plotted in red.
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Figure 11.7: CpG correlations which differ from the corresponding correlations
for controls by more than three bootstrap standard deviations. (a) Distribution
of correlation in controls for the CpG correlations which differ between DS data
sets and controls. (b) Correlation comparison between controls (x-axis) and DSP
(y-axis) for the CpG correlations which differ between DSP and controls.

remained after preprocessing and renormalization may be caused by variability in
data preparation or by unknown confounding variable that differs in the two studies.

With the aim to better understand the variability caused by small sample size
(n = 29), we calculated the standard deviation of subsampling for every correlation
between pairs of CpG sites (Figure 11.6-a). This confirmed our observation based
on a single subsample that high correlations remain preserved even in small sample
size. However, not all weak correlations has the same level of variability. It seems
that sensitivity to the reduction in sample size is the property of a pair of CpG
sites and is not simply dependant only on the correlation value. In fact, only highly
correlated pairs of CpGs are consistently robust with respect to small sample size.
Even the correlations which are significant after the BH or Hochberg adjustment
show high variability in case of the small sample size (Figure 11.6-b,c). Thus, if
we wish to compare DS data sets to the control data set we should use different
approach which takes into account the variability caused by small sample size.

To identify only the meaningful differences in correlation between DS data sets
and controls, we search for correlations which differ by at least three standard sub-
sampling deviations. 65 235, 55 382 and 55 684 correlations which differ between
controls and DSP, DSS and DSM, respectively, were detected. We were interested
to know what is the value of these correlations (Figure 11.7-a). It seems they are
roughly normally distributed around the zero which is in agreement with the ob-
served pattern of variability (Figure 11.6-a). However, the DSP have higher number
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of differentially correlated pairs of CpGs than DSS and DSM. Moreover, the DSP
correlations which differ from controls are mostly those correlations which were un-
correlated or weakly correlated in controls. This suggests that for Down syndrome
patients, new correlations are formed between CpG sites. This is again observed
in Figure 11.7-b which is a subfigure of Figure 11.5-a. The difference in number of
differentially correlated CpG pairs of ∼10 000 between DSP and DSS/DSM implies
slightly different shape between correlation plots (Figure 11.5-a and Figure 11.5-b,c).
However, this difference is hardly noticeable from the plots.

11.5 Correlation structure for the robust correla-
tions

The correlation noise caused by the small sample size of DS data sets makes the
comparison of correlation structure between DS and controls difficult. In fact, such
comparison at the whole chromosome level could lead to unreliable conclusions.
Thus we reduced our analysis only to those correlations which are robust with re-
spect to small sample size. We defined robust correlations as those correlations
whose standard deviation of subsampling was smaller than 0.11 (Figure 11.6-a, red
line). The value of 0.11 was chosen because we didn’t want to include robust cor-
relations with values close to zero, that is robustly uncorrelated pairs of CpGs. 588
correlation, 457 positive and 131 negative, satisfied the criteria. In the following
text, we refer to them as small-variance correlations. The corresponding 284 CpG

Figure 11.8: Correlation matrices of 284 small-variance CpG sites, calculated for
controls, DSP, DSS and DSM. The CpG sites are ordered by their location on HSA21
and only small-variance correlations are shown with negative correlations in blue and
positive correlations in red. Histogram shows distribution of correlation differences
between controls and the DS data sets, for shown small-variance correlations.
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Figure 11.9: Correlation matrix of 284 small-variance CpG sites, calculated for
controls, is shown on the right. The order of CpGs is based on cluster member-
ship for small-variance unweighted clustering. 76 CpGs from the first four clusters
are reshown in separate smaller correlation matrices. The left smaller matrix con-
tains only small-variance correlations, while the right smaller matrix contains all
correlations. Below the matrices, the HSA21 coordinates of all 284 CpGs and the
coordinates of CpGs in clusters are plotted.

sites are called small-variance CpG sites.
The correlation structure for the small-variance correlations was investigated in

DS data sets and compared to the one found in controls (Figure 11.8). We observe
high similarity of correlation structure among all data sets. The differences in small-
variance correlations between controls and DS data sets are similarly distributed for
all DS data sets (Figure 11.8, histogram). However, small difference may be noticed
for DSP which show the highest similarity to controls. In fact, if we calculate
the sum of element-wise distances between the sparse matrices of small-variance
correlations, we get the distances of 71.146, 89.503 and 82.979 for DSP, DSS and
DSM, respectively.

The small-variance CpG sites in Figure 11.8 are ordered by their chromosomal
position. Thus small clusters on the diagonal correspond to the CpG sites which
are in proximity to each other on HSA21. The other correlations are “scattered”
across the matrix. To gain a better insight into the observed correlation structure,
we wish to cluster the CpG sites into groups of highly correlated CpGs. Using
the small-variance unweighted method of clustering, we found 85 CpG communities
(Figure 11.9). The clustering uncovered an interesting correlation structure of 284
small-variance CpGs. Majority of clusters are “isolated” from the other clusters and
some are strongly negatively correlated to other clusters. Especially interesting is
the group of four bigger clusters of CpGs. Among them, the first cluster is negatively
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Figure 11.10: Correlation matrices of 284 small-variance CpG sites for controls
with different orders of CpGs. The order of CpGs is based on cluster member-
ship for (a) small-variance unweighted clustering, (b) positive correlation weighted
clustering, (c) positive correlation unweighted clustering.

correlated to the third and the second is negatively correlated to the fourth (Figure
11.9, left zoomed matrix). However, if we show all correlations among the CpGs in
these four groups, it seems that the third and fourth clusters form a single cluster
(Figure 11.9, right zoomed matrix). The HSA21 coordinates for CpGs which belong
to the four clusters are scattered across the chromosome and don’t show any special
pattern (Figure 11.9, left bottom).

The full correlation matrix of all 284 CpGs ordered with respect to membership to
85 found clusters shows interesting “stripe” pattern (Figure 11.10-a). This suggests
that some of the smaller cluster may in fact be part of the first four clusters. Thus
we try other clustering methods. The positive correlation weighted method finds
three big clusters of CpGs (Figure 11.10-b). The first two clusters are groups of
moderately to strongly correlated CpGs and the two groups are mutually negatively
correlated. While the third group may be added to the first based on correlation
pattern, correlation between its CpGs and the other CpGs is too weak. Finally, the
positive correlation unweighted method finds 61 cluster of CpGs (Figure 11.10-c),
but from the sorted correlation matrix we may see that these smaller clusters are in
fact part of two big weakly correlated clusters.

If we visualize correlation matrices for DS data sets with the same order of CpG
sites (Figure S3.3), we notice that only the small-variance correlations are consis-
tently preserved in the DS data sets. To assess the difference between correlation
structure in DS data sets and in controls, we calculate the distances between the
correlation matrices for 284 small-variance CpGs. Since the distance between the
correlation matrices is invariant to the order of variables, we may use any of the
full correlation matrices. The distance between controls and DSP, DSS and DSM is
0.449, 0.504 and 0.502, respectively. To better understand the meaning of these val-
ues, we computed the distribution of correlation matrix distances for different data
sets (Figure 11.11). The results suggest that for a random subset of CpG sites, the
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distance between controls and DS data sets is approximately the same. However, for
the small-variance CpGs the correlation structure of controls is surprisingely better
preserved in DSP than in DSS and DSM.

Figure 11.11: Distribution of distance between CpG-correlation matrices. Dis-
tances were calculated between controls and different data sets: DSP, DSS, DSM
and controls subsample. The red points are distances obtained for 284 small-variance
CpGs. The boxplots show distances calculated for 284 randomly chosen CpGs, with
100 repetitions. The controls subsample consists of 29 randomly chosen control sam-
ples. The subsampling was repeated 100 times, and the mean distances are reported
in boxplots and as the red point.

11.6 Correlation structure of the CpG island
There are 365 CpG islands on the chromosome 21 of which 325 are covered by
Illumina 450K microarray. We visually inspected all 234 CpG islands which had at
least 3 measured CpGs inside their region. Majority of them didn’t show any evident
difference between data sets. However, we found an interesting example where a
single CpG expressed negative correlation with the other CpGs of the same island
only in DSP (Figure 11.12-a). In general, as was the case at the chromosome level,
strong correlations remained preserved in all data sets (Figure 11.12-b,c). While for
the majority of CpG islands, the CpG sites are not strongly correlated (Figure 11.2-
a), the cases with the strong positive or negative correlations are the most interesting
for any subsequent analysis. To better understand the displayed plots we would need
to add another layer of information such as the genomic characterization of nearby
regions.
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(c)

Figure 11.12: Left. beta values for different data sets: controls (black), DSP
(red), DSS (blue) and DSM (green). Grey ticks on the x-axis are positions of all CG
dinucleotides, while the green polygons represent positions of RefSeq-defined exons.
Right. Correlation matrices for different data sets together with the correlation
matrix distance between them. The plotted CpG island are (a) chr21:34405577-
34406538, (b) chr21:45705425-45706044, (c) chr21:36258952-36259472.
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Chapter 12

Conclusion

Comprehensive characterization of the methylation correlation structure proved to
be a challenging problem. Nevertheless in this work we characterized the main
aspects of correlation structure, explained some of the problems with the data and
hopefully set the course for the future research. We focused on the chromosome 21
because of its connection to the Down syndrome condition and because of its small
size which made computations faster. However, the conclusions which are based on
the control data set can, with caution, be extended to other chromosomes.

For a pair of CpG sites, the relationship between their correlation and their
chromosomal distance isn’t straightforward. While for close CpGs, there is indeed a
greater probability for strong correlation, this is not the universal rule. We observed
many distant CpG pairs which were strongly correlated to each other as well as many
CpG islands made of uncorrelated or weakly correlated CpGs.

We considered the partial correlation approach. Different penalization methods
are frequently used in omics data sets to estimate the partial correlation matrix
among the elements of the system. However, the methylomics greatly differs from
the omics disciplines which are directly or indirectly based on the system of protein
coding genes, such as genetics, proteomics or transcriptomics. At the first glance,
the size of the system differs greatly with ∼20 000 protein-coding genes and more
than 480 000 CpGs measured by Illumina 450K array. But while the problem of
high dimension could be solved with more computational power, we believe that the
bigger problem is the intrinsic difference between the systems. While the interac-
tions between genes can be viewed as interactions between individuals, the observed
group behaviour [7] of CpG sites suggests that they in fact function as groups and
individually have very little biological power. Our findings are in agreement with
this hypothesis. When we sorted the correlation matrix for small-variance CpG
sites using different clustering algorithms, we noticed groups of CpGs which form
on diagonal. Interestingly these groups behaved as single entities. Namely, when
we observed correlations between the groups they had united pattern. Thus on the
larger scale we in fact got the network of the groups of CpGs. This type of correlation
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structure, based on our small-scale study, is not suited for the partial correlation ap-
proach because while accounting for all the“spurious” correlation, partial correlation
shrinks all correlations to almost zero.

This work aimed to find the distinctive characteristics of the methylation cor-
relations structure in Down syndrome. An interesting family-based design of the
Down syndrome data set provided two controls data sets, DSS and DSM, for the
DSP. However, the sample size of 29 subjects is not big enough to unravel the full
complexity of the system of CpGs sites, even when restricted to chromosome 21. We
verified this intuitive observation about the small sample size using the control data
set. Randomly sampling from the control data set, we demonstrated the instability
of correlations when sample size is equal to 29. In fact, only the strong correlations
remained preserved.

Statistical test for the significance of correlation could potentially be used to
find the meaningful patterns of correlation. However, when comparing two different
data sets one of which has a small sample size, these test could lead to many false
positive conclusions, even after the adjustment for multiple comparison. Thus we
took different approach and analyzed only correlations which are robust with respect
to the small sample size. However, because of their invariability, these correlations
are highly conserved in different data sets and we may miss some important differ-
ences in correlation if we restrict our analysis only to them. The “right” approach
is probably somewhere in the middle, as a trade-off between committing the type I
error and the loss of power.

We did, however, manage to find some small differences between DSP and
DSS/DSM. Our results suggest that in DSP, with respect to controls, new cor-
relations are being created. On the other hand, for strong correlations, the corre-
lation structure seems to be more similar between DSP and controls than between
DSS/DSM and controls. This is a surprising discovery and we are not sure what
could cause it, especially since the differences are small. It may in fact be the
consequence of some latent behaviour of the system or merely a noise in the data.

For the future work it would be interesting to include other data sets, possibly of
the larger size, and try to reproduce the observed behaviour of the system. Another
possible extension would be to include a multi-omics data set which could offer a
new layer of information.
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Conclusion

In this thesis, we aimed to describe three different biological systems with the ori-
gin in genomics, proteomics and methylomics. The gene length distribution was
successfully described as the relative species abundance (RSA) distribution of the
population of genes where the dynamic process of gene elongation corresponds to
the growth equation. Similarly, the distribution of protein domain abundances was
described as the RSA distribution in the population of protein domains where new
protein domains enter the community in time specified by Poisson process. For both
systems, the population dynamics model developed by Engen and Lande proved to
work well. This model includes both demographic and environmental noise as well as
the density regulation function. Both distributions were best fitted with the Poisson
Log-Normal distribution which emerges from the Gompertzian density regulation.
Gompertzian function allows the occurrence of more abundant species in compari-
son with the alternative linear density regulation which yields the Negative Binomial
model. Thus we conclude that the population of genes and the population of protein
domains are best described when both demographic and environmental stochastic-
ity are included in the model with the Gompertzian density regulation. Moreover,
when besides the protein-coding genes, we include into the model non-coding RNAs
and pseudogenes, we obtain the multimodal Poisson Log-Normal distribution. To
describe this extended dynamic system, we generalized Engen and Lande’s model
for the case when diverse subcommunities are observed together.

RSA distribution is a measure of biodiversity of the community at the certain
time point. Thus the gene length distribution and protein domain RSA distribution
are measure of diversity at the certain point of evolution. In Part I, we defined
the RSA phylogenetic method in bacteria which is based on the parameters of the
protein domain RSA distribution. The method gave some interesting results at the
intraspecies level of bacteria. In Part II, the description of metazoan species in
terms of their gene length distribution followed an evolutionary trend. Moreover,
the subcommunity parameter of the multimodal distribution was a good predictor
for different gene biotypes.

In Part III, we focused on the methylation data and we aimed to characterize
the methylation correlation structure in Down syndrome. For the system of CpG
sites on the chromosome 21, we considered the pattern of their interactions. We
observed that the CpG sites work in small highly correlated groups which can be
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viewed as unique entities in the methylation network. Interestingly, the nodes of this
network, that is, the groups of highly correlated CpGs were often scattered across
the chromosome. Thus the approach of grouping together highly correlated CpG
sites has different implications that the usual grouping of CpGs into CpG island.

From these three examples, we may conclude that an appropriate model for the
biological system offers valuable insights into the behaviour of the system which
may be missed if we merely observe elements of the system as separate independent
biological entities. Moreover, if we wish to estimate dynamical processes of the
complex system, including the stochasticity improves the resolution of the system
as it accounts for all unobserved variables in the system.
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Supplementary material

S1 Supplementary material of Part I

Figure S1.1: Scatter plot of bacterial genome length versus Poisson Log-Normal
parameter σ2 obtained fitting the protein domains RSAs. Figure shows only those
species which are represented with at least 10 different strains in our data set.
There are in total 1173 bacteria which belong to 48 different species. Different
colors represent different species, as indicated in the legend.
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(a)

(b)

Figure S1.2: Hierarchical clustering of 13 strains of Buchnera aphidicola, by RSA
method (left) and based on 16S rRNA gene (right). (a) Strains are colored by
the ratio between number of pseudogenes and protein-coding genes. We notice
that 12 stains have relatively low ratio while strain GCA 000183305 has ratio equal
to 0.429. (b) 13 strains have different aphid hosts: Acyrthosiphon kondoi (yellow),
Acyrthosiphon pisum (orange), Myzus persicae (magenta), Schizaphis graminum (vi-
olet) and Uroleucon ambrosiae (navy).
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Figure S1.3: Hierarchical clustering of 48 strains of Listeria monocytogenes,
by RSA method (left) and based on 16S rRNA gene (right). RSA method
identifies a separate cluster of two strains: N53-1 (GCA 000382945) and La111
(GCA 000382925) (violet).

Figure S1.4: Hierarchical clustering of 25 strains of Francisella tularensis, by RSA
method (left) and based on 16S rRNA gene (right). The strains belong to different
subspecies: holarctica (yellow), mediasiatica (orange), novicida (magenta) and tu-
larensis (violet). Strain TIGB03 (GCA 000248415) (dashed violet) is an attenuated
tularensis strain. More precisely, it is an attenuated O-antigen mutant of virulent
strain TI0902 (GCA 000248435).
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Figure S1.5: Hierarchical clustering of 22 strains of Xanthomonas citri, by RSA
method (left) and based on 16S rRNA gene (right). The strains have different origin:
Brazil (yellow), China (magenta) and USA (violet).
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S2 Supplementary material of Part II

Table S2.1: Species with multiple assemblies available [52]. The column Assembly
specifies the assembly used in this work. For species from the classes Actinopteri
and Mammalia, the reference genome is chosen. The only exception is the sheep
assembly Oar v3.1, which is chosen over the reference one since the reference genome
wasn’t available for download. For species from the classes Arachnica and Insecta, we
chose one of the available strains. We should note that the common name mosquito
is used for all species belonging to the taxonomic family Culicidae, to which genus
Anopheles belongs.

Species Species (common name) Assembly

Mus musculus Mouse GRCm38.p6

Canis lupus familiaris Dog CanFam3.1

Capra hircus Goat ARS1

Ovis aries Sheep (texel) Oar v3.1

Cricetulus griseus Chinese hamster CHOK1GS HDv1

Heterocephalus glaber Naked mole-rat HetGla female 1.0

Oryzias latipes Japanese medaka ASM223467v1

Cyprinus carpio Common carp common carp genome

Astyanax mexicanus Mexican tetra Astyanax mexicanus-2.0

Anopheles coluzzii Mosquito AcolM1

Anopheles sinensis Mosquito AsinS2

Anopheles stephensi Mosquito AsteS1

Ixodes scapularis Deer tick IscaW1
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Table S2.2: Definition and classification of gene biotypes, as defined by Ensembl
[52]. Only the biotypes found in the analyzed metazoan genomes are listed. Note
that some biotypes have multiple spellings, probably caused by a spelling mistake
in genome annotation.

Biotype group Ensembl biotype

protein coding protein coding, IG C gene, IG D gene, IG J gene, IG LV gene,
IG V gene, TR C gene, TR D gene, TR J gene, TR V gene, non-
translating CDS, polymorphic pseudogene, unknown likely coding

pseudogene pseudogene, processed pseudogene, unprocesses pseudogene,
unitary pseudogene, transcribed processed pseudogene,
transcribed unprocessed pseudogene, tran-
scribed unitary pseudogene, translated processed pseudogene,
translated unprocessed pseudogene, rRNA pseudogene,
tRNA pseudogene, IG pseudogene, IG C pseudogene,
IG D pseudogene, IG J pseudogene, IG V pseudogene,
TR J pseudogene, TR V pseudogene

small non-
coding RNA

miRNA, pre miRNA, rRNA, tRNA, sRNA, snRNA, snoRNA,
scRNA, scaRNA, SRP RNA, Mt rRNA, Mt tRNA, ncRNA,
piRNA, RNase MRP RNA, RNase P RNA, vault RNA,
vaultRNA, Y RNA, misc RNA

long non-coding
RNA

lncRNA, lincRNA, macro lncRNA, bidirectional promoter lncrna,
bidirectional promoter lncRNA, 3prime overlapping ncRNA, an-
tisense, antisense RNA, sense intronic, sense overlapping, pro-
cessed transcript, ribozyme

unknown TEC, transposable element
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(a) (b)

(c) (d)

(e) (f)

Figure S2.1: (a) Histogram comparison of the Negative Binomial and Poisson Log-
Normal fit for the gene length distribution in Homo sapiens. A fitting distribution
is calculated as a sample from posterior predictive distribution. (a) Traceplot of
the Bayesian Poisson Log-Normal mixture model for Homo sapiens gene length
distribution (without the burn-in period). (c-d) Histogram comparison and Poisson
Log-Normal traceplot for Mus musculus. (e-f) Histogram comparison and Poisson
Log-Normal traceplot for Danio rerio.
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Table S2.3: Contingency table for coding-pseudogene prediction methods for Mus
musculus. Two methods are compared, PoiLN method and logistic regression. (i)
Prediction of protein-coding genes. PoiLN method has precision of 0.896 with recall
of 0.928. Logistic regression has precision of 0.959 with recall of 0.654. (ii) Pre-
diction of pseudogenes. PoiLN method has precision of 0.874 with recall of 0.822.
Logistic regression has precision of 0.626 with recall of 0.954. (iii) Accuracy of
PoiLN method is 0.888 compared with logistic regression accuracy of 0.767.

PoiLN method logistic regression

true biotype coding pseudo coding pseudo total

coding 19153 1482 13496 7139 20635

pseudo 2224 10303 576 11951 12527

Figure S2.2: Dendrogram of 57 mammalian species. Distance is an Euclidean
distance in standardized (µ1, σ1, µ2, σ2)-space, with mean = 0, variance = 1 stan-
dardization. Different colors represent different taxonomic orders, as indicated in the
legend. Taxonomic orders to which only one species belonged are removed together
with all species which had less than 20000 annotated pseudo-coding genes.
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S3 Supplementary material of Part III

CpG coordinate on HSA21
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Figure S3.1: Clusters of CpG sites on HSA21. Every point represents a CpG
site with HSA21 coordinate on x-axis and cluster number on y-axis. Hierarchical
clustering with average linkage method was performed on the distance matrix among
3691 CpG sites, with dist = 1 − max(0, cor). Dendrogram was cut at the height
of 0.5, which resulted in 155 clusters with 528 CpGs in total and 3163 singletons.
Singletons are the CpG sites which aren’t part of any cluster and are not shown in
the figure.
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(a) (b)

Figure S3.2: Correlations between CpG sites on HSA21 were calculated for dif-
ferent data sets. (a) Correlation comparison among Down syndrome data sets. (b)
Correlation comparison between Down syndrome data sets and a random control
subsample. 29 control samples were randomly chosen among 728 control samples
and correlations among CpGs were calculated using only the chosen random sub-
sample.
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(a) (b) (c)

Figure S3.3: Correlation matrices for different data sets: controls, DSP, DSS
and DSM. All matrices show the same 284 CpG sites, possibly in different order,
with negative correlations in blue and positive correlations in red. (a) Only small-
variance correlations are shown. The order of CpGs is based on cluster membership
for small-variance unweighted clustering. (b) The same order of CpGs as in (a),
with all correlations shown. (c) All correlations shown with the order of CpGs based
on cluster membership for positive correlation unweighted clustering.
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