
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 33

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

A NOVEL FRAMEWORK FOR QUANTUM MACHINE LEARNING

Presentata da: Antonio Macaluso

Supervisore

Stefano Lodi

Esame finale anno 2021

Coordinatore Dottorato

Davide Sangiorgi

Co-supervisore

Claudio Sartori

To my dad

Acknowledgements

I am very grateful to my wonderful family and friends for their unwavering support
and kindness. I am particularly thankful to my sister Marilù and my mom Rita, for
always believed in me.

During my career, I have met several extraordinary teachers who allowed me to
reach important personal goals. I sincerely thank my supervisors Prof. Stefano Lodi
and Prof. Claudio Sartori for suggesting to focus my research on such an exciting topic.
Their expertise and guidance have been precious in formulating the right research
questions. Furthermore, I would like to thank Prof. Daniela G. Calò for being the best
teacher I have ever met. She introduced me to the fascinating world of research, and
with her passion and competence, she motivated me to consider the possibility of a
PhD. I would also like to extend my thanks to Prof. Herbert Wiklicky, who introduced
me to the field of quantum computing at the beginning of my PhD program. At that
time, the topic was unknown to me, and his lectures have been immensely inspiring to
choose quantum computing as the main theme for my PhD.

My deep gratitude is to my closest friends with who I spent wonderful moments.
Particularly, I thank Lorenzo for the lengthy discussions about physics, statistics and
everything we are passionate about. He always pushed me to improve and instilled in
me the curiosity for physics. Also, I thank Elena for helping me during these last three
years. Her advice and suggestions have been crucial to me. I will not forget to thank
Giuseppe and Silvia, with whom I spent amusing moments and for having survived so
many of my oddities.

Finally and foremost, I would like to thank my friend Luca for his patient support
and the stimulating discussions, as well as the happy distractions to rest my mind
outside of research. Besides a great colleague, he has always been a valuable friend, and
without his help, generosity, and extraordinary intellect, I would never have completed
my doctorate.

Nothing is more practical than a good theory.

Vladimir N. Vapnik

Quantum mechanics describes nature as absurd from the point of
view of common sense. And yet it fully agrees with experiment.
So I hope you can accept nature as She is - absurd.

Richard P. Feynman

Abstract

Computer Science and its applications had a massive impact on human life in the last
decades. Automating repetitive tasks, connecting people and resources thanks to the
Internet, and all the consequent services are just a few examples of how the classical
computation paradigm has profoundly influenced our perception of the world and our
interaction with it. Following this stream, recent developments in machine learning
designate artificial intelligence as the next big thing.

Although the math behind these techniques has been around for more than forty
years, the field’s current success revolves around two crucial factors: data and compu-
tational power. Hence, these agents are expected to be the driving forces of the next
sector advancements also in the short term. Data availability will continue to grow
due to the digital revolution, thus fostering innovative applications in the field. On the
other hand, with the cost of technology reaching a plateau (the end of Moore’s law)
and the physical limitations in building more powerful classical computers, improving
existing methods will become more challenging. As a result, the lack of adequate
computational power to analyse this ever-growing amount of information seems to be
the foremost hamper for future developments. In light of this, quantum computing
represents one possibility to bring the field of machine learning to a new era.

Quantum computation is an emerging computing paradigm with the potential to
revolutionise the world of information technology. It leverages quantum mechanics
laws to endow quantum machines with tremendous computing power, thus enabling
the solution of problems impossible to address with classical devices. For this reason,
the field is attracting ever-increasing attention from both academic and private sectors,
and its full potential is still to be understood.

This dissertation investigates how classical machine learning can benefit from
quantum computing and provides several contributions to the emerging field of Quantum
Machine Learning.

First and foremost, the idea is to provide a universal, efficient framework that can
reproduce the output of a plethora of classical machine learning algorithms exploiting
quantum computation’s advantages. The proposed framework is named Multiple

viii

Aggregator Quantum Algorithm (MAQA) due to its capability to combine multiple
functions to solve typical supervised learning tasks. Thanks to this property, in its
general formulation MAQA can be potentially adopted as the quantum counterpart of all
those models falling into the scheme of aggregation of multiple functions. The theoretical
design of the quantum algorithm and the corresponding circuit’s implementation are
presented. As a second meaningful addition, two practical applications are illustrated:
the quantum version of ensemble methods and neural networks.

The final contribution addresses the restriction to linear operations imposed by
quantum mechanics. The idea is to exploit a quantum transposition of classical Splines
to approximate non-linear functions, thus overcoming this limitation and introducing
significant advantages in terms of computational complexity theory.

The thesis is organised as follows. Part I explains the basic elements of quantum
computation. After a brief introduction to quantum mechanics’ postulates and their
implications, the key enabling requirements for a real quantum device are discussed.
Special focus is given on the different technologies to build quantum computers and
the difference between long-term fault-tolerant and error-affected near-term devices.
Furthermore, all the fundamental elements for quantum computation are presented,
including Dirac notation, qubits, quantum gates, quantum algorithms and quantum
complexity theory.

Part II introduces the emerging field of Quantum Machine Learning. After an
overview of classical methods, several proposals of quantum algorithms for machine
learning tasks are presented. The problem of state preparation is then examined, and
some considerations about complexity theory in Quantum Machine Learning are given.

Part III contains the innovative contributions of the thesis, and it is divided into
three parts. Firstly, the idea of a machine learning model as functions aggregator is
provided, and some algorithms falling into this framework are considered. Secondly,
the MAQA is introduced alongside two possible applications: quantum ensemble
methods and quantum neural networks. Thirdly, the idea of quantum splines and its
implementation, are illustrated.

Each contribution is corroborated from experiments executed on simulators and
real quantum devices that demonstrate in practice what is expressed by the theory,
thus showing the merits of the presented algorithms.

Table of contents

List of figures xiii

List of tables xvii

Nomenclature xix

I Quantum Computing 1

1 Introduction 3
1.1 A Brief Introduction to Quantum Mechanics 4
1.2 Requirements for Quantum Computers 8
1.3 Building a Quantum Computer . 9
1.4 Fault-Tolerant Computation . 11
1.5 Near-Term Quantum Computation . 12
1.6 Promising Applications and Future Directions 13

2 Basic Principles of Quantum Computing 15
2.1 Hilbert space and Dirac Notation . 15
2.2 Qubits and Quantum Gates . 17

2.2.1 Quantum Gates . 20
2.3 Entanglement . 24
2.4 Measurement . 25
2.5 Quantum Algorithms . 26
2.6 Quantum Computational Complexity 28

2.6.1 Time and Gate Complexity . 30

x Table of contents

II Quantum Algorithms for Machine Learning 33

3 Quantum Machine Learning 35
3.1 Overview on Machine Learning . 35

3.1.1 Empirical Risk Minimization . 36
3.1.2 Computational Complexity of Learning 38

3.2 Introduction to Quantum Machine Learning 38
3.3 Related works . 39

3.3.1 Quantum Variational Algorithms 40
3.3.2 Quantum Artificial Neural Networks 41
3.3.3 Quantum Algorithms for Ensemble Learning 42
3.3.4 Quantum k-Nearest Neighbour 43
3.3.5 Quantum Algorithms for Clustering 44
3.3.6 Quantum Linear Models . 44
3.3.7 Kernel Methods and Quantum Support Vector Machine 45

3.4 State Preparation in QML . 46
3.5 The Quest of Quantum Machine Learning 48
3.6 Research Contribution . 49

III A Novel Quantum Framework for Machine Learning 51

4 MAQA: Multiple Aggregator Quantum Algorithm 53
4.1 Machine Learning Model as Aggregator of Multiple Functions 53

4.1.1 Feedforward Neural Networks 54
4.1.2 Ensemble Methods . 57
4.1.3 Other Supervised Methods as Multiple Aggregators 57

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 61
4.2.1 Quantum Circuit Architecture 67
4.2.2 Computational Considerations 71

5 Quantum Algorithm for Ensemble Learning 73
5.1 Bagging Strategy for Ensemble Methods 74
5.2 Quantum Algorithm for Ensemble Learning 74

5.2.1 Quantum Algorithm for Boosting and Randomisation 79
5.2.2 Aggregation Strategy and Theoretical Performance 80
5.2.3 Computational Considerations 81

5.3 Experiments . 83

Table of contents xi

5.3.1 Quantum Cosine Classifier . 83
5.3.2 Quantum Ensemble as Simple Averaging 85
5.3.3 Performance of Quantum Ensemble 87

5.4 Benchmark on real-world datasets . 90
5.4.1 Datasets description . 90
5.4.2 Results . 93

5.5 Conclusion . 94

6 qSLP: Quantum Single Layer Perceptron 95
6.1 Motivation . 95

6.1.1 Neural Network as Universal Approximator 96
6.2 Variational Algorithm for Single Hidden Layer Neural Network 97

6.2.1 Encode Data in Amplitude encoding 98
6.2.2 Activation function . 98
6.2.3 Gates as Linear Operators . 99
6.2.4 Original prototype of Quantum Single Hidden Layer Network . 100
6.2.5 Experiments . 104

6.3 Experiments on real-world datasets . 107
6.4 Generalisation to H hidden neurons . 107
6.5 Discussion . 109
6.6 Conclusion . 111

7 Beyond Unitarity - Quantum Splines 113
7.1 Matrix inversion in Pattern Recognition 114

7.1.1 Regularisation and Ridge Regression 115
7.1.2 Spline Functions . 116

7.2 Quantum Algorithms for Linear Systems 118
7.2.1 Overview on HHL . 118
7.2.2 Quantum algorithm for HHL . 120

7.3 Quantum Activation Functions . 121
7.3.1 Quantum Spline . 122
7.3.2 Implementation . 122
7.3.3 Results . 124

7.4 Computational Efficiency . 125
7.5 Conclusion . 128

8 Conclusions and Outlook 129

xii Table of contents

References 133

Appendix A A Brief Introduction to Quantum Mechanics 143
A.1 Proof of the no-cloning theorem . 143

Appendix B Details on Quantum Ensemble 145
B.1 Swap-test to compute the cosine distance 145
B.2 Quantum Ensemble as Simple Averaging 147
B.3 Quantum Cosine Classifier . 150
B.4 Algorithm for Quantum Ensemble . 153

List of figures

2.1 Bloch sphere. 19
2.2 Quantum circuit for Bell state. First, the top qubit q0 is initialised into

uniform superposition. Then, q0 serves as control qubit (indicated with
a dot) of the CNOT. The bottom qubit, labelled as q1, is the target
qubit (indicated as ⊕) and is inverted if the control qubit is 1. 27

2.3 On the left the execution of the quantum circuit in Figure 2.2 using
the QASM simulator, which simulates an ideal, fault-tolerant quantum
computer. The distributions of the measurement results is almost
perfectly uniform between 00 and 11. The slight fluctuations in the
results depend on finite sampling of the output statevector. On the
right the same circuit is executed on a real device, the IBMQ_santiago
(QV32). In this case, the basis states 01 and 10 are also readout due to
decoherence that occurs on a real quantum system. 28

2.4 Complexity classes (Nielsen and Chuang, 2011). 29

3.1 Scheme of a hybrid quantum-classical algorithm for supervised learning.
The quantum variational circuit is depicted in green, while the classical
component is represented in blue. 40

4.1 Diagram of a Single hidden Layer Perceptron. The left-hand side repre-
sents the graph of an SLP model with p inputs, H hidden neurons and
one output node suitable either for regression or binary classification.
The right-hand side illustrates the functioning of each neuron after the
input layer. It receives a linear combination of outputs of the previous
layers and then applies an activation function that determines the actual
value that is then propagated further in the network. 56

4.2 Visual representation of SVM. 60
4.3 Quantum Circuit for MAQA. 67

xiv List of figures

5.1 Quantum algorithm for ensemble classification. The circuit contains
d pairs of unitaries U(i,1), U(i,2) and d control qubits. It produces an
ensemble of B classifiers, where B = 2d. The single evaluation of F
allows propagating the classification function f̂ in all trajectories in
superposition. The first d steps allows generating B transformations
of the training set (x, y) in superposition, and each transformation is
entangled with a quantum state of the control register (firsts d qubits).
Thus, the test set x(test) is encoded in the test register that interferes
with all samples in superposition. Finally, the ensemble prediction is
obtained as the average of individual results from each trajectory. . . . 78

5.2 Theoretical performance of the quantum ensemble based on the expected
prediction error of the base classifiers (Emodel) and their average cor-
relation (ρ). The ensemble size depends on the number of qubits d in
the control register. Each solid line corresponds to an error level, with
coloured bands obtained by varying ρ between 0 (lower edge) and 0.5
(upper edge). 82

5.3 Quantum circuit of the cosine classifier using xb as training vector and
x(test) as test vector. The training label yb is either |0⟩ or |1⟩ based
on the binary target value. The results of the classification based on
random generated data points are shown in Figure 5.4. 84

5.4 Predictions of the cosine distance classifier based on 103 randomly
generated datasets per class. The classifier is implemented using the
circuit in Figure 5.3. 85

5.5 Quantum results based on data in Table 5.1. The labels f̂b=1,··· ,4 indicate
the estimated probabilities for x(test) given the bth observation as training
set. The AVG bars are obtained by averaging the individual classifiers,
while qEnsemble represents the prediction of the quantum ensemble. . . 86

5.6 Comparison between the quantum ensemble (qEnsemble) and the average
of the four quantum cosine classifiers executed separately (AVG, brown
dots), which is computed classically. The simulation of the circuit on
the QASM simulator is illustrated in orange, while the light blue line
depicts the behaviour on a real device (ibmq_16_melbourne). 87

5.7 Dataset generated by two independent bivariate Gaussian distributions.
Mean vectors for the two classes are (1, 0.3) and (0.3, 1). The two
distributions have the same diagonal covariance matrix, with constant
value of 0.3. 88

List of figures xv

5.8 Distribution of the performance metrics as a function of the ensemble
size (legend colors) and the separation between the two classes (x axis). 89

5.9 Image representation of the digits 0 and 9. 91
5.10 Scatterplot of the two first principal components of the MNIST dataset.

The explained variance by these two components is 31%. 91
5.11 Original scatterplot matrix of the Iris dataset. 92
5.12 Scatterplot of the two firsts principal components of the reduced Breast

dataset. The explained variance is 99.8%. 93
5.13 Performance of the quantum ensemble on real-world datasets. 93

6.1 Diagram representation of a single hidden layer neural network. 96
6.2 Quantum circuit for training a qSLP. 101
6.3 Qiskit implementation of the two-neuron qSLP in Figure 6.2. The first

step consists in preparing the data and the control register. Then the
qubits of data and temporary (temp) registers are swapped through
controlled-swap. Two parametrised unitary transformations are applied,
each represented by two single-qubit rotation and a CNOT. Finally,
the controlled-SWAP is applied a second time, and the sigma function
(identity matrix) is implemented to the data register. 104

6.4 The plot on the left illustrates the distributions of generated data in the
two classes (0, 1). The plot on the right shows the trends over training
epochs of the cost function and the accuracy. 105

6.5 Assessment metrics trend as a function of distributions overlapping.
Larger standard deviations cause the two distributions to overlap, so
that observations belonging to the two classes are mixed together and,
hence, harder to separate. As a consequence, model performances
decrease and non-linearity is required. 106

6.6 Generalised qSLP that makes use of MAQA. 108

7.1 Hybrid QSpline with k = 20. 124
7.2 Full QSpline with k = 20. 125
7.3 Cost complexity as a function of the size, n, of the A matrix. The green

curves represent HHL and Conjugate Gradient for fixed s, κ, while the
blue ones are referred to matrix inversion with no assumptions. The
light blue shaded area illustrates the performance of HHL as the sparsity
varies (κ fixed). 127

B.1 Quantum circuit for Swap-test. 146

xvi List of figures

B.2 Qiskit implementation of the quantum ensemble for independent quan-
tum trajectories. 150

List of tables

3.1 Strategies of data encoding in a quantum system for a dataset of N
training points and p features: Basis uses a binary representation of
numbers, and the computation acts in parallel on all bit sequences in su-
perposition. Amplitude associates classical information (e.g. real vector)
with quantum amplitudes. Hamiltonian associates the Hamiltonian of a
system with a matrix that represents some meaningful transformations
of the matrix that represents the original data. For more details see
Schuld and Petruccione (2018b). 47

5.1 Each row of the table corresponds to a possible training observation. X1

and X2 are the features, d(·, ·) is the cosine distance of the training point
from x(test) and Pr(y(test) = 1) is the predicted probability computed
classically (see Equation (5.18)). 86

5.2 Performance comparison between quantum cosine classifier and quan-
tum ensemble of different sizes B = 2d. The first row indicates the
performance of the single quantum cosine classifier. The column N. train
indicates the number of training points used to build the ensemble, that
is limited to 8 because of limited number of qubits that is possible to
simulate using a simulator. 89

6.1 Test accuracy of multiple implementations. The performance deterio-
rates when using a real device. (ibmqvigo) 106

6.2 Performance metrics of the qSLP (Figure 6.3) on real-world datasets.
The model is trained using QASM simulator and tested on both simulator
and real device (ibmq_santiago). 107

xviii List of tables

7.1 Approximation metrics. The table shows the Residual Sum of Squares
(RSS) of both quantum and classical splines with respect to the true
activation functions. Quantum approaches are indicated as hybrid and
quantum. The average fidelity of the HHL is also reported. 126

7.2 Comparison of algorithms computational costs. 126

Nomenclature

Acronyms / Abbreviations

AI Artificial Intelligence

DL Deep Learning

HHL Harrow Hassidim Lloyd

MAQA Multiple Aggregator Quantum Algorithms

ML Machine Learning

QC Quantum Computing

QNN Quantum Neural Networks

qSLP quantum Single Layer Perceptron

QSVM Quantum Support Vector Machine

Part I

Quantum Computing

Chapter 1

Introduction

A computation is essentially a physical process performed on a machine whose operations
obey specific laws of physics. The classical theory of computation is based on the
model of the Universal Turing Machine, which works according to a set of rules and
principles set out in 1936 by Alan Turing and further elaborated by John Von Neumann
in the 1940s. The implicit assumption underlying these principles is that a Turing
machine idealises a mechanical computation device, with a potentially infinite memory,
that obeys the laws of classical physics. Despite enormous progress technologies made
in the last decades, these principles have remained essentially unchanged. Although
the theory of classical computation provides a potent tool to process and analyse
information, there are many limitations regarding what classical computers can do.
Thus, the possibility to explore different models of computation has always been taken
into consideration to push the Computer Science further.

In 1981, Richard Feynman during the First Conference on the Physics of Computa-
tion observed that the simulation of quantum physics was impossible to perform using
a classical device. In particular, Feynman denoted that an exact simulation of nature
was possible only considering a different kind of devices that would work the same
as nature itself. The importance in simulating physics stems from the fact that, as
Feynman said:

“The physical world is quantum mechanical, and therefore the proper problem is the
simulation of quantum physics (. . .) the number of computer elements to simulate a
large physical system is proportional to the space-time volume of the physical system

(. . .) If doubling the volume I would need an exponentially larger computer”.

Starting from these assumptions, Feynman proposed, for the first time, a basic model
for a quantum computer. A few years later, David Deutsch described the idea of the

4 Introduction

first universal quantum computer. Just as a Universal Turing machine can simulate any
other Turing machine efficiently (Church-Turing thesis), a universal quantum computer
can simulate any other quantum system with at most a polynomial overhead.

An important turning point happens in 1994 when Peter Shor proposes a novel
algorithm that allows a quantum computer to factor large integers efficiently. For the
first time, quantum computing appears as a general, alternative paradigm to overcome
the limitation of classical computing and perform tasks that are intractable using the
classical approaches, not necessarily related to quantum physics. Shor’s algorithm can
theoretically break many of the cryptosystems in use today, and its invention sparked a
tremendous interest in quantum computers. Two years later, Lov Grover, at Bell Labs,
invents the quantum database search algorithm that provides a quadratic speed-up
with respect to the best classical counterpart. The algorithm can be applied to a much
more all-inclusive variety of problems. Indeed, any problem that has to be solved by
random brute-force search can potentially leverage Grover’s algorithm.

From the nineties onwards, many quantum algorithms have been developed, and
theoretical research has provided many examples of how quantum computing can
handle intractable problems even for the best classical supercomputer. However, most
of those algorithms assume a perfect working quantum machine, that is something we
will not have soon. Besides this, in the last years, there has been tremendous progress
in the experimental developments of quantum computers, with the possibility to access
small machines that it is reasonable to think will be useful in future for specific cases.

1.1 A Brief Introduction to Quantum Mechanics

Quantum computers apply the laws of quantum mechanics to provide a different
mechanism for computation. Fortunately, in-depth knowledge of quantum physics is
not a prerequisite for understanding quantum algorithms, as it is not necessary to know
the engineering to build a processor to design classical algorithms. However, to be
familiar with quantum mechanics’ basic concepts allows a better understanding of the
mathematics behind quantum computation and the quantum algorithms themselves.

The quantum mechanics theory is ruled by a set of axioms (or postulates), derived
after a long experiment-and-failure process, that accurately describes the behaviour of
a quantum system. The first postulate defines the state space of quantum objects, the
ground in which quantum mechanics takes place:

1.1 A Brief Introduction to Quantum Mechanics 5

Postulate 1
Associated to any isolated physical system is a complex vector space with an inner

product (i.e., the Hilbert space) known as the state space of the system. The system is
completely described by its state vector, a unit vector in the system’s state space.

This postulate implies that any computational task that uses quantum mechanics
requires the input data to be mapped into the Hilbert space, that is a generalised
version of the traditional Euclidean space. Notice that this postulate does not provide
specific information about any physical state. It merely circumscribes the region within
which movements are allowed when a quantum system is analysed. The simplest
quantum mechanical system is the qubit, a two-dimensional state space. Suppose |0⟩
and |1⟩ form an orthonormal basis for the state space, then any arbitrary state vector
can be written as:

|ψ⟩ =
 a

b

 = a

 1
0

+ b

 0
1

 = a |0⟩+ b |1⟩ , (1.1)

where a and b are complex numbers, and the vector |ψ⟩ is subjected to a normalisation
condition, which means that the inner product of the state vector with its conjugate
transpose is equal to 1 (i.e. ⟨ψ|ψ⟩ = 1).

The second postulate relates the evolution of a quantum system:

Postulate 2
The evolution of a closed quantum system1 is described by a unitary transformation.

Thus, the state |ψ⟩ of the system at time t1 is related to the state |ψ′⟩ of the system at
time t2 by a unitary operator U which depends only on the times t1 and t2:

|ψ′⟩ = U |ψ⟩ . (1.2)

where U is a unitary matrix2. Just as the first postulate does not provide specific
information of a particular quantum state, the second postulate only tells what kind
of operation determines the evolution of a quantum system but does not give any
information about the construction of U . In quantum computing, a unitary matrix
U is called quantum gate, and it represents the basic object that allows performing
a generic computation on a given quantum state. As a consequence of the unitarity

1The postulate 2 describe the evolution of a system at two different times, but it can be revised to
describe the evolution in a continuous time by using the Schrödinger equation.

2A unitary matrix is a matrix whose inverse U−1 is equal to its conjugate transpose U†. Therefore,
the product between U and U† is equal to the identity matrix I, i.e. U · U† = I

6 Introduction

constraint on U , the No-cloning theorem forbids to create identical copies of an arbitrary
unknown quantum state. In practice, the No-cloning theorem argues that, given any
arbitrary quantum state |ψ⟩, it doesn’t exist a unitary transformation U such that
U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ (proof in Appendix A.1).

When considering the problem of function approximation, the constraint about
unitarity represents a big limitation for quantum computation, since it implies that
it is impossible to compute an output state vector that is a non-linear function
of the input. Actually, as shown in Chapter 7, there are (classical) methods that
allow approximating non-linear functions by solving a linear system in the space of
predetermined basis functions. The quantum transposition of these methods can help
to overcome the constraint about the unitarity of quantum operations for non-linear
function approximations.

Importantly, Postulate 2 requires the system to be closed, which means there is no
interaction with any other quantum system. However, there must also be times when
the system has to be observed to read out the information of interest. In this regard,
the third postulate considers the effect of measurement on a quantum system:

Postulate 3
Quantum measurements are described by a collection {Mm} of measurement operators,

where the index m refers to the measurement outcomes that may occur in the
experiment. If the state of the quantum system is |ψ⟩ immediately before the

measurement then the probability that result m occurs is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ , (1.3)

and the state of the system after the measurement is

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
, (1.4)

Notice that the measurement operator satisfies the completeness equation

∑
m

M †
mMm = I. (1.5)

An important example of measurement of a quantum system is the measurement of a
qubit in the computational basis, which provides two possible outcomes defined by the
two measurement operators M0 = |0⟩ ⟨0| ,M1 = |1⟩ ⟨1|3. Notice that every observable

3⟨0| indicates the row vector of |0⟩ then M0 is a 2× 2 matrix

1.1 A Brief Introduction to Quantum Mechanics 7

of a physical system is associated with a self-adjoint (or Hermitian) operator allowing
a complete set of eigenfunctions. In other words, the measurement operation allows to
retrieve a specific eigenvalue of the chosen Hermitian matrix, that is associated with a
specific computational basis of the measured state vector.

The fourth postulate describes the relationship between the state spaces of compo-
nent systems and the overall state space:

Postulate 4
The state space of a composite physical system is the tensor product of the state spaces

of the component physical systems. Moreover, if we have n systems, and i-th is
prepared in the state |ψi⟩ (for 0 ≤ i ≤ n), the joint state of the total system is

|ψ1⟩ ⊗ |ψ2⟩ · · · ⊗ |ψn⟩.

Since the tensor product of (finite-dimensional) vector spaces has dimension equal
to the product of the dimensions of the factors, if the component systems are single
qubits, the whole state space is described by a 2n possible basis states.

As a consequence of these postulates, quantum computation has three main features
that enable quantum algorithms to solve intractable problems for classical algorithms.
These features are superposition, entanglement, and interference.

The superposition means that a quantum system exists in all of its possible basis
states at the same time. Differently from classical bits, that can be 0 or 1, the
ability of a qubit to be in a linear combination of the |0⟩ and |1⟩ allows to evaluate
a function on many inputs simultaneously. In practice, the superposition is the
mathematical interpretation of the particle-wave duality that is a phenomenon which
allows matter to exist simultaneously as particles (because it can be assigned definite
quantities like location and momentum) and as wave (as a propagating disturbance in
some underlying field). Particle-wave duality has been proved in many experiments,
though this behaviour has not been predicted by the theory but it has been observed
experimentally and then led to the definition of the theory.

Another important property is the entanglement, that produces correlation between
the measurements of two distinct quantum systems. For instance, two qubits can be
entangled in such a way that acting on one will affect the other. As a result of the
entanglement, it is possible to perform the quantum teleportation of a quantum state,
where two or more particles are inextricably linked to each other. If two particles
are entangled and shared between two separate locations, the encoded information is
teleported, no matter the distance between them.

Interference is a phenomenon derived by the ability of a quantum system to behave
as wave. It usually refers to the interaction of waves that are correlated or coherent

8 Introduction

with each other, either because they come from the same source or because they have
nearly the same frequency.

All these three features will be employed to propose a novel quantum framework
that allows to perform machine learning tasks efficiently.

1.2 Requirements for Quantum Computers

Quantum computers are machines that use the properties of quantum mechanics
to store and process information. The most critical characteristic is the closed box
requirement: it is impossible to observe a quantum system without producing an
uncontrollable disturbance, and it is necessary to keep that system perfectly isolated
from the rest of the universe to perform computation. Also, we should be able to
control the quantum system from outside and eventually to read out the result, while
the qubits have to interact with each other to process information. All these aspects
make the construction of a quantum device a highly challenging task.

There are five requirements (DiVincenzo, 1997) to build an efficient and reliable
quantum device: (i) the degrees of freedom of the quantum system must be precisely
delineated, which means that the dimensions of the correspondent Hilbert space should
be precisely enumerable in terms of the number of possible states allowed; (ii) it must
be possible to initialise the quantum system in a fiducial starting quantum state (e.g.
the all-zero state); (iii) a quantum system has to be, as much as possible, isolated from
the rest of the environment. In particular, if the state of the computer at instant t1 is
ideally supposed to be |ψ⟩, then the same state at t2 should differ from |ψ⟩ by only a
small amount; (iv) it must be possible to control the quantum system by a sequence
of unitary transformations. In fact, any quantum algorithm is expressed in terms of
such sequences; (v) it is necessary to act on the quantum system with a strong form
of measurement. Strong means that the measurement determines which orthogonal
eigenstate of some particular Hermitian operator the quantum state belongs to.

All these requirements need to be fulfilled in order to make a quantum system usable
for computation. The most challenging one is probably the ability to isolate the system,
since quantum systems are by nature very fragile and sensitive to small amounts of
information leakage that can disturb quantum mechanical waves. This destructive
process is known as decoherence and no system is fully free of it. However, small
amounts of decoherence can be mitigated using Quantum Error Correction (QEC).

In classical computing, the basic principle of error correction is that the number
of bits used to encode a given amount of information is increased. Starting from

1.3 Building a Quantum Computer 9

this redundant encoding, a set of instructions, known as an error correction code
are specified, to obtain the information of interest (Devitt et al., 2013; Hamming,
1950; MacKay and Mac Kay, 2003). The same idea applies to quantum computing,
where the number of qubits is increased to correct the noise due to the effect of
decoherence. The use of QEC makes necessary the distinction between logical and
physical qubits. A logical qubit is the one used for programming where an n-qubit
quantum state is represented using 2n − 1 complex numbers. A physical qubit is
the actual implementation of a logical qubit in a real quantum device. Real physical
qubits suffer from decoherence. Usually, logical qubits are implemented on top of
multiple physical qubits to get redundancy. Realistically, most of the resources used in
a fault-tolerant quantum computer will be used to correct its own errors.

QEC is the most promising approach to protect quantum computation and scale
efficiently quantum computers. Unfortunately, there is a significant overhead cost for
doing it, so reliable quantum computers are not likely to be available in the near future.
However, recent developments in building small scale quantum devices pushed towards
the search for algorithms capable of exploiting such devices that, despite being noisy,
can help to deal with difficult problems.

1.3 Building a Quantum Computer

There are many different ways in which a qubit can be generated: as the two different
polarisations of a photon, the alignment of a nuclear spin in a uniform magnetic field,
the two states of an electron orbiting a single atom. Each possible realisation of a qubit
leads to building a different quantum device, and each technology presents specific
challenges. In this section, the main technologies are discussed, with particular focus
on those that represent the most promising approaches to building a full-scale quantum
computer.

Superconductors
The quantum architecture based on superconducting qubits is the leading candidate

for scalable quantum computing platform. Superconductivity is the property of some
materials to conduct electricity and shield magnetic fields perfectly if they are cooled
down to low temperatures. It is a macroscopic quantum phenomenon since the carriers
of electric charge in a superconductor first pair up and then condense into a single
quantum state as a single large atom. Using small contacts between superconductors
(so-called Josephson junctions), it is possible to engineer a variety of quantum circuits

10 Introduction

and run quantum algorithms on them. The advantages of superconducting qubits are
the following (Huang et al., 2020). High designability: different types of qubits can be
designed and adjusted based on different requirements. Scalability: superconductors
are based on the existing processes, and high-quality devices can be built by leveraging
advanced chip-making technologies to improve the scalability of the quantum system.
Easy to couple: superconducting qubits can be coupled by capacitance and inductance,
this makes relatively easy to couple multiple qubits together. Easy to control: commer-
cial microwave device can be used in superconducting quantum computing experiments
to perform operations and measurement. All these features make such technology the
most promising approach towards fault-tolerant quantum computers.

Recently, most of the efforts to build a quantum processor have been devoted
to developing superconductor technology and the milestone of demonstrating quan-
tum supremacy has been achieved using a Quantum Processing Unit (QPU) of 53
superconducting qubits (Arute et al., 2019).

Photons
Realising a qubit as the polarisation state of a photon is appealing because photons

are relatively free of decoherence, that is the main issue of other quantum technologies.
Photonics is currently the only architecture that enables building a room-temperature
and easily-networked quantum computer. The qubits usually are encoded into the
states of light using a method called GKP (Gottesman et al., 2001) that allows
implementing them using standard integrated photonic devices. Moreover, photonic
quantum computers allow efficient implementation of one-qubit gates that can be easily
performed with incredibly high fidelity. Also, they are not confined to a unit of quantum
information described by a superposition of two states (qubits), but they potentially
allow to encode multilevel qudits (generalisation to a superposition of d possible states).
However, photons do not easily interact, making deterministic two-qubit gates as the
biggest hurdle to overcome. Furthermore, although an optical quantum computer can
potentially work at room temperature, it requires costly dedicated hardware.

Recently, the company Xanadu released the first photonic quantum computing
platform4, describing the photonic quantum computing as the most viable approach
towards universal fault-tolerant quantum computation.

Trapped Ions
An ion is defined as an electrically charged molecular entity that results from the
4https://www.xanadu.ai/cloud-platform

1.4 Fault-Tolerant Computation 11

transfer of one or more electrons by an atom, a molecule or a group of atoms linked
together. The first proposal of a quantum computer based on cold trapped ions
appeared in (Cirac and Zoller, 1995). In this scheme, the qubits are realised by ions
confined in radiofrequency traps.

In quantum computers based on trapped ions, single-qubit gates (Brown et al.,
2011), two-qubit gates (Benhelm et al., 2008), state preparation routine and readout
(Myerson et al., 2008), can be performed with a fidelity exceeding that required for
fault-tolerant quantum computation using high-threshold quantum error correction
codes. However, despite the promise shown by trapped ions, there are still many
challenges that must be addressed in order to realise a practically useful quantum
device. Main among these is increasing the number of qubits while maintaining the
ability to control and measure them individually with high fidelity.

To summarise, there is no single way to achieve full-scale quantum device and
the roadmap to a universal quantum computer is still evolving. Thus, the best way
to accomplish a computational task depends on the strengths and weaknesses of the
physical system at hand. Even so, the essential ingredients remain a robust, high fidelity
execution of quantum operations, which is the goal of all physical implementations
of quantum computers. A large number of other technologies exhibiting quantum
coherence have been proposed and tested for quantum computers. For a complete
review see Ladd et al. (2010).

1.4 Fault-Tolerant Computation

The number of qubits is essential for building a full-scale quantum computer, but that
is not the only requirement. What it is necessary to care about is also the quality
of those qubits and, in particular, the accuracy in transforming them5. In fact, the
central challenge in building quantum computers is maintaining the simultaneous
ability to control the quantum system and to preserve its strong isolation. These two
characteristics lead to the main plague for a fault-tolerant quantum architecture, that
is known as quantum decoherence. Technically, the decoherence is measured by two
parameters: the energy relaxation (T1), which is the time taken for the excited state
|1⟩ decays toward the ground state |0⟩, and the coherence time (T2), that describes
how long a phase of qubit stays intact.

5with the current best hardware, it is possible to control trapped ions or superconducting circuits
with an error rate for two-qubits gates above .1% level.

12 Introduction

Another important metric to consider is the time to execution for setting the time
scale needed for a quantum device to solve a problem. In this sense, it is notable that
superconducting circuits are about a thousand times faster than ion trap quantum
processors. In this regards, IBM developed a metric, known as QuantumVolume (Cross
et al., 2019) that can be measured using a concrete protocol on near-term quantum
computers of modest size. In particular, this measure quantifies the largest random
circuit of equal width and depth that the computer successfully implements, and
it represents a pragmatic way to measure and compare progress toward improved
system-wide gate error rates for near-term quantum computation and error-correction
experiments.

Besides the incredible advances made in the last few years, the noise produced by
the available quantum devices is much larger than the signals and, practically, scaling
up using QEC is something far from practice. Therefore, a large-scale, error-corrected
quantum computer is still an extremely ambitious goal.

1.5 Near-Term Quantum Computation

As discussed above, the construction of full-scale, error-corrected quantum devices still
poses many technical challenges. At the same time, significant progress has been made
in the development of small-scale quantum computers, hence giving rise to the so-called
Noisy Intermediate-Scale Quantum (NISQ) era. The terms intermediate-scale refers to
the size of quantum computers that are currently available with a number of qubits
ranging from 50 to a few hundred. Noisy emphasises that it is not possible to control
over those qubits perfectly; the noise will place severe limitations on what quantum
devices can achieve in the near term. Thus NISQ machines are still not sufficiently
powerful to be a credible alternative to classical ones and cannot be used to execute
many of the algorithms described in the literature6. Furthermore, noise in quantum
gates limits the size of quantum circuits that can be executed reliably. However, 50
qubits is a significant milestone because it is beyond what can be simulated by brute
force using the most powerful existing digital supercomputers. Hence, it is not expected
for NISQ devices to change the world by itself. Instead, they should be regarded as a
step toward more powerful quantum technologies that will be developed in the future.

For these reasons, many researchers are currently focusing on algorithms for NISQ
machines that may have an immediate impact on real-world applications, e.g. chemistry

6quantum algorithms that assume accessing a fault-tolerant quantum device are also known as
full-coherent protocols.

1.6 Promising Applications and Future Directions 13

(Lanyon et al., 2010) and optimisation (Farhi et al., 2014; Kandala et al., 2017).
In particular, recently the idea of quantum computational supremacy (Harrow and
Montanaro, 2017; Preskill, 2012) has been proved in practice by Google (Arute et al.,
2019) using a processor with programmable superconducting (physical) 53 qubits.
Quantum supremacy argues that, under reasonable assumptions, quantum states
which are easy to prepare with a quantum computer have super classical properties;
specifically, measuring all the qubits in such a state corresponds to sample from a
correlated probability distribution that cannot be sampled from by any efficient classical
means. The experiment performed by Google took about 200 seconds to sample one
instance of a quantum circuit a million times. The equivalent task for a state-of-the-
art classical supercomputer would take approximately 10.000 years7. This dramatic
increase in speed compared to all known classical algorithms can be considered an
experimental realisation of quantum supremacy for this specific computational task.

The realisation of quantum supremacy is an incredible milestone because it allows
appreciating the potential of quantum computation. However, it is mostly a worthy
goal notable for entrepreneurs and investors to attract attention in the field, rather
than a sign of significant progress toward more practical applications.

Although NISQ technology will not be the quantum revolution expected, it is
reasonable to think that near-term quantum devices are special-purpose devices that,
together with classical methods, will be able to solve problems bounded to specific
fields of application.

1.6 Promising Applications and Future Directions

In general, it is possible to think of at least three good reasons to suppose that quantum
computers have capabilities surpassing classical computers. First, there are already
quantum algorithms that (theoretically) can solve classically intractable problems, e.g.
Shor’s algorithm for prime factors of large composite integers. Second, complexity
theory arguments regarding quantum computers can efficiently prepare quantum states
with extremely hard properties to reproduce using classical simulations (e.g. the
experiment of quantum supremacy). Third, no classical algorithm can simulate a
quantum computer efficiently. This task would require exponentially larger resources
while increasing linearly the number of qubits of the quantum system to simulate.

7There is a controversial opinion provided by IBM that argues that an ideal simulation of the same
task can be performed on a classical system in 2.5 days and with far greater fidelity.

14 Introduction

In practice, there are many applications where quantum computation may have an
impact in the future. Likely, the best natural way to leverage quantum computation
is by quantum simulation. This task was the main goal of Feynman’s proposal. The
simulation of strongly entangles matter is a challenging computational problem and, in
the long term, the simulation of different quantum systems will be the main field of
application for quantum computers. This topic also involves quantum chemistry where
it has been shown that even NISQ technology can help to solve a difficult problem for
a classical algorithm in use.

Another promising field is represented by optimisation. Indeed, there are some
combinatorial optimisation problems for which even finding a good approximated
solution can be an NP -hard problem (Khot, 2016). In this sense, the most promising
approach is the use of Quantum Approximate Optimization Algorithm (QAOA) (Farhi
et al., 2014) that exploits adiabatic quantum computation8 to produce approximate
solutions for combinatorial optimisation problems.

Given the recent success of Machine learning (ML) and Deep Learning (DL), it
is natural to examine whether quantum algorithms will be able to enhance classical
methods to improve them even further. In principle, many methodological reasons
suggest the ability of quantum phenomena to improve classical ML methods, but the
road towards Quantum Machine Learning is still long and full of obstacles. However,
the history of ML teaches us that when hardware becomes available, that stimulates
and accelerates the development of new algorithms. This may be the case also for
quantum machine learning algorithms.

In all these fields of application, the distinction between fault-tolerant and near-term
is necessary to understand the impact of quantum computation in real-world problems.
Also, it is essential to make progress using NISQ devices by developing better methods
guided by relatively small-scale experiments that can lead QC communities in the right
direction.

8Adiabatic quantum computation is a form of quantum computing which relies on the adiabatic
theorem to do calculations. The company D-Wave (https://www.dwavesys.com/) use a process called
quantum annealing to search for solutions to a problem.

https://www.dwavesys.com/

Chapter 2

Basic Principles of Quantum
Computing

In this chapter, the basics to understand quantum computation and its potential are
provided. The chapter is constructed as follows: Section 2.1 introduces the formalism
typically employed in quantum mechanics and quantum computing. This formalism
allows manipulating linear algebra objects that describe the properties of quantum
systems. Section 2.2 describes qubits and quantum gates that are the two fundamental
concepts that permit to move from pure mathematical formalism to design real quantum
algorithms. Also, the most important quantum gates are described, with a particular
focus on those in use in the proposal of this thesis. Sections 2.3 and 2.4 describe two of
the most important properties of quantum computation. The first one is Entanglement.
It represents a sort of strong correlation between quantum systems, and it is something
impossible to reproduce using classical computation; the second one is measurement
that has important implications when applied to quantum computing. Section 2.5
set out the idea of quantum algorithms. The circuit model is introduced, and a
few examples of quantum algorithms are provided. Finally, Section 2.6 discusses the
computational complexity framework where a quantum algorithm can be analysed,
underling the differences with classical computation.

2.1 Hilbert space and Dirac Notation

Before discussing the basics of quantum computation, it is necessary to introduce the
mathematical formalism typical of quantum mechanics, which is inherited by quantum
computing itself. This formalism is known as Dirac (or Bra-ket) notation, and it is
another way of describing vectors.

16 Basic Principles of Quantum Computing

A column vector v in Dirac notation is described as:

v =

v0

v1
...
vn

 = |v⟩ , (2.1)

where {vi}i=0,...,n are complex numbers and |v⟩ is referred to as “ket-v”. The correspon-
dent dual vector of |v⟩ is called “bra-v”and has the following notation:

⟨v| = vT =
[
v0 v1 . . . vn

]
, (2.2)

where vi is the complex conjugate of vi (it is common also the notation v∗). Notice
that the vector vT is also known as the adjoint of v and is usually described using the
standard notation v†.

Dirac notation is convenient when describing vectors in the Hilbert space Cn, which
is the vector space to represent a quantum system. In particular, a finite-dimensional
Hilbert space is a vector space with an inner product and a norm defined by that inner
product1. The inner product is an operation that assigns a scalar value to each pair
of vectors u and v in the vector space and it is denoted as ⟨u|v⟩. In practice, it is
calculated as the dot product between v and uT (the conjugate transpose of u):

⟨u|v⟩ = uT v =
[
u0 u1 . . . un

]

v0

v1
...
vn

 = u0 · v0 + u1 · v1 + · · ·+ un · vn. (2.3)

By definition, the inner product satisfies the following conditions:

1. ⟨v|v⟩ ≥ 0 with ⟨v|v⟩ = 0 if and only if |v⟩ = 0;

2. ⟨u|v⟩ = ⟨v|u⟩ for all |u⟩, |v⟩ in the vector space;

3. ⟨u|α0v + α1w⟩ = α0 ⟨u|v⟩+ α1 ⟨u|w⟩;

More generally, the inner product of |u⟩ and ∑i αi |vi⟩ is equal to ∑i αi ⟨u|vi⟩ for
all scalars αi and vectors |u⟩, |v⟩ in the vector space (this is known as linearity
in the second argument).

1The norm is the length of a vector, or alternatively, the distance from the origin to the point that
the vector represents.

2.2 Qubits and Quantum Gates 17

Also, the 2-norm (or l2-norm) of a vector in a Hilbert space is defined using the
square root of the inner product of |v⟩ with itself:

|| |v⟩ ||2 =
√
⟨v|v⟩. (2.4)

Another important operation is the tensor product (or Kronecker product) that is
denoted as ⊗. Given two column vectors |u⟩ and |v⟩ of lengths m and n, the tensor
product |u⟩⊗|v⟩2 between them is a column vector of length m ·n calculated as follows:

|u⟩ ⊗ |v⟩ =

u1

u2
...
um

⊗

v1

v2
...
vn

 =

u1 · v1

u1 · v2
...

u1 · vn

u2 · v1
...

um−1 · vn

um · v1
...

um · vn

. (2.5)

The tensor product is extremely important because represents the mathematical
abstraction to describe the interaction between quantum systems: the vector space
describing one quantum system tensored with another vector space of another quantum
system is the vector space composed by the linear combinations of all the vectors in
the two vector spaces. Also, a vector tensored with itself n times is denoted as |v⟩⊗n.

Since the composition of many quantum systems can be described as the tensor
product between them, the overall dimension of the Hilbert space grows exponentially,
while increasing the number of component systems linearly, thus without an exponential
cost in resources.

2.2 Qubits and Quantum Gates

The basic unit of information in classical computing is the bit, that can assume two
possible values: 0 or 1. Just as a classical bit, a qubit has two possible basis states |0⟩
and |1⟩ which correspond to the two possible values of a classical bit. The difference

2The tensor product is usually simplified as |u⟩ |v⟩ or |uv⟩.

18 Basic Principles of Quantum Computing

between bits and qubits is that a qubit can be in an additional state that is a linear
combination of the two basis states (superposition):

|ψ⟩ = α |0⟩+ β |1⟩ , (2.6)

where α and β are complex numbers and are indicated as amplitudes. Mathematically,
the state of a qubit can be seen as a two-dimensional complex vector space, where
|0⟩ and |1⟩ are special cases of the superposition known as computational basis states.
They form an orthonormal basis for this vector space.

Another difference between bits and qubits regards the operation of measurement.
While the value of a bit can be accessed easily, quantum mechanics imposes that much
more restricted information about the quantum state of a qubit can be retrieved. When
a qubit is measured, the probability to obtain either |0⟩ or |1⟩ are respectively |α|2 and
|β|2. Since the squared of the amplitudes are probabilities, they must sum to one, then
|α|2 + |β|2 = 1. Thus, a state of a qubit is a unit vector in a two-dimensional complex
vector space.

In practice, the superposition of states means that the qubit is in |0⟩ and |1⟩
at the same time, this idea runs counter the “common sense” of the physical world
around us. Nevertheless, from a statistical perspective, the measurement of a qubit
can be considered as a random variable, where the quantum states are the possible
outcomes and the amplitudes are the square root of the probabilities associated. Thus,
quantum states can be seen as a generalisation of probability distributions and quantum
computation is a way to transform them. Furthermore, because of the constraint on
the norm, Equation (2.6) can be rewritten as follows:

|ψ⟩ = eiγ

(
cos

θ

2 |0⟩+ eiϕsin
θ

2 |1⟩
)
, (2.7)

where θ, ϕ and γ are real numbers. Notice that it is possible to ignore the factor
eiγ because it has no observable effects, then a specific quantum state is determined by
θ, ϕ. From a geometrical perspective, the Bloch sphere (Figure 2.1) provides a useful
representation for visualising the state of a single qubit.

Many of the operations on a single qubit are described with a specific transformation
in a Bloch sphere. However, it is important to point out that this intuition is limited
since there is no simple generalisation of the Bloch sphere when dealing with multiple
qubits.

2.2 Qubits and Quantum Gates 19

Fig. 2.1 Bloch sphere.

The composition of n qubits3 generates a state space of dimension 2n (Postulate
4). Then each normalised vector in such space represents a possible outcome of a
measurement. This exponential growth in the state space, suggests the potential
capacity of a quantum computer to process information exponentially faster than a
classical supercomputer. Observe that for n = 200, the total number of basis states is
greater than the total number of atoms in the universe.

Formally, a quantum register of n qubits is an element of the 2n dimensional Hilbert
space, C2n , with computational basis formed by 2n registers of n qubits:

|i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ , (2.8)

where ix ∈ {0, 1} and 1 ≤ x ≤ n.
For instance, a two-qubit system has four computational basis states denoted as

|00⟩, |01⟩, |10⟩, |11⟩. A pair of qubits can exist in a superposition of these four states
so the quantum state of two qubits associates a complex coefficient (amplitude) at
each computational basis. The whole quantum system can be described as follows:

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =
22−1∑
j=0

αj |j⟩ , (2.9)

3also called n-qubit quantum register.

20 Basic Principles of Quantum Computing

where

|0⟩ = |00⟩ =

1
0
0
0

 , |1⟩ = |01⟩ =

0
1
0
0

 , |2⟩ = |10⟩ =

0
0
1
0

 , |3⟩ = |11⟩ =

0
0
0
1

 .
(2.10)

The measurement result x comes out with probability |αx|2, subject to the normalisation
condition ∑x∈{0,1}2 |αx|2 = 1.

Since the whole system is described by two qubits that are separate physical objects,
one can think to measure just one of the two qubits. In this case, if considering to
measure the first qubit, the probability to readout the state |0⟩ is |α00|2 + |α01|2. Thus,
the post measurement state is:

|ψ′⟩ = α00 |00⟩+ α01 |01⟩√
|α00|2 + |α01|2

, (2.11)

Notice that the post-measurement state is re-normalised as expected for a legitimate
quantum state.

An important two-qubit state is the EPR pair (Einstein et al., 1935) (or Bell state):

|00⟩+ |11⟩√
2

, (2.12)

that represents the maximal example of quantum entanglement. When measuring a
Bell state, the two qubits can be either |0⟩ or |1⟩. However, while the first measurement
of one of the two qubits leads to perfectly random results, the measurement of the
second qubit is affected by the first measurement and would surely be the same. The
two outcomes are then perfectly correlated, and this correlation is something beyond
what is possible in the classical world. Indeed, once two qubits are entangled, the
possible outcomes in measuring them are correlated independently by their distance.

Entanglement is the key of quantum teleportation and superdense coding, two
quantum protocols for communication.

2.2.1 Quantum Gates

The formalism underlying any algorithm based on classical computing is the Boolean
circuit model that can be represented by a finite directed acyclic graph with n input

2.2 Qubits and Quantum Gates 21

nodes, which contains the n input bits (n ≥ 0). The internal nodes are logic gates
(e.g., AND, OR, and NOT) that implement Boolean functions.

The quantum counterpart of classical Boolean circuit families is the quantum circuit
model that considers qubits instead of classical bits as input, and replace the AND, OR,
and NOT gates by elementary quantum gates, to manipulate quantum information.
A quantum gate is a unitary transformation usually performed on a small number of
qubits. Mathematically, these gates can be composed by taking tensor products, if
gates are applied in parallel to different parts of the register, and ordinary products, if
gates are applied sequentially. An example is the quantum NOT gate (denoted by X)
which is the analogue of classical NOT gate. Given an input qubit, X-gate interchanges
the role of the basis state |0⟩ and |1⟩ performing the following transformation:

α |0⟩+ β |1⟩ X−→ α |1⟩+ β |0⟩ . (2.13)

It is possible to express the transformation of the quantum NOT gate in matrix form:

X |ψ⟩ = X

 α

β

 =
 0 1

1 0

 α

β

 =
 β

α

 . (2.14)

So single quantum gate can be described by unitary two by two matrices. Notice that
the normalisation condition |α|2+|β|2 = 1 for a generic quantum state |ψ⟩ = α |0⟩+β |1⟩
has to be true also for the transformed quantum state after the application of a quantum
gate. Furthermore, due to the laws of quantum mechanics, any appropriate gate U
can be represented by a unitary matrix, i.e., U †U = I, where U † is the adjoint of
U (obtained by transposing and then complex conjugating U), and I is the identity
matrix. Also, since unitary matrices are always invertible, unlike classical computation,
any quantum computation is reversible. Importantly, the unitarity constraint is the
only constraint on quantum gate, then any unitary matrix represents a valid quantum
gate.

We can represent any single qubit gate as a unitary matrix parametrised as follows:

U(θ, ϕ, λ) =
 cos(θ/2) −eiλsin(θ/2)
eiϕsin(θ/2) eiλ+iϕcos(θ/2)

 , (2.15)

where θ, λ and ϕ are real numbers. For example the NOT gate can be expressed as
U(π, 0, π).

22 Basic Principles of Quantum Computing

Among the class of unitary matrices that serve as quantum gates, there are Pauli
matrices:

X ≡

 0 1
1 0

 ; Y ≡

 0 −i
i 0

 ; Z ≡

 1 0
0 −1

 . (2.16)

The Pauli matrices satisfy the condition X2 = Y 2 = Z2 = I, and when exponentiated,
they give rise to three useful classes of unitary matrices:

Rx(θ) ≡ e−iθX/2 = cos
θ

2I − i sin
θ

2X =
 cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

 ; (2.17)

Ry(θ) ≡ e−iθY/2 = cos
θ

2I − i sin
θ

2Y =
 cos θ

2 −sin θ
2

sin θ
2 cos θ

2

 ; (2.18)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2I − i sin
θ

2Z =
 e−iθ/2 0

0 eiθ/2

 . (2.19)

These matrices corresponds to rotation operators around the three orthogonal axis
in a 3-dimensional space (Figure 2.1). Three other important quantum gates are the
following:

H = 1√
2

 1 1
1 −1

 ; S =
 1 0

0 i

 ; T =
 1 0

0 eiπ/4

 . (2.20)

In particular, H is the Hadamard gate that can be used to initialise state |0⟩ into a
uniform superposition between |0⟩ and |1⟩.

Any two by two matrix is an example of single-qubit gate, but one can also make
use of multi-qubit operations that allows qubits interact with each other. For example,
the controlled-NOT gate (or CNOT) has two input qubits, known as control and
target qubit respectively. CNOT gate changes the state of the target qubit based on
the value of the control qubit. If the control qubit is set to |0⟩, then the target qubit
is left untouched. If the control qubit is set to |1⟩ then the target qubit is flipped:

|00⟩ → |00⟩ ; |01⟩ → |01⟩ ; |10⟩ → |11⟩ ; |11⟩ → |10⟩ ; (2.21)

2.2 Qubits and Quantum Gates 23

Another way of describing the CNOT gate is as generalisation of XOR gate. Given
a 2-qubit quantum system, the action of the CNOT on |ψ⟩ can be summarised as:

|ψ⟩ = |ψ1, ψ2⟩
CNOT−−−→ |ψ1, ψ2 ⊕ ψ1⟩ (2.22)

where |ψ1, ψ2⟩ = |ψ1⟩ ⊗ |ψ2⟩ and ⊕ is the addition modulo two, which is exactly what
classical XOR gate does. In matrix form:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.23)

Another important two-qubit operation is the SWAP gate that swaps the state of the
two qubits involved in the operation:

|ψ1, ψ2⟩
SWAP−−−→ |ψ2, ψ1⟩ . (2.24)

The unitary matrix that represents the SWAP gate is the following:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.25)

An important theoretical result in classical computing is that any function on bits
can be computed by the composition of NAND gates which is known as universal
gate. In the same way, a set of universal quantum gates allows performing any other
possible quantum computation, or in other terms, any other unitary operation can be
expressed as a finite sequence of gates from the universal set. Thus, a set of gates is
universal, if any quantum operation can be approximated by a sequence of gates from
this finite set4. An example of a universal set is the Clifford set (CNOT, H, S) plus
the T gate.

Furthermore, one important universal gate is the Toffoli gate (Toffoli, 1980) (also
called controlled-controlled-NOT gate) which is a 3-qubit gate that acts using two
control qubits and one target. Toffoli gate exists in both, classical and quantum

4For unitaries on a constant number of qubits, the Solovay–Kitaev theorem guarantees that this
can be done efficiently (Dawson and Nielsen, 2006)

24 Basic Principles of Quantum Computing

computation, this means that quantum computation is at least as powerful as classical
computation.

2.3 Entanglement

One of the most counter-intuitive phenomena in quantum mechanics is the entanglement.
A pair or group of qubits are entangled when the quantum state of each qubit cannot
be described independently of the quantum state of the other. Generally a n-qubit
quantum system can be described as the tensor product of the single component:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ = (a1 |0⟩+ b1 |1⟩)⊗ · · · ⊗ (an |0⟩+ bn |1⟩). (2.26)

Also, it is possible to express the quantum state as a superpositon of 2N possible basis
states:

|ψ⟩ =
2N −1∑
i=0

αi |i⟩ , (2.27)

where the amplitudes {αi}i=1,...2N depend linearly on the amplitudes of the single
components {ai, bi}i=1,...N . If a quantum state of the form in Equation (2.27) cannot
be expressed in the form of Equation (2.26), then the state is called entangled. One
example of such state is the Bell state (Equation (2.12)) which cannot be factorised in
the tensor product of two independent qubits. In other terms, it does not exist a1, a2,
b1, b2 such that

|00⟩+ |11⟩√
2

= (a1 |0⟩+ b1 |1⟩)⊗ (a2 |0⟩+ b2 |1⟩). (2.28)

In a quantum computer, entanglement translates in the correlation between the
probability of observing a given configuration of one qubit to depend on the probability
of observing another qubit, entangled with the first one. An especially interesting
quality of quantum entanglement is that elements of a quantum system may be
entangled even when they are separated by considerable space. The exact physics of
quantum entanglement remains elusive even to physicists, but that has not stopped
them from applying it to quantum information theory. Quantum teleportation, an
important concept in the field of quantum cryptography, relies on entangled quantum
states to send quantum information adequately accurately and over relatively long
distances.

2.4 Measurement 25

A common misunderstanding is that entanglement could be used to send infor-
mation from one point to another instantaneously. This is not possible because the
measurement results of the individual particles are random and specified on a predeter-
mined orthonormal basis of the eigenspace. However, the entanglement between qubits
makes a quantum computer more powerful than a classical computer.

2.4 Measurement

The measurement of a quantum system corresponds to transforming the quantum
information into classical information. For example, measuring a qubit typically corre-
sponds to reading out a classical bit, i.e., whether the qubit is 0 or 1. A central principle
of quantum mechanics is that measurement outcomes are probabilistic (Postulate 3).

Given a state vector |ψ⟩ ∈ Cn we consider a measurement of the observable A.
Because observables are Hermitian, their eigenvalues λ0, . . . , λn−1 are real values. Then
it is possible to express A as:

A =
n−1∑
j=0

λj |ϕj⟩ ⟨ϕj| . (2.29)

Thus the probability pj of obtaining the outcome λj is given by

pj = | ⟨ψ|ϕj⟩ |2. (2.30)

The state vector immediately after the measurement is given by

|ψj⟩ = 1
√
pj

⟨ϕj|ψ⟩ |ϕj⟩ , (2.31)

and the actual value that is readout from the quantum device is not the computational
basis state itself, but the correspondent eigenvalue of A. Thus, the final result is
the eigenvalue, which means that the measurement “collapses” the state vector into
one of the eigenvectors of A5. As a consequence, a single measurement provides
only partial information about the state vector and computing the expectation value
of measurement is extremely important, since it allows to retrieve a more complete
information about the state vector. In formula, the expectation value of A for |ψj⟩ is

5Notice that we assumed that none of the eigenvalues is degenerate. This case would require mild
modification.

26 Basic Principles of Quantum Computing

the following:

⟨A⟩ = ⟨ψ|A |ψ⟩ . (2.32)

For example, if we measure a Pauli operator σz on a system initially prepared in
|0⟩, then the following expectation value is observed:

⟨0|σz |0⟩ = 1. (2.33)

In case of |1⟩:

⟨1|σz |1⟩ = −1. (2.34)

In quantum physics, observables manifest as linear operators on a Hilbert space
representing the state space of quantum states. The eigenvalues of observables are the
real numbers observed when measuring a quantum system. Hence, the observables
in quantum mechanics assign real numbers to outcomes of particular measurements,
corresponding to the eigenvalue of the operator with respect to the system. The effect
of the measurement is that the new state is exactly the outcome of the measurement,
implying that it is impossible to collect any additional information about the system,
once it is measured.

The entanglement becomes clear from the results of measurements. The outcome of
the measurements on the individual qubits could be |0⟩ or |1⟩. However, the outcome
of the measurement on one qubit is always correlated to the measurement on the
other qubit, if the two are entangled. This is always the case, even if the particles are
separated from each other by a considerable distance.

2.5 Quantum Algorithms

Qubits and quantum gates represent the basic elements needed for practical quantum
algorithms. Considering the Gate-model6, a quantum algorithm consists of three basic
steps: the first one is the definition of a sequence of operation to transform a set
of input qubits from all-zero state to a quantum representation of a classical input
data. This step is known as state preparation, and it is extremely important when
comparing a quantum routine with its classical counterpart. Indeed, state preparation

6this terminology refers to quantum states as input/output of the quantum system and quantum
gate refers to a unitary operator.

2.5 Quantum Algorithms 27

is an additional cost specific of quantum computation. Once data are encoded in our
quantum system, the second step consists of applying the quantum gates of interest to
obtain the desired quantum state. Finally, the third step regards the measurement of
the quantum system and readout a classically interpretable result.

Fig. 2.2 Quantum circuit for Bell state. First, the top qubit q0 is initialised into uniform
superposition. Then, q0 serves as control qubit (indicated with a dot) of the CNOT.
The bottom qubit, labelled as q1, is the target qubit (indicated as ⊕) and is inverted if
the control qubit is 1.

An example is the quantum circuit to produce the Bell state given in Figure 2.2
which allows to create a fully entangled two-qubit quantum system. Starting from two
qubits to the all-zero state, the quantum operations to produce the Bell state are the
following:

(CNOT12)(H ⊗ I) |0⟩ ⊗ |0⟩ = (CNOT12)
|0⟩+ |1⟩√

2
⊗ |0⟩ = |00⟩+ |11⟩√

2
. (2.35)

First, the Hadamard gate acts on the topmost qubit changing the state from |0⟩ to
the uniform superposition of |0⟩ and |1⟩. Then CNOT12 acts on both qubits. The blue
dot on the first qubit identifies that this qubit is used as control. The ⊕ symbol on the
second qubit implies that this qubit is the target of the NOT gate (controlled by the
state of the first qubit). The measurement of a qubit is also denoted by a special gate
with a meter symbol on it (Figure 2.2). The presence of this gate on a qubit means
that the qubit must be measured in the computational basis.

Thus, any quantum algorithm has to be defined in terms of qubits and quantum
gates and quantum circuit to be implemented in a real quantum device. In the circuit
representation, qubits are represented by horizontal lines and gates are then drawn on
the qubits they act on. This is done in sequence from left to right. The initial state of
the qubit is denoted at the beginning of each of the qubit lines. Importantly, when we

28 Basic Principles of Quantum Computing

(a) QASM simulator (b) IBMQ santiago

Fig. 2.3 On the left the execution of the quantum circuit in Figure 2.2 using the
QASM simulator, which simulates an ideal, fault-tolerant quantum computer. The
distributions of the measurement results is almost perfectly uniform between 00 and 11.
The slight fluctuations in the results depend on finite sampling of the output statevector.
On the right the same circuit is executed on a real device, the IBMQ_santiago (QV32).
In this case, the basis states 01 and 10 are also readout due to decoherence that occurs
on a real quantum system.

write down a mathematical expression for the circuit, the gates are written down from
right to left in the order of their application.

2.6 Quantum Computational Complexity

Computational complexity theory aims to classify the difficulty of computational
problems in both classical and quantum computation. A complexity class is a collection
of computational problems, that share some common characteristic regarding the
computational resources needed to solve them. Two important complexity classes are
P, which is the class of computational problems that can be solved “efficiently”on
a classical computer7, and NP that is the class of problems whose solutions can
be checked on a classical computer8. Given these definitions, it is straightforward
that P is a subset of NP since the ability to solve an assigned problem implies the
capacity to check potential solutions. However, what is not clear is whether there are
problems in NP that are not in P and this is one of the most important problems in
computer science (Jaffe, 2006). There exists an important subclass of the NP known

7P stands for polynomial time, which means that the complexity of the algorithm is polynomial in
the input size using a deterministic Turing machine

8NP stands for non-deterministic polynomial time

2.6 Quantum Computational Complexity 29

as NP-complete, that is important since any algorithm to solve a given NP-complete
problem can be adapted to solve any other problem in NP, with small overhead. This
means that, in some sense, any NP-complete problem is at least as hard as all other
problems in NP. This means that if P=NP it follows that NP-complete problems
can be efficiently solved on a classical computer.

There is another relevant complexity class called Buonded-error Probabilistic Poly-
nomial time (BPP), that describes decision problems that can be solved in polynomial
time by a probabilistic Turing machine, considering that the found solution could be
incorrect 9. A probabilistic Turing machine chooses the next step according to a given
probability distribution and not deterministically.

Fig. 2.4 Complexity classes (Nielsen and Chuang, 2011).

Although, it is not yet been proven whether P ⊂ BPP, it is conjectured that
P = BPP (Impagliazzo and Wigderson, 1997). Quantum computing introduces a new
complexity class, the Bounded-error Quantum Polynomial time (BQP), that represents
the class of problems solvable in polynomial time by an innately probabilistic quantum
Turing machine with the same error constraint defined for BPP. Unlike BPP, it
is presumed that P ⊂ BQP which means that quantum computers are, at least in
principle, capable of solving some problems in polynomial time that cannot be solved

9In BPP, the probability that the answer is correct must be at least 2
3

30 Basic Principles of Quantum Computing

efficiently using a classical Turing machine. The supposed relationships between all of
these complexity classes are depicted in Figure 2.4.

2.6.1 Time and Gate Complexity

Different types of complexity must be considered when looking at computational
complexity theory. For example, one of the most famous quantum routines is Grover’s
algorithm (Grover, 1996) that performs a search over an unordered set of N = 2n items
to find a specific element. The best classical algorithm to solve this task requires O(N)
steps, while Grover’s algorithm performs the search on a quantum computer in only
O
(√

N
)

operations, which corresponds to a quadratic speedup. However, Grover’s
algorithm assumes that it is given black-box access to some function f , where the goal
is to answer some question about f itself. The quadratic speedup is provided in terms
of query complexity (Ambainis, 2017), instead of time complexity. The idea of query
complexity is beyond the scope of this dissertation, but the concept of time complexity
is essential to understand the advantages of the thesis proposals, and it is discussed
below.

The time complexity of an algorithm is the number of necessary “steps” to transform
a given input encoded as a binary string (bits) into the desired output. These steps
are local operations limited to a small number of bits (two or three) and the overall
cost is usually specified in terms of various well-defined resources that are evaluated in
terms of some designated elementary operations and memory usage.

The same approach can be employed to evaluate the time complexity of quantum
algorithms. Based on quantum gate-model, an algorithm needs to be defined together
with the correspondent quantum circuit, whose time complexity can be defined as the
depth of the circuit in terms of quantum gates. The number of gates corresponds to
the number of time steps required for the quantum algorithm to be executed on the
quantum hardware. Thus, it is necessary to define a set of elementary gates whose
cost is equal to 1 in order to compute the total cost of an algorithm. Since the actual
implementation of quantum gates is strictly related to the specific quantum hardware,
usually the assumption is that any quantum gate that acts on 1 or 2 qubits has a unit
cost. Notably, the gate complexity usually refers to an error-corrected quantum system,
which means that the realisation of the quantum circuit requires high fidelity, high
precision, and high-level control. Hence, the comparison of time complexity between
classical and quantum algorithms makes sense only in the context of fault-tolerant
quantum computation. Instead, when dealing with NISQ device, the idea is to build

2.6 Quantum Computational Complexity 31

a small circuit to solve a specific task that has some advantage with respect to the
classical counterpart.

In addition to all these considerations, a further level of complexity exists when
the comparison concerns machine learning algorithms. In fact, other than the input
size (the size of the training set usually gives), when considering quantum machine
algorithms there are other computational considerations related to the type of the
algorithm in use that depends on a set of parameters. The way an algorithm works
and the number of its parameters is a fundamental part of the computational cost,
that dominates the correspondent overall time complexity.

In this thesis, a general quantum framework for machine learning is proposed. Such
framework is able to reproduce many classical machine learning models with a proper
definition of a set of quantum operators. When considering specific algorithms, the use
of the quantum counterpart can improve the time complexity sensitively with respect
to the parameters of the algorithm, in some case, even exponentially.

Part II

Quantum Algorithms for Machine
Learning

Chapter 3

Quantum Machine Learning

Quantum Machine Learning (QML) joins together machine learning (ML) and quantum
computing (QC) to improve classical ML methods and overcome their biggest weak-
nesses. This chapter reviews the main contributions in the field of QML and provides
the basic elements to compare classical models with their quantum counterparts. The
chapter is organised as follows. Section 3.1 provides an overview of classical methods
with a focus on supervised learning and the notion of the computational complexity
of learning. Section 3.2 introduces the field of QML, intended as the enhancement of
classical methods using quantum computation. Section 3.3 discusses the main QML
algorithms proposed in the literature, distinguishing between full-coherent protocols
and NISQ algorithms. Section 3.4 discusses the problem of state preparation. More
than in other cases, the encoding strategy for data impacts the time complexity of
any QML algorithm and can destroy the potential advantage provided by the use of
a quantum algorithm. Thus, Section 3.5 describes all the problems related to the
use of quantum computation to solve ML tasks. Finally, Section 3.6 summarises the
contribution of the thesis in the context of QML.

3.1 Overview on Machine Learning

Machine learning (ML) is the science of making computers to act without being
explicitly programmed, but using a learner, an algorithm able to learn patterns from a
set of data. In particular, according to Mitchell et al. (1997) “A computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with experience
E”. We can imagine a very wide variety of experiences E, tasks T, and performance
measures P as well as the application fields of ML itself. In the last years, ML made

36 Quantum Machine Learning

an impact in many fields, such as self-driving cars, speech recognition, predictive
maintenance, and a vastly improved understanding of the human genome. In practice,
ML allows tackling tasks that are too difficult to solve with fixed programs written
and designed by human beings.

There are mainly three categories of learning:

• Supervised learning: the goal is to find a useful approximation f̂(x) to the
function f(x) that underlies the predictive relationship between the inputs and
outputs. For instance, a supervised learning task is the classification problem:
the algorithm is required to learn a function which maps a vector of features into
one of several classes by looking at several input-output examples.

• Unsupervised learning: only the features are observed, not the outcome, and
the task is to describe how the data are organised or can be represented instead of
computing specific information. In a sense, unsupervised learning methods regard
finding patterns in the data, excluding what can be considered pure unstructured
noise. Two examples of unsupervised learning are clustering and dimensionality
reduction.

• Reinforcement learning: the algorithm learns a policy of how to act given
an observation of the world. Every action has some impact on the environment,
which in turn provides feedback that guide the learning algorithm. These types
of methods focus on finding a balance between exploration of uncharted territory
and exploitation of current knowledge.

Any of these methods aims to find a function f that is able to produce a reliable
outcome Y for a given input set X1. From this point, only the supervised approach is
considered where, given a set of input-output pairs, the algorithm tries to estimate an
explicit target variable Y given the input X.

3.1.1 Empirical Risk Minimization

Supervised methods aim to learn an unknown target function f : X → Y, where X
and Y are respectively the sets of features and the target variable. Consider D as the
probability distribution over the set of points X . Given a specific learning algorithm,
it is associated to a hypothesis class H of functions h : X → Y. X and H consist of

1Notice that in case of reinforcement learning the outcome is the action to make at time t and the
input also contains the action performed at the time t− 1.

3.1 Overview on Machine Learning 37

objects with bounded computational power (e.g. all neural networks with a specific
and possibly limited depth and the number of nodes, or all decision trees of at most a
certain depth). It is assumed that each h ∈ H has a succinct description and that it is
possible to evaluate a given h on a given x ∈ X .

Thus the goal of the learner2 is to minimise the generalisation error of h with
respect to the target function f :

err(h, f,D) = Pr
x∼D

[h(x) ̸= f(x)] . (3.1)

Generalisation error, also known as Expected Prediction Error(EPE) is minimised by
the learner over the class H. However, since the learner does not know what D and f

are, the generalisation error is not directly available.
In practice, the learner has access to a limited training set S = {(xi, yi)}i=1,...,m,

where the points xi are presumed independent and identically distributed, and generated
according to the unknown distribution D on X . The target variable can be computed
as f(xi) = yi and f represents the function to learn. A useful notion of error is the
training error which is computed according to the instances in S:

ˆerr(h, f,D) = Pr
x,y∈S

[h(x) ̸= f(x)] . (3.2)

This is also known as empirical risk. Since the training sample is a snapshot of the
D, it makes sense to search for solutions that work well on the training data. This
learning paradigm which aims to find a predictor h that minimises ˆerr(h, f,D), in the
hope that it will be able to generalise over the unknown D, is called Empirical Risk
Minimisation (ERM). Furthermore, it is possible to show that the generalisation error
can be decomposed in into three components: noise, bias and variance (Hastie et al.,
2001). The noise component, also known as irreducible error, is the variance of the
target variable around its true mean. This error is due to the intrinsic uncertainty of S,
and cannot be avoided no matter how well h works. The bias, instead, is linked to the
particular learning technique h adopted, and it measures how well the method suits
the problem. Finally, the variance component measures the variability of the learning
method around its expected value. In light of this, in order to improve the performance
of any ML technique, one has to try to reduce one or more of these components.

2The definition refers to classification, but it can be easily generalised to regression.

38 Quantum Machine Learning

3.1.2 Computational Complexity of Learning

To evaluate the performance of an algorithm two different factors need to be considered:
learnability and time complexity.

The learnability concerns finding a learner that is able to achieve a good generali-
sation error with the smallest sample size. This approach regards the framework of
Probably Approximately Correct (PAC) learning that provides a mathematical analysis
of machine learning. In particular, the learner receives samples and must select a
generalisation function from a certain class of possible functions. The goal is that, with
high probability, the selected function will have low generalisation error. The PAC
learning framework is a distribution-free setting, so the idea is to design a learner that
works well for every D in the sense of outputting a hypothesis with low generalisation
error.

The time complexity regards the ability of an algorithm to be executed using a
number of steps that relies on the input size and the parameters of the algorithm
itself. In fact, each possible parametrisation gives rise to a different hypothesis and
the computational effort required to train a specific model can be sensitively different
when considering different parametrisations. This makes ML tasks different from
other typical problems in computer science, in which, time complexity can be entirely
expressed as a function of the input.

The big-O notation is usually employed to express the time complexity, that describe
the worst-case scenario as a function of the execution time required by the algorithm
in terms of the input size and the parameters.

3.2 Introduction to Quantum Machine Learning

In recent years, machine learning algorithms achieved remarkable successes in many
applications, but this revolution is beginning to face increasing challenges. With the
ever-increasing size of datasets and Moore’s law coming to an end, a point where the
current computational tools will no longer be sufficient will be reached soon. Although
tailored hardware architectures can significantly improve performance (e.g. graphics
processing units and tensor processing units), they do not offer a structural solution to
the problem.

An opportunity for ML to overcome its limitations is to leverage quantum compu-
tation that exploiting quantum effects can efficiently solve selected problems (Hallgren,
2007; Shor, 1999; Van Dam et al., 2006) that cannot be solved on classical machines.
The speed-up of a quantum algorithm usually is an effect of quantum parallelism

3.3 Related works 39

achieved through the superposition of qubits, that allows the system to exist in all of
its possible states and to evaluate a function on many inputs simultaneously.

The intersection between machine learning and quantum computation is known as
Quantum Machine Learning (QML); this term is usually employed to denote different
paths of research, such as using machine learning techniques to analyse the quantum
processes or the design of classical machine learning algorithms inspired by quantum
structures. We refer to QML to describe learning models that make use of quantum
resources. There are two ways in which ML and QC can be combined: one approach is
to run the learning process predominantly with classical computation and only one
or multiple subroutines requiring access to a quantum computer. In this case, the
potential speed-up comes directly from a part of the process. However, the protocols
within this category need to carefully consider the limitations given by read out the
data of a quantum computational process.

Another approach concerns methods that use only quantum computations in which
the algorithm contains no sub-routine that are performed on classical computers.
Likewise, the input and output data can be classical, but the whole computation is
performed end-to-end on a quantum device.

The QC community developed a rich collection of quantum algorithms for basic
linear algebra subroutines, such as matrix multiplication, matrix inversion, singular
value decomposition (Biamonte et al., 2017; d’Alessandro, 2007; Gillespie, 1980; Haag
and Kastler, 1964; Nakahara and Ohmi, 2008) that can be used to address several ML
tasks. Furthermore, many quantum routines that leverage hybrid quantum-classical
computation have been proposed.

3.3 Related works

In QML, algorithms are developed by setting classical algorithms, or their expensive
subroutines to run on a potential quantum computer. The expectation is that quantum
devices can help to process and analyse the growing amounts of global information.

To date, there is no comprehensive theory of quantum learning yet. A theory of
quantum learning would refer to methods of quantum information processing that learn
input-output relationships from training input, either for the optimisation of system
parameters or to find a quantum decision function. There are many open questions
of how a quantum algorithm for learning should look like. Thus, in order to exploit
the properties of quantum mechanics is necessary finding standard quantum ways of
representing data with proper and efficient state preparation routines.

40 Quantum Machine Learning

Fig. 3.1 Scheme of a hybrid quantum-classical algorithm for supervised learning. The
quantum variational circuit is depicted in green, while the classical component is
represented in blue.

In the following sections, the most relevant QML algorithms presented in the
literature are reviewed.

3.3.1 Quantum Variational Algorithms

Quantum variational algorithms (Moll et al., 2018; Wecker et al., 2015) represent
the most promising attempt to leverage NISQ technology in the context of hybrid
quantum-classical computation. They are designed to tackle optimisation problems
using both classical and quantum resources for supervised learning tasks where the
latter component is referred to as variational circuit, and it presents three ingredients:
i) a parametrised quantum circuit U(x; θ), ii) a quantum output f(x; θ) and iii) an
updating rule for the parameters θ. The general hybrid approach is illustrated in
Figure 3.1.

The data, x, are initially preprocessed on a classical device to determine the
input quantum state. The quantum hardware then prepares a quantum state |x⟩ and
computes U(x; θ) with randomly initialised parameters θ. After multiple executions
of U(x; θ), the classical component post-processes the measurements and generates a

3.3 Related works 41

prediction f(x; θ). Finally, the parameters are updated, and the whole cycle is run
multiple times in a closed loop between the classical and quantum hardware.

Interestingly, the first practical demonstration of quantum advantage over classical
supercomputers is related precisely to variational algorithms (Peruzzo et al., 2014).
Other applications related to Machine Learning (ML) problems are also explored
(Biamonte et al., 2017; Ristè et al., 2017). More recently, Schuld et al. (2018) proposed
a low-depth variational algorithm for classification. The strengths of this approach
are two-fold. On one side, the possibility of learning gate parameters enables the
adaptation of the architecture for different use cases. On the other hand, the choice of
amplitude encoding allows obtaining model predictions with a single-qubit measurement.
Importantly, simulations on standard benchmark datasets showed good performances,
with the advantage of requiring fewer parameters than classical alternatives. Another
similar framework which discusses the possibility to employ parametrised quantum
circuit as ML model is discussed by Benedetti et al. (2019)

Although variational algorithms promise good results in many applications, such as
quantum simulation, optimisation, and machine learning, the exponential dimension
of Hilbert space and the gradient estimation complexity make them unsuitable for
running on more than a few qubits. In fact, for a wide class of reasonable parameterised
quantum circuits, the probability that the gradient along any reasonable direction is
non-zero is exponentially small as a function of the number of qubits. This is known
as the problem of Barren Plateaus (McClean et al., 2018), and the solution to this
problem needs to be investigated.

3.3.2 Quantum Artificial Neural Networks

Artificial Neural Networks (NNs) are ML algorithms, whose structure is inspired by
biological neural networks, where the inputs are the features of the dataset and the
output provides the estimate for a given target variable. Training a NN can be done
by selecting weight parameters and an activation function encoding a specific input-
output relation. The power of NNs lies in their ability to learn their weights from
training data; a fact that neuroscientists believe is the basic principle of how our brain
processes information (Dayan and Abbott, 2005). The most popular type of NNs are
the feed-forward NNs in which neurons are arranged in layers, and each layer feeds
its values into the next layer. Input is presented to a feed-forward neural network
by initialising the input layer, and after each layer, successively updates its nodes to
produce the final output. Feed-forward NNs often use non-linear activation.

42 Quantum Machine Learning

In order to achieve the desired generalisation, the network is initialised with training
vectors, the output is compared to the correct output, and the weights adjusted through
gradient descent in order to minimise the classification error; this procedure is called
backpropagation (Rumelhart et al., 1986). A challenge for pattern classification is the
computational cost for the backpropagation algorithm, even when considering improved
training methods such as deep learning (Hinton et al., 2006).

There are several proposals for quantum versions of neural networks (Faber and
Giraldi, 2002; Gupta and Zia, 2001; Schuld et al., 2014, 2015; Schützhold, 2003;
Trugenberger, 2002). However, the main challenge remains the implementation in a
quantum circuit since the learning algorithms for these models break the postulates
of quantum mechanics by the use of non-linear or non-unitary operations. Usually,
most of the work considers the so-called Hopfield networks, which are powerful for
the related task of associative memory that is derived from neuroscience rather than
machine learning (Behrman et al., 1999; Faber and Giraldi, 2002; Tóth et al., 1996).

Recently, many proposals of Quantum Neural Networks (QNNs) that leverage
hybrid quantum-classical computation have been presented in the literature. A concrete
implementation in near-term processors is illustrated by Tacchino et al. (2019), where
the authors introduced a model for binary classification using a modified version of the
perceptron updating rule. A key characteristic of their architecture is the theoretical
exponential advantage in storage resources over classical alternatives. This constitutes
the first step towards the efficient implementation of QNNs on near-term quantum
processing hardware.

Another possible approach for QNNs is discussed by Farhi and Neven (2018), where
the model is potentially able to represent the label of any Boolean function of n
bits. The authors introduce parameter-dependent unitaries that can be adapted by
supervised learning of labelled data.

All the proposed approaches do not reproduce precisely the quantum counterpart of
the classical NNs, instead, they are quantum algorithm inspired to classical NNs, where
parametrised quantum gates implement each layer. To date, there are no trainable
quantum algorithms that efficiently reproduce a quantum state encoding the output of
a classical NN.

3.3.3 Quantum Algorithms for Ensemble Learning

Ensemble methods are machine learning models that combine the decisions from
multiple models to improve the overall performance. The combined prediction is
usually calculated by averaging the single models with a set of specific weights.

3.3 Related works 43

Recently, the idea of a quantum ensemble has been investigated by Schuld and
Petruccione (2018a). In this case, the construction of the ensemble corresponds to
three different stages: (i) a state preparation routine, (ii) the evaluation in parallel of
the quantum classifiers and (iii) the access to the combined decision. This approach
is based on Bayesian Model Averaging (BMA) that exploits many models whose
parameters are fixed so as to span a large part of parameters domain. The strength of
this approach is that the individual classifiers do not have to be trained. However, the
algorithm assumes two oracles whose form is not precisely defined in terms of quantum
gates. Furthermore, the BMA approach is not very used in ML because of limited
performance in real-world applications (Domingos, 2000, 1997). In fact, it has been
shown that models combination works better by enriching the space of hypotheses, not
by approximating a Bayesian model average. On the other side, classical ensemble
methods (e.g. Random Forest) generate a collection of complementary hypotheses
whose predictions are compatible with the data. These hypotheses are induced by
fitting the same model under different training conditions.

Another QML algorithm based on ensemble methods is the idea of Quantum Boosting
investigated by Arunachalam and Maity (2020). In this case, the authors suppose a
weak learner A and try to improve its performance by simulating adaptive boosting
procedure (Freund et al., 1999) that allows converting a weak learning algorithm to a
strong one. This is done by achieving a quadratic improvement over classical AdaBoost.
The main limitation of quantum boosting is the ability to prepare efficiently multiple
copies of the same quantum states that encode the training set. Also, it assumes
to execute the Quantum Phase Estimation algorithm that is a full-coherent protocol
requiring a fault-tolerant quantum computer to be executed.

3.3.4 Quantum k-Nearest Neighbour

A very popular method for pattern classification is the k-nearest neighbour algorithm.
The idea behind this method is to choose the class for the new input based on the
frequency distribution of often amongst its k nearest neighbour. The assumption is
that close feature vectors encode similar examples, which is true for many real-world
applications. Distance measures usually employed are the inner product, the Euclidean
or the Hamming distance. The parameter k is a hyperparameter of the algorithm, and
it can influence the results significantly.

Some efforts to translate this algorithm into its quantum version have been made
with particular focus on the efficient evaluation of a classical distance through a
quantum algorithm. Aïmeur et al. (2006) introduce the idea of using the overlap (or

44 Quantum Machine Learning

fidelity) of two quantum states as a similarity measure that can be measured by using
a well-known quantum routine, the swap test (Buhrman et al., 2001). Wiebe et al.
(2018) also give a scheme for a (weighted) nearest-centroid algorithm based on the
Euclidian distance evaluated by well-known algorithms from the toolbox of quantum
information, the amplitude estimation algorithm (Brassard et al., 2002; Durr and Hoyer,
1996). Although the evaluation of the distance using a quantum algorithm seems to be
reasonable, it is not entirely clear whether these approaches would perform better than
their classical counterpart even considering a fault-tolerant quantum device. In fact,
repeated state preparation and measurements executions can cancel out the quantum
advantages provided by the efficient evaluation of the distance.

3.3.5 Quantum Algorithms for Clustering

Clustering is an unsupervised technique that aims of dividing a set of feature vectors
into a fixed number of clusters. It does not require a training set where the target
variable is known, or prior examples to generalise the model, but rather it extracts
information on structural characteristics from a set of data.

In classical ML, the standard example for clustering is the k-means algorithm,
where each feature vector is assigned to its closest current centroid vector that is
representative of a specific cluster. The final centroids are calculated after a long
iterative process whose complexity depends on the distance metric used, the size of the
dataset and the number of clusters.

A quantum proposal for clustering is provided by Rebentrost et al. (2014) which
present a full coherent protocol routine to perform cluster analysis. Durr and Hoyer
(1996) describe an algorithm to find the smallest distance between a point of a cluster
and its centroid. In this case, an oracle is employed, and its definition in terms of
quantum gates is not provided. Also, this approach largely depends on a considerable
amount of quantum resources. For an in-depth discussion about the quantum version
of unsupervised methods, see Aïmeur et al. (2013).

3.3.6 Quantum Linear Models

The basic idea of the linear algebra approach in QML is to use a quantum system for
linear algebra calculus, where Hamiltonian of the system represents the design matrix
via dynamic encoding.

In classical ML, the matrices involved in the computation are usually constructed
from the training set; this means that the dimension of the problem grows with

3.3 Related works 45

the number of features p and the number of the training vectors N . There are
many algorithms which operate using hyperplanes to separate or fit data, therefore,
finding the optimal hyperplane for a certain problem is one of the most important
tasks in ML (Bishop, 2006; Fan et al., 2008). From a statistical point of view, this
problem can be reformulated fitting a Linear Regression (LR) that uses least square
optimisation, considering the correspondent system of normal equations (MATH, 2007).
This approach allows, in theory, to exploit the exponential speed up provided by HHL
algorithm (Harrow et al., 2009)

The problem of HHL is that the solution of the linear system is encoded into a
quantum state in amplitude encoding, so given the proposed approach, it is necessary to
extract the solution and use it in a classical computer. This can be done either reading
out the parameters via quantum tomography (D’Ariano et al., 2003) or simulate many
times the execution of the algorithm to get a normalised estimation of the parameters3.

3.3.7 Kernel Methods and Quantum Support Vector Machine

A support vector machine (SVM) is an algorithm that maps input vectors into feature
space in such a way that the target variable in that space is easy to compute (Sánchez A,
2003). It operates by constructing the optimal hyperplane dividing the two sets (in
case of binary classification), in a higher-dimensional kernel space. The objective
function of an SVM can be reformulated as a quadratic programming problem, which
can be solved in time proportional to O(log(ϵ−1)poly(p,N)), with p the dimension of
the feature space, N the number of training vectors, and ϵ the accuracy. Rebentrost
et al. (2014) propose a full-coherent protocol for quantum SVM whose time complexity
is O(log(pN)) in both training and testing stages.

While classical SVM do not directly lead to a matrix inversion problem, a version
called least-squares support vector machines (De Brabanter et al., 2002) transforms
the convex quadratic optimisation problem into a least squares problem. In this case,
the problem of fitting SVM model becomes:

K

w0

γ

 =
0
y

 , (3.3)

where K is the kernel Gram matrix (Drineas and Mahoney, 2005), γ = (γ1, . . . , γM)T

is the set of the Lagrangian parameters, and w0 ∈ R the scalar bias. To obtain the γi,
one has to solve a linear system by inverting the kernel matrix.

3HHL will be discussed in details in Chapter 7.

46 Quantum Machine Learning

In quantum setting, one can use the HHL algorithm to apply K−1 to quantum
state which encodes y, thus computing the quantum state encoding the solution K−1y.
Once the solution is obtained, it is possible to use it into two different ways: using
interference to classify new input or extracting information about parameters via
quantum tomography or via multiple executions of the circuit.

Schuld and Killoran (2019) recently explored the relation between quantum states
and feature maps. In particular, the authors illustrate that a critical element in
both quantum computing and kernel methods is performing computations in a high
dimensional (possibly infinite) Hilbert space manipulating the inputs features. In fact,
encoding a classical vector x into a quantum state |ϕ(x)⟩ is equivalent to define a
feature mapping, where ϕ maps classical vectors to the Hilbert space associated with a
system of qubits. For a comprehensive review of kernel methods in quantum computing
see Mengoni and Di Pierro (2019)

Despite the theoretical proposal, a full quantum algorithm which implements SVM
does not exist yet. Usually, the algorithm refers to a specific operation needed to SVM
rather than its use dealing with real data. However, the huge computational effort
to train a classical SVM has limited its use in the past; therefore, the possibility to
define its quantum version exploiting quantum resources may allow extending its use
for several machine learning applications.

3.4 State Preparation in QML

Any quantum algorithm for data analysis must address (at least) three issues: the
encoding strategy for classical data into a quantum representation, the quantum
operation to apply to the input state and the measurement strategy to retrieve the
information of interest (which qubits? which computational basis?). Thus, the ability
to encode a real vector into a quantum state is mandatory for QML.

There are several ways in which state preparation can be performed, and the nature
of data itself influences the proper representation for a given problem. The most
used approaches are basis encoding and amplitude encoding. The first one associates
a computational basis state of a n-qubit system with n bits. Amplitude encoding,
instead, stores classical vectors as the amplitudes of a quantum state. Usually, state
preparation routines scale linearly in the size of the input, and any quantum algorithm
that processes classical data needs to consider this additional cost. An overview of the
four encoding methods is provided in Table 3.1.

3.4 State Preparation in QML 47

Encoding Number of qubits Runtime Input features
Basis N O(Np) Binary

Amplitude log(Np) O(Np) Continuous
Hamiltonian log(Np) O(Np) Continuous

Table 3.1 Strategies of data encoding in a quantum system for a dataset of N training
points and p features: Basis uses a binary representation of numbers, and the com-
putation acts in parallel on all bit sequences in superposition. Amplitude associates
classical information (e.g. real vector) with quantum amplitudes. Hamiltonian asso-
ciates the Hamiltonian of a system with a matrix that represents some meaningful
transformations of the matrix that represents the original data. For more details see
Schuld and Petruccione (2018b).

Several quantum algorithms presented in the literature assume to employ a quantum
random access memory (QRAM) (Giovannetti et al., 2008b) which is a theoretical
device that can store classical vectors as the amplitudes of a quantum state (Amplitude
Encoding). Assuming to process N p-dimensional classical vectors, QRAM encodes
them in superposition into log(Np) qubits in O(poly (log(Np))) steps (Arunachalam
et al., 2015). Although possible physical architectures for the QRAM have been
discussed (Giovannetti et al., 2008a), its actual feasibility is still not entirely clear, and
many caveats remain.

An alternative state preparation approach has been proposed by Mottonen et al.
(2004). In this case, the authors consider the reverse problem to map an arbitrary
state |ψ⟩ to the ground |0 . . . 0⟩. Once we get the circuit to map |ψ⟩ in |0 . . . 0⟩ it is
possible to invert all of the operations and apply them in the reversed order. In this
case, some preprocessing is needed, since it is necessary to convert the real values in a
series of angles to apply different controlled rotations.

Recently, a hybrid quantum-classical algorithm for efficient, approximate quantum
state loading has been proposed (Zoufal et al., 2019). The proposed approach is
referred to as quantum Generative Adversarial Networks (qGANs) that by leveraging
the interplay of a variational quantum circuit, and a classical neural network, is able to
learn a probability distribution underlying the data samples and load it into a quantum
state. This procedure requires O(poly(n)) gates (n is the total number of qubits) and
potentially enables the efficient implementation of a generic probability distribution
into quantum states. Although this approach potentially provides a structural solution
to the problem of state preparation, it is unclear if would work on real datasets. In fact,
the experiments about qGAN usually are based on univariate, well-known probability

48 Quantum Machine Learning

distributions, while the distributions underlying real-world datasets are usually much
more complex.

In general, the cost of a state preparation routine seems unavoidable per algorithm
run, even when performing a set of algorithms with an identical input state. Thus, the
way data is encoded into a quantum system is part of the algorithm and may be a
crucial part of the complexity.

In this dissertation, we will not address the problem of state preparation, and
the method employed for experiments is the one proposed by Mottonen et al. (2004).
However, the proposed quantum framework allows evaluating different transformations
of the same input quantum state limiting the number of state preparation routines.

3.5 The Quest of Quantum Machine Learning

In QML, the algorithms require a state preparation routine for information encoding
and a readout step, that in general are non-trivial procedures. Addressing these two
tasks is extremely important to enable QML for real-world application, since they
can easily predominate the complexity of a quantum algorithm and, thereby, reduce
the potential quantum advantage. Thus, in designing a new quantum algorithm is
necessary to limit as much as possible, the number of state preparation routines
and the number of qubits to measure. Also, in order to be a credible alternative to
classical ML, a quantum algorithm needs to be better in terms of either learnability of
intractable patterns or overall time computational complexity. The first case relates to
the capability to exploit the mapping into a larger Hilbert space. It seems reasonable
to leverage this space to discover patterns on data that are impossible to detect using
classical representation. In this regard, it is essential to extract the relevant information
about those patterns through a limited number of measurements; indeed the dimension
of the Hilbert space grows exponentially and obtaining a complete representation of it
would be inefficient even with a few tens of qubits.

When considering the time complexity instead, other than the measurement oper-
ations, it is necessary to consider the impact of state preparation routine that is at
least linear in the size of the input (Section 3.4). Therefore, it is necessary to trade
the potential advantage provided by quantum computation in terms of computational
capabilities with the overhead to perform operations that are not contemplated when
performing classical ML methods.

To date, considering actual quantum technology and the proposed algorithms in the
literature, there is no convincing QML algorithm that can have consistent advantage

3.6 Research Contribution 49

with respect to its classical ML alternative. However, the field of QML is moving
extremely fast, and the belief is that many applications suitable for QML are right
around the corner.

3.6 Research Contribution

The main contribution of the thesis is a general framework to perform Machine Learning
tasks using Quantum Computing. The high-level idea is to design an algorithm that
propagates an input state to multiple quantum trajectories in superposition, in such a
way that a sum of individual results from each trajectory is obtained. The algorithm
is able to generate an exponentially large number of transformations of the input
data in superposition, each entangled with the a basis state of a separate quantum
register. By averaging those transformations, the results of the final Quantum Machine
Learning (QML) model can be accessed efficiently. The proposed architecture allows
to reproduce the mathematical framework in which many classical ML algorithms fall
into, that is, the idea of an aggregator of different functions of the same input data.
Furthermore, it allows to plug-in different components to obtain a plethora of QML
models not yet present in the literature. In addition to the theoretical formulation,
the quantum circuit architecture is provided. Thus, the framework is complete in its
technical formulation and can be adapted for both NISQ and fault-tolerant quantum
devices. Also, an in-depth discussion about time and space complexity of the algorithm,
and a comparison with other quantum algorithms are provided.

Besides the general framework, two examples of its use are discussed. Firstly, in
the context of fault-tolerant quantum computation, the framework is employed to
implement a quantum ensemble (Macaluso et al., 2020a,d). Thanks to the generation
of the several quantum trajectories in superposition, we obtain B different predictions
in only log(B) operations. Thus, the proposed quantum ensemble allows to increase
exponentially the ensemble size with respect to classical methods, while increasing
linearly the number of steps required. Furthermore, when considering the algorithm’s
overall time complexity, we show that the training of a single weak classifier impacts
additively rather than multiplicatively, as it usually happens in classical ensemble
methods.

Secondly, the proposed quantum framework is employed in the context of quantum
variational algorithms, implementing a quantum Single Layer Perceptron (qSLP)
(Macaluso et al., 2020c). Thanks to the universal approximation theorem, and given
that the number of hidden neurons scales exponentially with the number of qubits,

50 Quantum Machine Learning

the qSLP algorithm opens the possibility of approximating any continuous bounded
function on quantum computers. Thus, the proposed approach produces a model with
substantial descriptive power and widens the horizon of potential applications already
in the NISQ era, especially the ones related to Quantum Artificial Intelligence. In
particular, we design a quantum circuit to perform linear combinations in superposition
and discuss adaptations to classification tasks.

Finally, a further contribution of the thesis lies in the proposal of the quantum
version of spline functions (Macaluso et al., 2020b), which aims to overcome the
limitation to linear operations imposed by quantum mechanics that hampers the
representation of complex relationships in data. In particular, we demonstrate how to
adopt quantum splines for approximating several popular activation functions commonly
employed in Neural Networks following two different strategies. The hybrid approach
computes quantum estimates of the spline coefficients via the Harrow Hassidim Lloyd
(HHL) quantum algorithm. Then a classical device is used to evaluate the activation
functions. Instead, the full quantum approach takes care of the evaluation process
end-to-end, with an additional circuit that reads the HHL estimates and evaluates
the function. The results show that the quantum splines are able to reproduce the
non-linearity of the curves, thus candidating this approach as a building block in the
development of a complete model for Quantum Neural Networks.

Practical experiments using benchmark datasets support all the proposed algorithms
both in the simulator and on a real device.

Part III

A Novel Quantum Framework for
Machine Learning

Chapter 4

MAQA: Multiple Aggregator
Quantum Algorithm

In this chapter, the main methodological contribution of the thesis is presented. First,
the idea of machine learning model as functions aggregator is discussed, alongside
specific algorithms that fall into this structure. A particular focus will be given on
Neural Networks (NNs) and ensemble methods. Thus, the quantum algorithm that
reproduces this framework is described. The proposal consists of providing a general
quantum algorithm that can represent all machine learning methods that are model-
based, which means that the final output is given by the additive structure of the base
models. We will refer to this quantum framework as Multiple Aggregator Quantum
Algorithm (MAQA). The proposed approach has two main advantages: from a classical
machine learning perspective, it introduces an exponential scaling in the number of the
aggregated functions. From a quantum computing perspective instead, the framework
opens the possibility to implement a plethora of machine learning models not yet
present in the literature.

4.1 Machine Learning Model as Aggregator of
Multiple Functions

The goal of supervised ML is to find a useful approximation to the function f(x; θ)
that underlies the predictive relationship between the input x, and output y, for a fixed
set of parameters θ. Assuming for simplicity an additive error, the model of interest

54 MAQA: Multiple Aggregator Quantum Algorithm

can be expressed as follows:

y = f(x; θ) + ϵ, (4.1)

where ϵ is a random variable, whose conditioned probability distribution given x is
centred in 0. Although Equation (4.1) provides a general mathematical formulation
for supervised learning, several methods do not estimate a single function but include
multiple and diverse functions which belong to the same family and differ from each
other, either a set of parameters or the training data. In all these cases, the final model
results from the weighted average of the estimated functions. Thus, it is possible to
rewrite the function f as an aggregator of functions of the form:

f(x; θ) =
H∑

h=1
βhg(x; θh), (4.2)

where f(x; θ) is the final output and g describes the function component.
The function g(x; ·) corresponds to a specific transformation of data based on

θh, whose contribution to the final output is weighted by βh. The estimation of a
collection of base functions allows producing an extremely flexible model, which is
able to approximate the behaviour of complex functions and solve different pattern
recognition problems. Different choices for β, g(·) and θh determine different machine
learning models, then Equation (4.2) incorporates many models, commonly adopted in
real-world applications.

In the following sections, some of the most popular ML algorithms will be presented,
describing them in terms of aggregators of functions.

4.1.1 Feedforward Neural Networks

The main idea behind feedforward Neural Networks (or Multilayer Perceptrons - MLP)
is to extract linear combinations of the inputs as derived features, and model the
target variable as a nonlinear function of these new features. For example, a NN for
classification maps an input x to a set of categories y. In particular, a feedforward
network defines a mapping y = f(x; θ) and learns the value of the parameters θ to
select the best category for a given input features. These models are called feedforward
because information passes through the function being evaluated from x, through the

4.1 Machine Learning Model as Aggregator of Multiple Functions 55

intermediate computations used to define f with no feedback connections (Figure 4.1)1.
For an in-depth review on Neural Networks see Goodfellow et al. (2016).

Neural Networks also provide a universal approximation framework. Specifically,
the universal approximation theorem (Cybenko, 1989; Hornik et al., 1990, 1989) states
that a feedforward network with a linear output layer and at least one hidden layer with
any “squashing” activation function (such as the logistic sigmoid activation function)
can approximate any Borel measurable function from one finite-dimensional space to
another with any desired non-zero amount of error, provided that the network is given
enough hidden units2. While the original theorem imposes limitations on the form of
activation functions, it has also been proven that universal approximation theorem
holds for a wider class of activation functions, including the commonly used rectified
linear unit, also known as RELU (Leshno et al., 1993).

Notice that the universal approximation theorem says that it is possible to learn any
function using a single, large MLP, but it is not guaranteed that the training algorithm
can effectively learn that function. In fact, although the MLP is able to represent

any function, the learning procedure can fail to achieve the goal for two different
reasons. First, the optimisation algorithm used for training cannot find the value of
the parameters that correspond to the desired function. Second, the training algorithm
chooses the wrong function because of overfitting. In this regard, it is essential to
consider the no-free-lunch theorem (Wolpert, 1996) which asserts that, given a set
of data, even a powerful ML method cannot be totally superior to other algorithms.
Thus, there is no universal procedure for testing a training set of specific examples
and choosing a function that generalises to points out-of-sample. In other words, the
universal approximation theorem says that there exists a network large enough to
achieve any desired degree of accuracy, but the theorem does not say how large this
network will be. Barron (1993) provides some bounds on the size of a single-layer
network needed to approximate a wide class of functions. However, in the worst case,
an exponentially large number of hidden units may be required (possibly with one
hidden unit corresponding to each input configuration that needs to be distinguished).

In light of these considerations, even a Single Layer Neural Network (also called
Single Layer Perceptron-SLP) is an extremely powerful method whose potential is

1When feedforward neural networks are extended to include feedback connections, they are called
recurrent neural networks.

2The concept of Borel measurability is beyond the scope of this dissertation for which it suffices to
say that any continuous function on a closed and bounded subset of Rn is Borel measurable and can
be approximated by a neural network.

56 MAQA: Multiple Aggregator Quantum Algorithm

Fig. 4.1 Diagram of a Single hidden Layer Perceptron. The left-hand side represents
the graph of an SLP model with p inputs, H hidden neurons and one output node
suitable either for regression or binary classification. The right-hand side illustrates
the functioning of each neuron after the input layer. It receives a linear combination of
outputs of the previous layers and then applies an activation function that determines
the actual value that is then propagated further in the network.

limited by the lack of capacity of classical optimisation algorithms to exploit its
theoretical properties.

From a statistical point of view, an SLP is a non-linear statistical model similar
to other methods, such as the projection pursuit regression (Friedman and Tukey,
1974). In particular, the SLP is a two-stage regression or classification model, typically
represented by a network diagram as in Figure 4.1. Formally, given a training point
(xi, yi), the output of a feedforward NN with a single hidden layer containing H neurons
can be expressed as follows:

f(xi) = σoutput

 H∑
j=1

βjσhidden (L(xi; θj))
 , (4.3)

where σoutput is the identity when the task is the function approximation. Each hidden
neuron j computes a linear combination of the input features xi with coefficients equal
to the p-dimensional vector θj. This operation is performed for all the neurons, and
the results are then individually convoluted with the inner activation function σhidden.

Regarding the framework discusses in Section 4.1, the SLP assumes as function
component g(x; ·) the composition of the linear combinations of the input x and the
activation function σhidden.

Notice that when considering a NN with multiple hidden layers, the only difference
in Equation (4.3) is that the function component g(x; ·) is, in turn, a neural network.

4.1 Machine Learning Model as Aggregator of Multiple Functions 57

4.1.2 Ensemble Methods

The idea of ensemble learning is to build a prediction model by combining the strengths
of a collection of simpler base models to reduce the generalisation error. A necessary
and sufficient condition for an ensemble to outperform any of its members is that the
single models are accurate, in the sense that they have an error rate better than
random guessing, and diverse, which means that the individual models make different
errors given the same data points (Hansen and Salamon, 1990).

There exist several ways to build ensemble methods, each designed to tackle a
specific component of the EPE (Section 3.1.1). In Boosting (Schapire, 2003), the
idea is to exploit a committee of weak learners that evolves over time. In practice, at
each iteration a new weak learner is trained with respect to the error of the whole
ensemble. This mechanism allows getting closer and closer to the true population values,
thus reducing the bias. Randomisation (Kwok and Carter, 1990) methods consist in
estimating the single base model with a randomly perturbed training algorithm. This
alteration worsens the accuracy of the individual learners, but reduces the ensemble
variance thanks to the combination of a large number of randomised models. Unlike to
other methods, this approach is also applicable to stable learners, thus enlarging the
plethora of methods it applies to. Another approach is Bagging (Breiman, 1996). In
this case, the same model is fitted to different training sets, thus creating a committee
of independent weak learners. The individual predictions are then averaged to obtain
the ensemble prediction. This approach decreases the EPE by reducing the variance
component so the more classifiers are included (i.e., the larger the size of the ensemble),
the more significant is the reduction.

When considering ensemble methods as aggregators of functions, the component
functions g(x; ·) are (weak) classification models and the choice of the weights depends
on the type of the ensemble in use.

4.1.3 Other Supervised Methods as Multiple Aggregators

In this section, other models that fall into the idea of multiple aggregations are
presented. Specifically, the predicted value of these ML models is calculated according
to a parametrised linear combination of a specific function g(x; ·) that takes as input
the features x and transforms them based on a set of parameters θ.

Regression based
The simplest classical supervised method that fits the idea of aggregation of multiple

58 MAQA: Multiple Aggregator Quantum Algorithm

components is the Linear Regression. Given a vector of inputs XT = (X1, X2, . . . , Xp)
the final output Y can be computed as:

Y = β0 +
p∑

j=1
Xjβj + ϵ, (4.4)

where ϵ is a not observable random variable. This methods attempts to explicitly
model the relationship between inputs Xj and the outputs Y , typically in the form of
linear equation in which the parameters {βj}j=1,...,p are estimated from the data. In
this case, each function component g(x; ·) in Equation (4.2) selects a single predictor
and only the βh parameters need to be estimated. Also, the number H (number of
aggregated functions) is equal to p (number of features). Linear methods can be
used for both classification and regression tasks and often provide explicit estimates
of measures of association between individual inputs and the outcome, adjusted for
other inputs, with standard error estimates provided by the modelling paradigm in use.
Usually, the least-square optimisation procedure is employed to find the best set of
parameters {βj}j=1,...,p. However, under appropriate conditions3, Maximum Likelihood
Estimator and Mean squared error Estimator coincide (Freedman, 2009), this underlies
the robustness of the estimated coefficients when solving a given task using linear
regression.

The linear regression is one of the fundamental supervised machine learning algo-
rithms due to its simplicity and well-known properties.

Generalised Additive Models
Although attractively simple, linear methods often fail to approximate complex

functions; thus, it is necessary to transform the predictors before fitting the model,
in order to incorporate non-linear forms. In this regard, a Generalised Additive
Model (GAM) allows extending classical linear models to fit more different and diverse
functions. In particular, a GAM has the form:

Y = α +
p∑

j=1
αjfj(Xj) + ϵ, (4.5)

where the error term ϵ is centred in zero and fj is a smooth functions that can be
either fixed apriori or estimated flexibly. In this case, the function component g(x; ·)

3The random variable ϵ has the following normal distribution ϵ ∼ N (0; σϵ) where σϵ is known.
Also, data points need to be independent and identically distributed.

4.1 Machine Learning Model as Aggregator of Multiple Functions 59

selects one or more predictors and transform them according to fj. As in standard
linear regression, {αj}j=1,...,p can be chosen according to least-square optimisation.

Decision Trees
A decision tree is a method for approximating discrete-valued target functions, where

a set of if-then decision rules presents the learned function. These learning methods
partition the feature space into a set of regions and fit a simple model (like a constant)
in each one. In general, the prediction of a decision three is given by:

Y =
M∑

m=1
cmI{(X1, . . . , Xp) ∈ Rm}, (4.6)

where {Rm}m=1,...,M is a partition into the M regions and cm is the estimate of the target
variable in the m-th region. In this case, the set of parameters that determines the
learning algorithm is characterised in terms of split variables, cut-points, terminal-node
values. Regarding the framework of aggregation of functions, decision trees determine
the g(x; ·) as an indicator function and the βi values aren’t parameters to learn but
constant values calculated according to the training set (more details about decision
trees are provided by Hastie et al. (2001)).

Support Vector Machines
In binary classification problems, Support Vector Machines (SVM) aims to find the

optimal separating hyperplane that separates the two classes of interest and maximises
the distance to the closest from either class4 (Cortes and Vapnik, 1995). This approach
provides a unique solution to the separating hyperplane problem by maximising the
margin between the two classes on the training data leads to better classification in
performance on test data. In particular, given a training set of N pairs {xi, yi}i=1,...,N

with xi ∈ Rp and yi ∈ {−1,+1}, we define the following hyperplane as:

{x : f(x) = β0 +
p∑

j=1
xjβj = 0}, (4.7)

where β is a unit vector: ||β|| = 1. A classification rule induced by f(x) is the following:

G(x) = sign[xTβ + β0], (4.8)
4SVM can also be used as a regression method maintaining all the main features that characterise

the algorithm

60 MAQA: Multiple Aggregator Quantum Algorithm

f(x) gives the signed distance from a point x to the hyperplane f(x) = β0+∑p
j=1 xjβj =

0. If the classes are separable, it is possible to find a function f(x) with yif(xi) > 0 ∀i.
Hence it is possible to find the hyperplane that creates the biggest margin between the
training points for class +1 and −1 (see Figure 4.2). This formulation of the SVM can

Fig. 4.2 Visual representation of SVM.

find linear boundaries in the input feature space. The extension of this approach for
non-linear boundaries consist of enlarge the input space using kernel functions. In fact,
generally linear boundaries in the enlarged space translate non-linear boundaries in the
original space. We define h(x) as the transformation of the input x into a larger feature
space. Thus it is possible to show (Hastie et al., 2001) that the solution function f(x)
can be written as:

f(x) = h(x)T + β0 =
N∑

i=1
αiyiK(x, xi) + β0, (4.9)

where K(x, x′) = ⟨h(x), h(xi)⟩ computes the inner product in the transformed space.
K should be a symmetric semi-definite function (Soman et al., 2009) space5. Although
a kernel mapping is required for non-linear boundaries, what is involved in Equation
4.9 is not h(x) itself but only the inner product. In particular, SVM does not explicitly
map each training point into the enlarged space, but it evaluates the inner product
directly.

5The introduction of the inner product in the objective function depends on the formulation of the
optimisation problem using the Lagrangian dual objective function, that is beyond the scope of this
thesis.

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 61

SVMs differ radically from similar approaches such as neural networks because
they find a global minimum, and their simple geometric interpretation provides prolific
ground for additional investigations. An SVM is mainly characterised by choice of its
kernel, hence link the problems they are designed for with a large body of existing
work on kernel-based methods.

As we can see from Equation (4.9), even the decision boundaries determined by
an SVM can be considered an aggregator of functions. The difference with other
approaches lies in elements of the sum that, in this case, are related to the number of
points in the training set, instead of the number of features (as in the previous models).

4.2 Multiple Aggregator Quantum Algorithm
(MAQA)

We propose a quantum algorithm that is able to reproduce the classical model expressed
in Equation (4.2). The algorithm leverages the three main properties of quantum
computing (superposition, entanglement and interference) to encode in a quantum
state the sum of different transformations of the input, that is accessible by measuring
a single quantum register. The proposed algorithm is potentially able to reproduce all
those models that refer to the idea of functions aggregation, and provides interesting
computational advantages with respect to the classical counterparts.

The quantum algorithm adopts two quantum registers: data and control. The data
register encodes the input of the model in one of the encoding strategies detailed in Sec-
tion 3.4. The control register is used to generate multiple trajectories in superposition,
where each trajectory represents a different transformation of data.

Starting from a n-qubit data register and a d-qubit control register the Multiple
Aggregator Quantum Algorithm (MAQA) involves four main steps: state preparation,
multiple trajectories in superposition, transformation via interference and measurement.

(Step 1) State Preparation
State preparation consists in encoding the input in the data register and the initiali-

sation of control register whose amplitudes depend on a set of parameters β:

|Φ0⟩ = (Sβ ⊗ Sx) |0⟩control ⊗ |0⟩data = 1√
2d

2d−1∑
i=0

βi |i⟩ ⊗ |x⟩ . (4.10)

62 MAQA: Multiple Aggregator Quantum Algorithm

We refer to Sx as a quantum routine to encode data into a quantum state, and to Sβ

as a routine that transforms a d-qubit register from all-zero state to a state which
depends on a set of parameters {βi}i=0,...,2d−1. The structure of Sx and Sβ will be
detailed when discussing the use of this framework for specific algorithms (Ensemble
and Neural Networks).

Importantly, the computational cost of this step would not be considered in classical
computing. In fact, any classical algorithm assumes that the input x is given and it is
directly accessible.

(Step 2) Multiple Trajectories in Superposition
The second step regards the generation of 2d different transformations of the input

data in superposition, each entangled with a possible state of the control register. The
single quantum state of the superposition encodes a specific transformation of the data
and it depends on a set of parameters Θk. To this end, a unitary G(θ1, . . . , θ2d) that
performs the following operation is assumed6:

|Φ1⟩ = G (θ1, . . . , θ2d) |Φ0⟩ = 1√
E

2d−1∑
k=0

βk |k⟩ |g (x; Θk)⟩
 , (4.11)

where E is a normalisation constant.
The implementation of G(θ1, . . . , θ2d) can be accomplished in only d steps. Each

step consists in the entanglement of the ith (i = 1, . . . d) control qubit with two
transformations g (x; θi,1) and g (x; θi,2) of |x⟩ based on two sets of parameters, θi,1 and
θi,2, for i = 1, . . . , d.

Let us consider a unitary G(θi,j) that implements the transformation g (x; θi,j). The
most straightforward way to obtain the quantum state in Equation (4.11) is to apply
G (θi,j) through controlled operations, using as control state the two basis states of
the current control qubit. In particular, the generic ith step involves the following two
transformations:

6Notice that the definition of G(θ1, . . . , θ2d) unitary in terms of quantum gates depend on the
algorithm to implement and will be specified for the use of MAQA in the context of Quantum Ensemble
(Chapter 5) and Quantum Neural Networks (Chapter 6).

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 63

• First, the controlled-unitary C(1)G (θi,1) is executed to entangle the transforma-
tion G (θi,1) |x⟩ with the excited state of the ith control qubit:

|Φi,1⟩ =
(
C(1)G (θi,1)

)
|ci⟩ ⊗ |x⟩

=
(
C(1)G (θi,1)

) (
ai |0⟩+ bi |1⟩

)
⊗ |x⟩

=
(
ai |0⟩ |x⟩+ bi |1⟩G (θi,1) |x⟩

)
, (4.12)

where ai and bi are the amplitudes of theith control qubit and C(1)G(θi,1) is a
controlled operation that entangles the exited state of the control qubit |ci⟩ to
transform the data register according to the unitary G(θi,1).

• Then, a second controlled-unitary C(0)G (θi,2) is executed. This time the control
state is the |0⟩ basis state:

|Φi⟩ =
(
C(0)G (θi,2)

)
|Φi,1⟩

=
(
C(0)G (θi,2)

)(
ai |0⟩ |x⟩+ bi |1⟩G (θi,1) |x⟩

)
=
(
ai |0⟩G (θi,2) |x⟩+ bi |1⟩G (θi,1) |x⟩

)
. (4.13)

These two transformations are repeated for each qubit in the control register and, at
each iteration, two parametrised G (θi,1) and G (θi,2) are applied. After d steps, the
control and data registers are fully entangled and 2d different quantum trajectories in
superposition are generated. The output of this procedure can be expressed as follows:

|Φd⟩ = 1√
E

2d∑
k=1

βk |k⟩G (Θk) |x⟩ = 1√
2d

2d∑
k=1

βk |k⟩ |g(x; Θk)⟩ (4.14)

where G (Θk) results from the product of d unitary matrices G (θi,j) and it represents
a single quantum trajectory. Each trajectory differs from the others for, at least, one
matrix G (θi,j). The composition of G (Θk) strictly depends on the learning algorithm
and the encoding strategy chosen for data.

When discussing a specific implementation of QML algorithms, we will see that, from
a computational point of view, the possibility to generate 2d different transformations
in only d steps potentially lead to an exponential speed-up with respect to classical
methods, assuming an efficient implementation for the controlled-G(θi,j).

64 MAQA: Multiple Aggregator Quantum Algorithm

(Step 3) Transformation via Interference
Once we generated multiple transformations g(x; Θk) of the input in superposition,

the third step consists of transforming the data register through a generic quantum
gate F that works via interference:

|Φf⟩ =
(
1⊗d ⊗ F

)
|Φd⟩

=
(
1⊗d ⊗ F

) 1√
E

2d∑
k=1

βk |k⟩ |g(x; Θk)⟩

= 1√
E

2d∑
k=1

βk |k⟩ |f ∗ (x; Θk)⟩ = 1√
E

2d∑
k=1

βk |k⟩ |f ∗
k ⟩ , (4.15)

where f ∗ (x; Θk) = f ∗
k . In Equation (4.15) the assumption is that the application of

G(x; Θk) and F on the quantum state |x⟩ is equivalent to apply the target function
f ∗

k to an input x. At this point, different values of the function f ∗ are entangled with
different states of the control register.

It is important to notice that a single execution of F allows to compute the function
f ∗ for all the quantum trajectories in superposition. This is extremely useful when,
during the computation, the same operations needs to be applied to multiple inputs
(e.g., when the activation function is applied to a huge number of neurons or in case of
ensemble learning, the same classifier has to be executed to different sub-samples of
the training set).

(Step 4) Measurement
The last step consists of measuring the data register, leaving untouched the control

register:

⟨M⟩ =
〈
Φf |1⊗d ⊗M

∣∣∣Φf

〉
=

2d∑
k=1

β
′

k ⟨k|k⟩ ⊗ ⟨f ∗
k |M |f ∗

k ⟩

=
2d∑

k=1
β

′

k ⟨f ∗
k |M |f ∗

k ⟩ =
2d∑

k=1
β

′

k ⟨Mk⟩

=
2d∑

k=1
β

′

kfk = fagg, (4.16)

where fk = ⟨f ∗
k |M |f ∗

k ⟩ and β
′
k = |βk|2 with ∑k |βk|2 = 1.

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 65

The expectation value ⟨M⟩ stores the weighted average of the 2d functions fk, that
is accessible by measuring the data register, due to the entanglement with the control
register. If the goal of the computation is to extract from the quantum system the
single contribution fk, this would require an exponential number of measurements, since
those values are in the superposition of 2d possible basis states. However, as usually
happens in machine learning, it is not necessary to know the single contributions but
rather the measure of interest is the aggregation of all the functions which provide the
estimation of the target variable for a given input.

To summarise, the proposed architecture allows accessing the result of the algorithm
by measuring only the data register. In particular, we obtain the weighted average of
different values of the same function f with different parameters. The quantum state
in Equation (5.10) is the quantum version of Equation (4.2) and, specifying properly
Sβ, Sx, {G (θi,1) , G (θi,2)}i=1,...,d and F allows to reproduce the quantum version of all
the machine learning algorithms discussed in Section 4.1. Furthermore, the algorithm
is very generic (on purpose) and can be used for NISQ and fault-tolerant computation.
This also allows learning the set of parameters using a quantum variational approach
in hybrid quantum-classical computation.

The algorithm expressed in pseudo-code is shown below.

66 MAQA: Multiple Aggregator Quantum Algorithm

Algorithm 1: Multiple Aggregator Quantum Algorithm (MAQA)
Result: Estimation of a target function as sum of 2d different functions f

Input:
- n–qubit data register, d–qubit control register
- quantum gates: Sβ, Sx, {G (θi,1) , G (θi,2)}i=1,...,d and F

- measurement operator ⟨M⟩

(Step 1) State Preparation
Encode data into the n-qubits data register: x Sx−→ |x⟩
Initialise the d-qubits control register |0 . . . 0⟩ Sβ−→ ∑2d−1

k=0 βk |k⟩

(Step 2) Multiple Trajectories in Superposition

for each qubit in the control register (i = 1, . . . d) do
entangle state |0⟩ with G (θi,1)
entangle state |1⟩ with G (θi,2);

end

(Step 3) Transformation via Interference
Apply the quantum gate F on the data register;

(Step 4) Measurement
Measure the data register using measurement operation ⟨M⟩

Output:

⟨M⟩ =
2d∑

k=1
β

′

kfk = fagg

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 67

4.2.1 Quantum Circuit Architecture

The MAQA described in the previous section can be implemented using the quantum
circuit in Figure 4.3.

|0⟩d Bd •

. . . Bd−1 · · ·
|0⟩2 . . . • · · ·
|0⟩1 B1 • · · ·

|0⟩⊗n Sx G(θ1,1) G(θ1,2) G(θ2,1) G(θ2,2) · · · G(θd,1) G(θd,2) F

|Φ0⟩ |Φ1⟩ |Φ2⟩ |Φd−1⟩ |Φd⟩ |Φf⟩
Fig. 4.3 Quantum Circuit for MAQA.

Without loss of generality, we can express the quantum gate Sβ as the tensor
product of d gates Bi. Then, the state preparation step can be expressed as follows:

|Φ0⟩ = (Sβ ⊗ Sx) |0, . . . , 0⟩d ⊗ |0, . . . , 0⟩n

=
(

d
⊗
i=1
Bi ⊗ Sx

)
|0⟩⊗d ⊗ |0⟩⊗n

=
d
⊗
i=1

(ai |0⟩+ bi |1⟩)⊗ |x⟩ =
d
⊗
i=1
|ci⟩ ⊗ |x⟩ , (4.17)

where |ci⟩ is the ith control qubit and ai and bi are the parameters that determine the
amplitudes:

|ci⟩ = ai |0⟩+ bi |1⟩ . (4.18)

Notice that the amplitudes βk in Equation (4.10) can be expressed as the product of d
ai and bi parameters (Equation (2.5)).

Once the two registers are initialised, each qubit in the control register is entangled
with two different random transformations of the data register. As a result, 2d different
transformations in superposition of the input are generated. Thus, the first step after
state preparation is the following:

68 MAQA: Multiple Aggregator Quantum Algorithm

Step 2.1 (i = 1)

• First, the controlled-unitary C(1)G (θ1,1) is executed to entangle the transforma-
tion G (θ1,1) |x⟩ with the excited state of |c1⟩:

|Φ1,1⟩ =
[
1⊗d−1 ⊗ C(1)G (θ1,1)

]
|Φ0⟩

=
[
1⊗d−1 ⊗ C(1)G (θ1,1)

] (
a1 |0⟩+ b2 |1⟩

)
⊗ |x⟩

=
d−1
⊗
i=1
|ci⟩ ⊗

(
a1 |0⟩ |x⟩+ b2 |1⟩G

(
θ1,1

)
|x⟩

)
, (4.19)

• Second, |c1⟩ is transformed based on Pauli–X gate7, so that the two basis states
are exchanged:

|Φ1,2⟩ = [1⊗X ⊗ 1] |Φ1,1⟩

=
d−1
⊗
i=1
|ci⟩ (a1 |1⟩ |x⟩+ b1 |0⟩G(θ1,1) |x⟩) . (4.20)

• Third, a second controlled-unitary C(1)G (θ1,2) is executed:

|Φ1⟩ =
[
1⊗d−1 ⊗ C(1)G(θ1,2)

] (
a1 |1⟩ |x⟩+ b1 |0⟩G

(
θ1,1

)
|x⟩

)
=

d−1
⊗
i=1
|ci⟩ ⊗

(
a1 |1⟩G

(
θ1,2

)
|x⟩+ b2 |0⟩G

(
θ1,1

)
|x⟩

)
. (4.21)

At this point, two different transformations, G (θ1,1) and G (θ1,2) of the initial state
|x⟩ are generated in superposition and are entangled with the two basis states of the
control qubit |c1⟩.

Step 2.2 (i = 2)
The same operations are applied using |c2⟩ as control qubit and different random

matrices, G (θ2,1) and G (θ2,2).
7the controlled operation C(0)G(θi,j) where |0⟩ is the controlled state to apply G(θi,j) can be

performed by applying the Pauli-X gate to the control qubit and then using standard controlled
operation C(1)G(θi,j).

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 69

• First, the controlled-unitary C(1)G (θ2,1) is applied to entangle a transformation
of |x⟩ with the excited state of |c2⟩:

|Φ2,1⟩ =
(
C(1) ⊗ 1⊗G(θ2,1)

)
|Φ1⟩

= 1√
E

[
a2 |0⟩

(
b1 |0⟩G(θ1,1) |x⟩+ a1 |1⟩G(θ1,2) |x⟩

)
+

+ b2 |1⟩
(
b1 |0⟩G(θ2,1)G(θ1,1) |x⟩+ a1 |1⟩G(θ2,1)G(θ1,2) |x⟩

)]
,

(4.22)

where the position of the gate C(1) indicates the control qubit used to apply
G(θ2,1) and E is a normalisation constant.

• Second, |c2⟩ is transformed based on Pauli–X gate:

|Φ2,2⟩ = (X ⊗ 1⊗ 1) |Φ2,1⟩

= 1√
E

[
a2 |1⟩

(
b1 |0⟩G(θ1,1) |x⟩+ a1 |1⟩G(θ1,2) |x⟩

)
+

+ b2 |0⟩
(
b1 |0⟩G(θ2,1)G(θ1,1) |x⟩+ a1 |1⟩G(θ2,1)G(θ1,2) |x⟩

)]
.

(4.23)

• Third, a second controlled-unitary C(1)G(θ2,2) is executed:

|Φ2⟩ =
(
C(1) ⊗ 1⊗G(θ2,2)

)
|Φ2,2⟩

= 1√
E

[
a2 |1⟩

(
b1 |1⟩G(θ2,2)G(θ1,2) |x⟩+ a1 |0⟩G(θ2,2)G(θ1,1) |x⟩

)
+

+ b2 |0⟩
(
b1 |0⟩G(θ2,1)G(θ1,1) |x⟩+ a1 |1⟩G(θ2,1)G(θ1,2) |x⟩

)]
. (4.24)

Notice that the entanglement performed in Step 2.1 influences the entanglement
in Step 2.2, and each trajectory describes a different transformation of |x⟩. Equation
(4.24) can be rewritten expressing the four basis states of the control register using

70 MAQA: Multiple Aggregator Quantum Algorithm

natural numbers:

|Φ2⟩ = 1√
E

[
b2a1 |00⟩G(θ2,1)G(θ1,1) |x⟩

+b2b1 |01⟩G(θ2,1)G(θ1,2) |x⟩
+a2a1 |10⟩G(θ2,2)G(θ1,1) |x⟩

+a2b1 |11⟩G(θ2,2)G(θ1,2) |x⟩
]

= 1√
E

3∑
k=0

βk |k⟩ , G(Θk) |x⟩ , (4.25)

where G(Θk) is the product of d = 2 unitaries G(θi,j), the coefficients βk result from
the product of two coefficients ai and bi and the basis states are expressed using integer
representation:

|00⟩ = |0⟩ ; |01⟩ = |1⟩ ; |10⟩ = |2⟩ ; |11⟩ = |3⟩ . (4.26)

Thus, using 2 control qubits 4 different quantum trajectories are generated that
correspond to 4 different transformations of data |x⟩.

Extending the same procedure when d = 3, the result is the following:

|Φ3⟩ = 1√
E

[
β0 |000⟩G(θ3,1)G(θ2,1)G(θ1,1) |x⟩+ β1 |001⟩G(θ3,1)G(θ2,1)G(θ1,2) |x⟩

+β2 |010⟩G(θ3,1)G(θ2,2)G(θ1,1) |x⟩+ β3 |011⟩G(θ3,1)G(θ2,2)G(θ1,2) |x⟩
+β4 |100⟩G(θ3,2)G(θ2,1)G(θ1,1) |x⟩+ β5 |101⟩G(θ3,2)G(θ2,1)G(θ1,2) |x⟩

+β6 |110⟩G(θ3,2)G(θ2,2)G(θ1,1) |x⟩+ β7 |111⟩G(θ3,2)G(θ2,2)G(θ1,2) |x⟩
]

= 1√
E

7∑
k=0

βk |k⟩G(Θk) |x⟩ , (4.27)

where each G(Θk) is the product of 3 unitaries G(θi,j) for i = 1, 2, 3 and j = 1, 2.
Repeating this procedure d times with different control qubits the result is the

following quantum state:

|Φd⟩ = 1√
2d

2d−1∑
k=0

βk |k⟩G(Θk) |x⟩ = 1√
2d

2d−1∑
k=0

βk |k⟩ |g(x; Θk)⟩ , (4.28)

where each G(Θk) is the product of d unitaries G(θi,j) for i = 1, · · · , d and j = 1, 2.

4.2 Multiple Aggregator Quantum Algorithm (MAQA) 71

Finally, gate F is applied, as shown in Equation (4.15) and the measurement of
the data register is performed.

The underlying idea of this procedure is to initialise the control register according
to a set of weights and assign the weight βk to a component function g(x; Θk). This
approach is extremely flexible and allows training all the parameters βk and Θk, that
are not directly determined but depend on ai, bi and θi,j.

Therefore, the MAQA method allows to reproduce a weighted average of different
transformations of the input; this computation fits the idea function aggregation
described in Section 4.2. In particular, by leveraging the entanglement between the data
and the control registers, the number of different transformations increase exponentially
at each iteration. Furthermore, the proposed architecture allows propagating the
application of the quantum gate F to all the transformations. In the next chapters,
it will be shown how to employ the MAQA in the context of the fault-tolerant
computation through quantum ensemble (Chapter 5) and in the quantum-classical
hybrid computation for Quantum Neural Networks (Chapter 6).

4.2.2 Computational Considerations

As shown in the previous section, the MAQA reproduces the idea of ML model as
aggregator of functions using the properties of quantum computing. The advantage
of using MAQA in Quantum Machine Learning is the possibility of implementing the
quantum counterpart of many Machine Learning algorithms by designing properly just
two sets of quantum gates (G(·) and F) based on the task of interest. The architecture
is extremely flexible and can be leveraged in both the contexts of fault-tolerant and
NISQ computation.

From a classical ML perspective, relevant computational advantage are introduced.
Given 2d base functions, any method that leverages the idea of function aggregation
scales linearly in 2d, because it is necessary to compute explicitly the base functions
in order to obtain the overall average (Equation 4.2). Furthermore, in the worst-case
scenario, each base function has to process all available data to obtain the final model,
this implies a linear cost in the size of the training set multiplied by 2d. Using big-O
notation, given a dataset (xi, yi) for i = 1, . . . N , where xi is a p-dimensional vector
and yi is the target variable of interest, the overall time complexity of any ML model
based on the aggregation of 2d functions is:

O(2dNαpβ) α, β ≥ 1.

72 MAQA: Multiple Aggregator Quantum Algorithm

In contrast, with MAQA it is possible to generate a superposition of 2d different
transformations of the input in only d steps because the single transformations are not
computed directly, but they result by the combination of different unitaries G(θi,j). In
particular, each step consists in implementing 2 controlled-G(θi,j) operations. Then,
once the quantum state in Equation (4.28) is generated, any further operation is
propagated to all the quantum trajectories with a single execution (unitary F). Using
big-O notation, the cost of implementing the MAQA is the following:

O (d× 2CG + CF) ,

where CG is the cost of implementing the controlled operation C(j)G(θ) (j = 0, 1) and
CF is the cost of implementing F . Note that, assuming a unitary cost for each step,
with respect to the parameter d, the number of different functions grows exponentially.
This means that it is possible to generate an exponentially large number of different
functions of the input while obtaining their average efficiently, simply by measuring the
data register. Also, the computation allows optimising the application of any function
that can be defined as the F gate that works via interference. In the next chapters, it
will be shown how to exploit these computational advantaged to train a QML model.

However, all these advantages come with some compromises. First, the assumption
about the nature of the operator G(θi,j); indeed, the algorithm assumes that the
product of G(θi,j), applied to |x⟩ implements the function g(x; Θk), whose parameters
Θk can be expressed as a function of the θi,j explicitly defined:

G(Θk) =
∏

i=1,...,d
j=1,2

G(θi,j). (4.29)

In practice, this means that multiple applications of the unitary that depends on some
set of parameters θi,j , result in a single transformation of the same nature that depends
on a derived set of parameters Θk.

Also, we assumed that the composition of the two sets of gates G(Θk) and F is the
quantum counterpart of the base function f ∗ in Equation (4.2).

Finally, as described in Section 2.6, when looking at the complexity of a quantum
algorithm, it is necessary to consider its cost in terms of gate complexity. Thus, it is
necessary that the exponential scaling introduced with respect to d is maintained when
considering a specific implementation of the QML model.

Chapter 5

Quantum Algorithm for Ensemble
Learning

A powerful way to improve performance in machine learning is to construct an ensemble
that combines the predictions of multiple models. Ensemble methods are often much
more accurate and have lower variance than the individual classifiers that make them
up, but have high requirements in terms of memory and computational time. In fact,
a large number of alternative algorithms is usually adopted, each requiring to query all
available data.

In this chapter, we adopt the MAQA framework to implement a new quantum
algorithm that exploits quantum superposition, entanglement and interference to build
an ensemble of classification models. Thanks to the generation of several quantum
trajectories in superposition, we obtain B transformations of the quantum state which
encodes the training set in only log (B) operations. This implies an exponential growth
in the size of the ensemble with respect to classical methods. Furthermore, when
considering the overall cost of the algorithm, we show that the training of a single
weak classifier impacts additively rather than multiplicatively, as it usually happens
classically.

We also introduce a new routine for classification, named quantum cosine classifier,
that works via interference and allows to implement the quantum ensemble using it as
base model. Finally, we present experiments on several real-world datasets to discuss
advantages and limitations of the proposed approach, defining a quantum version of
the cosine classifier and using the IBM qiskit environment to show how the algorithm
works.

74 Quantum Algorithm for Ensemble Learning

5.1 Bagging Strategy for Ensemble Methods

The idea behind ensemble methods based on the bagging strategy is to build a prediction
model by combining the strengths of a collection of simpler base models. Ensemble
learning can be broken down into two tasks: developing a population of base learners
from the training data, and then combining them to form the composite predictor. The
crucial element is the instability of the prediction method. In particular, if perturbing
the training set can cause significant changes in the predictor constructed, then bagging
can improve significantly the accuracy.

In practice, bagging reduces to computing several predictions f̂1(x), f̂2(x), . . . , f̂B(x)
using B different training sets, which are then averaged to obtain a single model with
lower variance:

f̂bag(x) = 1
B

B∑
b=1

f̂b(x). (5.1)

Although this approach guarantees a lower uncertainty in prediction, it is not practical
in its theoretical formulation, due to the lack of multiple training sets. To overcome
this issue, the bootstrap procedure (Efron and Tibshirani, 1994) can be employed, that
takes repeated samples from the available data and generates B different bootstrapped
training sets. The learning algorithm is then trained on the bth bootstrapped observa-
tions to get B different predictions f̂b(x). The difference between the bootstrap and the
idealised procedure is the way the training sets are derived. Instead of obtaining inde-
pendent datasets from the domain, the initial training set is perturbed as many times
as the number of weak classifiers to aggregate. The generated datasets are certainly
not independent because they are all based on the same training set. Nonetheless,
empirical findings suggest that bagging is still able to produce combined models that
often significantly outperform individual learners, and that are never substantially
worse (Tumer and Ghosh, 1996b).

5.2 Quantum Algorithm for Ensemble Learning

In this section we introduce the basic idea of our quantum algorithm for ensemble
classification using bagging in the context of binary classification.

The algorithm adopts three quantum registers, the ones required by the MAQA
framework described in the Chapter 4 (data, control) plus an additional register to
encode the test set. In particular, the data register encodes the whole training set and

5.2 Quantum Algorithm for Ensemble Learning 75

it is employed together with the d-qubits control register to generate 2d altered copies of
the training set in superposition. This step allows to simulate the bootstrap procedure
in the context of bagging by executing only once the state preparation routine. The test
register, instead, encodes unseen observations from the test set. Starting from these
three registers, the algorithm involves four main steps: state preparation, sampling in
superposition, learning via interference and measurement.

(Step 1) State Preparation
State preparation consists in the initialisation of the control register into a uniform

superposition through a Walsh-Hadamard gate and the encoding of the training set
(x, y) in the data register:

|Φ0⟩ =
(
W ⊗ S(x,y)

) d
⊗

j=1
|0⟩ ⊗ |0⟩ =

(
H⊗d ⊗ S(x,y)

) d
⊗

j=1
|0⟩ ⊗ |0⟩ =

d
⊗

j=1
|cj⟩ ⊗ |x, y⟩ ,

(5.2)

where S(x,y) is the state preparation routine for the training set and it strictly depends
on the encoding strategy, W is the Walsh-Hadamard gate and |cj⟩ is the j-th qubit of
the control register.

(Step 2) Sampling in Superposition
The second step regards the generation of 2d different transformations of the training

set in superposition, each entangled with a state of the control register. To this end,
d steps are necessary, where each step consists in the entanglement of the ith control
qubit with two transformations of |x, y⟩ based on two random unitaries, U(i,1) and
U(i,2), for i = 1, . . . , d. The most straightforward way to accomplish this is to apply the
unitary U(i,j) through controlled operations, using as control state the two basis states
of the current control qubit. In particular, the generic ith step involves the following
three transformations:

76 Quantum Algorithm for Ensemble Learning

• First, the controlled-unitary CU(i,1)
1 is executed to entangle the transformation

U(i,1) |x, y⟩ with the excited state of the ith control qubit:

|Φi,1⟩ =
(
CU(i,1)

)
|ci⟩ ⊗ |x, y⟩

=
(
CU(i,1)

) 1√
2
(
|0⟩+ |1⟩

)
⊗ |x, y⟩

= 1√
2

(
|0⟩ |x, y⟩+ |1⟩U(i,1) |x, y⟩

)
. (5.3)

• Second, the i–th control qubit is transformed based on Pauli–X gate:

|Φi,2⟩ =(X ⊗ 1) |Φi,1⟩

= 1√
2

(
|1⟩ |x, y⟩+ |0⟩U(i,1) |x, y⟩

)
. (5.4)

• Third, a second controlled-unitary CU(i,2) is executed:

|Φi⟩ =
(
CU(1,2)

)
|Φi,2⟩

=
(
CU(1,2)

) 1√
2

(
|1⟩ |x, y⟩+ |0⟩U(i,1) |x, y⟩

)
= 1√

2

(
|1⟩U(i,2) |x, y⟩+ |0⟩U(i,1) |x, y⟩

)
. (5.5)

These three transformations are repeated for each qubit in the control register and, at
each iteration, two random unitaries U(i,1) and U(i,2) are applied. After d steps, the
control and data registers are fully entangled and 2d different quantum trajectories in
superposition are generated (as shown in Section 4.2.1). The output of this procedure
can be expressed as follows:

|Φd⟩ = 1√
2d

2d∑
b=1
|b⟩Vb |x, y⟩ = 1√

2d

2d∑
b=1
|b⟩ |xb, yb⟩ , (5.6)

where Vb results from the product of d matrices U(i,j) and represents a single quantum
trajectory which differs from the others for at least one matrix U(i,j). In general, it is
possible to refer to the unitary Vb as a unitary transformation that allows obtaining a

1by default the control state is the excited state |1⟩.

5.2 Quantum Algorithm for Ensemble Learning 77

random sub-sample of the training set:

|x, y⟩ Vb−→ |xb, yb⟩ . (5.7)

The composition of Vb strictly depends on the encoding strategy chosen for data. In
Section 5.3.1 we introduce a classification routine (quantum cosine classifier) based
on the qubit encoding strategy, where a single observation is encoded into a qubit. In
that case, the implementation of unitaries U(i,j) corresponds to the swap gate applied
randomly to the qubits of the data register. Notice that the only requirement to perform
ensemble learning using bagging effectively is that small changes in the product of
the unitaries U(i,j) imply significant differences in |xb, yb⟩, since the more independent
sub-samples are, the better the ensemble works.

(Step 3) Learning via Interference
The third step of the algorithm is Learning via Interference. First, the test register

is initialised to encode the test set, x(test), considering also an additional register to
store the final predictions:

(Sx(test) ⊗ 1) |0⟩ |0⟩ = |x(test)⟩ |0⟩ . (5.8)

Then, the data and test registers interact via interference to compute the estimates of
the target variable. To this end, we define a quantum classifier F that satisfies the
necessary conditions described in Section 4.1.2. In particular, F acts on three registers
to predict y(test) starting from the training set (xb, yb):

|xb, yb⟩ |x(test)⟩ |0⟩ F−→ |xb, yb⟩ |x(test)⟩ |f̂b⟩ . (5.9)

Thus, F represents the classification function f̂ that estimates the value of the target
variable of interest. For example, in binary classification problems, the prediction can
be encoded into the probability amplitudes of a qubit, where the state |0⟩ encodes one
class, and the state |1⟩ the other.

78 Quantum Algorithm for Ensemble Learning

The Learning via Interference step leads to:

|Φf⟩ =
(

1⊗d ⊗ F
)
|Φd⟩

= (1⊗d ⊗ F)
 1√

2d

2d∑
b=1
|b⟩ |xb, yb⟩

⊗ |x(test)⟩ |0⟩

= 1√
2d

2d∑
b=1
|b⟩ |xb, yb⟩ |x(test)⟩ |f̂b⟩ , (5.10)

where f̂b represents the prediction for x(test) given the bth training set, and it is im-
plemented via F . Notice that expressing the prediction according to Equation 5.10
implies that it is necessary to execute F only once in order to propagate its use to all
the quantum trajectories. Furthermore, as consequence of Steps 2 and 3, the bth state
of the control register is entangled with the bth value of f̂ .

|Φ0⟩ |Φ1⟩ |Φ2⟩ |Φd−1⟩ |Φd⟩
1 |0⟩

W

• X •
. . .

d− 1 |0⟩ • X •

d |0⟩ • X • · · · |Φf⟩

data |0⟩ S(x,y) U(1,1)) U(1,2) U(2,1) U(2,2) · · · U(d,1) U(d,2)

Ftest |0⟩
S(x(test),0)

|0⟩

Fig. 5.1 Quantum algorithm for ensemble classification. The circuit contains d pairs of
unitaries U(i,1), U(i,2) and d control qubits. It produces an ensemble of B classifiers,
where B = 2d. The single evaluation of F allows propagating the classification
function f̂ in all trajectories in superposition. The first d steps allows generating B
transformations of the training set (x, y) in superposition, and each transformation is
entangled with a quantum state of the control register (firsts d qubits). Thus, the test
set x(test) is encoded in the test register that interferes with all samples in superposition.
Finally, the ensemble prediction is obtained as the average of individual results from
each trajectory.

(Step 4) Measurement
Measuring the last register allows retrieving the average of the predictions provided

5.2 Quantum Algorithm for Ensemble Learning 79

by all the classifiers:

⟨M⟩ =
〈
Φf |1⊗d ⊗ 1⊗ 1⊗M

∣∣∣Φf

〉
= 1

2d

2d∑
b=1
⟨b|b⟩ ⊗ ⟨(xb, yb)|(xb, yb)⟩ ⊗ ⟨x(test)|x(test)⟩ ⊗ ⟨f̂b|M |f̂b⟩

= 1
2d

2d∑
b=1
⟨f̂b|M |f̂b⟩ = 1

2d

2d∑
b=1
⟨Mb⟩

= 1
B

B∑
b=1

f̂b = f̂bag(x(test)|x, y), (5.11)

where B = 2d and M is a measurement operator (e.g. Pauli-Z gate). The expectation
value ⟨M⟩ computes the ensemble prediction since it results from the average of the
predictions of all the weak learners. Thus, if the two classes of the target variable
are encoded in the two basis states of a qubit, it is possible to access to the ensemble
prediction by single-qubit measurement:

f̂bag = √a0 |0⟩+√a1 |1⟩ , (5.12)

where a0 and a1 are the average of the probabilities for x(test) to be classified in class
0 and 1, respectively. The quantum circuit of the quantum ensemble is illustrated in
Figure 5.1.

5.2.1 Quantum Algorithm for Boosting and Randomisation

The same framework presented above can be adapted with slight variations to allow
also randomisation and boosting.

The main principle of the ensemble based on randomisation consists in the intro-
duction of casual perturbations that decorrelate the predictions of individual classifiers
as much as possible. In this case, it is possible to loosen the constraints imposed on the
classifier F , which can be generalised beyond weak learners. The procedure described
in Step 2 (Sampling in Superposition), in fact, can be employed to introduce a random
component in the single learner, so to decrease the accuracy of each individual model.
As a consequence, the predictions are less correlated and the variance of the final
prediction is reduced.

Technically, it is necessary to define a classification routine which can be decomposed
in the product of Vb and F . Here, the different trajectories do not simulate the bootstrap
procedure as for bagging, but they are part of the classification routine and introduce

80 Quantum Algorithm for Ensemble Learning

randomisation in the computation of f̂ . In practice, we define a unitary Gb that
performs the following transformation:

|x, y⟩ |x(test)⟩ |0⟩ Gb−→ |x, y⟩ |x(test)⟩ |f̂b⟩ , (5.13)

where Gb = VbF is the quantum classifier composed by F – common to all the classifiers
– and Vb which is its random component – different for each quantum trajectory. This
formulation allows rewriting the quantum state in Equation 5.10 as:

|Φf⟩ = 1√
2d

2d∑
b=1
|b⟩Gb |x, y⟩ |x(test)⟩ |0⟩ = 1√

2d

2d∑
b=1
|b⟩Gb |x, y⟩ |x(test)⟩ |f̂b⟩ . (5.14)

Likewise, the proposed framework can also be adapted for boosting, where the
estimates provided by the single classifiers are weighted so that individual models do
not contribute equally to the final prediction. In practice, the only difference is that
the amplitudes of the control register need to be updated as the computation evolves.
As a result, the output of a quantum ensemble based on boosting can be described as:

|Φf⟩ = 1√
2d

2d∑
b=1

αb |b⟩ |f̂b⟩ , (5.15)

where the contribution of f̂b to the ensemble depends on αb. However, although in
principle this approach fits in the scheme of a boosting ensemble, the difficulty in
updating the control register is non-trivial.

To summarise, the main difference between quantum bagging and the other ap-
proaches is the way we define the unitaries U(i,j) and F . However, the exponential
growth in the ensemble size that comes from the advantage of generating an ensemble
of B = 2d classifiers in only d steps still holds.

5.2.2 Aggregation Strategy and Theoretical Performance

When considering classical implementations of ensemble algorithms, it is possible to
distinguish two broad families of methods based on the strategy adopted to aggregate
the predictions of the individual models. On one hand, the most popular technique
used in ensemble classification is majority voting, where each classifier votes for a target
class and the most frequent is then selected. On the other hand, an alternative strategy
is given by simple averaging. In this case, the target probability distribution provided

5.2 Quantum Algorithm for Ensemble Learning 81

by individual models is considered, and the final prediction is computed as follows:

f (i)
avg(x) = 1

B

B∑
b=1

f
(i)
b (x), (5.16)

where B is the ensemble size and f
(i)
b (x) is the probability for x to be classified in

the ith class provided by the bth classifier. This approach allows a reduction of the
estimates variance (Tumer and Ghosh, 1996a) and has shown good performance even
for large and complex datasets (Xu et al., 1992). In particular, the error Eens of an
ensemble obtained averaging B individual learners can be expressed as (Jacobs, 1995;
Oza and Tumer, 2008):

Eens = 1 + ρ(B − 1)
B

Emodel, (5.17)

where Emodel is the expected error of the single models and ρ is the average correlation
among their errors. Hence, the more independent the single classifiers are, the greater
the error reduction due to averaging. A graphical illustration of the theoretical
performance of an ensemble as a function B, ρ and Emodel is reported in Figure 5.2.

Coming to our implementation of the quantum ensemble, the prediction of the
single classifier is encoded into the probability amplitudes of a quantum state and the
final prediction is computed by averaging the results of all quantum trajectories in
superposition. Implicitly, this means that the quantum ensemble fits in the simple
averaging strategy. Thus, the possibility to generate exponentially large ensembles at
the cost of increasing linearly the number of control qubits d allows quantum ensemble
to improve significantly the performance of the single classifier (Figure 5.2) using
relatively small circuits (d ∼ 10).

5.2.3 Computational Considerations

Classically, given a number B of base learners and a dataset (xi, yi) for i = 1, . . . N ,
where xi is a p-dimensional vector and yi is the target variable of interest, the overall
time complexity for training an ensemble based on randomisation or bagging scales at
least linearly with respect to B and polynomially in p and N :

O(BNαpβ)︸ ︷︷ ︸
Training

+O(Bp)︸ ︷︷ ︸
Testing

α, β ≥ 1,

82 Quantum Algorithm for Ensemble Learning

Fig. 5.2 Theoretical performance of the quantum ensemble based on the expected
prediction error of the base classifiers (Emodel) and their average correlation (ρ). The
ensemble size depends on the number of qubits d in the control register. Each solid
line corresponds to an error level, with coloured bands obtained by varying ρ between
0 (lower edge) and 0.5 (upper edge).

where α and β depend on the single base model and Nαpβ is its training cost. In
boosting, instead, the model evolves over time and the individual classifiers are not
independent. This usually implies higher time complexity and less parallelism.

Despite this clear definition of the computational cost, comparing the classical
algorithm to its quantum counterpart is not straightforward since they belong to
different classes of complexity. For this reason, we benchmarked the two approaches by
looking at how they scale in terms of the parameters of the ensemble, i.e, the ensemble
size B and the cost of each base model. In particular, this resolves in considering the
Boolean circuit model (Arora and Barak, 2009) for the classical ensemble, and the
depth of the corresponding quantum circuit for the quantum algorithm. In light of
this definition, the quantum algorithm described in Section 5.2 is able to generate an
ensemble of size B = 2d in only d steps. This means that, assuming a unitary cost for
each step, we are able to introduce (potentially) an exponential speed-up with respect
to classical ensemble methods in terms of the ensemble size.Furthermore, the cost of the
single classifier is additive – instead of multiplicative as in classical ensembles – since it
is necessary to execute the quantum classifier F only once to propagate its application

5.3 Experiments 83

to all quantum trajectories in superposition, as shown in Equation (5.10). In addition,
the cost of the state preparation routine is equivalent to any other quantum algorithm
for processing the same training and test sets. However, this comparison does not
take into account the additional cost due to state preparation which is not present in
classical ensembles. Also, the quantum ensemble comes with an extra cost related to
the implementation of the gates U(i,j), that strictly depends on the encoding strategy
chosen for the data and needs to be evaluated for a any specific implementation.

5.3 Experiments

To test how our framework for quantum ensemble works in practice, we implemented the
circuit illustrated in Figure 5.1 using IBM Qiskit2. Then, we conducted experiments on
simulated data to show that (i) one execution of a quantum classifier allows retrieving
the ensemble prediction, and that (ii) the ensemble outperforms the single model.

5.3.1 Quantum Cosine Classifier

In order to implement the quantum ensemble, a classifier that fulfils the conditions in
Equation (5.9) is necessary. For this purpose, we define a simple routine for classification
based on the swap-test (Buhrman et al., 2001) that stores the cosine distance into
the amplitudes of a quantum state. This metric describes how similar two vectors are
depending on the angle that separates them, irrespectively of their magnitude. The
smaller the angle between two objects, the higher the similarity. Starting from this,
the high-level idea is predicting a similar target class for similar input features. In
particular, for any test observation (x(test), y(test)) we take one training point (xb, yb) at
random and express the probability of y(test) and yb being equal as a function of the
similarity between x(test) and xb:

Pr
(
y(test) = yb

)
= 1

2 +

[
d
(
xb, x

(test)
)]2

2 , (5.18)

where d(·, ·) is the cosine distance between xb and x(test). Thus, the final classification
rule becomes:

y(test) =

yb, if Pr
(
y(test) = yb

)
> 1

2

1− yb otherwise ,
(5.19)

2https://qiskit.org/

https://qiskit.org/

84 Quantum Algorithm for Ensemble Learning

Notice that, by definition, Pr
(
y(test) = yb

)
is bounded in [1

2 , 1], which means that
Equation (5.19) always estimates the same class as the training point, unless xb and
x(test) are orthogonal. As a consequence, the cosine classifier performs well only if the
test and training observations happen to belong to the same target class.

Fig. 5.3 Quantum circuit of the cosine classifier using xb as training vector and x(test)

as test vector. The training label yb is either |0⟩ or |1⟩ based on the binary target value.
The results of the classification based on random generated data points are shown in
Figure 5.4.

The quantum circuit to reproduce the cosine classifier (Figure 5.3) encodes data
into three different registers: the training vector xb, the training label yb and the test
point x(test). An additional qubit is then used to store the prediction. The algorithm
is made of three steps. First, data are encoded into three different quantum registers
through a routine S. Second, the swap-test transforms the amplitudes of the qubit
y(test) as a function of the squared cosine distance. In particular, after the execution
of the swap-test the probability of getting the basis state |0⟩ is between 1/2 and 1,
hence the probability of class 0 is never lower than the probability of class 1. Third, a
controlled Pauli-X rotation is applied using as control qubit the label of the training
vector. This implies that y(test) is left untouched if xb belongs to the class 0. Otherwise,
the amplitudes of the y(test) qubit are inverted, and Pr(y(test) = 1) becomes higher as
the similarity between the two vectors increases.

To summarise, the quantum cosine classifier performs classification via interference
and allows calculating the probability of belonging to one of the two classes by single-
qubit measurement. Furthermore, it is a weak method with high-variance, since it is
sensitive to the random choice of the training observation. In addition, it requires data
to be encoded using qubit encoding, where a dataset with N 2-dimensional observations
xb is stored into N different qubits. This allows the definition of U(i,j) in terms of

5.3 Experiments 85

random swap gates that move observations from one register to another. All these
features make this classifier a good candidate for ensemble methods (more details about
the quantum classifier are provided in Appendix B.3).

Fig. 5.4 Predictions of the cosine distance classifier based on 103 randomly generated
datasets per class. The classifier is implemented using the circuit in Figure 5.3.

5.3.2 Quantum Ensemble as Simple Averaging

As a proof-of-concept for the quantum ensemble based on bagging, we consider a
dataset with four training points and one test example. We show experimentally that
the quantum ensemble prediction is exactly the average of the values of all trajectories
in superposition and it can be obtained with just one execution of the classification
routine.

The toy dataset used here is reported in Table 5.1. Each training point is fed into a
quantum cosine classifier as input so to provide an estimate for a test observation x(test).
In practice, the quantum circuit of the ensemble uses two qubits in the control register
(d = 2) and eight in the data register, four for the training vectors xb and four for
training labels yb. Two additional qubits are then used for the test observation, x(test),
and the final prediction. Notice that the four matrices U(i,j) need to be fixed to guarantee
that each quantum trajectory Vb described in Section 5.2 provides the prediction of
different and independent training points (the details about the implementation in
terms of quantum gates is reported in Appendix B.2).

The results of the quantum implementation are shown in Figure 5.5. The value
f̂b indicates the output of the quantum cosine classifier using (xb, yb) as training set.
The experiments using the QASM simulator (top plot) show an equivalence between
the probability of x(test) to be classified in class 1 (blue bar) and the same probability

86 Quantum Algorithm for Ensemble Learning

Dataset
X1 X2 y d(·, ·) Pr(y(test) = 1)

x1 1 3 0 0.89 0.10
x2 −2 2 1 0 0.50
x3 3 0 0 0.71 0.25
x4 3 1 1 0.89 0.90

x(test) 2 2 ? 1.0 /

Table 5.1 Each row of the table corresponds to a possible training observation. X1 and
X2 are the features, d(·, ·) is the cosine distance of the training point from x(test) and
Pr(y(test) = 1) is the predicted probability computed classically (see Equation (5.18)).

Fig. 5.5 Quantum results based on data in Table 5.1. The labels f̂b=1,··· ,4 indicate the
estimated probabilities for x(test) given the bth observation as training set. The AVG
bars are obtained by averaging the individual classifiers, while qEnsemble represents
the prediction of the quantum ensemble.

computed classically (column Pr(y(test) = 1) of Table 5.1). Also, the quantum estimate
(qEnsemble) matches perfectly the classical ensemble prediction computed by averaging
the four classifications (AVG), as expected. The agreement, however, deteriorates when
running on a real quantum device (bottom plot).

In order to generalise the results of the quantum ensemble beyond the dataset in
Table 5.1, we performed the same experiment on 20 randomly generated datasets, and
we compared the average of the quantum cosine classifiers with the quantum ensemble
prediction. Results are shown in Figure 5.6. In this case, the agreement between the
quantum ensemble (orange line) and the average (brown dots) is almost perfect, which

5.3 Experiments 87

Fig. 5.6 Comparison between the quantum ensemble (qEnsemble) and the average
of the four quantum cosine classifiers executed separately (AVG, brown dots), which
is computed classically. The simulation of the circuit on the QASM simulator is
illustrated in orange, while the light blue line depicts the behaviour on a real device
(ibmq_16_melbourne).

confirms the possibility to perform quantum ensemble with the advantages described
in Section 5.2. Results considering the real device (light blue line) show significant
deterioration, this may be due to the depth of the quantum circuit which seems to be
prohibitive considering current available quantum technology.

5.3.3 Performance of Quantum Ensemble

To show that the quantum ensemble outperforms the single classifier we generated a
simulated dataset and compared the performance of the two models (the pseudo code
of the ensemble is described in the Appendix B.4). In particular, we drew a random
sample of 200 observations (100 per class) from two independent bivariate Gaussian
distributions, with different mean vectors and the same covariance matrix (Figure 5.7).
Then, we used the 90% of the data for training and the remaining 10% for testing.

Notice that, given the limitations of the present quantum technology and the
definition of the cosine classifier, we need to execute the classification routine once for
each test point (See Appendix B.2 for more details). We considered two performance
metrics, accuracy and Brier Score. The accuracy is the fraction of labels predicted
correctly by the quantum model, and it is evaluated using a set of observations not
employed for training (test set). Instead, the Brier Score (BS) measures the difference

88 Quantum Algorithm for Ensemble Learning

Fig. 5.7 Dataset generated by two independent bivariate Gaussian distributions. Mean
vectors for the two classes are (1, 0.3) and (0.3, 1). The two distributions have the same
diagonal covariance matrix, with constant value of 0.3.

between the probability estimates and the true label in terms of mean squared error:

BS = 1
Ntest

Ntest∑
i=1

[yi − f(xi)]2 , (5.20)

where Ntest is the number of observation in the test set, yi and f(xi) are, respectively,
the true label and the probability estimates provided by the quantum model for the
ith observation (for quantum ensemble see Equation (5.11)). Hence a low BS score
implies a good prediction.

Because of the random component in the models due to the choice of training
points, we repeated the experiments 10 times and evaluated the classifiers in terms of
mean and standard deviation of both accuracy and Brier Score.

Results are shown in Table 5.2. The single quantum cosine classifier performed
only slightly better than random guessing, with an average accuracy of 55%. Yet, the
quantum ensemble managed to achieve definitely better results, with both metrics
improving as the ensemble size grows.

Variance Analysis
In addition, we investigated how the quantum ensemble behaves as the generated

distributions get closer and less separated. To this end, we drew multiple samples from
the two distributions, each time increasing the common standard deviation so to force
reciprocal contamination. Results are reported in Figure 5.8.

5.3 Experiments 89

Accuracy Brier Score

d B N. train Mean Std dev Mean Std dev

0 1 1 .55 .09 .21 .05
1 2 2 .92 .09 .14 .09
2 4 4 .91 .09 .15 .05
3 8 8 .96 .04 .14 .04
4 16 8 .98 .02 .13 .02

Table 5.2 Performance comparison between quantum cosine classifier and quantum
ensemble of different sizes B = 2d. The first row indicates the performance of the single
quantum cosine classifier. The column N. train indicates the number of training points
used to build the ensemble, that is limited to 8 because of limited number of qubits
that is possible to simulate using a simulator.

Fig. 5.8 Distribution of the performance metrics as a function of the ensemble size
(legend colors) and the separation between the two classes (x axis).

The accuracy showed a decreasing trend as the overlap of the distributions increased.
The opposite behaviour is observed for the Brier Score. Also, the shape of the boxplots
is much narrower for greater ensemble sizes (green and red boxplots) than for smaller
ones (blue and orange). Hence, this confirms that the variability of the ensemble
decreases as the number of weak learners adopted grows, as expected.

90 Quantum Algorithm for Ensemble Learning

5.4 Benchmark on real-world datasets

In this section we test the performance of the quantum ensemble on real-world datasets
that are usually employed to benchmark classical machine learning algorithms.

5.4.1 Datasets description

As discussed in the previous chapters, the simulation of a quantum system on a
classical device is a challenging task, even for systems of moderate size. For this reason,
experiments consider only datasets with a relatively small number of observations (100–
150) that will be split in training (90%) and test (10%) set. Furthermore, in order to
limit the overall number of qubits, the Principal Components Analysis (PCA) (Pearson,
1901) is employed to reduce the number of features to 2. PCA is an unsupervised
technique which computes a small number of new variables that, in a certain sense,
summarise the original input set. The matrix of correlation coefficients derived from the
original data is decomposed to obtain a new set of variables whose composition depends
on observed correlations. PCA usually requires the variables to be measured on a
continuous scale, but it can also be employed with ordinal features. The performance
of PCA is measured by the explained variance of the new set of features. In fact, the
total variance of the new set of features is equal to the total variance of the original
input features. The difference is that the most important subset of the new features
embeds most of the original dataset’s variability. Thus, the ratio between the variance
explained by the selected principal components and the total variance measures how
well the PCA performed.

For all the datasets, the quantum algorithm will be trained on the training set,
and the test error3 (the error measured on the test set) is considered to evaluate the
generalisation error of the quantum model.

MNIST
MNIST (Modified National Institute of Standards and Technology) data is a large

dataset of handwritten digits that is commonly used to benchmark various image
processing systems. In particular, it is usually employed for training and testing
different algorithms in the field of machine learning. The dataset contains 60.000
black and white images, each represented by 28× 28 pixels. Thus, the single image
can be described as a vector of binary 784 features (0 if the pixel is white, 1 if it is
black). Also, each image belongs to a class of ten possible, that represents the digit

3in terms of Accuracy and Brier Score

5.4 Benchmark on real-world datasets 91

Fig. 5.9 Image representation of the digits 0 and 9.

depicted in the image. As discussed in Section 5.3, the current implementation of the
quantum ensemble is arranged to solve a binary classification problem. Hence, only
two different classes will be considered, the digits 0 and 9 (Figure 5.9). In order to

Fig. 5.10 Scatterplot of the two first principal components of the MNIST dataset. The
explained variance by these two components is 31%.

reduce the number of features and, consequently, the number of qubits needed for
the implementation, the original feature space is transformed using the PCA. This
allows generating a new set of features that results from the linear combination of the
initial 784 binary features. The coefficients of the linear combinations are calculated
according to the spectral decomposition of the correlation matrix of data.

Iris
The Iris flower data set collects the data to quantify the morphologic variation of Iris

flowers of three related species (Anderson, 1936). The data set consists of 50 examples
from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four

92 Quantum Algorithm for Ensemble Learning

features describe each observation: the length and the width of the sepals and petals,
in centimetres (Figure 5.11).

Fig. 5.11 Original scatterplot matrix of the Iris dataset.

The dataset is often used in statistical learning theory as classification and clustering
examples and to test algorithms. In order to test the quantum ensemble on iris dataset,
it is necessary to employ only two features. Thus the PCA is performed to extract only
two principal components as new features. Also, the binary classification problem will
be considered, hence, only two classes at time (three different datasets). The explained
variance of the PCA performed to separate the classes virginica and versicolor is
92.3%. In the other cases (setosa vs versicolor and setosa vs virginica), the explained
variance is around 98%.

Breast cancer
Breast cancer data is a dataset containing information about the presence of breast

cancer in a given set of patients. The data set contains 569 rows and 32 columns. The
target variable says if the cancer is M = malignant or B = benign. The value 1 of the
target variable means the cancer is malignant, 0 means benign. The features describe
the characteristics of the cell nuclei present in the image.

5.4 Benchmark on real-world datasets 93

Fig. 5.12 Scatterplot of the two firsts principal components of the reduced Breast
dataset. The explained variance is 99.8%.

In order to employ this set of data, PCA will be applied, together with resampling
that allows perfectly balancing the observations in the two classes. Data after the
preprocessing are depicted in Figure 5.12

5.4.2 Results

The results of quantum ensemble on the real-world datasets are reported in Figure
5.13. As for simulated data, we investigated the behaviour of the quantum ensemble
as the number of base models increases.

Fig. 5.13 Performance of the quantum ensemble on real-world datasets.

Comparing the results in terms of the ensemble size (B = 2d), it is possible to
observe a decreasing trend of the Brier score and an increasing trend for accuracy. This

94 Quantum Algorithm for Ensemble Learning

confirms the ability of the quantum ensemble to improve the performance of the single
quantum classifier.

5.5 Conclusion

In this chapter, we proposed the use of MAQA to build a quantum algorithm for
binary classification based on ensemble learning. The correspondent algorithm allows
generating a large number of trajectories in superposition, performing just one state
preparation routine. Each trajectory is entangled with a quantum state of the control
register and represents a single classifier. This convenient design allows scaling the
number of base models exponentially with respect to the available qubits in the control
register (B = 2d). As a consequence, we introduce an exponential growth in the
ensemble size with respect to the classical counterpart. Furthermore, when considering
the overall time complexity of the algorithm, the cost of the weak classifier is additive,
instead of multiplicative as it usually happens.

In addition, we presented a practical implementation of the quantum ensemble using
bagging where the quantum cosine classifier is adopted as base model. In particular,
we showed experimentally that the ensemble prediction corresponds to the average
of all the probabilities estimated by the single classifiers. Moreover, we tested our
algorithm on synthetic and real-world datasets and demonstrated that the quantum
ensemble systematically outperforms the single classifier by improving the accuracy
and decreasing the prediction variance. Also, the variability decreases as we added
more base models to the ensemble.

However, the currently proposed implementation requires the execution of the
classifier for just one test point at the time, which is a big limitation for practical
applications. In this respect, the main challenge to tackle to make the ensemble
effective in the near future is the design of a quantum classifier based on interference
that guarantees a more efficient data encoding strategy (e.g. amplitude encoding),
and that can process larger datasets. However, these upgrades would imply a different
definition of U(i,j) for generating multiple and diverse training sets in superposition.

Another natural follow-up is the implementation of quantum algorithms for ran-
domisation and boosting. In this work, we only referred to an ensemble based on
bagging because the learning step was performed independently in each quantum
trajectory and the weak classifiers were assumed to be sensitive to perturbations of the
training set. However, with appropriate amendments and loosening these constraints,
we believe that it is possible to design other types of ensemble techniques.

Chapter 6

qSLP: Quantum Single Layer
Perceptron

In this chapter, we propose the adoption of MAQA (Chapter 4) to implement a
Quantum Neural Network introducing a novel variational algorithm for quantum Single
Layer Perceptron (qSLP). Thanks to the universal approximation theorem, and given
that the number of hidden neurons scales exponentially with the number of qubits, the
use of MAQA in the context of quantum variational algorithms opens to the possibility
of approximating any function on near-term quantum computers.

The proposed approach produces a model with substantial descriptive power, and
widens the horizon of potential applications already in the NISQ era, especially the ones
related to Quantum Artificial Intelligence. In particular, we design a quantum circuit
to perform parametrised linear combinations in superposition where the parameters of
the quantum algorithm can be learned using hybrid quantum-classical computation
and discuss adaptations to classification tasks. After this theoretical investigation, we
also provide practical implementations using various simulated and real-world datasets.
Finally, we test the proposed algorithm on both simulators and real quantum devices.

6.1 Motivation

In the Chapter 1.5 we discussed that one of the topics in which QC may have a
higher impact is Quantum Machine Learning (QML), a sub-discipline intended as to
developing quantum algorithms that learn from data. However, the ability to deliver a
significant boost in performance through quantum algorithms on near-term devices is
still to be demonstrated. Given these premises, Neural Networks (NNs) are among the
most desired targets when coming to transposing classical models into their quantum

96 qSLP: Quantum Single Layer Perceptron

...
... ...

I1

I2

I3

Im

H1

Hn

O1

Ol

Input
layer

Hidden
layer

Output
layer

Fig. 6.1 Diagram representation of a single hidden layer neural network.

counterpart. In fact, NNs have shown remarkable performances in many real-world
applications and multiple learning tasks, including clustering, classification, regression
and pattern recognition.

In the following sections, we introduce a general model framework that reproduces
a quantum state equivalent to the output of a classical Single Layer Perceptron (SLP).
This is achieved by implementing an efficient variational algorithm based on MAQA that
performs linear combinations in superposition. The results are then passed altogether
through an activation function with just one application. Importantly, the framework
supports pluggable activation function routines, thus allowing an easy way to adapt
the approach to different use cases. In Section 6.2, we discuss the first prototype of
the quantum SLP (Macaluso et al., 2020c) which produces the output of a two-neuron
single layer neural network quantumly. Section 6.2.5 is devoted to practical experiments
to test our model as a classifier. Finally, Section 6.4 describes how our approach can
be extended to the case of more hidden neurons.

6.1.1 Neural Network as Universal Approximator

A Single Hidden Layer Neural Network (or Single Layer Perceptron - SLP) (Hastie
et al., 2001) is a two-stage model that can be used for both classification and regression,
typically represented by a network diagram as in Figure 4.1.

6.2 Variational Algorithm for Single Hidden Layer Neural Network 97

Given a training point (xi, yi), the output of a feedforward Neural Network with a
single hidden layer containing H neurons can be expressed as:

f(xi) = σoutput

 H∑
j=1

βjσhidden (L(xi; θj))
 , (6.1)

where σoutput is the identity when the task is to approximate a function. Each hidden
neuron j computes a linear combination of the input features xi with coefficients
equal to the p-dimensional vector θj. This operation is performed for all the neurons,
and the results are then individually convoluted with the inner activation function
σhidden. Despite being more straightforward than fancier, deep architectures proposed
in recent years, the SLP model is very expressive and capable of mimicking diverse and
complex functions. According to the universal approximation theorem, in fact, a single
hidden layer Neural Network with a non-constant, bounded and continuous activation
function can approximate any continuous function on a closed and bounded subset of
Rn, provided that enough hidden neurons are specified. This result implies that if we
manage to build an algorithm that reproduces an SLP on a quantum computer, then
we have automatically access to an enormously powerful tool that is potentially able
to solve any approximation problem.

6.2 Variational Algorithm for Single Hidden Layer
Neural Network

In this section, we propose a new variational algorithm reproducing a quantum Single
Layer Perceptron, whose output is equivalent to the classical counterpart. In particular,
building on top of the approach described in Section 4.1, we design an algorithm that
allows efficient computation using just mild constraints on the input. Also, the flexible
architecture enables to plug in custom implementations of the activation function
routine, thus adapting to different use cases. Thanks to the possibility of learning the
parameters for a given task, the proposed framework allows training models that can
potentially approximate any function.

However, we do not address the problem of implementing a non-linear activation
function. Our goal is to provide a framework that generates multiple linear combinations
in superposition entangled with a control register. In this way, instead of executing
a given activation function for each hidden neuron, a single application is needed to

98 qSLP: Quantum Single Layer Perceptron

propagate it to all of the quantum states. This allows scaling the number of hidden
neurons exponentially with the number of qubits, thus enabling the qSLP to be a
concrete alternative for approximating complex and diverse functions.

6.2.1 Encode Data in Amplitude encoding

The first issue to address when using a quantum computer for data analysis is state
preparation, i.e. the design of a process that loads the data from a classical memory
to a quantum system. The most general encoding adopted in QML is amplitude
encoding (Section 3.4). This strategy associates quantum amplitudes with real vectors
of observations at the cost of introducing just normalisation constraints. Formally, a
normalised vector x ∈ R2n can be described by the amplitudes of a quantum state |x⟩
as:

|x⟩ =
2n∑

k=1
xk |k⟩ ←→ x =

x1
...
x2n

 . (6.2)

In this way, it is possible to use the index register to indicate the k-th feature. The
main advantage of this encoding is that we only need n qubits for a vector of p = 2n

elements. This means that, if a quantum algorithm is polynomial in n, then it will
have a polylogarithmic runtime dependency on the data size. A possible strategy for
amplitude encoding has been proposed by Mottonen et al. (2004), which is the one
used for experiments in this work. The goal of this approach is to map an arbitrary
state |x⟩ to the ground |0 . . . 0⟩. Once the circuit is obtained, then all of the operations
are inverted and applied in the reversed order.

6.2.2 Activation function

The implementation of a proper activation function – in the sense of the Universal
Approximation Theorem – is one of the major issues for building a complete quantum
Neural Network. This is due to the restrictions to linear and unitary operations imposed
by the laws of quantum mechanics (Nielsen and Chuang, 2011). One of the most famous
attempt to solve this problem is described in (Cao et al., 2017), where the authors
use the repeat-until-success technique to achieve non-linearity. However, a significant
limitation is the requirement of inputs in the range

[
0, π

2

]
, which is a severe constraint

for real-world problems. Also, the idea of quantum spline (QSpline) (Macaluso et al.,
2020b) has recently been proposed to approximate non-linear activation functions via
a quantum algorithm. Although the QSpline provides a fitting method to store the

6.2 Variational Algorithm for Single Hidden Layer Neural Network 99

value of a non-linear function in the amplitudes of a quantum state, it makes use of
the HHL as sub routine, which is a full-coherent protocol and has high computational
requirements. In the next chapter a detailed discussion about QSpline will be provided.

In this chapter, we do not discuss how to implement in practice a non-linear
activation function. However, we provide a framework that permits to train a quantum
SLP for a given activation function Σ. Our architecture is naturally capable of
incorporating any implementation of an activation function whose parameters can be
learned, like, for instance, the one described in Hu (2018). Indeed, we can think of
extending the circuit that trains the qSLP to also learn the activation parameters.
For this reason, new implementations of non-linear activation functions are naturally
pluggable in the proposed framework as long as they fit in a learning paradigm.

6.2.3 Gates as Linear Operators

A variational circuit U(θ) is composed of a series of gates, each one possibly parametrised
by a set of parameters {θl}l=1,...,L. Formally, U(θ) is the product of matrices:

U(θ) = UL · · ·Ul · · ·U1, (6.3)

where each Ul is composed of a single-qubit or a two-qubit quantum gate. In order
to make the single-qubit gate trainable it is necessary to formulate Ul in terms of
parameters that can be learned. This is possible by adopting a single-qubit gate G
which is defined as the following 2× 2 unitary matrix (Barenco et al., 1995):

G(α, β, γ) =
 eiβcos(α/2) eiγsin(α/2)

−e−iγsin(α/2) e−iβcos(α/2)

 . (6.4)

Thus, we can now express each Ul in terms of single-qubit gates, Gi, acting on the
i-th qubit:

Ul = 11 ⊗ · · · ⊗Gi ⊗ · · · ⊗ 1n, (6.5)

where n is the total number of qubits of the quantum system. This representation of
U(θ) is convenient since it allows computing the gradient analytically, as shown in
Schuld et al. (2018).

100 qSLP: Quantum Single Layer Perceptron

Alternatively, we can express Equation (6.4) using complex numbers z, u ∈ C

instead of trigonometric functions:

G(z, v) =
 z v

−v∗ z∗

 , (6.6)

where |z|2 + |v|2 = 1. This parametrisation avoids non-linear dependencies between the
circuit parameters and the model output. Notice that the definition of linear operator
given in Equation (6.6) involves complex coefficients. Therefore, it describes a more
general operation with respect to the classical counterpart adopted in an SLP, that
only allows for linear combinations with real-valued coefficient. Nonetheless, one can
still parametrise the circuit using Pauli-Y rotation in case one wants to restrict the
computation to the real domain.

6.2.4 Original prototype of Quantum Single Hidden Layer
Network

In this section we discuss the proposal of a quantum Single Layer Perceptron with
two neurons in the hidden layer (Macaluso et al., 2020c). The generalisation of the
algorithm which makes use of MAQA framework is then discussed in Section 6.4.

Intuitively, a qSLP can be implemented into a quantum computer in two steps.
Firstly, we generate different linear operations in superposition, each one having
different parameters θj, entangled with a control register. Secondly, we propagate the
activation function to all the linear combinations in superposition. Notice that, thanks
this approach, instead of executing a given activation function for each hidden neuron,
we need only one application to obtain the output of all the neurons in the hidden
layer. To this end, three quantum registers are necessary: control, data (denoted by
|ψ⟩) and temporary register (|ϕ⟩). The latter is responsible for generating the linear
combinations of the input data in superposition. Also, it can be in any arbitrary state,
possibly even unknown.

The algorithm is composed of five main steps: state preparation, entangled linear
operators in superposition, application of the activation function, read-out step, post-
processing.

6.2 Variational Algorithm for Single Hidden Layer Neural Network 101

State Linear Activ. Readout Post

Preparation Operators ⟨M⟩ processing

control |0⟩ RY (β) • • f(x; θ, β)

data |ψ⟩ Sx × G(θ1) × Σ Loss(x; β, θ, b)

temporary |ϕ⟩ × G(θ2) × Update β, θ, b

|Φ0⟩ |Φ1⟩ |Φ2⟩ |Φ3⟩ |Φ4⟩ |Φ5⟩

Fig. 6.2 Quantum circuit for training a qSLP.

(Step 1) The state preparation includes encoding the data, x, in the amplitude of |ψ⟩
and applying a parametrised Y -rotation Ry(β) to the control qubit:

|Φ1⟩ =
(
Ry(β)⊗ Sx ⊗ 1

)
|Φ0⟩ =

(
Ry(β)⊗ Sx ⊗ 1

)
|0⟩ |0⟩ |ϕ⟩

= (β1 |0⟩+ β2 |1⟩)⊗ |x⟩ ⊗ |ϕ⟩ = β1 |0⟩ |x⟩ |ϕ⟩+ β2 |1⟩ |x⟩ |ϕ⟩), (6.7)

where Sx indicates the routine that encodes the data, |β1|2 + |β2|2 = 1 and β1, β2 ∈ R.

(Step 2) We exploit the idea of quantum forking (Park et al., 2019) to generate two
different linear operations in superposition, each entangled with the control qubit.

2.1 The first controlled-swap is applied to swap |x⟩ with |ϕ⟩ if the control qubit is
equal to |1⟩:

|Φ2⟩ = 1√
E

(
β1 |0⟩ |x⟩ |ϕ⟩+ β2 |1⟩ |ϕ⟩ |x⟩

)
, (6.8)

where E is a normalisation constant.

102 qSLP: Quantum Single Layer Perceptron

2.2 Two linear operations parametrised by two different sets (θ1 and θ2) act on |ψ⟩
and |ϕ⟩ respectively:

|Φ3⟩ =
(
1⊗G(θ1)⊗G(θ2)

)
|Φ2⟩

= 1√
E

(
β1 |0⟩G(θ1) |x⟩ |ϕ⟩+ β2 |1⟩ |ϕ⟩G(θ2) |x⟩

)
= 1√

E

(
β1 |0⟩ |L(x; θ1)⟩ |ϕ⟩+ β2 |1⟩ |ϕ⟩ |L(x; θ2)⟩

)
. (6.9)

2.3 Then, the second controlled-swap is executed to swap |L(x; θ2)⟩ with |ϕ⟩ if the
control qubit is equal to |1⟩:

|Φ4⟩ = 1√
E

(
β1 |0⟩ |L(x; θ1)⟩ |ϕ⟩+ β2 |1⟩ |L(x; θ2)⟩ |ϕ⟩

)
. (6.10)

Finally, the two linear operations are stored in |ψ⟩ and are then entangled with one
state of the control qubit. At this point, a routine is necessary to propagate the
activation function in both the trajectories of |ψ⟩.

(Step 3) Activation function:

|Φ5⟩ =
(
1⊗ Σ⊗ 1

)
|Φ4⟩

= 1√
E

(
β1 |0⟩Σ |L(x; θ1)⟩ |ϕ⟩+ β2 |1⟩Σ |L(x; θ2)⟩ |ϕ⟩

)
= 1√

E

(
β1 |0⟩

∣∣∣σhid

[
L(x; θ1)

]〉
|ϕ⟩+ β2 |1⟩

∣∣∣σhid

[
L(x; θ2)

]〉
|ϕ⟩

)
. (6.11)

At the end of Step 3 the two linear operations, L(·), are put through the same activation
function, σhid, represented by the gate Σ1. The results are then encoded in the quantum
register |ψ⟩. Each output is finally weighed by the parameters of the control qubit
(β), i.e. the coefficients attached to the hidden neurons in the linear combination that
produces the output of the NN. This is exactly the quantum version of the two-neurons
classical SLP presented in Equation (4.3).

1In the current literature, a Σ gate that reproduces non-linear functions quantumly doesn’t exist
yet. For experiments, the identity function will be employed. However, Chapter 7 introduces the
proposal of Quantum Splines, a full-coherent protocol that assumes a perfect quantum device to
approximate popular non-linear activation functions usually adopted for classical neural networks.

6.2 Variational Algorithm for Single Hidden Layer Neural Network 103

(Step 4) The measurement of |ψ⟩ can be expressed as the expected value of the Pauli-Z
operator acting on the quantum state |x⟩:

⟨M⟩ = ⟨Φ0|U †(β, θ)(1⊗ σz ⊗ 1)U(β, θ) |Φ0⟩ = π(x; β, θ), (6.12)

where U(β, θ) represents the qSLP circuit. In order to get an estimate of π(·), we have
to run the entire circuit multiple times.

(Step 5) The post-processing is performed classically and is task-dependent. For
classification models we need four steps: (i) adding a learnable bias term b to produce
a continuous output, (ii) applying a thresholding operation, (iii) computing the loss
function and (iv) updating the parameters. Notice that all these steps are customisable
and can be adapted to the particular needs of the application. In the case of the
experiments presented in Section 6.2.5 we adopt the following thresholding operation:

f(xi; β, θ, b) =

1 if π(xi; β, θ) + b > 0.5
0 else ,

(6.13)

where b is the bias term and f(xi; β, θ, b) gives us the predicted class for observation x.
As loss function we choose the Sum of Squared Errors (SSE) between the predictions
and the true values y:

SSE = Loss(Θ;D) =
N∑

i=1
[yi − f (xi; Θ)]2 , (6.14)

where N is the total number of observations in the sample and Θ = {β, θ, b}. Finally, we
exploit the Nesterov accelerated gradient method for updating the parameters, although
many alternative optimisation strategies can be adopted to update the parameters
(Ruder, 2016) .

To summarise, the variational algorithm described above allows reproducing a
classical Neural Network with one hidden layer on a quantum computer. In particular,
it includes a variational circuit adopted for encoding the data, performing the linear
combinations of input neurons and applying the same activation function to their
results with just one execution. A single iteration during the learning process is then
completed using classical resources to measure the output of the network, compute
the loss function and update the parameters. The whole process is then repeated
iteratively until convergence, as for classical Neural Networks.

104 qSLP: Quantum Single Layer Perceptron

As a final remark, notice that having a post-processing step that is extremely flexible
enables the adoption of this model both for regression and classification problems, thus
enhancing the impact of such algorithm.

6.2.5 Experiments

To test the performances of the qSLP, we implemented the circuit illustrated in Figure
6.2 using Qiskit (Figure 6.3) and Pennylane (Bergholm et al., 2018), two software
frameworks for optimisation and quantum computation. These libraries can be used
for both quantum and hybrid computations, and allow using quantum objects (e.g.
qubits, gates) in conjuction with classical elements (e.g. variables, functions). They
can handle many learning tasks such as training a hybrid ML model in a supervised
fashion.

Fig. 6.3 Qiskit implementation of the two-neuron qSLP in Figure 6.2. The first step
consists in preparing the data and the control register. Then the qubits of data and
temporary (temp) registers are swapped through controlled-swap. Two parametrised
unitary transformations are applied, each represented by two single-qubit rotation
and a CNOT. Finally, the controlled-SWAP is applied a second time, and the sigma
function (identity matrix) is implemented to the data register.

In addition, thanks to qiskit, we are able to execute the pre-trained algorithm
obtained on a real device2. In our case, the goal is to find the parameters of the
quantum circuit (β, θ) plus the additional bias term b. In absence of a gate Σ which
implements a non-linear activation function, the final quantum state of |ψ⟩ is:

|Φ5⟩ = 1√
E

(
β1 |0⟩ |L(x; θ1)⟩ |ϕ⟩+ β2 |1⟩ |L(x; θ2)⟩ |ϕ⟩

)
, (6.15)

which is a linear transformation of the input data and defines a linear classifier. Notice
that Pr [yi = 1|xi] for a given observation xi corresponds to the square of the linear

2The use of a specific device (santiago, vigo) depends on the availability at the time of the algorithm
execution.

6.2 Variational Algorithm for Single Hidden Layer Neural Network 105

(a) (b)

Fig. 6.4 The plot on the left illustrates the distributions of generated data in the two
classes (0, 1). The plot on the right shows the trends over training epochs of the cost
function and the accuracy.

transformation of hidden neurons with coefficients βj plus a bias term, b. In practice,
we generated linearly separable data to test our classifier. In particular, we drew a
random sample of 500 observations (250 per class) from two independent bivariate
Gaussian distributions, with different mean vectors and the same covariance matrix
(Figure 6.4a). Then, we used the 75% of the data for training and the remaining 25%
for testing. The training metrics for the model trained on the PennyLane simulator
are illustrated in Figure 6.4b.

The results demonstrate that the quantum SLP is able to classify correctly the
observations, as testified by the high classification accuracy in both training and test
sets, 0.97 and 0.95 respectively.

After the model was trained, the variational algorithm was also implemented using
Qiskit, and its performance was tested on 50 newly-generated observations. In this way,
it was possible to test the pre-trained model on both the QASM simulator – which
emulates the execution of a quantum circuit on a real device, also including highly
configurable noise models – and a real device. Results are reported in Table 6.1. The
PennyLane implementation was in line with the training results, and was the most
accurate (94% accuracy), as expected since the framework assumes a perfect device.
The effects of introducing the intrinsic noise due to quantum computations, instead,
can be appreciated in the Qiskit implementations. Both alternatives showed lower
performances, although the decrease in accuracy was certainly smaller for QASM. The

106 qSLP: Quantum Single Layer Perceptron

PennyLane QASM IBMQ Vigo
94% 90% 64%

Table 6.1 Test accuracy of multiple implementations. The performance deteriorates
when using a real device. (ibmqvigo)

real device, instead, presented a significant deterioration. This may be due to the
depth of the implemented circuit, especially regarding the encoding part, that seems
to be prohibitive considering the actual quantum devices.

Fig. 6.5 Assessment metrics trend as a function of distributions overlapping. Larger
standard deviations cause the two distributions to overlap, so that observations be-
longing to the two classes are mixed together and, hence, harder to separate. As a
consequence, model performances decrease and non-linearity is required.

In addition, we investigated how the performance of the qSLP implemented changes
as the generated distributions get closer and less separated. To this end, we drew
multiple samples from the two distributions, each time increasing the common standard
deviation so to force reciprocal contamination. As expected, the accuracy showed a
decreasing trend as the overlap of the distributions increased (Figure 6.5). In conclusion,
the experiments show that the proposed architecture works well for linearly separable
data. However, performance decreases as we add to the problem a level of complexity
that cannot be solved by linear classifiers.

6.3 Experiments on real-world datasets 107

6.3 Experiments on real-world datasets

We tested the performance of the two neurons qSLP on the datasets described in
Section 5.4.1. Results are shown in Table 6.2.

QASM Real device

Dataset Train Accuracy Test Accuracy Test Accuracy

MNIST (0 vs 9) .91 .93 .80
Breast .52 .33 .47

Iris (0 vs 1) .98 1.0 .60
Iris (0 vs 2) .99 1.0 .70
Iris (1 vs 2) .82 .80 .70

Table 6.2 Performance metrics of the qSLP (Figure 6.3) on real-world datasets. The
model is trained using QASM simulator and tested on both simulator and real device
(ibmq_santiago).

We can see that using the QASM simulator as quantum device, the qSLP achieves
good performance for all the datasets except the Breast dataset. In particular, consider-
ing the Iris dataset, the model is able to distinguish the class 0 (setosa) from the other
two almost perfectly, with an accuracy around 99%. Instead, when considering the
binary classification problem for separate the classes 1 (versicolor) and 2 (virginica) the
model’s performance deteriorates with an accuracy of 82%. The image classification
achieves good performance with an accuracy of 91%. In all the cases, the test accuracy
is in line with the training accuracy, hence the quantum models are not affected by
overfitting.

6.4 Generalisation to H hidden neurons

In this section we discuss the generalisation of the quantum SLP to the case of H > 2
hidden neurons by using the MAQA.

In order to extend the quantum state in Equation (6.11), two quantum registers
are considered: a data register whose size depends on the number of input features and
a control register made by d qubits. The final output of the qSLP will be stored in the
data register (output). Intuitively, the algorithm can be summarised into five steps.

108 qSLP: Quantum Single Layer Perceptron

|0⟩1

Sβ

•
|0⟩2 · · ·
. . . • · · ·
|0⟩d • · · ·

|0⟩⊗n Sx G(θ1,1) G(θ1,2) G(θ2,1) G(θ2,2) · · · G(θd,1) G(θd,2) F

|Φ0⟩ |Φ1⟩ |Φ2⟩ |Φd−1⟩ |Φd⟩

Fig. 6.6 Generalised qSLP that makes use of MAQA.

First, the control register is turned into a non-uniform superposition parameterised
by the 2d-dimensional vector β by means of a quantum gate Sβ. Also, a single p-
dimensional training point is encoded into the n-qubit (n = log(p)) data register
through the quantum gate Sx:

|Φ0⟩ = (Sβ ⊗ Sx) |0⟩data |0⟩control = 1√
E

(2d−1∑
j=0

βj |j⟩ ⊗ |x⟩
)
. (6.16)

The second step generates a superposition of the same linear operation with different
parameters entangled with the control register. This is possible by means of the Step 2
of the MAQA that leads to the following quantum state:

|Φd⟩ = 1√
E

2d−1∑
j=0

βj |j⟩G(Θj) |x⟩ = 1√
E

2d−1∑
j=0

βj |j⟩ |g(x; Θj)⟩ . (6.17)

Notice that the parametrised function g(x; Θb) corresponds to the transformation
L(x; θj) introduced in the previous section.

The third step applies the Σ gate to the data register, thus propagating the
activation function in all the basis states of the superposition:

|ΦΣ⟩ = (1⊗d ⊗ Σ) |Φd⟩ →
1√
E

2d−1∑
j=0

βj |j⟩ |σ[L(x; θj)]⟩
 , (6.18)

where 1⊗d is the identity matrix. In this way, the result of the algorithm above that
corresponds to the output of the SLP with 2d hidden neurons and can be accessed by
measuring the data register.

6.5 Discussion 109

The fourth step consists of measuring the data register:

⟨M⟩ =
〈
ΦΣ|1⊗d ⊗M

∣∣∣ΦΣ
〉

=
2d∑

j=1
β

′

j

〈
f ∗

j |M
∣∣∣f ∗

j

〉
=

2d∑
j=1

β
′

j ⟨Mj⟩

=
2d∑

j=1
β

′

jfj = fSLP, (6.19)

where f ∗
j = σ[L(x; θj)], fj is the squared of f ∗

j , and and β
′
j = |βj|2 with ∑j |βj|2 = 1.

Although we do not measure the control register, the j-th transformation of the input
is associated to a specific amplitude βj of the control register.

Regarding the parameters, β and {θj}j=1,...,H can be randomly initialised and the
same hybrid optimisation process presented in Section 6.2.4 can be exploited.

Thus, the MAQA allows extending the proposed approach of the qSLP to an
exponentially large number of neurons in the hidden layer. In fact, the entanglement of
linear combinations to the basis states of the control register implies that the number
of linear combinations that can be performed is equal to the number of basis states
of the quantum system. This, in turn, implies that the number of hidden neurons H
scales exponentially with the number of states of the control register, 2d. This is a
consequence of each hidden neuron being represented by a trajectory of the of the
MAQA. This exponential scaling enables the construction of quantum Neural Networks
with an arbitrary large number of hidden neurons as the amount of available qubits
increases. In other terms, we can build qSLP with an incredible descriptive power that
may be really capable of being an universal approximator.

6.5 Discussion

As shown in Section 6.4, the use of MAQA allows building a generalised qSLP with an
exponentially large number of neurons, increasing the number of steps of the quantum
algorithm linearly. The qSLP supports amplitude encoding strategy, which means that
we have an exponential advantage in terms of space complexity when encoding data
into the data quantum register. This implies a polylogarithmic advantage in terms of
the number of parameters needed of the quantum algorithm with respect to its classical
counterpart (Schuld et al., 2018).

Furthermore, there are two main differences between classical and quantum SLP,
which derive from the normalisation constraint introduced when dealing with the

110 qSLP: Quantum Single Layer Perceptron

amplitudes of quantum systems. In fact, the input data vector x and the weight
vector β = {βj}j=1,...,2d in the proposal of the qSLP are normalised to 1. Apparently,
this may be a limitation since classical NNs take raw input and freely learn the
weight parameters. However, rescaling the inputs and limiting the magnitudes of
the weights are two common strategies adopted in classical NNs to avoid overfitting.
In particular, these procedures are known as batch normalisation and weight decay.
Thus, quantum mechanics’ normalisation constraint allows implementing automatically
ad-hoc procedures developed in the context of classical NNs without any additional
computational effort.

From a computational point of view, given N observations, p features, H hidden neu-
rons and L training epochs, a classical neural network fit typically requires O(NpML)
operations. Although modern GPU allows speeding up linear algebra computation and
parallel computing allows to perform the training of classical deep networks efficiently,
the linear cost in the four parameters N , p, H, l represents a lower bound in terms
of time complexity. In particular, if H is too large, that is a necessary condition for
an SLP to be a universal approximator, it is impossible to train the algorithm in a
reasonable time. If considering the qSLP that makes use of MAQA, the cost in terms
of time complexity to train the quantum circuit is O(N × n× d× L) where N is the
number of training points, n is equal to log(p) and d = log(H). L is still the number
of epochs. Importantly, the cost of state preparation and measurement need to be
taken into account. While the cost of measurement is restricted to a low number of
qubits (just one in case of binary classification or regression), its cost is supposed to
be a multiplication constant that can be ignored when considering the overall time
complexity. However, the use of qSLP for large datasets needs an efficient routine
for state preparation since the state preparation routine proposed by Mottonen et al.
(2004) scales linearly in N and p, Nonetheless, once the optimal set of parameters of
the qSLP are obtained for a specific task, the full quantum algorithm can be employed
in other quantum algorithms to reproduce the function for which it was trained.

Finally, when comparing MAQA architecture with the first proposal of qSLP, the
advantages are significant, mostly considering NISQ devices. First, it does not use
an additional temp register to generate multiple linear combinations in superposition.
Consequently, the use of CSWAP is avoided, which introduces a linear cost in terms of
gate complexity, as shown in Smolin and DiVincenzo (1996). Also, MAQA provides
a general architecture to design a qSLP with an arbitrary number of neurons in the
hidden layer, thus extending its use to solve more complex problems.

6.6 Conclusion 111

6.6 Conclusion

In this chapter, we proposed implementing MAQA to generate the quantum version of
the Single Layer Perceptron. The key idea is to use a single state preparation routine
and apply different linear combinations in superposition, each entangled with a control
register. This allows propagating a generic activation function’s routine to all the basis
states with only one execution. As a result, a model trained through our algorithm is
potentially able to approximate any desired function as long as enough hidden neurons
and a non-linear activation function are available.

Furthermore, we provided a practical implementation of our variational algorithm
that reproduces a quantum SLP for classification with two hidden neurons and an
identity function as activation.

In addition, we tested our algorithm on synthetic data and demonstrated that the
model works well in case of linearly separable observations, with a test accuracy of 95%.
However, the performance deteriorates when facing the intrinsic noise due to quantum
computations and current technology limits. On the other hand, experiments showed
how the model’s performance deteriorates as the distributions of the two classes overlap
so to contaminate each other, thus testifying the necessity of introducing non-linearity
into the model. For this reason, the main challenge to tackle in the near future is the
design of a routine that reproduces a non-linear activation function.

Another natural follow-up of this work is the practical implementation of a gener-
alisation of the quantum SLP to the case of H > 2 hidden neurons. This would be
beneficial for more hands-on experimentation, including, for instance, the discussion of
a regression task.

Notably, Goto et al. (2020) showed that quantum feature maps alongside functions
aggregation is able to achieve universal approximation. Thus, a possible future work
consists of studying the qSLP on top of the quantum feature map, enabling the qSLP
as a universal functions approximator, without implementing a non-linear quantum
activation function.

In conclusion, we are still far from proving that the field of Deep Learning can
benefit from Quantum Computation in practice. However, thanks to the flexibility of
variational algorithms, the hybrid quantum-classical approach may be the ideal setting
to make universal approximation possible in quantum computers.

Chapter 7

Beyond Unitarity - Quantum
Splines

The previous chapters showed that quantum computing is hugely appealing for many
machine learning algorithms, hence providing a new efficient way to solve many real-
world applications. However, the operations on quantum states are required to be
linear and unitary under the laws of quantum mechanics. This limitation potentially
deprives Quantum Machine Learning techniques to describe complex non-linear relations
accurately.

In this chapter, we demonstrate how to adopt the quantum implementation of
spline functions for approximating several widespread activation functions commonly
employed in Neural Networks. In particular, we propose a fault-tolerant quantum
algorithm that employs the Harrow Hassidim Lloyd (HHL) algorithm for matrix
inversion as a subroutine to compute the spline coefficients in a quantum computer.
Then, a given input |x⟩ interacts with the quantum state encoding these coefficients to
store the spline estimates in the amplitude of a quantum register.

In practice, two different strategies are followed. The hybrid approach computes
quantum estimates of the spline coefficients via the HHL quantum algorithm. Then
a classical device is used to evaluate the activation functions. The full quantum
approach, instead, takes care of the evaluation process end-to-end, with an additional
circuit that reads the HHL estimates and evaluates the function.

The chapter is organised as follows. Section 7.1 reviews the most popular statistical
learning methods that use matrix inversion to solve a fitting problem. In Section 7.2
the HHL algorithm is discussed. Thus, in Section 7.3 the proposal of the quantum
version of the spline is provided. In particular, it will be shown that it is possible to
approximate non-linear activation functions using a full quantum routine. To this end,

114 Beyond Unitarity - Quantum Splines

a specific formulation of the splines is employed, the B-spline. Finally, Section 7.4
treats an in-depth discussion of the HHL algorithm efficiency with respect to classical
alternatives.

7.1 Matrix inversion in Pattern Recognition

The matrix inversion is usually employed in many statistical learning methods whose
solutions can be computed in a closed form. For instance, when considering the
standard linear regression model, the inversion of the design matrix is the key to
find the parameters of the model to estimate the target variable of interest. In
particular, given an input vector X = (X1, X2, . . . , Xp) and a target variable Y , the
linear regression model has the form:

Y = f(X) = β0 +
p∑

j=1
Xjβj. (7.1)

Thus, the linear regression assumes that the regression function f(X) is linear.
Notice that, the variables X are not necessarily the observed features, but they can be
generated with augmentation procedures. Typically, given a set of N training points
(x1, y1) . . . (xN , yN), the goal is to estimate the vector of parameters β = (β0, . . . , βp).
The most popular estimation method is the minimisation of the residual sum of squares:

RSS(β) =
N∑

i=1
(yi − f(xi))2 =

N∑
i=1

yi − β0 −
p∑

j=1
xijβj

2

. (7.2)

In matrix form, denote X the N × (p+ 1) matrix with each row an input vector
(with a 1 in the first position), and let y by the N -vector of outputs in the training set.
Then it is possible to rewrite the residual sum of squares as

RSS(β) = (y −Xβ)T (y −Xβ), (7.3)

which is a quadratic form in the p+ 1 parameters. Differentiating with respect to β
and assuming that X has full column rank and hence XT X is positive definite, the
estimate of β that minimise the function RSS(β) is the following:

β̂ = (XT X)−1XT y. (7.4)

7.1 Matrix inversion in Pattern Recognition 115

Thus, in order to fit a linear model following the minimisation of the RSS(β)
criteria, it is necessary to invert the design matrix XT X. More specifically, the
estimates of β can be computed by solving the linear system expressed in Equation
(7.4).

7.1.1 Regularisation and Ridge Regression

Thanks to its simplicity and interpretability, linear regression is widely used in many
real-worlds application. However, it often fails in generalising when applied to out-
of-sample examples because of the limited generalisation capability, which is a key
aspect in prediction problems. Indeed, while data fitting is often approached as an
optimisation problem in practice, the focus in machine learning is to design statistical
estimators able to fit well future examples. Furthermore, the estimator β̂ in Equation
(7.4) is well-defined only if XT X exists. This implies that, when X is high-dimensional,
β cannot be estimated, because it cannot be uniquely determined. This question is
typically addressed with so-called regularisation techniques which essentially limit the
expressive power of the learned estimator in order to avoid overfitting.

A variety of regularisation strategies have been proposed in the literature, each
adopting a different perspective on the problem. From a computational perspective,
regularised-based methods leverage optimisation techniques to find a solution for
the learning problem and typically consist of a sequence of standard linear algebra
operations such as matrix multiplication and inversion.

Ridge Regression (Casella, 1985) is an example of such methods. It was originally
formulated with two goals: increase the mean squared error loss and improve numerical
stability of the coefficients estimates.

In practice, the idea of Ridge Regression (RR) is to shrink the regression coefficients
by imposing a penalty on their size. If X is high-dimensional, its columns are likely
supercollinears, which means that the subspace spanned by collinear variables may
not be full rank. The supercollinearity of X implies that, when solving a regression
problem using least squares, the rank of the matrix XT X is smaller than p (number
of features) and then it is singular (non-invertible).

To obtain an estimate of regression parameter β when X is supercollinear Hoerl
and Kennard (1970) proposed an ad-hoc fix to resolve the almost singularity of XT X,
simply replacing it by XT X +λ1pp with λ ∈ [0,∞). The scalar λ is a tuning parameter
and it is called penalty parameter.

Furthermore, it is possible to show that the ridge penalty in linear regression shrinks
the singular values of the matrix to invert, improving the stability of the linear system

116 Beyond Unitarity - Quantum Splines

(van Wieringen, 2015). The ridge coefficients minimise a penalised residual sum of
squares:

β̂ridge = argmin
β

N∑

i=1

yi − β0 −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
β2

j

 . (7.5)

Writing the criterion in Equation (7.5) in matrix form:

RSS(β) = (y −Xβ)T (y −Xβ) + λβTβ, (7.6)

where λ ≥ 0. Thus, the ridge regression coefficients can be easily computed as:

β̂ridge = (XT X + λ′1)−1XT y, (7.7)

where 1 is the p× p identity matrix. The difference between the standard (7.4) and
the ridge estimates (7.5) is that the design matrix is modified with λ1 which makes it
non-singular. From a computational point of view, the regularisation implies a lower
condition number of the linear system, which corresponds to improving its numerical
stability. In fact, the condition number of a square matrix A is the ratio of its largest
(λmax(A)) and smallest (λmin(A)) eigenvalue; in case of supercollinearity, the smallest
eigenvalue is zero and the condition number is undefined and so is A−1. If considering
the condition number of the regularised matrix, this is always lower than the condition
number of the original matrix A:

κ(A) = |λmax(A)|
|λmin(A)| ≥

|λmax(A) + λ
′ |

|λmin(A) + λ′|
, (7.8)

where λ ∈ [0,∞).
Thus, regularisation prevents overfitting and guarantees better numerical stability

(the more λ increases, the more κ(A) decreases). Furthermore, we will see that a lower
condition number reduces the computational complexity of many algorithms for matrix
inversion. This makes regularisation techniques an ideal setting to employ quantum
algorithms to solve typical pattern recognition problems.

7.1.2 Spline Functions

Spline functions are smoothing methods suitable for modelling the relationships between
variables, typically adopted either as a visual aid in data exploration or for estimation

7.1 Matrix inversion in Pattern Recognition 117

purposes (Hastie et al., 2001). The underpinning idea is to use linear models in
which the input features are augmented with the so-called basis expansions. These
consist of transformations of the original variables and serve to introduce non-linearity.
Technically, splines are constructed by dividing the sample data into sub-intervals
delimited by breakpoints, also referred to as knots. A fixed degree polynomial is then
fitted in each of the segments, thus resulting in a piecewise polynomial regression.
Formally, in the case of a 1-dimensional input vector x, we can express its relationship
with a target variable y in terms of an order-M spline with knots {ξk}k=1,...,K :

ynobs×1 = Nnobs×(M+K)θ(M+K)×1 + ϵnobs×1, (7.9)

where θ is the vector of coefficients attached to the basis expansions, nobs is the sample
size, ϵ is a random error term and the design matrix N contains M +K basis functions
defined as follows:

hj(x) = xj−1, j = 1, · · · ,M (7.10)
hM+k = (x− ξk)M−1

+ , k = 1, · · · , K. (7.11)

Notice that the formulation above includes M basis functions that determine the
order-M polynomial to be fitted in each segment. The additional K basis introduce
continuity constraints on the spline and its derivatives up to order M − 2.

The goal is then to find the optimal set of parameters θ that minimises the residual
sum of squares (RSS), with a ridge regularisation of the curvature acting as a roughness
penalty:

Score (θ, η) = (y −Nθ)T (y −Nθ) + ηθT Ω(M+K)×(M+K)θ, (7.12)

where Ω is a diagonal matrix containing the partial second derivatives. The solution
to (7.12) can easily seen to be:

θ̂ = (NT N + ηΩ)−1NT y. (7.13)

From Equation (7.13) we can see that the estimates of the spline coefficients reduces
to a ridge regression optimisation where the observed variable are augmented using
polynomials. Also in this case, we benefit from the advantages given by the reduction
of the condition number due to regularisation.

118 Beyond Unitarity - Quantum Splines

7.2 Quantum Algorithms for Linear Systems

The basic idea of the linear algebra approach in QML is to use a quantum system for
linear algebra calculus, where the design matrix is represented by the Hamiltonian
of the system via dynamic encoding. As shown in the previous sections, in classical
ML the matrices are usually constructed from the training set, this means that the
dimension of the problem grows with the number of features and the number of the
training points.

HHL (Harrow et al., 2009) is a quantum algorithm that approximately prepares
a quantum superposition of the form |x⟩, where x is the solution to a linear system
Ax = b, assuming the ability to prepare efficiently the state |b⟩ and to apply the
unitary transformation e−iAt. It scales with a time complexity that grows roughly like
O(s2κ2log(N)/ϵ), where n is the system size, κ is the system’s condition number, s is
its sparsity, and ϵ is the desired error (Wiebe et al., 2012).

Although the exponential advantage over the size of the matrix, the constraints on
other parameters (s, k) may be very stringent in real-world applications. Therefore,
the best way to look at HHL is as a template for other quantum algorithms where it is
possible to find specific cases of interest in which preparing |b⟩, applying e−iAt, and
measuring |x⟩ are tasks that can be accomplished efficiently.

For instance, ridge regression (RR) is based on a different formulation of the
standard linear system of equations where the design matrix to invert is affected by an
ill-conditioned problem. The solution for RR can be computed by regularised least
squares, that leads to a lower condition number of the design matrix when compared
to the standard one used in a classical linear model.

From a quantum perspective, when considering Hamiltonian simulation, spline
functions are more suitable to study for a quantum computer, since it corresponds to a
low-rank linear system, whose Hamiltonian simulation can be implemented efficiently.

Thus, spline functions are a fitting method that allow to overcome the caveats of
the HHL and perform QML efficiently.

7.2.1 Overview on HHL

Given a N ×N Hermitian matrix A and a unit vector b⃗, the goal of the HHL algorithm
is to find the solution vector x⃗ satisfying the following equation:

A |x⟩ = |b⟩, (7.14)

7.2 Quantum Algorithms for Linear Systems 119

where the two vectors b⃗ and x⃗ are mapped into the amplitudes of the respective
quantum registers |b⟩ and |x⟩. Since A is Hermitian, it can be decomposed using its
spectral decomposition as follows:

A =
N−1∑
j=0

λj |uj⟩ ⟨uj| , λj ∈ R, (7.15)

where |uj⟩ is the jth eigenvector of A with respective eigenvalue λj. Assuming A

invertible, A−1 is uniquely determined by A, then the solution of Equation (7.14) can
be expressed as x = A−1b where the matrix A−1 can be written as:

A−1 =
N−1∑
j=0

λ−1
j |uj⟩ ⟨uj| . (7.16)

Furthermore, the vector |b⟩ can be expressed as linear combination of the eigenbasis of
A:

|b⟩ =
N−1∑
j=0

bj|uj⟩, bj ∈ C. (7.17)

The HHL provides an exponentially faster quantum protocol with respect to N for
solving a linear system as follows:

|x⟩ = A−1|b⟩ =
N−1∑
j=0

λ−1
j bj|uj⟩, (7.18)

assuming the ability to prepare efficiently the state |b⟩ and apply the unitary transfor-
mation e−iAt.

Although the exponential advantage in the system size, a number of caveats limit
its applicability to practical problems (Aaronson, 2015). First, it requires the matrix A
to be sparse, because of the polynomial dependency on the level of sparsity s. Second,
data must be loaded in quantum superposition efficiently, to preserve the computational
advantage when inverting A. Third, the output is encoded in a quantum state, where
the entries of x are in superposition and the approximation of all the coefficients may be
prohibitive for large linear systems. Fourth, the condition number and the sparsity must
scale at most sub-linearly with N . Also, to extract information from a quantum state,
one must perform a measurement. Learning all N amplitudes of an N -dimensional
state requires a number of measurements at least proportional to N . Thus, if our
goal is to completely reconstruct a solution x, the quantum algorithm cannot have a

120 Beyond Unitarity - Quantum Splines

significant advantage over classical methods. In addition, as in classical methods for
solving linear equations, the performance depends crucially on the condition number κ,
a measure of how close A is to singular.

An interesting problem that satisfies these requirements is discussed by Clader
et al. (2013) where a generalised version of the HHL is employed to compute the
electromagnetic scattering cross section of an arbitrary target exponentially faster than
the best classical algorithm.

7.2.2 Quantum algorithm for HHL

Here, we discuss the quantum implementation of the HHL, summarising the description
presented by Lee et al. (2019). Technically, the algorithm assumes b represented
as |b⟩ = ∑l

j=1 bj |uj⟩ where |uj⟩ is the jth eigenstate of A and bj ∈ C, such that∑l
j=1 |bj|2 = 1. The solution of the linear system in Equation (7.18) can be expressed

by explicitly write the normalisation constraint as:

|x⟩ = A−1 |b⟩
||A−1 |b⟩ ||

, (7.19)

where A−1 is the inverse matrix of A.
In practice, the algorithm uses three quantum registers: the first one is used to

store a binary representation of the eigenvalues of A1, a second register contains the
vector solution |x⟩ and includes n = log(N) qubits, where N is the size of the linear
system. Another register is auxiliary to the computation. Starting from these three
registers, the algorithm involves four main steps: quantum phase estimation (QPE),
eigenvalue inversion, uncomputation (or inverting QPE), and Rejections Sampling.

Quantum Phase Estimation
The QPE part assumes the efficient implementation of the unitary U defined as:

U = eiAt :=
N−1∑
j=0

eiλjt|uj⟩⟨uj|, (7.20)

and transforms the initial quantum state as follows:

|0⟩ ⊗ |b⟩n ⊗ |0⟩
QP E−−−→

N−1∑
j=0

bj |λj⟩ |uj⟩n ⊗ |0⟩ , (7.21)

1the number of qubits depends on the precision for the binary representation of the eigenvalues

7.3 Quantum Activation Functions 121

where |λj⟩ is the binary representation of the jth eigenvalue λj.

Eigenvalues Inversion
A conditioned rotation on |λj⟩ is applied using the auxiliary qubit:

N−1∑
j=0

bj |λj⟩ |uj⟩n ⊗ |0⟩
Eigen Inversion−−−−−−−−→

N−1∑
j=0

bj|λj⟩|uj⟩n

√√√√1− C2

λ2
j

|0⟩+ C

λj

|1⟩
 (7.22)

where C is a normalisation constant.

Uncomputation
At this point, the states of all the registers are entangled and it is not possible

to trace out a part of the system which contains the solution of interest. Thus, the
uncomputation step performs the inverse QPE to isolate the quantum state that
contains the solution of the linear system:

N−1∑
j=0

bj |λj⟩ |uj⟩n ⊗ |0⟩
Uncomputation−−−−−−−−→

N−1∑
j=0

bj|0⟩|uj⟩n

√√√√1− C2

λ2
j

|0⟩+ C

λj

|1⟩
 , (7.23)

where all the register are reseted in |0⟩. Notice that, because of this step, the circuit is
almost twice as deep as it was.

Rejection Sampling
At this point the ancilla register is measured and, if state |0⟩ is readout, the result

is discarded. Instead, if the ancilla state is |1⟩, the result is proportional to the inverse
of λ and the state describing the qubit system successfully represents the solution of
the linear equation as follows:

1
||A−1 |b⟩ ||

l∑
j

bj

λj

|uj⟩ , (7.24)

where ||A−1 |b⟩ || = ∑l
j

|bj |2
λ2

j
.

7.3 Quantum Activation Functions

As stated in Section 6, one of the major issues for building a quantum Neural Network
is the implementation of a non-linear activation function on a quantum system. Indeed,

122 Beyond Unitarity - Quantum Splines

the operations on quantum states are required to be linear and unitary under the laws
of quantum mechanics, as discussed in Nielsen and Chuang (2011).

The most popular attempt to achieve non-linearity via a quantum algorithm is
described in Cao et al. (2017), where the authors used the repeat-until-success technique
to design a quantum circuit for reproducing a non-linear activation function. The
biggest limitation is that this function requires input in the range

[
0, π

2

]
, which is a

severe constraint for real-world problems. A step forward was made by Hu (2018),
where domain restrictions are removed and the activation gate parameters were learned
during training.

However, besides several attempts have been made, up to date, there is no way to
approximate non-linear functions using a full quantum routine.

7.3.1 Quantum Spline

Here we investigate non-linear approximation by means of a quantum spline (QSpline).
In particular, we want to demonstrate its applicability as an evaluation routine by
fitting the spline to some widespread activation functions adopted in Neural Networks.
To this end, we consider relu, elu, tanh and sigmoid and we use a linear spline with no
derivability constraints. Also, no roughness penalisation is applied since we would like
to mimic the target function as closely as possible. Regarding the choice of knots, 20
equally spaced breakpoints were selected over the interval (−1, 1).

7.3.2 Implementation

While the formulation in terms of truncated basis functions described in Section 7.1.2 is
conceptually simple, its numerical and computational properties are not very attractive.
For this reason, in practice we adopt a B-splines parametrisation (De Boor, 1978). This
allows generating a block design matrix where the sparsity is constant and depends
on the degree of the polynomial fitted in each local interval. Given a sequence of
knots ξ1, ξ2, · · · , ξK , we fit a line in each interval [ξk, ξk+1]k=1,··· ,K−1 without derivability
constraints. In matrix form:

ỹ = Sβ →

ỹ1

ỹ2

· · ·
ỹK

 =

S1 0 · · · 0
0 S2 · · · 0
· · · · · · · · · · · ·
0 0 · · · SK

β1

β2

· · ·
βK

 , (7.25)

7.3 Quantum Activation Functions 123

where ỹk contains the activation function evaluations in ξk and ξk+1, βks are the spline
coefficients and S(2K)×(2K) is a block diagonal matrix with each block Sk that represents
the basis expansions in the k-th interval. Solving the linear system in Equation (7.25)
requires using HHL to invert the matrix S. Nonetheless, we can exploit the fact that
the inverse of a block diagonal matrix is still block diagonal, with the correspondent
inverse matrices in each block. This implies we can solve K 2 × 2 quantum linear
systems Sk |βk⟩ = |ỹk⟩ instead of a single one for the entire function. This little trick
permits to overcome the practical limitations of the available quantum simulators, thus
enabling the calculation of the spline coefficients through quantum simulations.

In particular, the computation of the full QSpline is performed in three steps. First,
the HHL computes the spline coefficients for the k-th interval:

Sk |βk⟩ = |ỹk⟩
HHL−−−→ |βk⟩ ≃ S−1

k |ỹk⟩ . (7.26)

Second, |βk⟩ interacts with the quantum state encoding the input in the k-th interval
via quantum interference. The scalar product between |βk⟩ and |xi,k⟩ is computed
using the swap-test (Buhrman et al., 2001):

|βk⟩ |xi,k⟩ |0⟩
swap−test−−−−−−→ |e1⟩ |e2⟩ |fi,k⟩ . (7.27)

At this point, the amplitudes of the quantum state |fi,k⟩ embed the estimate of the
activation function evaluated in xi,k.

Third, |fi,k⟩ is measured to get the probability of state |0⟩. This depends on the
dot product between βk and xi,k as follows:

|fi,k⟩ = √p0 |0⟩+√p1 |1⟩ , (7.28)

where:

p0 = 1
2 + |⟨βk|xi,k⟩|2

2 = 1
2 + |fi,k|2

2 . (7.29)

Finally, the activation function estimate in correspondence of xi,k is retrieved by
back-transforming Equation (7.29) to get fi,k.

Notice that, the estimates are intrinsically bounded in the interval [0, 1] since they
are encoded as the amplitude of a quantum state. For this reason, the target activation
functions are first scaled (i.e. fi,k → f ∗

i,k ⊆ [0, 1]). The QSpline is then trained on f ∗
i,k,

and the results are finally back-transformed to get the original fi,k.

124 Beyond Unitarity - Quantum Splines

7.3.3 Results

The results of hybrid QSpline are illustrated in Figure 7.1.

Fig. 7.1 Hybrid QSpline with k = 20.

The quantum splines perform very well in reproducing the activation curves. The
agreement is almost perfect for the sigmoid and the hyperbolic tangent, with slight
deviations at the boundaries of the estimation interval. The situation is similar for
Relu and Elu, although apparently some systematic error is introduced in the negative
part of the x domain. A possible explanation can be given by looking at the blue
dots representing the fidelity of the quantum algorithm, that measures the discrepancy
between the HHL output and the real solution of the system. In fact, larger deviations
appear in areas where the fidelity is low, thus suggesting the HHL implementation may
behave poorly in our setting.

A further attempt was then made exploiting a full quantum circuit. The results
are reported in Figure 7.2. In this case, the goodness of fit is definitely worse, with an
almost systematic overestimate of the target curves. This may be due to the adoption

7.4 Computational Efficiency 125

Fig. 7.2 Full QSpline with k = 20.

of a second circuit for evaluation on top of the estimation one. Therefore, having two
measurement phases introduce more uncertainty which is then propagated and produce
a larger error. Nonetheless, notice that the QSpline is likewise capable of reproducing
the non-linear behaviour of the curves, which is anyway the most relevant characteristic
under investigation. For this reason, we interpret the results as promising, although
they necessitate for more tuning. A quantitative assessment of the goodness of fit of
both strategies is reported in Table 7.1.

7.4 Computational Efficiency

Here we discuss in details the computational cost of the quantum estimation phase,
also drawing a theoretical comparison with the classical baselines. In general, matrix
inversion can be accomplished in polynomial time on classical devices (Bürgisser et al.,
2013; Coppersmith and Winograd, 1987; Strassen, 1969). However, when several

126 Beyond Unitarity - Quantum Splines

Activation RSS RSS RSS Average
function (classic) (hybrid) (quantum) Fidelity
Sigmoid 3.3× 10−5 0.01 0.75 0.90

Tanh 1.2× 10−5 0.06 1.12 0.96
Relu 7.6× 10−31 0.14 8.16 0.78
Elu 5.9× 10−7 0.12 7.06 0.88

Table 7.1 Approximation metrics. The table shows the Residual Sum of Squares (RSS)
of both quantum and classical splines with respect to the true activation functions.
Quantum approaches are indicated as hybrid and quantum. The average fidelity of the
HHL is also reported.

Gauss
elimination

Strassen Coppersmith Conjugate
Gradient

HHL

O(n3) O(n2.8) O(n2.37) O(sn
√
κ/log(ϵ)) O(s2κ2log(n)/ϵ)

Table 7.2 Comparison of algorithms computational costs.

favourable assumptions hold it is possible to reduce computational costs. In particular,
the Conjugate Gradient algorithm (Ciliberto et al., 2018; Shewchuk et al., 1994) allows
solving a linear system with a complexity equal to O(s

√
κn/log(ϵ)), where n is the

system size, κ is the system condition number, s the matrix sparsity (i.e. the maximum
number of non-zero matrix elements of A in any given row or column), and ϵ is the
desired error tolerance.

The reference quantum technique is the HHL algorithm. HHL is a method for
approximately preparing a quantum superposition of the form |x⟩, where x is the
solution to a linear system Ax = b, A is a hermitian design matrix and b is encoded
in amplitudes of |b⟩. From a computational point of view, this requires an amount of
time that grows roughly like O(s2κ2log(n)/ϵ) (cfr. Table 7.2 for a comparison between
HHL and classical counterparts).

The algorithm scales logarithmically with respect to the size of the matrix, which
means it has an exponential advantage when compared to classical alternatives. How-
ever, its complexity is polynomial in s and κ, which means we have to introduce
constraints on the condition number and the sparsity not to destroy the computational
advantage of the HHL. This makes the previous comparison unfair since we cannot
make assumptions about the design matrix in general.

7.4 Computational Efficiency 127

In our case, we can observe that an order-M penalised spline has very desirable
properties. First of all, the ridge penalisation described in Equation (7.13) guarantees
a lower condition number compared to the unconstrained design matrix. Specifically,
Casella (1985) showed that the higher the penalisation, the lower the condition number
is. In fact, the condition number of a matrix, κ(A), is equal to |λmax(A)+η|

|λmin(A)+η| , where λmin

and λmax are the smallest and the biggest eigenvalues respectively, and η is the amount
of penalisation. Clearly, the more η increases, the more it dominates the fraction,
eventually tending to 1 for large penalisations. Furthermore, regarding splines as
piecewise polynomials defined on contiguous segments allows building a sparse design
matrix A, whose blocks describe the approximation in the corresponding intervals.
This implies that the sparsity amounts to the number of basis functions, M +K. In
light of the two properties above, splines are an ideal setting for an efficient application
of the HHL algorithm.

Figure 7.3 illustrates a theoretical comparison of HHL computational costs with
respect to the classical counterparts. The green curves illustrate the computational

Fig. 7.3 Cost complexity as a function of the size, n, of the A matrix. The green curves
represent HHL and Conjugate Gradient for fixed s, κ, while the blue ones are referred
to matrix inversion with no assumptions. The light blue shaded area illustrates the
performance of HHL as the sparsity varies (κ fixed).

128 Beyond Unitarity - Quantum Splines

costs (in hundreds of operations) of HHL and Conjugate Gradient for fixed sparsity
and condition number. In particular, their values were chosen to reflect the case
of natural splines with no intercept coefficient (s = 3) and an approximately well-
conditioned data matrix (κ = 2). The HHL outperforms the Conjugate Gradient as
the number of features becomes larger than 47, that is quite frequent in Big Data and
Artificial Intelligence applications, e.g. bioinformatics, natural language processing
and computer vision. A comparison of HHL with matrix inversion algorithms is also
conducted when no assumptions are made. The light blue shaded are depicts the
performance of HHL as s varies (κ fixed to 2), while the curves using the blue palette
describe classical alternatives. The advantage of HHL is evident as soon as some
sparsity is introduced. However, we have also to take into account κ and the higher
costs of quantum computation to draw more solid conclusions. Thus the efficiency
boost due to the quantum technologies may foster the use of HHL for novel, classically
unfeasible applications. For instance, the computational burden of spline functions
could be mitigated in this way, paving the way for future studies aimed at performing
splines per se (e.g. multidimensional splines), and not just as a mere tool for evaluating
non-linear functions.

7.5 Conclusion

In this chapter, we demonstrated the adoption of splines for approximating popular
activation functions on a quantum device. The preliminary results were promising,
although some tuning of the HHL implementation and the circuit for the full quantum
approach is required. The quantum spline was able to reproduce the non-linearity of
the curves, thus candidating this approach as a building block in the development of
Quantum Neural Networks.

Also, we compared the computational complexity of the HHL algorithm against
the most adopted classical counterparts, showing why splines may be an ideal setting
for leveraging its advantages.

Future studies will be dedicated to improving the full quantum approach, with the
possibility of developing a novel and more stable implementation of the HHL routine
and approach the same problem using NISQ algorithms.

Chapter 8

Conclusions and Outlook

Quantum Machine Learning has the potential to improve classical machine learning and
overcome some of the main limitations imposed by the classical computing paradigm.
However, the practical advantages of using quantum resources to solve machine learning
tasks are still to be demonstrated. The limitations are two-fold. From a technical
point of view, the main constraint lies in efficiently performing state preparation and
applying an arbitrarily long sequence of quantum gates. This limits the use of many
QML algorithms presented in the literature. On the other hand, from a methodological
perspective, the ground provided by quantum mechanics is extremely appealing since
a low number of qubits allows accessing an exponentially large Hilbert space. Though,
the potential benefit of machine learning from near-term quantum devices has not yet
been proven.

This dissertation tries to make a further step towards the study of how machine
learning can benefit from the quantum computation. The proposed quantum framework,
the Multiple Aggregator Quantum Algorithm (MAQA), is potentially capable of repro-
ducing some of the most important classical machine learning algorithms. In particular,
MAQA propagates an input state to multiple quantum trajectories in superposition,
and each trajectory describes a specific function g(x; ·) that represents the component
function of the final QML model. The entanglement between the two quantum registers
involved (data and control) allows averaging those transformations efficiently, and the
result can be accessed by measuring only a subset of qubits. MAQA is potentially
able to improve, in terms of time complexity, all those models that compute multiple
and diverse functions to produce a final strong model. The speed-up comes from the
efficient aggregation of multiple functions, which classically scales at least linearly in
the number of these functions. Instead, the proposed quantum architecture allows
aggregating H functions in only log(H) steps, providing an exponential speed-up, under

130 Conclusions and Outlook

the assumption that the cost in terms of circuit complexity is unitary for each step.
Furthermore, quantum interference allows propagating the use of a specific unitary
(gate F) to all the quantum trajectories in superposition. Hence, the application of F
impacts additively to the overall time complexity and the same operation would require
a multiplicative cost in classical computation. In addition, the proposed approach can
be adopted both as full-coherent protocol (quantum ensemble) and as NISQ algorithm
(quantum Single Layer Perceptron).

The quantum ensemble proposal uses MAQA to design a quantum algorithm that
exploits quantum superposition, entanglement, and interference to build an ensemble
of classification models. The generation of multiple training sets in superposition
allows increasing exponentially the ensemble’s size with respect to classical methods.
Moreover, when considering the overall cost of the algorithm, the use of the single
weak classifier impacts additively rather than multiplicatively, as it happens classically.
However, due to limits of available quantum technology, some compromises have to be
made when implementing the quantum ensemble. In this respect, the main challenge to
tackle to make the ensemble effective in the future is the design of a quantum classifier
based on interference that guarantees a more efficient data encoding strategy (e.g.
amplitude encoding), and that can process larger datasets.

Furthermore, MAQA has been employed to build the quantum Single Layer Percep-
tron (qSLP). The idea of qSLP is to design a quantum algorithm to generate different
linear combinations in superposition, where the parameters of the quantum algorithm
can be learned using hybrid quantum-classical computation. The use of MAQA allows
producing an exponentially large number of neurons, increasing the algorithm’s number
of steps linearly. This allows building a model with an incredible descriptive power
capable of being a universal approximator if equipped with a proper activation function.
In this respect, the main challenge to tackle in the near future is designing a routine
that reproduces a non-linear activation function. Another natural follow-up of the
qSLP is the practical implementation of the generalisation with more than two neurons.

Another contribution of this dissertation is the quantum spline (QSpline), which
provides a full quantum algorithm that can approximate non-linear functions. Because
of the use of the HHL, the QSpline is a full-coherent protocol, thus unfeasible to
run on NISQ devices. However, recent developments in the context of variational
algorithms have shown the possibility to execute quantum matrix inversion using
near-term technology. This opens to the possibility of adopting the QSpline as a
quantum activation function.

131

To conclude, we are still in an early stage for QML, and its contribution in the
context of machine learning and artificial intelligence is still to be understood. However,
many research findings, including this thesis, suggest that the potential of quantum
computing is enormous, and machine learning will likely benefit from it in the future.

References

Aaronson, S. (2015). Read the fine print. Nature Physics, 11(4):291.

Aïmeur, E., Brassard, G., and Gambs, S. (2006). Machine learning in a quantum world.
In Conference of the Canadian Society for Computational Studies of Intelligence,
pages 431–442. Springer.

Aïmeur, E., Brassard, G., and Gambs, S. (2013). Quantum speed-up for unsupervised
learning. Machine Learning, 90(2):261–287.

Ambainis, A. (2017). Understanding quantum algorithms via query complexity. arXiv
preprint arXiv:1712.06349, 244.

Anderson, E. (1936). The species problem in iris. Annals of the Missouri Botanical
Garden, 23(3):457–509.

Arora, S. and Barak, B. (2009). Computational complexity: a modern approach.
Cambridge University Press.

Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., and Srinivasan,
P. V. (2015). On the robustness of bucket brigade quantum ram. New Journal of
Physics, 17(12):123010.

Arunachalam, S. and Maity, R. (2020). Quantum boosting. arXiv preprint
arXiv:2002.05056.

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R.,
Boixo, S., Brandao, F. G., Buell, D. A., et al. (2019). Quantum supremacy using a
programmable superconducting processor. Nature, 574(7779):505–510.

Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quantum
computation. Phys. Rev. A, 52:3457–3467.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930–945.

Behrman, E. C., Steck, J. E., and Skinner, S. R. (1999). A spatial quantum neu-
ral computer. In IJCNN’99. International Joint Conference on Neural Networks.
Proceedings (Cat. No. 99CH36339), volume 2, pages 874–877. IEEE.

Benedetti, M., Lloyd, E., Sack, S., and Fiorentini, M. (2019). Parameterized quantum
circuits as machine learning models. Quantum Science and Technology, 4(4):043001.

134 References

Benhelm, J., Kirchmair, G., Roos, C. F., and Blatt, R. (2008). Towards fault-tolerant
quantum computing with trapped ions. Nature Physics, 4(6):463–466.

Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Blank, C., McKiernan, K., and
Killoran, N. (2018). Pennylane: Automatic differentiation of hybrid quantum-
classical computations. arXiv preprint arXiv:1811.04968.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S. (2017).
Quantum machine learning. Nature, 549(7671):195.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002). Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53–74.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Brown, K. R., Wilson, A. C., Colombe, Y., Ospelkaus, C., Meier, A. M., Knill, E.,
Leibfried, D., and Wineland, D. J. (2011). Single-qubit-gate error below 10−4 in a
trapped ion. Phys. Rev. A, 84:030303.

Buhrman, H., Cleve, R., Watrous, J., and de Wolf, R. (2001). Quantum fingerprinting.
Phys. Rev. Lett., 87:167902.

Bürgisser, P., Clausen, M., and Shokrollahi, M. A. (2013). Algebraic complexity theory,
volume 315. Springer Science & Business Media.

Cao, Y., Guerreschi, G. G., and Aspuru-Guzik, A. (2017). Quantum neuron: an
elementary building block for machine learning on quantum computers. arXiv
preprint arXiv:1711.11240.

Casella, G. (1985). Condition numbers and minimax ridge regression estimators.
Journal of the American Statistical Association, 80(391):753–758.

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S.,
and Wossnig, L. (2018). Quantum machine learning: a classical perspective. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
474(2209):20170551.

Cirac, J. I. and Zoller, P. (1995). Quantum computations with cold trapped ions.
Physical review letters, 74(20):4091.

Clader, B. D., Jacobs, B. C., and Sprouse, C. R. (2013). Preconditioned quantum
linear system algorithm. Physical review letters, 110(25):250504.

Coppersmith, D. and Winograd, S. (1987). Matrix multiplication via arithmetic
progressions. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 1–6.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

References 135

Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D., and Gambetta, J. M. (2019).
Validating quantum computers using randomized model circuits. Physical Review A,
100(3):032328.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314.

d’Alessandro, D. (2007). Introduction to quantum control and dynamics. Chapman
and Hall/CRC.

D’Ariano, G. M., Paris, M. G., and Sacchi, M. F. (2003). Quantum tomography.
Advances in Imaging and Electron Physics, 128:206–309.

Dawson, C. M. and Nielsen, M. A. (2006). The solovay-kitaev algorithm. Quantum
Info. Comput., 6(1):81–95.

Dayan, P. and Abbott, L. F. (2005). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT Press.

De Boor, C. (1978). A practical guide to splines, volume 27. Springer-Verlag New York.

De Brabanter, J., De Moor, B., Suykens, J. A., Van Gestel, T., and Vandewalle, J. P.
(2002). Least squares support vector machines. World scientific.

Devitt, S. J., Munro, W. J., and Nemoto, K. (2013). Quantum error correction for
beginners. Reports on Progress in Physics, 76(7):076001.

DiVincenzo, D. P. (1997). Topics in quantum computers. In Mesoscopic electron
transport, pages 657–677. Springer.

Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In
ICML, volume 2000, pages 223–230.

Domingos, P. M. (1997). Why does bagging work? a bayesian account and its
implications. In KDD, pages 155–158. Citeseer.

Drineas, P. and Mahoney, M. W. (2005). On the nyström method for approximating
a gram matrix for improved kernel-based learning. journal of machine learning
research, 6(Dec):2153–2175.

Durr, C. and Hoyer, P. (1996). A quantum algorithm for finding the minimum. arXiv
preprint quant-ph/9607014.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description
of physical reality be considered complete? Physical review, 47(10):777.

Faber, J. and Giraldi, G. A. (2002). Quantum models of artificial neural networks.
Electronically available: http://arquivosweb. lncc. br/pdfs/QNN-Review. pdf, 5(7.2):5–
7.

136 References

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear:
A library for large linear classification. Journal of Machine Learning Research,
9(Aug):1871–1874.

Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quantum approximate optimization
algorithm. arXiv preprint arXiv:1411.4028.

Farhi, E. and Neven, H. (2018). Classification with quantum neural networks on near
term processors. arXiv preprint arXiv:1802.06002.

Freedman, D. A. (2009). Statistical models: theory and practice. Cambridge University
press.

Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612.

Friedman, J. H. and Tukey, J. W. (1974). A projection pursuit algorithm for exploratory
data analysis. IEEE Transactions on computers, 100(9):881–890.

Gillespie, T. A. (1980). Spectral theory of linear operators. Proceedings of the Edinburgh
Mathematical Society, 23(3).

Giovannetti, V., Lloyd, S., and Maccone, L. (2008a). Architectures for a quantum
random access memory. Phys. Rev. A, 78:052310.

Giovannetti, V., Lloyd, S., and Maccone, L. (2008b). Quantum random access memory.
Phys. Rev. Lett., 100:160501.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning,
volume 1. MIT press Cambridge.

Goto, T., Tran, Q. H., and Nakajima, K. (2020). Universal approximation property of
quantum feature map. arXiv preprint arXiv:2009.00298.

Gottesman, D., Kitaev, A., and Preskill, J. (2001). Encoding a qubit in an oscillator.
Physical Review A, 64(1):012310.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. arXiv
preprint quant-ph/9605043.

Gupta, S. and Zia, R. (2001). Quantum neural networks. Journal of Computer and
System Sciences, 63(3):355–383.

Haag, R. and Kastler, D. (1964). An algebraic approach to quantum field theory.
Journal of Mathematical Physics, 5(7):848–861.

Hallgren, S. (2007). Polynomial-time quantum algorithms for Pell’s equation and the
principal ideal problem. Journal of the ACM (JACM), 54(1):4.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147–160.

References 137

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(10):993–1001.

Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quantum algorithm for linear
systems of equations. Phys. Rev. Lett., 103:150502.

Harrow, A. W. and Montanaro, A. (2017). Quantum computational supremacy. Nature,
549(7671):203–209.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67.

Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks. Neural
networks, 3(5):551–560.

Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366.

Hu, W. (2018). Towards a real quantum neuron. Natural Science, 10(3):99–109.

Huang, H.-L., Wu, D., Fan, D., and Zhu, X. (2020). Superconducting quantum
computing: a review. Science China Information Sciences, 63(8):1–32.

Impagliazzo, R. and Wigderson, A. (1997). P= BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of Computing, pages 220–229.

Jacobs, R. A. (1995). Methods for combining experts’ probability assessments. Neural
computation, 7(5):867–888.

Jaffe, A. M. (2006). The millennium grand challenge in mathematics. Notices of the
AMS, 53(6).

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., and
Gambetta, J. M. (2017). Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets. Nature, 549(7671):242.

Khot, S. (2016). Hardness of approximation. In ICALP, pages 3–1. Citeseer.

Kwok, S. W. and Carter, C. (1990). Multiple decision trees. In Machine Intelligence
and Pattern Recognition, volume 9, pages 327–335. Elsevier.

Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and O’Brien, J. L.
(2010). Quantum computers. Nature, 464(7285):45–53.

138 References

Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal,
I., Biamonte, J. D., Mohseni, M., Powell, B. J., Barbieri, M., et al. (2010). Towards
quantum chemistry on a quantum computer. Nature chemistry, 2(2):106.

Lee, Y., Joo, J., and Lee, S. (2019). Hybrid quantum linear equation algorithm and its
experimental test on IBM quantum experience. Scientific Reports, 9(1):4778.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural networks, 6(6):861–867.

Li, B. and Han, L. (2013). Distance weighted cosine similarity measure for text
classification. In International Conference on Intelligent Data Engineering and
Automated Learning, pages 611–618. Springer.

Macaluso, A., Clissa, L., Lodi, S., and Sartori, C. (2020a). Quantum ensemble for
classification. arXiv preprint arXiv:2007.01028.

Macaluso, A., Clissa, L., Lodi, S., and Sartori, C. (2020b). Quantum splines for
non-linear approximations. In Proceedings of the 17th ACM International Conference
on Computing Frontiers, pages 249–252.

Macaluso, A., Clissa, L., Lodi, S., and Sartori, C. (2020c). A variational algorithm for
quantum neural networks. In International Conference on Computational Science,
pages 591–604. Springer.

Macaluso, A., Lodi, S., and Sartori, C. (2020d). Quantum algorithm for ensemble
learning. In Proceedings of the 21st Italian Conference on Theoretical Computer
Science.

MacKay, D. J. and Mac Kay, D. J. (2003). Information theory, inference and learning
algorithms. Cambridge university press.

MATH, N. (2007). Singular value decomposition and least squares solutions (with c.
reinsch). Milestones in Matrix Computation: The Selected Works of Gene H. Golub
with Commentaries, 14:160.

McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H. (2018).
Barren plateaus in quantum neural network training landscapes. Nature Communi-
cations, 9(1):1–6.

Mengoni, R. and Di Pierro, A. (2019). Kernel methods in quantum machine learning.
Quantum Machine Intelligence, pages 1–7.

Mitchell, T. M. et al. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill,
45(37):870–877.

Moll, N., Barkoutsos, P., Bishop, L. S., Chow, J. M., Cross, A., Egger, D. J., Filipp, S.,
Fuhrer, A., Gambetta, J. M., Ganzhorn, M., et al. (2018). Quantum optimization
using variational algorithms on near-term quantum devices. Quantum Science and
Technology, 3(3):030503.

References 139

Mottonen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M. M. (2004). Trans-
formation of quantum states using uniformly controlled rotations. arXiv preprint
quant-ph/0407010.

Myerson, A. H., Szwer, D. J., Webster, S. C., Allcock, D. T. C., Curtis, M. J., Imreh, G.,
Sherman, J. A., Stacey, D. N., Steane, A. M., and Lucas, D. M. (2008). High-fidelity
readout of trapped-ion qubits. Phys. Rev. Lett., 100:200502.

Nakahara, M. and Ohmi, T. (2008). Quantum computing: from linear algebra to
physical realizations. CRC press.

Nielsen, M. A. and Chuang, I. L. (2011). Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th
edition.

Oza, N. C. and Tumer, K. (2008). Classifier ensembles: Select real-world applications.
Information Fusion, 9(1):4–20.

Park, D. K., Sinayskiy, I., Fingerhuth, M., Petruccione, F., and Rhee, J.-K. K.
(2019). Quantum forking for fast weighted power summation. arXiv preprint
arXiv:1902.07959.

Pearson, K. (1901). On lines and planes of closest fit to system of points in space,
philos. Edinburgh and Dublin Philosophical Magazine and Journal of Science,(2),
pages 33–41.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-
Guzik, A., and O’brien, J. L. (2014). A variational eigenvalue solver on a photonic
quantum processor. Nature Communications, 5:4213.

Preskill, J. (2012). Quantum computing and the entanglement frontier. arXiv preprint
arXiv:1203.5813.

Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quantum support vector machine
for big data classification. Physical review letters, 113(13):130503.

Ristè, D., da Silva, M. P., Ryan, C. A., Cross, A. W., Córcoles, A. D., Smolin, J. A.,
Gambetta, J. M., Chow, J. M., and Johnson, B. R. (2017). Demonstration of
quantum advantage in machine learning. npj Quantum Information, 3(1):16.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533–536.

Sánchez A, V. D. (2003). Advanced support vector machines and kernel methods.
Neurocomputing, 55(1-2):5–20.

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In
Nonlinear estimation and classification, pages 149–171. Springer.

140 References

Schnabel, T., Labutov, I., Mimno, D., and Joachims, T. (2015). Evaluation methods for
unsupervised word embeddings. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 298–307.

Schuld, M., Bocharov, A., Svore, K., and Wiebe, N. (2018). Circuit-centric quantum
classifiers. arXiv preprint arXiv:1804.00633.

Schuld, M. and Killoran, N. (2019). Quantum machine learning in feature hilbert
spaces. Physical review letters, 122(4):040504.

Schuld, M. and Petruccione, F. (2018a). Quantum ensembles of quantum classifiers.
Scientific reports, 8(1):2772.

Schuld, M. and Petruccione, F. (2018b). Supervised Learning with Quantum Computers.
Springer Publishing Company, Incorporated, 1st edition.

Schuld, M., Sinayskiy, I., and Petruccione, F. (2014). The quest for a quantum neural
network. Quantum Information Processing, 13(11):2567–2586.

Schuld, M., Sinayskiy, I., and Petruccione, F. (2015). Simulating a perceptron on a
quantum computer. Physics Letters A, 379(7):660–663.

Schützhold, R. (2003). Pattern recognition on a quantum computer. Physical Review
A, 67(6):062311.

Shewchuk, J. R. et al. (1994). An introduction to the conjugate gradient method
without the agonizing pain.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332.

Smolin, J. A. and DiVincenzo, D. P. (1996). Five two-bit quantum gates are sufficient
to implement the quantum fredkin gate. Phys. Rev. A, 53:2855–2856.

Soman, K., Loganathan, R., and Ajay, V. (2009). Machine learning with SVM and
other kernel methods. PHI Learning Pvt. Ltd.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356.

Tacchino, F., Macchiavello, C., Gerace, D., and Bajoni, D. (2019). An artificial neuron
implemented on an actual quantum processor, zak1998quantum. npj Quantum
Information, 5(1):26.

Toffoli, T. (1980). Reversible computing. In International Colloquium on Automata,
Languages, and Programming, pages 632–644. Springer.

Tóth, G., Lent, C. S., Tougaw, P. D., Brazhnik, Y., Weng, W., Porod, W., Liu, R.-W.,
and Huang, Y.-F. (1996). Quantum cellular neural networks. Superlattices and
Microstructures, 20(4):473–478.

Trugenberger, C. A. (2002). Quantum pattern recognition. Quantum Information
Processing, 1(6):471–493.

References 141

Tumer, K. and Ghosh, J. (1996a). Analysis of decision boundaries in linearly combined
neural classifiers. Pattern Recognition, 29(2):341–348.

Tumer, K. and Ghosh, J. (1996b). Error correlation and error reduction in ensemble
classifiers. Connection Science, 8(3-4):385–404.

Van Dam, W., Hallgren, S., and Ip, L. (2006). Quantum algorithms for some hidden
shift problems. SIAM Journal on Computing, 36(3):763–778.

van Wieringen, W. N. (2015). Lecture notes on ridge regression. arXiv preprint
arXiv:1509.09169.

Wecker, D., Hastings, M. B., and Troyer, M. (2015). Progress towards practical
quantum variational algorithms. Phys. Rev. A, 92:042303.

Wiebe, N., Braun, D., and Lloyd, S. (2012). Quantum algorithm for data fitting.
Physical review letters, 109(5):050505.

Wiebe, N., Kapoor, A., and Svore, K. M. (2018). Quantum nearest-neighbor algorithms
for machine learning. Quantum Information and Computation, 15.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms.
Neural computation, 8(7):1341–1390.

Xu, L., Krzyzak, A., and Suen, C. Y. (1992). Methods of combining multiple classifiers
and their applications to handwriting recognition. IEEE transactions on systems,
man, and cybernetics, 22(3):418–435.

Zoufal, C., Lucchi, A., and Woerner, S. (2019). Quantum generative adversarial
networks for learning and loading random distributions. npj Quantum Information,
5(1):1–9.

Appendix A

A Brief Introduction to Quantum
Mechanics

A.1 Proof of the no-cloning theorem

Suppose there exists a unitary matrix U such that

U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩ , (A.1)

for any arbitrary state vector |ψ⟩. Thus, we can rewrite the generated 4-dimensional
state vector as

|ψ⟩ |0⟩ U−→ |ψ⟩ |ψ⟩ = (a |0⟩+ b |1⟩)⊗ (a |0⟩+ b |1⟩) (A.2)
= a2 |00⟩+ ab |01⟩+ ba |10⟩+ b2 |11⟩ .

Then, if we apply the same operation U to copy the expansion of |ψ⟩

(a |0⟩+ b |1⟩)⊗ |0⟩ U−→ a |00⟩+ b |10⟩ , (A.3)

we end up with a different quantum state with no cross terms, which is different
from the quantum state in Equation (A.2). This is a contradiction and therefore such
unitary U cannot exist.

Appendix B

Details on Quantum Ensemble

B.1 Swap-test to compute the cosine distance

The swap-test is a procedure to measure the cosine similarity distance between two
quantum states. Cosine similarity is a metric used to measure how similar two objects
are irrespective of their size, capturing only the orientation (the angle) and not the
magnitude. The smaller the angle between two objects, the higher the similarity. Given
two p-dimensional vectors a⃗ and b⃗, the cosine similarity between them is calculated as
follows:

cos
(
a⃗, b⃗

)
= a⃗ · b⃗
||⃗a|| · ||⃗b||

=
∑

i aibi√∑
i a

2
i

√∑
i b

2
i

,

for i = 1, . . . , p. As a fundamental component, cosine similarity has been applied for
solving different pattern recognition problems, such as text classification, information
retrieval, word embedding (Li and Han, 2013; Schnabel et al., 2015). The quantum
implementation of the cosine distance is performed through the swap-test where two
2-dimensional vectors (⃗a, b⃗) are encoded into the amplitudes of two different qubits (|a⟩,
|b⟩). Then using an additional ancillary qubit, the output of the swap-test is function
of the distance between the two vectors. The swap-test is performed into three steps.

Step 1: State Preparation
The first step consists of encoding the two classical (normalised) vectors a⃗ and b⃗ are

encoded into the amplitudes of two different qubits:(
1⊗ Sa⃗ ⊗ Sb⃗

)
|0⟩ |0⟩ |0⟩ = |0⟩ |a⟩ |b⟩ , (B.1)

146 Details on Quantum Ensemble

where Sx⃗ encodes a real vector x⃗ into the amplitudes of a qubit.

Step 2: Execution of the swap-test
In the second step, the Hadamard gate is applied to the ancilla qubit, then the

controlled-SWAP gate, and a second Hadamard gate:

(
H ⊗ 1⊗ 1

)(
C-SWAP

)(
H ⊗ 1⊗ 1

)
|0⟩ |a⟩ |b⟩ = 1

2 |0⟩(|a, b⟩+ |b, a⟩) + 1
2 |1⟩(|a, b⟩ − |b, a⟩),

(B.2)

where H is the Hadamard gate, C-SWAP is the controlled-swap operation which
uses the ancilla qubit as control qubit and swap |a⟩ and |b⟩ if the state of the ancilla is
|1⟩.

Step 3: Measurement
Measuring the first qubits produces the state 0 with probability:

Pr
(
|0⟩

)
= 1 + |cos(⃗a, b⃗)|2

2 , (B.3)

where cos(⃗a, b⃗) is the classical cosine similarity between a⃗ and b⃗. If a⃗ = b⃗, then the
probability of measuring |0⟩ is equal to 1. The quantum circuit to perform the swap-test
is depicted in Figure B.1.

|0⟩a Sa ×

|0⟩b Sb ×

ancilla H • H

Fig. B.1 Quantum circuit for Swap-test.

B.2 Quantum Ensemble as Simple Averaging 147

B.2 Quantum Ensemble as Simple Averaging

Here we describe the quantum circuit to obtain four independent quantum trajectories
in superposition considering a quantum ensemble of cosine classifiers (Section 5.3).

(Step 1) State Preparation
For a 2-qubit control register (d = 2), we can build an ensemble of B = 22 classifiers.

The data encodes a single observation using a single qubit. In particular, given a dataset
made up of N observations {xi, yi}i=1,...,N , where xi = (xi,1, xi,2) is a 2-dimensional
vector and yi ∈ {0, 1} is the binary target variable, the data register encodes N training
points 2×N qubits:

data register:
(

4
⊗
i=1
|xi⟩

)
features

⊗
(

4
⊗
i=1
|yi⟩

)
labels

= |features⟩ |labels⟩ , (B.4)

where the values xi,1 and xi,2 are encoded into the amplitudes of a single qubit:

|xi⟩ = xi,1 |0⟩+ xi,2 |1⟩ , (B.5)

and the two classes of the target variable are represented by the two basis states of a
single qubit. Thus, if |yi⟩ = |0⟩ the i-th observation belongs to the class 0. Otherwise,
if |yi⟩ = |1⟩ the i-th observation belongs to the class 1.

Qubit encoding strategy allows to store a training set of 4 observations using an
8-qubit data register. In formulas, state preparation step leads to:

|Φ0⟩ =
(
H⊗2 ⊗ S(x,y)

)
|0⟩ ⊗ |0⟩ ⊗ |0⟩

= |c1⟩ ⊗ |c2⟩ ⊗ |x⟩ |y⟩

= 1√
2
(
|0⟩+ |1⟩

)
⊗ 1√

2
(
|0⟩+ |1⟩

)
⊗ |x0, x1, x2, x3⟩ |y0, y1, y2, y3⟩ ,

where Sx is the routine which encodes in the amplitudes of a qubit a real vector x
and H is the Hadamard transformation.

(Step 2) Sampling in Superposition
The second step regards the generation of 2d different transformations of the training

set in superposition, each entangled with a state of the control register. To this end, d
steps are necessary, where each step consists in the entanglement of the i-th control

148 Details on Quantum Ensemble

qubit with two transformations of |x, y⟩ based on two random unitaries, U(i,1) and
U(i,2), for i = 1, 2.

The sampling in superposition step leads to the following quantum state:

|Φ1⟩ = 1
2

[
|00⟩U(2,1)U(1,1) |x0, x1, x2, x3⟩ |y0, y1, y2, y3⟩

+ |01⟩U(2,1)U(1,2) |x0, x1, x2, x3⟩ |y0, y1, y2, y3⟩
+ |10⟩U(2,2)U(1,1) |x0, x1, x2, x3⟩ |y0, y1, y2, y3⟩

+ |11⟩U(2,2)U(1,2) |x0, x1, x2, x3⟩ |y0, y1, y2, y3⟩
]
.

In order to obtain independent quantum trajectories, we provide the following
definition for U(i,j):

U(1,1) = SWAP(x0, x2)× SWAP(y0, y2); (B.6)
U(1,2) = SWAP(x1, x3)× SWAP(y1, y3); (B.7)
U(2,1) = 1; (B.8)
U(2,2) = SWAP(x2, x3)× SWAP(y2, y3); (B.9)

where 1 is the identity matrix. Thus, we get:

|Φ2⟩ = 1
2

[
|11⟩ |x0, x3, x1, x2⟩ |y0, y3, y1, y2⟩

+ |10⟩ |x2, x1, x3, x0⟩ |y2, y1, y3, y0⟩
+ |01⟩ |x0, x3, x2, x1⟩ |y0, y3, y2, y1⟩

+ |00⟩ |x2, x1, x0, x3⟩ |y2, y1, y0, y3⟩
]
.

We can see that swap operations allows to entangle different observations (in terms
of the indices of the qubits) to different state of the control register. In particular, if
considering the last qubit of the features and labels (sub-)registers, the above choices
for U(i,j) guarantee that each quantum state of the control register is entangled with a
different training observation. Using a compact representation:

|Φ2′ ⟩ = 1
2

[
|11⟩ |x2⟩ |y2⟩+ |10⟩ |x0⟩ |y0⟩+ |01⟩ |x1⟩ |y1⟩+ |00⟩ |x3⟩ |y3⟩

]

= 1√
4

3∑
i=0
|i⟩ |xi, yi⟩ . (B.10)

B.2 Quantum Ensemble as Simple Averaging 149

Notice that, in this case the i-th basis state does not correspond to the integer
representation of the binary state. Importantly, the only difference to implement

(Step 3) Learning via interference
The test register is initialised to encode the test set, x̃, considering also an additional

qubit to store the final prediction:

(Sx̃ ⊗ 1) |0⟩ |0⟩ = |x(test)⟩ |0⟩ . (B.11)

Then, the data and test registers interact via interference using the quantum version
of the cosine classifier (gate F) to compute the estimates of the target variable:

|Φf⟩ =
(

1⊗2 ⊗ F
)
|Φd⟩

= 1√
2d

2d∑
b=1
|b⟩ |xb, yb⟩

∣∣∣x(test)
〉 ∣∣∣f̂b

〉
.

Since the 4 points of the training set are in superposition, the application of the
quantum cosine classifier allows computing 4 different predictions for the test point,
{f̂b}b=1,...4, executing the classifier only once.

(Step 4) Measurement
Due to the entanglement between the predictions for x̃ and the control register the

expectation measurement allows retrieving the average of all the predictions, which
correspond to the ensemble prediction that uses bagging strategy aggregation:

⟨M⟩ = 1
2d

2d∑
b=1

〈
f̂b|M |f̂b

〉
= 1

2d

2d∑
b=1
⟨Mb⟩

= 1
B

B∑
b=1

f̂b = f̂bag(x̃|x, y).

The implementations of the quantum ensemble to perform simple averaging is depicted
in Figure B.2.

150 Details on Quantum Ensemble

Fig. B.2 Qiskit implementation of the quantum ensemble for independent quantum
trajectories.

B.3 Quantum Cosine Classifier

Classically, cosine classifier is defined as follows:

Pr
(
y(test) = yb

)
= 1

2 +

[
d
(
xb, x

(test)
)]2

2 (B.12)

where (xb, yb) is a random training example, x(test) the test point and d(·, ·) the cosine
distance between xb and x(test). Since the probability of belonging to a class depends
on the squared cosine distance between the two vectors, the maximum dissimilarity
occurs when training and test observations are orthogonal. In this case, the cosine
classifier assigns a uniform probability distribution in the two classes for y(test). This
means that the cosine classifier performs well only if the test point belongs to the same
class of the training point.

The quantum circuit that implements the cosine classifier (Figure 5.3) encodes data
into three different registers: the training vector x(i), the training label y(i) and the
test point x(test). One last qubit is used to store the prediction.

B.3 Quantum Cosine Classifier 151

The algorithm is made of the following three steps.

Step 1: State Preparation
The state preparation routine can be performed independently for each qubit:

|Φ1⟩ =
(
Sxb
⊗ Sx(test) ⊗ Syb

⊗ 1
)
|0⟩ |0⟩ |0⟩ |0⟩ = |xb⟩ |x(test)⟩ |yb⟩ |0⟩ , (B.13)

where Sx is the routine which encodes in the amplitudes of a qubit a 2-dimensional,
normalised real vector x.

Step 2: Execution of the swap test
In the second step, the swap-test transforms the amplitudes of the qubit y(test) as a

function of the squared cosine distance:

|Φ2⟩ = (1⊗ 1⊗ 1⊗H) (cswap⊗ 1⊗ C) (1⊗ 1⊗ 1⊗H) |xb⟩ |x(test)⟩ |yb⟩ |0⟩

=1
2
[(
|xb⟩ |x(test)⟩+ |x(test)⟩ |xb⟩

)
|yb⟩ |0⟩+

(
|xb⟩ |x(test)⟩ − |x(test)⟩ |xb⟩

)
|yb⟩ |1⟩

)
,

(B.14)

where H is the Hadamard gate, CSWAP is the controlled-swap operation which
uses the last qubit (position of gate C) as control qubit to swap |xb⟩ and

∣∣∣x(test)
〉
. After

the execution of the swap test the probability to readout the basis state |0⟩, that is
the probability for the test observation to be classified in class 0 is:

P (y(test) = |0⟩) = 1
2 + |⟨xb|x(test)⟩|2

2 . (B.15)

Step 3: Controlled Pauli-X gate
The third step consists of applying a controlled-Pauli-X gate using as control qubit

the label of the training vector. This implies that y(test) is left untouched if xb belongs
to the class 0. Otherwise, the amplitudes of the y(test) qubit are exchanged, and the
probability P (y(test) = 1) is higher as the similarity between the two vectors increases.

|Φ3⟩ = (1⊗ 1⊗ C-X) |Φ2⟩ . (B.16)

At this point the expectation measurement provides on the last qubit provides the
prediction of interest.

152 Details on Quantum Ensemble

B.4 Algorithm for Quantum Ensemble 153

B.4 Algorithm for Quantum Ensemble

In this section is presented the implementation of the quantum ensemble to produce
the results shown in Section 4.1.2.

Algorithm 2: Quantum ensemble of quantum cosine classifiers
Result: Predictions of the binary target value for all points in the test set

Input:
- 2n–qubit data register, d–qubit control register, 2-qubit test register
- Pauli-Z (measurement) operator ⟨σz⟩

for each point x̃ in the test set do

(Step 1) State Preparation

Encode n random training points into the n× 2 qubits of the data register:
(x1, y1), . . . , (xn, yn)

S(x,y)−−−→ |x1, . . . , xn; y1, . . . , yn⟩ = |features; labels⟩
Initialise the d qubits of control register into a uniform superposition:
|0 . . . 0⟩ W−→ 1√

2d

∑2d−1
k=0 |k⟩

Initialise the test register: |0, 0⟩
S(x̃,0)−−−→ |x̃, 0⟩

(Step 2) Sampling in superposition

for each qubit in the control register (i = 1, . . . d) do

Select two pairs of random integers l,m and l
′
,m

′ between 1 and n;

C-SWAP(control(i), features(l), features(m));
C-SWAP(control(i), labels(l), labels(m));

Apply Pauli-X gate to the current control qubit ;

C-SWAP
(
control(i), features

(
l

′
)
, features

(
m

′
))

;
C-SWAP

(
control(i), labels

(
l

′
)
, labels

(
m

′
))

;
end

(Step 3) Learning via Interference

Apply the quantum cosine classifier (gate F) using as training set a random
pair of qubits (features, labels) of the data register;

(Step 4) Measurement

Measure the test register using ⟨σz⟩ operator
end
Output: Ensemble predictions for all points in the test set;

	Table of contents
	List of figures
	List of tables
	Nomenclature
	I Quantum Computing
	1 Introduction
	1.1 A Brief Introduction to Quantum Mechanics
	1.2 Requirements for Quantum Computers
	1.3 Building a Quantum Computer
	1.4 Fault-Tolerant Computation
	1.5 Near-Term Quantum Computation
	1.6 Promising Applications and Future Directions

	2 Basic Principles of Quantum Computing
	2.1 Hilbert space and Dirac Notation
	2.2 Qubits and Quantum Gates
	2.2.1 Quantum Gates

	2.3 Entanglement
	2.4 Measurement
	2.5 Quantum Algorithms
	2.6 Quantum Computational Complexity
	2.6.1 Time and Gate Complexity

	II Quantum Algorithms for Machine Learning
	3 Quantum Machine Learning
	3.1 Overview on Machine Learning
	3.1.1 Empirical Risk Minimization
	3.1.2 Computational Complexity of Learning

	3.2 Introduction to Quantum Machine Learning
	3.3 Related works
	3.3.1 Quantum Variational Algorithms
	3.3.2 Quantum Artificial Neural Networks
	3.3.3 Quantum Algorithms for Ensemble Learning
	3.3.4 Quantum k-Nearest Neighbour
	3.3.5 Quantum Algorithms for Clustering
	3.3.6 Quantum Linear Models
	3.3.7 Kernel Methods and Quantum Support Vector Machine

	3.4 State Preparation in QML
	3.5 The Quest of Quantum Machine Learning
	3.6 Research Contribution

	III A Novel Quantum Framework for Machine Learning
	4 MAQA: Multiple Aggregator Quantum Algorithm
	4.1 Machine Learning Model as Aggregator of Multiple Functions
	4.1.1 Feedforward Neural Networks
	4.1.2 Ensemble Methods
	4.1.3 Other Supervised Methods as Multiple Aggregators

	4.2 Multiple Aggregator Quantum Algorithm (MAQA)
	4.2.1 Quantum Circuit Architecture
	4.2.2 Computational Considerations

	5 Quantum Algorithm for Ensemble Learning
	5.1 Bagging Strategy for Ensemble Methods
	5.2 Quantum Algorithm for Ensemble Learning
	5.2.1 Quantum Algorithm for Boosting and Randomisation
	5.2.2 Aggregation Strategy and Theoretical Performance
	5.2.3 Computational Considerations

	5.3 Experiments
	5.3.1 Quantum Cosine Classifier
	5.3.2 Quantum Ensemble as Simple Averaging
	5.3.3 Performance of Quantum Ensemble

	5.4 Benchmark on real-world datasets
	5.4.1 Datasets description
	5.4.2 Results

	5.5 Conclusion

	6 qSLP: Quantum Single Layer Perceptron
	6.1 Motivation
	6.1.1 Neural Network as Universal Approximator

	6.2 Variational Algorithm for Single Hidden Layer Neural Network
	6.2.1 Encode Data in Amplitude encoding
	6.2.2 Activation function
	6.2.3 Gates as Linear Operators
	6.2.4 Original prototype of Quantum Single Hidden Layer Network
	6.2.5 Experiments

	6.3 Experiments on real-world datasets
	6.4 Generalisation to H hidden neurons
	6.5 Discussion
	6.6 Conclusion

	7 Beyond Unitarity - Quantum Splines
	7.1 Matrix inversion in Pattern Recognition
	7.1.1 Regularisation and Ridge Regression
	7.1.2 Spline Functions

	7.2 Quantum Algorithms for Linear Systems
	7.2.1 Overview on HHL
	7.2.2 Quantum algorithm for HHL

	7.3 Quantum Activation Functions
	7.3.1 Quantum Spline
	7.3.2 Implementation
	7.3.3 Results

	7.4 Computational Efficiency
	7.5 Conclusion

	8 Conclusions and Outlook
	References
	Appendix A A Brief Introduction to Quantum Mechanics
	A.1 Proof of the no-cloning theorem

	Appendix B Details on Quantum Ensemble
	B.1 Swap-test to compute the cosine distance
	B.2 Quantum Ensemble as Simple Averaging
	B.3 Quantum Cosine Classifier
	B.4 Algorithm for Quantum Ensemble

