A Novel Framework for Quantum Machine Learning

Macaluso, Antonio (2021) A Novel Framework for Quantum Machine Learning, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Computer science and engineering, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9791.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB)

Abstract

Quantum computation is an emerging computing paradigm with the potential to revolutionise the world of information technology. It leverages the laws of quantum mechanics to endow quantum machines with tremendous computing power, thus enabling the solution of problems impossible to address with classical devices. For this reason, the field is attracting ever-increasing attention from both academic and private sectors, and its full potential is still to be understood. This dissertation investigates how classical machine learning can benefit from quantum computing and provides several contributions to the emerging field of Quantum Machine Learning. The idea is to provide a universal and efficient framework that can reproduce the output of a plethora of classical machine learning algorithms exploiting quantum computation’s advantages. The proposed framework is named Multiple Aggregator Quantum Algorithm (MAQA) due to its capability to combine multiple functions to solve typical supervised learning tasks. Thanks to this property, in its general formulation MAQA can be potentially adopted as the quantum counterpart of all those models falling into the scheme of aggregation of multiple functions. The theoretical design of the quantum algorithm and the corresponding circuit’s implementation are presented. As a second meaningful addition, two practical applications are illustrated: the quantum version of ensemble methods and neural networks. The final contribution addresses the restriction to linear operations imposed by quantum mechanics. The idea is to exploit a quantum transposition of classical Splines to approximate non-linear functions, thus overcoming this limitation and introducing significant advantages in terms of computational complexity theory.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Macaluso, Antonio
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Quantum Computing, Machine Learning, Artificial Intelligence
URN:NBN
DOI
10.48676/unibo/amsdottorato/9791
Data di discussione
27 Maggio 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^