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Abstract

This thesis concerns the theory and the inference of a new class of independence

models based on a graphical representation that we name profile graphs. Multiple graph

models are special cases in this class and the compatibility in terms of independence

structure is derived with respect to chain graph models of different types. Inference and

model selection based on both Lasso methodology and Bayesian theory are studied and

implemented. The latter is specifically used for the selection of multiple Ising graph

models. The thesis is composed of four chapters.

In the first chapter, we present a literature review of multiple and chain graphs.

Markov properties are illustrated for undirected, bidirected, LWF chain and regression

graphs. Parameterization and inference are also reviewed for data coming from both

multivariate Gaussian and Bernoulli sampling schemes.

In the second chapter, a class of profile graphs is introduced for modelling the effect

of an external factor on the independence structure of a multivariate set of variables.

This class is quite general and includes multiple graphs and chain graphs as special cases.

Conditional and marginal independence structures are explored by using profile undi-

rected and bi-directed graphical models, respectively. These two families of graphical

models are formally defined with their corresponding Markov properties. Furthermore,

necessary conditions are derived to induce, for any profile undirected and bi-directed

graph model, a compatible class of chain graph models of different type known as LWF

chain graph and regression graph, respectively. An application on protein networks in

various subtypes of acute myeloid leukemia is discussed.

In the third chapter, we propose two Bayesian approaches for the selection of Ising

models associated to multiple undirected graphs. We devise a Bayesian exact-likelihood

inference for low-dimensional binary response data, based on conjugate priors for log-

linear parameters, where we implement a computational strategy that uses Laplace ap-

proximations and a Metropolis-Hastings algorithm that allows us to perform a stochas-

tic model search. We also propose a quasi-likelihood Bayesian approach for fitting

high-dimensional multiple Ising graphs, where the normalization constant results com-

putationally intractable, with spike-and-slab priors to encode sparsity and MCMC al-

gorithms for sampling from the quasi-posterior distribution which enables variable se-

lection and estimation simultaneously. In both methods, we define a Markov Random

Field prior on the graph structures, which encourages the selection of the same edges

in related graphs. We finally perform simulation studies to compare the proposed ap-

proaches with competing methods.

Finally, in the fourth chapter we present some final remarks on Chapters 2 and 3.
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1 Introduction

Graphical models are statistical models associated to a graph, a structure consisting of a

set of vertices or nodes and a set of edges. The vertices of the graph represent observed

random variables and the independence structure of the model is represented by missing

edges. An interesting characteristic of graphical models is that many features and prop-

erties of the model can be simply read from the corresponding graph. The graph greatly

simplifies the interpretation of the model, making its independence structure more imme-

diate and intuitive. In addition, graphical models constitute a very versatile methodology

that has proved useful in a wide range of applications, for example, genetics and image

analysis. An historical overview of graphical models can be found in Cox and Wermuth

(1996) and Lauritzen (1996). A wide range of families of graphical models are available;

see Sadeghi and Lauritzen (2014) and references therein. The different families of models

can be distinguished for the kind of graph associated to the probability distribution. There

are models with symmetric relationships between variables represented by the so called

undirected and bidirected graphs. Undirected graphs, also known as Markov random fields,

are characterized by collections of conditional independence relationships (Lauritzen, 1996)

where vertices in the graph can be joined by only undirected edges (—–), whereas bidirected

graphs are characterized by collections of marginal independencies (Kauermann, 1996) and

edges in the graph can be only bidirected (←→). Asymmetric relationships between vari-

ables are considered by the family of models associated with directed acyclic graphs (DAGs),

also known as Bayesian networks (Bishop, 2006) where the graphs present only directed

edges or arrows (−→). Undirected graphs, bi-directed graphs and DAGs are special cases

of chain graphs whose edge set may contain both not oriented and oriented edges (Drton,

2009). In this manuscipt we will focus on chain graphs and multiple graphs, i.e. a collection

of graphs with same vertex set but different sets of edges. (Guo et al., 2011).

2 Multiple graphical models

2.1 Multiple graphs

In many applications it is more realistic to consider a collection of graphical models, due

to the heterogeneity of the data involved, where the dependence structure of the variables
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may differ with respect to one or more factors (Guo et al., 2011; Peterson et al., 2015). An

example can be found in gene networks describing different subtypes of the same cancer:

there are some shared pathways across different subtypes, and there are also links that are

unique to a particular subtype. In these situations, the presence of edges may change in

some graphs while in others not. Multiple graphs are two or more graphs with the same

vertex set where in each graph the edge set can differ according to a factor. More formally

let YV be a random vector with elements indexed by V , a set of p response variables, and

X be a random variable corresponding to a categorical factor external to V , taking value

x ∈ X , with |X | = q. A collection of multiple graphs is denoted by GV |X = [G(x)]x∈X , where

each graph G(x) = (V,E(x)) is associated to the random vector YV |{X = x}, where V is

the node set and E(x) is the edge set which depends on x, x ∈ X . For any couple r, j ∈ V

and x ∈ X , if (r, j) ∈ E(x) then we have an edge between r and j in the corresponding

graph G(x) while if (r, j) /∈ E(x) then the two nodes are disjoined in G(x). If all the

edges in the graphs are undirected, then we call them multiple undirected graphs denoted

by UV |X = [U(x)]x∈X , where each graph U(x) = (V,EU (x)) is an undirected graph while

if all the edges are bidirected, then we call them multiple bidirected graphs denoted by

BV |X = [B(x)]x∈X and each graph B(x) = (V,EU (x)) is a bidirected graph.

2.2 Markov properties

We firstly introduce some useful technical definitions. Let G = (V,E) be a graph with

vertex set V and edge set E. For any couple of vertices i, j ∈ V , if i and j are joined by

a not oriented edge we say that they are neighbors. The set of neighbors of a vertex i in

G is denoted as nb(i). A path of length k from i to j is a sequence of distinct vertices

i = v0, . . . , vr−1, vr, . . . , vk = j such that the vertices vr−1 and vr are neighbors for all

r = 1, . . . , k. Let A, B and C be three subsets of V ; The subset C is said to separate the

subsets A and B if all the paths from any vertex i ∈ A to any vertex j ∈ B intersects C. We

denote with GA the induced subgraph of G by the subset A ⊆ V , i.e. the graph with vertex

set A and all those edges which join two vertices that are both in A. A graph G = (V,E)

is connected when every pair of distinct vertices in V is joined by a path. A nonempty

subset A ⊆ V is a connected set in G if the induced subgraph GA is connected, and it is

disconnected otherwise. Every nonempty subset A ⊆ V can be partitioned uniquely into

maximal connected sets, A = K1∪K2∪ · · · ∪Kr. The sets K1∪K2∪ · · · ∪Kr are called the
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connected components of A. As already mentioned above, graphical model uses a graph to

represent conditional or marginal independence relations holding among a set of variables

according to their joint probability ditribution. The rules that translate properties of the

graph into conditional or marginal independence statements are called Markov properties.

There are three Markov properties named pairwise, local and global, which vary according

to the type of graph considered.

2.2.1 Markov properties for undirected graphs

Consider the undirected graph U = (V,EU ). The probability distribution P (YV ) associated

to U is said to obey

a) the undirected pairwise Markov property (UPMP) if for every i, j ∈ V such that

(i, j) /∈ EU it holds that

Yi⊥⊥Yj |YV \{i,j}, (2.1)

b) the undirected local Markov property (ULMP) if for every i ∈ V it holds that

Yi⊥⊥YV \{nb(i)∪i}|Ynb(i), (2.2)

c) the undirected global Markov property (UGMP) if for any triple of pairwise disjoint

subsets A,B,C ∈ V such that C separates A from B in U it holds that

YA⊥⊥YB|YC , . (2.3)

It can be easily shown that the implications UPMP ⇐= ULMP ⇐= UGMP always hold

(Lauritzen, 1996). Unfortunately the reverse implications are not true in general; however,

a sufficient condition for the reverse implications to hold is that the joint probability dis-

tribution is strictly positive (Pearl and Paz, 1987; Lauritzen, 1996). If U = U(x), i.e. it

belongs to a collection of multiple undirected graphs [U(x)]x∈X with probability distribution

P (YV |{X = x}), all the above statements and implications hold wrt U(x), for all x ∈ X, if

we extend the conditioning set with {X = x}.

2.2.2 Markov properties for bidirected graphs

Consider the bidirected graph B = (V,EB). The probability distribution P (YV ) associated

to B is said to obey
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d) the bidirected pairwise Markov property (BPMP) if for every i, j ∈ V such that (i, j) /∈

EB it holds that

Yi⊥⊥Yj , (2.4)

e) the bidirected local Markov property (BLMP) if for every i ∈ V it holds that

Yi⊥⊥YV \{nb(i)∪i}, (2.5)

f) the bidirected global Markov property (BGMP) if for any triple of pairwise disjoint

subsets A,B,C ∈ V such that C separates A from B in B it holds that

YA⊥⊥YB|YV \{A∪B∪C}, (2.6)

g) the connected set Markov property (CSMP) if for every disconnected set D of B it

holds that

YK1⊥⊥YK2⊥⊥ . . .⊥⊥YKr , (2.7)

where K1,K2, . . . ,Kr are the connected components of D.

The connected set Markov property is equivalent to the bidirected global Markov property

as proved in Richardson (2003); see also Drton and Richardson (2008). The implications

BPMP ⇐= BLMP ⇐= BGMP ⇐⇒ CSMP are always true. Nevertheless, in this

case the BPMP does not imply the BGMP, even for strictly positive distributions, so the

reverse implications never hold (Richardson, 2003; Kauermann, 1996). Also in this case,

if B = B(x), i.e. it belongs to a collection of multiple bidirected graphs [B(x)]x∈X with

probability distribution P (YV |{X = x}), all the above statements and implications hold

wrt B(x), for all x ∈ X , if we extend the conditioning set with {X = x}.

2.3 Parametrization and inference

2.3.1 Gaussian data

Let us consider a continuous random vector YV . For all x ∈ X , we assume YV |{X =

x} ∼ N(α + βx,Σ(x)) where [αi + βix]i∈V = E[Yi|{X = x}]i∈V is the marginal mean

vector and Σ(x) is the covariance matrix with entries ωij(x), all conditional to X = x,

x ∈ X . Let also γix, i ∈ V , be the linear effect of X on the conditional mean vector

E[Yi|{YV \i, X = x}]i∈V and let Λ(x) = Σ−1(x) be the precision matrix with entries λij(x),
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x ∈ X ; note that γx = Λ(x)βx where γx = [γix]i∈V and βx = [βix]i∈V (Andersson et al.,

2001). Zero-constraints over the off-diagonal entries of the precision matrix Σ(x) define a

Gaussian undirected graphical model while zero-constraints over the off-diagonal entries of

the covariance matrix Λ(x) define a Gaussian bidirected graphical model, for any x ∈ X .

The Gaussian undirected graphical model for YV |{X = x} denoted by U(x) = (V,EU (x))

is such that, for any x ∈ X and any couple i, j ∈ V

h) if (i, j) /∈ EU (x) then λij(x) = 0.

The Gaussian bidirected graphical model for YV |{X = x} denoted by B(x) = (V,EB(x)) is

such that, for any x ∈ X and any couple i, j ∈ V

i) if (i, j) /∈ EU (x) then ωij(x) = 0.

The problem of estimating a Gaussian graphical model is equivalent to estimating a co-

variance matrix. A first approach was proposed by Dempster (1972), who advocated the

estimation of a sparse dependence structure, i.e., setting some elements of the inverse covari-

ance matrix to zero. More recently, the focus has shifted to using regularization for sparse

estimation of the covariance matrix. For instance, Meinshausen and Bühlmann (2006) pro-

posed to select edges for each node in the graph by regressing each variable on all other

variables using `1-penalized regression. Some approaches for inferring multiple graphical

models have been proposed in recent years. Guo et al. (2011) proposed to infer multiple

undirected graphs by expressing the elements of the precision matrix associated to each

graph as a product of common and group-specific factors. From a Bayesian point of view,

Peterson et al. (2015) infer multiple Gaussian undirected graphs by linking the estimation

of the graph structures via a Markov random field (MRF) prior, which encourages common

edges.

2.3.2 Binary data

Assume that we have observed n(x) realizations of YV |{X = x} following a Multivariate-

Bernoulli distribution with parameter π(x) for all x ∈ X , where π(x) = [π
(x)
D ]D⊆V with

π
(x)
D = P (YD = 1D, YV \D = 0V \D|X = x), where 1D is a vector of 1s of size |D| and

0D\V is a vector of 0s of size |V \ D|. The log-linear parameter θ(x) = [θ
(x)
D ]D⊆V is an

alternative parametrization obtained through the Zeta matrix (Z) and the Möbius matrix
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(M) (Roverato et al., 2013), M = Z−1, i.e.

θ(x) = MT log π(x) ⇐⇒ π(x) = exp(ZT θ(x)). (2.8)

The log-linear parameter allow to express pairwise independencies on YV |{X = x} as zero-

constraints on θ(x) with x ∈ X . Let U(x) = (V,EU (x)) be the undirected graph associated

to YV |{X = x}, for any i, j ∈ V if (i, j) /∈ EU (x) it holds that θ
(x)
D = 0 for all D ⊇ {i, j}.

In case of binary response data it is possible to assume YV |{X = x} ∼ Ising(θ(x)) (Besag,

1974) where θ(x) = [θ
(x)
ij ]i,j∈V ∈ Rp+(p×(p−1))/2 is the loglinear parameter conditional to

X = x, x ∈ X (Lauritzen, 1996). Note that for all i, j ∈ V and any x ∈ X , if i = j then

θ
(x)
ij represents the main effects while if i 6= j then θ

(x)
ij represents the two-way interaction

between variables i and j, in particular the logarithm of the conditional odds ratio of i and

j given X = x. Zero-constraints over the two-way loglinear parameter [θ
(x)
ij ]i,j∈V,i 6=j define

an Ising undirected graphical model. The Ising undirected graphical model for YV |{X = x}

denoted by UI(x) = (V,EU (x)) is such that for any x ∈ X and any couple i, j ∈ C1 with

i 6= j,

j) if (i, j) /∈ EU (x) then θ
(x)
ij = 0.

Let ζ(x) = [ζ
(x)
D ]D⊆V be the log-mean linear parameter (Roverato et al., 2013), a different

parametrization obtained as

ζ(x) = MT logµ = MT logZπ, (2.9)

where µ = [µD]D⊆V with µD = P (YD = 1D). The binary graphical model for YV |{X = x},

x ∈ X , denoted by B(x) = (V,EB(x)) is such that for any disconnected set D ⊆ V of B(x)

it holds that ζ
(x)
D = 0. In this case the Ising model does not implies a simplification of the

model. A crucial aspect of these models compared to the undirected ones, is that they are

defined by many parameters and so the models are less parsimonious. When p is large,

inference under the Ising model is difficult because of the intractability of the normalization

constant. In particular, maximum likelihood estimation can generally not be performed.

Various solutions have arisen in the literature. Ravikumar et al. (2010) proposed to use

multiple `1-penalized logistic regressions, extending the approach developed by Meinshausen

and Bühlmann (2006) in the Gaussian case. Several authors have studied the estimation of

regression models on stratified data, suitable for multiple graphs, to take advantage of the
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potential homogeneity among the corresponding strata. Tibshirani et al. (2005) proposed

the fused lasso, a generalization that encourages sparsity of the coefficients and also sparsity

of their differences. Ollier and Viallon (2017) developed an approach referred to as data

shared lasso that bypasses the arbitrary choice of the reference stratum.

3 Chain graphical models

3.1 Chain graphs

Chain graphs are generally used for modelling the effect of background variables on joint

response variables. Under suitable rules, chain graphs provide a different multivariate re-

gression framework for modelling the independence structure of the outcomes given the

explanatory variables. In a chain graph the vertex set can be partitioned into an ordered

sequence of pairwise disjoint blocks. Directed edges are not allowed within blocks, and all

the edges joining vertices belonging to different blocks are arrows pointing from the lower

to the higher of the two blocks with respect to the ordering. There are several types of

chain graph models (Drton, 2009), in this paper we will focus on two types, (i) LWF chain

graph models (Frydenberg, 1990) and (ii) regression graph models (Wermuth and Sadeghi,

2012). More formally, a LWF chain graph CC = (V,EU , ED) is defined by a set of vertices

V partitioned in chain components C0, C1, . . . , Ck, a set of undirected edges EU and a set of

directed edges ED. Vertices within any chain component can be joined by undirected edges

and vertices between chain components can be joined by arrows preserving the same direc-

tion such that cycles are not allowed. A regression graph CR = (V,EU , EB, ED) is defined

by a set of vertices V partitioned in chain components C0, C1, . . . , Ck, a set of undirected

edges EU , a set of bidirected edges EB and a set of directed edges ED. Vertices within the

chain component C0 can be joined by undirected edges while vertices within the remaining

chain components C1, . . . , Ck, can be joined by bidirected edges. As in LWF chain graphs,

vertices between chain components are joined by arrows preserving the same direction such

that cycles are not allowed.

3.2 Markov properties

As above we firstly introduce other useful technical definitions. Let G be a chain or regres-

sion graph with blocks C0, C1, . . . , Ck. If an arrow points from i to j we call i a parent of
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j. The set of parents of a vertex i in G is denoted as pa(i). Furthermore, the set of parents

of a subset A ⊆ V is defined as pa(A) = ∪i∈A pa(i). We define the set of predecessors of a

block Cr wrt G as pr(Cr) = C0 ∪C1 ∪ . . . , Cr−1, for r = 1, . . . , k. An important property is

the factorization of the probability distribution of YV over the chain components of a chain

graph. Let YV = (YCr) : τ ∈ T (G), with T (G) = (C0, C1, . . . , Ck) be the random vector

corresponding to the chain graph G = (V,E); under several assumptions (Frydenberg, 1990;

Drton, 2009) and if the probability distribution P (YV ) is strictly positive, then it holds the

following factorization

P (YV ) =
∏

τ∈T (G)

P (Yτ | Ypa(τ)). (3.1)

3.2.1 Markov properties for LWF chain graphs

Consider the LWF chain graph CC = (V,EU , ED) with chain components C0, C1, . . . , Ck.

The probability distribution P (YV ) associated to CC is said to obey the LWF Markov

property when

k) for any A ⊆ Cr and every r = 1, . . . , k it holds that

YA⊥⊥Y{pr(Cr)\pa(A)}|Y{pa(A)∪Cr\A}, (3.2)

l) the probability distribution of YCr |Ypr(Cr) obeys the UGMP with respect to the in-

duced subgraph GCr , for every r = 0, 1, . . . , k; in particular when r = 0 then condi-

tioning set is empty.

3.2.2 Markov properties for regression graphs

Consider the regression graph CR = (V,EU , EB, ED) with blocks C0, C1, . . . , Ck. The prob-

ability distribution P (YV ) associated to CR is said to obey the regression Markov property

when

m) for any A ⊆ Cr and every r = 1, . . . , k it holds that

YA⊥⊥Y{pr(Cr)\pa(A)}|Ypa(A), (3.3)

n) the probability distribution of YCr |Ypr(Cr) obeys the BGMP with respect to the in-

duced subgraph GCr , for every r = 1, . . . , k.
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o) the probability distribution of YC0 obeys the UGMP with respect to the induced

subgraph GC0 .

3.3 Parametrization and inference

Let XR = [Xr]r∈R be a random vector with elements indexed by R, a set of u variables.

Here we focus on a two-blocks LWF chain and regression graph with chain components

C0 = R and C1 = V .

3.3.1 Gaussian data

We present the case of Gaussian data for both the blocks. Consider the random vector

(YV , XR) with (p+u)×1 zero-mean vector and (p+u)× (p+u) positive definite covariance

matrix Σ with entries σij for all ij ∈ {V ∪R}. Therefore Σ−1ij is the corresponding (p+u)×

(p+ u) precision matrix with entries σ−1ij for all ij ∈ {V ∪R}. The conditional distribution

of YV given XR is multivariate Normal given by YV |XR ∼ Np(βXR,ΣV |R) where ΣV |R is

the (p × p) conditional covariance matrix with entries ωij for all i, j ∈ V , and β is the

(p × u) matrix of regression coefficients of YV on XR, with entries βir for any i ∈ V and

any r ∈ R. We denote with Σ−1V |R the (p× p) conditional precision matrix with entries ω−1ij

for all i, j ∈ V . Let also Γ = Σ−1V |R× β be the (p× u) matrix of parameters occurring in the

conditional distribution of YV given YR, with entries γir for any i ∈ V and any r ∈ R.

The LWF chain Gaussian graphical model for (YV , XR) denoted by CC = ({V ∪R}, EU , ED)

is such that for any i, j ∈ V and any r, t ∈ R

p) if (i, r) /∈ ED then γir = 0,

q) if (i, j) /∈ EU then ω−1ij = 0,

r) if (r, t) /∈ EU then σ−1rt = 0.

The regression Gaussian graphical model for (YV , XR) denoted by CR = ({V ∪R}, EU , EB, ED)

is such that for any i, j ∈ V and any r, t ∈ R, if it hold r) and

s) if (i, r) /∈ ED then βir = 0,

t) if (i, j) /∈ EB then ωij = 0,
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From Equation (3.1) derives a decomposition of the likelihood associated to a chain graph.

Indeed, it can be shown (Drton, 2009) that the likelihood of (YV , XR) associated to a chain

graph, can be maximized by maximizing the likelihood of Yτ for every τ ∈ T (G) separately,

and then by combining the optima according to (3.1). For each chain component, maximum

likelihood estimates can be obtained by fitting an undirected or bidirected graph model to

the residuals computed using the regression coefficients (linear effects) estimates (Speed and

Kiiveri, 1986; Edwards, 2000).

3.3.2 Binary data

We present the case where both YV and XR follow a multivariate Bernoulli distribution. We

now introduce a further parameterization associated with the blocks (R, V ) and consists of

probabilities involving all the variables in XR but only certain subvectors of YV . Formally,

the hybrid parameter for (XR, YV ), with respect to the partition (R, V ) is the vector π(R,V ) =

[π
(R,V )
D ]D⊆{R∪V } where π

(R,V )
D = P (YD = 1D, YR\D = 0R\D). We obtain the obtain the log-

hybrid linear parameter (La Rocca and Roverato, 2017) as

ψ(R,V ) = MT log π(R,V ). (3.4)

The model specification depends on the partition adopted for Q = (R ∪ V ). If we consider

the partition (Q, ∅), the log-hybrid parameterization ψ(Q,∅) corresponds to the log-linear

parameterization for the joint distribution of (XR, YV ). If we consider the partition (R, ∅)

for the set R, the log-linear parameterization ψ(R,∅) results for the marginal distribution of

XR. So, LWF chain graph models can be specified by zero constrants on the parameters

ψ(Q,∅) and on ψ(R,∅) for the joint distribution of (XR, YV ) and the marginal distribution of

XR, respectively.

The LWF chain graphical model for (XR, YV ) denoted by CC = (Q,EU , ED) is such

that for any i, j ∈ V and any r, t ∈ R,

u) if (r, i) /∈ ED then ψ
(Q,∅)
{r,i}∪A = 0 for all A ⊆ {Q \ {r, i}},

v) if (i, j) /∈ EU then ψ
(Q,∅)
{i,j}∪A′ = 0 for all A′ ⊆ {Q \ {i, j}},

w) if (r, t) /∈ EU then ψ
(R,∅)
{r,t}∪A′′ = 0 for all A′′ ⊆ {R \ {r, t}}.

The regression binary graphical model for (XR, YV ) denoted by CR = (Q,EU , EB, ED)

is such that for any i, j ∈ V and any r, t ∈ R, if it hold w) and

10



x) if (r, i) /∈ ED then ψ
(R,V )
{r,i}∪A = 0 for all A ⊆ R \ {r},

y) if (i, j) /∈ EB then ψ
(R,V )
{i,j}∪A′ = 0 for all A′ ⊆ R.

The advantage of log-hybrid is that it allows the specification of both binary LWF and

regression chain graph models. Nevertheless, further parameterization are avalaible in par-

ticular for regression graph models, based on different transformation function of the prob-

ability parameter; (Drton, 2009; Marchetti and Lupparelli, 2011). Maximum likelihood

estimates of the parameters in case of binary data can be obtained using a general iter-

ative algorithm for constrained likelihood maximization provided by Lang (1996). Drton

(2008) extends the iterative conditional fitting (ICF) algorithm for bidirected graphs to fit

regression graphs.

3.4 Main objectives

In chapter 2, we aim to model the effect of a categorical factor on the dependence structure

of a set of random response variables. In particular our interest focus on the effect of the

categorical factor on the interactions among the response variables. We propose two novel

classes of graphical models, termed profile undirected and bi-directed graphical models, which

preserve the convenient aspects of a graphical approach and enhance, at the same time, the

modelling prospects given by chain graphs and multiple graphs. A crucial profit in using

profile graphs is that they encode in a single graph all the independencies that can be read

off on both a collection of multiple graphs and a chain graph. For both the proposed graphs,

we derive the Markov properties based on the same connected set rule for modelling all the

profile outcome distributions, that is the set of all conditional probability distributions of

the response variables given any level of an external risk factor. We formally establish the

compatibility, in terms of independence models, of the proposed profile graphical models

and certain types of chain graphs. The proposed approach is compatible with different types

of chain graph models, which provide different regression frameworks for data analysis. The

class of graphs we propose can be used for modelling the distributions of both continuous

and discrete outcomes. We illustrate in details suitable parameterizations for these classes

of models for the Gaussian case such that Markov properties can be satisfied by zero param-

eter constraints. We conclude the manuscript with a cancer genomics application aimed at

the reconstruction of a profile graphical model, a protein network that changes with respect
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to the disease subtype. In this manuscript some aspects still require further investigations.

Firstly, at this stage, inference and model selection are performed by means of independent

Lasso Sep-Logit approach (Meinshausen and Bühlmann, 2006) which does not account for

the dependence between sub-group models. In this context, more efforts are needed for the

implementation of a joint selection procedure based, for instance, of a Data-shared Lasso

strategy (Ollier and Viallon, 2017). From a modelling perspective, an interesting develop-

ment could be given by the generalization of the profile approach to chain graph models to

explore profile dependence structures among variables grouped in chain components. This

generalization is not trivial in terms of Markov property specification, since we need to

consider the effect of an external factor on variables collected both within and between

chain components. However, we conjecture that profile chain graph models would provide

useful insights to investigate data generating processes for data which, in principle, might

be different in each sub-group.

In chapter 3, we propose two Bayesian approaches for the selection of log-linear models

associated to multiple Ising graphs. Following Massam et al. (2009), we devise a Bayesian

exact-likelihood inference for low-dimensional binary response data, based on conjugate

priors for log-linear parameters, where we implement a computational strategy that uses

Laplace approximations and a Metropolis-Hastings algorithm that allows us to perform a

stochastic model search. We also propose a quasi-likelihood Bayesian approach, extending

the work of Bhattacharyya and Atchade (2019), for fitting high-dimensional Ising multiple

graphs, where the normalization constant results computationally intractable, with spike-

and-slab priors to encode sparsity and MCMC algorithms for sampling from the quasi-

posterior distribution which enables variable selection and estimation simultaneously. In

both methods, we define a Markov Random Field prior on the graph structures, which

encourages the selection of the same edges in related graphs (Peterson et al., 2015). Sim-

ulation studies show that our methods perform better than the same ones using identical

and independent Bernoulli distributions for the prior distribution of the model, as in Bhat-

tacharyya and Atchade (2019). Performances of our methods are comparatevely better than

the competing frequentist approaches Indep-Seplogit (Meinshausen and Bühlmann, 2006)

and DataShared-SepLogit (Ollier and Viallon, 2017).
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Abstract

A class of profile graphs is introduced for modelling the effect of an external factor on

the independence structure of a multivariate set of variables. This class is quite general

and includes multiple graphs and chain graphs as special case. Conditional and marginal

independence structures are explored by using profile undirected and bi-directed graph-

ical models, respectively. These two families of graphical models are formally defined

with their corresponding Markov properties. Furthermore, necessary conditions are de-

rived to induce, for any profile undirected and bi-directed graph model, a compatible

class of chain graph models of different type known as LWF chain graph and regression

graph, respectively. An application on protein networks in various subtypes of acute

myeloid leukemia is discussed.



1 Introduction

Multivariate regression models can be represented by chain graphs (Lauritzen and Wer-

muth, 1989; Frydenberg, 1990; Andersson et al., 2001); this representation sheds light on

the conditional independence structure between a set of multiple response variables and a

set of explanatory variables, all represented by vertices of the chain graph. In its simplest

form, response and explanatory variables are grouped in two different chain components

or blocks. Missing edges between vertices correspond to conditional independencies for

the joint distribution of variables under suitable Markov properties specified for a class of

chain graphs. There are several types of chain graph models (Drton, 2009), in this paper

we will focus on two types which correspond to smooth statistical models, (i) LWF chain

graph (Frydenberg, 1990) and (ii) regression graph models (Wermuth and Sadeghi, 2012).

Under the corresponding Markov properties, these two classes of chain graphs provide a

different multivariate regression framework for modelling the independence structure of the

outcomes given the explanatory variables. Model selection of chain graphs is an active area

of research, see recent approaches based on penalized likelihood by Rothman et al. (2010),

Yin and Li (2011) and Lee and Liu (2012), two-step approaches by Cai et al. (2012) and

Chen et al. (2016), and Bayesian approaches by Bhadra and Mallick (2013) and Consonni

et al. (2017). Despite recent advancements, the use of chain graph models might be lim-

ited in some contexts since relevant aspects could not be totally addressed only through

conditional independencies. Principally, our interest is on the effect that an explanatory

variable may have on the joint probability distribution of the outcomes rather on each single

outcome. The matter is that the independence model given by any chain graph under its

own Markov properties does not provide a comprehensive information about the role that

an explanatory variable, hereafter termed external factor, has on the pairwise independence

between response variables and on their joint independence structure. Basically, we think

chain graphs will not suffice whenever, beyond the conditional independence model repre-

sented through a set of missing edges, we want to say something more about the not missing

edges and, in this context, about the effect the factor has on the edges in the response chain

component. This issue has been widely discussed in the literature and there are some

extreme cases which show how the interaction between variables may considerably change

under different levels of an external factor. Notable instances are given by the effect reversal
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(Cox and Wermuth, 2003) and also by the well-known Simpson Paradox (Simpson, 1951).

This same problem can be also tackled from a different perspective, as external factors can

be used to define subgroups and subpopulations. In recent years this approach has lead to

the development of methods for multiple graphical models for Gaussian random variables

(Guo et al., 2011; Danaher et al., 2014; Peterson et al., 2015). Similarly, in the context

of multinomial sampling models, there have been few proposals of graphical models for

context-specific independencies; these approaches allow conditional independences to hold

only for a subset of the sample space of one, or more, variables we condition upon. (Hojs-

gaard, 2003; Corander, 2003; Nyman et al., 2014, 2016). Approaches for multiple graphical

models do not directly include the external factor into the model, and, more importantly,

approaches for multiple and context-specific graphical models do not fully account for the

effects of external or internal factors on the variables included in the graphical model – for

example, in Corander (2003) and Nyman et al. (2014) context-specific independencies vary

with respect only to adjacent veetices. Given the well-established use of chain graphs for

modelling multivariate regression framework and the recent developments of multiple and

context-specific graphical models, our goal is four-fold: first, we propose two novel classes

of graphical models, termed profile undirected and bi-directed graphs, which preserve the

convenient aspects of a graphical approach and enhance, at the same time, the modelling

prospects given by chain graphs and multiple graphs; second, we derive the Markov proper-

ties for both families of profile graphs based on the same connected set rule for modelling all

the profile outcome distributions, that is the set of all conditional probability distributions

of the response variables given any level of an external risk factor; third, we formally estab-

lish the compatibility, in terms of independence models, of the proposed profile graphical

models and certain types of chain graphs; finally, we illustrate suitable parameterizations

for these classes of models for the Gaussian case such that Markov properties can be sat-

isfied by zero parameter constraints. We conclude the manuscript with a cancer genomics

application aimed at the reconstruction of a profile graphical model, a protein network that

changes with respect to the disease subtype.
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2 Theoretical framework

2.1 Basic setup

Let G = (V,E) be a graph defined by a set of vertices a ∈ V and a set of edges (a, b) ∈ E

joining pairs of vertices a, b ∈ V , and let YV = (Ya)a∈V be a random vector of variables

indexed by the finite set V with p = |V |. A graph, associated to a random vector YV ,

is generally used to represent conditional independence structures under suitable Markov

properties. Typically, missing edges in G correspond to conditional independencies for the

joint distribution of YV . Also, let us consider the random categorical variable X repre-

senting an external factor with respect to (in the sequel, wrt) the random vector YV of

outcomes/response variables. The variable X takes level x ∈ X , with |X | = q. Our interest

lies in the effect of X on the joint independence structure of YV and, in particular, the in-

terest is exploring via a graphical modelling approach how this structure may change under

different levels x ∈ X , which we call profiles. Chain graphs are generally used for mod-

elling the effect of background variables on joint response variables. In the simplest form, a

two-block chain graph C = [{C1, C2}, E] is defined by a set of vertices partitioned in chain

components C1 and C2, and a set of edges E. Depending on the set of Markov properties

specified for the chain graph we may have different independence models for the joint dis-

tribution of random vectors (YCt)t∈{1,2}, associated to the chain components {Ct}t∈{1,2}. In

particular we focus on (i) the class of LWF chain graph models (Frydenberg, 1990) and on

(ii) the class of regression graph models (Wermuth and Cox, 2004). Both models correspond

to multivariate regression models with suitable independence constraints corresponding by

missing edges, both within and between chain components. Any pair of vertices a, b ∈ Ct

within the same chain component with t = 1, 2 and a 6= b, can be joined by undirected

or by bi-directed edges, respectively for chain graph of type (i) and (ii); vertices between

chain components, a ∈ C1 and b ∈ C2, are joined by directed edges preserving the same

direction such that cycles are not allowed. For our purpose, the set of vertices C1 and

C2 are associated, respectively, to the random vector YV of response variables and to the

background variable X, so that C1 = V and |C2| = 1. In principle, the chain component

C2 may include a multiple categorical random vector; in this case X represents a random

variabile with state space given by the combination of a multiple factor levels. For any

x ∈ X , let YV (x) be a x-profile outcome vector, that is the random vector YV |{X = x}
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conditioned on a specific profile x of the factor X, and let P (YV (x)) be the corresponding

x-profile probability distribution of YV (x), that is the conditional probability distribution

P (YV |{X = x}). Note that P (·) can be a probability density function or a probability

mass function, depending on the continuous or discrete nature of the multivariate random

variable YV (x), with x ∈ X . For the sake of simplicity, in the sequel we omit the prefix x

to denote both the profile outcome vector and the profile outcome distribution. Then, for

a given multivariate random vector YV and an external factor X, let YV |X = [YV (x)]x∈X

be the finite set of all profile outcome vectors and let P (YV |X ) = [P (YV (x))]x∈X be the

corresponding set of all profile outcome distributions. For any A ⊆ V , YA|X = [YA(x)]x∈X

is set of marginal profile outcome vectors with corresponding profile probability distribu-

tions P (YA|X ) = [P (YA(x))]x∈X . Given a partition A,B,C ⊆ V , the profile conditional

independence YA(x)⊥⊥YB(x)|YC(x) corresponds to the factorization

P [YA(x), YB(x)|YC(x)] = P [YA(x)|YC(x)]× P [YB(x)|YC(x)], x ∈ X , (2.1)

of the joint profile distribution YV (x). Similarly, we say that the profile marginal indepen-

dence YA(x)⊥⊥YB(x) corresponds to the factorization

P [YA(x), YB(x)] = P [YA(x)]× P [YB(x)], x ∈ X . (2.2)

If the profile independence statements in Equations (2.1) and (2.2) hold for any level x ∈ X ,

then these equations imply that YA⊥⊥YB|{YC , X} and YA⊥⊥YB|X, respectively. Finally, let

us consider a collection of multiple graphs GV |X = {G(x) = (V,E(x))}x∈X associated to the

profile outcome distributions P (YV |X ). Under suitable Markov properties, any graph G(x)

represents an independence model for the profile outcome vector YV (x), for any x ∈ X . In

particular, missing edges wrt G(x) correspond to profile conditional independencies for the

joint distribution of YV (x), with x ∈ X . Graphs G(x) ∈ GV |X may have different skeletons.

We remark that chain graph models do not allow to explore how the independence

structure of YV may considerably vary for any profile x ∈ X . Multiple graphs do not allow

to model the effect of X on each outcome Ya ∈ YV . In essence, the idea is to provide a

single graph able to embed, at the same time, information about the profile independence

structure for any YV (x) ∈ YV |X and about the conditional independence between X and

any outcome Ya ∈ YV .
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2.2 Profile graphs

We introduce the class of profile graphs. A profile graph G = (V, E) is defined by the set V

of vertices and a set of Z-labelled edges E which are labelled according to a subset Z ⊆ X .

Let (a, b)Z be the generic element of E associated to any pair a, b ∈ V , where the presence

or absence of the edge between a and b is determined by the subset Z of the state space

X . For each pair a, b ∈ V , the corresponding edge (a, b)Z ∈ E will belong to one of the

following three categories: (i) if Z = X , vertices a and b are not joined by any edge, (ii) if

Z is a nonempty proper subset of X , Z ⊂ X and Z 6= ∅, vertices a and b are joined by a

dotted Z-labelled edge; (iii) if Z = ∅, vertices a and b are joined by a full edge and, for sake

of simplicity, the ∅-label is not displayed in the graph. Under suitable Markov properties,

the profile graph G provides an independence model for the joint distributions of a random

vector YV |X of profile outcomes. In particular, a missing edge in G corresponds to a profile

conditional independence for each profile x ∈ X . A Z-labelled dotted edge in G corresponds

to profile conditional independencies holding only for the profiles x ∈ Z, with Z ⊂ X and

Z 6= ∅.

Further technical definitions are given. For any couple of vertices a, b ∈ V , we say that

b is an x-neighbour of a and vice versa, if they are joined by a Z-labelled edge such that

x /∈ Z, with Z ⊂ X . Let nbx(a) be the set of all x-neighbours of a, with a ∈ V and x ∈ X .

For any pair a, b ∈ V and x ∈ X , an x-path between a and b is given by a sequence of (a, b)Z

edges, for any Z ⊂ X , such that x /∈ Z for all edges in the sequence. Given any nonempty

subset C of V , C is said to be x-connected if any pair a, b ∈ C is joined by a x-path, with

x ∈ X . Any nonempty subset D of V is said to be x-disconnected if it is not x-connected,

with x ∈ X and let K1, . . . ,Kr be the x-connected components of D. For any triple A,B,C

of disjoint subsets of V and x ∈ X , we say that C x-separates A from B if every x-path

from any vertex a ∈ A to any vertex b ∈ B intersects C. Technical x-definitions above can

be simply extended to Z-definitions for any subset Z of X if they hold for all x ∈ Z.

3 Profile graphical models: Markov properties

3.1 Profile undirected graphical models

In this section we consider a special case of profile graph, named profile undirected graph

GU = (V, EU ): for any a, b ∈ V , edges (a, b)Z ∈ EU are drawn either as Z-labelled dotted
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Figure 1: Given V = {a, b, c, d}, GU is a profile undirected graph for the profile outcome

vectors YV |X = [(YV (x))x∈X ] with X = {0, 1, 2}. Any U(x) is the induced undirected graph

for the profile outcome vector YV (x), with x ∈ X .

undirected edges if Z ⊂ X and Z 6= ∅, or as full undirected edges if Z = ∅; if Z = X ,

vertices a and b are disjoined. Consider for instance the profile undirected graph GU in

the left panel of Figure 1: there are four vertices V = (a, b, c, d), and the graph is defined

by three Z-labelled dotted edges {(a, b)2, (a, c)0, (b, c){1,2}}, one full edge (b, d)∅ and two

missing edges {(a, d)X , (c, d)X }. Technical definitions given in Section 2.2 are illustrated in

the following example.

Example 3.1. Consider the profile undirected graph GU in the left panel of Figure 1. Ver-

tices a and c are both {1, 2}-neighbours, because they are joined by a dotted edge with label

Z = {0} that does not contain neither 1 or 2. Vertices b and d are X -neighbours because they

are joined by a full edge. The sequence of edges {(a, c){0}, (a, b){2}, (b, d)∅} is a {1}-path,

since 1 is not included in any label of the edges in the sequence. The same sequence is not a

{2}-path since the label of the couple (a, b) contains 2. The set V is {1}-connected, because

every pair of vertices in V are joined by a {1}-path. The same set is {2}-disconnected with

{2}-connected components {a, c} and {b, d}, because there is no {2}-path between a and b.

Vertices c and d are {1}-separated by a because the only {1}-path {(a, c){0}, (a, b){2}, (b, d)}

between c and d intersects a; vertex a does not {0}-separates c and d because there exists

the {0}-path {(b, c){1,2}, (b, d)∅} between them that does not intersect a.

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile undirected Pairwise Markov Property (U-PMP) wrt the graph GU = (V, EU ) if, for

any (a, b)Z ∈ EU with Z ⊆ X ,

Ya(x) ⊥⊥ Yb(x)|YV \{a,b}(x), x ∈ Z. (3.1)
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The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the profile

undirected Global Markov Property (U-GMP) wrt the graph GU = (V, EU ) if, for any triple

A,B,C of disjoint subsets of V such that C x-separates A from B in GU ,

YA(x) ⊥⊥ YB(x)|YC(x), x ∈ X . (3.2)

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile undirected Connected Set Markov Property (U-CSMP) wrt the graph GU = (V, EU )

if, for any x-disconnected set D of V , with K1, . . . ,Kr x-connected components of D,

YK1(x) ⊥⊥ . . . ⊥⊥ YKr(x)|YV \D(x), x ∈ X . (3.3)

Example 3.2. Consider the left panel including the graph GU in Figure 1. If P [YV |X ] satisfy

the U-PMP wrt GU then Yb(x) ⊥⊥ Yc(x)|{Ya(x), Yd(x)} for x ∈ {1, 2}, since (b, c){1,2} ∈ EU .

P [YV |X ] satisfy the U-GMP wrt GU if Yc(1) ⊥⊥ {Yb(1), Yd(1)}|Ya(1) because a {1}-separates

c from {b, d}. Consider the subset D = {a, b, c} of V ; P [YV |X ] satisfy the U-CSMP wrt GU

if {Ya(2), Yc(2)} ⊥⊥ Yb(2)|Yd(2) because D is {2}-disconnected set with two {2}-connected

components {a, c} and b.

We prove that all the independence statements encoded in a profile undirected graph

under the global Markov property can be derived by applying the connected set rule.

Theorem 3.1. Let GU = (V, EU ) be a profile undirected graph model associated to the profile

outcome vectors YV |X with probability distributions P [YV |X ]. The U-GMP is satisfied if and

only if the U-CSMP is satisfied wrt GU .

The proof of Theorem 1 is given in the Appendix, along with all other proofs. The local

Markov property for profile undirected graph is also included in the Appendix.

Given a profile undirected graph GU = (V, EU ) for the profile outcome vectors YV |X ,

the corresponding class of multiple undirected graphs associated to each random vector

YV (x) ∈ YV |X can be defined.

Definition 3.1. Given a profile undirected graph GU = (V, EU ) for the profile outcome

vectors YV |X , let UV |X = {U(x) = (V,EU (x))}x∈X be the induced class of multiple undirected

graphs, where, for any U(x) ∈ UV |X , the couple a, b ∈ V is joined by an undirected edge if

x /∈ Z in the corresponding edge (a, b)Z ∈ EU , with Z ⊆ X .
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Then, a missing edge in GU corresponds to a missing edge in U(x), for any x ∈ X ; a

Z-labelled dotted edge in GU corresponds to a missing edge in U(x) if x ∈ Z, and to a full

edge in U(x) if x /∈ Z; a full edge in GU corresponds to a full edge in U(x), for any x ∈ X .

Example 3.3. Consider Figure 1. Given the profile undirected graph GU , let UV |X =

{U(0), U(1), U(2)} be the induced class of multiple undirected graphs. The couple a, d is

disjoined in GU and in any U(x) ∈ UV |X . The couple b, c is joined by a {1, 2}-labelled dotted

edge in GU then is joined by a full edge in U(0) and is disjoined in U(1), U(2). The couple

b, d is joined by a full edge in GU and in any U(x) ∈ UV |X .

Pairwise, local, and global Markov property of probability distributions associated to undi-

rected graphs are well known (Lauritzen, 1996). The following corollary, derived directly

from Theorem 3.1, shows that the full set of conditional independencies implied by the global

Markov property for any undirected graph can be also derived by applying the connected

set rule.

Corollary 3.1. Given an undirected graph model U(x) = (V,E(x)) associated to the pro-

file outcome vectors YV |X , the probability distributions P [YV (x)] satisfy the global Markov

property wrt U(x) if and only if the connected set Markov property is satisfied for every

x-disconnected set D ⊆ V , with x ∈ X .

The following proposition shows that the full set of independencies encoded in the in-

duced undirected graph model for any YV (x) ∈ YV |X can be derived from the profile undi-

rected graph model for the joint distributions of YV |X .

Proposition 3.1. Consider a profile undirected graph GU = (V, EU ) associated to the profile

outcome vectors YV |X and the induced class of multiple undirected graphs UV |X . If the

probability distributions P [YV |X ] satisfy the U-CSMP wrt GU , the probability distribution

P [YV (x)] of each profile vector YV (x) ∈ YV |X satisfies the global Markov property wrt the

induced undirected graph U(x) ∈ UV |X .

In the following proposition we show that U-GMP, U-CSMP and U-PMP are equivalent for

the class of profile undirected graph models in case of strictly positive probability distribu-

tions. This result directly derives from Proposition 3.1.
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Figure 2: Given V = {a, b, c, d}, GB is a profile bi-directed graph for the profile outcome

vectors YV |X = (YV (x))x∈X with X = {0, 1, 2}. Any B(x) is the induced bi-directed graph

for the profile outcome vector YV (x), with x ∈ X .

Proposition 3.2. Let GU = (V, EU ) be a profile undirected graph associated to the profile

outcome vectors YV |X with strictly positive probability distributions P [YV |X ]. The U-GMP

is satisfied if and only if the U-PMP is satisfied wrt GU .

3.2 Profile bi-directed graphical models

In this section we consider a class of graphical models for profile marginal independencies

based on the family of profile bi-directed graphs. A profile bi-directed graph GB = (V, EB)

is defined by a set V of vertices and by a set of edges EB with generic element (a, b)Z ,

for any pair a, b ∈ V , with Z ⊆ X . For a given (a, b)Z ∈ EB, if Z = X , we have that

a, b ∈ V are disjoint vertices; vertices a, b ∈ V are joined by a bi-directed edge, drawn as

Z-labelled dotted bi-directed edge if Z ⊂ X and Z 6= ∅, and as full bi-directed edge if

Z = ∅ where the ∅-label is not displayed on the edge of the graph. For instance, consider

the profile bi-directed graph in the left panel of Figure 2: the graph includes four vertices

V = (a, b, c, d) and it is defined by three Z-labelled dotted edges {(a, b)2, (a, c)0, (b, c){1,2}},

one full bi-directed edge (b, d)∅ and two missing edges {(a, d)X , (c, d)X }.

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile bi-directed Pairwise Markov Property (B-PMP) wrt the graph GB = (V, EB) if, for

any (a, b)Z ∈ EB with Z ⊆ X ,

Ya(x) ⊥⊥ Yb(x), x ∈ Z. (3.4)

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile bi-directed Global Markov Property (B-GMP) wrt the graph GB = (V, EB) if, for any
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triple A,B,C of disjoint subsets of V such that C x-separates A from B in GB,

YA(x) ⊥⊥ YB(x)|YV \{A∪B ∪C}(x), x ∈ X . (3.5)

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile bi-directed Connected Set Markov Property (B-CSMP) wrt the graph GB = (V, EB)

if, for any x-disconnected set D of V , with K1, . . . ,Kr x-connected components of D,

YK1(x) ⊥⊥ . . . ⊥⊥ YKr(x), x ∈ X . (3.6)

Example 3.4. Consider the left panel profile bi-directed graph model GB in Figure 2. If the

profile probability distributions in P [YV |X ] satisfy the B-PMP wrt GB then Yb(x) ⊥⊥ Yc(x)

for x ∈ {1, 2}. If P [YV |X ] satisfy the B-GMP wrt GB then Yc(x) ⊥⊥ {Yb(x), Yd(x)}, with

x ∈ {1, 2}, since a {1, 2}-separates c from {b, d}. Consider the subset D = {a, b, c} of

V ; if P [YV |X ] satisfy the B-CSMP wrt GB then {Ya(2), Yc(2)} ⊥⊥ Yb(2) because D is {2}-

disconnected set with {2}-connected components {a, c} and b.

Building upon Drton and Richardson (2008), the following proposition shows that the

global and connected set Markov properties for profile bi-directed graphs are equivalent.

Proposition 3.3. Let GB = (V, EB) be a profile bi-directed graph model associated to the

profile outcome vectors YV |X with probability distributions P [YV |X ]. The B-GMP is satisfied

if and only if the B-CSMP is satisfied wrt GB.

Unlike profile undirected graphs, we remark that for profile bi-directed graph the B-PMP

does not necessarily imply the B-GMP.

Proposition 3.4. Let GB = (V, EB) be a profile bi-directed graph model associated to the

profile outcome vectors YV |X with probability distributions P [YV |X ]. The B-PMP is satisfied

if the B-GMP is satisfied wrt GB.

Given a profile bi-directed graph GB = (V, EB) for the profile outcome vectors YV |X , we

define the class of multiple bi-directed graphs associated to each YV (x) ∈ YV |X .

Definition 3.2. Given a profile bi-directed graph GB = (V, EB) for the profile outcome

vectors YV |X , let BV |X = {B(x) = (V,EB(x))}x∈X be the induced class of multiple bi-

directed graphs, where, for any B(x) ∈ BV |X , the couple a, b ∈ V is joined by a bi-directed

edge if x /∈ Z in the corresponding (a, b)Z ∈ EB, with Z ⊆ X .
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Then, a missing edge in GB corresponds to a missing edge in B(x), for any x ∈ X ; a

Z-labelled dotted edge in GB corresponds to a bi-directed edge in B(x) if x /∈ Z or to a

missing edge in B(x) if x ∈ Z; a full bi-directed edge in GB corresponds to a bi-directed

edge in any B(x) ∈ BV |X .

Example 3.5. Consider in Figure 2 the induced class BV |X = {B(0), B(1), B(2)} of multi-

ple bi-directed graphs. There is no edge between a and d in GB, then (a, d) /∈ EB(x) for any

x ∈ X . Vertices b and c are joined by a {1, 2}-labelled dotted edge in GB, then (b, c) /∈ EB(x)

for x ∈ {1, 2} and (b, c) ∈ EB(0). There is a full edge between b and d in GB and in any

B(x) ∈ BV |X .

The proposition below shows that, from a profile bi-directed graph model for the joint

distributions of YV |X , it can be derived the induced bi-directed graph model for any YV (x) ∈

YV |X .

Proposition 3.5. Consider a profile bi-directed graph GB = (V, EB) associated to the pro-

file outcome vectors YV |X and the induced class of multiple bi-directed graph BV |X . If the

probability distributions P [YV |X ] satisfy the B-CSMP wrt GB, the probability distribution

P [YV (x)] of each profile vector YV (x) ∈ YV (x) satisfies the connected set Markov property

wrt the induced bi-directed graph B(x) ∈ BV |X .

4 Chain graph compatibility

4.1 Profile undirected graphs and LWF chain graphs

For any profile undirected graph GU , we derive an induced class of two-block LWF chain

graphs CU = {CU}, with generic element CU = [{V,X}, ECU
]. We show that any profile

undirected graph model for the set of profile distributions P [YV |X ] is compatible, in terms

of independence models, with a class of LWF chain graph models for the joint distribution

P (YV , X). Compatibility is formally defined within Theorem 4.1; in summary, we say that

an LWF chain graph CU is compatible with a profile undirected graph GU if all independen-

cies between variables in its response component can be read from the profile undirected

graph.

A joint probability distribution P (YV , X) satisfies the LWF Global Markov property

(LWF-GMP) wrt the LWF chain graph CU = [{V,X}, ECU
] if (Frydenberg, 1990; Drton,
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2009):

for any disconnected set D ⊆ V with connected components K1, . . . ,Kr,

YK1 ⊥⊥ . . . ⊥⊥ YKr |{YV \D, X}; (4.1)

for any subset A ⊆ V such that there is a missing arrow between any vertex a ∈ A

and X,

YA ⊥⊥ X|YV \A (4.2)

We remark that Equation (4.1) directly derives from Theorem 3.1.

Definition 4.1. Given a profile undirected graph GU = (V, EU ) associated to the profile

outcome vectors YV |X , let CU be the induced class of two-block LWF chain graphs where a

graph CU = [{V,X}, ECU
] belongs to CU if

(i) any couple a, b ∈ V is joined by an undirected edge in CU if Z ⊂ X for the pair

(a, b)Z ∈ EU ;

(ii) for any couple a, b ∈ V , a and b are both reached by an arrow in CU starting from X

if Z ⊂ X and Z 6= ∅ for the pair (a, b)Z ∈ EU .

Necessary conditions (i) and (ii) in Definition 4.1 ensure that it will always exist at least

one compatible LWF chain graph for any given profile undirected graph. Condition (i) is

related to the missing/non-missing undirected edges for any induced chain graph; it states

that dotted and full edges in profile undirected graphs correspond to full edges in chain

graphs. Condition (ii) is related to missing/non-missing directed edges for any induced

chain graph; it states that vertices joined by a dotted edge in a profile undirected graph

cannot be disjoined from X in the induced chain graph. Since condition (ii) may not be

intuitive, the following counterexample shows that this is a necessary condition.

Example 4.1. Let V = {a, b, c} be a set of response variables and X a factor with state-

space X = {0, 1}. Consider a chain graph CU = {(V,X), ECU
} with ECU

= {(a, b), (b, c), (X, c)},

where vertices a and b are both disjoined from X. For the condition (4.2), we have {Ya, Yb}⊥

⊥X|Yc, i.e., P (Ya(0), Yb(0)|Yc(0)) = P (Ya(1), Yb(1)|Yc(1)). For any x ∈ {0, 1}, we have that

Ya(x)⊥⊥Yb(x)|Yc(x), or Ya(x)⊥⊥/ Yb(x)|Yc(x). (4.3)
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Figure 3: A profile undirected graph with a compatible LWF chain graph.

Consider the profile undirected graph GU = (V, EU ) with EU = {(a, b){0}, (a, c)∅, (b, c)X }

where the pair a, b is joined by a {0}-dotted edge that implies

Ya(0)⊥⊥Yb(0)|Yc(0) and Ya(1)⊥⊥/ Yb(1)|Yc(1). (4.4)

Statements (4.3) and (4.4) are not compatible, then CU does not belong to the induced class

CU . Now, consider the chain graph C
′
U with E

C
′
U

= {(a, b), (b, c), (X, b), (X, c)}, where only b

is joined to X. Equation (4.2) implies that Ya⊥⊥X|{Yb, Yc}, that is, P [Ya(0)|Yb(0), Yc(0)] =

P [Ya(1)|Yb(1), Yc(1)]. Condition in Equation (4.3) still holds since either P [Ya(1)|Yc(1)] =

[Ya(0)|Yc(0)] or P [Ya(1)|Yb(1), Yc(1)] = [Ya(0)|Yb(1)Yc(0)]. Then, C
′

does not belongs to the

induced class CU . Finally, consider the chain graph C
′′
U with the set E

C
′′
U

= {(a, b), (b, c), (X, a),

(X, b), (X, c)} of edges , where a and b are both joined to X. This chain graph is compatible

with the profile graph GU since statement (4.3) is no more required. Then C
′′
U satisfies both

conditions (i) and (ii) in Definition 4.1 and belongs to the induced class CU .

In essence, given a profile undirected graph GU , the induced class CU includes LWF chain

graphs CU = {(V,X), ECU
} where the chain component V has the same skeleton of GU ,

and differ only according to which arrows are missing. Within this class, we can identify

the maximum element, i.e., the chain graph with no missing arrows and the minimum

element, i.e., the chain graph with a set of arrows that point to all vertices a ∈ V such that

nbZ(a) 6= ∅ with Z ⊂ X and Z 6= ∅.

Theorem 4.1. Consider a profile undirected graph GU = (V, EU ) associated to the profile

outcome vectors YV |X . If the probability distributions P [YV |X ] satisfy the U-GMP for GU ,

then also the independence statements in Equation (4.1) are satisfied for the induced class

CU of two-block LWF chain graphs.
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In order to account also for the independence statements (4.2) and to establish a one-

to-one relationship between profile undirected graphs and LWF chain graphs, we generalize

the class of profile undirected graphs. Given a profile undirected graph GU = (V, EU ),

consider the partition V = V ∪ V� of the vertex set so that we distinguish between two

types of vertices, a circle vertex a ∈ V and a square vertex a� ∈ V�, drawn as # and

�, respectively. For every a� ∈ V�, we assume Ya ⊥⊥ X|YV \a; that is the univariate

profile distribution of Ya(x) is invariant for any x ∈ X , given the remaining variables YV \a;

otherwise if a ∈ V , we assume Ya ⊥⊥/ X|YV \a.

The profile graph in this generalized representation includes information also about the

independence structure between subsets of response variables YA, with A ⊆ V , and the

external factor X. In particular, for any A ⊆ V�, we assume that YA ⊥⊥ X|YV \A. Then,

given a profile undirected graph GU = (V , V�, EU ), the compatible two-block LWF chain

graph CU = [{V,X}, ECU
] in the class CU is unique and is defined by a chain graph where

the undirected graph of the response component V has the same skeleton of GU and there

are missing arrows between X and any square vertex a� ∈ V�.

Example 4.2. Consider the profile undirected graph and the induced chain graph in Figure

3. Vertices a, b, c are circled vertices while d is a square vertex wrt GU , i.e., {a, b, c} ∈ V and

d ∈ V�. Then, both the profile undirected graph and the chain graph imply the independence

statement Yd ⊥⊥ X|{Ya, Yb, Yc}. Also, both graphs imply that {Ya, Yc}⊥⊥Yd|{Yb, X}. Unlike

the profile graph, the chain graph does not provide information about the effect of X on the

YV association structure, e.g., Ya(2)⊥⊥Yb(2)|{Yc(2), Yd(2)}.

4.2 Profile bi-directed graphs and regression graphs

For any profile bi-directed graph GB we may define an induced class of two-block regression

graphs CB = {CB}. Any CB = [{V,X}, ECB
] in the class CB represents a regression graph

such that vertices a, b ∈ V in the response variables component can be joined by full bi-

directed edges. Our aim is to show that any profile bi-directed graph model for the set of

profile distributions P [YV |X ] is compatible in terms of independence models with a class

of regression graph models for the joint distribution P (YV , X). Compatibility between

profile bi-directed graphs and regression graphs is formally defined within Theorem 4.2.

We briefly recall the Global Markov property for a two-block regression graph CB; see also

Drton (2009) and Wermuth and Sadeghi (2012).
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A joint probability distribution P (YV , X) satisfies the regression Global Markov property

(R-GMP) wrt the regression graph CB if,

for any disconnected set D ⊆ V with connected components K1, . . . ,Kr,

YK1 ⊥⊥ . . . ⊥⊥ YKr |X; (4.5)

for any subset A ⊆ V such that there is a missing arrow between any vertex a ∈ A

and X,

YA ⊥⊥ X (4.6)

Definition 4.2. Given a profile bi-directed graph GB = (V, EB), consider the induced class

CB = {CB} of regression graphs where a graph CB = [{V,X}, ECB
] is in CB if,

(i) any couple a, b ∈ V is joined by a bi-directed edge in CB if Z ⊂ X for the pair

(a, b)Z ∈ EB;

(ii) for any couple a, b ∈ V , a or b are reached by an arrow in CB starting from X if

Z ⊂ X and Z 6= ∅ for the pair (a, b)Z ∈ EB.

Given a profile bi-directed graph GB, the induced class of regression graphs includes a

set of regression graphs CB where the bi-directed graph of the response chain component

has the same skeleton of GB. Therefore, regression graphs CB ∈ CB differ only according to

which arrows are present. Within this class, we can identify the maximum element, and the

minimum element, that in this case may not be unique; we provide in the Supplementary

Material an iterative procedure to find the size, in terms of number of arrows, of the

minimum element.

Necessary conditions (i) and (ii) in Definition 4.2 ensure that it will always exist at least

one compatible regression graph for any given profile bi-directed graph. Since condition (ii)

may not be intuitive, the following counterexample shows that this is a necessary condition.

Example 4.3. Following Example 4.1, let V = {a, b, c} be a set of response variables and X

a factor with state-space X = {0, 1}. Consider a regression graph CB = {(V,X), ECB
} with

ECB
= {(a, b), (b, c), (X, c)}, where vertices a and b are both disjointed from X. For the R-

GMP in (4.6), we have {Ya, Yb}⊥⊥X. Then, P [Ya(0), Yb(0)] = P [Ya(1), Yb(1)]. Therefore,

for any x ∈ {0, 1}, we have that

Ya(x)⊥⊥Yb(x), or Ya(x)⊥⊥/ Yb(x). (4.7)
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Figure 4: A profile bi-directed graph with a compatible regression graph.

Consider the profile bi-directed graph GB = (V, EB) with EB = {(a, b){0}, (a, c)∅, (b, c)X }

where the pair a, b is joined by a {0}-dotted edge that implies

Ya(0)⊥⊥Yb(0) and Ya(1)⊥⊥/ Yb(1). (4.8)

Statements (4.7) and (4.8) are not compatible, then CB does not belong to the induced class

CB. Now, consider the regression graph C
′
B with E

B
′
U

= {(a, b), (b, c), (X, b), (X, c)}, where

only b is joined to X. Equation (4.6) implies Ya⊥⊥X, .i.e., P [Ya(0)] = P [Ya(1)] which is

compatibile with the profile independence in (4.8). Then, C
′
B satisfies both conditions (i)

and (ii) in Definition 4.2 and belongs to the induced class CB. We draw similar conclusion

for the regression graph C
′′
B with E

C
′′
B

= {(a, b), (b, c), (X, a), (X, b), (X, c)}, where a and b

are both joined to X.

Theorem 4.2. Consider a profile bi-directed graph GB = (V, EB) associated to the profile

outcome vectors YV |X . If the probability distributions P [YV |X ] satisfy the B-GMP for GB,

then the independence statements in Equation (4.5) are satisfied for the induced class CB of

two-block regression graphs.

Assuming the partition of the vertex set V = V ∪ V� into circled and square vertices,

we can also generalize the class of profile bi-directed graphs in order to account for the inde-

pendence statements in Equation (4.6) and to establish a one-to-one relationship between

profile bi-directed graphs and regression graphs. Given a square vertex a� ∈ V�, we assume

that Ya ⊥⊥ X, that is the univariate profile variable distribution of Ya(x) is invariant for

any x ∈ X ; otherwise we have a circled vertex a ∈ V . More generally, for any subset

A ⊆ V�, we assume YA ⊥⊥ X. Then, given a profile bi-directed graph GB = (V , V�, EB), the
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corresponding compatible regression graph CB = [{V,X}, ECB
] is defined by a two-block

regression graph where the bi-directed graph of the response component V has the same

skeleton of GB with missing arrows between any vertex a ∈ V� and X.

Example 4.4. Consider the profile bi-directed graph in Figure 4 where vertices a and b

are circled vertices while c and d are square vertices; the graph GB implies {Yc, Yd} ⊥⊥ X

which also holds in the compatible regression graph CB because there is no arrow pointing

to c, d ∈ V . Both the profile and the regression graph imply that {Ya, Yc} ⊥⊥ Yd|X because

d and {a, c} are the connected components of the disconnected set {a, c, d}. The induced

regression graph does not provide information about the profile marginal independencies,

e.g., Ya(2)⊥⊥Yb(2).

5 Parametrization and inference for Gaussian profile graph

models

We define the class of Gaussian profile graphical models for both the undirected and bi-

directed types. For all x ∈ X , let YV (x) ∼ N(α + βx,Σ(x)) where [αa + βax]a∈V =

E[Ya(x)]a∈V is the profile marginal mean vector and Σ(x) is the profile covariance ma-

trix with entries ωab(x), x ∈ X . Let γax, a ∈ V , be the linear effect of the external factor on

the profile conditional mean vector E[Ya(x)|YV \a(x)]a∈V and let Λ(x) = Σ−1(x) be the pro-

file precision matrix with entries λab(x), x ∈ X ; note that γx = Λ(x)βx where γx = [γax]a∈V

and βx = [βax]a∈V (Andersson et al., 2001).

The two classes of Gaussian profile undirected and bi-directed graphs are defined by

different zero-constraints over the model parameters; these constraints naturally follow from

the Markov equivalence between profile graphs and multiple graphs, and the compatibility

between profile graphs and chain graphs established in the previous Sections 3 and 4.

The Gaussian profile undirected graphical model for YV |X wrt GU = (V, EU ) is such that,

(i) for any a ∈ V�, γax = 0 for all x ∈ X ,

(ii) for any (a, b)Z ∈ EU , with Z ⊆ X , λab(x) = 0, for each x ∈ Z.

The Gaussian profile bi-directed graphical model for YV |X wrt GB = (V, EB) is such that,

(i) for any a ∈ V�, βax = 0 for all x ∈ X ,
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(ii) for any (a, b)Z ∈ EB, with Z ⊆ X , ωab(x) = 0, for each x ∈ Z.

Estimation of Gaussian profile undirected graphical models can be virtually based on any

method previously developed for inference of Gaussian chain graphs or multiple graphs. The

neighborhood selection approach proposed by Meinshausen and Bühlmann (2006) results

in a asymptotically consistent estimator of high-dimensional graph structures. Given n(x)

i.i.d. observations, neighborhood selection aims at estimating the neighbours of each vertex

a ∈ V . In a nutshell, neighborhood selection can be framed as a standard regression problem

and can be solved efficiently with the Lasso (Meinshausen and Bühlmann, 2006). For each

a ∈ V and x ∈ X , a regression model with Ya(x) as response variable and all remaining

variables YV \a(x) as covariates is estimated with a Lasso penalty. The coefficients estimated

to be zero define the zero patterns that correspond to a given profile undirected graph

GU = (V, EU ). The finite sample properties of the proposed Lasso procedure have been

explored through a simulation study. The adopted simulation scheme and the results are

described in the Supplementary Material. As expected, the performances of some indices

of interest, e.g., true and false positive rate, improve as the sample size increases. The

extension of the aforementioned procedure to Gaussian profile bi-directed graphical model

is trivial; technical aspects related to the implementation of these algorithms are discussed

in the Supplementary Material. Note that alternative modeling frameworks may be used.

For example, penalty terms that encourage shared network structures across profiles, in

the same spirit of the group graphical lasso of Danaher et al. (2014), may be appropriate

in case of x-profile outcome vectors that follows distributions with a very similar graph

structure. The development of more tailored modeling frameworks is beyond the scope of

this manuscript.

6 Application

We illustrate the utility of our method with an application in cancer genomics. We analyze

protein expression data from patients affected by acute myeloid leukemia (AML) with the

goal of reconstructing and comparing protein networks across disease subtypes; comparing

the networks for these groups provides insight into the differences in protein signaling that

may affect whether treatments for one subtype will be effective in another. The R-code is

available and located at https://github.com/kinglaz90/phd.
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A set of protein levels, collected using the reverse phase protein array (RPPA) tech-

nology, is observed in a sample of 213 newly diagnosed AML patients (Kornblau et al.,

2009)1. Patients are classified by subtype according to the French-American-British (FAB)

classification system. We consider 4 different profiles given by 4 AML subtypes, for which a

reasonable sample size is available: M0 (17 subjects), M1 (34 subjects), M2 (68 subjects),

and M4 (59 subjects). These profiles, based on criteria including cytogenetics and cellular

morphology, show varying prognosis. We expect to observe different protein interactions in

the subtypes. We focus on 18 proteins relevant to the apoptosis and cell cycle regulation

KEGG pathways (Kanehisa et al., 2011).

Our interest is modelling the effect of the AML subtype on the joint independence

structure of the protein levels. Profile undirected graphical models are an encompassing

tool that coherently and jointly performs all inferential tasks of interest of learning how

the protein dependency structure changes across subtypes as well as the mean protein

levels. Therefore, considering the p = 18 protein levels following a multivariate Gaussian

distribution and q = 4 different profiles of AML, where the levels x ∈ X = {0, 1, 2, 3} denote

the subtypes M0, M1, M2, M4 respectively, we estimate and select the profile undirected

graphical model represented in Figure 5. For the sake of comparison, we represent the

corresponding compatible chain graph in Figure 6; this chain graph is more dense and then

harder to read. Most importantly, the many profile specific independencies are obviously

missed by the chain graph.

For instance, from the selected profile graph we learn that for the profiles x ∈ {0, 1},

YAKTp.308(x) ⊥⊥ YBCI.2(x)|YV \{AKTp.308,BCI.2}(x);

for any profile x ∈ X ,

YAKTp.308(x) ⊥⊥ YBAD(x)|YV \{AKTp.308,BAD}(x).

The level of proteins AKTp.473, BAX, BCI.XL, PTEN, PTEN.p. TP53 and XIAP and all

the pairwise associations among them are independent to the AML subtypes.

1http://bioinformatics.mdanderson.org/Supplements/Kornblau-AML-RPPA/aml-rppa.xls
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Figure 5: The selected profile undirected graph model for protein data
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7 Discussion

We propose a class of graphical models that generalizes both chain graphs and multiple

graphs and, for the first time, we establish compatibility between these two types of graph.

The proposed approach is compatible with different types of chain graph models, which

provide different regression frameworks for data analysis. In line with LWF chain graphs,

profile undirected graphs can be used for modelling the profile conditional independencies

resulting from a sequence of non-independent regression models involving all response vari-

ables. On the other hand, in line with regression graphs, profile bi-directed graph models

can be used for modelling profile marginal independencies resulting from a sequence of

non-independent marginal regression models which ignore other response variables. See

Wermuth and Sadeghi (2012) for a discussion about chain graphs in terms of sequences of

non-independent regression models. From this perspective, the specification of a class of

profile chain graphs represents an interesting generalization to explore profile independen-

cies in a multivariate regression setting. We conjecture that, under certain assumptions, this

generalization is more feasible for the class of LWF chain graphs rather than for the class of

regression graphs. Nevertheless, there are some crucial aspects, mainly related to the speci-

fication of the Markov properties, which need to be better investigated. The class of profile

graphs we propose can be used for modelling the profile distributions of both continuous

and discrete outcomes. The parameterization discussed in Section 5 for the Gaussian case

is quite standard and it is based on the idea that these models correspond to sequences of

non-independent regressions. Under the assumption of a Multinomial sampling scheme for

the multivariate outcome vector, a parameterization based on the log-linear transformation

(Lauritzen, 1996) and on the log-mean linear transformation (Roverato et al., 2013) could

be used, respectively, for profile undirected and bi-directed graph models. In alternative to

the selection strategy based on a Lasso penalty, model comparison within the class of pro-

file undirected or profile bi-directed graphs can be based on the likelihood ratio test in case

of nested models; these graphical models are smooth and belong to the curve exponential

family, so the likelihood ratio test has an asymptotic chi-square distributions. However,

if undirected and bi-directed graphs are both viable options for a given data analysis, the

likelihood ratio test for model comparison between the two types of graphs cannot be used

and we need to rely on some type of information criteria, such as AIC or BIC.
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Appendix

Profile local Markov property

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the profile

undirected Local Markov Property (U-LMP) wrt the graph GU = (V, EU ) if, for any vertex

a ∈ V

Ya(x)⊥⊥YV \{a ∪ nbx(a)}(x)|Ynbx(a)(x), x ∈ X . (7.1)

The probability distributions P [YV |X ] of the profile outcome vectors YV |X satisfy the

profile bi-directed Local Markov Property (B-LMP) wrt the graph GB = (V, EB) if, for any

vertex a ∈ V

Ya(x)⊥⊥YV \{a ∪ nbx(a)}(x), x ∈ X . (7.2)

Proofs

Proof. of Theorem 3.1. Let GU = (V, EU ) be a profile undirected graph and D ⊆ V be

any x-disconnected set with x-connected components K1, . . . ,Kr such that for every pair

Ki,Kj with i, j = 1, . . . , r, i 6= j, for the U-CSMP wrt GU we have

YKi(x)⊥⊥YKj (x)|YV \{Ki,Kj}(x), x ∈ X . (7.3)

For any pair Ki,Kj ⊂ D with i, j = 1, . . . , r, i 6= j, the set Sij = V \ {Ki,Kj} is an

x-separator. Then, the U-CSMP implies the U-GMP wrt GU . Conversely, consider any

x-connected set C wrt GU and let nbx(C) =
⋃

a∈C nbx(a) be the neighbour set including C

and let SC = nbx(C) \ C be an x-separator for the sets C and V \ nbx(C), for any x ∈ X .

The U-GMP implies that

YC(x)⊥⊥YV \nbx(C)(x)|YSC
(x), x ∈ X . (7.4)

Note that C ∪ {V \ nbx(C)} is an x-disconnected set, for x ∈ X . We distinguish two cases,

whether V \ nbx(C) is x-connected or x-disconnected. In the first case, the x-connected

components of C ∪ {V \ nbx(C)} are C and V \ nbx(C), then the U-CSMP is satisfied. If

V \ nbx(C) is x-disconnected with K1 ∪ · · · ∪Kr connected components, the U-GMP also

implies that

YC(x)⊥⊥YK1(x)⊥⊥ . . .⊥⊥YKr(x)|YSC
(x), x ∈ X . (7.5)

Then the U-GMP implies the U-CSMP wrt GU .
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Proof. of Proposition 3.1. Consider a profile undirected graph GU = (V, EU ) associated to

the profile outcome vectors YV |X and the induced class UV |X of multiple undirected graphs.

If the probability distributions P [YV |X ] satisfy the U-CSMP wrt GU , the U-GMP is also

satisfied from Theorem 3.1. So, given three disjoint subsets A,B,C of V ,

YA(x) ⊥⊥ YB(x)|YC(x), (7.6)

where A and B are x-separated by C, with x ∈ X . The result follows by Definition 3.1,

since A and B are x-separated by C in GB if and only if they are x-separated by C in

U(x) ∈ UV |X , with x ∈ X .

Proof. of Proposition 3.2. From a well-established result we have that, given an undi-

rected graph U = (V,EU ) associated to a random vector YV , the global and the pairwise

Markov properties are equivalent if the joint probability distribution P (YV ) is strictly pos-

itive; see Lauritzen (1996). The proposition follows by applying this result to the strictly

positive probability distribution P [YV (x)] of any profile outcome vector YV (x) ∈ YV |X .

Proof. of Proposition 3.3. From a result of Drton and Richardson (2008), given a bi-

directed graph B = (V,EB) associated to a random vector YV , the joint probability distri-

bution P (YV ) satisfies the global Markov property if and only if the connected set Markov

property is satisfied. The proposition follows by applying this result to the profile distribu-

tion P [YV (x)] of any profile outcome vector YV (x) ∈ YV |X associated to a profile bi-directed

graph GB = (V, EB).

Proof. of Proposition 3.4. Consider a profile bi-directed graph GB associated to the

profile outcome vectors YV |X . If P [YV |X ] satisfy the B-GMP, the B-CSMP is satisfied by

Proposition 3.3, and, for every pair (a, b)Z ∈ EU with Z 6= ∅, the B-PMP is also satisfied

since

Ya(x)⊥⊥Yb(x), x ∈ Z.

Proof. of Proposition 3.5. Consider a profile bi-directed graph GB = (V, EB) associ-

ated to the profile outcome vectors YV |X . If the probability distributions P [YV |X ] satisfy

the B-CSMP wrt GU , for every x-disconnected set D ⊆ V with x-connected components
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K1, . . . ,Kr,

YK1(x)⊥⊥ . . .⊥⊥YKr(x), x ∈ X . (7.7)

The result follows by Definition 3.2, since any D ⊆ V is an x-disconnected set in GB if and

only if it is a disconnected set with the same connected components in B(x) ∈ BV |X , for

any x ∈ X.

Proof. of Theorem 4.1. Given a profile undirected graph GU associated to the profile

outcome vectors YV |X , if the probability distributions P [YV |X ] satisfies the U-GMP, the

U-CSMP is also satisfied from Theorem (3.1). For every x-disconnected set D with x-

connected components K1, . . . ,Kr,

YK1(x)⊥⊥ . . .⊥⊥YKr(x)|YV \D(x), x ∈ X .

Then, the independence statement in Equation (4.1) is satisfied since, by Definition 4.1,

for any chain graph CU = [{V,X}, ECU
] in CU , each disconnected set D ⊆ V is also a

disconnected set in GU with same connected components.

Proof. of Theorem 4.2. A proof is given along the same line of the proof for Theorem

4.1. Then, the result follows since, for any regression graph CB = [{V,X}, ECB
] in CB, each

disconnected set D ⊆ V is also a disconnected set in GB with same connected components,

by Definition 4.2.

Supplementary materials

Simulation study

We perform two simulation studies to investigate the finite sample properties of the neigh-

borhood selection approach proposed in Section 7. This method estimates the set of non-zero

elements of precision (covariance) matrices corresponding to the presence of edges for profile

undirected (bi-directed) graphs. Moreover, this method estimates the non-zero coefficient

vector γx (βx) corresponding to circled nodes of a profile undirected (bidirected) graph.

The R-code is available and located at https://github.com/kinglaz90/phd.
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Simulation study I

Data generating process: we generate observations from a set YV |X of random vectors

associated to a profile undirected graph GU with p = 20 nodes and q = 5 levels of X,

such that x ∈ X = {0, 1, 2, 3, 4}. Following Peterson et al. (2015), we first construct Λ(0),

the precision matrix of the baseline level x = 0. We set Λ(0) to be a p × p symmetric

matrix with main diagonal entries λaa(0) = a, with a = 1, . . . , p, and off-diagonal entries

λ(a+1)a(0) = λa(a+1)(0) = 0.5 with a = 1, . . . , 19 and λ(a+2)a(0) = λa(a+2)(0) = 0.4 with

a = 1, . . . , 18 . For all a ∈ V , we set both αa and γax to zero. For x = {1, 2, 3, 4}, we also set

γax = 0 for a = 5, . . . 20 and γax = 1 for a = 1, . . . 4, i.e., the external factor X affects only

the first four response variables. The remaining precision matrices Λ(x) for x = {1, 2, 3, 4}

are obtained as follow, first we set Λ(x) = Λ(0), then with probability 0.5 we set to zero

its non-zero entries, given that constraint (ii) in subsection 4.1 is respected. The resulting

precision matrices have about 17.5% of non-zero elements, on average. Data are generated

by drawing a random sample of size n(x) = 10, 102, 103 from the distribution N (βx,Σ(x))

where Σ(x) = Λ−1(x) and βx = Σ(x)γx, for all x ∈ X . We use a similar procedure to

generate data from a bi-directed profile graph: in the procedure we set Σ(x) = Λ(x) and

βx = γx, for all x ∈ X and we draw samples from a multivariate normal distribution with

such parameters.

Performance metrics and results: to assess the accuracy of graph structure esti-

mation, we compute the true positive rate (TPR) and the true negative rate (TNR) of the

non-zero elements of γx and Λ(x) for the undirected graph and the non-zero elements of

βx and Σ(x) for the bi-directed graph, for all x ∈ X , along with associated standard errors

(SE). The rates of precision and covariance matrices are obtained averaging over all the five

matrices. We report the results in Table 1 and Table 2. The results show that all the TPR-s

converge to 1 and all the SE go to 0, as n(x) increases; in particular, with n(x) = 103 all

the TPR-s are equal to 1, for all x ∈ X .

Simulation study II

We perform a second simulation study to evaluate the proposed neighborhood selection

method about the ability to correctly identify a full edge (F), a dotted edge (D) or a missing

edge (M) for each couple a, b ∈ V , a 6= b. We construct a profile undirected graph G∗U and a
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profile bi-directed graph G∗B by following the same procedure as in the first simulation study

with the only difference of allowing X to affect the first ten variables; the resulting graphs

have 19 full edges and 18 dotted edges (and therefore 153 missing edges). We generate

100 simulated datasets for each n(x) = 10, 102, 103, for all x ∈ X . To assess the accuracy

of edge-selection, we compute the true positive edge-rate (TPR.e) with associated SE. For

true positive edge-rate we mean the proportion of F, D or M edges correctly classified. We

report the results in Table 3 and Table 4. The results show that all TPR.e-s converge to

1 and all the SE go to 0, as n(x) increases; in particular, with n(x) = 103 both TPR.e(F)

and TPR.e(D) are equal to 1, for all x ∈ X .

Table 1: True positive rate (TPR) and true negative rate (TNR) for non-zero elements of

the precision matrices and regression coefficients with associated standard error (SE) across

100 simulated datasets corresponding to the profile undirected graph GU of the simulation

study.

n(x) TPR[Λ(x)](SE) TNR[Λ(x)](SE) TPR[γx](SE) TNR[γx](SE)

10 0.75(0.08) 0.89(0.03) 0.36(0.24) 0.75(0.10)

102 1.00(0.00) 0.91(0.02) 0.99(0.04) 0.86(0.07)

103 1.00(0.00) 0.91(0.01) 1.00(0.00) 0.96(0.05 )

Table 2: True positive rate (TPR) and true negative rate (TNR) for non-zero elements of the

covariance matrices and regression coefficients with associated standard error (SE) across

100 simulated datasets corresponding to the profile bi-directed graph GB of the simulation

study.

n(x) TPR[Σ(x)](SE) TNR[Σ(x)](SE) TPR[βx](SE) TNR[βx](SE)

10 0.72(0.09) 0.95(0.02) 0.61(0.31) 0.93(0.07)

102 0.95(0.02) 0.97(0.02) 1.00(0.00) 0.95(0.06)

103 1.00(0.00) 0.97(0.02) 1.00(0.00) 0.95(0.06)
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Table 3: True positive edge-rate (TPR.e) of the three types of edge F, D and M with

associated standard error (SE) across 100 simulated datasets of the profile undirected graph

G∗U of simulation study

n(x) TPR(F)(SE) TPR(D)(SE) TPR(M)(SE)

10 0.77(0.09) 0.09(0.17) 0.89(0.03)

102 1.00(0.02) 0.96(0.10) 0.91(0.02)

103 1.00(0.00) 1.00(0.00) 0.91(0.01)

Table 4: True positive edge-rate (TPR.e) of the three types of edge F, D and M with

associated standard error (SE) across 100 simulated datasets of the profile bi-directed graph

G∗B of simulation study

n(x) TPR.e(F)(SE) TPR.e(D)(SE) TPR.e(M)(SE)

10 0.77(0.14) 0.08(0.07) 0.97(0.02)

102 0.98(0.04) 0.69(0.07) 0.99(0.01)

103 1.00(0.00) 1.00(0.00) 0.99(0.01)

Number of arrows in minimal compatible regression graph

Consider a profile bi-directed graph GB = (V, EU ) and let nbx(a) =
⋃

x∈Z nbx(a) for all

a ∈ V , with Z ⊂ X and Z 6= ∅. The number of arrows in the minimal compatible

regression graph wrt GB, denoted by minCB , can be obtained through the following iterative

procedure.

For all a, b ∈ V , Z ⊂ X and Z 6= ∅

1. Initialize minCB = 0,

2. Identify the vertex a ∈ V such that |nbx(a)| = maxa∈V |nbx(a)|,

3. Set E = E \ {
⋃

b∈nbx(a)(a, b)
Z} and minCB = minCB +1,

4. Stop if does not exists any (a, b)Z ∈ E else goes to 2.
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Model selection: the algorithm

In this section we describe the algorithm used for the selection of profile graphs. This

algorithm builds upon the neighboring selection approach of Meinshausen and Bühlmann

(2006), and obviously differ according to the type of the graph. This algorithm is imple-

mented in R and uses functions form the R package glmnet (Friedman et al., 2010). Let y

be a data matrix with n independent observations of the (p+ 1) variables Y1, Y2, . . . , Yp, X.

For all a ∈ V , we denote with ya the a-th column vector of y, whereas y(a) is the matrix y

after removing the a-th column vector; the same also applies to the residuals matrix r and

design matrix D. We consider x = 0 the baseline level of X.

Selection of a profile undirected graph GU = (V, EU ) is performed as follows:

1. For all a ∈ V , we perform a Lasso regression using ya as response vector and y(a) as

design matrix. The external factor yX is included into the model as (q − 1) dummy

variables. For each response variable a ∈ V , we estimate a vector of (p + q − 1)

coefficients, including φ̂ax for any x ∈ {X \0}. The penalty parameter is selected with

cross validation. For all a ∈ V , if φ̂ax = 0 for all x ∈ {X \ 0} then a ∈ V�; otherwise

a ∈ V .

2. For all a ∈ V , we compute the residuals vector ra, through a standard regression

with response ya and the only predictor yX . We obtain a matrix r with columns

r1, r2, . . . , rp. Then, we order the rows of r accordingly to the level x ∈ X = 0, 1, . . . , q

of the external factor.

3. For all a ∈ V , we perform again a Lasso regression with response ra and predictors

all b ∈ V \ a. We construct the design matrix D, where for any predictor b ∈ V \ a, if

at least one of a, b ∈ V�, then

Db = rb,
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otherwise

Db =



rb(0) 0 0 0 0 0

0 rb(1) 0
... 0 0

... 0 rb(2) 0
... 0

0
... 0

. . . 0
...

0 0
... 0 rb(q − 1) 0

0 0 0 0 0 rb(q)



,

where rb(x), x ∈ X = 0, 1, . . . , q, is the subvector of rb that corresponds to the

observations with X = x. Therefore, for all a, b ∈ V , if at least one of a, b ∈ V�

then we get a unique Lasso estimate φ̂ab; if φ̂ab = 0, then (a, b)X ∈ EU , otherwise

(a, b)∅ ∈ EU . Conversely, if both a, b ∈ V , then we get q Lasso estimates, one for

each level of X, i.e. φ̂ab(0), φ̂ab(1), . . . , φ̂ab(q). If φ̂ab(x) = 0 for all x ∈ X , then

(a, b)X ∈ EU ; if φ̂ab(x) 6= 0 for all x ∈ X , then (a, b)∅ ∈ EU ; if φ̂ab(x) = 0 for all x ∈ Z

while φ̂ab(x) 6= 0 for all x ∈ X \ Z, with Z ⊂ X , Z 6= ∅, then (a, b)Z ∈ EU .

4. From the previous step of this procedure, we obtain two Lasso estimates of the same

coefficient φab(x) or φba(x), for any couple a, b ∈ V , for all x ∈ X . We use the AND or

OR strategy (Meinshausen and Bühlmann, 2006) to identify the non-zero estimates.

A profile bi-directed graph GB = (V, EB) is selected as follows:

1. For all a ∈ V , we perform a standard regression using ya as response and yX as the

only predictor. For each response variable a ∈ V , we obtain an estimate ψ̂ax for all

x ∈ {X \ 0} and we evaluate the significance of X through a LRT test. If we fail to

reject the null hypothesis, then we set to zero ψ̂ax for all x ∈ {X \ 0}. For all a ∈ V ,

if ψ̂ax = 0 for all x ∈ {X \ 0} then a ∈ V�; otherwise a ∈ V .

2. From the previous step, we obtain the residuals vector ra, for all a ∈ V . We construct
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a matrix r with columns r1, r2, . . . , rp. Then, we order the rows of r according to each

level x ∈ X = 0, 1, . . . , q.

3. For all a, b ∈ V , if both a, b ∈ V�, then we perform a standard regression using ra

as response and rb as the only predictor. We obtain the point estimate ψ̂ab and we

evaluate the significance through a Wald test. The non-significant ψ̂ab are set to zero.

If ψ̂ab = 0, then (a, b)X ∈ GB otherwise (a, b)∅ ∈ GB. Conversely, for all a, b ∈ V , if at

least one of a, b ∈ V , then we perform a Lasso regression with response ya and design

matrix Db. We obtain the design matrix Db as described above. In this case we get q

Lasso estimates, one for each level of X, i.e. ψ̂ab(0), ψ̂ab(1), . . . , ψ̂ab(q). If ψ̂ab(x) = 0

for all x ∈ X , then (a, b)X ∈ EB; if ψ̂ab(x) 6= 0 for all x ∈ X , then (a, b)∅ ∈ EB; if

ψ̂ab(x) = 0 for all x ∈ Z while ψ̂ab(x) 6= 0 for all x ∈ X \Z, with Z ⊂ X , Z 6= ∅, then

(a, b)Z ∈ EB.

4. We use the AND or OR strategy to identify the non-zero estimates.

Following the same rational of other neighbor selection procedures (Meinshausen and Bühlmann,

2006), in step 3 of our algorithms we select edges based on the equivalence of the follow-

ing zero constrains φab(x) = 0 ⇐⇒ λab(x) = 0 and ψab(x) = 0 ⇐⇒ ωab(x) = 0 for

profile undirected and bi-directed graphs, respectively. Similarly, in step 1 we select arrows

based on the equivalence of the following zero constrains φax = 0 ⇐⇒ γax = 0 (undi-

rected graphs) and on the equivalence, by definition, of the following parameters ψax ≡ βax

(bi-directed graphs).
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Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable selection

with the lasso. The Annals of Statistics 34 (3), 1436–1462.

Nyman, H., J. Pensar, T. Koski, and J. Corander (2014). Stratified graphical models -

context-specific independence in graphical models. Bayesian Analysis 9 (4), 883–908.

Nyman, H., J. Pensar, T. Koski, and J. Corander (2016). Context-specific independence in

graphical log-linear models. Computational Statistics 31 (4), 1493–1512.

Peterson, C. B., F. Stingo, and M. Vannucci (2015). Bayesian inference of multiple Gaussian

graphical models. Journal of the American Statistical Association 110 (509), 159–174.

Rothman, A. J., E. Levina, and J. Zhu (2010). Sparse multivariate regression with covari-

ance estimation. Journal of Computational and Graphical Statistics 19 (4), 947–962.

Roverato, A., M. Lupparelli, and L. La Rocca (2013). Log-mean linear models for binary

data. Biometrika 100 (2), 485–494.

Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of

the Royal Statistical Society: Series B 13, 238–241.

Wermuth, N. and D. R. Cox (2004). Joint response graphs and separation induced by

triangular systems. Journal of the Royal Statistical Society. Series B (Statistical Method-

ology) 66 (3), 687–717.

33



Wermuth, N. and K. Sadeghi (2012). Sequences of regressions and their independences.

TEST 21 (2), 215–252.

Yin, J. and H. Li (2011). A sparse conditional gaussian graphical model for analysis of

genetical genomics data. The Annals of Applied Statistics 5 (4), 2630.

34



Chapter 3

Bayesian model selection of multiple Ising

undirected graphs



Contents

1 Introduction 1

2 Background 2

2.1 Multiple undirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The prior 5

3.1 Linking-graphs prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Prior of θ(x,h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.2 Prior of νrj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Prior of λ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Low-dimensional case (p ≤ 10) . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 High-dimensional case (p > 10) . . . . . . . . . . . . . . . . . . . . . 8

4 Posterior inference 8

4.1 Low-dimensional case (p ≤ 10) . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 High-dimensional case (p > 10) . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Posterior computation 10

5.1 Updating of G(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1.1 Low-dimensional case (p < 10) . . . . . . . . . . . . . . . . . . . . . 10

5.1.2 High-dimensional case (p > 10) . . . . . . . . . . . . . . . . . . . . . 10

5.2 Updating of θ(x,h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Updating of νrj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Simulation studies 13

6.1 Simulation study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1.2 Parameters setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Simulation study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2.2 Parameters setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.3 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



7 Conclusion 17

List of Tables

1 MCC and F1 score with associated standard error (SE) across 10 simulated

datasets for all scenarios of simulation study I . . . . . . . . . . . . . . . . . 16

2 MCC and F1 score with associated standard error (SE) across 10 simulated

datasets for all scenarios of simulation study II . . . . . . . . . . . . . . . . 17

List of Figures

1 A collection of multiple undirected graphs for p = 10 variables and q = 4

levels of X, with X = {0, 1, 2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Multiple undirected graphs in the four different scenarios of simulation study I. 13



Abstract

In this manuscript, we propose two Bayesian approaches for the selection of log-linear

models associated to multiple Ising graphs. We devise a Bayesian exact-likelihood infer-

ence for low-dimensional binary response data, based on conjugate priors for log-linear

parameters, where we implement a computational strategy that uses Laplace approx-

imations and a Metropolis-Hastings algorithm that allows us to perform a stochastic

model search. We also propose a quasi-likelihood Bayesian approach for fitting high-

dimensional Ising multiple graphs, where the normalization constant results compu-

tationally intractable, with spike-and-slab priors to encode sparsity and MCMC algo-

rithms for sampling from the quasi-posterior distribution which enables variable selec-

tion and estimation simultaneously. In both methods, we define a Markov Random

Field prior on the graph structures, which encourages the selection of the same edges

in related graphs. We finally perform simulation studies to compare the proposed ap-

proaches with competing methods.



1 Introduction

The Ising model (Ising, 1925) is a type of graphical model for binary vectors. Graphical

models are effective tools to model the joint distribution of a set of variables and graphically

represent their conditional independence structure (Lauritzen, 1996). Applications of Ising

models include the work of Banerjee et al. (2008) where associations between US senators

are founded from their binary voting records. Ballout and Viallon (2019) present an appli-

cation of these models to study associations among the injuries suffered by victims of road

accidents according to road user type. In many applications it is more realistic to consider

a collection of graphical models, due to the heterogeneity of the data involved, where the

dependence structure of the variables may differ with respect to one or more factors. An ex-

ample can be found in gene networks describing different subtypes of the same cancer: there

are some shared pathways across different subtypes, and there are also links that are unique

to a particular subtype. The purpose of this work is to develope Bayesian methodologies

to select multiple related Ising undirected graphical models. Some approaches for inferring

both Gaussian and discrete graphical models for two or more sample groups have been

proposed in recent years (Guo et al., 2011; Peterson et al., 2015; Ballout and Viallon, 2019).

Inference for Ising models is particularly challenging. For the case of a single discrete graph

with a low number of variables, Massam et al. (2009) propose to use conjugate priors for log-

linear parameters with a computational strategy that uses Laplace approximations. In this

framework, Dobra and Massam (2010) devise MCMC methods for a stochastic search of the

best model. Unfortunatelly, these methods do not scale well with the number of variables;

specifically, these methods require to perform numerical approximations of the normalizing

constant, and these calculations become unfeasable as soon as the number of variables in-

cluded in the model is greater than about 10. The lack of a closed form of the normalizing

constant implies that maximum likelihood estimation can generally not be performed. Var-

ious solutions have arisen in both the frequentist and Bayesian literature. In the frequentist

literature there is a long history of fitting discrete graphical models using (quasi/pseudo)-

likelihood methods instead of the exact-likelihood (Besag, 1974) . We find several examples

of quasi-likelihood approaches in the frequentist literature when dealing with large graph-

ical models (Meinshausen and Bühlmann, 2006; Ravikumar et al., 2010; Guo, 2015). In

the Bayesian framework, the idea of using a non-likelihood function to carry out inference
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is currently in growing popularity (Jiang and Tanner, 2008; Kato, 2013; Bhattacharyya

and Atchade, 2019). In this manuscript, we propose two Bayesian approaches for the se-

lection of log-linear models associated to multiple Ising graphs. Following Massam et al.

(2009), we devise a Bayesian exact-likelihood inference for low-dimensional binary response

data, based on conjugate priors for log-linear parameters, where we implement a compu-

tational strategy that uses Laplace approximations and a Metropolis-Hastings algorithm

that allows us to perform a stochastic model search. We also propose a quasi-likelihood

Bayesian approach, extending the work of Bhattacharyya and Atchade (2019), for fitting

high-dimensional Ising multiple graphs, where the normalization constant results computa-

tionally intractable, with spike-and-slab priors to encode sparsity and MCMC algorithms for

sampling from the quasi-posterior distribution which enables variable selection and estima-

tion simultaneously. In both methods, we define a Markov Random Field prior on the graph

structures, which encourages the selection of the same edges in related graphs (Peterson

et al., 2015). In ongoing simulation studies we compared the proposed approaches with the

competing methods Indep-SepLogit (Meinshausen and Bühlmann, 2006) and DataShared-

SepLogit (Ollier and Viallon, 2017). We also compared our methods with the same ones

using identical and independent Bernoulli distributions for the prior distribution of the

model, as in Bhattacharyya and Atchade (2019). Overall the proposed approaches perform

comparatively well; moreover, as unique features, these learn which groups are related and

provide measure of uncertanity for model selection and parameter inference.

2 Background

In the following subsection 2.1 we introduce some background materials on the multiple

undirected graphs. In subsection 2.2 we show the likelihood and quasi-likelihood function

of an Ising model.

2.1 Multiple undirected graphs

A graphical Markov model is a statistical model defined over a graph whose vertices cor-

respond to random variables (Lauritzen, 1996; Edwards, 2000). The missing edges of the

graph are translated into conditional independence restrictions that the model imposes on

the joint distribution of the variables. We consider a collection of graphical models, where

2



the dependence structure of the variables may differ with respect to one or more factors

(Guo et al., 2011; Peterson et al., 2015). More formally, let YV be the random vector corre-

sponding to V , a set of p binary attributes, and X be the random variable corresponding to

a categorical factor external to V , taking value x ∈ X , with |X | = q. We consider a collec-

tion of multiple undirected graphs GV |X = [G(x)]x∈X , where each graph G(x) = (V,E(x)) is

associated to the random vector YV |{X = x}, where V is the node set and E(x) is the edge

set which depends on x, x ∈ X . For any couple r, j ∈ V and x ∈ X , if (r, j) ∈ E(x) then

we have an edge between r and j in the corresponding graph G(x) while if (r, j) /∈ E(x)

then the two nodes are disjoined in G(x). Missing edges in the graph correspond to condi-

tional independencies for the associated joint probability distribution (Lauritzen, 1996); for

instance, for the pairwise Markov property, if (r, j) /∈ E(x) then Yr ⊥⊥ Yj |{YV \{r,j}, X = x}.

We report an example of multiple undirected graphs in Figure 2.1 with p = 10 nodes and

q = 4 levels of X, X = {0, 1, 2, 3}, where, for instance, Y1 ⊥⊥ Y10|{YV \{1,10}, X = x} for all

x ∈ X while Y1 ⊥⊥ Y3|{YV \{1,3}, X = x} for any x ∈ {1, 2, 3}.

Figure 1: A collection of multiple undirected graphs for p = 10 variables and q = 4 levels

of X, with X = {0, 1, 2, 3}.

G(0) G(1)

G(2) G(3)
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2.2 The Ising model

We consider the case of binary random variables response data. An issue about modelling

such data is that, as the number of the variables increases, the number of parameters can

become so large to be intractable. A possible solution to this problem is to assume the Ising

model (Besag, 1974), which implies a simplification in terms of number of possible non-zero

parameters in the model. Indeed, in this model all higher than two-way interaction parame-

ters vanish. So, let’s assume we have observed n(x) realizations of YV |{X = x} ∼ Ising(λ(x))

where λ(x) = [λ
(x)
rj ]r,j∈V ∈ Rp+(p×(p−1))/2, for all x ∈ X . Let λ

(x)
r = [λ

(x)
rj ]j∈V denotes the

r-th vector of log-linear parameters, for any r ∈ V . Let Z(x) be the corresponding n(x) × p

observed binary matrix, with i-th row zi(x) ∈ (0, 1)p and entries z
i(x)
r ∈ (0, 1).

The likelihood function of λ(x) can be expressed as

p(Z(x)|λ(x)) =
n(x)∏
i=1

1

Ψ(λ(x))
exp

{ p∑
r=1

λ(x)
rr z

i(x)
r +

p∑
r=1

∑
j<r

λ
(x)
rj z

i(x)
r z

i(x)
j

}
, x ∈ X , (2.1)

where

Ψ(λ(x)) =
∑

zi(x)∈{0,1}p
exp

{ p∑
r=1

λ(x)
rr z

i(x)
r +

p∑
r=1

∑
j<r

λ
(x)
rj z

i(x)
r z

i(x)
j

}
(2.2)

is the normalization constant. In a high-dimensional setting, likelihood based inference on

λ(x) is computationally intractable because Ψ(λ(x)) is hard to calculate, since it requires

to compute a sum that is exponential in p and quickly blows up for even moderate val-

ues of p. In this situation a possible strategy relies in using a quasi-likelihood approach

(Bhattacharyya and Atchade, 2019).

We express the r-th node conditional likelihood for λ
(x)
r ∈ Rp, r ∈ V , as

pr(Z
(x)|λ(x)

r ) =

n(x)∏
i=1

1

Ψi
r(λ

(x)
r )

exp
{
λ(x)
rr z

i(x)
r +

∑
j<r

λ
(x)
rj z

i(x)
r z

i(x)
j

}
, x ∈ X , (2.3)

where in this case the normalization constant is

Ψi
r(λ

(x)
r ) = 1 + exp

{
λ(x)
rr +

∑
j<r

λ
(x)
rj z

i(x)
j

}
, (2.4)

We approximate the likelihood in (2.1) with a quasi-likelihood obtained as the product of

p conditional likelihoods, i.e.

pq(Z
(x)|λ(x)) =

p∏
r=1

pr(Z
(x)|λ(x)

r ), x ∈ X , (2.5)

and so the inference problem on λ(x) ∈ Rp+(p×(p−1))/2 simplifies into p separable subproblems

on Rp.
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3 The prior

3.1 Linking-graphs prior

Our aim is to select the best set of graphs GV |X taking into account the possible similarities

among them. Note that, for all r, j ∈ V and for all x ∈ X , setting to zero λ
(x)
rj correspond

to the missing edge (r, j) wrt G(x). Therefore we want to estimate λ(x) for all levels x ∈ X ,

considering the similarities among these graphs. We encourage the selection of the same

edges in related graphs with a Markov Random Field (MRF) prior on the graph structures

(Peterson et al., 2015). The MRF replaces indicators of variable inclusion with indicators

of edge inclusion. We introduce for each parameter λ
(x)
rj ∈ R, for all r, j ∈ V, a selection

parameter δ
(x)
rj ∈ (0, 1), x ∈ X . The conditional probability of the inclusion of edge (r, j)

in G(x), given the inclusion of edge (r, j) in the remaining graphs [G(h)]h∈{X\x}, for any

r, j ∈ V , is

π(δ
(x)
rj |δ

(−x)
rj , νrj , θ

(x)) =
exp[δ

(x)
rj (νrj + 1T θ(x)δ

(−x)
rj )]

1 + exp[δ
(x)
rj (νrj + 1T θ(x)δ

(−x)
rj )]

, x ∈ X , (3.1)

where δ
(−x)
rj = [δ

(h)
rj ]h∈{X\x}, νrj ∈ R is a sparsity parameter specific for the edge (r, j)

and θ(x) = [θ(x,h)]h∈{X\x}, where θ(x,h) ∈ R is a linking-graphs parameter, representing the

relatedness between the graphs G(x) and G(h), for all x, h ∈ X , x 6= h.

We write the conditional probability of the r-vector δ
(x)
r = [δ

(x)
rj ]j∈V , for any r ∈ V , as

π(δ(x)
r |δ(−x)

r , νr, θ
(x)) =

p∏
j=1

π(δ
(x)
rj |δ

(−x)
rj , νrj , θ

(x)), x ∈ X , (3.2)

where δ
(−x)
r = [δ

(h)
r ]h∈{X\x} and νr = [νrj ]j∈V .

We also write the conditional probability of the entire vector δ(x) = [δ
(x)
rj ]r,j∈V,j<r as

π(δ(x)|δ(−x), ν, θ(x)) =

p∏
r=1

∏
j<r

π(δ
(x)
rj |δ

(−x)
rj , νrj , θ

(x)), x ∈ X , (3.3)

where δ(−x) = [δ(h)]h∈{X\x} and ν = [νrj ]r,j∈V,j<r.

3.1.1 Prior of θ(x,h)

Following Peterson et al. (2015), we have previously introduced the graphs-linking param-

eter θ(x,h) where its magnitude measures the pairwise similarity between graphs G(x) and
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G(h), for any x, h ∈ X , such that if θ(x,h) = 0 then the two graphs G(x) and G(h) are

independent. The linking-graphs parameter θ(x,h), for any x, h ∈ X , is learned from the

data. We place a spike-and-slab prior on θ(x,h), for any x, h ∈ X (George and McCulloch,

1997). Since the probability density function Gamma(x|α, β) is equal to zero at the point

x = 0 and is nonzero on the domain x > 0, an appropriate choice for the “slab” portion

of the mixture prior is the Gamma(x|α, β) density. We formalize our prior by using a la-

tent indicator variable ε(x,h) to represent the event that graphs x and h are related, for all

x, h ∈ X . The mixture prior on θ(x,h) can then be written in terms of the latent indicator

as

π(θ(x,h)|ε(x,h)) = (1− ε(x,h))d0 + ε(x,h) βα

Γ(α)
θ(x,h)α−1

e−βθ
(x,h)

, x, h ∈ X , (3.4)

where Γ(·) represents the Gamma function and α and β are fixed hyperparameters. The

joint prior for θ = [θ(x,h)]x<h given ε = [ε(x,h)]x<h can be written as the product of the

marginal densities of any θ(x,h), because the parameters are variation independent such

that

π(θ|ε) =
∏
x<h

π(θ(x,h)|ε(x,h)). (3.5)

We place independent Bernoulli priors on the latent indicators

π(ε(x,h)) = wε
(x,h)

(1− w)(1−ε(x,h)) (3.6)

3.1.2 Prior of νrj

We use the edge-specific parameter νrj ∈ R, for all r, j ∈ V , to give sparsity, indeed a

negative value of νrj reduces the prior probability of the inclusion of edge (r, j) in any

graph of GV |X . The probability of inclusion of edge (r, j), for all r, j ∈ V , in G(x), for all

x ∈ X, can be written as

π(δ
(x)
rj |νrj) =

eνrj

1 + eνrj
= qrj . (3.7)

In cases where no prior knowledge on the graph structure is available, a prior that favors

lower values, such as qrj ∼ Beta(a, b) with a < b for all edges (r, j), can be chosen to

encourage overall sparsity. This determines a prior on νrj since νrj = logit(qrj). After

applying a univariate transformation of variables to the Beta(a, b) prior on qrj , the prior on

6



νrj , for all r, j ∈ V , can be written as

π(νrj) =
1

B(a, b)

eaνrj

(1 + eνrj )a+b
, (3.8)

where B(·) represents the beta function.

3.2 Prior of λ(x)

We follow different inference approaches depending on the dimension of p, with different

priors for λ(x), x ∈ X . We denote with 1λ
(x) = [1λ

(x)
rj ]r,j∈V,j≤r the sparse vector with

elements 1λ
(x)
rj = λ

(x)
rj if δ

(x)
rj = 1, else 1λ

(x)
rj = 0 if δ

(x)
rj = 0. In the same way let 0λ

(x) =

[0λ
(x)
rj ]r,j∈V,j≤r be the vector with elements 0λ

(x)
rj = λ

(x)
rj if δ

(x)
rj = 0, else 0λ

(x)
rj = 0 if δ

(x)
rj = 1,

such that 0λ
(x)
r +1 λ

(x)
r = λ

(x)
r , x ∈ X .

3.2.1 Low-dimensional case (p ≤ 10)

We firstly present our prior choice for a marginal-likelihood based approach in a low-

dimensional framework. Let ι(x) be the ι-th cell of the contingency table I(x) = ×(0, 1)

for YV |{X = x}, with ι ∈ I(x) and x ∈ X . We denote with ι
(x)
∅ the baseline cell. We denote

with y(x) = [y
(x)
rj ]r,j∈V , where y

(x)
rj =

∑n(x)

i=1 1
{
z
i(x)
r =x,z

i(x)
j =x

}, the vector of marginal counts

for (Yr, Yj), r, j ∈ V . Consider the case of p small (p ≤ 10); we choose the Diaconis and

Ylvisaker prior distribution (Diaconis and Ylvisaker, 1979), that is conjiugate for λ(x) (Mas-

sam et al., 2009). We rewrite the likelihood (2.1) in the sparsified version and as function

of the marginal counts

p(1λ
(x)|y(x)) = exp

{ p∑
r=1

1λ
(x)
rr y

(x)
rr +

p∑
r=1

∑
j<r

1λ
(x)
rj y

(x)
rj

− n(x) log
[ ∑
{I(x)\ι(x)∅ }

exp
( p∑
r=1

1λ
(x)
rr +

p∑
r=1

∑
j<r

1λ
(x)
rj

)]}
, x ∈ X .

(3.9)

The Diaconis and Ylvisaker prior distribution for (3.9) is given by

π(1λ
(x)|s(x), g(x)) = C(s(x), α(x))−1

× exp
{ p∑
r=1

1λ
(x)
rr s

(x)
rr +

p∑
r=1

∑
j<r

1λ
(x)
rj s

(x)
rj

− g(x) log
[ ∑
{I(x)\ι(x)∅ }

exp
( p∑
r=1

1λ
(x)
rr +

p∑
r=1

∑
j<r

1λ
(x)
rj

)]}
, x ∈ X ,

(3.10)
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where C(s(x), g(x)) is an uknown normalization constant that depends on g(x) ∈ R and

s(x) = [s
(x)
rj ]r,j∈V , s(x) ∈ Rp+(p×(p−1))/2, which are the hyperparameters.

3.2.2 High-dimensional case (p > 10)

When the number of variables p is large (p > 10), we follow a Bayesian quasi-likelihood

approach to make inference on λ
(x)
r , for all r ∈ V . In this case, we focus on the r-th node

conditional likelihood (2.3), for all r ∈ V . We use a relaxed form of the spike and slab prior

for λ
(x)
r , such that λ

(x)
rj |(δ

(x)
rj = 1, ρ) ∼ N(0, ρ), ρ > 0 and λ

(x)
rj |(δ

(x)
rj = 0, γ) ∼ N(0, γ), γ > 0,

x ∈ X .

The conditional distribution of λ
(x)
r given δ

(x)
r is given by

π(λ(x)
r |δ(x)

r , ρ, γ) ∝ (2πρ)
−||δ(x)r ||

2 exp
(
− ||1λ

(x)
r ||22
2ρ

)
× (2πγ)

−||1−δ(x)r ||
2 exp

(
− ||0λ

(x)
r ||22

2γ

)
(3.11)

where || · || and || · ||2 denote the L1 and L2 norm respectively.

4 Posterior inference

The goal is to select the graph with higher posterior probability taking into account the

possible relatedness of the graphs in GV |X . In subsection 4.1 we follow a Bayesian exact-

likelihood approach for low-dimensional cases, where we compute the marginal likelihood

through the Laplace approximation. In subsection 4.1 we deal with high-dimensional cases,

following a Bayesian approximate-likelihood approach that uses MCMC methods to sample

from the quasi-posterior distribution.

4.1 Low-dimensional case (p ≤ 10)

In the low-dimensional setting the posterior inference is based on the computation of the

marginal likelihood. For any x ∈ X , let G(x) be the graph selected from a set of competing

graphs Ω(x); we denote with π(G(x)) and Π(G(x)|Z(x)) the prior and the posterior proba-

bility of G(x), x ∈ X . The posterior probability of G(x) is proportional to the product of

the prior distribution π(G(x)) and the marginal likelihood m(Z|G(x)), i.e.

Π(G(x)|Z) ∝ π(G(x)) m(Z|G(x)), x ∈ X , (4.1)
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where

m(Z|G(x)) =

∫
ΘG(x)

π(1λ
(x)|s(x), g(x)) p(1λ

(x)|y(x)) d1λ
(x)

(4.2)

and

π(G(x)) = π(δ(x)|δ(−x), ν, θ(x)). (4.3)

We combine the prior in (3.10) with the likelihood in (3.9) to obtain the posterior of

λ(x), i.e.

Π(1λ
(x)|y(x)) = C(y(x) + s(x), n(x) + g(x))−1

× exp
{ p∑
r=1

1λ
(x)
rr (s(x)

rr + y(x)
rr ) +

p∑
r=1

∑
j<r

1λ
(x)
rj (s

(x)
rj + y

(x)
rj )

− (g(x) + n(x)) log
[ ∑
{I(x)\ι(x)∅ }

exp
( p∑
r=1

1λ
(x)
rr +

p∑
r=1

∑
j<r

1λ
(x)
rj

)]}
, x ∈ X ,

(4.4)

and in this way the integral in (4.2) is analitically derived as

C(y(x) + s(x), n(x) + g(x))

C(s(x), g(x))
, x ∈ X , (4.5)

the ratio between the normalising constants of the posterior and prior distributions of λ(x)

(Massam et al., 2009). We calculate both the normalizing constants through the Laplace

approximation (Tierney and Kadane, 1986) such that, for instance

C(s(x), g(x)) = Ke(1λ
(x)∗)

(2π)||δ
(x)||/2

|A(x)|1/2
, x ∈ X , (4.6)

where Ke(1λ
(x)∗) is the kernel of the prior (3.10) and A(x) is the Hessian matrix (||δ(x)|| ×

||δ(x)||), both evaluated in a stationary point 1λ
(x)∗ .

4.2 High-dimensional case (p > 10)

In the high-dimensional setting, we follow Bhattacharyya and Atchade (2019). We combine

the prior distribution in (3.3) together with the r-th conditional likelihood in (2.3) and we

obtain the r-th posterior distribution of (δ
(x)
r , λ

(x)
r ) given by

Π(δ(x)
r , λ(x)

r |Z(x)) ∝ π(δ(x)
r |δ(−x)

r , νr, θ
(x))×

(γ
ρ

) ||δ(x)r ||
2
exp

(
pr(Z

(x)|1λ(x))− ||1λ
(x)
r ||22
2ρ

− ||0λ
(x)
r ||22

2γ

)
(4.7)
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such that the quasi-posterior of (δ(x), λ(x)) for the graph G(x), for all x ∈ X , is given by

Πq(δ
(x), λ(x)|Z(x)) =

p∏
r=1

Π(δ(x)
r , λ(x)

r |Z(x)) (4.8)

Note that in this case for any λ
(x)
rj , r, j ∈ V, r < j, we obtain two estimates λ̂

(x)
rj and λ̂

(x)
jr . We

use a post-estimation symmetrization resulting in a singular estimate by taking the simple

mean of the two estimates.

5 Posterior computation

In this section, we present the MCMC methods used for the posterior inference. In the

exact-likelihood method, we perform a stochastic search for the model with high posterior

probability while in the approximate-likelihood case we sample from the quasi-posterior

distribution to update the model parameter.

5.1 Updating of G(x)

5.1.1 Low-dimensional case (p < 10)

We firstly show the MCMC algorithm for the low-dimensional case. Since the size of the set

of possible graphs Ω(x) is too large to be explored entirely, we perform a stochastic model

search. For x ∈ X , we start from G(x)(t−1) the graph accepted at time (t − 1) and we

propose a new graph G(x)(t) by randomly sampling one element of δ(x)(t−1) and switching

its value. We finally accept the new model G(x)(t) with probability

r = min

(
1,

Π(G(x)(t)|Z)

Π(G(x)(t−1)|Z)

)
. (5.1)

5.1.2 High-dimensional case (p > 10)

We now discuss the construction of the Markov Chain Monte Carlo (MCMC) algorithm

to draw samples from the quasi-posterior distribution 4.8. In particular, we use a general

Metropolis Adjusted Langevin Algorithm (MALA) which updates 1λ
(x)
r ,0 λ

(x)
r , δ

(x)
r , θ(x) and

νr respectively, for any x ∈ X .

We define

h(δ(x)
r , λ(x)

r |Z(x)) =
(
pr(Z

(x)|1λ(x)
r )− ||1λ

(x)
r ||22
2ρ

− ||0λ
(x)
r ||22

2γ

)
(5.2)
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which has a gradient given by

G = ∇
λ
(x)
r

h(δ(x)
r , λ(x)

r |Z(x)) = ∇
1λ

(x)
r

pr(Z
(x)|1λ(x)

r )− 1λ
(x)
r

ρ
− 0λ

(x)
r

γ
(5.3)

For any j-th component of λ
(x)
r such that δ

(x)
rj = 1, we propose a new value

λ
(x)∗
rj |λ

(x)
r ∼ N(λ

(x)
rj +

σ

2
Gj , σ

2), (5.4)

where σ is some constant step size and Gj represents the j-th component of the gradient.

Let f(λ
(x)∗
rj |λ

(x)
r ) denote the density of the proposal distribution in 5.4. We also define

λ
(x)∗
r = (λ

(x)
r1 , . . . , λ

(x)∗
rj , . . . , λ

(x)
rp ) and the acceptance probability as

ζrj = min

(
1,
f(λ

(x)
rj |λ

(x)∗
r )

f(λ
(x)∗
rj |λ

(x)
r )
× Π(δ

(x)
r , λ

(x)∗
r |Z(x))

Π(δ
(x)
r , λ

(x)
r |Z(x))

)
, (5.5)

such that we set λ
(x)
rj = λ

(x)∗
rj with probability ζrj .

Conversely, for any j-th component of λ
(x)
r such that δ

(x)
rj = 0, we update its value

λ
(x)
rj ∼ N(0, γ). (5.6)

Finally, for each j ∈ V , we define δ̄
(x)
r = (δ

(x)
r1 , . . . , (1− δ

(x)
rj ), . . . , δ

(x)
rp ) and set

τrj = min

(
1,

Π(δ̄
(x)
r , λ

(x)
r |Zx)

Π(δ
(x)
r , λ

(x)
r |Zx)

)
; (5.7)

we set δrj = 1− δrj with probability τrj .

5.2 Updating of θ(x,h)

Given the prior on θ(x,h) from Equation (3.4) and the prior on ε(x,h) from Equation (3.6),

the posterior full conditional of θ(x,h) and ε(x,h) can be written as

Π(θ(x,h), ε(x,h)|·) ∝

∏
r<j

C(νrj , θ)
−1 exp{2θ(x,h)δ

(x)
rj δ

(h)
rj }


×
(

(1− ε(x,h))d0 + ε(x,h) βα

Γ(α)
θ(x,h)α−1

e−βθ
(x,h)

)
×
(
wε

(x,h)
(1− w)(1−ε(x,h))

)
(5.8)

where the normalizing constant C(νrj , θ) =
∑

δrj∈{0,1}q exp{νrj1Tδrj + δTrjθδrj} with δrj =

[δ
(x)
rj ]x∈X and θ the (q × q) symmetric matrix with entries θ(x,h), for all x, h ∈ X . Since
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the normalizing constant is analytically intractable, we use Metropolis–Hastings steps to

sample θ(x,h) and ε(x,h) from their joint posterior full conditional distribution for each pair

x, h ∈ X . At each iteration we perform two steps: a between-model and a within-model

move; see Gottardo and Raftery (2008) for more details. For the between-model move, if

in the current state ε(x,h) = 1, we propose ε(x,h)∗ = 0 and θ(x,h)∗ = 0. If in the current state

ε(x,h) = 0, we propose ε(x,h)∗ = 1 and sample θ(x,h)∗ from the proposal density f(θ(x,h)∗) =

Gamma(θ(x,h)∗|α∗, β∗).

When moving from ε(x,h) = 1 to ε(x,h)∗ = 0, the Metropolis–Hastings ratio is

r =
Π(θ(x,h)∗, ε(x,h)∗|·)f(θ(x,h))

Π(θ(x,h), ε(x,h)|·)
, (5.9)

while if we move from ε(x,h) = 0 to ε(x,h)∗ = 1, the Metropolis–Hastings ratio is

r =
Π(θ(x,h)∗, ε(x,h)∗|·)

Π(θ(x,h), ε(x,h)|·)f(θ(x,h)∗)
. (5.10)

We then perform a within-model move whenever the value of ε(x,h) sampled from the

between-model move is 1. For this step, we propose a new value of θ(x,h) using the same

proposal density as before. The Metropolis–Hastings ratio for this step is

r =
Π(θ(x,h)∗, ε(x,h)∗|·)f(θ(x,h))

Π(θ(x,h), ε(x,h)|·)f(θ(x,h)∗)
. (5.11)

5.3 Updating of νrj

Given the prior from Equation (3.14), the posterior full conditional of νrj given the data

and all remaining parameters is proportional to

Π(νrj |·) ∝
exp(aνrj)

(1 + eνrj )a+b
C(νrj , θ)

−1 exp(νrj1
Tδrj). (5.12)

For each pair r, j ∈ V, r 6= j, we propose a value q∗ from the density Beta(1, 2), then set

ν∗ = logit(q∗). The proposal density can be written in terms of ν∗ as

f(ν∗) =
1

B(a∗, b∗)

ea
∗ν∗

(1 + eν∗)a∗+b∗
(5.13)

and the Metropolis–Hastings ratio is

r =
Π(ν∗|·)f(νrj)

Π(νrj |·)f(ν∗)
. (5.14)
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6 Simulation studies

We empirically assess the two Bayesian approaches proposed above, that we call Bayesian

Exact Linking (BEL) and Bayesian Approximate Linking (BAL), in the selection of different

profile undirected graphs on simulated data. We compare our methods with the same

ones using identical and independent Bernoulli distributions for the prior distribution of

the model, as in Bhattacharyya and Atchade (2019), and we call them Bayesian Exact

(BE) and Bayesian Approximate (BA). We also compare our Bayesian approaches with

the frequentists Indep-Seplogit (SL) (Meinshausen and Bühlmann, 2006) and DataShared-

SepLogit (DSSL) (Ollier and Viallon, 2017), that we implemented using the glmnet package

(Friedman et al., 2010). Selection of tuning parameters was performed using the BIC. We

generate the data from the Ising model using a Gibbs sampler. The R-code is available and

located at https://github.com/kinglaz90/phd.

Figure 2: Multiple undirected graphs in the four different scenarios of simulation study I.

(A) G(0) G(1) G(2) G(3)

(B) G(0) G(1) G(2) G(3)

(C) G(0) G(1) G(2) G(3)

(D) G(0) G(1) G(2) G(3)

13

https://github.com/kinglaz90/phd


6.1 Simulation study I

6.1.1 Data generation

In simulation study I we assess our methods for the low-dimensional case. For any x ∈ X , we

sample n(x) = 100 observations from YV |{X = x} ∼ Ising(λ(x)) with associated undirected

graph G with p = 10 nodes and q = 4 levels of X, such that x ∈ X = {0, 1, 2, 3}. For all

x ∈ X and for all r ∈ V , we set λ
(x)
rr = −1. For all x ∈ X and for all r, j ∈ V, j < r, the

non-zero interactions λ
(x)
rj are set to 1.5. Note that G includes at most p(p − 1)/2 = 45

edges that are identified by the selection parameter δ(x), x ∈ X . We consider 4 different

profile undirected graphs G(A), G(B), G(C) and G(D). In Scenario (A) the four graphs are

identical. In Scenario (B) the four graphs are completely different. In Scenario (C) G(0)

and G(1) are identical but completely different to G(2) and G(3), which again are identical

to each other. In Scenario (D) G(0), G(1) and G(2) are identical and completely different

to G(3). We report the graphs of all the four scenarios in Figure 2.

6.1.2 Parameters setting

For the frequentists approaches SL and DSSL we select the penalization parameter using the

BIC. Also, In DSSL method we set the parameter that controls the degree of sharing between

the levels of X as r =
1
√
q

, after having standardized the columns of the design matrix; see

Ollier and Viallon (2017). In the linking-graphs prior we set the hyper-parameters a = 1,

b = 3, α = 1, β = 2 and ω = 0.6. In the Bayesian exact-likelihood approaches we set

g(x) = 0.02 and the vector s(x) in such a way that the prior probability of each cell of the

contingency table I(x) = ×(0, 1)p is equal to g(x)/|I(x)|, for all x ∈ X . In the Bayesian

approximate-likelihood approaches we set ρ = 2 and γ = 0.5. Finally, for the approaches

BE and BA, we set the prior of the model as the product of p Bernoulli(0.2).

6.2 Simulation study II

6.2.1 Data generation

In simulation study II we assess our methods for the high-dimensional case. For any x ∈

X , we sample n(x) = 200 observations from YV |{X = x} ∼ Ising(λ(x)) with associated

undirected graph G with p = 50 nodes and q = 4 levels of X, such that x ∈ X = {0, 1, 2, 3}.

For all x ∈ X and for all r ∈ V , we set λ
(x)
rr = −1. For all x ∈ X and for all r, j ∈ V, j < r, the
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non-zero interactions λ
(x)
rj are set to 1.5. Note that G includes at most p(p − 1)/2 = 1225

edges that are identified by the selection parameter δ(x), x ∈ X . Also in this case, we

consider 4 different profile undirected graphs G(A), G(B), G(C) and G(D) where in Scenario

(A) the four graphs are identical, in Scenario (B) the four graphs are completely different,

in Scenario (C) the graphs G(0) and G(1) are identical but completely different to G(2) and

G(3), which again are identical to each other and finally in Scenario (D) the grapjs G(0),

G(1) and G(2) are identical and completely different to G(3).

6.2.2 Parameters setting

The parameter setting of the frequentists approaches is the same of Simulation study I. We

set the spike and slab prior parameters ρ = 10 and γ = 10−1 in the BAL approach and

we consider a product of p Bernoulli(0.1) for the prior of the model with respect the BA

approach.

6.3 Performance results

To assess the accuracy of graph structure estimation, we compute for any scenario, the

Matthews correlation coefficient (MCC) and the F1 score (F1) of the true non-zero elements

of λ(x), for all x ∈ X , along with associated standard errors (SE). MCC is a balanced

measure of binary classification that takes values between -1 (total disagreement) and +1

(perfect classification). F1 score is the harmonic mean of the precision and recall with the

highest possible value equal to 1, indicating perfect precision and recall, and the lowest

possible value is 0, if either the precision or the recall is zero. We report the results for both

Simulation study I and II, averaged over the four graphs, in Table 1 and 2.

We comment the results obtained. As expected, the SL and BA methods tend to

perform similarly, both being based on approximate inference. Compared to the latter,

the BE approach, being based on exact inference, has a better performance. The methods

SL, BA and BE do not take into account the homogeneity among the graphs. The DSSL

method, conversely to SL, takes into account the homogeneity among the graphs and shows

the overall best performance in scenario (A), where all the graphs are equal, but the worst

in the remaining 3 scenarios, resulting in very little flexibility. Conversely, the Bayesian

linking-graphs approaches BAL and BEL, in addition to show better results in scenarios

where there is strong homogeneity among the graphs (Scenarios (A)-(D)), they do not
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worsen noticeably in scenarios where there is very little or no homogeneity (Scenario (B)-

(C)), resulting in better adaptation to the context. Also, the BAL and BEL methods

standard errors tend not to grow compared to the corresponding non-linking methods BA

and BE.

Table 1: MCC and F1 score with associated standard error (SE) across 10 simulated datasets

for all scenarios of simulation study I

(A) (B) (C) (D)

SL 0.771(0.070) 0.759(0.063) 0.781(0.049) 0.806(0.037)

DSSL 0.987(0.025) 0.581(0.144) 0.578(0.079) 0.726(0.038)

MCC BA 0.775(0.072) 0.753(0.049) 0.803(0.061) 0.827(0.038)

BAL 0.831(0.055) 0.747(0.032) 0.807(0.061) 0.863(0.041)

BE 0.828(0.050) 0.811(0.053) 0.819(0.050) 0.847(0.055)

BEL 0.909(0.047) 0.737(0.056) 0.831(0.065) 0.875(0.047)

(A) (B) (C) (D)

SL 0.812(0.057) 0.803(0.051) 0.816(0.044) 0.763(0.047)

DSSL 0.989(0.020) 0.640(0.140) 0.663(0.062) 0.657(0.050)

F1 BA 0.803(0.063) 0.780(0.047) 0.826(0.059) 0.799(0.040)

BAL 0.855(0.050) 0.785(0.030) 0.834(0.056) 0.836(0.046)

BE 0.863(0.040) 0.849(0.042) 0.854(0.041) 0.810(0.068)

BEL 0.927(0.038) 0.790(0.044) 0.863(0.053) 0.844(0.058)
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Table 2: MCC and F1 score with associated standard error (SE) across 10 simulated datasets

for all scenarios of simulation study II

(A) (B) (C) (D)

SL 0.911(0.006) 0.923(0.012) 0.916(0.011) 0.922(0.011)

DSSL 0.989(0.011) 0.830(0.015) 0.723(0.015) 0.788(0.013)

MCC BA 0.934(0.008) 0.928(0.012) 0.941(0.013) 0.929(0.010)

BAL 0.958(0.009) 0.925(0.012) 0.945(0.011) 0.936(0.011)

(A) (B) (C) (D)

SL 0.914(0.006) 0.925(0.011) 0.918(0.011) 0.924(0.011)

DSSL 0.990(0.010) 0.829(0.016) 0.710(0.016) 0.781(0.013)

F1 BA 0.935(0.008) 0.929(0.012) 0.942(0.013) 0.930(0.010)

BAL 0.960(0.008) 0.928(0.012) 0.948(0.010) 0.940(0.11)

7 Conclusion

In this work, we propose two Bayesian approaches to infer multiple related Ising undi-

rected graphical models. In particular, we extend the approach of Massam et al. (2009)

and Bhattacharyya and Atchade (2019) to select multiple graphs. To take into account the

similarities among the graphs we follow Peterson et al. (2015), using a Markov random field

prior on the graph structure, which encourages the selection of the same edges in related

graphs. In particular, we use a Bayesian exact-likelihood inference for low-dimensional bi-

nary data, based on conjugate priors for log-linear parameters. We randomly propose a

new model and we compute the marginal likelihood through the Laplace approximation.

We finally perform a stochastic search of the model with higher posterior probability using

MCMC methods. We also propose a Bayesian approximate-likelihood inference for high-

dimensional binary data, using a quasi-likelihood approach that enable to computationally

manage the normalization constant. We use spike-and-slab priors for log-linear parameters

to encode sparsity and MCMC algorithms for sampling from the quasi-posterior distribu-

tion and update the model parameters. We performed a simulation study to compare our

methods with the competing Lasso approaches proposed in Meinshausen and Bühlmann

(2006) and Ollier and Viallon (2017). We also checked the performance of our methods
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respect to the same ones where we replace the linking-prior of the graph with identical and

independent Bernoulli distributions. Our approaches show good performances compared to

the competing approaches. In addition, as an unique feature, the proposed approaches can

learn which groups are related and which are not in terms of graph structure. Future de-

velopments may be the extension of our approaches to different types of random variables,

for instance, categorical response variables, relaxing the assumption of the Ising model. In

addition, we may assume two or more external factors.
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Chapter 4

Final remarks



Chapter 2: Profile graphical models

We aim to model the effect of a categorical factor on the dependence structure of a set of

random response variables. In particular our interest focuses on the effect of the categorical

factor on the interactions among the response variables. We propose two novel classes of

graphical models, termed profile undirected and bi-directed graphical models, which preserve

the convenient aspects of a graphical approach and enhance, at the same time, the modelling

prospects given by chain graphs and multiple graphs. Under the assumption of a Multi-

nomial sampling scheme for the multivariate outcome vector, a parameterization based on

the log-linear transformation (Lauritzen, 1996) and on the log-mean linear transformation

(Roverato et al., 2013) could be used, respectively, for profile undirected and bi-directed

graph models. In this manuscript some aspects still require further investigations. Firstly,

at this stage, inference and model selection are performed by means of an independent

Lasso Sep-Logit approach (Meinshausen and Bühlmann, 2006) which does not account for

the dependence between sub-group models. In this context, more efforts are needed for the

implementation of a joint selection procedure based, for instance, of a Data-shared Lasso

strategy (Ollier and Viallon, 2017). From a modelling perspective, an interesting develop-

ment could be given by the generalization of the profile approach to chain graph models to

explore profile dependence structures among variables grouped in chain components. This

generalization is not trivial in terms of Markov property specification, since we need to

consider the effect of an external factor on variables collected both within and between

chain components. However, we conjecture that profile chain graph models would provide

useful insights to investigate data generating processes for data which, in principle, might

be different in each sub-group.

Chapter 3: Bayesian model selection of multiple Ising undi-

rected graphs

The purpose of this work is to develope Bayesian methodologies to select multiple related

Ising undirected graphical models. Following Massam et al. (2009), we devise a Bayesian

exact-likelihood inference for low-dimensional binary response data, based on conjugate

priors for log-linear parameters, where we implement a computational strategy that uses

2



Laplace approximations and a Metropolis-Hastings algorithm that allows us to perform a

stochastic model search. We also propose a quasi-likelihood Bayesian approach, extending

the work of Bhattacharyya and Atchade (2019), for fitting high-dimensional Ising multiple

graphs, where the normalization constant results computationally intractable, with spike-

and-slab priors to encode sparsity and MCMC algorithms for sampling from the quasi-

posterior distribution which enables variable selection and estimation simultaneously. In

both methods, we define a Markov Random Field prior on the graph structures, which

encourages the selection of the same edges in related graphs (Peterson et al., 2015). We

performed two simulation studies to compare our methods with the competing Lasso ap-

proaches proposed in Meinshausen and Bühlmann (2006) and Ollier and Viallon (2017).

We also checked the performance of our methods with respect to the same ones where we

replace the linking-prior of the graph with identical and independent Bernoulli distribu-

tions. Our approaches show good performances compared to the competing approaches. In

addition, as an unique feature, the proposed approaches can learn which groups are related

and which are not in terms of graph structure. Future developments may be the extension

of our approaches to different types of random variables, for instance, categorical response

variables, relaxing the assumption of the Ising model. In addition, we may assume two or

more external factors.
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