
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

MONITORAGGIO E GESTIONE DELLE STRUTTURE E
DELL'AMBIENTE - SEHM2

Ciclo 33

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

STRUCTURAL HEALTH AND ENVIRONMENTAL MONITORING WITH THE
WEB OF THINGS

Presentata da: Cristiano Aguzzi

Supervisore

Tullio Salmon Cinotti

Esame finale anno 2021

Coordinatore Dottorato

Alessandro Marzani

Co-supervisore

Luca De Marchi

This page intentionally left blank.

III

Keywords:

Web Of Things

Structural Health Monitoring

Smart Agriculture

This page intentionally left blank.

V

To whom have devoted their lives to
science

Once you stop learning,
you start dying

- Albert Einstein -

Abstract

Structural health and Environmental monitoring are recently benefiting
from the advancement in the digital industry. Thanks to the emergence of
the Internet of Things (IoT) paradigm, monitoring systems are increasing
their functionalities and reducing development costs. However, they are
affected by a strong fragmentation in the solution proposed and technologies
employed. This stale the overall benefits of the adoption of IoT frame-
works or IoT devices since it limits the reusability and portability of the
chosen platform. As in other IoT contexts, also the structural health and
environmental monitoring domain is suffering from the negative effects of,
what is called, an interoperability problem. Recently the World Wide Web
Consortium (W3C) is joining the race in the definition of a standard for
IoT unifying different solutions below a single paradigm. This new shift
in the industry is called Web Of Things (WoT) or in short WoT. Together
with other W3C technologies of the Semantic Web, the Web of Things
unifies different protocols and data models thanks to a descriptive machine-
understandable document called the Thing Description. This work wants
to explore how this new paradigm can improve the quality of structural
health and environmental monitoring applications. The goal is to provide a
monitoring infrastructure solely based on WoT and Semantic technologies.
The architecture is later tested and applied on two concrete use-cases taken
from the industrial structural monitoring and the smart farming domains.
Finally, this thesis proposes a layered structure for organizing the knowledge
design of the two applications, and it provides evaluation comments on the
results obtained.

VI

VII

Abstract (Italian)

Le pratiche di monitoraggio strutturale e dell’ambiente stanno recemente
beneficiando degli avanzamenti nella industria digitale. Grazie alla nascita
di tecnologie basate sull’Internet of Things (IoT), i sistemi di monitoraggio
hanno migliorato le loro funzionalità base e ridotto i costi di svilippo.
Nonostante ciò, queste soluzioni hardware e software sono affette da una
forte fragmentazione sia riguardo ai tipi dispositivo sia alle tecnologie usate.
Questa fenomeno fa si che i benifici ottenuti utilizzando tecnologie IoT si
riducano poichè spesso tali soluzioni mancano di portabilità e adattabilità.
Come in altri contesti IoT, anche nel monitoraggio strutturale e ambintale
possiamo incorre nel problema tipico della mancanza di interoperabilità
tra diverse piattaforme. Recemenete il World Wide Web Consortium
(W3C) ha iniziato a lavorare ad uno standard per unificare le maggiori
tecnologie IoT sotto un unico paradigma. Questo nuova corrente è chiamata
il Web of Things o in breve WoT. Assieme ad altre tecnologie del W3C
come il Semantic Web, il Web of Things astrae differenti protocolli e
middleware grazie ad un documento descritivo interpretabili dalle macchine
chiamato Thing Description. Questo documento vuole esplorare come
questo nuovo paradigma influenzi il mondo del monitoraggio strutturale
e ambientale. In particolare vuole verificare se l’utilizzo di tecnologie
puramente basate su WoT e Semantic Web possa migliorare la portabilità
di un applicazione di monitoraggio. In concreto propone un architetuttura
software poi implementata in due casi d’uso reali presi dal mondo dello smart
farming e monitoraggio di strutture industriali. Infine, la tesi, propone un
organizzazione a layer del modello dei dati e una valutazione dei risultati
ottenuti.

This page intentionally left blank.

Contents

1 Introduction 1
1.1 Problem statement . 5
1.2 Contributions . 8
1.3 Thesis outline . 9

2 Background 11
2.1 Structural Health Monitoring 11

2.1.1 Global damage detection 16
2.1.2 SHM sensors . 17

2.2 Internet of Things . 18
2.2.1 Internet of Things protocols 22

2.3 Web of Things . 27
2.3.1 Thing Description . 34
2.3.2 Protocol bindings and Templates 38
2.3.3 Servient . 41
2.3.4 Scripting API . 42

3 Open WoT Monitoring platform 45
3.1 Related works . 46

3.1.1 Service migration . 48
3.2 Requirements . 50
3.3 Architecture outline . 53

3.3.1 Migration . 62
3.3.2 Discovery . 74

3.4 Implementation . 91

IX

X CONTENTS

3.4.1 Structural Health Monitoring platform 93
3.4.2 Smart Agriculture . 101
3.4.3 Tools . 107

4 Evaluation and Discussion 111
4.1 Software Architecture Analysis 111

4.1.1 Interoperability . 112
4.1.2 Extensibility . 114
4.1.3 Openness . 114
4.1.4 Final comments . 115

4.2 Migration . 116
4.2.1 Policy Analysis . 117
4.2.2 Use-case Analysis . 124

4.3 WoT open points . 127

5 Future work and conclusions 135
5.1 Future work . 135
5.2 Conclusion . 137

6 Acknowledgements 139

Appendices 143

A Code listings 145

Chapter 1

Introduction

Since the beginning of time, humanity has sought some level of mastery
over the physical world. The first step of control is the understanding
of natural and artificial phenomenons. Understanding, as the scientific
method taught, means to study and observe extracting meaningful models
and parameters. Therefore, the act of watching something over a period,
also known as monitoring, became a crucial step in expanding our knowledge
of the universe. We employed this technique to analyze the stars and unveil
the secrets of the smallest particles. Even when we do not have a proper
comprehension of something, monitoring can help to foresee future behaviors.
For example, we monitor the status of the snow to estimate avalanches
probability, or we watch climatic conditions to predict the wheater in
the next days. The more the monitor process is accurate, the more the
predictions are close the reality. Precise forecasts can have a real impact
on our day to day life. In fact, they could prevent life losses (e.g., inform
about the arrival of a hurricane) or economic advantages (e.g., reducing
the maintenance cost of an airplane). Among the countless objects and
parameters that could be monitored this work will focus on two particular
domains: Civil structures and the Environment.

Every civil structure is subject to a slow decay caused by time, usage
stress, and environmental conditions. Often a degradation of critical con-
structions like bridges or power plants can cause in-extremes interventions
with service discontinuances and high financial losses by private and pub-

1

2 CHAPTER 1. INTRODUCTION

lic institutions. It is clear that this procedure, also known as corrective
maintenance, is not suitable for this kind of problem. Therefore, usually, en-
gineers define a maintenance plan to hamper critical damages to the objects
and to contain costs of service failures. This practice is called preventive
maintenance, and it has the benefit of reducing in-extreme intervention and
severe damages. Nevertheless, preventive maintenance is usually based on
previous experience and cannot be employed on novel structure types or
materials. Furthermore, it is a challenge to plan and design due to the high
number of hyperparameters that came to play. Even when it is perfectly
crafted, there is still some probability that an unexpected event occurs
which causes critical damage and the consequent unplanned repairment
operation. Finally, it is not cost-effective, because the regular inspection
campaigns usually involve human intervention and service termination. For
example, airplanes are decommissioned every 400-600 flight [1] hours to
go under an inspection intervention that disassembles the entire vehicle
and assess the status of each component. On the other hand, predictive
maintenance starts to be employed in the field to solve the high financial
requirements of the previous techniques. Predictive Maintainance leverage
on monitoring technologies to assess construction status. In literature, this
process is called structural health monitoring. More in detail, this procedure
consists of the usages of a set of sensors installed on the construction. Those
sensors acquire what could be called the virtual signs of the structures
like its vibration frequencies, tilt, displacements, temperature, and cracks
length. As doctors use blood pressure, temperature, blood oxygen levels,
etc. engineers diagnose structural health from those sensor data.

When they found the structure in bad conditions a maintenance in-
tervention could be scheduled to stabilize the structure and stop further
decay. The difference with preventive maintenance is that those repairment
calls are on-demand and not based on a regular schedule. Therefore, a
maintenance operation has a much higher probability to find a failure in
the structure.

Like civil structures, the environment is a well-known subject of monitor-
ing procedures. Environmental monitoring is a large domain that contains
a wide number of practices and methodologies. Specifically, it can be de-
fined as ”the observation and study of the environment”. As the Oxford

3

dictionary defines, the environment is ”the natural world in which people,
animals, and plants live” or generally speaking: ”the conditions in which
a person, animal or plant lives or operates or in which an activity takes
place”. Therefore, examples of environmental monitoring are:

• Air or water quality assessment

• Soil components extraction

• Plant health observation

• Climate studies

• Sea level or glacier monitoring

• Weather forecasts

Those operations come to play a critical role in different human activities.
For example, in the agricultural domain where weather forecasts, plant
growth assessment, and soil studies are crucial to optimize the yield and
conserve resources. Furthermore, precise pollution monitoring can also
improve health conditions. [2] reports that continuous air quality monitoring
together with other commercially available technologies can reduce the
emissions of CO2 levels in industrial plants by 60%. This would cause direct
stress relief in the inhabitants of industrialized cities or regions [3].

As previously mentioned, modern monitoring methodologies involve the
deployment of a set of sensors. In some applications, this batch of devices
could be large. In [4] forty sensors were deployed to monitor a long bridge
and in [5] a network of 150 nodes was simulated to verify an underwater
pipeline monitoring. Managing this huge set of the sensor comes with his
own challenges. Usually, these problems go under a specif computer science
domain: the Internet of Things (IoT). The IoT extends the internet to the
physical world dimension. In particular, it envisages the connection of every
digital device to the internet and the progressive digitalization of physical
objects. Thanks to the recent advancements in electronic manufacturing
and computer science, its estimated market value is about 700 billion
dollars [6]. Currently, even if we reached the vision of the ability to connect

4 CHAPTER 1. INTRODUCTION

everything to the internet, there still open issues that need to tackle to
fulfill the dream of a digitalized world. Most of the potential of the Internet
of Things resides in the level of interoperability between IoT applications
and services [7]. Unfortunately, the IoT landscape is characterized by a
very heterogeneous technology solution spectrum. Nowadays, there are
several different protocols, stacks, and cloud ecosystems claimed to be THE
preferred solution for IoT [8]. Although cloud ecosystems mitigate some
of the interoperability issues, through web technologies (i.e. REST APIs,
JSON, Web Sockets, etc.); vendor lock-in and silos architectures impact in a
negative fashion the overall value of the IoT application. Furthermore, such
solutions imply a sensor-to-cloud paradigm where sensors are connected
and exploited through cloud connectivity. However, it is not always feasible
to transport data from sensors to the cloud, due to security and energy
consumption reasons. Even an edge computing solution does not solve some
criticalities such as protocol interoperability, deployment, and maintenance
costs. One of the emerging solutions capable of addressing the above issues
is the Web of Things (WoT) [9]. In particular, in this thesis, we refer to the
standard WoT definition proposed by World Wide Web Consortium (W3C)
in 2020 [10]. As the Web standardized the Internet, the WoT paradigm aims
to create a shared interaction model within the IoT world. Therefore, it
addresses interoperability issues at the Application level creating a standard
interface and a description for IoT devices. This description, known as
the Thing Descriptor (TD), employs semantic tags to state the device
capabilities or affordances. Using a common analogy, the Thing Descriptor
is like a machine-understandable user-manual where functionalities and
operations are described. The new solution proposed by W3C promotes a
more collaborative shift inside the IoT as opposed to the sensor-to-cloud
paradigm. In fact, even if it supports natively a sensor-cloud interaction,
it foresees a more device-centric approach; where sensors, actuators, data,
and applications are distributed in the full-stack spectrum.

To the best of the author’s knowledge, current industrial monitoring
solutions either use obsolete human-based techniques or when using IoT
technologies does not leverage on WoT paradigm flexibility. Furthermore,
especially in the monitoring of the environment and public civil structures,
those solutions do no take into mind the possibility to provide open tools

1.1. PROBLEM STATEMENT 5

that can be used by the population to gain insights about the monitoring
process. For example, qualitative information about bridge health status
could be conveyed in smart cities portals, so that tragedies like the Genova
bridge collapse could be avoided thanks to the public awareness of the
problem. In conclusion, for the above reasons, this thesis will explore the
design of a multi-purpose open monitoring platform built with the Web of
Things paradigm.

1.1 Problem statement

Building civil structures requires a relevant economic and engineering effort,
but they are still subject to deterioration due to weather and usage. For
example, a bridge can face environmental corrosion, persistent traffic, wind
loading, and material aging, as well as unexpected seismic events, which
may result in incremental structural deficiencies. At worst, this could lead
to collapses causing tremendous additional costs and threatening human
lives. Therefore, monitoring their structural health status is crucial to
maintain their services and safety as long as possible.

At the same time, harsh environmental conditions can cause financial
losses and health problems. Elements like extreme weather, strong air
pollution, wildfires, earthquakes, invasive species uncontrollable growth,
species extinctions, etc. have real impacts on the worldwide economy and
human toll [11] [12] [13] [14]. Fortunately, novel monitor technologies, when
employed together with prediction models, can stem the possible damages.
For example, [12] reviews different techniques for hurricane forecast that
could save up to 15% ($10.8 million of 1971 US$) in total and $2 million
per hurricane warning per sector. Another work estimate that modern
hurricane prediction could drop mortality by about 90% [15].

Other businesses that benefit from weather observation are those involved
in the agri-food sector. In recent years, agriculture companies had shifted
their gathering and management processes to use IoT technologies. The
goal is to optimize human and economical resources with respect to yield
quality. Weather monitoring associated with plant growth, plant health,
and soil monitoring can provide vital information about the optimization

6 CHAPTER 1. INTRODUCTION

techniques with a relatively small budget. Although the importance of
continuous structural health and environmental monitoring, those systems
are rarely employed in our daily life. Just a small fraction of civil structures
are really monitored and the one monitored are key bridges or dumps.
Full-scale monitoring is needed to prevent deaths and assure that the high
investments of building big civil structures are not wasted. For example, the
reconstruction of the collapsed Genoa bridge in 2020 cost about 200 million
euros 7% of the total budget reserved for the construction of roads and
railways in the biennium of 2018-2020 of Italy [16]. Without mentioning the
yearly cost of the absence of that key structure in the Genoa region which
some estimating around 700 million euros [17]. At the same time, current
state-of-the-art solutions represent a considerable investment related to the
overall construction cost. The reason for their high value resides in the
intrinsic challenges present when building a monitoring platform. Usually,
monitoring demand the deployment of complex large scale systems like
satellites, ground sensor networks, and drones. The clear physical differences
between the objects subject to the observation complicate the design of
the process and the platform. For example, monitoring a massive highway
bridge is different from assessing the growth stage of a pear in a smart farm.
Even similar structures require different types of sensors. Taking again the
bridge example, a concrete viaduct may require strain gauges to observe
crack evolution, while a steal railway bridge may employ only accelerometers
or piezoelectric sensors. Having this heterogeneity in the type of sensors,
increase the need to manage a multi-vendor set of devices. Unfortunately, in
the era of the IoT, these circumstances increase the probability of encounter
interoperability issues. Since the high number of different IoT protocols,
there is a high chance to have different communication protocols involved
in just one particular monitoring setup. Moreover, even when sensors
convey the information using the same protocol, they might use different
data formats. In practice, it is similar to when two people communicate
in foreign languages. They use the same protocol (i.e. voice), but they
cannot mutually understand (i.e., incompatible data models). Furthermore,
the subtle differences in the software platform requirements might lead
to different architectures. For example, one particular application might
result in a centralized stack (e.g., typically a sensor-to-cloud architecture),

1.1. PROBLEM STATEMENT 7

one other to a distributed design (e.g., a fog computing scenario). Those
technical challenges together with business interests lead to ad hoc solutions,
also known as silos applications, that can not be really reused in other
fields. Even when a software solution is claimed to be general-purpose, they
are discarded because of their incompatibility with some aspects required
in a particular monitoring process. Silos architectures not only limit the
portability of a particular monitoring software product but also close the
opportunity to create innovative unexpected services from monitored data.
If in some applications there’s a clear end-user, like when design an industrial
plan monitoring, others might have a more fuzzy definition of the interested
stakeholders. When the object monitored is a public interest (e.g, bridges,
highways, public buildings, local weather, air quality, etc.), municipalities
might want direct access to monitoring data. At the same time, developers
might come up with novel ideas to exploit those data, providing services
to the community. Moreover, engineers might want to track the status
of construction and provide timely intervention plans. Finally, a regular
citizen can also play a role both as a consumer or producer of monitored
data. Crowdsourcing the monitoring sensing process is a new compelling
field with remarkable results that could end up plunge the economical effort
of monitoring metropolises and medium-sized cities.

In conclusion, the development of a software monitoring platform has
its unique challenges. In particular, we have defined 5 different sources of
heterogeneity that can increase the complexity of such a solution:

• Sensors and methods

• Observed properties

• Computing architecture

• Data formats

• Users

For these reasons, despite the economical advantages of having a general
one fit all solution, a clear unified open monitoring platform has yet to
emerge.

8 CHAPTER 1. INTRODUCTION

1.2 Contributions

The lack of compelling general-purpose monitoring platforms limits the
adoption of predictive maintenance techniques and the creation of innovative
cross-domain services. Therefore, this document explores the requirements
of a possible open monitoring platform that servers as a general framework
to assess the physical properties of an observed object. Additionally, the
thesis presents a software architecture derived from those requirements.
Then, the architecture is implemented in two specific use-cases. The first
defines a typical structural health monitoring application applied to both
bridges and pipelines. The latter, it coming from the smart agriculture
domain, where the monitoring is the first step in the control of the long
production process that transforms the energy sources in vegetables and
fruit. In these contexts, the platform data model was extended to address
domain-specific requirements. Specifically, in the agriculture domain, state
of the art ontologies were found insufficient. Therefore, an IoT inspired
smart agriculture ontology was defined and published, as later described in
Chaper 3. On the other hand, in the SHM domain, integration strategies and
ontology alignments were employed to leverage on the state of the art data
models. Moreover, as the W3C WoT is still undergoing the standardization
process, this work identifies weak spots and provide possible solutions to be
evaluated in the future. Finally, the core contributions of this work can be
summirzed as follows:

• Define an open architecture for structure health and environment
monitoring.Particularly,this study concentrates around the open re-
quirements, but without forgetting security and safety issues.

• Discuss weak spots in the WoT standard related to the use case and
propose possible solutions.

• Design an IoT inspired ontology for Smart Agriculture. The ontology
is divided into four subspaces that represent different aspects of smart
agriculture data space. Where possible, those subspaces were aligned
with existing vocabularies to maintain a high interoperability level.

1.3. THESIS OUTLINE 9

• Platform integration with industry data models in the SHM domain.
In particular, the work focused on the integration of two emerging stan-
dards: Building Topology Ontology (BoT) and Industry Foundation
Classes ontology.

Besides scientific contributions, this document also contains the descrip-
tion of two tools, namely WoT Application Manager (WAM) and WoT
Farm, that were developed and employed during the evaluation of the
proposed platform.

1.3 Thesis outline

The remainder of the document is composed as follows. Chapter 2 intro-
duce the background and related works, focusing on the web of things
standard and IoT monitoring technologies. Chapter 3 describes the main
contributions in detail, starting from the requirements of the monitoring
platform. Then the software architecture is described with insights on the
implementation challenges. Finally, the chapter presents a possible data
model alignment within the agriculture and building monitoring use cases.
Chapter 4 evaluates relevant aspects of the platform and discusses gaps
between the WoT standard and the platform requirements. At last, Chap-
ters 5 and 6 draw the conclusion, discuss future works, and acknowledge
external contributions for this work.

This page intentionally left blank.

Chapter 2

Background

This chapter will introduce the history of Structural Health and Environ-
mental monitoring, together with the fundamental techniques and concepts.
Moreover, the second section will describe the evolution of distributed open
computation technologies till the born of the Web of Things. Additionally,
section 2.2 provides the main definitions of WoT concepts that will be used
later on in the description of the proposed platform. In conclusion, this
chapter serves as a foundation of the research ideas discussed in Chapter 3.

2.1 Structural Health Monitoring

With the term Structural Health Monitoring (SHM), we refer to the strate-
gies adopted when assessing and measuring damages to any human construc-
tion. It could be a civil structure, an aerospatial vehicle, or a manufactured
object. Specifically, when we speak about structural damage, we indicate
any unwanted internal change suffered by a system. Consider that every
single damage has its origin from micro imperfections in a material. These
imperfections are always present even at the beginning of the life of a system.
Those defects could later grow and became substantial damages because of
stress, overloading, corrosion, and passing of time. Therefore, it is crucial to
observe the complex system during a period and study changes to identify
criticalities that can later evolve into structural deficiencies. Besides, SHM
objectives can also cover other aspects of the construction process like

11

12 CHAPTER 2. BACKGROUND

Figure 2.1: Different phases of the rebound hammer test

quality control, excessive loading warnings, and condition assessment [18].
This shifts the paradigm from the routine or critical event (e.g., earthquake)
based inspections to continuous monitoring of the object. Based on the
real-time data collected, engineers can program repairment of strength-
ening works to expand the functional life of the monitored construction.
Consequently, health monitoring of civil structures has been attracting
much attention from the research community and practicing engineers since
the 40s. Initially, civil engineers had to answers practical questions like
when the concrete was sufficiently ready to be removed from formworks.
Specifically, the principal need was to determine the homogeneity and the
compressive strength of fresh concrete. Therefore, different experimental
methods were employed, usually based on a visual inspection and other
non-descrictive techniques (NDE). For example, the rebound hammer test
(Figure 2.1), where a mass hit with a specific energy a spring in contact
with the concrete surface. The level of the rebound provoked by the spring
measures the strength and the stiffness of the concrete. More in detail, a low
stiffness concrete absorbs more energy and it results in a small rebound of
the mass. When the urban expansion was at its decline, structures started
to age. Consequently, engineers were more interested in the real mechanical
properties of old constructions as well as the characterization of hidden
defects. The previously mentioned methods were not sufficient to inspect

2.1. STRUCTURAL HEALTH MONITORING 13

precisely the internal physical properties of a material. Therefore, new
techniques were born during the 70s to satisfy these novel needs:

• Acoustic emission

• Electro-magnetic field methods

• Eddy current methods

• X-ray

• Thermal field methods

Even if the new methods were more advanced and precise, they required
physical access to the inspected object. Furthermore, they could not assess
the general health status of complex constructions or composite materials
like concrete. On the contrary, they focused on specific damages types
localized in a finite spot of the structure. For this reason, modern SHM
techniques leverage on global damage detection methods (See Section 2.1.1).
Nowadays, preserving civil infrastructures nationwide is dependent on
the successful implementation of structural health monitoring concepts.
According to [19], the engineering structural health process consists of four
distinct steps :

• Sensor allocation and measurements

• Structural identification

• Damage or degradation detection

• Decision making

Every one of these steps is an entire research field inside SHM. First is
sensor development and deployment. As Section 2.1.2 will detail, SHM
methodologies required the design of new special sensors that took in
mind the size of the objects monitored and their physical properties in
interest. Then structural identification and damage detection cover the
mathematical challenges to correctly model and predict the behavior of
composite constructions. In this context [20] and [21] identify four accuracy
levels for damage detection:

14 CHAPTER 2. BACKGROUND

• Identify that damage has occurred

• Identify that damage has occurred and determine the location of the
damage

• Identify that damage has occurred, locate the damage, and estimate
its severity

• Identify that damage has occurred, locate the damage, estimate its
severity, and determine the remaining useful life of the structure

Of course, researchers strive to achieve the highest level of accuracy. How-
ever, a generic algorithm is yet to find. Hopefully, long term monitoring of
a multitude of buildings and civil works could generate a consistent dataset.
This knowledge could be then fed to one or more machine learning algorithms
that could obtain the highest accuracy in most of the observed objects.
Early experiments are already carried out with promising results [22].

Finally, the decision-making level that maps sensed knowledge to real-
world actions. For example, considering the location of damage in a bridge,
should we intervene for a repair? Should we close half of the bridge
immediately to reduce the loading stress? etc.

Figure 2.2 shows the usual architecture of an SHM system. Sensors
measure physical properties and usage levels which later processing units
elaborate to extract local deficiencies. Commonly, these sensors are con-
nected to cabled or wireless networks. One or more networks can cover
one single structure. Since the monitored object might have considerable
sizes, it is a common practice to monitor different components with different
sensor networks. Once data is processed it is safely stored inside a historical
database. The prognosis uses this temporal data together with the real-time
information to evaluate the current structural health status of the observed
object. This status is the combination of the different sources described
above. It summarizes the local deficiencies sensed by the sensors, the global
behavior obtained by usage information, and the historical parameters.

2.1. STRUCTURAL HEALTH MONITORING 15

Figure 2.2: A schematic view of a typical Structural health monitoring
system.

16 CHAPTER 2. BACKGROUND

2.1.1 Global damage detection

Global damage identification methods (GDMs) are novel techniques to
assess the health of a complex structure or a building (i.e., a construction
composed of different sub-parts). As the name entitles, they differentiate
from the local damage identification methods (LDMs) because of their
scope. LDMs use non-destructive methods to identify damage in a specif
structural component, whereas GMDs reason about the behavior of the
overall structural complex system. Global damage identification algorithms
can be classified into two categories: model-based and response-based.
The model-based methods assume that a physical numerical model of the
structure is defined. Engineers then exploit the model to simulate the
nominal behavior. Consequently, a substantial deviation from this ground
truth suggests possible damage. Hence, the accuracy of this process yields
down to the accuracy of the model itself. However, accurate physical
models for most known structures are unavailable yet. This circumstance
confines the usage of model-based methods to reticular steel structures that
have a well-known model. On the other hand, response-based methods
are more versatile but much harder to configure and initialize. A typical
procedure for response-based damage detection involves the extraction of
behavioral parameters. Physically speaking, dynamic and static responses
to external solicitations define the behavior of a structure. Consequently,
these responses are monitored and stored in a historical database. The
dynamic responses are commonly measured using the so-called vibrational
analysis. The basic premise of vibration-based SHM is that changes in
structural characteristics, such as mass, stiffness, and damping, will affect
the global vibrational response of the structure. on the other side, the static
responses are obtained from the displacement of key points in a structure.
If damage occurs changes in the local stiffness of a structure determine a
change in one of the two responses. Therefore, response-based algorithms
exploit historical data to infer possible structural deficits. This method
has the advantage to be applicable to a wide range of different objects
since it does not require a modeling phase. However, understanding of the
relationships between the damage and the corresponding changes in the
dynamic properties is an open research problem.

2.1. STRUCTURAL HEALTH MONITORING 17

2.1.2 SHM sensors

The SHM field has its unique challenges, hence during the years, custom
sensor types were developed to measure the desired physical properties.
This section will introduce the most common one giving an overview of the
heterogeneity of this field.

• Strain Gauges.This type of sensor measures the physical displacement
of two points. They were the first sensor employed to measure static
and dynamic structure behaviors. Their basic principle is that the
resistance of a conductor change when it is subject to strain. In
the market, this sensor type is specialized for different applications.
There are strain gauges that measure structural stress (stress gauges),
material bending (flexagauges), etc.

• Gyroscopes. Gyroscopes measure the angular displacement of an
object, usually on multiple axis. They can also provide angular velocity
but this information is usually not relevant in an SHM process.

• Accelerometers. An accelerometer measures the acceleration alongside
three axes. This sensor is closely related to the gyroscope so that they
are commonly packed in a single sensor. In SHM they are used in the
structural characterization process as a measurement of its frequency
response to solicitations.

• Piezoelectric Transducers. This sensor type is the most popular and
widely-used means of measuring the internal structural properties of a
material. Piezoelectric sensors function like a stethoscope earning the
internal micro-vibration of a material. They are far more sensible than
strain gauges and accelerometers. In fact, they can measure up to the
Mhz range against the Hz range of an accelerometer. Thanks also to
their physical properties they are the only sensor that does not require
any power for functioning. The energy comes from the deformation
of the material itself and it is later transformed into a digital signal.
One caveat is that they need to firmly attach close to the location
of possible damage which is usually unknown. Furthermore, if not
properly attached or if corrosion and weather agent causes a partial

18 CHAPTER 2. BACKGROUND

detached, they lose accuracy and sometimes they became defat to new
inputs. In SHM they are used both as listening devices or as active
entities that send an acoustic signal and wait for the reflected response.
They are also used as a localization device for cracks. Deploying at
least three piezoelectric sensors it is possible to obtain the location
of a punctual energy emission(i.e. a crack) thanks to trigonometry
techniques.

• Laser Doppler Vibrometer. Laser Doppler Vibrometers measures
the instantaneous velocity of the surface of the structure. They
are optical devices that use laser interferometry to detected micro-
vibrations in the surface of a material. The advantages with respect
to piezoelectric sensors are that they do not require physical contact
with the surface. The only requirement is the line of sight. This
makes LDV a game-changing sensor when analyzing the vibrational
responses of an inaccessible object. For example, when the surface of
interest is particularly curved, or when it has high temperatures that
can melt piezoelectric sensors. However, they are more expensive and
sensible to noise.

• Fiber Optic Sensors(FOS). These sensors are actually a whole family
of different measuring devices. They are characterized by the usage of
fiber optic materials as the mean for the measure. There are fiber optic
accelerometers, gyroscopes, vibrometer, stress gauges, flexagauges,
etc. In SHM, FOS sensors are appreciated for their resilience. They
have a low susceptibility to electromagnetic events (e.g. storms) and
a strong corrosion resistance. Moreover, they have a small size factor,
a wide range of operational temperatures, and a long lifetime. On the
other hand, they found to be sensible to micro-variations of the light
source and ambient conditions (dust, moisture, smoke, etc.).

2.2 Internet of Things

The Internet of Things (IoT) is a novel term to refer to the interaction
between the Internet and the physical world. Although it is now a commonly

2.2. INTERNET OF THINGS 19

Figure 2.3: A sample of different shm sensors. From the top right corner
we found: accelerometers, piezoelectric, strain gauge, laser vibrometer, and
fiber optic sensor

used label, its vision, digital systems that blend into everyday life, has roots
in modern history. In the computer of the 21th century [23], the year
1991, Mark Weise uses the term Ubiquitous computing when explaining
how information technology will evolve during this century. He imagined a
profound bond between humans and computing devices:

Machines that fit the human environment, instead of forcing
humans to enter theirs, will make using a computer as refreshing
as taking a walk in the woods.

As pioneering as this idea could have been, it was still a vague prediction
of what the world of computers will look like in the coming decades. It was
only in the early 2000s that Kevin Asthon concretized the idea of Ubiquitous
computing in something more specific. He deliberately envisioned that the
means to achieve Weise’s dream was throughout the Internet. Electronic
devices were becoming smaller and smaller every year; therefore, it was
possible to install computing power in something different than personal
computers and mainframes. Nonetheless, it was not sufficient to provide real

20 CHAPTER 2. BACKGROUND

value to everyday users. Only giving the ability to communicate with other
peers opened the possibility to a whole set of new applications. Ashton, in
how to fly a horse [24] recalls one concrete application for all that gave him
the idea of the Internet of Things. When working for Procter & Gamble, he
was asked to figure out why half of the company resellers were always out of
stock of a shade of one of their lipsticks. After researching, Ashton noticed
that the problem was in the missing information. In practice, resellers were
not ready to communicate the real count of the lipsticks on the shelf. To
solve this problem, Ashton placed a radio microchip in every lipstick and
an antenna receiver on the shelf, but he did not stop there. He finally
connected the shelf antenna device to the Internet, opening the possibility
to remotely track the real lipstick count in every reseller’s store. It was this
simple act that inspired him to coin the term Internet of Things.

As time passes, ideas evolve and the IoT was not immune to the changes
of time. After the first timid applications in the retail industry, the In-
ternet of Things became famous for its applicability in a wide range of
domains. Examples of IoT applications can be found in agriculture and
food manufacturing, healthcare, home automation, in industrial plants Such
flexibility led to a proliferation of a wide range of technology solutions.
At first, IoT was about connectivity; existing protocols were not able to
handle long-range wireless connections and high data rates. Consequently,
different protocols emerged to cope with the increased demand for reliable
wireless solutions. Not only, but also the Internet Protocol (IP1) address
was extended to cover the expanded address space (See IPv62). Currently,
the protocol spectrum of the IoT has plenty of solutions for every IoT
domain. Refer to Section 2.2.1 for further details. Nonetheless, mere con-
nectivity, as vital as it is, does not implies communication and coordination
between agents. Applications at IoT scale requires means to specify the
interactions between those distributed nodes and orchestrate devices to
follow the desired business logic. Therefore, the ICT market answered with
a proliferation of different middlewares or full-stack frameworks. The most
favorite architecture design was to leverage the recent paradigm of cloud

1https://en.wikipedia.org/wiki/Internet Protocol
2https://en.wikipedia.org/wiki/IPv6

https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/IPv6

2.2. INTERNET OF THINGS 21

computing. The bound between IoT and Cloud became so strong that they
are often mistaken for one the other. However, the so-called sensor-to-cloud
architecture has its shortcomings. First of all, it is not always feasible
to transfer data from sensors to remote datacenters due to bandwidth or
security limitations. Furthermore, employing the cloud as the control center
limits the response time of the system. Even with a high transfer network
local computation has always a lower latency for simple computational
inexpensive actions. Finally, it does not take into account the lower level
optimizations of IoT protocols and devices. For example, sensors might
have a long sleep-active time cycle to conserve energy; frequent readings
from cloud computing applications would disrupt this optimization routine
leading to to poor battery life performance. In recent years, a new shift in
the IoT landscape strives to solve the above issues: the Edge Computing.
Edge computing moves critical services and applications from remote data-
centers close to the devices. The extremization of this procedure is Fog/Mist
computing, which takes the services right in network switches, gateways, or
even sensors. Even if these new software designs solve sensor-to-cloud issues,
they open new ones. In particular, due to the variety of protocols and
communication standards, the more we descend the stack (i.e., from data
centers to sensors), the more interoperability between protocols became
challenging. While between cloud services Web technologies (e.g. HTTP,
WebSocket, SSE, etc.) are the defacto standard for communication, at the
edge (and even more at the fog/mist level), the protocol spectrum is quite
erratic. These circumstances create ad-hoc solutions aimed at solving one
particular application at a time: silos applications. Engineers select one or
two protocols well-suited for the application domain, connect the devices to
an edge server (if needed), and implement the application business logic at
the cloud level. Silos applications, as the name suggested, enclose the value
provided by the IoT solution and restrict the possible ”unpredictable usages”
of the information extracted. In conclusion, IoT is an ever-evolving field
with wide adoption in every economic and scientific domain. Nonetheless,
the heterogeneity of the proposed market solutions limits its true potential
restraining the ability to create multi-domain applications and reusing
existing resources.

22 CHAPTER 2. BACKGROUND

2.2.1 Internet of Things protocols

Given the high adoption of the IoT paradigm in different application
domains, specific communication protocols arose to satisfy particular appli-
cation requirements. This section will describe a list of the most notable
protocols, their qualities, and the problems they are trying to solve. More-
over, the following will serve as a glossary for protocols that are mentioned
in the next chapters. The reader is invited to refer to this section if needed.

• Message Queuing Telemetry Transport (MQTT). MQTT3 is one of the
most successful IoT protocols on the market. It is a publish-subscribe
network protocol that runs over TCP/IP or any other protocol that
provides ordered, lossless, bi-directional connections. It is designed to
be lightweight and transmits a large quantity of real-time data with
low energy consumption. One of its first applications was monitoring
a remote oil pipeline, but it was later also largely applied in mobile
applications. The protocol defines two software agent roles: clients
and brokers. A broker is the core component of the protocol, and its
prime duty is to deliver messages to clients. On the other hand, clients
are broker users that can publish messages or subscribe to a specific
topic. Its quasi-stateless architecture allows MQTT to scale at an
impressive number of connected nodes. For example, RabbitMQ (one
opensource broker implementation) is claimed to handle one hundred
thousand devices guaranteeing a message latency under 10 ms [25].
This feature, among others, renders MQTT the preferred solution for
monitoring applications and real-time automation (e.g., it is employed
in smart homes and agriculture domains).

• Constrained Application Protocol (CoAP).CoAP4 is a request/re-
sponse web protocol specially designed for constrained devices. It is
closely inspired by the most famous web protocol: HTTP. As RFC
7252 describes this retains key concepts from the web like URIs and
content negotiations but provides unique features suited for lossy
networks and small microcontrollers. For instance, it runs on UDP

3https://mqtt.org/mqtt-specification/
4https://tools.ietf.org/html/rfc7252

https://mqtt.org/mqtt-specification/
https://tools.ietf.org/html/rfc7252

2.2. INTERNET OF THINGS 23

instead of the TCP and it includes support for discovery and multi-
cast. CoAP reuses the same HTTP actors and nomenclature, but it
prescribes a subset of HTTP operations. In particular, CoAP does
support only GET, POST, PUT, and DELETE request types with
the same HTTP semantics. It is claimed to provide interoperable
machine to machine communication and thanks to its versatility it
can be used in any IoT domain, preferably at mist/fog level.

• HyperText Transfer Protocol (HTTP).HTTP5 is an application proto-
col born with the dawn of the Web. Even if it was originally designed
for exchanging hypermedia contents, nowadays it evolved to a general-
purpose interaction model (i.e., RESTFull applications). Its adoption
in the IoT landscape is mostly related to cloud environments. It is
rather used as an application protocol between microservices that
store, process, and present IoT data streams. However, there are some
examples of its adoption in smart home domains where the device
capabilities are not too restrictive. Although in such contexts CoAP
is usually preferred.

• WebSocket6. WebSocket is a computer protocol over TCP providing
full-duplex communication. Its main feature is to be compatible with
the HTTP protocol, using the Upgrade header mechanism. Due to
this ability, the most known browsers adopted this protocol as the
favorite solution for bidirectional communication between servers and
JavaScript scripts. In IoT, it is employed as a protocol to convey
device events or real-time data. Since it does not define any particular
interaction model, sometimes it is used as the transport layer for other
IoT application protocols like MQTT. Thanks to it interoperability
with browsers is, therefore, employed for dynamic web dashboards in
the Smart Home and mobile domain.

• Long Range Wide Area Network (LoRaWAN)7.LoRaWAN is MAC
based (no-IP) networking protocol implemented over LoRA physical

5https://tools.ietf.org/html/rfc2616
6https://tools.ietf.org/html/rfc6455
7https://lora-alliance.org/resource-hub/lorawanr-specification-v11

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455
https://lora-alliance.org/resource-hub/lorawanr-specification-v11

24 CHAPTER 2. BACKGROUND

layer, a long-range low power physical layer protocol developed by
Semtech. LoRaWAN acts mainly as a network layer protocol for
managing communication between gateways and end-node devices.
Typical implementations of LoRaWAN protocol adopt a cloud com-
puting architecture and more interoperable application protocols like
MQTT and HTTP. For example, ChirpStack translates LoRaWAN
messages to MQTT messages and vice-versa. This enables the devel-
opment of Web applications that use remote devices transparently
thanks to the MQTT protocol. Its long-range and low-power capa-
bilities are appreciated in the environmental monitoring and smart
agriculture domains. In such application contexts, sensors are de-
ployed in remote locations and measure slow physical phenomenons;
all requirements that LoRaWAN satisfies. On the other hand, its low
bandwidth capabilities limit its adoption for telemetry application
that requires high data rates (i.e. industry 4.0, automotive, etc.)

• DASH78.DASH7 Alliance Protocol (D7A) is an open-source Wireless
Sensor and Actuator Network protocol DASH7, which provides multi-
year battery life. Similar to LoRaWAN, it is designed for long-range
communication, although it reaches 2 Km at maximum. It also
leverage on the same cloud-based architecture, where clients interact
with the devices thanks to a cloud translation of the DASH7 protocol
to MQTT. On the other hand, it has lower latency even with moving
objects and real bidirectional communication between peers nodes.
Thanks to these features it can be employed in smart cities, industrial
settings, and logistics.

• 6LoWPAN9.6LoWPAN is an extension of IP to devices with lower
computational capabilities. It is based on IEEE 802.15.4, which is a
standard wireless communication protocol for low rate personal area
networks. The main benefit of this technology is that it allows a
lighter implementation of the IP stack. In practice, this translates
into a lower entry barrier for the participation of the Internet.

8https://dash7-alliance.org/download-specification/
9https://tools.ietf.org/html/rfc8138

https://dash7-alliance.org/download-specification/
https://tools.ietf.org/html/rfc8138

2.2. INTERNET OF THINGS 25

• ZigBee10. Zigbee is also an IEEE 802.15.4-based specification for
a suite of high-level networking protocols used to build lightweight,
low-power digital radio personal area networks, such as home au-
tomation, data collection for medical devices, and other low-power
low-bandwidth specifications, designed for small-scale projects that
involve wireless connectivity.Zigbee is therefore a wireless ad hoc net-
work with low power, low data rate and close proximity (i.e. personal
area). The Zigbee specification-defined technology is intended to be
easier and less expensive than other wireless personal area networks
(WPANs), such as Bluetooth or more general wireless networking
such as Wi-Fi. Among the possible applications we cite wireless light
switches, home energy monitors, and traffic management systems.

• Bluetooth11. Bluetooth is a standard for wireless technology used to
transmit data over short distances between fixed and mobile devices
using UHF radio waves in the commercial, science and medical radio
bands, from 2,402 GHz to 2,480 GHz, and to create private area
networks (PANs).It is mainly adopted in the communication of small
battery devices and appliances. One of its characteristics is the defi-
nition of application profiles that enables a standard communication
protocol and configuration. Most known applications are smart lock
control, headsets for audio reproduction and recording, transfer files
or contacts, motion controllers in VR headsets, smart treadmills and
exercise bikes.

• Lightweight M2M12. OMA Lightweight M2M (LwM2M) is an applica-
tion protocol from the Open Mobile Alliance designed for Machine to
Machine device management and service communication. It provides
an IoT device management strategy and enables devices and systems
from multiple vendors to co-exist in an IoT ecosystem. LwM2M was

10https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-2

1-0csg-zigbee-specification.pdf
11https://www.bluetooth.com/specifications/bluetooth-core-specificatio

n/
12http://www.openmobilealliance.org/wp/Overviews/lightweightm2m overvie

w.html

https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://www.openmobilealliance.org/wp/Overviews/lightweightm2m_overview.html
http://www.openmobilealliance.org/wp/Overviews/lightweightm2m_overview.html

26 CHAPTER 2. BACKGROUND

originally built on CoAP, but later LwM2M versions also support
additional transfer protocols. The system management capabilities
of LwM2M include remote security certificate provisioning, firmware
upgrades, management of networking (e.g. cellular and WiFi), diag-
nostics of remote devices, and troubleshooting.

• Modbus13 over TCP. Modbus is a de facto standard for the commu-
nication of industrial PLC devices. It gained its popularity thanks
to its simplicity and open specification. Moreover, it was originally
developed for serial communication lines but nowadays it is extended
to the Internet: Modbus over TCP. One downside of this protocol is
the lacking of an encryption or security layer.

• CAN14 bus over TCP. Controller Area Network is a protocol originally
designed for the smart car industry. It is a message-based protocol
supporting the common publish/subscribe pattern. Even if it was
originally convinced as an automobile protocol with a low copper
impact it was later adopted in other contexts (e.g., Structural Health
Monitoring). CAN TCP is an extension of the protocol over the
Internet.

• OPC-UA15. OPC Unified Architecture (OPC UA) is an industrial
automation machine to a machine communication protocol. The
protocol has two forms: binary and web based. The binary version uses
TCP as the transport protocol and has its own defined URL schema
(opc.tpc://server). It is usually the preferred solution in constraint
devices because of its parsing speed. Another important factor is that
the binary protocol has less degree of freedom in the data exchanged.
As such, it has a higher interoperability level regards to its web
companion. The web protocol is based on HTTP; as a consequence
is more firewall-friendly and expressive. Unfortunately, the high
complexity of the protocol specification leads to a fragmentation in

13https://modbus.org/docs/Modbus Application Protocol V1 1b.pdf
14https://www.kvaser.com/software/7330130980914/V1/can2spec.pdf
15https://opcfoundation.org/developer-tools/specifications-unified-arc

hitecture

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
https://www.kvaser.com/software/7330130980914/V1/can2spec.pdf
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture

2.3. WEB OF THINGS 27

the Server implementation of the protocol which in turn diminished
its concrete adoption.

• Netconf The Network Configuration Protocol (NETCONF)16. NET-
CONF is a network management protocol developed and standardized
by the IETF. The NETCONF protocols specify mechanisms to install
and configure devices. . It is bulti on top of high-level transporta-
tion and application protocols like TLS and HTTPS. Its operations
leverage on a simple Remote Procedure Call (RPC) layer alongside
a notification protocol. As a message data format, the NETCONF
protocol uses an Extensible Markup Language (XML); configuration
data is also encoded in XML. One of the core features of NETCONF
is its security which relies on the TLS protocol. It is used in industrial
IoT applications but it had a wide adoption in the implementation of
smart gateways and routers.

2.3 Web of Things

While the Internet of Things was in infancy, Tim Berners Lee and Ora
Lassita visioned an evolution of the World Wide Web to a new dimension [26].
They imagined that all the information enclosed in static HTML pages as
written text could be disclosed to machines. Therefore, they coined a new
paradigm: the Semantic Web, intended as a global Web of Data, which
software agents can interpret and process directly. This possibility would
open the creation of next-generation web applications able to seamlessly
scrape data from the new immense source of information. For example,
they open their paper with:

The entertainment system was belting out the Beatles’ ”We
Can Work It Out” when the phone rang. When Pete answered,
his phone turned the sound down by sending a message to all
the other local devices that had a volume control.

16https://tools.ietf.org/html/rfc6241

https://tools.ietf.org/html/rfc6241

28 CHAPTER 2. BACKGROUND

Interestingly enough the example is not really far from the description of
the Ubiquitous computing given in Section 2.2 by Weise. However, in the
early years, the Semantic Web was focused more on describing knowledge
in a machine-understandable way. Was during these early stages that the
Resource Description Framework17 was standardized by the World Wide
Web Consortium. RDF is a general metadata model and it is base on
statements composed of a subject, predicate, and object (also known as
triples). In practice, the subject denotes a particular Web resource or
abstract entity, the predicate one of its properties, finally the object the
value of this property. For example, consider that a user is identified with
urn:people:user12345 (a Uniform Resource Identifier or, in short, URI18)
the fact that he is named ”Francesco” can be expressed with the following
RDF triple:

urn:people:user12345 http://schema.org/givenName ”Francesco”

Notice that RDF is completely transparent about the URI used as the
predicate; in the example, we could have used urn:dev:name or urn:dev:isCalled
RDF terms as well. However, writing an RDF statement with com-
monly understood terms is critical to assure a certain level of machine-to-
machine interoperability. A machine has some difficulties to understand that
urn:dev:isCalled has the same semantic as http://schema.org/givenName.
It should be manually instructed to threaten two vocabulary terms in the
same way. Therefore, for most common terms in a domain, the Semantic
Web community is developing a set of vocabularies or ontologies. Ontologies
describe those terms both in human and machine understandable forms so
that developers can encode these special URIs in their programs. Even if it
was originally conceived as a means to describe human knowledge, thanks
to its intrinsic expressivity, RDF becomes also widely adopted to define
services capabilities. Having services represented as machine-readable data
has been found useful when it comes to discovery and self-documentation.
For instance, in the European Union founded Smart Objects For Intelligent
Applications (SOFIA) project, intelligent objects and virtual services were

17https://www.w3.org/RDF/
18https://tools.ietf.org/html/rfc3986

https://www.w3.org/RDF/
https://tools.ietf.org/html/rfc3986

2.3. WEB OF THINGS 29

represented as RDF triples in a shared database called the Knowledge base.
Here smart agents or Knowledge Processors (KP) could infer real-world
facts and act intelligently. Moreover, they could discover functionalities
during runtime thanks to the uniform and machine-understandable RDF
description. Another interesting concept detailed in the SOFIA project was
Smart Space. A Smart Space is a physical environment augmented with
those RDF descriptions and a set of KPs or software services. Therefore, a
Smart Space is where the semantic web meets the physical world proving
new functionalities and commodities to the users.

The idea of Smart Spaces brings us back to the world of the Internet of
Things. As outlined in Section 2.2 one of the major challenges in the IoT
domain is the interoperability between applications and services. Could
RDF descriptions of services mitigate those issues?

In 2011 Dominque Guinard, in his Ph.D. thesis, proposed the Web of
Things: a web architecture for the Internet of Things [9]. His idea was that
every device should be able to interact with its peers through an HTTP
interface over IEEE 802 (Ethernet) or IEEE 802.11 (WiFi) network. More
in detail, the architecture defines four layers:

• Accessibility. This first layer provides basic connectivity to the in-
ternet and assures that device services are available as Web APIs.
This interface follows the RESTFull principles [REF] allowing in-
teractions with universally supported web methods. When it is not
possible to model a device using Web standards and protocols a Smart
Gateway[Leveraging the Web to Build a Distributed Location-aware
Infrastructure for the Real World] can act as a bridge between the
smart object and web clients (e.g., when the device uses non-web
protocols like ZigBee or Bluetooth). Thanks to this layer, web clients
can access physical resources using Uniform Resource Identifiers and
exchange data using HTTP content negotiation (i.e., clients can choose
their preferred serialization format).

• Findability. On this level, smart objects are contextualized and
described with metadata. Thanks to their formal description, typically
in RDF, search engines can record the physical resources and web
clients can infer their capabilities.

30 CHAPTER 2. BACKGROUND

• Sharing. the previous two layers allow unrestricted access to physical
devices and data from the web. If sometimes public information access
is welcomed (i.e., an Air Pollution sensor for a smart city), in other
circumstances this could violate user privacy and safety. Therefore
the Sharing layer prescribes a set of rules and technology stacks (e.g.,
OAuth 2.0) to control the information sharing in WoT.

• Compositions. This final layer consists of a set of tools and frameworks
to create services from the WoT open ecosystem. As the previous lay-
ers build an open distributed system the Compositions layer provides
useful abstractions to create complex Mashup applications integrated
with other web services.

If we focus on the first two layers we can understand that in Dominque’s
architecture the IoT interoperability issues are solved by two strategies. The
first is to mandate only one protocol, HTTP; the second is to define a formal
interaction pattern (RESTFull) described by a semantic description. The
semantic description is critical to assess application-level interoperability.
Consider one application that turns on the lights of a room if a presence
sensor detects a person inside. Application-interoperability assures that
the application can understand from device description which is the light
and which is the sensor. Not only, but it also allows the smart agent to
understand how to interact with them. Devices from different vendors might
have different APIs and a formal description can instruct the application
on how to use them. Much like, when a human reads a user manual
to understand how to wash its favorite clothes in a washing machine.
Consequently, yes, as WoT demonstrate, RDF descriptions can mitigate
some open issues of the IoT. On the other hand, prescribing HTTP (or
similar web protocols) as the only protocol allowed, limited the software
market adoption of WoT architecture. The IoT ecosystem is full of corner
cases where high-level protocols like HTTP does not satisfy stringent domain-
specific requirements. Nevertheless, some companies believed in Dominque’s
vision and create various versions of its architecture. Above all, Mozilla IoT19

is one of the most known. Mozilla IoT targets Smart Buildings scenarios

19https://iot.mozilla.org/

https://iot.mozilla.org/

2.3. WEB OF THINGS 31

where there are no hard requirements for esoteric protocols or performance.
On the contrary, users need well-designed dashboards to control their HVAC
systems or to create automation patterns. Developers in this field value
more easy-to-use and interoperability rather than performance and real-time
capabilities; all features that a web platform can support. In summary,
Mozilla IoT architecture provides for a similar structure to the original
Dominque’s idea. For the Accessibility and Findability layers, Mozilla
provides a Smart Gateway implementation, middleware for devices capable
to handle a web stack, and implementation of a semantic description for
smart objects. For the Compositions layer, Mozzila Smart Gateway provides
means to create simple mashup applications, whereas the middleware defines
low-level APIs to access device resources from code. Sadly, although its
success, Mozilla IoT was shut down for internal policies and left to the
open-source community.

As other versions of WoT emerged, in 2016 the World Wide Web Consor-
tium (W3C) step in with the quest to standardize the definition of the WoT
ecosystem, finally bringing the web down to the physical world. The W3C
is an international non-governmental organization founded by Tim Berners
Lee with the goal to develop standards related to the Web. For example, his
in charge of the definition of HTTP, HTML, and CSS technologies. For the
Web of Things standardization, W3C assembled one working group which
published four different major recommendation documents: Web of Things
Architecture [10], Web of Things Thing Description [27], Web of Things
Discovery [28], and Web of Things Profile [29]. Each one of this document
specifies normative requirements for implementers to guarantee a certain
level of interoperability between software solutions. The remainder of this
section will summarize the W3C Web of Things focusing on the architecture
specification from the architecture. Notice that later in this thesis, we refer
to this W3C interpretation when using the term Web of Things or WoT.
The core component of the WoT architecture is a Web Thing (sometimes
shortened as Thing). A Thing is a virtual or physical entity described by
metadata serialized as W3C Thing Description and it is logically composed
of five aspects: behavior, capabilities, data schemas, security configurations,
and protocols. Those concepts can be directly mapped with the 2011’s
architecture shown in Figure 2.4. The behavior defines the internal business

32 CHAPTER 2. BACKGROUND

Figure 2.4: Original Web of Things architecture [9]

logic of Thing software agents; for example, the algorithm to correctly
operate a robot arm in the desired position. Then capabilities are the set
of abstract operations that a Thing can fulfill. In the W3C WoT, they are
called Interaction Affordances (or simply Affordances) as formally defined
by Donald Norman in the field of human-computer interaction:

Affordance’ refers to the perceived and actual properties of the
thing, primarily those fundamental properties that determine
just how the thing could possibly be used.

The affordances define an abstract model of how a client may interact with a
Web Thing. However, they do not explain which protocols or data encoding
should be used. Protocols and Data Schema logically components define
exactly that. Data schemas are semantic descriptions of the data exchanged
for a particular affordance. For instance, they define that the temperature
affordance provides a floating-point number in Celsius in the range of -30.0
and 100.0. On the other hand, protocols called protocol bindings in the WoT
specification are the list of supported network protocols by a Web Thing.
Here we can notice the first difference with the original WoT architecture

2.3. WEB OF THINGS 33

Figure 2.5: Interaction schema between WoT agents.

proposed by Guinard. W3C does not impose HTTP as the only allowed
network protocol but it welcomes other non-web communication standards.
The only requirement is that they are IP-based otherwise they are not
usable by other services on the internet. This renders the architecture more
flexible and capable of handling more heterogeneous applications and IoT
domains. Finally, the Security configurations describe the mechanisms for
control access Thing Affordance. They can be public security metadata (i.e.,
which security protocol should be used) and private metadata (e.g., private
keys of a PKI system). Thing behavior is described as machine code with
the help of Scripting APIs whereas the other four aspects are expressed
declaratively in the Thing Description (See next section). Software agents
can then read a Thing Description to understand how to interact with the
Web Thing and its capabilities. This action is referred to as ”consume
a Thing Descriptio” and a client that performs it is called a Consumer,
as depicted in Figure 2.5. Furthermore, Figure 2.6 represents the general
overview of WoT architecture distributed on different IoT nodes. It is
possible to notice how WoT spread into all the segments of a typical sensor
to cloud architecture. For instance, a Web Thing can be implemented
directly on a small smart device, but also more complex Things can be
installed on edge gateways or even in the cloud. Moreover, even existing
devices can participate in a WoT application as long as their protocols and
data schemas are describable with a TD. One final important aspect of the
proposed architecture is that agents can interact seamlessly in the different
layers with the same paradigm. A concrete example could be a smart radio
that wants to access local speakers. With the current market solution, the
interaction between those devices can happen or via a common intermediary

34 CHAPTER 2. BACKGROUND

Figure 2.6: An overview of a WoT deployment. Image taken from [10]

(i.e., a smart gateway) or using property protocols diminishing the set of
compatible devices. With WoT technologies, the smart radio would discover
local Thing Descriptions of installed speakers and interact directly with their
preferred protocol. Consequently, it is possible to have direct communication
(Figure 2.7) between WoT software agents, or more specifically Servients
(See Section 2.3.3). In conclusion, W3C WoT architecture has overcome
some interoperability shortcomings of the early ideas, and it is more flexible.
For further details refer to W3C WoT Architecture 1.1 document [10]. In
the next section, we will describe more in detail how a thing description is
defined, the fundamental structure of a servient, and the scripting API.

2.3.1 Thing Description

The Thing Description (TD) is a ”formal model and a common represen-
tation for a Web of Things” (See [27]). As Hypertext Markup Language
describes the content and the shape of a page, the TD model describes
physical or virtual interactable resources. In every sense is the entry point

2.3. WEB OF THINGS 35

Figure 2.7: Consumed and Exposed Thing diagram. See [10] for futher
details

of every Web Thing, as it introduces its purpose and context. The model
consists of a set of vocabulary terms that can be understood by machines
and humans. Those terms define declaratively a thing instance-specific
configuration of the core architectural aspect: affordances, protocols, data
schemas, and security configurations. It also provides general metadata
like Thing id, name, human-readable description, and links to other web
resources. Figure 2.8 portrays vocabulary terms organized as a Unified
Model Language classes and properties. In particular, we can find that
Thing affordances are categorized into three different types:

• Properties express the status of a Thing or one of its configuration
parameters. For example, the last temperature measured or the
position of a bistable switch. Properties can be read or written but
also observed if the underlying protocol allows it.

• Actions indicate an operation that triggers a process on a Thing.
The function may change Thing’s internal stat or just provide useful
information to the caller. An example of action could be a move
operation for a robotic arm.

• Events describe state transitions pushed asynchronously to consumers.
For instance, notify users when the temperature rises above a critical
threshold. State transitions might not reflect in Thing Property
changes, like a Thing that provides an alarm when detecting a robbery.

36 CHAPTER 2. BACKGROUND

Figure 2.8: The Thing Description data model [30]

Another notable term in the TD model is Form. A form has two goals:
it specifies which protocol should be employed to use a particular affordance,
and it configures protocol-specific parameters to access it. Forms describe
those two aspects thanks to domain-specific vocabularies defined as Protocol
Bindings templates (See Section 2.3.2). This allows a seamless extension of
the Web Things to other protocols and IoT stacks.

The default serialization format of the TD model is JSON, but it can also
contain semantic tags borrowed from the JSON-LD specification. This bi-
serialization form allows constraint devices to optimize parsing of TDs and
trait them as simple JSON documents. On the other hand, it enables more
capable nodes to leverage semantic tags to infer knowledge about the IoT
set-up or Thing context. As JSON-LD 1.1 serialization format designates,
a JSON document can be semantically enriched using reserved keywords
that contextualize its properties. For example, the term ”@type” indicates
which ontology defined class this TD document implements. Moreover, the
keyword ”@context” specifies which ontology/vocabulary should be used
when interpreting the description. This feature allows translating a TD
in an RDF representation similarly to other previous semantic web IoT
solutions, but at the same time maintaining the simplicity of JSON.

2.3. WEB OF THINGS 37

Listing 2.1 shows a full example of a Thing Description for a smart
Lamp.

1 {
2 "@context": [

3 "http://www.w3.org/ns/td",

4 {
5 "cov": "http://www.example.org/coap -binding #"

6 }
7],

8 "id": "urn:dev:ops:32473-WoTLamp -1234",

9 "title": "MyLampThing",

10 "description": "MyLampThing uses JSON

serialization",

11 "securityDefinitions": {"psk_sc":{"scheme": "

psk"}},
12 "security": ["psk_sc"],

13 "properties": {
14 "status": {
15 "description": "Shows the current

status of the lamp",

16 "type": "string",

17 "forms": [{
18 "op": "readproperty",

19 "href": "coaps:// mylamp.example.com

/status",

20 "cov:methodName": "GET"

21 }]
22 }
23 },
24 "actions": {
25 "toggle": {
26 "description": "Turn on or off the lamp

",

27 "forms": [{

38 CHAPTER 2. BACKGROUND

28 "href": "coaps:// mylamp.example.com

/toggle",

29 "cov:methodName": "POST"

30 }]
31 }
32 },
33 "events": {
34 "overheating": {
35 "description": "Lamp reaches a critical

temperature (overheating)",

36 "data": {"type": "string"},
37 "forms": [{
38 "href": "coaps:// mylamp.example.com

/oh",

39 "cov:methodName": "GET",

40 "subprotocol": "cov:observe"

41 }]
42 }
43 }
44 }

Listing 2.1: A Thing Description example of smart lamp.

2.3.2 Protocol bindings and Templates

As previously discussed in Section 2.2, various application domains and
use cases involve IoT technologies. It is this intrinsic heterogeneity that
has sprout specialized protocols and frameworks tailored to one (or few)
use case(s). Since no fit-all solution has yet emerged, the Web of Things
wants to be as inclusive as possible, avoiding being the N + 1 middleware
in the already crowded IoT tech space. Consequently, WoT requirements
for protocols are loose: it must be IP based, it must have a defined URL
protocol scheme, and it should be mapped to at least one basic operation
of the WoT network interaction model. The WoT network interaction
model is composed of twelve functions associated with one affordance type.

2.3. WEB OF THINGS 39

Figure 2.9: Main WoT network interface operations grouped per affordance
type

For instance, ”readproperty”, ”writeproperty”, ”observeproperty”, and
”unobserverproperty” belongs to Property affordances and defines what
operation can be requested remotely. Figure 2.9 shows the complete list
of the available operations for each affordance. The mapping between this
abstract interface and the concrete protocol or stack happens throughout
the form property of a Thing Description. This declarative method allows
instructing implementations on which protocol to use and how to configure
it. The instructions are given using a vocabulary defined for that particular
IoT solution known as Protocol Binding Template, whereas a particular
description given in a form is called Protocol Binding (i.e., binding as a
synonym for mapping). As an example take Listing 2.2. In this form is
described how a readproperty operation should be performed using the
HTTP protocol. The term ”htv:method” is a protocol specific concept
defined in the HTTP Protocol Binding Template. Specifically, this keyword
command consumers to use the HTTP method indicated by its value.
Consenquently, for this form example, a software agent will issue an HTTP
GET request to http://thing.example.it/test when reading the
property test.

To conclude, the WoT solution to protocol heterogeneity is addressed
with the Protocols Bindings Templates and the Thing Description as shown
in Figure 2.10.

http://thing.example.it/test

40 CHAPTER 2. BACKGROUND

Figure 2.10: Protocol bindings [10].

1 {
2 "forms": [

3 {
4 "href": "http://thing.example.it/test",

5 "contentType": "application/json",

6 "op": [

7 "readproperty"

8],

9 "htv:methodName": "GET"

10 }
11]

12 }

Listing 2.2: An extracted property of a Thing Description. The forms
property indicates protocol binding configurations to access a specific
affordance

2.3. WEB OF THINGS 41

2.3.3 Servient

Starting from the lower level we find the protocol implementation and the
system APIs. The system API is the platform-dependent interface from
where local hardware/software resources can be accessed and processed
(e.g., GPIO software interface a Raspberry PI board). Above this layer
resides the WoT Runtime; a middleware where the WoT concepts are
exposed as a coherent set of data and functionalities. This block is safely
isolated from other local processes, similarly as a browser script context
is separated from localhost programs and operating system. Moreover, it
conceals security-critical data to the upper levels, and it implements the
logic to expose, consume, and interact with Web Things. Practically, it
is able to read and create Thing Descriptions and configure the concrete
protocol implementation to communicate with a remote Thing. Finally, it
might provide a commodity interface for business logic code to easily use
the below layers: the Scripting APIs (see Section 2.3.4).

Behavioral scripts implement the business logic of a Web Thing exploit-
ing Scripting APIs to expose/consume services. For instance, the logic
to read an I2C sensor could be coded as a WoT script. Then the same
code could serve the acquired sensor data as a property affordance with the
apposite Scripting API function. Other examples of behavioral scripts are:

• Actuators control and piloting

• System orchestration

• Proxying one or more Web Things

Even if the most natural form of WoT scripts is ECMAScript20 portable
code, the specification does not force any particular coding language. On the
contrary, it defines possible alternative implementations of WoT runtimes
that support native languages like C/C++.

To summarize, the servients are software agents that play a central role
in a WoT architecture. It can be implemented in any language and can
offer an ECMAScript runtime environment for high-level bussing logic code.
For further details please head over [10] official documentation.

20https://www.ecma-international.org/ecma-262/

https://www.ecma-international.org/ecma-262/

42 CHAPTER 2. BACKGROUND

2.3.4 Scripting API

Scripting APIs is an optional block introduced in the WoT runtime servient
implementation. It defines a set of opportune functions and data models to
define behavior for Consumers, Web Things, and Intermediaries (software
agents that proxies one or more Web Things). Usually, this layer is imple-
mented on high computational capable nodes of a WoT deployment as it
requires an ECMAScript interpreter.

The APIs can be grouped into two categories: Discovery and Thing
management. The former, as the name hints, provides functions to discover
other Web Things using the WoT discovery process described in a dedicated
specification document [28]. The main entry point of the discovery is the
discovery method that accepts as input a filter object. This filter defines
how the runtime should perform the discovery and indicates the Thing
Description of interest. Currently, the specification is still undergoing,
and this API is still experimental. However, it already allows searching
for different query types and filters like SPARQL21 and JSONPath22. On
the other hand, Thing management API defines functions for consuming
and exposing Web Things. In particular, these APIs are split further
into twos: exposing and consuming. Exposing has functions to command
the generation of a TD description together with the initialization of the
runtime protocol stack (e.g., starting an HTTP server or boot up an HTTP
connection to a broker). Additionally, this set of function s covers also
callbacks setters for the main WoT operations types (i.e., readproperty ,
invokeaction). For instance, it provides a function to inject business logic
behavior when the network request for reading a particular property arrived:
the setPropertyReadHandler function. Consuming API represents the other
side of a WoT interaction pair. It consists of methods for processing a Thing
Description and invokes its affordances. An example is a readProperty
function which returns the value of the requested property affordance.
This method (and also the other Consuming functionalities) hides the
complexities of insuring a communication channel with the remote object.
Among other aspects, it correctly authenticates the script, deserializes and

21https://www.w3.org/TR/sparql11-query/
22https://goessner.net/articles/JsonPath/

https://www.w3.org/TR/sparql11-query/
https://goessner.net/articles/JsonPath/

2.3. WEB OF THINGS 43

validates data, and manages the protocol-specific inner workings. Examples
of a WoT script that uses Scripting APIs can be found in the appendix (
see Listing A.2).

As this text wants to remain more informative than technical, further
specifications about the single function can be found in the WoT public
note of Scripting API [31].

This page intentionally left blank.

Chapter 3

Open WoT Monitoring
platform

In the IT industry monitoring platforms are mostly focused on software
services. This work wants to explore how the same principles can be adapted
to physical objects and real-world features of interest. Specifically, it took a
bottom-up approach that started from the implementation of two concrete
monitoring solutions, and from there a set of generic requirements were
factorized and extracted. The monitoring applications were selected within
the two macro fields of Structural Health Monitoring and Environmen-
tal monitoring; an industrial prognostic application and a smart farming
platform. Section 3.4 will provide more details about the two.

This chapter will follow the opposite process (i.e., top-down) starting
from the abstract requirements and architecture outline that later will be
concretized in two specific use cases. In particular, the following will define
the platform requirements and prototype software architecture. It will
assess the core contribution related to previous works in Section 3.1 and
describe the platform solution in Section 3.3 . Finally, Section 3.4 will
provide a description of concrete deployments and implementations.

45

46 CHAPTER 3. OPEN WOT MONITORING PLATFORM

3.1 Related works

Physical-world monitoring is one of the most natural applications of IoT
technology. It is so deep-rooted that we can say that every IoT application
has at least one component dedicated to long term observation of a particular
physical property. According to a recent survey [32] the taxonomy of IoT
applications describes defines as six out of seventeen applications directly
involve monitoring procedures, whereas the remaining involve at least some
kind of remote observation of resources state. For example, Smart Farming
applications have dedicated monitoring services for crop growth and quality.
Even the smart home domain has some possible surveillance applications like
remote cameras or presence sensors. Therefore, during the years different
solutions were proposed in the literature. This section has the goal to guide
the reader to related software solutions that were developed to address IoT
monitoring in different use-cases with the focus on SHM domain. At the
same time, it provides further motivations about how the proposed solution
differs from the state of the art.

Disclaimer. The following is accepted to published in IEEE
Consumer Communications & Networking Conference see [33]

According to the recent survey in [34], all SHM systems must rely
on the integration of three major subsystems, which are, in order of ab-
straction, the data sensing, the data management and the data analytics
layer. The first component includes a wide plethora of sensor devices and
sensor networks based on different machine-to-machine communication
technologies [35]. Similarly, the data analytics subsystem consists of data
processing techniques and analytical models aimed at detecting, localizing
and eventually quantifying damages on the monitored structure [36]. The
focus of this paper is the data management subsystem or, more generically,
the middleware software platforms spanning between the sensing and the
data analytics components. To this purpose, the advantages of IoT-based
data management approaches versus traditional SHM solutions have been
highlighted in [37]. At the same time, [38] discussed the novel issues posed
by the IoT paradigm, mainly in terms of scalability, security and interop-
erability. The literature about IoT–based SHM platforms is quite scarce,

3.1. RELATED WORKS 47

and mainly composed of solutions where the data management layer has
been deployed ad–hoc in order to match the characteristics of the sensing
subsystem; issues of scalability and extensibility of the framework (e.g.
capability to support other sensors/devices beyond the ones used in the
proposed experimentation) are barely addressed. The few exceptions are
provided in [39] and [40]. In detail, the work in [39] proposes a Wireless
Sensor Network (WSN) platform suitable for both short–term (i.e. high
sampling frequencies) and long–term (i.e. reduced data rates compliant
with severe energy saving constraints) SHM systems; although the focus of
the authors is on the sensing and communication technologies, a Service
Oriented Architecture (SOA) is designed, including storage, sampling and
status monitoring components. Furthermore, a four–layered SHM architec-
ture is proposed in [40], where the cyber part is further divided into signal
processing, event detection and monitoring agent; the latter enabling special
actuators to notify alarm messages at the occurrence. Beside the two contri-
butions discussed above, we can classify the existing SHM platforms either
on the basis of the interface towards the sensing subsystem (i.e. HTTP vs
RESTful based approaches) or in terms of involved computational nodes
(i.e. cloud vs edge–cloud approaches). Focusing on the HTTP solutions, we
cite the sensor-to-platform architecture presented in [41]; here, the sensing
unit is constituted by several accelerometers that periodically transmit their
measurements through an HTTP channel to a remote software platform
that is in charge of displaying the received data on a Web GUI. In [42],
a long-term SHM system for the monitoring of historical buildings is pro-
posed and installed on a physical structure (the San Frediano’s tower in
Lucca). The system includes a set of accelerometers, the HTTP protocol for
data acquisition, and a combination of relational/non-relational database
management systems for the data storage. A RESTful, open architecture
(named SnowFort) is then described in [43]: the platform is fed by sensor
nodes communicating with a Zigbee module, and implements a data-pipeline
including data storage (for both raw data and processed features), data
cleaning and data visualization through a Web GUI. Additionally, the solu-
tions in [41] and [42] envisage a direct sensor–to–platform connection. Vice
versa, some studies investigates the use of edge processing units between the
sensing and the data management subsystems. This is the case of [44], where

48 CHAPTER 3. OPEN WOT MONITORING PLATFORM

the edge component is constituted by a single–board computer (Raspberry
PI) running the algorithms for noise filtering and damage identification,
and a remote cloud for data storage. Similarly, authors in [45] describe a
low-cost distributed SHM system where most of the functionalities related
to vibration acquisition and processing are performed on devices.

3.1.1 Service migration

As Section 3.3.1 will introduce a migration mechanism developed within
the open monitoring platform framework, this subsection will serve as a
panoramic of the current state of the IoT service migration technologies.

Disclaimer. The following was previously published by IEEE
Access [46]

A multitude of approaches has been proposed to enable the seamless service
migration among nodes of a distributed IoT system. In most cases, the
software mobility is aimed at supporting the physical mobility of IoT devices,
by ensuring that the data management/processing is always occurring at the
edge of the network, hence as close as possible to the current device location.
Such a conceptual model is generally denoted as Mobile Edge Computing
(MEC) [47], although it presents several overlaps with other state-of-art
architectures, such as Cloudlet [48], Fog Computing [49], and Follow Me
Cloud (FMC) [50]. A detailed illustration of service migration techniques
and strategies can be found in [47]; here, the unique challenges of MEC
compared to live migration for data centers and to handover management
in cellular networks are highlighted. Similarly, in [51], the authors propose
the concept of Companion Fog Computing (CFC), a software architecture
composed of distributed layers, one running on the mobile device, and
another on a fog server; the latter is dynamically allocated to nodes of
the fog infrastructure in order to minimize the distance from the current
device location. Generally speaking, MEC-related platforms must address
two main issues: (i) how to define the service migration strategy, by
taking into account the current resource utilization of the infrastructure
nodes as well as the QoS of the IoT application; (ii) how to implement
the software mobility, by also handling the migration of the execution

3.1. RELATED WORKS 49

state. Regarding the first issue (migration policy), most of QoS-aware
service migration policies considers delay as the principal indicator of
performance [52] and relies on multi-dimensional Markov Decision Process
(MDP) models to capture the system evolution (i.e. the device mobility
and consequential service mobility actions) over time (e.g. [53]). Since
mobility patterns might be difficult to collect in advance, an increasing
number of studies is investigating the application of Machine Learning
(ML) techniques for the estimation of the optimal migration policy; an
example is constituted by [54], where the usage of Deep Reinforcement
Learning (DRL) technique is proved to maximize the users’ reward, defined
as the difference between the QoS and the migration cost. Among the
non-delay oriented studies, we cite the self-organizing service management
platform for smart-city proposed in [55], wherein the ETX (Expected
Transmission Count) metric is used to determine the optimal positioning of
IoT services over the fog nodes. Regarding the second issue (i.e. software
mobility), Virtual Machines (VMs) and containers represent the most
investigated techniques to implement stateless or stateful service migration.
Proactive migration of VMs according to predicted device mobility is
considered in [56]; moreover, in order to reduce the network overhead
induced by the VM transfer, a container synthesis technique is applied
allowing a fog node to quickly resume the VM execution by applying deltas
over a base image. The possibility to perform horizontal (roaming) and
vertical (offloading) migration of IoT functions based on Docker containers is
demonstrated in [57]. From a performance perspective, the container-based
implementation is often considered more suitable for the virtualization at
the network edge than the VM-based [58]. This is confirmed by several
experimental studies, including [59] that investigates the implementation
of Docker-based virtualization mechanisms for IoT data management and
demonstrates that the energy impact on single-board computers is negligible.
An alternative to the usage of VM/containers is constituted by the migration
of active code: to this purpose, the ThingMigrate framework [60] enables
the migration of active Javascript processes between different machines
by employing injection mechanisms to track the local state of each function.

50 CHAPTER 3. OPEN WOT MONITORING PLATFORM

3.2 Requirements

The deployment of monitoring systems is a natively interdisciplinary task
involving joint research contributions from sensing technologies, data science,
software engineers, and domain experts. Therefore, an open monitoring
platform has to satisfy the requested features from different stack holders.
Not to mention the recent trend of crowdsensing where final users contribute
to the monitoring application as sensing devices, in a crowdfunded way.
Consequently, every monitoring platform configures itself as a cyber-physical
system where humans are highly involved in the feedback loop of different
applications. In those systems, we can define two roles: services consumers
and services producers. In this context, the ”service” term has to be intended
in the most generic sense. In fact, in the software solution in the subject,
a service could simply a new sensor added in the general picture. The
provider, in this case, takes the role of service producer and should be able
to register the new service in the platform so that interested consumers can
exploit it. On the other hand, service consumers might not only be software
services that want to analyze monitored data but also technicians who want
to locate a particular sensor in the field. An open monitoring platform
should take in mind the necessities of these two different stakeholder roles
without leaning towards a specific IoT application. The challenge is to stay
open to changes but closed to specializations, which limits the adoption
of the platform in other domains losing its advantages. In principle the
platform should satisfy these simple functional requirements:

1. Actors can publish sensing data into the platform

2. The published data should be associated with a specific physical object
or one of its properties

3. Actors can describe themselves with metadata

4. The platform should support the publishing of metadata information

5. Actors can restrict the access of the published data

6. If requested the platform should be able to conserve real-time data to
be later exposed historical records

3.2. REQUIREMENTS 51

7. Actors can consume information available on the platform

Although simplistic these requirements capture all the business logic of a
typical monitoring application. They are a superset of the specifications
collected from [61] and [62] projects, selected for their horizontal scope and
validity across of any monitoring application. If satisfied, we could develop,
for example, a dashboard application that shows the latest information
about the status of a power grid (described with metadata in the platform),
as well as use this status information to optimize resource usage. Moreover,
technicians could access historical records about the power grid to assess
possible damages or system failures. However, the IoT scenario where we
are setting the platform requires more precaution, if we want to fulfill the
goal to be open and as general-purpose as possible. Therefore, the following
describes a list of the non-functional requirements that the platform should
satisfy in order to be deployable in different IoT contexts:

8. The platform should be used also by devices with limited resources
(i.e. constraint devices)

9. metadata should always be available in a machine-understandable
format. Other human-readable formats might be used but always
supported with their machine-understandable counterpart

10. The platform should support more IoT protocols as possible, preferably
all IP based protocols

11. The platform should not be OS dependent

12. It should be distributed and support consumers and receivers at
different levels of the IoT stack (e.g. edge level interaction)

13. It should allow real-time interaction for close or local nodes but near
real-time interaction is accepted when it happens within remote nodes.

14. It must support applications across the sensor-to-cloud spectrum

15. The services provided should scale at different workloads and provide
the best effort quality of service.

52 CHAPTER 3. OPEN WOT MONITORING PLATFORM

16. The platform component should be interoperable with market ready
sensors, platforms, and future solutions.

If the platform will cover also those requirements, it could be used from
different IoT nodes, and actors can access its functionalities from different
settings. Furthermore, since it does not requires a specific IoT protocol (on
the contrary it requires that most know IoT protocols should be adopted)
it can break IoT silos and allows actors from a different domain to exploit
non-conventional data sources. For instance, use weather historical data
together with accelerometer data to assess the aging of a bridge. Related
to protocol support is requirement 16: interoperability. Interoperability is
the main motive of this dissertation and represents the novelty of prosed
architecture. The goal is to create a platform that can operate with different
protocols, devices, software components, deployment technologies, and users.
Monitoring data is precious for various domains concealing it inside a single
vertical application would limit its value. Sheth [63] identifies four levels of
requirements that a software system should satisfy to be fully interoperable:

17. System Interoperability: the software/platform should not be tight-
ened to a specific operating system.

18. Structural interoperability: application data models should agree on
the data modeling technique. For example, a relational data model
might be incompatible with an object-oriented design.

19. Syntactic interoperability: data should be exchanged with the same
formatting or serialization process. At this level, the system could
have some degree of freedom if a specific data format has a clear trans-
formation function that could convert it into the desired formatting.

20. Semantic interoperability: this level allows systems to understand the
meaning of the exchanged data without manual intervention.

Application support is critical to expanding platform functionalities
beyond the physical world. As sensors extend the monitoring framework
sensing abilities, applications add brainpower to compute more complex
information and act proactively to avoid dangerous outcomes for humans

3.3. ARCHITECTURE OUTLINE 53

and the environment. Moreover, the scaling requirement assure that those
applications perform sufficiently even in critical scenarios when one or more
actors request more data than usual. In summary, the software framework
should provide functionalities for publishing and reading monitoring data.
Moreover, data sources and monitored objects should themself be described
as supporting information. It should be also open to different IoT solutions
and devices without excluding any particular IP based protocol. Finally,
stakeholders should freely enjoy platform capabilities assuming that they
have the access rights to use the resources. A complete list of the targeted
platform’s users follows:

• Engineers

• Data scientists

• Developers

• Technicians

• Municipalities

• Private companies

• Citizens

• Public agencies

• Researchers

3.3 Architecture outline

We consider the abstract architecture depicted in Figure 3.1. Starting from
the bottom we found the sensing layer. This layer has two main responsi-
bilities: acquiring data and expose with it a standard interface. The twos
satisfy the first requirement of our monitoring platform that is being able to
publish monitoring data in the system. This is possible thanks to the fact
that the acquired data is exposed by a standard interface that allows any of

54 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.1: The open monitoring platform abstract architecture. Rectangles
represent the different agent categories whereas the grey triangles are
possible clients interacting at each level.

3.3. ARCHITECTURE OUTLINE 55

the consumer actors to fulfill their knowledge needs. The sensing layer plays
a similar role to the Connectivity layer of the 2011’s WoT architecture. The
difference here is that this layer is using the latest WoT specification which
is now becoming a standardized interface for device web-based interaction.
Furthermore, the current standard is less restrictive regarding the com-
munication protocol used by the different agents. Therefore, sensing data
are not forced to be published following a particular pattern or protocol
stack. On the contrary, implementers can choose their preferred technology
that suited their application-specific needs.For these reasons this layer is
implemented following the WoT paradigm, integrating sensors with Thing
Descriptions and Servient software agents. The integration can be carried
accordingly to one of the possible patterns present in Section 2.3:

• Legacy sensor using one of the support WoT protocol -> integrated
with a TD

• Legacy sensor that does not support an IP based protocol -> inte-
grated with System APIs or a WoT intermediary

• Brand new sensor -> implemented with WoT standard in mind (i.e.,
Servient stack support)

It is important that at this level data is published as raw as possible
or if any processing has been performed that the procedure used is well
described as metadata of the monitoring information. The raw data allows
the upper layer (usually more capable in terms of computing power) to tap
into a greater knowledge pool and consequently offer more complex services
interoperably. For example, consider a temperature sensor represented in
the sensing layer. Its virtual representation publishes a new temperature
measurement every hour as the mean of 3600 temperature reading happened
in that hour. Since the mean operation loses some level of information (e.g.,
rare high-frequency changes), the upper layers have no access to this more
accurate representation of the physical property. Consequently, this limits
the possible applications that could have been developed if the missing
information was available. Besides, since the mean is a straightforward
operation and the upper layers have more computational power, they

56 CHAPTER 3. OPEN WOT MONITORING PLATFORM

could calculate this information by themselves. Of course, there might
be some circumstances where accurate raw data measuring cannot be
exposed to other actors. This is the case when the protocol high bandwidth
constraints that ceiling the amount of data transferable or when the device
has particularly strict energy preservation needs. However, these are physical
limits and not software designing choices, as such, they should be clearly
stated in the sensor metadata.

Speaking of which, Thing Descriptions are responsible to expose mea-
surement and sensor metadata. There, publisher actors can state contextual
information about the sensor and the physical property that it is measuring.
As we will see later, contextual information allows us to state the location
of the sensor or its association to a particular set of peers. The fact that
this is information is directly accessible in the description permits any
consumer that has access to it to exploit the data for its needs without
prior knowledge. Consequently, also the requirements number 2 and part
of the 3 are satisfied.

Climbing the software architecture, we encounter the next layer: process-
ing. While the sensing layer is almost every time confined in the extreme
edge (i.e., sensors or small gateways) the processing layer spans across
different IoT levels; although it is mostly concentrated at the edge rather
than the cloud. At this layer, raw sensor data is processed and aggregated
to provide more value to possible consumers. In the proposed architecture,
we provide a useful design pattern to export the processed data in an
interoperable way. As web things can also represent virtual entities [10],
raw data transformation processes can be expressed as special virtual Web
Things, called Virtual Sensors. For instance, the raw video feed of a camera
can contain a variety of unprocessed information that can be extracted.
A virtual sensor, in this case, would connect with the remote camera and
extract, for example, the position of an object in the view; we can call
this virtual position sensor. It is not associated with a particular hardware
board but it still feeds the platform with vital information about the physi-
cal world. Another example is an agent that provides short term storage
for sensor data. As we have discussed, the sensing layer is assumed to
have low computing capabilities and consequently, it is often incapable to
store the sensed data for a certain amount of time. On the other hand, in

3.3. ARCHITECTURE OUTLINE 57

the processing layer, we could define a virtual sensor that store the data
acquired for the below layer and exposed it to a temporal series of samples.
it could even provide means to query these data and select only a portion.
Still, storage capabilities are limited in the processing layer, therefore, long
term storage services are considered more advanced a moved up in the
upper layer.

These virtual sensors could be implemented with any technology but
forcing it to be a Web Thing promote the creation of computational chains
that leverage on WoT standard. Consequently, it encourages the creation
of multi-agent applications which has a protocol-agnostic interface (i.e.,
WoT network interface). Simple consumers can still interact with this
set of virtual things as typical WoT clients assuring a common interface
within the platform. Although encouraged this design pattern proposal
does not exclude the presence of other microservices or processes that
exploited the sensing layer. Since the architecture is indirectly actor based
they can coexist in the same environment, even if they lose some level of
interoperability with other agents in the platform.

Finally, the upper layer, the analytical. At this level, services have
a more global view of the monitoring deployment and can have access
to collaborative knowledge created by the other layers. Therefore, their
typical goals are to extract complex models from the acquired data, take a
decision, and store monitoring data in long term databases (requirement 5).
The analytical layer is located at the highest level in the IoT deployment
spectrum since it requires more computation and storage capabilities. The
typical role of analytical services is the consumer, however, they can become
sources of monitoring knowledge. In these circumstances, we can exploit
again the patter of Virtual Things by taking it to a full representation
of system or object: Virtual System. A virtual system is a digital twin
of the monitored object, and it differentiates from a Virtual Sensor for
its scope. While a virtual sensor aims to model a specif data source, a
virtual system represents an interconnection of different virtual and physical
sensors, together with their metadata and analytical mathematical models.
An example could be a bridge represented as the collection of its sensors;
together with the model that extracts its aging level and the metadata
that describes its location and physical components. As with virtual sensor,

58 CHAPTER 3. OPEN WOT MONITORING PLATFORM

they could be implemented with any technology, however, exposing them as
Virtual Web Things brings, again, interoperability advantages as requested
in Section 3.2.

Web Things are not the only actors in the system; simple applications
like dashboards, Maintainance expert systems, design aid, control software,
etc, represent other possible consumers of the data produced by the platform
in the subject. Thanks to the distributed nature of the system these agents
might operate across different levels. For instance, a sensor calibration
application might operate directly with the sensing layer while a plant
monitoring dashboard could interact with the upper layers (e.g., take some
information from the analytical layer). Since the software actors interact
heavily with the WoT ecosystem an implementation suggestion is to code
them as WoT scripts. The advantage would be greater portability and more
natural interaction with the other actors in the system.

The layered architecture represents different categories of actors divided
by their role in knowledge production. The more complex is the information
that they produce, the higher they are in the logical structure of the platform.
As we climb up in the hierarchy the knowledge of the above layer is consumed
and transformed, creating a logical interconnection between the producer
and the processor. Therefore, logically related agents create a network
of computation nodes similarly to actor-based software architectures [64].
Picture 3.2 shows schematically this web of nodes distributed in the IoT
deployment spectrum. As mentioned, sensing nodes are the basic sources of
information and they live close to sensor devices, but rarely they might be
in other levels like when sensors are proxied with gateways or are existing
devices that have a sensor-to-cloud infrastructure. On the other hand,
processing actors are located primarily on the fog/edge nodes and on cloud
infrastructures for convenience or computational requirements. These actors
are luckily not bound to particular hardware or host resources, hence they
are good candidates to be moved across the different nodes to fulfill dynamic
system loadings. As explained in Section 3.3.1 virtual things can migrate
closer to the data source of interest or offload to less crowded computational
devices.

Coming back to Figure 3.1, it depicts how the system creates a shared
knowledge distributed across different levels. The knowledge is represented

3.3. ARCHITECTURE OUTLINE 59

Figure 3.2: A zoomed view of the open monitoring architecture. Notice
how the different layers are distributed across multiple IoT nodes.

as the sum of all the contextual metadata published by the actors in the
system. An example is the location of a sensor, its capabilities (i.e., its
TD), the properties that it is measuring. But also other more complex
descriptions like what is the monitored object, is it a bridge? how many
sensors are installed on it? where is it located? etc. Most of these pieces of
information are scattered across the different thing description, consequently
how it is possible to access them straightforwardly? As Section 3.3.2 will
describe the discovery subsystem provides a mechanism to find interesting
TDs in the monitoring software space. Together with the link support,
metadata can be explored as a web of different facts and notions. Moreover,
the employment of linked data technologies will increase the expressibility
of metadata information given the ability to express facts that do not
concern only the actors in the systems. For instance, the time of growth
of a particular crop is shared information that does not fit any single
Thing Description. Even if we employ a virtual thing this information
would belong to every crop instance creating duplicated metadata and
fragmentation. A good design pattern would be to describe it using a set
of RDF terms publically shared on the web platform. If necessary, these
web resources could be linked in TDs so that consumers might follow the
link to know more about a particular aspect of the represented physical
resources. Taking again the example of the crop growth, we could model
our particular crop with a Virtual System and, in its TD, link the correct
development stage descriptions published on the web.

60 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Shared knowledge without a shared vocabulary would influence nega-
tively the overall interoperability of the platform. Picture 3.3 shows how the
proposed solution uses three vocabulary levels: Web of Things, Monitoring,
and Domain. The first one expresses how to interact with the software
agents and coincides with the core TD vocabulary presented in Section 2.3.1.
For example, the term property means a device affordance which provides
information about device status or physical measurements. This level is
critical to assure common accessibility of the resources provided in the
platform. Without it, means that machine-to-machine interaction should
be planned ahead of time and in the worst-case ad-hoc protocols would
be used, resulting in worsening the interoperability and the extensibility
of the system. The next vocabulary consists of the terms used to describe
monitoring entities; those include sensors, measurements, accuracy, preci-
sion, timestamp, unit of measure, samples, procedures, collection of sensors,
sensor deployment, their location, time series, and relation to the measured
object or property. This other level is distinct from basic interaction de-
scriptions given in the WoT layer and serves as a common ground to express
particular types of Things and Affordances. Thanks to this layer an imple-
menter could state that a particular web thing is a sensor and its properties
represent measurements. Moreover, he/she can describe how sensors are
connected, where they are placed, and which unit of measure they are using.
Finally, the last layer express domain-specific knowledge that is mostly
application dependent. An SHM application will have a specific feature of
interest that is completely unnecessary in a Smart agriculture context like
material stiffness versus plant stress. However, some concepts might still
overlap; consequently this layer is divided in two: common scientific and
specif knowledge vocabularies. The scientific vocabulary contains common
scientific concepts and properties like temperature and humidity. On the
other hand, specific knowledge, as the name entitles, identifies key vocabs
that are not expressed in the lower vocabularies; simple examples are the
term bridge, or plant, or crop. Therefore, with this final block actors can
state that the object being monitored is a crop of soy, and sensor 1235 is
measuring the soil water content of the field where it is installed.

One final aspect is the Accessibility/Sharability of the data published
inside the monitoring framework. We consider this feature resolved by the

3.3. ARCHITECTURE OUTLINE 61

Figure 3.3: A possible knowledge layered organization for WoT based
monitoring applications.

underlying Web of Thing paradigm and technology. Furthermore, when
knowledge is stored in specific non- WoT based services, technologies like
oAuth 2.0 might be employed to cover the requirement 5. In conclusion,
the proposed architecture solve the presented requirements as following:

• The sensing layer solves requirements 1, 3, and 7; sensor data is
published thanks to a Web of Things interface and consumers can
read data assuming they know how to interpret a Thing Description.

• Linked Data technologies and the distributed set of TDs cover require-
ments 4 and 2

• WoT security technology fulfill requirement 5

• Analytical and processing layers satisfy requirement 6 since a virtual
sensor may store short term data and a Virtual System could store
long term monitoring information

• The layered vocabulary choice should limit interoperability issues and
together with the TDs will provide machine-understandable metadata
(requirement 9)

• Migration supports requirements 15 and 14

62 CHAPTER 3. OPEN WOT MONITORING PLATFORM

• Constraint devices are integrated thanks to the sensing layer (require-
ment 8)

• Other non-functional requirements are covered thanks to WoT paradigm
(e.g., WoT support a number of different IP based protocols, re-
quirement 10, and it allows agent interaction across all IoT levels,
requirement 12)

3.3.1 Migration

Disclaimer. This section is an adaptation of what was previ-
ously published by IEEE Access [46]

The remarkable growth of connected devices produced by the Internet
of Things (IoT) can be explained by the flexibility of its model, which
applies to a wide range of different applications, from digital manufacturing
to smart cities and environmental monitoring [65]. Service mobility has
gained significant importance for various purposes in these domains. On
the one hand numerous large-scale IoT applications operate in dynamic
environments: software solutions are therefore needed to adjust to rapid
changes in bandwidth/computational resources, the number of connected
devices, and service requirements. Several IoT platforms like [66] [54]
provide such a layer of adaptation by supporting the seamless software
mobility among the nodes of an edge-cloud continuum.

On the other hand, mobile IoT devices that produce space/time-variant
data streams are further pushing research into scalable computational
architectures that can self-configure themselves to meet the quality of
service (QoS) for user applications [67]. This is the case of Mobile Edge
Computing (MEC) [47] architecture (and closely related concepts such as
Cloudlet [48], Fog Computing [49], and Follow Me Cloud [50]) that aim at
running processing tasks in the proximity of the data sources.The ability to
unload computing resources on the edge/fog servers nearest to the current
user location is a key component of MEC architectures [47], mostly by
means of container/virtual machines (VMs) mobility techniques [56] [57],
and relocation policies driven by the physical mobility of IoT devices [53].

3.3. ARCHITECTURE OUTLINE 63

Service migration is not the only open challenge in the IoT landscape,
as we widley discussed in Section 2.2. Most of the IoT environments are
characterized by the heterogeneity of hardware and software components,
as well as by the dynamicity of their interactions. Interoperability issues
are estimated to reduce up to of 40% the potential revenues [6]. At the
same time, novel business opportunities can swell by enabling different IoT
systems to communicate together [6].

In this section, the two previously stated IoT issues (i.e. service migra-
tion and service interoperability) are discussed from a WoT perspective:
more precisely, we strive to expand WoT abilties to dynamic IoT environ-
ments by fostering dynamic WT orchestration and mobility among the
available computational resources of the full IoT spectrum (edge/fog/cloud
nodes). The WT migration provides novel opportunities compared to cur-
rent software mobility approaches in the MEC literature e.g. [47], [68].
Indeed, since the WTs interactions are defined by uniform software inter-
faces (i.e. the TDs), it is possible to engineer fine-grained and adaptive
allocation policies; by taking into account the real-world network and com-
putational load conditions and with far lower implementation complexity
for service monitoring than other ad-hoc solutions, such policies will move
groups of WTs to satisfy system-wide QoS requirements. At the same time,
a WT’s mobility from one node to another may affect the operations of
other WTs using it. Therefore, to control the WT handoff and to ensure
device continuity, innovative solutions must be implemented. The work
presented in [46] answers research questions relating to the processes for
WT migration and WT migration policies, i.e:

• How to enable the seamless migration of a WT between two nodes?

• How to optimize the performance of a WoT deployment by orches-
trating the WT allocations on a cloud-edge continuum?

In that paper, we propose the Migratable Web of Things (M-WoT), a
novel architectural framework supporting the dynamic allocation of W3C
WTs to the available computational nodes. Specifically, by managing the
handoff process for WT consumers, we investigate how to allow stateful
migration of WTs. At the same time, it defines a particular agent called

64 CHAPTER 3. OPEN WOT MONITORING PLATFORM

the Orchestrator. An Orchestration in M-WoT is responsible for tracking
WT interactions and calculating the optimal allocation of WTs to nodes
on the basis of high-level policies(e.g. data locality maximization, latency
minimization, etc). More in detail, three main contributions are provided
by [46]:

• On two chosen IoT use-cases, we examine the benefits of WT migration
mechanisms, and then we describe the components of the M-WoT
software architecture.

• We formulate the WT allocation as a multi-objective optimization
problem. After, the paper proposes a centralized heuristic that aims
to balance the load of inter-host communication (generated by the
interactions between WTs) and each host’s computational load.

• M-WoT operations are validated by two test beds. First, in edge com-
puting scenarios, we test the efficiency of various allocation policies
where we vary the number of WTs and their interactions. Second, we
explore the efficacy of the M-WoT system on a generic IoT monitor-
ing scenario in which real-time diagnostic services are dynamically
transferred from cloud to edge nodes based on background conditions

The evaluation analysis shows that when compared to greedy policies, the
suggested heuristic can efficiently balance the inter-host communication
and the computational load. In addition, the M-WoT solution is able to
efficiently reduce the diagnostic latency compared to a state-of-the-art,
no-migrate approach in the IoT monitoring use case. This thesis reports a
summary of the results presented in [46]. In particular, in the following we
describe the M-WoT archietecture together with a concrete example of the
migration process. Finally, we introduce the policies defined and in Section
4.2 we will discuss the experimental results obtained during the evaluation
of the migration mechanism.

The M-WoT software architecture is depicted in Figure 3.4. We assume a
set of W3C WoT Servients, deployed on different nodes; each Servient hosts
exactly one WT. Differently from a legacy static W3C WoT deployment, the
M-WoT enables WT mobility between different nodes. To achive this goal,

3.3. ARCHITECTURE OUTLINE 65

Figure 3.4: Main system components of a Migratable WoT deployment.

the M-WoT features two novel components: respectively the Orchestrator
and the Thing Directory; these modules are statically deployed and can be
installed either on the edge (if the computational requirements are met)
or on cloud servers. In addition, the Servient software stack is augmented
with a Monitoring Layer (see Section 3.3.1.3). In the following, we detail
the internal structure of the three software components, while in Section
3.3.1.4 we clarify the modules’ operations when a WT migration process
occurs.

3.3.1.1 Thing Directory

The Thing Directory (TDir) serves as registry of the M-WoT resources, i.e.
of the active Thing Descriptors (TDs) 1. In more depth, two types of TDs are
possible in a M-WoT system, one associated with WTs and one associated
with Servients; the latter defines the runtime environment capabilities and
is used to allow the monitoring layer functionality listed in Section 3.3.1.3.
Each Servient records its TD and the TD of the hosted WT on the TDir

1When we worked on [46] the Thing Description Directory was not yet standardized
by the W3C. The reader can think the TDir as an early concept of a TDD.

66 CHAPTER 3. OPEN WOT MONITORING PLATFORM

once activated. Then, two major roles are performed by TDir. First, it acts
as a discovery service, i.e., when queried by clients it returns a list of TDs
that follow the demand criteria; thus, the Orchestrator module will be aware
of the list of Servient currently available in the WoT deployement. Second,
it supports generic push notifications towards WTs/Servients once specific
system-wide events are detected, for instance a WT handoff completion.
It is critical in thing migration scenarios that this module supports push
notification mechanisms. This is due to the dynamism of the environment;
moreover it is practical to quickly restore a consistent state of the system
and, at the same time, minimizing the network usage. For example, let
us assume that WT T1 has been consumed by T2, which is periodically
accessing one of its properties. In case T1 is migrated on a different node,
the actual data-pipeline is broken unless T2 is prompted about the mobility
event and the new service location. The notification process is depicted
in the sequence diagram of Figure 3.7, discussed later in Section 3.3.1.4.
Alternatively, a polling mechanism might be employed (involving T1 and
TDir in our example). However, this approach might introduce significant
network overhead with consequent bandwidth wastage. Therefore it has
not been considered in our solution.

3.3.1.2 WT Orchestrator

The critical component of the M-WoT design is the Orchestrator. It uses
the TDir to retrieve the list of active servients(i.e., the list of their TDs), as
explained before. In order to gather live data, such as the use of the CPUs
and the network traffic produced by the WT connections, it then regularly
queries each servient exploiting servient WoT interface. Consequently, the
Orchestrator decides the appropriate allocation of WTs/Servients to nodes
based on the obtained metric values and on the optimization policy in
place. The allocation plan is then transferred to an underlying module
(external to M-WoT), generically called here Migration Substrate which
is in charge of implementing the physical software mobility between the
source and destination nodes. During the system lifespan, the above steps
are constantly executed by the Orchestrator; as a result, the dynamicity
of the IoT/ WoT environment is completely supported in terms of WT

3.3. ARCHITECTURE OUTLINE 67

creation/disposal, network bandwidth variation, policy update at run-time.
Moreover, in order to favour the platform extensibility, the structure of the
Orchestrator has been modularized into the three main sublayers of Figure
3.5, reflecting the internal data pipeline:

1. Thing Manager : it periodically polls data from the TDir to manage
the list of the active Servients/WTs and their TDs. The list is used
to gather periodic reports from each Servient.

2. Optimizer : it runs the WT/Servient allocation policy. At the current
stage of implementation, the module hosts the graph-based optimiza-
tion algorithm defined in Section 3.3.1.5 and the other greedy policies
evaluated in Section 4.2; however, we remark that any user-defined
policy implementing the interface towards the upper (i.e. the Thing
Manager) and lower (i.e. the Migration) layers can be installed and
used.

3. Migration: it receives the deployment plan from the Optimizer, and
it implements the WT handoff events. First, it stops the execution
of the WTs to migrate at their actual nodes; then, through specific
connectors, it issues actions towards the Migration Substrate to enable
the physical transfer of the Servients (and of the hosted WTs) from
the source to the destination nodes.

The M-WoT architecture does not rely on any specific software mobility
technology. Instead, we have introduced an abstraction layer, called the
Migration Substrate, which can employ any state-of-art solution (via proper
migration connectors), such as Docker containers, VMs, or Javascript
processes [47] [60]. Those connectors will perform the Optimizer output
plan received as input. Concretely, the current implementation relies on
Docker Swarm as a default migration connector.

3.3.1.3 M-WoT Servient

Finally, the M-WoT framework introduces light modifications to the Servient
runtime [69] in order to feed the Optimizer with real-time data about system
performance. More precisely, a Monitoring API layer has been introduced

68 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.5: The main modules of a Orchestrator agent. Three modules
cooperate with the goal to find the optimal allocation plan and actuate it
thanks to the migration substrate.

3.3. ARCHITECTURE OUTLINE 69

Figure 3.6: The internal software stack of a migratable servient. See the
new added module dedicated to the extraction of monitoring parameters
about application behaviour

70 CHAPTER 3. OPEN WOT MONITORING PLATFORM

between the WT business logic and the Scripting WoT runtime, as seen in
Figure 3.6. The layer is responsible for the interception of Scripting API
invocations and for the generation of periodic Thing Reports (TRs). The
latter can be considered a snapshot of the current Servient/WT execution
state, and it contains the metrics’ values (both for the Servient and WT)
required by the Optimizer; in the Appendix A we report a fragment of the
TR structure in use. The Monitoring layer provides all the data collected
trough a proper Action Affordance, which is listed in the Servient TD; by
invoking it, the Orchestrator or another consumer can issue request for TR
generation to the Servient.

3.3.1.4 Migration example

To summarize the operations of the three components presented so far, we
provide an example of WT migration process. We evaluate two WTs/Servients,
respectively TA/SA and TB/SB (with TA running on SA and TB on SB),
hosted on nodes N1 and N2. We also assume that TB has consumed TA and
it is periodically reading some of its properties. At time instant t, the Thing
Manager queries SA and SB in order to collect the TRs; this is implemented
by consuming the TDs of the Servients and issuing a retrieveReport com-
mand (details in [46]). Then, the Optimizer is executed; a new allocation
is produced where TA must be moved to N2. The sequence of operations
performing the migration of TA from N1 to N2 are shown in Figure 3.7.
First, the current execution of TA is stopped: this is performed by the Or-
chestrator (and more specifically by the Migration submodule) by invoking
the stop action on SA which, in sequence, stops the WT application, cleans
the system resources, retrieves the application data context (i.e. the current
state) and returns it. Hence, the application context of TA is stored as
metadata inside the TDir for later use. Next, the Orchestrator (through a
proper Connector) issues a request to the Migration Substrate (e.g. Docker
Swarm) in order to move TA/SA to the destination node (N2). After SA

has been respawned, it register its new TD (with the updated network
addresses of its Affordances) in the TDir. Consequently, it queries the
TDir to retrieve the TA’s context; the latter is deserialized and injected as
a global object inside the TA’s application script. Finally, TA starts the

3.3. ARCHITECTURE OUTLINE 71

Figure 3.7: Sequence diagram of a WT migration event.

initialization process and exposes itself by triggering the registration of its
TD on the TDir. At this point, TA resumes in the same state of when it
has been stopped and it is considered fully migrated. The TDir pushes a
notification to TB regarding the handoff process; TB retrieves the new TD
of TA from the TDir and consumes it again in order to point to the updated
service location. Finally, TB restarts interacting with TA and accessing its
affordances.

3.3.1.5 Policies

In the following, we introduce the M-WoT migration problem informally
together with a set of possible policies evaluated in Section 4.2. For an
in-depth mathematical illustration, please refer to [46]. In this study, we
considered a twofold optimization process that takes into account the load-

72 CHAPTER 3. OPEN WOT MONITORING PLATFORM

balancing issue (i.e., how much each host2 is loaded) and the network
communication overhead (i.e., how much data is exchanged among hosts).
Simply speaking, giving a number of different nodes where a set of Web
Things can be deployed, M-WoT tries to find the optimal distribution of
those WTs such as the Host Fairness metric is less than a user-defined
parameter (∆) and Network Overload metric is minimized. Specifically,
the Host Fairness measures the difference in terms of computational load
between the most loaded and most unloaded host of the cluster (i.e., the set
of nodes managed by M-WoT). On the other hand, Network Overload takes
into account the total inter-host communication load (in bytes) occurring
due to interactions among WTs hosted by different nodes. Notice that in
M-WoT inter-host communication happens always as a call to a remote
Web Thing interaction affordance. Consequently, the number of bytes
transmitted is a linear combination of the amount of remote interaction
affordance calls.

The two distance functions are titled coupled: minimizing the network
load can be achieved by allocating all the WTs to the same host, whereas it
is the worst case for the Host Fairness. This is why the ∆ hyperparameter
is employed as a tuning knob to select how much the system should strive
in the balancing of the computational load. More in detail two extreme
cases are possible:

1. The system goal is to minimize the data transmitted over the network,
regardless of the service latency. This might the case of an edge-
cloud IoT scenario, where the manager is interested in minimizing the
amount of data exchanged toward a remote infrastructure for privacy
reasons. In this case, ∆ =∞

2. The system goal is to minimize the service latency, by avoiding the
presence of performance bottlenecks (i.e., overloaded hosts) while still
mitigating the amount of inter-host communications. In this case,
∆ = 1

In this context, a strategy that tries to solve the migration problem

2The terms hosts and nodes are used interchangeably

3.3. ARCHITECTURE OUTLINE 73

given a delta as input is called policy. In [46], we evaluated 4 different
policies:

• NoMigrate: do not perform any migration.

• Greedy NetLoad: this is a greedy policy that aims at minimizing
Network Overload. At specific intervals, it selects the WT producing
the highest network traffic and it migrates it towards the same node
of the consumer WT.

• Greedy CPULoad: another greedy policy but that minimizes the host
load metric. It focuses on the edge node of the cluster associated
with the highest average CPU load, detaches one WT, and moves it
towards the node with the lowest CPU load.

• Graph-based: We defined an exact policy that leverages on the inter-
action graph created by the managed set of WTs. It is able to obtain
the optimal configuration in N defined steps outperforming the other
policies in most of the simulated test cases. For this policy, we define
three different sub configurations:

– ∆ =∞: the policy aims exclusively at minimizing the Network
Overload metric, while no load-balancing action is executed.

– ∆ = 5: The balance parameter is in a mid configuration. The
policy computes a minimal Network Overload solution ensuring
that the host load cannot exceed the ∆ threshold equal to 5.

– ∆ = 1: this is similar to the previous policy, however, we set the
system to provide an even distribution of the WTs allocations
over the nodes of the cluster.

In conclusion, the M-WoT framework aims to solve a mathematical allo-
cation problem, optimizing different metrics. In [46] we defined a set of
policies (i.e., strategies) to find exact and approximated solutions of the
optimal deployment. Finally, Section 4.2 describes the experimental results
obtained in the evaluation of those policies in a virtual set up.

74 CHAPTER 3. OPEN WOT MONITORING PLATFORM

3.3.2 Discovery

As discussed in Section 3.3, the actors of the platform create a distributed
web of knowledge. The discovery process is the action of navigating this
web looking for particular information or fact. An example is a consumer
that wants to know the nearby sensors or which monitored structures
are in the desired area. Since the knowledge has a distributed nature,
it does not have a single point of access which requires the definition of
discovery techniques. Unfortunately, at the time of this document, the
W3C standardization process for discovering is still ongoing. Therefore, the
following will go through possible discovery ideas explored during those
three years of research and development.

In the platform in the subject, the central source of information is the
Thing Descriptions of the web things deployed on a particular setup; they
are the starting point to obtain raw or processed sensor data. TDs are
service descriptors of physical/virtual devices, and as such, its discovery
is a particular type of service discovery. In [70], the authors review the
discovery mechanisms used in different frameworks and provides a taxonomy
to categorize them. Although similar to other frameworks (e.g., UPnP3),
WoT deployments have unique challenges when it comes to discovery. The
major WoT strength, protocol agnostic, hinders the definition of a network
discovery protocol specific for WoT deployments. To overcome this issue,
the current practice is to split the discovery process into two phases. In
the first step, application-specific discovery protocols retrieve a list of TDs
URLs, while in the second phase, consumers can access those URLs to
access the desired information. Employing this method allows defining a
boundary where only authorized actors can read and use TD knowledge
and device capabilities. After phase one, URL access can be closed using
one authentication method suitable for the specific protocol. For instance,
an HTTP URL might force the requester to authenticate using OAuth 2.04

whereas an HTTP URL might require an HTTP username and password
credentials. Remembering the requirement 5 is critical to assure confiden-

3https://docs.osgi.org/specification/osgi.cmpn/7.0.0/service.upnp.htm

l
4https://tools.ietf.org/html/rfc6749

https://docs.osgi.org/specification/osgi.cmpn/7.0.0/service.upnp.html
https://docs.osgi.org/specification/osgi.cmpn/7.0.0/service.upnp.html
https://tools.ietf.org/html/rfc6749

3.3. ARCHITECTURE OUTLINE 75

tiality in the system. Phase one protocols may differ from one application to
another, but WoT runtimes and Scripting API may provide an abstraction
layer so that scripts could discover protocol agnostically Thing Descriptions.
Considering again [70], the authors provide a list of possible mechanisms
for service discovery; most of those methods can as well be employed in a
WoT scenario. For example, the mDNS protocol might be used to collect
network-specific servient locations. When the application requests a search
in the local network, the runtime would go through each address and ask
for the list of the exposed Thing Descriptions.

Usually, phase one protocols do not support complex queries, due to
the challenges on query propagation and processing in P2P networks [70].
However, phase two can provide richer filtering methods thanks to the
support of super-nodes called Thing Description Directories. The TDDs
are particular WoT actors that serve as collection points of TDs and are
as well described with a particular TD type. In its simplest form, a TDD
is a web resource containing a list of descriptions, but more sophisticated
services allow TD publishing and filtering using different query methods.
The working specification draft suggests two possible functions for TD
filtering: JSONPath and SPARQL. JSONPath provides a syntactic filter to
choose the structure of the desired Thing Description. For instance, retrieve
all TDs document that has a property affordance the name status. On
the other hand, SPARQL may be employed to issue semantic base queries
like: find the TDs which represents a switch device. Although richer, the
full capabilities of SPARQL queries are yet to be explored. However, they
provide a hint about how to discover other non-TD knowledge published in
our monitoring platform.

Non-TD knowledge may be published as a web resource (i.e., a document
retrievable using HTTP) and linked using Thing Descriptions. However,
linked resources are not comfortably queryable; for instance, JSONPath
cannot use link contents in its filters. Neither SPARQL, even if it has
some mechanism to fetch remote documents (i.e., FROM and SERVICE
clause), cannot use the linked content to decide if the TD is application side
compelling or not. Moreover, some monitoring relevant data are not always
linked in TDs because it is generic contextual information like weather
forecasts or how many citizens lives in a determined area(analytical services

76 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.8: The distribution of Thing Description Directories across different
IoT layers. It can noticed how different clients can access the knowledge
graph from distributed phisical locations.

might use this knowledge to predict possible risks). Therefore, it is useful
to publish these pieces of information as RDF liked data in a SPARQL
endpoint. A SPARQL endpoint is an HTTP service that supports the
SPARQL 1.1 protocol which allows users to update and query a set of RDF
resources. This has two benefits: first, every piece of information contained
inside a SPARQL endpoint is machine-understandable (requirement 9),
second, it is queryable with a query language. As also Thing Description
Directories might support SPARQL, we could use SPARQL endpoints to
store also TDs so that everything is presented in a coherent interface.
Moreover, SPARQL TDDs can be connected in a complex net thanks to
the Federated Query support of the protocol. Basically, with SPARQL
Federated Queries, users can define a list of SPARQL endpoints that should
process a particular query, then the first SPARQL endpoint takes charge
to forward it and join the obtained results. This gives the opportunity to
evenly distribute monitoring knowledge across IoT layers. An example is
shown in Figure 3.8, where local TDDs connect with other TDDs thanks
to links in their Thing Descriptors and different users access the same
knowledge base from different entry points.

Storing TDs and other contextual information in SPARQL endpoints

3.3. ARCHITECTURE OUTLINE 77

solve the need to have a common access point for discovery and knowledge
consumption. Although less than sensor data, contextual information is
still subject to changes during the time; information like the number of
the installed sensors, predictions about the weather, stock market values
represents all examples of dynamic contextual data. At the same time,
SPARQL 1.1 protocol does not support query subscription, that is the ability
to obtain notifications about changes in a query result. In the following,
we will describe a possible software architecture to solve this problem and
propose a Thing Description Directory that leverage this solution.

3.3.2.1 SPARQL Event Processing Architecture

Disclaimer. This section was previously published by MDPI
[71]

Nowadays, the Web of Data is becoming a Web of Dynamic Data, where
detecting, communicating and tracking the evolution of data changes play
crucial roles and open new research questions [72, 73]. Moreover, detecting
data changes is functional to enable the development of distributed Web
of Data applications where software agents may interact and synchronize
through the knowledge base [74,75]. The need for solutions on detecting and
communicating data changes over the Web of Data has been emphasized
in the past few years by research focused on enabling interoperability
in the Internet of Things through the use of Semantic Web technologies
(like the ones shown in [76–79] just to cite a few). Last but not least,
an attempt made by W3C is represented by the Web of Things working
group and by the Linked Data Notifications (Linked Data Notifications,
W3C Recommendation 2 May 2017, 5) released in 2017 that provide the
recommendations to enable notifications over Linked Data.

In this section, we propose a decentralized Web-based software archi-
tecture, named SEPA (SPARQL Event Processing Architecture) built on
top of the authors’ experience acquired developing an open interoperability
platform for smart space applications [80–90]. SEPA derives and extends
the architecture presented in [91] through the use of standard Linked Data

5https://www.w3.org/TR/ldn/

https://www.w3.org/TR/ldn/

78 CHAPTER 3. OPEN WOT MONITORING PLATFORM

technologies and protocols. It enables the detection and communication of
changes over the Web of Data by means of a content-based publish-subscribe
mechanism where the W3C SPARQL 1.1 Update and Query languages are
fully supported respectively by publishers and subscribers. SEPA is built
on top of the SPARQL 1.1 Protocol and introduces the SPARQL 1.1 Secure
Event protocol and the SPARQL 1.1 Subscribe Language as a means for
conveying and expressing subscription requests and notifications.

In particular, assuming an event as “any change in an RDF store”, SEPA
has been mainly designed to enable event detection and distribution. The
core element of SEPA is its broker (see Figure 3.9): it implements a content-
based publish-subscribe mechanism where publishers and subscribers use
respectively SPARQL 1.1 Updates (i.e., to generate events) and SPARQL
1.1 Queries (i.e., to subscribe to events). In particular, at subscription time,
subscribers receive the SPARQL query results. Subsequent notifications
about events (i.e., changes in the RDF knowledge base) are expressed in
terms of added and removed query results since the previous notification.
With this approach, subscribes can easily track the evolution of the query
results (i.e., the context), with the lowest impact on the network bandwidth
(i.e., the entire results set is not sent every time, but just the delta of the
results). The SEPA broker design is detailed in Section 3.3.2.2.

In [71], we propose the SPARQL 1.1 Secure Event (SE) Protocol and
the SPARQL 1.1 Subscribe Language presented, along with the mechanisms
to support client and server authentication, data encryption and message
integrity. The SPARQL 1.1 SE Protocol allows agents to interact with
the broker like with a standard SPARQL Protocol service (also know as
the SPARQL endpoint), but at the same time, it allows one to convey
subscriptions and notifications expressed according to the SPARQL 1.1
Subscribe Language. SEPA provides developers with a design pattern
where an application is constituted by a collection of agents. As shown
in Figure 3.9, each agent plays a specific role within an application (i.e.,
producer, aggregator or consumer) and can be shared among different
applications. While a producer publishes events by means of a SPARQL
1.1 Update, a consumer is subscribed to specific events through a SPARQL
1.1 Query. An aggregator plays both roles: it is subscribed to events and
generates new events based on the received notifications. The application

3.3. ARCHITECTURE OUTLINE 79

design pattern introduced by SEPA, along with the application domains
that may benefit from the adoption of this model.

Figure 3.9: From the Web of Data to the Web of Dynamic Data. SEPA,
SPARQL Event Processing Architecture.

3.3.2.2 Software architecture

Disclaimer. This section was previously published by MDPI
[71]

The modular design of the SEPA broker allows one to support new protocols,
mechanisms and algorithms for enabling subscriptions over the Web of Data.
A reference implementation of the broker is available on GitHub6. As shown

6https://github.com/arces-wot/\acrshort{sepa}

https://github.com/arces-wot/\acrshort {sepa}

80 CHAPTER 3. OPEN WOT MONITORING PLATFORM

in Figure 3.10, the broker architecture is layered in three parts: gates,
scheduler and core. The following sections provide details on the different
parts of the broker.

Figure 3.10: Broker reference architecture.

3.3.2.3 Protocols And Dependability

Disclaimer. This section was previously published by MDPI
[71]

The gates layer implements the SPARQL 1.1 SE Protocol (see [71]): it
create requests (i.e., update, query, subscribe and unsubscribe) for the

3.3. ARCHITECTURE OUTLINE 81

scheduler and delivers responses and notifications. As shown in Figure 3.10,
the SEPA broker reference implementation provides two gates: HTTP(S)
and WS(S), both supporting also the Transport Layer Security (TLS)
Protocol. The former processes updates and queries according to the
SPARQL 1.1 Protocol, while the latter uses the WebSocket protocol for
conveying subscription requests and notifications. The HTTP gate is based
on the non-blocking, event-driven I/O model based on Java NIO, provided
by the Apache HTTP Components Apache HTTP Components, 7, while the
WebSocket gate is based on the Java WebSockets library(Java WebSockets
library by TooTallNate, 8) Other protocols like HTTP, CoAP or Linked
Data Notification can be supported by implementing the corresponding
gates.

SEPA aims to provide a minimum level of dependability [92] through
the Dependability Manager. On the one hand, it implements the security
policies and mechanisms presented in [71]. In a real-world scenario, the
OAuth 2.0 Authorization Server would be different form the Resource Server
(i.e., the SEPA broker). Clients who need secure access to the SEPA broker
would register and get a valid token from such an external service (e.g.,
https://auth0.com). However, at the same time, to provide an off-the-shelf
solution for testing SEPA security, the reference implementation of the
Dependability Manager implements the client credentials grant type and
uses JSON Web Tokens (JWT) (the reference implementation uses the APIs
provided by Connect2Id, 9). On the other hand, reliability is achieved with
simple, but effective methods of failure detection in the communication
between the broker and subscribed agents. This property is important
to grant the general dependability of the connection, but also, it is func-
tional, on the broker side, for cleaning unused resources. In this sense, the
WebSocket protocol used by the reference implementation embeds a failure
detection mechanism. In fact, thanks to the ping-pong controls frames, the
broker and the agents can recognize a failure (i.e., a broken connection) and
react accordingly to some fault-tolerant policies. Furthermore, the broker
can exploit this information to free unused resources created by agents that

7https://hc.apache.org/
8https://github.com/TooTallNate/Java-WebSocket
9https://connect2id.com/products/nimbus-jose-jwt

https://hc.apache.org/
https://github.com/TooTallNate/Java-WebSocket
https://connect2id.com/products/nimbus-jose-jwt

82 CHAPTER 3. OPEN WOT MONITORING PLATFORM

have been disconnected in an unexpected way, avoiding a negative impact
on the performance. Overall, the protocol and the broker architecture must
support the development of distributed applications with some degree of
availability and resilience. Therefore, future implementations of new gates
should at least implement a basic fault detection mechanism to recognize
disconnections or node failures.

3.3.2.4 Requests Scheduling and Responses Dispatching

Disclaimer. This section was previously published by MDPI
[71]

The scheduler layer implements the scheduling mechanisms and policies.
In the reference implementation, requests are scheduled as FIFO, and the
scheduler can be configured with a maximum number of pending requests
(i.e., the size of the FIFO queue). The scheduler implements also the
dispatching of responses coming from the core layer by forwarding the
correct response to the correct gate, which will then send back the response
to its client. The same applies to notifications. The requests coming from
the gates layer may also be scheduled according to load balancing policies
(e.g., processing may performed also on a different machine), and the
scheduler may deny requests due to a high number of pending requests (e.g.,
for quality of service purposes). Requests may also have different priorities,
or some requests may be avoided in some application contexts (e.g., the
use of time-consuming queries may be avoided in highly synchronized and
reactive environments).

3.3.2.5 Processing

Disclaimer. This section was previously published by MDPI
[71]

The core of the broker processes the requests coming from the scheduler
(i.e., update, query, subscribe and unsubscribe). As shown in Figure 3.11,
the main building blocks of the core are: the Query processor, the Update

3.3. ARCHITECTURE OUTLINE 83

processor the Subscription Processing Unit (SPU) manager and a main
thread holding a FIFO queue of update requests.

Figure 3.11: Core of the broker architecture. EOP, end-of-processing; SPU,
Subscription Processing Unit.

While queries can be processed in parallel (i.e., multiple Query processor
instances can run concurrently), updates are sequentially processed through
a FIFO queue (i.e., only one instance of the Update processor can be active).
As soon as a query arrives, it is sent to the underpinning SPARQL endpoint,
and the decision on when to process such a query is made there. As most
of the SPARQL endpoints are supposed to be able to process multiple
requests in parallel, queuing together queries and updates could result in
a substantial decrease of the performance. On the one hand, this means

84 CHAPTER 3. OPEN WOT MONITORING PLATFORM

that the coherence of query processing (with respect to updates) is not
granted, but on the other hand, this allows one to take advantage of all the
processing power of the underpinning SPARQL endpoint.

Instead, the sequential processing of updates is a fundamental require-
ment to grant coherence on subscriptions’ processing. In fact, as updates
change the content of the RDF store, all the active subscriptions must be
checked on the same RDF store snapshot. Because of that, a new update
can only be processed after the processing of all subscriptions ended. More
in detail, the Update processor and SPU manager are synchronized as
follows. The core thread sends an update request to the Update processor
and waits to receive a response. Once received, the response is forwarded
to the publisher (it should be noted that, in this way, the publisher receives
a response on the effective status of its update (i.e., the response to the
publisher is not provided as soon as the request has been inserted into
the FIFO queue, but once the response from the SPARQL endpoint has
been received). This allows one to implement, at the application level,
synchronization mechanisms that are fundamental for the development of
distributed applications. In the case of a successful response, the core thread
activates the SPU manager and waits to receive an end-of-processing (EOP)
indication. The EOP indicates that all the active subscriptions have been
processed. The core thread can so extract from the FIFO queue the next
update request (if present) and send it to the Update processor.

With this approach, the update processing will never overlap with the
subscription processing. This can be avoided only if the SPU manager does
not need to perform queries on the SPARQL endpoint during subscription
processing. There are two possibilities to implement this: (i) the SPU
manager holds a local RDF store (i.e., cache) for each subscriptions (i.e.,
this is referred to as the Context Triple Store in [91]); (ii) the SPU manager
implements a subscription algorithm that does not require access to the
knowledge base, like the one presented in [93] (based on the Rete algorithm
[94]). In both cases, the Update processor must return the triples that have
been added or removed so that the SPU manager can track the evolution
of the RDF store caches or the Rete network. In this scenario, the SPU
manager is expected to indicate the EOP as soon as it receives an activate
request (i.e., the request can be added to a synchronized queue), and the

3.3. ARCHITECTURE OUTLINE 85

core can immediately start processing the next update request.

3.3.2.6 Subscription Processing Unit Manager

Disclaimer. This section was previously published by MDPI
[71]

This section describes the internal structure of the Subscription Processing
Unit (SPU) manager that processes the subscriptions. The SPU manager
architecture is shown in Figure 3.12.

Figure 3.12: SPU manager architecture.

Each subscription is processed by an SPU that is instantiated by the
Creator module when a subscribe request is received. The Creator module,

86 CHAPTER 3. OPEN WOT MONITORING PLATFORM

by analyzing the SPARQL query, may instantiate a different kind of SPU
(i.e., implementing a different algorithm) or link the subscription with
an existing SPU (i.e., the SPARQL query is the same [95]). An SPU
is deallocated by the Destroyer module when an unsubscribe request is
received. This may be issued directly by a client if a client connection has
been lost [71].

On each update received by the broker, the SPU manager is activated
(see Activate in Figure 3.12). The Activator module activates all the SPUs
and waits for all of them to complete processing. Then, it signals to the
main core thread (see Figure 3.11) the effective end-of-processing (EOP) so
that the next update request can be processed. SPUs run in parallel, and
each SPU may also run on a different machine in a distributed computing
environment.

An SPU implements the subscription algorithm and notifies its subscriber
(or subscribers if the SPU is shared by multiple clients) of changes due
to the last update (if any). As each subscription must be processed at
any update, subscription processing shapes the scalability level. Here,
multi-resolution approaches where a fast coarse-grained step filters out
most unaffected subscriptions leaving the burden of detecting the need for
notification to a few candidates, turn out to be particularly effective, as
shown by the performance evaluation sections in [80, 91]. In particular,
in [91], an algorithm is presented that speeds up the query processing and
the results matching by (i) binding variables before sending the query to
the SPARQL endpoint and (ii) performing a fast filtering stage based on
look-up tables to reduce the amount of subscriptions that are candidates
to produce notifications. Another option to optimize the subscription
processing could be to implement a Rete network as described in [93].
Discussion on subscriptions processing optimization is out of the scope
of this paper, but the reader can refer to [96] for a discussion on how
performance can be evaluated.

3.3.2.7 A Dynamic SPARQL Directory

A SEPA instance (i.e., a software implementation of the SPARQL Event
Processing Architecture) represents a convenient way to obtain notifications

3.3. ARCHITECTURE OUTLINE 87

Figure 3.13: A Thing Description Directory powered by a SEPA microservice

about changes in an RDF dataset. On the other hand, considering a WoT
deployment, software agents expect also alerts about updates of the TDs
present in the system. Even if this information could be extracted from
SEPA subscription messages, it is convenient to provide a set of API that
manipulates TDs rather than RDF triples.

Figure 3.13 depicts an extension of the SEPA architecture to morph it
into a Thing Description Directory. However, it differentiates from other
SPARQL based directories because of its ability to capture changes in TD
collections, hence its name: Dynamic SPARQL TDD. The architecture
adds a new microservice to the standard configuration that is dedicated
to transforming TDs in RDF triples and the other way around. As Figure
3.13 shows the TDD API microservice serves as an intermediary between
consumers and the SEPA endpoint. In practice, it exposes the same API
described in Section 3.3.2 but it enriches the event subscription methods with
a SPARQL filter. Before going into detail, it is important to understand the
mapping function that transforms valid Thing Description documents into
RDF triples. The JSON-LD specification describes a formal transformation
to obtain an RDF dataset from a JSON-LD file. Remembering that every
TD is serialized with JSON-LD format, we could employ this process
to store TD documents inside a SPARQL endpoint or a SEPA instance.
Basically, the transformation function consists of expanding JSON values
and serializing them as a node map. The expansion uses the context

88 CHAPTER 3. OPEN WOT MONITORING PLATFORM

file as a guide to change simple properties (e.g., label) to full URIs (e.g.,
http://www.w3.org/ns/td#label) so that they can directly be used as
well-formed RDF terms. On the other hand, the node map serialization
creates a list of nodes that represents a graph, which is easily translated
to RDF. Unfortunately, the mapping transformation between JSON-LD
and RDF is lossy. During the morphing, some pieces of information about
the original document structure are lost; for example, which was the root
element of the document or how the URIs were shortened (i.e., the context).
The problem is the conversion of the tree document structure to a graph. In
a tree the hierarchy is clear, it has a root and a set of children and parents.
On the other side, in a graph the relationships between nodes are egalitarian
and it has not a definitive access order (Figure 3.14). Consequently, the
JSON-LD specification employs a dedicated file type to reconstruct the
original document: JSON Frames. A JSON frame is a JSON document
that guides the conversion algorithm to shape data in the desired format. It
reestablishes the hierarchical structure lost in the conversion to RDF, and
it shows an example of the old arrangement. As consequence, it is possible
to craft a properly designed JSON frame to reobtain the original TD from
the RDF set completing the loop. Hence, the process illustrated allows
going from one representation to the other and to store TDs in SPARQL
endpoints as RDF data sets. Coming back to the TDD API microservice,
it does not only implements the process above but also manages Thind
Description Directory data models and internals. In fact, one relevant
aspect covered by the TDD API microservice is the meta-model (i.e. how to
store TDs in a SPARQL endpoint) and SPARQL results translation. In the
solution of the matter, the microservice, when a TD is published, translates
it and stores it in an RDF Graph with the same URI of the TD id. As
we’ll see, this particular data model (shown in Figure 3.16) is preparatory
for the other role of TDD API that is the conversion of SPARQL query
results into well-formed Thing descriptions. Briefly, SPARQL queries yield
specific solution formats that do not resemble a TD; on the contrary, they
are designed to covey data in a table format (similarly to rich CSV files10).
Taking the Listing A.3 as a reference, it is possible to notice that the file

10https://en.wikipedia.org/wiki/Comma-separated values

http://www.w3.org/ns/td#label
https://en.wikipedia.org/wiki/Comma-separated_values

3.3. ARCHITECTURE OUTLINE 89

Figure 3.14: On the left a tree like data structure whereas on the right a
graph based data model.

is composed by the definition of the table header (i.e., vars property) and
the list of the rows of this table (see bindings field). This same format,
called SPARQL JSON results, is used as the returned data type for every
SPARQL query type (i.e., SELECT, DESCRIBE, CONSTRUCT, ASK).
Even if WoT agents might be able to process SPARQL JSON results and
extract meaningful information to interact with the described Web Thing, it
is more convenient to provide a homogenous API. The advantage is not only
on the design side, but also it allows even the least capable nodes to exploit
SPARQL queries for discovery. For these reasons, the TDD microservice
for SEPA performs the following steps on SPARQL search:

1. The query must be a DESCRIBE SPARQL query

2. The object of the DESCRIBE must point to an RDF resource that is
rdf:Type of Thing

3. The Describe query is transformed into a CONSTRUCT query as
shown in Figure 3.15

4. The new query will have:

90 CHAPTER 3. OPEN WOT MONITORING PLATFORM

(a) The same where clauses of the original

(b) Additional clauses to retrieve TDs triples from the container
graph

5. The new query is issued to the SPARQL endpoint

6. The resulting triple set is grouped in a list of TD in RDF format

7. Each element of the list is processed and framed to be a valid TD
document

8. Each element of the list is processed and framed to be a valid TD
document

Starting from the beginning, the algorithm verifies that the query is a
particularly formed SPARQL query type (see code A.4). Other SPARQL
query types do not fit in the purpose of filtering TD documents. For
example, SELECT queries work on RDF term granularity so that users can
select a particular list of objects, subjects, or predicates. On the contrary,
DESCRIBE specifically ask for a full description of the selected subject
(in our case a Thing Description). Unfortunately, DESCRIBE does not
return the full graph connected with a particular subject; instead, it stops
at the first direct connection. Consequently, the query is transformed into
a CONSTRUCT that can return the content of an RDF Graph. If a TD
was scattered across multiple graphs or if one graph contained more than
one document, this query transformation would have been much more
challenging. That is why we chose the model shown in Figure 3.16.

Thanks to SEPA microservice, we do not have only queries at our disposal
but also subscriptions. In this case, the interface microservice receives results
as added and removed Quads (i.e., triples grouped in graphs). Similarly to
queries, the TDD agent acts as an intermediary to translate user requests
and responses. To understand the process is convenient to think about
the possible update operations that users can perform: add, remove, and
update. When adding or removing a TD, the TDD microservice adds or
deletes an entire graph, hence the conversion process can detect an added
event by simply test if the removed triple set is empty and vice versa. On

3.4. IMPLEMENTATION 91

the other side, when updating, the notification contains both added and
removed triples. Here, we use a dedicated internal graph to store the id of
the updated TD, the timestamp, and the information about the updated
paths. The TDD inserts this information with the same update operation
that modifies a TD. Then it receives the updated triples together with
the metadata stored previously. Finally, it exploits this data to frame the
updated triples and to send the resulting notification to the client. To
obtain this information, the query processing algorithm is slightly different
from the search operation. Specifically, from one single DESCRIBE it create
two CONSTRUCT queries. The former is the same query described in
the algorithm above and it detects added and remove TD events. The
other queries the dedicated graph to be informed about update events.
In conclusion, the Dynamic SPARQL Directory consists of a multi-agent
solution that allows WoT users to obtain notifications about SPARQL
selected TDs. Even if it acts also as a SPARQL endpoint it features a
dedicated API which to fulfill WoT consumer’s needs. It can be used as an
advance discovery service for both constraint devices and high-end nodes.

3.4 Implementation

The abstract software components detailed so far were implemented and
evaluated in two different use cases. The first one is a structural health
monitoring platform called MODRON [33]. It was developed together with
INAL inside the Mac4Pro11 project. The latter is a smart agriculture
framework called the Smart Water Management Platform (SWAMP)12

designed within the homonymous Horizon 2020 European Union project.
The two solutions were developed independently during the three years of the
Ph.D. course with the efforts of my research group and other institutions. In
both cases, the strong requirements on interoperability lead to the adoption
of semantic-based technologies. However, only Mac4Pro applied the WoT
paradigm as the main enabling touchingly. The decision-makers of the

11https://site.unibo.it/mac4pro/it
12http://swamp-project.org/

https://site.unibo.it/mac4pro/it
http://swamp-project.org/

92 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.15: Query translation in a Dynamic TDD

3.4. IMPLEMENTATION 93

Figure 3.16: A simplified view of how the Dynamic TDD store Thing
Descriptions and other directory relevant metadata (i.e.,modification records
and ownership)

SWAMP opted for FIWARE13 a European Union founded IoT platform. In
this work, we will describe an alternative solution for SWAMP completely
base on the WoT specifications.

The following will present the two projects and how WoT technologies
were employed to achieve the monitoring functionalities required. Finally,
it will focus on how the implemented software agents fit inside the general
architecture described in 3, with an eye on the applied data model and
vocabularies.

3.4.1 Structural Health Monitoring platform

Disclaimer. The following is an adapted content of what is
accepted to be published in IEEE Consumer Communications
& Networking Conference [33]

The Structural Health Monitoring (SHM) defines a method for evaluating
the state of aging constructions by testing the status of their present integrity.
Additionally, SHM data is useful for building prognostic schemes to predict

13https://www.fiware.org/

https://www.fiware.org/

94 CHAPTER 3. OPEN WOT MONITORING PLATFORM

the remaining life of structures/infrastructures [97]. SHM systems will play
a crucial role in modern smart cities thanks to their ability to reduce the
vulnerability of strategic structures, increase the protection of architectural
heritage, and to some degree, to save human lives [42].

Several research studies have recently shown the possibility of enhancing
the performance and reliability of SHM systems by employing IoT inspired
sensor data management and analytics technologies [34]. In fact, even
in the presence of high sampling rates and long-term measurements, big-
data techniques have been shown to help distributed storage and real-time
processing of SHM deployments [98]. Moreover, Machine Learning (ML) and
Artificial Intelligence (AI) techniques offer valuable methods for condition
assessment and/or structural damage detection, considering the enormous
number of data sets collected. For instance, in the presence of image-based
inspection, such ML/AI-driven approaches have proven to be especially
successful [36]. Thus a modern SHM framework must jointly optimize all
the various software architectural layers to ensure real-time and over-time
functionalities. Although several ad hoc software implementations have
been published in the SHM systems literature (e.g. [42] [41] [43]), only a few
propose complete and scalable IoT platforms for collecting and analyzing
sensor-to-cloud data [40]. The software solution presented in this subsection
addresses two main requirements of IoT based SHM deployments, namely
the system scalability and interoperability.

The first problem not only relates to the need for massive data volumes
to be handled but also implies the optimum balance of computing between
the network resources available in a cloud-to-edge continuum. The need for
interoperability, on the other hand, is also dictated by the heterogeneity of
the sensor devices that can be mounted on the structure [44], a solution
that is generally favored to increase the robustness of the SHM systems
effectively [99]. Besides, sensor devices may belong to different manufac-
turers, speak different network protocols (e.g. HTTP, MODBUS, etc), or
even provide different sensing features (e.g, accelerometers, hygrometers,
strain–gauges). As introduced in Chapter 2, such fragmentation is one of
the primary reasons for high computational and installation costs, which
may unavoidably hamper the full–scale applicability of present IoT imple-
mentations. Issues that the WoT paradigm aims to address; consequently,

3.4. IMPLEMENTATION 95

we propose MODRON platform, a WoT based software framework for
sensor–to–cloud data acquisition and management in SHM scenarios [33].
Specifically, the platform addresses the acquisition of sensor data from the
monitoring layer, the sensors installation logistics, the distributed data
storage, visualization of data, and analytics. In order to accommodate
heterogeneous sensor environments, MODRON relies heavily on the WoT
W3C standard: this is done following the layered architecture presented
in [33], with an edge layer composed of WTs exposing the sensor data, and
a remote cloud layer consuming and accessing the WTs services. Moreover,
the platform is implemented with extensibility in mind. Thanks to the
modular design, it allows the installation of new classes of sensor devices by
registering their TD descriptions with both human and machine interfaces.
Finally, another characteristic of MODRON solution is its high adaptability
since the cloud services can update their behaviors (e.g., UI) accordingly to
the set of active WTs and hence, it abstracts from the sensing technologies
in use. The remainder of this section will present the implemented soft-
ware solution in relation to the concepts presented in [33], together with a
vocabulary proposal for SHM data.

3.4.1.1 Architecture

Figure 3.17 illustrates the MODRON layered implementation. It is possible
to notice that the MODRON architecture is more deployment bounded
than the generic monitoring architecture. Every layer in MODRON is
collocated at a specific IoT sensor-to-cloud chain level, whereas the abstract
solution would not confine one single layer to a specific node type. With
the reference to the same figure, starting from the bottom, we have the
monitoring layer. In this solution, the monitoring layer corresponds with the
hardware components of the platform (i.e., devices and sensors) and their
vendor dependant protocols. It is the main role is similar to the Sensing
layer, it acquires real-time sensing data and provides an interface to extract
it. At the time no WoT technologies were thought to be deployable in such
constraint devices. Therefore, at this level sensor would expose non WoT
complaint interfaces limiting sensor-to-sensor interoperability. However, as
[REF Victor system] demonstrated, it is possible to design a constraint

96 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.17: Summary of the MODRON architecture. The layers prosed in
Chapter 3 are on the right.

system with embedded TD descriptions and WoT protocols. Consequently,
we could incorporate this monitoring layer in the more generic sensing layer
proposed above.

Next, the Edge layer is in charge of: (i) acquiring data from the monitor-
ing layer, by supporting the most common IoT and messaging protocols (e.g.
MODBUS, OPC UA, HTTP, etc); (ii) making sensor values and devices’
status information available to the data management layer, and, at the
same time, hiding the heterogeneity of acquisition protocols/hardware. By
resorting to a W3C WoT approach, the above requirements were tackle, thus
creating a set of W3C WTs on the edge nodes. More precisely, MODRON
edge WTs divide into two types: Sensor WTs and Digital Twin WTs. The
first category defines WTs that corresponds exactly to one sensor unit (e.g.
an accelerometer) and it allows remote interaction with the device based on
WoT protocols. The latter, instead, models a virtual entity derived from
the aggregation of multiple Sensor WTs. For instance, a group of sensors
installed on the same structure might be represented as a virtual group
for convenience or organization purposes. The Modron edge layer can be
mapped in two of the generic layers defined above because of its intrinsic
dualism. First Sensors WTs represent basic sensing layer agents, thus they
are mapped at the lowest layer of the generic architecture. Second, the

3.4. IMPLEMENTATION 97

concept of Digital Twin WTs in MODRON closely relates to Virtual Sensor
WTs. Consequently, this type of agent can be thought to belong to the
Processing layer.

Finally, the Data Management and Analytics Layers. In MODRON
these two layers contain a set of business logic and infrastructural ser-
vices, like a persistence dedicated agent and a Thing Description Directory.
Business logic modules consume data observed from the layers below, to
provide application-specific information to the end-users. For instance,
the Persistence mash up application (i.e., a WoT based application) is
in charge of gathering data from the sensing layer; to this purpose, they
consume the TDs registered in the TDD and query them at fixed intervals
(for request-response interactions) or register to the events produced by
the remote WTs (for publish-subscribe interactions). The monitoring data
are then stored in a distributed database, entailing data consistency, and
replication capabilities. Remembering the definition of the last layer in the
reference generic architecture, services like the persistence application can
be mapped to the analytical layer. Other high-level services examples in
the MODRON platform are:

• Visualizer. The Visualizer allows for the visualization of the list of
WTs currently registered to the TDS. Moreover, it allows end-users
to interact with each registered WT or with a filtered subset of them.
This operation can be performed by parsing the corresponding TDs
and dynamically generating an ad hoc Web GUI

• Analytics app. Analytics process the stored data and provide the
signal processing techniques for structural integrity evaluation.

• Data Aggregator, allowing to select, merge or extract features from
the stored time-series

• Data Plotter supporting the visualization of the output of the Data
Aggregator, and/or their exportation on files

In summary, every MODRON data management and analytics service falls
under the analytical layer of the monitoring architecture.

98 CHAPTER 3. OPEN WOT MONITORING PLATFORM

3.4.1.2 Implementation insights

The first implementation detail of interest is how MODRON handles the
control access process for the WTs in the edge layer (i.e., sensing layer).
In a typical SHM scenario, multiple categories of end-users might access
the software platform, with different roles and duties (e.g. system ad-
ministration, data consuming, maintenance, and testing). Consequently,
each sensor device is described by three different TDs that represent three
different access roles. The first type defines read-only access to observed
data and it describes the so-called Observable Sensor WT. An Observable
Sensor WT exposes only properties and actions allowing to read sensors’
measurements but not to modify the sensor configuration. On the other
hand, Controllable Sensor WT (described with another TD type) also sup-
ports the remote device configuration, including the possibility to upload
at run-time a new Behaviour of the WT. This TD is visible only to agents
that have administration-level permission since it enables to change the
behavior of the system. Finally, Debug WT includes basic diagnostic and
self-testing functionality that may be useful during the installation and
calibration of the SHM system.). Then, effective access control policies can
be devised through the mapping of the user profiles with the instances of
the Sensor WTs. Moreover, each TD links the other one so that consumers
can navigate the access chain straightforwardly. For example, if a consumer
has access to an Observable Sensor WT it can follow the link with relational
type ”modron:control” providing the correct credentials to gain control of
the same sensor instance.

The supporting WoT runtime for MODRON WT is node-wot, the
official implementation of the Scripting API specification. This runtime
was installed and deployed in the different architectural layers. At the
edge, it exposes the Sensor WTs described above for accelerometers and
piezoelectric sensors. Runtime-to-sensor communication happens over the
custom made Systems APIs that translate and forward WoT messages
on a USB serial port. Table I reports the main Affordances of a MEMS
accelerometer device. At the cloud, MODRON uses a wide number of
JS libraries/tools and database systems. The back– end functionalities
are implemented through Node.js and related libraries, including, among

3.4. IMPLEMENTATION 99

the others: LoopBack, SocketIO, and Nest.js. The Visualizer exposes
APIs for WT registering, searching, and filtering based on GraphQL, an
open-source data query and manipulation language. Also, the framework
includes a combination of database technologies, such as (i) Blazegraph, a
triplestore used to save the application metadata and the TD; (ii) Apache
Cassandra , a NOSQL database used to store the sensing data gathered
by the Persistence MA; (ii) Redis, an in-memory data structure store
used as temporary cache of sensor data. Specifically, the Redis tool is
used to optimize the performance of high-frequency sensing applications:
the sensor data gathered by the Persistence application when consuming
the Observable Sensor WTs are immediately saved in Redis so as to be
immediately available to the upper-layer services (e.g. the Analytics), and
then periodically transferred to the Cassandra database management system.
The latter has been configured for distributed operations: the cluster is
composed of three instances and employs a distributed data balancer and
a basic replication strategy with a factor equal to the number of available
instances.

3.4.1.3 Vocabulary

As outlined in Section 3.3 another important aspect of the monitoring
platform is the data model for the exchanged monitoring information. With
the reference to the layered structure for platform vocabularies, MODRON
utilizes state of art ontologies depicted in Figure 3.18. Starting from the
Monitoring layer, we found Semantic Sensor Network14, MODRON Access,
and Schema15 vocabularies. The SSN ontology contains concepts like Sensor,
System, Deployment, and their relation with measured physical properties
(e.g., ObservedProperty RDF property). In MODRON SSN describes the
types of WTs to know if a particular instance is a Sensor or another entity
(i.e., a platform where the sensor is installed). Moreover, it explains how
differently related to each other; for instance how multiple sensors belong
to the same subsystem. The location of these entities is described thanks
to the concepts defined in Schemas like place and geoCordinates. Finally,

14https://www.w3.org/TR/vocab-ssn/
15https://schema.org/

https://www.w3.org/TR/vocab-ssn/
https://schema.org/

100 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.18: Layered knowledge model of the MODRON platform.

MODRON Access vocabulary defines the two relational types to express
the association between an Observable, Control, Debug Sensor: controls
and debug. On the domain level MODRON employs:

• BOT16. BOT serves as common ground to express part of a complex
construction or a building. In MODRON structures are subclasses of
BOT elements.

• DOT17. DOT augments the BOT ontologies with terms to express
damages to elements and how they evolve during time. It also contains
a proposed taxonomy to categorize the different damages and their
causes

• MODRON. DOT and BOT do not define concrete structure types or
structural elements. Therefore, MODRON vocabulary has the goal

16https://w3c-lbd-cg.github.io/bot/
17https://alhakam.github.io/dot/

https://w3c-lbd-cg.github.io/bot/
https://alhakam.github.io/dot/

3.4. IMPLEMENTATION 101

to indicate all the construction types and industrial components of
structural health monitoring interest. It is still in its early stages but
it will be extended in future interactions. One example of one term
defined at this level is a concrete bridge.

• QUDT18. it is a well-known vocabulary that contains a set of scientific
quantities and units of measurements. In the platform of the matter,
it is employed to describe the subject of a measurement and its unit.
For example, qudt provides Temperature as a quantity and Celsius
and Kelvin for units.

• MODRON properties. This vocabulary defines other physical proper-
ties specific to SHM use cases like Acoustic Emission and Dynamic
Vibrational Response.

In conclusion, the MODRON data model follows the same structure defined
in the abstract monitoring architecture. In the appendix, readers can find
an example of this data model applied to a TD and a structure described
as a JSON-LD document.

3.4.2 Smart Agriculture

The agricultural sector is undergoing a transformation driven by new tech-
nologies, which seems very exciting, as this primary sector will be able to
shift to the next stage of agricultural productivity and profitability. We are
experiencing the third wave of revolution in the farming and agriculture
sectors that consists of optimizing the crop inputs (i.e., water, soil, and
Sun) to obtain the best crop yield possible. This process takes the of
Precision Agriculture and since heavily influenced by the usage of digital
technology is widely know as Smart Agriculture (the word smart is used
also in other sectors like Smart Buildings, Smart Home, Smart Factory,
etc., to entail the employment of silicon-based devices and information tech-
nology). As agriculture is the main consumer of fresh water in the world,
amounting to up to 70% of the total use [100] reducing crop water needs

18http://www.qudt.org/

http://www.qudt.org/

102 CHAPTER 3. OPEN WOT MONITORING PLATFORM

has not only economic impacts but also environmental benefits. Farmers
spray more water than required (over-irrigation) in an effort to prevent
loss of productivity caused by water stress (under-irrigation), and as a
result, not only productivity is threatened, but also water and resources are
wasted. In contrast, in smart agriculture precision irrigation methods can
use water more effectively and efficiently, eliminating both under-irrigation
and over-irrigation problems. IoT based solutions are an obvious option
for smart water management applications, but the integration of various
technologies necessary to make it function smoothly in practice is still a
challenge. The Smart Water Management Platform project had the goal
to develop a high-precision smart irrigation system concept for agriculture.
The key concept is to make it possible to optimize irrigation, water delivery,
and usage on the basis of a holistic study that gathers data from all aspects
of the system, including the natural water cycle and accumulated knowledge
of specific plant growth. This results in savings for both parties, as all
leakages and losses are detected and water availability is best guaranteed
in circumstances where water supply is limited. The SWAMP solution was
developed with a hands-on approach based on four pilots in Brazil, Italy, and
Spain19. In order to adapt to various SWAMP pilots, the platform can be
specifically configured and implemented, tailored to meet the requirements
and limitations of different settings, countries, climate, soils, and crops.

The official SWAMP platform contained the core modules of FIWARE
and semantic features provided by a SPARQL-based context engine [71].
It may be installed in a range of different configurations for component
placement in the cloud or in the fog, IoT protocols, and smart algorithms
and analytics (cloud or fog based). This is aimed to have the necessary
flexibility to experiment with the different pilot deployment scenarios of
the SWAMP Platform and providing additional features in terms of the
replicability and adaptability of its components to different settings. As
scalability is a major concern for IoT applications, a performance review of
FIWARE key software components was carried out, tailored for each pilot
scenario. The early results showed that the platform in the subject met the
pilots’ requirements but at the price of scalability. FIWARE components

19http://swamp-project.org/post-422/

http://swamp-project.org/post-422/

3.4. IMPLEMENTATION 103

Figure 3.19: The orginal SWAMP platform as proposed in [61]

had to be fine-tuned to provide improved performance and others had
to be completely re-engineered to provide higher scalability using less
computational resources. Also, MongoDB was identified as the bottleneck
of the FIWARE tested installation that may cause system crashes. For this
reason this document will propose an alternative archiectural design with
the goal to increse scalability and replicability of the system.

The rest of this section will follow the same structure of Section 3.4.1,
starting from the description of the software architecture in relation to the
monitoring WoT platform. Finally, it will describe the designed ontology
specifically made to address open issues in Smart Agriculture vocabularies.

3.4.2.1 Architecture

The original SWAMP platform is described in Figure 3.19. It is possible
to notice that also SWAMP has a layered architecture, but it is heavily
centralized due to the FIWARE interaction model (it has a star topology
with an information broker as the center). Figure 3.20 proposes the same
functionalities but harmonizing them with the WoT monitoring platform
presented in this work. At the bottom layer, there are several WTs in

104 CHAPTER 3. OPEN WOT MONITORING PLATFORM

charge of mapping Smart Agriculture specif IoT protocols. Notice that
since it is common to employ LoRaWAN technology in those contexts, these
WTs may also be installed as cloud or fog components (the hierarchy does
not reflect the location inside the IoT stack). In fact, LoRaWAN employs a
sensor-to-cloud architecture with encrypted communication. Intermediaries
cannot interact with LoRaWAN sensors without passing by the central
node that is in charge of authentication data consumers and configurators.

On the processing layer, multiple Virtual sensors aggregate and store
short-term historical data acquired from sensing WTs emulating the Quan-
tum leap role in the original solution. The different Virtual WTs works
together to provide a set of distributed data analysis and storage services
so that the upper business logic applications do not rely on a single point
of failure. Those applications are classified, indeed, as analytics actors
in the WoT monitoring platform. Some of them emulate entire physical
systems like Water Distribution model application (i.e., a Virtual System)
others analyze data to convey more complex data to platform clients like
the Analytics service.

As in the SHM use case, knowledge is stored in a human machine-
understandable format on a SEPA based Thing Description Directory. It
is notable how in the proposed architecture clients use SEPA as the main
source of contextual information but depend on the single WTs and WoT
agents for monitored data. Thus the interaction has not a single point of
failure but it is distributed on the different subsystem that composes the
software solution, enhancing the scalability of the system.

To conclude, SWAMP architecture can be revisited to be conformant
to the WoT paradigm. The feature set is maintained but the platform
scalability is improved.

3.4.2.2 Implementation insights

In open-field agriculture, the IoT solutions leverage on different radio
protocols and devices. Usually, radio protocols should cover long distances
(even kilometers) and be energy efficient. Devices too need to be energy
saving as they are deployed for months and sometimes even years in harsh
environments. A sleeping-cycle is one mechanism they use to save energy

3.4. IMPLEMENTATION 105

Figure 3.20: The SWAMP architecture revised with the Web of Things
technologies. SWAMP layers 2,3 and 4 are respectively mapped into the
Sensing, Processing, and Analytical layers.

usually coordinated by loggers/gateways or preprogrammed. Loggers are
deployed closed to sensor devices and have more storage space. They
serve as buffers between sensors and higher services. Often loggers and
sensors are embedded in the same board, otherwise, they are connected
using cables or close-ranged radio protocols. On the other hand, gateways
serve as a collection point for data of an entire field or farm. They are
much more capable devices and usually are more energy-consuming. In
some deployment scenarios, they host a full operating system with multiple
software facilities installed. Otherwise, gateways only serve as relays of
data sent from the loggers and sensors to cloud services and vice-versa.
The cloud services may be partially hosted in edge servers to preserve data
privacy and responsiveness of the whole IoT solution.

Sensor data plays a central role in Smart Agriculture. In particular,
it is critical that the information sensed is associated with a timestamp.
Common algorithms use time series to calculate the water needs of a crop.
Furthermore, soil sensors usually are calibrated over a specific soil type
(which may differ even in the same geographic region). For example, the
calibration data for a soil moisture sensor is represented by a function that
maps sensor output to soil water content. In literature, this function is

106 CHAPTER 3. OPEN WOT MONITORING PLATFORM

knowns as a calibration curve . Commercial sensors are precalibrated with
a ”standard” curve but on most occasions, it fails to accurately measure
the water content. Therefore, it can be configured during the installation
phase (which may happen every time the soil is plowed). Finally, a crucial
aspect is forecasting. Farmers use this information to actively change their
management procedures. Services exploit it to suggest irrigation schedule
or change device settings to behave accordingly to environmental changes.

3.4.2.3 Vocabulary

Since the state of the art data models were found insufficient to describe
SWAMP entities and concepts, the project required from-zero engineering
of the main vocabularies. Taking again the vocabulary layered architecture
(Figure 3.3), right above the WoT level we find SSN together with SWAMP
Physical IoT. Physical IoT vocabulary categorizes all the possible agriculture
specific sensors and actuators that are not usually employed in other fields.
An example is a soil moisture sensor which has known to be employed
as a reference measuring device about crop nutriments. Moreover, this
vocabulary defines a relation to express that another entity has a set of
devices installed. It is semantically similar to ssn hosts relation, although
it might identify a loose logical association between that particular object
(e.g., the device is installed somewhere near the object but it monitors its
status).

On the domain-specific level, SWAMP ontology defines three vocabu-
laries: Agriculture, Water Management, and Crop Needs and Recommen-
dations. The first set of terms specifies concepts related to agriculture
techniques and entities. It is aligned with the most known agriculture
specific ontology, Agrovoc, but it adds ideas from a management point of
view. For example, it introduces the concept of Management zone, which
is the smallest region of a field with unique soil characteristics or it de-
scribes how fields can contain one or more crop types. Then the Water
Management vocabulary describes watering systems and watering parts
like sprinklers, pipes, canals, water reservoirs, etc. Finally, there is the
Crop Needs and Recommendations; this vocabulary serves to define shared
application knowledge about irrigation scheduling and crop nutrition needs.

3.4. IMPLEMENTATION 107

Figure 3.21: SWAMP vocabulary structure

For instance, the term water need indicates the amount of water that a
plant requires in a specific moment. This information can be exploited to
create irrigation plants; a concept described in the same vocabulary.

Additionally, SWAMP vocabulary structure comprehend also:

• QUDT. It describes measurements and units

• Schema. Schema at the domain level defines user management con-
cepts like Farmer Name, Surname, or address

3.4.3 Tools

During these years of the development with WoT technologies, the author
of this thesis dedicated some of his time to contribute to the WoT software
ecosystem. In particular, he focused on dissemination and easy to use
aspect of the WoT standard. Therefore he developed three Typescript
based tools to help newcomers in understanding this new technology stack.
The first one is called WoT Application Manager (WAM). WAM is a simple
Command Line Interface to guide new users in the creation of a WoT

108 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.22: SWAMP original ontology summarized data model

3.4. IMPLEMENTATION 109

Figure 3.23: Initialization of a WoT application using WAM

application in JavaScript or TypeSript. As shown in Figure 3.23, it provides
a guided setup process that installs and compile a basic project, ready to be
developed. Moreover, WAM helps in the deployment thanks to its bundling
capabilities. From a project with multiple modules and files, it creates on
single minified JS file that can later be deployed in any node-wot enable IoT
node. Alongside WAM TD-Code is a helper visual studio code extension
that eases the design of Thing Description files. The extension provides
a set of auto-filling templates that are useful when manually editing Web
Things descriptors in a complex WoT application. In addition, it also
provides a validation process that informs the user if his/her TDs are
compliant with the latest W3C specifications. Finally, the third tool is
a didactic device created to allow students to have hands-on sessions on
WoT technologies without acquiring any particular hardware. It is a simple
simulation of a Smart Farm environment inspired by the SWAMP platform:
WoT Farm. It consists of two modules: the backend and the web frontend.
The backend runs on a remote server hosted in the university department
and it is in charge of exposing simulated Web Things, the Web frontend
and implement the simulation logic. Currently, the simulation creates a
virtual soil that can be irrigated with virtual sprinkles (exposed as WTs).
Then the water content can be sensed through a set of virtual soil moisture
sensors. In the future, the backend will simulate more complex scenarios

110 CHAPTER 3. OPEN WOT MONITORING PLATFORM

Figure 3.24: WoT Farm main screen. On the left there is a code editor
with a sample WoT script (see Listing A.2). On the right a 3D view of the
simulated farm.

like a full water cycle and other sensor devices (e.g., wind speed sensor,
weather stations, crop growth sensor, etc.). On the other hand, the Web
frontend renders the current simulation station (see Figure 3.24) and a
text area where users can test WoT scripts and APIs. The idea is to ask
students to implement gradually complex application logic so that they can
evaluate their understanding of the WoT architecture and inner workings.
For example, irrigate crop one when the water content sensed by sensor
http://wot.farm.com/1234 is below 20%. Currently, the set of possible
applications is limited by the set of the simulated physical properties and
sensor, but, as indicated above, the platform will have more sensors in the
near future. Finally, another future enhancement will cover the possibility
to have multiple users and simulation sharing trough custom created links.

Chapter 4

Evaluation and Discussion

This last chapter covers the evaluation of the open monitoring platform
through a scenario-based analysis method. This method was chosen among
the others for its ability to assess qualitative properties like extensibility
and interoperability that are the core non-functional requirements of the
software product. Moreover, it will summarize the early results obtained
when testing the Web Thing migration feature. Finally, it will discuss
possible challenges in the WoT standard that were encountered during the
development of the MODRON and SWAMP WoT based platforms.

4.1 Software Architecture Analysis

The Software Architecture Analysis Method (SAAM) [101] was born in
the early 90s to improve the software development lifecycle and assess the
quality of a descriptive architecture. The method specifies five simple steps:

1. Requirement definition

2. Architecture Description

3. Scenario development

4. Scenario prioritization

111

112 CHAPTER 4. EVALUATION AND DISCUSSION

5. Evaluate the architecture with the respect to scenarios

6. Overall evaluation

The peculiarity of this method is its ability to give a good estimation of
architectural qualities even at an early development stage. Since the open
monitoring platform, architecture is still in its infancy and is a high-level
design, SAAM was found suitable for the assessment of its characteristics.
We already saw how the architecture is generic enough to be able to describe
two diametrical use cases coming from heterogeneous IoT contexts. This
section will focus on three other fundamental features that we want the
platform to have: Interoperability, Extensibility, and Openness. After
describing the requirements and the architecture (See Chapter 3), the
SAAM method foresees the definition of at least one relevant scenario
for each evaluated feature. The scenarios serve as a concretization of the
abstract quality and a future assessment tool. Consequently, in the following,
each subsection relates to a specific evaluated feature, and it contains the
scenario description and the scenario discussion. The different scenarios are
considered equally important, and they are listed in random order. Later an
overall comment is drawn, and a final discussion on the scalable properties
of the platform is reported.

4.1.1 Interoperability

In a broader sense, interoperability is the ability of a computer system
or software to exchange and use information from other platforms. As-
sessing this feature is challenging due to the countless software/hardware
solutions which exist on the market. Consequently, we define three scenar-
ios describing how the architecture would react with previously unknown
systems.

In the first scenario, a new device type needs to be introduced in an
online platform deployment. In this context, the architecture naturally
handles the new addition, and it integrates the devices with no substantial
structural changes. Precisely, if the device already implements the WoT
stack and it is associated with its TD, the platform assimilates it as any
other Sensing Layer agent. On the other hand, if the device does not have

4.1. SOFTWARE ARCHITECTURE ANALYSIS 113

a WoT runtime, minor modifications should be performed in the platform
deployment such that the device is correctly recognized as part of the sensing
layer. More in detail, the device might either support a WoT complaint
protocol (i.e., HTTP, HTTP, etc.) or use a proprietary communication
language. In the former case, developers or maintainers need to design
and deploy a Thing Description document capable of describing the new
device type. In the latter, WTs in the processing layers take the burden of
proxy the proprietary protocol and expose the new device as a WoT Virtual
Sensor. Of course, developers might even define general-purpose software in
charge of deploying such proxy services on demand, decreasing the overall
integration effort.

In the second scenario, stakeholders want to employ a new data model
for a previously unknown physical property. The newly added model might
overlap with earlier context definitions and in this case, ontology align-
ment countermeasures should be taken to continuously assess backward
compatibility with other platform services. Future developments of the
architecture could define dedicated agents that process and translate meta-
data information to one representation and vice versa. Currently, Virtual
Sensors might perform this transformation exposing both translated and not
translated metadata in their TDs. On the other side, if the new data model
is completely orthogonal with the old vocabulary it can be published with
no further modification. Although, old services might need to be extended
or updated to exploit this new information.

In the third and last scenario, consider that a new device publishes sensor
data encoded in a new data format, how will the monitoring platform cope
with this new addition? If the new encoding format has an associated MIME
type1 and it is among the WoT supported file types no changes are required.
On the other hand, if the encoding is a property solution the approach
is similar to the addition of a new device and a custom communication
protocol. Virtual Sensors can take the role of format translator exposing
the same sensor data with a known format. Even if covered, a more reusable
solution would be to employ dedicated services that are able to translate a
data format onto another on-demand.

1https://tools.ietf.org/html/rfc2046

https://tools.ietf.org/html/rfc2046

114 CHAPTER 4. EVALUATION AND DISCUSSION

Overall the platform can sustain considerably the challenges introduced
by the addition of previously unknown devices or services. Even if it requires
runtime additions the structural changes are minimal, consequently, we can
conclude that it satisfies the interoperability requirement.

4.1.2 Extensibility

Extensibility is the ability of a software system design to withstand future
additions and enhancements. In our analysis, we consider three scenarios:
adding a new data processing chain, create a new digital twin of a monitored
object, and add unplanned functionality like actuation. By design, the first
two settings are satisfied by the architecture components; new processing
chains or digital twins can be added developing and deploying new Virtual
Sensors or Virtual Systems. On the contrary, introducing the concept of
actuation in the platform might involve some changes in the design. For
example, actuation needs the concept of ownership; since two software
agents might compete in the usage of a particular actuator coordinated
access to the device is a need in order to avoid resource conflicts.

In summary, the architecture can supports at least two of the defined
scenarios. However, the third scenario might result in a profound modifica-
tion of the presented software structure. On the other hand, adding the
actuation functionality might be considered out of scope for a monitoring
oriented platform.

4.1.3 Openness

Openness is often used to reference the degree of transparency and collabo-
ration of a given organization. In IT, openness is a compound capability of a
software system that is interoperable, portable, and extensible. We already
demonstrated how the platform is both interoperable and extensible but is
it portable? Consider the following scenario: move one platform component
(e.g., a Virtual Sensor) to another operating system or hardware. Thanks
to the definition of the WoT runtime and the Scripting API, the software
migration operation requires only the installation of a Servient runtime
in the target operating system. Therefore, a straightforward porting is

4.1. SOFTWARE ARCHITECTURE ANALYSIS 115

limited to the supported platforms by different runtimes. Although runtime
specifications are public, consequently, if needed, it is possible to develop
an ad hoc solution to cover an unsupported system or board. Besides
these three qualities, an open platform should allow anyone to contribute
or implement a part of its services. Take for example the World Wide
Web which is a collection of royalty-free technologies that everyone has the
right to exploit for the development of Web components without requiring
approval or license fees. Founding on the Web of Things standard and W3C
specification, the platform is able to support new stakeholders that want to
contribute to the production of monitored data and services. In fact, the
publishing of Web Things Thing Description is similar to the publication of
an HTML page, although it has to take into account the discovery process.
To be easier discoverable TDs may be published inside Thing Directories.
Therefore, considering this scenario, we can imagine public repositories
(i.e., TD directories) like a WoT store where those documents can be freely
uploaded by authenticated users.

4.1.4 Final comments

The previous Subsections outlined different scenarios that assessed platform
qualities following the SAAM procedure. In summary, the platform has
been found to satisfy the requirements for interoperability, extensibility, and
openness. No substantial changes are needed to cover the proposed settings,
although it might be required to perform some online configurations or
software deployments.

One final aspect that is important in the evaluation of an IoT solution
is scalability. Given the number of nodes that an IoT application needs to
support, scalability measures how much software can maintain its quality of
service with an increasing number of users or producers; hence its relevance
in an IoT context. In the proposed solution, it is possible to pinpoint
two criticalities in regard to scalability: 1 knowledge consumption and
production 2 monitoring data consumption. Thing Description Directories
and SPARQL endpoints constitute a possible bottleneck for platform users.
In fact, they represent the main entry point for Thing Descriptions and
therefore, they are critical to access sensor monitoring data and services. To

116 CHAPTER 4. EVALUATION AND DISCUSSION

mitigate this issue implementers can leverage a distributed solution splitting
the load into different TDDs. SPARQL based TDD could exploit SPARQL
federated query to transparently issue a query to the net of different TDD
distributed across the IoT spectrum. Finally, query caching might improve
the ability of the system to respond to high demands, as well. On the other
hand, too many wot consumers could still impact the performance of the
system when it comes to sensing data reading. Consider that most of the
constraint devices cannot afford to sustain a long-standing connection with
a considerable number of users. Moreover, even with a request-response
communication, the possible number of requests per second could exceed
the capacity of this kind of node. Consequently, Virtual Sensors, deployed
in more capable nodes, might serve as frontend caching sensor responses and
handling a greater number of connections or inquiries. Then consumers can
read the TD of the constraint devices to find suitable Virtual Sensors and
consume their TDs in lieu of the desired device. Unfortunately, these two
approches are not yet tested in a real scenario. Therefore, a real measure
of the number of concurrent users that a WoT monitoring platform can
withstand is yet to find.

4.2 Migration

Disclaimer. This section contain material previously published
by IEEE Access [46]

In this Section, we test the performance of the M-WoT framework via a
twofold experimental evaluation. First, in Section 4.2.1 we compare different
migration policies, including multiple variants of the graph-based heuristic
presented in Section 3.3.1.5, on edge scenarios. Then, in Section 4.2.2 we
investigate the effectiveness of WT migration mechanisms on the edge-cloud
continuum. More in detail we exploit the Structural Health Monitoring use
case of the monitoring platform as a playground to test the performance of
the proposed heuristic. The characteristics and parameters of each scenario
are discussed separately in Sections 4.2.1 and 4.2.2.

4.2. MIGRATION 117

5 10 15 20 25
Web Things

0

500

1000

1500

2000

2500

3000

Ne
tw

or
k

Ov
er

he
ad

 (#
m

es
sa

ge
s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(a)

5 10 15 20 25
Web Things

0

5

10

15

20

25

Th
in

g
Fa

irn
es

s (
#W

eb
 T

hi
ng

s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(b)

5 10 15 20 25
Web Things

0

2

4

6

8

10

12

CP
U

Fa
irn

es
s (

%
)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(c)

Figure 4.1: The NO, TF and CF metrics for the six policies when varying
the number of active WTs are shown respectively in Figures 4.1(a), 4.1(b)
and 4.1(c).

NoMigrate Graph-based, = Graph-based, = 1 Graph-based, = 5
Algorithm

0

20

40

60

80

100

No
rm

al
ize

d
CP

U
Ut

iliz
at

io
n

(%
)

Host1
Host2
Host3

(a)

5 10 15 20 25
Web Things

0

10000

20000

30000

40000

50000

60000

70000

80000

In
te

ra
ct

io
ns

 L
at

en
cy

 (µ
s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(b)

1 2 3
WT Degree

0

250

500

750

1000

1250

1500

1750

2000
Ne

tw
or

k
Ov

er
he

ad
 (#

m
es

sa
ge

s)
NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(c)

Figure 4.2: The average utilization of each computational node is shown
in Figure 4.2(a). The IL metric when when varying the number of active
WTs is shown in Figure 4.2(b). The NO metric as a function of the WT
degree is reported in Figure 4.2(c).

4.2.1 Policy Analysis

We consider a distributed setup composed of three edge servers (i.e., NH =
3), physically located at the DISI/ARCES data centers of the University of

118 CHAPTER 4. EVALUATION AND DISCUSSION

Bologna, and connected through an Ethernet LAN, at one hop distance one
from each other. Specifically, two servers are equipped with 4-core 2 GHz
CPUs and 4 Gb of RAM, while the third server is equipped with an Intel
Xeon E5440 processor with 32 Gb of RAM. Moreover, the Orchestrator
and the TDD have been installed on a different node within the same data
center. Therefore, in total, the experimental setup is composed of 4 nodes,
three of which constitute the M-WoT deployment space, and can be used
to host the WTs. On this space, we deployed NWT Servients, each hosting
exactly one WT; at the startup, the Servients are randomly allocated over
the available NH nodes. The WT interactions are modeled as follows. We
abstract from the physical meaning of the WT and the correspondence to
specific real-world applications since the focus is on the assessment of the
migration operations and on the evaluation of the policies’ performance.
Hence, each WT exposes exactly one action in its TD (e.g., test), which
computes a sequence of trigonometric operations (mainly tan and atan)
in order to generate some CPU load. Each WT consumes exactly other
NC WTs, chosen randomly among the NWT available. On each consumed
thing wtj, wti issues a request for the test action every 1.5 seconds. In
order to automatically apply the test configurations on each WTs, we
implemented a Mashup application, i.e. a WoT client that is in charge
of consuming the WTs and of passing them the proper setup (e.g., the
list of WTs to consume). Every tf=45 seconds, the Orchestrator collects
the Thing Reports (TR) produced by each Servient; every 190 seconds, a
new WT allocation is computed by the Optimizer according to the current
policy, and implemented through proper WT migrations among the edge
servers. The latter is also the duration of one time slot (i.e., tslot which
represents the discrete intervals used by the Orchestrator to compute a
migration plan). The setting of tf and tslot parameters allows the Optimizer
to collect at least three reports from each WT and hence to estimate the
WT interactions before computing a new allocation of WTs to nodes. The
performance analysis is based on the metric presented in Section 3.3.1.5,
plus other custom metrics introduced to evaluate other factors:

• Network Overhead (NO): this is the performance index defined in
Section 3.3.1.5 and quantifying the amount of inter-host network

4.2. MIGRATION 119

1 2 3
WT Degree

0

1

2

3

4

5

6

7

8

CP
U

Fa
irn

es
s (

%
)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(a)

1 2 3
WT Degree

0

10000

20000

30000

40000

50000

60000

70000

80000

In
te

ra
ct

io
ns

 L
at

en
cy

 (µ
s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based, =
Graph-based, = 1
Graph-based, = 5

(b)

0 10 20 30 40 50 60 70
#Time-slot

0

500

1000

1500

2000

Ne
tw

or
k

Ov
er

he
ad

 (#
m

es
sa

ge
s)

NoMigrate
Graph-based, =
Graph-based, = 2
Graph-based, = 5

(c)

Figure 4.3: The CF and IL metrics when varying the WT degree are shown
respectively in Figures 4.3(a) and 4.3(b). The NO over time-slots in a
dynamic WoT deployment where the number of WTs is varied over time is
reported in Figure 4.3(c).

communications produced by remote WT interactions. Differently
from the theoretical model, we compute the NO in terms of number
of interactions rather than of bytes, since all the WT interactions
refer to the same affordance (i.e. the test action).

• CPU Fairness (CF): this is the performance index mathematically
defined in [46] and quantifies the fairness unbalance in terms of max-
min difference of the average CPU occupation loads among the NH

nodes of the cluster.

• Thing Fairness (TF): this is similar to the CF metric, however the
fairness unbalance is expressed in terms of number of WTs hosted
respectively by the most loaded and unloaded node (rather than of
average CPU values).

• Interaction Latency (IL): this is the average latency required to
perform a WT action invocation issued by an external WT; more
explicitly, this is the average time lapsed from when wti issues a test

action on wtj to when the corresponding reply is received. Hence, it

120 CHAPTER 4. EVALUATION AND DISCUSSION

takes into account both the processing delay and the network delay
in case wti and wtj are executed on different nodes of the cluster.

0 10 20 30 40 50 60 70
#Time-slot

0

1

2

3

4

5

6

7

8

Th
in

g
Fa

irn
es

s (
#W

eb
 T

hi
ng

s)

NoMigrate
Graph-based, =
Graph-based, = 2
Graph-based, = 5

(a)

0 5 10 15 20 25 30 35 40
#Time-slot

0

10

20

30

40

Ne
tw

or
k

Ov
er

he
ad

 (#
m

es
sa

ge
s)

Migration OFF
Migration ON

(b)

0 5 10 15 20 25 30 35 40
#Time-slot

0.0

0.5

1.0

1.5

2.0

In
te

ra
ct

io
ns

 L
at

en
cy

 (µ
s)

1e7
Migration OFF
Migration ON

(c)

Figure 4.4: The TF over time-slots in a dynamic WoT deployment where
the number of WTs is varied over time is reported in Figure 4.4(a). The
NO over time in the IoT monitoring use-case is shown in Figure 4.4(b); the
processing latency for the same scenario is reported in Figure 4.4(c).

For each configuration, we ran 10 repetitions, and then averaged the

4.2. MIGRATION 121

metric values; on each repetition, a random initial allocation of WTs to
nodes, and random dependencies among the WTs are considered.
Figure 4.1(a), 4.1(b), 4.1(c) and 4.2(a) show the metrics previously in-
troduced when varying the policy in use and the NWT configuration, i.e.
the number of WTs in the scenario. The NC value is fixed and equal to
3, i.e. each WT consumes exactly 3 peers, randomly selected. From the
NO values of Figure 4.1(a), we can notice that the amount of inter-host
communications increases with the number of active WTs, as expected.
At the same time, the Graph-based and the NetLoad policies are more
effective than the NoMigrate and the CPULoad since they both aim at
allocating interacting WTs on the same node; the NO performance gain
of the Graph-based policy can be tuned through the ∆ parameter. For
∆ =∞, the NO is always zero, since the WT dependency graph is likely
connected (this is also due to NC=3); as a result, all the WTs are moved
to the same edge node, as better highlighted below. For ∆ = 1 and ∆ = 5,
the Graph-based policy introduces some NO due to the load-balancing
constraint, but still lower than the NoMigrate, hence it is preferable to a
random allocation. The load-balancing capabilities of the six policies are
investigated in Figure 4.1(b) which shows the TF metric as a function of
the number of WTs; for the Graph-based with ∆ =∞, the TF is always
equal to the number of WTs in the scenario, since all the WTs are allocated
to the same node. Vice versa, we can notice that, for ∆ = 1 and ∆ = 5,
the TF value is always lower than the required threshold, demonstrating
the effectiveness of the load-balancing mechanism. The fairness in terms
of WTs translates into a better utilization of computational resources, as
investigated in Figure 4.1(c). Here, the CF metric is shown for the six poli-
cies; we can notice that the Graph-based heuristic with ∆ =∞ and ∆ = 1
are respectively the worst and optimal cases, once again demonstrating the
versatility of our approach. By comparing Figures 4.1(a) and 4.1(c), we
can also appreciate that the Graph-based policies (with ∆ 6=∞) are able
to achieve a better trade-off between NO and CF metrics when compared
to the two Greedy policies; based on the system requirements (i.e. data
locality or resource utilization), the administrator can achieve the wanted
performance trade-off by properly tuning the ∆ parameter, whose optimal
setting is clearly scenario-dependant. Figure 4.2(a) provides additional

122 CHAPTER 4. EVALUATION AND DISCUSSION

insights on the WT allocation, by showing, for the Graph-based policies and
different values of ∆, the average CPU utilization of each node of the cluster
(denoted by the colors on each bar); the CPU values are normalized between
0 and 100%. It is easy to notice that lower values of ∆ correspond to more
balanced utilization of the computational resources of the cluster, while for
∆ =∞ only one node is used. Finally, Figure 4.2(b) shows the IL metric
for the six policies. Moreover, the Graph-based with ∆ = ∞ overcomes
the other competitors for all the configurations of WTs; this is due to the
reduction of communication latency since all the WT interactions occur
locally on the same node. In Figures 4.3(a), 4.3(b), 4.3(c) we expand the
evaluation by considering the impact of different WT interaction amounts
on the system performance. More specifically, we consider a fixed number
of WTs (NWT=15), while on the x-axis we vary the WT degree (NC), i.e.
the number of peers consumed by each WT, again selected in a random way.
Figure 4.3(a) depicts the NO metric for the six policies; as expected, the
amount of inter-host communication increases with the NC values on the
x-axis. The only exception is the Graph-based with ∆ =∞: similarly to
the previous analysis, the NO is zero since interacting WTs are allocated
to separate nodes, however more than one connected component is found
on the dependency graph for NC=1 and NC=2. As a result, the CF metric
of the Graph-based with ∆ = ∞ shows the increasing trend of Figure
4.3(a); for NC=1 and NC=2, a more balanced allocation is achieved since
the graph components are allocated to different nodes, while for NC=3
the graph is fully connected hence the whole workload is allocated to the
same node. Comparing 4.2(c) and 4.3(a), we can appreciate again how the
Graph-based policies (with ∆ 6=∞) are able to capture a better NO-CF
tradeoff than the NoMigrate and greedy policies. This translates into a
relevant performance gain of the Graph-based policies for the IL metric in
Figure 4.3(b); for NC=1, the latency reduction provided by the Graph-based
policy over the NoMigrate is up to 37% with ∆ =∞, 13% with ∆ = 5.
In the analysis presented so far we considered WoT scenarios where the
number of WTs is fixed at startup, hence the WT discovery process can
be considered static over time. In Figures 4.3(c) and 4.4(a) we analyze the
performance of M-WoT on a dynamic environment where the number of
active WTs (and hence the amount of traffic and computational loads) is

4.2. MIGRATION 123

varying over time. More specifically, we setup the system with NWT=0.
Every 360 seconds, a new WT is created and added to the scenario; each
WT consumes exactly one peer (NC=1). Figure 4.3(c) shows the NO metric
over system evolution, expressed in time-slots; we remind that each time-
slot corresponds to the execution of the Optimizer policy, and this event
occurs every 190 seconds. It is easy to notice that the NO metric increases
significantly over time for the NoMigrate policy as a consequence of the
creation of new WTs, and hence of the additional inter-host communication
introduced in the system; vice versa, the Graph-based policies are able to
adapt the WT allocation so that the NO minimization goal is continuously
met. The adaptiveness of M-WoT to network load conditions is further
demonstrated by Figure 4.4(a) which shows the TF metric over time slot;
for the case of Graph-based with ∆ = ∞, the TF increases over time as
a consequence of the fact that -by adding new WTs in the system- larger
connected components could be created and migrated to the same node.
Vice versa, the Graph-based policies with ∆ = 5 and ∆ = 2 dynamically
allocate the WTs so that the load-balancing constraint (reflected by the ∆
value) is continuously satisfied.

20 40 60 80 100
Web Things

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

CP
U

us
ag

e
(%

)

NoMigrate
Graph-based, = 5

(a)

20 40 60 80 100
Web Things

0

1

2

3

4

5

RA
M

 u
sa

ge
 (%

)

NoMigrate
Graph-based, = 5

(b)

Figure 4.5: CPU load (Figure 4.5(a)) and RAM consumption (Figure
4.5(b)) of the Orchestrator for different numbers of deployed WTs.

124 CHAPTER 4. EVALUATION AND DISCUSSION

Finally, we evaluated the scalability of the proposed solution by mon-
itoring the CPU and RAM consumption on the Orchestrator and Thing
Directory node. Figures 4.5(a) and 4.5(b) show our findings. The results
were obtained by sampling the container metrics every second, and then
averaging the results for different number of deployed WTs. It is possible to
notice that the consumption grows linearly but it is pretty negligible even
with 100 WTs. Also, the overhead introduced by the Graph-based policy
is only slightly higher than a NoMigrate policy, although M-WoT must
execute the WT allocation procedure and the handoff procedure detailed
in Section 3.3.1.4. Clearly, despite such positive results, the centralized
Orchestrator might still become a performance bottleneck in large-scale
WoT deployments; to address the issue, we can envisage the usage of a
federated network of Orchestrators, each controlling a specific region of
nodes. Such distributed M-WoT framework would require proper data
replication, load-balancing and gossiping mechanisms, which we plan to
investigate as future works.

4.2.2 Use-case Analysis

We consider an IoT monitoring application, which mimics the operations of
the SHM deployment of the open monitoring platform presented in Section
3.4. Figure 4.6 depicts a Structural Health Monitoring (SHM) application
based on IoT/ WoT technologies [36][37] and the implementation proposed
in [46]. We assume that the monitoring system can work in two modes:
Normal and Critical, denoting two different QoS requirements for risk
detection. On the extreme edge, sensors (e.g., accelerometers) monitor the
building’s dynamic response over time. The sensor data is made available
through the Sensor Web Things (SWT), exposing functionalities such as data
querying and device status updating. The sensor data processing pipeline
is handled by migratable Virtual Sensors T1, T2, T3, and T4. Respectively
they implement the functionalities of data fusion, data cleaning, data
alerting, data forecasting. In Normal mode, T1, T2 run on a shelter/fog
node in the proximity of the monitored structure, while a remote cloud
server hosts T3 and T4; this introduces some network latency in detecting
anomalous/dangerous situations (computed byT3), but at the same time

4.2. MIGRATION 125

Figure 4.6: A SHM monitoring application.

it minimizes the load on fog nodes. At one point of the system execution,
we assume that the system detects consecutive data anomalies on the row
data (T2), hence the monitoring system switches its mode from Normal to
Critic; this action might also request a higher degree of responsiveness for
the diagnostic platform. In the M-WoT environment, the mode change can
be automatically managed by migrating the T3 service from the cloud to
fog nodes (or vice-versa when the mode switches back to Normal), without
any manual need of configuration, and without introducing any explicit
signaling mechanism among the involved WTs (i.e., T2 and T3).

In the evaluation process, we considered a simplified configuration that
involves a W3C WoT system designed to acquire data from a smart building.
The WoT monitoring system involves three WTs:

• A Sensing WT, which performs data acquisition from an IoT sensor
device (e.g. an accelerometer) through a Serial connection. More
specifically, we assume that the Sensing WT can run in two modes,
which differ from the sensor query frequency (qf), respectively the

126 CHAPTER 4. EVALUATION AND DISCUSSION

Normal mode (with 1 sample every 5 seconds) and Warning mode
(with 1 sample every second); the mode switch (i.e. from Normal
to Warning and vice versa) occurs when the last consecutive three
readings are higher or lower than a static threshold; in other words,
the granularity of the monitoring system is adjusted according to the
detection of possible data anomalies.

• A Processing WT, which continuously receives the real-time measure-
ments from the Sensing and applies a statistical method (i.e. the
ARIMA regression) to forecast the next sensor values.

• A Reporting WT, which produces a notification (e.g., an alarm) based
on the output of the Processing WT (using the monitoring platform
notation this WT is considered an analytical WT).

We abstract from the specific physical meaning of the IoT sensing values,
while we focus on the capabilities of the WoT system to minimize the latency
of processing specially in Warning mode, i.e. the time from when the data
is acquired to when the forecast value is produced in output. We consider an
initial setup with two nodes (NC=2), respectively an edge server (connected
to the IoT sensor device) and a remote cloud server on the Internet. Two
scenarios are configured and compared in the evaluation analysis:

• Migration OFF. This represents the state-of-art WoT environment,
where the WT migration is not enabled. The Sensing and Reporting
WTs are deployed on the edge node, while the Processing WT is
deployed on the cloud due to its higher computational power.

• Migration ON. This corresponds to the M-WoT environment, where
the Processing WT is configured as migratable, i.e. it can be dy-
namically moved on the edge or on the cloud node based on the
actual sensing mode. To this purpose, we deployed in the Optimizer
a scenario-specific policy which checks the number of interactions
between the Sensing and Processing WTs at each time-slot; in case
such value is higher than a threshold (set equal to the sf configuration
in Normal Mode), the Optimizer realizes that the Sensing WT is
working in Warning mode, and hence it migrates the Processing WT

4.3. WOT OPEN POINTS 127

on the edge node, i.e. closer to the acquisition in order to minimize the
communication latency. Otherwise, the Processing WT is allocated
to the cloud node.

In the test-bed, the Sensing WT starts in Normal mode for 5 seconds,
than it switches to Warning mode for 1 second, then again it repeats
the same sequence for other two times. Figure 4.4(b) shows the NO
metric over the time-slots; for the Migration OFF configuration, the NO
value at each slot is equal to the number of messages exchanged by the
Sensing and Processing WTs, since they are hosted by different nodes.
The peaks correspond to intervals where the Sensing WT switches to the
Warning mode. It is interesting to notice that: (i) the Migration ON
configuration follows the same curve of the Migration OFF when the inter-
host communication load is below a threshold; (ii) the NO of the Migration
ON is zero in correspondence of Warning periods, since the the Processing
WT is migrated to the edge node, and hence all the communication occurs
locally. Such action impacts the utilization of computational resources on
the cloud/edge nodes as well as the processing latency. We report only
the latter in Figure 4.4(c). We can notice the effectiveness of the M-WoT
framework in terms of latency reduction for the Migration ON, which is more
evident during the Warning periods since the edge-cloud communication
delay is canceled.

4.3 WoT open points

The W3C Web of Thing standardization is a promising framework that will
help the development of real cross silos IoT applications. Still, the Working
Group is yet to finish its second charter of recommendation document
publications. As such, the standard is continuously evolving, covering new
blind spots at every release. This thesis will exploit the concrete use cases
presented so far as an evaluation platform for the standard, reporting in this
section open issues that might need to be addressed in future specification
documents.

One common scenario encountered during the development of the MOD-
RON and SWAMP platform is the sleepy device. In IoT applications,

128 CHAPTER 4. EVALUATION AND DISCUSSION

small devices are bounded by the number of available energy sources in
the environment. To obtain a longer operating lifetime engineers usually
resort to the employment of processor sleeps intervals that hibernate the
board until a specified timeout. During this time the board is deaf to any
stimulus and it cannot be programmed or configured. Although some early
experiments explore the ability to use specific radio impulses to wake up
the board as requested, those sleep interruptions may afflict the overall
system performance if not correctly coordinated by device users. Currently,
WoT runtimes need to be always fully operational to take part in a WoT
application or system hence they cannot run on those constraint sleepy
devices. However, those types of sensors might be integrated through the
deployment of Virtual Sensors on a mist hub or an edge getaway. Virtual
Sensors may completely hide the sleeping lifecycle of the remote board using
smart caching and behavior virtualization techniques. Still, it is challenging
to define a proxy behavior that works for every possible use case of the
system. For example, a system might want to sacrifice a little of stored
energy to obtain more sensor data since it knows that it will be a sunny day
tomorrow, and sensor batteries could be fully recharged. On the other side,
in particularly harsh periods, it might choose to avoid polling that sensor
data since it can approximate it using nearby devices. For this reason,
a possible future evolution of the W3C WoT standard might also cover
sleeping device behaviors promoting them as the first citizen of the WoT
architecture. Possible strategies are :

• Provide a vocabulary to express properties affordances and TD meta-
data related to the current status of the device (i.e, is it a sleepy
device? is it currently on?)

• Think about standardized warm-up affordances that can be used to
wake up the device at will or schedule it next awaking.

• A support vocabulary to express battery voltage and the remaining
operational time might help implementers in the development of an
out-of-the-box interoperable sleeping system.

• Pinpoint WoT level error responses which indicate that the current

4.3. WOT OPEN POINTS 129

device is in sleep mode and optionally provide a virtual sensor that
might carry the latest known sensed value.

Another issue is Control or, in other words, resource ownership. When it
comes to reading data streams from a sensor, the control problem does
not arise: ideally, multiple readers can read the stream without interfering
with each other. On the contrary, how can different users control the same
robotic arm or vacuum cleaner? Most of the time, a single physical resource
requires one single control user that configure its behavior and settings. At
the moment, the WoT standard does not have the expressiveness to describe
such situations or constraints. It is left to implementers to define protocols
or algorithms aimed at WT usage management. However, in the future,
WoT systems might exploit interoperable protocols to acquire, rightfully,
an exclusive or shared exploitation of a physical resource. An example
could be an authorization framework based on OAuth 2.0, that leverage
on information about the current owner in the TD of the targeted WT
(e.g., a link which points to the current user TD). Another idea is to create
private only TDs which are issued only to the current owners of the device
control and consequently masked to other candidates. A similar discussion
is already taking place inside the group regarding long-standing Action
resources2. In summary, long stating physical process might be modeled as
private web or WoT resources (described by a TD or a TD fragment) such
as the issuer of the action can control its status of completeness or even
cancel the running operation.

A more practical missing feature of the current WoT ecosystem is the
lack of constraint runtime implementations. The state of art solutions target
small or high-end computing devices leaving embedded developers behind.
Since the WoT framework is an IoT framework more attention should be
paid to the embedded world enabling makers and companies to exploit WoT
building blocks as a catalyst for their device adoption and ease development.
Although some early experiments are starting to appear [102] the WoT
community needs a full fledge tool-chain that covers both the development,
deployment, and runtime of embedded applications. Possible starting points
are small constraint enabled operating systems that could serve as ground

2https://github.com/w3c/wot-thing-description/issues/899

https://github.com/w3c/wot-thing-description/issues/899

130 CHAPTER 4. EVALUATION AND DISCUSSION

base for the introduction of the basic servient modules such as protocol
bindings and an embedded runtime. In this context, we cite a promising
technology that could help in the definition of a standard compilation target
and execution environment such as developers can port different libraries
to different boards: Web Assembly3. Web Assembly runtimes could be
employed as wot script or application interpreters on top of the constrained
operating system components mentioned above.

Related to the lack of development tools for embedded developers,
WoT architecture misses a defined Servient Thing Description specification
that provides implementation hints about affordances for remote script
management and debugging. Node-wot runtime features a basic action
affordance able to execute a simple string in the sandbox javascript running
context. However, a more fine-grained solution is needed to address the
following requirements needed to offer a full application management layer:

• Define an application bundle format and description

• Define action affordances to stop a particular application (if a multi-
application running context is supported) or the only running appli-
cation.

• Define a description or affordances aimed at describing the process to
remotely debug the hosted application. Node-based runtimes could
leverage the inspector protocol but a more generic interface is needed
to support other runtimes.

• Define different sandbox clearance levels, so that highly trusted scripts
can access restricted resources, at the same time constraining the
application code to use only the declared resource (similarly to the
android Intent model4)

Introducing this concept at the specification level rather than leaving it
as an implementation detail, is crucial to assure the portability of WoT
applications. Finally, it creates a common development process that could
sprout the creation of shared tools among different runtimes.

3https://webassembly.org/
4https://developer.android.com/reference/android/content/Intent

https://webassembly.org/
https://developer.android.com/reference/android/content/Intent

4.3. WOT OPEN POINTS 131

Finally, one last aspect surveyed during these years is the repeating
pattern of a typical deployment of an IoT system. We observed that every
device is subjected to different life phases that start from its production
and end with its decommission. Those phases are well described in the
latest editor draft of the W3C Web of Things architecture specification.
Figure 4.7 reports the lifecycle specification; as an example consider one
SWAMP soil sensor device and its deployment phases. After their creation,
each SWAMP soil sensor was bootstrapped with public and private keys
for encryption and installed in the soil. Once the remote connection was
established it was configurated and calibrated using soil calibration curves
obtained from a remote database. Finally, when the crop yielded the sensor
was punt in a Maintenance mode to verify that it was not damaged and then
re-bootstrapped for the next season. If this recently added sequence flow
diagram covers SWAMP requirements it still lacks the correct description of
the WoT application lifecycle. As previously mention WoT applications are
still underspecified and with no surprise, a full explanation of their possible
runtime phases is still missing. An application lifecycle could cover the
sleeping phases of the device or temporary context switches carried out by
the operating system to prioritize vital processes or functionalities. Taking
again the Android metaphor, WoT needs to specify the application runtime
phases similar to the Activity lifecycle, so that transient state shifting events
are also modeled in the deployment diagram depicted in Figure 4.7. Figure
4.8 introduces a possible state flow for WoT applications.

132 CHAPTER 4. EVALUATION AND DISCUSSION

Figure 4.7: The system lifecycle of a WoT enabled device

4.3. WOT OPEN POINTS 133

Figure 4.8: A proposed lifecyle for WoT applications.

This page intentionally left blank.

Chapter 5

Future work and conclusions

5.1 Future work

This thesis presented an abstract agent-based architecture for monitoring
the environment and civil structures with the Web of Things. Although the
platform is able to successfully describe both of the chosen use cases, future
works may assess its expressivity in other IoT contexts, for example in an
Industry 4.0 setting. The more the platform will be tested, the more it could
evolve and cover more complex scenarios fulfilling user needs. The platform
evolution is critical to have a common ground for monitoring applications
cutting the cost to digitalize a physical asset. Another open point in the
platform design is knowledge management and distribution. If in principle,
Thing Description Directories could play the role of full function application
domain knowledge keepers, more research should be performed on how
the knowledge should be distributed across those services. Furthermore,
knowledge management services might be heterogeneous regarding protocols
used and data format. A full interoperable solution should be designed
such that also non-SPARQL endpoints may participate in the metadata
description of the platform data sources and objects. One example of a
possible knowledge container could be BIM systems to express the geometry
and components of a monitored system. Regarding TDDs, the Dynamic
SPARQL Directory, presented in Section 3.3.2.7, is planned to be evaluated
in the MODRON platform as the core directory service. In particular, we

135

136 CHAPTER 5. FUTURE WORK AND CONCLUSIONS

are interested in its scalability and query expressiveness with respect to
standard JSONPath. Moreover, since directories may represent a network
bottleneck other discovery methods should be analyzed and tested, such as
local multicast or peer-to-peer discovery services.

The document presented a proposal for WoT application migration as
an innovative solution to fulfill the Quality of Services requirements in a
dynamic context. As an early proposal, the migration framework proposed
could be improved along with different aspects. Here we mention the
scalability of the platform. Since the migration is completely managed by a
central authority (the Orchestrator), it is possible that with high volumes of
migratable WTs the overall process is subject to performance degradation.
More studies need to be conducted regarding possible solutions however, as
a first step, a large-scale experimental setup could provide insights about
the concrete performance of the system in a real-world IoT application. For
further future works about the Migration- WoT framework, please refer
to [46].

Concerning the two use cases provided in Chapter 3 as future work,
we foresee the full evaluation of the MODRON architecture in year-long
monitoring of an experimental pipeline and a concrete bridge. As the
platform will grow the ontologies presented will be extended, covering new
terms and properties in order to describe the new setup. In addition, since
the SWAMP WoT platform is still under an early development phase it will
be polished and studied in comparison to the current online platform based
on the FIWARE architecture.

The monitoring platform heavily relies on WoT applications as the main
extension points and service producers. However, as briefly mentioned in
Section 4.3, WoT ecosystem lacks mature toolset and frameworks able to
create and install massive and complex software services. As future work,
it is planned the extension of the tools presented in Section 3.4.3 along
with the production of different WoT applications for sensors and virtual
sensors.

Finally, a complete study of the level of security provided by the WoT
layer should be carried out with the goal to assess its feasibility also in a
confidential environment.

5.2. CONCLUSION 137

5.2 Conclusion

Monitoring has become a key feature of every Internet of Things based
system. However, the IoT landscape is fragmented in a considerable amount
of different monitoring solutions not really interoperable with each other.
Even if it has been proved that most of the IoT potential resides in the
unexpected interaction between systems, a competitive open platform for
monitoring is yet to emerge.

This thesis explored a monitoring architecture based on a novel promising
paradigm in the IoT landscape: the Web of Things. Instead of defining
yet another protocol, the proposed work focused more on software modules
categorization and interactions. It defined a multi-tier structure where
different WoT actors coexist to fulfill the monitoring process and different
protocols are abstracted thanks to the WoT network interface. Moreover,
the architecture was designed with interoperability and openness as core
non-functional requirements. Thanks again to the WoT paradigm, it is
possible to publish monitoring data in enabled platform instances with a
similar process to publishing an HTML page on the web. Finally, the thesis
proposed a layered data model categorization to guide implementers in the
definition and usage of ontologies in their applications.

The platform requirements were abstracted from two concrete moni-
toring use cases. The first one was about a Structural Health Monitoring
application, able to assess the structural status of industrial instruments
and civil constructions. The SHM field is an IoT low adoption field, even if
it has been proved that IoT technologies can enhance the overall process.
However, due to the heterogeneousness of devices, protocols, and data
models, SHM is still carried out with ad hoc solutions and silos applications.
Consequently, this document reviewed a previous work where a WoT based
SHM platform was proposed as a solution to the aforementioned issues.
Specifically, this thesis discussed the platform architecture, implementation
details, and an outline of the employed vocabularies.

At the same time, in the second use case, the work in the subject pre-
sented a Smart Agriculture application aimed at monitoring water usage:
Smart Water Management Platform. Smart Agriculture has similar issues
to the SHM field when it comes to the monitoring infrastructure. Sensors

138 CHAPTER 5. FUTURE WORK AND CONCLUSIONS

and protocol technologies are usually not homogenous between different de-
ployments. Moreover, monitored data is, again, encapsulated in application
silos to fulfill one particular goal (e.g., predict crop yield). Therefore, the
SWAMP project was used as a foundation to describe a possible WoT based
platform to accomplish the same monitoring capabilities. In the dedicated
section, the SWAMP solution was described together with its WoT founded
revision and an IoT oriented agriculture/water management ontology was
introduced. Finally, the two concrete implementations were compared with
the novel open WoT monitoring architecture demonstrating its flexibility
and generality.

On Chapter 4, the thesis presented a set of open issues with the novel
WoT paradigm. Among the others, it was discussed how Web Things can
manage multiple users for actuation or configuration and how to model
sleeping devices that use duty cycle techniques to conserve battery energy.
Finally, some yearly results of the architecture capabilities were presented
and discussed.

In summary, the thesis covered:

• A detailed list of functional and non-functional architectural require-
ments for a monitoring platform

• A WoT centric software architecture that satisfies those requirements

• An implementation of the architecture in two concrete use cases.

• Discussed a possible non-functional feature that might enhance the
runtime scalability of the platform: Migratable Web of Things.

• Propose a dynamic SPARQL Thing Description Directory based on
the SPARQL Event Processing Architecture

• Provide a list of open issues related to the WoT standard closely
inspired by the platform use cases

Chapter 6

Acknowledgements

In conclusion of this work, I would like to thank all the people that helped
me to get through those toughs years of research and study. First of all, I
want to mention my supervisor Prof. Tullio Salmon Cinotti, who inspired
me to choose this path and pass down his everlasting passion for research.
Not only is he a great supervisor, professionally speaking, but he gave me a
lot of good life pieces of advice, which is something rare and valuable. I
will be forever thankful to him for his kindness and positivity.

Furthermore, I want to thank Dr. Luca Roffia for his research insights
and points of view. It all his fault if I end up researching and study the Web
of Things. I still remember the meeting where he presented the work that
W3C was doing about this odd new paradigm of using web technologies
for IoT projects. He made my research project more exciting and worth
exploring, I would probably lose interest in the research topics of the group
pretty soon without his support.

Another person that believed in this exciting research topic is Prof.
Marco Di Felice. As Luca he is was always supportive and insightful. From
him, I learned a lot about writing a good research paper and developing
the right framework for tests and data analysis.

Thanks to Marco I was able to join my second research group family at
DISI Primslab, where I met a bunch of very skillful and interesting people.
First, Dr. Luca Sciullo shared with me research topics and goals. Together
we designed and foresee much of the results presented in this work. In

139

140 CHAPTER 6. ACKNOWLEDGEMENTS

particular, I remember that time when we went to the second workshop of
the W3C Web of Things where we presented our first results about WoT
applications deployments and management. I would like to thank him for
the amazing time and interesting discussions. Second, I want to mention
Dr. Lorenzo Gigli, an amazing coder and software engineer. We worked
closely on the design of the migratable Web of Things where we challenge
our expertise to our limits. It was always fun and interesting working with
him, which is something rare to find. Finally, I’d like to thank Dr. Angelo
Trotta and Dr. Leonardo Montecchiari for their insights and expertise in
the IoT world.

Another group that I would like to thank is the whole W3C Web of
Things working group. After joining the group I learned so many things
both humanly and professionally. The group gave me the opportunity to
express my ideas as a young researcher; I felt approached and respected
there. I feel so lucky to be part of the standardization process, and I thanks
the chairs to let me join this amazing group.

Furthermore, I cannot list in the acknowledgments the SWAMP working
group. They were the first international group that I joined. There I learn
a lot about the challenges in designing a software system remotely and
deploying it in the physical world. Thanks to Prof. Carlos Kamienski and
Dr. Jeferson Rodrigues Cotrim.

Thanks also to my first research group inside the ARCES department.
Even if at the end of my research period we lost the contacts (also caused
by this pandemic), they made my days lighter and joyful. How to not
remember our lunch walks to Conad and the funny stories that we told
during lunchtime? It was really interesting to learn about their research
topic from other areas; to mention a few: Dr. Michelangelo Maria Malatesta,
Prof. Nicola Testoni, Dr. Denis Bogomolov, Dr. Luca Perilli, Dr. Alessia
Maria Elgani, Dr. Federica Zonzini, Dr. Simone Sindaco, Dr. Filippo Piva,
Dr. Francesco Renzini and, all the others.

Professional support is nothing without the love of your family and
friends. I would like to thanks my parents for their continuous care and
day-to-day help. They were always there for me, and I could have been
luckier than this. Moreover, I have an amazing brother who shares with me
a passion for computer science and engineering. Thank you, Gianlu for the

141

good talks and coding challenges together; you are a skillful coder and a
great friend; I wish you all the best and a fantastic carrier.

To the love of my life, she knows how much I owe to her. I want to
thank her for her love and the happy days together. Thank you, Irene.

Finally, I want to thank all my friends from my home town, from
Bologna, and around the world. You did not help me directly with this
work, but your smiles and laughs made every blue day easier. Thank you.

This page intentionally left blank.

Appendices

143

Appendix A

Code listings

1 export interface Report{
2 id:string;

3 hostID:string;

4 serviceID:string;

5 nodeStats: NodeStats;

6 interactions: SerializableMap <string,

InteractionReport >;

7 }
8

9 export interface NodeStats {
10 cpu:Number,

11 memory:BigInt

12 }
13

14 export interface InteractionReport {
15 id:string;

16 reconsumeCounts:number;

17 url?:Url;

18 propertyReports: SerializableMap <string,

AffordanceReport >;

19 actionReports: SerializableMap <string,

AffordanceReport >;

145

146 APPENDIX A. CODE LISTINGS

20

21 eventReports: SerializableMap <string,

AffordanceReport >;

22 summaryReport: AffordanceReport;

23 }
24

25 export interface AffordanceReport {
26 calledTimes: number;

27 computationalCost: bigint;

28 }
29

Listing A.1: The definition of the Thing Report object using Typescript.

1 WoTHelpers.fetch("https :// farm.com/soilstation7331").

then(async (td) => {

2 WoT.consume(td).then((thing) => {

3 // read and log humidity and temperature sensors

4 setInterval (() => {

5 thing.readProperty("humidity").then((h) => {

6 ui.humidityGraph.log("Humidity", h);

7 });

8 thing.readProperty("temperature").then((t) => {

9 ui.temperatureGraph.log("Temperature", t);

10 });

11 }, 10 * 1000); // 10 seconds

12 // if soil dry , sprinkle for 5m

13 thing.subscribeEvent("tooDry", () => {

14 thing.invokeAction("startSprinkler", { "timeout"

: 5 * 60 });

15 })

16 });

17 }).catch((err) => { console.error("Fetch error:", err); });

Listing A.2: An example of a script that uses W3C Scripting API

1 {
2 "head": { "vars": ["book" , "title"]

3 } ,

147

4 "results": {
5 "bindings": [

6 {
7 "book": { "type": "uri" , "value": "http://

example.org/book/book6" } ,

8 "title": { "type": "literal" , "value": "

Harry Potter and the Half -Blood Prince" }
9 } ,

10 {
11 "book": { "type": "uri" , "value": "http://

example.org/book/book7" } ,

12 "title": { "type": "literal" , "value": "

Harry Potter and the Deathly Hallows" }
13 } ,

14 {
15 "book": { "type": "uri" , "value": "http://

example.org/book/book5" } ,

16 "title": { "type": "literal" , "value": "

Harry Potter and the Order of the Phoenix" }
17 }
18]

19 }
20 }

Listing A.3: A SPARQL query result

1 PREFIX sosa: <http :// www.w3.org/ns/sosa/>

2 PREFIX wot: <http :// www.w3.org/ns/td >

3 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

4 DESCRIBE ?td

5 WHERE {

6 ?td rdf:type wot:Thing;

7 rdf:type sosa:Sensor;

8 wot:title "Test"

9 }

Listing A.4: A SPARQL describe query

This page intentionally left blank.

Bibliography

[1] P. Harry A. Kinnison and T. T. Siddiqui, Aviation Maintenance
Management, Second Edition, 2nd ed. New York: McGraw-Hill
Education, 2013. [Online]. Available: https://www.accessengineeringl
ibrary.com/content/book/9780071805025

[2] G. S. Brager and R. J. de Dear, “Thermal adaptation in the
built environment: a literature review,” Energy and Buildings,
vol. 27, no. 1, pp. 83 – 96, 1998. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0378778897000534

[3] A. Kumar, H. Kim, and G. P. Hancke, “Environmental
monitoring systems: A review,” IEEE Sensors Journal, vol. 13,
no. 4, p. 1329–1339, Apr 2013. [Online]. Available: https:
//ieeexplore.ieee.org/document/6378389

[4] H. Wang, T. Tao, T. Guo, J. Li, and A. Li, “Full-
scale measurements and system identification on sutong cable-
stayed bridge during typhoon fung-wong,” The Scientific World
Journal, vol. 2014, p. 1–13, 2014. [Online]. Available: https:
//pubmed.ncbi.nlm.nih.gov/24995367/

[5] N. Mohamed, I. Jawhar, J. Al-Jaroodi, and L. Zhang, “Sensor
network architectures for monitoring underwater pipelines,” Sensors,
vol. 11, no. 11, p. 10738–10764, Nov 2011. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274311/

[6] “The internet of things: Mapping the value beyond the hype,” McK-
Insey Global Institute, 2015.

149

https://www.accessengineeringlibrary.com/content/book/9780071805025
https://www.accessengineeringlibrary.com/content/book/9780071805025
http://www.sciencedirect.com/science/article/pii/S0378778897000534
http://www.sciencedirect.com/science/article/pii/S0378778897000534
https://ieeexplore.ieee.org/document/6378389
https://ieeexplore.ieee.org/document/6378389
https://pubmed.ncbi.nlm.nih.gov/24995367/
https://pubmed.ncbi.nlm.nih.gov/24995367/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274311/

150 BIBLIOGRAPHY

[7] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, and J. Bughin,
“The internet of things: mapping the value beyond,,” McKinsey Glob,
p. 3, 2015.

[8] “Deliverable d03.01 report on iot platform, unify-iot project,” 2016.

[9] D. Guinard and V. Trifa, Building the Web of Things. Manning
Editions, 2016.

[10] K. Matthias, M. Ryuichi, L. Michael, K. Toru, T. Kunihiko, and
K. Kazuo, “Web of things (wot) architecture,,” Feb 2020, online.
[Online]. Available: https://www.w3.org/TR/2020/PR-wot-architec
ture-20200130/.

[11] M. Jahn, “Economics of extreme weather events: Terminology and
regional impact models,” Weather and Climate Extremes, vol. 10, 08
2015.

[12] D. Letson, D. Sutter, and J. Lazo, “The economic value of hurricane
forecasts: An overview and research needs.” Natural Hazards Journal,
vol. 8, pp. 78–86, 08 2007.

[13] E. Lis and C. Nickel, The ImpacT of extreme Weather
events on Budget Balances and ImplIcations for fiscal policy
Working paper series no 1055/may 2009. [Online]. Available:
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1055.pdf

[14] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou,
“Environmental and health impacts of air pollution: A review,”
Frontiers in Public Health, vol. 8, Feb 2020. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044178/

[15] H. Willoughby, E. Rappaport, and F. Marks, “Hurricane forecasting:
The state of the art,” Natural Hazards Review, vol. 8, 07 2005.

[16] R. Staff, “Genoa bridge reconstruction to cost 150-200 million euros,
official says,” Sep 2018. [Online]. Available: https://www.reuters.com/
article/us-italy-motorway-collapse-reconstructio-idUSKCN1LP0J2

https://www.w3.org/TR/2020/PR-wot-architecture-20200130/.
https://www.w3.org/TR/2020/PR-wot-architecture-20200130/.
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1055.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044178/
https://www.reuters.com/article/us-italy-motorway-collapse-reconstructio-idUSKCN1LP0J2
https://www.reuters.com/article/us-italy-motorway-collapse-reconstructio-idUSKCN1LP0J2

BIBLIOGRAPHY 151

[17] “Morandi bridge absence costs italy 784 mln euros a year in lost gdp,”
2018. [Online]. Available: http://www.xinhuanet.com/english/2018-1
1/29/c 137638193.htm

[18] M. Abdo, Structural Health Monitoring, History, Applications and
Future. A Review Book, 01 2014.

[19] F.-K. Chang, Structural health monitoring 2000. CRC Press, 1999.

[20] A. Rytter, “Vibrational based inspection of civil engineering struc-
tures,” Ph.D. dissertation, Denmark, 1993, ph.D.-Thesis defended
publicly at the University of Aalborg, April 20, 1993 PDF for print:
206 pp.

[21] B. Peeters, J. Maeck, and G. D. Roeck, “Vibration-based
damage detection in civil engineering: excitation sources
and temperature effects,” Smart Materials and Structures,
vol. 10, no. 3, pp. 518–527, jun 2001. [Online]. Available:
https://doi.org/10.1088/0964-1726/10/3/314

[22] E. Favarelli and A. Giorgetti, “Machine learning for automatic pro-
cessing of modal analysis in damage detection of bridges,” IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1–13,
2021.

[23] M. Weiser, “The computer for the 21 st century,” Scientific american,
vol. 265, no. 3, pp. 94–105, 1991.

[24] K. Ashton, How to fly a horse: The secret history of creation, inven-
tion, and discovery. Doubleday New York, NY, 2015.

[25] Benchmark of MQTT servers, 2015.

[26] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 34–43, 2001.

[27] S. Kaebish, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch,
“Web of things (wot) thing description,” Apr 2020. [Online]. Available:
https://www.w3.org/TR/wot-thing-description/

http://www.xinhuanet.com/english/2018-11/29/c_137638193.htm
http://www.xinhuanet.com/english/2018-11/29/c_137638193.htm
https://doi.org/10.1088/0964-1726/10/3/314
https://www.w3.org/TR/wot-thing-description/

152 BIBLIOGRAPHY

[28] A. Cimmino, M. McCool, F. Tavakolizadeh, and K. Toumura,
“Web of things (wot) discovery,” 2017. [Online]. Available:
https://w3c.github.io/wot-discovery/

[29] M. Lagally, M. McCool, R. Matsukura, S. Kaebisch, and
T. Mizushima, “Web of things (wot) profile,” Nov 2020. [Online].
Available: https://www.w3.org/TR/wot-profile/

[30] V. Charpenay and S. Käbisch, “On modeling the physical world as a
collection of things: The w3c thing description ontology,” Proc. of
the European Semantic Web Conference (ESWC), pp. 599–615, 2020.

[31] Z. Kis, D. Peintner, C. Aguzzi, J. Hund, and K. Nimura, “Web
of things (wot) scripting api,” Nov 2020. [Online]. Available:
https://www.w3.org/TR/wot-scripting-api/

[32] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of
things applications: A systematic review,” Computer Networks,
vol. 148, pp. 241 – 261, 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128618305127

[33] C. Aguzzi, L. G. L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,
M. Di Felice, A. Marzani, and T. S. Cinotti, “Modron: A scalable and
interoperable web of things platform for structural health monitoring,”
pp. 1–8, 2021.

[34] C. J. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural
Health Monitoring Framework Based on Internet of Things: A Survey,”
IEEE Internet of Things Journal, vol. 4, no. 3, pp. 619–635, 2017.

[35] L. Alonso, J. Barbarán, J. Chen, M. Dı́az, L. Llopis, and B. Rubio,
“Middleware and communication technologies for structural health
monitoring of critical infrastructures: A survey,” Computer Standards
and Interfaces, vol. 56, no. March 2017, pp. 83–100, 2018.

[36] L. S. Sun, Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah,
“Review of bridge structural health monitoring aided by big data and

https://w3c.github.io/wot-discovery/
https://www.w3.org/TR/wot-profile/
https://www.w3.org/TR/wot-scripting-api/
http://www.sciencedirect.com/science/article/pii/S1389128618305127
http://www.sciencedirect.com/science/article/pii/S1389128618305127

BIBLIOGRAPHY 153

artificial intelligence: From condition assessment to damage detection,”
Journal of Structural Engineering, vol. 146, no. 5, 2020.

[37] C. Scuro, P. F. Sciammarella, F. Lamonaca, R. S. Olivito, and D. L.
Carńı, “IoT for Structural Health Monitoring,” IEEE Instrumentation
& Measurement Magazine, vol. 21, no. 6, pp. 4–9, 2018.

[38] F. Lamonaca, C. Scuro, P. Sciammarella, D. Carǹı, and D. Oliv-
ito, “IEEE Instrumentation and Measurement Magazine,” Structural
Health Monitoring Technologies and Next-Generation Smart Compos-
ite Structures, vol. 21(6), pp. 4–9, 2018.

[39] X. Liu, J. Cao, and P. Guo, “SenetSHM: Towards practical structural
health monitoring using intelligent sensor networks,” Proceedings of
the 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud 2016), Social Computing and Networking (So-
cialCom 2016), and Sustainable Computing and Communications
(SustainCom 2016), pp. 416–423, 2016.

[40] F. Lamonaca, C. Scuro, P. F. Sciammarella, R. S. Olivito, D. Grimaldi,
and D. L. Carńı, “A layered iot-based architecture for a distributed
structural health monitoring system,” Acta IMEKO, vol. 8, no. 2, pp.
45–52, 2019.

[41] P. Pierleoni, M. Conti, A. Belli, L. Palma, L. Incipini, L. Sabba-
tini, S. Valenti, M. Mercuri, and R. Concetti, “IoT Solution based
on MQTT Protocol for Real-Time Building Monitoring,” Proceed-
ing of the 2019 IEEE 23rd International Symposium on Consumer
Technologies (ISCT 2019), pp. 57–62, 2019.

[42] P. Barsocchi, P. Cassará, F. Mavilia, and D. Pellegrini, “Sensing a
city’s state of health: Structural monitoring system by internet-of-
things wireless sensing devices,” IEEE Consumer Electronics Maga-
zine, vol. 7, no. march, pp. 22–31, 2018.

[43] Y. Liao, M. Mollineaux, R. Hsu, R. Bartlett, A. Singla, A. Raja,
R. Bajwa, and R. Rajagopal, “SnowFort: An open source wireless

154 BIBLIOGRAPHY

sensor network for data analytics in infrastructure and environmental
monitoring,” IEEE Sensors Journal, vol. 14, no. 12, pp. 4253–4263,
2014.

[44] M. A. Mahmud, K. Bates, T. Wood, A. Abdelgawad, and K. Yela-
marthi, “A complete Internet of Things (IoT) platform for Structural
Health Monitoring (SHM),” Proceedings of the IEEE World Forum
on Internet of Things (WF-IoT 2018), vol. 2018-January, pp. 275–279,
2018.

[45] A. Girolami, D. Brunelli, and L. Benini, “Low-cost and distributed
health monitoring system for critical buildings,” Proceedings of the
2017 IEEE Workshop on Environmental, Energy, and Structural
Monitoring Systems (EESMS 2017), 2017.

[46] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, and M. Felice, “From cloud
to edge: Seamless software migration at the era of the web of things,”
IEEE Access, vol. PP, pp. 1–1, 12 2020.

[47] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A Survey on Service Migration
in Mobile Edge Computing,” IEEE Access, vol. 6, pp. 23 511–23 528,
2018.

[48] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive vm handoff across cloudlets,” Technical Report
CMU-CS-15-113, 2015.

[49] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the internet of things: A survey,” ACM Transaction on
Internet Technologies, vol. 19, no. 2, Apr. 2019. [Online]. Available:
https://doi.org/10.1145/3301443

[50] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 369–382, 2019.

[51] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino, “Com-
panion fog computing: supporting things mobility through container

https://doi.org/10.1145/3301443

BIBLIOGRAPHY 155

migration at the edge,” Proceedings of the 2018 IEEE International
Conference on Smart Computing, (IEEE SMARTCOMP 2018), pp.
97–105, 2018.

[52] H. Abdah, J. P. Barraca, and R. L. Aguiar, “QoS-aware service
continuity in the virtualized edge,” IEEE Access, vol. 7, pp. 51 570–
51 588, 2019.

[53] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Le-
ung, “Mobility-induced service migration in mobile micro-clouds,” in
Proceedings of the 2014 IEEE Military Communications Conference,
2014, pp. 835–840.

[54] C. Zhang and Z. Zheng, “Task migration for mobile edge
computing using deep reinforcement learning,” Future Generation
Computer Systems, vol. 96, pp. 111–118, 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.01.059

[55] K. Kientopf, S. Raza, S. Lansing, and M. Güneş, “Service management
platform to support service migrations for IoT smart city applications,”
Proceedings of the IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (IEEE PIMRC 2018), vol. 2017-
Octob, pp. 1–5, 2018.

[56] P. Bellavista, A. Zanni, and M. Solimando, “A migration-enhanced
edge computing support for mobile devices in hostile environments,”
in Proceedings of the 13th International Wireless Communications
and Mobile Computing Conference (IEEE IWCMC 2017), 2017, pp.
957–962.

[57] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in IoT con-
text: Horizontal and vertical Linux container migration,” Proceedings
of the Global Internet of Things Summit (GIoTS 2017), pp. 2–5, 2017.

[58] F. Ramalho and A. Neto, “Virtualization at the network edge: A
performance comparison,” in Proc. of the IEEE 17th International
Symposium on A World of Wireless, Mobile and Multimedia Networks
(IEEE WoWMoM 2016), 2016, pp. 1–6.

https://doi.org/10.1016/j.future.2019.01.059

156 BIBLIOGRAPHY

[59] R. Morabito and N. Beijar, “Enabling Data Processing at the Network
Edge through Lightweight Virtualization Technologies,” Proceedings
of the IEEE International Conference on Sensing, Communication
and Networking, SECON Workshops 2016, no. 607728, pp. 1–6, 2016.

[60] K. Jung, J. Gascon-Samson, and K. Pattabiraman, “Demo: ThingsMi-
grate - Platform-independent live-migration of javascript processes,”
Proceedings of the 2018 3rd ACM/IEEE Symposium on Edge Com-
puting (SEC 2018), pp. 356–358, 2018.

[61] C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. Salmon Cinotti, R. Filev Maia, and A. Torre Neto, “Smart
water management platform: Iot-based precision irrigation for
agriculture,” Sensors, vol. 19, no. 2, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/2/276

[62] “Bric 2018 inail mac4pro project, https://site.unibo.it/mac4pro/it,”
2019.

[63] A. Sheth, “Changing focus on interoperability in information systems:
From system, syntax, structure to semantics,” 07 2015.

[64] M. Kolp, P. Giorgini, and J. Mylopoulos, “Multi-agent architectures
as organizational structures,” Autonomous Agents and Multi-Agent
Systems, vol. 13, no. 1, pp. 3–25, Jul 2006. [Online]. Available:
https://doi.org/10.1007/s10458-006-5717-6

[65] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: A cyber-physical systems perspective,” IEEE
Access, vol. 6, pp. 78 238–78 259, 2018.

[66] F. Jalali, T. Lynar, O. J. Smith, R. R. Kolluri, C. V. Hardgrove,
N. Waywood, and F. Suits, “Dynamic Edge Fabric EnvironmenT:
Seamless and Automatic Switching among Resources at the Edge
of IoT Network and Cloud,” Proceedings of the IEEE International
Conference on Edge Computing (EDGE 2019), pp. 77–86, 2019.

https://www.mdpi.com/1424-8220/19/2/276
https://doi.org/10.1007/s10458-006-5717-6

BIBLIOGRAPHY 157

[67] X. Sun and N. Ansari, “EdgeIoT: Mobile Edge Computing for the
Internet of Things,” IEEE Communications Magazine, vol. 54, no. 12,
pp. 22–29, 2016.

[68] P. Yu, X. Ma, J. Cao, and J. Lu, “Application mobility in pervasive
computing: A survey,” Pervasive and Mobile Computing, vol. 9, no. 1,
pp. 2 – 17, 2013, special Section: Pervasive Sustainability. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S15741
19212000934

[69] “Eclipse thingweb node-wot.” [Online]. Available: https://github.c
om/eclipse/thingweb.node-wot

[70] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen,
“A survey on resource discovery mechanisms, peer-to-peer and
service discovery frameworks,” Computer Networks, vol. 52,
no. 11, pp. 2097 – 2128, 2008. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S138912860800100X

[71] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and
T. Salmon Cinotti, “Dynamic linked data: A sparql event processing
architecture,” Future Internet, vol. 10, no. 4, 2018. [Online]. Available:
https://www.mdpi.com/1999-5903/10/4/36

[72] J. Umbrich, B. Villazön-Terrazas, and M. Hausenblas, “Dataset
dynamics compendium: A comparative study,” in Proceedings of
the First International Conference on Consuming Linked Data, vol.
665. Aachen, Germany: CEUR-WS.org, 2010, pp. 49–60. [Online].
Available: http://dl.acm.org/citation.cfm?id=2878947.2878952

[73] R. Sanderson and H. Van de Sompel, “Cool URIs and Dynamic Data,”
IEEE INTERNET COMPUTING, vol. 16, no. 4, pp. 76–79, 2012.

[74] M. Murth and E. Kühn, “Knowledge-based interaction patterns for
semantic spaces,” in Proceedings of the 4th International Conference
on Complex, Intelligent and Software Intensive Systems, 2010, pp.
1036–1043.

http://www.sciencedirect.com/science/article/pii/S1574119212000934
http://www.sciencedirect.com/science/article/pii/S1574119212000934
https://github.com/eclipse/thingweb.node-wot
https://github.com/eclipse/thingweb.node-wot
http://www.sciencedirect.com/science/article/pii/S138912860800100X
http://www.sciencedirect.com/science/article/pii/S138912860800100X
https://www.mdpi.com/1999-5903/10/4/36
http://dl.acm.org/citation.cfm?id=2878947.2878952

158 BIBLIOGRAPHY

[75] ——, “Knowledge-based coordination with a reliable semantic sub-
scription mechanism,” Proceedings of the 2009 ACM symposium on
Applied Computing - SAC ’09, p. 1374, 2009.

[76] K. R. Llanes, M. A. Casanova, and N. M. Lemus, “From Sensor Data
Streams to Linked Streaming Data: a survey of main approaches,”
Journal of Information and Data Management, vol. 7, no. 2, pp.
130–140, 2016.

[77] S. Schade, F. Ostermann, L. Spinsanti, and W. Kuhn, “Semantic
Observation Integration,” Future Internet, vol. 4, no. 4, pp. 807–829,
2012.

[78] M. N. Boulos, A. Yassine, S. Shirmohammadi, C. S. Namahoot, and
M. Brückner, “Towards an ”internet of food”: Food ontologies for the
internet of things,” Future Internet, vol. 7, no. 4, pp. 372–392, 2015.

[79] A. Alti, A. Lakehal, S. Laborie, and P. Roose, “Autonomic semantic-
based context-aware platform for mobile applications in pervasive
environments,” Future Internet, vol. 8, no. 4, pp. 1–26, 2016.

[80] A. D’Elia, F. Viola, L. Roffia, P. Azzoni, and T. Cinotti, “Enabling
interoperability in the internet of things: A OSGi semantic information
broker implementation,” International Journal on Semantic Web and
Information Systems, vol. 13, no. 1, pp. 146–167, 2017.

[81] F. Viola, A. D’Elia, L. Roffia, and T. Cinotti, “A modular lightweight
implementation of the Smart-M3 semantic information broker,” in
18th FRUCT Conference, 2016, pp. 307–376.

[82] A. D’Elia, F. Viola, L. Roffia, and T. Salmon Cinotti, “A Multi-broker
Platform for the Internet of Things,” in LNCS-Internet of Things,
Smart Spaces, and Next Generation Networks and Systems. Springer,
2015, pp. 34–46.

[83] L. Bedogni, L. Bononi, M. Di Felice, A. D’Elia, R. Mock, F. Montori,
F. Morandi, L. Roffia, S. Rondelli, T. S. Cinotti, Others, and F. Ver-
gari, “An interoperable architecture for mobile smart services over

BIBLIOGRAPHY 159

the internet of energy,” in World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2013 IEEE 14th International Symposium
and Workshops on a. IEEE, 2013, pp. 1–6.

[84] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. S. Cinotti,
“RedSib: a Smart-M3 semantic information broker implementation,”
in 12th FRUCT Conference. SUAI, 2012, pp. 86–98.

[85] L. Roffia, S. Bartolini, D. Manzaroli, A. D. Elia, T. S. Cinotti, and
G. Raffa, “Requirements on System Design to Increase Understanding
and Visibility of Cultural Heritage,” in Handbook of Research on
Technologies and Cultural Heritage: Applications and Environments.
IGI Global: Hershey, PA, USA, 2011, ch. 13, pp. 259–284.

[86] S. Pantsar-Syväniemi, E. Ovaska, S. Ferrari, T. S. Cinotti, G. Zamagni,
L. Roffia, S. Mattarozzi, and V. Nannini, “Case study: Context-aware
supervision of a smart maintenance process,” in 11th IEEE/IPSJ
International Symposium on Applications and the Internet, SAINT
2011, 2011, pp. 309–314.

[87] F. Vergari, T. S. Cinotti, A. D’Elia, L. Roffia, G. Zamagni, and
C. Lamberti, “An integrated framework to achieve interoperabil-
ity in person-centric health management,” International journal of
telemedicine and applications, p. 10, 2011.

[88] D. Manzaroli, L. Roffia, T. S. Cinotti, E. Ovaska, P. Azzoni, V. Nan-
nini, and S. Mattarozzi, “Smart-M3 and OSGi: The Interoperability
Platform,” SISS 2010, IEEE First International Workshop on Se-
mantic Interoperability for Smart Spaces, Symposium on Computers
and Communications, pp. 1053–1058, 2010.

[89] F. Vergari, S. Bartolini, F. Spadini, A. D’Elia, G. Zamagni, L. Roffia,
and T. S. Cinotti, “A smart space application to dynamically relate
medical and environmental information,” in 2010 Design, Automation
Test in Europe Conference Exhibition (DATE 2010), March 2010, pp.
1542–1547.

160 BIBLIOGRAPHY

[90] A. D’Elia, L. Roffia, G. Zamagni, F. Vergari, A. Toninelli, P. Bellav-
ista, A. D’Elia, L. Roffia, G. Zamagni, F. Vergari, A. Toninelli, and
P. Bellavista, “Smart Applications for the Maintenance of Large
Buildings: How to Achieve Ontology-based Interoperability at the
Information Level,” in SISS 2010, IEEE First International Work-
shop on Semantic Interoperability for Smart Spaces, Symposium on
Computers and Communications, 2010, pp. 1072–1077.

[91] L. Roffia, F. Morandi, J. Kiljander, A. D’Elia, F. Vergari, F. Viola,
L. Bononi, and T. S. Cinotti, “A Semantic Publish-Subscribe Archi-
tecture for the Internet of Things,” IEEE Internet of Things Journal,
dec 2016.

[92] A. Avižienis, J.-C. Laprie, and B. Randell, “Dependability and
its threats: A taxonomy,” in Building the Information Society,
R. Jacquart, Ed. Boston, MA: Springer US, 2004, pp. 91–120.

[93] M. Rinne, E. Nuutila, and S. Törmä, “INSTANS: High-performance
event processing with standard RDF and SPARQL,” CEUR Workshop
Proceedings, vol. 914, pp. 101–104, 2012.

[94] C. L. Forgy, “Rete : A Fast Algorithm for the Many PatternIMany
Object Pattern Match Problem,” Artificial Intelligence, vol. 19, no.
1982, pp. 17–37, 1982.

[95] R. Dividino and G. Gröner, “Which of the following sparql queries are
similar? why?” in Proceedings of the First International Conference on
Linked Data for Information Extraction - Volume 1057, ser. LD4IE’13.
Aachen, Germany, Germany: CEUR-WS.org, 2013, pp. 2–13. [Online].
Available: http://dl.acm.org/citation.cfm?id=2874472.2874474

[96] F. Viola, A. D’Elia, L. Roffia, and T. S. Cinotti, “Performance Eval-
uation Suite for Semantic Publish-Subscribe Message-oriented Mid-
dlewares,” in UBICOMM 2016, The Tenth International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies,
2016, pp. 190–196.

http://dl.acm.org/citation.cfm?id=2874472.2874474

BIBLIOGRAPHY 161

[97] C. R. Farrar and K. Worden, “An introduction to structural health
monitoring,” Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 365, no. 1851, pp.
303–315, 2007.

[98] L. Sun, Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah, “Review
of bridge structural health monitoring aided by big data and artificial
intelligence: From condition assessment to damage detection,” Journal
of Structural Engineering, vol. 146, no. 5, p. 04020073, 2020.

[99] R.-T. Wu and M. R. Jahanshahi, “Data fusion approaches for struc-
tural health monitoring and system identification: Past, present, and
future,” Structural Health Monitoring, vol. 19, no. 2, pp. 552–586,
2020.

[100] “Freshwater is used for agriculture 2017,” Mar 2017. [Online].
Available: https://blogs.worldbank.org/opendata/chart-globally-70
-freshwater-used-agriculture

[101] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” IEEE Software, vol. 13, no. 6, pp.
47–55, 1996.

[102] V. Charpenay and S. Käbisch, “On modeling the physical world as a
collection of things: The w3c thing description ontology,” in European
Semantic Web Conference. Springer, 2020, pp. 599–615.

https://blogs.worldbank.org/opendata/chart-globally-70-freshwater-used-agriculture
https://blogs.worldbank.org/opendata/chart-globally-70-freshwater-used-agriculture

This page intentionally left blank.

Acronyms

AI Artificial Intelligence. 94

API Application Programming Interface. 4, 29–31, 33, 34, 41–43, 55, 67,
70, 75, 81, 87–89, 91, 98, 99, 110, 114

BOT Bulding Topology Ontology. 100

CoAP Constrained Application Protocol. 22, 23, 26, 81

CPU Central Processing Unit. 66, 73, 118, 119, 122–124, 169

CSS Cascade Style Sheet. 31

CSV Comma Seperated Values. 88

DOT Damage Topology Ontology. 100

GUI Graphical User Interface. 47, 97

HTML HypertText Markup Language. 27, 31, 115, 137

HTTP HyperText Transfer Protocol. 21–24, 26, 27, 29–31, 33, 39, 42, 47,
74–76, 81, 94, 96, 113

IoT Internet of Things. VI, VII, 3–6, 8, 9, 18, 20–23, 25, 27, 29, 30, 33, 36,
38, 39, 46, 48–53, 56–59, 62–64, 66, 72, 76, 93–96, 102, 104–106, 109,
112, 115, 116, 120, 124–127, 129, 131, 135–138, 167–169

163

164 Acronyms

IP Internet Protocol. 20, 22–24, 33, 38, 51, 53, 55, 62

IT Information Technology. 45, 114

JSON JavaScript Object Notation. 4, 36, 81, 87–89

JSON-LD JavaScript Object Notation Linked Data. 87, 88, 101

KP Knowledge processor. 29

LoRaWAN Long Range Wide Area Network. 23, 24, 104

M-WoT Migratable Web of Things. 63–67, 71–73, 116, 118, 122–127

MIME Multipurpose Internet Mail Extensions. 113

ML Machine Learning. 49, 94

MQTT Message Queuing Telemetry Transport. 22–24

QoS Quality of Service. 48, 49, 62, 63, 124

RAM Random Access Memory. 118, 123, 124, 169

RDF Resource Description Framework. 28–30, 36, 59, 76, 78, 84, 87–90,
99

RFC Request For Comments. 22

SEPA SPARQL Event Processing Architecture. 77–79, 81, 86, 87, 89, 90,
104, 168

SHM Structural Health Monitoring. 8, 9, 11, 13, 14, 16–18, 46–48, 60,
93–95, 98, 101, 104, 124, 125, 137, 169

SSE Server Sent Events. 21

SSN Semantic Sensor Network. 99, 106

Acronyms 165

SWAMP Smart Water Management Platform. 91, 93, 102–109, 111, 127,
131, 136, 138, 168

TCP Transmission Control Protocol. 22, 23, 26

TD Thing Description. 33, 34, 36, 42, 55, 59–61, 63, 65–67, 70, 71, 74–76,
87, 88, 90, 91, 95–99, 101, 109, 112, 113, 115, 116, 118, 128, 129

TDD Thing Description Directory. 65, 75, 76, 87–93, 97, 116, 118, 135,
168

TDir Thing Directory. 65–67, 70, 71

UDP User Datagram Protocol. 22

URL Uniform Resource Locator. 26, 38, 74

VM Virtual Machine. 49, 62, 67

W3C World Wide Web Consortium. VI, VII, 4, 8, 31–34, 63–65, 74, 77,
78, 95, 96, 109, 115, 125, 127, 128, 131

WAM Wot Application Manager. 9, 107, 109, 168

WoT Web Of Things. VI, VII, 4, 8, 9, 11, 30–34, 38, 39, 41–43, 55, 57, 58,
60–64, 66, 70, 74, 75, 87, 89, 91, 93–98, 103, 104, 106, 107, 109–116,
118–120, 122, 124–126, 128–133, 136–138, 167–169

WT Web Thing. 63–67, 70–73, 81, 95–99, 103, 104, 109, 113, 116–127,
129, 136, 168, 169

XML eXtensible Markup Language. 27

This page intentionally left blank.

List of Figures

2.1 Different phases of the rebound hammer test 12

2.2 A schematic view of a typical Structural health monitoring
system. 15

2.3 A sample of different shm sensors. From the top right corner
we found: accelerometers, piezoelectric, strain gauge, laser
vibrometer, and fiber optic sensor 19

2.4 Original Web of Things architecture [9] 32

2.5 Interaction schema between WoT agents. 33

2.6 An overview of a WoT deployment. Image taken from [10] . 34

2.7 Consumed and Exposed Thing diagram. See [10] for futher
details . 35

2.8 The Thing Description data model [30] 36

2.9 Main WoT network interface operations grouped per affor-
dance type . 39

2.10 Protocol bindings [10]. 40

3.1 The open monitoring platform abstract architecture. Rect-
angles represent the different agent categories whereas the
grey triangles are possible clients interacting at each level. . 54

3.2 A zoomed view of the open monitoring architecture. Notice
how the different layers are distributed across multiple IoT
nodes. 59

3.3 A possible knowledge layered organization for WoT based
monitoring applications. 61

3.4 Main system components of a Migratable WoT deployment. 65

167

168 LIST OF FIGURES

3.5 The main modules of a Orchestrator agent. Three modules
cooperate with the goal to find the optimal allocation plan
and actuate it thanks to the migration substrate. 68

3.6 The internal software stack of a migratable servient. See the
new added module dedicated to the extraction of monitoring
parameters about application behaviour 69

3.7 Sequence diagram of a WT migration event. 71

3.8 The distribution of Thing Description Directories across
different IoT layers. It can noticed how different clients can
access the knowledge graph from distributed phisical locations. 76

3.9 From the Web of Data to the Web of Dynamic Data. SEPA,
SPARQL Event Processing Architecture. 79

3.10 Broker reference architecture. 80

3.11 Core of the broker architecture. EOP, end-of-processing;
SPU, Subscription Processing Unit. 83

3.12 SPU manager architecture. 85

3.13 A Thing Description Directory powered by a SEPA microservice 87

3.14 On the left a tree like data structure whereas on the right a
graph based data model. 89

3.15 Query translation in a Dynamic TDD 92

3.16 A simplified view of how the Dynamic TDD store Thing De-
scriptions and other directory relevant metadata (i.e.,modification
records and ownership) . 93

3.17 Summary of the MODRON architecture. The layers prosed
in Chapter 3 are on the right. 96

3.18 Layered knowledge model of the MODRON platform. . . . 100

3.19 The orginal SWAMP platform as proposed in [61] 103

3.20 The SWAMP architecture revised with the Web of Things
technologies. SWAMP layers 2,3 and 4 are respectively
mapped into the Sensing, Processing, and Analytical layers. 105

3.21 SWAMP vocabulary structure 107

3.22 SWAMP original ontology summarized data model 108

3.23 Initialization of a WoT application using WAM 109

LIST OF FIGURES 169

3.24 WoT Farm main screen. On the left there is a code editor
with a sample WoT script (see Listing A.2). On the right a
3D view of the simulated farm. 110

4.1 The NO, TF and CF metrics for the six policies when
varying the number of active WTs are shown respectively in
Figures 4.1(a), 4.1(b) and 4.1(c). 117

4.2 The average utilization of each computational node is shown
in Figure 4.2(a). The IL metric when when varying the
number of active WTs is shown in Figure 4.2(b). The NO
metric as a function of the WT degree is reported in Figure
4.2(c). 117

4.3 The CF and IL metrics when varying the WT degree are
shown respectively in Figures 4.3(a) and 4.3(b). The NO
over time-slots in a dynamic WoT deployment where the
number of WTs is varied over time is reported in Figure
4.3(c). 119

4.4 The TF over time-slots in a dynamic WoT deployment where
the number of WTs is varied over time is reported in Figure
4.4(a). The NO over time in the IoT monitoring use-case is
shown in Figure 4.4(b); the processing latency for the same
scenario is reported in Figure 4.4(c). 120

4.5 CPU load (Figure 4.5(a)) and RAM consumption (Figure
4.5(b)) of the Orchestrator for different numbers of deployed
WTs. 123

4.6 A SHM monitoring application. 125
4.7 The system lifecycle of a WoT enabled device 132
4.8 A proposed lifecyle for WoT applications. 133

	Introduction
	Problem statement
	Contributions
	Thesis outline

	Background
	Structural Health Monitoring
	Global damage detection
	SHM sensors

	Internet of Things
	Internet of Things protocols

	Web of Things
	Thing Description
	Protocol bindings and Templates
	Servient
	Scripting API

	Open WoT Monitoring platform
	Related works
	Service migration

	Requirements
	Architecture outline
	Migration
	Discovery

	Implementation
	Structural Health Monitoring platform
	Smart Agriculture
	Tools

	Evaluation and Discussion
	Software Architecture Analysis
	Interoperability
	Extensibility
	Openness
	Final comments

	Migration
	Policy Analysis
	Use-case Analysis

	WoT open points

	Future work and conclusions
	Future work
	Conclusion

	Acknowledgements
	Appendices
	Code listings

