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Abstract

Brillouin optical time domain analysis (BOTDA) is one of the most important
distributed optical fiber sensor technologies thanks to its capability of monitor-
ing both temperature and strain distribution over tens of kilometers of sensing
fibers with a single interrogating device. Because of this, BOTDA sensors
have found important applications in structural health monitoring, safety, oil
& gas and environmental engineering. Despite this, their employment is still
limited by two factors: on one hand, the high complexity (and cost) for a
single interrogator unit reduces the applications where BOTDA is competitive
compared to classical point-like sensor applications. On the other, the time
required to obtain a single temperature/strain distribution is in the order of
several minutes, mainly limiting BOTDA to static or quasi-static measure-
ments. In this thesis solutions are proposed for both of these limitations. In
the first part, two different pump-probe laser sources based on Brillouin Ring
Lasers (BRL) are shown and evaluated as low-cost alternatives to traditional
sources employed in BOTDA. The first source, which is based on a long cavity
BRL, is shown to be successfully employable in BOTDA measurements up
to at least 10 km of range. The second source, which is based on a doubly
resonant short cavity BRL, shows further improvements in intensity noise,
output light spectral linewidth and tunability of the pump-probe frequency
shift, at the cost of a slightly more complex hardware requirement, which still
remains less severe than traditional sources. The activities were carried out
in the framework of the Horizon 2020 project Pervasive Ubiquitous Lightwave
Sensors (PULSe) which, among other aspects, focused on the development
of innovative and low complexity Brillouin sensing equipment. In the second
part, which was the result of a 9-month long collaboration with the Group for
fiber optics (GFO) at the École polytechnique fédérale de Lausanne (EPFL),
a fast BOTDA design based on a closed-loop control was explored and im-
proved, with a particular focus in its signal processing methods. Finally, a new
adaptive signal filtering technique to improve noise suppression is proposed
and demonstrated.





Sommario

Brillouin optical time domain analysis (BOTDA) è una delle tecnologie più
importanti tra i sensori distribuiti a fibra ottica grazie alla sua capacità di
monitorare distribuzioni di temperatura e strain lungo decine di chilometri di
fibre di sensing con un singolo dispositivo interrogatore. Per questo motivo
i sensori BOTDA hanno trovato importanti applicazioni nel controllo della
salute strutturale degli edifici, nella sicurezza, nei settori fossili e nell’ingegneria
ambientale. Tuttavia, la loro applicabilità è ancora limitata da due fattori: da
una parte, la complessità (e il costo) elevati per una singola unità interrogatrice
riducono le applicazioni in cui i sensori BOTDA sono competitivi rispetto
ai sensori puntuali classici. Dall’altra, il tempo richiesto per ottenere una
singola distribuzione di temperatura o strain è dell’ordine di diversi minuti,
limitando i sensori BOTDA principalmente a misure statiche o quasi-statiche.
In questa tesi sono proposte soluzioni per entrambe le limitazioni. Nella prima
parte, due differenti sorgenti pump-probe basate su laser ad anello Brillouin
(BRL) sono presentate e valutate come alternative a basso costo rispetto
alle sorgenti tradizionali utilizzate in BOTDA. Per la prima sorgente, che è
basata su un BRL a cavità lunga, si dimostra che permette misure efficaci
di BOTDA fino a una distanza di almeno 10 km. La seconda sorgente, che
è basata su una cavità corta BRL doppiamente risonante, mostra ulteriori
miglioramenti in termini di rumore di intensità, larghezza spettrale di banda e
controllabilità dello shift di frequenza pump-probe al costo di un’attrezzatura
leggermente più complessa, mantenendo un costo minore rispetto alle sorgenti
tradizionali. Queste attività sono state condotte nell’ambito del progetto
Horizon 2020 Pervasive Ubiquitous Lightwave Sensors (PULSe) che, tra gli
altri obiettivi, si focalizza sullo sviluppo di dispositivo per sensori Brillouin
innovativo a bassa complessità. Nella seconda parte, che è stata il risultato di
una collaborazione con il Group for fiber optics (GFO) all’École polytechnique
fédérale de Lausanne (EPFL), è stato studiato e migliorato uno schema
BOTDA veloce basato su un controllo a circuito chiuso, con particolare
attenzione alle tecniche impiegate per l’analisi del segnale. Infine si propone e
dimostra un nuovo metodo adattivo di filtraggio del segnale per migliorare la
soppressione del rumore.
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Introduction

In the last decades, distributed optical fiber sensors have affirmed themselves
as a viable alternative that competes with conventional sensing techniques. On
one hand, this is due to the inherent desirable properties of optical fibers, such
as reduced dimensionality, light weight and resistance to environmental damage
and to electromagnetic interference. On the other, optical fiber sensors offer
the unique possibility of monitoring spatial distributions of relevant physical
properties (such as temperature, strain, pressure and similar) with the use of
a single interrogating device. This characteristic, which to this day cannot be
replicated by any other kind of technology, has made distributed optical fiber
sensors a preminent candidate for applications requiring the continuous and
simultaneous monitoring of extensive structures such as buildings, bridges,
tunnels, planes, ships and pipelines, which are relevant for a variety of sectors,
including energy, security, oil and gas industry and environmental monitoring.

Several kinds of distributed optical fiber sensors have been developed over
the years, thanks to improved understanding of scattering phenomena in
optical fibers and the advancement of time and frequency-domain techniques
to analyze them, leading to the creation of a wide variety of optical fiber
sensors. Among them, Brillouin optical time analysis (BOTDA), which is
based on stimulated Brillouin scattering, has proven to be one of the most
attractive distributed optical fiber sensing techniques, thanks to its ability to
monitor temperature and strain variations across tens of kilometers of sensing
fibers with good sensitivity.

Despite the exceptional qualities that characterize BOTDA and other
types of distributed optical fiber sensors, several challenges limit their fields of
applicability. First of all, while the cost of optical fibers has been drastically
reduced thanks to the interest and developement in telecommunication, the
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2 | Introduction

complexity (and cost) of the interrogating equipment still remains high, which
limits its employment outside of very large scale applications where the number
of point like sensors needed would simply be unfeasible. In addition, the time
required to extract a single temperature and/or strain distribution is in the
order of minutes, mainly limiting the employment of BOTDA to static or
quasi-static measurement and preventing dynamic monitoring.

In this thesis, possible ways of reducing both of these issues are explored.
First, two novel sources based on Brillouin ring lasers are presented as a
low-complexity and low-cost alternative to traditional light source design in
order to reduce the price of BOTDA interrogating systems. Their perfor-
mance is evaluated in terms of tunability, intensity noise, conversion efficiency
and spectral linewidth, and their viability for BOTDA measurements is
demonstrated showing, in addition to lower hardware requirements, specific
performance advantages which are unique to Brillouin ring lasers and can prove
beneficial in other BRL applications, such as communications and LIDAR
detection.

Second, a previously developed closed-circuit design for dynamic BOTDA
is presented. Its control system for the closed loop, which is based on a PID
controller, is evaluated in terms of control speed, dynamic step response and
noise filtering and compared with other filters, such as the moving average. In
addition, a new adaptive signal filtering method is proposed, which consists of
a method to control whether the system under measurement is in a stationary
or dynamic state and employs a filter that is appropriate to each case: one
with faster impulse response and smaller noise reduction factor to capture
dynamic changes and one with slower impulse response and high reduction
factor to more accurately determine the equilibrium state reached by the
system. It is shown that this method has a response speed that is very close
to the moving average filter, which is known to be optimal in situations (such
as the one described in this work) where data is gathered in real time and no
previous assumption can be made on the evolution of the system, maintaining
similar performance in noise suppression when the signal is in dynamic phases
and outperforming it when the signal is in stationary phases. While other
filters, namely nonlinear filters, are known to show better performance than
the moving average filter, they require an accurate model of the system being
monitored to predict its state based on the measurement. The proposed
method, on the other hand, only requires information about the extent of the
minimum changes the system must undergo to be considered dynamic or static.
Finally, the closed-loop measuring method is implemented experimentally with
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the previously demonstrated PI implementation and the new method, showing
the possibility for measurements with similar response speed but higher noise
suppression, especially for slowly changing readings.

The first chapter presents the main principles of optical fiber sensors and
distributed optical fiber sensor technology, including their main advantages
with respect to traditional sensors. Afterwards, it gives a theoretical descrip-
tion of the stimulated Brillouin scattering process and details the generalities
of the BOTDA sensing process.

The second chapter describes the two most used light source schemes
for Brillouin optical time domain analysis, presenting their main advantages
and drawbacks. It then describes Brillouin ring lasers, showing the way they
could be employed as a source for Brillouin optical time domain analysis.
Finally, a developed low-cost hybrid Brillouin ring laser-erbium doped fiber
amplifier source is presented, and its performance is evaluated in terms of
noise intensity, output linewidth and tunability. Finally, its employment in
BOTDA measurements is showcased, providing estimates for its measurement
resolution for a range of 10 km.

The third chapter describes a developed short cavity Brillouin ring laser
source which uses the double resonance effects and improves on the previous
one in terms of conversion efficiency, intensity noise and cavity linewidth, paired
with a wavelength locking system that allows high frequency stabilization and
accurate tunability.

In the fourth chapter, the issue of the slow measurements for BOTDA
systems is outlined and potential solutions are presented, with particular
attention to the slope-assisted BOTDA method. Finally, a closed-circuit
implementation of the slope-assisted BOTDA method is presented, which
allows to surpass one of its major limitations, namely the reduced measurement
range, and its application for measurement sensing is showcased.

In the fifth chapter the PID control system used in the closed-circuit
BOTDA is evaluated in terms of tracking capabilities and noise filtering. To
do so, a model is created to simulate the behavior of a PID controller which
is then characterized in terms of noise suppression and step response and
compared with the moving average. Afterwards, a new adaptive filtering
method is proposed and shown to perform as well as the moving average and
better in specific occasions.

In the sixth chapter, a BOTDA system like the one shown in the fourth
chapter is implemented with shorter range and increased speed. The causes
for technical limitations found in the original implementation (such as a
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slowed measurement time compared to the original slope-assisted method)
are identified and possible ways to overcome them are presented. Finally,
experimental results are presented and implementations where the data is
filtered by the PID controller, the moving average and an implementation of
the proposed filtering method were tested, showing the better performance of
the latter in terms of noise suppression to determine the temperature when
stationary while having similar speed.



1

Brillouin Optical Time Domain Analysis

In the most general terms, all optical fiber sensors (OFS) involve an optical
beam being modulated or altered in an interaction region after being guided
there by an optical fiber, and the nature or the extent of the alteration is
linked with changes in the local environment [18].

The change to the beam could be in terms of intensity, phase (delay),
polarization, frequency or more generally spectral composition, and this
changed optical signal is fed through an optical fiber into a receiver, from
which the measurand, that is the environmental conditions that caused the
change in the first place, can be extracted. A schematic representation of this
is shown in figure 1.1 on the following page.

1.1 Distributed optical fiber sensors

A variety of OFS technologies have been developed in the last decades, which
use different interactions or monitored different aspects of the local environ-
ment [38, 47, 109]. The most generic way to divide them into classification is
to distinguish between extrinsinc and intrinsic sensors [109].

• In extrinsic sensors, also known as hybrid fiber sensors, optical fiber only
serves the role of carrying the light from the source where it interacts
with the external environment and is influenced by the measurand, and
then directing the altered light into the receiver.

• In intrinsic sensors, also known as all-fiber sensors, the optical fiber also
acts as the interaction medium. In this case, the environment directly
alters the light as it passes through the fiber, which for this reason is
also known as sensing fiber.

5
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Of these two types, intrinsic sensors are of particular interest due to the
inherent advantages optical fibers present: they are light, flexible and thus
can be applied to a wide variety of structures while occupying very small
volumes [13]. In addition, due to their capability of transmitting information
through light and not through electrons, they are immune to electromagnetic
interferences, and the light signals needed for the sensing to occur can be
generated at considerable distances from the point where the measurement
will take place. Because of these reasons OFS-based technology is known to
be successfully employable in a variety of applications [47].

Figure 1.1: Schematic representation of a generic OFS.

Nevertheless, their diffusion has been so far limited by the fact that they
are competing with well-established conventional sensor technologies (such
as electronic sensors) which, in general, provide effective sensors which are
reliable and low cost [47].

Despite this, OFS technologies, thanks to their fiber-based nature, offer
unique advantages that make them desirable in specific applications compared
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with conventional sensing methods. Among these advantages, one of the
most relevant and which is exclusive to OFS is the possibility of providing
distributed sensing [38, 47, 49, 73], while conventional sensors can only provide
discrete sensors.

Figure 1.2: Schematic representation of an array of discrete sensors.

The difference between the two types of sensor can be described as follows:

• Discrete sensors: In this type of sensors (shown schematically in
figure 1.2), only the measurand of a single point can be detected at a
single time. In the case when multiple measurands have to be acquired,
for example to obtain the temperature distribution along a power plant,
multiple copies of the sensors have to be applied and their output has to
be organized in a network, with each sensor measuring a single point of
the distribution. Because of this, they are also called point sensors. In
general, this type of sensors (be it optical or electronic) is limited by the
fact that it is not always possible to reliably determine the points where
the sensors must be located in order to gather the desired information. In
addition, if the number of points to be monitored simultanously is high
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enough, the complexity of the sensor network can become unmanageable,
also due to the fact that every single point requires a distinct sensor,
which includes the set of hardware that is required for its functioning
and gathering its output (known as an interrogator) and the relative
power supply.

• Distributed sensors: In distributed sensors (shown schematically in
figure 1.3), which are usually intrinsic OFS, the interaction region is
located in every point of the sensing fiber. Mixed with the possibility
to spatially discriminate the change in the light signal taking place at
different points, it is possible to acquire the desired measurand of every
point of the monitored environment, which can thus be monitored in its
entirety with a single measurement. As further advantage, this can be
accomplished with a single power source powering a single beam source,
which provides the light signal and then uses a single interrogator to
extract the measurand by evaluating how it has changed when it reaches
the end of the sensing fiber.

Figure 1.3: Schematic representation of a DOFS

DOFS, with their capability of performing distributed measurements using
a non-intrusive and flexible medium such as optical fibers, offer a new kind of
monitoring, diagnosis and control of large and extended structures [79]. In
particular, in the most extreme large-scale cases a single optical fiber and a
single interrogator can potentially replace thousands of conventional discrete
sensors, providing not only a reduction in complexity of the system and
required power supplies, but also a significant reduction in the cost and work
associated with installation, calibration and maintenance.



1.2 Stimulated Brillouin Scattering | 9

From these characteristics, it is easy to see that distributed optical fiber
sensors (DOFS) provide benefits which are invaluable for applications where
the distribution of a measurand over very large structures needs to be moni-
tored [88]. This situation is encountered in applications such as monitoring the
temperature distribution across a oil and gas pipelines in order to detect leaks,
or monitoring the strain of very large structure, such as buildings, bridges,
submarines and ships, provide a fire alarm system or even early slide detection
systems [15, 86].

In order to work, these sensors exploit linear and nonlinear optical scatter-
ing effects which can be easily recreated in optical fibers, such as Rayleigh
scattering, spontaneous Raman scattering and spontaneous or stimulated
Brillouin scattering [71, 74]. Depending on the effect used, DOFS will be
able to detect different measurand (such as temperature or strain ) and will
have different measurement ranges and spatial resolutions. In addition, the
measurands that can be explored with a specific effect can be expanded with
the use of apposite fibers [87].

Among the different types of DOFS, Brillouin Optical Time Domain Analy-
sis (BOTDA), which is based on a phenomenon known as stimulated Brillouin
scattering (SBS) has gathered significant attention due to its capability of
allowing simultaneous distributed measurements of temperature and strain
over lengths of tens of km.

1.2 Stimulated Brillouin Scattering

Stimulated Brillouin Scattering (SBS) is one of the main scattering effects
that occur in telecommunication fibers, and results in the generation of a
downshifted, backward-propagating light wave (known as the Stokes light)
that carries a significant part of the input power. Since this phenomenon occurs
only once a certain level of input power (known as the Brillouin threshold) is
reached, in optical communication systems SBS is one of the main limiting
factors for the maximum channel power that can be employed. At the same
time, it can be useful for making fiber-based Brillouin lasers and amplifiers
[2].

In physical terms, it can be classically described as the interaction of
two lightwaves, a “pump” and a counterpropagating, downshifted “probe”,
mediated by an acoustic wave propagating through the medium. Through
the process of electrostriction [67], by which the electric field of the light
contracts or dilates a dielectric medium (such as the core of an optical fiber),
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the beating of the two lightwaves generates an acoustic wave, which in turn
creates a modulation of the medium’s refractive index, as shown in figure 1.4
below. Since the electric field of the interference patterns created by the two
lights is periodical, the refractive index modulation is also periodical, and
turns the medium into a Bragg diffraction grating which scatters the pump
lightwave. The induced grating moves at the same speed of the acoustic wave,
which is the acoustic velocity VA of the medium, in the same direction of the
pump, resulting in the scattered light being downshifted due to the Doppler
effect. This scattered light adds to the probe, amplifying it, which in turn
further increases the acoustic wave.

Two situations can lead to SBS taking place in an optical fiber. The
first (known as Brillouin amplifier), and most obvious, takes place when two
counterpropagating waves are present in the same medium. If the frequency
shift between the two waves is compatible with the acoustic speed, the
upshifted light will transfer power to the downshifted one, resulting in a
“controlled” amplification which can be employed in light amplifiers or, as will
be seen below, for DOFS. The second (known as Brillouin generator) takes
place with only one light. In this situation, a downshifted, counterpropagating
light (called Stokes light) is generated through a process known as spontaneous
Brillouin scattering, which involves the light being inelastically scattered by
the medium phonon field. If the power of the original light is high enough,
SBS will be triggered, with the first light acting as the pump and the Stokes
light acting as the probe.

Figure 1.4: Wave representation of the pump, probe and acoustic waves in stimulated
Brillouin scattering. From [8].
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1.2.1 Physical process

Figure 1.4 on the preceding page schematically represents the Brillouin scat-
tering process. In the generator situation, the “probe” will have a frequency
that will only depend on the pump and acoustic characteristics of the fiber.
If ωP and ωS are the pump and probe frequency respectively, the frequency
of the acoustic wave ΩB, due to energy conservation, must be defined as:

ΩB = ωP − ωS (1.1)

And, for momentum conservation, the same must apply for the wave
vectors k:

KB = kP − kS (1.2)

Acoustic waves propagate through a medium with a speed that is always
equal to the acoustic velocity VA. Because of this, KB and ΩB are linked by
the relation:

ΩB

|KB|
= VA =⇒ ΩB = VA|KB| (1.3)

Since the pump and probe are lightwaves, they follow similar relations
with the speed of light in the medium c / n, where n is the refraction index:

|kP| = n
ωP
c

and |kS| = n
ωS
c

(1.4)

By putting the relations shown in (1.4) in (1.2), and remembering that the
pump and probe waves are counterpropagating, thus |KP−KS| = |KP|+ |KS|
, the following relation is obtained:

ΩB = VA
c

n

(ωP + ωS) (1.5)

Adding the relation in (1.1) the ωS can be removed from (1.5), resulting
in the following relation between ΩB and ωP :

ΩB =

2VA
c

n

ωP

1 + VA
c

n

(1.6)

Since the speed of sound in the medium is many orders of magnitude smaller
than the speed of light for all known materials, (1.6) can be approximated to:
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ΩB = 2VA
c

n

ωP (1.7)

And similarly the acoustic wavevector is found to be:

KB = 2kP (1.8)

This evaluation is valid for the Brillouin generator case. For the Brillouin
amplifier, the probe wave frequency is determined externally and a priori
and, because of this, the frequency of the acoustic wave Ω = ωP − ωS will
not necessarily be equal to the Brillouin shift shown in (1.7). As will be seen
below, the acoustic wave will be excited effectively only if |Ω− ΩB| is within
the order of a certain value.

Wave coupling

The optical field within the Brillouin medium can be represented as

Ẽ (z, t) = ẼP (z, t) + ẼS (z, t)

where:

ẼP (z, t) = AP (z, t) ei (kP z − ωP t)

and ẼS (z, t) = AS (z, t) ei (kSz − ωSt)
(1.9)

The acoustic field can be similarly described in terms of the material
density distribution as

ρ̃ (z, t) = ρ0 +
[
ρ (z, t) ei (kz − Ωt)

]
(1.10)

where k = 2kP and ρ0 is the medium mean density. It can be assumed that the
material density behaves like an acoustic wave, and thus follows the acoustic
wave equation ([26, section 34.9]):

∂2ρ̃

∂t2
− Γ′∇2 ∂ρ̃

∂t
− V 2

A∇2ρ̃ = ∇f (1.11)

where Γ′ is a damping constant dependant on the medium’s viscous properties.
The f term on the right hand side of (1.11) consists of the force per unit
volume, which is defined as the gradient of the electrostrictive force, defined
as

f = ∇pst
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where pst is the pressure due to electrostrition, which, as said above, is the
tendency of materials to become compressed in the presence of an electric
field [8].

The contribution of the pressure due to an electric field pst can be deter-
mined by:

pst = 1
2 ερ

(
∂ε

∂ρ

)
〈E · E〉 = −1

2 ε0γ0 〈E · E〉

where ρ is the density of the medium, E is the electric field vector, ε0 is the
dielectric constant of the void and the term ρ

(
∂ε
∂ρ

)
= γ0 is known as the

electrostrictive constant, while the angled brackets represent the temporal
average over an optical period.

In this situation, pst can be also directly defined as

pst = −1
2 ε0γ0 〈Ẽ2〉

Using the fields defined in (1.9), the right-side term in (1.11) becomes:

∇f = ε0γek
2APA

∗
Se
i (kz − Ωt) (1.12)

Now, if the definition of ρ̃ in (1.9) and (1.10) are inserted into (1.11), and
it is assumed that the amplitude of the acoustic wave varies slowly, it can be
seen that (1.11) becomes:

−2iΩ ∂ρ

∂t
+
(
Ω2
B − Ω2 − iΩΓB

)
ρ− 2ikV 2

A

∂ρ

∂z
= εγek

2A1A
∗
2 (1.13)

Where ΓB is the Brillouin linewidth, defined as ΓB = k2Γ′, and it can be
seen that τP = Γ−1

B is the lifetime of the phonons involved in the process.
In (1.13), the last term on the left side describes the propagation of phonons

in the medium, but hypersonic phonons like the ones involved here are known
to be strongly damped and thus propagate only over short distances compared
to the distances over the term of the right (which is linked to electrostriction)
varies significantly. In addition, if steady state conditions are assumed, ∂ρ / ∂t
can also be dropped, and the acoustic amplitude can be expressed as:

ρ (z, t) = ε0γek
2 AP − A∗S
Ω2
B − Ω2 − iΩΓB

(1.14)
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Optical fields formulation

From the form of the density in (1.14), the spatial evolution of the optical
field can be described with the wave equations:

∂2Ẽi
∂z2 −

1(
c

n

)2
∂2Ẽi
∂t2

= 1
ε0 c2

∂2P̃i
∂t2

, (1.15)

where i can stand for P (pump) or S (probe).P̃ is the nonlinear polarization,
which is given by

P̃ = ε0∆εẼ = ε0ρ
−1
0 γeρ̃Ẽ (1.16)

The components of P̃ that can act as source for the the pump and probe
fields, which are the components resonant with the respective fields and are
given by:

P̃P = pP e
i (kP z − ωP t) and P̃S = pSe

i (kSz − ωSt) (1.17)

where
pP = ε0γeρ

−1
0 ρAS and pS = ε0γeρ

−1
0 ρAP (1.18)

If the definition of the fields in (1.9) is introduced into (1.15), alongside
the definitions of the polarization in (1.17) and (1.18), and assuming that
amplitudes vary slowly, the following equations are obtained:

∂AP
∂z

+ 1
c

n

∂AP
∂t

= iωγe
2ncρ0

ρAS and ∂AS
∂z

+ 1
d c
n

∂AS
∂t

= iωγe
2ncρ0

ρ∗AP (1.19)

where ρ is the solution to (1.13). In addition, by using ω = ωP ' ωS
the distinction between ωP and ωS has been dropped. Under steady state
conditions, the time derivatives in (1.19) can be dropped and for r the solution
(1.14) can be used. As a result, the amplitude equations become:

∂AP
∂z

= iε0ωk
2γ2
e

2ncρ0

|AS|2AP
Ω2
B − Ω2 − iΩΓB

and ∂AS
∂z

= iε0ωk
2γ2
e

2ncρ0

|AP |2AS
Ω2
B − Ω2 − iΩΓB

(1.20)

From these equations it can be seen that stimulated Brillouin Scattering
is a pure gain process, where each wave is either amplified or depleted by the
other, and the waves are always automatically phase-matched. As a result,
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the interacting optical waves can be described as coupled equations. Defining
their intensities as Ii = 2nε0cAiA∗i , the equations at (1.20) become:

dIP
dz

= −gIP IS and dIS
dz

= −gIP IS (1.21)

g is the gain factor, which is given by

g = g0

(
Γb
2

)2

(ΩB − Ω)2 +
(
γB
2

)2 (1.22)

where g0 , which is the gain when Ω = ΩB, is given by

g0 = γ2
eω

2

nVAc3ρ0ΓB
(1.23)

1.2.2 Constant pump approximation

Assuming that the pump is constant (which is true for low pump and probe
intensity), which is equivalent to putting IP = constant in (1.21), the solution
for IS is:

IS (z) = IS (L) egIS (L− z)

Which describes a probe that is injected at z = L and grows exponentially
as it propagates through the medium and is amplified by the pump. The
extent of this gain is dependant on the gain factor g, and is maximum when
Ω = ΩB.

The function g(Ω), which is shown in (1.22), determines the efficiency of
this process and depends on the pump-probe frequency shift. This function is
also known as the Brillouin Gain Spectrum (BGS) and the frequency shift
value Ω = ΩB where this function reaches the maximum is known as the
Brillouin Frequency Shift (BFS). In more detail, the function (1.22) is a
Lorentzian distribution whose peak is centered at ΩB and has a full-width
half maximum linewidth equal to ΓB

1.2.3 Environment effects on SBS

As shown in (1.18), the BFS is dependant on the pump wavelength and the
acoustic velocity of the medium. In terms of frequency and wavelength, it can
also be defined as:

νB = 2nVA
λP
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where νB is the BFS (expressed in frequency) and λP is the pump wavelength.
For silica (SiO2) telecommunication fiber, the BFS value is arnound 10.8GHz
for a pump wavelength of 1550 nm. In other words, the BFS depends on
the refractive index n and the acoustic velocity VA, which are known to be
temperature and longitudinal strain dependant. More in particular, most of
the changes in the BFS are known to be linked to changes in the acoustic
velocity [39, 40].

As a result, different local environmental conditions in temperature and
strain causes changes in the SBS process which manifest in a shift in the BFS.

Several sources have shown that the shifts in BFS are directly proportional
to the changes in strain ∆ε and temperature ∆T , showing the relationship
[76, 77]:

∆BFS = CνBε∆ε+ CνBT∆T

where CνBε and CνBT are constant coefficients, which for most optical fibers
are equal respectively to 0.046MHz / µε and 1.07Mhz

The Brillouin linewidth was also shown to display a weak dependence
(with a ratio roughly equal to one tenth of CνBT ) to the temperature in a
nonlinear way with a sensitivity that decreases with increasing temperature
[70].

1.3 Brillouin Optical Time Domain Analysis

The dependency of the SBS process on temperature and strain means that it
can be used as a basis for a DOFS. In addition, the SBS effect is known to
have higher gain and sensitivity than other scattering effects, which both are
favorable traits for creating DOFS with good resolution.

As mentioned above, the DOFS sensors that employ SBS are the one based
on the Brillouin Optical Time Domain Analysis (BOTDA) technique, whose
operating principle is shown in figure 1.5 on the facing page. The SBS is
triggered inside a sensing fiber by two lights obtained from two single-frequency
lasers emitting at both ends of a sensing fiber of length L. In order to allow
for spatially resolved measurements, the light source at the fiber input (z = 0,
propagating in the +z direction) is pulsed, while the light at the fiber end
(z = L, propagating in the −z direction) is continuous, and thus is also defined
as continuous wave (CW) [41].

Depending on which of the two sources acts as the pump and as the probe,
two different configurations are possible:



1.3 Brillouin Optical Time Domain Analysis | 17

Figure 1.5: General representation of a BOTDA system.

• In the configuration known as Brillouin gain, the pulsed light (whose
frequency will be called ν0) acts as the pump for Brillouin amplification,
while the CW light acts as a probe and will be downshifted from the
pump by a fequency amount equal to ∆ν [23]. When the CW probe
frequency lies within the BGS for the pump, its signal is amplified
through SBS as it travels through the sensing fiber. In particular, every
point of the CW probe will be amplified only at a precise time when it
meets the pulsed pump, which happens at a specific point of the fiber.
As a result, by detecting the CW probe trace as it travels through the
fiber it is possible to monitor the SBS at every point of the fiber through
simple time-of-flight calculations. Since the SBS is dependant on local
temperature and strain conditions, a variation in SBS due to different
temperature/strain condition will be visible in the measured trace as
a different gain, as shown in figure 1.6 on the next page. In order to
obtain the temperature and strain distribution along the sensing fiber,
the CW traces at different ∆ν are measured to reconstruct the BGS for
every point of the fiber. From there, it is possible (for instance through
Lorentzian curve fitting) to extract the BFS at every point of the sensing
fiber, and finally the temperature and strain distributions. Since the
BFS changes is determined by a mix of temperature and strain changes,
in case both are expected they can be discriminated by performing the
same measurement in parallel with two sensing fiber, one that is subject
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to both strain and temperature variation (by being bound to the source
of both) and one that is let loose and thus is only subject to temperature
variation.

• In the configuration known as Brillouin loss, the CW light acts as the
pump in the SBS process and is upshifted by a frequency amount ∆ν
from the pulsed light, which in this case acts as a probe, at frequency
ν0 [4, 24]. The configuration then works exactly as the Brillouin gain
one, except that in this case the pulsed probe is amplified through SBS
by the CW pump, which is depleted as it travels along the fiber. The
BGS distribution in the fiber is obtained by determining the loss from
the pump trace at different ∆ν values. From the BGS distribution
the temperature and strain values are extracted like the Brillouin gain
configuration. It is to note that in this case, in order to obtain a
strong depletion, the CW pump must have an intensity that is much
lower compared to the pulsed probe [24]. Aside from that, the two
configurations provide equivalent results.

Figure 1.6: Schematic representation of the correspondence between the continuous
wave trace and the sensing fiber.

A schematic representation of the pump and probe wavelengths and
Brillouin gain/loss spectra is shown in figure 1.7 on the facing page.

1.3.1 Theoretical modeling

In order to reconstruct the BGS, it is assumed that when one of the two
waves is pulsed, the gain is proportional to the BGS itself. In this example
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the BOTDA system will be assumed to work in Brillouin gain configuration
(pulsed pump, CW probe), but similar results apply for Brillouin loss.

Figure 1.7: Brillouin gain and loss configurations for BOTDA.

To see that this is the case, the process can be modeled in the following
way: assuming steady-state conditions and that the pulse is longer than the
phonon lifetime (∼ 10 ns), the equations (1.21) can be used [3, 65],which are
reported again here.

dIP
dz

= −g (z,∆ν) IP (z) IS (z)− αIP (z) (1.24)

dIS
dz

= −g (z,∆ν) IP (z) IS (z)− αIS (z) (1.25)

Compared to (1.21), the term αIP,S(z) has been added, which represents
fiber attenuations with coefficient α. The term is positive for the probe
equation since this propagates in the −z direction (from z = L to z = 0).

This system of equations can be solved through a perturbative method:
first, if it’s assumed that no pulse is interacting with the probe, it is only
affected by fiber attenuation, and the solution to (1.25) simply becomes:

IS (z) = IS (L) exp [−α (L− z)] (1.26)

where IS(L) is the initial probe power entering the sensing fiber at z = L.
Using (1.26), a solution for (1.24) can be found:

IP (z) = IP (0) exp (−αz)G (z,∆ν) (1.27)

where IP (0) is the initial probe power entering the sensing fiber at z = 0 and
G(z,∆ν) is a factor that describes the depletion of the pump due to SBS
interaction with the probe, and is given by:

G (z,∆ν) = exp
[
−
∫ z

0
gB (ξ,∆ν) IS (L) exp

[
−α (L− ξ)

]
dξ
]

(1.28)
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where the Brillouin gain coefficient gB(z,∆ν) depends on the pump-probe
frequency shift ∆ν and the fiber location z through the BFS νB(z) which is
generally different at every point of the fiber. Its form is analogous to the one
derived in (1.22):

G (z,∆ν) = gB0
(∆νB)

[∆ν − νB (z)]2 +
(

∆νB
2

)2 (1.29)

where ∆νB is the FWHM of the BGS (or BGS linewidth) and gB0 is the peak
gain.

The equations in (1.27) and (1.28) can be inserted into equation (1.25) to
find the unperturbed solution, by integrating over ∆z, which is the length of
fiber over which the pump and probe interact, corresponding to the length of
fiber occupied by the pump at the same time and determines the ultimate
spatial resolution of the BOTDA sensor. The following integral is obtained [5,
63]
∫ Is(z + ∆z)
Is(z)

dIS (ξ,∆ν)
IS (ξ,∆ν) =

∫ z + ∆z
z

[
−gB (ξ,∆ν) IP (ξ,∆ν) + α

]
dξ (1.30)

which results in

IS (z + ∆z,∆ν)
IS (z,∆ν) =

exp
{∫ z + ∆z
z

[
−gB (ξ,∆ν) IP (ξ,∆ν)

]
dξ

}
exp (α∆z) (1.31)

Through (1.31) and (1.27), it is possible to estimate the ampified probe
light increase that will reach the detector at z = 0 at a certiain time t, defined
as ∆IS (z = 0, t,∆ν), which is compared to the the pump light intensity in
the absence of Brillouin interaction, according to:

∆IS (t,∆ν) = |IS (z = 0, t,∆ν)− IS (L) exp (−αL)| (1.32)

Adding (1.31) in (1.32), the following result is obtained:

∆IS (t,∆ν) = IS (L) exp (−αL)exp
[
−
∫ tvg / 2
tvg / 2 + ∆z

(
gB (ξ,∆ν) IP (ξ,∆ν)

)
dξ
]
− 1

 (1.33)
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where t is equal to 2z / vg and can take a value between 0 and 2(L−∆z) / vg
[65], while vg is the group velocity of the light in the fiber. It can be easily
seen that the integral indices in (1.33) are simply the ones in (1.31) converted
into time.

When the gain factor G (z,∆ν) from (1.28) is close to 1 for any value of
∆ν and z, the depletion on the pulsed pump caused by the power transfer to
the probe is small, so that the pulse intensity can be approximated to change
almost exclusively due to the fiber attenuation. In this case ∆IS values are
small and thus the exponential term in (1.28) can be linearized, leading to:

∆IS (t,∆ν) ∝
∫ tvg / 2
tvg / 2 + δz

gB (ξ,∆ν) IP (ξ,∆ν) dξ (1.34)

By (1.34), the BGS at position z can be reconstructed directly from the
difference ∆IS (z = 0, t,∆ν) between the probe amplified at t = 2z / vg (where
t = 0 is the moment when the pump pulse enters the fiber at z = 0) and
the unamplified probe. This difference has the same spectral shape of the
BGS defined by gB(z,∆ν) at the respective fiber location z, allowing for the
reconstruction of the BGS distribution along the sensing fiber by measuring
the trace for different values of ∆ν. Similar results can be obtained for the
Brillouin configuration by putting a – sign in front of gB(z,∆n) to represent
the depletion of the continuous wave and renaming IS with IP and viceversa
to represent the continuous wave pump and the pulsed probe.
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BOTDA employing a Long Cavity Brillouin Ring
Laser Source (LC-BRL)

2.1 Sources employed for classical BOTDA

In order to reliably determine the BGS along every point of the sensing fiber,
the choice of the sources that will provide the pump and probe lights is crucial.
In particular, any source couple must satisfy these key requirements:

• Low intensity noise: since the intensity of the amplified probe trace will
be dependent to the intensities of both the pump and probe signals, the
accuracy of BOTDA measurements will be directly dependent on the
intensity noise of the source. As a result, low noise laser sources, such
as Distributed Feedback (DFB) lasers are required. In addition, since a
single measurement event, including the averaging process, might have
a duration in the order of milliseconds, the outputs must be stable for a
similar timeframe.

• High tunability: since the BFS is expected to shift due to temperature
or strain changes, to ensure that the BGS can always be reconstructed
the pump-probe frequency shift must be swept over a range of around
100–200MHz. As a result, the sources must allow for one of the signals
(usually the probe) to be tunable over the same range.

• High pump-probe shift stability and accuracy: since the pump-probe
frequency shift is the parameter that determines the extent of the
Brillouin amplification, the frequency difference of the two sources must
be prevented from drifting during the measurement event. This generally
means that the two sources must be connected together in some way,

23
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either by a control system or by having other elements in common. In
addition, the frequency shift must be as close as possible to to the one
set by the user.

The most prominent ways to provide pump and probe lights that satisfy
these requirements and have seen the most employment are two: the optical
sideband generation (OSB) method [71] and the phase-locked loop (PLL)
systems [9].

Figure 2.1: Scheme of the Mach-Zender electro-optic modulator (MZM).

2.2 Optical sideband (OSB) method

In the OSB method, which is now the most commonly employed, both
the pump and probe light are originated by a single laser source, which is
split in two branches, the pump and probe, by an optical coupler. The
frequency difference between the two branches is then obtained by passing
the probe through a Electro Optic Modulator (EOM). This device consists
of a Mach-Zender interferometer (schematically shown in figure 2.1) where
one of the branches consists of an electro-optic crystal (for instance LiNbO3)
whose refractive index changes with applied voltage. As a result, by changing
the voltage it is possible to change the type of interference at the end of
the interferometer, and it is thus possible to modulate the intensity of the
incoming light.



2.3 Phase Locked Loop (PLL) method | 25

If the frequency spectrum of the incoming light is composed of a single
band at frequency ν0, when the voltage applied to the Electro-optic crystal is a
RF signal oscillating at a fixed frequency νm, the spectrum of the exiting light
is split into two sidebands, simmetrically distant from ν0 by an amount equal
to νm, as shown in figure 2.2a on the following page. By adding a constant
voltage bias at a suitable value, it is possible to maximize both constructive and
destructive interferences when the oscillating RF signal reaches its maximums
and minimums, thus suppressing the band at ν0 (fig. 2.2b on the next page).

This way, the pump branch has now two sidebands which are respectively
downshifted and upshifted from ν0 (which will be the pump frequency) by
exactly νm.

Thanks to the characteristics of this scheme, only a single high-quality laser
source is required to provide both lightwaves, satisfying the low intensity noise
requirement. The probe light is obtained through MZM with a bandwidth of
10–12GHz and a suitable oscillating signal provided by a microwave signal
generator, which allows for an easy tunability of the shift over the needed 100–
200MHz range, since it can be directly controlled by the frequency driving
the modulator. Finally, the pump-probe frequency shift is automatically
stabilized, since the probe will always be shifted from the pump by the same
frequency amount.

2.3 Phase Locked Loop (PLL) method

In the PLL method (shown in figure 2.3 on page 27), which was one of the
first developed for BOTDA, the pump and probe sources are obtained by a
fixed laser and a tunable laser respectively emitting at the pump and probe
frequencies νp and νs. Through the use of two optical couplers part of the
two lights is coupled into the same fiber, where their interference creates a
beating signal with two different spectral components oscillating at frequencies
νp + νs and νp − νs respectively, connected to a fast photodetector (10GHz
bandwidth). Since the νp + νs component has a frequency of hundreds of
THz, only the νp − νs component is detected. By monitoring its frequency,
for example through a microwave frequency counter, it is possible to monitor
the shift of the two sources and provide a feedback response to the tunable
probe source to maintain the pump-probe shift at the desired value. This
source limits intensity fluctuations by employing low-noise, high-quality laser
sources, provides wide tunability through the use of a tunable laser source and
mantains a stable pump-probe frequency shift thanks to the control system.
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(a) Central carrier frequency ν0 and modulation sidebands ν0 ± νm.

(b) Optimal carrier suppression.

Figure 2.2: Spectrum of the frequency shift from single-frequency laser modulated by
a MZM. From [71].
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While both techniques mentioned above have proven to result in effective
sources for BOTDA techniques, they still have limitations. First of all, both
systems require expensive components in order to function correctly. In
particular, sources based on the PLL method require two high quality laser
sources, one of the two must also have a frequency that is both tunable
with a high accuracy and over a wide enough frequency range, while also
requiring a frequency measurement system and multiple RF generators for the
frequency locking system. In addition, the complexity of the system causes
issues for long term stability and accuracy for the frequency shift. Schemes
based on the OSB method require a significantly less complex design, and
thus are inherently more reliable, but still require an EOM with a bandwidth
greater than 10GHz. The cost of these components adds to the cost of the
interrogator equipment and constitutes one of the main obstacle to a large
scale employment of BOTDA sensors.

Figure 2.3: PLL stabilization scheme.

2.4 Other sources

To solve the issue shown above, research has focused on finding pump-probe
signals sourcing methods that can offer a viable alternative to the OSB and
PLL techniques while remaining cost-effective. For instance, several works
explored the possibility of using only one modulator to generate both the
pump and probe lights, instead of the two required for OSB (one for the
probe and one to shape the pump into pulses). To cite an example, [43]
showcased a BOTDA sensor which used a pulsed RF signal with a single
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externally modulated DFB laser commonly employed in telecommunications,
which generates a continuous wave (the probe) and two pulsed sidebands (one
of which will be the pump) which, through passive optical methods, are made
counterpropagating and used for BOTDA measurements. In [92] Song et al.
proposed a design in which both the pump and probe waves were generated
by the same laser diode at different times and then made to enter the sensing
fiber at the same time through an appropriate choice of delay.

Another approach to reducing costs is to generate a downshifted probe
without the use of an electro-optic modulator or an additional laser source.
One possible way to achieve this is to take advantage of nonlinear scattering
phenomena which can take place in optical fibers. This can be done through
the use of fiber lasers, which are tracts of fibers which can produce a light
output by scattering an original light signal (called seed pump) provided by a
laser source. Among the possible scattering processes which can be used, the
most efficient choice is to use SBS to produce light that is already downshifted
by a frequency shift that will already be close to the Brillouin Frequency Shift.
This type of fiber lasers is knwon as Brillouin Fiber Lasers (BFLs).

2.5 Brillouin Ring Lasers

In their simplest design, Brillouin Ring Lasers, (BRLs) are a variety of BFLs
consisting of a length of single mode fiber closed into a ring by a 2-by-2
directional couplers. This type of directional couplers consists of two different
fibers fused together to their core, so that when light passes through one fiber,
a fixed fraction of it, known as the coupling ratio coefficient κ, is diverted into
the other fiber.

When a sufficiently intense light (called seed pump) is injected by an
external source into the coupler, part of it is coupled into the loop, where it
triggers spontaneos and subsequently stimulated Brillouin scattering, creat-
ing a downshifted, counterpropagating light (called Stokes output) which is
extracted through the same coupler.

The main advantage of closing the fiber laser into a loop is that the
fiber ring acts as a resonant cavity [98]: when the length of the ring and
the wavelength of the seed pump are properly tuned, the phase difference
between the seed pump entering the ring and the one that remains in the ring
after having made a round trip is an integer multiple m of 2π, and thus they
interferes constructively.

In particular it can be seen that if κ is the coupling coefficient, β(ω) is the
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Figure 2.4: Brillouin Ring Laser scheme.

fiber’s propagation constant and L is the fiber length, the resonant conditions
are the ones that maximize the light intensity at entry D in figure 2.4 while
minimizing the one from entry C. These conditions can be expressed as [98]

βL = 2πm− π

2 (2.1)

κ = (1− γ0) exp (−2αL) (2.2)

The first formula simply represents the phase requirement to have con-
structive interference every round trip. The π / 2 term must be added since
the every time light gets coupled out from the coupler it experiences a π / 2
phase increase.

The second formula represents the optimal coupling coefficient, in which
γ0 is the fraction of power lost due to the coupler (fractional coupler intensity
loss) and α is a coefficient that determines the percentage of light intensity
lost for every unit of fiber length, known as the fiber’s amplitude attenuation
coefficient.

It can be also seen that the fiber ring functions exactly like a narrow-band
Fabry–Perot resonator, which is a resonant cavity closed by two mirrors with
reflectivities R = κ and 1−R = 1− κ. These resonators are characterized by
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a coefficient called finesse F , which determines how effective the resonator is
at escluding all non-resonant frequencies and is defined as:

F = π

√
R

1−R = π
κ

1− κ . . . (2.3)

Thanks to the resonant behavior of the ring laser, the seed pump intensity
keeps increasing until dispersion losses experienced each round trip (which
depend on the power of the incoming light) become equal to the power being
injected. As a result, the fiber laser becomes much more efficient, greatly
reducing the seed pump threshold power, that is the minimum seed pump
power required to trigger stimulated Brillouin scattering and obtain a Stokes
output.

In particular, in a BRL the threshold power is the seed pump power
necessary to increase the Stokes output’s intensity through SBS amplification
by an amount equal to the losses it would experience in a round trip loss
and is found to be dependant on the cavity length and the fiber through
the relation, (where gB is the fiber Brillouin gain coefficient and Aeff is the
effective core area of the fibers making the ring) [98]:

Pthresh = 2π2

Aeff

gB
F · L

(2.4)

As can be seen from the equation, the threshold power is greatly reduced
by either increasing the finesse or the cavity length, and shows how a BRL can
have a significantly lower threshold power compared to open-loop Brillouin
fiber lasers. In numerical terms, while open-loop BFLs with lengths above
20 km have threshold powers of tens of mW, properly designed Brillouin Ring
Lasers with lengths of a few meters can achieve laser pump thresholds in the
order of mW or lower. Using the model mentioned above and developed in [98],
the calculated threshold power as a function of length for different coupling
coefficients (ranging from 90 to 95 %), which determine the finesse value, is
shown in figure 2.5 on the facing page. From the figure it can be easily seen
how increasing both length and finesse values positively affect the threshold
power. In this model, the values used for the Brillouin gain coefficient and
effective area of the fibers were the ones taken from the experimental condition
(see below), which were g = 5.4 · 10−11 m /W and Aeff = 6.0 · 10−12µm2.

It is to note that when the seed pump exceeds the threshold power most
of its intensity is reduced as it fuels the SBS process along the ring to amplify
the Stokes output. This factor is neglegible for few-meters length and wasn’t
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Figure 2.5: BRL threshold power as a function of ring length at different coupling
coefficient values κ.

considered in the evaluations above, but puts a limit on the length of the fiber
length that can be employed.

Another issue to consider is that while in general the threshold power and
the conversion efficiency (that is the Stokes output power as a function of
seed pump power) are linked, a high coupling ratio, and thus a high finesse
also means that only a small component of the Stokes output is extracted
from the ring to be used for any application. Because of this, while in teory a
coupling ratio as close as 1 should be desirable, in realistic application it will
always be around 90–95 %.

2.6 Hybrid Brillouin ring lasers

As was shown above, Brillouin Fiber Lasers have important properties, such as
a low threshold voltage and a narrow linewidth, but have a series of limitations.
First of all, they require the ring length and the seed pump wavelength to
be resonant, and produce a small output power. Furthermore, the addition
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Figure 2.6: Long Cavity hybrid BRL laser scheme (LC-BRL).

of other optical components in the ring resonator is difficult due to the
inherent losses associated with adding fiber connections. A way to overcome
the need for a resonant, critically coupled Brillouin Ring Laser resonator
is to greatly increase the cavity length, to the point where a single round
trip produces enough Stokes output power that can be amplified through a
different gain method, such as erbium-doped fiber lasers [17]. Erbium-doped
fibers are the main component of Erbium Doped Fiber Amplifiers (EDFAs)
which when pre-pumped can greatly amplify an incoming wave. With this
hybrid approach, large output powers are achievable, while also maintaining
the natural frequency shift of the output. It is to note that in this approach
the seed pump is no longer necessarily resonant with the ring length. For
the Stokes output to be resonant, there must be cavity resonant modes that
intersect with the BGS. As will be seen below, at the lengths employed in this
type of ring lasers (which ranges from hundreds of meters to kilometers), the
spacing of the resonant modes is close enough to always verify this condition.

An example of a hybrid Brillouin ring laser layout, is shown in figure 2.6.
The seed pump is provided by a DFB laser with a ∼ 1.25MHz linewidth
and emitting at λ = 1.551µm, and is injected into the ring by an optical
circulator, which allows passage of light only from port 1 to port 2 and
from port 2 to port 3, which allows the Stokes output to recirculate while
preventing the seed pump from doing the same. The ring is composed of 2 km
of single mode fiber and incorporates a bi-directional Erbium Doped Fiber
Amplifier (B-EDFA) [22], whose function is to both boost the seed pump for
increased SBS scattering and to amplify the Stokes output itself, improving
both threshold power and conversion efficiency. Part of the Stokes output is
estracted from the ring through the use of an optical fiber coupler (FC, 95/5
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splitting ratio) to be employed in other applications or to be analyzed with
an optical spectrum analyzer (OSA), while the rest recircolates into the ring
through OC exits 2 and 3.

Another interesting feature of this setup is that, since the seed pump
resonance is no longer a requirement, the wavelength of the Stokes output can
be tuned by using a piezoactuator (PZT) to apply controlled strain changes
to the fiber in order to change its BFS and thus shift the Stokes output
frequency. Since in this situation the temperature and strain conditions of the
fiber become relevant, the BRL must be placed in a temperature-controlled
environment to leave the controlled strain as the only factor determining the
BFS.

By the way it’s designed, the hybrid BRL, which can also be called Long
cavity BRL (LC-BRL), satisfies two of the three requirements mentioned at
the beginning of the chapter: it allows from the production of two lightwaves
(one being the base seed pump) with a frequency shift which is both stable
(since it will always be equal to the BFS of the fiber) and tunable. To evaluate
whether the noise is acceptable, specific characterization of the source have to
be carried out.

2.7 Implementation of the Long cavity Brillouin Ring Laser

To evaluate the quantitative properties of the LC-BRL shown in the previous
section, the Stokes output has been characterized in different ways.

2.7.1 Threshold power and conversion efficiency

Using a power meter, the intensity of the Stokes output was measured at
different seed pump powers. From the results, which are shown in figure 2.7
on the following page, the threshold power was found to be ∼ 2mW, while
the Stokes output increased with the pump power up to ∼ 0.5mW at the
maximum available seed pump power of 17mW, which as probe power is
sufficient for a variety of BOTDA applications [25].

2.7.2 Stokes output linewidth

In BOTDA applications, the linewidths of the pump and probe are both
important factors for overall performance. First of all, the linewidth of the
probe light must be small enough to allow an effective reconstruction of the
BGS: if most of the power of the probe or the pump is spread over a few
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Figure 2.7: LC-BRL output power as a function of seed pump power.

MHz, a change of 1MHz in pump-probe frequency shift will not change the
Brillouin amplification significantly, thus greatly reducing the frequency shift
resolution of the measured BGS, which will be consequently “smoothed”. As
a result, the linewidth of the probe and pump shouldn’t be wider than the
expected scanning step of the frequency shift which will be used in experiments.
In addition, a narrow linewidth provides a reduced noise in the measured
Brillouin gain even when it is much lower than the linewidth of the BGS [62].

To determine the validity of the hybrid BRL source it is thus necessary to
determine the effect it has on the Stokes output linewidth compared to the
seed pump linewidth. To do so, the Stokes output spectrum was obtained
through the use of the self-heterodyne technique, which is shown in figure 2.9
on page 36. This technique involves using an optical coupler (OC) to send
the Stokes output through different optical paths: one short and one with a
greatly increased length to create a delay. The light going through the short
path is sent through an acousto-optic modulator (AOM), a device similar to
the electro-optic modulator which is driven by a costant frequency of 40MHz,
which shifts all the light’s spectral components by that amount. At the end
of both paths they are united through another optical coupler. If the delay
created in the longer path is sufficient, the lights coming from the two paths
will be uncorrelated and once coupled together they will beat with each other
[34]. If a photodetector is used to detect this beating and the signal is inserted
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into an electrical spectrum analyzer (ESA, which in the experiment had a
resolution of < 500 kHz), the final obtained spectrum will be the original
light’s spectrum convolved with itself and centered at the AOM frequency (in
this case 40MHz), allowing to estimate its linewidth.

The measured full-width half maximum (FWHM) for the linewidth (shown
in the inset in figure 2.8, displayed on the ESA at 10MHz per frequency
division) was found to be ∼ 2.5MHz, or one tenth of the BGS linewidth,
which is sufficient for BOTDA measuring with a pump-probe frequency shift
step of 1MHz.

Figure 2.8: Self-heterodyne technique scheme. Inset: extracted probe light spectrum
as output from the ESA.

Since the linewidth of the seed pump laser was 1.25MHz, it can be seen that
the stokes output linewidth has doubled the one from the light it originated
from. In absence of resonant processes, the linewidth should be equal to the
linewidth of the typical BGS (15–20MHz) [53]. The fact it is one order of
magnitude lower and relatively similar to the FWHM of the seed pump can
be attributed to the resonating behavior of the long cavity. This is because
at each round trip of the long cavity only the frequencies corresponding to
the resonant modes experience constructive interference and thus become
dominant to the other ones. Because of this, all resonators also act as filters
with the ability to reduce the linewidth of the light put through them.
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2.7.3 Intensity noise measurement

Finally, an assessment of intensity oscillations in the BRL source has been
carried out. Actually, expected fluctuations in fiber lasers are typically higher
than in integrated-photonics diode lasers essentially because of long fiber
cavity lengths, resulting in oscillations and reduced stability due to onset of
cavity mode hopping, pump-signal noise transfer and other effects [29, 36, 56]
In order to evaluate the power fluctuations of the BRL source we measured
the relative intensity noise (RIN) value, which is measured as dB /Hz and
is defined as the power spectral density of the power fluctuations δP (t) of
the time-varying signal and can be calculated as a function of the angular
frequency ω = 2πν in the following form [7, 54, 55]:

RIN(ω) = 1
P̄ 2

∫
〈δP (t) δP (t+ τ)〉 exp (−iωτ) dτ

where P̄ is the average optical power and 〈〉 brackets define the average over
a large number of measurements.

Figure 2.9: RIN spectrum for the BRL output.

In practival terms, RIN measurements were carried out by measuring
the BRL Stokes output intensity through a fast PIN InGaAs photodetector
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(10GHz bandwidth). By acquiring the photodetector output through an ESA
working up to 15GHz, the power spectrum σ2(ω) could be acquired. From
this spectrum, the noise profile of the source was obtained by subtracting
thermal and shot noise spectrum, which in turn was obtained by acquiring
the spectrum of the photodetector output when no light is presence. Finally,
the RIN is obtained by normalizing the obtained spectrum to the total output
power and the ESA frequency resolution [14, 30, 89].

The measured RIN spectrum is shown in figure 2.9 on the preceding page
for frequencies up to 800MHz. From the graph it can be seen that the intensity
noise is higher at lower frequencies, with a maximum of about −90 dB /Hz
in the 10–15MHz region. Beyond that region, the RIN decreases steadily
until the 400–500MHz region, after which it reaches a minimum of around
−145 dB /Hz. This behavior is to be expected from ring lasers, which generally
are known have a higher intensity noise values compared to integrated lasers
at lower frequencies [36].

2.7.4 Frequency shift tuning system

As said above, a way to achieve frequency tuning needed to reconstruct the
BGS in BOTDA measurement in LC-BRL is to impart a varying amount of
tensile strain through a piezoactuator (PZT in figure 2.6 on page 32). Since
the shift between the seed pump and the Stokes output will be equal to the
BFS of the ring fiber and the BFS is linearly correlated to strain changes,
it is possible to directly control the frequency shift by controlling the strain
generated by the piezoactuator.

The actuators used in the experimental implementation were driven by
a DC-voltage generator and can apply a tensile strain in a range from 0 to
∼ 4m ε, which corresponds to a shift tuning range of over ∼ 200MHz, which
is required to monitor temperature variations of more than 100 ◦C and strain
variations in the mε range. In more detail, the piezoactuator employed was a
PZT fiber stretcher consisting of a high-voltage PZT ring around which the
ring fiber was wound.

In actual BOTDA experiments, the pump-probe frequency shift was swept
by graudally increasing the the PZT voltage by the amount required to obtain
2MHz step. Sweeping the frequency range in a single direction allowed to
avoid any potential hysteresis effect, allowing for a stable and repeatable
process. The curve showing the seed pump-Stokes output frequency shift as a
function of applied voltage is shown in figure 2.10. It should be noted that
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Figure 2.10: PZT tunability system calibration curve for the LC-BRL.

the relation between the applied voltage and the resulting strain (and thus
the shift) is not extactly linear, which is to be expected from PZT stretchers.
As a result, the curve was used to calibrate the PZT to obtain the voltage
needed for the desired frequency shift.

2.8 BOTDA measurement using the LC-BRL source

To evaluate if the performance of the LC-BRL is suitable for distributed
Brillouin measurements, a BOTDA implementation employing the LC-BRL
source (shown in figure 2.11a) is shown in figure 2.11b on the next page. The
light from the DFB laser (λ = 1.55µm, ∼ 1.25MHz linewidth) is split into the
pump and probe branch by a 30/70 coupler (in particular, 30 % is sent into
the probe branch and 70 % is sent into the pump branch). The light sent to
the probe branch is used as a seed pump in the LC-BRL (with a 2.1 km long
cavity and an input power of 3 dBm) to create the continuous probe signal,
which is then sent into a variable optical attenuator (VOA) so that its power
could be set to a value that avoids nonlinear effects and pump depletion [64].
In the experiment, this value was around −2 dBm.

The SBS process is known to be polarization dependant: its efficiency
is maximum when the polarization of the pump and probe are aligned and
minimum when they are opposite [32]. Since the polarization of both pump
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(a) BOTDA scheme.

(b) Sensing fiber used for the performance evaluation.

Figure 2.11: LC-BRL implementation in a BOTDA sensing system.

and probe change as they move along the sensing fiber due to effects such as
birefringence, the final gain trace obtained in BOTDA measurements is affected
by a further degree of noise [16, 33]. To solve this, the probe polarization is
randomised through a polarization scrambler. As a result, at every point of
the sensing fiber the pump encounters a probe whose polarization is averaged
out over all possible positions and the SBS efficiency is similarly averaged at
every point of the fiber, resulting in a more stable gain trace.

The light sent in the pump branch was instead amplified by an Erbium
doped fiber amplifier (EDFA) and then shaped into a pulsed signal by a MZM
(with a bandwidth of 10GHz), which is driven by an RF pulse with a width
of 40 ns and a repetition rate of 7 kHz, generated by a pulse generator whose
signal is added to a DC voltage to obtain optimal attenuation in absence of
a pulse. Since of the electro-optic effect reaches its peak efficiency when the
light is at a specific polarization, the MZM’s built-in polarization controller
was used to ensure to further optimize the pulse shaping of the pump.
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Both the pulse generator and the DC-voltage generator used for the PZT
actuators are computer-controlled. The CW probe signal and the pulsed
pump signal are coupled with counter-propagating directions into the sensing
fiber.

(a) 3D view.

(b) Top view.

Figure 2.12: BGS distribution across the last 2.5 km of sensing fiber.

After the amplification, the probe signal is extracted from the circuit at
the end of the sensing fiber through an optical circulator. Here, it was sent
through another optical circolator to a fiber Bragg grating (FBG). A fiber
Bragg grating is a tract of optical fiber whose core has a refractive index
profile which is altered at regular length intervals. This perturbation causes
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the grating to reflect incoming light in a narrow range of elements. With
an appropriate FBG,only the light at the probe frequency is reflected, while
other elements of the incoming light, such as pump light reflected through
Rayleigh scattering, is not. The reflected filtered probe light then goes back
through the second optical circulator to be detected by a 100MHz bandwidth
photo-detector.

For the experimental demontration, the sensing fiber was composed of
several different spools with different BFS values which were spliced together
for a total length of ∼ 10 km, as shown in figure 2.11b on page 39. This
way, it was possible to simulate a situation where the fiber was affected by
different temperature/strain conditions across its length. In addition, since
the BFS distribution is known in advance, the evaluation of the accuracy
of the BOTDA measurement will be facilitated. In particular, the sensing
fiber was composed by an initial long segment (9662m) with a uniform BFS
(BFS-1), which was followed by a 99m long segment with a BFS downshifted
from BFS-1 by 30MHz (BFS-2) and a 47m long segment with a BFS (BFS-3)
upshifted by 20MHz with respect to the initial fiber. The three remaining
segments were a 100m long one at BFS-2, a 7m long one at BFS-3 and a
200m one at BFS-2.

The BOTDA measurement was performed by sweeping the pump-probe
frequency shift through the use of the PZT and acquiring a probe trace
averaged 1024 times for each frequency. The measured Brillouin gain spectra
along the last 2.5 km of the sensing fiber are shown in figure 2.12 on the
preceding page. The BGS FWHM linewidths were found to be ranging
between 10 and 20MHz which is comparable to the expected values for a
pump pulse of 40 ns. It is to note that the BGS spectrum of different fiber
segments, which were possibly manufactured in different ways, can vary
significantly.

From these result, the BFS distribution along the fiber was extracted by
performing a least-squares Lorentzian curve fit on the BGS at each corre-
sponding fiber position. The BFS distribution for the last 2.5 km of fiber is
shown in figure 2.13 on the following page. From the figure it can be seen
that the measured distribution correctly displays the one expected from the
composition of the different fiber pools: in correspondence of the segments
with a BFS equal to BFS-2 (which is 20MHz higher than BFS-1) a sharp
increase of measured BFS can be seen from the initial baseline (corresponding
to the initial long segment at BFS-1). Similar result are obtained for BFS-3,
with sharp declines of the measured BFS in correspondence of those segments,
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including the one with a length of 7m.
To evaluate the spatial resolution of the BOTDA system, the BFS distri-

bution across the first point of transition between two different fiber segments
at BFS-2 and BFS-3, which is the transition between the second and third
segment at 9762m, was taken in consideration (as shown in the inset of
figure 2.13). The spatial resolution was defined as the length corresponding
to the number of points in the BFS distribution required to go from 10 % to
90 % of the new BFS value. Measured this way, the spatial resolution was
found to be around 4 meters, which is the expected value for a pump pulse
duration of 40 ns.

Figure 2.13: Measured BFS distribution along the last 2.5 km of sensing fiber.

The BFS resolution obtained by BOTDA sensing employing the LC-BRL
source was calculated as the root mean square error (RMSE) of the measured
BFS distribution compared to the expected one. As a result, the BFS resolution
was found to be around 0.5MHz, which corresponds to a temperature and
strain resolution of 0.5 ◦C and 10µε respectively for most common types of
single mode fibers.

From these result, it can be seen that the LC-BRL source can provide a
probe signal which is suitable for BOTDA measurements in a range of at least
10 km, while also having the potential of greating reducing the fabrication cost
by removing the need of one of the two EOMs: it maintains the pump-probe
frequency shift locking due to the inherent nature of BFS while allowing
tunability over a 200MHz range and has an adequate conversion efficiency
while having a low threshold power. Finally, the probe signal displays a
sufficiently narrow linewidth and allows for acceptable BFS reconstruction
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despite an increased intensity noise in the 0− 500 MHz frequency range.
The contribution of the author to the work presented in this chapter

consists of the theoretical modeling and characterization of the long cavity
hybrid BRLs, including the intensity noise, output linewidth, threshold power,
conversion efficiency and wavelength tunability. In addition, it includes the
experimental BOTDA measurements employing the hybrid BRL source.





3

BOTDA employing a Wavelength-Locked, Short
Cavity Brillouin Ring Laser Source

In the previous chapter, a low-cost LC-BRL cavity was showcased and its
viability as a probe source for BOTDA measurements up to a 10 km range was
demonstrated. Despite this, it was noted that its ultimate BFS, temperature
and strain resolutions were limited by three main elements.

• First, the output power of the LC-BRL was overall limited below 1mW,
which reduced the overall range and quality of the BOTDA trace.

• Second, while the linewidth was narrowed compared to the width of the
BGS which was expected in absence of resonant filtering, it was still
2MHz wide, which still has a negative effect on frequency resolution.

• Third, the source had a significant intensity noise increase compared to
semiconductor lasers, especially at frequencies below 500MHz, which is
expected to have been the main factor limiting the BFS resolution.

Because of these issues, while offering an attractive alternative in terms
of cost reduction, the LC-BRL as a pump source for BOTDA is ultimately
limited in terms of performance.

3.1 Noise effects in BRLs

Of the three issues described above, the main limiter to the BFS resolution is
ultimately the last one which, as already stated in the previous chapter, is a
limit of BRL based sources: due to the nature of fiber ring lasers and SBS,

45
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(a) Mode hopping due to shifts in the BGS.

(b) Frequency instability due to shifts in the resonant modes.

Figure 3.1: Mode hopping and frequency instability in BRLs.

the Stokes signal is subject to intensity, frequency and phase noise which tend
to degrade its quality [69].

Among the various noise effects (such as Kerr effects and frequency pulling),
the most relevant one is the so-called mode hopping effect, which is schemati-
cally illustrated in figure 3.1. In a BRL cavity, the frequency of the Stokes
output will be the cavity’s resonant mode which is closest to the BFS of the
fiber, which is known as the dominant mode. In this situation, thermal and
acoustic vibrations in the ring continuously cause shifts either in the BFS
(figure 3.1a) or in the position of the resonant modes (figure 3.1b) [84]. If the
resonant modes of the cavity are too close together, the dominant mode might
change, causing a frequency shift and a temporary variation of the Stokes
output frequency, causing an increase in both intensity and frequency noise.
This effect is the main reason for the increased RIN profiles found in BRL
sources compared to semiconductor lasers and also potentially contributed to
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increase the output linewidth (which in the previous chapter was found to be
twice the linewidth of the seed pump). In addition, if more than one resonant
mode is close enough to the BFS, the Stokes output frequency could be a
superposition of all those modes, further broadening the frequency linewidth
(this effect is known as multi-mode lasing).

To eliminate both of these effects, the cavity resonant modes should be
sparse enough that only one of them lies inside the BGS at all times [81, 97].
When this happens, even if the BFS experiences small shifts the dominant
mode will always remain the same (as shown schematically in figure 3.2).

Figure 3.2: Mode hopping with decreasing cavity length.

The spacing between resonant modes, known as the free spectral range
(FSR) is given by [61]:

FSR = c

n · L
where n is the fiber core refractive index (equal to 1.5 for most standard

telecom fibers), c is the speed of light and L is the length of the cavity. From
this formula, it can be seen that the only way to increase the FSR is to reduce
the length of the ring cavity [84]. In particular, using the relation above, to
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extend the FSR to be greater than the linewidth of the BGS (20MHz), the
cavity length should be lower than:

L <
c

n · FSR
≈ 3 · 108ms−1

1.5 · 40 · 106 s−1 ≈ 10m.

In other words, in order to reliably suppress intensity noise associated
with BRL sources, the cavity length should be reduced to the order of a few
meters.

Taking into consideration the behavior of the BRL threshold power from
the previous chapter, (shown again in 3.3), it can be seen that reducing the
cavity length increases the seed pump threshold power and as a consequence
also reduces the conversion efficiency due, among other factors, to a reduced
amount of gain medium where SBS amplification could take place every round
trip.

Figure 3.3: BRL threshold power as a function of ring length at different coupling
coefficient values κ. From [53].

3.2 Double Resonance

In the treatment of the resonant behavior of the BRL cavity shown in the
previous chapter, only the seed pump was taken into account. If the cavity
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was to be made resonant for both the seed pump and the Stokes output, it
would be said to be in a state of double resonance. When this condition is
verified, not only the pump increases in power at every roundtrip until it
reaches an equilibrium where the injected pump is equal to the round trip loss,
but so does the Stokes output: the light generated by SBS at every round
trip interferes constructively with the previously generated light. While in a
cavity that is only resonant for the seed pump the Stokes output production is
facilitated only because the circulating pump is higher, in a doubly resonant
cavity the Stokes output also keeps increasing until it reaches an equilibrium
with round trip losses.

3.2.1 Single-cut Technique

To obtain the double resonance condition, the length of the cavity must be
finely tuned so that the BFS is equal to m times the FSR, where m is an
integer. A possible way to do so for a BRL with a fixed length L, assuming
the wavelength of the pump is more or less fixed, is to apply a technique
developed in [95] to calculate the amount of length ∆L to be cut from the
fiber [85].

To find how to obtain this value, one can proceed as follows: the BFS
∆νSBS is expressed as:

∆νSBS = 2nVa
λP

where Va is the acoustic velocity of the fiber and λP is the seed pump wave-
length. The condition for double resonance is then written as [59]:

2nVa
λP

= m · FSR = m
c

n · L

Solved for λP the pump wavelength λkL that satisfies the condition for a
given L and k is obtained:

λmL = 1
m

2n2Va
c

L (3.1)

Relation 3.1 expresses all possible seed pump wavelengths that satisfy
the double resonance condition for the cavity, which will be called double
resonance peaks. For a given cavity of arbitrary length, these peaks can be
found by employing a tunable DFB laser as a seed pump and measuring the
Stokes output as a function of the pump wavelength. An example of this
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(a) 8m cavity length. (b) 1.5m cavity length.

Figure 3.4: Measurement of BRL Stokes output as a function of pump wavelength
for two different cavity lengths. From [51].

measurement is shown in figure 3.4 on the following page for different cavity
lengths [51].

As can be seen from the figures, the relationship between Stokes power
and pump wavelength is a function with multiple peaks, which get narrower
and more spaced with reduced cavity length, corresponding to wavelengths at
which double resonance occurs.

The indexm of a given peak is not known a priori, but it can be determined
as a function of the location of the chosen peak λmL , the adjacent one to the
right (greater wavelength) λm−1

L and from (3.1):

λm−1
L − λmL = 1

m− 1
2n2Va
c

L− 1
m

2n2Va
c

=
(

1
m (m− 1)

)
2n2Va
c

L (3.2)

Dividing both sides of (3.2) by λm−1
L , it becomes:

λm−1
L − λmL
λm−1
L

=

(
1

m (m− 1)

)
2n2Va
c

L

1
m− 1

2n2Va
c

L

= 1
m

From which the formula to obtain the index is simply obtained as:

m = λm−1
L

λm−1
L − λmL

Once the index is known, it is possible to calculate the amount ∆L to
remove in order to ensure that the frequency peak at an arbitrary index j is at
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a desired wavelength λjL’ (where L′ = L−∆L is he final length of the cavity).
This can be done by simply solving (3.1) for L and L′ and subtracting them.

∆L = c

2n2Va

(
jλjL −mλmL

)
= cλmL

2n2Va

(
j
λjL
λmL
−m

)
It is to note that in order to apply this technique the original length L

of the fiber, which may prove difficult to be measured, does not need to be
known in advance. All that is required is to locate the double resonance peaks.

A further conclusion that can be obtained by the analysis above is the
relationship between the spacing ∆λmDRC between two adjacent resonance
peaks and the length of the fiber.

∆λmDRC =
( 1
m
− 1
m+ 1

) 2n2Va
c

L = 1
m (m− 1)

2n2Va
c

L

From (3.1) it can be seen that m is inversely proportional to L. Because
of this, from the formula above it results that ∆λmDRC is inversely proportional
to L as well. This can also be visually verified at a glance in the figures 3.4 on
the preceding page: in 3.4a on the facing page the spacing is roughly 4 nm for
a cavity length of 8m, while in figure 3.4b on the preceding page the spacing
increases to 20 nm (5 times larger) for a cavity length of 1.5m (roughly 5
times longer).

3.2.2 Self-Injection Locking

The other requirement for double resonance is that the pump lays in one of
the resonant frequency modes of the cavity. This requirement can be sastisfied
through the use of a stabilization scheme known as self-injection locking [96].
Generally speaking, injection locking consists in sending the light from a low
power laser (known as the master laser) into a high power laser (known as
the slave laser) [48, 50, 72]. The result of this power injection is that, when
the frequencies of the two sources are close enough, the light from the master
laser is amplified inside the slave laser, which is thus forced to emit at that
frequency. In self-injection locking, in particular, the master laser is replaced
by the light of the slave laser after it has experienced some sort of filtering,
and is thus less noisy and has a narrower linewidth.

In the case of BRLs, the self-injection is performed by coupling part of the
light from the circulating pump inside the ring, which will be at the resonant
frequency, right back into the DFB seed pump. This way, the seed pump will
always be forced to emit at the frequency of the pump circulating inside the
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cavity, which corresponds to a resonant mode. A scheme of how this method
can be implemented in a BRL is shown in figure 3.5 on the following page:
compared to the basic BRL design, an additional directional coupler (DC2)
must be added, with a coupling constant very close to one (99 % / 1 %). A
small component of the pump circulating in the ring, which is at one of these
resonant frequencies, is coupled out and is fed into the seed pump source
through exit 1 and 2 of an optical circulator (OC in the figure) where it locks
the seed pump source to emit at the same frequency.

In addition to satisfying one of the requirements for double resonance,
the self-injection locking technique is also known to provide other beneficial
effects such as a narrowing of the pump linewidth, provided the power of the
light used for the self-injection is sufficiently low [10]. An example taken from
[96] is shown in figure 3.6 on the next page.

Figure 3.5: Self-injection locking in BRLs.

3.3 Tunability and Stabilization of the frequency shift

As seen in the previous sections, a short cavity and the double resonance effect
are expected to lower intensity noise and improve output linewidth while
maintaining at least similar threshold power and conversion efficiency. On
the other hand, the method used in the previous chapter to tune the Stokes
output frequency, that is employing a PZT to change the BFS of the ring
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(a) Seed pump spectrum without self-injection locking.

(b) Seed pump spectrum with self-injection locking.

Figure 3.6: Effect of self-injection locking in BRL. From [96].
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fiber, can no longer be applied: changing the BFS would mean that it would
no longer be necessarily equal to an integer multiple of the cavity FSR, and
the double resonance condition would no longer be verified. As a result, for
application in BOTDA measurements a different method must be designed to
tune the Stokes output frequency, or at least the frequency shift between the
Stokes output and the seed pump.

As an additional issue, while thermal instability and vibration no longer
cause mode hopping thaks to a reduced cavity length and double resonance,
other effects can contribute to change the final pump-probe frequency shift
[69]. Such effects include the Kerr effect [42], which is caused by light changing
the refractive index of the fiber core inside the ring, and mode pulling [68].

3.3.1 Wavelength locking system

To provide tuning for the pump-probe frequency shift, as well as counteract
its detuning, a wavelength locking method such as the one shown in figure 3.7
on the facing page can be implemented. This system uses a EOM to modulate
the Stokes output so that the exit light is at a fixed and tunable frequency
shift with respect to the pump. To do so, the following steps are followed:

• Using two optical couplers (S1 and S2), a small fraction of the seed
pump and the Stokes output from the doubly resonant BRL (DRC-BRL)
source are extracted and coupled together into a third coupler (S3) where,
similar to the self-heterodyne method described in the section above,
their beating signal is fed into a fast photodetector, which outputs a
RF signal whose frequency ∆fBRL is equal to the frequency difference
between the pump and the Stokes output: ∆fBRL = fPUMP − fBRL.

• This signal is sent into a frequency mixer, where it is superimposed with
the output of a tunable local microwave signal generator, which emits a
signal at a chosen frequency fLO, which must always be greater than
∆fBRL. The resulting signal is composed of two sidebands at frequencies
(fLO ±∆fBRL).

• Through the use of a low-pass filter, the band at frequency fLO + ∆fBRL
is removed, while the remaining band at frequency fLO − ∆fBRL is
amplified and used to drive a EOM that modulates the Stokes output
from the DRC-BRL, and is suitably biased to provide carrier suppression
(> 20 dB).
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• From the original frequency fBRL, the output of the DRC-BRL is modu-
lated into two sidebands: an upper one at frequency fUSB = fBRL+fLO−
∆fBRL and a lower one at frequency fLSB = fBRL−fLO+∆fBRL, which, re-
membering the definition of ∆fBRL, is equal to fBRL−fLO+fPUMP−fBRL
which is ultimately equal to fPUMP − fLO. In other words, the lower
sideband is downshifted from the pump signal by an amount exactly
equal to the frequency set in the microwave generator.

Figure 3.7: Wavelength-locking system scheme. From [82].

If there is any effect that causes the DRC-BRL frequency to shift from fBRL
to fBRL + δf , the detuning with the pump frequency will change from ∆fBRL
to fBRL − δf . As a result, the frequency modulating the EOM changes from
fLO −∆fBRL to fLO −∆fBRL + δf . After the DRC-BRL light is modulated,
the frequency of the lower sideband will be

fLSB = fBRL + δf − fLO + ∆fBRL − δf .

It can be immediately seen that the δf components cancel each other
out and, as a result, the lower sideband frequency remains equal to fLSB =
fPUMP − fLO.

In other words, frequency stabilization is maintained because every change
in the frequency shift between the DRC-BRL and the pump translates to an
opposite change in the final output which cancels the perturbation out.

A few things have to be noted about this setup. First, since the Stokes
output must always be lower than the frequency which will be used to locate
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the pump-probe frequency shift, it must be made sure that the BFS of the
fiber composing the DRC-BRL is lower than the one that the sensing fiber
can reach. In addition, in order for the setup to work, it must be ensured that
the frequency of the upper sideband fUSB − fBRL + fLO −∆fBRL will always
be outside of the BGS of the sensing fiber. The frequency difference between
the two sidebands can also be written as:

fUSB − fLSB = fBRL + fLO −∆fBRL − fPUMP + fLO = 2 (fLO −∆fBRL)

From this, it can be seen that a sufficient frequency separation (around
2GHz) can be obtained if the BFS of the Stokes output (which is equal to
∆fBRL) is 1GHz lower than the minimum value fLO will take. Assuming a
standard telecom fiber is employed for sensing, this means that the minumum
fLO used will be at the least 10GHz, thus the fiber used to construct the
DRC-BRL should have a BFS equal to around 9GHz.

Figure 3.8: Scheme of the DRC-BRL with self-injection locking.

This can be done by employing an optical fiber with a different Germanium
(Ge) doping. Standard telecom fibers have a Ge weight percentage of around
3 %weight, and it is known that an increase of Germanium concentration lowers
the acoustic velocity Va of the core and, recalling (3.1), it can be seen the
result of this is a reduction in the BFS [70]. By increasing Ge concentration up
to above 20 %weight which is done for specialty fibres designed for low bending
losses, a BFS of 9GHz (down from the ∼ 10.86GHz of standard fibers) can
be achieved.
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Second, while this system requires the use of an EOM (which was removed
in the source showcased in the previous chapter), by choosing the right
∆fBRL value the signals used to drive it (which have a frequency equal to
fLO −∆fBRL) can be kept within a frequency limit of around 1GHz. As a
result, the bandwidth required for the EOM in this system can be made to
be around 1GHz, while traditional systems, such as the optical sideband,
require EOMs with bandwidth of more than 10GHz, and the greatly relaxed
hardware requirement results in a cost reduction [61].

3.4 Implementation of the wavelength stabilized DRC-BRL

Using the designs and technique explained above, a DRC-BRL cavity was
implemented by the author in [82] and its output performances were evaluated.

3.4.1 Realisation of the short cavity

The layout of the DRC-BRL implementation is shown in figure 3.8 on the
preceding page.

The seed pump is provided by a DFB laser with λ = 1553.26nm and a
350 kHz wide linewidth. The light goes into the fiber ring through exits 2
and 3 of optical coupler OC2 and exits 1 and 2 of optical coupler OC1. The
ring cavity consists of a single mode fiber closed by two different couplers:
a 90 % / 10 % one (DC1) and a 99 % / 1 % one (DC2). After the circulators,
the light enters the ring through DC1. Once the pump circulating inside the
cavity exceeds the threshold, SBS is triggered and the counter-propagating
downshifted Stokes light is generated. If the ring is doubly resonant, its power
increases through multiple loop propagation inside the ring, further increasing
intensity and narrowing its linewidth. At every round trip, part of the Stokes
output is extracted through coupler C1 and then extracted through exits 2
and 3 of OC1 to be employed in the relevant application.

Coupler DC2 is used to extract a small amount of the pump circulating
inside the ring laser, whose frequency will be resonant with the ring, and
inject it into the DFB laser for self injection locking through exit 1 and 2 of
OC2. Two polarization controllers, PC1 and PC2, are inserted inside and
right before the ring respectively. Their purpose is to align the polarizations
of the pump and Stokes light inside the cavity, which maximizes the SBS
effect [60].

An additional polarization controller, PC3, is instead used in the self-injection
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(a) Double resonance peaks in a 5m long
DRC-BRL.

(b) Double resonance peak spacing as a
function of cavity length.

Figure 3.9: Double resonance in a BRL cavity. From [82].

locking branch to ensure that the light injected matches the polarization of
the DFB output in order to maximize the efficiency of the process.

3.4.2 Achieving double resonance

To ensure that the BRL was doubly resonant with the wavelength of the DFB,
the procedure previously described in 3.2 on page 48 was employed, involving
the removal of a specific length of fiber. A tunable laser was used to measure
the output BRL intensity as a function of seed pump wavelength in the range
between 1550 and 1560 nm. Before performing the single cut technique, the
length was progressively reduced from 10m down to 4m and this measurement
was performed for each length in order to evaluate the conclusion that was
found regarding the relationship between double resonance peak spacing and
cavity length. An example of the measurement of the Stokes output as a
function of pump wavlength for a cavity length of approximately 5m is shown
in figure 3.9a. The double resonance peaks spacing at different lengths is
shown in figure 3.9b. The relation of inverse proportionality was verified
by performing a least squares fit on the data using a power curve model
(y = axd). The resulting best fit exponent was d = −1.032, which was close
to the expected -1 value for inverse proportionality relation, and the R2 value
was close to 1 (0.9966) indicating that the fit overlapped well with the data
and further confirming the expected relation.

After this measurement, the single cut technique was applied, and the
final length was about 3.4m. The DRC-BRL cavity was evaluated similarly
to the LC-BRL showcased in the previous chapter in terms of threshold power
and maximum output. The results were a threshold pump power of 10mW
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and a maximum output power of 1.5mW for a pump power of 25mW. For
comparison, the results for the LC-BRL shown in the previous chapter were
a threshold power of 2mW and a maximum output power of 0.5mW for a
pump power of 17mW.

In terms of threshold power, the LC-BRL shows better results, with a
threshold power which is 5 times lower. This is to be expected, since the
LC-BRL had a much higher amount of gain medium and a built-in B-EDFA
to amplify both the pump and Stokes light, which is not needed in the short
cavity.

In terms of conversion efficiency, on the other hand, the DRC-BRL performs
significantly better, with a maximum output power that was 3 times higher
than the one found for the LC-BRL. The reason for this difference is that
the length of the cavity greatly increases the attenuation of the pump and
Stokes light, which meant that the Stokes light didn’t increase much each
roundtrip, and the pump power didn’t increase at all. In the short cavity, on
the other hand, the low losses, mixed with the resonance for both pump and
probe allow both lights to increase progressively inside the cavity, increasing
the maximum potential power. In addition, the LC-BRL Stokes output power
stopped growing at a lower pump power: since the round trip losses also
increase with power, the relation between Stokes output and pump powers
suffers from increased diminishing returns, and is mostly dominated by the
B-EDFA, which amplified the light by a flat amount.

As a final conclusion, the DRC-BRL compared to the LC-BRL has im-
proved output power and a threshold power which, while lower, is still viable
for BOTDA applications.

3.4.3 Wavelength narrowing

The frequency narrowing effect which is expected to be associated with the
short cavity DRC-BRL was also evaluated by measuring the linewidth of its
output with the self-heterodyne method, using a similar scheme to the one
shown in the previous chapter. The long branch was composed of a 12 km long
fiber delay line, while the short branch had a 150MHz acousto-optic modulator.
The beating light was measured by a fast photodetector (bandwidth of 12GHz)
and its signal analyzed by an ESA. Referring to [21], it can be seen that the
difference in optical path between the two branches allowed measurement of
spectral linewidths down to ∼ 6 kHz.

The result of one of these measurements is shown in figure 3.10. In this



60 | 3 BOTDA employing a Wavelength-Locked, SC-BRL

situation, the Stokes output power was 0.75mW, the seed pump power was
18mW and the power of the beating signal was∼ 200µW. For these conditions,
the linewidth was found to be ∼ 10 kHz, showing a significant narrowing effect
compared to the linewidth of the original DFB source, which was 350 kHz. No
additional peaks were observed outside of the of the frequency values displayed
in figure 3.10, where the signal was below the sensitivity of the measurement,
which was limited to about −80 dBm due to SNR limitations, and always
at least 20 dB lower than the peak value. In order to evaluate the reliability
of this result, similar spectral linewidth measurements were performed with
different seed pump power resulting in Stokes output values ranging from 0.5
to 1.2mW, and similar spectral linewidth values were observed.

Figure 3.10: DRC-BRL linewidth from self-heterodyne technique. From [82].

Compared to the LC-BRL, where the linewidth was twice the one of the
DFB pump, the narrowing effect is greatly increased: the DRC-BRL has an
output which is 35 times narrower than the seed pump signal. This difference
can be explained by the combined effect of the reduced cavity length, which
reduces mode hopping due to acoustic effects, and the resonant behavior of
the ring [20]. When the FSR is comparable to the BGS bandwidth, it can
be seen that the expected spectral linewidth of the Stokes output can be
calculated as
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∆νS = ∆νP
1 + π∆νB

Γ

where ∆νP is the linewidth of the seed pump, ∆νB is the BGS linewidth and
Γ is a parameter defined by the cavity length L and the coupling ratio R
of the cavity (that is, the percentage of power sent into the cavity) and is
defined as: Γ = c / nL lnR. Applying the experimental values relevant for the
constant of the DRC-BRL cavity, the expected Stokes linewidth was found to
be approximately 5 kHz compared to the measured value of 10 kHz. While
the calculated result is not equal to the measured one, which can be caused
by a variety of issues (including additional losses in the fiber or other minor
sources of linewidth broadening), the two results are close enough to show
that the measured values are realistic.

3.4.4 Frequency shift stabilization

The stability of the pump probe frequency shift provided by the DRC-BRL
linked with the wavelength locking system was evaluated by coupling the
output of the DFB pump and the wavelength-locking system (that is, the
lower sideband) into the same fiber tract, measuring the beating signal with a
fast 12GHz bandwidth photodetector and analyzing the output with an ESA.
The spectrum of the resulting signal is a peak which is centered in the value
equal to the frequency shift, which is expected to be equal to the chosen local
oscillator frequency fLO, and a linewidth which depends on the frequency drift
in a specific averaging time.

An example of the results is shown in figure 3.11 on the following page, for
a fLO value of 10.86GHz and averaging times of 10ms (figure 3.11a on the next
page), which corresponds to the timescale of a single BOTDA measurement,
and an extended period of 120 s (figure 3.11b on the following page) [57, 58].
What can be seen from these results is that the peaks are within 1 kHz of fLO
(located at the center of the quadrants), showing a tunability with sub-kHz
accuracy. For what concerns the stabilization of the frequency shift, the
linewidth of the two peaks was 200Hz for an averaging time of 10ms and
400Hz for an averaging time of 120 s.

The measurement was repeated with different fLO values, spanning the
entire range of the local oscillators (10.7 − 11.5GHz), showing that the
stabilized pump-probe frequency shift is perfectly viable for BOTDA sensing,
being accurately tunable and extremely stable both in the single measurement
timescale and for even longer timescales.



62 | 3 BOTDA employing a Wavelength-Locked, SC-BRL

(a) (b)

Figure 3.11: Electrical spectrum of the pump-probe beating for wavelength locked
DRC-BRL for averaging times of 10ms (a) and 120 s (b). The frequency
range is centered at the local oscillator frequencies fLO 10.8602GHz
and 10.8608 respectively. The y axis scale is 1 dB/division (a) and
10 dB/division (b), while the x axis scale is 1 kHz /division (left) and
2 kHz /division (right). From [83].

3.4.5 Intensity noise measurement

To evaluate the combined effects of employing a short cavity on intensity
noise and wavelength locking, the RIN of the Stokes output was measured
and compared with the RIN profiles of the DFB source and the LC-BRL one
obtained in the previous chapter. The results are shown in figure 3.12 on the
next page.

What can be seen from the main figure is that the RIN increase at
frequencies below 500MHz which was seen in the LC-BRL source is greatly
suppressed in the DRC-BRL, which shows RIN values only slightly above the
original pump DFB levels, between −140 dB /Hz and −150 dB /Hz across
the whole 1− 800MHz range, except in the first few MHz frequencies. Since
ESA measurements at those small frequency ranges are unreliable, a different
approach was used to estimate the RIN spectrum at lower frequencies: the
wavelength locked output was fed into an oscilloscope and its spectrum was
extracted through a fast Fourier transform (FFT). The RIN profile in this
frequency range, which is shown in the inset of figure 3.12 on the facing page
indicates that in the range up to 50 kHz (limited by the sampling rate of the
oscilloscope) never exceeded −100 dB/Hz, showing limited RIN values even
at very low frequencies.



3.4 Implementation of the wavelength stabilized DRC-BRL | 63

Figure 3.12: Measured spectral RIN the LC-BRL, the λ-locked DRC-BRL and the
DFB pump. Inset: RIN measurement for DRC-BRL in the 1− 50 kHz
frequency range. From [83].

3.4.6 Predicted resolution improvement

While it hasn’t yet been possible to employ the cavity in a BOTDA demon-
stration, by comparing the intensity noise profiles of the Stokes ouptuts for
the stabilized DRC-BRL and the LC-BRL it is possible to make a prediction
of the effect the lowered noise profile would have on frequency, temperature
and strain resolution by calculating the SNR of the probe provided by the
two sources.

In BOTDA measurements, the final SNR of the detected probe signal is
determined by the combined effect of the current generated by the photode-
tector IS and the contribution of different noise variances: the thermal noise
δ2
th and shot noise δ2

sh from the photodetector, the spontaneous-spontaeous
δ2
sp−sp and signal-spontaneous noise δ2

sp−s from the EDFA, and the intensity
noise δ2

RIN. The nature of this relationship is the formula [94]:

SNR = IS
δ

= IS√
δ2
th + δ2

sh + δ2
sp−sp + δ2

sp−s + δ2
RIN

When the probe is generated by low-RIN sources, the dominant term



64 | 3 BOTDA employing a Wavelength-Locked, SC-BRL

in the formula above is the spontaneous signal beat noise δ2
sp−s. When the

signal is generated by a fiber ring laser, such as the cases described here,
the dominant term is the intensity noise δ2

RIN. In this case, the SNR can be
calculated by integrating and then inverting the RIN profile of the source
over a frequency range equal to the bandwidth of the photodetectors used
to acquire the BOTDA trace (125MHz), which resulted in SNR values of
∼ 38.7 dB for the LC-BRL and ∼ 61 dB for the wavelength locked DRC-BRL.

In BOTDA measurement, when the BFS is acquired by Lorentzian curve
fitting, the BFS resolution is related with the trace SNR alongside the BGS
linewidth ∆νB of the sensing fiber by the formula [37]:

δνB = ∆νB√
2 (SNR)1/4 (3.3)

The temperature and strain resolution δν and δT are linked to the BFS
resolution by a relation of direct proportionality:

δT = δνB
CTνB (tr)

and δT = δνB
CSνB (0)

in which CT and CS are the BFS linear coefficients for temperature and
strain, while νB (tr) and νB (0) are the BFS values when the sensing fiber is
respectively at reference temperature and unstrained [40].

The short-cavity double-resonance wavelength-locked BRL allows a SNRRIN

improvement of ∼ 22.3 dB, which, as of (3.3), translates to a FBS resolution
which is reduced by a factor of ∼ 5.5 dB, which is equivalent to a factor of
3.5. Since the resolution values of the previous chapter were 0.5MHz for the
frequency, 0.5 ◦C for the temperature and 10µε for the strain, the values with
the new DRC-BRL source would be ∼ 0.14MHz, ∼ 0.14 ◦C and 2.9µε.

It is to note that, as said before, this evaluation assumes that the dominant
noise element in the DRC-BRL source is still the intensity noise. While the
intensity noise suppression might be so strong to make this no longer the case,
it is till useful to show the extent of the improvement in wavelength-locked
DRC BRL.

It must also be noted that this evaluation does not take into account the
beneficial effect the greatly reduced linewidth of both the BRL output and
the seed pump would have on the resolution of BOTDA measurements.

In conclusion, in this chapter the development of a DRC BRL design
was evaluated, which made use of both a short cavity to reduce intensity
and frequency noise effects and double resonance to maintain good threshold
power and conversion efficiency, including a self-injection locking system and
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a wavelength stabilization scheme to provide both tunability and control of
the frequency shift between the Stokes output and the pump.

The new source showed strong linewidth narrowing behavior and a low
intensity noise profile despite being based on a Brillouin ring laser. At the
same time, the wavelength locking system provided exceptional accuracy
and stabilization for the frequency shift, both in the 10ms timescale and in
the 120 s one, without any potential hysteresis effect or instability due to
mechanical elements.

While this system is more complex than the one shown in the previous
chapter and employs an EOM like the OSB method, it still reduces costs
due to its much lower requirements in terms of EOM bandwidth, while also
providing a linewidth narrowing effect thanks to the BRL cavity that none of
the other schemes mentioned here can provide.

The contribution of the author to the work presented in this chapter
consists of the theoretical modeling and characterization of the short cavity
BRLs, including their doubly resonant behavior, intensity noise suppression,
and linewidth narrowing. In addition, it includes the characterization of the
tuning and stabilizing capabilities of the wavelength-locking system.





4

Dynamic BOTDA measurement: Slope-detection
and Closed Circuit BOTDA

As mentioned in previous chapters, while BOTDA systems have seen wide
employment for long range distributed sensing, they also have a series of
limitations further than complexity and cost. For instance, the pump pulse
duration must be 10 ns at minimum, due to the time needed for the acoustic
field to be excited by the pump and probe, which puts a limit of ∼ 1m on the
minimum spatial resolution obtainable. Another inherent limit for BOTDA
sensing is the time required to perform a single measurement. In order to
obtain high resolution, high range temperature and strain measurements, the
BGS must be characterized over a range of 100–200MHz of frequency, with a
resolution of 1 or even 0.1MHz. As a result, in order to obtain a single BFS
distribution νB(z) across the sensing fiber, thousands of single measurements
have to be taken. Considering that every measurement usually requires the
probe trace to be averaged tens if not hundreds of times, and that every single
trace requires 10 µs per km, it can be seen that a single temperature/strain
profile requires several minutes to be extracted, thus relegating BOTDA
sensors to the measurement of temperature/strain distributions that are either
purely static or change in a larger timescale.

To overcome this limit and allow for dynamic BOTDA measurements, a
variety of approaches have been explored in recent years. In [78], for instance,
a method defined as Fast-BOTDA (F-BOTDA) was proposed, which involved
pre-loading all the possible probe outputs in a single arbitrary waveform. In
[102], a correlation technique allowed dynamic strain and temperature sensing
with a frequency of 200Hz (equivalent to a measurement time of 5ms) with a
10 cm spatial resolution and 20m measurement range.

67
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Despite the impressive reductions in measurement time, it was argued in
[101] that such methods only allowed for a limited range of a few hundred
sensing points, one order of magnitude lower than most modern applications.

In [28, 110] other methods were proposed utilizing Optical Frequency
Division Multiplexing (OFDM), which allowed ultrafast BOTDA measurement
at the cost of a reduced spatial resolution.

4.1 Slope-Assisted BOTDA

Among the fast BOTDA methods, one of the most known and with less
drawbacks is the slope-assisted BOTDA (SA-BOTDA). The main idea behing
this approach is to keep the pump-probe frequency shift always at a certain
setpoint, which resides within the rising or falling slope of the sensing fiber’s
BGS at a rest state, where the shape of the Lorentzian curve can be equated
to a linear slope. At every point of the fiber, the Brillouin amplification will be
dependant on the shift of the BGS due to temperature and strain variation, as
shown in figure 4.1 on the next page: if the chosen slope is rising, an increase
in Brillouin amplification in a point in the fiber will correspond to a decrease
in local BGS compared to the base value, denoting a decreased temperature or
strain, and viceversa a decrease in amplification will correspond to an increase
in the local BGS compared to the base value and an increased temperature or
strain. If the chosen slope is descending, these relationships are reversed, as
shown in figure 4.2 on the facing page: an increase or decrease in Brillouin
amplification corresponds to increased or decreased temperature/strain values,
respectively.

In addition, if the change in BFS is less than the width of the linear region
of the BGS, the changes in Brillouin gain will be linearly related to the shifts
in the BGS.

As a result, once the slope of the BGS is known, it is possible to directly
translate the intensity of a single amplified probe trace into a map for the
BFS across the fiber.

In principle, the optimal frequency setpoint in terms of BFS uncertainty
(and thus temperature/strain sensitivity) should be located at the point where
the slope η of the BGS reaches its maximum. The Brillouin Gain Spectrum
can be defined in first approximation as a Lorentzian function:

g (∆ν) = gB∆ν2
B

∆ν2
B + 4∆ν2
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Figure 4.1: Brillouin gain-BFS conversion in Slope-Assisted BOTDA when the fre-
quency setpoint is on the rising edge of the BGS.

Figure 4.2: Brillouin gain-BFS conversion in Slope-Assisted BOTDA when the fre-
quency setpoint is on the falling edge of the BGS.
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where ∆ν = νB − νS is the detuning between the BFS νB and the pump-
probe frequency shift νS and ∆νB is the linewidth of the BGS. The ∆ν that
maximizes the slope is also the one that nullifies the second order derivative
of g(∆ν):

d2g

d∆ν2 = −8gB∆ν2
B (∆ν2

B − 12∆ν2)
∆ν2

B + 4∆ν2 = 0

which, when solved, gives an optimal frequency detuning equal to:

∆νop = ±∆νB√
12

It is to note that this optimal frequency is very close to the BFS, and to
a zone of the BGS where the slope quickly goes to 0, and thus in practical
applications small temperature/strain fluctuations could move the Brillouin
amplification outside of the linear region. Because of this, the detuning value
∆νB / 2 is chosen instead, since it maximizes the range of the linear region in
both directions.

The uncertainty of the BFS measurement as a function of the frequency
detuning is the product of the fiber slope and the intensity noise σB. For the
maximum slope point, this is

σmaxslope
ν = 4∆νB

3
√

3
σg
gB

It can be shown that the measurement noise for a BOTDA setup that uses
N steps withing the FWHM of the BGS which extracts the BFS through a
quadratic curve fit is given by [93]:

σstandardν =
√

3∆νB
2
√
N

σg
gB

where N is the number of frequency steps in the BOTDA measurements.
By taking the ratio between these two equations, the BFS uncertainty im-
provement using a standard BOTDA is obtained as:

σmaxslope
ν

σstandardν

= 8
9
√
N

If the FWHM of the BGS is 60MHz (which is correct for a spatial resolution
of 2m) and a scanning step of 1MHz, N = 60 and the ratio above is equal to
6.88, which means that to obtain the same BFS uncertainty using a single
frequency probe one would obtain using classical BOTDA would require ∼ 47
times more averages, showing a greater degree of efficiency since to obtain
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the same results the same measurement is performed 47 times instead of 60.
When instead the point at the BGS FWHM is chosen, the noise is 2

√
N /
√

3
times higher, which for N = 60 corresponds to a factor of 8.9 times, meaning
that in order to obtain the same BFS noise by gain-frequency convertion using
only a single probe frequency at ∆ν = ∆νB / 2 would require ∼ 81 times more
averages. While in theory this would mean that at ∆ν = ∆νB / 2 this method
is always slower, in practical terms BOTDA frequency sweeps are always larger
than the FWHM of the BGS and equal to at least 100MHz to guarantee that
a sufficient portion of the BGS is measured even when the BFS shifts, while
the SA-BOTDA doesn’t need scanning as long as the BFS change is less than
the linear region, where the slope is mostly constant. As a result, the main
advantage of this method compared to classical BOTDA is that it is possible
to greatly increase the measurement speed, since it eliminates the need for
frequency scanning, reducing the measurement time to the time required to
acquire a single trace multiplied by the number of traces needed for averaging.
In practical terms, this can reduce the measurement speed to the order of
tens of milliseconds. The main limitation of this technique is that in order
to translate changes in Brillouin gain to changes in the BFS the latter must
be within the linear region of the BGS: if it isn’t, the relation is no longer
linear and the translation becomes too difficult. In additon, other zones of
the BGS closer to the peak or the tail have a lower slope, which translates to
a lower accuracy in the measurement. Finally, due to the symmetrical nature
of the BGS, if the changes in BFS are not limited it is in theory not possible
to univocally determine them, as is shown in figure 4.3 on the next page.

4.2 Closed-Circuit BOTDA

In [108], a different way to solve the limited range of SA-BOTDA was proposed,
named Closed Circuit Brillouin Optical Time Domain Analysis (CC-BOTDA).
The idea behind this approach is to use a variable probe frequency to track
the BFS changes along the fiber, using a closed loop (feedback) control system
to always maintain the pump probe frequency shift at the same point of
the Brillouin gain spectrum. Whenever the gain measured at the original
probe frequency νS changes due to a shift in BFS, a control system, such as
a Proportional-Integral-Derivative (PID) controller, extrapolates the probe
frequency change ∆νop required to revert the measured gain back to its original
value, and the current BFS value is obtained by adding ∆νop to the original νS.
As a result, when tracking is fast enough compared to the dynamics causing



72 | 4 Dynamic BOTDA: Slope-detection and Closed Circuit

Figure 4.3: Ambiguous SA-BOTDA reading when the BFS is outside of the linear
region.

the BFS to change, it is possible to continuously update the pump-probe
frequency detuning to follow the shifts in BGS, making it possible to perform
Slope-Assisted measurements with a potentially indefinite BFS range, not
limited to the linear region of the BGS lateral slope.

Figure 4.4: Segmentation of the sensing fiber and the probe frequency. From [108].

It is to note that, generally speaking, in real situations every point of
the sensing fiber will have a different BFS. Because of this, in order for the
CC-BOTDA to work the sensing fiber must be trated as a series of N fiber
segments, where N = L/∆z, where ∆z is the spatial resolution of the sensor
and L is the length of the sensing fiber. Through the use of an arbitrary
waveform generator (AWG), the probe wave will also be temporally divided
in N segments, each with a length equal to the pump pulse (which can
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Figure 4.5: CC-BOTDA gain compensation process. From [108].

be expressed as 2ng∆ν / c, where c / ng is the group velocity), as shown in
figure 4.4 on the facing page. The frequency of each segment is independent
from the others.

When the pump pulse reaches a fiber segment at position zi, it will interact
with the corresponding probe segment whose probe frequency will match the
expected detuning νS(zi) thereby giving the measured corresponding gain
amplitude g(zi).

Before the measurement is performed, the initial reference BFS for every
segment of the fiber νS(z) is taken using standard BOTDA. Each segment of
the probe wave is then set at the chosen detuning ∆νop from the corresponding
measured starting frequency shift. In this situation, the amplified probe trace
will take the shape of a uniform exponential decay (as shown in the upper
left corner of figure 4.5), corresponding to a uniform Brillouin gain across the
fiber. This gain will be chosen as the set gain gop.

During the measurement, whenever an external effect causes the local BGS
to shift (as shown in the central frame of figure 4.5), the corresponding local



74 | 4 Dynamic BOTDA: Slope-detection and Closed Circuit

gain will change from the reference value gop by an amount ∆g(zi) which will
affect the corresponding point in the measured probe trace.

The closed-loop system of the CC-BOTDA will adjust the local probe
frequency νS(zi) by an amount dependant on ∆g(zi). The purpose of the
system is to compensate the gain change and bring it back to the original
value by continuously adjusting the frequency at each step, until the local
pump-probe frequency shift reaches the original detuning from the BGS, as
shown in the bottom frame of figure 4.5 on the preceding page.

In this configuration, the information on the evolution of the BFS vari-
ation is not obtained by BGS spectral fitting or by direct conversion of the
measurement gain, but directly by the control system output.

Figure 4.6: Experimental setup. From [108].

In [108], a CC-BOTDA system was implemented using a PID controller as a
feedback system. The setup demonstrated to be able to measure temperature
variation over a length of 10 km of fiber with a measurement time of 1.7
seconds, which was mainly limited not by the measurements but by the data
upload time to the AWG in order to create the segmented waveform.

In addition, among the possible PID configurations, P and PI controllers
were found to be the most effective, and it was also shown that, with specific
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configurations, they could act as low pass filters as well as feedback loop
controllers. Below is a description of some of the results of the work.

4.3 Experimental Implementation

The experimental setup is shown in figure 4.6 on the preceding page. The
pump light was shaped into a 20 ns pulse (corresponding to a 2m spatial
resolution) with high (> 50 dB) extinction ratio through a Semiconductor
Optical Amplifier (SOA), which will be described in more detail in chapter
6, and shaped into a 20 ns optical pulse with high extinction ratio, and was
then amplified with an EDFA. Similarly to a OSB BOTDA scheme, the probe
was generated through the use of a EOM, which was driven by a segmented
sine wave as described above. As seen previously, a polarization scrambler
was used to remove polarization noise. Afterwards, both waves were inserted
at both ends of a 9.3 km long sensing fiber, with the amplified probe being
detected using a photodetector (PD) and an FBG in a similar way to the one
shown in figure 2.11 on page 39.

The segmented probe was generated by driving the EOM with a wave
generated by mixing a RF microwave signal at constant frequency f1 =
10.2GHz with a variable signal at f2 = 150—300MHz produced by an AWG
(whose maximum sampling rate was 2GHz), so that in all cases the probe
component that experienced Brillouin interaction with the pump was at the
frequency f1 + f2. Since the spatial resolution was 2m and the length of the
sensing fiber was 9.3 km, the signal generated by the AWG was composed
of 4650 time-domain segments, whose initial frequency was set to match the
corresponding initial local BFS (around 10.46GHz) minus the detuning ∆νop
(which in this case was equal to 17.3MHz).

At every measurement step, the gain for every segment is acquired and the
closed-loop system of the CC-BOTDA calculates the necessary changes to the
frequencies, as shown in figure 4.5 on page 73, with the use of a software based
PID controller. Although the derivative (D) is known to “predict” system
behavior and reduce the overshoots and oscillations imposed by the integral
(I) term, it also greatly amplifies the impact of noise. Because of this, only
the Proportional (P) and integral component were used.

Due to the time required to upload the updated segmented wave to the
AWG, the time between each measurement had a lower limit of 1.7 s.
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(a) Proportional term only.

(b) Proportional and integral term.

Figure 4.7: Output of the tracking system for a 10 ◦C temperature step. From [108].

4.4 Experimental results

The behavior of the PI controller was evaluated by applying a step-like
temperature increase on a 6-m long fiber hotspot section at the end of the fiber
using different proportional (KP ) and integral (KI) parameters. Examples of
readings from the hotspot are shown in figure 4.7. As can be seen from 4.7a,
reducing the KP coefficient reduced the noisiness of the tracking system
output, while also increasing the number of steps required for the system
to track the changes: when KP = 1/η, the system responded instantly to
the changes, but its reading was noisier, while for KP = 1/16η the system
required a greater amount of steps to track the temperature change. As was
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Figure 4.8: Output of the tracking system with different PI parameters for a gradual
temperature change of 0.08 ◦C. From [108].
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proven in [108] and will be seen in the next chapter, a tracking system using
a P controller with KP < 1η behaves like a low-pass filter. From 4.7b on
page 76 it can be seen that by adding a I component to the controller, the
system response was faster, but added an overshoot and some noise to the
response.

From these result, it was found that the best compromise in terms of noise
suppression and response speed was a PI controller with a very small integral
component, such as the one with KP = 1/16η and KI = KP/200.

The tracking behaviour over an extended range was verified by gradually
increasing the temperature of the hotspot fiber section from 22 ◦C to 53 ◦C
with a climbing rate of 0.08 ◦C/s (or 0.14 ◦C per step). The results are shown
in figure 4.8 on the previous page. As can be seen from the figures, the use of
the tracking system allowed the process to be effectively tracked over a range
that exceeded SA-BOTDA. In addition, the largest delay found between the
actual temperature and the tracking output was equal to 15 steps in the case
with KP = 1/16η, which with the tracking speed of this device was equal to
a time delay between the frequency change and the measurements of only
25 s, while providing similar accuracy. In addition, by adding an integral
component, the delay could be removed at the cost of increasing the reading
noise.

From these results it can be seen how, despite the limited measurement
speed (which could be improved with better hardware), the tracking sys-
tem shown in this chapter can provide an interesting alternative to both
SA-BOTDA and classical BOTDA, thanks to its capability to provide accu-
rate measurements over an extended temperature or strain range, and require
only a few seconds to achieve similar results to the ones that would be achieved
in minutes with a non dynamic measurement.
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Controlling and Filtering Methods for Closed Loop
BOTDA

5.1 Tracking with P and PI controllers

As has been seen in [108], a simple P controller is capable of keeping the
pump-probe frequency shift inside the linear region of the BGS by monitoring
and responding to the changes in intensity from the setpoint.

Two things have to be noted about this result. First, while the tempera-
ture/strain shift that can be tracked is virtually infinite, depending on the
chosen KP parameter there are some limit situations that can cause the track-
ing to fail: when KP=1, any situation where the noise fluctuations are greater
than the width of the linear region of the BGS will cause the pump-probe
frequency shift to exit it, and the link between the measured intensity and
the BFS position estimate will no longer be reliable. For similar reasons,
the expected temperature/strain variation for each measurement step cannot
exceed the half-width of the linear region.

When a KP parameter lower than 1 is chosen, the noise suppression noted
in [108] and that will be detailed in this chapter will cause the system to
be able to tolerate a noise level that is greater than the width of the linear
region of the BGS. At the same time, any strain/temperature change with a
step-by-step correlation greater than 0 will cause a cumulative delay between
the measured intensity and the setpoint which, if large enough, would cause
the linear relation between frequency shift and gain to no longer apply, even
if every step-by-step change is smaller than the width of the linear region.

As will become evident in chapter 6 on page 105, where tracking was never
found to be an issue, and was already seen in [106], these conditions are limit
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cases: the SNR is expected to be significantly lower for lengths in the order of
kms for noise alone to cause the measurement to exit the BGS linear region,
and in order for a single step to do the same the temperature should increase
by 30 degrees Celsius in a fraction of a second, which is unlikely in most
situations, save for violent thermal phenomena. At the same time, extended
temperature variations of tens of degrees Celsius for multiple steps are as
unlikely, save for specific application that won’t be addressed here.

As a consequence, in this work P and PI controllers are assumed to always
be capable of following temperature changes, unless for extremely small KP

and KI parameters.
As a further note, in most applications that see employment of PID

controllers the objective is to maintain the system at a given state (the
setpoint) which has an effect on its dynamics [99, 100]. In particular, this
means that PID controllers need to be tuned according to the transfer function
of the system in order to optimize different aspects of its behavior, such as
the speed of the response [66]. For more examples and variations, see [27, 35,
80, 100].

In BOTDA sensing, on the other hand, maintaining the Brillouin gain
at every point in the fiber at the specific setpoint has no effect on further
evolutions, because these are caused by the system that is being measured,
which is unaffected by the state of the sensor. Because of this, the only
function of the controller is to keep the pump-probe frequency shift in the
linear region of the BGS. In addition, since the sensor can be employed to
monitor a wide variety of different situations, no assumption can be made on
the extent and nature of temperature/strain fluctuations. Because of these
reasons, it is not possible to provide an optimal tracking system, but for what
concerns maintaining the pump-probe frequency shift any P or PI controller
will provide sufficient tracking in most cases.

5.2 P and PI controllers as filters

Before detailing the filtering effect of the PID controller, an observation
has to be made in order to simplify the description of the process, which is
summarized in 5.1 on the next page.

At every step n, the pump-probe frequency shift is νn and the gain setpoint
is gop, while the new measured gain is gmeas. After the feedback, the new
pump-probe frequency shift will be changed by an amount equal to ∆ν =
−KP

gmeas−gop
η

. In other words, the frequency will try to reach the frequency
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Figure 5.1: Difference between expected gain and measured gain in CC-BOTDA:
the curve in grey is the BGS which would return the gain gop with the
operating frequency νn. In black is the actual BGS that returns the
measured gain gop with the operating frequency νn, and would return the
gain gop if the operating frequency was νmn .

shift value at which the gain would be gop , according to the last measurement.
As can be seen from figure 4.5 on page 73, −gmeas−gop

η
is equal to the difference

between the current pump-probe frequency shift νn and νmn , which is the one
that should be chosen in order to obtain gop instead of gmeas, assuming of
course the two frequencies lie in the linear region of the BGS. When a P
controller is employed, the new frequency νn+1 will simply be

νn+1 = νn −KP
gmeas − gop

η
= νn +KP (νmn − νn)

In other words, the contribution of the gain measurement can be ignored
and the behavior of the P controller can be described mathematically simply
in terms of frequency variation, which in practical measurements will translate
to a variation of temperature in this work as it did in [108], but can also
translate to strain variations (or other measurands if appropriate sensing
fibers are used).

If we define
En = (νmn − νn)
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as the error of every step, we can say that for a P controller

νn+1 = νn −KPEn

and, for a PI controller,

νn+1 = νn −KPEn +KI

n∑
i=0

Ei

The meaning of this observation is that the measurement process of the
closed loop BOTDA can be treated as reading a signal represented by the
fequency νmn corresponding to the measured gain at every step. As shown
above the output sequence νn is determined by the measured sequence νmn by
the formula:

νn+1 = νn +KP (νmn − νn) +KI

n∑
i=0

(νmi − νi)

When KP = 1 and KI = 0, it is immediate to see that the equation above
becomes νn+1 = νmn . In other words, employing a P controller with KP = 1
results in the sensor output being identical to the sequence νmn with only a
one step delay. On the other hand, having a P controller with KP and KI

values lower than 1 and greater than 0 respectively is equivalent to applying
a low-pass filter to the measured sequence [106].

Because of this, the tracking and noise suppressing capabilities of P and
PI controllers can be decoupled, and the latter evaluated by modeling their
performance similarly to what would be done for signal digital filters applied
to the νmn sequence. As a further result, their performance can be compared
with the one that would be obtained by employing a closed loop BOTDA
using a P controller with KP = 1 and applying a different filter to the output.

5.3 Digital filters

Digital filters are mathematical operations that are applied on sampled,
discrete-time signals in order to recognize specific patterns, exclude or select
signals at specific frequencies or reduce noise [91]. Generally, they are used
either for signal selection or signal restoration. Signal selection is used when
the desired signal is mixed with interference, noise or other signals, such as
distinguishing multiple overlapping voices from a given recording. Signal
restoration is required when a signal has been distorted in any way due to
hostile measurement conditions or poor equipment.
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A very basic example of digital filters is the moving average: every filtered
data point is equal to the average of the last N measured data points, where
N is a preselected number. As a result, the filtered data sequence becomes a
smoothed version of the data sequence, where random fluctuations (like the
ones usually generated by noise) are suppressed, but the overall shape of the
sequence is also altered.

Compared to analog filters, digital filters cannot be implemented directly on
a circuit, but act directly on data converted from analog to digital. Because of
this, digital filters can be much more complex and provide levels of performance
that are not affected by the hardware limitations of analog filters and thus can
be much more complex than analog filters and reach much greater levels of
performance [91]. For instance, digital filters are capable of selecting a specific
frequency band while excluding all signals outside of it with an almost perfect
step-like frequency response, result which is impossible with an analog filter.

Filters can be characterized by three different functions, which are related
to each other: the first two are the impulse response and the step response,
which are obtained when the filter is applied on an impulse (that is, a measured
signal which is 0 at every point except a single one where it is 1) or a step
(a measured signal which is 0 before a certain point and 1 afterwards). The
third one is the frequency response, which is the function of the attenuation
the filter applies to every frequency [91].

Each of these responses alone is enough to define a specific filter in its
entirety and its response to every input signal, since any sequence can be
defined as either a sum of impulses, step functions or as a spectrum of
frequencies. As a consequence, if any of these responses is specified, the other
two are univocally determined and can be directly calculated. The difference
between the three responses is the information they convey, describing how
the filter will react under different circumstances.

Digital filters can be implemented in two different ways. The first and
most straightforward is to implement a digital filter by convolving the input
signal with a function that is specific for each filter, known as the filter kernel,
which corresponds to the signal’s impulse response.

The second is to calculate each point of the filtered signal as a sum of the
past points from both the input signal and the already filtered data, each
point multiplied by a different coefficient. This kind of implementation is
known as recursive filter.

Information in signals can be encoded in two possible ways: time domain
and frequency domain. In time domain, every point in the sequence describes
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when an event occurs and the amplitude of that occurrence, like for example
the light output from the sun at every moment.

In frequency domain, relevant information is modulated through frequency
and is detected through periodic oscillations in the measured signal.

The different responses of the filter describe how the filter distorts in-
formation in the different domains. In particular, filters that have a step
response close to the original step will preserve information encoded in time
and thus be indicated for time-domain application, while filters that have a
step-like frequency response will be able to filter out all the frequencies outside
it, and are thus indicated for frequency-domain signals. It is to note that
time-domain filter will usually distort information in the frequency domain
and viceversa.

In the application of this work, the temperature evolution is a time-domain
signal, since it is assumed the temperature is non-oscillating. In addition,
since the particular application is a sensor that can be used to measure a wide
variety of situations with a wide variety of temperature evolutions, no premade
assumptions or models can be made for the measured signal, meaning that
particular solutions such as nonlinear filters, which are optimal filters when
the evolution of the system producing the signal can be reliably modeled,
cannot be employed. Finally, filtering must be performed step-by step, which
means other methods for filtering, such as extracting the Fourier transform of
a series of data to identify patterns, cannot be employed either, since they
require the measurement of a certain event to be completed before it can be
identified and filtered. Because of this, P and PI controllers will have to be
compared to simple and universal time-domain filters, such as the moving
average, which, as will be shown below, is optimal for situations like the ones
investigated in this work.

The performance of the filter will be evaluated by two elements: the first
will be its step-response, which is extracted by modeling or measuring how the
filter responds to a simple step-like input signal. This response will provide
information about the speed of the filter, which will be defined as the number
of steps required to reach 95 % of the step value. Since the input signal is a
step function, the lower the number of steps required, the more the filter will
preserve the time domain signal. The second element will be the frequency
response: while by frequency-domain standards the response will generally be
poor (lacking a flat response at any point in the frequency spectrum), it will
provide information regarding the noise suppressing capabilities of the filter.
The frequency response can be obtained by calculating the transfer function
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of the filter, which is defined as the ratio between the filtered signal point and
the measured signal point it originated from. Since the noise is assumed to
be purely white gaussian (and thus equal in magnitude at all frequencies),
the integral of the transfer function will directly indicate the noise reduction
factor.

5.4 Moving average filter

The moving average filter produces each point in the filtered signal by averaging
a number of points from the measured signal. In equation form, for a measured
signal x[i], the filtered signal y[i] is defined by recursive implementation as:

y[i] = 1
N

N∑
j=0

x[i−N + 1 + j]

whereN is the number of points in the average. Different, equivalent definitions
exist, depending on whether y[i] is defined by the average of the last N points
before i (like above), the N points after i or around i. The only difference
between these definitions is an equal delay in all points. The moving average
filter can also be implemented as a kernel filter, where the kernel is 0 except
in N points that are equal to 1/N . In other words, the moving average is
the convolution of the signal with a rectangular pulse having a width of N
and area of 1.

Using figure 5.2 on the next page as a reference of how the moving average
filter works on a noisy step rise and descent, it is evident how the moving
average decreases the amplitude of the random noise while also reducing the
sharpness of the edges, increasing the number of steps required to reach 100 %
of the actual step value. As can be seen from the figures 5.2b on the following
page and 5.2c on the next page, increasing the number N of points taken
into account for the average increases the noise reduction factor while also
increasing the number of steps required to reach the step value, that is the
overall “speed” of the filter, and thus further reducing the sharpness of the
response. In particular, the noise reduction factor a moving average filter
provides is equal to the square-root of the number of points in the average,
while the response is equal to that value. For example, a 100 point moving
average filter reduces the noise by a factor of 10, and will reach the peak of
the step in 100 steps [91].

The moving average filter is optimal for reducing random white noise while
keeping the sharpest step response. To understand why this is the case, a
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Figure 5.2: Effect of moving average filters on a noisy square pulse. From [91].

sequence of time-domain data which must be passed through a filter with
a fixed speed and edge sharpness of N points can be assumed. This would
require the filter kernel to have non-zero values in exactly N points. It is
assumed that the signal is affected by purely random, uncorrelated noise, and
that the goal of the filter is simply to reduce the noise. In this situation,
since the noise is random, every point contains the same amounts of noise and
information. Because of this, giving a greater weight to a subsection of the N
points does not provide any benefit. On the contrary, it makes the final result
more dependant on the noise of a single data point. As a result, the highest
degree of noise suppression is obtained when the measured data points are all
given the same weight, which is achieved when the filter kernel corresponds
to the moving average.

By performing the Fourier transform on a rectangular pulse, it can be
shown that the transfer function for the moving average filter is

H (f) = sin (πfN)
N sin (πf)
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And the frequency response profile for different numbers of points is shown in
figure 5.3:

Figure 5.3: Frequency response for different moving averages. From [91].

As stated above, since the moving average filter is optimal for time domain
performance, it significantly distorts information in the frequency domain, as
can be noted by the fact that there is noin no region of the spectrum where the
frequency response is flat, and even in regions where it’s lower the suppression
is not as strong. Another information that can be extracted from the image
is that the greater the amount of points used for the moving average, the
greater the suppression is at higher frequencies.

5.5 P controller

5.5.1 Frequency response

As previously said, the P controller can be defined by the following recurrence
relation:

νn = νn−1 +KP (νmn − νn−1) = νmn + (1−KP ) νn−1
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Applying the z-transform, we obtain [108]:

N (z) = KPN
m (z) + (1−KP ) z−1N (z)

which becomes:

N (z)
[
1− (1−KP ) z−1

]
= KPN

m (z)

From this relation, the transfer function for P controllers can be extracted
[11]:

T (z) = N (z)
Nm (z) = KP

1− (1−KP ) z−1

The transfer function can be translated from the z-domain to the frequency
domain by performing the sostitution z = eiωTS , where i is the imaginary unit,
ω is the angular frequency and TS is the sampling period.

5.6 Step response

In order to model the response of the P and PI controllers to a step input
signal, it is useful to move the focus from measured and output signals, νmn
and νn , to the error function sequence that is fed to the controllers, that is
defined as En = νmn − νn−1.

In order to simulate the step function, it can be assumed that En is 0
before a certain event at step 0, where E0 = 1 and, from that point forward,
the error function will not change again due to causes outside of the controller
responding to the new value.

This is equivalent to a situation where νmn = 1 for every n > 0.
In this case, for every step the error sequence in a P controller will change

as:
En − En−1 = −KPEn−1

which can be rewritten as

En = (1−KP )En−1

And, knowing that E1 = 1 we have

En = (1−KP )n

which, knowing the definition of the error function, means that the step
response of the P controller follows the formula:

Vn = 1− (1−KP )n
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The number n of steps required to reach a certain percentage d of the step
can be extracted by having νn = d and solving for n.

d = 1− (1−KP )n =⇒ (1−KP )n = 1− d =⇒ n ln (1−KP ) = ln (1− d)

which brings n = ln (1− d)
ln (1−KP ) .

Inverting this relationship, it is also possible to obtain the KP parameter
needed to reach d proportion of the step maximum in n steps:

ln (1−KP ) = ln (1− d)
n

=⇒ 1−KP = exp
[

ln (1− d)
n

]
=⇒

=⇒ KP = 1− exp
[

(1− d)
n

]

5.7 PI controller

5.7.1 Frequency Response

PI controllers are defined by the following difference relation [12]:

νn = νn−1 +KP (νmn − νn−1) +KI

n∑
i=1

(νmi − νi−1) =

= KPν
m
n + (1−KP ) νn−1 +KI

n∑
i=1

(νmi − νi−1)

To extract the transfer function, the sum KI
∑n
i=1 (νmi − νi−1) can be

decomposed into KI (νmn − νn−1) +KI
∑n−1
i=1 (νmi − νi−1). This way, the differ-

ence relation becomes

νn = KPν
m
n + (1−KP ) νn−1 +KI (νmn − νn−1) +KI

n−1∑
i=1

(νmi − νi−1)

The last sum makes calculating a transfer function impossible, because
the number of terms would change with n. To solve this, we can use the same
difference relation for n− 1:

νn−1 = KPν
m
n−1 + (1−KP ) νn−2 +KI

n−1∑
i=1

(νmi − νi−1)

by rearranging the term we obtain:

KI

n−1∑
i=1

(νmi − νi−1) = νn−1 −KPν
m
n−1 − (1−KP ) νn−2
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which allows to rewrite the original recurrence relation as

νn = KPν
m
n +(1−KP ) νn−1+KI (νmn − νn−1)+νn−1−KPν

m
n−1−(1−KP ) νn−2

By separating the PI controller outputs νn and the frequencies correspond-
ing to measurements νmn , we have:

νn − (2−KP −KI) νn−1 + (1−KP ) νn−2 = (KP −KI) νmn −KPν
m
n−1

and performing the z-transform:

N (z)
[
1− (2−KP −KI) z−1 + (1−KP ) z−2

]
=

= Nm (z)
[
(KP +KI)−KP z

−1
]

from which the transfer function can be extracted:

T (z) = N (z)
Nm (z) = (KP +KI)−KP z

−1

1− (2−KP −KI) z−1 + (1−KP ) z−2

5.7.2 Step Response

In appendix A on page 131 it is proven that the error function for a step
increase follows two possible progressions:

• An oscillating form with amplitude (1−KP )
n
2 when 2−KP−

√
4− 4KP <

KI < 2−KP +
√

4− 4KP

• A non-oscillating form expressed as

En = 1
2

1 + KP +KI√
K2
P + 2KPKI +K2

I − 4KI

 ·
·

2−KP −KI +
√
K2
P + 2KPKI +K2

I − 4KI

2

n +

+ 1
2

1− KP +KI√
K2
P + 2KPKI +K2

I − 4KI

 ·
·

2−KP −KI −
√
K2
P + 2KPKI +K2

I − 4KI

2

n

When either

KI < 2−KP −
√

4− 4KP or KI > 2−KP +
√

4− 4KP
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Through the proof, always shown in appendix A on page 131, it is possible
to see that the PI controller will generally reach 95 % of the step response
more slowly than a P controller with the same KP , while also having less
noise suppression due to the presence of the integral component in addition
with the proportional one.

Visually, the reason for this can be found in the overshoot linked with
the step change: right after the sudden increase of the real value, the error
of the PI controller will be positive for the first number of steps, increasing
the cumulative error that is multiplied by KI . When the PI controller output
reaches the value of the increase, the error sum will still be positive, and
will keep on increasing the output, creating the overshoot. It can be said
that the integral component in PI and PID controllers adds an inertia in the
response of the controller. In [108], the issue of the overshoot was found to be
less prominent in situation where the temperature followed a slow ramping
process. While this is a very common situation, due to the gradual way heat
spreads through objects, it cannot be assumed to always apply. In section 5.9
on page 93 a variant of the PI controller will be proposed that significantly
reduces the overshoot.

5.8 Comparison between P controllers and moving average

With the transfer function and the response speed for the P controller, it is
possible to compare its performance to the one of the moving average.

To do so, a specific speed value is chosen, which in this case is the number
n of steps required to reach 95 % of the maximum step response. Using this
value, the corresponding KP parameter is calculated and the resulting P
controller is compared to a moving average with n points in the window.

The four figures 5.4 on the following page show the comparison between
the frequency responses of P controllers and moving averages for speeds of
10, 25, 50 and 100 steps respectively (corresponding to KP values of 0.2589,
0.1129, 0.0582 and 0.0295 respectively).

The x-axis in the graphs are in unit of frequency normalized with respect
to the highest sampling frequency which, by the Nyquist theorem, is equal to
1 / (2TS).

The frequency spectrum for white noise is constant for all frequencies,
and every frequency component of the filtered noise will be multiplied by
the transfer function at the corresponding frequency. As a result, the total
amplitude of the filtered noises going to be determined solely by the integral
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Figure 5.4: Frequency responses of moving average filters and P controllers with an
equally fast step response.

of the transfer function, and the noise reduction can be calculated as:

NR = 1√∫ 1

0
|H (νnorm)|2 dνnorm

where νnorm is the normalized frequency. The resulting noise reduction factors
for the P controllers and moving averages described in figure 5.5 on the next
page as a function of the number of steps required to reach 95 % of the step is
shown in figure 5.5 on the facing page.

What can be seen from this result is that both filters follow the same
relationship between speed and noise suppression: in order to increase the
noise suppression of either filter by a factor of X it is necessary to reduce the
speed by a factor of X2. In addition, at equal speed the moving average has
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Figure 5.5: Noise reduction factors for the P controllers and moving averages.

a noise reduction factor that is always 22 % higher than the P controller.
Because of this, compared to suppressing noise by employing a P controller

with KP lower than 1, employing a P controller with KP = 1 and then
filtering its output with a moving average filter is more efficient in terms
of noise suppression. It is to note that this solution will require to keep in
memory a number of measured points equal to the size of the moving average
window, while the P controller only requires the last output. While this
will usually not be an issue in most applications, in situations where only a
limited memory storage capacity is available paired with very large averaging
windows or very long sensing fibers might require this aspect to be taken in
consideration.

5.9 Windowed PI controller

A possible way to reduce the overshoot is to limit the error values that are
added in the sum to only the last M , where M is a preselected flat amount.
Because only a specific window of errors is considered, this variant of PI
controllers will be called windowed PI.

In this situation, the response is

νn = νn−1 +KP (νmn − νn−1) +KI

n∑
i=n−M

(νmn − νn−1)
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Figure 5.6 shows an example of a comparison between the responses of a
PI controller with KP = 1/128, KI = KP/1000 (a) and a windowed PI with
KP = 1/128, KI = KP/100,M = 100 (b) . As can be seen, the windowed PI
better follows the ramp while also having a much smaller overshoot.

To evaluate the noise reduction factor, the transfer function can be ex-
tracted from the response as follows:

H (z) =
KP +KI +

M∑
i=1

KIz
−1

1 + (1−KP +KI) z−1 +
M∑
i=1

KIz
−1

Through this transfer function, it is possible to extract the frequency
response and compare it to the moving average. As an example, in figure 5.7 on
the facing page a comparison between a windowed PI with KP = 1/120, KI =
KP/100 and M = 100 and a moving average of 131 steps is shown. These two
parameters combinations were chosen because the windowed PI reaches 95 %
of the step response in 131 steps.

(a) PI controller: KP = 1/128, KI =
KP /1000.

(b) Windowed PI controller: KP =
1/128,KI = KP /100,M = 100.

Figure 5.6: Comparison betwen the response of a PI controller and a windowed PI
one.

5.10 Result of the comparison

As a conclusion, it can be seen that of all the filters here considered, the most
efficient in terms of speed and noise suppression for a signal with time-domain
encoded information with no knwon shape and which must be filtered in real
time is the moving average.
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(a) Linear scale.

(b) Logarithmic Scale.

Figure 5.7: Frequency response for the windowed PI and moving average.
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As was already said, this should not come as a surprise, since when the
only source of noise is random (such as white noise) the most efficient way to
make a weighted sum of N points to reduce it is to assign the same weight to
every point.

In the context of the closed loop BOTDA sensor, this means that, instead
of using a P or PI controller with KP , KI < 0, the best solution is to use a P
controller with KP = 1 for the sole purpose of tracking the changes in BFS,
and filter its output with a moving average filter to reduce the noise.

The noise reduction factors for the moving average and the windowed
PI, which were calculated from the transfer functions shown in figure 5.7 on
the previous page are 11.4 and 11.6 respectively, showing that the windowed
PI is very close to the moving average in terms of response speed and noise
reduction factors (the moving average is still slightly faster, since it reaches
100 % of the response in 131 steps instead of 95 %, but the difference is still
small).

5.11 Outperforming the moving average

While the moving average is optimal for linear filters (that is, filters that can
be described with a transfer function) and simple recursive filters, it is not
necessarily the optimal method in general.

Other more complex filters, known as nonlinear filters, are known to be
capable of escluding different forms of noise by employing different methods
to predict the state the system they are describing is at each step depending
on the present and past measurements [1, 31, 90, 103].

In particular, the Kalman filter is is a nonlinear filter that is used for
removing white noise from a measurement of a system in order to estimate
a certain related quantity (defined as “state” of the system) [19]. For more
examples see [45, 52, 75, 107].

The way this filter operates through a process of prediction of the evolution
of the state of the system given the state at the previous measurement step,
and confronting it with the actual measurement [105]. The output of the
filter is a weighted average between the predicted state and the measured one,
where measurements with a smaller uncertainty are weighted more, and the
result has a smaller estimation error than either the predicted or the measured
state.

It can be shown that, when the model of the system and the measure-
ment errors are known, Kalman filters provide optimal estimation and noise
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suppression. See [6, 44, 46, 104] for further examples.
In the situation presented in this work, the application of such a filter

is impossible, since the evolution of the relevant quantity (for example, the
temperature) depends on the system that is measured, which cannot be
determined in advance, and thus there is no way, given the state of the
temperature/strain at a given step, to predict the next one.

One thing that is true if not for all, for at least many of the systems that
might be measured by BOTDA sensors, on the other hand, is that they can
evolve from two stationary states through a dynamic process. In this situation,
the monitored value (for example the temperature), starts at a certain level
that remains more or less unchanged for a certain period of time until an
event causes it to change and reach a new equilibrium at a different level.
During the periods where the monitored value is constant, there is no dynamic
process to preserve by employing a filter with a limited noise suppression to
reduce signal distortion. As a result, a filter with a higher noise suppression
level could be used to better characterize the equilibrium, without the risk of
distorting the signal.

As a result, one could implement a method that employs a faster filter
(as efficient as the moving average) when the signal indicates that there is
a dynamic change in process, and a slower filter when the signal indicates a
static equilibrium. This method would thus have a speed equal or at least
close to the moving average, while providing higher noise reduction in the
stationary phases of the measurement, all while relying only on real-time and
past data.

In order to do so, the following components are required:

• First, a way to reliably identify the different states of the system through
the observed data, while also being able to distinguish between actual
changes and variations due to noise.

• Second, two different filters to be employed for the dynamic and static
state of the system.

• Third, a way to transition between the two filters which doesn’t increase
the instability of the measurement and requires a limited number of
steps.
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5.11.1 Identifying dynamic and stationary states

The only element that can be monitored to detect any changes from dynamic
to stationary is the measured data itself. In general, an ideal method of
identification should:

• Minimize the delay between the moment the change of state occurs and
when the method recognizes it.

• Prevent the risk of falsely recognizing a change of state due to noise.

Of course, due to the presence of noise, simple metrics such as the
step-by-step difference of the values or their derivative are not reliable enough
to be used, since the step-by-step variation of the signal might be significantly
smaller than the noise. This becomes more and more true the fastest the
sampling rate for the measurement is. To give an example for why this is the
case, a measurement on a system whose temperature climbs by 10 ◦C at a
constant rate over the course of 100 s can be imagined. If the sampling rate
is one measurement every 1 s, the step-by-step increase is going to be equal
to 0.1 ◦C. On the other hand, if the sampling rate is one measurement every
10ms, the step-by-step increase is going to be equal to 0.001 ◦C. As a result,
by a step-by-step point of view the temperature ramp for a measurement
that is 100 times faster is also going to be 100 times less steep. At the same
time, the noise will remain constant, because it depends on the point-by-point
measurement. Because of this, faster measurement times as a general rule will
require more steps to distinguish between a changing temperature or strain
and noise.

An example of a detection method to move from a stationary to a dynamic
state is the following:

1. The signal data is filtered by both a slow and fast filter (which will be
discussed below), whose characteristics have to be defined depending on
the application and the desired speed or noise suppression.

2. The standard deviation of the last X steps (where X is a parameter
that is defined depending on the noise and response speed requirement)
of the output for the faster signal, which is going to be named STD[i],
is calculated.

3. STD[i] is compared to the mean of the same STD sequence calculated
on a previous measurement made when the system was stable (constant
temperature/strain), which will be called STDflat.
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4. If the system is in a static state, and the absolute value of the difference
between STD[i] and the mean of STDflat (STDflat) is greater than a
certain threshold, is considered as a sign the signal is changing due to
a source outside of noise and is considered in a dynamic phase. The
threshold can be chosen depending on how sensitive the final filter is
required to be. For instance, the threshold could be chosen to be equal to
four times the standard deviation of the STDflat sequence (σ (STDflat))
in order to exclude any false positive due to noise.

5. If the system is in a dynamic state, to check if it is transitioning to a
static state the following conditions are controlled:

• The absolute value of the difference between STD[i] and STDflat is
lower than a certain threshold, for instance lower than σ(STDflat)

• The absolute difference between the output of the fast and slow
filter is greater than 4 times σ(STDflat). This can be needed to
make sure random fluctuations don’t cause a shift to static state
before the dynamic change of the system has actually finished.

5.11.2 Transition between the two filters of choice

When a change between a steady and dynamic state is detected, a series of
decision must be taken in order to translate this change into a change in filter
behavior. As has been stated, the basic idea is to employ a faster filter for the
dynamic state and a slower one for the steady state, but in order to allow for
the smoothest and quickest transition further consideration must be given.

When the transition is from a static to a dynamic state, for instance, a
slight difference between the output of the slow-response filter and the fast
response one can be expected. In this situation, two options are possible:
either have two filters that work in parallel and select the output of either one
depending on the state or use a single one whose parameters will change with
the state. The first approach will cause the final output to be discontinuous
whenever there is a shift from static to dynamic state, but at the same time
when this happens the output will be closer to the real signal, while the second
approach will yield a smoother but slower response.

When the transition is from a dynamic to a static state, the difference
between the slower and faster filter will usually be significant, requiring a
transition period between the two. In this situation, the employment of P
controllers actually offers an advantage: since the output of a P controller
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only depends on its last input, when there is a transition from a dynamic to a
stationary state it can be “brought up to speed” by assigning its output value
right before the transition to be equal to the one of the faster filter. For the
moving average filter, a longer transition period might be needed.

5.11.3 Choice of the filters

As stated above, a faster and slower filter are required to be employed for the
dynamic and static states respectively, but can also be useful to determine
the state in the first place. The filters used for the latter task can be the
same or another set of filters, although the latter case inevitably increases the
complexity of the method.

5.12 Practical example

Here is detailed a specific example implementation of the principles described
above, for a filter designed to provide a strong (∼ 15) noise reduction factor
and variations with an amplitude equal to the standard deviation of the white
noise (10 arbitrary units) with ramps with a steepness of 0.1 arbitrary units
per step (so a step-by-step increase 100 times smaller than the noise).

The system is composed of three different filters, all filtering the input
signal in parallel:

• The first is a P controller with KP = 1/128, which will act as the “slow”
filter.

• The second is a window PI controller with a window of 100 steps and
KP = 1/128 and KI = KP/100, which will act as the "fast" filter.

• The third is a filter with a variable behavior: when the state is stationary,
it behaves like the first filter, while when the sate is dynamic, it behaves
like the second one.

The first two filters are used to determine the state of the measurement, while
the third one is the output of the method.

The control for the state of the measurement is performed as follows:

• The initial state of the system is considered to be static.

• A sequence of 4000 points where the state is static is pre-computed, the
sequence STDflat is extracted as explained below, where the standard
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deviation is computed over the last 10 points of the output of the fast
filter (windowed PI controller). STDflat and σ(STDflat) are extracted
from the sequence.

• The sequence STD[i] is computed similarly to STDflat.

• If the state is static, and the average of the last 50 points of the
STD[i] sequence is greater than STDflat + 4σ(STDflat), then the state
is considered to have shifted from stationary to dynamic.

• If the state is dynamic, the average of the last 50 points of the STD[i]
sequence is lower than STDflat + σ(STDflat) and the absolute difference
between the fast and slow filter output is more than 4σ(STDflat), the
state is considered to have shifted from dynamic to stationary.

As said above, the output comes from the variable filter. When there is a
state transition, the following operation are performed on it:

• In the case of a transition from static to dynamic, its parameters change
from KP = 1/128 and KI = 0 to KP = 1/128 and KI = KP/100

• In the case of a transition from dynamic to static, the output of the
next step is equal to the average of the last 50 outputs and for the
following steps (where it’s assumed the system was already static) and
the parameters are changed back to KP = 1/128 and KI = 0.

In order to test the performance of this filter, a noisy output was generated
from a fixed sequence with a varying signal, corresponding of a step increase,
a 800 steps stationary period, a 100 steps long ramp decrease, another 600
steps stationary period and a sinusoidal final section with a period of 100
steps. The fixed sequence and the noisy signal trace are shown in figure 5.8
on the following page.

Its performance is compared to a 132 step moving average filter. The
number of steps was chosen to make its response equal to the one of the
windowed PI filter when its parameters correspond to the dynamic state.

Since the noise suppression levels are step dependant, in order to calculate
them the simulations was repeated 1000 times. Each time a new noisy profile
was generated from the same target curve and was filtered by both the moving
average and the proposed filter. The outputs of both the moving average
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(a) Fixed sequence. (b) Noisy signal trace.

Figure 5.8: Fixed sequence and noisy signal trace.

and the implemented method were recorded for each step, and the standard
deviation for every step was calculated. In figure 5.9a a comparison between
the output of the proposed method (green) and the moving average (black)
is shown, while in figure 5.9b a comparison between the standard deviation
profiles of the proposed method (green) and the moving average (black) is
displayed.

(a) Filtered output. (b) Noise levels (original noise level =
10).

Figure 5.9: Comparison between the adaptive filter (green) and the moving average
(black) compared to the target.

As can be seen from figure 5.9a, the proposed method is as fast as the
moving average, while being closer to the target in the stationary phases. This
is more evident looking at figure 5.9b, where the noise standard deviation for
the moving average and the filter in the dynamic phase is roughly equal to
0.9 (for a noise suppression factor of 11), while it is equal to roughly 0.62 in
the static phase for the proposed method, for a noise suppression of 16. This
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increase in noise suppression for the stationary phase is counterbalanced by a
brief spike in the noise corresponding to transitions between states, reaching
up to 1.1, equivalent to a noise suppression of 9. This is caused by the fact that
every time the simulated measurement is repeated the transitions will happen
at slightly different steps due to the high noise. This can be seen by the
fact the “spikes” are seen corresponding to the ramp or the sine section, but
not corresponding to the step, where the step-by-step variation is significant
enough to always cause a state transition. Because of this, these spikes might
not reflect an increased noisiness of the filter in the actual measurement, but
simply the uncertainty linked with the slight variability of the number of steps
required for the adaptive method to "detect" the state transition for gradual
signals in the presence of heavy noise.

From these results it can be seen how the proposed method has the
potential to provide significant performance improvements compared to the
moving average whenever is applied to a signal with an alternance between
static and dynamic parts, where it’s important to accurately pinpoint the
equilibrium values while also being able to describe the dynamic evolution
of the system. It is also to note that the one here presented is only one of
the possible ways the constituting elements of this method (identification of
the states, transition between states and filter set) can be implemented, and
other versions might display an even better or more reliable performance.

The contribution of the author to the work presented in this chapter consists
of the entirety of the theoretical analysis and simulation that expanded the
work done in [108], including the design and development of the adaptive filter
method.





6

Experimental implementation of the Closed Loop
BOTDA

6.1 Experimental setup

The closed-circuit BOTDA configuration is mostly similar to a standard
optical sideband BOTDA in terms of the optical components, and is set to
work in a Brillouin loss configuration. The most significant differences are
in the electronic components used to generate the probe signals, the data
acquisition setup and the timing between the different components. This last
element is of particular importance and will require special attention in order
for the closed loop control to work.

The setup implemented to evaluate the closed-circuit sensing method is
shown in figure 6.1 on the next page.

6.1.1 Light Source

The light for both pump and probe branch is generated by a distributed
feedback (DFB), which outputs light in the 1500 nm wavelength range with
an intensity of 15.64 dBm. To obtain the pump and probe branches, this light
is inserted into a 50/50 optical directional coupler (DC1) to provide both the
pump and probe lightwaves.

6.1.2 Pump branch

In the pump branch, an attenuator (ATT) is first used to reduce the intensity of
the DFB light below 0 dBm, so that it can be injected into the Semiconductor
Optical Amplifier (SOA), an optical amplifier based on carrier recombination
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in semiconductors, similar in concept to a laser diode whose end reflectors
have been removed. As a result, the incoming light is suppressed unless a
current is fed into the SOA, in which case it acts as an amplifier. By feeding
it a pulsed electrical signal (produced by an Agilent 33250A 80MHz arbitrary
waveform generator), the pump light is shaped into a 20 ns optical pulse,
corresponding to a 2m spatial resolution.

Figure 6.1: Experimental setup.

The pulsed pump is then fed into an Erbium Doped Fiber Amplifier
(EDFA), in which the light is amplified through stimulated emission by being
injected through an optically pumped rare-earth doped fiber. Out of the
amplifier, the intensity of the light pulses is equal to 15 dBm.

The efficiency of the Stimulated Brillouin Scattering depends on the
alignment of the polarizations of pump and probe lights, being maximized
when they are aligned and minimized when they are opposite. Since the
polarizations are subject to random changes as they travel along the fibers
due to birefringence, this can cause random fluctuations in the Brillouin
amplification. To solve this, a Polarization Scrambler (PS) is used to randomize
the polarization of the pump signal, so that along the entire fiber the efficiency
of the amplification due to polarization is always constant, because it is
averaged over all the possible polarization values.

An optical circulator, which allows passage of light from exit 1 to exit 2
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and from exit 2 to exit 3 is used to insert the pulsed pump light into the
sensing fiber (exit 1 and 2 of OC1). Before the insertion, a variable attenuator
is used to suppress self-phase modulation effects in the sensing fiber.

6.1.3 Probe branch

In the probe branch, as in other OSB layouts, the light is shifted to the
probe wavelength with a Mach-Zender Modulator (MZM, model Photline
MXER-LN-10), which transfers power from the the laser frequency νDFB to
two sidebands separated from the original one by the modulation frequency.
Since the action of the modulator on the light is polarization dependant,
a polarization controller (PC) is inserted before it to align the incoming
light frequency and maximize the power transfer. Since the frequency will
shift overtime, part of the MZM output is coupled out with a 95% / 5%
coupler (DC2) and fed into an Optical Spectrum Analyzer, where the power
distribution to the sideband can be monitored continuously.

The electrical signal driving the EOM is obtained by mixing the frequency
of a microwave generator (RF in figure 6.1 on the facing page) emitting at
frequency ν1 at around 10GHz and an arbitrary waveform generator (AWG,
model Tektronix WX 2181C), which will provide the varying frequencies in a
range between 150 and 250MHz. The spectrum of the wave sent to the MZM
is shown in figure 6.2a while the spectrum of the resulting probe light sent
into the fiber is shown in figure 6.2b.

(a) Bands of the signal sent to the MZM (in
blue).

(b) Bands of the modulated probe (in blue).

Figure 6.2: Sidebands for the MZM driving signal and the probe.
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6.1.4 Filtering and output

The probe light, after entering the FUT and being amplified by the pump,
moves through exits 2 and 3 of coupler OC1 and is then reflected by the
Fiber Bragg Grating (FBG in figure 6.1 on page 106), which has a bandwidth
of 6GHz and reflects only the frequencies of the upper set of sidebands
νDFB+(ν1±ν2), which are then detected by a 75MHz bandwidth photodetector
(PD). It is to note that due to the necessity of employing a mix of two different
frequencies for the modulator, the light reaching the photodetector is composed
of two different bands, with only one of those experiencing Brillouin loss, thus
reducing the effective signal-to-noise ratio by half. The low bandwidth of the
photodetector is also important because the bands will be separated by a
frequency difference of around 300− 400MHz (twice the frequency emitted by
the AWG), and thus if the photodetector had a higher bandwidth the beating
between the two signals would be attenuated by the photodetector and would
disturb the measurement.

The voltage signal from the PD is read and digitized by an Agilent Acqiris
DAQ card, wich is set with a sampling rate of one measurement every 20 ns,
which is equal to the temporal length of every segment. This way, it will be
possible to make every point of the trace correspond to a frequency point,
which will simplify calculations.

6.1.5 Arbitrary Waveform Generator Output and control

As shown in chapter 4, the AWG signal is temporally segmented into at least
N sine wave segments of varying frequencies, corresponding to N segments
of equal length ∆z, which is the spatial resolution, along the fiber of length
L. The duration of each segment is equal to 2ng∆z / c, where c / ng is the
group velocity. Since the spatial resolution is chosen to be 2m, the length of
each impulse is 20 ns. During the measurement process, the n-th frequency
segment will start at a frequency νop(n) = νB(n)−∆νB(n)/2−ν1 where νB(n)
and ∆νB(n) are the Brillouin frequency shift and the Brillouin gain spectrum
FWHM at the correspondin n-th fiber segment, which are obtained through
conventional BOTDA sensing. With these frequencies, the pump-probe fre-
quency shift will be equal to νB(n) −∆νB(n)/2 which for every segment n
will return half the Brillouin gain gB(n) / 2.
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6.1.6 Data Normalization

It is a known fact that the intensity of the light exiting Mach-Zender mod-
ulators also depends on the modulation frequency. As a consequence, while
in normal BOTDA every point in the time trace is normalized compared to
an area where no amplification is present, in CC-BOTDA this is no longer
possible, because every point in the trace will have a dfferent modulation fre-
quency. To solve this, for every measurement the AWG repeats the frequency
sequence that defines the segmented probe twice: once with the pump pulse
crossing the fiber and once with no other light. This way, a probe trace with
amplification and one without are obtained, and the gain is calculated by
comparing the corresponding points in the two traces, which were produced
by two probe segments which were modulated at the same MZM frequency.

In practical terms, if the frequency sequence has N elements, the trace
read from the DAQ will have 2N points. If the trace sequence is trace(n), the
desired gain sequence gain(n) is calculated as:

gain (n) = trace (n+N)− trace (n)
trace (n+N)

Where trace(n) is the trace during the first repetition of the frequency
sequence, when the pump amplification was present, and trace(n+N) is the
second repetition, with no amplification present.

6.1.7 Timing

In normal BOTDA sensor layouts the probe wave is homogeneous in time,
but in this situation this is not the case, and timing becomes essential for the
proper fucntioning of the closed-loop measurement. First of all, in order to
properly sinchronize the process, the Sync out exit of the AWG (which emits
a positive voltage pulse when a new arbitrary sequence begins) is connected to
the trigger of the pump pulse generator, which in turns triggers the acquisition
card. This way, every measurement starts when a pump pulse is emitted
and a probe wave sequence begins. In order for the pump to correctly meet
every point in the sequence, it must reach the first segment of the probe when
this has reached the end of the fiber, which requires an approriate delay to
be added between the time the pulse generator receives the trigger and the
moment the trigger is sent.

In addition, once the delay for the optical pump is properly set, the points
from the trace must be correctly mapped to the points of the frequency
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sequence. If this is not the case, it will result in the closed loop trying to
maintain the gain on a fiber segment based on the gain measurement of
another segment, causing the closed loop measurement to fail.

An effective way to ensure these last two conditions are obtained is to use
a modified frequency sequence for the AWG, which is equal to the starting
one except the first and last frequencies are increased by ∆νB(n)/2 , so that
corresponding to those frequency segments the pump-probe shift will be equal
to νB(n) and will cause the maximum Brillouin gain to be measured.

Figure 6.3: Gain measurement when the pump delay is insufficient.

Figures 6.3, 6.4 on the next page, 6.5 on page 112 show how different pump
delays affect the measured gain traces from an example 4-point frequency
sequence where the first and fourth segments have been increased to νB (it is
assumed that all points of the fiber have all the same brillouin gain spectrum).
When the pump delay is too short (figure 6.3), the pump will meet the first
segment of the probe after entering the fiber, and will leave it before the last
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segment has entered it. As a result, in the gain trace only the gain increase
linked to the first segment will be detected, while the second one will not be
visible. On the other hand, when the pump delay is too long (figure 6.4), the
first segment of the probe will leave the fiber before the pump pulse enters
it and as a result the the gain increase from the first segment will not be
detected, while the one from the forth segment will.

When the delay is correct (figure 6.5 on the next page), both gain increases
are visible, and by checking in which position in the trace they appear it is
possible to detect the points of the trace corresponding to the first and last
points of the sequence.

Figure 6.4: Gain measurement when the pump delay is excessive.

6.1.8 Control program

The diagram of every cycle of the control program, which was implemented
in LabView 2016, is shown in figure 6.6 on the following page.
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Figure 6.5: Gain measurement with correct pump delay.

Figure 6.6: Diagram of the control programy.
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First, the frequency sequence is used to create the probe wave as a series
of sine segments of equal length, which is then uploaded to the AWG as
an arbitrary waveform. To provide a smooth transition, the phase of every
new sine segment is chosen so that it matches the previous one. The AWG
sampling rate is 2Gsa/s and every segment is 20 ns long, so every segment
will be defined by 40 points and the entire sequence will be 40N samples long.

After this is done, the DAQ is activated and the intensity trace, which is
twice as long as the frequency sequence, is read. Due to the inherent noisiness
of BOTDA traces, this trace has to be averaged multiple times in order to be
usable. In this work, traces are averaged 512 times.

The gain profile is then obtained by the trace as explained above: the first
N points are normalized using the point N positions ahead.

For every point, the gain value is then subtracted to the reference gain
to obtain the error, which is then passed to the PI controller. As shown in
the previous chapter, this controller can either simply be a non-filtering P
controller with KP = 1 whose output will be fed to a digital filter or a PI
controller with KP , KI < 1. As part of the controlling process, the output of
the controller for every point is then normalized, compared to the reference
gain and converted into the corresponding frequency change, by dividing it
by η, which is the slope of the linear region of the BGS. Once this is done,
the frequency changes are used to update the frequency sequence for the next
cycle.

In addition, since the coefficient η can be excluded from the definition of
PID parameters, the KP values that in chapter 4 were defined as 1/η, 1/4η
and 1/16η, are equivalent to 1, 1/4 and 1/16 and from now on will be defined
this way.

6.2 Experimental results

6.2.1 Measurement Time

In [108], the measurement time was 1.7 seconds, because of a series of issues:
due to the way the AWG works, the arbitary waveform has to first be de-
termined point-by-point and then uploaded to the generator. As said above,
the amount of points that make the arbitrary waveform is equal to 40N and,
when the spatial resolution is 2 meters and the length of the fiber is several
kms long, it can amount to hundreds of thousands of points. In addition,
the data was transferred through a GPIB, which is significantly slower than
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other connection methods such as USB ports. Using the LabView internal
measuring method, this process for a 10 km fiber was seen to require around 2
seconds with a GPIB connection and 600ms with a USB connection. Finally,
the DAQ does not have an averaging functionality, which means that in order
to perform the 512 averages to reduce noise the DAQ must be activated and
read 512 times. Using the LabView internal measuring method, this process
was seen to require around 200ms. From these measurements it can be seen
that for long sensing fiber lengths the greatest limit for the measurement time
is the upload time required to create the arbitrary waveform.

In the experiment presented in this work, a ∼ 950m-long spool of SMF-28
fiber (corresponding to 475 segments) was employed to showcase faster dy-
namical measurements. It is to note that, while shorter, this fiber is still one
order of magnitude longer than other fibers used for showcasing high-speed
measurements.

In these conditions, the time required to extract the measurement from
the DAQ becomes the dominant component. In particular, uploading the
arbitrary waveform to the AWG required around 60ms while the time required
to measure the averaged trace was around 150ms, for a final measurement
time of roughly 210ms. This time can further be decreased by reducing the
number of averages to 128 and increasing the length of the measurement by 4
times, so that instead of acquiring a single measuring event, 4 are acquired
and averaged together. While the time for each single DAQ meauserement is
increased, the lower number of averages means that the DAQ must be accessed
less times, reducing the total time required for the DAQ measurements to
roughly 100ms, for a total measurement time of 160ms.

This time could be further reduced with two hardware improvements.
One way to do so is to use an AWG which can emit arbitrary waveforms in
sequence mode: in this mode, instead of loading the arbitrary waveform point
by point into the AWG, the output is assembled by a pre-loaded index of
wave segments (which in this case would be a series of sine wave segments at
all the possible frequencies in the expected range). This way, at every step
the only data to be sent to the AWG would be equal to a single number per
fiber segment, representing the position of the index for the corresponding
frequency.

Another way to reduce the measurement time would be to employ a DAQ
which can autonomosly calculate averages, so that the computer only has to
interrogate it once to obtain the averaged trace.
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Figure 6.7: BGS distribution along the fiber.

6.2.2 Conventional BOTDA measurement

To determine νB(n) and ∆νB(n) distribution, alongside the slope η, conven-
tional BOTDA measurements were performed. To maintain the situation as
similar as possible to the closed loop, the setup used was the same, but the
AWG was set to run a continuous sine wave with a 10 dBm power and 200MHz
frequency. The pump-probe shift was scanned by changing the microwave
generator frequency from 10.4 to 10.7GHz, with a 0.1MHz step. Every time
trace was averaged 2048 times, and was normalized with the last thousand
points of the trace, where Brillouin amplification was not present. The results
are shown in figure 6.7 and 6.8 on the following page.

The parameters for the Brillouin Frequency Shift are extracted by per-
forming a least-squares Lorentzian curve fitting on the gain data as a function
of the frequency shift for every point in the fiber. An example of the spectra
and the fitting is shown in figure 6.9 on page 117, while the BFS distribution
is shown in figure 6.10 on page 117, alongside the BFS distribution. The full
width at half maximum of the BGS was found to be homogenous and equal
to 60 MHz for all points of the fiber.

To estimate the ratio η between the normalized gain variation and the fre-
quency shift, a linear fit was performed on the region of every BGS comprising
the point closest to the value νB − ∆νB

2 and the 100 points before and after it.
To make it compatible with the program, all gain values were normalized by
dividing them by the gain value of the central point. An example of the fit is
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Figure 6.8: BGS distribution along the fiber (view from above).

shown in figure 6.11 on page 118. The coefficient was estimated to be equal
to 0.040± 0.002.

The reference gain was obtained by measuring the gain of the fiber at the
starting frequency values.

6.3 Dynamic Temperature measurements

To test the temperature measurement system, a hotspot at the beginning of
the fiber was immerged in a thermic bath, whose temperature was controlled
by a LAUDA RM6 thermostat.

First, the sensor was used to track a step-like increase by heating the water
up to 35 ◦C, from a starting room temperature of 22 ◦C. Once the heating
was complete, the measurement process started and during it the hotspot
was dropped into the water. Since the hotspot had to be physically moved
every time, there was no guarantee the strain conditions were the same for
every single experiment, so the conversion between set frequency change and
temperature was done by ensuring every tracking measurement included a
few points before the hotspot was submerged (when it was stable at 22 ◦C)
and after it was submerged (when it was 35 ◦C) and using these two sets as
references to convert the rest. The results using the KP and KI values from
[108] are shown in figure 6.12 on page 119.

In terms of the shape of the measurement, the results are similar to the
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Figure 6.9: Example of a BGS (blue) with a Lorentzian fit (red) at the beginning of
the fiber.

Figure 6.10: BFS distribution along the fiber.

ones in [108]: with lower KP the system takes more steps to track the real
step increase value with the advantage of reduced noise. In addition, the last
three cases, where there was a KI value greater than 0, all show a degree of
overshoot positively correlated with KI .

The frequency noise was estimated by measuring the standard deviation
of a sample in a flat zone of the trace. For the step measurement, the zone
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Figure 6.11: Example of the linear fit performed to determine η.

after the step increase was chosen. This was for two reasons: first, the
starting frequency set that was obtained from the measurement above is
not guaranteed to be the actual stationary state of the fibre hotspot, since
moving the hotspot inevitably changes the fiber’s BFS distribution due to
changes in strain and second, as can be seen for the figures, the measurements
required a settling time to reach the frequency shift corresponding to the real
temperature. Second, while inside the water the hotspot is less subject to
temperature fluctuations and physical vibrations.

The noise measurements show values of 0.77 ◦C for KP = 1, 0.25 ◦C for
KP = 1/4 and 0.13 ◦C for KP = 1/16. In the previous chapter, a square
root relation was derived between speed and noise suppression, and also the
number of steps required to reach 95 % percent of the step value as a function
of KP was:

NSTEPS = ln 0.05
ln (1−KP )

which translates to a speed of a single step for KP = 1, 10 steps for
KP = 1/4, and 46 steps for KP = 1/16. Looking at the results for P
controllers, 95% of the step increase is reached after 18, 30 and 63 respectively.
These values are all greater than the expected ones by an amount equal to
18 − 20 steps. Due to the speed of the measurements, this delay is equal
to ∼ 3s in terms of time, which is probably the settling time required for
the hotspot to be completely submerged and reaching the temperature of
the thermal bath. Because of this, the tracking speed is considered to be
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(a) KP = 1. (b) KP = 1/4.

(c) KP = 1/16. (d) KP = 1/16KI = KP /50.

(e) KP = 1/16KI = KP /100. (f) KP = 1/16KI = KP /200.

Figure 6.12: Temperature step increase measurements results.
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(a) KP = 1. (b) KP = 1/4.

(c) KP = 1/16. (d) KP = 1/16KI = KP /50.

(e) KP = 1/16KI = KP /100. (f) KP = 1/16KI = KP /200.

Figure 6.13: Temperature ramp increase measurements results.
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compatible with expected results. The measured noise reduction obtained
by reducing the P component from KP = 1 to KP = 1/4, which is 10 times
slower, is 3.08, close to the square root of 10 (3.16), and the one obtained
by going from KP = 1/4 to KP = 1/16, which is 4.6 times slower, is 2.02,
which is also close to the square root of 4.6 (2.14), proving the reliability of
the conclusion shown in the previous chapter.

For the PI controller measurements, the measured noise value was 0.18 ◦C
for KP = 1/16 and KI = KP/50, 0.15 ◦C for KP = 1/16 and KI = KP/100
and 0.14 ◦C for KP = 1/16 and KI = KP/200, which are compatible with the
notion that the noise suppression is increased by an increased KI parameter.
It is to note that the step measurements with PI controllers have the issue of
having increased settling times due to the overshoot, which reduce the number
of steps that can be used to compute the noise. In addition, small temperature
fluctuations can occur during the measurement that can be confused as noise.
To correct this, they were manually identified and removed from the sample
used to calculate the noise.

Figure 6.14: Output comparison between the adaptive filter and P controller with
KP = 1/16.

Similarly to [108], tracking experiments with a continuously climbing
temperature were also performed. In these measurements, the hotspot always
remained in the water. At the beginning of the measurement, the thermostat
was set to 22 ◦C, and after ∼ 150 steps the thermostat was set to increase the
temperature to 35 ◦C through a mostly linear ramp. The results are shown in
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Figure 6.15: Output comparison between the adaptive filter and PI controller with
KP = 1/16,KI = KP /200.

figure 6.13 on page 120.
The issue of the instability of the temperature can be seen more greatly

in these results: since the temperature of the water during the experiment is
not static, even when the heating process is stopped the temperature is still
changing due to the residual heat in the thermostat’s heating coils, which is
counteracted by the sensor’s cooling mechanism, resulting in an oscillation in
the real temperature which is indistinguishable from noise. Because of this,
noise measurements are inevitably less reliable than the ones obtained with
the previous step increase experiment. Despite this issue, the profiles shown
in 6.13 on page 120 have similar elements to the ones seen in [108]: lower
KP parameters correspond to curves that are less sharp and with reduced
noise, while adding an integral component KI increases noise fluctuations
while making the starting and end point of the ramp sharper.

6.4 Adaptive filter implementation

To display the potential advantages of the method displayed in the previous
chapter to create filters with adaptive behavior, an analogous filtering system
was developed to provide a similar response speed to the P and PI controllers
with KP = 1/16 and KP = 1/16 and KI = KP/200 respectively.

These results can also be compared with the output of the new adaptive
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filter described in the previous chapter, which was applied in real time to the
measurement with KP = 1. The filtering method is defined as follows:

• Three filters are used: a fast control filter, which is a windowed PI filter
with KP = 1/50, KI = 1/1500 and a window size of 30 steps, a slow P
filter with KP = 1/80 and the output filter, whose parameters will be
equal to the slow or fast filter depending on whether the system is in a
static or dynamic state.

• A measured sequence of 1000 points where the state was at constant
temperature is used to extract the sequence STDflat in a similar way
to the one shown in the previous chapter (the standard deviation over
the last 15 points of the output of the windowed PI controller applied
to the flat sequence). STDflat and σ

(
STDflat

)
are extracted from the

sequence.

• The STD [i] sequence is computed as the standard deviation over the
previous 15 steps from step i of the output of the fast filter applied to
the signal.

• To control whether the system has passed from the stationary to the
dynamic state, the average of the last 50 points of the STD [i] sequence
is checked. If it is greater than STDflat + 3σ

(
STDflat

)
, then the state

is considered to have shifted from static to dynamic. As a result, the
output fitler’s parameters are changed to the one of the windowed PI
controller: KP = 1/50 and KI = 1/1500, with a window of 30 steps.

• If the state is dynamic and the average of the last 60 points of the
STD [i] sequence is lower than STDflat, the system is considered to have
shifted from a dynamic to a stationary state.

• When the state transitions from dynamic to static, the output filter’s
next step value becomes equal to the average of the last 50 outputs and
its parameters are changed to KP = 1/80 and KI = 0.

In order to compare its performance to the P and PI controllers mentioned
above, the same output measured with KP = 1 was passed through the
filtering equivalent of the same controllers, as shown in the previous chapter.
As it was stated there, calculating the output of a P or PI controller with
a given KP and KI from the output of a measurement taken with KP = 1
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Figure 6.16: Output comparison between the P controller with KP = 1/16 and PI
controller with KP = 1/16,KI = KP /200.

(which preserves the temperature evolution) is equivalent to making said
measurement with the PI controller with KP and KI as the parameters.

The comparisons of the results are shown in figures 6.14 on page 121, 6.15
on page 122 and 6.16, first between the adaptive filter and the P controller,
then between the filter and the PI controller and finally between the P and
PI controller, to verify the validity of this approach.

As can be seen from the figures, the adaptive filter has a speed that is
very close to the P controller, and thus it shows a slight delay compared to
the PI controller. Despite the similar speeds, noise levels at 35 ◦C were found
to be 0.144, 0.123 and 0.054 ◦C for the PI, P controller and the adaptive
filter respectively. In other words, when the signal is stationary the adaptive
filter displays a much higher noise suppression, without significant losses in
response speed.

It is to note that the adaptive filter configuration was found through
trial-and-error and other configurations could further increase the speed at
the cost of a slightly lower noise suppression. What can be seen from this
example is that this filtering approach, unlike simple P or PI controllers or
moving average approaches, allows to obtain both a quick response and a
strong noise suppression in stationary states.

As a further test to compare the noise suppression, a signal similar to the
measured one in terms of noise/ramp climb rate ratio and shape (two stable
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Figure 6.17: Simulated output comparison between the different filters.

Figure 6.18: Step-by-step noise suppression comparison between the different filters.

states with an 800 steps long ramp between them) was simulated in order
to determine the noise suppression at every step of the adaptive filters, the
P controller and the PI controller, in a way similar to how it was done in
the previous chapter: 1000 signals with new random noise were generated
and filtered, and the noise at every step was equal to the standard deviation
between all the points at the same step in all the simulations.

The result is shown in figure 6.17 and 6.18. As it can be seen, the adaptive
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filter’s noise suppression factor is 40 % higher in the points corresponding to
the dynamic state, while it is more than double in the points corresponding
to the stationary state, which is in agreement to the results obtained from the
measurements. The only exception is the first hundred steps at the beginning
of the dynamic state where, due to the gradual increase in the signal, the
transition from stationary to dynamic states is recognized at different points
in every simulation.

The contribution of the author to the work presented in this chapter
consists in the recreation of the experimental setup first developed in [108],
the study of its limitations and the developments of further improvements.
In addition, it includes the implementation of the adaptive filter previously
described in chapter 5 and its comparison with previously developed P and
PI controllers.



Conclusion

This thesis has focused on devising, studying and experimentally validating
methods to overcome two of the main limits for BOTDA applications: the
high interrogator complexity/cost and the slow measurement speed.

In the first chapter, the principles of distributed optical fiber sensing, stim-
ulated Brillouin scattering and BOTDA measurements have been overviewed.

In the second chapter, after presenting the two most common methods
for providing low-noise and stable pump and probe lightwaves with a tunable
frequency shift, alongside their advantages and drawbacks, a first example
of an alternative low-cost pump and probe source is presented. It consists
of a DFB seed pump feeding a hybrid long cavity (> 2 km) BRL (LC-BRL)
and EDFA layout, where the seed pump is amplified by the erbium doped
fiber above the threshold to trigger SBS and generate the recirculating Stokes
light. Tunability of the pump-probe frequency shift was obtained by using a
piezoactuator to change the BFS of the cavity, which allowed the pump-probe
frequency shift to be tuned over a range of 200MHz. The resulting source
provided a probe source with a FWHM linewidth of 2.5MHz (while the DFB
seed pump had a linewidth of 1.5MHz), a threshold power of 2mW and a
maximum output power of 0.5mW, which are acceptable values for BOTDA
measurements up to at least 10 km. The ring laser was found to add a
significant amount of intensity noise in the low frequency range (0–500MHz),
up to −90 dB /Hz, which is a known effect of fiber lasers. Despite this,
BOTDA measurements were succesfully performed over a range with 10 km,
with a BFS resolution that was found to be around 0.5MHz, corresponding
for most common types of SMF fibers to a temperature and strain resolution
of 0.5 ◦C and 10µε respectively, which is a serviceable resolution for a wide
array of low-end applications where BOTDA with conventional sources sees
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little employability due to the interrogator cost.
In the third chapter, a doubly resonant cavity BRL (DRC-BRL) source was

presented, which mitigated the issues found with the LC-BRL source shown
in the second chapter, namely the high intensity noise and large linewidth
of the Stokes output. To reduce the intensity noise, which was found to be
mostly caused by mode hopping effects, the length of the cavity was reduced
to a few meters. To maintain a high conversion efficiency, the cavity had to be
resonant for both the seed pump and the Stokes light, which required careful
tuning of the cavity length to the seed pump wavelength, that was achieved
through a single cut technique and self injection locking. In order to provide
tuning as well as further stabilization, of the pump-probe frequency shift, a
wavelength-locking system has been implemented. Compared to the LC-BRL,
the resulting source was found to have higher but still acceptable threshold
voltage (10mW) and a higher maximum Stokes output of 2mW. In addition,
the DRC BRL has a greatly reduced intensity noise compared to the LC-BRL,
which across almost all the frequency range is below −140 dB /Hz, close to the
value of the DFB laser souce (−150 dB /Hz), which rises to −110 dB /Hz at
very low frequencies (0–50 kHz). In addition, the short cavity induces a strong
linewidth narrowing effect for both the seed pump and the Stokes output. As
a result, the linewidth of the seed output was measured to be 10 kHz, down
from an original DFB linewidth of 350 kHz The wavelength-locking system
was found to allow for a pump-probe frequency shift tunability over a range of
at least 200MHz with sub-kHz accuracy and fluctuations below 200Hz in the
10ms timeframe (typical for a signle BOTDA measurements) and 400Hz for
longer timeframes (120 s), resulting in a highly tunable, accurate and stable
shift. Thanks to the reduced intensity noise compared to the LC-BRL, the
new source is predicted to reduce the BFS, temperature and strain resolutions
by a factor of 3.5. Compared to the results obtained in the previous chapter,
this would results in resolutions of ∼ 0.14MHz, ∼ 0.14 ◦C and 2.9µε.

It should be noted that the analysis of the behaviour of different BRLs
performed in this work also allows to further understand both its amplification
mechanics and its resonant behaviour, which can prove to be relevant not
only for developing a source for BOTDA but also for all other applications in
which BRLs are employed, such as communications and LIDAR detection.

In the fourth chapter, a closed-loop implementation of the slope-assisted
BOTDA method was presented as a possible way to perform dynamical
BOTDA measurements. The closed-loop method allowed to surpass one of the
major limitations of slope-assisted BOTDA, namely the reduced measurement
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range. Finally, an example application in measurement sensing is showcased.
In the fifth chapter, the behavior of the PID controller used for the

closed-loop measurements was studied, with particular focus on its tracking
and noise filtering functions. Afterwards, the PI controller in filtering terms
was found to have both lower noise suppression and overall worse step response
speed compared to the P controller, due to the overshoot associated with
the Integral component. In addition, the P controller was found to have a
noise reduction factor which grew at a similar rate to the moving average
compared to the step response speed, but the noise reduction for the moving
average was found to always be 22 % higher. Finally, an adaptive filter
method was presented, which consisted of a way to determine if the signal
being filtered (in this case a continuous temperature reading) was, compared
to the time required for a single measurement, in a dynamic (rapidly evolving)
or stationary (constant or slowly changing) state, and using filters better
suited for each: a filter with a faster step response and less noise reduction
for the dynamic state and one with a slower step response and high noise
reduction to better characterize the equilibrium of the stationary one. In
order to showcase the performance of this adaptive filter, its performance
was compared with a moving average filter on a batch of simulated noisy
signals. The proposed method was found to have equal response speed with
the moving average and equal noise suppression in the dynamic state. When
the signal was slowly varying (compared to timeframes roughly ∼ 100 times
the measurement period), on the other hand, the adaptive filter had a noise
reduction factor which was 50 % higher. It is to note that, while other filters
(such as the Kalman filter) can outperform the moving average filter in similar
conditions, they require the model of the measured system evolution to be
known in advance, which is not generally known in BOTDA applications. The
adaptive filter, on the other hand, only requires a general idea of the minimum
changes in relation to the signal noise the filter is required to “recognize” as
transitions from the static to dynamic state, which is believed to be a much
less stringent requirement.

In the sixth chapter the closed loop measurement system was experimen-
tally implemented. Unlike the experimental demonstration described in the
fourth chapter, which was made over a 10 km long sensing fiber, this implemen-
tation was made on a 1 km long sensing fiber. This improved the measurement
time from 1.7 s to less than 200ms, showcasing faster dynamic measurements
over ranges that are still longer than the ones used for demonstrating other fast
measurement methods, which were usually in the order of 100m. In addition,
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the two main hardware issues that limited the meauserement speed were the
AWG operation mode (arbitrary waveform) and the DAQ board not being
an averager, and solutions were found which are expected to greatly improve
the performance, namely use an AWG capable of working in sequence mode
with a pre-loaded library of adequately long sine segments and use a DAQ
that also works as an averager. Similar experiments to the one in the fourth
chapter were performed, with similar P and I coefficients, and the obtained
results were similar to the ones expected from the theoretical analysis in the
previous chapter for what concerns P controllers, while PI controllers were
in line with the results from the work shown in the fourth chapter. Finally,
using the conclusion at the beginning of the fifth chapter regarding the possi-
bility of decoupling the tracking and filtering behavior of PID controllers, a
measurement with KP = 1 was performed and the resulting trace was used
to compare the performance of similar P and PI controllers with parameters
equal respectively to KP = 1/16 and to KP = 1/16, KI = KP/200 controllers
with an implementation of the adaptive method shown in the previous chapter.
The shape of the resulting filtered traces for the P and PI controller were
similar to the ones obtained by setting the parameters at the same values
from the beginning, giving further support to the conclusion found at the
beginning of the fifth chapter.

In addition, while the implemented adaptive filter had a speed similar
to the one of the P controller, it had noise suppression which was found to
be 40% higher in the parts of the measurements where the temperature was
ramping up. On the other hand, in the parts of the measurement where
the temperature was slowly changing for timeframes of at least 15 seconds
(roughly a hundred times the single measurement time), noise suppression was
even higher, becoming more than double the one provided by the P controller.
These results help show how the proposed method is expected to provide
improved noise suppression with similar step responses compared to previously
showcased signal processings method for CC-BOTDA, especially when the
measurand alternates dynamic to slowly changing phases. It should be noted
that, also due to the special circumstances that verified during this year, the
results shown here are still preliminary: further analysis will help provide
more complete results and better understand the practical applications where
this technique would be most beneficial. Finally, due to the purely digital
nature of this adaptive filtering method, its applicability in other fast BOTDA
applications, such as SA-BOTDA, could also be explored.



A

PI Controller: step response modeling

A.1 General form for all PID controllers

In the signal step increase detailed in 5.9 on page 93, a generic PID controller
will work so that for every step the error sequence will change by an amount
equal to:

En − En−1 = −KPEn−1 −KI

n−1∑
z=0

Ez −KD (En−1 − En−2) (A.1)

This relation is a recurrence relation, that can be treated as a discrete
version of a differential equation [12]. Let

∆En := En − En−1 and ∆2En := ∆En −∆En−1

Then (A.1) becomes:

∆En = −KPEn−1 −KI

n−1∑
z=0

Ek −KD∆En =⇒ (A.2)

=⇒ (1 +KD) ∆En = −KPEn−1 −KI

n−1∑
z=0

Ez (A.3)

By applying ∆ to both sides of (A.3) (equivalent of subtracting (A.3) for
n = n− 1 to (A.3) for n) we have:

(1 +KD) ∆2En = −KP∆En−1 −KIEn−1 (A.4)

Which becomes,

(1 +KD) (∆En −∆En−1) = −KP∆En−1 −KIEn−1 =⇒ (A.5)
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=⇒ (1 +KD) ∆En = (1 +KD −KP ) ∆En−1 −KIEn−1 (A.6)
And, remembering that ∆En = En−En−1 and also ∆En−1 = En−1−En−2

we finally obtain:

(1 +KD) (En − En−1) = (1 +KD −KP ) (En−1 − En−2)−KIEn−1 =⇒
(A.7)

=⇒ (1 +KD)En = (2 + 2KD −KP −KI)En−1

− (1 +KD −KP )En−2 (A.8)

A.2 Solution to the recurrence relation

Equation (A.8) is espressed in the form of a homogeneous linear recurrence
relation with constant coefficients (an equation of the form an = c1an−1 +
c2an−2 + · · ·+ cdan−d). The solution has d degrees of freedom: the sequence
will be determined by the first d elements, which can vary.

The coefficients C1, . . . , Cd determine the characteristic polynomial

p (t) = td − c1t
d−1 − c2t

d−2 − · · · − cd

whose roots r1, . . . , rd if distinct, determine the solution of the relation, which
is defined as

an = k1r
n
1 + k2r

n
2 + · · ·+ kdr

n
d

Applying this characteristic polynomial for (A.8), its roots can be found
through the equation

(1 +KD) r2 = (2 + 2Kd −KP −KI) r − (1 +KD −KP ) =⇒
=⇒ (1 +KD) r2 − (2 + 2KD −KP −KI) r + (1 +KD −KP ) = 0

(A.9)

The roots of (A.9) are:

r1,2 = 2 + 2KD −KP −KI

2 + 2KD

±

±

√
(2 + 2KD −KP −KI)2 − 4 (1 +KD) (1 +KD −KP )

2 + 2KD

In this situation, d=2, and the solution will be of the form: En = Crn1 +Drn2
The roots can also be written as:

r1,2 =
2 + 2KD −KP −KI ±

√
K2
P + 2KPKI − 4KDKI +K2

I − 4KI

2 + 2KD
(A.10)
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A.3 Case with PI controller

For KD = 0 we have:

En = Crn1 +Drn2 = C

2−Kp −KI +
√
K2
P + 2KPKI +K2

I − 4KI

2

n +

+D

2−Kp −KI −
√
K2
P + 2KPKI +K2

I − 4KI

2

n (A.11)

We also know that E1 = 1, En<1 = 0, and E2 = 1−KP −KI .
If K2

P + 2KPKI + K2
I − 4KI < 0 , the component under square root in

(A.11) will be imaginary. This condition is verified for

2−KP −
√

4− 4KP < KI < 2−KP +
√

4− 4KP

Taking examples from [108], we can see that when KP = 1/16 this condition
is verified for values of KI such as:

2− 1
16 −

√
4− 4

16 < KI < 2− 1
16 +

√
4− 4

16 =⇒

=⇒ 31
16 −

√
15
4 < KI <

31
16 +

√
15
4 =⇒

=⇒∼ 0.001008 < KI < 3.87399

Along the example presented in the work, KI = KP/50 = 1/800 = 0.001250
will fall under this situation, while KI = KP/100 , KI = KP/200 and below
will not.

When r1 and r2 are complex, it can be shown that the solution can be
expressed as

En = −B n
2 (E cos (θn) + F sin (θn)) ,

where E, F and θ are defined as

E = −AE1 + E2

B
, (A.12)

F = −iA
2E1 − AE2 + 2E1B

B
√
A2 + 4B

, (A.13)

θ = arccos
(

A

2
√
−B

)
(A.14)

while A = r1 + r2 , B = −r1r2 . In other words, the error function will
behave like an exponentially dampened sine wave.
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The determinant factor for the response speed of the PI controller is going
to be the dampening term −Bn/2 in the controller, equal to
(

4 +K2
P +K2

I − 4KP − 4KI + 2KPKI + 4KI −K2
P − 2KPKI −K2

I

4

)n
2

=

=
(4− 4KP

4

)n
2

= (1−KP )
n
2

In this situation, it can be easily seen that the error function decays slower
than the P controller due to the overshoot that comes with the employment
of P controller.

The case in which K2
P + 2KPKI + K2

I − 4KI > 0 corresponds to the
conditions when

either KI < 2−KP −
√

4− 4KP or KI > 2−KP +
√

4− 4KP

In this situation, r1, r2 are real and the C, D parameters can be obtained
directly from the starting conditions.

• E0 = 1 leads to: C +D = 1

• E1 = 1−KP −KI leads to:

1−KP −KI = C

2−KP −KI +
√
K2
P + 2KPKI +K2

I − 4KI

2

+

+D

2−KP −KI −
√
K2
P + 2KPKI +K2

I − 4KI

2

 =⇒

=⇒ 1−KP −KI = 2
2 (C +D)− (C +D)

(
Kp +KI

2

)
+

+ (C −D)

√
K2
P + 2KPKI +K2

I − 4KI

2 =⇒

=⇒ 1−KP −KI = 1−
(
Kp +KI

2

)
+

+ (C −D)

√
K2
P + 2KPKI +K2

I − 4KI

2 =⇒

=⇒ −
(
Kp +KI

2

)
= (C −D)

√
K2
P + 2KPKI +K2

I − 4KI

2 =⇒
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=⇒ C −D = − Kp +KI√
K2
P + 2KPKI +K2

I − 4KI

Now, remembering the previous step, we have C = 1−D which leads to:

=⇒ 1−D −D = − Kp +KI√
K2
P + 2KPKI +K2

I − 4KI

=⇒

=⇒ 1− 2D = − Kp +KI√
K2
P + 2KPKI +K2

I − 4KI

=⇒

=⇒ D = 1
2

1 + Kp +KI√
K2
P + 2KPKI +K2

I − 4KI

 and

C = 1
2

1− Kp +KI√
K2
P + 2KPKI +K2

I − 4KI



As a result, the evolution of the error function is going to be:

En = 1
2

1 + KP +KI√
K2
P + 2KPKI +K2

I − 4KI

 ·
·

2−KP −KI +
√
K2
P + 2KPKI +K2

I − 4KI

2

n +

+ 1
2

1− KP +KI√
K2
P + 2KPKI +K2

I − 4KI

 ·
·

2−KP −KI −
√
K2
P + 2KPKI +K2

I − 4KI

2

n

In order for PI to reduce the error faster than P, both elements of the
solution must fall faster than (1 − KP ) in absolute value. Since here it is
assumed that

√
K2
P + 2KPKI +K2

I − 4KI > 0, this is equivalent to testing
the condition:

2−KP −KI +
√
K2
P + 2KPKI +K2

I − 4KI

2 < 1−KP
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Which is simplified to

2−KP −KI +
√
K2
P + 2KPKI +K2

I − 4KI < 2− 2KP =⇒

=⇒ −KI +
√
K2
P + 2KPKI +K2

I − 4KI < −KP =⇒

=⇒
√
K2
P + 2KPKI +K2

I − 4KI < KI −KP (A.15)

Since the square root must be positive (because this is the non-oscillating solution),
the relation above can only be verified for KI > KP , and can be compared to
the initial conditions

KI < 2−KP −
√

4− 4KP or KI > 2−KP +
√

4− 4KP

In particular, in the case when KI > 2−KP +
√

4− 4KP it can be seen that,
if KP < 1, then 2 −KP +

√
4− 4KP > 1. If this is the case, then it must

also be KI > 1 but in this condition noise is not suppressed, so it will not be
taken in consideration.

In the case when KI < 2 − KP −
√

4− 4KP , it can be shown that 2 −
KP +

√
4− 4KP < KP :

2−KP −
√

4− 4KP < KP =⇒

=⇒ 1−KP <
√

1−KP =⇒
=⇒ 1− 2KP +K2

P < 1−KP =⇒
=⇒ K2

P < KP

which is verified, since KP < 1. Since we have KI < 2−KP −
√

4− 4KP we
also have that KI < KP , which contradicts the condition at (A.15).

As a conclusion, in every possible situation any PI controller will reach
95% of the step response more slowly than a P controller with the same KP ,
while also having less noise suppression due to the presence of the integral
component in addition with the proportional one.

Visually, the reason for this can be found in the overshoot linked with the
step change: right after the sudden increase of the real value, the error of
the PI controller will be positive for the first number of steps, increasing the
cumulative error that is multiplied by KI . When the PI controller output will
reach the value of the increase, the error sum will still be positive, and will
keep on increasing the output, creating the overshoot. It can be said that the
integral component in PI and PID controllers add an inertia in the response
of the controller.
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