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Abstract

The volume, variety, and high availability of data backing decision support systems have
impacted on business intelligence, the discipline providing strategies to transform raw data
into decision-making insights. Such transformation is usually abstracted in the “knowledge
pyramid,” where data collected from the real world are processed into meaningful patterns. In
this context, volume, variety, and data availability have opened for challenges in augmenting
the knowledge pyramid. On the one hand, the volume and variety of unconventional data (i.e.,
unstructured non-relational data generated by heterogeneous sources such as sensor networks)
demand novel and type-specific data management, integration, and analysis techniques. On
the other hand, the high availability of unconventional data is increasingly attracting data
scientists with high competence in the business domain but low competence in computer
science and data engineering; enabling effective participation requires the investigation of
new paradigms to drive and ease knowledge extraction. The goal of this thesis is to augment
the knowledge pyramid from two points of view, namely, by including unconventional data
and by providing advanced analytics. As to unconventional data, we focus on mobility data
and on the privacy issues related to them by providing (de-)anonymization models. As to
analytics, we introduce a higher abstraction level than writing formal queries. Specifically,
we design advanced techniques that allow data scientists to explore data either by expressing
intentions or by interacting with smart assistants in hand-free scenarios.
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Chapter 1

The Knowledge Pyramid

Data science extracts actionable insights from raw data [153]. The data transformation
process is usually abstracted in the “knowledge pyramid” (also known as the “Data Infor-
mation Knowledge Wisdom pyramid” or “knowledge hierarchy”; Figure 1.1), where data
(i.e., symbols) are collected through measurements taken from the real world; information
is processed and linked data that it is meaningful to scientists; knowledge is interpreted,
understood, and organized information; and wisdom is knowledge in action. Climbing the
pyramid is not a straightforward path and requires the iterative exploration and preparation of
data so that patterns can be extracted, evaluated, and later deployed into models supporting
effective decisions.

Analytic applications strive to extract knowledge from data fueled by pervasive systems
[71], where any device can be turned into a sensor leading to a huge volume and variety
of available data [277]. These unconventional1 data (i.e., unstructured and non-relational
data) have impacted on business intelligence (BI)—the discipline providing strategies and
technologies to transform data into decision-making information—leading to BI 2.0, where
decisions are drawn not only on the data owned by the organization. Indeed, bigger data
volumes lead to a holistic view of historic and current trends; higher data velocities ground
decisions in continuously updated data, and broader data varieties provide many nuances of
the matter at hand [1]. On the one hand, volume and variety hinder the management, the
integration, and the analysis of the collected data (from “World” to “Data” in Figure 1.1),
since each instance of unstructured data might have a different structure. This requires
ad-hoc techniques for different data types (e.g., social networks [87] or sensor data [92]).
On the other hand, high availability has attracted scientists with no expertise in computer
science or data engineering, requiring novel paradigms to support the “Data”-to-“Knowledge”

1We consider conventional the data collected by operational databases, ERP (enterprise resource planning),
and CRM (customer relationship management) enterprise systems
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World

Knowledge
(organized information)

Data
(abstracted elements)

Information
(linked data)

Wisdom
(decisions)

Figure 1.1: The “knowledge pyramid” (also known as the “Data Information Knowledge
Wisdom pyramid” or “knowledge hierarchy”; adapted from [259]).

transformation with a higher abstraction level than formal programming languages (e.g.,
through graphical metaphors, recommender systems, or automatic transformation pipelines).
Additionally, availability has enabled pervasive analyses, allowing data scientists to access
data in hand-free contexts involving augmented reality and smart assistants.

While investigating these challenges, this thesis evolves into two parts.

Part I: Unconventional Data. Sensing provides real-time data upon which “contextual”
decisions—ranging from user-centered to societal problems—are based. This includes data
collected from human and technological assets (e.g., sensor or mobile networks), which are
analyzed to monitor and manage urban and rural areas. Sensor data are highly available due
to the growth of Internet of Things devices, have variable content, and their value comes
from historic trends that range from hours to years [153]. Such volume and variety demand
for augmenting the knowledge pyramid with novel and scalable techniques for different
data types (Figure 1.2). In urban mobility, spatiotemporal data (i.e., temporal sequences of
spatial locations traced by moving objects and sampled through global or relative positioning
sensors) are collected and processed for the sake of traffic analysis and forecasting, clustering
of objects moving in similar paths, and habits profiling. Spatiotemporal data are challenging
because of their uncertain, sparse, and multiresolution nature [106]. Also, due to the number
of moving objects (e.g., mobile devices, cars, taxis, and public transport in a metropolitan
area) and to the sampling rate of positioning sensors (e.g., from minutes to seconds), mining
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Advanced analytics

Intention

Hand-free scenarios

Data summaries

World

Knowledge
(Data Mining)

Data
(Operational DB, OLTP)

Information
(Data Warehouse, OLAP)

Wisdom
(Decisions)

Unconventionaldata

Figure 1.2: Augmenting the knowledge pyramid with unconventional data (left) and advanced
analytics (right).

mobility data easily scale up to big-data problems that require big-data solutions, hence
introducing new business opportunities that were previously ignored because of technology
limitations. Besides the valuable knowledge, due to high uniqueness [64] and sensitivity
(e.g., home and work locations), trajectory data expose individuals to privacy violations,
demanding for ad-hoc techniques to (de-)anonymize historical trajectory datasets. In this
direction, Part I focuses on trajectory data and on the privacy implications of the publication
of long-term mobility datasets.

Part II: Advanced Analytics. Since the introduction of the relational model in the ’70s,
users used relational queries (e.g., SQL queries) to retrieve data collected in operational
databases. This requires a good comprehension of programming languages and database
management systems. Later, more user-friendly abstractions and tools provided a simpler
view of the data, hiding the complexity of the underlying databases [275] and transitioning
from static (repetitive) workloads involving a few records (On-Line Transaction Processing,
OLTP) to dynamic workloads (On-Line Analytical Processing, OLAP, and On-Line Analyti-
cal Mining, OLAM) involving a huge amount of records (Figure 1.2). The spread of data
and analytical tools at hand has brought an increasing participation of data scientists with
high competence in the business domain but low competence in computer science and data
engineering [275]. Indeed, data science emerged as an amalgamation of domain expertise
with disciplines such as statistics, data mining, and databases [272]. Such amalgamation
has brought challenges not only concerning big data volumes but also in terms of the in-
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creasing complexity and interdisciplinarity of the analytic questions. Enabling an effective
participation in data science requires the investigation of user-centered paradigms supporting
analytical querying and making knowledge extraction more accessible. Data scientists can
benefit from proactive systems that “understand” the tasks at hand, make recommendations,
and generate effective visualizations [106]. For instance, in the digital twin scenario [264]
where physical entities are mapped into a digital world, the synergy of personal assistants and
augmented reality lacks analytic capabilities. Additionally, limited attention has been devoted
to providing analytical reports that can be useful to let the user compare the current behavior
of the visualized objects with their historical behavior. To this end, unconventional data
sources, such as smart glasses and wearable devices, can be accessed by personal assistants
(e.g., recommender systems) to address users’ needs [21]. Data scientists can interact with
personal assistants through natural language interfaces which provide a higher abstraction
level than formal queries and programming languages. In this direction, Part II focuses
on supporting data scientists with higher analytic abstractions than formal queries also in
scenarios entailing pervasive data access.



Part I

Unconventional Data





Chapter 2

Introduction

2.1 Motivation and contributions

Following the spread of positioning systems and mobile devices, mobility data are at the core
of location-based decision support systems and augment the knowledge pyramid (Figure 1.1)
with novel storage, integration, and analysis techniques specific to spatiotemporal data. Exam-
ples of valuable applications are urban-mobility analysis, point-of-interest recommendation,
and personal navigation systems [157].

Mobility data are described along spatial and temporal dimensions and are also known
as trajectory data (or spatiotemporal data). A spatiotemporal entity is a moving object (e.g.,
an individual, an animal, a car) characterized by its position in space that varies over time.
Position can be recorded by positioning sensors (e.g., a traffic monitor collecting passing
vehicles), by issuing geolocalized queries to location-based systems (e.g., return the closest
restaurant to my location), by social check-ins (e.g., foursquare), or by wearable or smart
devices with positioning technologies (e.g., GPS). Such heterogeneity demands for ad-hoc
analytic techniques and has driven an intensive research activity [310].

Definition 1 (Trajectory) The trajectory (or trace) of a spatiotemporal entity (or “mov-
ing object”, interchangeably) represents its entire movement history. It is a sequence of
spatiotemporal points, denoted as T = ⟨p1, p2, . . . , pn⟩ where each p = (x,y, t) consists of
a location (x,y) (e.g., longitude and latitude) at time t. Points in a trace are organized
chronologically. The set of trajectories is denoted by T .

Example 1 (Trajectory) With reference to Figure 2.1, Tr,Tg,Tb are examples of trajectories
in a two-dimensional space, with T = {Tr,Tg,Tb}. □

In this context, we contribute to the following research directions.
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A B C D

1

2

3

4

Tb

Tg

Tr

p

Figure 2.1: Example of trajectories in a two-dimensional space; trajectory points are orga-
nized chronologically.

Scaling up to big data analytics. The volume of trajectory datasets is always increasing,
demanding big data solutions supporting the processing of trajectory data. In urban mobil-
ity, map-matching aims to project GPS points generated by moving objects onto the road
segments representing the actual object positions. Up to now, map-matching has found
interesting applications in traffic analysis, frequent path extraction, and location prediction.
However, state-of-art implementations of map-matching algorithms are either private, se-
quential, or inefficient. We propose an extension of an existing centralized algorithm of
known efficiency by reformulating it in a distributed way, in order to achieve great scalability
on real big data scenarios [92]. Furthermore, we enhance the robustness of the algorithm,
which is based on a first-order Hidden Markov Model, by introducing a smart strategy to
avoid gaps in the matched road segments; indeed, this problem may occur under sparse GPS
sampling or in urban areas with highly fragmented road segments.

(De-)Anonymization of trajectory data. The ubiquity of mobility data can benefit various
real-world applications such as traffic management and location-based services. However, tra-
jectories may disclose highly sensitive information of an individual including identity [149],
personal profiles [91], and social relationships, making it indispensable to consider privacy
protection when releasing trajectory data. Ensuring privacy on trajectories demands more
than hiding single locations since trajectories are intrinsically sparse and high-dimensional,
and requires to protect multi-scale correlations. To this end, extensive research has been
conducted to design effective techniques for privacy-preserving trajectory data publishing.
Furthermore, protecting privacy requires to carefully balance two metrics: privacy and utility.
In other words, it needs to protect privacy as much as possible and meanwhile guarantee the
usefulness of the released trajectories for data analysis. We provide a comprehensive study
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of the existing protection models. We also conduct experiments in de-anonymization privacy
models.

2.2 Structure

This part of the thesis hinges on the above-mentioned contributions and is organized as
follows. In Chapter 3, we design a map-matching algorithm in Spark, a big data frame-
work. Chapter 4 introduces the sensitivity of mobility data (e.g., the exposure of individual
identity and frequented locations) and surveys the existing approaches addressing the privacy-
preserving publication of trajectory data. Chapter 5 introduces DART, an algorithm exploiting
personal gazetteers (i.e., the set of relevant places in everyday life such as home and work
locations) to de-anonymize individuals while scaling up to big data problems. Finally,
Chapter 6 draws the conclusion and future research directions.





Chapter 3

Map-Matching on Big Data

3.1 Introduction

Following the spread of mobile devices and enhancements in positioning systems, trajectory
data has gained much attention. Among the plethora of applications suitable for trajectory
mining [310], map-matching projects inaccurate Global Positioning System (GPS) points
generated by objects moving in urban areas (Figure 3.1) onto the road segments representing
the actual object positions (Figure 3.2). Up to now, map-matching algorithms had interesting
applications, such as predicting moving object (MO) locations [200], generating traffic
analysis models [110, 126], and uncovering frequent routes [164].

Sheet 1
customid & trajid (Combined)
24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

Map based on lon and lat.  Color shows details about customid & trajid (Combined). The view is filtered on Exclusions (customid,lat,lon,trajid) and customid & trajid (Combined). The Exclusions (customid,lat,lon,trajid) filter keeps 7.477
members. The customid & trajid (Combined) filter keeps 1 member.

Figure 3.1: GPS points of a trajectory in the road network of Milan, Italy.Sheet 1
segid, customid & trajid (Combined)
W4011836, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

W4011928, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

W4011942, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

W4012069, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

W4012114, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421

W4017886, 24d73742417bd2f56a2e7eed68f7a8e13785f9bd3057dec1fd3f7c4811606621, 1421
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Map based on lon and lat.  Color shows details about segid and customid & trajid (Combined). The view is filtered on customid & trajid (Combined), which keeps 1 member.

Figure 3.2: Sequence of road segments matched to the trajectory in Figure 3.1; colors
represent different segments.



12 Map-Matching on Big Data

Despite its straightforward applications, map-matching is not easily addressable due the
articulated topology of urban networks (parallel roads, roundabouts, road crosses, as seen in
Figure 3.1). Over the years, several models capturing increasingly complex matching features
have been proposed. Zehng categorizes four map-matching approaches [310]: geometric
(e.g., mapping GPS onto the closest road segment), topological (e.g., mapping relies on local
connections of adjacent segments), probabilistic (e.g., mapping is about finding the most
likely path under noisy conditions), and advanced (e.g., mappings relies on mixing the above
techniques).

Among the advanced map-matching methods, Luo et al. [181] propose a promising
map-matching algorithm based on first-order Hidden Markov Model (HMM) to find the
sequence of roads segments with highest probability of being the exact path traveled by a MO.
In their experimental evaluation, the authors demonstrated that the proposed solution achieves
good accuracy performance. However, when it comes to real big data applications accuracy
is not all. Indeed, Peixoto et al. [222] introduce a further categorization of map-matching
algorithms with respect to sequential and distributed computation. Peixoto et al. highlight
that although sequential algorithms achieve high accuracies, they are capable to process only
few trajectories at a time. Hence, they do not account for scalability.

In this chapter, we propose a distributed extension of the sequential algorithm proposed
by Luo et al. [181], overcoming its limitations in terms of: (1) distributed, scalable and
open-source implementation; (2) higher robustness in case of highly fragmented urban maps;
and (3) the inference of MO movement in trajectories with silence periods (i.e., GPS pings
are missing or compromised for short time periods). Although distributed algorithms for map
matching do exist, their implementations are either private or less accurate than sequential
models. Our implementation is based on the Apache Spark engine [301] and leverages the
GeoSpark [298] library. Due to its execution engine and in memory computation, Spark
achieves higher performance than MapReduce [65].

The remainder of the chapter is organized as follows. We introduce the formal background
on map-matching in Section 3.2 and our distributed implementation in Section 3.3. In
Section 3.4, we test our algorithm against a real big data case study in the Italian city of
Milan. In Section 3.5, we discuss a summary of the state-of-art related contributions to our
work. Finally, in Section 3.6, we summarize future works to extend our contribution.

3.2 Formal foundation

A Hidden Markov Model (HMM) is a temporal and finite model that describes a probability
distribution over an infinite number of sequences [78]. The HMM is composed of hidden
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states that emit observable symbols; the goal is to find the most likely sequence of hidden
states depending on the observed symbols. The symbol emission probability (or simply
emission probability) determines the probability of a certain state emitting a certain sym-
bol, while the state-transition probability (or simply transition probability) determines the
probability of moving from one state to another. Given an initial state, a state sequence
is generated by moving from state to state. The sequence of states is a Markov chain, i.e.
the transition to the next state only depends on the current state. The state sequence is
hidden (i.e., it is not directly observable), while the sequence of symbols generated by the
hidden states is observed. One of the applications of HMMs is to uncover the most likely
state sequence that generates the observed symbols. Map-matching can be modeled as an
HMM, where: states correspond to road segments and symbols correspond to GPS points;
the emission probabilities depend on the geometrical relationships between GPS points (i.e.,
the symbols) and close road segments (i.e., the states), while the transition probabilities
reflect topological relationships between consequent segments. Finally, the HMM identifies
the optimal sequence of road segments that most likely emits the sequence of observed GPS
points. To define emission and transition probabilities of the HMM, we recall the definition
of (GPS) trajectory from Definition 1 and formalize the concept of road network.

Definition 2 (Road Network) A road network is a directed graph G(V,S), where S is the set
of road segments connecting the set of terminal points V . A route is a sequence of consequent
road segments.

Following the notation provided in [237], let us denote with Xt the index of the road
segment in which a MO is possibly located at time t (i.e., Xt =[1, |S|]). With a slight abuse of
notation, we denote with si the i-th segment in S. Then, we define the emission and transition
probabilities as follows.

Definition 3 (Emission Probability) Given the set of road segments S, and the MO position
pt at time t, the emission probability P(pt |Xt = i) is the probability of a state i to generate the
observation pt:

P(pt |Xt = i)=
dH(pt ,si)

−1

∑s j∈N(pt ,S,α,τ) dH(pt , pr j(pt ,s j))−1

N(pt ,S,α,τ) is the operation that returns the neighborhood of a point pt , i.e., the set of
α closest segments in S whose distance to pt is less than a spatial threshold τ; dH is the
great-circle distance1 between the point pt and its projection pr j() to the road segment si.

1The great-circle distance is the shortest distance between two points on the surface of a sphere, measured
along the surface of the sphere.
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Since road segments are quite dense in urban areas, the road network topology provides
constraints to the map-matching process (i.e., a MO cannot “jump” from road one segment
to another if they are not somehow connected), thus it should be taken into consideration
to define the transition probability. In [181], the authors estimate the (global) average road
segment length (i.e., 119 meters) and the (global) average distance between successive
GPS pings (i.e., 21 meters) to estimate the transition probability on same road segments
(estimated as 3/5), on adjacent road segments (estimated as 2/5), segments separated by one
road segment (estimated as 1/5), and 0 otherwise. However, this probability distribution
performs poorly on road networks with high variance on segment length (e.g., a road network
including highly segmented urban roads and long highway segments) and/or on high variance
on GPS sampling rates. Additionally, the higher the resolution of the road network, the worst
the transition probability represents the network topology. For instance, a roundabout with 3
exits is modeled with at least 6 segments (i.e., 3 segments for the roundabout and 3 for the
outgoing roads). As a consequence, if the sampling between consequent GPS pings is not
high enough (e.g., 10 to 20 seconds), then the transition probability assigned in [181] is 0
even if the two points are close but farther than 3 segments in the road network. Thus, while
Definition 3 is compliant to [181], we adopt the transition probability from [212].

Definition 4 (Transition probability) Given the set of road segments S, the state-to-state
transition P(Xt |Xt−1) is a S×S matrix, where P(Xt = j|Xt−1= i) is the transition probability
from segment i (i.e., the state at time t−1) to segment j (i.e., the state at time t)

P(Xt = j|Xt−1= i)=
1
β

e−d/β

where
d= |dH(pt , pt−1)−dR(pr j(pt ,s j), pr j(pt−1,si))|

pr j projects pt and pt−1 to road segments s j and si, dR is the length of the shortest-path
between two points, and β is a smoothing parameter [212]. In other words, given two GPS
points pt and pt−1, the transition probability is defined as the difference between the great
circle distance between the two points dH(pt , pt−1) and the road-network based distance
between their projections onto segments of the road network dR(pr j(pt ,s j), pr j(pt−1,si)).
In fact, in the actual routes there is typically a small difference between dH and dR [212].

The formal definition of the map-matching process is summarized in Algorithm 1.
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Algorithm 1 Map-Matching Algorithm

Require: T : trajectory, G(V,S): road network, β : prob. smoothing, α: nearest neighbor
card., τ: spatial thr., γ: max. route distance, θ : max. route depth

Ensure: M: map-matched trajectory
routes← routes of max. distance γ and max. depth θ ▷ pre-computed to determine dR in
transition prob.
I← 1/|S|,∀si ∈ S ▷ All segments are equally probable to p0
O← P(pt |Xt = i),∀pt ∈ T,∀si ∈ N(pt ,S,α,τ) ▷ emission prob. vector
R← P(Xt = j|Xt−1= i),∀pt , pt−1 ∈ T,∀s j ∈ N(pt ,S,α,τ),∀si ∈ N(pt−1,S,α,τ) ▷
transition prob. matrix
M←Viterbi(S,T, I,R,O) ▷ Viterbi (state space; trajectory; transition, initial, and
emission prob.)
return M
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Figure 3.3: Main transformations involved in the Map Matching process with respect to steps
(A), (B) and (C).

3.3 Algorithm implementation

The algorithm consists of a distributed implementation of [181], which is depicted in Fig-
ure 3.3. The algorithm undergoes the following steps for each trajectory in the dataset: (A)
computation of the emission probability, (B) computation of the transition probability, and
(C) computation of the result by means of the Viterbi algorithm [84] to infer the optimal
sequence of hidden states that generates a sequence of observable symbols. As the Viterbi
algorithm map trajectories onto possibly fragmented routes, we embed in this step an aiding
process similar to [181]. With respect to the sequential implementation provided in [181], we
design the map-matching algorithm in terms of Spark’s and GeoSpark’s Resilient Distributed
Datasets (RDDs) in order to distribute and parallelize the computation of the result for each
trajectory.

Our implementation is publicly available at http://www.github.com/big-unibo/
map-matching. The adopted versions of Spark and GeoSpark are 2.1 and 1.1.3, respec-
tively.

http://www.github.com/big-unibo/map-matching
http://www.github.com/big-unibo/map-matching
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3.3.1 Emission probability

Given a GPS point pt (i.e., an observable symbol in the HMM), the estimation of its emission
probability requires the computation of the neighborhood N(pt ,S,α,τ) for each point in
T . This requires a spatial range-join (step (A) in Figure 3.3), a spatial operation that
combines two datasets with respect to their element-wise spatial distance (e.g., finding, for
each observed GPS point, the nearby road segments). Note that this transformation is applied
to all GPS points in T independently from the trajectory they belong to, in order to achieve
the maximum degree of parallelism. We rely on GeoSpark’s spatial RDDs (SRDDs) to
distribute and range-join the sets of GPS points and road networks; the result is the set
of α road segments closer to pt than a spatial threshold τ . The efficiency of the spatial
operation is affected by τ , as it sensibly reduces the algorithmic search space, whereas α

simply determines the size of the output. The setting of these parameters depends on the
cluster specifics: the higher τ and α , the greater the number of candidate segments to be
considered (and finally returned) for each point.

3.3.2 Transition probability

Among S there exist unlikely segment transitions (e.g., segments too far for a correct match,
or connected by multiple paths with sensibly different lengths). To lighten the workload,
we prevent the computation of transition probabilities that are close to zero (according to
Definition 4): given two GPS points pt and pt−1, we consider as candidate states of the
respective points only the road segments that are closer than τ ; also, from the list of candidate
pairs of segments, we prune those connected by a shortest-route with depth (i.e., the number
of segments) higher than θ or a distance on the road network (i.e., dR) higher than γ . While
γ bounds the routes potentially producing transition probabilities close to 0, θ lighten the
process of the route creation by preventing the computation of long sequences of segments.
Note that the computation of deep routes is necessary in case of highly fragmented urban
areas (Figure 3.2).

To distribute the computation of the transition probability (step (B) in Figure 3.3), given
the result of step (A), we group GPS points by trajectory, we create a sliding window with
size 2 on each trajectory (basically, we build pairs of pt and pt−1), and we compute the
transition probability P(Xt = j|Xt−1= i) for each pair of candidate segments s j and si, with
s j ∈N(pt ,S,α,τ) and si ∈N(pt−1,S,α,τ); note that the information about the neighborhood
is kept from step (A). While the estimation of dH in Definition 4 is straightforward, dR requires
to compute point-wise distance in the road network. To do so, all routes (i.e., sequences
of road segments) in G(V,S) with a maximum distance of γ and a maximum depth of θ
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must be computed; then, dR is obtained by finding the shortest route for each s j and si pair.
Interestingly, as the routes only depend on G(V,S), they can be computed once, persisted in
the distributed file system, and then retrieved on demand.

3.3.3 Viterbi computation

For a trajectory T with |T | GPS points, we could naively compute S|T | sequences to find the
optimal route generating the observed GPS points. However, this solution has exponential
complexity. The Viterbi algorithm is a recursive (optimal) estimation of the state sequence
of a time-discrete Markov process [84] (i.e., a sequence of events in which the probability
of an event depends only on the state of the previous event) with a polynomial complexity
O(|S|2|T |). In other words, the Viterbi algorithm is a dynamic programming algorithm for
finding the most likely sequence of hidden states of a finite-state machine that results in a
sequence of observed events.

When applied to map-matching, the algorithm returns the sequence of road segments
(i.e., a route) that, with the highest likelihood, generates the observed GPS trajectory (step
(C) in Figure 3.3). Intuitively, the Viterbi algorithm detects the most likely transition that
leads into each state at time t, it discards the other transitions into that state, and, when the
algorithm reaches the last timestamp, it determines the most-likely path by concatenating
the states connected by the most-likely transitions. The input parameters required by the
algorithm are: the trajectory T ; the segment (i.e., state) space S; the emission probability
matrix O (computed for each point as in Definition 3); the initial probability vector I, where
|I|= |S| and Ii = 1/|S| for each segment in S (we consider all the segments equally probable
with respect to the initial GPS point); and the transition probability matrix R (computed for
each pair of consequent trajectory points as in Definition 4).

Intuitively, applying the Viterbi algorithm to T returns the route onto which T is map-
matched by associating to each GPS point an optimal road segment. However, there is
no insurance of consequent GPS points being mapped to adjacent road segments, possibly
resulting in fragmented optimal routes. We embed in the Viterbi algorithm an aiding process
to fill the gaps. In each iteration over two consequent points pt and pt−1, if the shortest
route between the mapped segments s and s′ is shorter than γ and has a smaller depth than
θ , we map pt−1 also to all the segments included in the shortest path between s and s′. To
do so, we leverage the possible route that has been pre-computed as in (B). With respect
to [181], the advantage of embedding the aiding process in this step of computation (rather
than after computing Viterbi) prevents an unnecessary further iteration on the map-matched
trajectories.
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The computational complexity of the Viterbi algorithm can be tackled down by addressing
both |T | and |S|. As to |T |, reducing the trajectory length requires a simplification process that
is applicable before the map-matching process (hence is out of the scope of this chapter). As
to |S|, the segment space can be sensibly pruned assuming that, among all the roads segments
in S, only the segments close to the observed points contribute to the matching process with
a non-null probability. For each point pt , we only consider the candidate segments in its
neighborhood N(pt ,S,α,τ), where α (i.e., the number of retrieved neighbors) constrains the
Viterbi search space).

Finally, rethinking the Viterbi algorithm is a distributed environment is not straightforward
due to its recursive nature. In this chapter, we limit to apply Viterbi in a bag-of-task fashion,
i.e., executing the algorithm to concurrently map each trajectory onto its road network
projection (step (C) in Figure 3.3).

3.4 Evaluation

In our contribution, we engineer the sequential algorithm proposed in [181] in terms of a dis-
tributed paradigm. Note that, while the distributed implementations described in Section 3.5
approximate the sequential map-matching algorithms, we entirely preserve the accuracy of
the implementation proposed in [181]. Although the setting of the parameters does have an
impact on the accuracy, the lower bounds that we consider (with reference to Table 3.2) are
higher than the values defined in [181], thus guaranteeing the same minimum accuracy. For
this reason, the evaluation of our implementation is focused on the efficiency on big data in a
real case study. We run our test on a cluster composed by 11 nodes, each equipped with an
8-core i7 CPU @ 3.60GHz and 32 GB of RAM and interconnected by Gigabit ethernet.

3.4.1 Dataset

We test our implementation against a real-case study scenario in the Italian city of Milan.
The dataset includes 120,000 trajectories (T ) that contains an average number of 65 GPS
points (resulting in an overall number of 7.8 million of GPS points). The distance between
consequent GPS points is on average of 99 meters, and the average sampling rate is of 0.14Hz
(i.e., 7 seconds). These values, with their respect variances are summarized in Table 3.1.

Our dataset includes ground truth on 50 trajectories. Ground truth data is leveraged to
test the accuracy of the algorithm with respect to α , τ , γ , θ . In addition, we used the 50
trajectories to estimate β = 10 (as required by [212]).
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Table 3.1: Summary of the dataset features

Feature Value
GPS points 7.8 ·106

Trajectories 12 ·104

Avg. trajectory points 65+−42
Avg. ping distance (meters) 99+−55
Avg. sampling rate (seconds) 7+−6
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Figure 3.4: Execution times of the different steps of the algorithm under different parameter
settings; when not specified, it is α = 4, τ = 100, θ = 4, and γ = 300.

3.4.2 Efficiency

To evaluate our implementation in terms of efficiency, we first measure the impact of each
parameter on the execution times of the different steps of the algorithm. We exploit the
metrics of Spark’s web GUI to obtain the execution times of the pre-computation of the
routes and the computation of steps (A), (B) in (C). We start from a base configuration where
all parameters are valued at their minimum and, for each parameter, we progressively scale
its value up to its maximum. The results (shown in Figure 3.4) reveal that each parameter
impacts only on one of the algorithm’s steps. Increasing α means producing more candidate
segments for each GPS points, thus increasing the complexity of Viterbi (step (C)). A higher
value of τ augments the search space of the spatial join to calculate the emission probability
(step (A)). Parameter θ increases the complexity of the pre-computation of routes; however,
since γ is limited to 300, the depth of the routes does not actually increase, thus not producing
on effect on step (B). Conversely, a higher value of γ produces a greater number of routes,
which increases the computation of the transition probability (step (B)).
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Figure 3.5: Execution times of the different steps by scaling the number of worker nodes
(left) and the number of trajectories (right).

Table 3.2: Input parameters; range values are empirically determined

Parameter Value Meaning
β 10 Probability smoothing
α [4,10] Candidate segments
τ [100,200] Neighborhood thr. (meters)
θ [4,10] Route max. length
γ [300,800] Road network distance thr. (meters)

Finally, we evaluate the performance of the algorithm with respect to the computational
power of the cluster and the number of trajectories in the dataset; the results are shown in
Figure 3.5. In the first case, we scale the number of worker nodes from 1 to 10. The results
demonstrate that the algorithm effectively takes advantage of the higher levels of parallelism,
reducing the execution times from more than 2 hours to as low as 20 minutes. Consistently
with Amdahl’s law [17], the speedup is bounded by the serial part of the program and
converges to 7x with respect to the sequential execution2. Lastly, scaling on the number of
trajectories shows that execution times increase linearly with number of trajectories in the
last step. The same behavior is not observable in the previous steps due to the overhead of
the parallel execution framework, which hides the actual workload times.

3.5 Related works

In this section, we categorize map-matching related contributions with respect to their
sequential and distributed natures.

As to sequential implementations, in [179], Lou et al. introduce “ST-Matching” to handle
GPS trajectory data at low sampling rates. The idea is to generate all the possible candidate
routes on the map and to identify the-most-likely one by calculating spatial and temporal
probabilities. However, this approach is particularly sensitive to noise, as common errors

2For the fairest comparison, the original sequential implementation should be considered; unfortunately,
however, the authors of [181] have not made the code publicly available.
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in positioning systems lead to the identification of erroneous paths. Newson et Al. [212]
address this problem by adopting a first-order HMM that models the connectivity of the
road segments and considers multiple path hypotheses. Further accuracy enhancements are
obtained by Lou et al. [181] by leveraging a formulation based on HMM in which emission
and transition probabilities depend respectively on geometrical and topological information.
The authors leverage the Viterbi algorithm to extract the route that most likely generates a
sequence of observed GPS positions. When estimating the state transition probability, the
topological information on road segments enhance the matching with a sampling rate up to
0.1Hz (10 seconds).

With the rise of big data, distributed implementations have aimed to optimize the per-
formance of existing map-matching algorithms. However, the sequential nature of these
algorithms hinders a trivial reformulation on a distributed environment. For this reason,
a recurring problem in distributed implementations is the trade-off between accuracy and
efficiency, which is usually in favor of the latter. Almeida et al. [16] leverage the spatial prob-
ability from the ST-Matching algorithm [179] and provide a map-matching implementation
in the MapReduce paradigm [53]. However, they do not take into account the latest enhance-
ments in terms of HMM and road topology. Zeidan et al. [304] and Peixoto et al. [222]
introduce new algorithms that best exploit the characteristics of a distributed environment. In
particular, both contributions rely on the construction of spatial indexes that enable an effec-
tive partitioning of road segments and trajectories, with the goal to minimize the amount of
shuffled data between the cluster nodes. Although these contributions focus on the scalability
to big data applications, they usually approximate exact sequential algorithms and lack a
sound accuracy comparison against sequential approaches to map matching (whose good
accuracies are well known in the literature). Finally, several spatial libraries (e.g., GeoSpark
[298], SpatialSpark [296], etc.) have been built on top of Spark’s RDD [301]; however, none
of these directly addresses map-matching, as they only provide spatial indexing and querying.

3.6 Conclusion

We engineered a Spark-based distributed map-matching algorithm inspired by the sequential
implementation provided by Luo et al. [181]. Our algorithm entirely preserves the accuracy
of the sequential implementation (which, to the best of our knowledge, achieves a higher
accuracy than the existing map-matching algorithms) and it has been tested on a real dataset
of 120,000 trajectories (for a total of 7.8 millions GPS points). Also, we overcome the
limitations of [181] in case of highly fragmented urban networks.





Chapter 4

Trajectory Privacy

4.1 Introduction

Privacy is usually referred to as the “ability of an individual to control the terms under
which personal information is acquired and used” [281]. Privacy entails the protection of
several data aspects such as collection [293], mining [195], querying [214], and publication
[100]. Each of these aspects involves its own privacy protection models as well as measures
to evaluate privacy level. We focus on data publication in this chapter, i.e., releasing
datasets without leaking any sensitive information. Privacy-preserving data publishing has
been extensively studied in the database community, and well-known techniques have been
proposed to anonymize tabular records stored in the database including k-anonymity [242,
262] (introduced in 1998), l-diversity [184] (2006), t-closeness [170] (2007), differential
privacy [76] (2006), and plausible deniability [30] (2017).

With the increasing popularity of GPS-enabled devices, a wide range of location-based
services keeps track of moving objects, resulting in massive available spatial trajectory data.
Nowadays, trajectory data analysis has become ubiquitous, as evidenced by a huge amount
of trajectory-related techniques, which can benefit various real-world applications including
urban planning, traffic management, personalized recommendation. However, the analysis
of trajectory data can disclose sensitive information of an individual, making it essential
to design techniques for privacy protection. In general, the protection of trajectory privacy
is based on two major directions: location-based services (LBSs) and privacy preserving
trajectory publication (PPTD). On the one hand, privacy protection in LBSs requires that
a sufficient quality-of-service is ensured while preventing an adversary to learn the exact
locations of an individual [54]. On the other hand, privacy concerns hinder data-holders in
the publication of private trajectories which, therefore, has spawned extensive research on
privacy-preserving trajectory data publishing. These directions are orthogonal and can be
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distinguished according to the amount of adversary’s knowledge (i.e., a sequence of real-time
locations for LBSs; the entire movement history for PPTD) and the protection scope (i.e., the
current location for LBSs; the entire trajectory for PPTD). We focus on PPTD in this chapter,
considering the proliferation of applications relying on the availability of trajectory data.

Formally, the trajectory of an individual is recorded as a sequence of (geo-position, time)
ordered chronologically. Although trajectory data is representable in a tabular format (e.g.,
organizing each individual and the whole moving history as a record), trajectories cannot be
easily anonymized as “classic” tabular data due to the following reasons:

• Trajectory data fulfills spatial constraints (e.g., mobility in an urban area).

• Trajectory locations are not independent (e.g., there is spatiotemporal continuity
between adjacent locations; it is impossible to jump from a road to another).

• Although trajectory data is highly sparse, only a few locations can link 95% of individ-
uals [64]. The longer the trajectory, the easier to break individuals’ privacy.

• Trajectory locations represent geographical features mappable into semantics (e.g.,
POIs) that can directly reflect individuals’ interests and demographics.

• Trajectories do not have fixed quasi-identifiers [295, 54]. Sensitivity depends on
both single locations and arbitrary spatiotemporal patterns (e.g., day and nighttime
mobility).

The sensitivity, uniqueness, and low anonymizability of trajectory data raise many
issues and concerns, and hence extensive research has been conducted to develop effective
techniques for privacy-preserving trajectory data publishing. In 2000s, two main approaches
ad-hoc for spatiotemporal data were introduced to protected individual locations either by
producing dummies locations indistinguishable from the real ones [155] (2005) or by mixing
identifiers of individuals entering/leaving mix-zones [217] (2008). Due to the need for
publishing trajectories, both dummy and mix-zone models have been adapted to trajectory
data. Additionally, since 2008, generic privacy models for sequential patterns [262, 184, 170,
76, 30] were also specialized to protect trajectory data, with trajectory k-anonymity being
implemented first [210] by making a trajectory indistinguishable in an anonymity group
including k-1 other trajectories. Differential privacy has been introduced for trajectory data
in [48] (2012), where, rather than generalizing/suppressing locations to achieve k-anonymity,
the authors release synthetic trajectories resembling the original ones. Recently, l-diversity,
t-closeness [270] and plausible deniability [30] have also been applied to trajectory data to
protect semantic locations (e.g., home, work, and frequently-visited pubs).
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We analyze and organize the articulated spectrum of threat and anonymization models
on the publication of trajectory data. Understanding which anonymization models fulfill
the publication requirements is hard especially because ad-hoc privacy and utility metrics
are usually leveraged in these papers, requiring exhaustive comparison which is missing in
these works. Our goal is to provide a comprehensive and clear overview of the privacy issues
related to trajectory data as well as the privacy models countering these issues. Overall, the
main contributions are the following.

• We provide a detailed overview of the sensitive information and privacy attacks on
trajectory data to highlight the privacy issues related to the publication of trajectory
data.

• We conduct a systematic analysis of models applied to trajectory data publishing and
the ways to quantify their privacy and utility, based on highly-cited papers found in
DBLP, Scopus, and Google Scholar.

The remaining of the chapter is organized as follows: we summarize the privacy threats
in Section 4.2 and the state-of-the-art privacy protection models for trajectory in Section 4.3.
Finally, we summarize future research direction in Section 4.4.

4.2 Sensitive data and attacks

Sensitive data is personal data (i.e., any information related to an identifiable natural person)
which, by its nature, is particularly sensitive in relation to fundamental rights and freedoms [2]
(e.g., which might cause forms of discrimination or undesired profiling). In this section, we
categorize what sensitive data are exposed by spatiotemporal patterns, and how (technically)
attack models exploit these patterns on published trajectory data. At the end of the section,
Table 4.1 connects and summarizes these two directions.

4.2.1 Sensitive data

By taking inspiration from GDPR [2], we distinguish three categories of sensitive data:
identity (i.e., any data that directly identifies an individual; e.g., fiscal code and social security
number), personal data (i.e., any information related to an identifiable person; e.g., religion
and ethnicity), and social relationships (i.e., any relationship between natural people; e.g.,
friendship or partnership). Despite the value of trajectory data is out of question, its peculiar
spatiotemporal, sequential, and recurrent natures threaten the protection of sensitive data.
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Identity: As human mobility is highly unique [64], individual trajectories act as finger-
prints, since individuals in trajectory datasets are likely to be re-identified using only on a few
known locations. For instance, a trajectory in a rural area generates outlier locations that are
easily exposed [300], and the identity of an individual might be uncovered by linking shared
paths (i.e., connecting individuals with high trajectory similarity). Additionally to single
trajectory locations, individual moving history unveils personal routines and idiosyncratic
behaviors that are easily linkable to individual identities. For instance, the personal gazetteer
identifies recurrent locations in everyday life, such as home, work, and favorite restaurant.
Similarly, the location probability distribution identifies how likely an individual is in a
given location at a given time. Although some spatiotemporal patterns are extracted for the
good purposes such as destination prediction [287], point-of-interest (POI) recommendation
[312, 311], and personalized navigation [41, 59], acquiring these distinguishable knowledge
dramatically enhance attackers’ capability of identifying a specific individual.

Personal data: Beside identification, personal gazetteers (e.g., frequented locations,
check-ins, POIs) and individual mobility also unveil personal data. The semantic information
on locations contained in personal gazetteers (e.g., Mosque or Catholic church, 5∗ hotel or
B&B) expose individual habits (e.g., religion, wage) to user profiling [97]. Similarly, mobility
preferences or recurrent mobility patterns (e.g., how likely an individual rides a bicycle
instead driving of a car, or knowing her preferred routes or frequent stops) vary from person
to person [203, 202], exposing even religion [86]. Indeed, by the analysis and prediction of
individual trajectories, it is possible to infer demographics, lifestyle, and previously-unknown
locations [101, 266]. Interestingly, also from aggregated location statistics (e.g., the number
of individuals covered by a GSM cell) it is possible to infer the presence of an individual in
certain dataset, allowing the inference of her personal data related to the dataset (e.g., her
health condition if the dataset is about the movement of hospitalized people).

Social relationships: Social relationships affect user mobility [51]. Following the
ever-increasing amount of geo-tagged contents (e.g., check-ins or geo-localized games),
individuals not only expose themselves through personal gazetteer, but also give the chance
of inferring their social relationships [132]. Additionally, the spreading of positioning
systems (e.g., GPS and wireless access points) exposes aggregated patterns such as the
encounter of people in area of interest (i.e., a continuous time interval in which individuals
are close in space; e.g., concerts and manifestations). For instance, as individuals tend to
group in communities (e.g., family and colleagues) the encounter and proximity of people in
restricted areas unveils social ties based on co-located trajectories [28].
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4.2.2 Attack models

An adversary can gather sensitive data on individuals within or across the datasets. The
research community is paying much attention to the issue of privacy. While some researchers
continuously invent new algorithms to effectively anonymize sensitive data without compro-
mising its analytical power [314], others keep discovering ways to break such anonymity
[226]. Among the most famous de-anonymization attacks is [207], where more than 80%
of the anonymous users published by Netflix for a competition had been re-identified by
matching them with those on the publicly available Internet Movie Database (IMDB). De-
anonymization techniques can be applied to very different kinds of data. For instance, some
works study social network relationships to infer users’ identities [208, 256], while others
rely on profile data (e.g., username, gender, age) [109, 204].

The sensitivity of trajectory data opened new opportunities to specialize generic attacks to
the spatiotemporal domain. We classify existing attack models in two orthogonal categories:
linkage and probabilistic. Linkage models refer to what sensitive data is inferred and are
categorized depending on such information, while the probabilistic attack model quantifies
how much knowledge is revealed by accessing the dataset.

Linkage

Depending on the target, linkage attack models are categorized in record (i.e., inferring
individual identity), attribute (i.e., inferring personal data such as heal condition), table (i.e.,
inferring personal data through the presence of a known individual in the dataset), and group
(i.e., inferring social relationships).

Record linkage: An adversary with some background knowledge (e.g., exposed locations
[225, 174], origin and destination locations [193], and social relationships [42]) can try to
identify the record of a known victim (i.e., perform an identification attack). Record linkage
is the principal attack addressed by the state-of-art contributions.

Record linkage is formalized as a k-nearest-neighbor search (i.e., finding the most similar
k individuals to the given one) in [148]. While in [230], the authors model a linkage attack
as a bipartite graph in which individuals are modeled as two disjoint vertex sets connected
by edges weighted by the similarity between the two individuals (e.g., the number co-
occurrences at a certain spatiotemporal bin). The maximal match within the bipartite graph
[162] identifies the optimal linkage. Linkage attacks differentiate by how individual similarity
is computed (i.e., what spatiotemporal patterns are exploited to link two individuals). We
distinguish behavioral similarity and point-wise matching.
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Behavioral similarity approaches measure the similarity between two trajectories by
extracting a behavioral model from both of them and by computing the similarity between
the models. One of the most common models is based on the extraction of stay points
[205, 206, 189, 172, 98]. In [285], the authors exploit the uniqueness and regularity of
human mobility [254] (e.g., night and daytime mobility behaviors) to recover individual
trajectories from aggregated mobility data without any prior knowledge; given a dataset
representing the number of trajectories in a cell at a given time, the authors iteratively estimate
the probability for a single individual to move from a cell to another in its neighborhood and
link adjacent locations by maximizing such probability. However, the issue with behavioral
similarity approaches is that they require the adversary’s knowledge to be sufficiently rich to
build a model that can be compared with the one built from the anonymous source — which
is not the typical case. For instance, in the case of social networks, only a few points per user
are known to the adversary with respect to the length of the anonymous trajectories. Indeed,
these works are all verified by relying on the same dataset to extract both training and test
sets of the approach.

Point-wise matching approaches measure the similarity between two trajectories by
evaluating the match of the single points of one trajectory against the other; each match
is assigned a score or a probability, which is then used to compute the final similarity
[38, 183, 230]. Differently from behavioral similarity approaches, point-wise matching
ones are usually applied to data coming from different sources (e.g., anonymous GPS
trajectories, and public social network data). For instance, [230] measures the probability of
encountering a certain user in a certain location and point in time. Similarly, in [234], the
authors use the frequency of user login in different locations to approximate the probability
of visiting these locations. In [190], the authors discretize a map in a uniform grid, define
the similarity between two individuals as the Jensen-Shannon divergence between their
two location probability distributions, and finally link users minimizing the divergence. In
[74], the authors link datasets through a spatiotemporal join on co-occurring locations and
time periods (known locations or areas can be leveraged to prune the join space). In [148],
the authors map trajectories into road network locations, build compressed spatiotemporal
signatures by selecting the locations with the highest TF-IDF score, and formalize linkage
as k-nearest neighbor problem. While these attacks are based on trajectory micro-data, i.e.,
raw trajectory locations, aggregated trajectory data (e.g., the count of users in different areas)
also pose privacy issues.

Attribute linkage: If sensitive values frequently occur within similar trajectories, an
adversary can uncover sensitive information even though cannot unequivocally isolate single
trajectories (i.e., she performs an attribute linkage attack but not a linkage attack). Despite
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value diversity can be ensured through l-diversity, if distinct sensitive values sharing a
semantic similarity occur frequently within trajectories, an adversary can still cause a privacy
breach (i.e., perform a similarity attack).

POIs and personal gazetteer easily expose personal data, since they characterize the
individual interests [60]. Examples of POIs are home, work, religion or political parties
locations [101]. Revealing the POIs can cause a privacy breach as this data may be sensitive
(e.g., frequent visits to a hospital suggest potential diseases). In [101], the authors introduce
a Markov model that represents the mobility behavior of an individual. POIs are states and
transitions correspond to movements from one POI (i.e., state) to another. Then, the authors
leverage such model to infer home locations (i.e., where individuals usually spend their
night) and regular patterns emerging from circles in the mobility models. In [303], for each
individual in a dataset of call records, the authors extract her “top N” locations (i.e., locations
with high frequency) and join them with census data. In [160], the authors introduce an
algorithm to classify the POI semantic. Given two government diary studies (i.e., logs of
two-day individual locations), a multi-class classifier [99] is trained to assign semantic labels
based on individual demographics, time of visits, and nearby businesses. Furthermore, by
extracting and predicting individual movement patterns (either short-term [287] or even up
to a year [238]), it is possible to infer sensitive information such as the mode of transport,
demographics and lifestyle [101]. In [313], given a dataset of locations check-ins, the authors
use spatiotemporal knowledge and the regularity of human mobility to classify demographics
attributes such as gender, age, education, and marital status based on the individual’s POIs
extracted from check-in dataset. In [86], a Reddit user identified Muslim taxi drivers in New
York City by integrating anonymized taxi trips data to the to the daily praying times. By
uncovering which taxi drivers were inactive at such times, it is possible to infer sensitive
information such as religion. In [97], the authors collected and integrated GPS locations with
open data to profile the income, home and working locations of individuals frequenting a
specific mall by summarizing frequent location patterns.

Table linkage: The inference of an individual presence in a private dataset set can leak
sensitive information. For instance, learning that a victim is part of a dataset of hospital
patients implies learning that she suffers some disease [227]. Membership disclosure attacks
determine the presence of target individuals within a dataset. In [227], the authors train a
classification model to infer whether an individual is part of the aggregated released data.
Given a trajectory dataset, the authors extract features for each region of interest (e.g.,
variance and sum of values of each location over time) to train a classifier. A peculiar case of
disclosure—not directly related to individual privacy—is the identification of military bases
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from the publication of a visual map representing sport activities using the Strava mobile
application [135].

Group linkage: The analysis of trajectory data can leak social relationships between
individuals with the published dataset. For instance, individuals in the vicinity of each other
on a frequent basis can share home or work place, or share the same religious and political
orientation [101]. In [51], the authors investigate the influence of social relationships on
human mobility, showing that social relationships can explain about 10% to 30% of all
human movement. In [28], the authors exploits the ubiquity of Wi-Fi access points to infer
social ties based on co-located trajectories. Individuals tends to group in communities (e.g.,
family and colleagues) where community members share some traits stronger than with
non-members [85]. Relationships can be represented by an undirected weighted graph where
vertexes are individuals, edges are relationships, and edge weights quantify the relationship
intensity. Communities are represented as sub-graphs. In [28], the authors characterize
relationship types: friends, classmates, and others. To construct the ground truth data, each
relationship is assigned one (or more) labels based on survey questionnaires. The authors
define an encounter as a continuous time interval in which individuals are close in space,
then extracts spatiotemporal features to train a classifier to label social relationships.

Probabilistic

A probabilistic attack quantifies how much information an adversary can gather by accessing
the dataset rather than focusing on exactly what records, attributes, and tables the adversary
can link to a target victim [100]. Intuitively, the access to a trajectory dataset should not reveal
too much additional information to what is already known to the adversary. Probabilistic
attacks can be understood as a generalization of attribute linkage [83], since their goal is
not to infer a specific sensitive attribute, but rather to increase the generic knowledge of
an adversary. For instance, given some locations known by an adversary, while linkage
attacks focus on specific sensitive data, a successful probabilistic attack can reveal the entire
trajectory of an individual (as in record linkage) as well as the sensitive attributes related to
that trajectory (as in attribute linkage).

Recently, probabilistic attack has been formalized in [119], where given τ known loca-
tions, an adversary is limited to learn only additional ε locations. The adversary knowledge
can be any continued sequence of spatiotemporal samples, and the maximum additional
knowledge that she can learn is called leakage. Similarly, [266] formalizes a probabilistic
attack as the probability to learn a location previously unknown, and produces a privacy
model to remove all the privacy breaches given some known locations. Intuitively, such
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Table 4.1: Categorization of sensitive information, sensitive spatiotemporal patterns, and
attack models

Sensitive data Attack Model Exploited spatiotemporal pattern Attack models

Identity Record linkage

Known locations [225, 174, 193]
Location probability distribution [74, 230, 190, 285, 148]
POI / Personal gazetteer [91]
Shared path [278]

Personal data

Attribute linkage
Recurrent mobility pattern [101, 287, 86]
POI / Personal gazetteer [101, 303, 160, 313, 60, 97]

Probabilistic attack Known locations [119, 266]

Table linkage Aggregate statistics [227]

Social relationship Group linkage Encounter [28]

probability is related to the uniqueness of unknown locations belonging to the trajectories
containing the known locations.

4.3 Protection of trajectory privacy

We categorize the privacy models for the release of anonymized trajectory data as formal
or ad-hoc. Formal privacy models are independent from the data type, and adapt the ones
introduced in Section 4.1 to spatiotemporal data (e.g., k-anonymity to produce groups of k
trajectories). Ad-hoc models are specific to spatiotemporal data and mobility features (e.g.,
road networks constraints). We organize the content of the section at an increasing level
of details. We first introduce each privacy model and its related works, then we describe
the main contributions in detail. Privacy models and countered attacks are summarized in
Table 4.2.

Note that many privacy models are built atop generalization and suppression primi-
tives. Generalization [103] coarsen sensitive locations to reduce their sensitivity. However,
generalization achieves anonymization for very coarse trajectories (e.g., at city level) [64].
Suppression deletes sensitive locations to prevent de-anonymization through idiosyncratic
trajectories. Additionally, as long trajectories are rarer than shorter ones (e.g., a two-week
trace reveals 50% population’s top two locations [303]), splitting a trajectory to anonymize
its subparts retains higher utility [266].
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4.3.1 Formal models

These privacy models define privacy on formal requirements usually expressed as parameters
of the anonymization process. Some of the following models address quasi-identifier QI
attributes, i.e., attributes enabling to breach privacy after the anonymization process. For
instance, even after removing direct identifiers (e.g., social security number) from census
data, it is possible to recover the identity of 87% of the US population through birth date,
zip code, and gender attributes [61, 261]. Given a dataset D, D(QI) denotes the records
containing QI (e.g., the trajectories containing the locations QI).

k-anonymity

Among the anonymity models, k-anonymity counts the highest number of contributions due
to its intuitive anonymization approach. A dataset D satisfies k-anonymity if each value in
D(QI) appears in at least k records. k-anonymity counters record linkage by ensuring the
indistinguishability of an individual within an anonymity group that minimizes information
loss (intuitively, how much distortion is required to hide the individual). Since optimal
k-anonymity has been proved to be NP-hard [196], k-anonymity models share a two-step
greedy procedure: building groups of at least k trajectories and anonymizing the trajectories
within each group.

(k,δ )-anonymity is the first application of k-anonymity to trajectory data. NWA [4]
models trajectories as a cylindrical volumes; if two trajectories move within the same
cylinder (i.e., are closer than δ ), they are indistinguishable. Since NWA measures trajectory
distance with the Euclidean distance, W4M [5] extends NWA to overcome the Euclidean
distance limitations (e.g., it is only applicable to trajectories with equal length) by introducing
an edit distance between two trajectories. Since their introduction, NWA and W4M inspired
further contributions to further reduce information loss, such as applying the minimum
description length principle to a distance metric [167], coarsening timestamps to increase
the anonymized trajectories [50], and enabling custom k for specific trajectories and time
intervals [185, 158, 138].

Rather than a cylindrical volume, GLOVE [118] represents a location as a rectangle
in space and time, and iteratively merges the two trajectories at minimum stretch effort;
intuitively, the stretch necessary to produce a new generalized rectangle including two
locations. If generalization requires a big stretch, locations are suppressed. Similarly, KAM
[199] merges locations into density-based clusters, transforms trajectories to sequences of
cluster centroids, and prunes all the trajectories whose path is shared by less than k other
trajectories. Rather than locations, TOPF [73] groups trajectories with the same start/end
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timestamps in anonymity groups of size k, and iterates over the remaining trajectories to
add subtrajectories to existing groups with the same start/end timestamps. In [141], after
grouping trajectories by start/end timestamps, the authors build a weighted graph for each
group where vertexes are trajectories, and trajectories overlapping in time are connected by
edges weighted with their Euclidean distance. The authors partition the trajectory graph
connected components until no connected component with more than k vertexes exists.
SwapLocations [72] clusters trajectories overlapping in time, and, for each cluster, swaps
close spatiotemporal locations among trajectories.

While k-anonymity makes no assumption on the apriori adversary knowledge, km-
anonymity [225] ensures indistinguishability against an adversary knowing any sequences
of m locations by computing all the subtrajectories with length up-to m, and by iteratively
generalizing locations with support ≤ k. kτ,ε -anonymity [119] bounds the amount of knowl-
edge an adversary can get, ensuring that any adversary with a knowledge on locations over a
time period τ can only discover additional locations over a time period ε . kτ,ε -anonymity is
a variation of km-anonymity where m=τ .

Detailed description of the main contributions. NWA [4] and its extension W4M [5],
as well as GLOVE [118], are well-known implementations of trajectory k-anonymity, and
are often taken as baselines in privacy-model comparisons.

NWA models a trajectory as a cylindrical volume where radius δ represents the location
imprecision. Two individuals moving within the same cylinder are indistinguishable, leading
to (k,δ )-anonymity. NWA coarsens the timestamps of begin/end trajectory locations within
an interval of length τ and groups trajectories by begin/end timestamps. Then, NWA clusters
the trajectories in each group by selecting the cluster centers (first the trajectory farther from
the dataset center, then the farthest trajectory from the previous center), adding to each cluster
the k-1 closest trajectories and assigning the remaining trajectories to the closest cluster
within a given radius. Clusters with less than k elements are discarded. Finally, NWA maps
each cluster into a (k,δ )-anonymity group by moving the original locations and minimizing
distortion (i.e., the Euclidean distance between trajectories). First, NWA obtains cluster
centers for δ = 0 (i.e., the mean location), then it moves the points outside a disk with radius
δ along the center-point direction. As the Euclidean distance is defined for trajectories with
the same number of points and does not capture subtrajectories slightly shifted in time, W4M
[5] introduces a similarity function based on the edit distance [271] between two trajectories.
Intuitively, an edit operation occurs when two trajectory locations are far in space/time. This
time-tolerant distance removes the need to group trajectories into equivalence classes.

GLOVE [118] represents a location as a rectangle in space and time (at the beginning, each
rectangle collapse to the location point), and achieves k-anonymity through generalization
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and suppression. GLOVE measures the stretch effort (i.e., the smallest loss of accuracy
necessary to generalize two locations to an indistinguishable one). Given two locations, the
stretch effort measures how much the spatial (and temporal) rectangle should be extended to
cover the minimum area including both spatial (or temporal) rectangles. As in hierarchical
clustering, GLOVE iteratively merges the two trajectories at the minimum stretch effort by
merging each location in the longer trajectory to the location in the shorter trajectory at the
minimum sample stretch (and vice-versa). If generalization requires a big spatial stretch, the
two locations are suppressed.

l-diversity and t-closeness

If individuals within an anonymity group share similar sensitive values, the adversary infers
sensitive information. l-diversity [184] ensures that an anonymity group contains at least l
well-represented values for each sensitive attribute. Several definitions of well-represented
values exist. For instance, a dataset D satisfies distinct l-diversity if the number of values
for the sensitive attribute in D(QI) is greater than or equal to l. Additional definitions of
well-represented values are based on entropy and frequency [184]. When applied atop k-
anonymity, l-diversity counters both attribute and record linkage. However, assuming that the
distribution of the sensitive attribute “Sex” is 99% female and 1% male, distinct 2-diversity
creates at most |D| ·1% groups (each group contains 1 “male” value) for which an adversary
knows that 99% of the individuals in each group are females (skewness attack). Additionally,
when sensitive values in a group are distinct but semantically similar, an adversary can learn
sensitive information (similarity attack). t-closeness overcomes the limitations of l-diversity
in the protection of attribute linkage threats. t-closeness [170] ensures that the distance (e.g.,
Earth Mover’s Distance [236]) between the distribution of sensitive attributes within a group
and their global distribution is smaller than t.

Given raw trajectories labeled with semantic data (e.g., home, work, pub, cinema),
KLT [270] applies l-diversity and t-closeness to ensure that each location in a trajectory
is mapped to heterogeneous semantic classes of POIs. Only KLT adopts l-diversity and
t-closeness formulations, but others provide models inspired by l-diversity. (K,C)L-privacy
[49] guarantees that any subsequence q of any known L locations is shared by at least
K records and that the confidence to infer any sensitive value in S from q is at most C.
Any subsequence q (with 0 < |q| ≤ L) such that D(q) does not satisfy KCL conditions is
suppressed. Similarly, PPTD [156] suppresses a critical subtrajectory τ if the possibility
to link a MO in the private dataset is higher than a given threshold. (α ,K,L)-privacy [175]
guarantees that any subtrajectory τ is contained in a group of at least k elements, that the
probability of inferring a sequence of L sensitive locations from τ is lower than α , and that
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the probability to infer a sensitive value v is lower than α . (l,α ,β )-privacy [294] ensures
distinct l-diversity, α-sensitivity (i.e., the probability to infer sensitive value is below α),
and β -similarity (i.e., the probability to infer a value within a sensitive group is below β ).
The authors identify critical sequences of maximum length m (upper bound to the adversary
knowledge) and modify/drop them to enforce l-diversity, α-sensitivity and β -similarity.
c-safety [201] protects semantic trajectories based on the generalization of visited places
within a POI taxonomy. This is similar to l-diversity, but the number of sensitive places is
not fixed.

Detailed description of the main contribution. KLT [270] is the only approach imple-
menting both l-diversity and t-closeness. Given raw trajectories labeled with semantic data
(e.g., home, work, pub), the authors leverage l-diversity to ensure that each location in a
trajectory is mapped to heterogeneous semantic classes of POIs. The authors partition space
into regions containing POIs from different classes. Each region is regarded as a vertex in
graph connecting neighboring regions via bidirected edges. Given two locations in regions
la, lb the authors apply Dijkstra to find the shortest path between la and lb and create a new
connected region lc1 . As to time, each location has a time slot [ta, ta +da] and [tb, tb +db] that
is generalized to [tc, tc +dc] = [min{ta, tb},max{ta +da, tb +db}]. Then, the authors extend
lc1 to lc2 to satisfy l-diversity. If lc1 has at least δ l categories of POIs, lc2 corresponds to lc1 .
Otherwise, the authors calculate the categories of POIs and the area for each region, then
pick the neighboring region with minimum area among the ones that, if merged to lc1 , satisfy
l-diversity. Finally, the authors find a region lc that extends region lc2 to satisfy t-closeness.
t-closeness is guaranteed by constraining the Kullback-Leibler divergence between the POI
distribution of lc2 and the POI distribution of the whole dataset. If t-closeness is already
satisfied, lc corresponds to lc2 , else lc2 is expanded until the requirement is satisfied.

Differential privacy

Differential privacy [76] ensures that the presence of a record in a dataset leaks a controlled
amount of information ε . An algorithm f satisfies ε-privacy if for any two datasets D1

and D2 that differs of one record, and all set S of values in the image of the algorithm (i.e.,
S⊆ Range( f )) it is

Pr( f (D1) ∈ S)≥ eε ·Pr( f (D2) ∈ S)

where Pr denotes the probability to observe a specific output.
Several randomized mechanisms achieve differential privacy for trajectory data. The

Laplace mechanism adds a controlled amount of noise drawn from the Laplacian distribution
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Lap(δ f
ε
) [76] to the function f to compute. Tuning ε depends on the sensitivity δ f , i.e.,

the largest effect on f ’s output that the presence of a single individual has. For instance,
if f returns the number of rows in the dataset, f : D→ R = |D|, it is δ f = 1. The Laplace
mechanism requires the image of f to be real numbers, and is mainly applied to anonymize
aggregate queries (e.g., count queries). Several algorithms adapted it to generate synthetic
trajectories (i.e., data not preserving truthfulness at record level) from the original data
distribution. To this end, trajectories are commonly represented in a prefix tree to which
Laplacian noise is added (e.g., [133]), and/or statistics on the original trajectory dataset are
extracted to generate synthetic trajectories representing such statistics (e.g., [125]).

DPT [133] adapts the Laplacian mechanism to publish synthetic trajectories. The authors
discretize space in hierarchical grids and build a prefix tree for each grid. The tree nodes
represent grid cells, and count the trajectories moving through these cells. To achieve
differential privacy, the authors add noise from the Laplacian distribution [76] to trajectory
counts, and finally join paths with increasing length to synthesize anonymized trajectories.
While DPT [133] synthesizes spatial trajectories, SafePath [12] synthesizes spatiotemporal
trajectories by adding the timestamp location to the prefix tree, and [308] also synthesizes
trajectories with sensitive attributes. DP-STAR [125] synthesizes trajectories by injecting
noise to the utility features introduced in DPT [133]: density grid, mobility model, trip
distribution, route length). As for the density grid, note that the probability to transition
from a location to another depends on the grid structure (e.g., a fine-grained grid has many
cells—some with very few visits—and requires more noise addition). DP-STAR samples
trajectory’s start/end points and length, and estimates intermediate locations using a random
walk on the mobility model and the probability to reach the final location from the current
one. Similarly, DP-WHERE [198] adopts different statistics to synthesize trajectories from a
dataset of geo-localized phone calls (e.g., calls per day, call time, and call location).

The Laplacian mechanism requires a differentially-private f that maps datasets into real
numbers. However, f can map datasets to data structures (e.g., clustering partitions). The
exponential mechanism [194] samples the synthesized output from a probability distribution.
Intuitively, the exponential mechanism generates artificial samples that preserve the same
distribution of the original dataset (i.e., records which represent the input data). Each possible
record gets a score based on its likelihood to be derived from the input data, and records
with high scores are drawn. However, the sampling complexity grows exponentially in
the probability space. For instance, in [139], the authors formalize anonymity groups as
the ones with the highest utility (i.e., intra-group similarity) among the groups in all the
possible partitions, but, being the number of partitions exponential, the authors provide
a sub-optimal solution which leverages a single partitioning instance. Similarly, in [169],
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the authors assign a utility to k-means clustering in terms of intra-cluster distance and
sample a clustering partition from an exponential distribution. In [147], generate synthetic
trajectories by incrementally sampling the next trajectory location distance and direction
from exponential distributions.

Finally, differential privacy can be achieved via randomized response, i.e., deciding by
chance whether to return the actual outcome or a randomized one. In [249], the authors
sample trajectory locations and interpolate the missing ones. Since locations adjacent
to sensitive ones may leak sensitive information, Lclean [131] determines the correlation
between sensitive and adjacent points. For each sensitive region, Lclean finds sequences close
in space/time that either do not contain sensitive information or that show strong correlations.
Given the sequences, Lclean substitutes trajectory subsequences via randomized response,
making it impossible for an adversary to predict sensitive regions.

Detailed description of the main contribution. DPT [133] is a well-known model for
differential trajectory privacy often referred to as a baseline for comparison. The authors
leverage the n-gram model introduced in [47] to represent the correlation between trajectory
subsequences, and discretize space using a hierarchical reference system, i.e., a set of
uniform grids with increasing resolutions. Different reference systems capture movements
(i.e., consecutive locations) at different speeds. Within each reference system, individuals
are constrained to move from a cell to a neighboring cell. If a movement is too fast to
be captured within the same reference system, individuals jump to a coarser one. To each
reference system corresponds a prefix tree of depth n, whose nodes count the trajectories
moving from the root cell to the current one. The authors add Laplacian noise [76] to the
node true counts, and decide whether to prune a node by comparing its noisy count with a
threshold Θ. The exploration ends when either the depth of the tree reaches n or no node can
be further expanded (i.e., the noisy counts do not pass Θ or the privacy budget is exhausted).
The authors leverage an adaptive allocation of the privacy budget ε: for a shorter path, each
node in the path should receive more privacy budget. The authors estimate the length of a
path based on known noisy counts and then distribute the remaining privacy budget. Then,
the authors drop the trees with high noise and low utility. As trajectory directionality could be
lost due to noise addition, the authors weight the sampling of synthetic trajectories with the
likelihood for an individual to move from a cell to another. Based on the 1-st order Markov
assumption, given the noisy prefix tree, synthetic trajectories are built by joining n-grams
sharing n−1 elements.
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Plausible deniability

Plausible deniability [30] generates synthetic data with differential privacy guarantees. For
any dataset D and any output y = M(d1) with d1 ∈D, y is releasable with (k,γ)-deniability if
there exist at least k-1 distinct records such that for any i, j ∈ {1, ...,k}

γ
−1 ≤ Pr(y = M(di))

Pr(y = M(d j))
≤ γ

where Pr denotes the probability to observe a specific output. In other words, an adversary
cannot tell if a synthetic record has been generated by an individual in the original dataset.

Detailed description of the main contribution. The only implementation of plausible
deniability for trajectory data is [29]. SPLT [29] generates synthetic trajectories with high
semantic similarity and low geographic similarity to the original ones. Semantic similarity
simS reflects if pairs of locations have the same semantic, while geographic similarity simG

correlates movements through locations. Given two individuals, while simG is usually low
(i.e., the two do not frequent the same place), simS can be high (i.e., the frequented places
are semantically similar, for instance “home” and “work”).

Firstly, the authors sample real traces (i.e., seed dataset). For each seed, the authors
compute a 1st-order Markov model representing the probability to visit and to transition
between locations. Individual mobility models are averaged into an aggregate one. Secondly,
the authors build a location semantic graph in which vertexes are locations, and edges are
weighted with the semantic similarity between locations. Such graph is clustered in classes,
such that locations in the same class are visited in same way regardless their geographic
positions. Thirdly, the authors replace the geographic locations in the mobility with all
the locations from the same semantic class. Any random walk is a valid trace that is
semantically similar to the seed. To enforce geographical consistency with the general
mobility model, the authors encode traces into an HMM (symbols are locations, observations
are the semantic classes, transition probability matrix follows the aggregate mobility model)
to find the sequence of locations that most likely generated the semantic one by using
the Viterbi algorithm. Finally, the authors run a privacy test to decide whether to release
each trace under statistical dissimilarity and plausible deniability. Statistical dissimilarity
ensures independence by measuring the EDR distance between the synthetic/seed probability
distributions, and by measuring the distance between the two traces. For all seeds s and
respective synthetic trajectories f , the trace is rejected if either simG( f ,s) ≤ δ or | f ∪
s| ≤ δi. Plausible deniability implies that a synthetic trace is generated by multiple seeds.
Given the dataset of trajectories discarded as seeds, the synthetic trace satisfies (k,δ )-
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plausible deniability if there are at least k≥ 1 alternative traces a ∈ A such that: |simS(s, f )−
simS(a, f )| ≥ δ .

4.3.2 Ad-hoc models

Ad-hoc models address privacy-preserving publication specific to trajectory data, such as
mix zones (i.e., geographical areas in which individuals swap pseudonyms) and dummy (i.e.,
synthetic trajectories resembling the original).

Mix zone

Mix-zone models prevent long-term tracking of trajectories [26]. Once entered a mix zone,
individuals swap their pseudonyms and exit the mix zone after an unknown length of time.
An adversary observes the pseudonyms of all ingress/egress events in order to reconstruct
mappings between pseudonyms (i.e., record linkage). Given n individuals, there is a total of
n! mappings. Three conditions bound mix-zone areas: location accuracy (i.e., the lower the
accuracy, the bigger the area), sampling accuracy (i.e., the higher the rate, the more accurate
the linking), and computational cost (i.e., the more mix-zones, the higher the cost).

MobiMix [218] models a mix zone as a k-anonymity region where k individuals enter
in some order, swap pseudonyms, and none leaves before k individuals have entered. The
placement, geometry, and time spent inside mix zones affect the privacy level. If permanence
time is constant, it easy to perform a first-in first-out attack. Randomness ensures reordering,
however, individuals are not always able to spend random time inside a road network, and do
not follow uniform transition probabilities when entering/exiting the mix zone (e.g., in case of
trafficked routes [26]). MobiMix introduces the time window bounded non-rectangular mix-
zone model: for each branch of a road junction, a mix-zone region starts from the center of the
junction and expands to the outgoing road segment. The length of the region is proportional
to the average road-segment speed. In [193], the authors analyzed the effectiveness of mix-
zones under the assumption that MOs follow the shortest path between origin/destination
locations (e.g., to reduce the cost of taxi trips). An adversary can compare the minimum path
between known origin/destination locations using the Dijkstra algorithm in a road network
and the minimum DTW distance between the anonymized trajectories. Given eight mix
zones positioned in road intersections with the highest traffic flows, the authors linked more
than 90% trajectories back to the original path.

Detailed description of the main contribution. The protection/utility achieved by mix
zones depends on their placement. NUTMP [176] formalizes placement by minimizing the
number pairwise-associated vertexes in a road-network graph. If a individual can travel
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from a vertex to another without going through a mix zone, the two vertexes are pairwise
associated. The total number of pairwise associations represents the privacy level. The
authors combine this objective function and constraints (e.g., number of mix zones and
traffic density) to derive an NP-hard integer-linear-programming formulation and an heuristic
solution. The road network is partitioned into disconnected components by looking for
articulation points, i.e., vertexes whose removal disconnect the graph. If all vertexes that are
not in an independent set are selected as mix zones (i.e., in graph theory, an independent
set refers to a set of vertices that are not adjacent to each other), there will be no pairwise
association between the vertexes in the independent set. The authors iteratively remove the
vertexes introducing the least number of pairwise associations from the mix zone candidate
set until all constraints are satisfied. To consider the impact of traffic conditions, NUTMP
only considers the articulation points with high uncertainty in determining if a user has
traveled through such vertex, and vertexes ensuring a minimum pairwise entropy (intuitively,
high uncertainty in connecting two pseudonyms).

Dummy

Dummy anonymization release original trajectories along with fake ones. The probability to
disclose true trajectories is minimized by dummy-privacy models.

In [297], the authors generate dummy trajectories resembling individuals moving in
free space given three privacy parameters: short-term disclosure (i.e., the probability of
successfully identifying a true individual location); long-term disclosure (i.e., the probability
to identify a trajectory depending on its intersection with others); and distance deviation
(i.e., the distance between dummy and real trajectories for a given individual). The authors
introduce the random pattern strategy, which selects dummy start/end points and intermediate
movements as random moves towards the end point. However, this strategy requires the
synthetization of many dummy trajectories to meet privacy requirements. Several contribu-
tions aim at reducing the number of generated dummies by applying different strategies. The
rotation strategy, given an individual trajectory, generates a new dummy trajectory by rotating
the original one. In [165], the authors introduce the K-intersected strategy, where, given K
intersection points as input, a dummy trajectory is generated by composing two sub-dummy
trajectory sets: one between two intersection points (a sub-dummy is obtained by performing
random moves from the start to the end point), and one of the sub-dummies that do not
contain intersection points (as for the rotation strategy, the authors determine the solution
space based on distance derivation first, and then pick the locally optimal sub-dummy). The
authors also introduce the multiple rotation strategy. Individual trajectories usually overlap
with a given frequency (i.e., probability). A point within the overlapping area with the high-
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Table 4.2: Privacy models and countered attacks

Attack Model Privacy Models Papers

Record linkage

k-anonymity W4M [5], GLOVE [118]
Differential privacy DPT [133]
Plausible deniability SPLT [29]
Dummy DTPP [174]
Mix-zone NUTMP [176]

Attribute linkage l-diversity, t-closeness KLT [270]

Table linkage
Plausible deniability SPLT [29]
Differential privacy DPT [133]

Probabilistic Differential privacy DPT [133]

est probability is used as a rotation point, and new dummies are devised using the rotation
strategy. In [282], the authors introduce the adaptive generation strategy. For each given
rotation angle and location in directory T , the authors synthesize a new candidate dummy
trajectory satisfying the distance distortion, then perturb trajectory locations to achieve more
uniformly distributed trajectories by moving these locations in sparse areas. In [151], the
authors generate dummies resembling known individual movements between known stop
locations. So far, these contributions do not consider external knowledge.

Detailed description of the main contribution. The effectiveness of dummy-privacy
models relates to the capability to rule out fake trajectories. This highly depends on the
apriori adversary knowledge: if a true spatiotemporal location is known (i.e., exposed),
an adversary can easily rule out all the trajectories not containing such location. DTPP
[174] generates dummy trajectories based on exposed locations. The authors divide the
location space into a uniform grid. If a trajectory location is exposed, the authors get
dummy candidates from the neighboring cells. Otherwise, if the region where the location
belongs cannot generate enough dummy locations to anonymize it the location is suppressed.
DTPP generates k-1 dummy trajectories to form an anonymous trajectory set including the
real trajectory (whereas in k-anonymity no synthetic trajectory is generated). The authors
construct dummy trajectories by connecting dummy locations. Since a trajectory generates m
dummy locations at each sensitive location, the number of dummy trajectories is exponential.
DTPP leverages spatiotemporal reachability to drop such a number.
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4.4 Conclusion and research directions

In this chapter, we provided an overview of the sensitivity and privacy issues of trajectory
data. Since trajectory locations follow idiosyncratic spatiotemporal patterns, only a few
locations can link 95% of individuals; the more detailed/longer the trajectory, the easier
to break individuals’ privacy. As a consequence, many anonymization models have been
introduced to protect privacy issues such as personal gazetteers and information as well as the
linkability of trajectories from different datasets. Since there are no common frameworks and
datasets to compare the existing privacy models, given some privacy requirements, choosing
the appropriate privacy model is non-trivial and requires an extended empirical evaluation.
This is especially true when quantitative distortion/utility criteria have to be met.

In this context, further research directions are the following.

• Identifying common privacy/utility metrics that enable the comparison of existing
models. Utility metrics measure the usefulness of data with respect to a specific goal; in
other words, they assess that data are not too much distorted. Privacy metrics measure
how much sensitive information can be disclosed/protected.

• Studying the scalability of the proposed methods. Indeed, the usefulness of a privacy
model is related to its capability to scale up to big datasets. Such metrics are orthogonal
to privacy/utility metrics, but ensure the feasibility of anonymization models [226]. A
typical performance metric is the execution time.

• Performing the empirical comparison of the existing privacy approaches in a uni-
fying framework involving shared public datasets. Indeed, while many attacks and
anonymization models have been introduced in this chapter, they are usually evaluated
against private datasets and custom metrics.

• Identifying new attacks that expose the limits of the existing privacy (anonymization)
models since, with the increasing availability of big data, new privacy issues arise by
integrating data from different sources (e.g., mobility and social data; see Chapter 5).



Chapter 5

De-Anonymization of Personal
Gazetteers

5.1 Introduction

The interest towards trajectory data has sensibly increased since the dissemination of mobile
devices; indeed, the latter allows to constantly trace the location of the people by registering
their connections to cell towers, GPS satellites, and WLAN devices. There is enormous value
behind trajectory data, as they enable a wide range of location based services (LBS), ranging
from navigation applications to crowdsensing applications and target marketing [226]. Their
collection and ownership are not limited to infrastructure service providers, but it extends to
any application which has been granted access to the geolocalization services of a device.

When trajectory data is ascribed to people, personal gazetteers [315] are among the most
interesting pieces of information that can be extracted. The personal gazetteer of a user is
intended as the set of places mostly visited by such user (e.g., the home and work places,
restaurants, shops), possibly enriched with the set of time instants of each visit; we refer to
each visited place as a stay point. Several research efforts have proven that the discovery of
users’ personal gazetteers is possible by applying a clustering algorithm on users’ trajectories
[315]. Due to their sensitiveness, personal gazetteers are usually anonymized; nonetheless,
researchers have shown that they present unique patterns (much like fingerprints [148]) that
expose them to the risk of being de-anonymized, i.e., of being associated with the individual’s
true identity. The literature shows that the knowledge of few spatiotemporal points of a user
are enough to uniquely identify his/her anonymous profile [64, 235].

A de-anonymization attack is carried out by an adversary to uncover the true identities in
an anonymous dataset by exploiting some external knowledge where the users’ identities are
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known. To this end, social data is often used as external knowledge due to its relatively easy
accessibility [38, 230, 278]. Users of social networks often overlook their privacy settings in
the platform, leaving their identities and their posts (including the time of posting and the
possibly associated georeferenced information, e.g., the location a tweet was posted from)
accessible by the general public. A sequence of georeferenced posts on social media still
represents trajectory data, namely a social trajectory. Although the frequency of points in
social trajectories is not very high (and depends on the users’ level of interaction with the
social network), they can be leveraged by the adversary for the de-anonymization task by
measuring its overlapping with the mobility ones.

In this chapter, we present DART (De-Anonymization of peRsonal gazeTteers), an innova-
tive approach for the de-anonymization of personal gazetteers through social trajectories. The
goal is to exploit the uniqueness properties of personal gazetteers to measure their similarities
with social trajectories. State-of-the-art proposals for de-anonymization of trajectory data
follow two main philosophies. The first one is to extract a more-or-less complex behavioral
model from both sets of trajectories and to compare them. This approach is hardly applicable
to social trajectories, as the sporadic nature of the contained points hinders the extraction of
a behavioral model. The second one is to carry out a point-wise comparison, i.e., to calculate
a matching score between the single points of two given trajectories and to measure their
similarity by aggregating these scores. The issue with this approach is that it fails to capture
the unique patterns of trajectories, risking random/irrelevant matches to impact significantly
on the similarity score. In this context, the contribution of this chapter can be summarized as
follows.

• We propose DART as an innovative approach that combines the two main philosophies
proposed in existing works to properly address the scenario in which social trajectories
are used as the external source to de-anonymize personal gazetteers. In particular, it
carries out a point-wise comparison to identify the portion of a behavioral model (i.e.,
the personal gazetteer itself) that is matched by the social trajectory. With respect to
the literature discussed in Section 4.2.2, this contribution is categorized as point-wise
record linkage attack.

• The point-wise matching strategy relies on the computations of a spatiotemporal model
from the personal gazetteer, allowing to estimate the location of the user at a certain
moment in time. This makes the approach robust to (i) potentially missing data in the
mobility trajectories, and (ii) potentially misaligned datasets, i.e., when the mobility
and social trajectories are collected over different periods.
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• We rely on a big data implementation that guarantees the scalability of the approach
to large volumes of data. Indeed, the literature often emphasizes the importance of
designing scalable and efficient algorithms in order to enable their applicability on
large-scale datasets [104, 195].

• We measure the effectiveness of the approach on two real-world datasets (a proprietary
one and the Mobile Data Challenge dataset [163]) and we compare with state-of-the-art
algorithms [38, 148, 278].

Following the extensive literature survey from Chapter 4, this chapter is structured as
follows. Section 5.2 introduces personal gazetteers and explains how they are computed, their
uniqueness properties and the spatiotemporal model that can be derived; Section 5.3 presents
the details of the de-anonymization approach; the experimental evaluation is discussed in
Section 5.4; finally, the conclusions are drawn in Section 5.5.

5.2 Stay points as personal signatures

The personal gazetteer of a user is the set of places that are meaningful to her (e.g., the
home, the workplace, a shop frequently visited). These places are also commonly referred
to as stay points and are typically retrieved by applying some clustering functions on the
user’s trajectory. We use S to refer to the personal gazetteer obtained from a trajectory T
(Definition 1), i.e., S = {s1, ...,sm}, where si is a stay point obtained from T . Each stay
point si is a triple (latitude, longitude,Timestamps) where latitude and longitude identify
the spatial location of the stay point (typically the centroid of the cluster), while Timestamps
is the set of timestamps for which there exists a point in T that occurs at si.

In this Section:

• we discuss how stay points are retrieved (Section 5.2.1);

• we introduce a measure to evaluate the uniqueness of a set of stay points (Section 5.2.2),
which will be used by DART to determine the effectiveness of a match between a
social trajectory and a personal gazetteer;

• we present our spatiotemporal model based on the user’s personal gazetteer (Sec-
tion 5.2.3), which will be used by DART to estimate the user’s location in the absence
of punctual data.
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5.2.1 Computing stay points

There exist several methods for computing stay points out of trajectory data. Except for
some attempts based on exploratory approaches [192] (where the loss of the GPS signal is
interpreted as a clue of the user’s stopping in a stay point) or k-means clustering [18], most
proposals consist of variations of density-based clustering algorithms like DBSCAN [81].
Among the most notable ones, we mention DJ-Cluster [315], a density-joinable clustering
technique that improves DBSCAN by addressing some performance issues by applying some
pre-processing rules to the available data. For instance, it focuses only on the points where
the user is known to not be moving by discarding every point associated with a speed higher
than a certain threshold. Otherwise, the risk would be to include in the identified clusters her
most common walking/driving paths.

s

Figure 5.1: Intuition of the algorithm for stay point extraction.

In this chapter, we rely on Patchwork [117], i.e., a density-based algorithm that improves
DBSCAN by providing a parallel big data implementation that guarantees linear scalability.
Patchwork discretizes the spatial domain into a uniform grid made of 50x50 m cells; the cells
with less than 20 points are discarded, the others are aggregated into clusters. Figure 5.1
provides the intuition of the algorithm. Noticeably, given a cluster of points, the stay point is
chosen as the centroid of the cluster. As the original algorithm is meant for a single trajectory,
our implementation is further parallelized to analyze every trajectory in the dataset as a
bag-of-task; the clustering algorithm is applied in parallel by mapping each trajectory to its
extracted stay points. Additionally, we extend Patchwork to include the pre-processing rules
introduced by DJ-Cluster. More specifically:

• trajectories with less than 100 points are discarded;

• points with accuracy greater than 30 m are discarded;
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• points with an associated speed higher than 2 km/h are discarded;

• each trajectory is sampled down to 1 point per minute to avoid the generation of
clusters on random stopping points (e.g., due to traffic lights).

5.2.2 Uniqueness of stay points

Stay points alone are often enough to uniquely identify a user among the others [116, 303, 64].
Consider S = {S1, . . . ,Sn} the set of available personal gazetteers and W = {s | s∈ S,S∈S }
the universe of all stay points. Then, let us define the concept of adjacency between stay
points as follows.

Definition 5 (Stay points adjacency) A stay point s1 ∈W is adjacent to a stay point s2 ∈W
(i.e., s1 ∼=ad j s2,s1 ̸= s2) if the spatial distance between the two stay points is lower than a
spatial threshold ω , i.e., distspace(s1,s2)≤ ω .

Clearly, we are interested in evaluating the adjacency between stay points belonging to
different personal gazetteers. In particular, the adjacency definition is necessary to introduce
a concept of uniqueness: we say that s1 ∈W is unique if there is no adjacent stay point
s2 ∈W that belongs to a different personal gazetteer, i.e., s1 ∈ S′,s2 ∈ S′′,S′ ̸= S′.

Consider the example in Figure 5.2, where the stay points of three personal gazetteers
are plotted; it is S′ = {s1,s2,s3}, S′′ = {s4,s5}, S′′′ = {s6,s7}. The stay points of S′ are
not individually unique, because each of them is adjacent to stay points of other personal
gazetteers. However, their combination represents a unique signature. More specifically, the
subsets {s1,s3} and {s2,s3} are also unique, because S′ is the only personal gazetteer that
can be traced back to both places in both cases.

s1

s2 s3
s6

s7

s4

s5

sp4,1 sp4,2

sp4,3

sp5,1

sp5,2

sp5,3

Figure 5.2: Example of stay points of three personal gazetteers
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Definition 6 (Set of stay point uniqueness) Consider a set of stay points S∗⊂W; we define
the uniqueness of S∗ in S as an inverse function of the number of personal gazetteers whose
stay points are adjacent to S∗.

unq(S∗) =
1

|{S ∈S | ∀s1 ∈ S∗ ∃s2 ∈ S,s1 ∼=ad j s2}|

This concept of uniqueness is used in DART to effectively verify the de-anonymization
of a user: the best-case scenario is when a social trajectory matches a unique subset of a
personal gazetteer. To this end, the adjacency threshold ω plays an important role: on the
one side, the higher the value, the higher is the importance given to stay points in remote
locations; on the other side, a low-value risks to consider all stay points as unique. Based on
an empirical evaluation of our datasets, we find that a good compromise is to set ω to the
average diameter of the clusters from which we obtain the stay points in our datasets (the
process is explained in Section 5.2.1), which is 200 meters in our case.

5.2.3 Stay point spatiotemporal model

We exploit stay points to define a spatiotemporal model that enables the estimation of a user’s
location at a certain moment. This is necessary to “fill-in the blanks”, as it is not uncommon
for anonymous trajectories to be incomplete (e.g., the GPS trace may be recorded only under
certain conditions) or for social trajectories to be misaligned with anonymous ones (e.g.,
because the recording period is different). The granularity we consider is the one of the hour
of the day, i.e., we split time into 24 time bins1. Let S be the personal gazetteer of a certain
user, s ∈ S a stay point of the personal gazetteer, and b ∈ [0,23] a time bin. Then, we define
st p(s,b) as the empirical probability of the user being in stay point s in time bin b.

Let timeBin : N→ [0,23] be the function that returns the time bin corresponding to
a certain timestamp. Also, let days(s,b) ∈ [0,N] be number of distinct days along the
monitoring period for which there exists a timestamp ts in s such that timeBin(ts) = b. Then,
the empirical spatiotemporal probability of the anonymous user being in s during time bin b
is:

st p(s,b) =
days(s,b)

∑sn∈S days(sn,b)

Intuitively, st p(s,b) ∈ [0,1] indicates the percentage of days for which the user has been
recorded being in s and not in other stay points. For instance, in the typical case, st p(s,b)→ 1

1Time bin 0 refers to the time slot between 00:00 and 00:59; time bin 23 refers to the time slot between
23:00 and 23:59.
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Figure 5.3: Example values of st p on three stay points s1 (home), s2 (work), and s3
(pub/restaurant) in the different time bins.

for the stay point representing the home place during night hours (i.e., b ∈ [1,5]). Figure 5.3
shows some examples for the values of st p on three stay points s1 (resembling a home place),
s2 (resembling a work location), and s3 (resembling a pub or restaurant) in the different time
bins.

5.3 The de-anonymization approach

The de-anonymization approach relies on anonymous personal gazetteers, each of which
represents a signature of a user’s most frequented places. Indeed, a personal gazetteer (or
even a subset of it) is often unique within a population of users [116, 303, 98]. Let us define
with S the set of anonymous personal gazetteers and with K the set of social trajectories
(e.g., geo-localizated tweet histories)2; the goal of the approach is to associate each social
trajectory K ∈K to the most probable personal gazetteer S ∈S . To this end, we proceed in
two steps.

1. The first step consists in calculating a global score between each social trajectory K
and personal gazetteer S. The global scoring function relies on local scores that are
calculated by measuring the spatiotemporal distance between the single points k ∈ K
and the single stay points s ∈ S. The details of this step are discussed in Section 5.3.1
and Section 5.3.2.

2The letter “K” refers to the social trajectories being known instead of anonymous.
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2. The second step consists in assigning each K to the most probable S based on the
computed global scores. Its details are discussed in Section 5.3.3.

Figure 5.4 shows an intuition of the two steps. In the scoring step (i.e., the left figure),
each point k is associated with the spatiotemporally closest stay point s; the edges represent
these associations. Then, the global score is based on the maximum scores for each stay
point (i.e., the bold edges); indeed, the more stay points in S are matched by the points in
K, the more significant is the correspondence between K and S. In the de-anonymization
step (i.e., the right figure), the rationale is similar: among all the possible matches between
personal gazetteers and social trajectories (i.e., the edges), we find the best matches (i.e.,
the bold edges) such that (a) each K is matched to up to one S, and (b) each S is matched to
up to one K. This is necessary to avoid having the same social trajectory being assigned to
multiple personal gazetteers, and vice versa.

S3

𝒦 𝒮

K1

K2

K3

Kn-1

Kn

S1
S2

Sm-1
Sm

. . . . . .

. . .

K1 S2
k1
k2
k3

kp-1
kp

s1

s2

sq-1
sq

. . .k4 . . .

(a) (b)

Figure 5.4: On the left (a) the scoring step between a social trajectory K1 and a personal
gazetteer S2; edges represent local scores, and the bold ones are those used to compute the
global score. On the right (b) the de-anonymization step to assign to each social trajectory
K ∈K its most probable personal gazetteer S ∈S ; here, edges represent global scores, and
the bold ones represent the chosen assignments.

5.3.1 The local scoring function

In order to evaluate the match between a social trajectory and a personal gazetteer, we must
first define a local scoring function to evaluate the single matches between the points k ∈ K
and the stay points s ∈ S. Given a couple (k,s), the local score builds on two principles: (1)
the closeness between k and s from both spatial and temporal perspective; (2) the uniqueness
of k with respect to S, which depends on whether k is close to other stay points belonging to
different personal gazetteers (i.e., other than S).
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Let us start from the spatiotemporal closeness between a point k and a stay point s.
Measuring the spatial correspondence is trivial, as both are associated with a spatial location
in terms of latitude and longitude. Conversely, to measure the temporal correspondence we
rely on the set of known timestamps for s, which indicate the moments in time when the
anonymous user has been recorded in s. However, due to the potential incompleteness of
trajectory data, it may be hard to find a punctual correspondence. In the absence of the latter,
we rely on the spatiotemporal model of the personal gazetteer (Section 5.2.3) to measure
the probability of the anonymous user being in s around the time of k. Thus, we define
the closeness measure as a function of three components, namely ∆space, ∆time, and ∆habit .
Consider I = {k | k ∈K,K ∈K } the universe of all known points and W = {s | s∈ S,S∈S }
the universe of all stay points.

• Let ∆space : (I,W )→ [0,1] be the function defined by

∆space(k,s) = g(distspace(k,s)/200)

to calculate the spatial closeness between k and s. Here, distspace(k,s) is the spatial dis-
tance in meters between k and s, and g is a Gaussian distribution with mean µ = 0 and
standard deviation δ = 0.4. This ensures that ∆space(k,s) = 1 when distspace(k,s) = 0
and that ∆space(k,s)≈ 0.5 when distspace(k,s) = 100 meters. Note that the normalizing
factor of 200 meters is consistent with the threshold for stay point adjacency ω set in
Section 5.2.2.

• Let ∆time : (I,W )→ [0,1] be the function defined by

∆time(k,s) = g(disttime(k, ts)/3600)

to calculate the temporal punctual closeness between k and s. Here, ts is the timestamp
in s that is closest to the timestamp in k, disttime(k, ts) is the temporal distance in
seconds between k and ts, and g is defined as above. This ensures that ∆time(k,s) = 1
when disttime(k, ts) = 0 and that ∆time(k,s) ≈ 0.5 when disttime(k, ts) = 30 minutes.
The normalizing factor of 1 hour (i.e., 3600 seconds) is consistent with the granularity
of time bins in our spatiotemporal model (Section 5.2.3) and with the granularity
considered by several related approaches (e.g., [148, 278]).

• Let ∆habit : (I,W )→ [0,1] be the function defined by

∆habit(k,s) = ∑
(x,y)∈γ

st p(s,b+ x)∗ y
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to calculate the temporal behavioral closeness between k and s. In practice, ∆habit is the
weighted sum of the empirical probabilities of the user being in s at different time bins:
b is the time bin of k, and γ = {(−2,0.1),(−1,0.2),(0,0.4),(+1,0.2),(+2,0.1)} is a
set of (x,y) couples where x is a time bin index relative to b, and y is a weight to be
applied to the st p function3. This means that st p(s,b) is weighted 0.4, st p(s,b+1) is
weighted 0.2, and so on. The values of γ have been obtained from empirical evaluations,
but they can be tuned as long as ∑(x,y)∈γ y = 1.

The intuition is to accommodate behavioral evolution by considering not only the
empirical probability at the exact time bin b (i.e., st p(s,b)) but also the probabilities
in the closest time bins. For instance, with reference to Figure 5.3, consider a point
k made in time bin b = 5; here, ∆habit(k,sp2) = st p(sp2,3)∗0.1+ st p(sp2,4)∗0.2+
st p(sp2,5)∗0.4+st p(sp2,6)∗0.2+st p(sp2,7)∗0.1= 0+0+0+0.02+0.04= 0.06.
Thus, instead of completely refusing the possibility of the user being in sp2 at the time
bin of k (as st p(sp2,5) = 0), we admit a small probability (as the empirical evidence
shows the user being in sp2 in the immediately following time bins).

Given the aforementioned components, we define the spatiotemporal closeness as follows.

Definition 7 (Closeness) The closeness between a point k and a stay point s is:

closeness(k,s) = ∆space(k,s) · (∆time(k,s)+(1−∆time(k,s)) ·∆habit(k,s))

Definition 7 considers ∆space as the spatial component and the rest as the temporal one.
The temporal component gives priority to the punctual closeness, i.e., ∆habit is considered
only in the absence of a punctual correspondence. Indeed, timely correspondences convey
more precise information than those based on the users’ habits.

Example 2 The mechanism of the temporal component is further explained by the following
scenarios.

• ∆time = 1: there is a punctual correspondence of the anonymous user being in s at
the time of k; thus, independently of the user’s habits ∆habit , the temporal component
measures 1.

• ∆time = 0: there is no punctual correspondence of the anonymous user being in s at the
time of k; thus, the temporal component depends on whether there is any probability of
the user’s being in s during k’s time bin based on its habits ∆habit .

3Notice that we assume circularity in the time bins: e.g., 23+2 = 1, and 0−2 = 22.
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The closeness measure defines how well a point k matches a stay point s, but it does not
capture the potential crowding that is contextual to this match. Indeed, if different anonymous
users are spatiotemporally close to k, the latter will obtain a high closeness to the stay points
of the former’s personal gazetteers. To this end, we introduce the point uniqueness4 as a
measure of the actual discriminating power of a point k with respect to S.

Definition 8 (Point uniqueness) The uniqueness of a point k with respect to S is:

unq(k,S) =
∑s∈S closeness(k,s)

∑S′∈S ∑s′∈S′ closeness(k,s′)

The intuition is that the closer k is to stay points of different personal gazetteers, the lower
will be its discriminating power with respect to S. Notice that k may be close to more than
one stay point belonging to the same personal gazetteer; this is why the point uniqueness
with respect to S positively considers the closeness with all the stay points in S.

Ultimately, we define the local score of a couple (k,s) by combining the measures of
closeness and point uniqueness.

Definition 9 (Local score) The local score of a couple (k,s) is:

localScore(k,s) = closeness(k,s) ·unq(k,S)

5.3.2 The global scoring function

The global score quantifies how well a social trajectory K matches a personal gazetteer S.
Let us start by defining the mapping of K into S by means of a mapping signature, which
associates each point k ∈ K to the spatiotemporally closest stay point s ∈ S.

Definition 10 (Mapping signature) Given a social trajectory K and a personal gazetteer
S, the mapping signature represents the mapping of K into S as set of couples M =

{(k1,s1), ...,(kn,sn)}. It is obtained through a partial function ϕ : K→M that maps each
point k ∈ K to the stay point s ∈ S that maximizes the local scoring function localScore(k,s)
(Section 5.3.1). Formally, ϕ(k) = argmaxs∈S localScore(k,s) | localScore(k,s)> 0.

The mapping function ϕ is partial as a point k ∈ K may be too spatiotemporally far from
any of the stay points in S — and the same holds the other way around. The global score
between K and S is calculated on the obtained mapping signature M.

4We refer to this measure as point uniqueness in order to differentiate it from the uniqueness introduced in
Section 5.2.2, which applies the same principle to sets of stay points.



54 De-Anonymization of Personal Gazetteers

Definition 11 (Global score) Let us refer to KM and SM as the set of points and of stay points
that belong to the mapping signature M, respectively. Also, for a given s ∈ SM, consider k∗ ∈
KM the point mapped to s with the highest local score, i.e., k∗ = argmaxk∈KM

localScore(k,s).
Then, the global score of the mapping signature M is:

globalscore(M) = unq(SM) · ∑
s∈SM

localScore(k∗,s)

Whereas other works (e.g., [38]) simply aggregate the local scores, our global scoring
function is based on a qualitative and a quantitative principle. The first part of the equation
(i.e., the multiplication by the uniqueness of the matched stay points, which is defined in
Section 5.2.2) evaluates the quality of the mapping in terms of the discriminating power of
the matched stay points: the higher their uniqueness, the higher is the final score. The second
part of the equation (i.e., the sum of closeness values) evaluates the quantitative aspect of the
mapping by summing the local scores. More specifically, we consider only the maximum
local score for each matched stay point in order to favor the mappings that cover a higher
number of stay points and, therefore, are more representative of the personal gazetteer.

5.3.3 The assignment step

Following the calculation of the global score between each couple in (K ,S ), we are left
with the problem of assigning to each K its most probable match S. As anticipated, we want
to avoid the assignment of the same K to multiple personal gazetteers (and vice versa) and
to maximize the chosen global scores. This problem is well known in the literature as the
assignment problem [162]. Let G = (K ,S ,E) be a weighted bipartite graph where the
edges E correspond to the global scores between the social trajectories and the personal
gazetteers. Then, the assignment simply consists in finding the maximum-weight matching.

Finally, DART’s approach is summarized in Algorithm 2. Notice that the computation
of the global score between a known trajectory K and a personal gazetteer S cannot be
modeled as a simple function of K and S; this is because the computation of point uniqueness
(which is a component of the local score) requires a global knowledge of the closeness
values between every point k and every stay point s. Thus, we start by computing closeness
values between every point k and every stay point s (function computeCloseness, Line
Algorithm 2), then we compute point uniqueness values between every point k and every
personal gazetteer S (function computePointUnq, Line 2). At this point, we can iterate
through the (K,S) couples to determine local scores, mappings and global scores (Lines
4 to 7). The computeAssignment function (Line 8) finally computes the maximum-weight
matching on the weighted bipartite graph.
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Algorithm 2 DART algorithm
INPUT S : personal gazetteers; K : social trajectories; ϕ: mapping function.
OUTPUT matches between personal gazetteers and social trajectories.
1: C← computeCloseness(k,s) ∀ (k,s) ∈ (K ,S )
2: U ← computePointUnq(k,S,C) ∀ (k,S) ∈ (K ,S )
3: E←∅
4: for all (K,S) ∈ (K ,S ) do
5: L← computeLocalScore(k,s,C,U) ∀ (k,s) ∈ (K,S)
6: M← computeMapping(K,S,L,ϕ)
7: E← E ∪{K,S,computeGlobalScore(M,L)}
8: return computeAssignment(K ,S ,E)

5.4 Evaluation

Two anonymous datasets are used, whose statistics are reported in Table 5.1. The first one is
a proprietary, real-world dataset based on a case study scenario centered on (but not limited
to) the Italian city of Milan; for brevity, we will refer to this dataset as MIL. It spans from
September 2017 to December 2017 and includes nearly 500,000 anonymous GPS trajectories.
For the sake of simplicity, we extract from this dataset a sample of 100 trajectories of users
whose personal gazetteers indicate that they live and work in Milan. As we do not possess
ground-truth data of social trajectories, we simulate the latter by generating them from the
anonymous ones. Each generated trajectory contains a random 1% sample of the original
one5, where each point is injected with a spatial and a temporal jitter, misplacing it of up to
100 meters and up to 30 minutes. Different scenarios are simulated by generating different
sets of social trajectories. First, we vary the percentage of points located at a stay point (i.e.,
whether people interact more on social networks while commuting or while at a stay point);
we consider a point p to be located at a stay point s if distspace(p,s) ≤ 100 meters. Also,
we vary the temporal misalignment between the social and the anonymous trajectories. The
second dataset is the Mobile Data Challenge (MDC) dataset [163], which provides real-world
data of nearly 200 individuals from the Lake Geneva region (Switzerland) in 2010-2011. For
each user, it provides a sample of his/her personal gazetteer (which we will use as ground
truth to verify the stay points inferred by DART), as well as the trajectories captured by GPS
satellites and WLAN devices in a complementary way (i.e., either one of them is active for a
single user at the same time, not both). In this case, we use the GPS satellite as the source of
anonymous trajectories and the WLAN as the source of the social ones.

MIL is by far the most challenging dataset due to the higher spatiotemporal density of
the trajectories. In particular, GPS trajectories in MDC are often disjoint from the temporal
perspective. For this reason, our evaluation mostly focuses on the former dataset. Nonetheless,

5The number of social interaction is usually quite low when compared to the frequency of GPS signals.
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Table 5.1: Statistics about the MIL and MDC datasets

Parameter MIL MDC
Number of users 100 190
Avg number of pings per user (anonymous) 2040 13170
Avg number of pings per user (social) 22 9123
Avg number of stay points per user 5 21
Avg number of days per user 28 185

the unusual characteristic of MDC (i.e., the complementarity of GPS and WLAN sources)
allows us to further evaluate the robustness of the approach in a different scenario.

A prototypical implementation of DART has been realized on a big data infrastructure,
consisting of 18 Ubuntu machines mounting the Cloudera Distribution for Hadoop (CDH)
6.2.0; the source code is available on GitHub6. The datasets are stored as Parquet tables on
Apache Hive, while the approach is implemented on Apache Spark.

5.4.1 Stay points validation

In Section 5.2 we have briefly discussed the Patchwork algorithm that we adopt to infer stay
points from GPS trajectories. In this Section, we aim to verify the correspondence between
the stay points that we infer and the ground truth provided by the MDC dataset — even
though it is only a sample of the user’s personal gazetteers. In MDC, stay points are simply
called places; some of them have semantic labels attached (e.g., distinguishing home places
from working locations and other kinds of stay points), but none of them contains spatial
information. However, since the dataset provides the starting and ending timestamps of each
visit to these places, we are able to estimate their location by averaging the latitude and
longitude recorded for the user between such timestamps.

The MDC sample contains 493 places (i.e., 2.6 for each user on average), whereas our
stay point extraction algorithm infers 3714 (i.e., 19.5 for each user on average). We have
verified that 84% of MDC places have a stay point in its close vicinity (i.e., no more than 200
meters apart). Our implementation of Patchwork fails to recognize the remaining places due
to either the low volume or the sparsity of geolocated records, which hinders the recognition
of a cluster. Conversely, only 11% of our stay points can be traced back to MDC places,
meaning that 89% are new with respect to the data provided by MDC.

6https://github.com/big-unibo/dart

https://github.com/big-unibo/dart
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Figure 5.5: Uniqueness probability of subsets of stay points from personal gazetteers.
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Figure 5.6: Efficiency of DART and other de-anonymization approaches on the MIL dataset
considering a progressively increasing number of trajectories.

5.4.2 Stay points uniqueness

The fundamental assumptions in DART are that (1) users’ social interactions mainly happen
on stay points, and (2) personal gazetteers are often unique and enable the de-anonymization
of users. Figure 5.5 verifies the latter statement in the MIL and MDC datasets: given a
certain percentage of stay points from each user’s personal gazetteer, it shows the average
probability that such subset is unique within the population (Definition 6 in Section 5.2.2).
The Figure not only confirms that the personal gazetteer is indeed a unique signature, but it
also indicates that even half of it is enough to identify about 80% of the population in MIL.
The easier de-anonymizability of MDC is also confirmed, as only one third of stay points are
enough to identify 80% of the population. Ultimately, we conclude that we can effectively
rely on stay points to de-anonymize trajectories.

5.4.3 Efficiency of DART

State-of-the-art de-anonymization approaches usually focus on the effectiveness of the
algorithm and overlook the evaluation of its efficiency, even though the importance of
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designing scalable and efficient algorithms in order to enable their applicability on large-
scale datasets is often emphasized in the literature [104, 195]. We implemented DART on
Apache Spark in order to guarantee the scalability of the approach to large volumes of data.
To evaluate DART’s efficiency, we measure its execution time on MIL by progressively
increasing the number of users considered in the dataset (from 100 to the whole 500,000)
and compare it with the sequential implementations (in Python) of Cecaj et al. [38], Jin et al.
[148], and Wang et al. [278]7.

The configuration of Spark for DART’s execution consists of 10 executors with 3 cores
and 10GB of RAM for each executor. For the sake of a fair comparison, we parallelized
the algorithms of [38] and [278] as bags-of-tasks and ran 30 concurrent instances that
independently worked on 1/30th of the dataset8. Conversely, the algorithm of [148] cannot
be parallelized (in fact, it requires the whole dataset to run its TF-IDF strategy to compute
the signatures of trajectories), thus it has been executed on one of the available machines.

The results are shown in Figure 5.6; we remark that both axis are logarithmic and that
executions that took more than a day have been halted and are shown as full-sized bars. The
parallel nature of DART’s implementation entails a slight disadvantage when working on
small datasets (due to the overhead for managing distributed computations), but it greatly
rewards when the dataset’s size becomes significantly large. [278] immediately reaches an
exaggerate execution time, even with a medium-sized dataset. This is probably due to its
complex algorithm, which relies on a Hidden Markov Model to fill incomplete trajectories by
enumerating all possible complete trajectories; although the algorithm allows [278] to achieve
fairly good results (as we will show in Section 5.4.4), it sensibly hinders its application
on large-scale datasets. As for [38], it reaches high execution times as well, with a linear
increase with respect to the increase of trajectories. In particular, the execution time in [38] is
mainly given by the pairwise comparison of the point of every couple of trajectories, whereas
we use spatial joins to compute local scores only between points that are close enough. The
execution time of [148] follows a pattern similar to [38]. Considering that [148] uses 1/30th
of the computation power, it is actually considerably fast; indeed, its computation time is
mainly due to the generation of trajectories’ signatures, which are easily compared once
they have been computed. However, as we will show in Section 5.4.4, [148] trades a faster
computation with a low accuracy in almost every scenario.

7To the best of our knowledge, [148] and [278] are the most recent related approaches in the literature.
8Differently from DART, the computation of the score between every (K,S) in [38] and [278] is independent

of the others.
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5.4.4 Effectiveness of DART

In this section, we evaluate the effectiveness of the de-anonymization approach on both
datasets by means of the accuracy, defined as the fraction of correctly guessed assignments
over the actual number of users. The results are compared with [38, 148, 278].
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Figure 5.7: Accuracy of DART and other de-anonymization approaches on the MIL dataset.

In the first experiment, we have created several sets of social trajectories on MIL by
varying the percentage of points located at a stay point. Considering the scenario of social
trajectories being Twitter histories, the extremes are that users always tweet while traveling
(i.e., 0% of points within a stay point) and that users always tweet from home, work, or other
stay points (i.e., 100% of points within a stay point). The results are shown in Figure 5.7.
Except for the case where points in K always fall outside of stay point (i.e., what we assume
to be a very unlikely scenario), DART performs better than [38] and [148]. In the former
scenario, the poor performance of DART is physiological, as points outside of stay points are
not considered. Indeed, the results also show that DART’s accuracy (as well as the accuracy
of [148]) increases as the percentage of points in K located at stay points also increases
(whereas [38] is unaffected by such variation). Interestingly, the fact that the accuracy
of [148] (which uses a TF-IDF strategy to summarize each trajectory) follows the same
trend of DART confirms that stay points are signatures traceable to unique users; therefore,
we conclude that the more data is located at stay points, the easier it is to de-anonymize
it. Ultimately, the comparison with [278] shows that the latter achieves consistently good
accuracy, comparable to the one of DART in the latest scenarios. Indeed, [278] adopts a
complex technique based on a Hidden Markov Model to estimate the user’s location when the
original trajectory is not complete. However, as shown in Section 5.4.3, the good accuracy of
this approach comes at the expense of computational complexity, which hinders its adoption
on large-scale datasets.

A second experiment verifies the robustness of DART to the temporal misalignment
between social trajectories and personal gazetteers. Starting from the 50% and 100% con-
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(a) The temporal misalignment starts from the 50% configuration in Figure 5.7.
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(b) The temporal misalignment starts from the 100% configuration in Figure 5.7.

Figure 5.8: Accuracy of DART and other de-anonymization approaches on the MIL dataset
considering a progressive temporal misalignment between personal gazetteers and social
trajectories.

figurations of the previous experiment, we simulate the misalignment by adding a certain
temporal delta to every point in the social dataset. The results are shown in Figure 5.8.
As in the previous experiment, [278] is able to maintain high accuracy, even though its
execution times remain severely high. DART’s accuracy is actually affected by the temporal
misalignment, but the behavioral component of DART is able to maintain the former always
above 27% and 52% in the respective scenarios. This demonstrates the robustness of DART,
as stay points are proven as a solid bedrock for the de-anonymization. The accuracy of [148]
is constant because their algorithm does not consider the temporal dimension; although this
characteristic makes the approach robust to temporal misalignment as well, it prevents [148]
from achieving better accuracy when the temporal dimension is more relevant. Ultimately,
the accuracy of [38] progressively decreases down to zero; this is inevitable, as [38] only
looks for punctual temporal matches.

Finally, we evaluate the accuracy of DART on MDC. On this dataset we observe a
significant difference between the four approaches: as shown in Figure 5.9, DART is
able to achieve an optimum result (i.e., a 91% accuracy) and performs far better than
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Figure 5.9: Accuracy of DART and other de-anonymization approaches on the MDC dataset.

the other algorithms.The poor performance of [38] is due to its algorithm, which abruptly
excludes a match between K and A if there exists a record of A being too far from K (i.e.,
distspace(a,k) > 2 · τs) in a close time windows (i.e., disttime(a,k) ≤ τt). This is called the
exclusion rule in [38], and it is based on the principle that a person cannot be in two places
at the same time. However, the complementary nature of the original GPS and WLAN
trajectories in MDC makes it easier for the exclusion rule to be activated. Conversely, the
good performance of DART and [148] (which is much higher than the one on MIL) is
due to the trajectories in MDC being less overlapped; in fact, all trajectories in MIL are
bounded within the city of Milan over one month, whereas in MDC they are centered on
the Geneva lake and can span up to Zurich over one year (i.e., a much larger spatiotemporal
area). Interestingly, [278] is unable to achieve a better accuracy than the one reached in
MIL. This is probably due to the complementarity of GPS and WLAN sources (mentioned
at the beginning of this Section): the behavior of GPS and WLAN trajectories in MDC is
quite different, because the former mostly captures movements between stay points, while
the latter captures visits to stay point. To this end, MDC is similar to the last scenario in
MIL where tweets are mostly made within stay points (Figure 5.7). We conclude that [278]
achieves a consistent accuracy in different scenarios, but it is unable to exploit the one in
which the concentration of social interactions is mostly around stay points (which, as we
recall, is one of our main assumptions).

5.5 Conclusion

We proposed an original approach to trajectory de-anonymization that relies on personal
gazetteers to model users’ behaviors and to effectively capture and recognize each user’s
spatiotemporal signature. Our experimental evaluation has proven that DART improves
recent state-of-the-art algorithms by effectively coupling an efficient implementation with
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high effectiveness on different datasets and scenarios. Our algorithm is also robustness to
temporal misalignment between the anonymous and known trajectories. The only related
approach that achieves better results in some scenarios is [278], whose elevated complexity
severely hinders its applicability on large-scale datasets. At this stage we are currently
working in different directions to further improve the effectiveness of the approach by:
enhancing the behavioral model to improve its effectiveness in case of significant temporal
misalignment, e.g., by considering not only the hour of the day but also the day of the week;
and by comparing it with other state-of-the-art algorithms, to improve our understanding as
to which scenarios are better handled by different algorithms, with particular focus on those
scenarios where [278] achieves higher accuracy.



Chapter 6

Conclusion and Research Directions

In the first part of the thesis, we investigated how the inclusion of unconventional data affects
the knowledge pyramid by requiring specific techniques for different data types. We focused
on mobility data (i.e., spatiotemporal trajectories) since they fuel location-based services
at the core of pervasive applications such as traffic analysis, route and point-of-interest
recommendation, and even smart-phone videogames. In particular, we addressed two of the
issues posed by mobility data: scalability and privacy.

As for scalability, the ever-increasing number of positioning devices (e.g., smart-phones
and geolocalized networks) is challenging traditional trajectory mining approaches (e.g., clus-
tering and map matching) demanding for big data solutions. While we proposed an approach
to rethink map matching in a distributed fashion, our broader goal is to address trajectory
mining applications in big-data scenarios with high variance in means of transportation (e.g.,
car, walk, bicycle), sampling rates (e.g., from seconds to minutes), and road networks (e.g.,
extending the map-matching from Milan to the entire country). On the one hand, this requires
the introduction of an innovative approach capable to integrate and analyze spatiotemporal
positions at different resolutions (e.g., a GPS point with a limited accuracy or a wide area
traced by GSM antennas). The adoption of auto-machine learning techniques [134] for the
pre-processing and integration of spatiotemporal data is an interesting research direction (e.g.,
by automating transformations such as noise filtering, trajectory segmentation or uncertainty
reduction). On the other hand, smarter indexing and distributed strategies are needed to scale,
since the existing big data frameworks are “limited to” to low-level spatiotemporal operations
(e.g., topological operations or k-nearest neighbors rather than clustering or frequent pattern
mining).

As for privacy, the sensitive nature of mobility data (e.g., home and work locations) easily
identifies the individuals (i.e., moving objects) producing the mobility traces. We investigated
how trajectory data can be anonymized for privacy protection, and how the frequently visited
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locations can be used to de-anonymize individuals within a trajectory dataset. Most of
the (de-)anonymization approaches hardly scale up to big data volumes. Our goal is to
investigate whether it is possible to further improve (de-)anonymization accuracy without
burdening the efficiency of the involved algorithms. In this direction, an empirical survey
on the effectiveness and efficiency of the existing anonymization algorithms is necessary
to put a common ground for comparison and to highlight the existing bottlenecks. We
plan to collect—possibly with the help of volunteers—a large-scale ground-truth dataset
to validate the goodness of the studied anonymization approaches, and to measure the
robustness of DART against such anonymization algorithms. Additionally, while the majority
of anonymization algorithms focus on static protection (i.e., anonymization requires the
elaboration of the whole dataset), dynamic trajectory protection is a promising research
direction.



Part II

Advanced Analytics





Chapter 7

Introduction

7.1 Motivation and contributions

Business Intelligence (BI) includes a wide range of techniques and tools supporting data
transformation in the decision-making process (through the knowledge pyramid in Figure 1.1).
Until the ’80s, enterprise databases stored operational data. Since then, the increasing data
variety (e.g., social networks, IoT, and mobility data) has made clear that enterprise data alone
are not sufficient to back strategic decisions, demanding the integration of unconventional
data. However, the exponential increase in data volume affects the access to strategic
knowledge hidden in the data (Figure 7.1), requiring advanced analytic techniques and tools
supporting data scientists. Additionally, BI is becoming more and more pervasive [275],
entailing increasing participation of data scientists with high competence in the business
domain but low competence in computer science and data engineering skills. Enabling
effective participation requires the investigation of user-centered paradigms supporting
analytical querying, making knowledge extraction and narration accessible to everyone
[216, 215]. So far, “classical” analytic tools required data scientists to write (formal) queries
to access data. However, this is unfeasible in scenarios where data scientists have no keyboard
at hand (e.g., in the case of analytics via augmented reality). Additionally, there is a need to
increase the abstraction level in defining analytical queries. Rather than demanding formal
queries, analytic systems should be capable (i) of intercepting and interpreting data scientists’
intentions, and (ii) of providing concise representations of the results.

In this context, we contribute to the following research directions.

Augmented OLAP. Augmented reality allows users to superimpose digital information
(typically, of operational type) upon real-world objects. The synergy of analytical frameworks
and augmented reality opens the door to a new wave of situated analytics, in which users
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Figure 7.1: Information value pyramid: the higher the quantity, the lower the strategic value
(a variation of Figure 1.1 highlighting the relationship between quantity and value; adapted
from [113]).

within a physical environment are provided with immersive analyses of local contextual data.
We introduce a novel approach named Augmented OLAP that, based on the sensed augmented
context (provided by wearable and smart devices), proposes a set of relevant analytical queries
to the user [95, 96]. This is done by relying on a mapping between the objects that can be
recognized by the devices and the elements of the enterprise multidimensional cubes, and
also by taking into account the queries preferred by users during previous interactions that
occurred in similar contexts. A set of experimental tests evaluates the proposed approach in
terms of efficiency, effectiveness, and user satisfaction.

Conversational OLAP. The democratization of data access and the adoption of OLAP in
scenarios requiring hand-free interfaces push towards the creation of smart OLAP interfaces.
We introduce COOL, a framework devised for conversational OLAP applications [88–90].
COOL interprets and translates a natural language dialogue into an OLAP session that
starts with a GPSJ (Generalized Projection, Selection and Join) query and continues with
the application of OLAP operators. The interpretation relies on a formal grammar and a
knowledge base storing metadata and values from a multidimensional cube. In case of
ambiguous or incomplete text description, COOL can obtain the correct query either through
automatic inference or through interactions with the user to disambiguate the text. Our
tests show very promising results in terms of effectiveness, efficiency, and user experience.
Besides adding novel support to the interpretation and translation of complete analytical
OLAP sessions, COOL achieves state-of-the-art accuracy in the interpretation of GPSJ
queries.
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Intentional OLAP. The Intentional Analytics Model (IAM) has been recently envisioned
as a new paradigm to couple OLAP and analytics [275, 93, 44]. It relies on two basic
ideas: (i) letting the user explore data by expressing her analysis intentions rather than the
data she needs, and (ii) returning enhanced cubes, i.e., multidimensional data annotated
with knowledge insights in the form of model components (e.g., clusters). We provide a
proof-of-concept for the IAM vision by delivering an end-to-end implementation of describe,
one of the five intention operators introduced by IAM [44]. Among the research challenges
left open in IAM, those we address are (i) automatically tuning the size of models (e.g., the
number of clusters), (ii) selecting the most effective chart or graph for visualizing each cube
depending on its features, and (iii) devising a visual metaphor to display enhanced cubes and
interact with them.

Multidimensional summarization. Multi-level and multi-dimensional data provide a rich
description of events through multiple features each at different levels of detail. However, the
analysis effectiveness is a compromise between the precision and the size of the information
being displayed while analyzing multi-dimensional cubes [231]. Since multidimensional
cubes are represented in analytic dashboards with pivot tables, the comprehensibility of such
tables becomes is inversely proportional to the quantity of the returned cells (i.e., information
flooding problem). To cope with information flooding, through summarization, we help
data scientists in getting succinct data representation, especially when multidimensional
hierarchies are involved [94, 97].

7.2 Structure

This part of the thesis hinges on the above-mentioned contributions and is organized as
follows. In Chapter 8, we introduce the foundational concepts of BI and multidimensional
analysis necessary for the comprehension of the subsequent chapters. Chapter 9 introduces
Augmented OLAP, a query recommender system based on contextual data. Chapter 10
describes Conversational OLAP, a framework enabling the interpretation of OLAP queries
expressed in natural language. Chapter 11 makes a step towards the IAM by designing
the describe OLAP intention. Chapter 12 introduces a novel summarization approach that
leverages the multidimensional nature of spatial data to group similar patterns. Finally,
Chapter 13 draws the conclusion and future research directions.





Chapter 8

Background

In this chapter, we introduce the foundational concepts of BI. We present the data ware-
house, a data repository at the core of decision support systems. Then, we introduce the
OLAP operators to query a data warehouse. Finally, we provide a formal definition of the
multidimensional model.

8.1 Data warehouse

Data warehousing is a collection of methods, techniques, and tools supporting knowledge
workers in data analysis. The main actor is the data warehouse, a data collection supporting
the decision-making process. A data warehouse is subject-oriented (i.e., focuses on specific
analysis concepts), integrated and consistent (i.e., brings multiple data sources in a unified
view), and not volatile (i.e., covers historic data) [144]. In [115], the authors identify the
following requirements for a data warehouse: accessibility to data scientists unfamiliar with
IT and data structures; integration of data on the basis of a standard model; query flexibility to
maximize the knowledge obtained from data; information conciseness for effective analyses;
multidimensional and intuitive representation; and correctness and completeness of the
integrated data. A data warehouse differs from operational databases. Operational databases
store operational data, i.e. data created by business operations involved in daily management
processes (e.g., purchase and sales management). The management of operational data is
characterized by a transactional workload, i.e. a high number of users interacting with the
database to carry out read/write operations.

The query workload involving a data warehouse is known as OLAP (On-Line Analytic
Processing), a dynamic and multidimensional analysis of aggregated data. An OLAP work-
load is characterized by a few users interacting with the data warehouse to carry out complex
read operations (e.g., identifying the products maximizing profits). OLAP queries operate



72 Background

Date

Pro
du

ct

Store

4/
5/

20

‘EverMore’

‘Shiny’

Quantity = 10
Receipts = 25

Figure 8.1: Example of a multidimensional Sales cube, where analysis dimensions are Date,
Product and Store, and measures are Quantity and Receipts (adapted from [113]).

CategoryTypeProduct

Shiny

Bleachy
Cleaner

Soap
House cleaning

Food

…

DrinkCoky

All products

Figure 8.2: Example of hierarchy on Product. Product, Type, Category are hierarchy levels
also called dimensional attributes (adapted from [113]).

on a multidimensional representation of a data warehouse, where a data item is a point in a
space with many analysis dimensions and is described by numerical measures. These notions
recall the visual metaphor of a hyper cube (henceforth, cube) to represent multidimensional
data. In this metaphor, cube edges are analysis dimensions, data items are cube cells, and
each cell is given a value for each measure (Figure 8.1). Dimensions are associated with
(roll-up) hierarchies that aggregate levels (called dimensional attributes; Figure 8.2). The
actual values of each level (e.g., Shiny is a specific Product) are referred to as members. The
dimensional fact model (DFM) [112] conceptualizes the design of a data warehouse and its
cubes (Figure 8.3).

Multidimensional cubes are implemented atop different abstractions: MOLAP (Multidi-
mensional OLAP) uses multidimensional structures (e.g., multidimensional vectors), ROLAP
(Relational OLAP) uses relations from the standard relational model, and HOLAP (Hybrid
OLAP) adopts a hybrid model that relies on both multidimensional and relational models.
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Figure 8.3: Conceptualization of the Sales cube in the Dimensional Fact Model (DFM) [112].

FT_Sales(Date,Product, Store , Quantity, Receipts)
DT_Time(Date,Month, Quarter, Year)
DT_Store(Store,City, Country)
DT_Product(Product, Type, Category)

Figure 8.4: Relational representation of the Sales cube.

While MOLAP-based systems deliver the best performance through the natural represen-
tation of multidimensional data, data sparsity is a major drawback since multidimensional
DBMSs store every cell in the fact space [55]. ROLAP-based systems rely on decades
of evolution of relational DBMSs and received more research attention than MOLAP and
HOLAP. ROLAP systems enable scalability, since there is no sparsity in relational systems
when storing multidimensional data (Figure 8.4). In this thesis, we adopt the ROLAP model
along with the star schema modeling technique. A star schema consists of (i) relations
called dimension tables DT corresponding to cube hierarchies, and (ii) relations called fact
tables FT corresponding to cubes (Figure 8.5). A FT references dimension tables (i.e., the
dimensions of the cube), and includes an attribute for every measure. The primary key of the
FT composes the keys imported from the referenced DTs. Every DT has a primary key and
an attribute for each hierarchy level. Dimension tables denormalize all the hierarchy levels in
the same relation. Whereas this causes redundancy, it significantly reduces the number of
joins needed to retrieve information.

8.2 OLAP operators

Data in a data warehouse are analyzed at different levels of aggregation by applying a
sequence of OLAP operators. Each operator is applied to the outcome of the previous one,
creating a navigation path known as OLAP session. In this thesis, we refer to the following
operators.

• Roll-up aggregates data at a coarser level by removing a detail level from a hierarchy
(e.g., from Product to Type).
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DT_Product

FT_Sales

Product Date Store Quantity Receipts

Shiny 4/5/20 EverMore 10 25

Bleachy 6/5/20 EverMore 4 6

… … … … …

Product Type Category

Shiny Cleaner House cleaning

Bleachy Cleaner House cleaning

Coky Drink Food

… … …

Figure 8.5: Example of dimension and fact table for the Sales cube.

• Drill-down aggregates data at a finer level by adding a detail level from a hierarchy
(e.g., from Type to Product).

• Slice-and-dice combines slice and dice operators. Slice reduces the analysis dimensions
by collapsing a dimension to a specific member (e.g., Product = “Shiny”). Dice
reduces the retrieved data by a selection predicate (e.g., Year between 2018 and 2020).
different viewpoint.

• Drill-across links concepts in interrelated cubes.

8.3 (Formal) Multidimensional model

We now introduce the formal setting necessary to manipulate multidimensional data (we
summarize the notation symbols in Table 8.1 at the end of the section).

Definition 12 (Hierarchy) A hierarchy is defined as a triple h = (Lh,⪰h,≥h) where:

1. Lh is a set of categorical levels; each level l ∈ Lh is coupled with a domain Dom(l)
including a set of members (all domains are disjoint);

2. ⪰h is a roll-up partial order of Lh (is restricted to a total order for linear hierarchies);
and

3. ≥h is a part-of partial order of
⋃

l∈Lh
Dom(l).

Exactly one level dim(h) ∈ Lh, called dimension, is such that dim(h) ⪰h l for each other
l ∈ Lh. The part-of partial order is such that, for each couple of levels l and l′ such that
l ⪰h l′, for each member u ∈ Dom(l) there is exactly one member u′ ∈ Dom(l′) such that
u≥h u′.
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Example 3 (Hierarchy) For the hierarchy Time, it is Date⪰Month⪰ Year. The hierarchy
Product is linear. 02/12/2020 is a member of Date and 02/12/2020≥ 12/2020≥ 2020. □

Aggregation is the basic mechanism to query cubes, and it is captured by the following
definition of group-by set. As normally done when working with the multidimensional model,
if a hierarchy h does not appear in a group-by set it is implicitly assumed that a complete
aggregation is done along h.

Definition 13 (Group-by Set) Given a set of hierarchies H, a group-by set of H is a subset
G of levels in the hierarchies of H including at most one level for each hierarchy. The roll-up
order on the hierarchies of H induces a partial order on the group-by sets of H as follows:

G⪰ G′⇔∀l′ ∈ G′ ∃l ∈ G s.t. l ⪰h l′

The complexity of OLAP queries is also due to the collection/integration of data from
different data sources. To facilitate OLAP analyses, the DW is typically partitioned into
different data marts, each representing a subset or an aggregation of the data stored in the
primary DW. A data mart includes a set of information pieces relevant to either a specific
business area, a corporate department, or a category of users.

Definition 14 (Cube, Cube Schema, and Data Mart) Given a set of hierarchies H, a cube
over H is defined as a triple c = (Gc,Mc,ωc) where:

1. Gc is a group-by set of H;

2. Mc is a set of numerical measures; each measure m ∈Mc is coupled with one aggrega-
tion operator op(m) ∈ {sum,avg, . . .}; and

3. ωc is a partial function that maps the tuples of members for the levels of Gc to a
numerical value for each measure m ∈Mc.

A cube schema is a couple C = (H,M). A data mart DM is a couple of a set of hierarchies
H and a set C of cubes over H, DM = (H,C). Each coordinate that participates in ωC, with
its associated measure values, is called a cell of c.

The levels, members, and measures of cube c are given the generic name of md-elements of
c. Note that the ωc is defined as partial since cubes are normally sparse; the cardinality of
c is the number of tuples of members that are mapped through ωc and is denoted with |c|.
With a slight abuse of notation, we write χ ∈ c to state that χ is a cell of c.
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Example 4 (Cube) Given Sales = (H,M) (Figure 8.1), it is

H = {Time,Product,Store},
M = {Quantity,Receipts}

and op(Quantity) = op(Receipts) = sum (i.e., all measures are addictive). □

Cubes are queried through GPSJ (Generalized Projection / Selection / Join) queries, a
well-known class of queries that was first studied in [124]. A GPSJ query is composed
of joins, selection predicates, and aggregations. Remarkably, having all the cubes in DM
defined over the same set of hierarchies H corresponds to assuming that the cubes share a
set of conformed dimensions, which enables the formulation of drill-across queries (queries
joining two or more cubes).

Definition 15 (Query) A query q on data mart DM = (H,C) is a triple q = ⟨Gq,Pq,Mq⟩
where

• Gq is a group-by set of H;

• Pq is a (possibly empty) set of selection predicates each expressed over one level of H;

• Mq ⊆M is the set of measures whose values are returned by q.

Let Cq ⊆C be the subset of cubes such that at least one of their measures is part of Mq;
query q is well-formed if all the measures it returns are available at the required granularity:

1. ∀c ∈Cq Gc ⪰ Gq if Mq ̸=∅;

2. ∃c ∈C s.t. Gc ⪰ Gq if Mq =∅ 1

Example 5 (GPSJ query) With reference to the Sales cube, the query asking for quantity of
sold products for each month of 2019 and each product type is q = ⟨Gq,Pq,Mq⟩, with

Gq ={Month,Type}
Pq ={(Year = 2019)}

Mq ={Quantity}

1We assume that, when Mq =∅, query q asks for a count of the cardinality of Gq, so the existence of at
least a cube at the required granularity ensures that q is well-formed.
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Table 8.1: Notation summary

Notation Meaning

c Multidimensional cube
C Set of cubes
C Cube schema
DM Data mart
G Group by set
H Set of hierarchies
l Hierarchy level
M Set of measures
P Selection predicate
q Query
ωc Assign measure values to cube cell
χ Cube cell

The SQL formulation of q on a star schema featuring fact table FT_Sales and dimension
tables DT_Time and DT_Product is

SELECT DT_Time.Month, DT_Product.Type, sum(FT_Sales.Quantity)

FROM FT_Sales

JOIN DT_Time ON (FT_Sales.Date = DT_Time.Date)

JOIN DT_Product ON (FT_Sales.Product = DT_Product.Product)

WHERE DT_Time.Year = 2019

GROUP BY DT_Time.Month, DT_Product.Type

□

Definition 16 (Base Cube and Derived Cube) A cube whose group-by set Gc includes all
and only the dimensions of the hierarchies in H and such that Mc = M, is called a base cube,
the others are called derived cubes. Let c0 be a base cube over C . The result of applying a
query q to c0 is a derived cube c such that (i) Gc = Gq, (ii) Mc = Mq, and (iii) ωc assigns to
each coordinate χ ∈ c satisfying the conjunction of the predicates in Pq and to each measure
m ∈Mc the value computed by applying op(m) to the values of m for all the coordinates of
c0 that roll-up to χ .

In OLAP terms, a derived cube is the result of either a roll-up, a slice-and-dice, or a projection
made over a base cube.





Chapter 9

Augmented OLAP

9.1 Introduction

With the disruptive advances in pervasive computing and industry 4.0, BI is shifting its focus
on the integration of (internal) enterprise and (external) contextual data. In this direction, the
synergy of analytical frameworks and augmented reality opens the door to situated analytics1,
in which users within a physical environment are provided with immersive analyses of local
contextual data. Indeed, augmented reality (AR), a variation of virtual reality, allows users to
superimpose digital information upon real-world objects [19], thus determining an augmented
environment. Nowadays digital data returned to users are typically operational, meaning
that they either describe the current state of the visualized objects (e.g., the temperature of a
machine) or suggest the operations to be carried out (e.g., instructions to use the machinery).
Conversely, limited attention has been devoted to providing analytical reports that can be
used by decision makers to evaluate the behavior and performance of the visualized objects
from a tactical and strategic point of view, for instance with reference to their past history or
to other objects of the same type.

This new goal opens relevant research challenges and revamps many issues related to
business intelligence and recommendation systems [56]. Indeed, when working with high-
dimensional contextual data (the multidimensional nature of the context is well understood
[6, 257]), identifying insightful queries and visualizations is not trivial [142] and requires
several research issues to be solved [77]: How can data be sensed and accessed in real time?
How is the sensed context mapped to enterprise data? Which data is salient to the user
analysis? How do users interact with the retrieved data?

1Situated analytics has been defined as spatially-organized data representations attached to relevant entities
for the purpose of understanding and decision-making [77]
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Figure 9.1: Overview of the AO framework

To the best of our knowledge, none of the context-aware recommender systems proposed
in the literature addresses the above questions with reference to situated analytics in general,
and to AR in particular. While the research on computer vision [35, 260] and situated
visualization [80, 36, 140] is vivid, not much has been done to set up a business intelligence
process bridging context sensing, data visualization, and decision making.

In this chapter, we envision and formalize a foundation for Augmented OLAP (AO), a
framework empowering AR users with context-aware analytical information under visualiza-
tion and time constraints. The context is modeled as a set of recognizable environment objects
(e.g., a machine in a manufacturing environment) plus a set of additional user/environmental
information (e.g., the user role and the room temperature). The analytical information
returned is tailored to the context currently perceived by the user and comes in the form
of reports obtained by running OLAP queries on the enterprise multidimensional cubes.
The quantity of data returned must be limited in size and focused on the context to meet
performance constraints and be easily interpretable by the user; furthermore, the intrinsic
dynamics of AR applications ask for right-time (a few seconds) responsiveness of AO.

An overview of the AO framework is given in Figure 9.1 which shows Edgar, a controller
working for a company producing fitness equipment and wearing AR smart devices featuring
sensors of different types. We assume the pattern recognition capabilities necessary to
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recognize the context are provided by these smart devices. Edgar’s task is to optimize the
production based on the assembling times of manufacturing devices, also considering the
sale volumes of the different products. When he stares at an assembly machine, the AR
glasses he is wearing recognize the machinery and some nearby objects (in the picture, a seat
being assembled with an exercise bike); a context is generated accordingly, also including
data about the current date and time and Edgar’s position and role.

Our goal in this setting is to suggest to Edgar in real time the set of analytical queries
over the enterprise multidimensional cubes that are more relevant according to both a-priori
knowledge and feedback given by users in similar contexts. Relevant figures could be the
number of produced items, the assembly times, and the revenues for the product being
sensed. With reference to Figure 9.1, this task is carried out by the Context interpretation
component using a collaborative filtering approach that relies on the query log. Although
AO supports the possibility of learning meaningful queries from the log, its capability of
returning the right information primarily comes from some a-priori knowledge provided by
domain experts. This choice is not simply a solution to the well-known cold-start problem
(i.e., the problem of providing significant recommendations when user feedbacks are still
insufficient); it is rather a design choice aimed at enabling the system to give a useful answer
in complex context scenarios, where learning from the log would require too many examples.
The a-priori knowledge is modeled through a set of mappings between the potentially
recognizable environment objects (stored in a dictionary) and the multidimensional elements
of the enterprise cubes. Rather than proposing the most relevant query only, AO proposes a
set of alternative queries to Edgar; all of them are related to the current context but they are
different enough to offer to the user different flavors of the same information. This phase is
implemented by the Query selection component. At this time, Edgar can either execute one
of the proposed queries or express a new query to obtain a different report. Finally, Edgar
gives his feedback on the proposed queries, which is stored in the log.

AO can be applied to different application domains ranging from healthcare [58] to
factories [264, 39]; for this reason, the main modeling choices underlying our approach (e.g.,
how to define the relevance of an object in a context) have been formalized in a domain-
independent fashion, while domain-dependent examples are provided in the context of AR in
a factory where fitness equipment is produced.

To sum up, the main contributions of this chapter are:

1. We envision an AO framework, its functional architecture, and the user/system interac-
tion process.

2. We explain how a-priori expert knowledge can be modeled by mapping context objects
to relevant multidimensional elements.
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Table 9.1: Comparison of recommender systems in terms of user input, context type, recom-
mendation of multidimensional OLAP queries (MD), real-time constraint (RT), cardinality
constraint (C), and query diversification (D)

User input Context MD RT C D
[145] OLAP query User profile ✓

[13] OLAP session OLAP session log ✓ ✓

[154] SQL query Query logs ✓ ✓

[268] OLAP query Dashboards, reports ✓

[177] SPARQL query Web documents
[274] SQL query Database statistics ✓ ✓

[68] SQL query Result feedback ✓

[121] SQL query Result statistics
[57] SQL query Result statistics ✓ ✓

[291] Web query Clicks, query log
[146] Web query Clicks, query log ✓

[228] Web query Location ✓ ✓

[46] Web query Query logs
[105] OLAP query Query logs ✓

AO none Physical env., log ✓ ✓ ✓ ✓

3. We describe an efficient algorithm to generate relevant and diverse queries to be
returned to the user.

4. We propose a collaborative filtering approach to let the system learn from user feedback.

The remainder of the chapter is organized as follows. Section 9.2 describes the related
works in the field of context-aware recommendation systems. Section Section 9.3 formalizes
the AO framework. Sections 9.4 and 9.5 describe the context interpretation and query
selection components, respectively. Section 9.6 describes the results of experimental tests
that measure the performance of AO. Finally, Section 9.7 sums up our contribution and gives
future research directions.

9.2 Related works

The AO framework can be classified as a recommender system in the area of business
intelligence based on a context made of augmented entities. Despite the huge amount of
work in these areas, to the best of our knowledge, no approach lies at their intersection.

Over the years, scholars have highlighted the importance of exploiting contextual in-
formation to provide focused recommendations with the nature of contexts being quite
heterogeneous (a summarized description in provided in Table 9.1), for instance space and
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time [228], query logs [154, 268], statistics on results [121, 57] or databases [274], user
interests [145], and social data [177]. Given such heterogeneity, other contributions (e.g.,
[286, 288, 177]) address the integration of contextual data to provide a common ground
(e.g., a global schema [288] or an application programming interface [177]) enabling rec-
ommendation from multiple data sources. The previous context types have been widely
adopted in several applications where the recommendation process is activated by an explicit
user-defined input statement (e.g., query or keywords). Examples of applications are web
query categorization [46, 13], recommendation [145, 291], and diversification [146]; query
completion [154, 268]; localized web keywords suggestion [228]; and interactive exploration
of databases [68]. The main differences between AO and these works are: (1) the multidi-
mensional nature of the data handled and returned, (2) the nature of the context as well as
the type of user/system interaction that triggers the recommendation, and the presence of
(3) real-time, (4) cardinality and (5) diversification constraints. As to (1), multidimensional
and hierarchical data support recommendations at different granularities, which intrinsically
makes finding the best recommendation more complex; as to (2), physical contexts require
ad-hoc solutions to choose the relevant context elements due to application specificities (e.g.,
object engagement) and to the possibility of having in the context elements that are perceived
but that are not relevant for the user; as to (3), (4), (5), these constraints are required by
immersive applications [77].

Recommender systems in business intelligence applications are well surveyed in [191].
Recommendations typically involve multidimensional queries [105] or sessions [13] (i.e.,
query sequences) using query logs as contexts. These approaches are based on collaborative
filtering techniques that do not synthesize new queries from existing ones, but pick queries
from the log depending on their similarity score. Conversely, AO allows the generation
of queries not already present in the log by combining similar queries from the log and
contextual information into a set of diverse queries. This assumption collocates AO as a
hybrid approach to recommendation [191], differentiating AO from the above-mentioned
contributions in multidimensional recommendation systems. Note that diversification and
multiple recommendations are used to better meet user interests [309]. A further advantage of
AO over pure collaborative filtering approaches is that AO does not suffer from the so-called
cold start problem, since it is able to return an appropriate recommendation even when the
log is empty [209].

In the area of AR and situated analytics, contexts play an even more central role. There,
a context is the set of objects recognized in the environment that acts as situated stimulus
(i.e., object properties) to be translated into inputs for a search query; it is augmented with
virtual information and is returned to the user [36]. Physical environment becomes a source
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of contextual information in [11], where user interaction with a physical environment is
leveraged to retrieve operational data of interest. The usage of AR as an interactive medium
opens to a natural data exploration and is especially helpful when the analysis goals are
not specified [140]. Scholars focus on finding proper visualization to embed operational
data in physical objects [80, 36, 140], with a particular effort on the implementation of
toolkit allowing the rapid prototyping of such visualizations [253]. Although [80] considers
multidimensional data, it is not specified how the process of information retrieval and analysis
of data at multiple level of details is carried out. Besides, these approaches do not include
collaborative filtering to discover potentially useful information. Interestingly, although [80]
does not consider analytical data, it introduces a mantra for situated analytics: “details first,
analysis, then context-on-demand” which contradicts the well-known mantra “overview first,
zoom and filter, then details-on-demand” [252] of classical visualization systems. Indeed,
when it comes to pure augmented visualizations, information is directly attached to single
objects [80, 36], assigning higher priority to details than to generic information.

9.3 Preliminaries

Given the formal background introduced in Section 8.3, we introducing a formal setting to
manipulate multidimensional data. For simplicity, we consider

• linear hierarchies only; and

• additionally to Definition 15, a query q is well-formed if (i) all predicates in Pq are
external, i.e., they are expressed on levels that are less or equal to a level in Gq in
the roll-up order [232]; and (ii) Pq is a set of Boolean equality clauses defined over
members of levels of H.

Example 6 (Data Mart) Our working example (Figures 9.1 and 9.2) includes two cubes,
Sales and Assembly, which share hierarchies Product and Date; the two cubes are completed
by hierarchies Store and Device, and Part. Sales are described by measures Quantity and
Revenues, while Assembly is described by measures AssembledItems and AssemblyTime; all
measures are additive, i.e., they are coupled with the sum operator. A member of the Part
level is Seat, while a member of Product is BikeExcite. □

In the following, we will often need to denote the md-elements to which query q =

⟨Gq,Pq,Mq⟩ refers; specifically,

• if l ∈ Gq, then q refers to level l;
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Figure 9.2: Roll-up total orders (top), part-of partial orders (middle), and an excerpt of the
group-by set partial order (bottom) for our working example; the group-by sets of the Sales
and Assembly cubes are in gray

• if m ∈Mq, then q refers to measure m;

• if (l = u) ∈ Pq, then q refers to member u and to level l, being l the level whose domain
includes u.

The set of md-elements to which q refers will be denoted with re f (q).

Example 7 (Query) With reference to the Sales cube, the query asking for quantity of sold
products for each month of 2019 and each product type is q = ⟨Gq,Pq,Mq⟩, with

Gq ={Month,Type}
Pq ={(Year = 2019)}

Mq ={Quantity}

The SQL formulation of q on a star schema featuring fact table FT_Sales and dimension
tables DT_Date and DT_Product would be

SELECT DT_Date.Month, DT_Product.Type, sum(FT_Sales.Quantity)

FROM FT_Sales

JOIN DT_Date ON (FT_Sales.DateId = DT_Date.DateId)

JOIN DT_Product ON (FT_Sales.ProductId = DT_Product.ProductId)

WHERE DT_Date.Year = 2019

GROUP BY DT_Date.Month, DT_Product.Type
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For this query it is

re f (q) = {Month,Type,Year,Quantity,2019}

By adding measure AssembledItems, from the Assembly cube, to Mq we get an example of a
drill-across query whose SQL formulation is

SELECT DT_Date.Month, DT_Product.Type,

sum(FT_Sales.Quantity), sum(FT_Assembly.AssembledItems)

FROM FT_Sales

JOIN DT_Date ON (FT_Sales.DateId = DT_Date.DateId)

JOIN DT_Product ON (FT_Sales.ProductId = DT_Product.ProductId)

JOIN FT_Assembly ON (FT_Assembly.DateId = DT_Date.DateId AND

FT_Assembly.ProductId = DT_Product.ProductId)

WHERE DT_Date.Year = 2019

GROUP BY DT_Date.Month, DT_Product.Type

□

Enterprise cubes are the data source for the analytical reports to be returned to users
according to the environment as perceived by the AR device. The set of data possibly
perceived are listed in a dictionary that, intuitively, defines the device capabilities. These
data are not limited to physical objects recognized in the environment through a pattern
recognition process, but may include user-related information such as the user role as well as
environmental properties such as the room temperature.

Definition 17 (Dictionary) A dictionary D is a set of classes, each coupled with a domain
of values. Each pair d = ⟨class,value⟩ such that value belongs to the domain of class is
called an entry of D .

Note that the dictionary can describe the sensed environment at different levels of precision.
For example, if the smart device that perceives the environment successfully identifies a bike,
but is not capable of labeling the specific bike model, it will return the ⟨Object,Bike⟩ entry.
On the other hand, if the specific product BikeExcite is recognized, the smart device will
return the entry ⟨Object,BikeExcite⟩.

The power of the AO framework comes from the ability to bind the perceived entries to
the cube md-elements. This capability is rooted in a-priori knowledge that specifies which
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md-elements can be interesting for the user when a given dictionary entry is perceived. This
knowledge is defined through a dictionary-to-cube mapping established by a domain expert
at setup time. To enhance the expressiveness of our framework, we consider that some
md-elements may be interesting non per se but only when associated with other md-elements,
so we map entries not on simple sets of md-elements but on sets of fragments, each fragment
being a set of md-elements that should appear all together in queries.

Definition 18 (Mapping) A mapping from dictionary D to data mart DM is a multivalued
function µ that maps an entry d to a set of fragments, i.e., sets of md-elements of the cubes in
DM. Each fragment f ∈ µ(d) has a mapping weight, wmap(d, f ) ∈ (0,1].

The mapping function is multivalued since many fragments of md-elements may be of
interest for each dictionary entry; this typically happens for hierarchy levels, which can
be all interesting —even if with different values of w. For example, when some device is
perceived, besides showing data for that specific device, also showing aggregated data for the
device type could be interesting. Through mapping weights, domain experts give an a-priori
quantification of the interest of each fragment for analyses when a given entry is part of the
context.

Although a discussion about how the dictionary is created and the mappings are estab-
lished is out of the scope of this chapter, we remark that this does not necessarily have to be
done manually for all the cube members, which would be tedious for attributes with large do-
mains, but it can be largely automated. For instance, to reduce the user’s effort in populating
the dictionary, an approach like the one proposed in [178] could be used. There, continual
learning is applied to classify known objects and to learn objects of never-seen classes. Once
sensed and marked as relevant, novel objects can be easily learned and added to the dictionary.
Giving novel objects names equal or similar to names of md-elements ensures that a set of ba-
sic mappings from the dictionary to the data mart can be automatically created, to be possibly
fine-tuned later by a domain expert. Alternatively, tentative mappings could be established
by providing universally-quantified rules such as µ(⟨Object,value⟩) = {{value}} for each
value that corresponds to a member of some level in a hierarchy.

Example 8 (Dictionary and Mappings) The dictionary for our example includes, among
the others, entries related to products (e.g., ⟨Object,BikeExcite⟩), product parts (e.g.,
⟨Object, Seat⟩), and user roles (e.g., ⟨Role,Controller⟩). An excerpt of the mapping from this
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dictionary to the cubes of Example 6 may look like this (Figure 9.1):

µ(⟨Object,Seat⟩) = {{Seat},{Device}},
µ(⟨Object,BikeExcite⟩) = {{BikeExcite}},

µ(⟨Role,Controller⟩) = {{AssembledItems,Quantity}},
µ(⟨Date,16/10/2018⟩) = {{Date}}

The first line returns two fragments including a member and a level respectively; it states
that, when the user senses a seat, she may be interested in analyzing either the part to be
assembled or the data concerning the assembly device. The second line returns one fragment
including a member; it states that, when the user senses a product, it is normally interested
in analyzing the data for that product. The third line returns one fragment including two
measures; it states that controllers are interested in comparing the number of assembled
items with the quantity sold. The fourth line returns one fragment including a level; it states
that users are normally interested in daily data. Finally, examples of mapping weights are

wmap(⟨Object,BikeExcite⟩,{BikeExcite}) = 0.5

wmap(⟨Role,Controller⟩,{AssembledItems,Quantity}) = 1

□

9.4 Context interpretation

In this section, we show how, given a set of perceived objects, AO produces a set of relevant
queries, i.e., queries whose results may be of interest to the user.

9.4.1 Take the context...

The AO starting point is the context, i.e., a set of dictionary entries corresponding to the
currently perceived environment objects. More formally:

Definition 19 (Context) A context T over dictionary D is a set of entries of D; each entry
d ∈ T is coupled with a context weight wcnt(T,d) ∈ (0,1].

The value of the weight for each entry may depend on different factors, depending on the
application domain. Non-perceived entries (i.e., for which it would be wcnt(T,d) = 0) are
not included in the context. In our case study we assume that a subset of entries are engaged,
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meaning that they have explicitly been indicated by the user as being part of her current
focus of interest [260]; for these entries, the weight is always 1. For the other entries, the
weight is inversely proportional to the distance between the user and the specific object being
observed.

Given a context, the mapping function identifies the relevant fragments of md-elements,
i.e., those that will be involved in the queries to be issued against the cube.

Definition 20 (Image) Given context T over dictionary D and mapping µ from D to data
mart DM, the image of T through µ is the set of fragments that are mapped through µ from
the entries in T :

Iµ(T ) =
⋃

d∈T

µ(d)

Example 9 (Context) A possible context is the one depicted in Figure 9.1, where Edgar is
inspecting the assembly of fitness equipment in Room A.1 on October 16th 2018:

T = {⟨Object,Seat⟩,
⟨Object,BikeExcite⟩,
⟨Role,Controller⟩,
⟨Location,RoomA.1⟩,
⟨Date,16/10/2018⟩}

The BikeExcite product is engaged. Possible context weights are

wcnt(T,⟨Object,Seat⟩) = 0.6,

wcnt(T,⟨Object,BikeExcite⟩) = 1,

wcnt(T,⟨Role,Controller⟩) = 1,

wcnt(T,⟨Location,RoomA.1⟩) = 0.6,

wcnt(T,⟨Date,16/10/2018⟩) = 0.6

The image of T through the mapping µ described in Example 8 is

Iµ(T ) = {{Seat},{Device},{BikeExcite},{AssembledItems,Quantity},{Date}}

□

The image includes the set of fragments relevant to a context according to the mapping,
but it does not specify how they will be used to generate the queries to be proposed to the
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user when that context is sensed. Indeed, given an image, several queries can be generated,
each including a subset of the fragments in the image.

9.4.2 ... add the log...

The a-priori knowledge expressed through a mapping does not enable the system to learn
by considering how user interests evolve, which instead could lead to picking different
md-elements when proposing queries or to choosing one of them more/less frequently. To
this end, AO exploits the history of previous interactions, stored in the query log, by means of
a collaborative filtering approach. The log stores, for each context, all the queries proposed
to the user and the specific one chosen for execution.

Definition 21 (Log) A log L is a multiset of triples ⟨T,q,ok⟩ where T is a context, q is a
query, and ok (feedback) is 1 if the user accepted the query, −1 if she rejected the query.

Example 10 (Log) A possible log for our working example is L = (⟨T,q1,−1⟩,⟨T,q2,1⟩),
where

q1 = ⟨{Date,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}⟩

q2 = ⟨{Month,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}⟩

While q1 has been rejected, q2 (which is a roll-up of q1 on the Date hierarchy) has been
accepted. □

A log entry related to context T ′ should impact the recommendations related to the
current context T only if the two contexts are similar, since it is reasonable to assume that
the user will have similar behaviors in similar contexts.

Definition 22 (Context Similarity) Given two contexts T , T ′ over dictionary D , we define
the similarity between T and T ′ as their Jaccard index:

sim(T,T ′) =
|T ∩T ′|
|T ∪T ′|
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Given log L, the image Iµ(T ) of context T is extended to take previous user interactions
into account as follows. Let LT ⊆ L be the subset of log triples whose context is similar to T :

LT = {⟨T ′,q,ok⟩ ∈ L s.t. sim(T,T ′)≥ ε}

where ε is a similarity threshold. Then, Iµ(T ) is extended by adding, for each query q in LT ,
one fragment corresponding to the set of md-elements referred to by q:

I∗µ(T ) = Iµ(T )∪{re f (q) : ∃⟨T ′,q,ok⟩ ∈ LT}

In this way, I∗µ(T ) includes all the fragments that are relevant to context T either according
to the mapping or to the previous user experience.

We now define the log relevance to T of fragment f ∈ I∗µ(T ) as the weighted number of
times f has been accepted by the user (i.e., ok = 1) over the number of times it has been
proposed (i.e., ok = ∗); weighting is based on the similarity between the current context T
and the considered log context T ′:

ρT (L, f ) =
1+∑⟨T ′,q,1⟩∈LT ( f ) sim(T,T ′)
2+∑⟨T ′,q,∗⟩∈LT ( f ) sim(T,T ′)

where LT ( f ) = {⟨T ′,q,ok⟩ ∈ LT s.t. f ⊑ re f (q)} and ⊑ is a hierarchy-aware containment
relationship between sets of md-elements:

f ⊑ re f (q)⇔ (∀m ∈ f s.t. m is a measure, m ∈ re f (q))∧
(∀u ∈ f s.t. u is a member, ∃u′ ∈ re f (q) s.t. u′ ≥h u)∧
(∀l ∈ f s.t. l is a level, ∃l′ ∈ re f (q) s.t. l′ ⪰h l)

To avoid relevance to be 0 when f has never been accepted, a Laplace smoothing is applied in
the formula above. Noticeably, the impact of Laplace smoothing decreases as the cardinality
of LT ( f ) increases, that is, the weight tends to 0 if several queries referring f have been
proposed but never accepted by the user. Conversely, it tends to 1

2 if only a few queries
referring f have been proposed.

It is now possible to define the relevance to T of each fragment f ∈ I∗µ(T ) by taking into
account, for each context entry d that maps to f , not only the entry weight wcnt(T,d) and the
mapping weight wmap(d, f ), but also the log relevance ρT (L, f ):

relT ( f ) = ρT (L, f ) ·

(
∑

d∈T s.t. f∈µ(d)
wcnt(T,d) ·wmap(d, f )

)
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where wcnt(T,d)=wmap(d, f )= 1
2 for all f ∈ I∗µ(T )\Iµ(T ). Clearly, the reason for providing

a default value for all fragments present in the extended image but not deriving from the
context is to avoid the corresponding contribution to the relevance to be null; choosing the
default value of 1

2 is in line with the Laplace smoothing applied to the log relevance.

Example 11 (Extended image) With reference to the image Iµ(T ) from Example 9 and to
the log entries in Example 10, the extended image is

I∗µ(T ) = {{Seat},{Device},{BikeExcite},{AssembledItems,Quantity},{Date},
{Month,Part,Product,BikeExcite,AssembledItems,AssemblyTime},
{Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}}

The last two fragments have been added to Iµ(T ) as they corresponds to queries drawn from
contexts similar to T . As to ρT (L, f ) and relT ( f ) it is

ρT (L,{Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}) = 0.33

ρT (L,{AssembledItems,Quantity}) = 0.5

relT ({Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}) = 0.16

relT ({AssembledItems,Quantity}) = 0.5

□

We close this section by observing that the log size will quickly increase with time and
spending a few words about how the log can be curated. Indeed, in [15] it is highlighted that
many recommended queries can become irrelevant (e.g., in case of sensible context variations
such as room refurnishment) or non-computable (e.g., due to changes in the multidimensional
schema). A basic way to deal with memory limitations when storing large logs would be
to provide a log cache, with size limits, where only the latest entries are cached per user. A
more sophisticated way would be to adopt an indicator of obsolescence as in [15] to decide
whether to prune obsolescent log entries.

9.4.3 ... get the queries

As already stated, the context interpretation component is in charge of generating a set QT of
queries relevant to context T . In principle, the query that includes all the md-elements in the
fragments of the extended image of T might be directly proposed to the user. Unfortunately,
when several objects are sensed in the environment and the context includes a large number
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of entries, such queries would be monster queries, i.e., quite complex queries with very high
cardinalities. Monster queries are particularly undesirable in AR applications since:

• High-cardinality queries take a long time to be computed, transferred to the user smart
device, and visualized.

• While working on the field, users must be quick and reactive, while the results of
monster queries are hardly interpretable.

In the AO framework, monster queries are avoided in two ways: (i) by posing an upper bound
γ to the query cardinality, and (ii) by considering only the most relevant fragments in the
image when generating the queries to be proposed to the user.

As to (i), given query q = (Gq,Pq,Mq), the expected cardinality of its result, denoted
card(q), can be estimated as follows:

card(q) = card(Gq)× ∏
p∈Pq

sel(p)

where card(Gq) is the expected cardinality of a query with group-by set Gq and no selection
predicates, and sel(p) is the selectivity of each simple predicate p belonging to Pq. Note
that we can safely use this formula to estimate card(q) because, as a consequence of the
way we create queries in our approach, all predicates in Pq are always external, i.e., they are
expressed on levels that are less or equal to a level in Gq [232] in the roll-up partial order. As
to card(Gq), it must be computed taking the cube sparsity into account, considering that the
sparsity differs from cube to cube. In the simple case in which all measures in Mq belong
to a single cube ci, it can be estimated for instance using the Cardenas formula as shown in
[247, 115]:

card(Gq) = cardci(Gq) = Φ(cardmax(Gq), |ci|)

where |ci| is the cardinality of ci and cardmax(Gq) is the maximum cardinality (i.e., if there
were no sparsity) of group-by set Gq:

cardmax(Gq) = ∏
l∈Gq

|Dom(l)|
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If q is a drill-across query,2 the measures in Mq are scattered across two or more cubes
c1, . . . ,cr; in this case the sparsities of these cubes can be assumed to be mutually independent:

card(Gq) = cardmax(Gq) ·
r

∏
i=1

cardci(Gq)/cardmax(Gq)

where cardci(Gq)/cardmax(Gq) expresses the probability that a given tuple of members is
present in ci, thus the product expresses the probability of that tuple to be present in all the
involved cubes. Note that other approaches have been devised for a more precise cardinality
estimation in presence of selection predicates on multiple attributes, for instance [224], which
uses singular value decomposition, and [123], based on histograms.

Example 12 (Cardinality) Given cubes Assembly and Sales, let |Assembly| = 200000,
|Sales|= 400000, |Dom(Product)|= 100, and |Dom(Date)|= 1000. Consider query

q = ⟨{Date,Product},
{(Year = 2019)},
{AssembledItems,Quantity}⟩

By applying the formulas above we get

cardmax({Date,Product}) = 100000

cardAssembly({Date,Product}) = 86467

cardSales({Date,Product}) = 98169

card({Date,Product}) = 84884

Assuming that sel(Year = 2019) = 0.25, we get card(q) = 21221. □

As to (ii), i.e., considering only the most relevant fragments in the image, before we
proceed we remove from the extended image I∗µ(T ) all the fragments f whose relevance
relT ( f ) is below a given threshold η , being the relevance defined as follows.

Definition 23 (Relevant Queries and Query Relevance) Given context T , query q is said
to be relevant to T if (i) it is f ⊆ re f (q) for at least one fragment f in the extended image
of T , (ii) q is well-formed, and (iii) card(q)≤ γ . The set of relevant queries to T is denoted

2We recall from Section 9.3 that drill-across queries can be formulated because all cubes in the data mart
share a set of conformed dimensions.
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Figure 9.3: The relevance of q (in blu its md-elements) is the sum of the relevances of
fragments f and f ′

with QT . The relevance to T of query q ∈ QT in presence of log L is defined as

relT (q) = ∑
f∈I∗µ (T ) s.t. f⊆re f (q)

relT ( f )

For instance, with reference to Figure 9.3, the relevance of q is estimated by summing up
the relevances of fragments f and f ′ as these are the only fragments of Iµ(T ) completely
contained in re f (q).

Example 13 (Query relevance) Given the mapping weights in Example 8, the context
weights in Example 9, the log relevance in Example 10, and the extended image in Ex-
ample 11, the relevance of

q = ⟨{Month,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}⟩

is relT (q) = 0.4. The fragments contributing to the query rel-
evance (i.e., those contained in re f (q)) are {BikeExcite} and
{Month,Part,Product,BikeExcite,AssembledItems,AssemblyTime}. □

In the remainder of this section we explain how we create the set QT of relevant queries,
as introduced in Definition 23, to be handed to the query selection component. Basically,
in Algorithm 3 we follow a depth-first enumeration approach [219] to generate all possible
combinations of the fragments in I∗µ(T ). This is done by calling the recursive procedure
Expand, whose pseudocode is shown in Algorithm 4, for each fragment available. Within
Expand, function Gen( f ) (Line 1) returns a query q using the md-elements in fragment f as
follows:

• Gq includes all the levels in f plus the levels of all the members in f ;
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Algorithm 3 Generation of relevant queries

INPUT I∗µ(T ): extended image, γ: cardinality threshold
OUTPUT QT : set of relevant queries

1: QT ←∅ ▷ Result set
2: F ← I∗µ(T ) ▷ Fragment set
3: for each f ∈ F do ▷ For each fragment...
4: F ← F \{ f}
5: Expand(F, f ) ▷ ...generate relevant queries from f and add them to QT

6: return QT

Algorithm 4 Procedure Expand(F, f )

INPUT F : set of fragments, f : fragment to be used for generating queries
1: q← Gen( f ) ▷ Generate a query from f
2: if wellFormed(q)∧q ̸∈ QT then

▷ If q is not well-formed and has already been generated, stop
3: if card(q)≤ γ then ▷ If q has low cardinality...
4: QT ← QT ∪{q} ▷ ...add it to QT

5: for each f ′ ∈ F do ▷ For each other fragment in F ...
6: F ← F \{ f ′}
7: Expand(F, f ∪ f ′) ▷ ...add it to f and generate relevant queries

• Pq includes a selection predicate on each member in f ;

• Mq includes all the measures in f .

To avoid redundancies in Gq and Pq, only levels and members at the finest granularity are
kept for each hierarchy. If the query returned by Gen( f ) is not already present in QT , has
low cardinality, and is well-formed, it is added to the result (Line 4). Then, recursion is
triggered by calling Expand with the union of f and any other available fragment (Lines 5-7,
parameter F is passed by value).

Remarkably, if q is not well-formed (Line 2), the current branch of recursion can safely
be pruned. Indeed, a query is not well-formed when either (i) it has non-external predicates
or (ii) it returns a measure that is not available at the required granularity (see Definition 15).
As to (i), we note that Gen(q) adds to the query group-by set the levels of all the members in
f , so it cannot generate queries with non-external predicates. As to (ii), when proceeding
with the recursion, new md-elements would be added to q; this may make the granularity of q
finer but it cannot make it coarser. Thus, the queries obtained by adding further md-elements
to a query q that is not well-formed can never be well-formed. The current branch can also
be pruned if q has already been added to QT ; in this case, since we are adopting a depth-first
approach, the extension of q with further fragments has already been done as well. We finally
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Figure 9.4: Depth-first query generation for Example 14 (gray arcs are safely pruned, so gray
queries are not added to QT

note that cardinality cannot be used to prune the search space; indeed, by adding further
md-elements to a high-cardinality query, we get a new query whose cardinality might be
below the threshold γ .

Example 14 (Query generation) Let

I∗µ(T ) = {{BikeExcite,Quantity},{Part,Bike},
{Month,AssembledItems},{Year,AssembledItems}}

As sketched in Figure 9.4, Algorithm 3 works as follows. The first fragment picked
by the for cycle of Line 3 is {BikeExcite,Quantity}, which corresponds to query q =

⟨{Product},{(Product = BikeExcite)},{Quantity}⟩. This query is well-formed and it has
cardinality equal to 1, so it is added to QT . The depth-first exploration continues by
picking fragment {Part,Bike} (Algorithm 4, Line 5) and calling Expand on the union
fragment {BikeExcite,Quantity,Part,Bike}. Since measure Quantity is not defined at the
part granularity, the query obtained is not well-formed and this branch of recursion is
pruned (Algorithm 4, Line 2). The next fragments picked by Line 5 of Algorithm 4 are
{Month,AssembledItems} and {Year,AssembledItems}, which are expanded as shown in
Figure 9.4.

Once the recursion started from {BikeExcite,Quantity} is terminated, the other three
fragments are picked by Line 3 of Algorithm 3. In particular, when {Month,AssembledItems}
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is picked, the corresponding query is added to the result (assuming it has low cardinality).
Now, the fragment is expanded with {Year,AssembledItems} (Algorithm 4, Line 5), producing
the union fragment {Month,AssembledItems,Year}; remarkably, since the corresponding
query is already present in the result (Year is coarser than Month, so it is removed by Gen( f )),
this branch is pruned. □

9.5 Query selection

Context interpretation returns the set QT of relevant queries, whose results may be of interest
to the user. This set is potentially exponential in the number of fragments; as we will show in
Figure 9.12, discarding ill-formed and high-cardinality queries does not drastically reduce
the cardinality of QT , which may easily turn out to be several thousands. Clearly, some
selection has to be done to avoid flooding the user with tons of (probably very similar to each
other) queries. Thus, the goal of the step discussed in this section is to select from QT a fixed
number rq of queries to be recommended to the user. The guiding criterion is to select the
subset of queries that are both maximally relevant to the context and diverse; this is done by
defining an ad-hoc measure of query set relevance that takes both relevance and diversity
into account.

To this end, we start by generalizing to sets of queries the definition of similarity given
for query pairs in [14]. This definition combines three components: one related to group-by
sets, one to selection predicates, and one to measure sets. Let levBelow(Gq) denote the set
of levels that are below a level of Gq in the roll-up order:

levBelow(Gq) = {l′ : l ⪰h l′, for l ∈ Gq}

and memBelow(Pq) denote the set of members that are below a member of Pq in the part-of
order:

memBelow(Pq) = {u′ : u≥h u′, for u ∈ Pq}

Definition 24 (Query Similarity) Given context T , let Q⊆QT . The similarity of the queries
in Q is defined as

sim(Q) = α ·σgbs(Q)+β ·σsel(Q)+ γ ·σmeas(Q)
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Table 9.2: Md-elements for computing quest similarity in Example 15; intersecting md-
elements are in bold

md-element q′ q′′ q′′′

⋃
q∈Q levBelow(Gq)

Product ✓ ✓

Type ✓ ✓ ✓

Category ✓ ✓ ✓

Month ✓ ✓

Year ✓ ✓⋃
q∈Q memBelow(Pq)

Bike ✓

Equipment ✓ ✓ ✓

⋃
q∈Q Mq

AssembledItems ✓ ✓ ✓

AssemblyTime ✓

Quantity ✓

where α , β , and γ are normalized to 1 and

σgbs(Q) =
|
⋂

q∈Q levBelow(Gq)|
|
⋃

q∈Q levBelow(Gq)|

σsel(Q) =
|
⋂

q∈Q memBelow(Pq)|
|
⋃

q∈Q memBelow(Pq)|

σmeas(Q) =
|
⋂

q∈Q Mq|
|
⋃

q∈Q Mq|

Like in [14], we choose α = 0.35, β = 0.5, and γ = 0.15.

Example 15 (Query similarity) Let Q = {q′,q′′,q′′′}, with

q′ =⟨{Product,Month},{(Type = Bike)},{AssembledItems,Quantity}⟩
q′′ =⟨{Product,Month},{(Category = Equipment)},{AssembledItems,AssemblyTime}⟩
q′′′ =⟨{Type},{(Category = Equipment)},{AssembledItems}⟩

Considering the roll-up and part-of orders in Figure 9.2 and the involved md-elements (see
Table 9.2), it is sim(Q) = 0.35 · 2

5 +0.5 · 1
2 +0.15 · 1

3 = 0.44. □

Based on the definition of query similarity, we can now define the relevance to the context
of any set of queries. The global relevance of a set of queries cannot be properly computed
as the sum of their relevances due to the intersections between their md-elements, thus we
have to apply the well-known inclusion-exclusion principle [233]. The inclusion-exclusion
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Figure 9.5: Estimation of query set relevance in Example 16

principle counts the number of distinct elements in the union of finite sets by summing up
the cardinalities of the individual sets, subtracting the number of elements that appear in at
least two sets, adding back the number of elements that appear in at least three sets, and so
on. Similarly, to estimate the global relevance of a set of queries we sum the relevances of
individual queries, subtract the average query relevance weighted by their similarity for any
pair of queries, add back the average query relevance weighted by their similarity for any
triple of queries, and so on.

Definition 25 (Query Set Relevance) Given context T , let Q⊆ QT . The relevance to T of
Q is defined as

relT (Q) = ∑
∅̸=Q′⊆Q

sim(Q′) ·
∑q∈Q′ relT (q)
|Q′|

· (−1)|Q
′|+1

Example 16 (Query set relevance) With reference to Figure 9.5, given Q = {q,q′} such
that rel(q) = 0.8, rel(q′) = 0.7, and sim(Q) = 0.2, it is relT (Q) = relT (q) + relT (q′)−
sim(q,q′) · (relT (q)+ relT (q′))/2 = 1.35. □

Applying the inclusion-exclusion principle in Definition 25 ensures that, at a parity of
relevances of the single queries, the more diverse these queries are, the higher the query set
relevance. Thus, selecting from QT the subset R of rq queries with the maximum query set
relevance implicitly allows AO to recommend queries that are both relevant to the context
and diverse. More formally:

Problem 1 (Query Selection) Given context T , select the subset R, ∅ ̸= R⊆ QT , such that
relT (R)≥ relT (R′) for each ∅ ̸= R′ ⊆ QT .

The query selection problem can be mapped to a Weighted Maximum Coverage Problem
(WMCP) where each q ∈ QT corresponds to a set of elements (i.e., fragments), each with its
own weight (i.e., relevance). We want to find out the subset R⊆QT with maximal weight and
such that |R|< rq. The reduction in relevance due to query similarity is taken into account in
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Algorithm 5 Query selection
INPUT QT : set of relevant queries, rq: number of queries to be recommended
OUTPUT R: recommended query set

1: R←∅ ▷ Result set
2: Q← QT ▷ Search space
3: while (|R|< rq)∧ (Q ̸=∅) do

▷ Still room in R and search space not empty
4: q← argmaxQ(relT (R∪{q})) ▷ Pick the most promising query...
5: Q← Q\{q} ▷ ... remove it from the search space
6: R← R∪{q} ▷ ... and add it to the result
7: return R

the WMCP, which adds only once the weight of elements appearing in more than one q ∈ R.
It is easy to verify that also every WMCP can be mapped to a query selection problem where
(i) for each element a new fragment f is created, (ii) for each set of elements a new query
q ∈ QT is created, and (iii) relT ( f ) is set to the weight of the element corresponding to f .

Since the two problems can be mapped to each other, they must have the same complexity.
In [136] it is shown that the WMCP is NP-hard and that it can be faced with polynomial
complexity by adopting a greedy algorithm that, at each iteration, picks the most promising
element; so we adopt the greedy approach whose pseudocode is shown in Algorithm 5.
Basically, at each iteration we pick from QT the query that, if added to the result R, maximizes
the query set relevance relT of R (at the first iteration, this equals to picking the most relevant
query). The algorithm is incremental, so queries can be recommended as soon as they are
picked —without having to wait for the algorithm to terminate.

Example 17 (Query selection) Let QT = {q′,q′′,q′′′} such that rel(q′) = 0.7, rel(q′′) = 0.6,
rel(q′′′) = 0.5, sim(q′,q′′) = 0.6, sim(q′,q′′′) = 0.1, and sim(q′′,q′′′) = 0.2. After initial-
ization, Algorithm 5 picks q′ from QT (Line 4) as it has top query relevance so it also
maximizes query set relevance. At the second iteration, q′′′ is picked at Line 4: although
rel(q′′)> rel(q′′′), q′′ is more similar to q′ than q′′′, thus the query set relevance if q′′ is added
to R is lower (relT (q′,q′′) = 0.91, relT (q′,q′′′) = 1.14). Assuming rq = 2, query selection
stops here. □

9.6 Experimental tests

In this section, we evaluate the AO framework in terms of (1) effectiveness, (2) efficiency,
and (3) user satisfaction (i.e., to what extend the recommended queries meet the users’
desiderata).
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As to (1) and (2), we compare AO to our previous implementation A-BI [95]. AO extends
A-BI mainly by (i) generalizing queries to operate on multiple cubes (drill-across queries
in the OLAP terminology) to better fit real decision-making contexts; (ii) generalizing the
object-to-cube mappings to map onto sets of multidimensional elements, so as to enhance
their expressiveness; (iii) giving a new definition of query relevance and the corresponding
formalization of the query selection problem as an optimization problem; and (iv) providing
an extensive experimental evaluation based on a real manufacturing environment. Tests are
carried out against a synthetic benchmark since we assume the problem of context generation
to be addressed by the smart device and, to the best of our knowledge, no AR open dataset
exists.

The user-system interaction works as follows: a session simulates a user walking through
a factory of 10 rooms. While moving, she collects one view of each room (in a session
each room is visited once). From each view, the smart device recognizes a set of objects
belonging to the dictionary and lists them into a context. For each context, AO recommends
a set R of queries to the user; she either chooses one of these queries (i.e., she gives a positive
feedback for one of the recommended queries) or formulates an additional query that is
slightly different from the ones proposed (i.e., she gives a negative feedback for all the
queries and adds a new one). After some time, the user ends her exploration of the factory
(i.e., her session). When a new user enters the factory (i.e., a new session begins), AO relies
on the query log to recommend a new set of queries that better suit her interests. Since each
session covers 10 rooms, after each session 10 contexts are added to the log together with the
corresponding user feedback. The contexts related to each room may be slightly different,
since the user could perceive the room from a different point of view, or the smart device
could fail to recognize some of the objects.

This interaction is simulated by randomly generating 10 seed contexts, each correspond-
ing to a different room. Seed contexts differ significantly from each other. Then, to simulate
multiple visits of each room, small context variations are generated starting from each seed
(i.e., different room perspectives). The number of objects recognized in each room (i.e., the
context cardinality) ranges between 10 and 16. The test is repeated 10 times and the average
behavior is considered.

We denote with s the number of sessions, i.e., the number of times each room has already
been sensed. Besides, for each context, we call:

• qmax the query with maximal relevance in R. We recall that Algorithm 5 always
recommends the set of rq well-formed queries with the highest relevance to the context.

• qu the query formulated by the user. We denote with δ the similarity between the user
query and the maximal query (δ = sim({qu,qmax}), as of Definition 24). The lower the
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Table 9.3: Notation summary

Notation Meaning
T Context (corresponds to a view of a factory room)
R Set of recommended queries
rq = |R| ∈ [1,4] Number of recommended queries
qmax Query with maximal relevance to the context
qu User query
qdiv Query most similar to qu
s ∈ [0,8] Number of times the user has already sensed a context
δ ∈ [0.5,1] Similarity between qu and qmax
γ = 1000 Query cardinality threshold
ε = 0.8 Context similarity threshold
η = 0.2 Fragment relevance threshold
θ ∈ [0.05,0.25] Diversification threshold for A-BI

qmax

qu
qdiv

δ

R

Figure 9.6: The user query qu, the maximal query qmax, and the set R of recommended
queries; among them, qdiv is the one most similar to qu

value of δ , the higher the difference between the user and maximal queries; if δ = 1,
the user exactly chooses the maximal query.

• qdiv the query most similar to qu among those in R.

A notation summary is provided in Table 9.3.
Queries qu and qmax can be different since the relevance initially estimated by AO might

not be aligned with the user’s perceived one. This gap, evaluated in Section 9.6.3, decreases
as the user returns in the same rooms since AO can exploit the log to align its estimation
of relevance to the user’s one. An intuitive representation of qu, qmax, and qdiv is shown
in Figure 9.6, where the query space is represented as a Cartesian plane with Euclidean
distances.

We executed our tests against a cube including 5 linear hierarchies with 5 levels each.
Each dimension has 64 members, determining a maximum cube cardinality of about 109.
The dictionary includes one entry for each md-element (i.e., we assume the smart device
can recognize every single element of the cube); each dictionary entry d is mapped to a
fragment f containing at most 3 md-elements. Mapping weights wmap(d,e) randomly range
in [0.2,1]. Note that AO entails mappings with higher expressiveness than A-BI, where
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Figure 9.7: Average similarity between qdiv and qu (left) and average relevance of the
recommended query set (right) for increasing values of rq (s = 0, δ = 0.7, |T |= 12)

dictionary entries were mapped to single md-elements. Also, while in AO diversification
is inherently tied to the maximization of the relevance of the returned queries, in A-BI it
is ruled by a specific parameter, θ . We will compare the two approaches using different
thresholds of diversification θ ∈ [0.05,0.25]; in the figures, with A-BI0.15 we denote a run of
A-BI with a diversification threshold set to 0.15. Values of θ higher than 0.25 deviate too
much from the queries related to the context and are not considered [95].

9.6.1 Effectiveness

AO can recommend a variable number of queries, rq. The higher rq, the larger the user
effort in choosing the best query out of the recommended ones. In an AR context, due to
real-time and visualization constraints, this aspect becomes even more critical; thus, we limit
the maximum number of retrieved queries to rq = 4.

Figure 9.7 characterizes R when different numbers of relevant queries are recommended
to the user. The left part of the figure shows that the recommendation effectiveness, measured
as the similarity between the user’s query qu and qdiv, improves as rq increases. Remarkably,
the similarity between qdiv and qu is always higher for AO than for A-BI, independently of the
diversification strength θ used by A-BI. AO overcomes A-BI due to (1) its enriched mapping
expressiveness; (2) the improved algorithm for generating relevant queries (Algorithm 4);
and (3) the implicit diversification process. As to (1), given two md-elements that are only
relevant if picked together, in AO they can only appear together in a query, while in A-BI
they may be added to the query individually. As to (3), the diversification effectiveness
in AO is better understood from Figure 9.7 (right), which shows that the relevance of the
recommended query set is always superior to A-BI, independently of the diversification
strength θ .
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AO

Figure 9.8: Average similarity between qdiv and qu as qu diverges from the context; solid
and dashed lines refer to rq = 1 (no diversification) and rq = 4 (diversification), respectively
(s = 0, |T |= 12)
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Figure 9.9: Average similarity between qdiv and qu for repeated visits when the context
slightly changes (left) and qu slightly changes (right) (δ = 0.7, rq = 1, |T |= 12)

Although Figure 9.7 (left) shows that the similarity between qdiv and qu slightly increases
with rq, the actual impact of diversification will be better appreciated in Section 9.6.3, where
we will see that the users preferred a recommended query different from the most relevant
query qmax in 15% of the times. This confirms the benefit of diversification in offering
users different query flavors among which to choose [276]). Clearly, when there is a low
correlation between the user’s interest and the context, it becomes hard for a recommender to
return useful answers. In our tests this divergence between the context and the user’s query is
simulated by increasing δ ; Figure 9.8 shows that even in this case AO improves over A-BI,
and that diversification helps in mitigating the correlation gap.

As rooms are repeatedly visited, collaborative filtering comes into play and the effective-
ness of AO improves. Figure 9.9 depicts to what extent the query log helps in making qdiv

closer to qu. In a real scenario, both the context and the user query qu could slightly change
in different visits. Figure 9.9 compares the recommendation effectiveness when the user
query is fixed (left) and when the context is fixed (right). It is apparent that, when qu is fixed,
qdiv quickly converges to qu. Convergence is not complete due to context variations: like
hybrid recommendation approaches [191], AO merges the user’s interests stored in the log
with the a-priori knowledge stored in the enriched image. If, for the very same context, the
user requires slightly different queries across different visits, convergence is limited to the
query fragments that are permanently required. In all cases, AO performs better than A-BI.

To better emphasize how the hybrid nature of AO impacts effectiveness, in Figure 9.10
we compare it to the two baselines given by its pure collaborative filtering behavior on the
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one hand, by its pure context-based behavior on the other. The first baseline, named Coll,
returns the query that was chosen in the past from the most similar context; the second one,
Ctx, returns the maximal query. Overall, Coll achieves worse performances than AO since (i)
no query is returned for s = 0 (i.e., sim() = 0), (ii) it completely ignores the currently sensed
entities as it only contains entities sensed in the past, and (iii) if the user picks different
queries in similar contexts, collaborative filtering initially oscillates between different queries.
Conversely, AO outperforms Ctx since the latter cannot keep into account the fragments that
are actually chosen by the user even if they are not coded by mappings. Finally, Coll is worse
than Ctx since its recommendations sum up two errors: the exclusion of currently sensed
entities, and the inclusion of entities sensed in the past that are included in the target query.

9.6.2 Efficiency

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
CPU and 8GB RAM, with the AO framework implemented in Scala; the log is stored in main
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Figure 9.12: Effects of pruning in Algorithm 4 (Line 2) as the number of algorithm iterations

memory. Figure 9.11 (left) shows the total time required to recommend increasing numbers
of queries. Remarkably, the order of magnitude is 10−1 seconds. Besides, although the
execution time slightly increases with rq, the time needed to return the first recommendation
is fixed as Algorithm 5 never drops a query once it has been added to the result set R.
Figure 9.11 (right) shows the increase in execution time for larger contexts (the higher the
number of context entries, the higher the number of mappings). Query generation (which
encompasses Algorithms 3 and 4) accounts for most of the time; indeed, the generative
approach is computationally heavy, requiring to find, inside the fragment space, a potentially
exponential number of relevant queries. Pruning in Algorithm 4 (Line 2) helps in constraining
the generation search space. Figure 9.12 shows how pruning decreases the (exponential)
number of generated queries for different context cardinalities. Remarkably, when large
contexts are considered it is possible to cut down generation times by constraining the number
of generated queries.

We finally emphasize that the execution time corresponds to the time necessary to generate
the recommended queries, and not to the time to actually execute them. Queries are executed
against the enterprise data mart and their performance clearly depends on the underlying
multidimensional engine.

9.6.3 User evaluation

There is no point in recommending a set of queries if the relevance estimated by the recom-
mender significantly differs from the user’s one. To assess how close the user’s relevance
is to the one of AO or, in other words, to assess the recommendation quality, we conducted
a set of tests with 30 users, mainly master students in data science with basic or advanced
knowledge of business intelligence and data warehousing. The evaluation is based on a
real-world factory environment provided by Technogym, a large Italian company producing
gym equipment. After a 10 minute introduction to AO, we simulated two user sessions in
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which the user enters two rooms for the first time (i.e., the log is not considered). For each
room, the user was asked to impersonate a production controller and to suggest a GPSJ
query qu that could help her in carrying out an assigned task based on a given context. To
avoid biases, the assigned tasks were generic, meaning that there is not a single query that
obviously fulfills the task, so the suggested queries depend on the personal interpretation of
the task. In each room, once the user has provided her query, three queries recommended by
AO were presented to her. Finally, the user was asked to provide (1) the perceived similarity
of each recommended query to the query she suggested, and (2) a score (on a scale from 1 to
10) indicating how the recommended queries are deemed to be relevant to the context and to
the proposed task. The first question enables the evaluation of how the similarity adopted in
AO is perceived by the users independently of the relevance of the recommended queries
to the context. Conversely, the second question is aimed at understanding the perceived
relevance of the recommended queries to the context/task.

Example 18 (Room visit) With reference to the Assembly cube and to the context repre-
sented in Figure 9.1

T = {⟨{Object,BikeExcite}⟩,⟨{Object,Seat}⟩,
⟨{Date,20/05/2019}⟩,⟨{Role,Controller}⟩}

the assigned task is: “Analyze the assembly speed with reference to the context”. Examples
of queries recommended by AO are

q = ⟨{Year,Part,Product},
{(Year = 2019) AND (Part = Seat) AND (Product = BikeExcite)},
{AssembledItems,AssemblyTime}⟩

q′ = ⟨{Year,Part,Category}
{(Year = 2019) AND (Part = Seat) AND (Category = Sport)},
{AssembledItems,AssemblyTime}⟩

q′′ = ⟨{Date,Part,Category},
{(Date = 20/05/2019) AND (Part = Seat) AND (Category = Sport)},
{AssembledItems,AssemblyTime}⟩

□

The results are summarized in Table 9.4. The average perceived similarity between the
user query qu and the three queries recommended by AO is 0.58+− 0.20 for Room 1 and
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Table 9.4: Results of user evaluation

Room 1 Room 2
Avg. sim() 0.59+−0.15 0.61+−0.15
Avg. perceived similarity 0.58+−0.2 0.57+−0.2
Pearson correlation 0.41 0.41
qmax matches 62% 69%
qdiv matches 77% 88%

0.57+−0.20 for Room 2, which is very close to the one computed through sim() (0.59+−0.15
and 0.61+−0.15, respectively). Having near values is not enough to certify the coherence
between the two similarities, thus we also computed their Pearson correlation coefficient
obtaining an overall correlation of 0.41, which further supports this coherence.

As to the perceived relevance of recommended queries to the assigned tasks, the users
evaluated the relevance of the recommended query set as 7.85 for Room 1 and 7.62 for Room
2, proving their satisfaction towards the recommendation. We finally emphasize that, without
diversification (rq = 1), AO would return only the most relevant query, qmax, which turned
out to be the most similar one to qu in 62% of cases for Room 1 and 69% of cases for Room
2. When diversification is taken into account (rq = 3), these percentages increase to 77% for
Room 1 and 88% for Room 2.

9.7 Conclusion

The AO framework is a first result in the direction of establishing a tight connection between
analytical reporting and AR applications. Besides proposing a reference functional architec-
ture and an interaction process, in this chapter we have shown that query recommendations
can be given in real-time, highlighting the role of diversification and collaborative filtering
in improving their effectiveness. Noticeably, our framework could be easily generalized to
operate in other contexts, e.g., to recommend analytical queries concerning nearby objects
based on the recognition of RFID tags.

AO can be improved along different directions. First of all, it would be interesting to
investigate how AO could be turned into a purely statistical framework where all weights are
expressed in terms of probabilities and reasoning is probabilistic as well; in this case, the
log could be used to directly update mapping weights. Another possibility is to extend our
model of context to a graph, so as to base recommendations on separate groups of entries
(e.g., to distinguish foreground from background objects and to make mappings role-aware);
this could be particularly relevant to take egocentric computer vision and engagement into
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account [260]. Also the execution performances of recommended queries deserve further
attention. Some possible enhancements here would be (i) to add a criterion for query selection
that also considers an estimate of the query performance and (ii) to give users, for each
recommended query, an estimate of its execution time plus a quick preview of its its results;
note that the latter point would raise some interesting possibilities for multiquery optimization
and caching. Finally, recommendation could also be extended from plain OLAP queries
to complex analytics, e.g., anomaly detection: some event that is not in line with historical
trends is going on, so it should be singled out.



Chapter 10

Conversational OLAP

10.1 Introduction

Nowadays, one of the most popular research trends in computer science is the democratization
of data access, analysis, and visualization, which means opening them to end-users lacking
the required vertical skills on the services themselves. Smart personal assistants [120] (Alexa,
Siri, etc.) and auto-machine-learning services [250] are examples of such research efforts
that are now on corporate agendas [34].

In particular, interfacing natural language processing (either written or spoken) to database
systems opens to new opportunities for data exploration and querying [168]. Actually, in the
area of data warehouse, OLAP itself is an “ante litteram" smart interface, since it supports
the users with a “point-and-click" metaphor to avoid writing well-formed SQL queries.
Nonetheless, the possibility of having a conversation with a smart assistant to run an OLAP
session (i.e., a sequence of related OLAP queries) opens to new scenarios and applications.
It is not just a matter of further reducing the complexity of posing a query: a conversational
OLAP system must also provide feedback to refine and correct wrong queries, and it must
have memory to relate subsequent requests. A reference application scenario for this kind of
framework is augmented OLAP (Chapter 9), where hand-free interfaces are mandatory.

In this chapter, we propose COOL, a COnversational OLap framework able to convert
a natural language text into a GPSJ query and to support query disambiguation and OLAP
navigation. GPSJ [124] is the main class of queries used in OLAP since it enables Generalized
Projection, Selection and Join operations over a set of tables. Although some natural language
interfaces to databases have already been proposed, to the best of our knowledge this is the
first proposal addressing full-fledged OLAP analytical sessions through a natural language
interface.

In our vision, the desiderata for an OLAP smart interface are the following.
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#1 It must be automated and portable: it must exploit cubes metadata (e.g., hierarchy
structures, role of measures, attributes, and aggregation operators) to increase its
understanding capabilities and to simplify the user-machine interaction process.

#2 It must handle OLAP sessions rather than single queries: in an OLAP session the first
query is fully described by the text, while the following ones are implicitly/partially
described by an OLAP operator (e.g., drill down, roll up, slice and dice) and require to
handle the context and to have memory of the previous queries.

#3 It must be robust with respect to user inaccuracies in using syntax, OLAP terms, and
attribute values; also, it must be able to exploit implicit information.

#4 It must be easy to configure on a data warehouse (DW) without a heavy manual
definition of the lexicon.

More technically, our text-to-SQL approach is based on a grammar driving the parsing of
natural language descriptions of GPSJ queries. The recognized entities include a set of typical
query terms (e.g., group by, select) and the domain-specific terms and values automatically
extracted from the DW (see desiderata #1 and #4). Robustness (desiderata #3) is one of the
main goals for COOL and is pursued in all the interpretation steps: lexicon identification is
based on a string similarity function, multi-word terms are handled through n-grams, and
alternative query interpretations are scored and ranked. To sum up, the main contributions of
this chapter are:

1. a list of features and desiderata for an effective conversational OLAP system;

2. an architectural view of COOL;

3. an original approach to translate a natural language analytical session into an OLAP
session that starts with a well-formed GPSJ query (Full query step in Figure 10.1)
and that refines the GPSJ query with known OLAP operators (OLAP operator step in
Figure 10.1);

4. an analysis of the specificities of natural language interfaces in the OLAP context;

5. a set of tests to verify the efficiency and effectiveness of our approach. In particular,
we carried out tests with real users to assess how well (i.e., quick, simple and accurate)
COOL supports interactions.

The remainder of the chapter is organized as follows. Section 10.2 provides an
overview of COOL by sketching the functional architecture and the interpretation steps.
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Section 10.3 presents the contents of the KB, while the following sections introduce the
core steps within the Intepretation step, i.e., Tokenization & Mapping (Section 10.4),
Parsing (Section 10.5), and Checking & Annotation (Section 10.6). The remaining steps
Disambiguation & Enhancement and SQL generation are respectively discussed in Sec-
tion 10.7 and Section 10.8. In Section 10.9, a large set of tests assesses the effectiveness,
efficiency, and user experience of COOL. Section 10.10 discusses related works on natural
language interface to database systems. Finally, Section 10.11 draws the conclusions and
discusses the evolution of COOL.

10.2 Overview of COOL

Figure 10.1 sketches a functional view of the architecture. Given a DW, that is a set of
multidimensional cubes together with their metadata, we distinguish between an offline phase
(to initialize and configure the system) and an online phase (to enable the user interaction).
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10.2.1 The offline phase

The offline phase extracts the DW-specific terms used by users to express the queries. Such
information are stored in the knowledge base of COOL (KB), which relies on the Dimensional
Fact Model (DFM) expressiveness [112]. Noticeably, this phase runs only when the DW
undergoes modification either in the cube schemas or in their instances. More in detail,
the Automatic KB feeding process extracts the categorical attribute values and metadata
from the cubes (e.g., attribute and measure names, table names, hierarchy structures) and
possibly extends them with synonyms, automatically extracted from open data ontologies
(Wordnet [197] in our implementation) to widen the language understood by COOL. Besides
the domain-specific terminology, the KB also includes the set of standard OLAP terms
that are domain independent and that do not require any feeding (e.g., group by, where,
select). Further enrichment can be optionally carried out manually (i.e., by the Manual
KB enrichment step) when the application domain involves a non-standard vocabulary
(i.e., when the physical names of tables and columns do not match the words of a standard
vocabulary). A closer look to the contents of the KB is given in Section 10.3.

10.2.2 The online phase

The online phase runs every time a natural language query is issued to COOL. The spoken
query is initially translated to text by the Speech-to-text software module. This task is out
of scope in our research and we exploited the public Web Speech API in our implementation
(https://wicg.github.io/speech-api/).

The uninterpreted text is then analyzed by the Interpretation step that actually consists
of two alternative steps: Full query is in charge of interpreting the texts describing full
queries (which typically happens when an OLAP session starts), while OLAP operator
modifies the latest query when the user states an OLAP operator along an OLAP session.
The switch between the two steps to manage the conversation (i.e., a user/COOL dialog) is
modeled by two states: engage and navigate.

• Engage: this is the initial state, in which the system expects a full query to be issued and
whose interpretation is demanded to Full query. When COOL achieves a successful
interpretation (i.e., it is able to run the query) it switches to the navigate state.

• Navigate: the dialogue evolves by iteratively applying OLAP operators that refine
the query (i.e., which define an OLAP session). The management of these steps is
demanded to OLAP operator until a reset command is applied, making COOL return
to the engage state.

https://wicg.github.io/speech-api/
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On the one hand, understanding a single OLAP operator is simpler since it involves less
elements than a complete GPSJ query. On the other hand, it requires to have memory of
previous queries (stored in the Log) and to understand which part of the previous query must
be modified. Both Full query and OLAP operator follow the computational steps repre-
sented in Figure 10.3: (i) Tokenization & Mapping (see Section 10.4), (ii) Parsing (see
Section 10.5), and (iii) Checking & Annotation (see Section 10.6), but provide different
implementations of (ii) and (iii).

Due to natural language ambiguities, speech-to-text inaccuracies and wrong query formu-
lations (e.g., applying count operator on a measure or grouping by a descriptive attribute),
part of the text can be misunderstood. The Disambiguation & Enhancement step solves
ambiguities (if any) by asking appropriate questions to the user. The reasons behind the
misunderstandings are manifold, including (but not limited to): ambiguities in the aggrega-
tion operator to be used; inconsistency between attribute and value in a selection predicate;
identification of relevant elements in the text without understanding their role in the query.

The output of the previous steps is a data structure (i.e., a parse tree) that models the query
and that can be automatically translated into an SQL query by exploiting the DW structure
stored in the KB. Finally, the obtained query is run on the DW and the results are reported to the
user by the Execution & Visualization software module. Such module could exploit a
standard OLAP visualization tool or it could implement voice-based approaches [269] to
create an end-to-end conversational solution. The visual interaction could rely on the DFM,
which natively provides a graphical representation for multidimensional cubes and queries:
such representation is conceptual and user-oriented, and its effectiveness is confirmed by its
adoptions in commercial tools [143] for both modeling and descriptive purposes. Although
we have built a prototype to enable the evaluation of COOL (see Section 10.9), the discussion
of this module is out of the scope of the chapter.
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10.3 The knowledge base

The Knowledge Base (KB in Figure 10.1) relies on the basic expressiveness of the DFM
[112], which includes the multidimensional concepts introduced in Section 8.3.

The content of KB can be divided into entities and structural information. Entities
compose the translated lexicon (i.e., the Interpretation step directly looks for their
occurrence in the user’s text), while structural information supports the interpretation (e.g.,
patterns necessary to recognize dates and numbers) and enables consistency checks on the
interpreted query and the SQL generation(e.g., DW schema). More in detail, an entity
E = ⟨t1, ..., tr⟩ is a sequence of textual words (i.e., a single distinct meaningful element
of speech or writing). We refer to the set of all entities in the KB as E = {E1, ...,Em}.
Additionally, several synonyms can be stored for each entity (Table 10.1), enabling COOL to
cope with slang and different shades of the text.

Orthogonally, entities and structural information are either domain-agnostic or domain-
dependent. The domain-agnostic content includes those keywords and patterns that are
typically used to express a query.

• Intention keywords: entities expressing the role of the subsequent part of text. Exam-
ples of intention keywords are group by, select and where.

• Operators: entities including logic (not, and, or), comparison (=,<>,>,<,≥,≤)
and aggregation operators (e.g., sum, avg, min, max).

• Patterns of dates and numbers: structures used to automatically recognize dates and
numbers in raw text.

The KB domain-dependent content is automatically collected by querying the DW and its
data dictionary and is stored in a QB4OLAP [82] compatible repository.

• DW element names: entities corresponding to measures, dimensional attributes and
fact names.

• DW element values: entities corresponding to values from categorical attributes
(together with their frequency), and to statistical values (e.g., minimum and maximum)
for numerical attributes.

• Hierarchy structure: information about the roll up relationships between attributes.

• Aggregation operators: information about the operators applicable to each measure
and the default one.
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Table 10.1: Sample of domain-agnostic and domain-specific entities with their synonyms.
Domain-specific entities refer to the Sales cube from Figure 10.2

Domain Type Entity Synonym samples

Agnostic

Intention keyword
where in, on, such that, filter
group by by, for each, per

Operator
=; ≥ equal to; greater than
sum total, amount
avg average, medium

Specific
DW element name

Sales transactions
UnitSales quantities
Gender sex

DW element value Drink beverage

• DB tables: information about the structure of the database implementing the DW,
including table and attribute names, primary and foreign key relationships.

Example 19 (Cube, Entities and Synonyms) In the Sales fact schema in Figure 10.2, Prod-
uct and Store are dimensions, Month is a dimensional attribute and Name is a descriptive
attribute. StoreSales and UnitSales are measures. It is possible to aggregate StoreSales using
sum and avg aggregation operators. An example of GPSJ query would ask to “return the
total quantity sold by month and type only for Italian stores". Drilling down from Type to
Product means grouping on a finer attribute. Conversely rolling up from Month to Year
means grouping on a coarser attribute. Finally, we can further slice and dice by adding
a filter on a specific Category of products. With reference to the Sales cube, Month and
UnitSales are domain-specific entities, while avg is a domain-agnostic entity. Examples of
synonyms for avg are “average" and “medium". □

10.4 Tokenization & mapping

A raw text T can be modeled as a sequence of tokens (i.e., single words) T = ⟨t1, ..., tz⟩. The
goal of this step is to identify in T the entities, i.e., the only elements that will be involved
in the Parsing step. Turning a text into a sequence of entities means finding a mapping
between tokens in T and E .

Definition 26 (Mapping & Mapping function) A mapping function M(T ) is a partial func-
tion that associates sub-sequences (or n-grams) 1 from T to entities in E such that:

1The term n-gram is used as a synonym of sub-sequence in the area of text mining.



118 Conversational OLAP

• sub-sequences of T have length n at most;

• the mapping function determines a partitioning of T ;

• a sub-sequence T ′ = ⟨ti, ..., tl⟩ ∈ T (with |T ′| ≤ n) is associated to an entity E if
and only if Sim(T ′,E) > α (where Sim() is a similarity function, later defined) and
E ∈ TopN(E ,T ′) (where TopN(E ,T ′) is the set of N entities in E that are the most
similar to T ′ according to Sim(T ′,E)).

The output of a mapping function is a sequence M = ⟨E1, ...,El⟩ on E that we call a map-
ping. Given the mapping M, the similarities Sim(T ′,Ei) between each entity Ei and each
corresponding token T ′ are also retained and denoted with SimM(Ei). A mapping is said to
be valid if the fraction of mapped tokens in T is higher than a given threshold β . We call M

the set of valid mappings.

Several mappings might exist between T and E since Definition 26 admits sub-sequences
of variable lengths (corresponding to different partitionings of T ) and associates the top
similar entities to each sub-sequence. This increases interpretation robustness (since it allows
to choose, in the next steps, the best text interpretation out of a higher number of candidates),
but it can lead to an increase in computation time. The generated mappings differ both in
the number of entities involved and in the specific entities mapped to a token. In the simple
case where multi-token mappings are not possible (i.e., n = 1 in Definition 26) the number
of generated mappings for a raw text T , such that |T |= z, is:

z

∑
i=⌈z·β⌉

(
z
i

)
·Ni (10.1)

The formula counts the possible configurations of sufficient length (i.e., higher or equal to
⌈z ·β⌉) and, for each length, count the number of mappings determined by the top similar
entities. Since the number of candidate mappings is exponential, we consider only the most
significant ones through α , β , and N: α imposes sub-sequence of tokens to be very similar
to an entity; N further imposes to consider only the N entities with the highest similarity;
finally, β imposes a sufficient portion of the text to be mapped.

The similarity function Sim() is based on the Levenshtein distance and keeps token
permutation into account to make similarity robust to token permutations (e.g., sub-sequences
⟨P.,Edgar⟩ and ⟨Edgar,Allan,Poe⟩ must result similar). Given two token sequences T and
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Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Figure 10.4: Token dispositions: arcs denote the correspondence of tokens for a specific
disposition (the bolder the line, the higher the similarity). The disposition determining the
maximum similarity is shown in a dashed rectangle.

W with |T |= l, |W |= m such that l ≤ m it is:

Sim(⟨t1, ..., tl⟩,⟨w1, ...,wm⟩) =

max
D∈Disp(l,m)

∑
l
i=1 sim(ti,wD(i)) ·max(|ti|, |wD(i)|)
∑

l
i=1 max(|ti|, |wD(i)|)+∑i∈D̂ |wi|

where D ∈ Disp(l,m) is an l-disposition of {1, ...,m} and D̂ is the subset of values in
{1, ...,m} that are not present in D. Function Sim() weights token similarity based on
their lengths (i.e., max(|ti|, |wD(i)|) and penalizes similarities between sequences of different
lengths that imply unmatched tokens (i.e., ∑i∈D̂ |wi|).

Example 20 (Token similarity) Figure 10.4 shows some of the possible token dispositions
for the two token sequences T = ⟨P.,Edgar⟩ and W = ⟨Edgar,Allan,Poe⟩. The disposition
determining the highest similarity is surrounded by a dashed rectangle; the similarity is 0.46
and it is calculated as

Sim(T,W ) =
sim(P.,Poe)|Poe|+ sim(Edgar,Edgar)|Edgar|

|Poe|+ |Edgar|+ |Allan|

□

We assume the best interpretation of the input text to be the one where (1) all the entities
discovered in the text are included in the query (i.e., all the entities are parsed through
the grammar) and, (2) each entity discovered in the text is perfectly mapped to one sub-
sequence of tokens (i.e., SimM(Ei) = 1). The two previous statements are modeled through
the following score function. Given a mapping M = ⟨E1, ...,Em⟩, we define its score as

Score(M) =
m

∑
i=1

SimM(Ei) (10.2)
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The score is higher when M includes several entities with high values of SimM. Although at
this stage it is not possible to predict if a mapping will be fully parsed, it is apparent that the
higher the mapping score, the higher its probability to determine an optimal interpretation.
As it will be explained in the Section 10.6, sorting the mappings by descending score also
enables pruning strategies to be applied.

Example 21 (Tokenization & mapping) With reference to Table 10.1, given the set of enti-
ties E and a tokenized text T = ⟨medium,sales, in,2019,by, the,region⟩, examples of map-
pings M1 and M2 are:

M1 =⟨avg,UnitSales,where,2019,group by, region⟩
M2 =⟨avg,UnitSales,where,2019,group by,Regin⟩

where “medium" is mapped to avg since “medium" is a known synonym of the aggregation
operator avg, “in" is mapped to where since “in" can express time-related predicates, “the"
is discarded being a stop word, and “region" is mapped to the attribute Region in M1 and
to the value “Regin" in M2 (where “Regin" is a value of attribute Customer that holds a
sufficient similarity). □

10.5 Parsing

Parsing is the process of analyzing a sequence of entities (i.e., a mapping) to determine its
syntactical structure with respect to a formal grammar. Parsing outputs a data structure called
parse tree that is used by COOL to translate a mapping into SQL.

10.5.1 Full query parsing

In Full query, Parsing is responsible for the interpretation of a complete GPSJ query
stated in natural language. Parsing a full query means searching in a mapping the complex
syntax structures (i.e., clauses) that build-up the query. Given a mapping M, the output of
a parser is a parse tree PTM, i.e. an ordered tree that represents the syntactic structure of a
mapping according to the grammar described in Figure 10.5. To the aim of parsing, entities
are terminal elements in the grammar.

As a GPSJ query consists of 3 clauses (measure, group by and selection), in our grammar
we identify four types of derivations2:

2A derivation in the form ⟨X⟩ ::= e represent a substitution for the non-terminal symbol ⟨X⟩ with the given
expression e. Symbols that never appear on the left side of ::= are named terminals. Non-terminal symbols are
enclosed between ⟨⟩, while terminal symbols are enclosed between “ ".
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⟨GPSJ⟩ ::= ⟨MC⟩⟨GC⟩⟨SC⟩ | ⟨MC⟩⟨SC⟩⟨GC⟩ | ⟨SC⟩⟨GC⟩⟨MC⟩ | ⟨SC⟩⟨MC⟩⟨GC⟩
| ⟨GC⟩⟨SC⟩⟨MC⟩ | ⟨GC⟩⟨MC⟩⟨SC⟩ | ⟨MC⟩⟨SC⟩ | ⟨MC⟩⟨GC⟩
| ⟨SC⟩⟨MC⟩ | ⟨GC⟩⟨MC⟩ | ⟨MC⟩

⟨MC⟩ ::= (⟨Agg⟩⟨Mea⟩ | ⟨Mea⟩⟨Agg⟩ | ⟨Mea⟩ | ⟨Cnt⟩⟨Fct⟩ | ⟨Fct⟩⟨Cnt⟩
| ⟨Cnt⟩⟨Attr⟩ | ⟨Attr⟩⟨Cnt⟩)+

⟨GC⟩ ::= “group by” ⟨Attr⟩+
⟨SC⟩ ::= “where” ⟨SCA⟩
⟨SCA⟩ ::= ⟨SCN⟩ “and” ⟨SCA⟩ | ⟨SCN⟩
⟨SCN⟩ ::= “not” ⟨SSC⟩ | ⟨SSC⟩
⟨SSC⟩ ::= ⟨Attr⟩⟨Cop⟩⟨Val⟩ | ⟨Attr⟩⟨Val⟩ | ⟨Val⟩⟨Cop⟩⟨Attr⟩ | ⟨Val⟩⟨Attr⟩ | ⟨Val⟩
⟨Cop⟩ ::= “ = ” | “ <> ” | “ > ” | “ < ” | “≥ ” | “≤ ”
⟨Agg⟩ ::= “sum” | “avg” | “min” | “max” | “stdev”
⟨Cnt⟩ ::= “count” | “count distinct”
⟨Fct⟩ ::= Domain-specific facts
⟨Mea⟩ ::= Domain-specific measures
⟨Attr⟩ ::= Domain-specific attributes
⟨Val⟩ ::= Domain-specific values

Figure 10.5: Backus-Naur representation of the Full query grammar. Entities from the KB
are terminal symbols. “+" identifies a list of at least 1 symbol.

• Measure clause ⟨MC⟩: this derivation consists of a list of measure/aggregation opera-
tor pairs.

• Group by clause ⟨GC⟩: this derivation consists of a sequence of attribute names
preceded by the entity “group by”.

• Selection clause ⟨SC⟩: this derivation consists of a Boolean expression of simple
selection predicates ⟨SSC⟩ preceded by the entity “where”.

• GPSJ query ⟨GPSJ⟩: this derivation assembles the final query. Only the measure
clause is mandatory since a GPSJ could aggregate a single measure with no selections.
The order of clauses is irrelevant; this implies the proliferation of derivations due to
clause permutations.

As shown in Figure 10.5, some derivations admit also partial forms (e.g., a measure clause
⟨MC⟩missing its aggregation operator ⟨Agg⟩); in these cases, the Checking & Annotation
step will try to infer the omitted derivations (see Section 10.6).
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�Mea��Agg� “where” “group by” �Attr�

�MC� �SC� �GC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Val�

Region�M1 = �avg, UnitSales, where, 2019, group by,

(a) The entire mapping is parsed (i.e., PFM = PTM).

�Mea��Agg� “where” “group by”

�MC� �SC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Val�

�SCA�

�SCN�

�SSC�

�Val�

�SC�

Regin�M2 =� avg, UnitSales, where, 2019, group by,

(b) “group by” ⟨Val⟩ cannot be parsed.

Figure 10.6: Parse forests from Example 21.

The GPSJ grammar is LL(1)3 [23], is not ambiguous (i.e., each mapping admits, at most,
a single parse tree PTM) and can be parsed by a LL(1) parser with linear complexity [23].
If the input mapping M is fully parsed, PTM includes all the entities as leaves. Conversely,
if only a portion of the input belongs to the grammar, an LL(1) parser produces a partial
parsing, meaning that it returns a parse tree including the portion of the input mapping that
belongs to the grammar (i.e., the PT rooted in ⟨GPSJ⟩). The remaining entities can be either
singletons or complex clauses that were not possible to connect to the main parse tree. We
will call parse forest PFM the union of the parse tree with residual clauses. Obviously, if
all the entities are parsed, it is PFM = PTM. Considering the whole forest rather than the
simple parse tree enables disambiguation and errors to be recovered in the Disambiguation
& Enhancement step (Section 10.7). To keep the terminology simple, we will refer to the
parser’s output as a parse forest independently of the presence of residual clauses.

Example 22 (Parsing) Figure 10.6 reports the parsing outcome for the two mappings in
Example 21. M1 is fully parsed, thus its parse forest corresponds to the parse tree (i.e.,
PTM1 = PFM1). Conversely, in M2 the last token is wrongly mapped to the attribute value
Regin rather than to the attribute name Region. This prevents the full parsing and the parse
tree PTM2 does not include all the entities in M2 (i.e., PTM2 ̸= PFM2). □

10.5.2 OLAP operator parsing

In OLAP operator, Parsing is responsible for searching in a mapping the syntactic struc-
tures of the OLAP operators that build-up the conversation. The whole grammar is described
in Figure 10.7 (we do not report grammar derivations ⟨Attr⟩, ⟨MC⟩ and ⟨SSC⟩ in common

3The rules presented in Figure 10.5 do not satisfy LL(1) constraints for readability reasons. It is easy to
turn such rules in a LL(1) compliant version, but the resulting rules are much more complex to be read and
understood.
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⟨OPERATOR⟩ ::= ⟨DRILL⟩ | ⟨ROLLUP⟩ | ⟨SAD⟩ | ⟨ADD⟩ | ⟨DROP⟩ | ⟨REPLACE⟩
⟨DRILL⟩ ::= “drill” ⟨Attr⟩ f rom “to” ⟨Attr⟩to | “drill” ⟨Attr⟩

⟨ROLLUP⟩ ::= “rollup” ⟨Attr⟩ f rom “to” ⟨Attr⟩to | “rollup” ⟨Attr⟩
⟨SAD⟩ ::= “slice” ⟨SSC⟩
⟨ADD⟩ ::= “add” (⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)
⟨DROP⟩ ::= “drop” (⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)

⟨REPLACE⟩ ::= “replace” (⟨MC⟩old “with” ⟨MC⟩new | ⟨Attr⟩old“with” ⟨Attr⟩new

| ⟨SSC⟩old “with” ⟨SSC⟩new)

Figure 10.7: Backus-Naur representation of the OLAP operator grammar. Entities from
the KB are terminal symbols. We omit the derivations ⟨MC⟩,⟨Attr⟩,⟨SSC⟩ that are in com-
mon with Figure 10.5. Decoration of non-terminals with subscript is used for the sake of
description.

with Figure 10.5). Our conversation steps are inspired by well-known OLAP visual inter-
faces (e.g., Tableau4). To apply an OLAP operator, COOL must be in state navigate (i.e., a
full GPSJ query has been already successfully interpreted). By definition, the interpreted
query correspond to a parse tree PTC that acts as a context for the operator. For the sake of
explanation, we assume that PTC takes the form ⟨GPSJ⟩ ::= ⟨MC⟩⟨GC⟩⟨SC⟩ (even if ⟨GC⟩
and/or ⟨SC⟩ can be missing), and with a slight abuse of notation we adopt the set notation to
denote that a clause is contained in another clause (e.g., ⟨Attr⟩ ∈ ⟨GC⟩ and ⟨GC⟩ ∈ ⟨GPSJ⟩).

• Drill down ⟨DRILL⟩: this derivation substitutes the coarser attribute ⟨Attr⟩ f rom ∈ ⟨GC⟩
with a finer attribute ⟨Attr⟩to.

• Roll up ⟨ROLLUP⟩: this derivation substitutes the finer attribute ⟨Attr⟩ f rom ∈ ⟨GC⟩
with a coarser attribute ⟨Attr⟩to.

• Slice and dice ⟨SAD⟩: this derivation specifies a new selection predicate ⟨SSC⟩ ∈ ⟨SC⟩.

• Add ⟨ADD⟩: this derivation adds a measure/attribute/selection clause to the corre-
sponding clause ⟨MC⟩/⟨GC⟩/⟨SC⟩ ∈ ⟨GPSJ⟩.

• Drop ⟨DROP⟩: this derivation drops a measure/attribute/selection clause from the
corresponding clause ⟨MC⟩/⟨GC⟩/⟨SC⟩ ∈ ⟨GPSJ⟩.

• Replace ⟨REPLACE⟩: this derivation combines Add and Drop to substitute an existing
old clause, either measure, attribute or selection, for a new one.

4https://www.tableau.com/

https://www.tableau.com/
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Similarly to the GPSJ grammar (Figure 10.5), the OLAP operator grammar admits partial
forms for Drill down and Roll up (e.g., only a single attribute ⟨Attr⟩ is provided in a ⟨DRILL⟩
clause) that the Checking & Annotation step will try to complete (see Section 10.7). Also
note that the Add and Drop operators respectively behave as Drill down and Roll up when
applied to attributes; otherwise, they behave as Slice and dice when applied to selection
clauses.

Example 23 (Conversational OLAP Session) Given the parse tree from Figure 10.9, an
example of conversation is the following. At first the user issues the natural language sentence

“Drill down region to city", COOL parses such sentence (Figure 10.8a), recognizes a drill
down operation and modifies the previous parse tree (Figure 10.8b). Then, the user asks to

“replace the unit sales with the sum of store sales". Despite the aggregation operation is not
specified, COOL recognizes the measure clause (Figure 10.8c) to be substituted and replaces
it with the new one (Figure 10.8d). Finally, the user asks to “slice on milk" (Figure 10.8e):
COOL automatically infers the attribute containing the value “milk” and combines the new
condition with the previous existing clause (Figure 10.8f). □

10.6 Parse forest checking and annotation

The Parsing step does not always output a parse forest that can be directly translated into
executable SQL code. Indeed, syntactic adherence to the grammar does not guarantee the
conformance of the full query (or OLAP operator) with multidimensional structure and
constraints. As it happens for compilers, parsing and type checking (i.e., verifying and
enforcing the constraints of data types) are kept separated to reduce the overall complexity.

In this step, COOL seeks for these problems, and annotates the parse forest accordingly.
Two types of annotations are possible.

• Ambiguity: an inconsistency solvable through disambiguation. Ambiguities are solv-
able either automatically by COOL or by interacting with the user (e.g., “sum unit
sales for Salem", but Salem is member of both City and StoreCity);

• Error: an inconsistency that does not admit solution and that can be only notified to the
user (e.g., “remove unit sales", but the measure UnitSales is not included in ⟨GPSJ⟩).

Checking & Annotation is responsible for searching problematic clauses (i.e., sub-
trees) in the parse forest and annotating them. Depending on the type of the clause, Checking
& Annotation evaluates the conformance of the clause to the multidimensional structure
and constraints and marks the subtrees failing such constraints.
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M1 = �drill, Region, to, City�
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�Attr�“drill” “to”

(a) Parsing “Drill down region
to city".
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�SSC�

�Attr� �Val��Cop�
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(b) Drill down Region to City w.r.t. Figure 10.6a.
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(c) Parsing “Replace unit sales with
the sum of store sales".
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City�M = �sum, StoreSales,where, Year, =, 2019, group by,

(d) Replace Avg UnitSales with Sum StoreSales.

M3 = �slice,Milk �

�SLICE�
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(e) Parsing “Slice on milk".
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City�M = �sum, StoreSales,where, Year, =, 2019, group by,Product, =, Milk,

(f) Add a new slice on Product = Milk.

Figure 10.8: A conversational session modifies the parse tree from Figure 10.6a.

We now describe the allowed annotations for the parse forests produced by Full query
and OLAP operator.

10.6.1 Full query annotation

In Full query, Checking & Annotation searches PT for problematic clauses (i.e., sub-
trees) in a depth-first fashion [265]. Table 10.2 reports the annotations resulting from failing
checks.

• Ambiguous attribute (AA): the ⟨SSC⟩ clause has an implicit attribute but the parsed
value belongs to multiple attribute domains.

• Ambiguous aggregation operator (AAO): the ⟨MC⟩ clause has an implicit aggrega-
tion operator but the measure is associated with multiple aggregation operators.

• Attribute-value mismatch (AVM): the ⟨SSC⟩ clause includes a value that does not
belong to the domain of the specified attribut.
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Table 10.2: Full query annotations

Type Name Gen. derivation sample Example
Ambiguity AA ⟨SSC⟩ ::= ⟨Val⟩ “sum unit sales for Salem", but Salem is member of

City and StoreCity
Ambiguity AAO ⟨MC⟩ ::= ⟨Mea⟩ “unit sales by product", but sum and avg are valid

aggregations
Ambiguity AVM ⟨SSC⟩ ::= ⟨Attr⟩⟨Cop⟩⟨Val⟩ “sum unit sales for product New York", but New York

is not a Product
Ambiguity MV ⟨MC⟩ ::= ⟨Agg⟩⟨Mea⟩ “sum prices per store", but Price is not additive
Ambiguity AV ⟨GC⟩ ::= “group by” ⟨Attr⟩+ “average prices by name", but Product is not in

⟨GC⟩
Ambiguity UC – “average unit sales by Regin", but Regin is not an at-

tribute

• Violation of a multidimensional constraint on a measure (MV): the ⟨MC⟩ clause
contains an aggregation operator that is not allowed for the specified measure.

• Violation of a multidimensional constraint on an attribute (AV): the ⟨GC⟩ clause
contains a descriptive attribute without the corresponding dimensional attribute5.

• Unparsed clause (UC): A clause has been properly parsed, but the parser was not
able to to connect it to the ⟨GPSJ⟩ derivation. Thus, a parse forest including a ⟨GPSJ⟩
derivation and one or more dangling clauses has been returned.

10.6.2 OLAP operator annotation

Although the OLAP operator grammar returns simpler parse trees than Full query, anno-
tating an OLAP operator is more complex since the parse tree must be internally coherent
and also compliant to the previous query context, i.e. the latest full query to which the OLAP
operator should be applied. Let PTC be the parse tree for the previous query context, and let
PT be the parse tree of the OLAP operator. In OLAP operator, Checking & Annotation
extends the checks in Section 10.6.1 by searching also for possible inconsistencies between
each clause in PTC and PT . Checking is achieved in a depth-first fashion [265] and exploits
the PTC structure to reduce the search space (e.g., it is meaningful to search for a ⟨SSC⟩
only within the ⟨SC⟩ ∈ ⟨GPSJ⟩). As a consequence, checking an OLAP operator requires
additional constraints and annotations with respect to the ones defined in Section 10.6.1
(Table 10.3):

• Not Existing Clause (NEC): PT references a clause that should be present in PTC,
but that is missing. For example, ⟨Attr⟩ f rom in the ⟨DRILL⟩ and ⟨ROLLUP⟩ derivations
must exist in ⟨GC⟩ of PTC;

5According to DFM a descriptive attribute is an attribute that further describes a dimensional level (i.e.,
it is related one-to-one with the level), but that can be used for aggregation only in combination with the
corresponding level.
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Table 10.3: OLAP operator annotations

Type Name Gen. derivation sample Example
Ambiguity TO ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ “drill down from year"
Ambiguity FR ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ “drill down to year" but ⟨GC⟩ con-

tains Month and Quarter
Error NEC ⟨DROP⟩ ::= “drop” ⟨MC⟩ “remove unit sales" but UnitSales

is not in ⟨GPSJ⟩
Error AEC ⟨ADD⟩ ::= “add” ⟨MC⟩ “add max unit sales" but max Unit-

Sales is already in ⟨GPSJ⟩
Error ID ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ “drill down from product"
Error FA ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ “drill down from name"
Error HM ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ f rom “to” ⟨Attr⟩to “drill down from product to city"
Error HSM ⟨DRILL⟩ ::= “drill” ⟨Attr⟩ f rom “to” ⟨Attr⟩to “drill down from product to type"

• Already Existing Clause (AEC): PT cannot be applied as it references an element
that is already present in PTC, while it should not be there. For example, ⟨Attr⟩to in
the ⟨DRILL⟩ and ⟨ROLLUP⟩ derivations cannot exist in ⟨GC⟩ of PTC;

• Invalid drill (ID): it is impossible to drill down on ⟨Attr⟩ f rom in a ⟨DRILL⟩ derivation,
since ⟨Attr⟩ f rom is already the finest attribute in the hierarchy.

• Forbidden Attribute (FA): it is impossible to drill down/roll up on a descriptive
attribute.

• Hierarchy mismatch (HM): ⟨Attr⟩ f rom and ⟨Attr⟩to in the ⟨DRILL⟩ (or ⟨ROLLUP⟩)
derivation belong to two different hierarchies.

• Hierarchy structure mismatch (HSM): ⟨Attr⟩ f rom in the ⟨DRILL⟩ (or ⟨ROLLUP⟩)
derivation is finer (or coarser) than ⟨Attr⟩to.

• Branching ambiguity (TO): it is impossible to infer ⟨Attr⟩to in a ⟨DRILL⟩ (or
⟨ROLLUP⟩) derivation due to the presence of a branch in the hierarchy.

• Rolling ambiguity (FR): it is impossible to infer ⟨Attr⟩ f rom in a ⟨DRILL⟩ (or
⟨ROLLUP⟩) derivation due to the presence of multiple finer (or coarser) attributes
in ⟨GC⟩.

10.6.3 Parse forest scoring

A textual query generates several parse forests, one for each mapping. In our approach, only
the most promising one is proposed to the user in the Disambiguation & Enhancement
step. This choice comes from two main motivations:

• Proposing more than one alternative queries to the user can be confusing and makes
very difficult to contextualize the disambiguation questions.
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Figure 10.9: Parse forest enhancement: the implicit attribute Year has been added to M1 in
Figure 10.6a.

• Proposing only the most promising choice makes it easier to create a baseline query,
even though the optimal derivation could be missed. The baseline query can still be
improved by adding or removing clauses through further interactions enabled by the
OLAP operator step.

Definition 27 (Parse Forest Score) Given a mapping M and the corresponding parse forest
PFM, we define its score as Score(PFM) = Score(M′) where M′ is the sub-sequence of M
belonging to the parse tree PTM.

The parse forest holding the highest score is the one proposed to the user. This ranking cri-
terion is based on an optimistic-pessimistic forecast of the outcome of the Disambiguation
& Enhancement step. On the one hand, we optimistically assume that the ambiguities be-
longing to PTM will be positively solved in the Disambiguation & Enhancement step and
the corresponding clauses and entities will be kept. On the other hand, we pessimistically
assume that non-parsed clauses belonging to PFM will be dropped. The rationale of our
choice is that an annotated clause included in the parse tree is more likely to be a proper
interpretation of the text. As shown in Figure 10.10, a totally pessimistic criterion (i.e.,
exclude from the score all the annotated clauses and entities) would carry forward a too
simple, but non-ambiguous, forest; conversely, a totally optimistic criterion (i.e., consider
the score of all the entities in PFM) would make preferable a large but largely non-parsed
forest. Please note that the bare score of the mapping (i.e., the one available before parsing)
corresponds to a totally optimistic choice since it sums up the scores of all the entities in the
mapping.

The ranking criterion defined above enables the pruning of the mappings to be parsed
as shown by Algorithm 6. Reminding that mappings are parsed in descending score order,
let us assume that, at some step, the best parse forest is PFM′ with score Score(PFM′). If
the next mapping to be parsed, M′′, has score Score(M′′) < Score(PFM′), we can stop the
algorithm and return PFM′ since the score of M′′ is an upper bound to the (optimistic) score
of the corresponding parse forest.
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Figure 10.10: Portion of the parse forest contributing to its score depending on the adopted
scoring criterion.

Algorithm 6 Selection of the parse forest
INPUT M : set of valid mappings
OUTPUT PF∗: best parse forest

1: M ← sort(M ) ▷ sort mappings by score
2: PF∗←∅
3: while M ̸=∅ do ▷ while mapping space is not exhausted
4: M← head(M ) ▷ get the mapping with highest score
5: M ←M \{M} ▷ remove it from M
6: PFM← parse(M) ▷ parse the mapping
7: if score(PFM)> score(PF∗) then

▷ if current score is higher than previous score
8: PF∗← PFM ▷ store the new parse forest
9: M ←M \{M′ ∈M ,score(M′)≤ score(PF∗)}

▷ remove mappings with lower scores from M
return PF∗

Algorithm 6 works as follows. At first, mappings are sorted by their score (Line 1), the
best parse forest is initialized, and the iteration begins. While the set of existing mappings is
not exhausted (Line 3), the best mapping is picked, removed from the set of candidates, and
its parse forest is generated (Lines 4–6). If the score of the current forest is higher than the
score of the stored one (Line 7), then the current forest is stored (Line 8) and all the mappings
with a lower score are removed from the search space (Line 9) as the pruned mappings cannot
produce parse forests with a score greater than what has been already parsed.

Note that, as Score() requires a parse forest and the Parsing step always produces a
parse forest (which might coincide with the parse tree), Score(), ranking and pruning work
for both Full query and OLAP operator steps.
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10.7 Parse forest disambiguation and enhancement

If no ambiguities or errors were found in the previous steps, the parse forest coincides with a
parse tree6 that can be directly translated into an executable SQL query. Conversely, if COOL
detects an error the only possible solution is to return an informative warning to the user in
order to help her resubmit a correct command. If none of the above apply, an annotated parse
forest is returned. An annotation does not necessarily imply an interaction with the user to
be solved. Indeed, COOL tries to minimize the number of such interactions by exploiting the
KB and previous activities of the user stored in the Log. At the end of the Disambiguation
& Enhancement step, the ambiguous parse forest is reduced to a non-ambiguous parse tree
as all the ambiguities are solved in this step (existing unparsed clauses are either added to
⟨GPSJ⟩ or dropped).

We identify three ways to solve ambiguities: implicit, default-based, and user-based.

Implicit Refers to the cases where the parse forest does not include all the information
necessary to produce the SQL code, but the missing parts can be automatically inferred
from the KB since only one solution is possible. In this case the parse forest is automatically
completed and no interaction with the user is required. Examples of automatic inference are
the following.

• Implicit aggregation operator in ⟨MC⟩: the aggregation operator in a ⟨MC⟩ clause
is implicit and the measure is associated with a single aggregation operator.

• Implicit attribute in ⟨SSC⟩: the ⟨SSC⟩ clause has an implicit attribute and the parsed
member belongs to a single attribute domain.

• Implicit attribute in ⟨DRILL⟩ (or ⟨ROLL⟩): the ⟨DRILL⟩ (or ⟨ROLL⟩) clause has
an implicit attribute, and, based on the previous query context, it is necessary to infer
its role (from or to) to complete the OLAP operator. Given the attribute ⟨Attr⟩ in
the ⟨DRILL⟩ (or ⟨ROLL⟩) operator, if Attr ∈ ⟨GC⟩, we assume from as the role of
⟨Attr⟩, and ⟨Attr⟩to is inferred as the finer (or coarser) attribute of ⟨Attr⟩. Otherwise,
if Attr /∈ ⟨GC⟩, we assume to as the role of ⟨Attr⟩, and ⟨Attr⟩ f rom is inferred as the
coarser (or finer) attribute of ⟨Attr⟩.

Default-based Refers to the cases where more than one solution can be applied to complete
the parse tree but either a default solution has been defined in the KB or it can be inferred from

6As unparsed clauses are annotated as ambiguities, if no ambiguities are found then all clauses are included
in the parse tree.
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Table 10.4: User interaction templates and actions for user-based ambiguity solution. The
line splits annotations related to full-query interpretation from those related to OLAP-operator
interpretation

Name Template Action
AA ⟨Val⟩ is member of these attributes [...] Pick attribute/drop
AAO ⟨Mea⟩ allows these operators [...] Pick operator/drop
AVM ⟨Attr⟩ and ⟨Val⟩ domains mismatch, possible values are [...] Pick value/drop
MV ⟨Mea⟩ does not allow ⟨Agg⟩, possible operators are [...] Pick operator/drop
AV Impossible to group by on ⟨Attr⟩ without ⟨Attr⟩ Add attribute/drop
UC ⟨GC⟩ There is a dangling grouping clause ⟨GC⟩ Add to ⟨GPSJ⟩/drop
UC ⟨MC⟩ There is a dangling measure clause ⟨MC⟩ Add to ⟨GPSJ⟩/drop
UC ⟨SC⟩ There is a dangling predicate clause ⟨SC⟩ Add to ⟨GPSJ⟩/drop
TO ⟨Attr⟩ f rom can be generalized/specialized to [...] Pick attribute/drop
FR ⟨Attr⟩to can be specialized/generalized from [...] Pick attribute/drop
NEC The specified clause does not exist in ⟨GPSJ⟩ Alert & drop
AEC The specified clause already exists in ⟨GPSJ⟩ Alert & drop
ID Impossible to drill down from the finest attribute ⟨Attr⟩ Alert & drop
FA Impossible to roll up/drill down on the descriptive attribute ⟨Attr⟩ Alert & drop
HM ⟨Attr⟩ f rom and ⟨Attr⟩to belong to different hierarchies Alert & drop
HSM ⟨Attr⟩ f rom is coarser/finer than ⟨Attr⟩to Alert & drop

the Log according to the previous user disambiguations. In this case, the preferred solution is
applied and the user interaction is limited to evidencing it as hint. The user can optionally
manually refine this solution. More details on this case are provided later in this section.

User-based Refers to the remaining cases where no automatic solutions apply. In this
case a user interaction is required to disambiguate. Table 10.4 reports the user interaction
templates and actions for user-based ambiguity resolutions. Each template allows to either
provide the missing information or to drop the annotated clause. Templates are standardized
and user choices are limited to keep the interaction easy. This allows also unskilled users to
obtain a baseline query.

As for default-based ambiguities, if the Log highlights a recurring choice in the way of
solving ambiguities, COOL infers a preference and this knowledge can be leveraged to reduce
the number of user interactions, turning a user-based solution in a smoother default-based
one. To this end, similarly to [96], at each disambiguation step d we store in the Log L a
triple d = (A,T,T ∗), where d.A is the annotation name, d.T is the annotated subtree and
d.T ∗ is the disambiguated subtree (eventually empty if the user dropped T ). Given L, the
log-based disambiguation frequency is defined as the ratio between the number of times in
which a certain replacement is chosen to resolve an ambiguity and the number of times in
which the ambiguity occurred.

f (d) =
|{d′ ∈ L s.t. d′.A = d.A,d′.T = d.T,d′.T ∗ = d.T ∗}|

1+ |{d′ ∈ L s.t. d′.A = d.A,d′.T = d.T}|
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Algorithm 7 Log-based Disambiguation
INPUT PFM: annotated parse forest, τ: frequency threshold
OUTPUT PF∗M: partially solved annotated parse forest

1: PF∗M← PFM ▷ Initialize the parse forest
2: for each d ∈ annotations(PFM) do ▷ Iterate over its annotated subtrees
3: T ∗ = argmaxT ′ f ((d.A,d.T,T ′)) ▷ Get the most frequent disambiguation
4: if f ((d.A,d.T,T ∗))≥ τ then ▷ If frequency is higher than threshold
5: Replace d.T with T ∗ in PF∗M ▷ ... replace it
6: Annotate T ∗ as hint ▷ ... annotate the subtree as hint
7: return PF∗M

Given the frequency threshold τ , Algorithm 7 shows the automatic disambiguation process.
Given an annotated parse forest (Line 1), the algorithm iterates over the annotated subtrees
(Line 2). For each annotation, the algorithm picks the disambiguation with the highest
frequency (Line 3). If the frequency is higher than a given threshold (Line 4), then the
algorithm replaces the annotated subtree with the frequent one within the parse forest (Line
5) and marks it as a hint (Line 6).

Example 24 (Log-based disambiguation) Given the mapping M =

⟨sum,UnitSales,where,New York⟩, Parsing outputs a parse forest where the sub-
tree T ′ = SSC(New York)7 corresponding to the SSC clause New York (where New York is
a member of both StoreCity and CustomerCity) is annotated with an ambiguous attribute AA
annotation. Given a threshold τ = 0.5 and the Log

L = {(AA, SSC(New York), SSC(StoreCity,=,New York)),

(AA, SSC(New York), SSC(StoreCity,=,New York)),

(AA, SSC(New York), SSC(CustomerCity,=,New York)), ...}

the subtree T ′ is automatically replaced with T ∗ = SSC(StoreCity,=,New York) as
f ((AA, SSC(New York), SSC(StoreCity,=,New York))) = 2

4 = 0.5≥ τ . □

10.8 SQL generation

SQL generation translates a full-query parse tree into an executable SQL query. If an
OLAP operator has been submitted, the context parse tree PTC must be updated according
to the OLAP operator parse tree PT . All the OLAP operators can be implemented atop the

7Elements between brackets represent children of the parent node. The node SCC is the parent of the node
New York.
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addition/removal of new/existing nodes in PTC. As in Section 10.6.2, we apply a depth-first
search algorithm to retrieve the clauses interested by the OLAP operator. We recall that
adding a new clause to ⟨GPSJ⟩ (e.g., “add city" requires to add the attribute City) requires to
append the new clause to the existing ⟨MC⟩/⟨GC⟩/⟨SC⟩ (and to create it if it does not exist in
⟨GPSJ⟩). Note that an ⟨SSC⟩ is appended with the Boolean and operator as in Figure 10.8f.
Conversely, when dropping a clause produces an invalid parent clause (e.g., an empty ⟨GC⟩
or an unbalanced ⟨SSA⟩) in the parse tree, it is sufficient to remove the parent clause from
⟨GPSJ⟩.

Given a full query parse tree PT , the generation of its corresponding SQL requires to fill
in the SELECT, WHERE, GROUP BY and FROM statements. The SQL generation applies to both
star and snowflake schemas [112] and is done as follows:

• SELECT: measures and aggregation operators from ⟨MC⟩ are added to the query selec-
tion clause together with the attributes in the group by clause ⟨GC⟩;

• WHERE: predicates from the selection clause ⟨SC⟩ (i.e., values and their respective
attributes) are added to the query predicate;

• GROUP BY: attributes from the group by clause ⟨GC⟩ are added to the query group by
set;

• FROM: measures and attributes/values identify, respectively, the fact and the dimension
tables involved in the query. Given these tables, the join path is identified by following
the referential integrity constraints (i.e., by following foreign keys from dimension
tables imported in the fact table).

Example 25 (SQL generation) Given the GPSJ query “sum the unit sales by type in the
month of July", its corresponding SQL is:

SELECT Type, sum(UnitSales)
FROM Sales s JOIN Product p ON (s.pid = p.id)

JOIN Date d ON (s.did = d.id)
WHERE Month = "July"
GROUP BY Type

□
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Table 10.5: Parameter values for testing

Symbol Range Meaning
N {2,4,6} Num. of top similar entities
α {0.4,0.5,0.6} Token/entity minimum similarity
β 70% Sentence coverage threshold
n 4 Maximum sub-sequence length

10.9 Experimental tests

In this section, we evaluate COOL in terms of effectiveness, efficiency, and user experience.
Effectiveness and efficiency evaluate COOL’s capabilities in correctly interpreting a text in
a time compatible with real-time interaction. User experience evaluates how well COOL
helps the user in formulating OLAP sessions. Indeed, there is no point in creating a natural
language interface that is not easy to use by inexperienced users.

Tests are based on the Foodmart schema8. The Automatic KB feeding module popu-
lated the KB with 1 fact, 39 attributes, 12500 entities. 50 additional synonyms were manually
added in the KB enrichment step (e.g., “for each", “for every", “per" are synonyms of the
group by statement).

To the best of our knowledge, no standard benchmark exists for natural language GPSJ
queries. Nonetheless, [75] describes a real-word benchmark for generic analytics queries. 110
queries out of 147 (i.e. 75% of the benchmark) turned out to meet the GPSJ expressiveness,
confirming how general and standard GPSJ queries are. Since queries in [75] refer to private
datasets, we mapped them to the Foodmart schema. While mapping natural language to the
sales domain, we preserved the structure of the original queries (e.g., word order, typos, etc.).
For each query, we manually defined the ground truth, i.e. the parse tree resulting from the
correct text interpretation.

10.9.1 Effectiveness

Tests in this section quantitatively evaluate how well COOL interprets natural language
queries. Effectiveness is evaluated as the parse tree similarity T Sim(PT,PT ∗) between the
parse tree PT produced by COOL and the correct one PT ∗ (i.e., the manually-defined ground
truth). Parse tree similarity is based on the tree distance [305]: it ranges in [0,1] and it keeps
into account both the number of correctly parsed entities (i.e., the parse tree leaves) and the

8A public dataset about food sales between 1997 and 1998 (https://github.com/julianhyde/
foodmart-data-mysql).

https://github.com/julianhyde/foodmart-data-mysql
https://github.com/julianhyde/foodmart-data-mysql
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tree (i.e., query) structure (e.g., the selection clauses “(A and B) or C" and “A and (B or C)"
refers to the same parsed entities but underlie different tree structures).

Table 10.5 summarizes the parameters considered in our approach: token sub-sequences
has maximum length n = 4 (i.e., the [1..4]-grams) as no entity in the KB is longer than 4
words; each sub-sequence is associated to the top N similar entities with similarity at least
higher than α such that at least a percentage β of the tokens in T is covered. The value of β

is fixed to 70% based on an empirical evaluation of the benchmark queries.
We first consider the behavior of COOL without disambiguation. Figures 10.11 and 10.12

depict the performance of our approach with respect to variations in either the number
of retrieved top similar entities (i.e., N ∈ {2,4,6}) or the similarity threshold (i.e., α ∈
{0.4,0.5,0.6}). Values are reported for the top-k trees (i.e., the k trees with the highest score).
We remind that only one parse forest is involved in the Disambiguation & Enhancement
step; nonetheless, for testing purposes, it is interesting to see if the best parse tree belongs
to the top-k ranked ones. Effectiveness slightly changes by varying N and it ranges in
[0.88,0.91]. Effectiveness is more affected by the entity/token similarity threshold α and
ranges in [0.83,0.91]. In both cases, the best results are obtained when more similar entities
are admitted, and more candidate mappings are generated. Independently of the chosen
thresholds, the results of COOL are very stable (i.e., the effectiveness variations are limited)
and, even by considering only the top-1 query, its effectiveness is at the state of the art
[168, 289, 240]. This confirms that (i) the choice of proposing only one query to the user
does not negatively impact on performances (while it positively impacts on interaction
complexity and efficiency) and (ii) our scoring function properly ranks parse tree similarity
to the correct interpretation for the query since the best ranked is in most cases the most
similar to the correct solution.

Only 58 queries out of 110 are not ambiguous and produce parse trees that can be fed
as-is to SQL generation and Execution & Visualization. This means that 52 queries
— despite being very similar to the correct tree, as shown by the aforementioned results — are
not directly executable without disambiguation (we recall the ambiguities from Table 10.2).
Indeed, of these 52 queries, 38 contain one ambiguity annotation, 12 contain two ambiguity
annotations, and 2 contain three or more ambiguity annotations. Figure 10.13 depicts the
performance when the best parse tree undergoes iterative disambiguation (i.e., an increasing
number of correcting actions is applied). Starting from the best configuration from the
previous tests (for N = 6 and α = 0.4), by applying an increasing number of correcting
actions, the effectiveness increases from 0.89 up to 0.94. Unsolved differences between PT
and PT ∗ are mainly due to missed entities in the mappings.
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Figure 10.11: Effectiveness varying the number of retrieved top similar entities N and the
number of Top-k queries returned (with α = 0.4).
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Figure 10.12: Effectiveness varying the similarity threshold α and the number of Top-k
queries returned (with N = 6).

Although our approach shows an effectiveness comparable to the state-of-the-art propos-
als [168, 289, 240], it was impossible to run a comparison against them as (i) the implemen-
tations are private and the provided descriptions are far from making them reproducible, and
(ii) despite the availability of natural language datasets (e.g., the ones used in [168]), these
datasets are hardly compatible with multidimensional constraints and GPSJ queries.

10.9.2 Efficiency

In Section 10.4, we have shown that the mapping search space increases exponentially in the
text length. Figure 10.14 confirms this result showing the number of generated mappings as
a function of the number of entities |M| included in the optimal parse tree PT ∗, |M| is strictly
related to the number of tokens in the text, |T |. Note that, with reference to the parameter
values reported in Table 10.5, the configuration analyzed in Figure 10.14 is the worst case
since it determines the largest search space due to the high number of admitted similar
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Figure 10.13: Effectiveness as a function of the number of disambiguation steps (i.e.,
application of correcting actions; with k = 1, N = 6 and α = 0.4).
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Figure 10.14: Number of generated, distinct and parsed mappings varying the number |M| of
entities in the optimal tree (with N = 6 and α = 0.4). Given all the mappings generated in
the Tokenization & Mapping step, some mappings are identical and only the distinct ones
are kept. The ranking and scoring functions further prune the actually computed mapping.

entities. Noticeably, pruning rules strongly limit the number of mappings to be actually
parsed.

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
CPU and 8GB RAM, with COOL implemented in Java. Figure 10.15 shows the average
execution time by varying |M| and the number of allowed top similar entities N. The
execution time increases with the number of entities included in the optimal parse tree, as
such also the number of top similar entities impacts the overall execution time. Effectiveness
remains high also for N = 6, corresponding to an execution time of 1 second. We emphasize
that the execution time corresponds to the time necessary for the interpretation, and not to
the time to actually execute them. Queries are executed against the enterprise data mart and
their performance clearly depends on the underlying multidimensional engine and on the
complexity of the query itself.

It is worth reasoning on what happens by increasing the number of attributes/members.
As for efficiency, the performance of COOL are based on two aspects: mapping and parsing.
Increasing the number of attributes/members affects mapping due to the wider search space
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Figure 10.15: Execution time varying the number |M| of entities in the optimal tree and the
number of top similar entities N (with α = 0.4).

for entity similarity (see Equation (10.1)). However, as we pick a fixed number of synonyms,
this does not affect parsing since the number of generated mappings does not change. As
for effectiveness, a larger number of attributes/members could reduce accuracy depending
on the similarity between them. Indeed, a textual token will probably match more entities.
However, this really depends on the dataset at hand. Nonetheless, when the quality of
the spoken/written English is high (e.g., few typos or text matches DW entities with high
similarity) it is intuitive to verify that COOL matches the right entities.

10.9.3 User experience evaluation

The main goal of a natural language interface is to enable a user to easily formulate a
command. To this end, we tested COOL with 40 users, mainly master students in data science,
with basic or advanced knowledge of business intelligence and data warehousing. On a scale
from 1 (very poor) to 5 (very high), on average, users scored 3.60+−0.7 their familiarity with
the English language, and 3.28+−1.1 their familiarity with the OLAP paradigm.

For the sake of testing, we implemented a web application atop the DFM model (Fig-
ure 10.16) in which users submit a written or spoken descriptions of full queries/OLAP
operators. The following testing protocol has been adopted:

• A 10-minute tutorial was presented to show the users how COOL works and how the
test is organized.

• Users undergo 3 OLAP sessions {sa,sb,sc} with increasing complexity. Each OLAP
session is composed by three steps (q,op′,op′′), where q is a full query and op′ and
op′′ are the OLAP operators that are iteratively applied to the full query. In each OLAP
session, we provided three formal queries (q,q′,q′′), with q′ (or q′′) slightly changing
from q (or q′). At first, users were asked to produce the natural language description
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(a) The non-ambiguous query “return the medium costs for Beer and Wine by gender" is issued.
Elements highlighted in green have been understood by COOL.

(b) The ambiguous query “return the medium costs in USA" is issued. COOL asks to the user if USA
is member of Country or StoreCountry or if USA should be dropped (ambiguity AA in Table 10.4).
Elements highlighted in yellow require user-based disambiguation.

Figure 10.16: User interface of COOL implemented for the testing purpose.

of the full query q. Then, by difference with the following query, users were asked to
understand which OLAP operator op changed q (or q′) to q′ (or q′′), and to issue the
natural language description of op to COOL.

• At each step, users are asked to issue the natural language description in English
to COOL. If fully parsed, COOL visualizes the query result as a pivot table (Fig-
ure 10.16a). Otherwise, the disambiguation process starts, and users are asked to
disambiguate what COOL was not capable to automatically infer (Figure 10.16b).

• When all ambiguities (if any) are solved, the next step in the session is proposed.

• Users explicitly end the OLAP session after running q′′.
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Example 26 (OLAP session) Given the formal full query

q = {{avg StoreCost},{gender},category = “Beer and Wine”}

a user is asked to produce a natural language description of the query, such as “return the
medium costs for Beer and Wine by gender". As COOL is capable of fully interpret this query
(Figure 10.16a), the next formal query

q′ = {{avg StoreCost},{gender,month},category = “Beer and Wine”}

is presented to the user. User is asked to understand which OLAP operator can be applied
to q to produce q′ and to issue its natural language description to COOL. Note that the
applicable OLAP operator is not unique. For instance, depending on the familiarity with the
OLAP paradigm, the user may choose either to “drill down to month" or to “add the month".
□

We call PT u
s the parse tree of the first full query issued by the user (i.e., the user description

of q), and PT u
e the parse tree of the last full query modification (i.e., when the user ends the

session). We call PT ∗s and PT ∗e our ground truth, i.e. the parse trees corresponding to q and
q′′. Note that there is not a single correct/predefined path driving the OLAP session. For
instance: (i) the OLAP session can diverge/converge from/to the ground truth (e.g., a full
query that does not comprehend all the necessary entities can be completed with consequent
OLAP operators); users can concatenate ⟨ADD⟩ and ⟨REMOVE⟩ instead of the ⟨REPLACE⟩
operator; or some disambiguation steps might be necessary to complete the session due to
ambiguities or inaccuracies.

For each OLAP session, we evaluate both the starting full query and the consequent
OLAP operators. We adopt the following key performance indicators (KPIs): accuracy
T Sim(), interpretation time T , extra user interactions I (in the optimal case I = 0; i.e., the
interpretation discloses no ambiguities that require user interactions). In detail:

• Full query. T Sim(PT u
s ,PT ∗s ) measures how good is the interpretation of the full

query; Ts adds up the time it takes for the user to formulate the query and COOL to
interpret it; and Is counts the number of user interactions to produce a fully-parsed full
query.

• OLAP operator. T Sim(PT u
e ,PT ∗e ) measures how close the user query is to the correct

query after applying the OLAP operators. For each OLAP operator op, Top sums the
time it took for the user to formulate the operator, and for COOL to interpret them
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Table 10.6: Results of user evaluation in terms of average accuracy T Sim(), average elapsed
time T (in seconds), average number of user interactions I, and average number of ambiguities
A

Full query OLAP operator
Id T Sim(PT u

s ,PT ∗s ) Ts(s) Is T Sim(PT u
e ,PT ∗e ) Top(s) Iop

sa 0.98 203 0.26 0.96 159 0.47
sb 0.92 210 0.65 0.80 131 0.29
sc 0.91 183 0.61 0.94 77 0.11

All 0.94 198 0.51 0.90 122 0.29

and to apply it to the user full query; and Iop counts the number of user interactions to
produce a fully-parsed OLAP operator.

All KPIs are averaged on all users (Table 10.6). Following the previous effectiveness eval-
uation, we set α = 0.4, β = 70%, N = 6 and n = 4. As for effectiveness, the average accuracy
for full query interpretation is 0.94, consolidating the results depicted in Section 10.9.1. The
decrease in accuracy T Sim(PT u

s ,PT ∗s ) from sa to sc is justified by the increasing complexity
of the initial full query. The considerations on accuracy also hold for the average similarity of
the OLAP operator (besides some vocabulary issues on sb solvable by enriching the knowl-
edge base). As for efficiency, as expected, the time it takes for a user to formulate a full query
is higher than the time needed for the interpretation and application of an OLAP operator (3
minutes vs 2 minutes). We argue that the time could be sensibly lower if users were already
familiar with the multidimensional cube. Indeed, the time required for the OLAP operator
sensibly decreases along with an increasing familiarity with COOL (the same happens for the
full query, but the effect is compensated by the increasing complexity). As for interactions,
the small number of extra interactions—together with the high accuracy—proves COOL’s
robustness in natural language interpretation (we recall that misinterpreted clauses count
as unparsed ambiguities). In turn, this enable users to issue complete queries and OLAP
operators in either 1 or 2 interactions (i.e., 0 or 1 extra interactions).

10.10 Related works

Conversational business intelligence can be classified as a natural language interface (NLI) to
business intelligence systems to drive analytic sessions. Despite the plethora of contributions
in each area, to the best of our knowledge, no approach lies at their intersection.

NLIs to operational databases enable users to specify complex queries without previ-
ous training on formal programming languages (such as SQL) and software; a recent and
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comprehensive survey is provided in [7]. Overall, NLIs are divided into two categories:
question answering and dialog. While the former are designed to operate on single queries,
only the latter are capable of supporting sequences of related queries as needed in OLAP
analytic sessions. However, to the best of our knowledge, no dialog-based system for OLAP
sessions has been provided so far. The only contribution in the dialog-based direction is
[182], where the authors provide an architecture for querying relational databases; with
respect to this contribution we rely on the formal foundations of the multidimensional model
to drive analytic sessions (e.g., according to the multidimensional model it is impossible to
group by a measure, compute aggregations of categorical attributes, aggregate by descriptive
attributes, ensure drill-across validity). Also differently from [182], the results we provide are
supported by extensive effectiveness and efficiency performance evaluation that completely
lack in [182]. Finally, existing dialog systems, such as [239], address the exploration of
linked data. Hence, they are not suitable for analytics on the multidimensional model.

As for question answering, existing systems are well understood and differentiate for the
knowledge required to formulate the query and for the generative approach. Domain agnostic
approaches solely rely on the database schema. NaLIR [168] translates natural language
queries into dependency trees [188] and brute-forcefully transforms promising trees until a
valid query can be generated. In our approach we rely on n-grams instead of dependency
trees [188] since the latter cannot be directly mapped to entities in the knowledge base (i.e.,
they require tree manipulation) and are sensible to the query syntax (e.g., “sum unit sales"
and “sum the unit sales" produce two different trees with the same meaning). SQLizer
[289] generates templates over the issued query and applies a “repair" loop until it generates
queries that can be obtained using at most a given number of changes from the initial template.
Domain-specific approaches add semantics to the translation process by means of domain-
specific ontologies and ontology-to-database mappings. SODA [31] uses a simple but limited
keyword-based approach that generates a reasonable and executable SQL query based on the
matches between the input query and the database metadata, enriched with domain-specific
ontologies. ATHENA [240] and its recent extension [248] map natural language into an
ontology representation and exploit mappings crafted by the relational schema designer to
resolve SQL queries. Analyza [67] integrates the domain-specific ontology into a “semantic
grammar" (i.e., a grammar with placeholders for the typed concepts such as measures,
dimensions, etc.) to annotate and finally parse the user query. Additionally, Analyza provides
an intuitive interface facilitating user-system interaction in spreadsheets. Unfortunately, by
relying on the definition of domain-specific knowledge and mappings, the adoption of these
approaches is not plug-and-play as an ad-hoc ontology is rarely available and is burdensome
to create.
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In the area of business intelligence, the road to conversation-driven OLAP is not paved
yet. The recommendation of OLAP sessions to improve data exploration has been well-
understood [13] also in domains of unconventional contexts [95] where hand-free interfaces
are mandatory. Recommendation systems focus on integrating (previous) user experience
with external knowledge to suggest queries or sessions, rather than providing smart interfaces
to BI tools. To this end, personal assistants and conversational interfaces can help users unfa-
miliar with such tools and SQL language to perform data exploration. However, end-to-end
frameworks are not provided in the domain of analytic sessions over multidimensional data.
QUASL [161] introduces a QA approach over the multidimensional model that supports
analytical queries but lacks both the formalization of the disambiguation process (i.e., how
ambiguous results are addressed) and the support to OLAP sessions (with respect to QA,
handling OLAP sessions requires to manage previous knowledge from the Log and to under-
stand whether the issued sentence refines previous query or is a new one). Complementary to
COOL, [269] recently formalized the vocalization of OLAP results.

To summarize, the main differences of our approach to the previous works are the
following.

1. The implementation of an end-to-end general-purpose dialog-driven framework named
COOL, supporting full-fledged OLAP sessions.

2. The definition of the framework’s functional architecture and the formalization of its
steps.

3. The enforcement of multidimensional constraints on GPSJ queries by the means of
(i) a formal grammar ensuring syntactic validity, and (ii) a type checker ensuring
consistency (e.g., it is impossible to assign the “sum" aggregation operator to a non-
additive measure).

4. A plug-and-play implementation that allows COOL to run on top of existing data
warehouses with no impact on it; furthermore, the integration with external knowledge
is supported but not mandatory.

Being an NLI, this work builds on fundamental notions of Natural Language Processing
(NLP), such as tokenization, parsing, and disambiguation. We refer the reader to a referential
contribution in the areas of Natural Language Processing [187] to further delve into this
subject. With respect to the single steps of the approach, we remark the following differences.

• Our parsing technique Section 10.5 is based on a novel formal grammar, used to
interpret OLAP queries and OLAP operations expressed in natural language and to
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obtain parse trees. Among related approaches: [31] relies on a limited keyword-based
technique; [240] uses a similar technique, even though its grammar is not specific
to OLAP and is aimed at mapping text tokens to ontology concepts; [168, 289, 67]
rely on standard natural language parsers where the produced dependency trees are
sensitive to small linguistic variations in the user query.

• By analyzing the specificities of natural language interfaces in the OLAP context,
we formally define and retrieve the ambiguities that may arise in OLAP queries and
operations (Section 10.6). With respect to related approaches, this allows us to discover
and manage ambiguities that are related more to the OLAP metaphor rather than to
natural language per se.

• Related work deals differently with the disambiguation activity. [289] relies on a
completely automatic and probabilistic method to resolve ambiguities, whereas [67]
always prompts the user. [168] adopts a hybrid approach by distinguishing easy
ambiguities (automatically solvable) from hard ambiguities (requiring user interaction);
[31, 240] also adopt an automatic solving technique, but by relying on a domain-
specific ontology. COOL integrates these methods by i) implicitly solving some
ambiguities (also thanks to the OLAP specific parsing and annotation techniques), ii)
inferring the solution from the log whenever possible, and iii) by asking the user when
no solution has been found (Section 10.7).

• Every related approach defines its way to generate SQL queries from the data structure
parsed from the user query. The technique we discuss in Section 10.8 is specifically
tied to our novel grammar.

• The techniques we adopt for tokenization and mapping (Section 10.4) are not specific
to OLAP; nonetheless, a detailed explanation of tokenization and mapping is important
to introduce basic concepts that are later used and to ensure the reproducibility of the
approach.

We sketched the idea of Conversational OLAP in [88]; this chapter largely extends the
previous contribution by (i) proposing and implementing a solution for the interpretation and
disambiguation of OLAP operators, (ii) providing a log-based ambiguity resolution mecha-
nism that automatically resolves ambiguities by learning the most frequent disambiguations,
(iii) providing a visual interface to handle the interaction, designed on top of the DFM model
(see Section 10.9), and (iv) carrying out extensive tests with real users to assess the usability
of COOL.
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10.11 Conclusion

In this chapter, we proposed COOL, a conversational OLAP framework supporting the
translation of a natural language conversation into an OLAP session. COOL supports both
the interpretation of GPSJ queries and OLAP operators. Besides proposing a technical
solution and a reference architecture, the chapter contribution lies in the discussion of
specific issues related to conversational OLAP systems, paving the way to the application of
conversational OLAP in the context of smart assistants and hand-free scenarios. Tests carried
out on a real-word benchmark, as well as with 40 real users, show that COOL achieves the
state-of-the-art performance. More in detail, we have shown that coupling a grammar-based
text interpretation with automatic/user-based disambiguation determines a 94% accuracy.
We are completing COOL with new functionalities essential for improving user experience,
such as the vocalization of query summaries (i.e., applying mining techniques to reduce
the cardinality of the returned results as in [97]) and the support for a full-fledged visual
metaphor based on the DFM model.





Chapter 11

Intentional OLAP

11.1 Introduction

Data warehousing and OLAP have been progressively gaining a leading role in enabling
business analyses over enterprise data since the early 90’s. During these thirty years, the
underlying technologies have evolved from the early relational implementations (still widely
adopted in corporate environments), to the new architectures solicited by Business Intelli-
gence 2.0 scenarios, and up to the challenges posed by the integration with big data settings.
However, recently, it has become more and more evident that the OLAP paradigm, alone,
is no more sufficient to keep the pace with the increasing needs of new-generation decision
makers. Indeed, the enormous success of machine learning techniques has consistently
shifted the interest of corporate users towards sophisticated analytical applications.

In this direction, the Intentional Analytics Model (IAM) has been envisioned as a way to
tightly couple OLAP and analytics [275]. The IAM approach relies on two major corner-
stones: (i) the user explores the data space by expressing her analysis intentions rather than
by explicitly stating what data she needs, and (ii) in return she receives both multidimensional
data and knowledge insights in the form of annotations of interesting subsets of data. As
to (i), five intention operators are proposed, namely, describe (describes one or more cube
measures, possibly focused on one or more level members), assess (judges one or more cube
measures with reference to some baseline), explain (reveals some hidden information in the
data the user is observing, for instance in the form of a correlation between two measures),
predict (shows data not in the original cubes, derived for instance with regression), and
suggest (shows data similar to those the current user, or similar users, have been interested in).
As to (ii), first-class citizens of the IAM are enhanced cubes, defined as multidimensional
cubes coupled with highlights, i.e., sets of cube cells associated with interesting components
of models automatically extracted from cubes [275]. Each operator is applied to an enhanced
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describe	  

data model highlight components 

enhanced cube 

Figure 11.1: The IAM approach

cube and returns a new enhanced cube. To assess interestingness of model components, a
measure based on their (objective) significance and (subjective) surprise is proposed.

An overview of the approach is given in Figure 11.1. Noticeably, having different models
automatically computed and evaluated in terms of their interestingness relieves the user from
the time-wasting effort of trying different possibilities.

Example 27 Let a SALES cube be given, and let the user’s intention be

with SALES describe quantity for month = ’1997-04’ by type using clustering size 3

First, the subset of cells for April 1997 are selected from the SALES cube, aggregated by
product type, and projected on measure quantity (in OLAP terms, a slice-and-dice and a
roll-up operator are applied). Then, these cells are clustered into 3 clusters based on the
values of quantity. Finally, a measure of interestingness is computed for each cluster, and
the cells belonging to the cluster with maximum interestingness are highlighted in the results
shown to the user. □

Clearly, the IAM vision raises a number of research challenges, e.g., (i) investigate if
there are any other intention operators that should be considered besides the basic ones
proposed, and how different operators can be combined; (ii) find techniques for automatically
tuning the algorithms that create enhanced cubes by computing models; (iii) enrich the IAM
framework with an approach to select the most effective chart or graph for visualizing each
cube depending on its features such as number of dimensions, size, etc.; (iv) devise a visual
metaphor for displaying enhanced cubes and interacting with them.

The goal of this chapter is to provide a proof-of-concept for the IAM vision by delivering
an end-to-end implementation of the describe operator. Specifically, we address challenges
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(ii) by experimenting two techniques to automatically set the number of model components.
We also address challenges (iii) and (iv) by proposing a visualization that couples text-based
representations and selected graphical representations with a component-driven interaction
paradigm. This will save the time it would take to the user to try different visualizations;
besides, by automatically selecting the most suitable charts based on the features of each
cube, we discourage the user from adopting inappropriate visualizations which might lead
her to wrong interpretations of data.

The chapter outline is as follows. After introducing a formalism to manipulate cubes and
queries in Section 11.2, in Section 11.3 we introduce models, components, and enhanced
cubes, and define an interestingness measure. Then, in Section 11.4 we show how an intention
is transformed into an execution plan, in Section 11.5 we discuss how to automatically set
the model size, i.e., its number of components, and in Section 11.6 we explain how enhanced
cubes are visualized. Finally, in Section 11.7 we discuss the related literature, while in
Section 11.8 we draw the conclusion.

11.2 Formalities

With respect to the formal background introduced in Section 8.3, to simplify the formalization,
we restrict to consider linear hierarchies (the presence of branches in hierarchies makes
Definition 30 overly complex).

Example 28 Given the definition of cube schema (Definition 14), for our working example
it is SALES = (H,M) where

H = {hDate,hCustomer,hProduct,hStore},
M = {quantity,storeSales,storeCost},
date⪰month⪰ year,

customer⪰ gender,

product⪰ type⪰ category,

store⪰ city⪰ country

and op(quantity) = op(storeSales) = op(storeCost) = sum. □

Definition 28 (Coordinate) Given cube schema C = (H,M) (Definition 14) and a group-by
set G of C (Definition 13), a coordinate of group-by set G is a tuple of members, one for
each level of G. Given coordinate χ of group-by set G and another group-by set G′ such
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that G⪰H G′, we will denote with rupG′(χ) the coordinate of G′ whose members are related
to the corresponding members of χ in the part-of orders, and we will say that χ roll-ups to
rupG′(χ). By definition, rupG(χ) = χ .

Example 29 Two group-by sets of SALES are G1 = {date, type,country} and G2 =

{month,category}, where G1 ⪰H G2. G1 aggregates sales by date, product type, and
store country (for all customers), G2 by month and category. Example of coordinates
of the two group-by sets are, respectively, χ1 = ⟨1997-04-15, Fresh Fruit, Italy⟩ and χ2 =

⟨1997-04,Fruit⟩, where rupG2(χ1) = χ2. □

We recall that a cube whose group-by set Gc includes all and only the dimensions of the
hierarchies in H and such that Mc = M, is called a base cube, the others are called derived
cubes. In OLAP terms, a derived cube is the result of either a roll-up, a slice-and-dice, or a
projection made over a base cube.

Example 30 The cube query over SALES used in Example 27 is q = (Gq,Pq,Mq) where
Gq = {type}, Pq = {month = ’1997-04’}, and Mq = {quantity}. A cell of the resulting cube
is ⟨Canned Fruit⟩ with associated value 138 for quantity. □

11.3 Enhancing cubes with models

Models are concise, information-rich knowledge artifacts [267] that represent relationships
hiding in the cube cells. The possible models range from simple functions and measure
correlations to more elaborate techniques such as decision trees, clusterings, etc. A model is
bound to (i.e., is computed over the levels/measures of) one cube, and is made of a set of
components (e.g., a clustering model is made of a set of clusters). In the IAM, a relevant
role is taken by data-to-model mappings. Indeed, a model partitions the cube on which it
is computed into two or more subsets of cells, one for each component (e.g., the subsets of
cells belonging to each cluster).

Definition 29 (Model and Component) A model is a tuple M = (t,alg,c, In, Out,µ)
where:

1. t is the model type;

2. alg is the algorithm used to compute M

3. c is the cube to which M is bound;
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4. In is the tuple of levels/measures of C and parameter values supplied to alg to compute
M ;

5. Out is the set of components that make up M ;

6. µ is a function mapping each cell of c to one component of Out.

Each model component is a tuple of a component identifier plus a variable number of
properties that describe that component.

In the scope of this work, it is t ∈ {top-k,bottom-k,skyline,outliers,clustering}. The
components for these model types are as follows:

1. For t = top-k, there are two components: one for top-k cells, one for the others
(similarly for bottom-k). Each component is described by the average z-score of its
cells.

2. For t = skyline, there are two components: one for the cells in the skyline, one for the
others.

3. For t = outliers, there are two components: one for outlier cells, one for the others.
Each component is described by its outlierness.

4. For t = clustering, there is one component for each cluster. Each component is
described by the centroid of the corresponding cluster.

Example 31 A possible model over the SALES cube is characterized by

t = clustering, alg = K-Means, c = SALES,

In = ⟨quantity,n = 5,rndSeed = 0⟩, Out = {c1, . . . ,c5},
µ(⟨Bagels⟩) = µ(⟨Batteries⟩) = µ(⟨Wine⟩) = µ(⟨Beer⟩) = c1;

µ(⟨Canned Fruit⟩) = µ(⟨Muffins⟩) = µ(⟨Fresh Fruit⟩) = c2; . . .

where n is the desired number of clusters and rndSeed is the seed to be used by the k-means
algorithm to randomly generate the 5 seed clusters. Component c1 is characterized by
property centroid with value 151.3. □

As the last step in the IAM approach, the cube is enhanced by associating it with a
highlight, i.e., with the subset of cells corresponding to the most interesting component of the
model; these cells are determined via function µ . The measure proposed in [275] to assess
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the interestingness of each component is based on the idea of prior belief [27]: specifically,
it defines the surprise of a component as the difference of belief for corresponding cells in
the cube before (c) and after (c′) the application of the intention. This requires first of all to
define the concept of “corresponding cell(s)” in c of each cell χ ′ of c′, which is done through
a proxy function. To simplify this function, we will assume that the intention does not change
both the cube group-by set and its selection predicate. Intuitively, if the intention changes
the group-by set, the corresponding cell(s) of χ ′ are determined via the part-of order; if the
intention changes the selection predicate, the corresponding cell of χ ′ is χ ′ itself if it is part
of c, the whole cube c otherwise.

Definition 30 (Proxy Cells) Let c and c′ be two cubes over cube schema C , and let q and
q′ the queries producing c and c′, respectively. Let χ ′ be a coordinate of c′. The proxy cells
of χ ′ over c are defined as

proxy(χ ′) =

{χ : rupGq′ (χ) = χ ′}, if Gq ≻H Gq′

{rupGq(χ
′)}, if Gq′ ≻H Gq

, if Gq′ ̸= Gq (Pq′ = Pq);

proxy(χ ′) =

{χ ′}, if χ ′ ∈ c

{χ : χ ∈ c}, if χ ′ ̸∈ c
, if Pq′ ̸= Pq (Gq′ = Gq);

proxy(χ ′) = {χ ′}, otherwise.

For the first intention, the starting cube c is the base cube; since in this case the user has no
prior belief, we put proxy(χ ′) =∅ for all χ ′ ∈ c′.

Definition 31 (Interestingness) Let M = (t,alg,c′, In,Out,µ) be a model and c ∈ Out be
one of its components. The interestingness of c is defined as

int(c) = avgχ ′∈µ−1(c){surprise(χ ′)}, where

surprise(χ ′) = maxm∈c′{zm(χ
′)−avgχ∈proxy(χ ′){zm(χ)}}

and function zm() returns the z-score of a cell for measure m over the whole cube that cell
belongs to.

Definition 32 An enhanced cube E is a triple of a cube c, a set of models {M1, . . . ,Mr}
bound to c, and a highlight chigh = argmax{c∈⋃r

i=1 Outi}(int(c)).
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Figure 11.2: Cubes c (left) and c′ (right) in Example 32; in green and yellow two components
for the top-k model, in red the proxy relationship for two cells in c′

Example 32 Let

with SALES describe quantity for month = ’1997-04’ by type

with SALES describe quantity for month = ’1997-04’ by category

be a sequence of two intentions formulated by the user. While the plan generated for the
first intention relies on query q defined in Example 30, the one for the second intention relies
on q′ = (Gq′,Pq′,Mq′) where Gq′ = {category}, Pq′ = {month = ’1997-04’}, and Mq′ =

{quantity}. Let c and c′ be the cubes resulting from q and q′, respectively. In practice, q′

corresponds to a roll-up of q, so the proxy cells of each cell in c′ are determined using the
rup operator as shown in Figure 11.2 (red lines). The figure also shows the z-score for each
cell of c and c′, and the surprise of each cell of c′. Then, let M be the model of type top-k,
with k = 1, computed on c′; this model has two components: c1, including only the top-1 cell,
and c2, including all the others (shown in green and yellow in the figure). The interestingness
values for these two components are int(c1) = 1.5 and int(c2) = 0.8, respectively. So, the
enhanced cube resulting from the second intention includes c′, M , and the highlight c1. □

11.4 Execution plans for describe intentions

The describe operator provides an answer to the user asking “show me my business” by
describing one or more cube measures, possibly focused on one or more level members, at
some given granularity [275]. The cube is enhanced by showing either the top/bottom-k cells,
the skyline, the outliers, or clusters of cells.

The basic idea we followed to define the syntax for describe is that the user will work in
sessions, similarly to the OLAP paradigm. As a consequence, the group-by set (by clause)
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and the selection predicate (for clause) of each intention are formulated as increments over
those of the previous intention.

Let c be a cube returned by executing query q = (Gq,Pq,Mq) over base cube c0 having
cube schema C = (H,M). The general syntax for describe is

with c describe m1, . . . ,mz [ for P′ ] [ by l′ ] [ using t1, . . . , tr ] [ size k ]

where m1, . . . ,mz ∈M are measures of C , P′ is a set of selection predicates each over one
level of H, l′ is a level of H, t1, . . . , tr are model types, and k is the desired size to be applied
to all the models returned as explained in point 2 below (optional parts of the syntax are in
brackets).

Now let l be the level in Gq belonging to the same hierarchy of l′, and let P⊆ Pq be the
set of predicates in Pq expressed over levels belonging to the same hierarchies than those
over which the predicate in P′ are expressed. The plan corresponding to a fully-specified
intention with c, i.e., one where all optional clauses have been specified, is:

1. Execute query q′ = (Gq′,Pq′,{m1, . . . ,mz}), where Gq′ = Gq \ {l} ∪ {l′} and Pq′ =

Pq \P∪P′. Let c′ be the cube resulting from the execution of q′ over c0.

2. For 1 ≤ i ≤ r, compute model Mi = (ti,algi,c′, Ini,Outi,µi) and for each c ∈ Outi,
compute int(c). Size k is used for clustering to determine the number of clusters to be
computed, for top-k and bottom-k to determine the number of cells to be returned, for
outliers to determine the number of outliers; it is neglected for the skyline.

3. Find the highlight chigh = argmax{c∈⋃i Outi}(int(c)).

4. Return the enhanced cube consisting of c′, {M1, . . .Mr}, and highlight chigh.

Partially-specified intentions are interpreted as follows:

• If the for P′ clause has not been specified, we consider Pq′ = Pq.

• If the by l′ clause has not been specified, we consider Gq′ = Gq.

• If the using t1, . . . , tr clause has not been specified, all model types listed in Section 11.3
are computed over c′ (the skyline is computed only if z > 1, i.e., at least two measures
have been specified).

• If the size k clause has not been specified, the value of k is determined automatically
as discussed in Section 11.5.
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When the first intention is issued on a cube, to constrain the size of the data to be returned it
is required that either the by or the for clauses are specified at least.

Example 33 Consider the following session on the SALES cube:

with SALES describe quantity for month = ’1997-04’ by type

with SALES describe quantity by category using clustering size 3

with SALES describe quantity, storeSales for country = ’Italy’ using skyline

The queries corresponding to the first two intentions are q in Example 32 and q′ in Ex-
ample 32, respectively. The query corresponding to the third intention is q′′ charac-
terized by Gq′′ = {category}, Pq′′ = {month = ’1997-04’,country = ’Italy’}, and Mq′′ =

{quantity,storeSales}. The models computed for the first intention are top-k, bottom-k,
clustering, and outliers (computing the skyline for a single measure makes no sense). For
the second and the third intentions, a clustering producing 3 clusters and the skyline are
computed, respectively. □

11.5 Setting the model size

Our approach to find the best value for the size parameter k when it is not specified in
the intention is based on good practices in hierarchical clustering, especially when single-
linkage is used, meaning that inter-cluster distance is measured by the closest two points
of the clusters. The best separation of clusters can then be found by finding the knee of the
evaluation graph of the clustering algorithm, We tested two solutions from the literature,
L-method [241] and Kneedle [246]. Since Kneedle is quicker and provides more consistent
results, we have adopted it to determine k, both for clustering (k being the number of clusters),
top/bottom-k (where k is the number of points in the first cluster, i.e., the one with higher
values) and outliers (where k is the number of points in the first and last cluster).

11.6 Visualizing enhanced cubes

In this section we discuss how to provide an effective description of an enhanced cube by
coupling text-based representations (a pivot table and a ranked component list) and graphical
representations (one or more charts) with an ad-hoc interaction paradigm. The guidelines we
adopt to this end are explained below:
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1. For visualization purposes, we assume that an intention can select at most three
measures (1 ≤ z ≤ 3) and three group-by levels (1 ≤ n ≤ 3). This is actually not a
strong limitation, considering that a visualization of four or more dimensions and/or
measures using a single table or chart is hardly feasible and definitely not intuitive.

2. Since we are focusing on intentions aimed at describing data, we believe that providing
multiple visualizations from different points of view should be preferred to just picking
the “most effective one”. Indeed, the effectiveness of a visualization type largely
depends on the skills and personal tastes of each user.

3. We restrict to considering visualization types that can be easily understood both by lay
users and skilled users, and are suitable for multidimensional data.

4. Clearly, the effectiveness of a visualization type also depends on the features of
the specific dataset. Using an unsuitable visualization can generate confusion and
misunderstandings in users, and can lead them to wrong conclusions. Thus, for each
intention we visualize only the charts that are recognized to be suitable given the
characteristics of the data to be shown.

5. Models and components play a key role in the IAM approach. Thus, the visualizations
we provide aims at showing not only dimension and measure values, but also the
different components of a model using a color code. For the same reason, the interaction
paradigm should be component-driven.

The visualization we provide for enhanced cube E based on guidelines (ii) and (v)
includes three distinct but inter-related areas: a table area that shows the cube cells using
a pivot table; a chart area that complements the table area by representing the cube cells
through one or more charts; a component area that shows a list of model components sorted
by their interestingness. The chart types we consider following guidelines (i) and (iii) are
multiple line graphs, grouped column charts, heat maps, bubble graphs, and scatter plots. The
heuristics we adopt to decide whether using or not each chart type for a given enhanced cube
E (guideline (iv)) was inspired by [114]. The features of E we take into account to this end
are the number n of dimensions, the number z of measures, and the domain cardinality and
type of the dimensions. The pseudocode is shown in Algorithm 8; an example of heuristics
we use is: if n = 2 and z = 1, draw a bubble graph using the X and Y axes for the two
dimensions, the bubble size for the measure, and the bubble color for the model components.

The interaction paradigm we adopt is component-driven (guideline (v)). Specifically,
clicking on one component c in the component area leads to emphasizing the corresponding
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Algorithm 8 Chart area creation

INPUT D = {d1, . . . ,dn}: sets of dimensions, M = {m1, . . . ,mz}: set of measures, T =
⟨t1, . . . , tr⟩: list of models sorted by interestingness

1: if n = 1 and isDate(d1) then ▷ Visualize multiple line graph
2: MultipleLineGraph(X : d1,Y1 : m1, . . . ,Yz : mz)

3: if z = 1 and card(d1)≤ 50 then ▷ Visualize grouped column chart
4: if n = 1 then
5: GroupedColumnChart(X : d1,height : m1,color : t1)
6: else
7: if n = 2 and card(d2)≤ 8 then
8: GroupedColumnChart(X : d1,height : m1,color : d2)

9: if n = 2 and z = 1 then ▷ Visualize heat map
10: HeatMap(X : d1,Y : d2,color : m1)
11: else
12: if n = 1 then
13: HeatMap(X : d1,Y1 : m1, . . . ,Yz : mz)

14: if z = 1 then ▷ Visualize bubble chart
15: switch n do
16: case 2
17: BubbleChart(X : d1,Y : d2,size : m1,color : t1)
18: case 3
19: BubbleChart(X : d1,Y : d2,Z : d3,size : m1,color : t1)
20: switch z do ▷ Visualize scatter plot
21: case 2
22: ScatterPlot(X : m1,Y : m2,color : t1)
23: case 3
24: ScatterPlot(X : m1,Y : m2,Z : m3,color : t1)

cube cells (i.e., those that map to c via function µ) both in the table area and in the chart area.
The highlight is the top component in the list and is selected by default.

Example 34 Figure 11.3 shows the visualization obtained when a session of the two follow-
ing intentions is formulated:

with SALES describe storeCost by month

with SALES describe storeCost by category

On the top left, the table area; on the right, the chart area; on the bottom left, the component
area (the three areas have been repositioned in the figure to save space). Here it is n = 2
and z = 1, so a heat map and a bubble chart have been selected. The top-interestingness
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Figure 11.3: The visualization obtained for the session in Example 34

component is a cluster, so a color has been assigned to each component of clustering (i.e., to
each cluster) and is uniformly used in all three areas. The highlight (in green) is currently
selected and is emphasized using a thicker border in all areas. Note that a tooltip with all
the details about a single cell is also shown (in yellow).

11.7 Related works

The idea of coupling data and analytical models was born in the 90’s with inductive databases,
where data were coupled with patterns meant as generalizations of the data [229]. Later on,
data-to-model unification was addressed in MauveDB [66], which provides a language for
specifying model-based views of data using common statistical models. However, achieving a
unified view of data and models was still seen as a research challenge in business intelligence
a few years later [221]. More recently, Northstar [159] has been proposed as a system
to support interactive data science by enabling users to switch between data exploration
and model building, adopting a real-time strategy for hyper-parameter tuning. Finally, the
coupling of data and models is at the core of the IAM vision [275], on which this chapter
relies. The three basic pillars of IAM are (i) the redefinition of query as expressing the user’s
intention rather than explicitly declaring what data are to be retrieved, (ii) the extension of
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query results from plain data cubes to cubes enhanced with models and highlights, and (iii)
the characterization of model components in terms of their interestingness to users.

The coupling of the OLAP paradigm and data mining to create an approach where concise
patterns are extracted from multidimensional data for user’s evaluation, was the goal of some
approaches commonly labeled as OLAM [127]. In this context, k-means clustering is used
in [25] to dynamically create semantically-rich aggregates of facts other than those statically
provided by dimension hierarchies. Similarly, the shrink operator is proposed in [111] to
compute small-size approximations of a cube via agglomerative clustering. Other operators
that enrich data with knowledge extraction results are DIFF [243], which returns a set of
tuples that most successfully describe the difference of values between two cells of a cube,
and RELAX [245], which verifies whether a pattern observed at a certain level of detail is
also present at a coarser level of detail, too. Finally, in [45] the OLAP paradigm is reused to
explore prediction cubes, i.e., cubes where each cell summarizes a predictive model trained
on the data corresponding to that cell. The IAM approach can be regarded as OLAM since,
like the approaches mentioned above, it relies on mining techniques to enhance the cube
resulting from an OLAP query. However, while each of the approaches above uses one single
technique (e.g., clustering) to this end, the IAM leans on multiple mining techniques to give
users a wider variety of insights, using the interestingness measure to select the most relevant
ones.

In the same direction, in [244] the authors describe a method that profiles the exploration
of a user and uses the Maximum Entropy principle to recommend which unvisited parts of
the cube can be the most surprising in a subsequent query. The Cinecubes method [107, 108]
aims at providing automated reporting as a result of an original OLAP query. The proposed
method enriches an original OLAP query with auxiliary queries to aid (a) the comparison
and assessment of the result of the query to similar data and (b) the explanation of the result
with values at the most detailed level. So, the results of the Cinecubes system can coarsely
be grouped as the result of two operators: the first one computes queries for values similar to
ones defining the selection filters of the original query; the second one by drilling down into
the dimensions of the result, one dimension at a time.

The characteristics of the different approaches for visualizing data and interacting with
them have been deeply explored in the literature, also with reference to their suitability for
datasets with different features and users with varying skills and goals. In [32], the author
surveys the classifications proposed in the literature for visualization types and integrates
them into a single comprehensive framework. Abela [3] proposes a decision tree to select the
best visualization according to the user’s goal and to the main features of data. More recently,
SkyViz —to which our approach is inspired— starts from a visualization context based on
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Table 11.1: Execution time in seconds for increasing cube cardinalities

Cardinality Query Model Interestingness Pivot Total
323 0.88 1.45 0.03 0.03 2.39

77832 0.64 3.61 0.39 0.51 5.14
86829 0.69 3.66 0.48 1.56 6.38

seven coordinates for assessing the user’s objectives and describing the data to be visualized.
Then it uses skyline-based techniques to translate a visualization context into a set of suitable
visualization types and to find the best bindings between the columns of the dataset and the
graphical coordinates used by each visualization type.

11.8 Evaluation and conclusion

In this chapter, we have proposed a visual metaphor to display enhanced cubes for describe
intentions according to the IAM vision. The prototype implementation can be accessed at
http://semantic.csr.unibo.it/describe/. It uses the simple multidimensional engine described
in [88], which in turn relies on the MySQL DBMS to execute queries on a star schema based
on multidimensional metadata (in principle, the prototype could work on top of any other
multidimensional engine). The mining models are imported from the Scikit-Learn Python
library. Finally, the web-based visualization is implemented in JavaScript and exploits the
D3 library for chart visualization.

To evaluate the feasibility of our approach from the computational point of view, we
made some preliminary performance tests; to this end we populated the SALES cube using
the FoodMart data (https://github.com/julianhyde/foodmart-data-mysql). We considered
the worst case, in which all five models are computed on cubes obtained by progressively
including in the group-by set the three dimensions with highest cardinality. The tests were
run on an Intel(R) Core(TM)i7-6700 CPU@3.40GHz CPU with 8GB RAM. Table 11.1
shows the time necessary to query the base cube, to compute the models, to measure the
interestingness, and to generate the pivot table returned to the browser. Remarkably, it turns
out that at most 6.38 seconds are necessary to retrieve and visualize an enhanced cube of
86829 cells.

To evaluate the formulation effort without the intentional model and the describe inten-
tion, we asked five Ph.D. students in computer science to use Python to manually extract
insights from a 2000 tuples bidimensional cube using only two types of models (outliers and
clustering). This real-world cube was created from the COVID dataset made available by the

http://semantic.csr.unibo.it/describe/
https://github.com/julianhyde/foodmart-data-mysql
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Table 11.2: Time (minutes) and formulation effort (numbers of characters for manual model
extraction)

Student Id Skill Time Models Length
A advanced 45 clustering 3479
B advanced 51 both 1777
C intermediate 25 outliers 935
D advanced 59 both 1150
E advanced 90 outliers 2627

European Center for Disease Prevention and Control1. Table 11.2 shows, for each student,
her skill in Python (beginner/intermediate/advanced), the time taken for doing the exercise
(in minutes), the models she extracted, and the ASCII character length of the Python code
she wrote, disregarding the quality of the models extracted. We remark that even skilled
students needed quite a long time for extracting both models, and had to write substantial
Python programs.

Finally, the main directions for future research we wish to pursue are: (i) evaluate the
effectiveness of the approach by experimenting it with real users; (ii) extend the approach
to the other intention operators and to operate with dashboards of enhanced cubes; and (iii)
experiment other interestingness metrics [43].

1www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases

www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases




Chapter 12

Multidimensional Summarization:
Itemsets as a Case Study

12.1 Introduction

Frequent itemset (FI) mining is an unsupervised mining technique used in descriptive an-
alytics to uncover frequent correlations in (possibly huge) transactional datasets [9]. In its
initial formulation for market basket analysis, items correspond to products and a transaction
corresponds to a set of products bought together by a customer; a set of items that appear
together in many transactions is said to be frequent. More recently FI mining has been
applied to other contexts, where items are not necessarily homogeneous (as is the case for
plain products) but, aimed at providing a richer description of subjects and events, they
are modeled as multi-dimensional and multi-level objects. In a multi-dimensional item
[129, 40] an event is described by multiple features (e.g., product and customer age); an item
is multi-level [129, 22] if it can be described using a hierarchy with different levels of details
(e.g., products and product types). The mining of multi-dimensional and multi-level items is
now well understood and extends traditional FI mining with the possibility of aggregating
infrequent specific itemsets into frequent generic itemsets [129, 22].

The exponential nature of FIs —n items may lead to 2n FIs— makes it difficult for
analysts to explore their information content. Figure 12.1 gives a qualitative picture of
the containment lattice for itemsets [129]; itemsets in the upper part of the lattice appear
more frequently together in transactions. To effectively explore the lattice, data analysts
normally define a frequency threshold (or even a frequency range) to cut irrelevant itemsets.
Setting a low threshold (Figure 12.1(a)) gives a broad picture of the correlations, but the
FIs selected are too many for a well-focused analysis. On the other hand, setting a high



164 Multidimensional Summarization: Itemsets as a Case Study

(a) (b) (c)

Figure 12.1: Itemset lattice, with dark itemsets being more frequent: FI mining with a low
frequency threshold (a) and a high frequency threshold (b); summarization, with big dots
corresponding to cluster representatives

threshold (Figure 12.1(b)) gives a strong focus on the most frequent FIs but may lead to
missing interesting correlations. Besides, in both cases, the FIs selected are very similar to
each other, so most of them do not really give useful information to the analyst. In [306], the
authors highlight the need for summaries to overcome these problems. Summarization selects
a minimal subset of representative FIs that describe the entire population while maximizing
the diversity of these representatives (Figure 12.1(c)). Some approaches to summarization
have been proposed in the past (e.g., [40, 223]), however most of them do not consider the
multi-level and multi-dimensional natures of FIs and do not provide user-friendly ways to
explore summaries.

In this chapter, we propose SUSHI (SUmmarization and viSualization of Hierarchical
Itemsets), a comprehensive framework for analyzing multi-level and multi-dimensional
FIs based on original techniques for summarization and visual exploration. In SUSHI,
summarization operates in synergy with FI mining to empower and simplify analysis: indeed,
it makes the approach more robust with reference to the frequency threshold and enables both
specific and general patterns to be discovered. On top of that, visual exploration unveils and
highlights hidden information, supports the process of understanding and decision making,
and allows analysts to focus their attention on what is important. Note that some visual
representations for FIs have been previously proposed (e.g., [166, 33]); however, none of
them enables an in-depth and multi-resolution navigation of summaries.

Our work is inspired by a compelling case study focused on customer profiling starting
from the tracking of daily GPS trajectories. Each transaction describes a mall customer by
means of several features (e.g., where she lives, where she works, how much she earns),
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Figure 12.2: A functional architecture of SUSHI

and each feature is described at different, hierarchically-organized levels of details (e.g.,
she lives close to the Whitney Museum, which is located in the Greenwich Village district,
which belongs to Manhattan). In this context, a FI describes the profile of a group of people
sharing the same features/behavior. Multi-level and multi-dimensional FIs enable a rich
representation of the behavior of customer groups; however, the huge number of mined FIs
encourages the adoption of effective summarization and visualization techniques to provide
decision makers with useful information for marketing and advertising.

As shown in Figure 12.2, SUSHI works independently of the algorithm applied for
generating the FIs taken in input (e.g., Apriori [9], FP-Growth [130]). The summarization
and the visualization components work jointly to show analysts the relevant information at
multiple levels of detail; analysts iteratively create and visualize new summaries that better
meet their needs by adjusting a set of parameters, and navigate them to get insights over
summarized data.

In a preliminary paper [94] we have proposed an extension of the definition of containment
to multi-level itemsets and a similarity function for FIs which takes into account both
their extensional (support-based) and intensional (feature-based) natures. Relying on that
background, we offer the following original contributions:

1. a clustering algorithm that uses this similarity function to create a hierarchical summary
to shrink a set of FIs down to a set of relevant patterns; to define the representative FI
of each cluster, we discuss different strategies;

2. theoretical results concerning antimonotonicity of support and similarity in multi-
level settings; these results allow the reduction of the search space for the clustering
algorithm;

3. an evaluation of the search space and of the computational complexity of the clustering
algorithm;

4. two integrated approaches to summary visualization and exploration: a graph-based
one, which highlights inter-cluster relationships, and a tree-based one, which empha-
sizes the relationships between the representative of each cluster and the other FIs in
that cluster;
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5. a comprehensive set of tests for evaluating the efficiency and effectiveness of our
approach against others in the literature; we also made some tests with data science
students to evaluate how well SUSHI enhances the analysts’ capabilities in discovering
relevant patterns.

The remainder of the chapter is organized as follows. After discussing the related
approaches to summarization and visualization in Section 12.2, in Section 12.3 we provide a
formal background for multi-level and multi-dimensional itemsets. Then, in Section 12.4 we
propose a definition of itemset similarity. Section 12.5 describes our approach to building
summaries of FIs, while Section 12.6 explains how we visualize them. Finally, Section 12.7
presents the results of the experimental tests and Section 12.8 concludes the chapter.

12.2 Related works

12.2.1 Mining and summarization of FIs

FI mining has been applied to multiple fields and types of items [128]. Items can be either
binary (e.g., product purchases in market basket analysis) or categorical (e.g., IP addresses
in a network table). Besides, they can be homogeneous (items from a single dimension at
the same abstraction level, e.g., products) or multi-dimensional (items taken from multiple
dimensions, e.g., products and customers), and they can be multi-level (items described at
different levels of abstraction, e.g., products and product categories).

Since the application of the Apriori algorithm in market basket analysis [9], scholars
defined many performant algorithms to extract FIs [180]; among them, FP-Growth [130]
and very recently CBPM [70] and GMiner [52]. FI mining is currently witnessing a plethora
of declinations [180], among them: high-utility itemsets (i.e., the extraction of FIs whose
utility is higher than a given score [213]); colossal itemset mining (i.e., the extraction of
FIs in datasets with few transactions containing even millions of items [273]); and frequent
trajectory mining (i.e., the extraction of common routes in urban areas [299]). Given the
possibility to mine FIs at different granularities [129], external knowledge can be used to
generalize infrequent (specific) itemsets into frequent (generic) itemset [22]. For instance,
two distinct products milk and beer can be grouped together into a generic FI only knowing
that they both have type beverage [22]. While these algorithms address the mining of
either flat or multi-dimensional and multi-level itemsets, they do not provide any form of
summaries.

Since the number of FIs is exponential [9], summarization is necessary to support an
effective data analysis [10]. Itemset summarization enables an effective explorations of large
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datasets by replacing groups of similar FIs with their representatives. Classical approaches
to summarization reduce the exploration space by limiting the retrieved FIs to maximal-
covered [122], closed-covered [220], and δ -covered [263] FIs. However, these approaches
do not consider the exponential cardinality of the summary, its pertinence with respect
to the exploration focus, and the diversity of the FIs retrieved in the summary, which are
indeed well-known driving criteria for data condensation [37]. To overcome these limitations,
among the summarization techniques that have been well surveyed in [10], two approaches
are well-known. In BUS [40], summarization exploits the definition of itemset containment
(i.e., a FI can be summarized into another if the latter is a superset of the former) to uncover
clusters of FIs by the greedy optimization of compaction gain and information loss metrics.
BUS has been extended to MBUS [137] by the retrieval of interesting and intelligible itemset
representatives. Further summarization techniques have been achieved by generalizing similar
FIs belonging to sets [279, 8] or hyperrecatangles [283]; by computing an optimal number
of probability vectors for cluster partitions [290, 223]; or by minimizing the restoration
error [150]. In [307], the authors propose a summarization suitable only for high-utility
itemsets; when itemsets are considered with equal utility, the summarization criterion boils
down to the itemset containment used in [40, 137]. Overall, these contributions consider
neither multi-dimensional nor multi-level FIs, nor they provide summary visualization and
navigation. A schematic comparison between SUSHI and the summarization approaches for
FIs is shown in Table 12.1.

As representative FIs are elected in place of a group of similar FIs, a key issue in
summarization lies in the definition of itemset similarity. Similarity has been defined in terms
of itemset intersection (e.g., [40, 137]) and support (i.e., the frequency of two itemsets within
the dataset [284, 173]). However, these approaches do not exploit multi-level knowledge to
aggregate FIs in intensionally-coherent groups.

From the computational point of view, summarization (seen as the problem of finding
the minimal set approximating a given collection) is a NP-hard problem [8]. In SUSHI we
adopt a greedy strategy based on a similarity function accounting for both the extensional
and intensional natures of FIs. We also exploit the mathematical properties of our similarity
function (specifically, its antimonotonicity) to sensibly prune the algorithm search space.

With respect to the above-mentioned contributions, in SUSHI we (i) introduce a novel
similarity function based on the concepts of relevance and itemset containment, properly
extended to deal with multi-dimensional and multi-level itemsets; (ii) introduce multiple
strategies to shrink the exponential number of FIs to a meaningful hierarchical summary; (iii)
provide a theoretical foundation to exploit the antimonotonicity of our similarity function
to prune the algorithmic space; and (iv) propose an end-to-end framework supporting the
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Table 12.1: Approaches to FI summarization classified by similarity function, representative
cluster element, clustering type (E=Exclusive, O=Overlapping, T=Total, P=Partial), multi-
dimensional (MD) and multi-level (ML) data, and presence of summary visualization

Appr. Similarity function Representative Type MD ML Vis
[8] Maximum coverage FI E, P ✗ ✗ ✗

[290] Kullback-Leibler diver-
gence

Probab. profile E, T ✗ ✗ ✗

[279] Maximum coverage FI O, T ✗ ✗ ✗

[40] Compaction, inf. loss FI E, T ✗ ✗ ✗

[137] Compaction, inf. loss, inter-
estingness

FI E, T ✗ ✗ ✗

[150] Restoration error FI E, T ✗ ✗ ✗

[223] Compressible profile Probab. profile E, T ✗ ✗ ✗

[283] Coverage cost function Hyperrectangle E, T ✗ ✗ ✗

[173] Support FI E, T ✗ ✗ ✗

SUSHI Support, relevance FI E, T ✓ ✓ ✓

navigation of the produced hierarchical summary. Finally, our contribution differs from
approaches such as top-k (e.g., [316]) and minimum description length (i.e., compressing a
dataset by exploiting regularities among data as in [186]), as our goal is not only to reduce
and summarize the FIs but also to ensure an in-depth summary exploration. Furthermore,
while a research branch close to FI mining is association rule mining, the summarization of
association rules (e.g., [69]) relies on metrics (e.g., confidence, lift) that cannot be mapped to
FIs.

12.2.2 Visual exploration

To be useful, a summary should give data analysts an overview of salient information and
enable in-depth explorations of FI groups. This goal is not achievable by just displaying a
plain list of FIs, nor by arranging all the available FIs in space. Visual techniques have high
potential impact on dataset exploration [152], and should not require complex skills from
decision makers.

Scholars have addressed the curse of FI and association rule cardinality by providing
visualizations based on polylines [166], circular graph layout [33], treemaps [255], and
parallel coordinates reflecting the item taxonomy [292]. The analyst is also included in the
loop to visually mine FIs and association rules [171] by providing a visual representation of
the algorithm search space and by enabling an interactive pruning. However, with increas-
ing numbers of FIs, the proposed visualizations hardly scale up to human-understandable
visualizations, and prevent analysts from perceiving itemset similarity at first sight.
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In SUSHI, consistently with the graph visualization proposed in [252] and abiding by
the “overview first, zoom and filter, then details-on-demand” mantra [252], we complement
summarization with a hierarchical visualization enabling user-friendly and multi-resolution
explorations of summaries.

12.3 Formal background

To define multi-level itemsets, we recall the notation of hierarchy from Definition 12. Such
allows information to be provided at a level coarser than the one of dimensions. In practice,
hierarchies can be incomplete, i.e., some levels may be missing in the part-of partial order.
In this case, the techniques proposed in [113] can be used to balance hierarchies by filling
the missing values.

The itemsets we consider are also multi-dimensional, i.e., they describe events along
different features (e.g., worksIn). Each feature corresponds to a hierarchy (e.g., Location) and
defines the semantics carried by an item at one specific level of that hierarchy.

Definition 33 (Domain Schema) A domain schema is a triple D = (H,E ,µ) where H is a
set of hierarchies, E is a set of features, and µ is a function mapping each feature onto one
hierarchy.

Example 35 Our working example relies on the Profiling domain schema, which describes
the customers who regularly visit a mall and includes two hierarchies as shown in Figure 12.3.
One hierarchy is rooted in the Location dimension and has two branches that describe
locations from the geographical point of view and based on their characteristics, respec-
tively. The roll-up partial order states, for instance, that Neighborhood⪰Location Borough;
the part-of partial order states that Harlem ≥Location Manhattan. The second hierarchy is
rooted in the Income dimension and classifies incomes based on their ranges. The features
of Profiling are worksIn, frequents, and earns; specifically µ(worksIn) = µ(frequents) =
Location, µ(earns) = Income.

We are now ready to define an item as a couple of a feature and a value taken from the
domain of one of the levels of the corresponding hierarchy. Itemsets are non-redundant sets
of items, i.e., two items in an itemset cannot be defined on values related in the part-of partial
order (e.g., GreenwichVillage and Manhattan). Finally, transactions are itemsets whose items
are all defined on dimension values, i.e., at the top level of a hierarchy (e.g., Macy’s).

Definition 34 (Itemset and Transaction) Given domain schema D = (H,E ,µ), an item of
D is a couple i = ( f ,v) where f ∈ E , v ∈ Dom(l), and l is a level of hierarchy µ( f ). An
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Figure 12.3: Hierarchies (right) and values (left) for the Profiling domain schema; in red, the
level-domain mappings

itemset I of D is a set of distinct items of D where, for each i, i′ ∈ I such that i = ( f ,v) and
i′ = ( f ,v′), it is v ̸≥µ( f ) v′ and v′ ̸≥µ( f ) v. We call a transaction an itemset only including
items defined over dimensions of H.

Example 36 With respect to the Profiling multi-dimensional and multi-level domain, exam-
ples of an itemset I and a transaction T are:

I = {(worksIn,Harlem),(frequents,Museum),(frequents,Macy’s),(earns,High)}
T = {(worksIn,CityCollege),(frequents,WhitneyMuseum),

(frequents,Macy’s),(earns,35to60)}

Note that, for semantic reasons, some features are actually disjunctive, meaning that they
cannot realistically take two or more values at the same time; for instance, this is the case
for earns. Others are not; for instance, a person can frequent several places. In practice it is
not necessary to model this property of features, since real (correct) transactions will always
have at most one single value for a disjunctive feature, so the same will hold for all FIs as
well.

12.4 Working with itemsets

Working with multi-dimensional and multi-level items requires classic definitions related to
FI mining to be extended. We start by defining a notion of containment between itemsets that
generalizes set containment taking hierarchies into account; based on itemset containment
we can then define the support of itemsets, which in turn is necessary to select FIs out of the
set of all itemsets.
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{Manhattan} {Queens} {Tourism} {Low}{Amenity} {High}
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Figure 12.4: A portion of the containment lattice for the Profiling; itemsets in gray are
partially expanded

Definition 35 ((Multi-Level) Itemset Containment) Given two itemsets I and I′, we say
that I is contained in I′ (denoted I ⊑ I′) if for each item i ∈ I, i = ( f ,v), there is an item
i′ ∈ I′, i′ = ( f ,v′) such that v′ ≥µ( f ) v. Given a set F of itemsets, an itemset I ∈F is directly
contained in I′ ∈F with reference to F (denoted I⊑̇F I′) if there is no other itemset I′′ ∈F

such that I ⊑ I′′ ⊑ I′.

Let I denote the set of all items of a schema domain and 2I denote the set of all itemsets
as in Definition 34. The containment relationship is reflexive, antisymmetric, and transitive,
and for each pair of itemsets in I there are a least upper bound and a greatest lower bound;
so relationship ⊑ induces a lattice on 2I , whose top and bottom elements are the empty
itemset and I , respectively. Given two itemsets I and I′, we denote with lub(I, I′) and
glb(I, I′) their least upper bound (i.e., the least element in 2I that is greater than or equal to
both I and I′) and greatest lower bound (i.e., the greatest element in 2I that is less than or
equal to both I and I′) in the lattice.

Example 37 Figure 12.4 shows a portion of the containment lattice for the Profiling
domain schema; for simplicity we focus on features frequents and earns and denote
items by their value only. For instance, for frequents it is {Amenity} ⊑ {College,Store}
and {Amenity}⊑̇2I {College}. Intuitively, {Store} and {College} arise by describing
{Amenity} at a higher level of detail; {Amenity,Manhattan} arises from a branch of the
Location hierarchy; and {Amenity,Low} arises by extending {Amenity} with the additional
item {Low}.

We say that transaction T supports itemset I if I ⊑ T . For instance, in Example 36, T
supports I. Given a set of transactions T , the set of transactions that support I is denoted by
TI ⊆T . At this stage we can introduce a numerical property of itemsets, their support.

Definition 36 (Itemset Support) Given itemset I, its support sup(I) within a set of transac-
tions T is defined as sup(I) = |TI|/|T |.
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An itemset I is called frequent if its support is greater or equal to a given threshold. Since
the containment relationship induces a lattice on the set 2I of all possible itemsets, it also
induces a partial order over the set F ⊆ 2I of FIs. Thus, from now on we will say that F is
a partially ordered set (POS).

A valuable property of the support for non-hierarchical itemsets is antimonotonicity along
the containment relationship: for each I, I′ such that I ⊆ I′ it clearly is sup(I)≥ sup(I′) [9].
Remarkably, this property also holds for our hierarchical itemsets along the multidimensional
containment relationship introduced in Definition 35, as proved by the following theorem.

Theorem 1 ((Multi-Level) Antimonotonicity of Support) Given two itemsets I and I′

such that I ⊑ I′, for all sets of transactions it is TI′ ⊆TI and sup(I)≥ sup(I′).

Proof: To prove that TI′ ⊆TI it is sufficient to prove that for each transaction T that supports
I′, T also supports I (for Definition 36). For Definition 34, if T supports I′ then for each
item i′ ∈ I′, i′ = ( f ,v′), there is at least one item i0 ∈ T , i0 = ( f ,v0), such that v0 ≥µ( f ) v′.
But since I ⊑ I′, we know by Definition 35 that for each item i ∈ I, i = ( f ,v), there is an
item i′ ∈ I′, i′ = ( f ,v′) such that v′ ≥µ( f ) v. The part-of partial order ≥µ( f ) is transitive,
so v0 ≥µ( f ) v; then we obtain that for each i ∈ I there is at least one item i0 ∈ T such
that v0 ≥µ( f ) v′, in other words that T supports I. From here, it immediately follows that
sup(I)≥ sup(I′). □

Note that, due to this result, the transactions supporting I′ also support I.
In Section 12.5 we will compute summaries using clustering, which clearly requires the

definition of a similarity function to measure how “close” two FIs are. To this end, we start
by introducing feature-based similarity, which increases with the number of features (i.e.,
semantics) shared by two FIs. Clearly, if two FIs include two distinct groups of transactions,
feature-based similarity is not meaningful, so it is associated with a support-based similarity
which increases with the percentage of transactions supporting both FIs. There is no obvious
correlation between these two aspects of similarity; for instance, support-based similarity
can be low even if feature-based similarity is high when non-shared features are rare and
supported by a small fraction of transactions.

In a multi-level and multi-dimensional domain, defining feature-based similarity only by
counting the common items between two FIs would be reductive; in fact, the informative
value carried by these items in terms of level of detail should be considered as well. For
instance, knowing that a person frequents Macy’s is more relevant than knowing that she
frequents a generic amenity. Intuitively, an FI is more relevant than another if it includes a
larger number of distinct features; in turn, the relevance of a feature increases with the level
of detail at which it is expressed.
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Definition 37 (Itemset Relevance) Given itemset I, its relevance is

rel(I) = ∑
f∈Feat(I)

rel( f )+ ∑
l∈Lev f (I)

rel(l)


where Feat(I) is the set of distinct features of the items in I, Lev f (I) is the set of levels of the
values coupled with feature f in the items of I, rel( f ) is the relevance of f , and rel(l) is the
relevance of level l.

Assuming that higher levels of detail carry more informative content and relevance, means
assuming that rel(l)≥ rel(l′) if l ⪰µ( f ) l′. As a consequence, given any two itemsets such
that I ⊑ I′, we always have rel(I′)≥ rel(I).

We can now define the similarity between two itemsets as a linear combination of a
support-based and a feature-based similarity.

Definition 38 (Itemset Similarity) Given a set of transactions T , a POS of FIs F , two FIs
I and I′ supported by T , and a coefficient λ ∈ [0..1], the similarity of I and I′ is defined as
sim(I, I′) = λ simsup(I, I′)+(1−λ )sim f ea(I, I′), where

simsup(I, I′) =


sup(glb(I,I′))

sup(I)+sup(I′)−sup(glb(I,I′)) , if glb(I, I′) ∈F

0, otherwise
(12.1)

sim f ea(I, I′) =


rel(lub(I,I′))
rel(glb(I,I′)) , if lub(I, I′),glb(I, I′) ∈F

0, otherwise
(12.2)

Both simsup and sim f ea range in [0..1]; they can be explained as follows:

• simsup is the ratio between the number of transactions that support both I and I′ and the
number of transactions that support either I or I′. The higher the portion of transactions
supporting both I and I′, the higher simsup as requested by the the support-based
principle.

• sim f ea is the ratio between the relevance of the lub() and glb() of the two FIs. When
the features belonging to the two FIs I, I′ are dissimilar, (i) the relevance of the lub(I, I′)
will be low since most of the features in I, I′ will be dropped or their level will be less
detailed; (ii) the relevance of the glb(I, I′) will be high since most of the features in I′

must be added to those in I. This behavior satisfies the feature-based principle.

Clearly, since the lub and glb operators are commutative, it is always sim(I, I′) = sim(I′, I).
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{Low}
sup 0.6, rel 1.0

{Amenity}
sup 0.7, rel 1.0

∅	  

{Store}
sup 0.5, rel 1.1

{Macy’s}
sup 0.5, rel 1.2

{College}
sup 0.3, rel 1.1

{College,Store}
sup 0.1, rel 1.2

{Amenity,Low}
sup 0.5, rel 2.0

{Store,Low}
sup 0.4, rel 2.1

{Macy’s,Low}
sup 0.2, rel 2.2

Figure 12.5: The POS F of FIs for Examples 38, 39 and 41 (each FI is annotated with its
support and relevance)

Example 38 With reference to the hierarchies of Figure 12.3, let the POS of FIs F be
the one shown in Figure 12.5, restricted to features frequents and earns. We assume that
(i) for each feature f it is rel( f ) = 1, and (ii) relevance increases by 0.1 for each level of
detail. Given FIs I = {(frequents,Store))} and I′ = {(frequents,Amenity),(earns,Low)},
it is lub(I, I′) = {(frequents,Amenity)}, glb(I, I′) = {(frequents,Store),(earns,Low)}, and
sim(I, I′) = 0.57.

To decrease the complexity of summary creation, in Section 12.5 we will leverage on the
properties of itemset similarity and containment. First of all, Theorem 2 proves that itemset
similarity is antimonotonic.

Theorem 2 (Antimonotonicity of Itemset Similarity) Given three FIs I, I′, and I′′ such
that I ⊑ I′ ⊑ I′′, for all sets of transactions and all λ ∈ [0..1] it is sim(I, I′)≥ sim(I, I′′).

Proof: Support-based similarity is antimonotonic along the containment relationship. This
can be easily proved by considering that, in Equation (12.1), since I ⊑ I′ ⊑ I′′ it is glb(I, I′) =
I′ and glb(I, I′′) = I′′, and by recalling that function sup is antimonotonic. Similarly, feature-
based similarity is antimonotonic along the containment relationship. This can be easily
proved by considering that, in Equation (12.2), since I⊑ I′⊑ I′′ it is lub(I, I′) = lub(I, I′′) = I,
and by recalling that rel(I′)≤ rel(I′′) by assumption. But then, sim is antimonotonic for any
λ in that it is a linear combination of antimonotonic functions. □

The next property, formalized by Theorem 3, states that direct itemset containment (see
Definition 35) always entails higher similarity, i.e., in case an itemset I′ is directly contained
in an itemset I′′′, the similarity between I′ and I′′′ is greater than the similarity of I′ to any
other itemset I′′ that does not directly contain I′. To prove this result we rely on the following
lemma.
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Lemma 1 Given a POS of FIs F and three FIs I′, I′′, I′′′ ∈F such that I′′′ = glb(I′, I′′),
I′ ̸⊑ I′′, I′′ ̸⊑ I′, for all sets of transactions and all λ ∈ [0..1] it is sim(I′, I′′′) ≥ sim(I′, I′′)
and sim(I′′, I′′′)≥ sim(I′, I′′).

Proof: We prove the thesis by contradiction, assuming that sim(I′, I′′) > sim(I′, I′′′). We
consider simsup first:

sup(glb(I′, I′′))
sup(I′)+ sup(I′′)− sup(glb(I′, I′′))

>
sup(glb(I′, I′′′))

sup(I′)+ sup(I′′′)− sup(glb(I′, I′′′))

From here, recalling that glb(I′, I′′′) = I′′′, we get

sup(I′′′)
sup(I′)+ sup(I′′)− sup(I′′′)

>
sup(I′′′)
sup(I′)

Since sup(I′′)≥ sup(I′′′) because of Theorem 1, this inequality admits no solution. This also
holds for the relevance component of the similarity function, sim f ea. Let I = lub(I′, I′′):

rel(lub(I′, I′′))
rel(glb(I′, I′′))

>
rel(lub(I′, I′′′))
rel(glb(I′, I′′′))

⇔ rel(I)
rel(I′′′)

>
rel(I′)
rel(I′′′)

But since I ⊑ I′, for Definition 37 we have rel(I′) ≥ rel(I), then the inequality admits no
solution and we have a contradiction. From the two contradictions it follows that sim(I′, I′′′)≥
sim(I′, I′′) and sim(I′′, I′′′)≥ sim(I′, I′′). □

Theorem 3 Given a POS of FIs F and any two FIs I′, I′′ ∈F , for each I′′′ ∈F such that
I′⊑̇F I′′′, it is sim(I′, I′′)≤ sim(I′, I′′′).

Proof: The proof comes by applying Theorem 2 to the result of Lemma 1. □

This theorem allows to sensibly reduce the summarization space in Section 12.5, narrowing
the number of cluster comparisons down to the pairs of clusters whose representatives are
directly contained into one another (i.e., it prevents an all-against-all comparison).

12.5 Summarizing frequent itemsets

Since SUSHI supports interactive exploration and navigation, it gives summaries a hierarchi-
cal organization to let them be analyzed at different levels of detail. To create summaries
we adopt an agglomerative hierarchical clustering technique, which progressively merges
couples of clusters starting from singletons until one single cluster is obtained. The result
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Figure 12.6: A simple h-summary with three possible summaries, including the minimum
one

of hierarchical clustering is commonly represented using a dendrogram, i.e., a binary tree
structure containing a k-block set partition for each 1 ≤ k ≤ n, where n is the number of
objects to be clustered [62]. In our context, due to the constraints we pose on mergeability,
in some cases it is impossible to merge all the FIs into one single cluster, so the dendrogram
will actually not be a tree but a forest of trees.

12.5.1 Summaries and representatives

Definition 39 (H-Summary and Summary) Given a POS of FIs F , a hierarchical sum-
mary (briefly, h-summary) of F is a (directed) forest HS where each node is a cluster c⊆F

and each leaf is a singleton cluster. Each node c is labeled with the similarity sim(c) of the
representatives of the two clusters that were merged to obtain c (conventionally, sim(c) = 1
for singleton clusters). A summary S of HS is any set of clusters in HS that define a (complete
and disjoint) partition of F .

Among all possible summaries for HS, the one including all and only the roots of HS is
denoted as min(HS) and called minimum summary (see Figure 12.6).

Note that, while traditional dendrograms are typically cut at a given similarity level to
produce a clustering, in our definition a summary can include clusters at different similarity
levels. This is to allow analysts to interactively choose which cluster they want to analyze in
more detail during visualization (see Section 12.6).

In a summary, each cluster is represented by a single FI. To define the representative
rep(c) of cluster c, we provide three different strategies:

• Top: the representative is the most general FI in c, rep(c)⊑ I,∀I ∈ c

• Bottom: the representative is the most specific FI in c, I ⊑ rep(c),∀I ∈ c

• Medoid: the representative is the cluster “center”, rep(c) = med(c)
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The Top strategy is the one most commonly used in the literature [40], while Bottom is related
to the notion of maximal FI (i.e., a FI for which none of its immediate supersets is frequent
[122]). As confirmed by both our tests and assessment with real users (see Section 12.7),
Top often lacks in properly characterizing the clusters. The reason for this is that, as the
cluster cohesion decreases, one or more features appearing in some of the cluster FIs may
disappear from the representative, which leads to very low relevance. Conversely, when the
Bottom representative is adopted, all the features appearing in at least one FI of the cluster
are included. Obviously, both Top and Bottom are extreme representatives of clusters, thus
they often do not show high similarity with the other FIs in the the cluster. To overcome this
problem, we alternatively propose the Medoid strategy; to the best of our knowledge, no
previous approach relies on medoid representatives for FIs. A medoid is defined as follows:

Definition 40 (Medoid) Given a summary HS and a cluster c∈HS, a FI I ∈ c is a candidate
medoid of c if, for each other FI I∗ ∈ c, it is sim(I, I∗)> 0 and ∑

I∈c
sim(I, I)≥ ∑

I∈c
sim(I∗, I).

If c has at least one candidate medoid, then the medoid of c, denoted med(c), is the one with
the highest relevance and, at the same relevance, with the highest support.

Given two clusters c′, c′′, computing the medoid of c′ ∪ c′′ requires all the pairwise
similarities between the FIs to be estimated. This entails the computation of a quadratic
number of similarities in the cardinality of c′∪ c′′ (each FI against all the others), which can
be unfeasible for large datasets:

med(c) = argmaxĪ∈c′∪c′′ ∑
I∈c′∪c′′

sim(Ī, I)

To cut this complexity down to linear, while merging two clusters we can approximate the
optimal medoid based on the cluster representatives:

med∗(c′,c′′) = argmaxĪ∈c′∪c′′sim(Ī,rep(c′)) · |c′|+ sim(Ī,rep(c′′)) · |c′′|
≃ argmaxĪ∈c′∪c′′ ∑

I∈c′
sim(Ī, I)+ ∑

I∈c′′
sim(Ī, I) = med(c′∪ c′′)

Thanks to the last step, for each candidate medoid Ī we can replace the sum of the similarities
between Ī and all other FIs with the similarity between Ī and the two representative medoids.

Depending on the strategy adopted for picking cluster representatives, different merge-
ability constraints arise. Indeed, two clusters can actually be merged only if the resulting
cluster is well-formed, i.e., if it has a representative itself. Note that, for a singleton cluster
c = {I}, it is rep(c) = I for all strategies.
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Definition 41 (Mergeability) Two clusters c and c′ are mergeable (denoted c ↔ c′) if:
rep(c) ⊑ rep(c′) or rep(c′) ⊑ rep(c), in case of Top or Bottom strategies; the union of
c and c′ has a medoid, in case of Medoid strategy.

Example 39 With reference to the POS of FIs F in Figure 12.5, let the following clus-
ters be given: c1 = {{College},{College,Store}}, c2 = {{Amenity}}, c3 = {{Low}}. Ac-
cording to the Top strategy, it is rep(c1) = {College}; c1 can be merged with c2 but
not with c3 since {College} ̸⊑ {Low} and {Low} ̸⊑ {College}. According to the Bot-
tom strategy, it is rep(c1) = {College,Store}; c1 can be merged with c2 but not with c3

since {College,Store} ̸⊑ {Low} and {Low} ̸⊑ {College,Store}. According to the Medoid
strategy, it is rep(c1) = {College,Store}; c1 can be merged with c2 but not with c3 since
glb({College,Store}, {Low}) ̸∈F , hence, sim({College,Store},{Low}) = 0 and c1∪c3 has
no candidate medoids.

12.5.2 Search space for multi-dimensional and multi-level FIs

Hierarchical clustering on a set F of FIs entails |F |(|F |−1)/2 comparisons between FIs;
so, reasoning about the cardinality of F is crucial. The actual cardinality of F clearly
depends on the number of transactions in the dataset and on the frequency threshold. To
discuss the impact of the multi-dimensional and multi-level setting on |F | in general terms,
we consider the worst possible case, in which F = 2I because there is a transaction for
each possible itemset and the threshold is 1 (all itemsets are frequent).

When working with mono-dimensional and mono-level items, the total number of possible
(non-empty) itemsets is |2I |= 2n−1, where n = |I | is the total number of items. In the
multi-dimensional case these n items are not homogeneous, i.e., they are picked from the
domains of multiple dimensions. If ν is the cardinality of these domains, which we assume
for simplicity to be constant, the number of possible itemsets cuts down to

|2I |=
n/ν

∑
k=1

(
n/ν

k

)
·νk = (ν +1)n/ν −1 (12.3)

where n/ν is the number of dimensions (assuming for simplicity that all features are disjunc-
tive). Finally, in the multi-level case, some meta-knowledge of part-of relationships between
items is available and expressed in the form of hierarchies as in Definition 33, so some more
combinations of items become unfeasible: indeed, we recall from Definition 34 that there
cannot be any part-of relationship between the values of the items included in an itemset
(e.g., {(worksIn,Harlem),(worksIn,Manhattan)} is not an itemset). In this case, the number
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Figure 12.7: (a) Search space measured as the number of itemsets in function of the number
of levels; (b) number of comparisons at the first iteration in function of the number of levels

of possible itemsets is further reduced to

|2I |=
n/(ν |L|)

∑
k=1

(
n/(ν |L|)

k

)
· |L|k ·νk = (ν |L|+1)n/(ν |L|)−1 (12.4)

where |L| is the number of levels in each hierarchy (assumed for simplicity to be the same
for all hierarchies) and n/(ν |L|) = |H| is the number of hierarchies. Clearly, if |L|= 1 (flat
hierarchies), Equation (12.4) boils down to Equation (12.3).

Figure 12.7(a) shows how the number of itemsets computed with Equation (12.4) changes
when the number of levels |L| changes from 1 (mono-level items) to 4 (multi-level items),
with n = 160 and ν = 10. As a reference, also the number of itemsets in the case of mono-
dimensional and mono-level items is plotted. Clearly, when dimensions are structured in
hierarchies the number of FIs is significantly smaller than in the “flat” case.

Even if |F | is significantly smaller for multi-level items than for mono-level ones,
executing all |F |(|F |−1)/2 comparison would be expensive. Fortunately, this is not the
case in our approach due to Theorem 3 that allows to compare only the couples of clusters
whose representatives are directly contained into one another with reference to the set of
all clusters representatives. The most expensive iteration for agglomerative hierarchical
clustering algorithm is the first one, when all clusters are singleton so there are |F | clusters.
Assuming for simplicity that all hierarchies are linear (i.e., no diamond-like hierarchies are
present), an itemset including k items has exactly k fathers in the containment lattice. The
total number of comparisons required at this stage is:

♯ comparisons =
n/(ν |L|)

∑
k=1

(
n/(ν |L|)

k

)
· |L|k ·νk · k = n(ν |L|+1)n/(ν |L|)−1

Figure 12.7(b) plots this formula for increasing numbers of hierarchy levels, distinguishing
whether the antimonotonicity of the similarity function is considered or not. Besides the
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reduction of the number of comparisons due to antimonotonicity exploitation, the plot, as
in Figure 12.7(a), also emphasizes how multi-level containment further reduces the number
of comparisons. In the subsequent iterations of the clustering algorithm, the number of
comparisons varies depending on the actual shape of the hierarchies and on the strategy
chosen for cluster representatives, but it is always smaller than the first one since (i) the
number of clusters decreases at each iteration, and (ii) not all pairs of clusters can actually be
merged due to the mergeability constraints.

Example 40 Given n = 120, l = 3, v = 10 and a null support threshold (i.e., all itemsets are
frequent) it is |2I |= |F |= 923520. The number of comparisons is 36 ·105, that is less than
the number of required comparisons required by mono-dimensional and mono-level itemset
clustering, |F |(|F |−1)/2 = 43 ·1010. □

12.5.3 Building h-summaries

In this section we explain how h-summaries can be efficiently computed by agglomerative
clustering. Considering the drastic reduction in the number of useful comparisons enabled by
the antimonotonicity of the similarity function and by mergeability constraints, the efficiency
of the agglomerative clustering algorithm can be greatly improved by storing the set of useful
comparisons at each iteration within a graph UC = (C,M), where C is the current set of
clusters and M stores an arc for each couple of clusters whose comparison is actually useful1.
Keeping the arcs in M sorted by decreasing similarity values ensures that the most similar
couple of clusters can be found in constant time.

The pseudocode for summarizing FIs is shown in Algorithm 9. HS stores the h-summary
being built by agglomerative hierarchical clustering. Graph UC = (C,M) keeps track of
cluster mergeability: at each iteration C is the set of clusters in the minimum summary
min(HS) (clearly, min(HS) changes at each iteration as clusters are progressively merged
and HS is expanded), while M stores an arc for each couple of candidate mergeable clusters,
i.e., clusters with direct containment (Line 2). We recall that safely restricting to consider
direct containment is possible thanks to Theorem 3; indeed, at each step, Algorithm 9 merges
the two most similar clusters, which are necessarily two clusters related by direct containment.
We use the term candidate since, while with the Top and Bottom strategies mergeability is
ensured by the building rules of UC, the Medoid strategy requires a further check since the
changes occurred in the cluster composition may affect mergeability.

1Since the notions of multidimensional cube and measure are not formally referred here, in order to keep a
user-friendly notation, we reassigned letters C, c and M respectively a set of clusters, a cluster, and a set of
mergeability arcs.
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Algorithm 9 Create H-Summary
INPUT F : POS of FIs, k: number of clusters, strat representative strategy
OUTPUT HS: h-summary
1: C = {{I} s.t. I ∈F} ▷ Set of singleton clusters, one for each FI
2: M←{(c′,c′′) s.t. c′ ∈C∧ c′′ ∈C∧ rep(c′)⊑̇F rep(c′′)} ▷ Couples of clusters with direct containment
3: HS←C ▷ HS is initialized
4: UC← (C,M) ▷ UC is initialized
5: while (M ̸=∅)∧ (|min(HS)|> k) do ▷ While the h-summary is expandable...
6: (c′,c′′)← argmax{(c′,c′′)∈M}sim(rep(c′),rep(c′′)) ▷ ...find the pair of candidate mergeable clusters with most similar

representatives;
7: if c′↔ c′′ then ▷ if they are actually mergeable according to strat...
8: c← c′ ∪ c′′ ▷ ...merge them,
9: AddFather(HS,c,c′,c′′) ▷ update HS,
10: U pdate(UC,c,c′,c′′,strat) ▷ and update UC

11: return HS

The algorithm starts by initializing HS with singleton clusters, one for each FI (Line 3);
this can be seen as a degenerate h-summary since no merge took place so far. At Line 4
we initialize UC = (C,M): C is the set of singleton clusters, while M stores the couples of
singletons whose FIs are directly contained into one another with reference to F .

Then, while the cardinality of min(HS) is above the target cardinality k and some pairs
of mergeable clusters exist (Line 5), we pick the pair of mergeable clusters c′ and c′′

whose representatives have maximum similarity (Line 6); since the arcs in M are sorted by
descending similarity, this simply means getting the first arc. These two clusters are then
merged into cluster c (Line 8) and the h-summary HS is updated by adding the c as the father
of c′ and c′′ (Line 9). Finally, at Line 10, UC is updated as described by Algorithm 10.

Algorithm 10 updates UC according to the representative strategy adopted. Figure 12.8
shows which arcs are kept and which ones are dropped when c′ and c′′ are merged. Note
that arc (ĉ,c′) cannot belong to M since otherwise it would be rep(ĉ)⊑ rep(c′)⊑ rep(c′′),
but then (ĉ,c′′) would not be a direct containment (with reference to the set of all cluster
representatives), which is impossible by construction (see Line 12). Symmetrically, the same
holds for (č,c′′). Arc (c′,c′′) is dropped in all the strategies; moreover: in Top, arc (ĉ,c′′) is
dropped since with this strategy the representative of c is the representative of c′ (i.e., the
most general one), thus ĉ and c are not mergeable since rep(c) = rep(c′) ̸⊑ rep(ĉ); Bottom
is the dual case of Top; in Medoid, containment of representatives is not necessary, so all
clusters remain potentially mergeable and no more arcs are removed.

Example 41 Here we show some steps of Algorithm 9 using the Bottom strategy, with
reference to the POS of FIs shown in Figure 12.5. The h-summary HS is initialized with
9 singleton clusters (gray boxes in Figure 12.9(a)). Among the 11 pairs of mergeable
clusters whose FIs are directly contained one into the other with reference to F (the pairs
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č

c

c

c

ĉ
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Figure 12.8: Changes in UC when clusters c′ and c′′ are merged: before merging (a), after
Top merging (b), after Bottom merging (c), and after Medoid merging (d)

Algorithm 10 Update
INPUT UC = (C,M): graph of useful comparisons, c′,c′′: clusters to be merged (with (c′,c′′) ∈M), c: cluster resulting from the merge,

strat: representative strategy
OUTPUT UC: updated graph of useful comparisons
1: C←C∪ c
2: switch strat do
3: case Top
4: M←M∪{(c,c) s.t. (c′′,c) ∈M∨ (c′,c) ∈M} ▷ c inherits outgoing arcs of c′′ and c′

5: M←M∪{(c,c) s.t. (c,c′) ∈M} ▷ c inherits the incoming arcs of c′

6: case Bottom
7: M←M∪{(c,c) s.t. (c,c′) ∈M∨ (c,c′′) ∈M} ▷ c inherits incoming arcs of c′ and c′′

8: M←M∪{(c,c) s.t. (c′′,c) ∈M} ▷ c inherits the outgoing arcs of c′′

9: case Medoid
10: M←M∪{(c,c) s.t. (c,c′) ∈M∨ (c,c′′) ∈M} ▷ c inherits incoming arcs of c′ and c′′

11: M←M∪{(c,c) s.t. (c′,c) ∈M∨ (c′′,c) ∈M} ▷ c inherits outgoing arcs of c′ and c′′

12: Clear(UC,c′,c′′) ▷ Remove c′ and c′′ from C and all arcs in M that (i) involve c′ or c′′, (ii) do not represent direct containment
13: return UC

connected by arrows in Figure 12.9(a)), the pair ({Store},{Macy’s}) is the one with highest
similarity (0.96). So these two clusters are merged; the representative of the new cluster is FI
{Macy’s} as shown in Figure 12.9(b). At the second iteration, among the 8 pairs of mergeable
clusters, the one with highest similarity is ({Amenity,Low},{Store,Low}) (Figure 12.9(b));
the representative of the merged cluster is {Store,Low}. After 7 iterations, two clusters
are obtained (shown in Figure 12.10(b)); since these two clusters are not mergeable, the
algorithm stops and returns an h-summary including these two roots. Figure 12.10 also
shows the minimum summaries obtained using the Top and Medoid strategies, emphasizing
the differences between the composition and the representative of the resulting clusters.

12.5.4 Complexity

The computational complexity of hierarchical clustering has a two-faceted nature: initializa-
tion and iteration. While the initialization cost (Algorithm 1, Line 2) has been discussed in
Section 12.5.2, we now consider the iteration cost. Note that the complexity of our algorithms
does not depend on the number of transactions in the dataset, but it depends on the number
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Figure 12.9: Clustering steps shown on graph UC using the bottom strategy; first (a) and
second (b) iterations (each cluster is shown by its representative, arrows represent cluster
mergeability, dashed boxes show the next couple of clusters to be merged)

of FIs (i.e., on |F |). For instance, in the case of colossal trajectory mining [273, 302], even
only a few dozens of transactions can produce a huge number of FIs.

By relying on a priority queue (Algorithm 9, Line 6), the worst-case complexity of
hierarchical clustering is O(|F |2log|F |) [63]: clustering requires |F |−1 merging steps,
each of which requires |F | similarity computations to be stored in the priority queue. Editing
a priority queue has a log|F | complexity. However, merging two clusters entails different
complexities according to the adopted strategy. On the one hand, Bottom and Top require no
validation for merged cluster, so the actual complexity of clustering is O(|F |2log|F |). On
the other hand, the computation of a feasible medoid for two clusters c′ and c′′ has quadratic
complexity, resulting in a complexity O(|F |3)). Although medoid approximations exist
(e.g., [211, 20]), they require statistical assumptions that are not know while merging the
clusters2. Remarkably, the medoid approximation med∗ proposed in Section 12.5.1 has linear
complexity, resulting in an overall complexity O(|F |2log|F |).

Note that in our setting the worst-case scenario is actually quite unlikely, since it requires
that: (i) the goal is to aggregate all FIs into a single cluster; (ii) only in the last iteration of the
algorithm (when there is a single cluster) the optimal and approximated medoid complexities
are O(|F |3) and O(|F |2log|F |); and (iii) no direct containment relationships between FIs
are present, so that the the antimonoticity of the similarity function cannot be used to prune
the search space.

As to space complexity, hierarchical clustering requires to store both the graph of useful
comparisons (UC in Algorithm 9) and the priority queue that sorts the mergeability arcs.
Storing UC requires to store both its set of nodes, C, and its set of arcs, M. As to C, all the
FIs in F (i.e., the initial singleton clusters) are stored in memory; if f is the average space

2The estimation of statistical parameters proved to produce “bad” medoids when the cluster population was
not sufficient to provide a precise estimation or when global parameters where extended even to small clusters.
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Figure 12.10: Minimum summaries obtained using the Top (a), Bottom (b), and Medoid (c)
strategies shown on F (gray areas represent clusters, their representatives are in bold)

taken by an FI ( f depends on the size of each item and on the number of items per FI), storing
C requires |F | · f bytes. As to M, each mergeability arc includes a reference to the two
clusters (8 bytes in total) and the similarity between their representatives (4 bytes), yielding
|M| ·12 bytes overall. Finally, the priority queue contains the references to all mergeability
arcs, overall |M| ·4 bytes. Thus, the total space taken in memory is |F | · f + |M| ·16 bytes.
Differently from the computational time, this space does not depend on the summarization
strategy as the clustering process does not require to copy new objects in memory, but only
to partition graph UC (see Section 12.7).

12.6 Visualizing and exploring summaries

Though several summarization approaches have been devised as discussed in Section 12.2,
most of them do not provide user-friendly ways to visually explore the summaries obtained.
To make data analysis more effective, SUSHI builds on an interactive visual interface
(available at http://semantic.csr.unibo.it/sushi) that enables analysts to unveil information
hidden in summaries.

Initially, when visualizing an h-summary HS, an overview of the minimum summary
min(HS) is provided by showing the top k clusters sorted by cardinality. If |min(HS)|> k,
to avoid scaling issues the remaining clusters are grouped into a fictitious “other” cluster.

http://semantic.csr.unibo.it/sushi
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SUSHI then provides two different visual approaches that fulfill orthogonal requirements to
navigate HS:

• The graph-based approach overviews the entire h-summary by always showing a
complete summary, as in the classical approaches to FI visualization discussed in
Section 12.2, and enables analysts to expand/collapse clusters. This approach highlights
inter-cluster relationships (e.g., in our profiling case study, how common behaviors
relate to each other).

• In the tree-based approach, the context of visualization is a single cluster, shown with
its children and grandchildren within the h-summary; thus, the relationships between
its representative and the other FIs in the cluster are emphasized (e.g., in our profiling
case study, how common a behavior is). Analysts can zoom in and out one cluster.

These two approaches are pursued using well-known visualization layouts, respectively,
directed acyclic graphs (DAGs) [102] and treemaps [24] (Figure 12.11). In both approaches,
colors code both the feature with the highest relevance of the cluster representative (hue) and
its support (saturation).

Both visualization approaches share two interaction possibilities (see Section 12.6):

• options: analysts are allowed to select the data source (e.g., a file containing the FIs),
the representative strategy (Bottom, Top, or Medoid), the desired number of clusters k,
and the similarity coefficient λ ;

• filter: the data source can be filtered by applying a support threshold and by specifying
the specific items the analyst is interested in (e.g., visualizing only the FIs that contain
items (worksIn,Harlem) or (frequents,Museum) with a support between 0.25 and 0.5).

However, as discussed in the following subsections, they differ in the primitives enabling
analysts to navigate h-summaries.

12.6.1 Graph-based visualization

DAGs gracefully represent inter-cluster relationships within a summary in terms of direct
containment between cluster representatives. At each iteration, analysts can expand a thick-
bordered cluster or collapse a cluster. Thin-bordered clusters represents singleton clusters
that cannot be further expanded. At the maximum level of detail, i.e., when all clusters have
been completely expanded, the summary including all singleton clusters is displayed. More
precisely, given the summary S currently displayed through the DAG and a cluster c ∈ S: (i)
the expansion of c replaces c with its k most similar descendants in HS which completely
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Figure 12.11: Graph-based visualization, before (a) and after (b) the expansion of cluster
{(worksIn,Bologna),(worksIn,close)}; tree-based visualization (c)

and disjointly cover the FIs in c, so as to obtain a new summary S′; (ii) the collapse of c
undoes its expansion (similarly to the zoom-in, extend, and zoom-out primitives in [252]).

Section 12.6 shows an example of the DAG representing min(HS) (k = 10), while
Section 12.6 shows how the graph changes when a cluster is expanded. DAG visualization
is based on the Graphviz open source library [79]. The DAG should be examined from left
to right; leftmost clusters have representatives with low item cardinality (high support, low
relevance), while rightmost clusters have representatives with high item cardinality (low
support, high relevance). This helps analysts in finding containment paths between cluster
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representatives, and is the reason for keeping FIs sorted in space due to the antimonotonic
and monotonic properties of sup() and rel(), respectively.

12.6.2 Tree-based visualization

Ordered treemaps are popular visualization tools for large hierarchical datasets, and we
use them to map h-summaries into 2D areas [251]. Section 12.6 shows a treemap (drawn
using the D3 library) in which the visualization area is partitioned into k = 10 (plus one
“others”) rectangles, each corresponding to a cluster in min(HS). The area of rectangles
is proportional to the cluster cardinality, hence, this visualization emphasizes the volume
of FIs summarized by each representative. Each rectangle is divided into sub-rectangles
corresponding to its k descendants with highest similarity sim(c) in HS. By hovering over
these sub-rectangles, analysts can get further details. Physical nesting is used instead of arcs
to represent inter-cluster relationships, so the visualization is clearer and easier to interpret,
and scalability is improved.

At each iteration, analysts can zoom-in or zoom-out a cluster c. More precisely, (i) a
zoom-in of c displays its k most similar descendants in HS which completely and disjointly
cover FIs in c; (ii) a zoom-out of c undoes the last zoom-in (similarly to the zoom-in, filter,
and zoom-out primitives in [252]).

12.7 Experimental tests

Summarization can be evaluated in terms of (i) effectiveness (summary compaction, cohesion,
information loss, and interestingness), (ii) efficiency (computational performance), and (iii)
understandability of the summary. We evaluate SUSHI using two datasets: a real one, called
ProfilingDS, related to the Profiling domain schema, and a synthetic one, called SyntheticDS.

• ProfilingDS describes the behavior of 20000 mall customers in the city of Bologna
(Italy). The profile of each customer is obtained from her daily GPS trajectories, and
modeled through a transaction set T using multiple features (where she lives and
works, the places she frequents, and how much she earns). Transactions are then
enriched with multi-level and multi-dimensional knowledge from external open data
sources, namely, Open Street Map (https://www.openstreetmap.org/) and the Italian
Statistic Institute ISTAT (https://www.istat.it/); the classical Apriori algorithm [9] is
applied to extract the set of FIs F out of T .

• SyntheticDS includes multiple POSs of FIs. While all these POSs share the same
number of hierarchies (|H| = 4) and values per level (ν = 20), they have different

https://www.openstreetmap.org/
https://www.istat.it/
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Table 12.2: Notation summary

Notation Meaning
|H| ∈ [3,6] Number of hierarchies
|L| ∈ [2,5] Number of levels per hierarchy
ν = 20 Number of values per level
λ ∈ [0,0.6] Similarity constant
k = 10 Number of desired clusters
F Set of FIs
HS H-summary
min(HS) Minimum summary
|M| Number of mergeability comparisons

cardinalities |F | and different hierarchy depths |L|. Additional details will be given in
Section 12.7.1.

Finally, for both datasets, F is summarized into an h-summary HS. The notation we adopt
is summarized in Table 12.2.

12.7.1 Effectiveness of the summarization strategies

Effectiveness is evaluated from different perspectives: compaction gain, information loss,
interestingness, and cluster cohesion. The first two have been defined in [40] to evaluate a
summary S of the set of FIs F , the third one in [137]3:

• Compaction gain: the reduction with respect to F ,

Gain(S) = |F |/|S|

• Information loss: the total amount of information missing from S,

Loss(S) = ∑
c∈S

∑
I∈c

∑
f∈Feat(I)

loss f (I,c)

where loss f (I,c) counts the number of values for feature f that are present in I but not
in rep(c).

3In [137], the authors also provide a metric for intelligibility which is not applicable to our approach since it
works on itemsets with a fixed schema, while we use schemaless itemsets.
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• Interestingness: how different the summary elements are (intuitively, the more unbal-
anced the summary, the higher its interestingness):

Int(S) = ∑
c∈S

|c| · (|c|−1)
|F | · (|F |−1)

Compaction gain, information loss, and interestingness do not measure how similar the
elements of each cluster are to the cluster representative; for this reason we complement
them with the cohesion of the clusters in S, defined as:

Coh(S) =
1
|S|∑c∈S

∑
I∈c,I ̸=rep(c)

sim(rep(c), I)
|c|−1

Figure 12.12 compares —in terms of cohesion, compaction gain, information loss, and
interestingness — the minimum summaries min(HS) produced by the Bottom, Medoid, and
Top strategies of SUSHI for ProfilingDS. We comment below the main outcomes:

• Bottom and Medoid outperform Top in terms of cohesion and information loss as
a direct consequence of how they are conceived. As to interestingness, Medoid
outperforms both other strategies, while Bottom achieves a lower interestingness than
Top as it produces more fragmented clusters.

• Higher cohesion values could be obtained by increasing the number of clusters in
the h-summary, |min(HS)|, which however might make the summary very complex.
Figure 12.13 compares the three strategies for increasing numbers of clusters, showing
that Medoid outperforms Top since it produces higher cohesion and lower loss of
information; additionally, Medoid can be applied even for more compact summaries
(i.e., for low values of |min(HS)|). Conversely, Bottom shows its limitations: since
the number of maximal FIs is a lower bound to |min(HS)|, it always produces a larger
number of clusters.

• SUSHI allows users to tune the relative weight λ of support-based and feature-based
similarity when computing itemset relevance. Indeed, as claimed in Section 12.4,
clusters with similar features but different support might underlie different correlations
(in ProfilingDS, different customer behaviors). The impact of λ is more apparent for
Medoid, while Top and Bottom are less sensitive to it.

• As to information loss, for a fixed summary cardinality, Top and Bottom are at the
highest and lowest ends of the range. This is not surprising since, intuitively, Top and
Bottom tend to generalize and to preserve the summarized information, respectively.
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Figure 12.12: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with k = 20) for ProfilingDS

SUSHI explicitly keeps hierarchy into account, thus it is interesting to analyze how
the hierarchy structure impacts on effectiveness. To this end we rely on our synthetic
dataset, SyntheticDS. First of all, in Figure 12.14 we compare the three strategies on four
POSs including 5000 FIs when the depth |L| of the four hierarchies changes from 2 to 5.
Medoid outperforms Bottom and Top in terms of compaction gain and interestingness. For
shallow hierarchies, Top and Medoid provide the most compact summaries but, as expected,
Medoid produces more cohesive summaries. Conversely, Bottom produces clusters with high
cohesion and no information loss (by definition) at the cost of a lower compaction gain (i.e.,
several small clusters). Noticeably, Medoid —which is always better than Top in terms of
cohesion and information loss— also overcomes Top in terms of gain for deep hierarchies
since, in this case, each medoid is similar to several FIs (see Definition 38).

The h-summaries returned by SUSHI are inherently hierarchical. While the tests described
above only analyze the properties of the minimum summary, it is also interesting to analyze
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Figure 12.13: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with |F |= 12000, λ = 0.3) for ProfilingDS

how the properties of summaries change when moving from large and very detailed ones to
compact and less informative ones. To do this, we analyze how the properties of the minimum
summary change as Algorithm 9 reduces its cardinality. In particular, Figure 12.15 shows how
cohesion, number |M| of mergeability comparisons, compaction gain, information loss, and
interestingness evolve for increasing iteration steps. Not surprisingly, Bottom and Top prune
more mergeability arcs than Medoid, with Bottom being the strategy that requires less steps
to conclude the algorithm. The three strategies merge progressively less cohesive clusters as
iterations proceed. While at early iterations the three strategies merge small clusters, towards
the end (approximately after the first 5000 iterations) the pruning of mergeability arcs favors
the creations of larger clusters.

Overall, we can conclude that the Top strategy produces compact but not cohesive
summaries (because it tends to generalize), the Bottom strategy produces cohesive but not
compact summaries (because it preserves details), while the Medoid strategy achieves the
best balance between compactness and cohesion. In the process of FI exploration, the
three strategies provide different insights: Top enables users to uncover general behaviors
supported by a large FI population; Bottom uncovers idiosyncratic behaviors supported by a
population of cohesive FIs; Medoid mitigates these effects, uncovering behaviors supported
by the most cohesive FIs.

Optimal vs. approximated medoid

As described in Section 12.5.1, for the sake of scalability, we also implemented an approx-
imated version of the optimal medoid. At every merging step, the percentage variation
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Figure 12.14: Comparison of the Bottom, Medoid, and Top strategies in terms of effectiveness
(with k = 20, λ = 0.3) for SynteticDS

in cluster cohesion is less than 1% (i.e., even when the approximated medoid is different
from the optimal one, they are still highly similar). However, following an iterative process,
changing the representative of even a few clusters might produce different summary results.
Figure 12.16 shows how the summaries produced by the approximated and optimal medoids
affect the Medoid strategy for increasing summary cardinalities. Noticeably, the provided
summaries have the same compaction gain. By obtaining summaries with the same number
of clusters and similar cluster medoids, the variation in information loss is also minimal. The
summary produced by the approximated strategy tends to be slightly more unbalanced as the
medoid is not always centered in the cluster, resulting in higher interestingness (due to the
quadratic effect of cluster cardinality, small cardinality variations are amplified in the inter-
estingness metric). Due to unbalancing, the approximated medoid produces a larger number
of smaller clusters than the optimal medoid, resulting in a slightly higher average cohesion
(cohesion only differs by 0.05 in the worst case). We can conclude that the approximated
medoid does represent a valid alternative to the optimal one.

12.7.2 Efficiency of the summarization strategies

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
CPU and 4GB RAM; all measures are in seconds. We emphasize that we implemented SUSHI
in a centralized and sequential architecture; an implementation in a big data distributed
solution is out of the chapter scope.

As depicted in Figure 12.17-left and Figure 12.18-left, SUSHI runs in near-real time
even when thousands of FIs are considered. It is apparent that Medoid is computationally
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Figure 12.15: Comparison of the Bottom, Top, and Medoid strategies while building the
h-summary (k = 20, |F |= 12000, λ = 0.3) for ProfilingDS

heavier than Bottom and Top, due to the quadratic complexity required to compute the
medoids. Remarkably, when the approximated medoid is used, the time for summarization is
comparable to that of Top and Bottom. The computational gap becomes larger as the average
cluster size grows at the different steps of Algorithm 9 (see Figure 12.17-right). Overall,
the performances of the summarization strategies are not sensible to the hierarchy structure
(Figure 12.18-right).

As shown in Figure 12.19-left, the memory usage clearly increases with the number
of FIs, |F |. However, summarizing 105 FIs only requires 400MB. This happens also in
Figure 12.19-right by increasing the number of hierarchy levels |L| and by keeping a fixed
amount of itemsets, |F |= 5000: in fact, deeper hierarchies produce more mergeability arcs
in Algorithm 9. As anticipated in Section 12.5.4, the memory usage does not depend on the
summarization strategies as all the produced summaries are hierarchical partitions of the
existing F .

12.7.3 Comparison against BUS and MBUS

To the best of our knowledge, no previous approaches address the summarization of multi-
level and multi-dimensional FIs. The closest contribution to SUSHI are [40] and its extension
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Figure 12.16: Comparison of the optimal (Med) and approximated (Med∗) Medoid strategies
in terms of effectiveness (|F |= 12000, λ = 0.3) for ProfilingDS

[137], in which the authors introduce the BUS and MBUS algorithms to summarize transac-
tions with a fixed schema. Before performing a quantitative comparison, we report the key
differences between SUSHI and (M)BUS:

1. SUSHI relies on a multi-dimensional and multi-level similarity (Definition 38), while
in (M)BUS similarity is expressed in terms of set containment (i.e., an FI I summarizes
I′ if I is a subset of I′).

2. SUSHI relies on hierarchical summaries expressed as dendrograms, which natively
code containment and similarity relationships between clusters; this allows to inter-
actively navigate h-summaries (i.e., expansion/collapse in Section 12.6.1 and zoom-
in/zoom-out in Section 12.6.2) by following containment paths. Conversely, (M)BUS
generates “flat” summaries (i.e., plain sets of FIs); in (M)BUS, summary navigation
requires multiple runs of the algorithm with different values of |min(HS)|, which does
not preserve the relationships among clusters.

3. SUSHI implements three summarization strategies, while (M)BUS implements only
the Top strategy.

Due to these differences, BUS and MBUS cannot be directly compared to SUSHI. Thus, to
compare the three approaches in terms of effectiveness we limit SUSHI to the Top strategy
and only consider the minimum summaries it produces. Figure 12.20 compares —in terms of
cohesion, compaction gain, information loss, and interestingness— the minimum summaries
min(HS) produced by the Top strategy of SUSHI and the summaries produced by BUS
and MBUS. Clearly, while the three approaches are comparable as to compaction gain,
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information loss, and interestingness, SUSHI significantly outperforms the others in terms
of cohesion. This happens because the SUSHI similarity function captures hierarchical
similarity between FIs, while in (M)BUS similarity is limited to set containment. So, for
instance, in (M)BUS the two FIs I = {(frequents,Store)} and I′ = {(frequents,Macy’s)}
have null similarity, hence, they cannot be clustered together.

As to efficiency, Figure 12.21 shows that all three SUSHI strategies outperform BUS and
MBUS by orders of magnitude. The execution of the algorithms was stopped when |F |=
1100, since obtaining larger numbers of FIs would require hours. The dramatic improvement
of SUSHI is strictly related to its capability of reducing the number of comparisons between
FIs by exploiting hierarchies, as formally described in Section 12.5.2.
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To sum up, from the discussion above it clearly emerges that without a dedicated approach,
such as SUSHI, the summarization of multi-level and multi-dimensional FIs yields poor
performances from both points of view of effectiveness and efficiency.

12.7.4 Summary understandability

To assess the quality of the summary and the visual experience with SUSHI, we conducted
a set of tests with 15 users, mainly master students in data science with basic or advanced
knowledge of FI mining. After a 15-minutes introduction to SUSHI and to our profiling
case study, the users were asked to answer 6 analytical questions in 6 minutes each, and
finally to fill out a qualitative questionnaire. Of the 6 questions, two were answered using a
spreadsheet software with a plain CSV file, two using graph-based visualization, and two
using tree-based visualization; the dataset included 419 FIs (analyzing a larger dataset in a
plain file would have been too complex). Here is an example of question:

Which common behavior do the mall customers show among the following ones?
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Table 12.3: Outcome of user evaluation

Spreadsheet Graph-based Tree-based
Preferences 2 3 10
Complexity 7 6.7 5.8
Time (s) 262 308 231
Score 0.64 0.63 0.7

1. {(livesIn,Bologna),(livesIn,close),(earns,Medium)}

2. {(livesIn,Bologna),(worksIn, far),(earns,High)}

3. {(livesIn,Bologna),(earns,10to35),(frequents,HillsInBologna)}

Table 12.3 summarizes the quantitative results. From the comments made in the ques-
tionnaire, it emerges that the spreadsheet is too dispersive and hardly manageable for large
datasets; graph-based visualization provides an intuitive overview of the summary and well
highlights FI relationships, though navigation is difficult when several clusters are displayed;
tree-based visualization gives an intuitive overview of the summary, a focused navigation,
and good readability.

Overall, users mostly appreciated tree-based visualization, which yields the lowest
complexity in understanding summaries, friendly in-depth navigation, and the lowest time
per answer. Both SUSHI visualizations provide intuitive overviews of the summary, with
tree-based visualization allowing the most focused navigation. The representativeness of the
visualized FI with respect to the FIs within the same group is also well perceived. Though the
overall scores are comparable, spreadsheet analysis is deemed to be too dispersive and not
effective for FI summarization. The longer answering time with graph-based visualization
with respect to spreadsheet is explained by considering that the brief training made for SUSHI
could not balance the previous experience of users with spreadsheets.

12.8 Conclusion

The new applications emerging in the era of analytics and big data ask for the study of new
machine learning techniques as well as for revamping established ones. In particular, our
work has been inspired by a real profiling study based on the tracking of GPS positions
of people. Although multi-level and multi-dimensional FIs are a perfect way to represent
the behavior of clusters of customers, the huge number of FIs mined hinders their effective
analysis. For this reason we proposed SUSHI, an original approach to FI summarization and
visualization based on an innovative similarity function. SUSHI turned out to outperform
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previous approaches both from the efficiency and effectiveness points of view. Moreover, the
proposed similarity and visualization techniques were successful in the tests with real users,
proving to be a valuable tool to expedite the analysis of FIs.



Chapter 13

Conclusion and Research Directions

In the second part of the thesis, we investigated how advanced analytics can ease climbing the
knowledge pyramid, helping data scientists with no vertical knowledge of computer science
and data engineering to access data. In particular, through augmented, conversational, and
intentional OLAP, we provided advanced analytic abstractions at a higher level than formal
queries and programming languages; the three contributions answer to three different needs:
(i) having frameworks that proactively recommend analytics queries based on the task at
hand, (ii) providing a user-friendly interface to formal queries through natural language, and
(iii) providing high-level analytics intentions. Finally, with multidimensional summarization,
we addressed the compression of OLAM results (i.e., with frequent itemsets as a case study)
by exploiting multidimensional similarity. In this direction, the research challenges are
plentiful.

Sensors produce valuable contextual data that, in Augmented OLAP, have been exploited
to recommend interesting analytical queries. From a broader perspective, it is interesting to
correlate context-awareness to data quality issues. It has been recognized that contextual
assessments can be as important as objective quality indicators because they affect which
information gets used for decision making tasks [280]. Specifically, the data quality dimen-
sions impacted by contextual data are relevancy, value-added, timeliness, completeness, and
volume [258].

Conversational and Intentional OLAP synergically work on providing higher-level in-
terfaces and analytic abstractions. Also, they overcome the idea of querying a cube to get
a plain result (e.g., a pivot table). On the one hand, Conversational OLAP allows data
scientists to access data through natural language, overcoming the need of formal languages.
In this context, our goal is to extract a meaningful representation that, in turn, allows a
succinct vocalization of the results. On the other hand, Intentional OLAP introduces high-
level user-friendly abstractions (e.g., describe, assess, and explain) to perform analytic tasks
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mixing formal queries, data mining, and machine learning tasks. In this context, while we
designed and implemented the describe intention, our goal is to extend the approach to the
other intention operators to produce enhanced cubes (i.e., cubes augmented with interesting
highlights coming from mining and machine learning models).

Finally, the summarization of multidimensional results plays an important role in all the
explored directions, since they benefit from succinct visualization metaphor (Augmented
OLAP), vocalization (Conversational OLAP), and insight extraction (Intentional OLAP). In
this context, while we focused on the intrinsic multidimensional nature of frequent itemsets,
our goal is to extend our approach to multidimensional cubes, allowing the summarization of
results based both on pattern similarity and novel interestingness measures.
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