
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 33

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

DISTRIBUTED LARGE-SCALE MIXED-INTEGER OPTIMIZATION WITH
APPLICATION TO ENERGY AND MULTI-ROBOT NETWORKS

Presentata da: Andrea Camisa

Coordinatore Dottorato Supervisore

Michele Monaci Giuseppe Notarstefano

Esame finale anno 2021

Abstract

Several decision and control tasks in cyber-physical networks can be formulated as large-

scale optimization problems with coupling constraints. In these “constraint-coupled”

problems, each agent is associated to a local decision variable, subject to individual

constraints. This thesis explores the use of primal decomposition techniques to develop

tailored distributed algorithms for this challenging set-up over graphs. We first develop

a distributed scheme for convex problems over random time-varying graphs with non-

uniform edge probabilities. The approach is then extended to unknown cost functions

estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs),

which are of great interest in smart grid control and cooperative robotics. We propose

a distributed methodological framework to compute a feasible solution to the original

MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex

problems. Monte Carlo simulations highlight that the approach represents a substantial

breakthrough with respect to the state of the art, thus representing a valuable solution

for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders

decomposition algorithm for asynchronous unreliable networks. The framework has

been then used as starting point to develop distributed methodologies for a microgrid

optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic

set-up with renewable energy sources, and show a case study with samples generated

using Generative Adversarial Networks (GANs). We then introduce a software toolbox

named ChoiRbot, based on the novel Robot Operating System 2, and show how it

facilitates simulations and experiments in distributed multi-robot scenarios. Finally,

we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a

distributed method inspired to the approach of general MILPs, and show the efficacy

through simulations and experiments in ChoiRbot with ground and aerial robots.

Keywords: Distributed Optimization, Primal Decomposition, Constraint-coupled Op-

timization, Time-varying Networks, Mixed-integer Linear Programming (MILP), Dis-

tributed Microgrid Control, Generative Adversarial Networks (GANs), Cooperative

Robotics, Robot Operating System 2, Distributed Pickup and Delivery.

Acknowledgment

This thesis work is part of a project that has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 638992 – OPT4SMART).

OPT4SMART

OPT4SMART

Contents

Introduction 1

1 Distributed Constraint-Coupled Optimization 9

1.1 Graph Theory and Distributed Computation Model 9

1.2 Constraint-coupled Optimization Set-up 11

1.3 Application Frameworks . 13

1.3.1 Cooperative Distributed Model Predictive Control 13

1.3.2 Distributed Task Assignment over Networks 14

1.3.3 Distributed planning for multi vehicles 16

1.4 Tour of Thesis Contributions . 17

2 Distributed Primal Decomposition for Convex Optimization 19

2.1 Literature Review . 19

2.2 Primal Decomposition Paradigm for Constraint-coupled Optimization . . 20

2.2.1 Distributed Convex Optimization Set-up 21

2.2.2 Review of Primal Decomposition 22

2.2.3 Review of Relaxation Approach . 24

2.2.4 Parallel Primal Decomposition Algorithm 26

2.2.5 Distributed Primal Decomposition for fixed graphs 27

2.3 Distributed Primal Decomposition over Random Time-varying Networks 31

2.3.1 Random Time-Varying Communication Model 31

2.3.2 Distributed Algorithm Description 32

2.3.3 Handling Equality Coupling Constraints 34

2.3.4 Discussion on the Parameters . 35

2.4 Convergence analysis and convergence rates 37

2.4.1 Encoding the Coupling Constraints in Cost Function 37

2.4.2 Randomized Block Subgradient Method 39

2.4.3 Equivalence of Algorithm 1 and Randomized Block Subgradient . 43

2.4.4 Proof of Theorem 2.1 . 45

2.4.5 Convergence Rates . 46

i

Contents

2.5 Numerical Analysis . 49

2.5.1 Basic Nonsmooth Example . 49

2.5.2 Electric Vehicle Charging Problem 50

2.5.3 Comparison with State of the Art 51

2.5.4 Impact of the Parameters . 52

2.5.5 Comparative Study on Convergence Rates 53

2.6 Extension to Unknown Cost Functions . 54

2.6.1 Constraint-coupled Set-up with Unknown Costs 54

2.6.2 Distributed Algorithm Description 55

2.6.3 Algorithm Analysis . 57

2.6.4 Numerical Example . 68

3 Distributed Primal Decomposition for Mixed-integer Optimization 71

3.1 Literature Review . 71

3.2 Distributed MILP Set-up and Preliminaries 72

3.2.1 Constraint-Coupled MILP . 72

3.2.2 Linear Programming Approximation of the Target MILP 74

3.3 Distributed Primal Decomposition for MILPs 76

3.3.1 Distributed Algorithm Description 76

3.3.2 Discussion on Mixed-Integer Solution Recovery 78

3.3.3 Design of the Coupling Constraint Restriction 80

3.3.4 Asymptotic Analysis . 82

3.3.5 Finite-time Analysis . 84

3.3.6 Monte Carlo Numerical Computations 85

3.4 Distributed Benders Decomposition for MILPs 86

3.4.1 Review of Benders Decomposition 88

3.4.2 Distributed Algorithm Description 92

3.4.3 Routine for the Local Problem . 94

3.4.4 Convergence Analysis . 96

3.4.5 Alternative Formulation and Further Discussion 97

3.4.6 Numerical Example . 98

3.5 Extension to General Nonconvex Programs 99

3.5.1 Distributed Nonconvex Set-up and Convex Approximation 100

3.5.2 Solution Approach for Nonconvex Problems 102

3.5.3 Restriction Vector and Preliminary Analysis 103

3.5.4 Distributed Algorithm Description 104

3.5.5 Algorithm Analysis . 105

3.5.6 Numerical Example . 106

3.6 Proofs . 108

ii

Contents

3.6.1 Proofs for Section 3.2 . 108

3.6.2 Proofs for Section 3.3 . 109

3.6.3 Proofs for Section 3.4 . 113

3.6.4 Proofs for Section 3.5 . 115

4 Distributed Stochastic Microgrid Control 121

4.1 Literature Review . 121

4.2 Distributed Mixed-integer Microgrid Model 122

4.2.1 Mixed-Integer Microgrid Optimal Control 122

4.2.2 Constraint-coupled Reformulation 127

4.2.3 Simulation Results . 129

4.3 Distributed Stochastic Mixed-integer Microgrid Control 131

4.3.1 Stochastic Microgrid Model with Renewable Sources 131

4.3.2 Distributed Constraint-coupled Stochastic Optimization 131

4.3.3 Distributed Algorithm Description 134

4.3.4 Theoretical Results . 137

4.3.5 Scenario Generation with Deep Generative Adversarial Networks 140

4.3.6 Simulation Results . 141

5 Cooperative Robotics Toolbox and Distributed Vehicle Routing 145

5.1 Literature Review . 145

5.2 ChoiRbot: A ROS 2 Framework for Cooperative Robotics 147

5.2.1 Architecture Description . 147

5.2.2 Exploring the Team Guidance Layer 149

5.2.3 Distributed Optimization via DISROPT 151

5.2.4 Implemented Complex Scenarios 151

5.2.5 Basic Usage Example . 153

5.2.6 Toolbox Validation in Simulations and Experiments 155

5.2.7 Distributed Primal Decomposition for Mobile Robots 156

5.3 Distributed Multi-Robot Pickup and Delivery 158

5.3.1 Problem Description . 159

5.3.2 Optimization Problem Formulation and Description 160

5.3.3 Distributed Primal Decomposition for Pickup and Delivery 162

5.3.4 Algorithm Analysis . 164

5.3.5 Discussion and Extensions . 169

5.3.6 Simulations on Gazebo . 171

5.3.7 Experiments . 174

5.3.8 Supplement: Conversion to Mixed-Integer Linear Program 175

Conclusions 177

iii

A Optimization Basics 179

A.1 Lagrangian Duality . 179

A.2 Convergence Rates . 180

A.3 Linear Programs and Mixed-Integer Linear Programs 180

A.3.1 Dual Degeneracy and Lexicographic Ordering 181

A.3.2 Mixed-Integer Linear Programs and Duality 183

Bibliography 193

iv

Introduction

Motivation and Challenges

The modern world is characterized by an increasingly pervasive connectivity that ranges

from smartphones, drones, cars to smart factories/buildings, power systems, robots and

autonomous systems in general. From the point of view of control theory, all these units

(or agents) represent independent control systems that interact with the surrounding

environment and are endowed with their own computation and communication capa-

bilities. In recent times, there is a paradigm shift in the coordination and the control

of these networked systems. Up to now, the main idea was to gather all the relevant

information at a unique center that takes the decisions and communicates them to all the

involved systems. We term this paradigm the centralized approach. With the dramatic

increase of the size of these networks, the centralized approach is giving way to the

novel distributed paradigm, in which there is no decision-making center and the solution

to control problems is found in a cooperative way by the interconnected units with local

computation and peer-to-peer communication. This transition ought to be facilitated

by extending all the existing centralized decision-making algorithms to the distributed

setting. Namely, although the units may be of heterogeneous nature (e.g. the dynamical

systems may have different dynamics), from an abstract point of view they are treated

as being equal to each other and the distributed algorithm itself must be responsible

for achieving self-coordination of all the systems. Optimization techniques play an

important role in the considered scenarios, since several important control tasks that

arise in these networked systems (as e.g. stochastic energy network control, cooperative

model predictive control, vehicle routing in robotic networks) can be formulated as

optimization problems with a network-induced structure. The term distributed optimiza-
tion refers to a branch of optimization literature that develops distributed algorithms to

solve optimization problems over networks.

We concentrate on one of the most challenging scenarios arising in distributed

optimization, namely problems that are constraint-coupled and mixed-integer. With

the term constraint coupled we refer to optimization problems emerging in so-called

large-scale networks (i.e. networks with a large number of nodes) in which each agent in

1

Introduction

the network is associated to a decision variable that is subject to individual constraints

and aims to minimize its own cost function. However, all the decision variables must

also satisfy global coupling constraints, therefore the agents must cooperate in order to

find a solution by negotiating the usage of the coupling constraint. This optimization

scenario is general and captures important distributed control applications (such as

the ones mentioned above) and should be contrasted with the so-called cost-coupled

optimization (typically resulting from distributed estimation and learning problems), in

which all the agents share the same decision variable. Only recently is the constraint-

coupled optimization receiving significant attention, while the cost-coupled set-up has

been widely investigated in the literature, see the recent surveys [53, 79, 86]. One main

difficulty of this optimization scenario is that the optimization variable can be extremely

large. For this reason, in the distributed optimization literature the majority of works

has concentrated on convex problems, which enjoy a number of useful mathematical

properties and, as such, are easier to solve if compared to nonconvex ones. Mixed-integer

optimization, on the other hand, refers to a branch of the optimization literature that

studies problems in which part of the decision variables take on integer values only.

Mixed-integer programs are fundamental building blocks for several applications in

smart networks (as, e.g., distributed optimal control of hybrid and nonlinear systems)

and typically appear as dynamic instances that need to be solved in real-time by fast

algorithms. An important consequence of the mixed-integer nature of the optimization

variable is that the resulting problem is nonconvex and NP-hard. The solution process

becomes extremely more involved (even in the well-established centralized setting) and

requires computation-intensive enumeration techniques. This calls for novel solution

strategies that must simultaneously take into account both the distributed nature of

problem and its combinatorial complexity. Moreover, in several contexts of interest the

communication topology cannot be considered as fixed, but it changes over time. Indeed,

the communication links among the agents may be unavailable in certain moments, e.g.

due to a temporary failure.

Summary of the Contributions

This thesis contributes to the field of large-scale convex, mixed-integer and nonconvex

distributed optimization with local and coupling constraints over static and time-varying

networks by proposing novel solution methodologies based on the primal decomposition

technique. Moreover, we apply the developed methodologies to two concrete application

domains, namely distributed stochastic microgrid control and distributed multi-robot

pickup and delivery, and develop a software toolbox for simulations and experiments in

cooperative robotics.

First, we study large-scale convex optimization problems that have to be solved over

2

peer-to-peer networks of agents with a possibly time-varying communication topology.

Specifically, we consider optimization problems where agents aim to minimize the sum

of local objective functions, each one depending on a local variable in an individual

constraint set, subject to global coupling constraints. For this class of constraint-coupled

problems, we propose and analyze a new distributed algorithmic framework for random

time-varying networks where edges in the graph have certain (non-uniform) probabili-

ties of being active at each time step. In the developed approach, agents perform their

updates by using only the information coming from the currently active communication

links and protect their private information throughout all the process. Notably, the

amount of local computation does not depend on the size of the network, therefore the

algorithm can be also implemented in very large networks of agents. We prove that

almost surely the objective value converges to the optimal cost, and any limit point of

the local solution estimates is an optimal solution to the constraint-coupled problem.

We also derive convergence rates in objective value for various step-size choices. We

then extend this approach to a scenario in which the exact form of the cost functions is

a-priori unknown and propose a new distributed scheme with online estimated costs

that maintains the same convergence properties of the original algorithm.

Second, we consider the challenge of designing fast, distributed algorithms to com-

pute feasible solutions with guaranteed suboptimality bounds to large-scale Mixed-

Integer Linear Programs (MILPs) with a constraint-coupled structure. MILPs are known

to be NP-hard and, as such, finding a solution can be extremely expensive from a com-

putational point of view. By relying on a suitably constructed convex approximation of

the problem with an appropriate tightening of the coupling constraints, we propose a

novel distributed methodology that exploits the primal decomposition approach to find

a feasible (possibly suboptimal) solution to the original MILP. We prove asymptotic fea-

sibility of the solution computed by the algorithm and demonstrate guaranteed a-priori

and a-posteriori suboptimality bounds. Then, by adapting the constraint tightening ap-

proach, we prove that feasibility can be achieved in finite time and determine associated

suboptimality bounds. We show through Monte Carlo simulations that our use of the

primal decomposition idea outperforms the state of the art and pushes the optimality of

the computed solutions to the limits. We also propose an extension of this framework to

general nonconvex programs. In particular, we show how the distributed methodology

for MILPs can be also applied to constraint-coupled problems with nonconvex constraint

sets, with potential applications e.g. to distributed nonlinear Model Predictive Control.

Inspired by the previous derivations, we then propose and analyze a new distributed

scheme for constraint-coupled MILPs based on similar ideas but using the so-called

Benders decomposition. The resulting distributed algorithm has improved finite-time

properties and can be also employed over asynchronous and unreliable communication

networks, possibly subject to packet losses.

3

Introduction

Finally, we apply the studied approaches to two relevant control scenarios. The

first one consists of an energy network application, in which the units of a microgrid

aim at a cooperative control without a coordinator. We apply our distributed mixed-

integer approaches to a deterministic control scenario, which can be modeled as a

constraint-coupled MILP. Then, we consider a more challenging stochastic scenario with

renewable energy sources. To this end, we extend the previously developed distributed

algorithm for MILPs to the stochastic setting and provide a formal analysis. Specifically,

we derive a bound that allows the microgrid units to quantify the worst-case power

balance constraint violation based on the generated scenarios in the stochastic problem.

Notably, the bound can be computed in a completely distributed way by the units. We

then show simulation results performed with the disropt package [48] on a problem

instance generated by using Generative Adversarial Neural Networks to synthesize

realistic energy production profiles.

In the second application scenario, we consider decision and control tasks for co-

operative robotics. To this end, we first develop a distributed robotic platform named

ChoiRbot and based on the novel Robot Operating System (ROS) 2. This package is a

first attempt to bridge the gap between the theory on distributed optimization-based

control and multi-robot networks that can benefit from its application. The ChoiRbot

framework, written in Python, exploits the new functionalities of ROS 2 and provides

a comprehensive set of libraries to facilitate multi-robot simulations and experiments.

ChoiRbot does not require a central coordinating unit and, as such, allows for the

implementation on fully distributed control schemes. Thanks to its modular structure,

we demonstrate that several applications of interest, possibly involving distributed opti-

mization schemes, are easy to implement and discuss in detail a few use cases that have

been tested either in simulation or experimentally. We finally employ the ChoiRbot plat-

form and the algorithms developed in the thesis in a distributed Pickup-and-Delivery

Vehicle Routing Problem. Specifically, we tailor our mixed-integer methods to this partic-

ular problem and exploit its structure to simplify the implementation of the distributed

algorithm. We then show simulations performed in ChoiRbot to highlight the efficacy

of the proposed solution approach. Finally, we perform a laboratory experiment with

ground and aerial robots running the proposed algorithm on the ChoiRbot platform to

highlight practical feasibility of the described technique.

Organization and Chapter Contributions

The thesis organization follows the contribution scheme outlined in the previous section.

In the first three chapters we provide all the theoretical contributions, while in the final

two chapters we apply the developed algorithms to practical scenarios with simula-

tions and experiments (some theoretical results are provided as well) and describe the

4

developed software toolbox.

In Chapter 1, we provide an introduction to distributed optimization and graph

theory. Then, we formalize the constraint-coupled optimization scenario with a brief

survey of example applications.

In Chapter 2, we study distributed algorithms for convex constraint-coupled prob-

lems. First, we review the primal decomposition technique and show how existing

distributed optimization schemes for convex problems over static graphs can be reinter-

preted using the primal decomposition formalism. As a side contribution, we propose a

parallel algorithm to be used over master-worker architectures. Then, using the primal

decomposition approach, we propose a distributed algorithm for random time-varying

graphs with non-uniform edge activation probabilities, in which the agents coopera-

tively negotiate the utilization of the coupling constraint until optimality. The algorithm

consists of a two-step iterative procedure in which each agent first solves a local version

of the original optimization problem and then exchanges dual variables with neighbors.

Importantly, the algorithm preserves privacy of local sensible information. We prove

almost sure cost convergence and an almost sure primal recovery property without

employing the averaging mechanisms typically used in duality-based algorithms. This

result is obtained by reformulating the distributed algorithm as a (centralized) block

subgradient method, where each block is associated to an edge of the graph. It is worth

noting that almost sure cost convergence of the block subgradient method, which is

proved as an intermediate step, represents a contribution per se. Then, for the dis-

tributed algorithm, we prove sublinear convergence rates in objective value for constant

and diminishing step sizes, which apply both to time-varying networks and to static

networks. Moreover, we discuss an extension of the distributed algorithm that can

handle equality coupling constraints and prove formal results to provide guidelines

for the choice of the algorithm parameters. Subsequently, we extend the results to

a more complex scenario in which the exact form of the cost function is not known

a-priori. We propose a distributed algorithm with a form similar to the previous one, in

which the true cost functions are replaced with the online estimated versions. We then

study the impact of this change on the primal decomposition framework and prove that,

instead of standard subgradients, this algorithm relies on approximate subgradients

that progressively approach the true ones. We then use ε-subgradient arguments to

conclude that this extended algorithm inherits all the convergence properties of the

previous one. The results of this chapter are based on [20–22, 24].

In Chapter 3, we focus on Mixed-Integer Linear Programs (MILPs) with a constraint-

coupled structure. Specifically, the considered problems have linear cost, polyhedral

local constraints and linear coupling constraints, with the further challenge that some

of the variables are integer. We propose an innovative distributed methodology in

which we combine the appealing properties of a convex relaxation of the MILP with

5

Introduction

the primal decomposition approach. Using a restriction-based approach, we show that

the asymptotic mixed-integer solution provided by this algorithm is feasible for the

original MILP and provide a-priori and a-posteriori suboptimality bounds. By slightly

adapting the restriction approach we show that feasibility can be also achieved in a finite

number of iterations with similar suboptimality bounds. We show the effectiveness

of the proposed method through Monte Carlo simulations on randomly generated

large-scale MILPs, which highlight that the solutions computed by the algorithm have

extremely low suboptimality levels and also that the assumptions required by our

scheme are much relaxed if compared to the state of the art. Then, we propose and

analyze a new distributed algorithm for MILPs, which also builds on the solution of the

convex relaxation and on the restriction approach, but is based on the so-called Benders

decomposition. The distributed algorithm is inspired by the centralized version of this

decomposition scheme and consists of an iterative procedure in which agents solve a

local version of the problem, generates possibly violated constraints and communicates

the active constraints to the neighbors. Eventually, each agent solves a final local MILP

to compute its block of solution. We prove that the distributed algorithm converges in

finite time to a reconstructed mixed-integer solution that enjoys the same asymptotic

properties of the first algorithm studied in this chapter. Remarkably, this new algorithm

can work under very general assumptions on the communication topology, which can

be time-varying, asynchronous and even unreliable. To perform the local computation

step, we provide a routine that the agents can run and prove finite-time convergence of

this routine. Finally, we study an extension of the developed methodology for general

nonconvex problems with constraint-coupled structure. In particular, we consider

convex cost functions and convex coupling constraints, but allow the local constraint

sets to be nonconvex. We show finite-time feasibility of the solutions provided by the

proposed algorithm, which are particularly useful for receding-horizon distributed

optimal control schemes (i.e. Model Predictive Control), where recursive feasibility is

required. The results of this chapter are based on [23–26].

In Chapter 4, we focus on a energy system application. In particular, we consider

a distributed microgrid control problem consisting of several interconnected power

units, namely generators, storages and loads. We first recall the microgrid model and

the associated mixed-integer optimal control problem and show that it can be cast

as a constraint-coupled MILP. We then apply the method developed in Chapter 3 on

a sample instance and provide simulation results. Then, we consider an extended

microgrid scenario in which renewable energy sources are also present. Since the power

produced by the additional units must be treated as stochastic, we recall a two-stage

stochastic formulation of the microgrid control problem. We show that this problem

can be also cast as a constraint-coupled MILP and we adapt the distributed algorithm of

Chapter 3 to deal with the stochastic scenario. The new algorithm does not require the

6

restriction approach and provides a feasible solution to the two-stage stochastic problem

since the first iteration. Then, for the asymptotic solution provided by the algorithm, we

prove an upper bound on the violation of the power balance constraint. We show the

behavior of the algorithm through simulations, where energy profiles of the renewables

are generated using Generative Adversarial Neural Networks trained on real data on the

energy production in South Italy. The results of this chapter are based on [27].

In Chapter 5, we finally consider applications of the developed distributed method-

ologies to cooperative robotics. To this end, we develop the ChoiRbot platform, which

is a toolbox for distributed cooperative robotics written in Python and based on the

Robot Operating System (ROS) 2. In the first part of the chapter we describe its features.

Specifically, the ChoiRbot platform provides a toolset to facilitate the implementation

of simulations and experiments of distributed cooperative robotics. ChoiRbot has a

tight integration with the disropt package [48] and, for this reason, it is particularly able

to handle optimization-based distributed control algorithms. We provide a set of simu-

lations and real experiments on several well-known cooperative robotics scenarios with

the ChoiRbot platform. We also perform an experiment to show how constraint-coupled

optimization can be applied to a multi-robot scenario. Namely, a set of ground robots

have to decide the target position of each of them while keeping the barycenter within

certain bounds. This problem is formulated as a constraint-coupled convex problem and

solved over ChoiRbot with the distributed algorithms of Chapter 2. In the second part

of the chapter, we consider a distributed Pickup-and-Delivery Vehicle Routing Problem,

where a set of vehicles aim to cooperatively determine minimal-length paths to satisfy

all the pickup and delivery requests. The problem is recast as a constraint-coupled

MILP in order to apply the methods of Chapter 3. We show that in this scenario the

distributed algorithm can be simplified by suitably exploiting the problem structure.

Then, we perform extensive simulations to show how the algorithm behaves under dif-

ferent circumstances. Finally, we perform a demonstrative laboratory experiment on the

ChoiRbot platform with ground and aerial robots executing the proposed distributed

algorithm. The results of this chapter are based on [28, 48, 115]

Appendix A provides an overview of some basic concepts on optimization.

7

Chapter 1

Distributed Constraint-Coupled
Optimization

In this chapter, we introduce the distributed optimization framework studied throughout

the thesis. We first review some basic concepts of graph theory and introduce the

distributed computation model. Then, we formalize the constraint-coupled optimization

set-up and discuss some example applications.

1.1 Graph Theory and Distributed Computation Model

In a distributed scenario, we consider N units, called agents or processors, that have

both communication and computation capabilities. We assume a message-passing

communication paradigm, i.e. agents can pass information to each other by sending

packets of information.

The main tool used to model communication among agents is graph theory. A graph

consists of a set of nodes, which represent the agents, and a set of edges, which represent

the communication links among the agents. Formally, we define a graph G as the ordered

pair (V, E), where V = {1, . . . , N} and E ⊆ V × V . The elements in V are called vertices

(or nodes), while the elements in E are called edges and are of the type (i, j) with i, j ∈ V .

It is possible to distinguish between undirected graphs, in which edges are not oriented

(i.e. graphs such that (i, j) ∈ E iff (j, i) ∈ E), and directed graphs (also called digraphs), in

which edges are oriented (thus an edge (i, j) can belong to E even though the reverse

edge (j, i) does not). An example of a directed and of an undirected graph is depicted in

Figure 1.1. Given an edge (i, j) ∈ E , i is called in-neighbor of j and j is an out-neighbor of

i. For each agent i, we define the in-neighbor set as N in
i = {j ∈ V : (j, i) ∈ E} and the

out-neighbor set as N out
i = {j ∈ V : (i, j) ∈ E}. If the graph is undirected, we simply

say that i is a neighbor of j (and viceversa), and denote Ni = N in
i = N out

i as the neighbor
set. A (di)graph G can be entirely represented in terms of its adjacency matrix A ∈ RN×N ,

9

Chapter 1. Distributed Constraint-Coupled Optimization

1

2

3

4
5

6
1

2

3

4
5

6

Figure 1.1: A directed (left) and an undirected (right) graph of N = 6 nodes.

where each entry (i, j) is 1 if (i, j) ∈ E and 0 otherwise. Given an undirected graph G,

we define also the Laplacian matrix L ∈ RN×N , where each entry (i, j) is equal to

Lij =





|Ni| if i = j,

−1 if i 6= j and (i, j) ∈ E ,
0 otherwise,

(1.1)

where |Ni| is the cardinality of Ni.
The previous definitions hold true for static (time-invariant) graphs. In a similar way,

it is possible to define time-dependent graphs. We say that Gt = (V, E t) is a (directed)

time-varying graph, where t ∈ N is the time index, V is the set of vertices and E t ⊆ V ×V
is the set of edges at time t for all t ≥ 0. For each agent i, we define the time-varying in-

neighbor set as N in,t
i = {j ∈ V : (j, i) ∈ E t} for all t ≥ 0 and similarly for out-neighbors.

As in the case of static graphs, for time-varying graphs we can define a time-varying

adjacency matrix and a time-varying Laplacian matrix. A graphical representation of a

time-varying network is given in Figure 1.2.

time
t t+ 1 t+ 2

Figure 1.2: A directed time-varying graph of N = 6 nodes.

In the distributed scenario, we assign to each agent in the network a fixed identifier

i ∈ V from the set of vertices and we say that the edge (i, j) belongs to the communication

graph at time t if (i, j) ∈ E t, which means that at time t agent i can send information to

agent j. If the graph is undirected and (i, j) ∈ E t, then agents i and j can both exchange

information with each other at time t. In a distributed algorithm, agents initialize

their local states and then start an iterative procedure by interleaving computation

and communication with neighboring units, with all the nodes performing the same

10

1.2. Constraint-coupled Optimization Set-up

actions. In particular, local states are updated by using only information received by

in-neighbors.

Given a fixed graph G, the following connectivity properties can be stated.

Definition 1.1. A fixed directed graph G is said to be strongly connected if for every pair of
nodes (i, j) there exists a path of directed edges that goes from i to j. If G is undirected, we
say that G is connected. 4

Connectivity properties can be also stated for time-varying topologies (we only

consider directed graphs).

Definition 1.2. A time-varying directed graph Gt = (V, E t), t ∈ N, is said to be

• jointly strongly connected if the graph Gt∞ , (V, E t∞), with E t∞ =
⋃∞
τ=t Eτ , is strongly

connected for all t ≥ 0.

• T -strongly connected (or uniformly jointly strongly connected) if there exists a
scalar T > 0 such that the graph GtT , (V, E tT) with E tT =

⋃T−1
τ=0 E t+τ , is strongly

connected for every t ≥ 0. 4

Given a network topology, agents can run distributed algorithms according to several

communication protocols. When the steps of the algorithm explicitly depend on the

value of t, we say that the algorithm is synchronous, i.e. agents must be aware of the

current value of t and, thus, their local operations must be synchronized to a global

clock. We will also consider a communication protocol in which agents are not aware of

any global time information, i.e. their updates do not depend on t, and we term these

algorithms asynchronous. In fact, if a distributed algorithm is designed to run over a

jointly strongly connected graph and the local computation steps do not depend on t,

then the algorithm can be also implemented in an asynchronous network.

1.2 Constraint-coupled Optimization Set-up

In this thesis we consider a distributed framework in which agents cooperatively aim to

solve an optimization problem. Let us now formalize the distributed optimization set-up.

We deal with a network of N agents that must solve a constraint-coupled optimization

problem, which can be stated as

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b,

xi ∈ Xi, i = 1, . . . , N,

(1.2)

11

Chapter 1. Distributed Constraint-Coupled Optimization

where x1, . . . , xN are the decision variables with each xi ∈ Rni , ni ∈ N. Moreover, for all

i ∈ {1, . . . , N}, the function fi : Rni → R depends only on xi, Xi ⊂ Rni is the constraint

set associated to xi and gi : Rni → RS is the i-th contribution to the (vector-valued)

coupling constraint, with b ∈ RS . Throughout the thesis, we stick to the convention

that inequalities between vectors (e.g. a ≤ b with a, b ∈ Rn) mean that the inequality is

satisfied for each component of the vector (i.e. ai ≤ bi for all i ∈ {1, . . . , n}). We term

Problem (1.2) “constraint coupled” because, if the coupling constraint were not present,

the problem would trivially split into N independent problems of the form

min
xi∈Xi

fi(xi),

therefore the only coupling among the agents is given by the constraint
∑N

i=1 gi(xi) ≤ b.
In the considered distributed computation framework, the problem data are assumed

to be scattered throughout the network. Agents have only a partial knowledge of

Problem (1.2) and must cooperate with each other in order to find a solution. Specifically,

each agent i is assumed to know only its local constraint Xi, its local cost fi and its own

contribution gi to the coupling constraint, together with the right-hand side b, and is

only interested in computing its own block x?i of an optimal solution (x?1, . . . , x
?
N) of

Problem (1.2).

Throughout the dissertation we will consider several variants of Problem (1.2),

however we will always stick to the described constraint-coupled structure. In Chapter 2,

we start by considering convex instances of Problem (1.2), where both the cost functions

fi and the constraints Xi and gi are assumed to be convex. Then, we will focus on more

complex scenarios where the convexity assumption is dropped. A particular emphasis

will be given to a Mixed-Integer Linear Programming (MILP) version of Problem (1.2),

which takes the form

min
x1,...,xN

N∑

i=1

c>i xi

subj. to
N∑

i=1

Aixi ≤ b

xi ∈ Xmilp
i , i = 1, . . . , N,

(1.3)

where, for all i ∈ {1, . . . , N}, the decision vector xi has pi + qi components (thus

ci ∈ Rpi+qi) with pi, qi ∈ N and the local constraint set is of the form

Xmilp
i = Pi ∩ (Zpi × Rqi),

for some nonempty compact polyhedron Pi ⊂ Rpi+qi . Note that Problem (1.3) has the

12

1.3. Application Frameworks

constraint-coupled structure as Problem (1.2), however in Problem (1.3) the constraint

sets Xmilp
i are assumed to be mixed-integer. As such, Problem (1.3) is NP-hard and hence

much more challenging to solve than convex instanes of Problem (1.2).

1.3 Application Frameworks

Let us show some application frameworks of the optimization set-up (1.2) for control

problems over networks, namely optimization-based distributed control, distributed

task negotiation and scheduling over networks, distributed planning for multi vehicles.

1.3.1 Cooperative Distributed Model Predictive Control

Model Predictive Control (MPC) is a widely studied technique in the control community,

and is also used in distributed contexts. The goal is to design an optimization-based

feedback control law for a (spatially distributed) network of dynamical systems. The

leading idea is the principle of receding horizon control, which informally speaking

consists of solving at each time step an optimization problem (usually termed optimal
control problem), in which the system model is used to predict the system trajectory over

a fixed time window and to determine an optimal input trajectory. After an optimal

solution of the optimal control problem is found, the input associated to the current

time instant is applied and the process is repeated (for a survey on MPC methods, see,

e.g. [96]). A pictorial representation of this method is given in Figure 1.3.

t

input

t+ Tt+ 1 time

T

Figure 1.3: Illustration of the receding horizon principle. At time t, an optimal control problem
over the time interval [t, t+ T] is solved. After applying the first sample of the resulting input
trajectory, the horizon is shifted of one time unit and the process is repeated.

Now, we describe a typical distributed MPC framework applied to a network of

linear systems with linear coupling constraints. Formally, assume we have N discrete-

time linear dynamical systems with independent dynamics of the form zi(t + 1) =

Aizi(t) + Biui(t), where t ∈ Z represents time, zi(t) ∈ Rqi is the system state at time

t, ui(t) ∈ Rmi is the input fed to the system at time t and Ai, Bi are given matrices of

appropriate dimensions, for all i ∈ {1, . . . , N}. We suppose that the states and the inputs

13

Chapter 1. Distributed Constraint-Coupled Optimization

must satisfy local constraints zi(t) ∈ Zi and ui(t) ∈ Ui for all i ∈ {1, . . . , N} and t ≥ 0,

and that the agents’ states are coupled to each other by means of coupling constraints of

the form
∑N

i=1Hizi(t) ≤ h, for given matrices Hi ∈ RP×qi and a given h ∈ RP . At time

t = 0, given the initial conditions of the systems z01 , . . . , z
0
N , the optimal control problem

to be solved at the current time instant can be formulated as

min
z1,...,zN
u1,...,uN

N∑

i=1

(T−1∑

τ=0

`i(zi(τ), ui(τ)) + Vi(zi(T))

)

subj. to zi(τ + 1) = Aizi(τ) +Biui(τ), τ = 0, . . . , T − 1, ∀ i,
zi(τ + 1) ∈ Zi, ui(τ) ∈ Ui, τ = 0, . . . , T − 1, ∀ i,
zi(0) = z0i , ∀ i,
N∑

i=1

Hizi(τ) ≤ h, τ = 1, . . . , T,

(1.4)

where τ represent future time instants and T is the prediction horizon, zi = (zi(0), . . . , zi(T))

and ui = (ui(0), . . . , ui(T − 1)) are the optimization vectors, `i : Rqi+mi → R is the stage
cost and Vi : Rqi → R is the terminal cost, for all i ∈ {1, . . . , N}. Problem (1.4) can be fit

into the constraint-coupled set-up (1.2) by setting

fi(xi) =
T−1∑

τ=0

`i(zi(τ), ui(τ)) + Vi(zi(T)), gi(xi) =




Hizi(1)
...

Hizi(T)


 ,

for all i ∈ {1, . . . , N}, and b = 1 ⊗ h, where 1 ∈ RT is the vector of ones and ⊗
denotes the Kronecker product. Moreover, we define the local optimization vector as

xi = (zi, ui) ∈ R(T+1)qi+Tmi and the local constraint set as

Xi ,
{

(zi, ui) | zi(τ + 1) = Aizi(τ) +Biui(τ), zi(τ + 1) ∈ Zi, ui(τ) ∈ Ui, ∀ τ
}
,

for all i ∈ {1, . . . , N}. In a distributed context, the goal for each agent i is to compute its

block (z?i , u
?
i) of optimal solution and to apply the first input u?i (0).

A practical application taking the form of Problem (1.4) will be considered in

Chapter 4. Specifically, we will consider a more complex instance of Problem (1.4) where

the goal is to control a microgrid modeled using stochastic mixed-integer approaches.

1.3.2 Distributed Task Assignment over Networks

Another important application is the so-called task assignment, a building block for

decision making problems in which a certain number of agents must be assigned given

tasks. The goal is to find the best matching of agents and tasks according to a given

14

1.3. Application Frameworks

performance criterion.

Assume that N agents must be assigned N tasks with a one-to-one assignment.

Define the variable xiκ ∈ R, which is 1 if agent i is assigned to task κ and 0 otherwise.

Also, define the set EA, which contains the tuple (i, κ) if agent i can be assigned to task

κ. Finally, let ciκ be the cost occurring if agent i is assigned to task κ. In Figure 1.4,

we show an illustrative example of the set-up. The task assignment problem can be

formulated as the linear program

min
x

∑

(i,κ)∈EA

ciκxiκ

subj. to 0 ≤ x ≤ 1,
∑

{κ|(i,κ)∈EA}

xiκ = 1, i = 1, . . . , N,

∑

{i|(i,κ)∈EA}

xiκ = 1, κ = 1, . . . , N,

(1.5)

where x is the variable stacking all xiκ and 0 and 1 are the vectors of zeros and ones of

appropriate dimensions. If Problem (1.5) is feasible, it can be shown that it admits an

optimal solution such that xiκ ∈ {0, 1} for all (i, κ) ∈ EA (this is referred to the so-called

unimodularity property, see e.g. [9]).

1 i N

1 κ N

c11 ciκ

. . .

. . .

Figure 1.4: Graphical representation of the task assignment problem. Agents are represented by
circles, while tasks are represented by squares. An arrow from agent i to task κ means that agent
i can perform task κ (i.e. (i, κ) ∈ EA). If agent i is assigned to task κ, the incurred cost is ciκ.

Problem (1.5) can be cast in the constraint-coupled form (1.2). To see this, let us

define Ki ,
∣∣{κ : (i, κ) ∈ EA}

∣∣ as the number of tasks that agent i can perform. We

assume that agent i deals with the decision vector xi ∈ RKi , stacking the variables xiκ
for all κ such that (i, κ) ∈ EA. Then, the local sets Xi can be written as

Xi =
{
xi ∈ RKi | 0 ≤ xi ≤ 1 and x>i 1 = 1

}
, i = 1, . . . , N.

The coupling constraints can be written by defining, for all i ∈ {1, . . . , N}, the matrix

Hi ∈ RN×Ki , obtained by extracting from the N × N identity matrix the subset of

15

Chapter 1. Distributed Constraint-Coupled Optimization

columns corresponding to the tasks that agent i can perform. Problem (1.5) becomes

min
x1,...,xN

N∑

i=1

c>i xi

subj. to xi ∈ Xi, i = 1, . . . , N,

N∑

i=1

Hixi = 1,

where each ci stacks the costs ciκ for all κ such that (i, κ) ∈ EA. In a distributed context,

the goal for each agent i is to compute its block x?i of optimal solution, which contains

only one entry xiκ = 1 corresponding to the task κ that agent i is eventually assigned.

A practical application taking the form of Problem (1.5) will be considered in

Chapter 5. Specifically, we will a network of agents that must self-assign a set of

pickup and delivery tasks. The problem will be then formulated using a more complex

formalism arising in vehicle routing problems.

1.3.3 Distributed planning for multi vehicles

Finally, let us consider an application framework arising in cooperative robotics, where

N robotic agents aim to cooperatively determine target positions to be reached. Specif-

ically, assume the robots aim to compute optimal target positions x?i ∈ Rn satisfying

local constraints Xi ⊆ Rn while also satisfying constraints on some aggregate functions

of the robot positions (as e.g. the center of mass), i.e., 1
N

∑N
i=1 gi(xi) ≤ b. This task can

be modeled as the convex constraint-coupled problem

min
x1,...,xN

N∑

i=1

‖xi − ri‖2Qi

subj. to xi ∈ Xi, i = 1, . . . , N,

1

N

N∑

i=1

gi(xi) ≤ b,

(1.6)

where each xi ∈ R2 is the local decision variable, ri ∈ R2 is the ideal target position and

Qi ∈ R2×2 is a symmetric positive definite cost matrix.

We will consider a special instance of Problem (1.6) in Chapter 5, where we will

consider a network of robots aiming to keep the barycenter of their positions within

certain bounds.

16

1.4. Tour of Thesis Contributions

1.4 Tour of Thesis Contributions

Throughout the thesis, we propose distributed algorithms for the constraint-coupled set-

up (1.2) declined in a number of versions, with applications to several different scenarios.

To ease the reading, in this section, we provide an overview of the considered challenges

and proposed solutions, together with the corresponding chapters and sections. The

scheme of the thesis contributions is reported in Figure 1.5, while in Table 1.1 we

summarize the acronyms used in the following.

Convex optimization (Chapter 2)

Static graphs (Sec. 2.2)

Time-varying graphs (Sec. 2.3–2.5)

Unknown cost functions (Sec. 2.6)

Nonconvex optimization (Chapter 3)

MILPs with primal decomposition (Sec. 3.3)

MILPs with Benders decomposition (Sec. 3.4)

General nonconvex set-up (Sec. 3.5)

Application scenarios with MILPs

Microgrid Control (Ch. 4)

Multi-robot Pickup and Delivery (Sec. 5.3)

Software packages (Sec. 5.2)

ROS 2 toolbox for cooperative robotics

Figure 1.5: Overview of the thesis contributions

Table 1.1: List of the acronyms used in the thesis

Acronyms

LP Linear Program

MILP Mixed-Integer Linear Program

MPC Model Predictive Control

PDVRP Pickup-and-Delivery Vehicle Routing Problem

ROS Robot Operating System

GAN Generative Adversarial (Neural) Network

MPI Message Passing Interface

PEV Plug-In Electric Vehicle

17

Chapter 2

Distributed Primal Decomposition
for Convex Optimization

In this chapter, we focus on constraint-coupled convex problems and provide distributed

algorithms based on the so-called primal decomposition. We begin by revisiting the

basics of the primal decomposition approach and of a particular relaxation approach

appeared in the literature. The application of these two methods to the constraint-

coupled scenario will allow us to derive a parallel and a distributed algorithm for static

communication graphs. We then extend the algorithm to the time-varying setting and

provide a convergence analysis and a convergence rate analysis. To demonstrate the

flexibility of the proposed approach, we further show how to handle more general

set-ups and comment on the choice of the algorithm parameters. Numerical examples

corroborate the theoretical results. Finally, we provide an extension of the algorithm with

the assumption of a-priori unknown cost functions and show that this new algorithm

inherits the convergence properties of the former. The results of this chapter are based

on [20–22, 24].

2.1 Literature Review

The majority of the literature on distributed optimization has focused on a framework

in which, differently from the constraint-coupled set-up, cost functions and constraints

depend on the same, common decision variable, and agents aim for consensual optimal

solutions. An exemplary, non-exhaustive list of works for this optimization set-up is

[41, 58, 75, 81, 105, 106, 127]. Only recently has the constraint-coupled set-up gathered

more attention from our community, due to its applicability to control scenarios. In [110],

consensus-based dual decomposition is combined with a primal recovery mechanism,

whereas [44] considers a distributed dual algorithm based on proximal minimization.

In [83] a distributed algorithm based on successive duality steps is proposed. Differently

19

Distributed Primal Decomposition for Convex Optimization

from [44, 110], which employ running averages for primal recovery, the algorithm

proposed in [83] can guarantee feasibility of primal iterates without averaging schemes.

In [34], a consensus-based primal-dual perturbation algorithm is proposed to solve

smooth constraint-coupled optimization problems. A distributed saddle-point algorithm

with Laplacian averaging is proposed in [71] for a class of min-max problems. In [18], a

distributed algorithm based on cutting planes is formulated. Recently, in [66] a primal-

dual algorithm with constant step size is proposed under smoothness assumption of both

costs and constraints. The works in [3,78,104] consider a similar set-up, but the proposed

algorithms strongly rely on the sparsity pattern of the coupling constraints. Linear

constraint-coupled problem set-ups have been also tackled by means of distributed

algorithms based on the Alternating Direction Method of Multipliers (ADMM). In [33]

the so-called consensus-ADMM is applied to the dual problem formulation, which is

then tailored for an application in Model Predictive Control by [123]. In [29] an ADMM-

based algorithm is proposed and analyzed using an operator theory approach while

in [47, 126] augmented Lagrangian approaches equipped with a tracking mechanism

are proposed. The analysis of the algorithm for random time-varying graphs builds

on randomized block subgradient methods, therefore let us recall some related works

from the centralized literature. A survey on block coordinate methods is given in [6],

while a unified framework for nonsmooth problems can be found [97]. In [100], a

randomized block coordinate descent method is formulated, whereas [39] investigates

a stochastic block mirror descent approach with random block updates. In [77], a

distributed algorithm for a linearly constrained problem is analyzed with coordinate

descent methods. This technique is also used in [76], which considers a constraint-

coupled problem. However, the approach used in [76, 77] only allow for a single pair of

agents updating at a time and requires smooth cost functions.

2.2 Primal Decomposition Paradigm for Constraint-coupled Op-

timization

In this section, we review the primal decomposition method and a so-called relaxation

approach for constraint-coupled convex optimization. We then provide a reinterpre-

tation of existing distributed schemes in terms of primal decomposition. Part of the

material of this section has appeared as [23, 24].

20

2.2. Primal Decomposition Paradigm for Constraint-coupled Optimization

2.2.1 Distributed Convex Optimization Set-up

Let us consider a network of N agents that must solve the constraint-coupled problem

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b,

xi ∈ Xi, i = 1, . . . , N,

(2.1)

where x1 ∈ Rn1 , . . . , xN ∈ RnN are the decision variables with each ni ∈ N. Moreover,

for all i ∈ {1, . . . , N}, fi : Rni → R is the objective function associated to xi, Xi ⊂ Rni

is the constraint set associated to xi and gi : Rni → RS is the i-th contribution to the

coupling constraint, with b ∈ RS . We stick to the convention that inequalities for vectors

are intended component wise.

We assume Problem (2.1) is feasible. Moreover, the following two assumptions

guarantee that (i) the optimal cost of Problem (2.1) is finite and at least one optimal

solution exists, (ii) duality arguments are applicable.

Assumption 2.1 (Convexity and compactness). For all i ∈ {1, . . . , N}, the set Xi is convex
and compact, the function fi is convex and each component of gi is a convex function. 4

Assumption 2.2 (Slater’s constraint qualification). There exist x̄1 ∈ X1, . . . , x̄N ∈ XN

such that
∑N

i=1 gi(x̄i) < b. 4

If Problem (2.1) is a linear program, strong duality holds immediately and Assump-

tion 2.2 is not necessary [10, Proposition 5.2.2].

We recall from Chapter 1 that in the considered distributed optimization framework

the problem data are assumed to be scattered throughout the network. Specifically,

each agent i is assumed to know only its local constraint Xi, its local cost fi and its

own contribution gi to the coupling constraints, together with the right-hand side b,

and is only interested in computing its own block x?i of an optimal solution (x?1, . . . , x
?
N)

of Problem (2.1). In this section, agents are assumed to communicate according to a

connected and undirected graph G = (V, E), where V = {1, . . . , N} is the set of agent

identifiers and E ⊆ V × V is the set of edges. If (i, j) ∈ E , then also (j, i) ∈ E and

nodes i and j can exchange information. The set of neighbors of agent i in G is denoted

as Ni = {j ∈ {1, . . . , N} | (i, j) ∈ E}. In Section 2.3, we will consider a more general

scenario with a randomized time-varying graph.

21

Distributed Primal Decomposition for Convex Optimization

2.2.2 Review of Primal Decomposition

Let us now introduce the primal decomposition approach (or right-hand side allocation)

[10, 108]. This method is a powerful tool to recast constraint-coupled convex programs

of the form (2.1) into a master-subproblem architecture.

The main idea of primal decomposition is to interpret the right-hand side vector

b of the coupling constraint
∑N

i=1 gi(xi) ≤ b as a given, limited resource that must be

shared among the agents. The right-hand side vector b represents the total amount

of resource. Thus, for all i ∈ {1, . . . , N} we introduce local allocation vectors, denoted

yi ∈ RS , adding up to the total resource, i.e. satisfying
∑N

i=1 yi = b. By introducing these

auxiliary variables, Problem (2.1) can be equivalently restated as

min
x1,...,xN
y1,...,yN

N∑

i=1

fi(xi)

subj. to gi(xi) ≤ yi, i = 1, . . . , N,

xi ∈ Xi, i = 1, . . . , N,

N∑

i=1

yi = b.

The latter problem can be restructured into a hierarchical formulation1, with the follow-

ing master problem

min
y1,...,yN

N∑

i=1

pi(yi)

subj. to
N∑

i=1

yi = b

yi ∈ Yi, i = 1, . . . , N,

(2.2)

where, for each i ∈ {1, . . . , N}, the function pi : Yi → R assigns to each yi the optimal

cost of the i-th (parametric) subproblem

pi(yi) , min
xi

fi(xi)

subj. to gi(xi) ≤ yi,
xi ∈ Xi.

(2.3)

Note that the parameter yi only appears in the constraints. The functions pi are typically

called primal functions (in contrast to the dual functions, see Appendix A.1) and are

1 This is a consequence of the basic optimization property min
x∈X,y∈Y

f(x, y) = min
y∈Y

(
min
x∈X

f(x, y)
)

.

22

2.2. Primal Decomposition Paradigm for Constraint-coupled Optimization

used to study the effect of perturbations on the constraint gi(xi) ≤ yi. Under suitable

assumptions, the primal functions can be shown to be convex (although not differentiable

in general), from which it follows that the master problem is convex. In Problem (2.2),

the additional constraint Yi ⊆ RS , which is also the domain of the primal function, is

the set of local allocations for which Problem (2.3) admits a feasible solution, i.e.

Yi =
{
yi ∈ RS | ∃ xi ∈ Xi such that gi(xi) ≤ yi

}
. (2.4)

We do not discuss in detail the properties of the sets Yi, which can be found e.g. in [108].

In Figure 2.1, we show a graphical representation of the primal decomposition scheme.

total resource b

y1 yi yN

local allocations

gi(xi)

global view

local view
(agent i)

Figure 2.1: Illustration of the primal decomposition technique. Agents are assigned a local
allocation vector yi such that

∑N
i=1 yi = b. Each agent i is then free to choose any xi satisfying

gi(xi) ≤ yi. For any such local solutions, the coupling constraint
∑N
i=1 gi(xi) ≤ bwill be satisfied.

The following lemma formalizes the equivalence between Problem (2.1) and Prob-

lems (2.2)–(2.3).

Lemma 2.1 ([108, Lemma 1]). Let Problem (2.1) be feasible. Then,

(i) the optimal costs of Problems (2.1) and (2.2) are equal;

(ii) if (y?1, . . . , y
?
N) is an optimal solution of (2.2) and, for all i, x?i is an optimal solution

of (2.3) with yi = y?i , then (x?1, . . . , x
?
N) is an optimal solution of Problem (2.1). 4

For convenience, from now on we use the shorthand optimal allocation to refer to any op-

timal solution (y?1, . . . , y
?
N) of the master Problem (2.2). Note that, within the described

framework, the local allocation y?i is the only information required for each agent i to

compute its block x?i of an optimal solution of Problem (2.1). Thus, in the following we

aim to derive parallel and distributed algorithms that compute an optimal allocation.

The proposed algorithms will be mainly based on (sub)gradient methods applied to

various reformulations of the master Problem (2.2). In order to compute subgradients,

we will use the following result.

Lemma 2.2 ([10, Section 5.4.4]). Let yi ∈ Yi be given and let Problem (2.3) be feasible
and have finite optimal cost. Moreover, let strong duality holds for Problem (2.3). Then, a

23

Distributed Primal Decomposition for Convex Optimization

subgradient of pi at yi, denoted ∇̃pi(yi), can be computed as

∇̃pi(yi) = −µi(yi), (2.5)

where µi(yi) denotes a Lagrange multiplier associated to the constraint gi(xi) ≤ yi. 4

Note that Lagrange multipliers can be computed as dual optimal solutions of Prob-

lem (2.3) (cf. Appendix A.1). In order for the strong duality assumption to hold, we may

assume Slater’s constraint qualification for Problem (2.3). However, for certain values

of the allocation vector yi ∈ Yi, there might not exist a xi ∈ Xi such that gi(xi) < yi

(intuitively, this happens if yi is on the boundary of Yi). In such a case, we cannot

guarantee strong duality and compute a subgradient of the primal function at yi using

Lemma 2.2. Nevertheless, in the next subsection we recall a method that efficiently

handles this issue.

2.2.3 Review of Relaxation Approach

Although primal decomposition is a well-established framework, [10, 108], fully dis-
tributed approaches to address the general set-up (2.1) are missing. The presence of the

constraints yi ∈ Yi in Problem (2.2) (whose description in terms of inequalities is not

available) makes its solution nontrivial. A distributed method to solve convex smooth

versions of Problem (2.1) without the local constraints xi ∈ Xi (i.e. such that Yi ≡ RS)

has been investigated in [65]. In the recent work [83], a distributed methodology has

been proposed to solve Problem (2.1). It consists in a relaxation approach applied

to the original Problem (2.1) and a double duality step to apply dual decomposition.

In the remainder of this section, we show that the algorithm proposed in [83] can be

reinterpreted as a distributed scheme, based on primal decomposition, that circumvents

the the constraints yi ∈ Yi. As this method represents an interesting alternative also for

parallel (master-worker) architectures, in Section 2.2.4 we discuss a parallel algorithm.

Now, let us recall the relaxation approach of [83]. Formally, let ρ1, . . . , ρN ≥ 0 be

auxiliary scalar variables and consider the following relaxed version of Problem (2.1),

min
x1,...,xN ,
ρ1,...,ρN

N∑

i=1

(fi(xi) +Mρi)

subj. to
N∑

i=1

gi(xi) ≤ b+

N∑

i=1

ρi1,

xi ∈ Xi, ρi ≥ 0, i = 1, . . . , N,

(2.6)

where 1 ∈ RS is the vector of ones and M > 0 is a parameter. The additional term∑N
i=1 ρi1 appearing in the right-hand side of the coupling constraint can be regarded

24

2.2. Primal Decomposition Paradigm for Constraint-coupled Optimization

as a (non-negative) violation, which is penalized in the cost by the term M
∑N

i=1 ρi.

Indeed, for any locally feasible x1 ∈ X1, . . . , xN ∈ XN , it is always possible to choose

ρ1, . . . , ρN ≥ 0 sufficiently large such that the relaxed version of the coupling constraint

is satisfied. However, it turns out that by tuning appropriately the parameter M , such

violations are zero at an optimal solution. We recall this fact in the next lemma, which

uses an exact penalty function argument to establish the relationship between the

optimal solutions of Problems (2.1) and (2.6).

Lemma 2.3 ([83, Proposition III.3]). Let Problem (2.1) be feasible and let Assumptions 2.1
and 2.2 hold. Denote by µ? a Lagrange multiplier of Problem (2.1) associated to the constraint∑N

i=1 gi(xi) ≤ b and assume M > ‖µ?‖1. Then, a vector (x?1, . . . , x
?
N) is and optimal solution

of (2.1) if an only if (x?1, . . . , x
?
N , 0, . . . , 0) is an optimal solution of Problem (2.6). Hence, the

optimal solutions of (2.6) must have ρ?i = 0 for all i ∈ {1, . . . , N}. 4

For our purposes, from now on we can simply assume that M is large enough.

In Section 2.3.4, we will discuss a mechanism to determine a suitable value of this

parameter. To see the benefit of reformulating Problem (2.1) as (2.6), let us now apply

the primal decomposition technique to Problem (2.6). The master problem becomes

min
y1,...,yN

N∑

i=1

pi(yi)

subj. to
N∑

i=1

yi = b,

(2.7)

where, for all i ∈ {1, . . . , N }, the primal function pi : RS → R assigns each yi ∈ RS to

the optimal cost of the i-th subproblem,

pi(yi) , min
xi,ρi

fi(xi) +Mρi

subj. to gi(xi) ≤ yi + ρi1

xi ∈ Xi, ρi ≥ 0.

(2.8)

Note that here the function pi(yi) is formally different from the one defined in (2.3).

However, to keep the notation light, we prefer not to introduce a new symbol. In the

remainder of this chapter, we will always refer to the definition of pi(yi) in (2.8).

The formulation (2.7) of the master problem is more convenient than the former

one (2.2). Indeed, the new subproblem (2.8) is feasible for all yi ∈ RS . Therefore,

the constraints yi ∈ Yi are not needed in Problem (2.7). Moreover, differently from

Problem (2.3), Problem (2.8) enjoys strong duality2 for all yi ∈ RS (indeed, the Slater

assumption can be always satisfied by choosing a sufficiently large ρi > 0). Thus, we can

2Note that this does not mean that Assumption 2.2 can be dropped. Indeed, it is required for Lemma 2.3.

25

Distributed Primal Decomposition for Convex Optimization

use Lemma 2.2 to compute a subgradient of the function pi at any yi. The combination

of these two facts allows for the design of a parallel and a distributed algorithm, which

would be far more difficult if performed directly on Problem (2.2).

Due to the equivalence of Problems (2.1) and (2.6) assessed by Lemma 2.3, it is

natural to expect that the associated master problems have the same optimal solutions.

This is formally proved next.

Lemma 2.4. Let Problem (2.1) be feasible and let Assumptions 2.1 and 2.2 hold. Then, if
M > ‖µ?‖1, Problem (2.7) has the same optimal solutions and the same optimal cost of
Problem (2.2).

Proof. We only prove one direction since similar arguments can be used to prove the

converse. Let (ȳ1, . . . , ȳN) be an optimal solution of Problem (2.7). We must show that

this vector is feasible and cost-optimal for Problem (2.2). Clearly,
∑N

i=1 ȳi = b. In

order to show that ȳi ∈ Yi for all i, recall that (x?1, . . . , x
?
N) denotes an optimal solution

of Problem (2.1). By Lemma 2.3, (x?1, . . . , x
?
N , 0, . . . , 0) is an optimal solution of (2.6).

Therefore, by Lemma 2.1, for all i ∈ {1, . . . , N} the vector (x?i , 0) is an optimal solution

of (2.8) with yi = ȳi. Thus, by construction, gi(x?i) ≤ ȳi, which means that ȳi ∈ Yi

(cf. (2.4)). This proves that (ȳ1, . . . , ȳN) is feasible for Problem (2.2). To prove that

(ȳ1, . . . , ȳN) is cost-optimal, simply notice that, by the preceding arguments, it holds∑N
i=1 pi(ȳi) =

∑N
i=1 fi(x

?
i), which is the optimal cost of (2.1). The proof follows by

applying Lemma 2.1 (i). �

Operatively, in order to have a valid value of M and to apply the algorithmic approaches

to be described shortly, one can easily obtain a conservative estimate by following

the approach detailed in Section 2.3.4. Next, we describe a parallel and a distributed

algorithm to solve Problem (2.1) that rely on (2.7)–(2.8).

2.2.4 Parallel Primal Decomposition Algorithm

To derive a parallel algorithm to solve Problem (2.1) via primal decomposition, let us

consider a subgradient method applied to Problem (2.7). Formally, let us denote by

y ∈ RNS the vector stacking all the vectors yi and by p(y) =
∑N

i=1 pi(yi) the cost function

of Problem (2.7). A projected subgradient method applied to Problem (2.7) reads

yt+1 = PY
(
yt − αt∇̃p(yt)

)
, (2.9)

where t ∈ N is the iteration index, αt is the step size, ∇̃p(yt) denotes a subgradient of p at

yt and PY(·) denotes the Euclidean projection onto Y , the feasible set of Problem (2.7),

Y ,
{

(y1, . . . , yN)
∣∣∣
N∑

i=1

yi = b

}
.

26

2.2. Primal Decomposition Paradigm for Constraint-coupled Optimization

The projection step admits a closed-form solution. Given y ∈ RNS , it can be shown

using the optimality conditions of the projection problem that

PY(y) =




y1 − (
∑N

j=1 yj − b)/N
...

yN − (
∑N

j=1 yj − b)/N


 .

Also, notice that ∇̃p(yt) is obtained as the stack of ∇̃pi(yti). According to Lemma 2.2, a

subgradient of pi at a given yti can be computed as

∇̃pi(yti) = −µti, (2.10)

where µti is a Lagrange multiplier of Problem (2.8), with yi = yti , associated to the

allocation constraint gi(xi) ≤ yti + ρi1.

Therefore, the parallel primal decomposition algorithm reads as follows. Each agent

imaintains a variable yti . At each iteration t, each agent i computes a Lagrange multiplier

µti of Problem (2.8) corresponding to yti . The master node receives µti for i ∈ {1, . . . , N}
and sends back to each agent the average µtavg = 1/N

∑N
j=1 µ

t
j . Then, each agent i

updates its local allocation vector yti according to (2.9), or, equivalently,

yt+1
i = yti + αtµti −

1

N

(N∑

j=1

(ytj + αtµtj)− b
)

(a)
= yti + αt

(
µti − µtavg

)
, (2.11)

where (a) follows by
∑N

j=1 y
t
j = b and the definition of µtavg. A pictorial representation of

the parallel algorithm is provided in Figure 2.2. Note that, in Figure 2.2, the communi-

cation of information between agents and the master node is achieved through an ideal

communication network, whereas in a distributed setting the network topology is given.

We do not provide an explicit convergence result of the parallel algorithm (2.11) as it

is analogous to the result for the forthcoming distributed algorithm given in Proposi-

tion 2.1.

2.2.5 Distributed Primal Decomposition for fixed graphs

In order to solve the master problem (2.7) in a distributed way, we draw inspiration

from the parallel update (2.11). With a simple manipulation, the update (2.11) can be

rewritten as

yt+1
i = yti +

αt

N

N∑

j=1

(
µti − µtj

)
.

27

Distributed Primal Decomposition for Convex Optimization

µt
avg=

1

N

N∑

j=1

µt
j

master

compute µt
i via subproblem

yt+1
i = yti + αt

(
µt
i − µt

avg

)

agent 1

agent N

µt
i

µt
avg

Figure 2.2: Illustration of the parallel primal decomposition algorithm. Each agent i computes µti
as a Lagrange multiplier of Problem (2.8) and sends it to the master node. The master computes
the average and sends back µtavg, which is used by agents to compute the new allocation yt+1

i .

To obtain a distributed protocol we let each agent i iteratively perform a modified

version of the update, where the sum of the terms (µti − µtj) is limited to the neighbors

j ∈ Ni instead of all the network j ∈ {1, . . . , N} (which corresponds to all-to-all

communication), and we absorb the scaling factor 1/N in the definition of the step size.

The Distributed Primal Decomposition algorithm that we propose reads as follows.

Each agent i maintains a variable yti . At each iteration t, agents compute µti as a Lagrange

multiplier of the optimization problem

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yti + ρi1

xi ∈ Xi, ρi ≥ 0,

(2.12)

where the notation “µi :” means that the Lagrange multiplier to be computed is asso-

ciated with the constraint gi(xi) ≤ yti + ρi1. Then, agents exchange µtj with neighbors

j ∈ Ni and update their local allocation with

yt+1
i = yti + αt

∑

j∈Ni

(
µti − µtj

)
, i = 1, . . . , N, (2.13)

where αt is the step size. The distributed algorithm architecture is depicted in Figure 2.3.

We note that the parallel update (2.11) and the distributed update (2.13) preserve the

sum of yi, i.e.
∑N

i=1 y
t+1
i =

∑N
i=1 y

t
i for all t. This fact maintains feasibility of the iterates

for Problem (2.7) provided that the allocation vectors at initialization are feasible, i.e.∑N
i=1 y

0
i = b. The update (2.13) has a sparse structure matching the communication

graph, and reduces to (2.11) only in the particular case of complete graph.

We now formalize the convergence result of the Distributed Primal Decomposition

28

2.2. Primal Decomposition Paradigm for Constraint-coupled Optimization

compute µt
i via subproblem

yt+1
i = yti + αt

∑
j∈Ni

(
µt
i − µt

j

)

agent 1
agent N

Figure 2.3: Architecture of the Distributed Primal Decomposition algorithm. Each agent i
computes µti as a Lagrange multiplier of (2.12) and sends it to neighbors. Then, it updates yt+1

i

based on the received multipliers µtj for j ∈ Ni.

algorithm. As we already mentioned, we obtain this result by reinterpreting the algo-

rithm proposed in [83]. We will consider the auxiliary sequence {(xti, ρti)}t≥0, where for

all i ∈ {1, . . . , N} and t ≥ 0 the vector (xti, ρ
t
i) is an optimal solution of Problem (2.12).

We make the following assumption on the step-size sequence.

Assumption 2.3. The step-size sequence {αt}t≥0, with each αt ≥ 0, satisfies
∑∞

t=0 α
t =∞

and
∑∞

t=0

(
αt
)2
<∞. 4

Assumption 2.3 is standard in the stochastic approximation literature, and can also

be found more recently in the distributed optimization literature, see e.g. [44]. The

following proposition summarizes the convergence properties of the distributed algo-

rithm (2.12)–(2.13).

Proposition 2.1. Let Problem (2.1) be feasible and let Assumptions 2.1, 2.2 and 2.3 hold.
Moreover, let the local allocation vectors y0i be initialized such that

∑N
i=1 y

0
i = b and let

M > ‖µ?‖1. Then, the distributed algorithm (2.13) generates an allocation vector sequence
{yt1, . . . , ytN}t≥0 and a primal sequence {xt1, . . . , xtN}t≥0 such that

(i)
∑N

i=1 y
t
i = b for all t ≥ 0;

(ii) limt→∞ ‖yti − y?i ‖ = 0 for all i ∈ {1, . . . , N}, where (y?1, . . . , y
?
N) is an optimal solution

of Problem (2.2);

(iii) every limit point of {xt1, . . . , xtN}t≥0 is an optimal solution of Problem (2.1).

Proof. We show that algorithm (2.13) can be recast to the algorithm in [83] and rely on

the convergence result provided in [83]. Let us first recall the algorithm in [83], which

reads as follows. Each agent i maintains variables λtij for j ∈ Ni. At each iteration, each

agent i gathers λtji from neighbors j ∈ Ni and compute
(
(xti, ρ

t
i), µ

t
i

)
as a primal-dual

29

Distributed Primal Decomposition for Convex Optimization

optimal solution pair of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi)−
b

N
+
∑

j∈Ni

(
λtij − λtji

)
≤ ρi1

xi ∈ Xi, ρi ≥ 0.

(2.14)

Then, they gather µtj from j ∈ Ni and update λtij with

λt+1
ij = λtij − γt

(
µti − µtj

)
∀ j ∈ Ni, (2.15)

where γt is the step size. We now show that the update (2.15) is equivalent to (2.13) up

to a change of coordinates. To this end, let us define for all t ≥ 0

yti , −
∑

j∈Ni

(
λtij − λtji

)
+

b

N
, i = 1, . . . , N. (2.16)

Then, it holds

N∑

i=1

yti =
N∑

i=1

∑

j∈Ni

(
λtji − λtij

)

︸ ︷︷ ︸
= 0

+
N∑

i=1

b

N
= b for all t ≥ 0,

which follows since the graph is undirected. This motivates the assumption
∑N

i=1 y
0
i = b

and proves (i).
To prove (ii), we simply note that the update of yti , as defined in (2.16), reads

yt+1
i =

b

N
+
∑

j∈Ni

(
λt+1
ji − λt+1

ij

)

=
b

N
+
∑

j∈Ni

(
λtji − λtij

)
+ 2γt

∑

j∈Ni

(
µti − µtj

)

= yti + 2γt
∑

j∈Ni

(
µti − µtj

)
, i = 1, . . . , N,

where we point out that each µti is a dual optimal solution of (2.14), or, equivalently,

a Lagrange multiplier of Problem (2.8) with yi = yti . Then, by defining the step-size

sequence αt , 2γt, we see that the update (2.15) coincides with (2.13). As proven

in [83], the sequence {(λtij)(i,j)∈E}t≥0 converges to an optimal solution (λ?ij)(i,j)∈E of a

suitable dual reformulation of the original problem (2.1) with the same optimal cost.

Therefore, the sequence {yt1, . . . , ytN} converges to some (ȳ1, . . . , ȳN), which is feasible

for Problem (2.7) (by point (i) of this proposition). Moreover, as proven in [83], the local

30

2.3. Distributed Primal Decomposition over Random Time-varying Networks

problem (2.14) at (λ?ij)(i,j)∈E (which is the same as problem (2.12) at ȳi) have optimal

cost fi(x?i) = pi(y
?
i), from which it follows that ȳi = y?i for all i. This concludes the

proof of (ii). As Problem (2.14) is equivalent to (2.8) with yi = yti , part (iii) follows by

[83, Theorem 2.4 (ii)]. �

2.3 Distributed Primal Decomposition over Random Time-varying

Networks

In this section, we propose a new distributed algorithm based on primal decomposition

to solve Problem (2.1) over time-varying networks. First, we describe the time-varying

network model. Then, we introduce the distributed algorithm and discuss some exten-

sions and the choice of the parameters. The results of this section and of Sections 2.4

and 2.5 are based on [21, 22].

2.3.1 Random Time-Varying Communication Model

We assume agents communicate according to a time-varying communication graph,

obtained from an underlying graph Gu = (V, Eu) assumed to be undirected and connected,

where V = {1, . . . , N} is the set of nodes and Eu ⊆ V × V is the set of edges. An edge

(i, j) belongs to Eu if and only if agents i and j can transmit information to each other,

in which case also (j, i) ∈ Eu. In many applications, the communication links are not

always active (due e.g. to temporary unavailability). This is taken into account by

considering that each undirected edge (i, j) ∈ Eu has a probability σij ∈ (0, 1] of being

active. As a result, the actual communication network is a random time-varying graph

Gt = (V, E t), where t ∈ N represents the time index and E t ⊆ Eu is the set of active edges

at time t. The set of neighbors of agent i in Gt is denoted by N t
i =

{
j ∈ V | (i, j) ∈ E t

}
.

Consistently, the set of neighbors of agent i in the underlying graph Gu is denoted by

Ni,u. A pictorial representation of the time-varying communication model is provided

in Figure 2.4.

1

2

3

4

t = 0

1

2

3

4

t = 1

1

2

3

4

t = 2

1

2

3

40.6
0.3

0.2
0.7

underlying
graph

Figure 2.4: Example of random time-varying graph with N = 4 agents. Active edges are denoted
with red lines, while inactive edges are depicted with thin gray lines. The (connected) underlying
graph is shown on the left with the edge activation probabilities.

31

Distributed Primal Decomposition for Convex Optimization

Let us define νtij as the Bernoulli random variable that is equal to 1 if (i, j) ∈ E t and

0 otherwise, for all (i, j) ∈ Eu with j > i and t ≥ 0. The following assumption is made.

Assumption 2.4. For all (i, j) ∈ Eu with j > i, the random variables {νtij}t≥0 are inde-
pendent and identically distributed (i.i.d.). Moreover, for all t ≥ 0, the random variables
{νtij}(i,j)∈Eu, j>i are mutually independent. 4

2.3.2 Distributed Algorithm Description

Let us now introduce the Distributed Primal Decomposition algorithm for time-varying

graphs to solve Problem (2.1). Let t ∈ N be the iteration index, let αt ≥ 0 denote the

step size and let M > 0 be the tuning parameter of the relaxation approach (see also

Section 2.3.4). Each agent i maintains an estimate of the local allocation vector yti ∈ RS ,

initialized such that
∑N

i=1 y
0
i = b (e.g. y0i = b/N for all i). At each iteration t ∈ N, agent i

computes (xti, ρ
t
i) as an optimal solution to a local optimization problem (cf. (2.17)) and

µti as a Lagrange multiplier of the same problem. Then, the agent exchanges µti with

the neighbors on the currently active communication links and updates yti (cf. (2.18)).

Algorithm 1 summarizes the distributed algorithm from the perspective of node i, where

we recall that the notation “µi :” in (2.17) means that µi is the Lagrange multiplier

associated to the constraint gi(xi) ≤ yti + ρi1.

Algorithm 1 Distributed Primal Decomposition (Time-varying graphs)

Initialization: y0i such that
∑N

i=1 y
0
i = b

For t = 0, 1, 2, . . .

Compute ((xti, ρ
t
i), µ

t
i) as a primal-dual solution of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yti + ρi1

xi ∈ Xi, ρi ≥ 0

(2.17)

Receive µtj from neighbors j ∈ N t
i and update

yt+1
i = yti + αt

∑

j∈N t
i

(
µti − µtj

)
(2.18)

Some appealing features of Algorithm 1 are worth highlighting. The algorithm

naturally preserves privacy of all the agents, in the sense they do not communicate any

of their private information (such as the local cost function fi, the local constraint set

Xi or the local solution estimate xti). Moreover, the algorithm has attractive scaling

properties, indeed the amount of local computation stays constant as the size of the

network is increased.

32

2.3. Distributed Primal Decomposition over Random Time-varying Networks

Remark 2.1. The Distributed Primal Decomposition algorithm can be formulated in

aggregate form through the use of the graph Laplacian matrix (see Section 1.1). For a

single coupling constraint (S = 1), the update (2.18) reads

yt+1 = yt + αtLtµt = yt − αtLt∇̃p(yt),

where Lt ∈ RN×N is the time-varying Laplacian matrix of Gt and we recall that µt ∈
RN denotes the vector stacking all µti, while ∇̃p(yt) denotes a subgradient of p(y) =∑N

i=1 pi(yi) at yt. Similarly, the parallel update (2.11) reads

ȳt+1 = ȳt − αtLco∇̃p(ȳt).

where the constant 1/N is absorbed in the step size and Lco is the laplacian matrix of

the complete graph. 4

Next we provide the convergence properties of the Distributed Primal Decomposition

algorithm for time-varying graphs. It should be noted that the only change with respect

to the algorithm for static graphs in Section 2.2.5 is that the local allocation vector is

updated by using only the currently active communication links. However, despite

this simple change, the analysis of Algorithm 1 is quite complex and requires several

technical tools that will be provided in the forthcoming subsections.

Theorem 2.1. Let Problem (2.1) be feasible and let Assumptions 2.1, 2.2, 2.3 and 2.4
hold. Moreover, let µ? be an optimal Lagrange multiplier of Problem (2.1) associated to
the constraint

∑N
i=1 gi(xi) ≤ b and assume M > ‖µ?‖1. Consider a sequence {xti, ρti}t≥0,

i = 1, . . . , N , generated by Algorithm 1 with allocation vectors y0i initialized such that∑N
i=1 y

0
i = b. Then, almost surely,

(i)
∑N

i=1

(
fi(x

t
i) +Mρti

)
→ f? as t→∞, where f? is the optimal cost of (2.1);

(ii) every limit point of {(xt1, . . . xtN)}t≥0 is an optimal solution of (2.1). 4

By Theorem 2.1 (i) and the fact that ρti ≥ 0 (by construction), it follows that {ρti}t≥0
vanishes for all i ∈ {1, . . . , N} and thus

∑N
i=1 fi(x

t
i) → f? as t → ∞. In principle, in

order to satisfy the assumption M > ‖µ?‖1 in Theorem 2.1, knowledge is needed of the

dual optimal solution µ?. However, this is not necessary in practice, as a lower bound

for M can be efficiently computed when a Slater point is known. In Section 2.3.4, we

provide a sufficient condition to select valid values of M without any knowledge on µ?.

Note also that the algorithm does not employ any averaging mechanism typically

appearing in dual algorithms when the cost functions are not strictly convex. Thanks to

the primal decomposition approach, we are still able to prove asymptotic feasibility and

optimality of the sequence {(xt1, . . . xtN)}t≥0. As shown in Section 2.5.3, the absence of

running averages allows for faster practical convergence, compared to existing methods.

33

Distributed Primal Decomposition for Convex Optimization

Finally, let us highlight that, in the typical case in which ‖µ?‖1 is not known a priori,

the agents can easily obtain a conservative bound for the parameter M in a completely

distributed way. As described in Section 2.3.4, it is sufficient to run a combination

of max-consensus and average consensus protocols to make the agents agree upon a

common value of M before starting the execution of the distributed algorithm.

2.3.3 Handling Equality Coupling Constraints

The Distributed Primal Decomposition algorithm is also able to handle additional equal-

ity coupling constraints with minor modifications to the overall algorithmic structure.

To see this, let us consider the constraint-coupled problem

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b,
N∑

i=1

hi(xi) = κ,

xi ∈ Xi, i = 1, . . . , N,

(2.19)

which, compared to Problem (2.1), includes Q ∈ N additional equality coupling con-

straints with each hi : Rni → RQ and κ ∈ RQ. We maintain all the previous assumptions,

including convexity of the problem, therefore we must assume that each hi is an affine

function. These new constraints ought to be managed by adapting the relaxation ap-

proach of Section 2.2.3. Formally, let us define the exact penalty function

P (x) , max

{
0,

N∑

i=1

gi,1(xi)− b1, . . . ,
N∑

i=1

gi,S(xi)− bS ,

∣∣∣∣
N∑

i=1

hi,1(xi)− κ1
∣∣∣∣, . . . ,

∣∣∣∣
N∑

i=1

hi,Q(xi)− κQ
∣∣∣∣
}

and let us consider the problem

min
x1∈X1,...,xN∈XN

N∑

i=1

fi(xi) +MP (x). (2.20)

By standard results (see e.g. [10]), if we denote by µ? and λ? the Lagrange multiplier

associated to the inequality and the equality constraints of Problem (2.19), then Prob-

lems (2.19) and (2.20) have the same optimal solutions, provided thatM > ‖µ?‖1+‖λ?‖1.

Upon rewriting Problem (2.20) in its epigraph form and applying the primal decompo-

sition approach, we obtain a master problem identical to (2.7) (with b replaced by the

34

2.3. Distributed Primal Decomposition over Random Time-varying Networks

column vector (b, κ)) and the following form of the subproblems,

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yini + ρi1

λi :
∣∣∣hi(xi)− yeqi

∣∣∣ ≤ ρi1

xi ∈ Xi, ρi ≥ 0,

(2.21)

where here we defined yi = (yini , y
eq
i) and yini ∈ RS , yeqi ∈ RQ. The distributed algo-

rithm maintains the form of Algorithm 1, except that the initialization must satisfy∑N
i=1 y

0
i = (b, κ), Problem (2.17) is replaced by Problem (2.21) at yi = (yin,ti , yeq,ti), and

the update (2.18) is replaced by

yin,t+1
i = yin,ti + αt

∑

j∈N t
i

(
µti − µtj

)
, (2.22a)

yeq,t+1
i = yeq,ti + αt

∑

j∈N t
i

(
λti − λtj

)
, (2.22b)

with µti and λti being the Lagrange multipliers associated to the inequality constraints of

Problem (2.21). The convergence properties of this modified version of the algorithm

will be discussed in Remark 2.2, after the proof of Theorem 2.1.

2.3.4 Discussion on the Parameters

Let us discuss the choice of the parameter M in the local optimization problem (2.17)

appearing in Algorithm 1.

As per Theorem 2.1, in order to have convergence to an optimum it must hold

M > ‖µ?‖1, where µ? is any dual optimal solution of the original problem (2.1). This

assumption is needed for the relaxation approach to apply (cf. Section 2.2.3). In general,

a dual optimal solution µ? of the original problem (2.1) may not be known in advance.

However, if a Slater point is known (cf. Assumption 2.2), it is possible for the agents to

compute a conservative lower bound on M . The next proposition provides a sufficient

condition to satisfy M > ‖µ?‖1.

Proposition 2.2. Let Assumptions 2.1 and 2.2 hold. Moreover, let (x̄1, . . . , x̄N) be a Slater
point, i.e. a feasible point for Problem (2.1) with

∑N
i=1 gi(x̄i) < b. Then, a valid choice of M

for Theorem 2.1 is any number satisfying

M >
1

γ

N∑

i=1

(
fi(x̄i)− min

xi∈Xi

fi(xi)
)
, (2.23)

where γ = min1≤s≤S{bs −
∑N

i=1 gis(x̄i)}.

35

Distributed Primal Decomposition for Convex Optimization

Proof. Let us consider the dual problem associated to (2.1) when only the constraint∑N
i=1 gi(xi) ≤ b is dualized,

max
µ∈RS

q(µ)

subj. to µ ≥ 0,

(2.24)

with q(µ) being the dual function, defined as

q(µ) = inf
x1∈X1,...,xN∈XN

{ N∑

i=1

(
fi(xi) + µ>gi(xi)

)
− µ>b

}

= −µ>b+
N∑

i=1

inf
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
,

= −µ>b+
N∑

i=1

min
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
,

where µ>b can be brought out of the inf since is constant for x1, . . . , xN , the inf can be

split because the summands depend on different variables and the operator inf can be

replaced by min since the sets Xi are compact and fi, gi are continuous due to convexity

(cf. Assumption 2.1). Let us denote by µ? an optimal solution of Problem (2.24). By

Assumptions 2.1 and 2.2, strong duality holds, therefore q(µ?) =
∑N

i=1 fi(x
?
i), where

(x?1, . . . , x
?
N) is an optimal solution of Problem (2.1). Also, note that µ? is also a Lagrange

multiplier of Problem (2.1) (see [10, Proposition 5.1.4]). To upper bound ‖µ?‖1, we

invoke [80, Lemma 1],

‖µ?‖1 ≤
1

γ

(
N∑

i=1

fi(x̄i)− q(µ?)
)

=
1

γ

N∑

i=1

(
fi(x̄i)− fi(x?i)

)

≤ 1

γ

N∑

i=1

(
fi(x̄i)− min

xi∈Xi

fi(xi)
)
, (2.25)

where the minimum in the right-hand side of (2.25) exists since Xi is compact. The

proof follows by choosing M as any number strictly greater than the right-hand side

of (2.25). �

From an operative point of view, if each agent knows its block x̄i of a Slater vector

(x̄1, . . . , x̄N), the network can run a combination of min-consensus and average consensus

protocols to determine the right-hand side of (2.23), because the quantities in the sum

are locally computable. As such, the calculation of M can be completely distributed and

36

2.4. Convergence analysis and convergence rates

can be performed as a preliminary step before starting the execution of Algorithm 1.

2.4 Convergence analysis and convergence rates

In this section, we provide the convergence analysis of Algorithm 1 and derive conver-

gence rates under two different assumptions on the step-size.

The analysis is based on the primal decomposition scheme applied to the relaxed

problem (cf. Section 2.2.3). First, we reformulate the master problem (2.7) by exploiting

the graph structure. This reformulation is then used to show that our distributed

algorithm is equivalent to a (centralized) randomized block subgradient method, whose

analysis is a building block to prove Theorem 2.1.

Let us introduce some notation needed for the analysis. The n× n identity matrix

is denoted by In. Where the size of the matrix is clear from the context, we drop the

subscript n. Given a vector x ∈ Rn and a positive definite matrix W ∈ Rn×n, we denote

by ‖x‖W =
√
x>Wx the norm of x weighted by W , which we term W -norm. The symbol

⊗ denotes the Kronecker product. Given a block vector z = (z1, . . . , zm), we denote its

`-th block by [z]` when the notation z` can be ambiguous. We recall that 1 denotes the

vector of ones of appropriate dimensions. Similarly, we denote by 0 the vector of zeros.

2.4.1 Encoding the Coupling Constraints in Cost Function

As already mentioned in Section 2.2, a solution of Problem (2.1) can be indirectly

obtained by solving Problem (2.7). In order to put Problem (2.7) into a form that is more

convenient for distributed computation, let us now apply a graph-induced change of

coordinates. Such a manipulation has a twofold benefit: (i) it allows for the suppression

and implicit satisfaction of the constraint
∑N

i=1 yi = b, (ii) it allows for the application

of a randomized block subgradient method to take into account the random activation

of edges.

Consider the underlying communication graph Gu. Assuming an arbitrary ordering

of the edges, let Γ ∈ R|Eu|×N denote the incidence matrix of Gu, where each row (corre-

sponding to an edge of Gu) contains all zero entries except for the column corresponding

to the edge tail (equal to 1), and for the column corresponding to the edge head (equal to

−1). Namely, if the k-th row of Γ corresponds to the edge (i, j), then the (k, `)-th entry

of Γ is

(Γ)k` =





1 if ` = i,

−1 if ` = j,

0 otherwise,

for all ` ∈ {1, . . . , N}. For all (i, j) ∈ Eu, let zij ∈ RS be a vector associated to the edge

37

Distributed Primal Decomposition for Convex Optimization

(i, j) and denote by z ∈ RS|Eu| the vector stacking all zij , with the same ordering as in

Γ. Consider the change of coordinates for Problem (2.7) defined through the following

linear mapping

y = Πz +
1

N
(1⊗ b), (2.26)

where 1 ∈ RS and the matrix Π is defined as

Π , (Γ> ⊗ IS) ∈ RSN×S|Eu|. (2.27)

By using the properties of the Kronecker product, the blocks of y can be written as

yi = [Πz]i +
b

N
=
∑

j∈Ni,u

(zij − zji) +
b

N
, ∀ i ∈ {1, . . . , N}.

The next lemma formalizes the fact that the change of variable (2.26) implicitly encodes

the constraint
∑N

i=1 yi = b.

Lemma 2.5. The matrix Π in (2.27) satisfies:

(i)
∑N

i=1[Πz]i = 0 for all z ∈ RS|Eu|;

(ii) for all ỹ ∈ RSN satisfying
∑N

i=1 ỹi = b there exists z̃ ∈ RS|Eu| such that ỹ = Πz̃ +
1
N (1⊗ b).

Proof. To show (i), we see that

N∑

i=1

[Πz]i = (1> ⊗ IS)Πz

= (1> ⊗ IS)(Γ> ⊗ IS)z

=
(
(Γ⊗ IS)(1⊗ IS)

)>
z

(a)
=
(
(Γ1)⊗ IS

)>
z

(b)
=
(
0⊗ IS

)>
z = 0,

where in (a) we used the fact (A⊗B)(C⊗D) = (AC)⊗(BD) since the matrix dimensions

are compatible, and (b) follows by the property Γ1 = 0 of incidence matrices.

To prove (ii), let ỹ ∈ RSN be such that
∑N

i=1 ỹi = b, or, equivalently, (1> ⊗ IS)ỹ = b.

Let us first show that v>(ỹ − 1
N (1 ⊗ b)) = 0 for all v ∈ Ker(Π>). To this end, take

v ∈ Ker(Π>). Since Gu is connected, then rank(Γ) = N − 1. Thus, by the properties of

the Kronecker product, it holds

rank(Π>) = rank(Γ⊗ IS)

38

2.4. Convergence analysis and convergence rates

= rank(Γ) rank(IS)

= (N − 1)S.

Moreover, by the Rank-Nullity Theorem, it holds

dim Ker(Π>) = SN − rank(Π>) = S.

But since the columns of (1⊗ IS) ∈ RSN×S are linearly independent, and since the point

(i) of the lemma implies that they belong to Ker(Π>), it follows that they are actually a

basis of Ker(Π>), so that the vector v can be written as v = (1⊗ IS)λ, for some λ ∈ RS .

Therefore, it holds

v>
(
ỹ − 1

N
(1⊗ b)

)
= λ>(1> ⊗ IS)

(
ỹ − 1

N
(1⊗ b)

)

= λ> (1> ⊗ IS)ỹ︸ ︷︷ ︸
b

− 1

N
λ> (1> ⊗ IS)(1⊗ b)︸ ︷︷ ︸

Nb

= 0.

Thus, since v is arbitrary, it follows that v>(ỹ − 1
N (1⊗ b)) = 0 for all v ∈ Ker(Π>). By

definition of orthogonal complement, this means that ỹ− 1
N (1⊗b) ∈ Ker(Π>)⊥ = Im(Π).

Equivalently, there exists z̃ such that ỹ = Πz̃ + 1
N (1⊗ b). �

We now plug the change of coordinates (2.26) into Problem (2.7). Formally, for all

i ∈ {1, . . . , N}, define the functions

p̃i
(
{zij , zji}j∈Ni,u

)
, pi

(
[Πz]i +

b

N

)
, z ∈ RS|Eu|.

By Lemma 2.5, we directly obtain the following result.

Corollary 2.1. Problem (2.7) is equivalent to the unconstrained optimization problem

min
z∈RS|Eu|

N∑

i=1

p̃i
(
{zij , zji}j∈Ni,u

)
, (2.28)

in the sense that (i) the optimal costs are equal, (ii) if z? is an optimal solution of (2.28), then
y? = Πz? + 1

N (1⊗ b) is an optimal solution of (2.7). 4

In the following, we denote the cost function of (2.28) as p̃(z) = p
(
Πz + 1

N (1⊗ b)
)
.

2.4.2 Randomized Block Subgradient Method

The analysis of the distributed algorithm requires results from the (centralized) block

subgradient literature. To the best of our knowledge, no reference provides the needed

results with the desired degree of refinement (i.e. almost sure cost convergence with

39

Distributed Primal Decomposition for Convex Optimization

multiple block updates and non-uniform block probabilities). Thus, in this subsection,

we formulate and analyze a (centralized) randomized block subgradient method for

convex problems, which is a side contribution of this chapter.

Let us consider the unconstrained convex problem

min
θ∈Rm

ϕ(θ), (2.29)

where θ is the optimization variable and ϕ : Rm → R is a convex function. We assume

that Problem (2.29) has finite optimal cost, denoted by ϕ?, and that at least an optimal

solution θ? ∈ Rm exists, so that ϕ? = ϕ(θ?).

Let us consider a partition of Rm into B ∈ N parts, i.e. Rm = Rm1 × · · · × RmB , such

that m =
∑B

`=1m`. Therefore, the optimization variable is the stack of B blocks,

θ = (θ1, . . . , θB),

where θ` ∈ Rm` for all ` ∈ {1, . . . , B}. Now, we develop a subgradient method with

block-wise updates to solve Problem (2.29). At each iteration t ∈ N, each block ` is

updated with a probability σ` > 0. We stress that according to the considered model,

blocks can have different update probabilities and multiple blocks can be updated

simultaneously.

For all t, we denote by Bt ⊆ {1, . . . , B} the index set of the blocks selected at time t.

For all ` ∈ {1, . . . , B} and t ≥ 0, let us define νt` as the Bernoulli random variable that is

equal to 1 if ` ∈ Bt and 0 otherwise. The following assumption is made (compare with

Assumption 2.4).

Assumption 2.5. For all ` ∈ {1, . . . , B}, the random variables {νt`}t≥0 are independent and
identically distributed (i.i.d.). Moreover, for all t ≥ 0, the random variables {νt`}`∈{1,...,B} are
mutually independent. 4

The algorithm considered here is based on a subgradient method. However, at each

iteration t, only the blocks in Bt are updated, i.e.

θt+1
` =




θt` − αt[∇̃ϕ(θt)]`, if ` ∈ Bt,

θt`, if ` /∈ Bt,
(2.30)

where αt is the step size. We stress again that algorithm (2.30) allows for multiple block

updates at once and, furthermore, blocks have non-uniform update probabilities. We

now provide the convergence proof for algorithm (2.30). To the best of our knowledge,

for this general block-subgradient method no almost sure cost convergence results have

been proven in the literature.

Theorem 2.2. Let Assumption 2.5 hold and let the step-size sequence {αt}t≥0 satisfy As-

40

2.4. Convergence analysis and convergence rates

sumption 2.3. Moreover, assume the subgradients of ϕ are block-wise bounded, i.e. assume for
all ` ∈ {1, . . . , B} there exists C` > 0 such that ‖[∇̃ϕ(θ)]`‖ ≤ C` for all θ ∈ Rm. Consider
a sequence {θt}t≥0 generated by algorithm (2.30), initialized at any θ0 ∈ Rm. Then, almost
surely, it holds

lim
t→∞

ϕ(θt) = ϕ?.

Proof. To keep the notation light, let us denote the computed subgradients as βt ,

∇̃ϕ(θt). Each block ` is denoted by βt` = [∇̃ϕ(θt)]`. Moreover, for all ` ∈ {1, . . . , B}, let

us define the matrix U` ∈ Rm×m, obtained by setting to zero in the identity matrix all

the blocks on the diagonal, except for the `-th block. Thus, when applied to a vector

θ ∈ Rm, all the blocks other than the `-th one are set to zero, i.e.

[U`θ]κ =




θ` if κ = `,

0 otherwise,
∀ κ ∈ {1, . . . , B}.

Moreover, for the sake of analysis, let us define

W , diag
(1

σ1
Im1 , . . . ,

1

σB
ImB

)
,

where diag(·) is the (block) diagonal operator. Note that W is positive definite, thus we

can consider the weighted norm ‖θ‖W for which by definition it holds

‖θ‖2W =

B∑

`=1

‖θ`‖2
σ`

, θ ∈ Rm.

Next we analyze algorithm (2.30). Let us focus on an iteration t and consider any

vector θ ∈ Rm. As for the activated blocks ` ∈ Bt, it holds

‖θt+1
` − θ`‖2 = ‖θt` − αtβt` − θ`‖2

= ‖θt` − θ`‖2 + (αt)2‖βt`‖2 − 2αt(βt`)
>(θt` − θ`

)
,

≤ ‖θt` − θ`‖2 + (αt)2C2
` − 2αtU`(β

t)>
(
θt − θ

)
, ∀ ` ∈ Bt,

where ‖βt`‖ ≤ C` holds by assumption. As for the other blocks ` /∈ Bt, we have

‖θt+1
` − θ`‖2 = ‖θt` − θ`‖2, ∀ ` /∈ Bt.

41

Distributed Primal Decomposition for Convex Optimization

Let us now write the overall evolution in W -norm,

‖θt+1− θ‖2W =
∑

`∈Bt

‖θt+1
` − θ`‖2
σ`

+
∑

`/∈Bt

‖θt+1
` − θ`‖2
σ`

≤
B∑

`=1

‖θt` − θ`‖2
σ`

+ (αt)2
∑

`∈Bt

C2
`

σ`
− 2αt

(∑

`∈Bt

1

σ`
U`

)
(βt)>

(
θt − θ

)

≤ ‖θt − θ‖2W + (αt)2C − 2αt
(∑

`∈Bt

1

σ`
U`

)
(βt)>

(
θt − θ

)
, (2.31)

where C ,
∑B

`=1
C2

`
σ`
> 0. Let us compute the expected value of the matrix

∑
`∈Bt

1
σ`
U`

appearing in (2.31),

E

[∑

`∈Bt

1

σ`
U`

]
= E

[
B∑

`=1

νt`
σ`
U`

]
=

B∑

`=1

U` = Im. (2.32)

Now, by taking the conditional expectation of (2.31) with respect to F t = {θ0, . . . , θt}
(namely the sequence generated by algorithm (2.30) up to iteration t), we obtain for all

θ ∈ Rm and t ≥ 0

E
[
‖θt+1− θ‖2W

∣∣ F t
] (a)

≤ ‖θt − θ‖2W + (αt)2C − 2αt(βt)>
(
θt − θ

)
,

(b)

≤ ‖θt − θ‖2W + (αt)2C − 2αt
(
ϕ(θt)− ϕ(θ)

)
,

where in (a) we used (2.32) and the independence of the drawn blocks from the previous

iterations (cf. Assumption 2.5), and (b) follows by definition of subgradient of the func-

tion ϕ. By restricting the above inequality to any optimal solution θ? of Problem (2.28),

we obtain

E
[
‖θt+1− θ?‖2W

∣∣ F t
]
≤ ‖θt − θ?‖2W + (αt)2C − 2αt

(
ϕ(θt)− ϕ?

)
. (2.33)

Inequality (2.33) satisfies the assumptions of [12, Proposition 8.2.10]. By following the

same arguments as in [12, Proposition 8.2.13], we conclude that, almost surely, it holds

lim
t→∞

ϕ(θt) = ϕ?. �

In the preceding proof, the subgradient boundedness assumption is required to

derive the inequality (2.33) and thus to apply supermartingale convergence arguments.

In the forthcoming discussion, we will show that this assumption is satisfied due to

the relaxation approach, however in principle Theorem 2.2 may be strengthened by

42

2.4. Convergence analysis and convergence rates

considering a more relaxed assumption in place of subgradient boundedness (see, e.g.,

[11, Eq. (3.19)]).

2.4.3 Equivalence of Algorithm 1 and Randomized Block Subgradient

Let us now continue with the analysis of Algorithm 1. Differently from Problem (2.7), its

equivalent formulation (2.28) is unconstrained. Hence, it can be solved via subgradient

methods without projections steps. It is possible to exploit the particular structure of

Problem (2.28) to recast the random activation of edges as the random update of blocks

within a block subgradient method (2.30) applied to Problem (2.28). We will use the

following identifications,

θ = z, and ϕ(θ) =
N∑

i=1

p̃i
(
{z(ij), z(ji)}j∈Ni,u

)
. (2.34)

As for the block structure, the mapping is as follows. Each block ` ∈ {1, . . . , B} of z, i.e.

z` ∈ R2S , is associated to an undirected edge (i, j) ∈ Eu, with j > i, and is defined as

z` =

[
z(ij)

z(ji)

]
. (2.35)

Therefore, there is a total of B = |Eu|/2 blocks. At each iteration t, each block z` is

updated if the corresponding edge (i, j) ∈ E t, i.e. if νtij = 1. A pictorial representation

of the block structure of z is provided in Figure 2.5. Consistently with the notation

i

j

l

kzij
zji

z`

Figure 2.5: Block structure of the variable z. Each block, say `, is associated to an undirected
edge, say (i, j). The block is the stack of zij , associated to the edge (i, j), and zji associated to the
edge (j, i).

of Section 2.4.2, we use the shorthands σ` = σij and νt` = νtij . At each iteration t of

algorithm (2.30), the set Bt contains all and only the blocks associated to the edges in E t.
Next, we explicitly write the evolution of the sequences generated by Algorithm 1 as

a function of the sequences generated by the block subgradient method (2.30). For this

purpose, let us write a subgradient of p̃ at any z ∈ RS|Eu|. By definition, it holds p̃(z) =

p
(
Πz+ 1

N (1⊗ b)
)
. Thus, by using the subgradient property for affine transformations of

43

Distributed Primal Decomposition for Convex Optimization

the domain3, it holds

∇̃p̃(z) = (Γ⊗ IS)∇̃p
(

Πz +
1

N
(1⊗ b)

)
. (2.36)

By exploiting the structure of p, the i-th block of ∇̃p(y) is equal to ∂̃p(y)
∂yi

= ∇̃pi(yi).
Moreover, since Problem (2.8) enjoys strong duality, a subgradient of pi at yi can be

computed as ∇̃pi(yi) = −µi, where µi is an optimal Lagrange multiplier of Problem (2.8)

(cf. Lemma 2.2). By collecting these facts together with (2.36), it follows that the blocks

of ∇̃p̃(z) can be computed as

∂̃p̃(z)

∂zij
= ∇̃pi

(
[Πz]i +

b

N

)
− ∇̃pj

(
[Πz]j +

b

N

)

= µj − µi, ∀ (i, j) ∈ Eu, (2.37)

where ∂̃p̃(z)
∂zij

denotes the block of ∇̃p̃(z) associated to zij and, for all k ∈ {1, . . . , N}, µk
denotes an optimal Lagrange multiplier for the problem

min
xk,ρk

fk(xk) +Mρk

subj. to gk(xk) ≤ [Πz]k +
b

N
+ ρk1

ρk ≥ 0, xk ∈ Xk.

(2.38)

Using the positions (2.34) and (2.35) and using the formula for the computation of

subgradients (2.37), the update (2.30) can be recast as

zt+1
ij =




ztij + αt

(
µti − µtj

)
, if (i, j) ∈ E t,

ztij , if (i, j) /∈ E t,
(2.39)

where µtk denotes an optimal Lagrange multiplier of (2.38) with z = zt (with a slight

abuse of notation4). Thus,

[Πzt+1]i +
b

N
=
∑

j∈Ni,u

(zt+1
ij − zt+1

ji) +
b

N

(a)
=

∑

j∈Ni,u

(ztij − ztji) +
b

N

︸ ︷︷ ︸
yti

+2αt
∑

j∈N t
i

(
µti − µtj

)

= yt+1
i , i = 1, . . . , N, (2.40)

3This property of subgradients is the counterpart of the chain rule for differentiable functions.
4 Indeed, the symbol µt

i was already defined in Algorithm 1. However, as per the equivalence of the two
algorithms (which is being shown here), the two quantities coincide.

44

2.4. Convergence analysis and convergence rates

where (a) follows by (2.39). Therefore Algorithm 1 and the block subgradient method (2.30)

are equivalent (up to a factor 2 in front of the step size αt, which can be embedded in its

definition). Before going on, let us state the following technical result.

Lemma 2.6. For all z ∈ RS|Eu|, the subgradients of p̃ at z are block-wise bounded, i.e.

‖[∇̃p̃(z)]`‖ ≤ C`, ∀ ` ∈ {1, . . . , B},

where each C` > 0 is a sufficiently large constant proportional to the parameter M .

Proof. Fix a block ` and suppose that it is associated to the edge (i, j). According to the

previous discussion, the `-th block of ∇̃p̃(z) is equal to

[∇̃p̃(z)]` =

[
µj − µi
µi − µj

]
,

where each µk is a Lagrange multiplier of Problem (2.38). As shown in [83, Section

III-B], it holds ‖µk‖1 ≤ M for all k ∈ {1, . . . , N}. Thus, the proof follows by using the

equivalence of norms and by choosing a sufficiently large C` > 0. �

2.4.4 Proof of Theorem 2.1

We are now able to provide the proof of Theorem 2.1. To show (i), let us consider the

block subgradient method (2.30) applied to Problem (2.28). Note that the function p̃(z)

is convex (because the functions pi are convex, cf. [10, Section 5.4.4]) and its optimal

cost is equal to f?, the optimal cost of Problem (2.1) (cf. Corollary 2.1, Lemma 2.4

and Lemma 2.3). By Lemma 2.6 and by the theorem’s assumptions, we can apply

Theorem 2.2 to conclude that, almost surely,

f? = lim
t→∞

N∑

i=1

p̃i
(
{ztij , ztji}j∈Ni,u

) (a)
= lim

t→∞

N∑

i=1

pi(y
t
i)

(b)
= lim

t→∞

N∑

i=1

(
fi(x

t
i) +Mρti

)
,

where (a) follows by definition of p̃i and by (2.40) and (b) follows by construction of

(xti, ρ
t
i).

To prove (ii), it is possible to follow the same line of proof of [83]. However, as here

we are considering a probabilistic setting in a primal decomposition framework, we

report the proof for completeness. Let us consider the sample set Ω̄ for which point (i)
of the theorem holds, and pick any sample path ω ∈ Ω̄. Consider the primal sequence

{(xt1, . . . , xtN , ρt1, . . . , ρtN)}t≥0 generated by Algorithm 1 corresponding to ω. By summing

over i ∈ {1, . . . , N} the inequality gi(xti) ≤ yti + ρti1 (which holds by construction), it

45

Distributed Primal Decomposition for Convex Optimization

holds

N∑

i=1

gi(x
t
i) ≤

N∑

i=1

yti +

N∑

i=1

ρti1 =

N∑

i=1

ρti1. (2.41)

Define ρt =
∑N

i=1 ρ
t
i. By construction, the sequence {(xt1, . . . , xtN , ρt)}t≥0 is bounded

(as a consequence of point (i) and by continuity of the functions fi(xi) + Mρi), so

that there exists a sub-sequence of indices {th}h≥0 ⊆ {t}t≥0 such that the sequence

{(xtn1 , . . . , xthN , ρth)}h≥0 converges. Denote the limit point of such sequence as (x̄1, . . . , x̄N , ρ̄).

From point (i) of the theorem, it follows that

N∑

i=1

fi(x̄i) +Mρ̄ = f?.

By Lemma 2.3, it must hold ρ̄ = 0. As the functions gi are continuous, by taking the

limit in (2.41) as h→∞, with t = th, it holds

N∑

i=1

gi(x̄i) ≤ b+ ρ̄1 = b. (2.42)

Therefore, the point (x̄1, . . . , x̄N) is an optimal solution of Problem (2.1). Since the

sample path ω ∈ Ω̄ is arbitrary, every limit point of {(xt1, . . . , xtN)}t≥0 is feasible and

cost-optimal for Problem (2.1), almost surely. �

Remark 2.2. As regards the modified algorithm for handling equality coupling con-

straints (cf. Section 2.3.3), we note that the analysis of (2.21)–(2.22) can be performed

with almost the same line of proof used before. We do not discuss this in detail, however

we point out that it is still possible to apply the change of coordinates (2.26) with obvi-

ous changes to the dimension of z and obtain the unconstrained master problem (2.28).

The updates (2.22) are re-mapped to the z space in much the same way we did for

the original update (2.18), resulting in the block subgradient method (2.39). Thus, the

convergence properties of the modified algorithm remain unchanged. In particular,

Theorem 2.1 holds with the assumption that M > ‖µ?‖1 + ‖λ?‖1. 4

2.4.5 Convergence Rates

The Distributed Primal Decomposition algorithm enjoys a sublinear rate for both con-

stant and diminishing step-size rules. We refer to Appendix A.2 for the basic definitions

regarding convergence rates. For constant step size, the cost sequence converges as

O(1/t), while for diminishing step size, the rate is O(1/ log(t)). The results provided

46

2.4. Convergence analysis and convergence rates

here are expressed in terms of the quantity

f tbest , min
τ≤t

N∑

i=1

E[fi(x
τ
i) +Mρτi],

where the expression in the expected value is the optimal cost of Problem (2.17) for agent

i at time τ . Intuitively, f tbest represents the best cost value obtained by the algorithm up

to a certain iteration t, in an expected sense.

The following analysis is based on deriving convergence rates for our generalized

block subgradient method and thus also complements the ones in, e.g. [39]. In the next

lemma we derive a basic inequality.

Lemma 2.7. Let Assumptions 2.1, 2.2 and 2.4 hold. Then, for all t ≥ 0 it holds

2

(
t∑

τ=0

ατ

)
(f tbest − f?) ≤ ‖z0 − z?‖2W + C

t∑

τ=0

(ατ)2. (2.43)

Proof. We consider the same line of proof of Theorem 2.2 up to (2.33), specialized

for θt = zt, θ? = z? (an optimal solution of Problem (2.28)), with corresponding cost

ϕ? = p̃(z?) = f? (the optimal cost of Problem (2.1)). By taking the total expectation

of (2.33) with respect to F t, it follows that, for all t ≥ 0,

E
[
‖zt+1− z?‖2W

]
= E

{
E
[
‖zt+1− z?‖2W

∣∣F t
]}

≤ E
[
‖zt − z?‖2W

]
+ (αt)2C − 2αt

(
E[p̃(zt)]− f?

)
.

Applying recursively the previous inequality yields

E
[
‖zt+1− z?‖2W

]
≤ ‖z0 − z?‖2W + C

t∑

τ=0

(ατ)2 − 2
t∑

τ=0

ατ
(
E[p̃(zτ)]− f?

)

for all t ≥ 0. By using the fact ‖zt+1− z?‖2W ≥ 0, we obtain

2
t∑

τ=0

ατ
(
E[p̃(zτ)]− f?

)
≤ ‖z0 − z?‖2W + C

t∑

τ=0

(ατ)2,

for all t ≥ 0. The proof follows by combining the previous inequality with E[p̃(zt)] ≥
min
τ≤t

E[p̃(zτ)] and p̃(zτ) = p(yτ) =
∑N

i=1 pi(y
τ
i) =

∑N
i=1 fi(x

τ
i) +Mρτi . �

For constant step sizes, it immediately follows that the convergence rate is sublinear

of the type O(1/t), as formalized next.

Proposition 2.3 (Sublinear rate for constant step size). Let the same assumptions of
Theorem 2.1 hold (except for Assumption 2.3). Assume αt = α > 0 for all t ≥ 0. Then, it

47

Distributed Primal Decomposition for Convex Optimization

holds

f tbest − f? ≤
‖z0 − z?‖2W
2α(t+ 1)

+
Cα

2
. 4

Note that the previous convergence rate has a term that goes to zero as t goes to

infinity, plus a constant (positive) term. In general, without further assumptions, only

convergence within a neighborhood of the optimum can be proved when a constant step

size is used.

For the case of exact convergence with diminishing step size, we assume it has the

form αt = K
t+1 with K > 0 (which satisfies Assumption 2.3). We can obtain a sublinear

rate O(1/ log(t)), as shown next.

Proposition 2.4 (Sublinear rate for diminishing step size). Let the same assumptions of
Theorem 2.1 hold. Assume αt = K

t+1 for all t ≥ 0, with K > 0. Then, it holds

f tbest − f? ≤
‖z0 − z?‖2W + CK2

2K log(t+ 2)
.

Proof. Let us set αt = K
t+1 in (2.43), then it holds

f tbest − f? ≤
‖z0 − z?‖2W + CK2

∑t+1
τ=1

1
τ2

2K
∑t+1

τ=1
1
τ

.

The proof follows by using the inequalities
∑t

τ=1
1
τ2
≤ 1 and

∑t
τ=1

1
τ ≥ log(t+ 1). �

We remark that the previous results can be also derived for the algorithm discussed

in Section 2.2.5 with static communication graph. Essentially, the same arguments can

be followed without block randomization in algorithm (2.30). For constant step sizes

the rate can be proven to be

f tbest − f? ≤
‖z0 − z?‖2
2α(t+ 1)

+
Cα

2
,

while for diminishing step sizes the rate is

f tbest − f? ≤
‖z0 − z?‖2 + CK2

2K log(t+ 2)
,

where here the quantities f tbest and C are defined as f tbest , minτ≤t
∑N

i=1 fi(x
τ
i) +Mρτi

and C ,
∑B

`=1C
2
` .

48

2.5. Numerical Analysis

2.5 Numerical Analysis

In this section, we show the efficacy of Distributed Primal Decomposition and validate

the theoretical findings through a numerical study. We first concentrate on a simple

example to show the main algorithm features. Then, we perform in-depth simulations

on an electric vehicle charging scenario. All the simulations are performed with the

disropt Python package (to be introduced in Chapter 5), with communication based on

the Message Passing Interface (MPI).

2.5.1 Basic Nonsmooth Example

We begin by considering a network of N = 100 agents that must solve the constraint-

coupled convex problem

min
x1,...,xN

N∑

i=1

‖xi − ri‖1

subj. to
N∑

i=1

i · xi ≤ 0

− 10 · 1 ≤ xi ≤ 10 · 1, i = 1, . . . , N,

(2.44)

where each xi ∈ R3, and ri ∈ R3 is a random vector with entries in the interval [15, 20].

Problem (2.44) is in the form (2.1) with the positions fi(xi) = ‖xi − ri‖1, Xi =
{
xi ∈

R3| − 10 · 1 ≤ xi ≤ 10 · 1
}

and gi(xi) = i · xi. Note that the objective function and the

coupling constraint functions are convex but not smooth. As for the communication

graph, we generate an Erdős-Rényi graph with edge probability 0.2. The edge activation

probabilities σij are randomly picked in [0.3, 0.9]. The generated graph is shown in

Figure 2.6.

Figure 2.6: Underlying communication graph Gu for the basic nonsmooth example.

In order to apply the Distributed Primal Decomposition algorithm, we compute a

valid value of the parameter M appearing in Problem (2.17) by using Proposition 2.2

49

Distributed Primal Decomposition for Convex Optimization

with the Slater vector (x̄1, . . . , x̄N) with each x̄i = −10 · 1. After performing all the

computations, we obtain the condition M > 1 and we finally choose M = 6. The

Distributed Primal Decomposition algorithm is initialized at y0i = 0 for all i ∈ {1, . . . , N}
and the step size αt = 1/(t + 1)0.6 is used (which satisfies Assumption 2.3). The

simulation results are reported in Figures 2.7 and 2.8. The asymptotic behavior of

Theorem 2.1 is confirmed.

0 10000 20000 30000 40000 50000

10−1

10−0.5

iteration t

∣ ∣ ∣(
N ∑ i=
1

f i
(x

t i
)
−

f
?
) /

f
?
∣ ∣ ∣

Figure 2.7: Evolution of the normalized cost error for the illustrative example with N = 100
agents.

0 10000 20000 30000 40000 50000

−400

−200

0

iteration t

m
a
x

s

(
N ∑ i=
1

g i
s
(x

t i
))

0 1000 2000

−400

−200

0

Figure 2.8: Evolution of the coupling constraints for the illustrative example. A value below zero
means that the solution computed by the algorithm at that iteration is feasible. The inset figure
shows the behavior of the algorithm in the early iterations.

2.5.2 Electric Vehicle Charging Problem

Let us now consider the charging of Plug-in Electric Vehicles (PEVs), which is formulated

in detail in [121] and is slightly changed here in order to better highlight the algorithm

behavior. The simulations reported in the remainder of this section are all referred to

this application scenario.

The problem consists of determining an optimal charging schedule of N electric

vehicles. Each vehicle i has an initial state of charge Einit
i and a target state of charge

50

2.5. Numerical Analysis

Eref
i that must be reached within a time horizon of 8 hours, divided into T = 12 time

slots of ∆T = 40 minutes. Vehicles must further satisfy a coupling constraint, which is

given by the fact that the total power drawn from the (shared) electricity grid must not

exceed Pmax = N/2. In this thesis, we consider the “charge-only” case. In order to make

sure the local constraint set are convex (cf. Assumption 2.1), we drop the additional

integer constraints considered in [121]. Thus, the vehicles optimize their charging rate

rather than activating or de-activating the charging mode at each time slot. Formally,

the resulting linear program is

min
x1,...,xN

N∑

i=1

c>i xi

subj. to
N∑

i=1

Aixi ≤ b,

xi ∈ Xi, i = 1, . . . , N,

where the local constraint sets Xi are compact polyhedra and a total of S = 12 coupling

constraints are present. For a complete reference on the other quantities involved

in the problem and not explicitly specified here, we refer the reader to the extended

formulation in [121].

We consider a network of N = 50 agents where the underlying graph Eu is generated

as an Erdős-Rényi graph with edge probability 0.2. The edge activation probabilities σij
are randomly picked in [0.3, 0.9]. In particular, in the next subsections we (i) compare

our algorithm with the state of the art, (ii) discuss the parameter M and (iii) show the

convergence rate.

2.5.3 Comparison with State of the Art

We compare Distributed Primal Decomposition with the Distributed Dual Subgradient

algorithm [44]. As for the algorithm tuning (i.e. the step size αt in the update (2.18)

and the parameter M appearing in Problem (2.17)), we choose M = 30 and the di-

minishing step size αt = 1
(t+1)0.6

. Our algorithm is initialized in y0i = b/N for all i

and the Distributed Dual Subgradient algorithm is initialized in λ0i = 0 for all i. In

Figure 2.9, the cost error of both algorithms is shown, compared with the result of

a centralized problem solver. For our algorithm, the symbol xti represents the local

solution of Problem (2.17) at time t, while for the Distributed Dual Subgradient, the

same symbol represents the (unweighted) running average of the local solutions over

the past iterations. The figure highlights that, in this simulation, Distributed Primal

Decomposition reached almost exact cost convergence shortly after 10000 iterations

with a sudden change of approximately 10 orders of magnitude. In principle, for the

51

Distributed Primal Decomposition for Convex Optimization

Distributed dual subgradient, it is not possible to have such rapid changes because of

the use of running averages.

0 2000 4000 6000 8000 10000
10−15

10−10

10−5

100

iteration t

∣ ∣ ∣ ∣(
N ∑ i=
1

f i
(x

t i
)
−

f
?
) /

f
?

∣ ∣ ∣ ∣

Distr. dual subgradient
Distr. primal decomposition

Figure 2.9: Evolution of the normalized cost error for the comparative study with the state of the
art.

In Figure 2.10, we show the value of the coupling constraints. The picture highlights

that both algorithms are able to provide feasible solutions within less than 500 iterations,

confirming the primal recovery property.

0 2000 4000 6000 8000 10000

0.05

0

– 0.05

– 0.1

– 0.15

iteration t

m
ax s

(
N ∑ i=
1

g i
s
(x

t i
)
−
b s

)

Distr. dual subgradient
Distr. primal decomposition

Figure 2.10: Evolution of the coupling constraint for the comparative study with the state of the
art. A value below zero means that the solution computed by the algorithm at that iteration is
feasible.

2.5.4 Impact of the Parameters

We also perform a numerical comparison of the algorithm behavior for different values

of the parameter M (see also Section 2.3.4). Under the same set-up of the previous

simulation, we use a different initialization to guarantee the requirements imposed by

Theorem 2.1 and also to create some asymmetry among the initial allocations of the

agents. Thus, in this simulation we consider the initialization rule y0i = 5(N−2i)1+b/N

for all i, which satisfies
∑N

i=1 y
0
i = b.

52

2.5. Numerical Analysis

In Figure 2.11 we plot the cost error, including the extra penalty term
∑N

i=1Mρti, for

three different values of M (all of which satisfy the assumption M > ‖µ?‖1). It can be

seen that the slope of the curve decreases as M increases, which agrees with the fact that

the larger is M , the larger is the set in which subgradients can be found (Lemma 2.6).

0 1000 2000 3000 4000 5000

10−2

100

102

iteration t

∣ ∣ ∣ ∣(
N ∑ i=
1

(f
i(
x
t i
)
+
M
ρ
t i
)
−
f
?
) /f

?

∣ ∣ ∣ ∣

M = 2
M = 5
M = 15

Figure 2.11: Evolution of the normalized cost error for different values of M , under diminishing
step size.

Figure 2.12 shows the maximum value of ρti among agents. Recall that ρti is an upper

bound on the violation of the local allocation yti . The picture underlines that such a

quantity is forced to zero faster as M gets bigger. This can be intuitively explained by

the fact that larger values of the penalty Mρi drive the algorithm more quickly towards

feasibility of the coupling constraint.

0 1000 2000 3000 4000 5000
0

50

100

150

iteration t

m
ax i

ρ
t i

M = 2
M = 5
M = 15

Figure 2.12: Evolution of the value of maxi ρ
t
i for varying values of M . The quantity represents

an upper bound on the coupling constraint violation.

2.5.5 Comparative Study on Convergence Rates

We finally perform a simulation to point out the different behavior of the algorithm with

constant and diminishing step sizes. Under the same set-up of the previous example,

with M = 10, we run the algorithm with the diminishing step-size law αt = 0.5
(t+1)0.6

and

53

Distributed Primal Decomposition for Convex Optimization

with the constant step size αt = 0.01. As before, agents initialize their local allocation at

y0i = 5(N − 2i)1 + b/N for all i.

Figure 2.13 shows the different algorithm behavior under the two step size choices.

For constant step size, the algorithm converges within a certain tolerance (which is seen

in the picture at around iteration 6000), confirming the observations in Section 2.4.5.

Moreover, the sublinear behavior with the diminishing step size is confirmed. Inter-

estingly, in this example the constant step size behaved linearly up to iteration 4000

and superlinearly in the interval 4000–6000, therefore performing much better than the

sublinear bound in Proposition 2.3.

0 2000 4000 6000 8000 10000
10−1

100

101

102

103

104

iteration t

∣ ∣ ∣ ∣(
N ∑ i=
1

(f
i(
x
t i
)
+
M
ρ
t i
)
−
f
?
) /f

?

∣ ∣ ∣ ∣

α = 0.01

αt = 0.5
(t+1)0.6

Figure 2.13: Evolution of the cost error for the comparative study on step sizes.

2.6 Extension to Unknown Cost Functions

In this section, we discuss an extension of the Distributed Primal Decomposition algo-

rithm to the case of a-priori unknown cost functions. We first introduce the optimization

set-up. Then, we describe the distributed algorithm and provide the convergence anal-

ysis, which is corroborated with a numerical example. The results of this section are

based on [20].

2.6.1 Constraint-coupled Set-up with Unknown Costs

Let us consider again N agents that must solve Problem (2.1), recalled here

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b,

xi ∈ Xi, i = 1, . . . , N,

54

2.6. Extension to Unknown Cost Functions

where all the symbols have been already defined in Section 2.2.1. We also maintain the

same assumptions, namely Assumption 2.1 (convexity and compactness) and Assump-

tion 2.2 (Slater’s constraint qualification). For the time being, we assume that there is

only one coupling constraint (S = 1), i.e. that gi : Rni → R for all i and b ∈ R.

The main novelty of this section is that we consider the cost functions are not known

in advance and must be estimated online. This challenging assumption can model, for

instance, situations in which evaluation of the cost function is computationally intensive

and can be done only for a small number of points. For this reason, we assume that

agents are equipped with an estimation mechanism that progressively refines their

knowledge of the objective functions. We model the estimation mechanism as a black-

box oracle that can be queried to provide estimations of the cost function. Since each

agent i has its own cost function fi, we assume that each agent has its own instance of

the oracle providing estimated versions of the cost function over time. As these oracles

will be embedded within the distributed algorithm, we denote by f ti (·) = Oracle(i, t)

the output of oracle i at an iteration t ∈ N. We do not impose a specific estimation

mechanism, so that each agent i can use the most appropriate method depending on the

cost function at hand. The only assumption we make on the oracles is formalized next.

Assumption 2.6 (Oracles). For each agent i ∈ {1, . . . , N}, the estimated functions f ti (·) =

Oracle(i, t) converge uniformly to the true cost function fi(·). 4

As an example, if the objective function fi is parametric with known form but un-

known parameters, one can apply a recursive least squares approach to obtain iteratively

refined approximations. In such a case, for the estimation mechanism one should choose

a persistently exciting input to sample the function fi. Assumption 2.6 is then satisfied.

We next discuss how the Distributed Primal Decomposition algorithm can be ex-

tended to handle the described scenario. To this end, the new distributed algorithm

makes use of the estimated cost functions in place of the original ones, but nevertheless

it will be able to solve Problem (2.1) exactly.

We assume the exchange of information among the agents occurs according to a fixed

communication model as described in Section 2.2.1. The assumption of static graph can

be relaxed to handle the more general case of random time-varying graphs using the

techniques discussed in Section 2.3. However, since this is not the main focus of this

section, we prefer to maintain the assumption of static network to keep the discussion

simple.

2.6.2 Distributed Algorithm Description

The distributed algorithm that we propose has the same structure as the Distributed

Primal Decomposition algorithm described in Section 2.2.5. However, instead of min-

55

Distributed Primal Decomposition for Convex Optimization

imizing the true cost function fi in the local problem, each agent i minimizes the

estimated version f ti obtained by the oracle.

Formally, each agent i maintains a local allocation estimate yti ∈ R. At each iteration

t ∈ N, agent i queries the black-box oracle and obtains an updated estimate of its

cost function, denoted by f ti . Then, it computes µti ∈ R as a Lagrange multiplier of

Problem (2.45) and exchanges it with neighbors. Finally, it updates yti according to (2.46).

The following table summarizes the algorithm from the perspective of node i, where

we recall that αt is the step size and the notation “µi :” means that µi is the Lagrange

multiplier associated to the constraint gi(xi) ≤ yti + ρi.

Algorithm 2 Distributed Primal Decomposition with Estimated Costs

Initialization: y0i such that
∑N

i=1 y
0
i = b

For t = 0, 1, 2, . . .

Query oracle and obtain local cost estimate f ti (·) = Oracle(i, t)

Compute ((xti, ρ
t
i), µ

t
i) as a primal-dual solution of

min
xi,ρi

f ti (xi) +Mρi

subj. to µi : gi(xi) ≤ yti + ρi

xi ∈ Xi

(2.45)

Receive µtj from neighbors j ∈ Ni and update

yt+1
i = yti + αt

∑

j∈N t
i

(
µti − µtj

)
(2.46)

Note that the true cost function fi(xi) is never used by each agent i, indeed only its

estimated version f ti (xi) appears in Problem (2.45). Using a surrogate function in place

of the true one can significantly reduce the computational cost of solving Problem (2.45).

By using the fact that the surrogate function f ti approaches the true one as t increases (cf.

Assumption 2.6), we will show that the algorithm is still able to compute the optimal

solution of Problem (2.1). Note also that all the privacy and scalability properties of

the original algorithm are maintained. Indeed, no private data is exchanged with the

neighbors and the amount of local computation remains bounded as N increases. In

the following subsection, we provide a convergence analysis of the algorithm. As the

analysis requires several intermediate steps, the reader interested in the main result can

directly look at Theorem 2.3.

56

2.6. Extension to Unknown Cost Functions

2.6.3 Algorithm Analysis

Intuitively, in order to analyze Algorithm 2 one should follow a line of proof similar to

the one used in Section 2.4 but without block randomization (since the communication

graph is static). However, we must appropriately take into account the fact that the local

problems do not have the true cost function.

Properties of the Primal Functions

Central to the analysis is the structure of the primal functions pi(yi). To see this, we recall

that subgradients of the primal functions are Lagrange multipliers of the associated

problem (cf. Lemma 2.2). Since we are using estimated cost functions in place of the

original ones, we must expect that the computed Lagrange multipliers µti are erroneous

(if compared to the “standard” algorithm with the true cost functions) and, thus, also

the subgradients of pi(yi). We will see that, as a consequence of Assumption 2.6, such

errors on the subgradients asymptotically go to zero.

In what follows, we study in more detail the structure of the primal functions. Since

we are considering a single coupling constraint (S = 1), the subgradients of pi are

actually subderivatives. As this will not impact much on our analysis, we will denote

them with the symbol of derivatives, i.e. p′i(yi). Whether the symbol denotes a derivative

or a subderivative will always be clear from the context. In the forthcoming analysis, we

will need the following result. The proof relies on duality-based arguments similar to

the ones in [83] together with Lemma 2.2, however we report it for completeness.

Lemma 2.8. For all yi ∈ R, the subderivatives of pi satisfy −M ≤ p′i(yi) ≤ 0, for all
i ∈ {1, . . . , N}.

Proof. Fix an agent i. By Lemma 2.2, it holds p′i(yi) = −µi(yi), where µi(yi) is a dual

optimal solution of subproblem (2.8), i.e.

min
xi∈Xi, ρi≥0

fi(xi) +Mρi

subj. to gi(xi) ≤ yi + ρi,

associated to the constraint gi(xi) ≤ yi + ρi. Let us derive the dual function,

qi(µi) = inf
xi∈Xi, ρi≥0

(
fi(xi) +Mρi + µi(gi(xi)− yi − ρi)

)

=





min
xi∈Xi

(
fi(xi) + µi(gi(xi)− yi)

)
if µi ≤M,

−∞ otherwise.

57

Distributed Primal Decomposition for Convex Optimization

Thus, the dual problem reads

max
0≤µi≤M

qi(µi),

from which we see that any optimal solution satisfies 0 ≤ µi(yi) ≤ M . Therefore, it

follows that −M ≤ p′i(yi) ≤ 0. �

Let us define for all i ∈ {1, . . . , N} the scalars

ymini , min
xi∈Xi

gi(xi), (2.47a)

ymaxi , max
xi∈Xi

gi(xi). (2.47b)

from which it directly follows that any locally feasible solution xi ∈ Xi satisfies ymini ≤
gi(xi) ≤ ymaxi .

The next important lemma regards the structure of the primal functions, which is

graphically represented in Figure 2.14. Intuitively, the numbers ymini , ymaxi represent

the minimum and maximum resource that each agent i can use. As the allocation yi

ranges from ymini to ymaxi , the optimal cost of the subproblem (2.8) decreases since the

constraint gi(xi) ≤ yi + ρi becomes less and less stringent. Eventually, for allocations

greater than ymaxi , the cost cannot be further improved and pi(yi) becomes constant.

Instead, if yi ≤ ymini , optimal solutions to Problem (2.8) must compensate for the gap

ymini − yi with an appropriate choice of ρi. The cost penalty Mρi gives rise to the linear

behavior.

pi(yi)

yi
ymini ymaxi

infeasible region
(linear penalty)

no more cost
improvement

feasible region
(cost improves)

Figure 2.14: Illustration of Lemma 2.9. See the text for details.

Lemma 2.9. For all i ∈ {1, . . . , N}, the primal function pi(yi) satisfies:

(i) pi(yi) = pi(y
max
i) for all yi ≥ ymaxi ;

(ii) p(yi) = −Myi + qi for all yi ≤ ymini ,

with qi = pi(y
min
i) +Mymini .

Proof. To ease the notation, we drop the index i. Let us show (i). Let ȳ ≥ ymax

and let (xmax, ρmax) be an optimal solution of Problem (2.8) with y = ymax. To prove

58

2.6. Extension to Unknown Cost Functions

that p(ȳ) = p(ymax), we must demonstrate that (xmax, ρmax) is an optimal solution of

Problem (2.8) when y = ȳ. By construction, it holds

g(xmax) ≤ ymax + ρmax ≤ ȳ + ρmax,

thus (xmax, ρmax) is a feasible solution. Suppose that it is not optimal, then there exists

(x̃, ρ̃) such that x̃ ∈ X , ρ̃ ≥ 0, g(x̃) ≤ ȳ + ρ̃ and

f(x̃) +Mρ̃ < f(xmax) +Mρmax,

i.e. (x̃, ρ̃) has a lower cost than (xmax, ρmax). However, by (2.47b) and ρ̃ ≥ 0 we have

g(x̃) ≤ max
xi∈Xi

gi(xi) = ymax ≤ ymax + ρ̃,

and (x̃, ρ̃) would be a feasible solution for Problem (2.8) with y = ymax with a cost lower

than (xmax, ρmax), contradicting the assumption that (xmax, ρmax) is optimal.

Now we prove (ii). Let ȳ ≤ ymini and let (xmin, ρmin) be optimal solution of Prob-

lem (2.8) with y = ymin. It holds p(ymin) = f(xmin) + Mρmin and g(xmin) ≤ ymin + ρmin.

The goal is to show that

p(ȳ) = p(ymin) +M(ymin − ȳ) = f(xmin) +M(ρmin + ymin − ȳ),

i.e. that (xmin, ρmin + ymin − ȳ) is an optimal solution of Problem (2.8) with the given y.

By using the assumption on (xmin, ρmin) and the fact that ymin − ȳ ≥ 0 (by (2.47a)), we

can immediately show feasibility,

g(xmin) ≤ ymin + ρmin ≤ ymin + ρmin + ymin − ȳ.

Suppose that (xmin, ρmin + ymin − ȳ) is not optimal for Problem (2.8) with the given y.

Then, there exists (x̃, ρ̃) such that x̃ ∈ X , ρ̃ ≥ 0, g(x̃) ≤ ȳ + ρ̃ and

f(x̃) +Mρ̃ < f(xmin) +M(ρ̃+ ymin − ȳ)

= p(ymin) +M(ymin − ȳ),

from which it follows that f(x̃)+M(ρ̃+ymin− ȳ) < p(ymin), i.e. the vector (x̃, ρ̃+ymin− ȳ)

has a lower cost than (xmin, ρmin). Moreover, using again ymin − ȳ ≥ 0, we obtain

g(x̃) ≤ ȳ + ρ̃ ≤ ȳ + ρ̃+ ymin − ȳ,

from which it follows that (x̃, ρ̃+ymin− ȳ) is a feasible solution for Problem (2.8) with the

given y with a cost lower than (xmin, ρmin), contradicting the assumption that (xmin, ρmin)

59

Distributed Primal Decomposition for Convex Optimization

is optimal. �

Uniform Convergence of Estimated Subgradients

Next we provide a sequence of results that show that the estimated subgradients of

the primal functions converge to the true ones. This fact will be necessary in the proof

of Theorem 2.3 to assess that Algorithm 2 asymptotically recovers the behavior of

Algorithm 1.

Similarly to the definition of primal function (2.8), let us define pti(yi) as the optimal

cost of the subproblem with the surrogate function at time t with allocation yi ∈ R, i.e.

pti(yi) , min
xi,ρi

f ti (xi) +Mρi

subj. to gi(xi) ≤ yi + ρi

xi ∈ Xi, ρi ≥ 0.

(2.48)

We will work with the dual problems associated to (2.8) and (2.48). The dual problem

of (2.8) was derived in the proof of Lemma 2.8. Similarly, one can derive the dual

problem associated to (2.48), which is

max
µi

[
min
xi∈Xi

(
f ti (xi) + µi(gi(xi)− yi)

)]

︸ ︷︷ ︸
,qti(µi)

subj. to 0 ≤ µi ≤M,

(2.49)

for all i ∈ {1, . . . , N}. Note that for all yi ∈ R the function qti is continuous and thus the

maximum in (2.49) exists finite.

Lemma 2.10. Let Assumption 2.6 hold. Then, the dual function sequence {qti}t converges to
qi, uniformly in µi ∈ Di = {µi : µi ≤M} and yi ∈ R, where Di is the domain of qi and qti .

Proof. To ease the notation, we drop the index i. Since our aim is to prove uniformity

with respect to both µ and y, in this proof we denote the functions as qt(µ, y) and q(µ, y)

to show explicitly the dependence of qt and q on both µ and y. By definition, we have

that, for any fixed µ ∈ D and y ∈ R,

q(µ, y) = min
x∈X

(
f(x) + µ(g(x)− y)

)
≤ f(x) + µ(g(x)− y), for all x ∈ X, (2.50)

and also

qt(µ, y) = min
x∈X

(
f t(x) + µ(g(x)− y)

)
≤ f t(x) + µ(g(x)− y) for all x ∈ X. (2.51)

60

2.6. Extension to Unknown Cost Functions

By the uniform convergence of {f t}t (cf. Assumption 2.6), we have that for all ε > 0

there exists N > 0 such that for all t ≥ N it holds

f t(x)− f(x) < ε and f(x)− f t(x) < ε

for all x ∈ X. Subtracting (2.50) from (2.51) and using the uniform convergence we

obtain, for all t ≥ N and for any µ ∈ D and y ∈ R,

qt(µ, y)− q(µ, y) ≤ f t(x)− f(x) for all x ∈ X
< ε.

Similarly, subtracting (2.51) from (2.50), we obtain, for all t ≥ N and for any µ ∈ D and

y ∈ R,

q(µ, y)− qt(µ, y) < ε.

Since the previous results do not actually depend on the chosen µ or y, they are uniform

in µ and y. Therefore we have proven that for all ε > 0 there exists N ≥ 0 such that

|qt(µ)− q(µ)| < ε for all t ≥ N , uniformly in y ∈ R and µ ∈ D. �

Owing to Lemma 2.2, a subderivative of the time-varying primal function pti at any

yi ∈ R is given by pti
′
(yi) = −µti(yi), where µti(yi) is a maximum of qti(·, yi) (with respect

to µi) in the interval 0 ≤ µi ≤M . Since there may be several maxima, we assume that

there is a tie-break rule such that, for a given yi ∈ R, the same maximum is always

selected. This tie-break rule allows us to define for all t ≥ 0 a well-defined function

µti : R→ R such that

µti(yi) ∈ argmax
0≤µi≤M

qti(µi, yi), (2.52)

and similarly for the subderivative of pi,

p′i(yi) = −µi(yi) ∈ argmax
0≤µi≤M

qi(µi, yi).

The assumption on the tie-break rule will be formalized next in Assumption 2.7.

Lemma 2.11. Let Assumption 2.6 hold. Then, the subderivative function pti
′
(yi) converges

uniformly to p′i(yi), i.e. for all η > 0 there exists N > 0 such that |pti
′
(yi)− p′i(yi)| < η for all

t ≥ N and yi ∈ R.

Proof. To ease the notation, we drop the index i. Since pt′(y) = −µt(y), we need to prove

that the function µt(y) converges uniformly to µ(y). By definition (2.52), the function

sequence {µt(y)}t∈N is uniformly bounded in [0,M]. Thus we can extract a convergent

61

Distributed Primal Decomposition for Convex Optimization

subsequence {µtn(y)}n∈N and denote by µ̄(y) its limit function. Let us first show that

the limit function maps each y to a maximum of q(µ, y) over µ ∈ [0,M]. For all y ∈ R,

by optimality of µtn(y) for qtn it holds

qtn(µ(y), y) ≤ qtn(µtn(y), y), ∀n ∈ N.

By taking the limit as n→∞ and by using Lemma 2.10, we obtain for all y ∈ R

q(µ(y), y) ≤ q(µ̄(y), y).

However, by optimality of µ(y) for q it also holds q(µ(y), y) ≥ q(µ̄(y), y) for all y ∈ R.

Thus, equality follows for all y and therefore

µ̄(y) ∈ argmax
µ∈[0,M]

q(µ, y), ∀y ∈ R. (2.53)

We finally need to show that µ̄(y) is also the smallest number in argmaxµ∈[0,M] q(µ, y).

Let us denote

Q?(y) = argmax
0≤µ≤M

q(µ, y),

Qt(y) = argmax
0≤µ≤M

qt(µ, y).

By (2.52), for all y ∈ R it holds

µtn(y) ≤ µ, ∀µ ∈ Qttn(y).

By taking the limit as n goes to infinity and by using (2.53), we obtain for all y ∈ R

µ̄(y) ≤ µ, ∀µ ∈ Q?(y),

and the proof follows. �

Estimated Subgradients are Epsilon-Subgradients

The uniform convergence of the the estimated subgradients is not enough to prove that

Algorithm 2 is able to asymptotically recover optimality. However, it turns out that

the subgradients of the time-varying primal functions pti are so-called ε-subgradients

of the true primal function pi. Formally, given a convex function ϕ(θ) : Rn → R, an

ε-subgradient of ϕ at some θ0 ∈ Rn, is a vector ∇̃εϕ(θ0) ∈ Rn satisfying

ϕ(θ) ≥ ϕ(θ0) + ∇̃εϕ(θ0)
>(θ − θ0)− ε, ∀θ ∈ Rn,

62

2.6. Extension to Unknown Cost Functions

In the following important proposition, we prove a central result for the analysis.

Proposition 2.5. Let Assumptions 2.1, 2.2 and 2.6 hold. Then, there exists a sequence
{εti}t∈N of non-negative scalars such that for all t ∈ N and yi ∈ R it holds

pi(z) ≥ pi(yi) + (z − yi)>pti
′
(y)− εti, ∀ z ∈ R. (2.54)

Moreover, lim
t→∞

εti = 0.

Proof. To ease the notation, we drop the index i. We begin by proving that, for each

fixed t and y ∈ R, there exists a finite number εt satisfying (2.54). We will then find an

upper bound of εt, independent of y, that goes to zero as t goes to infinity, which yields

the desired result.

Fix t ∈ N and y0 ∈ R. Let us define εt(y0) as the smallest non-negative number

satisfying (2.54) at y0, i.e.

εt(y0) = inf
ε
ε

subj. to ε ≥ p(y0)+(z − y0)pt′(y0)− p(z), ∀ z ∈ R.
(2.55)

By definition, εt(y0) ≥ 0. We must prove that the infimum in (2.55) is attained at a real

number (i.e. that εt(y0) 6= +∞). The optimization problem (2.55) is in epigraph form

and can be equivalently rewritten as

εt(y0) = sup
z∈R

[
p(y0)+(z − y0)pt′(y0)− p(z)

]
. (2.56a)

Using the properties of the sup, we can rewrite εt(y0) as

εt(y0) = − inf
z∈R

r(z), (2.56b)

with

r(z) = p(z)− zpt′(y0)− p(y0) + y0p
t′(y0). (2.57)

Note that r(z) is also a function of t and y0, however we leave these arguments as implicit

so as to keep the notation light. We now show that the minimum of r(z) exists, which

in turn implies that εt(y0) ∈ R. To see this, first note that since p(z) is convex then also

r(z) is convex. Let us study the subderivative of r(z). By Lemma 2.9, p(y) is linear for

y ≤ ymin and for y ≥ ymax. Thus, r(z) is differentiable for all z ∈ (−∞, ymin)∪(ymax,+∞).

For all z ≤ ymin, it holds

r′(z) = p′(z)− pt′(y0) = −M − pt′(y0) ≤ 0,

63

Distributed Primal Decomposition for Convex Optimization

where the last equality follows by Lemma 2.9 and the inequality follows by Lemma 2.8.

Analogously, for all z ≥ ymax, it holds

r′(z) = p′(z)− pt′(y0) = −pt′(y0) ≥ 0.

Thus r(z) is non increasing for z ≤ ymin and non decreasing for z ≥ ymax. Being the

function convex (and thus continuous), there exists a (finite) minimum in the interval

[ymin, ymax]. i.e.,

min
z∈R

r(z) = min
z∈[ymin,ymax]

r(z).

Thus, εt(y0) ∈ R since the inf in (2.55) is finite.

Now we proceed to compute a vanishing overestimate of εt(y0). Consider the se-

quence {pt′(y0)}t∈N and fix β > 0. Define η = β/|ymin− ymax| > 0. By Lemma 2.11, there

exists N > 0 such that |pt′(y0)− p′(y0)| < η for all t ≥ N . To compute the overestimate

of εt(y0), we assume p(z) is replaced with a convex, piece-wise linear surrogate function

pauxy0 (z), defined as

pauxy0 (z) = max
{
p(ymin) +M(ymin − y), p(y0) + p′(y0)(y − y0), p(ymax)

}
.

The resulting function consists of three pieces. The left-most piece and the right-most

piece are obtained by prolonging the two lateral linear pieces of p(z) inside the interval

[ymin, ymax], while the central piece is the tangent line crossing p(z) at y0. By construction,

this function satisfies pauxy0 (z) ≤ p(z) for all z ∈ R. Let us compute the break points,

which we denote by yL and yR (see Figure 2.15). To compute yL, we must intersect the

first two pieces, i.e.

−MyL + p(ymin) +Mymin︸ ︷︷ ︸
left piece

= p(y0) + (yL − y0)p′(y0)︸ ︷︷ ︸
central piece

,

which results in

yL =
p(ymin) +Mymin − p(y0) + y0p

′(y0)

p′(y0) +M
. (2.58)

Similarly, we can compute yR, which is equal to

yR = y0 +
p(ymax)− p(y0)

p′(y0)
. (2.59)

Notice that the value of pauxy0 (yL) is equal to p(ymax).

Now, similarly to r(z), let us define functions raux,t(z) corresponding to pt(z) for

64

2.6. Extension to Unknown Cost Functions

pauxy0
(y)

y
ymin y0 ymax

yL yR

Figure 2.15: Graphical representation of the surrogate function pauxy0 (z) (in blue). The original
primal function p(z) is the black curve near the blue one.

all t. Then, we use them to compute the upper bound on εt(y0), in a similar way as

in (2.56a)–(2.56b). The functions raux,t(z) are defined as

raux,t(z) = pauxy0 (z)− zpt′(y0)− p(y0) + y0p
t′(y0), t ∈ N. (2.60)

As before, these functions also depend on y0, which is omitted in the notation because it

is fixed. It holds raux,t(z) ≤ r(z) (since pauxy0 (z) ≤ p(z)). Being pauxy0 (z) piece-wise linear

with three pieces, then also raux,t(z) is piece-wise linear with three pieces. Similarly

to (2.56b), let us now define the overestimate of εt(y0) as

εaux,t(y0) , − inf
z∈R

raux,t(z) = − min
z∈[yL,yR]

raux,t(z),

where the equality holds since the function raux,t(z) admits minimum in [yL, yR] (by

following the same reasoning used for r(z)). Since raux,t(z) ≤ r(z) for all z, the same

holds for the minimum of such functions over [yL, yR], from which we see that indeed

εaux,t(y0) ≥ εt(y0). Since raux,t(z) is linear in the interval [yL, yR], the minimum is

attained either at yL or at yR:

εaux,t(y0) = −min
{
raux,t(yL), raux,t(yR)

}
. (2.61)

Let us compute the value of the function at yL and yR, i.e.

raux,t(yL) = pauxy0 (yL)− yLpt′(y0)− p(y0) + y0p
t′(y0)

= p(y0) + p′(y0)(y
L − y0)− yLpt′(y0)− p(y0) + y0p

t′(y0)

= (p′(y0)− pt′(y0))(yL − y0),

and, similarly,

raux,t(yR) = (p′(y0)− pt′(y0))(yR − y0),

65

Distributed Primal Decomposition for Convex Optimization

which always have opposite sign since yL ≤ y0 ≤ yR. Thus, we can distinguish two cases.

If raux,t(yL) ≤ 0, then the minimum in (2.61) is attained at raux,t(yL) and therefore

εaux,t(y0) = −raux,t(yL) = −(p′(y0)− pt′(y0))(yL − y0)︸ ︷︷ ︸
≥0

= |p′(y0)− pt′(y0)|︸ ︷︷ ︸
≤η ∀t≥N

|yL − y0|︸ ︷︷ ︸
≤|ymin−ymax|

≤ η|ymin − ymax|, ∀t ≥ N.

Likewise, if raux,t(yR) ≤ 0, we obtain

εaux,t(y0) = −raux,t(yR) = −(p′(y0)− pt′(y0))(yR − y0) ≤ η|ymin − ymax|, ∀t ≥ N.

In either cases, it holds

εt(y0) ≤ εaux,t(y0) ≤ η|ymin − ymax|︸ ︷︷ ︸
β

, ∀t ≥ N.

which is independent of the chosen y0. Thus we conclude

0 ≤ εt ≤ max
y∈R

εt(y) ≤ max
y∈R

εaux,t(y) ≤ β, ∀t ≥ N. (2.62)

Since β > 0 is arbitrary, it follows that lim
t→∞

εt = 0. �

Note that, in order for Proposition 2.5 to hold, Assumption 2.6 is important. In-

deed, if Assumption 2.6 does not hold, it can be seen that in the previous proof that

Lemma 2.11 could not be applied, and thus one could use the fact that |pt′(y0)−p′(y0)| <
η. As a consequence, (2.62) would not be valid and it would not be possible to conclude

that limt→∞ ε
t = 0.

Main Result

Let us now provide the main theoretical result for the convergence analysis of Algo-

rithm 2. First, we formalize the assumption on the tie-break rule (cf. (2.52)).

Assumption 2.7 (Tie-break rule). There is a tie-break rule such that, at each iteration t ≥ 0,
each agent i ∈ {1, . . . , N} selects µti deterministically among all the Lagrange multipliers of
Problem (2.45). 4

This assumption is not restrictive in practice, since numerical solvers typically

execute a set deterministic actions to solve Problem (2.45). As such, they yield always

the same µti for a given yti . The convergence theorem is reported next.

66

2.6. Extension to Unknown Cost Functions

Theorem 2.3. Let Assumptions 2.1, 2.2, 2.6, 2.3 and 2.7 hold. Moreover, let µ? be an optimal
Lagrange multiplier of Problem (2.1) associated to the constraint

∑N
i=1 gi(xi) ≤ b and assume

M > ‖µ?‖1. Then, assuming the allocation vectors y0i are initialized such that
∑N

i=1 y
0
i = b,

the sequences {xti}t≥0 and {yti}t≥0 generated by Algorithm 2 for all i ∈ {1, . . . , N} are such
that

(i) the sequence {(yt1, . . . ytN)}t≥0 converges to an optimal solution of Problem (2.2);

(ii) limt→∞
∑N

i=1 fi(x
t
i) = f?, where f? is the optimal cost of (2.1);

(iii) every limit point of {(xt1, . . . xtN)}t≥0 is an optimal solution of (2.1).

Proof. We will use a line of proof similar to the one of Theorem 2.1 but without block ran-

domization. By Corollary 2.1, Problem (2.28) has the same optimal cost as Problem (2.1).

Recall that pti(yi) denotes the optimal cost of Problem (2.45) for all i ∈ {1, . . . , N} and

t ≥ 0. Let us consider a subgradient method applied to Problem (2.28). Instead of the

standard subgradient method, we replace the subgradients of p̃i
(
{ztij , ztji}j∈Ni

)
with

a subgradient of p̃ti
(
{ztij , ztji}j∈Ni

)
, pti

[∑
j∈Ni

(ztij − ztji)
]

and therefore consider the

update

zt+1
ij = ztij − αtp̃ti ′

(
{ztij , ztji}j∈Ni

)
∀(i, j) ∈ E , (2.63)

initialized at some z0 ∈ R|E|. As we will see in a moment, the update (2.63) is in fact an

ε-subgradient method applied to Problem (2.28). By Lemma 2.2, the subderivatives of

pti at
∑

j∈Ni
(ztij − ztji) are equal to

pti
′
[∑

j∈Ni

(ztij − ztji)
]

= −µti,

where µti is a Lagrange multiplier of Problem (2.48) (with yi =
∑

j∈Ni
(zij − zji)) associ-

ated to the constraint gi(xi) ≤ yi + ρi. Following the same reasoning of Theorem 2.1,

using the change of coordinates (2.26) we can show that the subderivatives of p̃ti are

equal to

p̃ti
′({ztij , ztji}j∈Ni

)
= µtj − µti, ∀(i, j) ∈ E ,

from which it follows that the update (2.63) can be rewritten as

zt+1
ij = ztij + αt(µtj − µti) ∀(i, j) ∈ E . (2.64)

By Proposition 2.5, together with Assumption 2.7 and Lemma 2.11, we finally see that

the update (2.64) is an ε-subgradient method applied to Problem (2.28), with εt = max
i
εti

67

Distributed Primal Decomposition for Convex Optimization

going to 0 as t goes to∞. Thus, by following the arguments of [11, Section 3.3] and by

also using the boundedness of the subderivatives (Lemma 2.8) and Assumption 2.3, we

conclude that the sequence {zt}t≥0 generated by (2.64) converges to an optimal solution

z? of Problem (2.28).

Let us rewrite the update (2.64) in terms of y by using the change of coordinate (2.26),

yt+1
i =

N∑

i=1

[∑

j∈Ni

(ztij − ztji) + b/N

]

= yti + αt
∑

j∈N t
i

(
µti − µtj

)
, (2.65)

where we also used the fact that the graph is undirected and that
∑N

i=1 y
t
i = b for all

t ≥ 0 (by induction). Note that (2.65) is exactly the algorithm update (2.46). Thus, we

conclude that the sequence {yt}t≥0 converges to y?, with components equal to

y?i =
∑

j∈Ni

(z?ij − z?ji) + b/N, i = 1, . . . , N.

Thus, point (i) follows by Corollary 2.1.

We have thus shown that the sequence {yt}t≥0 generated by Algorithm 2 converges

to an optimal solution of Problem (2.2) even if we replaced the original cost functions

fi(xi) with their estimation f ti (xi) in Problem (2.45). Points (ii) and (iii) can be proven by

following the arguments of Theorem 2.1 (in particular, here (2.42) holds by the uniform

convergence of f ti to fi, cf. Assumption 2.6). �

Let us briefly comment on the previous result. Note that the conclusions are identical

to those that we concluded in Section 2.3. However, we recall in the local problems (2.45)

the true objective function fi is replaced by an estimated version f ti that asymptoti-

cally approach the true one. Even though one can intuitively expect that the result of

Theorem 2.1 is recovered, the main contribution here consists of the digression on the

behavior of the primal functions and on the uniform convergence of dual functions.

2.6.4 Numerical Example

In this section, we show numerical computations to corroborate the theoretical results.

To estimate the cost functions, we consider a method similar to the one in [109], without

all the machinery to guarantee smoothness and strong convexity.

Formally, fix an agent i and consider K ∈ N samples z1i , . . . , z
K
i ∈ Xi. To build the

estimated function, we let the agent compute γ1, . . . , γK ∈ Rni by solving the feasibility

68

2.6. Extension to Unknown Cost Functions

problem

find γ1, . . . , γK

subj. to fi(z
h
i)+(z`i−zhi)>γh ≤ fi(z`i), h, ` = 1, . . . ,K, h 6= `

(2.66)

The purpose of Problem (2.66) is to compute the slope of the linear pieces that build

up the estimation of fi and has K variables and K(K − 1) convexity constraints. With

the solutions (γ1, . . . , γK) at hand, the oracle returns the estimated functions in the

following form

fKi (x) = max
k∈{1,...,K}

{
fi(z

k
i) + (x− zki)>γk

}
, i = 1, . . . , N. (2.67)

Note that fKi (·) is a piece-wise linear function. Moreover, fKi is the pointwise maximum

of a finite number of affine functions, its epigraph is a non-empty polyhedron, and

hence fKi is convex, closed and proper (see [114, Theorem 1]).

At each iteration, each agent i collects a new sample of the domain and solves (2.66).

As the size of Problem (2.66) grows at each iteration, we proceed as follows. Initially

the samples are independent and identically distributed in the whole domain. As

more points are added to the model, we start to reduce the space where sampling new

points into balls centered in the current approximated solution. In fact, restricting the

sampling space, force the model to refine the surrogate function in those area containing

the approximated solution. We experimentally tested that, thanks to the latter expedient,

it is possible to reduce the number of samples to keep in the memory. In fact, if the

cost function becomes interesting only near the minimum, from a certain point on,

estimating the part of the function far from the minimum becomes irrelevant, and all

samples far from the minimum can be canceled. By following this intuition, together

with the fact that the sample space is shrinking more and more around the potential

solution, the samples collected further away in terms of time can be removed from the

model. This relieves the function estimation, whose complexity is dependent on the

number of points used.

We consider a network of N = 10 agents in a 3-dimensional domain. We generate

a random Erdős-Rényi graph with edge probability 0.2. We consider quadratic local

functions fi and linear local constraints gi. Figure 2.16 shows the evolution of the

algorithm in terms of the cost error |f? −∑N
i=1 fi(x

t
i)|. Despite the use of surrogate cost

functions, the objective value converges to the optimal cost of the original problem with

true cost function, as we expected from the theoretical results.

69

Distributed Primal Decomposition for Convex Optimization

0 200 400 600 800 1000
10−1

100

101

102

103

104

iteration t

∣ ∣ ∣(
N ∑ i=
1

f i
(x

t i
)
−
f
?
) /f

?
∣ ∣ ∣

Figure 2.16: Evolution of the cost error for the numerical example with unknown cost functions.

70

Chapter 3

Distributed Primal Decomposition
for Mixed-integer Optimization

In this chapter, we consider Mixed-Integer Linear Programs (MILPs) with a constraint-

coupled structure. By relying on the results of Chapter 2, we design a distributed

solution procedure that allows agents in the network to compute a feasible (possibly

suboptimal) solution to the original MILP. We first introduce the distributed optimiza-

tion set-up together with some preliminaries. Then, we present our Distributed Primal

Decomposition for MILPs provide an asymptotic and finite-time analysis. We then

introduce another distributed algorithm for MILPs based on the so-called Benders De-

composition and discuss its convergence properties. Finally, we extend the framework

to general nonconvex programs. The results of this chapter are based on [23–26]

3.1 Literature Review

MILPs arise in several control contexts, such as distributed optimal control problems

where a large set of nonlinear control systems must cooperatively solve a common control

task and their states, outputs and/or inputs are coupled through a coupling constraint.

Here, the constraint-coupled structure results directly from the problem formulation,

and the integer constraints stem from the MILP approximation of the original optimal

control problem [7]. In [61] a Lagrange relaxation approach is used to decompose

MILPs arising in demand response control in smart grids. In [112] a heuristic for

embedded mixed-integer programming is studied to obtain approximate solutions. First

attempts to obtain a distributed approximate solution for MILPs are [51, 64]. Recently, a

distributed algorithm, based on cutting-planes, has been investigated in [117] to solve

a different class of MILPs with shared decision variable. A randomized approach for

robust mixed-integer programming has been developed in [32] for the same set-up.

Although these methods could be applied to our set-up, each agent would compute the

71

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

entire solution vector, thus incurring in scalability and privacy issues. A pioneering

work on fast, master-based parallel algorithms to find approximate solutions of our

problem set-up is [121]. Here the key idea is to tighten the coupling constraint and then

apply a dual decomposition method to get mixed-integer points violating the restricted

coupling constraint but not the original one. In [46], an improved iterative tightening

procedure has been considered to obtain enhanced performance guarantees. A fully

distributed implementation of the latter methodology is proposed in [45].

In distributed nonlinear optimal control, the optimization problem to be solved is a

general nonconvex problem. Let us first review works for the case in which nonconvexity

is in the cost function. In [14] a distributed stochastic gradient method with gossip

communication is analyzed. A distributed Frank-Wolfe algorithm with convergence

rate analysis is provided in [122], while [40] and [102] propose distributed gradient

tracking algorithms, based on successive convex approximations, for undirected and

directed networks (respectively). A more general set-up occurs when nonconvexity is

also in the feasible set. In [128], a distributed dual subgradient method to obtain a

an approximate solution is considered, whereas [119] proposes a parallel sequential

quadratic programming algorithm when nonconvexity is in the feasible set only. Most

works on distributed nonconvex optimization deal with problems that are coupled in

the cost function, while only few references (e.g. [119]) consider the set-up of distributed

control, in which the coupling among the systems is in the constraints.

3.2 Distributed MILP Set-up and Preliminaries

Let us start by introducing the Mixed-Integer Linear Programming set-up, together with

some preliminaries that act as building blocks for the development of our methodology.

3.2.1 Constraint-Coupled MILP

Let us consider a network of N agents aiming to solve the MILP

min
x1,...,xN

N∑

i=1

c>i xi

subj. to
N∑

i=1

Aixi ≤ b

xi ∈ Xmilp
i , i = 1, . . . , N,

(3.1)

where, for all i ∈ {1, . . . , N}, the decision vector xi has pi + qi components (thus

ci ∈ Rpi+qi) with pi, qi ∈ N and the local constraint set is of the form

Xmilp
i = Pi ∩ (Zpi × Rqi),

72

3.2. Distributed MILP Set-up and Preliminaries

for some nonempty compact polyhedron Pi ⊂ Rpi+qi . In Figure 3.1, we show an example

of the local mixed-integer set Xmilp
i .

xi2 ∈ R

xi1 ∈ Z

Pi

Xmilp
i

Figure 3.1: Two-dimensional example of the mixed-integers set Xmilp
i = Pi ∩ (Z× R). The black

hexagon is the polyhedron Pi and the dotted lines correspond to integers along the horizontal
axis. The resulting feasible set is the union of the blue vertical lines.

The decision variables are intertwined by S linear coupling constraints, described

by the matrices Ai ∈ RS×(pi+qi) and the vector b ∈ RS . We assume that Problem (3.1) is

feasible and denote by (x?1, . . . , x
?
N) an optimal solution with cost Jmilp =

∑N
i=1 c

>
i x

?
i . In

many control applications, the number of decision variables is typically much larger than

the number of coupling constraints. Therefore, we concentrate on large-scale instances

of Problem (3.1) satisfying N � S.

Since we consider a distributed context, each agent i is assumed to have a partial
knowledge of Problem (3.1) i.e. it knows only its local data Xmilp

i , ci, Ai and b. The

goal for each agent is to compute its portion x?i of an optimal solution of (3.1), by

means of neighboring communication and local computation. Agents communicate

according to a connected and undirected graph G = (V, E), where V = {1, . . . , N} is

the set of vertices and E ⊆ V × V is the set of edges. If (i, j) ∈ E , then also (j, i) ∈ E
and nodes i and j can exchange information. The neighbor set of agent i is Ni =

{j ∈ V | (i, j) ∈ E}. This assumption can be readily extended to randomized time-

varying graphs (cf. Section 2.3.1), however this is not the main focus of this chapter and

we prefer to keep the discussion technically simpler to present the results more clearly.

MILP (3.1) has a constraint-coupled structure similar to the one of Problem (2.1)

(with linear cost and constraints). However, the mixed-integer constraints considered

here introduce significant additional challenges that do not allow for the methodology

of the previous chapter. Indeed, Problem (3.1) is not convex and we cannot apply

the duality-based arguments of Section 2.2.3 (at least directly). To solve MILP (3.1),

one could employ enumeration schemes, such as branch-and-bound or cutting-plane

techniques, however this would not exploit its separable structure and would result into

a computationally intensive algorithm. In the next subsection, we recall an approximate

version of the problem that preserves its structure while allowing for the application of

decomposition techniques.

73

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

3.2.2 Linear Programming Approximation of the Target MILP

Following [45, 46, 121], let us consider a modified version of Problem (3.1) where the

right-hand side of the coupling constraint is restricted by a vector σ ≥ 0 and each

mixed-integer set Xmilp
i is replaced by its convex hull, denoted by conv(Xmilp

i). The

following convex problem is obtained

min
z1,...,zN

N∑

i=1

c>i zi

subj. to
N∑

i=1

Aizi ≤ b− σ

zi ∈ conv(Xmilp
i), i = 1, . . . , N,

(3.2)

where zi ∈ Rpi+qi for all i ∈ {1, . . . , N}. We introduced the symbol zi to clearly

distinguish mixed-integer variables xi ∈ Xmilp
i from their continuous counterparts

zi ∈ conv(Xmilp
i). An example of the convexified mixed-integer set is shown in Fig-

ure 3.2. Problem (3.2) is a Linear Program (LP) since the sets conv(Xmilp
i) are bounded

polyhedra [74].

xi2

xi1

conv(Xmilp
i)

Pi

Figure 3.2: Convex hull (shaded area) of the setXmilp
i from the example in Figure 3.1. The dashed

and dotted lines correspond to integers values on the horizontal axis. Note how conv(Xmilp
i) ⊂ Pi

is again a polyhedron but there are points in Pi that are not in conv(Xmilp
i).

Remark 3.1. In order to solve MILPs, several algorithms resort to the convex hull of the

constraint set. However, we point out that Problem (3.2) considers only the convex hulls

of the local constraint sets Xi. The constraint set of Problem (3.2), is not the convex hull

of the constraint set of MILP (3.1). Indeed, denoting X and Xlp the constraint sets of

MILP (3.1) and LP (3.2) (with σ = 0), in general it holds X ⊆ conv(X) ⊆ Xlp. This fact

is tightly linked to the properties of the Lagrangian dual problem of MILP (3.1) (see

also Appendix A.3.2). 4

The main point in solving the (convex) Problem (3.2) in place of the (nonconvex)

original MILP (3.1) is to reconstruct a feasible solution of (3.1) starting from a solution

of (3.2). During this process, it is often the case that satisfaction of the coupling

74

3.2. Distributed MILP Set-up and Preliminaries

constraints is lost. The restriction σ essentially creates a margin for violations and makes

sure that the reconstructed mixed-integer solution satisfies the (unrestricted) original

coupling constraint. Note that, if σ was zero, Problem (3.2) would be a relaxation

of Problem (3.1) and would be trivially feasible. However, as done in the related

approaches [45, 46, 121], at some point we will fix σ > 0 and we will need to explicitly

assume feasibility of Problem (3.2).

All the restriction-based approaches [45, 46, 121] are based on the following key

result, which is also the basis for our development.

Proposition 3.1. Let Problem (3.2) be feasible and let (z̄1, . . . , z̄N) be any vertex of its feasible
set. Then, there exists an index set IZ ⊆ {1, . . . , N}, with cardinality |IZ| ≥ N − S, such
that z̄i ∈ Xmilp

i for all i ∈ IZ. 4

An early proof is given in the reference [8], while a more recent proof can be found

in [121], which however refers to the solutions recovered from the Lagrangian dual of

Problem (3.2) (under the assumption of unique dual solution). For completeness, we

provide a self-contained proof in Section 3.6.1.

The powerful result in Proposition 3.1 is a consequence of the more general Shapley-

Folkman lemma on the Minkowski addition of sets. For any vertex (z1, . . . , zN) of

Problem (3.2), it guarantees that a large amount of blocks zi are mixed integer (recall

thatN � S). We will pursue the same idea of the inspiring restriction-based approaches,

that is, to compute an optimal vertex of Problem (3.2) and to change only those blocks

that are not already mixed integer. However, the most important novelty introduced by

our approach is the utilization of primal decomposition to solve Problem (3.2) instead

of the dual decomposition techniques employed by [45, 46, 121]. Notably, the different

decomposition scheme results in a large improvement of the solution performance and

relaxed problem assumptions if compared to competing duality-based approaches.1

Before getting into the details of the proposed approach, let us recall how the primal

decomposition approach applies to Problem (3.2). In particular, here we consider the

“vanilla” formulation of primal decomposition without applying the relaxation method

discussed in Section 2.2.3. The master problem reads

min
y1,...,yN

N∑

i=1

pi(yi)

subj. to
N∑

i=1

yi = b− σ

yi ∈ Yi, i = 1, . . . , N,

(3.3)

1Indeed, the larger is σ, the stronger is the assumption that Problem (3.2) is feasible. As discussed in
Section 3.3.3, the primal decomposition approach allows for an amount of restriction that is no worse
than [121]. In fact, numerical experiments highlight extremely lower restriction magnitudes, which, as a
byproduct, result also in much less suboptimality of the computed solutions.

75

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

where, for each i ∈ {1, . . . , N}, pi : Yi → R is the optimal cost of the i-th subproblem

pi(yi) = min
zi

c>i zi

subj. to Aizi ≤ yi
zi ∈ conv(Xmilp

i),

(3.4)

and for all i ∈ {1, . . . , N} the set Yi ⊆ RS is the set of yi for which Problem (3.4)

is feasible, i.e. Yi = {yi | ∃zi ∈ conv(Xmilp
i) with Aizi ≤ yi}. Similarly to LP (3.2),

Problem (3.4) is a linear program. For convenience, let us recall the equivalence between

LP (3.2) and Problems (3.3)–(3.4) in the following lemma.

Lemma 3.1 (Lemma 2.1). Let Problem (3.2) be feasible. Then,

(i) the optimal costs of Problems (3.2) and (3.3) are equal;

(ii) if (y?1, . . . , y
?
N) is an optimal solution of (3.3) and, for all i, z?i is an optimal solution

of (3.4) with yi = y?i , then (z?1 , . . . , z
?
N) is an optimal solution of (3.2). 4

3.3 Distributed Primal Decomposition for MILPs

In this section we propose a novel distributed algorithm to compute a feasible solution

(possibly suboptimal) of MILP (3.1). We begin by describing the distributed algorithm.

Then, we provide an analysis of the proposed approach and show numerical computa-

tions on randomly generated MILPs. The results of this section are based on [23, 24].

3.3.1 Distributed Algorithm Description

Let us introduce our Distributed Primal Decomposition for MILPs. Informally, the

algorithm is derived from the Distributed Primal Decomposition algorithm for convex

problems (cf. Section 2.2.5) applied to Problem (3.2), with an additional final step that

adapts the computed solution to satisfy the mixed-integer constraints.

Each agent i maintains a local allocation estimate yti ∈ RS , initialized such that∑N
i=1 y

0
i = b − σ. At each iteration t ≥ 0, the vector yti is updated according to (2.12)–

(2.13). After Tf > 0 iterations, the agent computes a tentative mixed-integer solution

based on the last computed allocation yTfi with (3.7), where the notation lex-min denotes

that vi, ξi and xi are minimized in a lexicographic order [86]. This formulation of the

mixed-integer recovery procedure is convenient as it allows for a concise statement of

the algorithm. In Section 3.3.2 we discuss in more detail the meaning of Problem (3.7)

and an operative way to solve it. Algorithm 3 summarizes the steps from the perspective

of agent i.

76

3.3. Distributed Primal Decomposition for MILPs

Algorithm 3 Distributed Primal Decomposition for MILPs

Initialization: set Tf > 0 and y0i such that
∑N

i=1 y
0
i = b− σ

Repeat for t = 0, 1, . . . , Tf − 1

Compute µti as a Lagrange multiplier of

min
zi,ρi

c>i zi +Mρi

subj. to µi : Aizi ≤ yti + ρi1

zi ∈ conv(Xmilp
i), ρi ≥ 0

(3.5)

Receive µtj from j ∈ Ni and update

yt+1
i = yti + αt

∑

j∈Ni

(
µti − µtj

)
(3.6)

Return xTfi as optimal solution of

lex-min
vi,ξi,xi

vi

subj. to c>i xi ≤ ξi
Aixi ≤ yTfi + vi1

xi ∈ Xmilp
i , vi ≥ 0.

(3.7)

A sensible choice for y0i is y0i = (b−σ)/N . As shown in Chapter 2 (cf. Proposition 2.1),

the local allocation vectors {yt1, . . . , ytN}t≥0 converge asymptotically to an optimal solu-

tion (y?1, . . . , y
?
N) of Problem (3.3). Moreover, owing to Proposition 3.1, the asymptotic

solution z?i of Problem (2.12) is already mixed integer for at least N − S agents. As for

the remaining (at most S) agents for which z?i /∈ Xmilp
i , a recovery procedure is needed to

guarantee that they also have have a mixed-integer solution. This is done via step (3.7).

Since in practice we can only allow for a finite number of iterations (denoted with Tf),

in general the final allocation yTfi differs from y?i . Thus, we let the recovery step (3.7)

be performed by all the agents (not only those agents for which z?i /∈ Xmilp
i). In the next

subsections, we provide an asymptotic and finite-time analysis of Algorithm 3.

Remark 3.2 (Initial coordination). In order to run Algorithm 3, some initial coordination

among the agents is required. Specifically, the agents first need to compute the restriction

σ as specified in Section 3.3.3. Then, they must agree on a valid value of the parameter

M as specified in Section 2.3.4. Note that both of these operations can be performed in

a completely distributed way (see the respective sections). 4

Remark 3.3. From an implementation point of view, an explicit description of conv(Xmilp
i)

in terms of inequalities might not be available and agents may not be able to compute

a Lagrange multiplier of Problem (3.5). Nevertheless, an estimate of µti can still be

77

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

obtained by either using column generation techniques to approximate conv(Xmilp
i) (see

e.g. [120]) or by locally running a dual subgradient method on (2.12), which involves the

solution of (small) local MILPs without ever computing the inequalities corresponding

to conv(Xmilp
i). Indeed, a subgradient of the dual function of (3.5) at a given µ̄i can be

computed as Aix̄i − yti , with x̄i an optimal solution of

min
xi∈Xmilp

i

(c>i + µ̄>i Ai)xi = min
zi∈conv(Xmilp

i)
(c>i + µ̄>i Ai)zi,

where equality follows by linearity of the cost. See also Remark 3.8 for an alternative

local procedure based on cutting planes. 4

3.3.2 Discussion on Mixed-Integer Solution Recovery

In this subsection, which is of prominent importance for our analysis, we describe in

more detail the approach behind Problem (3.7) and how it allows agents to recover a

“good” solution of MILP (3.1). We first describe the procedure at steady state and then

show how we cope with the finite number of iterations Tf .

Let (z?1 , . . . , z
?
N) be an optimal solution of the LP (3.2) and let (y?1, . . . , y

?
N) be a

corresponding allocation of the master problem (3.3) computed asymptotically by

Algorithm 3, which satisfies

Aiz
?
i ≤ y?i , ∀i ∈ {1, . . . , N}.

A straight approach to obtain a mixed-integer solution from the allocation y?i would be

to solve for all i the optimization problem

min
xi

c>i xi

subj. to Aixi ≤ y?i
xi ∈ Xmilp

i .

(3.8)

Problem (3.8) is a (small) local MILP that should be compared to the convex subrob-

lem (3.4). Depending on the allocation constraint Aixi ≤ y?i , Problem (3.8) may be

feasible or not. In view of Proposition 3.1, at least N − S blocks z?i of optimal solution

of the LP (3.2) are already mixed-integer and thus optimal for the local MILPs (3.8).

Recall that N � S, thus the majority of subproblems (3.8) would admit optimal solution,

while the total number of (possibly) infeasible instances would be at most S. If (3.8)

is infeasible for some agent i, we let the agent relax the allocation constraint and find

a mixed-integer vector with minimal violation. In Figure 3.3, we provide a pictorial

representation of this procedure.

The procedure just outlined is entirely encoded in the lex-min minimization (3.7).

78

3.3. Distributed Primal Decomposition for MILPs

x∞
i

Xmilp
i

min

(a) Agent i is one of the agents for which
x∞i = z?i ∈ Xmilp

i . Thus, Problem (3.8)
is feasible and admits an optimal solution
(red dot).

x∞
i

Xmilp
i

min

(b) In this case the solution on the convex
hull z?i is not mixed integer (transparent
gray dot), however Problem (3.8) is still fea-
sible and admits an optimal solution (red
dot).

?
Xmilp

i

min

(c) The solution on the convex hull z?i is not
mixed integer (transparent gray dot) and
there are no mixed-integer solutions. In
this case Problem (3.8) is infeasible.

x∞
i

Xmilp
i

min

(d) If scenario (c) occurs, the constraint
Aizi ≤ y?i is enlarged just enough by v∞i 1
to include the closest mixed-integer vector
(red dot).

Figure 3.3: Illustration of the three possible scenarios for Problem (3.8). The local set is Xmilp
i =

Pi ∩ (Z × R), where Pi is the gray hexagon and Xmilp
i is the union of the blue vertical stripes

(see Figure 3.1). We assume the allocation constraint Aizi ≤ y?i has two components, which
are depicted with the black lines. The shaded gray area is the feasible part for the allocation
constraint when intersected with conv(Xmilp

i) (see Figure 3.2). The resulting feasible set of
Problem (3.8) (if not empty) is denoted with solid blue vertical lines.

To see this, let us now show how to operatively solve (3.7) with the asymptotic solution

y?i in place of yTfi . First, the needed violation of Aixi ≤ y?i is determined by computing

v∞i as the optimal cost of

min
vi,xi

vi

subj. to Aixi ≤ y?i + vi1

xi ∈ Xmilp
i , vi ≥ 0.

(3.9)

Then, the value of vi is fixed to v∞i and x∞i is computed as the optimal solution of

min
xi

c>i xi

subj. to Aixi ≤ y?i + v∞i 1

xi ∈ Xmilp
i .

(3.10)

Compared to Problem (3.8), the sequence of problems (3.9)–(3.10) is also able to handle

79

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

infeasible instances. If Problem (3.8) is feasible, then v∞i = 0 and the entire procedure is

equivalent to solving (3.8) directly. Instead, if Problem (3.8) is infeasible, a violation v∞i 1

of the allocation constraint is permitted. We point out that, due to the violations, the

aggregate mixed-integer solution (x∞1 , . . . , x
∞
N) may exceed the total available resource

of Problem (3.2), namely b− σ (which we recall to be a restricted version of the original

one). In the next subsection we show how to design the restriction σ to ensure that the

original constraint
∑N

i=1Aix
∞
i ≤ b is never exceeded.

Now, let us intuitively discuss how this approach can be adapted to cope with the

finite number of iterations (a detailed analysis of this approach is given in Section 3.3.5).

The local allocation yti can be thought of being composed of two terms, i.e. yti =

y?i + ∆t
i1, where ∆t

i vanishes. For this reason, when agent i solves Problem (3.7) (or the

equivalent problems (3.9)–(3.10)), we should expect that the needed violation tends to

the asymptotic one, be it zero or nonzero. That is, the solution of Problem (3.9) at a

given iteration t satisfies vti ≤ v∞i + ∆t
i. Hence, step (3.7) must be performed by all the

agents. By employing an additional (small) restriction, it is possible to guarantee that –

after a sufficiently large number of iterations – the total violation is embedded into the

restriction (see Section 3.3.5).

3.3.3 Design of the Coupling Constraint Restriction

In this subsection, we discuss a design procedure for the restriction σ. As before, we

concentrate on the “asymptotic” case, while the extension to finite time is given in

Section 3.3.5. As already discussed, the purpose of the restriction σ is to compensate for

possible violations caused by Problem (3.7). However, it is desirable to have σ as small

as possible. Indeed, the larger is σ, the higher is the optimal cost of the LP (3.2), which

in turn deteriorates the cost of the reconstructed mixed-integer solution (in the limit, if

σ is too large the LP (3.2) would become infeasible and the entire approach would not

be applicable at all).

We now propose a method to find a small a-priori restriction to guarantee feasibility

of the computed solution. Intuitively, the restriction must take into account the worst-

case violation due to the mismatch between the reconstructed solution (x∞1 , . . . , x
∞
N)

and the LP solution (z?1 , . . . , z
?
N). Such worst case occurs when all the agents for which

z?i /∈ Xmilp
i have infeasible instances of (3.8), leading to a positive violation v∞i > 0.

Thus, we define the a-priori restriction σ∞ ∈ RS as

σ∞ = S · max
i∈{1,...,N}

σloci , (3.11)

where the term S is due to Proposition 3.1, σloci ∈ RS is the worst-case violation of

agent i (to be defined soon) and max is intended component wise (we stick to this

convention from now on also for the min operator). Let us quantify σloci . Recall that

80

3.3. Distributed Primal Decomposition for MILPs

the needed violation is computed through Problem (3.10). Then, we essentially need to

characterize the mismatch between y?i (allocation of the convex problem) and Aixi for

any feasible xi ∈ Xmilp
i (mixed-integer vector). Since conv(Xmilp

i) is bounded, we define

a lower-bound vector, denoted by `i ∈ RS , for any admissible local allocation yi,

`i , min
xi∈conv(Xmilp

i)
Aixi = min

xi∈Xmilp
i

Aixi, (3.12)

where the equality follows by linearity of the cost. By construction, it holds `i ≤ Aiz?i ≤
y?i . Then, the worst-case violation that may occur is vmaxi 1, where vmaxi is the optimal

cost of

min
vi,xi

vi

subj. to Aixi ≤ `i + vi1

xi ∈ Xmilp
i , vi ≥ 0.

(3.13)

Note that Problem (3.13) allows each agent i to find the “first” feasible vector, i.e. with

minimal resource usage. In order to reduce possible conservativeness of the violation,

which can occur when vmaxi > maxxi∈Xmilp
i

[Aixi − `i]s for some component s of the

coupling constraint, the computation of σloci can be replaced by the saturated version

σloci = min
{
vmaxi 1, max

xi∈Xmilp
i

(Aixi − `i)
}
.

In numerical computations, we have found that usually vmaxi � maxxi∈Xmilp
i

[Aixi − `i]s.
In such a case, this last step is not necessary and one could directly define σloci = vmaxi 1.

We point out that the computation of σ∞ must be performed in the initialization

phase, which can be also carried out in a fully distributed way by using a max-consensus

algorithm. In Figure 3.4, we illustrate an example of the restriction.

Remark 3.4. In [121], an alternative approach based on dual decomposition is explored

to compute a feasible solution for MILP (3.1). The restriction proposed in [121] is

σdd = S · max
i∈{1,...,N}

max
xi∈Xmilp

i

(Aixi − `i). (3.14)

The i-th term max
xi∈Xmilp

i

(Aixi − `i) may be overly conservative (especially for large sets

Xmilp
i) and in our approach it is replaced with σloci , which is the resource utilization

of the feasible vector closest to `i and, intuitively, does not grow with the size of Xmilp
i .

Independently of the problem at hand, it can be easily seen that σ∞ ≤ σdd. 4

81

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

0 needed violation

coupling
constraint 1

coupling
constraint 2

σloc
1σloc

2σloc
3 σloc

4

agent 1
agent 2
agent 3
agent 4

Figure 3.4: Pictorial representation of the procedure to compute the restriction for N = 4 agents
and S = 2 coupling constraints. Each bar represents the quantity [Aixi − `i]s at an optimal
solution of (3.13), which is the violation associated to the first feasible vector with minimal
resource usage. The four dotted lines represent vmaxi for i = 1, . . . , 4, where we also assumed
σloc
i = vmaxi 1.

3.3.4 Asymptotic Analysis

Let us now provide a theoretical analysis of Algorithm 3. We start in this section by

providing asymptotic results, while in the next section we discuss finite-time results.

We will work under the following simplifying assumption.

Assumption 3.1. For a given σ ≥ 0, the optimal solution of Problem (3.2) is unique. 4

This assumption ensures that the optimal solution of (3.2) is a vertex (hence Proposi-

tion 3.1 applies) and can be guaranteed by simply adding a small, random perturbation

to the cost vectors ci. Notice that Assumption 3.1 is also needed in dual decomposition

approaches such as [45, 46, 121], however, dual decomposition requires also uniqueness

of the dual optimal solution of Problem (3.2), while our approach is less demanding

since this is not necessary.

In this section, we proceed under the assumption that σ = σ∞ as in (3.11) and that

the algorithm is executed until convergence to (y?1, . . . , y
?
N), i.e. an optimal solution of

Problem (3.3) (recall that steps (2.12)–(2.13) implement the distributed algorithm in

Section 2.2.5 applied to Problem (3.2), so that Proposition 2.1 (ii) applies). The next

theorem shows that the asymptotic solution computed by Algorithm 3 is feasible for the

target MILP (3.1).

Theorem 3.1 (Feasibility). Let σ = σ∞ as in (3.11), and let Problem (3.2) be feasible and
satisfy Assumption 3.1. Let (y?1, . . . , y

?
N) be an optimal solution of Problem (3.3). Then, the

vector (x∞1 , . . . , x
∞
N), with each x∞i optimal solution of (3.7) with yti = y?i , is feasible for

MILP (3.1), i.e. x∞i ∈ Xmilp
i for all i ∈ {1, . . . , N} and

∑N
i=1Aix

∞
i ≤ b. 4

The proof is provided in Section 3.6.2.

82

3.3. Distributed Primal Decomposition for MILPs

Remark 3.5. The proof of Theorem 3.1 reveals that the same result can be obtained

by using an allocation (y1, . . . , yN) associated to any vertex of the feasible set of Prob-

lem (3.2) (rather than an optimal allocation (y?1, . . . , y
?
N)). Proposition 3.1 can still be

applied and the proof remains unchanged. 4

Theorem 3.1 guarantees that the computed solution is feasible for the target MILP (3.1),

but, in general, there is a certain degree of suboptimality. In the following, we provide

suboptimality bounds under Slater’s constraint qualification for LP (3.2).

Assumption 3.2. For a given σ > 0, there exist vectors ẑ1 ∈ conv(Xmilp
1), . . . , ẑN ∈

conv(Xmilp
N) that satisfy

ζ , min
s∈{1,...,S}

[
b− σ −

N∑

i=1

Aiẑi

]
s
> 0, (3.15)

where [·]s extracts the s-th component. The cost associated to (ẑ1, . . . , ẑN) is denoted by
J sl =

∑N
i=1 c

>
i ẑi. 4

The following result establishes an a-priori suboptimality bound on the mixed-integer

solution with σ = σ∞ as in (3.11).

Theorem 3.2 (A-Priori Suboptimality Bound). Consider the same assumptions and quan-
tities of Theorem 3.1 and let also Assumption 3.2 hold. Then, (x∞1 , . . . , x

∞
N) satisfies the

suboptimality bound
∑N

i=1 c
>
i x
∞
i − Jmilp ≤ B, where Jmilp is the optimal cost of (3.1) and

B is defined as

B ,

(
S +

N‖σ∞‖∞
ζ

)
max

i∈{1,...,N}
γi, (3.16)

with ζ defined in (3.15), and

γi , max
xi∈Xmilp

i

c>i xi − min
xi∈Xmilp

i

c>i xi, i ∈ {1, . . . , N}.

The proof is provided in Section 3.6.2.

Note that, although the bound provided by Theorem 3.2 is formally analogous to

[121, Theorem 3.3], there is an implicit difference due to the restriction values (cf.

Remark 3.4). In particular, our bound is tighter since σ∞ is less than or equal to the

restriction proposed by [121]. An even tighter bound can be derived by using the steady-

state solution of the algorithm and computing also the primal solution of (2.12) for all i.

For this reason, we call this bound a posteriori, since it depends on the solution of (3.2)

computed by Algorithm 3.

83

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

Corollary 3.1 (A-Posteriori Suboptimality Bound). Consider the same assumptions and
quantities of Theorem 3.2. Then,

∑N
i=1 c

>
i x
∞
i − Jmilp ≤ B′, where B′ is defined as

B′ ,
∑

i∈IR

(c>i x
∞
i − c>i z?i) +

‖σ∞‖∞
ζ

(
J sl −

N∑

i=1

c>i z
?
i

)
, (3.17)

with ζ and J sl defined in Assumption 3.2 and IR containing the indices of agents such that
z?i /∈ Xmilp

i (|IR| ≤ S).

Proof. It is sufficient to follow the same line of Theorem 3.2, but stopping the proof of

(i) at (3.49) and stopping the proof of (ii) at (3.50). �

3.3.5 Finite-time Analysis

Let us now provide a finite-time analysis of the distributed algorithm. To this end, we

assume that the restriction is equal to an enlarged version of the asymptotic restriction

in (3.11), i.e.

σft = σ∞ + δ1, (3.18)

for an arbitrary δ > 0. As it will be clear, the purpose of the additional restriction δ1 is to

compensate the distance of the estimated local allocations yti to the optimal ones y?i . We

assume Problem (3.2) is feasible and that Assumption 3.1 holds with this new restriction.

We provide two results that extend the results of Section 3.3.4 to a finite-time setting.

Let us recall the assumption on the step size.

Assumption 3.3. The step-size sequence {αt}t≥0, with each αt ≥ 0, satisfies
∑∞

t=0 α
t =∞,∑∞

t=0

(
αt
)2
<∞. 4

At a high level, finite-time feasibility hinges upon the fact that the allocation se-

quence {yt1, . . . , ytN}t≥0 approaches an optimal allocation. Eventually, the distance of

the current allocation to the optimal one can be embedded in the additional restriction

δ. The next theorem formalizes this result.

Theorem 3.3 (Finite-time feasibility). Let σ = σft as in (3.18), for some δ > 0, and let
Problem (3.2) be feasible and satisfy Assumption 3.1. Consider the mixed-integer sequence
{xt1, . . . , xtN}t≥0 generated by Algorithm 3 under Assumption 3.3, with

∑N
i=1 y

0
i = b− σft.

There exists a sufficiently large time Tδ > 0 such that the vector (xt1, . . . , x
t
N) is a feasible

solution for Problem (3.1), i.e. xti ∈ Xmilp
i for all i ∈ {1, . . . , N} and

∑N
i=1Aix

t
i ≤ b, for all

t ≥ Tδ. 4

The proof is provided in Section 3.6.2.

84

3.3. Distributed Primal Decomposition for MILPs

Operatively, Theorem 3.3 can be applied to Algorithm 3 by setting a sufficiently

large number of iterations Tf ≥ Tδ. It remains open to determine an upper bound of

Tδ a priori, however from the proof it emerges that the value of Tδ essentially depends

on the convergence rate of the distributed primal decomposition algorithm for convex

problems applied to (3.2). Specifically, Tδ is the number of iterations required to reach

a δ-optimal allocation. In principle, the smaller is δ, the longer it takes to reach the

time Tδ for which the mixed-integer vector (xt1, . . . , x
t
N) satisfies the coupling constraint

for all t ≥ Tδ. Next, we provide a suboptimality bound for the solution computed by

Algorithm 3.

Theorem 3.4 (Finite-time suboptimality bound). Consider the same assumptions and
quantities of Theorem 3.3 and let also Assumption 3.2 hold. Then, there exists a time Tδ > 0

such that the vector (xt1, . . . , x
t
N) satisfies the bound

∑N
i=1 c

>
i x

t
i − Jmilp ≤ Bt for all t ≥ Tδ,

with Bt being

Bt ,
N∑

i=1

(c>i x
t
i − Jlp,t

i) + δ
N∑

i=1

‖µti‖1 + Γ‖σft‖∞, (3.19)

where Jmilp is the optimal cost of (3.1), Jlp,t
i and µti are the optimal cost and a Lagrange

multiplier of (2.12) at time t, Γ = N
ζ

∑N
i=1

(
max

xi∈Xmilp
i

c>i xi− min
xi∈Xmilp

i

c>i xi

)
, and ζ is associated

to any Slater point (cf. Assumption 3.2).

The proof is provided in Section 3.6.2.

We point out that, differently from the asymptotic case, to compute the bound (3.19)

agents do not need the optimal solution of Problem (2.12) but only the optimal cost

Jlp,t
i . This can be obtained as a byproduct of a local dual subgradient method (see also

Remark 3.3). Notice also that the bound (3.19) is “a posteriori” (i.e. it depends on the

computed solution). If an a-priori bound with restriction σft is desired, one can still

apply Theorem 3.2 with σft in place of σ∞.

3.3.6 Monte Carlo Numerical Computations

In this section, we provide a computational study on randomly generated MILPs to

compare Algorithm 3 with [121]. We consider large-scale problems with a total of 4500

optimization variables (3000 are integer and 1500 are continuous).

There are N = 300 agents and S = 5 coupling constraints. The local constraints

Xmilp
i are subsets of Z10 × R5 satisfying Dixi ≤ di, where Di and di ∈ R20 have random

entries in [0, 1] and [20, 40] respectively. Box constraints −601 ≤ xi ≤ 601 are added

to ensure compactness. The cost vector is ci = D>i ĉi, where ĉi has random entries in

[0, 5]. As for the coupling, the matrices Ai are random with entries in [0, 1] and the

resource vector b ∈ R5 is random with values in two different intervals. Specifically, we

85

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

first pick values in [−20N,−15N], which results in a “loose” b, then we pick values in

[−180N,−175N], which results in a “tight” b.

A total of 100 MILPs with loose b and 100 MILPs with tight b are generated. For each

problem, we check feasibility of problem (3.2) for both the asymptotic restriction of

our method (3.11) and the restriction in [121]. Then, both algorithms are executed up

to asymptotic convergence to evaluate the mixed-integer solution suboptimality. The

results are summarized in Figures 3.5 and 3.6, where the restriction size is computed

as ‖σ‖/‖b‖ and the suboptimality is (over-)estimated as
(∑N

i=1 c
>
i x
∞
i − Jlp

)
/Jlp, with

Jlp being the optimal cost of (3.2). In the figure, the caption “number of solvable

problems” indicates the number of instances for which Problem (3.2) is feasible. For

loose b, both methods are always applicable but our approach provides better solution

performance than [121]. For tight resource vectors, our method is still applicable in the

70% of the cases, and provides an average suboptimality of 6.91%, while the approach

in [121] cannot be applied due to infeasibility of Problem (3.2) (caused by the too large

restrictions). It is worth noting that the values of tight b cannot be further reduced.

Indeed, for smaller values of b, the target MILP (3.1) becomes infeasible.

Finally, we show the evolution of Algorithm 3 on a single problem instance over

an Erdős-Rényi graph with edge probability 0.2. Figure 3.7 shows the value of the

coupling constraints along the algorithmic evolution, with δ = 0.5 (cf. the finite-time

restriction (3.18)). Note that feasibility is achieved in finite time, within approx. 400

iterations, confirming Theorem 3.3.

Algorithm 3 [121]
b loose b tight b loose b tight

num. of solvable problems 100% 70% 100% 0%
size of restriction 7.4% 0.72% 66.9% 6.63%

suboptimality of solution 0.06% 6.91% 0.7% N.A.

Figure 3.5: Monte Carlo simulations on random MILPs: performance comparison of Algorithm 3
and of the method in [121]. The second and the third row are averaged over the Monte Carlo
trials. See the text for further details.

3.4 Distributed Benders Decomposition for MILPs

The solution method introduced in the previous section is independent of the algorithmic

strategy used to solve the primal decomposition master Problem (3.3). Indeed, the

asymptotic results in Section 3.3.4 are based on the assumption that an optimal allocation

is known, however it is not necessary that it is computed with the Distributed Primal

Decomposition algorithm for convex problems discussed in Section 2.2.5. In this section,

we propose a new distributed algorithm that computes a feasible solution to the original

86

3.4. Distributed Benders Decomposition for MILPs

4 7 10
0

10

20

30

40

50

Fr
eq

u
en

cy
[%

]

60 67 74
0

10

20

30

40

50

Restriction [%]

Fr
eq

u
en

cy
[%

]

Algorithm 1
Dual decomp.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Solution suboptimality [%]

Fr
eq

u
en

cy
[%

]

Algorithm 1
Dual decomp.

Figure 3.6: Monte Carlo simulations on random MILPs with loose b: comparison histograms of
Algorithm 3 and of the method in [121]. See the text for details.

0 200 400 600 800 1,000

0

1

2

3
·104

Iteration t

N ∑ i=
1

A
ix

t i
−

b

Figure 3.7: Components of the coupling constraint associated to (xt1, . . . , x
t
N) generated by

Algorithm 3 on a random MILP. In this simulation we forced the agents to compute a mixed-
integer solution according to (3.7) at every iteration. The red arrow indicates the iteration Tδ in
which the solution becomes definitively feasible.

87

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

MILP combining the strategy described in the previous sections with an alternative

approach to solve the master Problem (3.3). Differently from Algorithm 3, the new

distributed algorithm is based on the so-called cutting-plane technique, which allows

for finite-time convergence to an optimal allocation and allows the agents to compute

a feasible solution to the MILP (3.1) in finite time without resorting to the additional

restriction discussed in Section 3.3.5.

Let us consider again the mixed-integer linear program (3.1), recalled here

min
x1,...,xN

N∑

i=1

c>i xi

subj. to
N∑

i=1

Aixi ≤ b

xi ∈ Xmilp
i , i = 1, . . . , N.

We maintain the same assumptions on the information sparsity as in Section 3.2.1. A

relevant feature of the new distributed algorithm is that it can work under much more

general assumptions on the communication network than Algorithm 3. In particular,

in this section we assume that the N agents communicate according to a time-varying

digraph Gtc = (V, E t), where t denotes time, V = {1, . . . , N} is the vertex set and

E t ⊆ V × V is the edge set at time t. We will denote by N t
i the in-neighbor set of agent

i at time t, i.e. N t
i = {j | (j, i) ∈ E t}. We make the following assumption on the graph

connectivity.

Assumption 3.4. The communication graph Gtc is jointly strongly connected, i.e. the graph
Gt∞ , ({1, . . . , N}, E t∞), with E t∞ =

⋃∞
τ=t Eτ , is strongly connected for all t ≥ 0. 4

Assumption 3.4 has an extremely broad scope. Notably, it guarantees that the new

algorithm can also be implemented asynchronously (more details will be given in

Section 3.4.5). Moreover, it also ensures that the algorithm can work in unreliable

communication networks, and, in particular, in networks subject to packet losses.

3.4.1 Review of Benders Decomposition

The new distributed algorithm is based on the so-called Benders decomposition, which

has tight connections with the primal decomposition method discussed so far. We

now recall the basics of this technique applied to our problem using the formalism

of [13, Section 6.5].

Linear Programming Reformulation of Master Problem

Similarly to Section 3.2.2, the decomposition scheme is applied to the LP approxi-

mation (3.2) by introducing a hierarchical problem structure. The master problem

88

3.4. Distributed Benders Decomposition for MILPs

is

min
y1,...,yN

N∑

i=1

pi(yi)

subj. to
N∑

i=1

yi = b− σ,
(3.20)

where, for all i ∈ {1, . . . , N}, pi(yi) : RS → R is again equal to the optimal cost of the

i-th subproblem

pi(yi) = min
zi

c>i zi

subj. to Aizi ≤ yi
zi ∈ conv(Xmilp

i).

(3.21)

together with the convention that pi(yi) = ∞ if Problem (3.21) is infeasible (for this

reason this time we define the function pi with codomain in the extended reals R). Of

course, in solving Problem (3.20), we should only consider those (y1, . . . , yN) for which

none of the pi(yi) are equal to infinity.

Let us show more deeply the structure of Problem (3.20). To this end, for each fixed

yi ∈ RS , consider the dual problem of (3.21), i.e.

max
µi≥0

[
− y>i µi + min

zi∈conv(Xmilp
i)

(
(ci +A>i µi)

>zi
)]
. (3.22)

By adding an epigraph variable to Problem (3.22) (Appendix A.1), we obtain the equiva-

lent formulation

max
µi,ηi

ηi − y>i µi

subj. to µi ≥ 0

ηi ≤ min
zi∈conv(Xmilp

i)

(
(ci +A>i µi)

>zi
)
.

(3.23)

Due to linearity of the cost in the inner minimization, we may restate the last constraint

as

ηi ≤ min
zi∈vert(Xmilp

i)

(
(ci +A>i µi)

>zi
)
, (3.24)

where vert(Xmilp
i) is the set of vertices of conv(Xmilp

i), which has a finite number of

elements, denoted in the following by x̂ji for j ∈ Ji , {1, . . . , |vert(Xmilp
i)|}. The scalar

ηi is less than or equal to the minimum of (ci + A>i µi)
>zi over vert(Xmilp

i) if and only

if it is less than or equal to the value of such function for each element in vert(Xmilp
i).

89

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

Therefore, we obtain the following reformulation of Problem (3.23),

max
µi,ηi

ηi − y>i µi

subj. to µi ≥ 0

ηi ≤ (ci +A>i µi)
>x̂ji , ∀ j ∈ Ji.

(3.25)

Note that the last formulation (3.25) of the dual problem is a linear program and its

optimal cost is equal to pi(yi) (by LP strong duality). Let Pi be the feasible set of

Problem (3.25),

Pi =
{

(µ, ηi) | µi ≥ 0 and ηi ≤ (ci +A>i µi)
>x̂ji , ∀j ∈ Ji

}
.

Differently from the primal formulation (3.21), the dual feasible set Pi does not depend

on the value of yi. Let vji = (vjµi , v
j
ηi), j ∈ Vi be the vertices and wji = (wjµi , w

j
ηi), j ∈ Ri

be a complete set of extreme rays of Pi. For each fixed yi, there are two possibilities

to consider: either (i) Problem (3.21) is feasible and admits an optimal solution in

the compact set conv(Xmilp
i), in which case the dual problem (3.25) also admits an

optimal solution, or (ii) Problem (3.21) is infeasible and Problem (3.22) is unbounded.

To guarantee that Problem (3.22) is not unbounded we impose

wjηi − y>i wjµi ≤ 0, ∀ j ∈ Ri. (3.26)

If (3.26) holds, then pi(yi) <∞ is the optimal cost of Problem (3.22) and the optimum

must be attained at a vertex of Pi, in particular,

pi(yi) = max
j∈Vi

(
vjηi − y>i vjµi

)
.

Equivalently, pi(yi) is the smallest number νi such that

vjηi − y>i vjµi ≤ νi, ∀ j ∈ Vi. (3.27)

The previous two characterizations (3.26) and (3.27) can be embedded in the master

problem (3.20), by which we finally obtain the linear programming formulation of (3.20),

min
y1,...,yN
ν1,...,νN

N∑

i=1

νi

subj. to
N∑

i=1

yi = b− σ

vjηi − y>i vjµi ≤ νi, ∀ j ∈ Vi, i ∈ {1, . . . , N}
wjηi − y>i wjµi ≤ 0, ∀ j ∈ Ri, i ∈ {1, . . . , N}.

(3.28)

90

3.4. Distributed Benders Decomposition for MILPs

In the following, we will compactly denote the overall optimization variable of (3.28) by

using the boldface symbols (y,ν) ∈ RN(S+1). The distributed algorithm introduced next

is based on the solution of the master problem in this last formulation (3.28). However,

we point out that the number of inequality constraints of (3.28) can be extremely large,

since it is usually exponential in the number of integer variables of eachXmilp
i . Moreover,

the constraints are not known in advance because the vertices vji and the extreme rays

wji of Pi should be explicitly computed. Thus, it is not affordable to solve the problem

by pre-computing all the constraints. To overcome these issues, we will employ a

cutting-plane method, which informally consists of repeatedly generating separating

hyperplanes to approximate the original feasible set2.

Before outlining the solution mechanism, let us highlight the connection between

Problem (3.28) and the primal decomposition master problem (3.3). The two problems

are conceptually identical. However, in the jargon of Benders decomposition the con-

straints (3.26) are called feasibility cuts, since they are generated to ensure that the local

problems are feasible. Thus, they are effectively a characterization of the constraints

yi ∈ Yi in Problem (3.3), i.e.

Yi =
{
yi ∈ RS | wjηi ≤ y>i wjµi ∀j ∈ Ri

}
.

The constraints (3.27), on the other hand, are called optimality cuts, since they are

generated to ensure that the epigraph variables νi estimate correctly the value of pi(yi)

and, consequently, that the optimal solution of the master problem (3.28) has indeed

minimal cost. The Benders decomposition formulation highlights more clearly the linear

programming nature of the master problem, which is the key for the development of a

finite-time convergent algorithm.

Online Constraint Generation

Within the Benders decomposition tecnique, the typical way to deal with Problem (3.28)

is to use an online constraint generation mechanism. Instead of considering the full

master problem (3.28), a relaxed instance is considered with the same objective but only

a subset of the constraints in (3.28). After solving such relaxed instance, new constraints

are generated (if necessary), and the process is repeated until convergence.

Let us now recall in more detail the constraint generation method, since it will

be used in the distributed algorithm. Suppose that a relaxed instance of the master

problem (3.28) has been solved, and denote by (ȳ, ν̄) the computed optimal solution.

To assess whether this solution can be accepted as true optimal solution of (3.28), we

need to check that all the constraints are satisfied. Instead of doing this calculation

2In cutting-plane algorithms, the generated constraints are typically called cutting planes (or simply
cuts) because they “cut away” a portion of the space, marking it as infeasible.

91

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

directly, we consider for all i ∈ {1, . . . , N} the subproblems (3.21) with yi = ȳi, which

are assumed to be solved through their dual formulation (3.25). There are three cases to

consider for all i ∈ {1, . . . , N}.

(i) Problem (3.25) with yi = ȳi is unbounded. In this case, the primal problem (3.21)

is infeasible. Let wκi = (wκηi , w
κ
µi) be an extreme ray along which Problem (3.25)

is unbounded. Then, it satisfies wκηi − ȳi>wκµi > 0. Note that this is a violated

constraint of Problem (3.28), thus we can generate the feasibility cut

wκηi − y>i wκµi ≤ 0.

(ii) Problem (3.25) with yi = ȳi admits an optimal solution. Let vκi = (vκηi , v
κ
µi) be

an optimal vertex. If it holds vκηi − ȳi>vκµi > ν̄i, this is a violated constraint of

Problem (3.28), thus we can generate the optimality cut

vκηi − y>i vκµi ≤ νi.

(iii) If none of the previous cases occurs, both the conditions (3.26) and (3.27) hold

for the considered (ȳi, ν̄i). In this case, no cutting-planes must be generated and

ν̄i = pi(ȳi).

In the following, we will denote the output of this constraint generation procedure for

each fixed i ∈ {1, . . . , N} as ConstraintOracle(ȳi, ν̄i) (note that ȳi and ν̄i are the only

data required for the constraint generation). It should be noted that, if there is a violated

constraint, the ConstraintOracle procedure is always able to detect this fact and to

generate it. On the contrary, if the procedure does not generate new constraints, it means

that both (3.26) and (3.27) hold true. In the next, this constraint generation mechanism

will be embedded within the distributed algorithm solving Problem (3.28).

3.4.2 Distributed Algorithm Description

The distributed algorithm to solve Problem (3.28) is based on the Constraints Consensus

algorithm [84] with online generation of cutting planes (such as in the works [18,

117]). Differently from the Distributed Primal Decomposition algorithm, in this class

of algorithms agents do not exchange their local solutions or multipliers but instead

they exchange a set of constraints forming a basis of their current solution at a vertex

(Appendix A.3). Given an optimal vertex (y,ν) ∈ RN(S+1) of Problem (3.28), it is well

known from linear programming that a basis associated to (y,ν) consists of N(S + 1)

active constraints (i.e. constraints satisfied with the equality at (y,ν)) such that the

relaxed LP, containing only the constraints in the basis, has the same optimal cost

of (3.28). Note that in general there may exist multiple optimal vertices having the

92

3.4. Distributed Benders Decomposition for MILPs

same cost in a linear program. This may lead to inconsistent choices of the bases among

the agents, because each agent can compute its basis on a potentially different vertex.

In the inspiring Constraints Consensus [84], this is prevented with a tie-break rule to

ensure that all the nodes agree on the same solution. In particular, we will consider

the lexicographically minimal optimal solution of Problem (3.28), also called lex-optimal
solution (Appendix A.3). By analogy, we will call lex-optimal basis the basis corresponding

to the lex-optimal solution.

Let us now introduce our algorithm Distributed Benders Decomposition for MILPs.
Agents maintain and update a local estimate of the lex-optimal basis of Problem (3.28).

We denote the basis of agent i at time t with Bt
i and we say that the tuple (a, b, f, j), with

a ∈ RS , b, f ∈ R and j ∈ {1, . . . , N}, belongs to Bt
i if the constraint a>yj + bνj ≤ f is

in the basis of agent i at time t. At each iteration t, agent i has a current guess of the

lex-optimal solution of Problem (3.28), which we denote as (yti,ν
t
i) ∈ RN(S+1) (in order

to keep the notation light3) and is associated to the basisBt
i . Since the computed solution

may violate some of the constraints, at each iteration t the agent generates a constraint (if

any) by calling ConstraintOracle(yti , ν
t
i), where (yti , ν

t
i) ∈ RS+1 denotes the i-th block

of (yti,ν
t
i) ∈ RN(S+1). Then, agent i forms a local instance of Problem (3.28) with the

newly generated constraint and the constraints received from the neighbors, which is

solved to obtain a new guess of the solution, and the associated basis is communicated

to neighbors. This scheme converges in finite time to an optimal solution (y?,ν?) of

Problem (3.28). Then, agent i uses y?i (the i-th block of y?) to compute a tentative

mixed-integer solution using the technique described in Section 3.3. Algorithm 4

summarizes the steps performed by each agent i. As regards the initial coordination to

run Algorithm 4, similar reasonings as in Remark 3.2 hold.

For consistency with the previous section, in the table we used the symbol x∞i to

denote the mixed-integer solution computed by the algorithm. However, we stress that

Algorithm 4 converges in finite time, which means that the quantity x∞i must not be

intended as computed asymptotically (even though it coincides with the asymptotic

solution provided by Algorithm 3).

In order to cope with unbounded problems at an early stage of the algorithm execu-

tion, Problem (3.29) requires an additional bounding box −R1 ≤ y,ν ≤ R1, with R > 0

a sufficiently large number. In Section 3.4.3, we provide details on how to implement the

constraint generation step ConstraintOracle. Problem (3.29) can be solved by using

any lexicographic solver for LPs, while Problem (3.30) can be solved as described in

Section 3.3.2.

3We are slightly overloading the notation. Indeed, yi denotes the i-th component of y (i.e. the subscript
identifies the component of the vector), while yt

i denotes the estimate of y of agent i at time t (i.e. the
subscript identifies the agent that has computed the vector). However, we prefer not to introduce further
symbols to differentiate between the two roles of the subscript since this second case occurs only for yt

i , ν
t
i

and Bt
i .

93

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

Algorithm 4 Distributed Benders Decomposition for MILPs

Initialization: set y0i ∈ RS , ν0i ∈ R and B0
i = ∅

Repeat for t = 0, 1, . . . until convergence

Generate constraint tuple (if any) as hti = ConstraintOracle(yti , ν
t
i)

Receive bases Bt
j from j ∈ N t

i and set

Htmp = Bt
i ∪
(
∪j∈N t

i
Bt
j

)
∪
{
hti
}

Compute (yt+1
i ,νt+1

i) as the lex-optimal solution (with basis Bt+1
i) of

min
y1,...,yN
ν1,...,νN

N∑

i=1

νi

subj. to
N∑

i=1

yi = b− σ

a>yj + bνj ≤ f, ∀ (a, b, f, j) ∈ Htmp

−R1 ≤ y,ν ≤ R1

(3.29)

Return x∞i as the optimal solution of

lex-min
vi,ξi,xi

vi

subj. to c>i xi ≤ ξi
Aixi ≤ y?i + vi1

xi ∈ Xmilp
i , vi ≥ 0.

(3.30)

Remark 3.6 (Size of communicated bases). As already discussed, a basis consist of

N(S+1) active constraints. Since the S equality constraints of Problem (3.28) are always

active at any feasible vector and are known by all the agents, the size of communicated

bases is at most of N(S + 1)− S active inequality constraints. Indeed, constraints of the

additional bounding box that are part of the basis need not be communicated. 4

3.4.3 Routine for the Local Problem

Let us elaborate on the implementation of the constraint generation step ConstraintOracle.

Owing to the discussion of Section 3.4.1, in order to generate a constraint, we must be

able to solve an instance of Problem (3.25). We must also be able to provide an optimal

vertex if the problem has finite optimal cost or specify an extreme ray along which the

problem is unbounded. In theory, this task could be accomplished by any numerical

solver based on the simplex algorithm. However, as it happens for Problem (3.28), the

constraints in Problem (3.25) are not known a-priori. Therefore, we now formulate

94

3.4. Distributed Benders Decomposition for MILPs

a local finite-time algorithm to solve Problem (3.25), in which it is assumed that yi is

fixed to a given ȳi ∈ RS . In order to avoid excessive technicalities, we present the local

routine with the assumption that no constraint in (3.25) is orthogonal to the direction of

minimization (i.e. we assume ȳi 6= Aix̂
j
i for all j ∈ Ji) and then discuss how to handle

the general case. To differentiate the notation with the distributed algorithm, here we

denote the iterations with the letter k.

Procedure 5 Local Routine for Problem (3.25)

Initialization: set µ0i ≥ 0 and η0i = +∞
Repeat for k = 0, 1, . . .

Compute xki as optimal solution of

min
xi∈vert(Xmilp

i)

(
ci +A>i µ

k
i

)
xi (3.31)

If ηki = (ci +A>i µ
k
i)
>xki then set Kf = k and go to final step

Else compute (µk+1
i , ηk+1

i) as optimal solution of

max
µi,ηi

ηi − ȳ>i µi (3.32a)

subj. to µi ≤ Q1 (3.32b)

µi ≥ 0 (3.32c)

ηi ≤ c>i x`i + µ>i Aix
`
i , ` = 0, . . . , k (3.32d)

Final step: If µKf

i < Q1 then optimal cost of (3.25) is finite – return (µ
Kf

i , η
Kf

i)

Else Problem (3.25) is unbounded – return unbounded extreme ray of Problem (3.32)
without constraint µi ≤ Q1.

The routine approximates Problem (3.25) with iterative refinements by generat-

ing the necessary constraints. The fictious initialization η0i = +∞ ensures that Prob-

lem (3.32) is solved at least once, moreover Problem (3.32) always admits an optimal

solution due to the artificial bounding box µi ≤ Q1.

The next proposition summarizes the convergence result of the proposed local

routine under the mentioned simplifying assumption.

Proposition 3.2. Let ȳi ∈ RS be given and let the sequence {(µki , ηki)}k≥0 be generated by
Procedure 5 for a sufficiently large Q > 0. Moreover, assume that ȳi 6= Aix̂

j
i for all j ∈ Ji.

Then, after a finite number of iterations Kf > 0,

(i) if Problem (3.25) with yi = ȳi has finite optimal cost, the routine returns an optimal
vertex;

(ii) if Problem (3.25) with yi = ȳi is unbounded, the routine returns an unbounded extreme
ray.

95

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

The proof is provided in Section 3.6.3.

Remark 3.7 (Computational load reduction). A useful feature of Procedure 5 is that the

constraints generated with a given ȳi can be stored and re-used in future invocations

of the routine with different ȳi. Indeed, as it emerges from the proof, the generated

constraints are drawn from Problem (3.25) and thus they do not depend on the value of

ȳi. 4

Remark 3.8. With slight modifications, Procedure 5 can also be used as local routine to

compute a Lagrange multiplier of Problem (3.5). In particular, the constraint (3.32b)

ought to be replaced with µ>i 1 ≤ M and the algorithm should directly return the

solution of Problem (3.32) upon convergence (the final step is not needed). This local

routine represents an alternative to the local dual subgradient scheme discussed in

Remark 3.3 and guarantees finite-time convergence to an optimal dual solution of

Problem (3.5). 4

Let us briefly comment the general case in which ȳi may be equal to Aix̂
j
i for some

j ∈ Ji. In this case, Problems (3.25) and (3.56) can have multiple optimal solutions,

and similarly for Problem (3.32) at some iteration k. In particular cases, it may happen

that, although the optimal cost of Problems (3.25) and (3.56) is finite, the LP solver may

select an optimal solution of (3.32) on the bounding box. Thus, if the asymptotically

computed vector (µ̄i, η̄i) is on the bounding box, in order to clearly distinguish between

the two cases of Proposition 3.2, it is necessary to first compute all the optimal vertices

of (3.32) and to solve Problem (3.31) for all of them. After generating all the associated

constraints, the bounding box µi ≤ Q1 can be safely removed and hence the execution

of the algorithm can be resumed from Problem (3.32).

3.4.4 Convergence Analysis

In this section we provide a convergence analysis of Algorithm 4. The result we provide

is twofold. First, we prove that all agents are consensual in finite time on an optimal

solution of Problem (3.28). Consequently, the mixed-integer solution obtained with

the computed allocation is a feasible solution of the original MILP (3.1) (with the

suboptimality bounds provided in Section 3.3.4). The following theorem formalizes

these facts.

Theorem 3.5. Let σ be equal to (3.11) and let Problem (3.2) be feasible. Moreover, let
Assumptions 3.1 and 3.4 hold and let M,R > 0 be sufficiently large. Consider the se-
quences {(yti,νti)}t≥0 and the mixed-integer vectors x∞i generated by Algorithm 4 for all
i ∈ {1, . . . , N}. Then,

(i) there exists a sufficiently large (finite) time T > 0 such that (yti,ν
t
i) = (y?,ν?) for all

t ≥ T and i ∈ {1, . . . , N}, where (y?,ν?) is an optimal solution of Problem (3.28);

96

3.4. Distributed Benders Decomposition for MILPs

(ii) the vector (x∞1 , . . . , x
∞
N) is a feasible solution for Problem (3.1), i.e. x∞i ∈ Xmilp

i for all
i ∈ {1, . . . , N} and

∑N
i=1Aix

∞
i ≤ b. 4

Throughout the analysis, we denote by J ti the optimal cost of Problem (3.29) of the

i-th agent at iteration t. To prove Theorem 3.5 we rely on two intermediate results,

namely local convergence and consensus, that we now formalize.

Lemma 3.2 (Local convergence). Under the assumptions of Theorem 3.5, for all i ∈
{1, . . . , N} the following holds:

(i) the cost sequence {J ti }t≥0 and the solution sequence {(yti,νti)}t≥0 converge in finite
time to constant values J̄i and (ȳi, ν̄i);

(ii) the i-th block of the vector (ȳi, ν̄i) satisfies conditions (3.26) and (3.27).

The proof is provided in Section 3.6.3. The next lemma is a reformulation of [84,

Theorem IV.3 (ii)] (see also [117, Lemma 4.3] for a more self-contained proof).

Lemma 3.3 (Consensus). Under the assumptions of Theorem 3.5, assume that the sequences
{J ti }t≥0 and {(yti,νti)}t≥0 defined in Lemma 3.2, converge to constant values J̄i and (ȳi, ν̄i).
Then, J̄i = J̄j , ȳi = ȳj and ν̄i = ν̄j for all i, j ∈ {1, . . . , N}. 4

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. To prove (i), it suffices to prove that, for all i ∈ {1, . . . , N},
(yti,ν

t
i) converges in finite time to an optimal solution of Problem (3.28). By Lemma 3.2,

for all i ∈ {1, . . . , N}, the cost sequences J ti and the solution sequences (yti,ν
t
i) converge

in finite time to J̄i and (ȳi, ν̄i), and moreover conditions (3.26) and (3.27) hold for the i-

th block of (ȳi, ν̄i). By Lemma 3.3, there exist a common J̄ ∈ R and a common (ȳ, ν̄) such

that J̄i = J̄ , ȳi = ȳ and ν̄i = ν̄. Thus, (ȳ, ν̄) satisfies all the constraints of Problem (3.28),

and therefore J̄ ≥ J?, where J? denotes the optimal cost of Problem (3.28). To prove

that J̄ ≤ J?, simply note that each agent obtains J̄ as the optimal cost of Problem (3.29),

which has a reduced number of constraints than the original Problem (3.28), and by

assumption the bounding box is sufficiently large, so that we can assume that R >

‖(y?,ν?)‖∞. Thus J̄ = J?, which implies that (ȳi, ν̄i) is feasible and cost-optimal,

therefore it is an optimal solution of (3.28). Part (ii) follows by Theorem 3.1. �

3.4.5 Alternative Formulation and Further Discussion

In [26], an alternative approach to the Benders Decomposition scheme discussed in this

section has been described. In particular, instead of following the procedure recalled

in Section 3.4.1, a constraint generation distributed algorithm has been formulated

starting from the epigraph version of Problem (2.7). The resulting algorithm is basically

a distributed Benders decomposition scheme in which no feasibility cuts are generated

97

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

(since the subproblems (2.8) are feasible for all i). The local routine is formulated in

such a way that no extreme rays are returned, with a slightly different formulation of

the additional bounding box in Problem (3.32). The convergence proof of the local

routine has some differences but the analysis of the distributed algorithm can be almost

repeated verbatim.

As we already mentioned, Assumption 3.4 makes it possible to implement Algo-

rithm 4 in an asynchronous manner. In particular, each agent can i perform the local

computations at its own speed. In the meanwhile, whenever a a basis is received from

the in-neighbors, it is stored in a temporary memory (if two bases are received from

the same in-neighbor the old one is overwritten). When solving Problem (3.29), agent i

uses all the bases collected until that moment and finally, after a basis corresponding to

the new solution is found, it is sent to the out-neighbors. In this respect, a remarkable

property of the algorithm is that the agents can detect convergence in a fully distributed

way under slightly more restrictive assumptions on the communication graph. In par-

ticular, the following stopping criterion can be used. If the graph is uniformly jointly

strongly connected with period equal to B seconds, each agent i can conclude that

convergence has occurred if its local solution (yti ,ν
t
i) has not changed after 2BN + 1

seconds [31, Theorem 1].

3.4.6 Numerical Example

In this section, we provide a numerical example that validates the theoretical analysis

of Section 3.4.4. We only show how Algorithm 4 behaves on a single instance of

Problem (3.1), since we already provided a detailed analysis on the restriction magnitude

and solution performance in Section 3.3.6. By using the same generation model as in

Section 3.3.6 (with ĉi ∈ [0, 0.1]), we generate a random MILP with N = 30 agents,

S = 3 coupling constraints and resource vector b with entries in [20, 120]. As for the

communication network, we randomly generate an Erdős-Rényi undirected connected

graph with edge probability equal to 0.1.

First, we focus on how the algorithm solves Problem (3.28). In Figure 3.8, the

evolution of the optimal cost of Problem (3.29) for all i ∈ {1, . . . , N}, compared to

the optimal cost of Problem (3.28), is shown. In an outer approximation fashion, the

algorithm selects infeasible points (yti,ν
t
i) for Problem (3.28) that eventually become

feasible and equal to each other. In our simulation, agents reach consensus in 56

iterations. The figure highlights also that in the early iterations (up to iteration 12 in

this example) there are still insufficient constraints in the network, so that the solutions

of Problem (3.29) are attained at the bounding box.

Next, we show the sequence of mixed-integer solutions (xt1, . . . , x
t
N) with the assump-

tion that Problem (3.30) is solved at each iteration. In Figure 3.9, the evolution of primal

98

3.5. Extension to General Nonconvex Programs

10 20 30 40 50

−6

−4

−2

0

Iteration t

{J
t i
−
J
?
} ∀

i

0 2 4 6 8 10
−6
−4
−2
0
·104

Figure 3.8: Evolution of the optimal cost J ti of Problem (3.29) for all i ∈ {1, . . . , N}, compared
to the optimal cost J? of Problem (3.28). The inset figure shows the behavior of the algorithm in
the early iterations.

feasibility with respect to the coupling constraint is shown. The algorithm is allowed to

violate the constraints during the evolution, but, according to Theorem 3.1, it becomes

feasible when convergence to an optimal solution of Problem (3.20) occurs. Note that

from iteration 49 to the last iteration the value of the constraint is constant. In fact,

convergence to (x∞1 , . . . , x
∞
N) occurs at iteration 49, however it takes some time for the

agents to autonomously detect convergence of the distributed scheme (cf. Section 3.4.5).

0 10 20 30 40 50

−600

−400

−200

0

Iteration t

N ∑ i=
1

A
ix

t i
−

b

Figure 3.9: Evolution of the coupling constraint value. As soon as convergence is reached, the
mixed-integer solution is guaranteed to be feasible for Problem (3.1). Indeed, all the lines in the
graph eventually drop below zero.

3.5 Extension to General Nonconvex Programs

The solution approach for MILPs introduced in the previous sections depends crucially

on the solution properties of the convex relaxation (3.2) formalized in Proposition 3.1.

However, MILPs are only a special case in which such properties hold true. In this

99

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

section, we extend the method to a broader class of nonconvex problems. The results of

this section have appeared as [25].

3.5.1 Distributed Nonconvex Set-up and Convex Approximation

Let us formalize the distributed nonconvex optimization set-up considered throughout

this section. We consider a network of N agents that must solve the optimization

problem

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b

xi ∈ Xi, i = 1, . . . , N,

(3.33)

where x1 ∈ Rn1 , . . . , xN ∈ RnN are the decision variables (one for each agent), and

each fi : Rni → R is the cost function associated to xi. Each variable xi must satisfy

individual constraints xi ∈ Xi, where Xi ⊂ Rni is a closed bounded set that can be

nonconvex. Moreover, the variables are intertwined by means of S ∈ N coupling

constraints
∑N

i=1 gi(xi) ≤ b, where each function gi : Rni → RS is used to model the

contribution of xi to the coupling constraints. Again, we focus on large-scale instances

of Problem (3.33) where the number of agents is considerably larger than the number of

coupling constraints, i.e. N � S, which is a challenging scenario in distributed control

applications. We make the following standing assumption.4

Assumption 3.5. Problem (3.33) is feasible. Moreover, for all i ∈ {1, . . . , N}, the set Xi is
compact and the function fi and each component of gi are convex. 4

Consistently with the previous derivations, throughout this section we assume that

each agent i knows only its local constraint Xi, its local cost function fi and its own

contribution gi to the coupling constraints. As before, we assume agents communicate

according to a connected and undirected graph (cf. Section 3.2.1).

Let us now consider a convex approximation of Problem (3.33) that plays the role of

4It is left to future investigation to determine whether this assumption can be relaxed to the case in
which also fi and gi are nonconvex. In principle, the analysis performed in this section should be extended
to the case in which fi and gi are nonconvex by using their convex closure and by following the arguments
of [8].

100

3.5. Extension to General Nonconvex Programs

Problem (3.2) for MILPs. The convex approximation reads

min
x1,...,xN

N∑

i=1

fi(xi)

subj. to
N∑

i=1

gi(xi) ≤ b− σ

xi ∈ conv(Xi), i = 1, . . . , N,

(3.34)

where we recall that conv(Xi) denotes the convex hull of Xi and σ ≥ 0 is the restriction

vector. Note that, differently from the mixed-integer case in which the convex relaxation

is a linear program, here we cannot assess any strong duality property on Problem (3.34)

(indeed in Section 3.5.5 we will assume it explicitly).

As in Section 3.2.2, under the assumption of uniqueness, the optimal solution of the

convex problem (3.34) satisfies the nonconvex constraints xi ∈ Xi for most indices i.

The following proposition formalizes this fact.

Proposition 3.3. Let Assumption 3.5 hold and let Problem (3.34) be feasible with unique op-
timal solution (x?1, . . . , x

?
N). Then, there exists an index set I ⊂ {1, . . . , N}, with cardinality

|I| ≥ N − S − 1, such that x?i ∈ Xi for all i ∈ I . 4

A proof of this result is indirectly provided by [8, Proposition 5.26], however, in

Section 3.6.4 we provide a self-contained proof for completeness. Differently from

the mixed-integer case, for the general nonconvex problem (3.33) the tightest bound

that we can obtain is |I| ≥ N − S − 1 (we recall that in the mixed-integer case we had

|IZ| ≥ N − S). Note that optimal control problems of the type (1.4) with nonlinear

dynamics and positive definite quadratic costs satisfy Assumption 3.5 and have unique

optimal solution as required by (3.3).

Before introducing the solution approach for nonconvex problems, let us recall how

the primal decomposition reads for Problem (3.34). Formally, the master problem is

min
y1,...,yN

N∑

i=1

pi(yi)

subj. to
N∑

i=1

yi = b− σ

yi ∈ Yi, i = 1, . . . , N,

(3.35)

where, for all i ∈ {1, . . . , N}, pi : Yi → R is the function associating each local allocation

101

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

yi ∈ RS to the optimal cost of the corresponding subproblem,

pi(yi) = min
xi

fi(xi)

subj. to gi(xi) ≤ yi
xi ∈ conv(Xi),

(3.36)

and Yi ⊆ RS is the set of yi for which Problem (3.36) is feasible. Clearly, Lemma 3.1

holds true also for Problem (3.34) and Problems (3.36)–(3.35).

3.5.2 Solution Approach for Nonconvex Problems

Let us now extend the framework introduced in Section 3.3.2 to the nonconvex set-

up (3.33). The method introduced here will be used as a building block for the dis-

tributed algorithm in Section 3.5.4. As for the mixed-integer case, the leading idea is to

solve the convex problem (3.34) and then to run a local correction procedure (executed

locally by each agent) to change only the blocks of optimal solution that do not already
satisfy the local nonconvex constraints. Since the corrected solution may result into a

violation of the coupling constraints
∑N

i=1 gi(xi) ≤ b− σ, in the next section we discuss

how to choose the a-priori restriction σ appropriately to ensure that
∑N

i=1 gi(xi) ≤ b.
Let us now formalize the local procedure to correct the solution of Problem (3.34).

Let (y?1, . . . , y
?
N) denote an optimal solution of (3.35). As done in Section 3.3.1, we

assume that each agent i is provided with an allocation vector yti that asymptotically

goes to y?i . However, since the agents can only perform a limited number of iterations,

we denote by yendi ∈ RS the actual allocation vector obtained by each agent i at the end

of distributed algorithm (to be formalized soon). If yendi was equal to y?i , by solving

Problem (3.36), at least N −S−1 agents would obtain a vector sayisfying the nonconvex

constraints xi ∈ Xi (cf. Proposition 3.3). However, in practice yendi will only be an

approximation of y?i so that all the agents are required to execute the following local

procedure to ensure satisfaction of the local nonconvex constraints. The algorithm is

summarized in Procedure 6.

Essentially, Procedure 6 is the counterpart of Problem (3.7) for nonconvex prob-

lems. We do not give detailed comments on the procedure and we refer the reader to

Section 3.3.2 for a more comprehensive discussion. One can note that Procedure 6 has

a structure that is slightly different from the one outlined in Section 3.3.2 because it

avoids nonconvex problems whenever possible (since global optimal solutions may be

hard to obtain), however the conceptual idea is the same. The procedure always yields a

vector satisfying (by construction) the local nonconvex constraints xi ∈ Xi. Similarly to

102

3.5. Extension to General Nonconvex Programs

Procedure 6 Get-Nonconvex-Sol
Input: i-th allocation yendi

Compute xconvi as optimal solution of (3.36) with yendi

If xconvi ∈ Xi then output xouti = xconvi

Else

Compute xnci as a feasible solution of

min
xi

fi(xi)

subj. to gi(xi) ≤ yendi

xi ∈ Xi

(3.37)

If (3.37) is feasible then output xouti = xnci
Else output xouti = xvioli as a feasible solution of

min
xi

fi(xi)

subj. to gi(xi) ≤ yendi + vi1

xi ∈ Xi

(3.38)

with minimal violation vi > 0

End If
End If

the mixed-integer case, in order to compute vi agents can solve the problem

min
xi,vi

vi

subj. to gi(xi) ≤ yendi + vi1

xi ∈ Xi.

A global optimal solution of the nonconvex problems (3.37) and (3.38) is desirable

to improve the overall cost, however a feasible solution is sufficient for the distributed

algorithm to produce a feasible solution to the original problem.

3.5.3 Restriction Vector and Preliminary Analysis

In order to make sure the overall solution (xout1 , . . . , xoutN) is feasible for the original Prob-

lem (3.33) we need to design the restriction vector σ appropriately. We now report the

computation steps of σ, which should be compared to those described in Section 3.3.3.

For all i ∈ {1, . . . , N}, let us define a vector `i, representing the resource lower bound

`i , min
xi∈conv(Xi)

gi(xi),

103

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

where min is intended component wise. Then, let us define vmaxi as the optimal cost of

vmaxi , min
xi,vi

vi

subj. to xi ∈ Xi, vi ≥ 0

gi(xi) ≤ `i + vi1

(3.39)

By construction, vmaxi represents the maximum violation required by agent i to compute a

feasible vector inXi. A local minimum of (3.39) is sufficient for the forthcoming analysis,

however a global minimum results in a less conservative restriction. A restriction vector

σ, representing the worst-case overall violation, is

σ∞ = (S + 1) · max
i∈{1,...,N}

vmaxi 1 (3.40)

where the coefficient S + 1 is due to the maximum number of agents that can simultane-

ously violate (by Proposition 3.3). We point out that, as done in Section 3.3.3, one can

define a saturated version of (3.40) to reduce possible conservativeness of the solution

(this extension follows the same arguments of the mixed-integer case and will not be

discussed here). Once again, note that σ∞ can be computed in a distributed way by

using a max-consensus.

To conclude this section, we give a preliminary analysis of the framework introduced

so far. To this end, let us consider the fictious case in which the local procedure

is called with the optimal solution of Problem (3.35) (the general case is discussed

in Section 3.5.5). In order to apply Proposition 3.3 to Problem (3.34), we make the

following assumption.

Assumption 3.6. Problem (3.34) is feasible and its optimal solution is unique. 4
The following result extends Theorem 3.1 to the nonconvex setting.

Theorem 3.6. Let Assumptions 3.5 and 3.6 hold and let (y?1, . . . , y
?
N) be an optimal solution

of Problem (3.35), with σ equal to (3.40). Let xout = (xout1 , . . . , xoutN), where each xouti is
the output of Get-Nonconvex-Sol with input y?i . Then, xout is feasible for the original
problem (3.33).

The proof is provided in Section 3.6.4.

Theorem 3.6 guarantees that, asymptotically, the solution computed by Get-Nonconvex-

Sol is feasible for Problem (3.33). However, in general, there might be a certain degree

of suboptimality that can be estimated by repeating the same reasonings of Theorem 3.2.

3.5.4 Distributed Algorithm Description

Let us finally formalize our distributed algorithm to compute a feasible solution to the

nonconvex problem (3.33). The algorithm is obtained by integrating the framework of

104

3.5. Extension to General Nonconvex Programs

Section 3.5.2 with the Distributed Primal Decomposition algorithm for convex problems

discussed in Section 2.2.5.

Let t ∈ N denote the iteration index and let Get-Nonconvex-Sol(yti) be the output of

the local procedure of Section 3.5.2 with input equal to yti , the i-th allocation at time t. In

the following table we summarize our Distributed Primal Decomposition for Nonconvex

problems from the perspective of agent i. As regards the initial coordination to run

Algorithm 4, similar reasonings as in Remark 3.2 hold.

Algorithm 7 Distributed Primal Decomposition for Nonconvex problems

Initialization: set Tf > 0 and y0i such that
∑N

i=1 y
0
i = b− σ

Repeat for t = 0, 1, . . . , Tf − 1

Compute µti as a Lagrange multiplier of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yti + ρi1

xi ∈ conv(Xi), ρi ≥ 0

(3.41)

Receive µtj from j ∈ Ni and update

yt+1
i = yti + αt

∑

j∈Ni

(
µti − µtj

)
(3.42)

Set yendi = y
Tf
i and return xouti = Get-Nonconvex-Sol(yendi)

The algorithm is fully distributed, in the sense that at every iteration t the compu-

tation performed by each agent i involves only local information and the information

gathered from its neighbors to perform (3.42). The initial allocations y0i must initial-

ized such that
∑N

i=1 y
0
i = b − σ, e.g. with y0i = (b − σ)/N . A remarkable property of

Algorithm 7 is that it only requires the solution of convex problems in order to evolve

(indeed Problem (3.41) is convex), while, as already noted in Section 3.5.2, nonconvex

problems in Get-Nonconvex-Sol can also be solved suboptimally.

3.5.5 Algorithm Analysis

In this section we provide a theoretical analysis of Algorithm 7 as an extension of the

results provided in Section 3.3.5. As in Section 3.3.5, we assume that the total restriction

is equal to

σft = σ∞ + δ1, (3.43)

105

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

where δ > 0 is an arbitrarily small number. As already mentioned, we need to ensure that

strong duality holds for the convex approximation (3.34), thus we make the following

assumption.

Assumption 3.7 (Slater). There exist vectors x̄1 ∈ conv(X1), . . . , x̄N ∈ conv(XN) such
that

∑N
i=1 gi(x̄i) < b− σft. 4

Under the preceding assumption and using the step-size Assumption 3.3 we are

able to prove the following theorem, in which we assess that in finite time the solution

sequence computed by DiP-Nonconvex is feasible for the original problem (3.33).

Theorem 3.7. Let σ = σft for an arbitrary δ > 0. Let Assumptions 3.3, 3.5, 3.6 and 3.7 hold.
Moreover, let the local allocation vectors y0i be initialized such that

∑N
i=1 y

0
i = b− σft. Then,

there exists a sufficiently large M > 0 and Tδ > 0 for which Algorithm 7 generates a sequence
{xt1, . . . , xtN}t≥0 such that the vector (xt1, . . . , x

t
N) is a feasible solution for Problem (3.33) for

all t ≥ Tδ.

The proof is provided in Section 3.6.4.

Finite-time feasibility of Algorithm 7 is an appealing feature for model predictive

control applications, since it can ensure recursive feasibility of the control algorithm. As

for the parameter M , it must be greater than ‖µ?‖1, where µ? denotes a dual optimal

solution of Problem (3.34) (see Section 2.2.3). In practice, it suffices to choose M

sufficiently large.

3.5.6 Numerical Example

In this section, we provide numerical computations performed with the Matlab software

to corroborate the theoretical results and to highlight the main features of our algorithm.

We consider a simplified scenario in which we are able to express conv(Xi) explicitly.

Formally, consider a network of N = 50 agents, whose aim is to cooperatively find a

feasible solution to an optimal control of the type

min
{zi(k+1),ui(k)}k,i

N∑

i=1

K−1∑

k=0

`i
(
zi(k), ui(k)

)
+ Vi

(
zi(K)

)

subj. to zi(k + 1) = hi(zi(k), ui(k)), ∀ k, i
zi(k + 1) ∈ Zi, ui(k) ∈ Ui, ∀ k, i
N∑

i=1

(
Zizi(k) + Uiui(k)

)
≤ b, ∀ k,

(3.44)

where, for all i, zi denotes the system state, ui is the system input and hi is the func-

tion representing the system dynamics. Clearly, Problem (3.44) can be re-mapped to

106

3.5. Extension to General Nonconvex Programs

Problem (3.33) by suitably defining all the symbols. For simplicity, we consider 1-step

predictions of the dynamics (K = 1). Each dynamical system i has 1-dimensional state

and input, with dynamics zi(k+1) = zi(k)2+qiui(k)2+ri, where the parameters qi and ri
are randomly drawn from [1, 5] and [−4, 0] respectively. The state and input constraints

Zi and Ui are box constraints (i.e. zlbi ≤ zi(k) ≤ zubi and similarly for the set Ui) where

the lower and upper bounds have entries in [−10,−5] and [5, 10] respectively. We assume

that the systems are initialized in the origin, i.e. zi(0) = 0 for all i. Therefore, the local

nonconvex feasible set Xi is a clipped parabola in R2, and conv(Xi) can be obtained by

replacing the dynamics constraints with the inequality version zi(k + 1) ≥ qiui(k)2 + ri.

The agents must further satisfy S = 3 coupling constraints, where the matrices Zi and

Ui have entries in [0, 1] and the vector b has entries in [−3, 7]. As for the cost functions,

we assume that `i(zi, ui) and Vi(zi) are linear with random entries in [−5, 5].

The communication graph is a random Erdős-Rényi graph with edge probability 0.2.

A random problem has been generated, and a local minimum has been found using a

centralized solver (fmincon). In order to check whether the instance is meaningful, we

make sure it has a duality gap by solving the dual problem with a dual subgradient

algorithm. We perform a simulation of the distributed algorithm with δ = 1. The

restriction σft has infinity norm equal to 3.5, and agents computed in finite time a

feasible solution to the nonconvex problem (3.44) (as expected from Theorem 3.7). In

Figure 3.10 the distributed utilization of the coupling constraints is shown, where xti
denotes the stack of all the local optimization variables of each agent i, obtained as the

output of Get-Nonconvex-Sol with allocation equal to yti , and gi(xi) = Uiui(0)+Zizi(1).

Notably, the solution is feasible since the first iteration of the distributed algorithm

and has 19% suboptimality with respect to the solution computed by fmincon.

0 1000 2000 3000 4000

−40

−20

0

Iteration t

N ∑ i=
1

g i
(x

t i
)

Figure 3.10: Evolution of the coupling constraint utilization (which has S = 3 components).
The solution computed by the algorithm is feasible for the coupling constraints since the first
iteration, indeed the maximum value is below 0 in the whole graph.

107

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

3.6 Proofs

3.6.1 Proofs for Section 3.2

Proof of Proposition 3.1

We discuss the case σ = 0 (the proof is independent of the value of σ and assumes only

feasibility of Problem (3.2)). By following similar arguments as in [121, Theorem 2.5],

Problem (3.2) can be equivalently reformulated by expressing the local constraints in

terms of their vertices, i.e.

min
p

N∑

i=1

∑

j∈Ji

pji c
>
i x

j
i

subj. to
N∑

i=1

∑

j∈Ji

pjiAix
j
i ≤ b

∑

j∈Ji

pji = 1, i = 1, . . . , N

p ≥ 0,

(3.45)

where, for all i ∈ {1, . . . , N}, Ji , {1, . . . , |vert(Xmilp
i)|} is the set of indices of the

elements in vert(Xmilp
i) and xji denotes the j-th element of vert(Xmilp

i), for all j ∈ Ji.
For any feasible vector z of Problem (3.2) there exists a feasible vector p of Problem (3.45)

such that

zi =
∑

j∈Ji

pjix
j
i for all i ∈ {1, . . . , N}. (3.46)

Let us manipulate (3.45). By introducing positive slack variables q ∈ RS , the coupling

constraint can be transformed to equality constraint, i.e.

min
p,q

N∑

i=1

∑

j∈Ji

pji c
>
i x

j
i

subj. to
N∑

i=1

∑

j∈Ji

pjiAix
j
i + q = b

∑

j∈Ji

pji = 1, i = 1, . . . , N

p, q ≥ 0.

(3.47)

Problem (3.47) is an LP in standard form, with positivity constraints on all the variables

and N + S equality constraints. Now, let us consider a vertex (z̄1, . . . , z̄N) of the feasible

set of (3.2), or, equivalently, a vertex of the feasible set of (3.47), denoted by (p?, q?).

108

3.6. Proofs

The number of nonzero entries of p? is equal to supp(p?) =
∑N

i=1 supp(p?i). Being

(p?, q?) a basic solution, it has at most N + S nonzero entries. In symbols, supp(p?) ≤
supp((p?, q?)) ≤ N + S. Since by construction supp(p?i) ≥ 1 for all i, it follows that

supp(p?) ≥ N . Summarizing, it holds

N ≤
N∑

i=1

supp(p?i) ≤ N + S, with supp(p?i) ≥ 1 ∀i.

Then, for only a maximum of S indices, it is possible that supp(p?i) > 1. Let IZ denote

the set of indices for which this does not hold (i.e. indices i such that supp(p?i) = 1).

Then, |IZ| ≥ N − S. For all i ∈ IZ, by (3.46), supp(p?i) = 1 implies z̄i ∈ Xmilp
i . �

3.6.2 Proofs for Section 3.3

Proof of Theorem 3.1

For the sake of analysis, let us denote by (z?1 , . . . , z
?
N) the optimal solution of the re-

stricted LP (3.2). By Assumption 3.1, (z?1 , . . . , z
?
N) is a vertex, so that by Proposition 3.1

there exists IZ ⊆ {1, . . . , N}, with |IZ| ≥ N − S, such that z?i ∈ Xmilp
i for all i ∈ IZ. By

Lemma 3.1, z?i is an optimal solution of Problem (3.4), with yi = y?i , for all i ∈ {1, . . . , N}.
Thus, for all i ∈ IZ, z?i ∈ Xmilp

i is the optimal solution of (3.7) with yti = y?i . Then, it

holds Aix∞i ≤ y?i for all i ∈ IZ.

Let us focus on the set IR = {1, . . . , N} \ IZ, which contains indices such that

z?i /∈ Xmilp
i . Let us further partition IR = Ifeas ∪ Iinfeas, where the indices collected

in Ifeas correspond to feasible subproblems (3.4), from which it follows that Aix∞i ≤
y?i for all i ∈ Ifeas, while the remaining index set Iinfeas corresponds to infeasible

subproblems (3.4). We have

Aix
∞
i

(a)

≤ y?i + v∞i 1
(b)

≤ y?i + vmaxi 1, ∀ i ∈ Iinfeas,

where (a) follows by construction of x∞i and (b) follows since any optimal solution of

Problem (3.13), say xLi , is feasible for Problem (3.9) (since AixLi ≤ `i + vmaxi ≤ y?i + vmaxi),

from which it follows that v∞i ≤ vmaxi (by optimality). Also, notice that, since x∞i ∈ Xmilp
i

and Xmilp
i is compact, then Aix∞i ≤ max

xi∈Xmilp
i

Aixi and it holds

Aix
∞
i − y?i ≤ max

xi∈Xmilp
i

Aixi − y?i ≤ max
xi∈Xmilp

i

Aixi − `i,

where max is intended component wise. Thus, we have shown that

Aix
∞
i − y?i ≤ min

{
vmaxi 1, max

xi∈Xmilp
i

(Aixi − `i)
}
.

109

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

It follows that Aix∞i ≤ y?i + σloci for all i ∈ Iinfeas. By summing over i ∈ Iinfeas the term

σloci , we obtain

∑

i∈Iinfeas

σloci ≤ |Iinfeas| max
i∈Iinfeas

σloci ≤ S max
i∈{1,...,N}

σloci = σ∞, (3.48)

where max is intended component wise. Collecting the previous conditions leads to

N∑

i=1

Aix
∞
i =

∑

i∈IZ

Aix
∞
i +

∑

i∈Ifeas

Aix
∞
i +

∑

i∈Iinfeas

Aix
∞
i

≤
N∑

i=1

y?i +
∑

i∈Iinfeas

σloci

≤ b− σ∞ + σ∞ = b,

where we used
∑N

i=1 y
?
i = b− σ∞. The proof follows. �

Proof of Theorem 3.2

Following the ideas in [121, Theorem 3.3], let us split the bound in three terms

N∑

i=1

c>i x
∞
i − Jmilp =

N∑

i=1

(c>i x
∞
i −c>i z?i) +

(N∑

i=1

c>i z
?
i −Jlp

)
+
(
Jlp−Jmilp),

where (z?1 , . . . , z
?
N) is the optimal solution of Problem (3.2) and Jlp denotes the optimal

cost of Problem (3.2) with σ = 0. Next, we analyze each term independently.

(i)
∑N

i=1(c
>
i x
∞
i −c>i z?i). By Proposition 3.1, there exists IZ, with |IZ| ≥ N−S, such that

z?i ∈ Xmilp
i for all i ∈ IZ. Thus, for i ∈ IZ, it holds x∞i = z?i , implying c>i x

∞
i −c>i z?i = 0.

Therefore, by defining IR , {1, . . . , N} \ IZ, the sum reduces to

N∑

i=1

(c>i x
∞
i −c>i z?i) =

∑

i∈IR

(c>i x
∞
i −c>i z?i), (3.49)

with |IR| ≤ S. Since c>i x
∞
i ≤ max

xi∈Xmilp
i

c>i xi and min
xi∈Xmilp

i

c>i xi ≤ c>i z?i , it follows that

N∑

i=1

(c>i x
∞
i −c>i z?i) ≤

∑

i∈IR

γi ≤ S max
i∈{1,...,N}

γi.

(ii)
∑N

i=1 c
>
i z

?
i − Jlp. By following similar arguments to [121, Theorem 3.3], one can

110

3.6. Proofs

show that

N∑

i=1

c>i z
?
i − Jlp ≤ ‖σ

∞‖∞
ζ

N∑

i=1

(c>i ẑi − c>i z?i), (3.50)

where (ẑ1, . . . , ẑN) is any Slater point (cf. Assumption 3.2). Since c>i ẑi ≤ max
xi∈Xmilp

i

c>i xi

and min
xi∈Xmilp

i

c>i xi ≤ c>i z?i , it follows that

N∑

i=1

c>i z
?
i − Jlp ≤ ‖σ

∞‖∞
ζ

N∑

i=1

γi ≤
N‖σ∞‖∞

ζ
max

i∈{1,...,N}
γi.

(iii) Jlp − Jmilp. Being Jlp the cost of (3.2) with σ = 0, which is a relaxed version

of (3.1), then Jlp − Jmilp ≤ 0. Combining the results above, the bound follows. �

Proof of Theorem 3.3

Let {yt1, . . . , ytN}t≥0 denote the allocation vector sequence generated by Algorithm 3.

By Proposition 2.1, the sequence {yt1, . . . , ytN}t≥0 converges to an optimal solution

(y?1, . . . , y
?
N) of Problem (3.3) with σ = σ∞ + δ1. Thus, for all i ∈ {1, . . . , N} and εi > 0,

there exists Tεi > 0 such that t ≥ Tεi ⇒ ‖yti − y?i ‖∞ ≤ εi. If we let T = maxi∈{1,...,N} Tεi ,

then yti ≤ y?i + εi1 for all t ≥ T and i ∈ {1, . . . , N}.
To prove the statement, we compare the state of the algorithm at an iteration t ≥ Tδ

and the quantities that would be computed at infinity, for all i ∈ {1, . . . , N}. To this end,

let us denote by (v∞i , x
∞
i) the optimal solution of Problem (3.7) with yti = y?i (we discard

the ξi part of the solution). As shown in Section 3.3.2, vti is the optimal cost of

min
vi,xi

vi

subj. to Aixi ≤ yti + vi1

xi ∈ Xmilp
i , vi ≥ 0.

(3.51)

Note that the pair (εi + v∞i , x
∞
i) is feasible for Problem (3.51) for all t ≥ T . Indeed, it

holds x∞i ∈ Xi, εi + v∞i ≥ 0, and moreover Aix∞i ≤ y?i + v∞i 1 ≤ yti + εi1 + v∞i 1 for all

t ≥ T . Being vti the optimal cost of (3.51), we have

vti ≤ εi + v∞i , ∀t ≥ T. (3.52)

We now follow arguments similar to the proof of Theorem 3.1. For all i ∈ {1, . . . , N},
let z?i denote the optimal solution of Problem (3.2). For the sake of analysis, let us

split the agent set {1, . . . , N} as IZ ∪ Ifeas ∪ Iinfeas, where IZ contains agents for which

z?i ∈ Xmilp
i , Ifeas contains agents for which z?i /∈ Xmilp

i and v∞i = 0, and Iinfeas contains

111

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

agents for which z?i /∈ Xmilp
i and v∞i > 0. Using the same arguments of Theorem 3.1, for

all i ∈ IZ it holds v∞i = 0. Consider the agents i ∈ IZ ∪ Ifeas. By construction, it holds

Aix
t
i ≤ yti + vti ≤ yti + εi, ∀ i ∈ IZ ∪ Ifeas and t ≥ T, (3.53)

where we used (3.52) and v∞i = 0. As for the agents i ∈ Iinfeas, again by (3.52), it holds

Aix
t
i − yti ≤ vti1 ≤ v∞i 1 + εi1 for all t ≥ T , or equivalently

Aix
t
i − yti − εi1 ≤ v∞i 1, ∀t ≥ Tδ.

Moreover, note that, for t ≥ Tδ, it holdsAixti−yti−εi1 ≤ Aixti−yti ≤ maxxi∈Xmilp
i

Aixi−`i,
where max is intended component wise. Using the definition of σloci in Section 3.3.3

and rearranging the terms, we obtain

Aix
t
i ≤ yti + σloci + εi1, ∀ i ∈ Iinfeas and t ≥ T. (3.54)

Finally, by using (3.53) and (3.54), we can write

N∑

i=1

Aix
t
i =

N∑

i=1

yti +
N∑

i=1

εi1 +
∑

i∈Iinfeas

σloci

≤ b− σ∞ − δ1 +
N∑

i=1

εi1 + σ∞, ∀t ≥ T,

which follows since
∑N

i=1 y
t
i =

∑N
i=1 y

0
i = b − σ∞ − δ1 (cf. Proposition 2.1 (i)) and

by (3.48). Since εi are arbitrary, choosing εi = δ/N for all i implies
∑N

i=1Aix
t
i ≤ b for all

t ≥ Tδ , T , which concludes the proof. �

Proof of Theorem 3.4

Let {yt1, . . . , ytN}t≥0 denote the allocation vector sequence generated by Algorithm 3. By

following similar arguments as in the proof of Theorem 3.3, we conclude that, for fixed

εi > 0, there exists a sufficiently large T > 0 such that ‖y?i − yti‖∞ ≤ εi for all t ≥ T and

i ∈ {1, . . . , N}.
Inspired by Theorem 3.2, let us split the suboptimality bound as

∑N
i=1 c

>
i x

t
i−Jmilp =∑N

i=1(c
>
i x

t
i − Jlp,t

i) +
(∑N

i=1 J
lp,t
i − Jlp,σft)

+
(
Jlp,σft−Jlp

)
+
(
Jlp−Jmilp

)
, where Jlp,σft

denotes the optimal cost of Problem (3.2) with σ = σft. The first term
∑N

i=1(c
>
i x

t
i−Jlp,t

i)

can be explicitly evaluated. As for the last two terms, by following similar arguments as

in Theorem 3.2, we conclude that
(
Jlp,σft − Jlp

)
+
(
Jlp − Jmilp

)
≤ Γ‖σft‖∞.

Let us analyze in detail the second term. Notice that
∑N

i=1 J
lp,t
i is the optimal cost of

112

3.6. Proofs

the aggregate problem solved by the agents at iteration t, i.e.

min
z1,...,zN ,
ρ1,...,ρN

N∑

i=1

(c>i zi +Mρi)

subj. to Aizi ≤ yti + ρi1, ∀ i,
zi ∈ conv(Xmilp

i), ρi ≥ 0, ∀ i.

(3.55)

Moreover, Jlp,σft
can be seen as the optimal cost of a perturbed version of Problem (3.55)

(in particular, the constraints Aizi ≤ yti + ρi1 are perturbed to Aizi ≤ y?i + ρi1). By

applying perturbation theory [16], we have for all t ≥ T

N∑

i=1

Jlp,t
i −Jlp,σft≤

N∑

i=1

‖y?i − yti‖∞‖µti‖1 ≤
N∑

i=1

εi‖µti‖1.

By choosing εi = δ/N for all i ∈ {1, . . . , N}, we finally obtain

N∑

i=1

Jlp,t
i −Jlp,σft≤

N∑

i=1

εi‖µti‖1 = δ
N∑

i=1

‖µti‖1, ∀t ≥ Tδ , max
i∈{1,...,N}

Tεi ,

and the proof follows. �

3.6.3 Proofs for Section 3.4

Proof of Proposition 3.2.

The algorithm is essentially a constraint generation algorithm inspired to the standard

method recalled in Section 3.4.1. We first show that steps (3.31)–(3.32) provide in a

finite number of steps (Kf) the (unique) optimal vertex of the optimization problem

max
µi,ηi

ηi − ȳ>i µi

subj. to µi ≥ 0, µi ≤ Q1,

ηi ≤ (ci +A>i µi)
>x̂ji , ∀ j ∈ Ji,

(3.56)

which is Problem (3.25) with the addition of the constraint µi ≤ Q1. Indeed, as a conse-

quence of the assumption ȳi 6= Aix̂
j
i for all j ∈ Ji, Problem (3.56) and Problem (3.32)

admit unique optimal solution (attained at a vertex) for all k ≥ 0. Then, we prove that

the final step of the algorithm does provide the optimal vertex or an unbounded extreme

ray of Problem (3.25).

Let us prove the first part. At the generic time step k the current solution estimate

is (µki , η
k
i) and the value of µki is used to formulate Problem (3.31). First, note that the

constraints (3.32d) are drawn from the constraints of Problem (3.56) (indeed, the vectors

113

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

xki belong to vert(Xmilp
i) by construction). Moreover, if the termination test at time k

fails, then either ηki > (ci + A>i µ
k
i)
>xki or ηki < (ci + A>i µ

k
i)
>xki . The latter case is not

possible because otherwise we would have

ηki < min
xi∈vert(Xmilp

i)

(
ci +A>i µ

k
i

)
xi ≤ (ci +A>i µ

k
i)
>x`i , ` = 0, . . . , k − 1,

contradicting the fact that (µki , η
k
i) is the optimal solution at iteration k − 1 (indeed for

sufficiently small ε > 0 the vector (µki , η
k
i + ε) would be feasible and with better objective

value). Thus, when the termination fails the constraint ηi ≤ (ci +A>i µi)
>xki is violated

by the current solution estimate (µki , η
k
i) and will be added to Problem (3.32). Now let

us show that the final solution estimate is an optimal solution of Problem (3.56). At

the final iteration the termination test ηki = (ci +A>i µ
k
i)
>xki is successful, from which it

follows that

ηki = min
xi∈vert(Xmilp

i)
(ci +A>i µ

k
i)
>xi ≤ (ci +A>i µ

k
i)
>x̂ji ∀j ∈ Ji,

therefore all the constraints of Problem (3.56) are satisfied and (µki , η
k
i) is an optimal

solution of Problem (3.56). We finally prove that the termination test must be successful

after a finite number of iterations. If at iteration k the solution xki of Problem (3.31) is

equal to a previously computed x`i for some ` ∈ {1, . . . , k − 1}, we have that

ηki ≤ (ci +A>i µ
k
i)
>x`i = (ci +A>i µ

k
i)
>xki ,

where the inequality follows since (µki , η
k
i) satisfies the constraints of Problem (3.32) at

iteration k − 1. In this case, the termination condition is hit at iteration k. Since the

number of possible optimal solutions of Problem (3.31) is finite, it follows that after a

finite number of iterations it must hold xki = x`i for some ` ∈ {1, . . . , k − 1}.
Let us prove the second part. Denote by (µ̄i, η̄i) the optimal solution of Prob-

lem (3.56), which is computed at the last iteration. Let us consider the two possible

outputs of Procedure 5.

(i) If Problem (3.25) has finite optimal cost, by assumption the parameter Q of the

bounding box is sufficiently large thus all the vertices of Problem (3.25) are also

vertices of Problem (3.56) (including the optimal one). Hence, the condition

µ̄i < Q1 is satisfied, implying that (µ̄i, η̄i) (which is the output of the algorithm) is

an optimal vertex of Problem (3.25).

(ii) If Problem (3.25) is unbounded, the optimal vertex (µ̄i, η̄i) of Problem (3.56) must

be attained on the bounding box, so that the condition µ̄i < Q1 does not hold

anymore. Thus, by construction, an unbounded ray of Problem (3.32) without the

constraint µi < Q1 is an unbounded ray of Problem (3.25). �

114

3.6. Proofs

Proof of Lemma 3.2

The line of proof of (i) is similar to [84, Theorem IV.3] and other arguments given

in [117, Lemma 4.2], but we report the proof here for completeness. We first show

convergence in cost and then we show convergence of the solution. At each iteration

t the set of constraints of Problem (3.29) contain the constraints in the old basis Bt
i

(for which the optimal cost is J ti). However, since Problem (3.29) at iteration t contains

additional constraints apart from those in Bt
i , the cost sequence is monotonically non-

decreasing, i.e.

J t+1
i ≥ J ti , for all t ≥ 0 and i ∈ {1, . . . , N}, (3.57)

and due to the additional bounding box −R1 ≤ y,ν ≤ R1, the sequence {J ti }t≥0 is

bounded. In view of the discussion in Section 3.4.1, the inequality constraints gen-

erated at each iteration by the agents are drawn from the inequality constraints of

Problem (3.28), which implies that J ti can only assume values in a finite set (in particu-

lar, the set of costs associated to all the possible constraint combinations). By combining

this fact with (3.57), it follows that J ti converges in finite time to J̄i ∈ R, i.e. there exists

Ti > 0 such that J ti = J̄i for all t ≥ Ti.
To prove convergence of the solution sequence, let us consider the sequence of the

first component of (yti,ν
t
i) starting from time instant Ti, which we denote by {[yti]1}t≥Ti .

The sequence is monotonically non-decreasing. Indeed, for all t ≥ Ti, the local cost

value J t+1
i is constant and equal to J̄i, the feasible set is a subset of the feasible set of

Problem (3.29) with Htmp = Bt
i , and the solution is constructed by taking into account

the lexicographic ordering of vectors. Moreover, since the possible combinations of

inequality constraints is finite, the vector (yti,ν
t
i) can only assume a finite number of

values. Therefore, the sequence {[yti]1}t≥Ti converges in finite time. By iterating the

same arguments on the other components, we conclude that there exists a vector (ȳi, ν̄i)

and a T ′i > 0 such that (yti,ν
t
i) = (ȳi, ν̄i) for all t ≥ T ′i .

Now we prove (ii). Let us consider the time instants after the solution sequence has

converged, i.e. t > T ′i . At this point, we have (yti,ν
t
i) = (ȳi, ν̄i) for all t > T ′i . Assume, to

get a contradiction, that the solution at time t violates a constraint a>yi + bνi ≤ f . Then,

by the discussion of Section 3.4.1 and without loss of generality, at the next time step the

procedure ConstraintOracle will generate such a constraint because it is violated by

the previously computed vector (ȳi, ν̄i). However, this contradicts the fact that (ȳi, ν̄i)

is an optimal solution at time t+ 1 > T ′i . �

3.6.4 Proofs for Section 3.5

Proof of Proposition 3.3

Let us recall two needed lemmas. The following result is the Shapley-Folkman lemma.

115

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

Lemma 3.4 ([111]). Let Pi, for i ∈ {1, . . . , N}, be a collection of subsets of Rd, and let
v ∈ conv(

∑N
i=1 Pi). Then, there exists a subset Iconv(v) ⊂ {1, . . . , N}, containing at most d

indices, such that

v ∈
(∑

i/∈Iconv(v)

Pi +
∑

i∈Iconv(v)

conv(Pi)

)
. 4

The following result is the well-known Caratheodory’s Theorem for representing

elements of the convex hull of a set.

Lemma 3.5 ([8]). Let P ⊆ Rd and consider a point v ∈ conv(P). Then, there exists a set
P ′ ⊆ P , with |P ′| ≤ d + 1, such that v ∈ conv(P ′). Equivalently, v can be expressed as a
convex combination of (at most) d+ 1 vectors in P . 4

Without loss of generality, assume σ = 0. For the sake of analysis, let us denote by

f?R the optimal cost of Problem (3.34), and let us define the sets

Yi ,

{
yi

∣∣∣ yi =

[
gi(xi)

fi(xi)

]
, xi ∈ Xi

}
⊂ RS+1, ∀ i, (3.58)

and their Minkowski sum

Y , Y1 + Y2 + . . .+ YN . (3.59)

By Assumption 3.5, Y , conv(Y), and Yi, conv(Yi), i ∈ {1, . . . , N} are all compact sets.

Moreover, by definition of conv(Y), it holds

f?R = min{w | there exists (z, w) ∈ conv(Y) with z ≤ b}.

Therefore, consider a vector (z̄, w̄) ∈ conv(Y) such that

w̄ = f?R, z̄ ≤ b.

By applying Lemma 3.4 to the set Y =
∑N

i=1 Yi, it follows that there exists a set Iconv ⊂
{1, . . . , N}, with cardinality at most S + 1, and vectors

(b̄i, w̄i) ∈ conv(Yi), i ∈ Iconv,
x̄i ∈ Xi, i /∈ Iconv,

116

3.6. Proofs

such that
∑

i/∈I

gi(x̄i) +
∑

i∈Iconv

b̄i = z̄ ≤ b,
∑

i/∈I

fi(x̄i) +
∑

i∈Iconv

w̄i = w̄ = f?R.
(3.60)

Hence, by Lemma 3.5, for all i ∈ Iconv there must exist vectors x1i , . . . , x
S+2
i ∈ Xi and

scalars α1
i , . . . , α

S+2
i such that

αji ≥ 0, ∀ j ∈ {1, . . . , S + 2},
S+2∑

j=1

αji = 1,

b̄i =
S+2∑

j=1

αjigi(x
j
i) ≥ gi

(S+2∑

j=1

αjix
j
i

)
,

w̄i =
S+2∑

j=1

αjifi(x
j
i) ≥ fi

(S+2∑

j=1

αjix
j
i

)
,

(3.61)

where the inequalities follow by convexity of fi and of the components of gi. By defining

x̃i =
∑S+2

j=1 α
j
ix
j
i for all i ∈ Iconv, it follows that

x̃i ∈ conv(Xi) and x̃i /∈ Xi, for all i ∈ Iconv,

and also
∑

i∈Iconv

b̄i ≥
∑

i∈Iconv

gi(x̃i),

∑

i∈Iconv

w̄i ≥
∑

i∈Iconv

fi(x̃i).
(3.62)

By plugging (3.62) in (3.60), it follows

∑

i/∈Iconv

gi(x̄i) +
∑

i∈Iconv

gi(x̃i) ≤ b,
∑

i/∈Iconv

fi(x̄i) +
∑

i∈Iconv

fi(x̃i) ≤ f?R. (3.63)

Since the vector with components x̃i, i ∈ Iconv and x̄i, i /∈ Iconv is feasible for Prob-

lem (3.34), then (3.63) is satisfied with the equality. Thus, the vector is feasible and

cost-optimal for Problem (3.34), i.e. it is an optimal solution. Thus, if we denote by

117

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

(x?1, . . . , x
?
N) the (unique) optimal solution of Problem (3.34), it holds

x?i = x̃i /∈ Xi, ∀ i ∈ Iconv,
x?i = x̄i ∈ Xi, ∀ i /∈ Iconv,

(3.64)

and the proof follows with I = {1, . . . , N} \ Iconv. �

Proof of Theorem 3.6

By construction, for all i ∈ {1, . . . , N}, xouti ∈ Xi, so that it suffices to show that∑N
i=1 gi(x

out
i) ≤ b. Following the notation of Get-Nonconvex-Sol (Procedure 6), for

all i, xconvi denotes the optimal solution of Problem (3.36) with yi = y?i , xnci denotes

a feasible solution of Problem (3.37) with yendi = y?i (if it exists), and xvioli denotes a

feasible solution of Problem (3.38) with yendi = y?i .

By Lemma 3.1, the vector (xconv1 , . . . , xconvN) is an optimal solution of Problem (3.34),

which by Assumption 3.6 is unique. Thus, by Proposition 3.3, there exists a set I ⊂
{1, . . . , N}, with cardinality at least N − S − 1, such that, for i ∈ I, it holds xouti =

xconvi ∈ Xi. Then, it holds by construction

gi(x
out
i) ≤ y?i , ∀ i ∈ I. (3.65)

As for indices i /∈ I (i.e. belonging to {1, . . . , N}\I), let us partition the set as Ifeas∪Iinfeas,
where agents in Ifeas can find a feasible solution to Problem (3.37), while agents in Iinfeas
cannot. Thus, for i ∈ Ifeas, it holds xouti = xnci , and thus

gi(x
out
i) ≤ y?i , ∀ i ∈ Ifeas. (3.66)

For i ∈ Iinfeas, it holds xouti = xvioli , and thus

gi(x
out
i) = gi(x

conv
i) +

(
gi(x

viol
i)− gi(xconvi)

)

≤ y?i +
(
gi(x

viol
i)− gi(xconvi)

)

≤ y?i + vmaxi 1 ∀ i ∈ Iinfeas, (3.67)

where the last inequality follows by definition of vmaxi . By summing (3.67) over i ∈ Iinfeas,
we get

∑

i∈Iinfeas

gi(x
out
i) ≤

∑

i∈Iinfeas

y?i +
∑

i∈Iinfeas

(
gi(x

L
i)− `i

)
,≤

∑

i∈Iinfeas

y?i + σ∞

118

3.6. Proofs

Collecting all the inequalities and using the fact
∑N

i=1 y
?
i = b− σ∞, we obtain

N∑

i=1

gi(x
out
i) =

∑

i∈I
gi(x

out
i) +

∑

i∈Ifeas

gi(x
out
i) +

∑

i∈Iinfeas

gi(x
out
i) ≤

N∑

i=1

y?i + σ∞ = b,

and the proof follows. �

Proof of Theorem 3.7

The proof of the theorem uses arguments that are similar to Theorem 3.6, and addition-

ally takes into account the evolution of the allocation vector sequence {yt1, . . . , ytN}t≥0.

By Proposition 2.1, the sequence {yt1, . . . , ytN}t≥0 converges to (y?1, . . . , y
?
N), an op-

timal solution of Problem (3.35). Moreover, let us denote by (x?1, . . . , x
?
N) the optimal

solution of Problem (3.34) and let us split the agent set {1, . . . , N} as I ∪ Ifeas ∪ Iinfeas,
where I contains agents for which x?i ∈ Xi, Ifeas contains agents for which x?i /∈ Xi and

Problem (3.37), with yendi = y?i , is feasible, and Iinfeas contains the remaining agents, for

which x?i /∈ Xi and Problem (3.37), with yendi = y?i , is infeasible. For all i ∈ {1, . . . , N},
let us fix εi > 0 such that

∑

i∈I∪Ifeas

2εi ≤ δ.

By the convergence of yti , there exists a sufficiently large Ti > 0 such that

yti ≤ y?i + εi1, ∀ t ≥ Ti and i ∈ {1, . . . , N}. (3.68)

For all i ∈ {1, . . . , N}, let us denote by vti the needed violation of the local allocation

at time t, i.e. vti = 0 for those agents for which xti ∈ Xi, vti = 0 for those agents for which

xti /∈ Xi and Problem (3.37) with yendi = yti is feasible, while for the remaining agents vti
is the optimal cost of

min
xi,vi

vi

subj. to gi(xi) ≤ yti + vi1

xi ∈ Xi.

(3.69)

As for i ∈ I ∪ Ifeas, it holds

gi(x
t
i)

(a)

≤ yti + vti1

(b)

≤ y?i + (εi + vti)1

(c)

≤ y?i + 2εi1, ∀ t ≥ Ti, (3.70)

119

Chapter 3. Distributed Primal Decomposition for Mixed-integer Optimization

where (a) follows by construction, (b) follows by (3.68), (c) follows either since vti = 0 < εi

or since (xti, εi) is feasible for Problem (3.69) (for all t ≥ Ti) and vti is the optimal cost, so

that vti ≤ εi.
As for i ∈ Iinfeas, it holds

gi(x
t
i) = gi(x

?
i) + gi(x

t
i)− gi(x?i) ≤ y?i + vmaxi 1 ∀ t ≥ 0, (3.71)

where gi(x?i) ≤ y?i follows by construction and we used the definition of vmaxi .

By collecting (3.70) and (3.71) we obtain

N∑

i=1

gi(x
t
i) =

∑

i∈I∪Ifeas

gi(x
t
i) +

∑

i∈Iinfeas

gi(x
t
i)

≤
N∑

i=1

y?i

︸ ︷︷ ︸
≤b−σ∞−δ1

+
∑

i∈I∪Ifeas

2εi1 +
∑

i∈Iinfeas

vmaxi 1

︸ ︷︷ ︸
≤σ∞

≤ b+

(∑

i∈I∪Ifeas

2εi − δ
)

︸ ︷︷ ︸
≤0

1

≤ b, ∀ t ≥ Tδ,

where Tδ = max
i

Ti, so that the proof is complete. �

120

Chapter 4

Distributed Stochastic Microgrid
Control

In this chapter, we consider an important energy network application, namely dis-

tributed control of microgrids. We start by reviewing a mixed-integer optimal control

problem for microgrid operation in a deterministic setting. We apply the methodology

developed in Chapter 3 and show simulation results. Then, we consider a more complex

scenario with renewable energy sources and recall a two-stage stochastic optimization

approach. We extend the method of Chapter 3 to cope with the stochastic scenario and

provide a bound on the worst-case constraint violation. Finally, we provide numerical

computations in which a fictious microgrid control problem is synthetized using Gen-

erative Adversarial Networks (GANs). The results of this chapter are partially based

on [27].

4.1 Literature Review

Microgrid control is an important topic in the control community. In [15], a distributed

approach to optimal reactive power compensation is proposed. In [125], a stochastic

optimization method for energy and reserve scheduling with renewable energy sources

and demand-side participation is considered. The work [82] studies a stochastic unit

commitment and economic dispatch problem with renewables and incorporating the

battery operating cost. During the last years, Model Predictive Control (MPC) tech-

niques are being applied to microgrid control. In [88], a centralized MPC approach for

N interconnected smart grids is proposed, while in [37], a two-layer stochastic MPC

approach for microgrids is developed. Due to its ability to model logical statements, re-

cently also Mixed-Integer Linear Programming (MILP) is gathering significant attention.

In [63], a MILP optimal control approach of residential microgrid is proposed. In [70]

a mixed-integer nonlinear programming formulation is considered with experimental

121

Chapter 4. Distributed Stochastic Microgrid Control

validation for islanded-mode microgrids. In [107], a MILP is formulated to achieve opti-

mal load shifting in microgrids. The MPC and the MILP approach have been combined

in [89], which tests a receding horizon implementation of the MILP approach on an

experimental testbed. A stochastic version is then considered in [90], which aims at an

environmental/economical operation of microgrids with renewable energy sources.

4.2 Distributed Mixed-integer Microgrid Model

In this section, we consider the mixed-integer microgrid control problem described

in [89]. We show that the problem can be recast as a constraint-coupled Mixed-Integer

Linear Program (MILP). Then, we apply the framework of Chapter 3 and show simula-

tion results.

4.2.1 Mixed-Integer Microgrid Optimal Control

Let us begin by recalling the microgrid model and the optimal control MILP. A microgrid

consists of N units, partitioned as follows. Storages are collected in Istor, generators in

Igen, critical loads in Ilo, controllable loads in Icl and one connection with the utility

grid in Igrid, so that the whole set of units is {1, . . . , N} = Istor ∪ Igen ∪ Ilo ∪ Icl ∪ Igrid.

We denote the length of the prediction horizon as K ∈ N and the time index in the

optimal control problem as k ∈ N.

Storages

For storage units i ∈ Istor, let xi(k) ∈ R be the stored energy level at time k and let

ui(k) ∈ R denote the power exchanged with the storage unit at time k (positive for

charging, negative for discharging). The dynamics to be satisfied amounts to xi(k +

1) = xi(k) + ηiui(k) − xpli , where ηi denotes the (dis)charging efficiency and xpli is a

physiological loss of energy. It is assumed that ηi = ηci if ui(k) ≥ 0 (charging mode),

whereas ηi = 1/ηdi if ui(k) < 0 (discharging mode), with 0 < ηci , η
d
i < 1. The piece-wise

linear dynamics is reformulated by using mixed-integer inequalities [7]. To this end,

in [89] the authors introduce additional variables δi(k) ∈ {0, 1} and zi(k) , δi(k)ui(k) ∈
R for all k. Each δi(k) is one if and only if ui(k) ≥ 0 (i.e. the storage unit is in the

charging state). After following the manipulations proposed in [89], we obtain the

following model for the i-th storage unit,

xi(k + 1) = xi(k) + (ηci − 1/ηdi)zi(k) + 1/ηdui(k)− xpli ∀ k (4.1a)

E1
i δi(k) + E2

i zi(k) ≤ E3
i ui(k) + E4

i ∀ k (4.1b)

xmini ≤ xi(k) ≤ xmaxi ∀ k (4.1c)

xi(0) = xi,0, (4.1d)

122

4.2. Distributed Mixed-integer Microgrid Model

Table 4.1: List of the main symbols and their definitions

Basic definitions

N ∈ N Number of units in the system

I = {1, . . . , N} Set of units

ε > 0 Very small number (e.g. machine precision)

Storages (indexed by i ∈ Istor)

xi(k) State of charge at time k

ui(k) Exchanged power (≥ 0 if charging) at time k

δi(k) Charging (1) / discharging (0) state

zi(k) Auxiliary optimization variable

ηci , η
d
i Charging and discharging efficiencies

xmini , xmaxi Minimum and maximum storage level

xpli Physiological loss of energy

Ci Maximum output power

OMi Operation and maintenance cost coefficient

Generators (indexed by i ∈ Igen)

ui(k) Generated power (≥ 0) at time k

δi(k) On (1) / off (0) state (“on” iff ui(k) > 0)

νi(k) Epigraph variable for quadratic generation cost

θui (k), θdi (k) Epigraph variables for startup/shutdown costs

T up
i , T down

i Minimum up/down time

umini , umaxi Min. and max. power that can be generated

rmaxi Maximum ramp-up/ramp-down

κui (k), κdi (k) Startup and shutdown costs

OMi Operation and maintenance cost coefficient

Renewable energy sources (indexed by i ∈ Iren)

Pi(k) Generated power at time k

Controllable loads (indexed by i ∈ Icl)
βi(k) Curtailment factor (∈ [βmini , βmaxi]) at time k

Di(k) Consumption forecast at time k

βmini , βmaxi Minimum and maximum allowed curtailment

Connection to the main grid (indexed by i ∈ Igrid)

ui(k) Imported power from the grid at time k

δi(k) Importing (1) or exporting (0) mode at time k

φi(k) Total expenditure for imported power at time k

φpi (k), φsi(k) Price for power purchase and sell at time k

Pmax
i Maximum exchangeable power

123

Chapter 4. Distributed Stochastic Microgrid Control

where (4.1a) is the dynamics, (4.1b) are mixed-integer inequalities expressing the logical

constraints, (4.1c) are box constraints on the state of charge (for 0 < xmini < xmaxi), and

(4.1d) contains the initial conditions (xi,0 ∈ R is the initial state of charge). The matrices

in (4.1b) are

E1
i =




Ci

−(Ci + ε)

Ci

Ci

−Ci
−Ci




, E2
i =




0

0

1

−1

1

−1




, E3
i =




1

−1

1

−1

0

0




, E4
i =




Ci

−ε
Ci

Ci

0

0




,

where Ci > 0 is the limit output power and ε > 0 is a very small number (typically

machine precision). The cost associated to each storage i is

Costi =

K−1∑

k=0

OMi · |ui(k)| =
K−1∑

k=0

OMi · (2zi(k)− ui(k)), (4.2)

where OMi > 0 is the operation and maintenance cost and 2zi(k)− ui(k) = |ui(k)| is the

absolute value of the power exchanged with the storage.

Generators

For generators i ∈ Igen, let ui(k) ∈ R, ui(k) ≥ 0 denote the generated power at time k.

Since generators can be either on or off, as done for the storages we let δi(k) ∈ {0, 1} be

an auxiliary variable that is equal to 1 if and only if ui(k) > 0. As in the case of storages,

we must consider constraints on the operating conditions of generators. Namely, if a

generator is turned on/off, there is a minimum amount of time for which the unit must

be kept on/off. This logical constraint is modeled by the inequalities

δi(k)− δi(k − 1) ≤ δi(τ), τ = k + 1, . . . ,min(k + T up
i − 1, T), (4.3a)

δi(k − 1)− δi(k) ≤ δi(τ), τ = k + 1, . . . ,min(k + T down
i − 1, T), (4.3b)

for all k = 0, . . . , T − 1, where T up
i and T down

i are the minimum up and down time of

generator i. We assume the generators have ramping constraints. Specifically, the power

flow limit and the ramp-up/ramp-down limits are modeled respectively by

umini δi(k) ≤ ui(k) ≤ umaxi δi(k), (4.3c)

−rmaxi δi(k) ≤ ui(k)− ui(k − 1) ≤ rmaxi δi(k), (4.3d)

124

4.2. Distributed Mixed-integer Microgrid Model

for all k ∈ {0, . . . ,K − 1}, where umaxi ≥ umini ≥ 0 denote the maximum and minimum

power that can be generated and rmini ≥ 0 denotes the maximum ramp-up/ramp-down.

The cost associated to generator units is composed of two parts, which are (i) a

quadratic generation cost, and (ii) a start-up/shut-down cost. To model the quadratic

generation cost, as done in [89] we consider a linearized version max
`

(
S`iui(k) + s`i

)

which is written in the epigraph form

νi(k) ≥ S`iui(k) + s`i , ∀ `, (4.3e)

for all k ∈ {0, . . . ,K − 1}, where νi(k) ∈ R is the epigraph variable. The startup θui and

shutdown cost θdi at each time k ∈ {0, . . . ,K − 1} are equal to

θui (k) = max
{

0, κui (k)[δi(k)− δi(k − 1)]
}
,

θdi (k) = max
{

0, κdi (k)[δi(k − 1)− δi(k)]
}
,

where κui (k), κdi (k) > 0 are the start-up and shut-down cost at time k. Also in this case

we write them in epigraph form

θui (k) ≥ κui (k)[δi(k)− δi(k − 1)], (4.3f)

θdi (k) ≥ κdi (k)[δi(k − 1)− δi(k)], (4.3g)

θui (k) ≥ 0, (4.3h)

θdi (k) ≥ 0, (4.3i)

for all k ∈ {0, . . . ,K − 1}, and treat the variables θui (k), θdi (k) ∈ R as epigraph variables.

Thus, the final expression for the cost of each generator i is

COSTi =
K−1∑

k=0

(
OMi · δi(k) + νi(k) + θui (k) + θdi (k)

)
. (4.4)

Loads

Loads are of two types, namely critical loads and controllable loads. For critical loads

i ∈ Ilo, we will denote by Di(k) the consumption forecast at time k and we assume it

is known a priori. This assumption is fairly realistic, since in real contexts one can use

historical data to formulate load predictions. Alternatively, the consumers themselves

can formulate a prediction of the load schedule for the next day. The consumption of

critical loads will be considered in the power balance. There is no cost associated to this

kind of loads.

For controllable loads i ∈ Icl, let Di(k) be the consumption forecast at time k, which

is also assumed to be known a priori. The actual power consumption at each time instant

125

Chapter 4. Distributed Stochastic Microgrid Control

is (1 − βi(k))Di(k), where βi(k) ∈ R is the curtailment factor. This is subject to the

constraint that

βmini ≤ βi(k) ≤ βmaxi , ∀ k ∈ {0, . . . ,K − 1}, (4.5)

where 0 < βmini < βmaxi < 1 are the bounds on the allowed curtailment. In case of

curtailed power, the microgrid incurs in the cost

COSTi =
K−1∑

k=0

ϕiDi(k)βi(k), (4.6)

where ϕi > 0 is a penalty weight.

Connection to the utility grid

For the connection with the utility grid i ∈ Igrid, let ui(k) ∈ R denote the imported

(exported) power level from (to) the utility grid. We use the convention that imported

power at time k is positive ui(k) ≥ 0. As before, since the power purchase price is

different from the power sell price, we consider auxiliary variables δi(k) ∈ {0, 1} and

φi(k) ∈ R for all k. The variable δi(k) models the logical statement δi(k) = 1 if and only

if ui(k) ≥ 0 (i.e. power is imported from the utility grid). Denoting by φpi (k), φsi(k) ≥ 0

the price for power purchase and sell, we let φi(k) = φpi (k)ui(k) if δi(k) = 1 and

φi(k) = φsi(k)ui(k) if δi(k) = 0. By denoting by Pmax
i ≥ 0 the maximum power flow, the

corresponding mixed-integer inequalities are

E1
i δi(k) + E2

i φi(k) ≤ E3
i (k)ui(k) + E4

i , k = 0, . . . , T − 1, (4.7)

where the matrices are defined as

E1
i =




Pmax
i

−(Pmax
i + ε)

Mi

Mi

−Mi

−Mi




, E2
i =




0

0

1

−1

1

−1




, E3
i (k) =




1

−1

φp(k)

−φp(k)

φs(k)

−φs(k)




, E4
i =




Pmax
i

−ε
Mi

Mi

0

0




,

with Mi = Pmax
i max

k
(φp(k), φs(k)). Clearly, the cost associated with this unit is

COSTi =

K−1∑

k=0

φi(k). (4.8)

126

4.2. Distributed Mixed-integer Microgrid Model

Power balance constraint and optimal control problem

To write the power balance constraint, we consider a more relaxed constraint than the

one in [89]. Namely, we impose that the power drawn from the utility grid must be

sufficient to meet the needs of the microgrid, i.e.

uIgrid(k) ≥
∑

i∈Istor

ui(k)−
∑

i∈Igen

ui(k) +
∑

i∈Icl

(1− βi(k))Di(k) +
∑

i∈Ilo

Di(k), (4.9)

for all k ∈ {0, . . . ,K − 1}. Note that the minimal cost for the power exchanged with

the utility grid is obtained when power is sold (rather then bought). Thus, since the

problem is in minimization form, the solution will be on the boundary of this constraint,

and in fact optimal solutions satisfy this constraint with the equality.

The optimal control MILP can be finally posed as

min
u

K−1∑

k=0

[∑

i∈Istor

(OMi · (2zi(k)− ui(k)) +
∑

i∈Icl

ϕiDi(k)βi(k) + φgrid(k)

+
∑

i∈Igen

(OMi · δi(k) + νi(k) + θui (k) + θdi (k))

]

subj. to storage constraints (4.1)

generator constraints (4.3)

constraints (4.5), (4.7), (4.9).

(4.10)

4.2.2 Constraint-coupled Reformulation

Let us now fit the microgrid control problem (4.10) into the constraint-coupled MILP (3.1),

min
x1,...,xN

N∑

i=1

c>i xi

subj. to
N∑

i=1

Aixi ≤ b

xi ∈ Xmilp
i , i = 1, . . . , N,

(4.11)

where we recall that N is the number of agents and, for all i ∈ {1, . . . , N}, xi ∈ Rni is

the i-th optimization variable with cost vector ci ∈ Rni , the set Xmilp
i ⊂ Zpi × Rqi is a

compact mixed-integer polyhedron, while the matrices Ai ∈ RS×(pi+qi) and the vector

b ∈ RS model the coupling constraints.

127

Chapter 4. Distributed Stochastic Microgrid Control

Device-specific quantities and coupling constraints

To achieve this reformulation, we now specify the quantities xi, ci, Xmilp
i , Ai and b.

Storages. We assume that each storage unit i ∈ Istor is responsible for the optimization

vector xi consisting of the stack of xi(k), ui(k), zi(k) ∈ R and δi(k) ∈ {0, 1} for all

k ∈ {0, . . . ,K − 1} plus the variable xi(K) ∈ R. The constraints in Xmilp
i are given

by (4.1), while the cost function is c>i xi =
∑K−1

k=0 OMi · (2zi(k)− ui(k)).

Generators. Each generator i ∈ Igen is responsible for the optimization vector xi
consisting of the stack of ui(k), νi(k), θui (k), θdi (k) ∈ R and δi(k) ∈ {0, 1} for all k ∈
{0, . . . ,K−1}. The constraints inXmilp

i are given by (4.3a)–(4.3i), while the cost function

is c>i xi =
∑K−1

k=0

(
OMi · δi(k) + νi(k) + θui (k) + θdi (k)

)
.

Critical loads. For the critical loads i ∈ Ilo there are no variables to optimize, but

they must be taken into account in the coupling constraints.

Controllable loads. For each controllable load i ∈ Icl the optimization vector xi
consists of the stack of βi(k) ∈ R, for all k ∈ {0, . . . ,K − 1}, with constraints given

by (4.5). Note that, for this class of devices, the local constraint set is not mixed-integer.

The cost function is c>i xi =
∑K−1

k=0 ϕiDi(k)βi(k).

Connection to the utility grid. For this device i ∈ Igrid, the optimization vector xi
consists of the stack of ui(k), φi(k) ∈ R and δi(k) ∈ {0, 1} for all k ∈ {0, . . . ,K − 1}. The

local constraints are (4.7), while the cost function is c>i xi =
∑K−1

k=0 φi(k).

Coupling constraints. Finally, the coupling constraints are given by (4.9), which can

be encoded in the form
∑N

i=1Aixi ≤ b by appropriately defining the matrices Ai and the

vector b in such a way that each agent matches its contribution to the microgrid power

consumption (more details are given later). In particular, the right-hand side vector is

equal to

b = −
∑

i∈Icl

βi(k)Di(k)−
∑

i∈Ilo

Di(k).

Application of Mixed-Integer Methodology

To Problem (4.11) we want to apply the MILP methodology developed in Chapter 3

and obtain asymptotic feasibility (cf. Theorem 3.1). To this end, we first compute the

restriction using the definition (3.11), which is recalled here

σ∞ = S · max
i∈{1,...,N}

σloci ,

where each σloci is equal to the worst-case violation of agent i as discussed in Section 3.3.3.

Note that the local constraint set Xmilp
i of controllable loads is not mixed integer and

therefore it holds σloci = 0 for all i ∈ Icl.
As discussed in Section 3.3.1, the algorithm must be initialized with initial allocations

128

4.2. Distributed Mixed-integer Microgrid Model

vectors y0i satisfying

N∑

i=1

[y0i]k = bk = −
∑

i∈Icl

Di(k)−
∑

i∈Ilo

Di(k), k = 0, . . . ,K − 1.

In particular, we assume that all the nodes initialize their y0i = 0 except the controllable

loads that initialize [y0i]k = −Di(k) for all k and the node i ∈ Igrid that is assumed to

know the predicted values of the critical loads and thus initializes [y0i]k = −∑i∈Ilo Di(k)

for all k. In such a way, all the information that is not related to critical loads is kept

private.

4.2.3 Simulation Results

Let us now show Montecarlo simulations of Algorithm 3 on the microgrid control prob-

lem. In particular, we test the magnitude of the restriction σ∞ and the suboptimality of

the computed solution and compare the performance of Algorithm 3 with the algorithm

in [121]. We consider N = 151 agents: 50 storages, 50 generators, 50 controllable loads,

and 1 connection to the main grid, with prediction horizon K = 12. Therefore, the total

number of optimization variables is 6.086, out of which 4.874 are in R and 1.212 are in

{0, 1}. A total amount of 50 random instances of the problem have been generated, with

S = K = 12 coupling constraints.

We run the distributed algorithm up to asymptotic convergence and obtain a feasible

mixed-integer solution (x∞1 , . . . , x
∞
N). In Figure 4.1 (left), we provide an histogram of the

relative restriction magnitude with respect to the total available resource, i.e. ‖σ‖/‖b‖.
The picture shows that the magnitude of our restriction is about 1% of ‖b‖. Moreover,

compared to the restriction proposed by [121], our restriction is about 240 times smaller.

We were not able to find a proper tuning of the problems parameters to apply the

approach proposed by [121]. Indeed, for the generated instances, the approximate

Problem (3.2), with their restriction, turns out to be infeasible. In Figure 4.1 (right),

we provide an histogram of the relative suboptimality of the solution produced by

Algorithm 3, with respect to the dual cost q? of MILP (4.11). It can be seen that the

computed solutions enjoy around 3.4% suboptimality. Notice that this value represents

a worsening estimate of the actual suboptimality since q? ≤ J?, where J? is the optimal

cost of MILP (4.11).

Finally, we show the evolution of Algorithm 3 on one generated instance. Here,

we employ an additional restriction equal to 1 to ensure finite-time feasibility (cf.

Theorem 3.3) of the computed solution. In Figure 4.2, the evolution of the coupling

constraint utilization of (xt1, . . . , x
t
N) is plotted. It can be seen that the mixed-integer

solution becomes feasible for the original coupling constraint of MILP (4.11) in about

400 iterations, when the maximum value falls below 0.

129

Chapter 4. Distributed Stochastic Microgrid Control

1.06 1.08 1.1
0

10

20

30

40

Fr
eq

u
en

cy
[%

]

256 260 264
0

10

20

30

40

Restriction [%]

Fr
eq

u
en

cy
[%

]

Primal decomp.
Dual decomp.

2.8 3 3.2 3.4 3.6
0

5

10

15

20

25

Solution suboptimality [%]
Fr
eq

u
en

cy
[%

]

Figure 4.1: Montecarlo simulations on the microgrid problem. Left: relative restriction magni-
tude with respect to total resource, computed as ‖σ‖/‖b‖, for Algorithm 3 and for the dual decom-
position approach in [121]. Right: solution suboptimality, computed as

(∑N
i=1 c

>
i x

∞
i − q?

)
/q?,

for our approach ([121] is infeasible).

0 200 400 600 800 1,000
−1

0

1

2

3
·104

iteration t

N ∑ i=
1

A
ix

t i
−
b

Figure 4.2: Components of the coupling constraint associated to (xt1, . . . , x
t
N), generated by our

algorithm on an instance of the microgrid problem. The arrow denotes the instant in which the
solution becomes globally feasible.

130

4.3. Distributed Stochastic Mixed-integer Microgrid Control

4.3 Distributed Stochastic Mixed-integer Microgrid Control

In this section, we show how to extend the distributed microgrid control framework

to the stochastic case. We consider the stochastic formulation of the microgrid control

problem discussed in [90]. The microgrid model described in [90] is slightly more

complex than the one considered in Section 4.2 as combined heat and power (CHP)

capabilities are additionally considered. Without loss of generality, since the main focus

of this section is to show how the extend the distributed microgrid control algorithm

to the stochastic scenario, we prefer to keep the already introduced microgrid model

by only introducing the needed changes due to the stochastic scenario. Indeed, the

additional optimization variables and constraints stemming from the extended modeling

of [90] can be easily included in our framework.

4.3.1 Stochastic Microgrid Model with Renewable Sources

The microgrid model considered here is similar to the one introduced in Section 4.2.1,

except that here we also consider the presence of renewable energy sources, which are

treated in a stochastic manner.

Let us now assume that the set of devices i ∈ {1, . . . , N} also contains renewable

energy sources with indices i ∈ Iren. These units only contribute to the power balance

constraint (4.9) through their generated power at each time slot k, denoted as Pi(k), and

do not have associated cost or constraints. Thus, the power balance constraint becomes

uIgrid(k) =
∑

i∈Istor

ui(k)−
∑

i∈Igen

ui(k) +
∑

i∈Icl

(1− βi(k))Di(k) +
∑

i∈Ilo

Di(k)−
∑

i∈Iren

Pi(k),

(4.12)

for all k ∈ {0, . . . ,K − 1}, where we assumed Pi(k) ≥ 0. Differently from Section 4.2,

here we also have the stochastic variables Pi(k) for i ∈ Iren. Moreover, note also that

differently from (4.9) the constraint (4.12) is an equality.

We consider two types of renewables, namely wind generators and solar generators.

Rather than using a physical or dynamical model for these generators, by relying on

huge amount of datasets freely available on the internet in this work we prefer to

use a predictor to generate realistic power production scenarios. We will employ this

technique also to predict the power demand (see Section 4.3.5 for more details).

4.3.2 Distributed Constraint-coupled Stochastic Optimization

Bearing in mind that the constraint (4.12) is stochastic, let us introduce the stochastic

optimization problem associated to the new microgrid model. As done in [90], we

formulate a so-called two-stage stochastic linear program with simple recourse. This

131

Chapter 4. Distributed Stochastic Microgrid Control

problem is in a sense similar to Problem (4.10), but since some Pi are unknown it is not

possible to satisfy the equality a-priori.

Essentially, in this problem scenario we initially choose a set of control actions ui(k)

that minimize a given cost but in general will not satisfy the power balance (4.12) “a

posteriori” (i.e. when the value of the random variables is realized). To compensate

this infeasibility, recourse actions must be taken, which impact on the actual final cost

associated to the chosen control actions. In view of this, the considered problem allows

for a violation of the power balance constraint by construction. For this reason, in the

problem there are two kinds of variables. The so-called first-stage variables are the

actual control actions ui(k), while the constraint violations, which are penalized in the

cost, are the so-called two-stage variables that model the recourse. Associated to the

two-stage variables is a linear objective function, which models the cost associated to

recourse actions.

Formally, we denote by Ω the random vector collecting all the renewable energy

generation profiles. We assume a finite discrete probability distribution for Ω and we

denote by πr the probability of each ωr, i.e. πr = P(ω = ωi) for all r ∈ {1, . . . , R}. To

keep the notation consistent we denote the renewable energy profile corresponding to

ωr as Pir(k). By following a similar derivation as in Section 4.2.2, we can define the local

variables, the local constraints, the cost vectors ci and the contributions to the coupling

constraints. In particular, the power balance (4.12) gives rise to an equality coupling

constraint of the type
∑N

i=1Hixi = h, where

[Hixi]k = ui(k), ∀i ∈ Istor, (4.13a)

[Hixi]k = −ui(k), ∀i ∈ Igen, (4.13b)

[Hixi]k = −βi(k)Di(k), ∀i ∈ Icl, (4.13c)

[Hixi]k = −ui(k), ∀i ∈ Igrid, (4.13d)

and

h(k) = −
∑

i∈Icl

Di(k)−
∑

i∈Ilo

Di(k) +
∑

i∈Iren

Pi(k). (4.13e)

Note that this equality constraint has K components. Moreover, we point out that the

random variables appear only in the vector h. We denote by hr the realization of h

associated to the scenario ωr. Using these positions, the two-stage stochastic MILP can

132

4.3. Distributed Stochastic Mixed-integer Microgrid Control

then be formulated as

min
x1,...,xN
η+,η−

N∑

i=1

c>i xi +

K−1∑

k=0

R∑

r=1

πr(q+ηkr+ + q−ηkr−)

subj. to ηr− ≤
N∑

i=1

Hixi − hr ≤ ηr+, r = 1, . . . , R

η+, η− ≥ 0,

xi ∈ Xmilp
i , i = 1, . . . , N,

(4.14)

where x1, . . . , xN are the first-stage variables modeling the (a-priori) control actions and

η+, η− are the two-stage variables modeling the (a-posteriori) recourse actions, which

are penalized in the cost with q+ ≥ 0 and q− ≥ 0, which are the costs related to energy

surplus and shortage, respectively. In Problem (4.14), we denoted by ηkr+ the variable

associated with positive recourse for scenario r at time k. We also use the symbol ηr+ to

denote the stack of ηkr+ for all k. The stack of ηkr+ for all k and r is denoted by η+. A

similar notation holds for η−. It is easy to see that the additional term in the cost is the

expected value of the cost associated to recourse actions, i.e.

K−1∑

k=0

R∑

r=1

πr(q+ηkr+ + q−ηkr−) =
K−1∑

k=0

E
[
Φ

([N∑

i=1

Hixi − h
]

k

)]
,

where Φ(z) = q+z if z ≥ 0 and Φ(z) = −q−z if z < 0.

At a first glance, it may seem that the two-stage problem (4.14) loses the constraint-

coupled structure of the deterministic formulation (4.11). However, with a bit a ma-

nipulation, it is still possible to arrive at a similar result. We begin by streamlining the

notation. Define η ∈ R2KR, η ≥ 0 as the stack of η+ and η−, and the vector d ∈ R2KR

such that d>η =
∑K−1

k=0

∑R
r=1 πr(q+ηkr+ + q−ηkr−). Moreover, define also Ai ∈ R2KR×ni

and b ∈ R2KR with

Ai = 1⊗
[
Hi

−Hi

]
=
[
H>i −H>i · · · H>i −H>i

]>
, i = 1, . . . , N,

b =
[
h>i1 −h>i1 · · · h>iR −h>iR

]>
,

where 1 ∈ RR and ⊗ denotes the kronecker product. Thus, Problem (4.14) is equivalent

133

Chapter 4. Distributed Stochastic Microgrid Control

to

min
x1,...,xN

η

N∑

i=1

c>i xi + d>η

subj. to
N∑

i=1

Aixi − b ≤ η

η ≥ 0, xi ∈ Xmilp
i , i = 1, . . . , N.

(4.15)

We would like to apply the results of Section 3.3 to Problem (4.15). However, we

must find a way to deal with the additional variable η. By defining η1, . . . , ηN ∈ R2RK

such that
∑N

i=1 ηi = η and each ηi ≥ 0, we see that Problem (4.15) is equivalent to

min
x1,...,xN
η1,...,ηN

N∑

i=1

(c>i xi + d>ηi)

subj. to
N∑

i=1

(Aixi − ηi) ≤ b,

ηi ≥ 0, xi ∈ Xmilp
i , i = 1, . . . , N,

(4.16)

in the sense that any solution of (4.15) can be reconstructed from a solution of (4.16)

by using η =
∑N

i=1 ηi. Problem (4.16) has the constraint-coupled structure (4.11) by

defining x̃i = (xi, ηi) ∈ Xmilp
i × [0,+∞)2RK as local optimization variables, with cost

c̃i = (ci, di) and coupling constraint matrices Ãi = [Ai,−I], where I ∈ R2RK is the

identity matrix. Note that Problem (4.16) has an unbounded feasible set (because of the

variables ηi) but it always admits an optimal solution due to the terms d>ηi minimized

in the cost (recall that d ≥ 0).

4.3.3 Distributed Algorithm Description

Using a technique similar to that of Section 3.3, we now propose a distributed algorithm

that computes a feasible solution to (4.16). We begin by describing the algorithm and in

the next subsection we discuss its theoretical properties.

The basic idea behind the distributed algorithm is the same as in Chapter 3, that

is, to compute a mixed-integer solution starting from an optimal solution of the con-

vex relaxation of Problem (4.15) obtained by replacing Xmilp
i with their convex hull

134

4.3. Distributed Stochastic Mixed-integer Microgrid Control

conv(Xmilp
i),

min
z1,...,zN
η1,...,ηN

N∑

i=1

(c>i zi + d>ηi)

subj. to
N∑

i=1

(Aizi − ηi) ≤ b,

ηi ≥ 0, zi ∈ conv(Xmilp
i), i = 1, . . . , N,

(4.17)

where zi denotes the continuous counterpart of the mixed-integer variable xi. To

do so, each agent i maintains a local allocation estimate yti ∈ R2RK (we recall from

Section 2.2.2 that allocation vectors represent utilization of the total resource b of the

coupling constraints). At each iteration t, the vector yti is updated according to (4.18)–

(4.19). After Tf > 0 iterations, the agent computes a tentative mixed-integer solution

based on the last computed allocation estimate (cf. (4.20)). Algorithm 8 summarizes the

steps from the perspective of agent i.

Algorithm 8 Distributed Stochastic Mixed-integer Microgrid Control

Initialization: set Tf > 0 and y0i such that
∑N

i=1 y
0
i = b

Repeat for t = 0, 1, . . . , Tf − 1

Compute µti as a Lagrange multiplier of

min
zi,ηi

c>i zi + d>ηi

subj. to µi : Aizi ≤ yti + ηi

ηi ≥ 0, zi ∈ conv(Xmilp
i)

(4.18)

Receive µtj from j ∈ Ni and update

yt+1
i = yti + αt

∑

j∈Ni

(
µti − µtj

)
(4.19)

Return (x
Tf
i , η

Tf
i) as optimal solution of

min
xi,ηi

c>i xi + d>ηi

subj. to Aixi ≤ yTfi + ηi

ηi ≥ 0, xi ∈ Xmilp
i

(4.20)

Similarly to the algorithm discussed in Section 3.3.1, the first two steps (4.18)–(4.19)

are used to compute an optimal solution of Problem (4.17), while the last step (4.20)

reconstructs a mixed-integer solution. Note that Problem (4.18) is an LP and Prob-

135

Chapter 4. Distributed Stochastic Microgrid Control

lem (4.20) is a MILP. From a computational point of view, in order to compute a La-

grange multiplier of Problem (4.18) one can either use a local dual subgradient method

(cf. Remark 3.3) or a local cutting-plane method (cf. Remark 3.8), while an optimal

solution to Problem (4.20) can be found with any MILP solver. In the following, we

do not discuss in every detail Algorithm 8 but only provide a qualitative analysis for

those aspects that have been already discussed in Chapter 3. However, there are some

novelties with respect to the framework of Chapter 3 for which we do provide formal

results. In particular, in the next subsection we will prove a worst-case violation of the

power balance constraints.

Remark 4.1. An important fact is that the computed mixed-integer solution always

satisfies the power balance constraint of Problem (4.15) at the cost of a possibly high ηi,

i.e.

N∑

i=1

(Aix
Tf
i − η

Tf
i) ≤

N∑

i=1

y
Tf
i = b,

where the inequality follows by construction and the equality follows by Proposition 4.2

(to be formulated in the next subsection). Thus, the algorithm can be stopped at any

iteration Tf ≥ 0 and the resulting solution will be feasible for the two-stage MILP (4.15).

The greater the number of iterations, the higher is the optimality of the computed

solution. 4

Before going on with the analysis, let us highlight some similarities and differences

with respect to Algorithm 3 in Chapter 3. We begin by noting that here we are not em-

ploying the restriction-based mechanism (cf. Section 3.3.3). In Chapter 3 the restriction

approach was used to guarantee satisfaction of the coupling constraints, while here

this is not necessary since the computed solutions always satisfy the power balance

constraint of the stochastic problem. This is a consequence of the fact that in the current

chapter we assume that corrections actions (i.e. recourse) will be always necessary.

Another difference regards the variables ηi. These vector variables play a role similar to

the scalar variables ρi and vi of Chapter 3 (cf. in particular Problems (3.5) and (3.7)),

however here we prefer to use a different name to distinguish them from ρi and vi.

Indeed, in the cost terms d>ηi the vector d is given, while in the cost terms Mρi the

weight M is artificially added and arbitrarily chosen. This is connected to the fact that

in Chapter 3 the original objective (cf. Problem (3.1)) is to minimize c>i xi for all i and

to satisfy mandatorily the coupling constraints
∑N

i=1Aixi ≤ b, while now the original

objective is to jointly optimize over xi and ηi by minimizing c>i xi + d>ηi for all i and

to achieve only a “soft” satisfaction of the coupling constraints (due to the intrinsic

presence of the violation vector ηi). This last consideration also has consequences on the

formulation of the distributed algorithm. Indeed, the mixed-integer solution reconstruc-

136

4.3. Distributed Stochastic Mixed-integer Microgrid Control

tion is carried out differently from the strategy proposed in Chapter 3. In particular,

we recall that Problem (3.7) is equivalent to a two-step procedure in which we first

compute the needed (minimal) violation, if any, and then optimize the true cost function

c>i xi. Instead, in Problem (4.20) we optimize over xi and ηi simultaneously in order to

faithfully reproduce the purpose of MILP (4.14).

Remark 4.2. In principle, Algorithm 8 can also be applied in a receding horizon fashion.

Specifically, at each sample time k, one can run Algorithm 8 for a fixed number of

iterations and then apply only the first input of the computed input trajectories. Since the

control sampling interval is typically large (e.g. one hour), the number of iterations for

which Algorithm 8 is executed can be very large, leading to quasi-asymptotic solutions

that almost reach the performance specified in Theorem 4.1. 4

4.3.4 Theoretical Results

In this subsection, we provide theoretical results on Algorithm 8. The algorithm is simi-

lar to the one described in Section 3.3.1, however the previously highlighted differences

result in a different kind of properties that can be proven. In particular, we will prove

a bound for the worst-case violation of the asymptotically computed mixed-integer

solution.

To begin with, we recall the next proposition, where we remind that K denotes the

prediction horizon and R is the total number of scenarios in the stochastic problem).1

Proposition 4.1 (Lemma 3.1). Let Problem (4.17) be feasible and let (z̄1, . . . , z̄N , η̄1, . . . , η̄N)

be any vertex of its feasible set. Then, there exists an index set IZ ⊆ {1, . . . , N}, with
cardinality |IZ| ≥ N − 2RK, such that z̄i ∈ Xmilp

i for all i ∈ IZ. 4

As seen in Chapter 3, the consequence of Proposition 4.1 is that at least N − 2RK

blocks of the mixed-integer solution computed asymptotically by Algorithm 8 are equal

to the corresponding blocks of optimal solution of (4.17). Next we recall convergence of

the steps (4.18)–(4.19). To this end, we denote as (zlp1 , . . . , z
lp
N , η

lp
1 , . . . , η

lp
N) an optimal

solution of Problem (4.17), together with the allocation vector (ylp1 , . . . , y
lp
N) associated

to the primal decomposition master problem (cf. Section 2.2.2), which we recall to be a

vector satisfying

Aiz
lp
i − ηlpi ≤ ylpi , for all i ∈ {1, . . . , N}, (4.21a)

1There are some minor differences with respect to the set-up considered in Chapter 3 and in particular
between Problem (4.17) and the LP relaxation (3.2). The feasible set of Problem (4.17) is unbounded because
of the variables ηi (which were not present in Problem (3.2). This invalidates the standing assumption of
compact sets that we did in Chapter 3. However, Proposition 3.1 still applies because we can pretend that
artificial constraints ηi ≤M1, with M > 0 sufficiently large, are added to Problem (4.17) that make the
feasible set compact and preserve the optimal solution set.

137

Chapter 4. Distributed Stochastic Microgrid Control

and
N∑

i=1

ylpi = b. (4.21b)

The following assumption is made on the step-size sequence.

Assumption 4.1. The step-size sequence {αt}t≥0, with each αt ≥ 0, satisfies
∑∞

t=0 α
t =∞,∑∞

t=0

(
αt
)2
<∞. 4

The following proposition summarizes the convergence properties of the steps (4.18)–

(4.19). The proof is omitted since it is similar to the derivations of Chapter 2.2

Proposition 4.2. Let Problem (4.17) be feasible and let Assumption 4.1 hold. Consider the
allocation vector sequence {yt1, . . . , ytN}t≥0 generated by steps (4.18)–(4.19) of Algorithm 8
with the allocation vectors y0i initialized such that

∑N
i=1 y

0
i = b. Then,

(i)
∑N

i=1 y
t
i = b for all t ≥ 0;

(ii) limt→∞ ‖yti − ylpi ‖ = 0 for all i ∈ {1, . . . , N}. 4

Because of Proposition 4.2, from now on we concentrate on the asymptotic mixed-

integer solution computed by Algorithm 8. In particular, we denote by (x∞i , η
∞
i) the

optimal solution of Problem (4.20) with allocation equal to ylpi , i.e.

min
xi,ηi

c>i xi + d>ηi

subj. to Aixi ≤ ylpi + ηi

ηi ≥ 0, xi ∈ Xmilp
i .

(4.22)

We also define the lower bound of resources

`i , min
xi,ηi

Aixi − ηi

subj. to xi ∈ conv(Xi)

0 ≤ ηi ≤M1.

where min is vector-wise and M > 0 is a sufficiently large number. Thus, it holds

`i ≤ yi for all admissible allocations yi, and in particular `i ≤ ylpi . Operatively, since

the constraints on xi and ηi are disjoint the vector `i can be computed by replacing

xi ∈ conv(Xi) with xi ∈ Xi.

In the next theorem we formalize the bound on the worst-case violation.
2 To prove Proposition 4.2, one should apply primal decomposition to Problem (4.17) and then follow

the reasonings of Section 2.4 without block randomization. Differently from Section 2.2, here we are not
required to apply the relaxation approach, since the constraints yi ∈ Yi are already not present in the
master problem.

138

4.3. Distributed Stochastic Mixed-integer Microgrid Control

Theorem 4.1. Let Problem (4.17) be feasible and consider the asymptotic mixed-integer
solution (x∞i , η

∞
i) computed by each agent i ∈ {1, . . . , N}. Then, the worst-case violation of

the power balance constraint is

N∑

i=1

Aix
∞
i − b ≤

∑

i∈IZ

ηlpi +
∑

i/∈IZ

c>i (xLi − x∞i) + d>ηLi
dmin

1,

where dmin = minj∈{1,...,2RK} dj , IZ denotes the set of agents (satisfying |IZ| ≥ N − 2RK)
for which zlpi ∈ Xmilp

i and (xLi , η
L
i) is an optimal solution of Problem (4.24).

Proof. By the optimality of (x∞i , η
∞
i) for Problem (4.22), it holds

c>i x
∞
i + d>η∞i ≤ c>i xi + d>ηi (4.23)

for all xi ∈ Xi and ηi ≥ 0 such thatAix∞i ≤ ylpi +ηi. One vector satisfying such condition

is (xLi , η
L
i) optimal solution of

min
xi,ηi

c>i xi + d>ηi

subj. to 0 ≤ ηi ≤M1, xi ∈ Xi,

Aixi ≤ `i + ηi,

(4.24)

Indeed, it holds AixLi ≤ `i + ηLi ≤ ylpi + ηLi , where the first inequality is by construction

and the second one follows by the discussion above on `i. Thus, by using (4.23) we

conclude that

d>η∞i ≤ c>i (xLi − x∞i) + d>ηLi . (4.25)

By explicitly writing the scalar product d>η∞i and by using the fact that d, η ≥ 0 we

obtain

d>η∞i =
2RK∑

j=1

djη
∞
ij ≥

(
min

j∈{1,...,2RK}
dj

)

︸ ︷︷ ︸
dmin

2RK∑

j=1

η∞ij .

Moreover, by using the fact that η∞ij ≤
∑2RK

k=1 η
∞
ik for all k we obtain

η∞i ≤
d>η∞i
dmin

1 ≤ c>i (xLi − x∞i) + d>ηLi
dmin

1.

139

Chapter 4. Distributed Stochastic Microgrid Control

Let us now compute an upper bound of the coupling constraint value, i.e.

N∑

i=1

Aix
∞
i − b ≤

N∑

i=1

ylpi

︸ ︷︷ ︸
b

+
∑

i∈IZ

ηlpi +
∑

i/∈IZ

η∞i − b

=
∑

i∈IZ

ηlpi +
∑

i/∈IZ

η∞i . (4.26)

where we used the fact that, by Proposition 4.1, for i ∈ IZ it holds Aix∞i ≤ ylpi + ηlpi ,

while for i /∈ IZ it holds Aix∞i ≤ ylpi + η∞i . Thus we finally obtain the bound

N∑

i=1

Aix
∞
i − b ≤

∑

i∈IZ

ηlpi +
∑

i/∈IZ

c>i (xLi − x∞i) + d>ηLi
dmin

1.

and the proof follows. �

Note that, since this bound is the sum of contributions of the agents, it can be

computed a posteriori in a distributed way using a consensus scheme. To do so, they first

need to detect whether they belong to IZ or not by computing the primal solution zlpi
of (4.18) and by checking whether it satisfies zlpi ∈ Xmilp

i . Then, they run the consensus

scheme using as initial condition either Nηlpi (if zlpi ∈ Xmilp
i) or N c>i (xLi−x

∞
i)+d>ηLi

dmin 1 (if

zlpi /∈ Xmilp
i).

4.3.5 Scenario Generation with Deep Generative Adversarial Networks

Let us provide more details regarding the scenario generation for renewable energy

sources. Recall that h ∈ RK is a random variable that depends on the total energy

produced by the renewables (4.13e). The variable h has its own probability distribution

and h1, . . . , hR ∈ RK are randomly drawn samples (cf. (4.14)). In order to generate such

samples, we utilize a Generative Adversarial Network trained with real historical data.

To train the neural network, we used the historical data provided by Open Power System

Data [87], in particular we used the generation data of renewable energy sources in

South Italy. We first filtered the dataset by concentrating only on summer months (to

guarantee a certain uniformity of the data), removing spurious data and discarding days

with missing information. We finally obtained a dataset with a total of 552 samples,

where each sample contains information on the power produced during the day with a

hourly resolution.

As for the utilized neural networks, the generative networks have a 10-dimensional

input with the following layers:

• a dense layer with 1536 units, batch normalization and Leaky ReLU activation

function;

140

4.3. Distributed Stochastic Mixed-integer Microgrid Control

• a layer that reshapes the input to the shape (6, 256);

• a transposed convolution layer with 128 output filters, kernel size equal to 5, stride

1, batch normalization and Leaky ReLU activation function;

• a transposed convolution layer with 64 output filters, kernel size equal to 5, stride

2, batch normalization and Leaky ReLU activation function;

• a transposed convolution layer with 1 output filter, kernel size equal to 5, stride 2

and tanh activation function.

The ouput of the generative network is a 24-dimensional vector containing the power

produced by the renewable unit at each time slot of the day. The discriminator networks

have a 24-dimensional input with the following layers:

• a convolution layer with 64 output filters, kernel size equal to 5, stride 2 and Leaky

ReLU activation function;

• a Dropout layer with rate 0.3;

• a convolution layer with 128 output filters, kernel size equal to 5, stride 2 and

Leaky ReLU activation function;

• a Dropout layer with rate 0.3;

• a layer that flattens the input;

• a dense layer with one output unit.

The output of the discriminator networks is a scalar that denotes the probability that

the evaluated input is a real one or a generated one.

We used the neural networks to generated samples of solar energy and wind energy.

We used Tensorflow 2.4 to model the networks and we performed the training with 105

epochs. In Figure 4.3, we show example profiles of solar and wind energy generated by

the networks.

4.3.6 Simulation Results

In this subsection, we show simulation results of Algorithm 8 performed with the

disropt package [48].

We generated a microgrid control problem with a total of 48 units: 5 generators, 5

storages, 15 controllable loads, 10 critical loads, 10 solar generators, 3 wind generators

and the connection to the main grid. We considered R = 5 scenarios with a 24-hour

prediction horizon and 1-hour sampling time. We used the data provided by [87] for the

load profiles and for the daily spot prices, which are shown in Figure 4.4.

141

Chapter 4. Distributed Stochastic Microgrid Control

0 5 10 15 20
0

50

100

150

Time (h)

G
en

er
at
ed

p
ow

er
(k
W
)

0 5 10 15 20
0

200

400

600

Time (h)

G
en

er
at
ed

p
ow

er
(k
W
)

Figure 4.3: Power generation profiles (5 scenarios) generated by the GANs. Left: solar energy,
right: wind energy.

We executed Algorithm 8 for 1000 iterations with constant step size α = 3. In Fig-

ure 4.5, we show the total consumed power and the total curtailed power. In Figure 4.6,

we show the total power exchanged with storage units (a positive value means that, over-

all, the storage units are charging) and the global level of stored power. In Figure 4.7, we

show the total power exchanged with the utility grid (a positive value means that power

is purchased from the grid). In Figure 4.8, we show where does the total available power

comes from. In particular we highlight the fraction of power coming from generators,

renewables and the utility grid. In this simulation, the generators did not produce any

energy.

0 5 10 15 20

0.18

0.2

0.22

Time (h)

P
ri
ce

(e
/k

W
h)

Figure 4.4: Daily spot prices from Open Power System Data [87].

142

4.3. Distributed Stochastic Mixed-integer Microgrid Control

0 5 10 15 20
800

1,000

1,200

1,400

Time (h)

C
on

su
m
ed

p
ow

er
(k
W
)

0 5 10 15 20
0

20

40

60

80

Time (h)

C
u
rt
ai
le
d
p
ow

er
(k
W
)

Figure 4.5: Total consumed power (critical and controllable loads) and curtailed power (for
controllable loads only).

0 5 10 15 20
−100

0

100

Time (h)

E
xc
ha

ng
ed

p
ow

er
(k
W
)

0 5 10 15 20

200

300

400

Time (h)

St
or
ed

en
er
gy

(k
W
)

Figure 4.6: Total average power exchanged by storage units (left) and level of total stored power
(right).

0 5 10 15 20

−500

0

500

Time (h)

E
xc
ha

ng
ed

p
ow

er
(k
W
)

Figure 4.7: Total power exchanged with the utility grid.

143

Chapter 4. Distributed Stochastic Microgrid Control

0 5 10 15 20
0

20

40

60

80

100

Time (h)

Fr
ac
ti
on

of
p
ow

er
(%

)

renewables
generators
grid

Figure 4.8: Fraction of consumed power coming from generators, renewables and utility grid at
each time slot.

144

Chapter 5

Cooperative Robotics Toolbox and
Distributed Vehicle Routing

In this chapter, we show applications of the methods developed in the previous chapters

to a distributed multi-robot scenario. To this end, we first develop a software package,

named ChoiRbot, which is a general ROS 2 platform for the implementation of coop-

erative robotics scenarios that can be used for several applications. We describe the

architecture of the developed software and provide a set of simulations and experiments

to illustrate its usage. Finally, we consider a multi-robot Pickup-and-delivery Vehicle

Routing Problem to which we apply the methodologies developed in the previous chap-

ters and show simulation and experimental results. The material of this chapter is based

on [28, 48, 115].

5.1 Literature Review

We divide the literature review in two blocks. First, we review literature related to

software toolboxes for cooperative robotics. Since its introduction, the Robot Operating

System (ROS), [95], has gained popularity among robotics researchers as an open source

framework for the development of robotics applications. Nowadays, ROS 2 is extending

ROS capabilities, paving the way to real-time control systems and large-scale distributed

architectures, [69]. While several theoretical frameworks have been proposed to solve

optimization problems over networks of cooperating robots, see, e.g. the survey [86]

and references therein, few architectures have been proposed to simulate and run

experiments on teams of heterogeneous robots communicating according to arbitrary

graphs and aiming at the cooperative solution of complex tasks. Authors in [2] propose

a constraint-based task specification for robot controllers, defining a task specification

language and the related controller. The framework in [93] allows users to create task

plans for collaborative robots. Papers [55] and [73] instead propose architectures to

145

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

simulate and control UAVs, while [30] allows users to write ROS code on a browser and

run it on remote robots. On this purpose, it is worth mentioning the Robotarium, [124],

a proprietary platform that allows to test and run control algorithms on robotic teams.

Finally, in the recent years, robotics researchers started to develop robotic architectures

based on the novel ROS 2 framework. Authors in [42] and [43] consider a framework for

collaborative robotics, while the paper in [98] discusses an architecture for self-driving

cars. The aforementioned frameworks are typically optimized for a specific task, and

most of them focus on single-robot systems. Moreover, the communication in multi-

robot networks is often neglected or simulated by means of the resource-demanding

all-to-all communication.

Second, we review literature related to vehicle routing problems. Several algorithms

have been proposed to solve the problem to (sub)optimality in centralized settings,

we refer the reader to the surveys [92, 94, 101, 118] for a comprehensive list of these

methods in static and dynamic settings. Online, dynamic approaches have been pro-

posed, see e.g. [36], taking into account collision avoidance constraints among robotic

agents, [67]. In order to overcome the drawbacks of centralized approaches, as e.g. the

high computational complexity of the problem, a branch of literature analyzes schemes

based on master-slave or communication-less architectures. In master-slave approaches,

implementations of the parallel auction based algorithm are among the most used

strategies, see e.g. [50,57]. As for communication-less approaches in which agents do

not communicate with each other, we refer the reader to [4] for a dynamic pickup and

delivery application. Few works address the solution of vehicle routing problems in

peer-to-peer networks. Indeed, the majority of the approaches in literature address

problems which are approximations or special versions of the Pickup-and-Delivery.

Authors in [19, 35, 103] solve unimodular task assignment problems by means of convex

optimization techniques. The works [68, 116] address generalized assignment problems,

where the order of execution of the tasks does not have impact on the objective. In [117],

authors address a multi-agent multi-task assignment problem where agents-to-tasks

path are evaluated offline and capacity constraints are not considered. Finally, the

distributed auction-based approach, see [17, 113] for recent applications, is often used

to address task allocation problems. These approaches do not address more complex

models as e.g. capacity and time demands of the tasks. As for distributed approaches to

vehicle routing problems, authors in [49] propose a distributed algorithm where agents

communicate according to cyclic graph and perform operations one at a time. In [1],

a distributed scheme in which agents iteratively solve graph partitioning problems

is proposed, and is shown to converge to a suboptimal solution of a dynamic vehicle

routing problem.

146

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

5.2 ChoiRbot: A ROS 2 Framework for Cooperative Robotics

In this section, we describe ChoiRbot, a toolbox for distributed cooperative robotics

based on the novel Robot Operating System (ROS) 2. We also discuss a simple experiment

by which we show how the constraint-coupled convex set-up can be used to model a

barycenter-constrained position computation scenario, see Section 5.2.6. The material

of this section is based on [115].

The package is available at https://github.com/OPT4SMART/ under the GNU GPL

license, with a complete documentation and many examples.

5.2.1 Architecture Description

Let us describe the high-level architecture of ChoiRbot. The toolbox is modular and its

blocks are intended to be combined as needed. We first focus on an overall description

of the software and then we describe each block separately.

Overview of the Software

ChoiRbot is written in Python and is based on the Robot Operating System (ROS) 2.

An important feature of the new ROS 2 architecture is its ability to run programs in

a totally distributed fashion, i.e. without a server acting as message broker [69]. This

fits perfectly with the goal of ChoiRbot, namely to provide a platform for cooperative

robotics over peer-to-peer networks without a central coordinating unit.

The toolbox is structured in a three-layer architecture. Specifically, there is a Team
Guidance layer, a RoboPlanning layer and a RoboControl layer. The Team Guidance

layer is responsible for taking high-level decisions and for managing the robot lifecycle.

The Team Guidance layer uses communication with neighbors in order to perform

its tasks. The Roboplanning and Robocontrol layers are responsible for lower-level

control actions as driven by the upper layer. Since our main goal is to ease the design

and implementation of optimization-based distributed control schemes, the central

focus of ChoiRbot is the Team Guidance layer. In particular, the toolbox provides

boilerplate code for distributed computation, i.e. communication among robots over a

graph, coordination and optimization algorithms. Apart from a few specific scenarios,

we do not provide comprehensive RoboPlanning and RoboControl features, which are

robot specific and can be already implemented with existing tools.

In ChoiRbot, each robotic agent in the network executes three ROS 2 processes, one

for each layer. Each process is also associated to a separate ROS 2 node. To guarantee

flexibility and code reusability, layers are implemented as Python classes. In the next

we provide details about the three layers. A graphical illustration of the software

architecture is represented in Figure 5.1.

147

https://github.com/OPT4SMART/

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

ROS 2 ChoiRbot Processes

Team Guidance layer

Robot k

Team Guidance

k

Robot j

Team Guidance

j

Robot i

i

Team Guidance

Graph-based communication

(un)directed

(a)synchronous

user defined

Distributed Optimization

Distributed Task Assignment

Distributed MPC

Optimization
Thread

Distributed Control

Formation Control

Containment

Rendezvouz

Robot-specific processes

RoboPlanning

Spline

Point To Point

Speed-based

RoboControl

Robot Dependent
Feedback Control

RoboIntegration

Quadrotor

Unicycle
Single-Integrator

Figure 5.1: ChoiRbot architecture. Each robot communicates with neighboring robotic agents
thanks to the Team Guidance Layer. The Team Guidance class handles the communication with
planning and control utilities, which are specific for each robot.

Team Guidance Layer

The Team Guidance layer is the main entry point of the package. Here we provide

an introductory description, while a more detailed analysis of this part of software is

delayed to Section 5.2.2.

The Team Guidance layer is modeled with a Guidance class, whose purpose is only to

retrieve the basic information regarding the robotic agent (passed as ROS 2 parameters),

to create an instance of the Communicator class to be described in Section 5.2.2 and

to subscribe to the topic where the robot pose is published. In the current version of

ChoiRbot, the robot position can be either communicated by a Vicon motion tracking

system or by a simulator (such as Gazebo). This basic version of the Guidance class

is abstract in that it does not implement any guidance logic. However, the package

currently provides two possible usable extensions. The first one (implemented as the

OptimizationGuidance class) also provides optimization-related functionalities and is

the starting point for any optimization-based distributed control scheme such as task

assignment / allocation, optimal control, model predictive control. The toolbox can

also be used to implement simpler distributed feedback laws that do not require the

solution of optimization problems. To this end, we also provide a second extension of

the Guidance class (implemented as the DistributedControlGuidance class), where

148

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

robots repeatedly exchange their current position with their neighbors and compute a

control input based on their position and the received positions. The actual form of the

control input depends on the specific scenario and is left as an unimplemented method

of the class. Currently implemented algorithms are rendezvous, containment, formation

control.

RoboPlanning, RoboControl and RoboIntegration

Within the ChoiRbot toolbox, the trajectory planning layer and the control layer do

not communicate with the neighboring robotic agents. Instead, each robot has its own

planning/control stack, which depends on the dynamics of the single robot and on the

chosen control strategy. The base class for trajectory planners is Planner. We provide

a point-to-point planner (in 2D or 3D), to be used in conjunction with controllers that

are able to steer the robot towards a specified point in the space (e.g. for mobile ground

robots). We also provide trajectory planners for aerial robots, which generate quad-rotor

trajectories either to reach a desired constant speed or to reach a target point. As for

controllers, the base class is Controller. For mobile ground robots, we provide two

unicycle controllers that can be used either to reach a target point or to reach a desired

velocity. For quadrotors, we provide a controller to stabilize the trajectories generated

by the planners.

The ChoiRbot toolbox is well integrated with simulation environments. In this

regard, the Gazebo simulator [62] can be used. In case the user does not want to use

external tools, we also provide a dynamics integration layer, named RoboIntegration,

which can e.g. be used in conjunction with Rviz for visualization. Currently, there are

numerical integrators for point-masses, unicycle robots and quadrotors. New integrators

with custom dynamics can be written by extending the Integrator class.

5.2.2 Exploring the Team Guidance Layer

As already mentioned, almost all functionalities of ChoiRbot involve the Team Guid-

ance layer. In this section, we explore in more detail this part of software. We begin

by analyzing the first important feature of the Team Guidance class, i.e. graph-based

communication. Then, we analyze the two essential usages of the Team Guidance

layer, represented by the OptimizationGuidance and the DistributedControlGuid-

ance classes.

Graph-based Communication

At the core of every distributed control scheme is the graph-based communication

among the robotic agents. This feature is provided in ChoiRbot at the team guidance

layer by the Communicator class, which can handle both synchronous/asynchronous

149

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

and undirected/directed communication among the robots. To achieve this, the Com-

municator class only requires specification of the in- and out-neighbors of the robots

and takes care of managing the necessary ROS 2 topics and subscriptions. To main-

tain the class interface of the class semantically clear, the method names correspond

to the specific actions that can be performed: send, receive, asynchronous receive,

neighbors exchange (i.e. simultaneous send/receive).

An important feature is that it is not necessary to declare the message types to be

exchanged among the robots, which is typically needed for all ROS applications. Instead,

we fixed the type of message to std msgs/ByteMultiArray and the Communicator class

handles (de)serialization of the exchanged message to (from) a byte sequence through

the Python dill package. This allows the user to exchange nearly each type of message

(vector, matrices, text, dictionaries, images, etc.) and even to change it at runtime

without declaring what type of message must be sent.

Distributed Optimization

A consistent part of the toolbox is devoted to providing optimization-related functions.

The main entry point is the OptimizationGuidance class. Since numerical optimization

algorithms may require a certain number of iterations to converge, these computations

are delegated to a separate thread running in the OptimizationThread class. This

allows the ROS 2 guidance process to continue elaborating callbacks even though

an optimization is in progress. This separate thread class, which is started by the

OptimizationGuidance class, allows the user to start/stop the optimization processes

on demand. At the end of an optimization process, the method optimization ended is

called. This method is supposed to be overridden by the user with the specific guidance

logic, e.g. by retrieving the optimization results and by using them as needed. The

actual body of the optimization algorithm is left unimplemented so as to allow the

user to implement the desired method. Currently, we provide implementations for

distributed task assignment and distributed MPC scenarios, which are analyzed in detail

in Section 5.2.4.

As already mentioned, the toolbox supports running both local optimization algo-

rithms at a robot and distributed optimization algorithms involving the whole network.

To this end, ChoiRbot integrates with the disropt package [48], which is used to model

and to solve both local and distributed optimization problems with several algorithms.

Distributed Feedback Control

The toolbox is designed to support optimization-based distributed control algorithms,

however simpler distributed feedback laws can also be implemented by using a subset

of the toolbox features. The DistributedControlGuidance class implements a general

150

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

communication and control structure allowing for the implementation of such feedback

laws. To give an idea, let us report an excerpt of the main routine of the class, which is

executed with a user-chosen frequency:

exchange current position with neighbors

data = self.communicator.neighbors_exchange(

self.current_pose.position,

self.in_neighbors,

self.out_neighbors, False)

compute input

u = self.evaluate_velocity(data)

send input to planner/controller

self.send_input(u)

In words, the class first exchanges the current position with the neighbors, then computes

a velocity profile according to the exchanged data and to the considered feedback law,

and finally publishes the control input on a topic. Despite its simplicity, this basic

structure can be used for several distributed control algorithms such as containment

and formation control. Simulation results can be found in Section 5.2.6.

5.2.3 Distributed Optimization via DISROPT

Distributed optimization schemes can be implemented in ChoiRbot by using the func-

tionalities provided by the disropt package. disropt is a Python toolbox for distributed

optimization with MPI-based communication. It provides a set of libraries to model

optimization problems (i.e. cost function, constraints) and to run distributed optimiza-

tion algorithms with a simple syntax. In the package, several distributed optimization

algorithms have been implemented for three different set-ups, namely the cost-coupled

set-up, the common-cost set-up and the constraint-coupled set-up, see [86]. A descrip-

tion of the package can be found in [48].

In its standalone version, disropt can be used to run distributed optimization al-

gorithms over MPI-based communication networks, modeled with a Communicator

class. However, the Communicator class of ChoiRbot provides the same features by

using ROS-based communication and is fully compatible with disropt. Thus, in order

to run distributed optimization algorithms over ChoiRbot, one can simply write the

code as usual and then rely on the ChoiRbot communication capabilities to execute the

distributed algorithm.

5.2.4 Implemented Complex Scenarios

Let us discuss in detail two complex cooperative robotic scenarios that have been

implemented in ChoiRbot, i.e. distributed dynamic task assignment and distributed

151

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

model predictive control. In both scenarios we employ the OptimizationGuidance class

to leverage optimization capabilities.

Distributed Dynamic Task Assignment

In this scenario, we assume there is a set of tasks that must be performed by a team

of robots. In order to choose the final assignment, robots must self-coordinate by

using their communication capabilities. A formulation of the problem can be found

in Section 1.3.2. We focus on the challenging scenario in which tasks are not known

a-priori but arrive dynamically. While robots perform the previously assigned tasks,

a new task can arrive and robots re-execute the distributed optimization algorithm to

compute the new optimal assignment.

Implementation In ChoiRbot, there is a number of classes to handle the dynamic task

assignment scenario. We assume there is a cloud accepting task requests and forwarding

them to the robots such as, e.g. in online order and delivery services. This mechanism

is implemented with the TaskTable class, which is also responsible for maintaining an

up-to-date task list and to mark tasks as completed. There is a TaskGuidance class that

communicates with TaskTable, triggers the distributed optimization algorithm in the

separate computation thread whenever a new task request is received and maintains a

local task queue. While the queue is not empty, tasks are executed in order by calling the

TaskExecutor class, which implements the specific task execution logic (e.g. to move to

a given point and to perform loading/unloading operations). The separate computation

thread is implemented with the TaskOptimizationThread class, in which methods from

the TaskOptimizer class are called to handle the distributed optimization process. The

TaskOptimizer class is responsible for formulating the actual linear programming task

assignment problem and to run the distributed simplex algorithm [19] in disropt. In

this scenario, communication among neighbors occurs within the TaskOptimizer class

during the distributed optimization process.

Remarkably, from the point of view of the final user, all is needed is to implement

the task execution logic in TaskExecutor and to integrate TaskTable with the task

request service of the specific application scenario. The whole dynamic task assignment

mechanism is taken care of by ChoiRbot. In Section 5.2.6, experimental results on this

scenario are provided.

Distributed Model Predictive Control

Let us now describe the second complex scenario implemented in ChoiRbot. In this

scenario, we assume there are N robots with linear dynamics that aim to apply a

distributed Model Predictive Control scheme. A formulation of the problem can be

152

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

found in Section 1.3.1.

Implementation We implemented the classical distributed MPC algorithm in [99].

The departing point is the MPCGuidance class, which implements the actual steps of the

distributed MPC algorithm. The problem data (i.e. system matrices, local constraints,

coupling constraints, prediction horizon) are provided by the user as class parameters.

This class interacts with an MPCOptimizationThread class, which calls the optimize

method from the MPCOptimizer class to solve the local optimal control problem at

each control iteration. The MPCOptimizer class is responsible for formulating the local

optimal control problem and for solving it by using the problem modeling and solving

capabilities available in disropt. Note that, differently from the dynamic task assign-

ment, in this scenario the solution of optimization problems is completely local. Here,

communication among neighbors occurs within the MPCGuidance class, as required by

the MPC algorithm (see [99] for details).

5.2.5 Basic Usage Example

In this section, we consider a toy example that allows us to show the implementation of

a basic distributed cooperative robotics scenario in ChoiRbot. Specifically, we consider

containment in leader-follower networks as described in [85]. The mathematical formu-

lation is as follows. Robots communicate according to an undirected connected graph

G = (V, E), where V = {1, . . . , N} is the set of vertices and E ⊆ V × V is the set of edges.

We denote by Ni the set of neighbors of each robot i. Robots are partitioned in two

groups, namely leaders and followers. The goal for the followers is to converge to the

convex hull of the leaders’ positions. To this end, the robots implement the dynamics

ẋi(t) = 0 (leaders), (5.1a)

ẋi(t) =
∑

j∈Ni

(xj(t)− xt(t)) (followers). (5.1b)

Main Software Components

This scenario can be easily implemented in the proposed architecture by means of

two components, namely a ContainmentGuidance class and a SingleIntegrator class.

The first one is an extension of the DistributedControlGuidance class discussed in

Section 5.2.2 and inherits the distributed feedback control structure. Thus, in the

ContainmentGuidance class one can simply override the evaluate velocity method

in order to implement the control law in (5.1) as follows:

u = np.zeros(3)

if not self.is_leader:

for pos_ii in neigh_data.values():

153

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

u += self.containment_gain*(pos_ii - self.current_pose.position)

return u

The SingleIntegrator class instead extends the functionalities of the base class Inte-

grator. In particular, it is sufficnet to override the (initially empty) integrate method

to implement the classical forward Euler method for single-integrator dynamics:

self.current_pos += self.samp_time * self.u

Visualizing the Evolution

Since we are not using an external simulation tool, we need a means to visualize the

results graphically. To achieve this, it is possible to rely on the ROS 2 toolbox Rviz,

in which we associate each robot with a circle moving on the (x, y) plane. To achieve

this, there is a class provided by the toolbox named RvizSpawner, which receives the

pose published by the SingleIntegrator and forwards it to the Rviz visualizer with a

user-defined frequency.

Running the Simulation

The final simulation can be run by writing a ROS 2 launch file with all the required nodes,

i.e. ContainmentGuidance, SingleIntegrator, RvizSpawner. Note that these three

nodes must be executed by each of the robotic agents in the network. The launcher file is

also responsible for declaring the initial positions of the robots and the communication

graph, specified as a binary adjacency matrix.

In order to differentiate the ROS 2 nodes of each robot, robot-specific parameters

must be passed as ROS 2 parameters at the time of spawing. For instance, the Contain-

mentGuidance classes are spawned in the launch file as follows

def generate_launch_description():

.. initialization of adjacency matrix and initial positions

list_description = []

for i in range(N):

.. initialize in_neighbors, out_neighbors, is_leader

list_description.append(Node(

package=’choirbot_examples’, node_executable=’choirbot_containment’,

node_namespace=’agent_{}’.format(i),

parameters=[{’agent_id’: i, ’N’: N, ’in_neigh’: in_neighbors, ’out_neigh’:

out_neighbors, ’is_leader’: is_leader}]))

return LaunchDescription(list_description)

A simulation with e.g. N = 6 robots can be run by executing the following command

ros2 launch choirbot_examples containment.launch.py -n 6

154

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

5.2.6 Toolbox Validation in Simulations and Experiments

In this section, we provide simulation and experimental results for three different

scenarios that can be handled by ChoiRbot. We begin by showing experimental results

of the dynamic task assignment scenario described in Section 5.2.4. Then, we show

how to the proposed package can be easily interfaced with Gazebo or Rviz and show

simulation results for a team of mobile wheeled robots.

Dynamic Task Assignment on Turtlebot3 Mobile Robots

In this experiment, we consider a team of four Turtlebot 3 Burger mobile robots that

have to accomplish a set of task scattered in the environment. A task is considered

accomplished if the designed robot reaches its position on the {x, y} plane. As in real

applications, problem data are not completely known a-priori, we consider a dynamic

assignment problem where new data arrive during the execution. Thus, robots have

to re-optimize and adjust their local planning whenever new information is available.

Inspired by the approach in [35], we assume that a new task is revealed as soon as

one has been completed. The pose of each robot is retrieved by communicating with a

centralized camera infrastructure, in particular a Vicon Motion capture system. In order

to interface ChoiRbot with the Vicon system, we developed an ad-hoc ROS 2 package,

which is provided in the toolbox repository.

Thanks to the flexibility of ChoiRbot and of ROS 2, one can either execute the ROS

nodes on the robots or on an external computed connected to the same Wi-Fi network.

In our experiments, since the robots are not equipped with high computational power,

we prefer to leave onboard the RoboPlanning and the RoboControl nodes and to execute

the Team Guidance layers on a separate computer. Each time a new task is revealed,

robots execute the distributed simplex algorithm until convergence, which occurs within

less than 1 second. As for the control layer to steer robots to the desired positions, we

implemented a dedicated controller node executing the control law in [91]. In Figure 5.2,

we report a snapshot from the experiment in which the robots are servicing a set of

tasks, while Figure 5.3 reports a Gantt chart of the actual task execution.

Formation Control for Unicycle-Like Robots

In this scenario, the goal is to drive robots to a translationally independent formation in

the {x, y} plane that satisfies a set of given constraints. These constraints are specified by

the communication graph edge set E and a set {dij}(i,j)∈E of desired distances between

two communicating robots i and j, with the requirement dij = dji for all (i, j) ∈ E .

We refer the reader to, e.g. [72] for a detailed description. Let the robots apply the

155

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

Figure 5.2: Snapshot from the dynamic task assignment experiment. Robots move in order to
reach their designed tasks (red markers).

distributed control law

ui(t) =
∑

j∈Ni

(‖xi(t)−xj(t)‖2 − d2ij)(xj(t)− xi(t)). (5.2)

We extended the DistributedControlGuidance and override the evaluate velocity

method in order to implement the control law in (5.2). However, this is not directly

implementable on unicycle-like robots. Thus, we developed a specific controller, named

UnicycleVelocityController, that maps the input provided by (5.2) to a suitable set of

inputs for wheeled robots. This is performed following the approach described in [124].

The interfacing with Gazebo is straightforward. Robot poses are retrieved directly by

the odometry topic maintained by Gazebo, while robot inputs are sent on suitable topics

read by Gazebo plugins. In Figure 5.4 a snapshot from a Gazebo simulation in which six

Turtlebot 3 Burger robots have to draw an hexagon.

Containment

Finally, let us show simulation results for the containment example outlined in Sec-

tion 5.2.5. We consider a scenarios with three followers and three leaders spanning a

triangle. The evolution of the robot positions is reported in Figure 5.5.

5.2.7 Distributed Primal Decomposition for Mobile Robots

The ChoiRbot platform allows us to show how constraint-coupled optimization can

find applications to distributed multi-robot scenarios. Consider N = 4 ground robots.

Assume the robots aim to compute optimal target positions inside local circular con-

straints while keeping the barycenter within certain bounds. This task can be modeled

156

5.2. ChoiRbot: A ROS 2 Framework for Cooperative Robotics

task 0

task 1

task 2

task 3

task 4

task 5

task 6

task 7

task 8

task 9

task 10

t0

Figure 5.3: Gantt chart of the task execution flow in the dynamic task assignment. The horizontal
axis represents time with the actual scale. The left side of each rectangle indicates the beginning
of a task, while the right indicates that the task has been serviced by a robot. As described above,
when a task is serviced (e.g. task 0) a new one begins (e.g. task 4)

as the convex constraint-coupled problem

min
x1,...,x4

4∑

i=1

‖xi − ri‖2Qi

subj. to ‖xi‖ ≤ Ri, i = 1, . . . , 4,

bmin ≤ 1

N

4∑

i=1

xi ≤ bmax,

(5.3)

where each xi ∈ R2 is the local decision variable, ri ∈ R2 is the ideal target position,

Qi ∈ R2×2 is a symmetric positive definite cost matrix, Ri > 0 is the radius of the local

circular constraint, while the vectors bmin and bmax define the bounds for the barycenter

of the target positions.

We consider a “static” scenario, in which the robots must satisfy the barycenter

bounds only at the target position, however in principle this approach can be extended

to the case in which the problem is solved in real time (i.e. online). To implement this

scenario with ChoiRbot, we implemented a Team Guidance class to let the robots solve

Problem (5.3) with the Distributed Primal Decomposition algorithm (cf. Section 2.2.5).

Then, we generated a random problem and we executed the algorithm on a team of

Turtlebot 3 Burger robots. In Figure 5.6, we show snapshots from the experiment.

157

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

Figure 5.4: Formation control simulation via Gazebo. By leveraging on ChoiRbot functionalities,
robots reach the desired hexagonal formation.

t = 0 t = 1 t = 2 t = 3

Figure 5.5: Sequence of images from the Rviz toolbox at different subsequent time instants. Red
spheres represent leader robots, while the blue ones represent the followers. As time progresses,
followers enter the convex hull of the leaders’ positions, depiced with the cerulean triangle.

5.3 Distributed Multi-Robot Pickup and Delivery

In this section, we apply the methodology of Chapter 3 to a Pickup-and-Delivery Vehicle
Routing Problem (PDVRP) to be solved in a distributed multi-robot scenario. The pickup

and delivery problem models several applications such as battery exchange in robotic

networks, [60], pickup and delivery in warehouses, [56], task scheduling [54] and

delivery with precedence constraints [5].

We first provide a mathematical formulation of the optimization problem together

with a thorough description of its structure. Then, we apply the results of Chapter 3 and

use specific problem properties to simplify the algorithm. Finally, we show simulation

and experimental results performed with the ChoiRbot platform. The results of this

section are based on [28].

158

5.3. Distributed Multi-Robot Pickup and Delivery

Figure 5.6: Experimental results of constraint-coupled optimization for mobile robots. Left:
robots start the mission. The ideal target positions ri are denoted with red circles and their
barycenter with a red cross. The barycenter of the ideal positions is not contained in the
bounds. Right: robots determine a feasible set of target positions and reach them. The resulting
barycenter is indicated with a white cross, which satisfies the bounds.

5.3.1 Problem Description

The (Multi-Vehicle) Pickup-and-Delivery Vehicle Routing Problem can be described as

follows. A group of vehicles has to fulfill a set of transportation requests. Requests

consist of picking up goods at some locations and delivering them to other locations. The

problem then consists of determining minimal length paths such that all the requests

are satisfied. To achieve this, we can assign to each location a label “P” (pickup) or

“D” (delivery), and then define a graph of all possible paths that can be traveled by

vehicles. In Figure 5.7, we show an example scenario with two vehicles, two pickups

and two deliveries. Note that, in order to have a well-defined graph, vehicles must start

Start

End

P1

P2

D1

D2

Start

End

P1

P2

D1

D2

Figure 5.7: Example PDVRP scenario. Left: vehicles begin from the “start” node and must end
at the terminal node. There are two pickup requests P1 and P2 and two associated deliveries D1

and D2. Right: the optimal path consists of the first vehicle traveling through P1 and D1 and the
second vehicle traveling through P2 and D2.

from an initial node representing the initial position (which may be different for each

of them) and have to reach a target node. This can be also “virtual” in the sense that,

once the last delivery position has been reached, the vehicle stops there and wait for

further instructions. In order to determine the optimal path, one typically formulates

an associated optimization problem and solves it to optimality. In the next subsection,

159

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

we introduce all the needed formalism.

5.3.2 Optimization Problem Formulation and Description

We consider a scenario in which N robots, indexed by I , {1, . . . , N}, have to serve the

transportation requests. We denote by P , {1, . . . , |P |} the index set of pickup requests

and by D , {|P + 1|, . . . , 2|P |} the index set of delivery demands (with P ∩ D = ∅).
To each pickup location j ∈ P is associated a delivery location j ∈ D (with |P | = |D|),
so that both the requests must be served by the same robot. To ease the notation, we

also define a set R , P ∪D of all the transportation requests (independently of their

pickup/delivery nature). Each request j ∈ R is characterized by a service time dj ≥ 0,

which is the time needed to perform the pickup or delivery operation. Within each

request, it is also associated a load qj ∈ R, which is positive if j ∈ P and negative if j ∈ D.

Each robot has a maximum load capacity Ci ≥ 0 of goods that can be simultaneously

held. The travel time needed for the i-th vehicle to move from a location j ∈ R to

another location k ∈ R is denoted by tjki ≥ 0. In order to travel from two locations

j, k, the i-th robot incurs a cost cjki ∈ R≥0. Finally, two additional locations s and σ are

considered. The first one represents the mission starting point, while the second one is

a virtual ending point. For this reason, the corresponding demands qs, qσ and service

times ds, dσ are set to 0.

The goal is to construct minimum cost paths satisfying all the transportation requests.

To this end, a graph of all possible paths through the transportation requests is defined

as follows. Let GA = (VA, EA), be the graph with vertex set VA = {s, σ} ∪ R and edge

set EA = {(j, k) | j, k ∈ VA, j 6= k and j 6= σ, k 6= s}. Owing to its definition, EA contains

edges starting from s or from locations in R and ending in σ or other locations in R. For

all edges (j, k) ∈ EA, let xjki be a binary variable denoting whether vehicle i ∈ {1, . . . , N}
is traveling (xjki = 1) or not (xjki = 0) from a location j to a location k. Also, let Bj

i ∈ R≥0
be an the optimization variable modeling the time at which vehicle i begins its service

at location j. Similarly, let Qji ∈ R≥0 be the load of vehicle i when leaving location j.

To keep the notation light, we denote by x the vector stacking xjki for all i, j, k and by

B,Q the vectors stacking all Bj
i and Qji . The PDVRP can be formulated as the following

optimization problem [92],

min
x,B,Q

N∑

i=1

∑

(j,k)∈EA

cjki x
jk
i (5.4a)

subj. to
N∑

i=1

∑

k:(j,k)∈EA

xjki ≥ 1 ∀j ∈ R (5.4b)

∑

k:(s,k)∈EA

xski = 1 ∀i ∈ I (5.4c)

160

5.3. Distributed Multi-Robot Pickup and Delivery

Table 5.1: List of the main symbols and their definitions

Symbol Description
N ∈ N≥0 Number of vehicles of the system
I Set of vehicles
R Set of all transportation requests
VA Set of PDVRP graph vertices
EA Set of PDVRP graph edges
xjki ∈ {0, 1} 1 if vehicle i travels arc (j, k), 0 otherwise
Qji ∈ R≥0 Load of vehicle i when leaving vertex j
Bj
i ∈ R≥0 Beginning of service of vehicle i at vertex j

cjki ∈ R≥0 Incurred cost if vehicle i travels arc (j, k)
qj ∈ R Demand/supply at location j ∈ R
Ci ∈ R≥0 Capacity of vehicle i
tjki ∈ R≥0 Travel time from j to k for vehicle i
dj ∈ R≥0 Service duration at j ∈ VA

∑

j:(j,σ)∈EA

xjσi = 1 ∀i ∈ I (5.4d)

∑

j:(j,k)∈EA

xjki =
∑

j:(k,j)∈EA

xkji ∀i ∈ I, k ∈ R (5.4e)

∑

k:(j,k)∈EA

xjki =
∑

k:(j+|P |,k)∈EA

x
|P |+j,k
i ∀i ∈ I, j ∈ P (5.4f)

Bj
i ≤ B

j+|P |
i , ∀i ∈ I, j ∈ P (5.4g)

xjki = 1⇒ Bk
i ≥ Bj

i + dj + tjki (5.4h)

xjki = 1⇒ Qki = Qji + qk (5.4i)

Qj ≤ Qji ≤ Q
j
i ∀j ∈ VA, i ∈ I (5.4j)

Qsi = Qinit
i ∀i ∈ I (5.4k)

xjki ∈ {0, 1} ∀i ∈ I, (j, k) ∈ EA, (5.4l)

where Qj = max{0, qj}, Qji = min{Ci, Ci + qj} and Qinit
i ∈ R≥0. We make the standing

assumption that Problem (5.4) is feasible and admits an optimal solution. Throughout

the section, we use the convention that subscripts denote the vehicle index, while

superscripts refer to locations. Table 5.1 collects all the relevant symbols.

Notice that, in order to satisfy (5.4j), it is necessary to assume Ci ≥ maxj∈R{qj}, i.e.,

the generic vehicle must have sufficient capacity to accomplish any of the pickup/deliv-

ery tasks. In order to keep the discussion not too technical, in the following we always

maintain this assumption. However, note that the proposed algorithm works also if this

assumption is removed. A discussion on this extension is given in Section 5.3.5.

Before going on with the presentation, we note that Problem (5.4) is mixed-integer

161

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

but not linear. Indeed, the constraints (5.4h)–(5.4i) are nonlinear. However, an equiva-

lent linear formulation of these constraints is always possible (the detailed procedure is

outlined in Section 5.3.8). In the following, we refer to Problem (5.4) as being a MILP,

with the implicit assumption that the constraints (5.4h)–(5.4i) are replaced by their

linear version.

Let us detail the cost and constraints of Problem (5.4). The objective (5.4a) mini-

mizes the total route cost, in particular, the total euclidean distance traveled by robots.

Constraint (5.4b) enforces that every location has to be visited at least once. Typically,

PDVRP formulations consider this constraint as an equality, however, in the considered

case of cost being the total euclidean distance, the solution is the same both with the

equality and with the inequality. We stick to the inequality formulation as this allows us

to exploit the problem structure and apply the methods of Chapter 3. Constraints (5.4c)–

(5.4d) guarantee that every vehicle starts at s and ends its mission at σ. Equality (5.4e)

is a flow conservation constraint, meaning that if a vehicle enters a location k it also has

to leave it. Constraint (5.4f) ensures that, if a robot i performs a pickup operation, it

also has to perform the corresponding delivery. Inequality (5.4g) imposes that deliveries

have to occur after pickups. Constraint (5.4h) avoids subtours in each vehicle route (i.e.

paths passing from the same location more than once), while inequalities (5.4i)–(5.4j)

ensure that the total vehicle capacity is never exceeded. Finally, (5.4k) takes into account

the initial load of the i-th robot.

5.3.3 Distributed Primal Decomposition for Pickup and Delivery

Let us now apply the methods developed in Chapter 3. We first show how to recast

Problem (5.4) as a constraint-coupled MILP and then describe the distributed algorithm.

Reformulation as Constraint-coupled MILP

We assume robots aim to solve Problem (5.4) in a distributed fashion, i.e. without a

central (coordinating) node. In order to solve the problem, we suppose each robot

is equipped with its own communication and computation capabilities. Robots can

exchange information according to a static communication network modeled as a con-

nected and undirected graph G = ({1, . . . , N}, E). The graph G models the communi-

cation in the sense that there is an edge (i, j) ∈ E if and only if agent i is able to send

information to agent j. For each node i, the set of neighbors of i at time t is denoted by

Ni and is the set of j such that there exists an edge (i, j) ∈ E . We assume that the i-th

robot only knows the travelling times tjki , the local capacity Ci and the cost entries cjki .

Reasonably, we assume assume that all the robots know the demand/supply values qj
and service time dj for each task request j ∈ VA.

Note that the optimization variables in (5.4) associated with a robot i are all and only

162

5.3. Distributed Multi-Robot Pickup and Delivery

the variables with subscript i (i.e. xjki , Bj
i and Qji for all j, k). Therefore, it is possible to

recast Problem (5.4) as a constraint-coupled MILP of the form (3.1), i.e.

min
z1,...,zN

N∑

i=1

c>i zi

subj. to
N∑

i=1

Aizi ≤ b

zi ∈ Zi, i = 1, . . . , N.

(5.5)

In particular, the vector zi ∈ Rni is the stack of all the variables xjki , Bj
i and Qji for all j, k

(ni ∈ N denotes the total number of entries). Moreover, note that the constraints (5.4c)–

(5.4l) are repeated for each index i, thus the local mixed-integer sets are

Zi =
{

(xi, Bi, Qi) such that (5.4c)–(5.4l) are satisfied
}
, (5.6)

and finally note that for suitable Ai and b it is possible to recast the constraint (5.4b)

as
∑N

i=1Aizi ≤ b. With this shorthands, any route that robot i can implement can

be denoted more shortly as zi = (xi, Bi, Qi) ∈ Zi and any solution satisfying all the

pickup/delivery demands satisfies the constraint
∑N

i=1Aizi ≤ b. Within the primal

decomposition approach described in Chapter 3, each robot i will aim to compute an

allocation yi ∈ R|R| satisfying

∑

k:(j,k)∈EA

xjki ≥ [yi]j , ∀j ∈ R,

where [yi]j denotes the j-th component of yi. As it will be clear from the forthcoming

analysis, the j-th entry of the vector yi immediately determines whether or not robot i

must perform task j. In the next subsection, we introduce our distributed algorithm,

whose purpose is to coordinate the computation of allocation vectors yi such that (5.4b)

is satisfied.

Distributed Algorithm Description

Let us now show how Algorithm 3 reads for Problem (5.4). Let t ∈ N be the iteration

index. Each agent i maintains an estimate of the local allocation vector yti ∈ R|R|. At

each iteration, the vector yti is updated according to (5.7)–(5.8). After a finite number

of iterations, say Tf ∈ N, the agents compute a tentative solution to the PDVRP based

on the last computed allocation y
Tf
i with (5.9)–(5.10). Algorithm 9 summarizes the

algorithm as performed by robot i. The symbol conv(Zi) denotes the convex hull of the

set Zi, while αt is a step-size sequence. The algorithm has also some tuning parameters

163

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

that are reported on the top of the table.

Algorithm 9 Distributed Primal Decomposition for PDVRP
Global parameters: Tf > 0, M > 0, 0 < δ < 1.

Initialization: Set y0i = δ/N 1.

Repeat for t = 0, 1, . . . , Tf − 1:

Compute µti as Lagrange multiplier of

min
xi,Bi,Qi,vi

∑

(j,k)∈EA

cjki x
jk
i +Mvi

subj. to
∑

k:(j,k)∈EA

xjki ≥ [yti]j − vi, ∀j ∈ R

(xi, Bi, Qi) ∈ conv(Zi), vi ≥ 0

(5.7)

Receive µtj from neighbors j ∈ Ni and update

yt+1
i = yti − αt

∑

j∈Ni

(
µti − µtj

)
(5.8)

Perform component-wise thresholding of allocation

yendi = min
(
y
Tf
i ,1

)
(5.9)

Return (xendi , Bend
i , Qend

i) as optimal solution of MILP

min
xi,Bi,Qi

∑

(j,k)∈EA

cjki x
jk
i

subj. to
∑

k:(j,k)∈EA

xjki ≥ [yendi]j , ∀j ∈ R

(xi, Bi, Qi) ∈ Zi

(5.10)

The algorithm structure is inherited from Algorithm 3 in Section 3.3. However,

the final mixed-integer recovery step has some changes with respect to Algorithm 3.

Specifically, the lex-min optimization (3.7) (which we recall from Section 3.3.2 to be

equivalent to solving two MILPs) is replaced with a component-wise thresholding of the

last computed allocation yTfi and the solution of a final MILP (5.10). In Section 5.3.4 we

show that such a modification preserves the results of Chapter 3, while a discussion on

the choice of the tunable parameters M , Tf and δ can be found in Section 5.3.5.

5.3.4 Algorithm Analysis

In this section, we provide a theoretical study of Algorithm 9. In particular, we will show

that the algorithm provides a feasible solution to Problem (5.4) in finite time. There

164

5.3. Distributed Multi-Robot Pickup and Delivery

are two important differences with respect to the analysis of the general algorithm in

Chapter 3:

(i) Algorithm 9 does not employ a restriction-based mechanism. On the contrary,

in Algorithm 9 we imposed the initialization y0i = δ/N1, with δ ∈ (0, 1), which

means that we actually enlarged the right-hand side 1 of constraint (5.4b) to∑N
i=1 y

0
i = δ1 < 1.

(ii) The final lex-min optimization is replaced with the thresholding step and MILP (5.10).

Feasibility of Local Problems

We begin the analysis by proving that the algorithm is well posed. In particular, we show

that it is indeed possible to solve Problems (5.7) and (5.10). The next lemma formalizes

feasibility of Problem (5.7).

Lemma 5.1. Consider a robot i ∈ I and let yti be allocation computed by Algorithm 9 at an
iteration t. Then, Problem (5.7) is feasible.

Proof. Note that Problem (5.7) is the epigraph form of

min
xi,Bi,Qi

∑

(j,k)∈EA

cjki x
jk
i +M max

{
0,max

j∈R

(
[yti]j −

∑

k:(j,k)∈EA

xjki

)}

subj. to (xi, Bi, Qi) ∈ conv(Zi)

Moreover, it holds conv(Zi) ⊃ Zi. Therefore, the proof follows since Zi is not empty (by

assumption). �

Proving feasibility of Problem (5.10) is more delicate and relies upon the threshold-

ing operation, as formally shown next.

Lemma 5.2. Consider a robot i ∈ I and let yendi be the final allocation computed by Algo-
rithm 9. Then, Problem (5.10) is feasible.

Proof. Fix a robot i. Because of the thresholding operation (5.9), it holds [yendi]j ≤ 1

for all j ∈ R. We now show that the feasible set of Problem (5.10) is not empty. Since

Problem (5.4) is assumed to be feasible, we know that there exists zi = (xi, Bi, Qi) ∈ Zi.
Thus, we only have to show that the constraint

∑
k:(j,k)∈EA x

jk
i ≥ [yendi]j for all j ∈ R can

be satisfied by at least one vector zi ∈ Zi.
Due to the flow constraints (5.4e), the subtour elimination constraints (5.4h) and

the integer constraints (5.4g), for all j ∈ R the quantity
∑

k:(j,k)∈EA x
jk
i is either equal

to 0 or equal to 1, since there can be at most one index k satisfying (j, k) ∈ EA and

such that xjki = 1. Consider the constraint
∑

k:(j,k)∈EA x
jk
i ≥ [yendi]j and fix a component

165

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

j ∈ R. Note that this constraint essentially imposes whether or not robot i must

pass through location j. Indeed, on the one hand, if [yendi]j ≤ 0, the vector zi can

be chosen such that the left-hand side is either equal to 0 (vehicle i does not pass

through location j) or equal to 1 (vehicle i passes through location j). In either case,

it holds
∑

k:(j,k)∈EA x
jk
i ≥ 0 ≥ [yendi]j so that the constraint is satisfied. On the other

hand, if 0 < [yendi]j ≤ 1 (recall that [yendi] ≤ 1 for all j ∈ R and thus there are no other

possibilities), then the only way to satisfy the constraint is to have xjki = 1 for some index

k with (j, k) ∈ EA, in which this case we would obtain 1 =
∑

k:(j,k)∈EA x
jk
i ≥ [yendi]j > 0.

As a consequence, Problem (5.10) admits as feasible solution any vector (xi, Bi, Qi) ∈ Zi
representing a path passing through all the locations j ∈ R and satisfying [yendi]j > 0. �

Convergence of Distributed Allocation Scheme

We now focus on the first logic block of Algorithm 9, namely steps (5.7)–(5.8). As shown

in Chapter 2, these two iterative steps can be used to obtain an optimal allocation

associated to the convex relaxation

min
x,B,Q

N∑

i=1

∑

(j,k)∈EA

cjki x
jk
i

subj. to
N∑

i=1

∑

k:(j,k)∈EA

xjki ≥ δ ∀j ∈ R

(xi, Bi, Qi) ∈ conv(Zi), ∀ i ∈ I.

(5.11)

Denote by (zconv1 , . . . , zconvN) an optimal solution of Problem (5.11) with each zi =

(xi, Bi, Qi), and by {yt1, . . . , ytN}t≥0 the allocation vector sequence produced by (5.7)–

(5.8). We now recall from Chapter 3 the convergence result of steps (5.7)–(5.8).

Assumption 5.1. The step-size sequence {αt}t≥0, with each αt ≥ 0, satisfies
∑∞

t=0 α
t =∞,∑∞

t=0

(
αt
)2
<∞. 4

Proposition 5.1. Let Assumption 5.1 hold and recall that y0i = δ/N1 for all i ∈ I. Moreover,
let (yconv1 , . . . , yconvN) ∈ RN |R| be an optimal allocation associated to Problem (5.11), i.e. a
vector satisfying

∑N
i=1 y

conv
i = δ1 and

∑
k:(j,k)∈EA x

jk
i ≥ [yconvi]j for all j ∈ R and i ∈ I.

Then, for a sufficiently largeM > 0, the distributed algorithm (5.7)–(5.8) generates a sequence
{yt1, . . . , ytN}t≥0 such that

(i)
∑N

i=1 y
t
i = δ1, for all t ≥ 0;

(ii) limt→∞ ‖yti − yconvi ‖ = 0 for all i ∈ I. 4

166

5.3. Distributed Multi-Robot Pickup and Delivery

Intermediate Results

Before formalizing our main result, we provide some preparatory lemmas, in which

essentially prove that the restriction vector (cf. Section 3.3.3) needed by Problem (5.4)

is zero. We denote by 0 the vector of zeros of appropriate dimension. The first lemma

justifies the use of δ (an arbitrarily small positive number) in place of the original

right-hand side 1 in the coupling constraints (5.4b).

Lemma 5.3. For all i ∈ I, let (xi, Bi, Qi) ∈ Zi such that
∑N

i=1

∑
k:(j,k)∈EA x

jk
i > 0 for all

j ∈ R. Then, it holds
∑N

i=1

∑
k:(j,k)∈EA x

jk
i ≥ 1 for all j ∈ R.

Proof. For each component j ∈ R, by assumption we have

N∑

i=1

∑

k:(j,k)∈EA

xjki > 0. (5.12)

Note that, since each xjki ∈ {0, 1}, the quantity
∑N

i=1

∑
k:(j,k)∈EA x

jk
i is either zero or at

least equal to 1. Therefore, because of the assumption, we have
∑N

i=1

∑
k:(j,k)∈EA x

jk
i ≥ 1

for all j ∈ R. �

The next two lemmas will used in the sequel to characterize an optimal allocation

associated to Problem (5.11).

Lemma 5.4. For all i ∈ I, let ỹi ∈ R|R| and (x̃i, B̃i, Q̃i) ∈ conv(Zi) such that
∑

k:(j,k)∈EA x̃
jk
i >

[ỹi]j for all j ∈ R. Then, there exists (x̄i, B̄i, Q̄i) ∈ Zi satisfying
∑

k:(j,k)∈EA x̄
jk
i > [ỹi]j for

all j ∈ R.

Proof. Fix a robot i ∈ I and note that, because of the flow constraints (5.4e) and the

subtour elimination constraints (5.4h), for all j ∈ R it holds

max
(xi,Bi,Qi)∈Zi

[∑

k:(j,k)∈EA

xjki

]
= 1. (5.13)

Moreover, note that it is possible to choose a local solution passing through all the loca-

tions (possibly at a high cost), i.e. there exists (x̄i, B̄i, Q̄i) ∈ Zi such that
∑

k:(j,k)∈EA x̄
jk
i =

1 for all j ∈ R. Therefore, for all j ∈ R it holds

∑

k:(j,k)∈EA

x̄jki = max
(xi,Bi,Qi)∈Zi

[∑

k:(j,k)∈EA

xjki

]

(a)
= max

(xi,Bi,Qi)∈conv(Zi)

[∑

k:(j,k)∈EA

xjki

]

≥
∑

k:(j,k)∈EA

xjki for all (xi, Bi, Qi) ∈ conv(Zi), (5.14)

167

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

where (a) follows by linearity of the cost. In particular, the previous inequality holds with

(xi, Bi, Qi) = (x̃i, B̃i, Q̃i) and thus for all j ∈ Rwe have
∑

k:(j,k)∈EA x̄
jk
i ≥

∑
k:(j,k)∈EA x̃

jk
i >

[ỹi]j . �

Lemma 5.5. Let (yconv1 , . . . , yconvN) ∈ RN |R| be an optimal allocation associated to Prob-
lem (5.11), i.e. a vector satisfying

∑N
i=1 y

conv
i = δ1 and

∑
k:(j,k)∈EA x

jk
i ≥ [yconvi]j for all

j ∈ R and i ∈ I. Then, yconvi ≤ 1 for all i ∈ I.

Proof. By contradiction, suppose that there is a component j ∈ R for which [yconvi]j > 1.

By assumption, we have
∑

k:(j,k)∈EA x
jk
i ≥ [yconvi]j . Using Lemma 5.4, we conclude that

there exists (x̄, B̄, Q̄) ∈ Zi such that

∑

k:(j,k)∈EA

x̄jki ≥ [yconvi]j > 1,

which contradicts (5.13). �

Main Result

The next theorem summarizes the finite-time feasibility result.

Theorem 5.1. Let Assumption 5.1 hold and let 0 < δ < 1. Then, for a sufficiently large
M > 0, there exists a time Tδ > 0 such that the vector (zend1 , . . . , zendN), the aggregate output
of Algorithm 9, with each zendi = (xendi , Bend

i , Qend
i), is a feasible solution to Problem (5.4),

provided that the total iteration count satisfies Tf ≥ Tδ.

Proof. First, note that, by Lemmas 5.1 and 5.2, the algorithm is well posed. Moreover,

by construction it holds zendi = (xendi , Bend
i , Qend

i) ∈ Zi for all i ∈ I (indeed zendi is

selected as an optimal solution of Problem (5.10)). Therefore, all the local constraints

(5.4c) to (5.4l) are satisfied by (xendi , Bend
i , Qend

i) and we only need to show that there

exists Tδ > 0 such that constraint (5.4b) is satisfied by (xendi , Bend
i , Qend

i) if Tf ≥ Tδ. By

Lemma 5.3, it suffices to prove that
∑N

i=1

∑
k:(j,k)∈EA x

jk
i > 0 for all j ∈ R.

Consider the auxiliary sequence {yt1, . . . , ytN}t≥0 generated by Algorithm 9. By Propo-

sition 5.1, this sequence converges to the vector (yconv1 , . . . , yconvN). By definition of limit

(using the infinity norm), there exists Tδ > 0 such that ‖yti − yconvi ‖∞ < δ/N (and thus

yti < yconvi + δ/N1) for all i ∈ I and t ≥ Tδ.
Let us define a vector ρi ∈ R|R| representing the mismatch between y

Tf
i and its

thresholded version yendi ,

ρi = y
Tf
i − yendi , for all i ∈ I. (5.15)

168

5.3. Distributed Multi-Robot Pickup and Delivery

By definition (5.9), it holds ρi ≥ 0. Then, for all j ∈ R, it holds

N∑

i=1

∑

k:(j,k)∈EA

xendi
jk ≥

N∑

i=1

[yendi]j =
N∑

i=1

[y
Tf
i]j

︸ ︷︷ ︸
δ

−
N∑

i=1

[ρi]j = δ −
N∑

i=1

[ρi]j

Let us temporarily assume that ρi < δ/N1 for all i ∈ I. Then, we obtain the desired

statement

N∑

i=1

∑

k:(j,k)∈EA

xendi
jk ≥ δ −

N∑

i=1

[ρi]j >

(
δ −

N∑

i=1

δ/N

)
= 0.

It remains to show that ρi < δ/N1 for all i ∈ I. Fix an agent i and consider a component

j ∈ R of the vector ρi. Owing to the definition (5.9) of yendi , either the j-th component

is equal to [y
Tf
i]j or it is equal to 1. In the former case, we have [ρi]j = 0 < δ/N . In the

latter case, there is a non-negative mismatch [ρi]j = [y
Tf
i]j − 1 ≥ 0. Now, using the fact

yti < yconvi + δ/N1 for all t ≥ Tδ, we have

[ρi]j = [y
Tf
i]j − 1 < [yconvi]j − 1 + δ/N ≤ δ/N (5.16)

provided that Tf ≥ Tδ, where in the last inequality we applied Lemma 5.5. The proof

follows. �

5.3.5 Discussion and Extensions

In this section, we provide guidelines for the choice of the algorithm parameters and we

discuss possible extensions of Algorithm 9 to more general settings.

On the Choice of the Parameters

As already mentioned in Section 5.3.3, there are a few parameters that must be appro-

priately set in order for Algorithm 9 to work correctly. The basic requirements for the

parameters are summarized in Theorem 5.1 and are recalled here: (i) M > 0 must be

sufficiently large, (ii) δ is any number in the open interval (0, 1), (iii) the total number

of iterations Tf > 0 must be sufficiently large, (iv) the step-size sequence {αt}t≥0 must

satisfy Assumption 5.1.

We only discuss the parameters δ and Tf as a discussion on the parameter M can

be found in 2.3.4 and possible values of the step sizes are discussed in Section 2.3.

The purpose of the parameter δ is to enlarge the constraint (5.4b) and is linked to the

minimum value of Tf . There is an inherent tradeoff between δ and the minimal Tf .

For δ close to 1, precedence is given to feasibility and Tf may become smaller, while

for δ close to 0, solution optimality is prioritized, possibly at the cost of a higher Tf .

169

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

Indeed, for δ close to 1, the time Tδ in the proof of Theorem 5.1 may be smaller, and

therefore a smaller number of iterations Tf may be sufficient to attain feasibility of the

solution. Instead, for δ close to 0, a greater number of iterations may be required to

obtain feasibility. However, in the latter case there could be less agents for which the

components of yTfi are positive (because, by Proposition 5.1, it must hold
∑N

i=1 y
Tf
i = δ1

with a small positive δ), thus forcing less agents to pass through the same location.

Extension to Heterogeneous PDVRP Graphs

Let us outline a possible extension of Problem (5.4) that can be handled by Algorithm 9.

Recall from Section 5.3.2 that Problem (5.4) has the implicit assumption that Ci ≥
maxj∈R{qj} for all i ∈ I, whereCi is the capacity of vehicle i and qj is the demand/supply

at location j. In real scenarios, while there may be vehicles potentially capable of

performing all the pickup/delivery requests, it is often the case that many vehicles are

small sized and can only accomplish a subset of the task requests. This means that the

assumption Ci ≥ maxj∈R{qj}may not hold for some robots.

The general case just outlined can be handled with minor modifications in the

formulation of Problem (5.4) and in the algorithm. Indeed, if Ci < qj for some robot i

and some location j, Problem (5.4) would be infeasible by construction. Thus, for each

robot i ∈ I it is necessary to define the largest local set of requests Ri ⊆ R such that

Ci ≥ maxj∈Ri{qj}. As a consequence, owing to the description in Section 5.3.2, the sets

Ri will now induce local graphs GAi = (VAi, EAi) with vertex set VAi = {s, σ} ∪Ri and

edge set EAi = {(j, k) | j, k ∈ VAi, j 6= k and j 6= σ, k 6= s}. Thus, each robot i defines

only the optimization variables xjki with j, k ∈ VAi (instead of j, k ∈ VA) and similarly

for Bi and Qi. The optimization problem is formulated similarly to Problem (5.4) with

obvious modifications (by dropping all the references to non-existing optimization

variables). The resulting modified version of Problem (5.4) is now feasible as long as

each task can be performed by at least one robot.

The distributed algorithm also requires minor modifications. In particular, the sum-

mations in problems (5.7) and (5.10) are performed using EAi in place of EA. Moreover,

the thresholding operation (5.9) is replaced by the following one

[yendi]j =





min
(
[y
Tf
i]j , 1

)
if j ∈ Ri

min
(
[y
Tf
i]j , 0

)
otherwise

for all j ∈ R. Finally, the setsZi must be replaced by the new version of constraints (5.4c)–

(5.4l). It is possible to follow essentially the same line of proof outlined in Section 5.3.4

(precautions are only necessary in Lemmas 5.2 and 5.4), so that Theorem 5.1 holds with

no changes.

170

5.3. Distributed Multi-Robot Pickup and Delivery

5.3.6 Simulations on Gazebo

In this section, we provide simulation results on teams of ground robots that have to

serve a set of pickup and delivery requests scattered in the environment. Thanks to

the realistic simulations provided by Gazebo, the proposed results are comparable to

experimental results on a real team of robots. In Figure 5.8, we show a snapshot of one

of the simulations addressed in the following.

Figure 5.8: Snapshot of the initial condition of one of the Gazebo simulations.

Implementation Details

To implement the distributed algorithm for PDVRP, we developed a modified version

of the ChoiRbot’s Team Guidance layer of Dynamic Task Assignment 5.2.4 in which

we encoded the problem formulation (5.4) and the distributed algorithm by using the

disropt layer. The RoboPlanning layer and the RoboControl layer are left unchanged.

Note that ROS 2 handles inter-process communications via the TCP/IP stack, meaning

that the proposed simulations are based on the same network communications needed

to run the pickup and delivery algorithm on a team of real robots connected over a

wireless network. At the beginning of the simulation, each optimization node gathers

the information on the pickup and delivery requests and evaluates the cost vector

ci (i.e. the robot-to-task distances) and the local constraint sets Zi. We stress that

these computations are performed independently for each robot on different processes,

without having access to the other robot information. After the initialization, robots

start communicating and performing the steps of the distributed algorithm proposed in

Section 5.3.3. As soon as the distributed optimization procedure completes, robots start

moving towards the assigned tasks. Due to constraint (5.4b), suboptimal solutions of

problem (5.4) may lead more than one robot to perform the same task. Thus, the robot

171

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

communicates to a so-called Auth node that it wants to start a particular task. If the task

has been already taken care of by another robot, the Auth node denies authorization

and the robot performs the next one. The target positions are then communicated to

the local trajectory planning layer and then fed to the low-level controllers to steer the

robots over the requests positions. The controller nodes interact with Gazebo, which

simulates the robot dynamics and provides the pose of each robot.

We have experimentally found that a satisfying tuning of the distributed algorithm

is as follows. The robots perform 250 iterations with local allocation initialized as

in Algorithm 9. For the first 125 iterations they use the diminishing step size αt =

0.005/(t+1), then they use a constant step size (equal to the last computed one). Because

of the constant step size, the final allocation fed to the thresholding operation (5.9) is

the running average computed from iteration 126 on, i.e.

(250∑

τ=126

ατyτi

)
/

(250∑

τ=126

ατ
)

This particular tweaking allows the robots to quickly converge to a good-quality solution.

Results

We performed three Monte Carlo simulations on random instances of problem (5.4) on

the described platform with Turtlebot3 robots.

First simulation. To begin with, we test the optimality of the computed solution while

varying the number of robots N . We perform 50 Monte Carlo trials for each value of N

and we fix δ = 0.9 to prioritize feasibility over optimality (cf. Section 5.3.5). For each

trial, 10 pickup requests and 10 corresponding deliveries are randomly generated on the

plane. In Figure 5.9, we show the cost error of the solution actuated by robots after 250

iterations of the distributed algorithm, compared to the cost of a centralized solver, with

varying number of robots. The figure highlights that the distributed algorithm is able to

achieve an average 20% suboptimality.

Second simulation. Now, we assess the behavior of the cost error while varying the

total number of requests. Specifically, we consider a team of 20 robots and we let the

number of requests |R| vary from 4 to 24 (with δ = 0.9). For each of these values of |R|,
we perform 50 trials and we let the robots implement the solution after 250 iterations

of the distributed algorithm. The results are depicted in Figure 5.10 and Figure 5.11.

Notably, as it can be seen from Figure 5.10, the mean relative error remains constant

while increasing the number of requests. This is an appealing feature of the proposed

strategy considering the fact that, as depicted also in Figure 5.11, the global optimal

cost increases with the number of tasks.

Third simulation. Finally, we perform simulations to determine the number of

172

5.3. Distributed Multi-Robot Pickup and Delivery

5 10 15 20 25 30
0

10

20

30

Number of robots

co
st

er
ro
r

[%
]

± standard dev.

Figure 5.9: Cost error in Monte Carlo simulations on Gazebo for varying number of robots.

4 8 12 16 20 24

10

20

30

40

Number of requests

co
st

er
ro
r

[%
]

± standard dev.

Figure 5.10: Cost error in Monte Carlo simulations on Gazebo for varying number of requests.

4 8 12 16 20 24

25

75

125

Number of requests

to
ta
lc

os
t

Figure 5.11: Comparison between the centralized optimal solution (red) and the one found by
the proposed distributed strategy (blue).

173

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

iterations needed to achieve finite-time feasibility while varying the number of robots N

and the value of δ. We employed three values of δ, namely 0.1, 0.5, 0.9, and performed 50

trials for each of the values N = 5, 10, 15, 20, 25, 30 and for each value of δ. In each trial,

we performed 250 iterations of the algorithm and recorded the value of the coupling

constraint. Then we determined the following quantity

min t

such that
N∑

i=1

∑

k:(j,k)∈EA

xjki
τ ≥ 1 for all τ ≥ t,

which is essentially an empirical value of Tδ appearing in Theorem 5.1. Interestingly, we

found out that, for all the trials, the empirical value of Tδ is zero, which means that in

all the simulated scenarios the algorithm provides a feasible solution to the PDVRP (5.4)

since the first iteration.

5.3.7 Experiments

To conclude, we show experimental results on real teams of robots solving PDVRP

instances. We consider heterogeneous teams composed by Crazyflie nano-quadrotors

and Turtlebot 3 Burger mobile robots. Tasks are generated randomly in the space. In

particular, we split the experiment area in two halves. Pickup requests are located in

the right half, while deliveries are in the left half. To simulate the pickup/delivery

procedure, each robot waits over the request location a random service time dj between

3 and 5 seconds. Each robot can serve a subset of the pickup/delivery requests. This is

decided randomly at the beginning of the experiment. The capacity Ci of each robot

and the demand/supply qj of tasks are drawn from uniform distributions. The velocity

of robots (both ground and aerial) is approximately 0.2 m/s. The solution mechanism is

the same used in the simulations.

As regards the low-level controllers, we proceed as follows. Turtlebot3 robots are

controlled using a linear state feedback for single integrators. In this way, we can handle

collision among robots via barrier functions using the approach described in [124]. Then,

in order to get the unicycle inputs, we utilize a near-identity diffeomorphism (see [124]).

As for nano-quadrotors, a hierarchical controller has been considered. Specifically, a

flatness-based position controller generates desired angular rates that are then actuated

with a low-level PID control loop. The position controller receives as input a sufficiently

smooth position trajectory, which is computed as a polynomial spline.

We performed two different experiments. In the first one, there are 3 ground robots

and 2 aerial robots that must serve a total of 5 pickups and 5 deliveries. In Figure 5.12, we

show a snapshot from the experiment. Then we performed a second, larger experiment

with 7 ground robots and 2 aerial robots that must serve 10 pickups and 10 deliveries.

174

5.3. Distributed Multi-Robot Pickup and Delivery

In Figure 5.13, we show snapshots from the second experiment.

Figure 5.12: First experiment with ground and aerial robots for the PDVRP problem. Ground
robots are indicated with a square, while aerial robots are delimited with circles. The red pins
represent pickups, while the blue ones represent deliveries. The paths travelled by robots are
depicted as dashed lines.

Figure 5.13: Snapshots from the second experiment. Left: robots have reached the pickup
positions and perform the loading operation (simulated). Right: robots have reached the delivery
positions and have terminated the mission.

5.3.8 Supplement: Conversion to Mixed-Integer Linear Program

Problem (5.4) is almost a mixed-integer linear program, except for the fact that the

constraints (5.4h) and (5.4i) are nonlinear. However, from a computational point of

view, the constraints (5.4h) and (5.4i) can be readily recast as linear ones. To achieve

this, we use a standard procedure (see [7, 38]) that can be summarized as follows.

First, we introduce for each i, j, k the constraints 0 ≤ Bj
i ≤ Bi, where Bi ≥ 0 is any

conservative upper bound on the total travel time of vehicle i selected so as to preserve

the solutions of the original problem.1 While this operation does not affect the problem,

it introduces a bound on the value of each Bj . After defining for all i, j, k the scalars

1A simple possibility is to select Bi as the sum of all possible travel times tjki from all i to all j, plus the
service times dj for all j.

175

Chapter 5. Cooperative Robotics Toolbox and Distributed Vehicle Routing

M jk
i = Bi + dj + tjki (or any larger number), the nonlinear constraint (5.4h) can be

replaced with the linear one

Bk
i ≥ Bj

i + dj + tjki −M
jk
i (1− xjki). (5.17)

Equivalence of the constraint (5.4h) with (5.17) can be verified by noting that, for

xjki = 1, we obtain the desired constraint Bk
i ≥ Bj

i + dj + tjki , while for xjki = 0 the

constraint (5.17) becomes Bk
i ≥ Bj

i + dj + tjki −M
jk
i (which is already implied by the

constraints Bk
i ≥ 0 and Bj

i ≥ 0).

A similar reasoning can be applied to turn the constraint (5.4i) into a linear one.

Let us define W
jk
i = Q

j
+ qk and W jk

i = Q
k − qk − Qj (or any larger number), then

constraint (5.4i) can be equivalently replaced with the pair of linear constraints

Qki ≥ Qji + qk −W jk
i (1− xjki), (5.18a)

Qki ≤ Qji + qk +W jk
i (1− xjki). (5.18b)

After introducing the additional constraints 0 ≤ Bj
i ≤ Bi for all i, j, k and replac-

ing (5.4h)–(5.4i) with their equivalent versions (5.17)–(5.18), problem (5.4) becomes a

MILP.

176

Conclusions

In this thesis, we analyzed several optimization problems arising in peer-to-peer net-

works of agents that enjoy the constraint-coupled structure. These problems pose major

challenges when the size of the network is large, when the network is time-varying or

when convexity assumptions are dropped.

The algorithmic frameworks proposed in the thesis are based on the primal de-

composition approach. Hence, we first covered the case of convex constraint-coupled

problems in order to tackle structural challenges such as time-variability of the network

and a-priori unknown cost functions. Then, we dropped the convexity assumption

and considered more challenging NP-hard problems. We identified the mixed-integer

constraint-coupled set-up as a prominent distributed optimization scenario that cap-

tures numerous decision problems of interest and developed innovative distributed

strategies to compute high-quality solutions (as highlighted by Monte Carlo simulations),

both asymptotically and in finite-time. These approaches can be of great interest in

distributed decision contexts with privacy concerns. We demonstrated that the proposed

distributed techniques can be successfully applied to highly relevant practical scenarios,

such as stochastic microgrid control and distributed multi-robot pickup and delivery.

This thesis represents a starting point toward more complex applications. In particular,

the distributed primal decomposition approach, together with the restriction and vio-

lation principle, pave the way to the development of novel approaches for distributed

control problems of interest that are intrinsically large-scale and nonconvex.

Future research directions include the extension to a general nonconvex constraint-

coupled set-up, for which we only provided a first attempt. Moreover, it could be

interesting to quantify the number of iterations needed for feasibility for the algorithms

tackling mixed-integer problems. This ultimately depends on the convergence rate of the

distributed subgradient-based algorithms for convex problems, for which a “feasibility

convergence rate” is still unavailable. Such a contribution would find applications to

distributed receding horizon control, for which controlled finite-time feasibility would

imply recursive feasibility of the scheme with a a-priori fixed number of iterations.

Finally, further developments of the distributed robotics toolbox may be useful to

handle more general robotics contexts.

177

Appendix A

Optimization Basics

A.1 Lagrangian Duality

Consider a constrained optimization problem, addressed as primal problem, having the

form

min
x∈X

f(x)

subj. to g(x) ≤ 0,
(A.1)

whereX ⊆ Rd is a convex, compact set, f : Rd → R is a convex function and g : Rd → RS

is such that each component gs : Rd → R, s = 1, . . . , S, is a convex (scalar) function.

By adding an optimization variable, problem (A.1) can be equivalently written in the

so-called epigraph form

min
x∈X,ρ

ρ

subj. to g(x) ≤ 0,

ρ ≥ f(x),

(A.2)

therefore a convex problem can be always assumed to have linear cost without loss of

generality. For problem (A.1) we define the Lagrangian function as

L(x, µ) = f(x) + µ>g(x). (A.3)

The following optimization problem

max
µ

q(µ)

subj. to µ ≥ 0
(A.4)

179

Appendix A. Optimization Basics

is called the dual of problem (A.1), where q : RS → R is the so-called dual function,

q(µ) = inf
x∈X
L(x, µ). (A.5)

It can be shown that the domain of q (i.e. the set of µ such that q(µ) > −∞) is convex

and that q is concave on its domain. A vector µ̄ ∈ RS is said to be a Lagrange multiplier

if it holds µ̄ ≥ 0 and

inf
x∈X
L(x, µ̄) = inf

x∈X : g(x)≤0
f(x).

Denote by f? the optimal cost of the primal problem and by q? the optimal cost of

the dual problem It can be shown that the following inequality holds [10],

q? ≤ f?, (A.6)

which is called weak duality. When in (A.6) the equality holds, then we say that strong

duality holds and, thus, solving the primal problem (A.1) is equivalent to solving its

dual formulation (A.4).

A.2 Convergence Rates

Let {xt}t∈N be a sequence of vectors in Rn. Assume the sequence converges to some

x̄ ∈ Rn. We say that the sequence converges linearly to x̄ if there exists a number

η ∈ (0, 1) such that

lim
t→∞

‖xt+1 − x̄‖
‖xt − x̄‖ = η. (A.7)

If η = 0 we say that the sequence converges superlinearly to x̄, while if η = 1 it converges

sublinearly to x. It is common to denote the rate of convergence using the big-O notation.

For instance, a sequence that goes to zero as O(1/t) converges sublinearly, while a

sequence that goes to zero as O(λt), with λ ∈ (0, 1), converges linearly.

A.3 Linear Programs and Mixed-Integer Linear Programs

A Linear Program (LP) is an optimization problem with linear cost function and linear

constraints:

min
x

c>x

subj. to a>k x ≤ bk, k = 1, . . . ,K,
(A.8)

180

A.3. Linear Programs and Mixed-Integer Linear Programs

where c ∈ Rd is the cost vector and ak ∈ Rd and bk ∈ R describe K inequality constraints.

In the subsequent discussion, we assume that d ≤ K. The feasible set X of problem (A.8)

is the set of vectors satisfying all the constraints, i.e.

X , {x ∈ Rd | a>k x ≤ bk for all k ∈ {1, . . . ,K}}.

Note that X is a polyhedron, for which the following definition of vertex can be given.

Definition A.1. A vector x̃ ∈ Rd is a vertex of X if there exists some c ∈ Rd such that
c>x̃ < c>x for all x ∈ X with x 6= x̃. 4

If problem (A.8) admits an optimal solution, it can be shown that there exists an

optimal vertex, i.e. a vertex which is an optimal solution of the problem (see e.g. [13,

Theorem 2.7]). Let x? be an optimal vertex of problem (A.8). Then, it is a standard result

in linear programming theory that there exists an index set {`1, . . . , `d} ⊂ {1, . . . ,K},
with cardinality d, such that x? is the unique optimal vertex of the problem

min
x

c>x

subj. to a>`hx ≤ b`h , h = 1, . . . , d,

which is a relaxed version of problem (A.8) in which only d constraints are considered.

In addition, the vectors a`h , h = 1, . . . , d, are linearly independent, so that they form

a basis of Rd. By analogy, the constraints a>`hx ≤ b`h , h = 1, . . . , d, are called a basis of

the point x?. Due to the optimality of x?, we call it also a basis of problem (A.8). To

compactly denote such basis, we introduce a matrix P ∈ Rd×d, obtained by stacking the

row vectors a>`h , and a vector q ∈ Rd, obtained by stacking the scalars b`h , i.e.

P =




a>`1
...

a>`d


 , q =




b`1
...

b`d


 .

Then, x? = P−1q, and we say that the tuple (P, q) is a basis of (A.8).

A.3.1 Dual Degeneracy and Lexicographic Ordering

If problem (A.8) has multiple optimal solutions, we say that the LP is dual degenerate.

In presence of dual degeneracy, it is not trivial to guarantee convergence of distributed

algorithms to the same optimal solution. In order to overcome this issue, it is possible to

rely on the lexicographic ordering of vectors. We now give some definitions.

Definition A.2. A vector v ∈ Rn is said to be lexicographically positive (or lex-positive)

181

Appendix A. Optimization Basics

if v 6= 0 and the first non-zero component of v is positive. In symbols:

u
lex
> 0.

A vector u ∈ Rn is said to be lexicographically larger (resp. smaller) than another vector
v ∈ Rn if u− v is lex-positive (resp. v − u is lex-positive), or, equivalently, if u 6= v and the
first nonzero component of u− v is positive (resp., negative). In symbols:

u
lex
> v or u

lex
< v.

Given a set of vectors {v1, . . . , vr}, the lexicographic minimum is the element vi such that
vj

lex
> vi for all j 6= i. In symbols:

vi = lex-min{v1, . . . , vr}. 4

Now, consider the optimal solution set of problem (A.8), i.e. X ? , {x ∈ X | c>x ≤
c>x′ for all x′ ∈ X} ⊆ X , where X is the feasible set of problem (A.8). Among all

the optimal solutions in X ?, it is possible to compute the lexicographically minimal

one, i.e. lex-min(S?). It turns out that finding lex-min(S?) is equivalent to finding the

(unique) optimal solution to a modified (non dual-degenerate) version of the original

problem (A.8), where the cost vector c is perturbed to c′ = c+ ∆, with ∆ a lexicographic

perturbation vector:

∆> = [∆0 ∆2
0 . . . ∆d

0],

for a sufficiently small ∆0 > 0 (see [59]). Therefore, the lex-optimal solution of prob-

lem (A.8) is the unique optimal solution of the problem with perturbed cost

min
x

(c+ ∆)>x

subj. to a>k x ≤ bk, k = 1, . . . ,K.
(A.9)

Thus, the lex-optimal solution of problem (A.8) exists if and only if problem (A.9)

admits an optimal solution. Moreover, the optimal solution of (A.9) is attained at a

vertex of (A.8), therefore it is an optimal vertex of problem (A.8).

182

A.3. Linear Programs and Mixed-Integer Linear Programs

A.3.2 Mixed-Integer Linear Programs and Duality

A Mixed-Integer Linear Program (MILP) is a Linear Program where some of the variables

take on integer values only, i.e.

min
x

c>x

subj. to a>k x ≤ bk, k = 1, . . . ,K,

xj ∈ Z, ∀j ∈ J ,

(A.10)

where J ⊆ {1, . . . , d} is the index set of integer variables. MILPs are NP-hard problems,

thus enumeration techniques (such as branch and bound) are required to compute an

optimal solution (see e.g. [13]). Integer variables can be used to model a wide range of

situations, including logic constraints, switching conditions, etc.

Denote by PI the feasible set of problem (A.10), which is a so-called mixed-integer

polyhedron. The optimal cost of problem (A.10) is equal to the optimal cost of the

following convex problem

min
x

c>x

subj. to x ∈ conv(PI),
(A.11)

where conv(PI) denotes the convex hull of PI . This property is important for the

development of cutting-plane algorithms to solve problem (A.10).

Another important property is related to the application of Lagrange duality to

MILPs. Consider a MILP of the form

min
x

c>x

subj. to x ∈ X,
Ax ≤ b,

(A.12)

where X ⊂ Rd is a compact mixed-integer polyhedron, A ∈ Rm×d and b ∈ Rm. Consider

also the following convexification of problem (A.12),

min
x

c>x

subj. to x ∈ conv(X).

Ax ≤ b,

(A.13)

Note that the constraint set of problem (A.13) is not the convex hull of the constraint

set of MILP (A.12). Indeed, the constraint Ax ≤ b has been kept separate from the

183

Appendix A. Optimization Basics

computation of the convex hull. The dual problem of (A.12) is

max
µ≥0

[
min
x∈X

(
c>x+ µ>(Ax− b)

)]
= max

µ≥0

[
min

x∈conv(X)

(
c>x+ µ>(Ax− b)

)]
, (A.14)

where the equality follows by linearity of the cost in the inner minimization. Thus,

problems (A.12) and (A.13) have the same dual problem. Denote by q? the dual optimal

cost and denote by f?mi the optimal cost of problem (A.12). In general, only weak duality

can be assessed, thus q? ≤ f?mi. However, strong duality holds for problem (A.13),

therefore its optimal cost is equal to q? [52].

184

Ringraziamenti personali

Il primo ringraziamento va senza alcun dubbio al mio tutor Giuseppe, innanzitutto

perché in questi tre anni mi ha aiutato a maturare scientificamente e mi ha continu-

amente fornito tantissimi stimoli. Lo ringrazio anche perché mi ha dato un sacco di

opportunità, a partire dalla partecipazione alle conferenze, ai corsi di dottorato, ma

anche per avermi dato la possibilità di poter lavorare in un ambiente di eccellenza.

Ringrazio i miei colleghi con cui ogni giorno ho avuto il piacere di lavorare. Sicura-

mente il percorso di dottorato non sarebbe stato lo stesso senza di voi!

Un grazie speciale va alla Comunità Emmanuel di Lecce, che dal 2009 è ormai la mia

seconda casa, e a tutte le persone che ne fanno parte.

Ringrazio anche Katia, Marco, Salvatore, Mariangela ed Enzo, che sono stati sempre

presenti in questi tre anni, e tutti i miei amici leccesi che anche se sono a distanza sono

sempre vicini.

Il ringraziamento più grande va però a mia moglie Scharon, che mi ha sostenuto nei

momenti di sconforto e ha gioito insieme a me nei momenti di felicità. Molti dei miei

successi sono dovuti in gran parte a lei e al suo esserci per me.

Bibliography

[1] L. Abbatecola, M. P. Fanti, G. Pedroncelli, and W. Ukovich, A distributed cluster-based approach for
pick-up services, IEEE Transactions on Automation Science and Engineering 16 (2018), no. 2, 960–971.

[2] E. Aertbeliën and J. De Schutter, eTaSL/eTC: A constraint-based task specification language and robot
controller using expression graphs, IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2014, pp. 1540–1546.

[3] S. A. Alghunaim, K. Yuan, and A. H. Sayed, Dual coupled diffusion for distributed optimization with
affine constraints, IEEE Conference on Decision and Control, 2018, pp. 829–834.

[4] A. Arsie, K. Savla, and E. Frazzoli, Efficient routing algorithms for multiple vehicles with no explicit
communications, IEEE Transactions on Automatic Control 54 (2009), no. 10, 2302–2317.

[5] X. Bai, M. Cao, W. Yan, and S. S. Ge, Efficient routing for precedence-constrained package delivery for
heterogeneous vehicles, IEEE Transactions on Automation Science and Engineering 17 (2019), no. 1,

248–260.

[6] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM Journal

on Optimization 23 (2013), no. 4, 2037–2060.

[7] A. Bemporad and M. Morari, Control of systems integrating logic, dynamics, and constraints, Automatica

35 (1999), no. 3, 407–427.

[8] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods, Academic Press, 1982.

[9] D. P Bertsekas, Network optimization: continuous and discrete models, Citeseer, 1998.

[10] D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1999.

[11] , Convex optimization algorithms, Athena Scientific, 2015.

[12] D. P Bertsekas, A. Nedić, A. E Ozdaglar, et al., Convex analysis and optimization, Athena Scientific,

2003.

[13] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization, Vol. 6, Athena Scientific Belmont,

MA, 1997.

[14] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent projected stochastic gradient algorithm for
non-convex optimization, IEEE Transactions on Automatic Control 58 (2013), no. 2, 391–405.

[15] S. Bolognani and S. Zampieri, A distributed control strategy for reactive power compensation in smart
microgrids, IEEE Transactions on Automatic Control 58 (2013), no. 11, 2818–2833.

[16] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.

[17] N. Buckman, H.-L. Choi, and J. P. How, Partial replanning for decentralized dynamic task allocation,

Aiaa scitech 2019 forum, 2019, pp. 0915.

[18] M. Bürger, G. Notarstefano, and F. Allgöwer, A polyhedral approximation framework for convex and
robust distributed optimization, IEEE Transactions on Automatic Control 59 (2014), no. 2, 384–395.

187

Bibliography

[19] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, A distributed simplex algorithm for degenerate
linear programs and multi-agent assignments, Automatica 48 (2012), no. 9, 2298–2304.

[20] A. Camisa, A. Benevento, and G. Notarstefano, Constraint-coupled optimization with unknown costs: A
distributed primal decomposition approach, arXiv preprint arXiv:2104.06341 (2021).

[21] A. Camisa, F. Farina, I. Notarnicola, and G. Notarstefano, Distributed constraint-coupled optimization
over random time-varying graphs via primal decomposition and block subgradient approaches, IEEE

Conference on Decision and Control, 2019, pp. 6374–6379.

[22] , Distributed constraint-coupled optimization via primal decomposition over random time-varying
graphs, Automatica (2021). (to appear).

[23] A. Camisa, I. Notarnicola, and G. Notarstefano, A primal decomposition method with suboptimality
bounds for distributed mixed-integer linear programming, IEEE Conference on Decision and Control,

2018, pp. 3391–3396.

[24] , Distributed primal decomposition for large-scale MILPs, IEEE Transactions on Automatic

Control (2021).

[25] A. Camisa and G. Notarstefano, A distributed primal decomposition scheme for nonconvex optimization,

IFAC-PapersOnLine 52 (2019), no. 20, 315–320.

[26] , Primal decomposition and constraint generation for asynchronous distributed mixed-integer linear
programming, IEEE European Control Conference, 2019, pp. 77–82.

[27] , A distributed mixed-integer framework to stochastic optimal microgrid control, arXiv preprint

arXiv:2104.06346 (2021).

[28] A. Camisa, A. Testa, and G. Notarstefano, Multi-robot pickup and delivery via distributed resource
allocation, arXiv preprint arXiv:2104.02415 (2021).

[29] R. Carli and M. Dotoli, Distributed alternating direction method of multipliers for linearly constrained
optimization over a network, IEEE Control Systems Letters 4 (2020), no. 1, 247–252.

[30] G. A Casan, E. Cervera, A. A Moughlbay, J. Alemany, and P. Martinet, ROS-based online robot
programming for remote education and training, IEEE International Conference on Robotics and

Automation, 2015, pp. 6101–6106.

[31] M. Chamanbaz, G. Notarstefano, and R. Bouffanais, Randomized constraints consensus for distributed
robust linear programming, IFAC-PapersOnLine 50 (2017), no. 1, 4973–4978.

[32] M. Chamanbaz, G. Notarstefano, F. Sasso, and R. Bouffanais, Randomized constraints consensus for
distributed robust mixed-integer programming, IEEE Transactions on Control of Network Systems

(2020).

[33] T.-H. Chang, M. Hong, and X. Wang, Multi-agent distributed optimization via inexact consensus ADMM,

IEEE Transactions on Signal Processing 63 (2014), no. 2, 482–497.

[34] T.-H. Chang, A. Nedić, and A. Scaglione, Distributed constrained optimization by consensus-based
primal-dual perturbation method, IEEE Transactions on Automatic Control 59 (2014), no. 6, 1524–

1538.

[35] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, A distributed version of the hungarian method
for multirobot assignment, IEEE Transactions on Robotics 33 (2017), no. 4, 932–947.

[36] B. Coltin and M. Veloso, Online pickup and delivery planning with transfers for mobile robots, Workshops

at the twenty-seventh aaai conference on artificial intelligence, 2013.

[37] S. R. Cominesi, M. Farina, L. Giulioni, B. Picasso, and R. Scattolini, A two-layer stochastic model
predictive control scheme for microgrids, IEEE Transactions on Control Systems Technology 26 (2017),

no. 1, 1–13.

188

Bibliography

[38] J.-F. Cordeau, A branch-and-cut algorithm for the dial-a-ride problem, Operations Research 54 (2006),

no. 3, 573–586.

[39] C. D. Dang and G. Lan, Stochastic block mirror descent methods for nonsmooth and stochastic optimization,

SIAM Journal on Optimization 25 (2015), no. 2, 856–881.

[40] P. Di Lorenzo and G. Scutari, NEXT: in-network nonconvex optimization, IEEE Transactions on Signal

and Information Processing over Networks 2 (2016), no. 2, 120–136.

[41] J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimization: convergence
analysis and network scaling, IEEE Transactions on Automatic Control 57 (2012), no. 3, 592–606.

[42] E. Erős, M. Dahl, K. Bengtsson, A. Hanna, and P. Falkman, A ROS2 based communication architecture
for control in collaborative and intelligent automation systems, Procedia Manufacturing 38 (2019),

349–357.

[43] E. Erős, M. Dahl, A. Hanna, A. Albo, P. Falkman, and K. Bengtsson, Integrated virtual commissioning
of a ROS2-based collaborative and intelligent automation system, IEEE International Conference on

Emerging Technologies and Factory Automation, 2019, pp. 407–413.

[44] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, Dual decomposition for multi-agent distributed
optimization with coupling constraints, Automatica 84 (2017), 149–158.

[45] A. Falsone, K. Margellos, and M. Prandini, A distributed iterative algorithm for multi-agent MILPs:
finite-time feasibility and performance characterization, IEEE Control Systems Letters 2 (2018), no. 4,

563–568.

[46] , A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees,
Automatica 103 (2019), 141–150.

[47] A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, Tracking-ADMM for distributed constraint-
coupled optimization, Automatica 117 (2020), 108962.

[48] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano, DISROPT: a Python framework for
distributed optimization, IFAC world congress, 2020.

[49] A. Farinelli, A. Contini, and D. Zorzi, Decentralized task assignment for multi-item pickup and delivery
in logistic scenarios, International conference on autonomous agents and multiagent systems, 2020,

pp. 1843–1845.

[50] M. H. F. b. M. Fauadi, S. H. Yahaya, and T. Murata, Intelligent combinatorial auctions of decentralized
task assignment for AGV with multiple loading capacity, IEEJ Transactions on electrical and electronic

Engineering 8 (2013), no. 4, 371–379.

[51] M. Franceschelli, D. Rosa, C. Seatzu, and F. Bullo, Gossip algorithms for heterogeneous multi-vehicle
routing problems, Nonlinear Analysis: Hybrid Systems 10 (2013), 156–174.

[52] A. M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical programming study,

1974, pp. 82–114.

[53] P. Giselsson and A. Rantzer, Large-scale and distributed optimization, Vol. 2227, Springer, 2018.

[54] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, Fast scheduling of robot teams performing tasks with
temporospatial constraints, IEEE Transactions on Robotics 34 (2018), no. 1, 220–239.

[55] V. Grabe, M. Riedel, H. H Bülthoff, P. R. Giordano, and A. Franchi, The TeleKyb framework for a
modular and extendible ROS-based quadrotor control, European Conference on Mobile Robots, 2013,

pp. 19–25.

[56] A. Ham, Drone-based material transfer system in a robotic mobile fulfillment center, IEEE Transactions

on Automation Science and Engineering 17 (2019), no. 2, 957–965.

189

Bibliography

[57] B. Heap and M. Pagnucco, Repeated sequential single-cluster auctions with dynamic tasks for multi-robot
task allocation with pickup and delivery, German conference on multiagent system technologies, 2013,

pp. 87–100.

[58] D. Jakovetić, J. Xavier, and J. M. Moura, Fast distributed gradient methods, IEEE Transactions on

Automatic Control 59 (2014), no. 5, 1131–1146.

[59] C. N. Jones, E. C. Kerrigan, and J. M. Maciejowski, Lexicographic perturbation for multiparametric
linear programming with applications to control, Automatica 43 (2007), no. 10, 1808–1816.

[60] N. Kamra, T. K. S. Kumar, and N. Ayanian, Combinatorial problems in multirobot battery exchange
systems, IEEE Transactions on Automation Science and Engineering 15 (2017), no. 2, 852–862.

[61] S.-J. Kim and G. B. Giannakis, Scalable and robust demand response with mixed-integer constraints, IEEE

Transactions on Smart Grid 4 (2013), no. 4, 2089–2099.

[62] N. Koenig and A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator,

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[63] P. O. Kriett and M. Salani, Optimal control of a residential microgrid, Energy 42 (2012), no. 1, 321–330.

[64] Y. Kuwata and J. P How, Cooperative distributed robust trajectory optimization using receding horizon
MILP, IEEE Transactions on Control Systems Technology 19 (2010), no. 2, 423–431.

[65] H. Lakshmanan and D. P. De Farias, Decentralized resource allocation in dynamic networks of agents,
SIAM Journal on Optimization 19 (2008), no. 2, 911–940.

[66] S. Liang, L. Y. Wang, and G. Yin, Distributed smooth convex optimization with coupled constraints, IEEE

Transactions on Automatic Control 65 (2020), no. 1, 347–353.

[67] M. Liu, H. Ma, J. Li, and S. Koenig, Task and path planning for multi-agent pickup and delivery,

International conference on autonomous agents and multiagent systems, 2019, pp. 1152–1160.

[68] L. Luo, N. Chakraborty, and K. Sycara, Distributed algorithms for multirobot task assignment with task
deadline constraints, IEEE Transactions on Automation Science and Engineering 12 (2015), no. 3,

876–888.

[69] Y. Maruyama, S. Kato, and T. Azumi, Exploring the performance of ROS2, International Conference on

Embedded Software, 2016, pp. 1–10.

[70] M. Marzband, M. Ghadimi, A. Sumper, and J. L. Domı́nguez-Garcı́a, Experimental validation of a
real-time energy management system using multi-period gravitational search algorithm for microgrids in
islanded mode, Applied Energy 128 (2014), 164–174.

[71] D. Mateos-Núnez and J. Cortés, Distributed saddle-point subgradient algorithms with Laplacian averag-
ing, IEEE Transactions on Automatic Control 62 (2017), no. 6, 2720–2735.

[72] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks, Vol. 33, Princeton

University Press, 2010.

[73] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk, Comprehensive simulation
of quadrotor UAVs using ROS and gazebo, International Conference on Simulation, Modeling, and

Programming for Autonomous Robots, 2012, pp. 400–411.

[74] R. R. Meyer, On the existence of optimal solutions to integer and mixed-integer programming problems,
Mathematical Programming 7 (1974), no. 1, 223–235.

[75] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel, D-ADMM: a communication-efficient
distributed algorithm for separable optimization, IEEE Transactions on Signal Processing 61 (2013),

no. 10, 2718–2723.

190

Bibliography

[76] I Necoara, Y Nesterov, and F Glineur, A random coordinate descent method on large-scale optimization
problems with linear constraints, 2014.

[77] I. Necoara, Random coordinate descent algorithms for multi-agent convex optimization over networks,
IEEE Transactions on Automatic Control 58 (2013), no. 8, 2001–2012.

[78] I. Necoara and V. Nedelcu, On linear convergence of a distributed dual gradient algorithm for linearly
constrained separable convex problems, Automatica 55 (2015), 209–216.

[79] A. Nedić and J. Liu, Distributed optimization for control, Annual Review of Control, Robotics, and

Autonomous Systems 1 (2018), 77–103.

[80] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate analysis for dual subgradient methods,
SIAM Journal on Optimization 19 (2009), no. 4, 1757–1780.

[81] , Distributed subgradient methods for multi-agent optimization, IEEE Transactions on Automatic

Control 54 (2009), no. 1, 48–61.

[82] T. A. Nguyen and M. L. Crow, Stochastic optimization of renewable-based microgrid operation incorpo-
rating battery operating cost, IEEE Transactions on Power Systems 31 (2015), no. 3, 2289–2296.

[83] I. Notarnicola and G. Notarstefano, Constraint-coupled distributed optimization: a relaxation and duality
approach, IEEE Transactions on Control of Network Systems 7 (2019), no. 1, 483–492.

[84] G. Notarstefano and F. Bullo, Distributed abstract optimization via constraints consensus: theory and
applications, IEEE Transactions on Automatic Control 56 (2011), no. 10, 2247–2261.

[85] G. Notarstefano, M. Egerstedt, and M Haque, Containment in leader–follower networks with switching
communication topologies, Automatica 47 (2011), no. 5, 1035–1040.

[86] G. Notarstefano, I. Notarnicola, and A. Camisa, Distributed optimization for smart cyber-physical
networks, Foundations and Trends® in Systems and Control 7 (2019), no. 3, 253–383.

[87] OPSD, Open Power System Data Time Series, 2020. https://data.open-power-system-data.org/

time_series, October 6th, 2020.

[88] A. Ouammi, H. Dagdougui, L. Dessaint, and R. Sacile, Coordinated model predictive-based power flows
control in a cooperative network of smart microgrids, IEEE Transactions on Smart grid 6 (2015), no. 5,

2233–2244.

[89] A. Parisio, E. Rikos, and L. Glielmo, A model predictive control approach to microgrid operation opti-
mization, IEEE Transactions on Control Systems Technology 22 (2014), no. 5, 1813–1827.

[90] , Stochastic model predictive control for economic/environmental operation management of micro-
grids: an experimental case study, Journal of Process Control 43 (2016), 24–37.

[91] J. J. Park and B. Kuipers, A smooth control law for graceful motion of differential wheeled mobile robots in
2D environment, IEEE International Conference on Robotics and Automation, 2011, pp. 4896–4902.

[92] S. N. Parragh, K. F. Doerner, and R. F. Hartl, A survey on pickup and delivery models part II: trans-
portation between pickup and delivery locations, Journal für Betriebswirtschaft 58 (2008), no. 2, 81–

117.

[93] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D Hager, CoSTAR: Instructing collaborative robots
with behavior trees and vision, IEEE International Conference on Robotics and Automation, 2017,

pp. 564–571.

[94] V. Pillac, M. Gendreau, C. Guéret, and A. L Medaglia, A review of dynamic vehicle routing problems,
European Journal of Operational Research 225 (2013), no. 1, 1–11.

[95] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y Ng, ROS: an
open-source Robot Operating System, ICRA workshop on open source software, 2009, pp. 5.

191

https://data.open-power-system-data.org/time_series
https://data.open-power-system-data.org/time_series

Bibliography

[96] J. B Rawlings and D. Q Mayne, Model predictive control: theory and design, Nob Hill Pub. Madison,

Wisconsin, 2009.

[97] M. Razaviyayn, M. Hong, and Z.-Q. Luo, A unified convergence analysis of block successive minimization
methods for nonsmooth optimization, SIAM Journal on Optimization 23 (2013), no. 2, 1126–1153.

[98] M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein, T. Walter, and D. Matheis, A self-driving
car architecture in ROS2, International SAUPEC/RobMech/PRASA Conference, 2020, pp. 1–6.

[99] A. Richards and J. P. How, Robust distributed model predictive control, International Journal of control

80 (2007), no. 9, 1517–1531.

[100] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function, Mathematical Programming 144 (2014), no. 1-2, 1–38.

[101] U. Ritzinger, J. Puchinger, and R. F Hartl, A survey on dynamic and stochastic vehicle routing problems,
International Journal of Production Research 54 (2016), no. 1, 215–231.

[102] G. Scutari and Y. Sun, Distributed nonconvex constrained optimization over time-varying digraphs,
Mathematical Programming 176 (2019), no. 1-2, 497–544.

[103] A. Settimi and L. Pallottino, A subgradient based algorithm for distributed task assignment for heteroge-
neous mobile robots, Ieee conference on decision and control, 2013, pp. 3665–3670.

[104] T. W. Sherson, R. Heusdens, and W B. Kleijn, On the distributed method of multipliers for separable
convex optimization problems, IEEE Transactions on Signal and Information Processing over Networks

5 (2019), no. 3, 495–510.

[105] W. Shi, Q. Ling, G. Wu, and W. Yin, EXTRA: an exact first-order algorithm for decentralized consensus
optimization, SIAM Journal on Optimization 25 (2015), no. 2, 944–966.

[106] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, On the linear convergence of the ADMM in decentralized
consensus optimization, IEEE Transactions on Signal Processing 62 (2014), no. 7, 1750–1761.

[107] E. Shirazi and S. Jadid, Cost reduction and peak shaving through domestic load shifting and DERs, Energy

124 (2017), 146–159.

[108] G. J Silverman, Primal decomposition of mathematical programs by resource allocation: I – basic theory
and a direction-finding procedure, Operations Research 20 (1972), no. 1, 58–74.

[109] A. Simonetto, Smooth strongly convex regression, IEEE European Signal Processing Conference, 2021,

pp. 2130–2134.

[110] A. Simonetto and H. Jamali-Rad, Primal recovery from consensus-based dual decomposition for distributed
convex optimization, Journal of Optimization Theory and Applications 168 (2016), no. 1, 172–197.

[111] R. M Starr, Quasi-equilibria in markets with non-convex preferences, Econometrica: Journal of the

Econometric Society (1969), 25–38.

[112] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, A simple effective heuristic for embedded mixed-
integer quadratic programming, International Journal of Control (2017), 1–11.

[113] Z. Talebpour and A. Martinoli, Adaptive risk-based replanning for human-aware multi-robot task
allocation with local perception, IEEE Robotics and Automation Letters 4 (2019), no. 4, 3790–3797.

[114] A. B. Taylor, J. M. Hendrickx, and F. Glineur, Smooth strongly convex interpolation and exact worst-case
performance of first-order methods, Mathematical Programming 161 (2017), no. 1-2, 307–345.

[115] A. Testa, A. Camisa, and G. Notarstefano, ChoiRbot: A ROS 2 toolbox for cooperative robotics, IEEE

Robotics and Automation Letters 6 (2021), no. 2, 2714–2720.

[116] A. Testa and G. Notarstefano, Generalized assignment for multi-robot systems via distributed branch-
and-price, arXiv preprint arXiv:2004.11857 (2020).

192

Bibliography

[117] A. Testa, A. Rucco, and G. Notarstefano, Distributed mixed-integer linear programming via cut generation
and constraint exchange, IEEE Transactions on Automatic Control 65 (2019), no. 4, 1456–1467.

[118] P. Toth and D. Vigo, The vehicle routing problem, SIAM, 2002.

[119] Q. Tran-Dinh, I. Necoara, and M. Diehl, A dual decomposition algorithm for separable nonconvex
optimization using the penalty function framework, IEEE Conference on Decision and Control, 2013,

pp. 2372–2377.

[120] F. Vanderbeck, Implementing mixed integer column generation, Column generation, 2005, pp. 331–358.

[121] R. Vujanic, P. M. Esfahani, P. J Goulart, S. Mariéthoz, and M. Morari, A decomposition method for
large scale MILPs, with performance guarantees and a power system application, Automatica 67 (2016),

144–156.

[122] H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, Decentralized Frank–Wolfe algorithm for convex
and nonconvex problems, IEEE Transactions on Automatic Control 62 (2017), no. 11, 5522–5537.

[123] Z. Wang and C. J. Ong, Distributed model predictive control of linear discrete-time systems with local and
global constraints, Automatica 81 (2017), 184–195.

[124] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerstedt, The robotarium:
globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of
multirobot systems, IEEE Control Systems Magazine 40 (2020), no. 1, 26–44.

[125] A. Zakariazadeh, S. Jadid, and P. Siano, Smart microgrid energy and reserve scheduling with demand
response using stochastic optimization, International Journal of Electrical Power & Energy Systems 63
(2014), 523–533.

[126] Y. Zhang and M. M Zavlanos, A consensus-based distributed augmented lagrangian method, IEEE

Conference on Decision and Control, 2018, pp. 1763–1768.

[127] M. Zhu and S. Martı́nez, On distributed convex optimization under inequality and equality constraints,
IEEE Transactions on Automatic Control 57 (2012), no. 1, 151–164.

[128] M. Zhu and S. Martı́nez, An approximate dual subgradient algorithm for multi-agent non-convex opti-
mization, IEEE Transactions on Automatic Control 58 (2013), no. 6, 1534–1539.

193

	Introduction
	Distributed Constraint-Coupled Optimization
	Graph Theory and Distributed Computation Model
	Constraint-coupled Optimization Set-up
	Application Frameworks
	Cooperative Distributed Model Predictive Control
	Distributed Task Assignment over Networks
	Distributed planning for multi vehicles

	Tour of Thesis Contributions

	Distributed Primal Decomposition for Convex Optimization
	Literature Review
	Primal Decomposition Paradigm for Constraint-coupled Optimization
	Distributed Convex Optimization Set-up
	Review of Primal Decomposition
	Review of Relaxation Approach
	Parallel Primal Decomposition Algorithm
	Distributed Primal Decomposition for fixed graphs

	Distributed Primal Decomposition over Random Time-varying Networks
	Random Time-Varying Communication Model
	Distributed Algorithm Description
	Handling Equality Coupling Constraints
	Discussion on the Parameters

	Convergence analysis and convergence rates
	Encoding the Coupling Constraints in Cost Function
	Randomized Block Subgradient Method
	Equivalence of Algorithm 1 and Randomized Block Subgradient
	Proof of Theorem 2.1
	Convergence Rates

	Numerical Analysis
	Basic Nonsmooth Example
	Electric Vehicle Charging Problem
	Comparison with State of the Art
	Impact of the Parameters
	Comparative Study on Convergence Rates

	Extension to Unknown Cost Functions
	Constraint-coupled Set-up with Unknown Costs
	Distributed Algorithm Description
	Algorithm Analysis
	Numerical Example

	Distributed Primal Decomposition for Mixed-integer Optimization
	Literature Review
	Distributed MILP Set-up and Preliminaries
	Constraint-Coupled MILP
	Linear Programming Approximation of the Target MILP

	Distributed Primal Decomposition for MILPs
	Distributed Algorithm Description
	Discussion on Mixed-Integer Solution Recovery
	Design of the Coupling Constraint Restriction
	Asymptotic Analysis
	Finite-time Analysis
	Monte Carlo Numerical Computations

	Distributed Benders Decomposition for MILPs
	Review of Benders Decomposition
	Distributed Algorithm Description
	Routine for the Local Problem
	Convergence Analysis
	Alternative Formulation and Further Discussion
	Numerical Example

	Extension to General Nonconvex Programs
	Distributed Nonconvex Set-up and Convex Approximation
	Solution Approach for Nonconvex Problems
	Restriction Vector and Preliminary Analysis
	Distributed Algorithm Description
	Algorithm Analysis
	Numerical Example

	Proofs
	Proofs for Section 3.2
	Proofs for Section 3.3
	Proofs for Section 3.4
	Proofs for Section 3.5

	Distributed Stochastic Microgrid Control
	Literature Review
	Distributed Mixed-integer Microgrid Model
	Mixed-Integer Microgrid Optimal Control
	Constraint-coupled Reformulation
	Simulation Results

	Distributed Stochastic Mixed-integer Microgrid Control
	Stochastic Microgrid Model with Renewable Sources
	Distributed Constraint-coupled Stochastic Optimization
	Distributed Algorithm Description
	Theoretical Results
	Scenario Generation with Deep Generative Adversarial Networks
	Simulation Results

	Cooperative Robotics Toolbox and Distributed Vehicle Routing
	Literature Review
	ChoiRbot: A ROS 2 Framework for Cooperative Robotics
	Architecture Description
	Exploring the Team Guidance Layer
	Distributed Optimization via DISROPT
	Implemented Complex Scenarios
	Basic Usage Example
	Toolbox Validation in Simulations and Experiments
	Distributed Primal Decomposition for Mobile Robots

	Distributed Multi-Robot Pickup and Delivery
	Problem Description
	Optimization Problem Formulation and Description
	Distributed Primal Decomposition for Pickup and Delivery
	Algorithm Analysis
	Discussion and Extensions
	Simulations on Gazebo
	Experiments
	Supplement: Conversion to Mixed-Integer Linear Program

	Conclusions
	Optimization Basics
	Lagrangian Duality
	Convergence Rates
	Linear Programs and Mixed-Integer Linear Programs
	Dual Degeneracy and Lexicographic Ordering
	Mixed-Integer Linear Programs and Duality

	Bibliography

