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Abstract

The chaotic growth of the Internet of Things (IoT) determined a fragmented landscape
with a huge number of devices, technologies, and platforms available on the market, and
consequential issues of interoperability on many system deployments. The Web of Things
(WoT) architecture recently proposed by the W3C consortium constitutes a novel solution to
enable interoperability across IoT platforms and application domains. At the same time, in
order to see an effective improvement, a wide adoption of the W3C WoT solutions from the
academic and industrial communities is required; this translates into the need of accurate
and complete support tools to ease the deployment of W3C WoT applications, as well as
reference guidelines about how to enable the WoT on top of existing IoT scenarios and how
to deploy WoT scenarios from scratch. In this thesis, we bring three main contributions for
filling such gap: (1) we introduce the WoT Store, a novel platform for managing and easing
the deployment of Things and applications on the W3C WoT, and additional strategies for
bringing old legacy IoT systems into the WoT. The WoT Store allows the dynamic discovery
of the resources available in the environment, i.e. the Things, and to interact with each of
them through a dashboard by visualizing their properties, executing commands, or observing
the notifications produced. In addition, similarly to popular app stores, the WoT Store allows
the search and execution of third-party WoT applications that interact with the available
Things again in a seamless way. (2) We map three different IoT scenarios to WoT scenarios: a
generic heterogeneous environmental monitoring scenario, where the goal is to orchestrate the
sensing of different Wireless Sensor Networks (WSNs), a structural health monitoring (SHM)
scenario, where civil structures are monitored by purposely-designed sensors, and an Industry
4.0 scenario, where industrial devices are deployed and orchestrated for a production process
pipeline. For each of them, we describe the challenges addressed for this kind of operation to
validate such effort. (3) We make concrete proposals to improve both the W3C standard and
the node-wot software stack design: in the first case, new vocabularies are needed in order to
handle particular protocols employed in industrial scenarios, while in the second case we
present some contributions required for handling the dynamic instantiation and the migration
of Web Things and WoT services in a cloud-to-edge continuum environment.
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Chapter 1

Introduction

Since the beginning, the Internet of Things (IoT) has been presented as a novel networking
paradigm consisting of a huge base of connected devices that are able to produce and exchange
data, and to enable new services thanks to seamless interaction among physical and virtual
components [4][5]. At the same time, the presence on the market of heterogeneous software
platforms, network protocols and Machine-to-Machine (M2M) technologies [6], as well as the
creation of proprietary silos often lead by big vendors, have partially changed the vision of the
IoT as a global interconnected and self-organizing system. Indeed, the lack of interoperability
among heterogeneous platforms and devices has been indicated as one of the main issues
of the IoT [7], since it might introduce additional costs for the system implementation and
additional complexity for the re-use of existing solutions in different contexts. Furthermore,
guaranteeing the interoperability among heterogeneous devices is becoming a key issue for
current Industrial IoT (IIoT) systems, as well as an open field for novel scenarios and hence for
novel business opportunities. For instance, a proper design and deployment of such systems
play a fundamental role in the success of the transition to Industry 4.0, where efficiency, self-
organization, and information-transparency strictly depend on achieving full interoperability.
It is easy to believe that the presence of machines using different communication technologies,
programming languages and data format can significantly increase the complexity and costs
of existing IIoT deployment and integration [8] since, for instance, data collected in such
scenarios can remain largely inaccessible in an integrated way unless significant manual effort
is invested [9]. From another perspective, interoperability can be considered a remunerative
research challenge [10]: a recent report from McKinsey quantifies in 40% the additional IoT
value that can be unlocked when achieving full interoperability among heterogeneous IoT
systems [11]. Interoperability can be interpreted in different ways, but according to the IEEE
it is defined as "the ability of two more systems or components to exchange information
and to use the information that has been exchanged" [12]. Research on interoperability
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solutions for IoT systems has followed several approaches [13][4], some of them focused
on reaching interoperability at the bottom layers, i.e. mainly at the networking layer -
through the introduction of middleware or custom frameworks [14][15][16] -, and some
of them at the upper layers, especially at the data and application ones. Nevertheless, this
thesis mainly focuses on the latter approaches: on the one hand, semantic approaches have
proposed to achieve interoperability among heterogeneous devices and platforms at the
data layer [17][18][19], through the utilization of shared ontologies for IoT contexts like
SOSA [20], data models like RDF, and languages like SPARQL. On the other hand, novel
paradigms like the Web of Things (WoT) have investigated how to envision interoperability
by re-using well-accepted standards and technologies adopted in the World Wide Web
(WWW). Differently from other stack-oriented solutions (e.g. 6LoWPAN), WoT-based
approaches propose to achieve system interoperability at the application layer, abstracting
from the sensing and communication technologies: in a first approximation, Things are
represented as Web resources, and all the interactions toward and between Things are
mapped over Representational State Transfer (REST) services [3]. However, given the lack
of a reference architecture, this approach has also led to a proliferation of architectures
proposed in the literature (e.g. [21] [22][23]), mapped on different technologies (e.g. HTTP,
MQTT, WebSockets) and with few elements in common besides the adoption of the RESTful
interface [18], introducing further fragmentation and the consequential need of devising
ad-hoc solutions for the system integration. Breaking the deadlock, the World Wide Web
Consortium (W3C) has recently proposed some reference standards for the WoT [24] that
formally describe the interfaces allowing IoT devices and services to communicate with each
other, regardless of their underlying implementation. In the W3C WoT vision, everything can
be considered a Thing and, to this purpose, each Thing is associated to a Thing Description
(TD) providing general metadata as well as the interactions, data models, and security
mechanisms of a Thing. Part of such metadata (named "Binding templates") describes the
communication mode used to interact with the Thing, hence abstracting from the specific IoT
protocol and data format. In addition, a TD can be serialized and semantically annotated via
the JSON-LD language, hence representing a uniform model to enable Machine-to-Machine
(M2M) communication toward a Thing and enabling several semantic features such as the
Thing Discovery.

The W3C architecture greatly simplifies the deployment of software applications for the
IoT, since they must not cope with details about the communication strategies implemented
by the Things. Moreover, since each Thing exposes its capabilities through well-defined
and uniform interfaces, the costs and effort for devising mashup applications gathering data
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from large-scale and heterogeneous sensor installations (e.g. IoT monitoring systems) can be
greatly reduced.

The success of the W3C WoT initiative strongly depends on its wide acceptance from
the academic and industrial communities, as well as from the end-users. For this reason, it
is extremely important to introduce proper instruments and solutions that leverage this new
standard and to give feedback on its utilization in real scenarios. Hence, the main research
questions of this thesis can be summarized into the following: (i) How to map heterogeneous
IoT systems into the WoT? (ii) How to easily design and deploy WoT scenarios? (iii) Is the
W3C standard effectively addressing every key point? How to improve and contribute to it?
This leads us to the definition of our main macro-contributions:

1. regarding the question (i), we focus on different IoT scenarios where heterogeneous
devices contribute to collect data that has to be processed to extract some kind of useful
information or where heterogeneous devices need to be orchestrated. For each of these
scenarios, first we analyze the use case, with particular attention to the proper devices
to be used, then we propose a mapping of the scenario to the WoT, and finally we
deploy one or multiple orchestration policies through the WoT Store, as explained in
the next point.

2. in order to address the question (ii), we carried out the design and the implementation
of the WoT Store, a tool for the easy deploy and use of WoT scenarios. More in detail,
the WoT Store is a novel software platform that supports the distribution, discovery
and subsequent installation of applications for W3C-compliant Things. In particular, it
allows the dynamic discovery of the resources available in the environment, i.e. the
Things, and to interact with each of them through a dashboard by visualizing their
properties, executing commands, or observing the notifications produced. In addition,
similarly to popular app stores, the WoT Store allows the search and execution of
third-party WoT applications that interact with the available Things again in a seamless
way.

3. finally, for question (iii) we propose some improvements both for the standard and the
official framework implementation for WoT [25], based on two main research direc-
tions: first, we study how to bring Deterministic Networks - in detail the Time-Sensitive
Networking (TSN) - with QoS requirements in the W3C WoT. This is particularly
interesting for several Industry 4.0 scenarios, like a production line, where different
devices must be perfectly synchronized and have to deal with delicate operations,
like the movement of a sophisticated robot. This leads to the introduction of new
vocabularies, as well as the design and implementation of new protocol bindings for
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the W3C WoT standard. Second, we analyze a dynamic WoT scenario, where Web
Things and WoT services can be migrated at run-time following precise migration
policies. To this aim, we augment the node-wot software stack with an additional
monitoring layer needed by the service orchestrator to collect usage statistics about
every service.

The rest of this dissertation is organized as follows: in Chapter 2, an introduction of
IoT and the interoperability issues are given. Then, the Web of Things is presented with
a special focus on the W3C WoT standard. We introduce the WoT Store in Chapter 3,
with its design and architecture. After that, we validate the architecture components in two
different scenarios, and we also provide a contribution to ease the porting of legacy IoT
systems into the WoT Store environment. Instead, the effective validation of the whole WoT
Store software ecosystem is investigated in Chapter 4 through two studies. In the first, we
deploy the WoT Store in a heterogeneous environmental monitoring, where the sensing made
by different Wireless Sensor Networks (WSNs) is directly orchestrated by the WoT Store.
In the second, we apply the WoT Store to a Structural Health Monitoring (SHM) context,
where custom sensors are deployed and information collected is processed in the WoT Store.
Finally, in Chapter 5, we introduce the contributions about bringing the TSN into the WoT
and about the migration of Web Things and WoT services, with a particular focus on the
edge-cloud continuum. In Chapter 6 we conclude and present the future directions of our
research.



Chapter 2

State of the art

2.1 Internet of Things

Nowadays, Internet of Things (IoT) is a word that indicates a consolidated paradigm that
has rapidly gained importance in the last two decades. It encloses the idea of a pervasive
presence of a multitude of interconnected smart devices - or rather Things - in almost every
context. A Thing can be a tag, a sensor, an actuator, a mobile phone, or a simple object
somehow computationally augmented. According to Szilagyi and Wira [26], an object does
not necessarily need native computational and communication capabilities to be defined as a
Thing. Instead, these capabilities can be provided later on by a chip attached and integrated
into the object, in fact turning it into a Thing. This means that Things that compose the IoT
could not originally be created with the purpose to be connected to the Internet, but that
they can achieve this result later in time. Furthermore, a Thing, in order to be defined as
such, must possess some interest for some services or applications: basically, it must do
something useful for an IoT system. Clearly, there exist several kinds of Things, like the Tags
(QR Code, RFID), Devices (for example Arduino, Raspberry Pis), Machines (Smart Bulb,
smart car), or entire Environments (Smart building, smart city): all of them have different
capabilities, especially in terms of computation and energy capacity. Once integrated into an
IoT System, a Thing is typically characterized by (i) communication, (ii) programmability,
and (iii) sensing and/or actuating capabilities. IoT has a concrete impact on several aspects
of our lives and in different contexts, from domotics to Industry 4.0, from smart agriculture
to healthcare, as better described later in Section 2.1.1. The literature about IoT is quite
vast, and according to Atzori et al. [27], three main visions follow the IoT paradigm. The
first vision can be defined as "Things oriented" and it is strictly related to the introduction
of the "Internet of Things" word coined by Auto-ID Labs [28] at the end of the 90s. More
in detail, Things are considered as very simple items, like Radio-Frequency IDentification
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(RFID) tags. Their main goal is to improve the objects’ visibility and traceability. In
this sense, RFID is recognized as a catalyst for the realization of this vision [29] together
with the use of Wireless Sensor and Actuator Networks (WSAN), mainly because of low
costs and the maturity of these technologies. The same holds for the authors of [30], who
in addition envisage a network of everyday objects. This is achieved by augmenting the
Things’ intelligence, defining the so-called Smart Items. These are not only sensors with the
addition of usual wireless communication, memory, and elaboration capabilities, but also
with autonomous and proactive behaviour, context awareness, elaboration capabilities. This
perfectly matches the idea of [31], according to which: "from anytime, anyplace connectivity
for anyone, we will now have connectivity for anything". This concept represents the joining
link between a simple "Thing oriented" and an "Internet-oriented" vision of the IoT. In
particular, according to the latter, the Internet Protocol (IP) represents the proper network
technology that already lets a huge amount of different devices communicate and is also
available for tiny and battery-supplied devices. This claim was originally made by the
IP for Smart Objects (IPSO) Alliance [32], that since 2008 has been working on an IP
adaptation for such devices, in particular with the focus on incorporating IEEE 802.15.4 into
the IP architecture, in the view of 6LoWPAN [33]. The last main vision for the IoT is the
Semantic oriented one [34] [35] [36]. The main idea is to take advantage of the semantic
technologies to tackle the issues related to how to represent, store, interconnect, search, and
organize information produced by the huge amount of devices spread everywhere. The main
contributions in this sense are the possibility to meaningfully describe Things and to enable
semantic reasoning over data previously collected. The Web of Things can be considered as
the evolution of this last vision, as better explained in section 2.3.

2.1.1 IoT application domains

The great potentialities offered by IoT can be used to improve several aspects of our lives
and our society. Furthermore, the characteristics of such paradigm can be easily adapted
and instantiated in almost every scenario. The deployment of sensors that communicate
with each other enables the possibility to collect data and hence to perceive the surrounding
environment. This data can then be used for any kind of analysis, like real-time or predictive,
and if actuators are deployed as well, this implies that actions can be immediately and
automatically performed as a consequence of some kind of reaction. Clearly, on top of
this basic pipeline, thousands of different applications can be implemented. As shown in
Figure 2.1, we can divide them into eight macro domains: (i) transportation domain, (ii)
vehicles domain, (iii) industry domain, (iv) healthcare domain, (v) agriculture domain, (vi)
smart home domain, (vii) smart cities domain, (viii) commercial domain.
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Fig. 2.1 Taxonomy of IoT application domains.

Industry and logistics domains

The goal of applying the IoT paradigm to logistics and Industry domains is to improve the
workflow [37]. This can be realized by keeping track of every step of a process in order
to analyze it and understand where it can be enhanced. In industrial scenarios, tags can be
associated with what needs to be monitored. After each step of the production, the tag is
read by a sensor that can collect information about that specific object. Another interesting
scenario is the monitoring of goods transportation. Goods are associated with tags that can
be read by sensors put on the vehicles used for transportation. Through the vehicle’s GPS,
products can be monitored in real-time during their travel, as well as in the moment they
reach the destination.

Transportation and vehicles domains

Cars, trucks, trains, bicycles, and buses can be equipped with sensors, actuators, and process-
ing units to monitor the status of transported goods, improving driving comfort, or suggesting
better routes in real-time. Smart Transports [38] are radically changing the way of thinking
about transports. The chance to spread sensors and actuators over roads and rails means that
people can control transportation vehicles to better route the traffic, provide tourists with
real-time transportation information, help in the management of the depots, and monitor the
status of transported goods, especially if they are equipped with some tracking tags. But
Smart Transports also include the assisted-driving world and the automatic one. Research in
these fields is extremely important nowadays, with companies like AlphaBet and Tesla, for
instance, investing billions of dollars in self-driving cars.
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Healthcare domain

In the healthcare environment, there are many benefits [39] that can be provided by IoT and
that - according to [27] - can be grouped mostly into:

• Tracking: like in all the other domains, the most useful benefit of tracking is related
to the possibility to monitor and improve the workflow. In such sense, it means being
able to follow patients in hospitals, or checking the access to designated areas, as for
instance operating theaters.

• Identification and authentication: by the patients’ point of view, the identification
is useful for reducing incidents that can be very harmful to them, like wrong drug
prescription, dosage, or procedure. From the staff’s point of view, identification and
authentication grant access to specific areas in a more comfortable and efficient way.

• Data collection: automatic data collection reduces processing time and helps improve
the goods supply, by making it faster and more efficient.

• Sensing: one of the most interesting fields where IoT is improving healthcare is sensing.
Since sensors have become very small and less invasive, some studies investigate the
possibility to place them inside a human body in order to provide real-time information
on patient health indicators. These values can be monitored remotely and/or by the
patient using, for instance, a smartphone.

Smart Cities domain

The IoT paradigm can also be applied to cities, introducing several benefits [40]:

• Structural Health of Buildings: different kinds of sensors can be used in order to
monitor the health of buildings, especially historical ones. Vibration and deformation
sensors are suitable for monitoring a building’s stress level, atmospheric agent sensors
in the surrounding areas for pollution levels, and temperature and humidity sensors for
the environmental conditions [41]. This particular case is also deeply investigated in
Section 4.2.

• Waste Management: in order to improve the quality of recycling and to reduce the
cost of waste, cities can use smart waste containers, which detect the level of load and
allow for an optimization of the collector trucks route. Sensors can detect how much a
container is full and can communicate it to the people in charge of the waste service.
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• Monitoring: some important factors can be monitored in cities, like the pollution level
(or the quality of the air), and the noise rate. Also in this case, sensors are used in
specific positions of the city in order to collect reasonable data about what is monitored.
Data collected together can give an overview of such levels, letting the city government
know right away about a problem and supporting the decision-making process.

• Smart Lighting: since the optimization of costs is fundamental for public administration,
the smart management of resources like electricity can save a lot of funds. Smart
lighting reduces electricity consumption by switching lights on and off or optimizing
their intensity depending on some precise factors and smart policies. For instance,
lights can be immediately turned off if there is no presence of people nearby, or in the
morning after a specific value of natural light has been reached.

• City Energy Consumption: related to energy optimization, cities [42] can monitor the
instant energy required by different services (public lighting, transportation, traffic
lights, and so on) in order to set priorities in resource management.

Smart Home domain

Sensors and actuators spread over the house/office can help people make their lives more
comfortable, most of the times by automating several processes that are usually done by
hand. Room lighting can be automatically adjusted depending on the time of day, the heating
system can behave according to the residents’ preferences, and possibly everything can be
managed remotely by a smartphone. By using this kind of systems, people are also able to
save money and energy since they can manage their resources according to some optimized
policies. In the last few years, some of the biggest vendors in the ICT world, like Google 1,
Apple 2, Amazon 3, Microsoft 4, released products for the IoT market, often focusing on
the domotics field. Most of them are plug-and-play but require important investments at the
beginning, while homemade solutions are quite cheap but require more effort and technical
knowledge.

Smart Agriculture domain

Smart Agriculture leverages IoT solutions to implement the so-called Third Green Revolution.
In this context, ICT technologies face unique challenges like, among others and just to name

1https://developers.google.com/weave
2www.apple.com/lae/ios
3www.amazon.com/iot
4https://azure.microsoft.com
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a few [43], the lack of a stable power supply, the need for calibration procedures customized
for every type of soil, the security concerns from farmers. Various sensors and actuators
can be deployed to enhance the productivity and the economical gain of the farm, like for
instance soil moisture sensors, drones, automatic sprinklers, and cameras. Using the data
flow analysis, agronomists or soil experts can create calibration models for soil moisture
sensors to better fit the real volumetric water content and hence saving the total amount of
water used for irrigation.

2.2 IoT Interoperability

A key role in the success of IoT is played by the full interoperability among interconnected
devices, still guaranteeing them a high degree of smartness, together with the respect of
privacy and security principles. Interoperability is intended as the ability to exchange and
make use of information among heterogeneous devices, i.e., that use different protocols
and technologies. As pointed out by Van Der Veer and Wiles [44] and Serrano et al. [45],
interoperability can be classified into the following categories:

• Technical Interoperability: it is usually reached with hardware/software components,
systems, and platforms that directly enable a machine-to-machine communication.
This interoperability is based on protocols and infrastructures in order to take place.

• Syntactical Interoperability: it is usually focused on data formats. In particular,
since many protocols carry data or content, this should be represented using high-level
transfer syntax such as HTML, XML or JSON

• Semantic Interoperability: it is usually based on sharing the same meaning for
exchanged data. This concerns both the machine and human layers

• Organizational Interoperability: it is usually based on the fact that organizations
effectively share meaningful data and information even if this implies several infor-
mation systems over widely different infrastructures. This kind of interoperability
strongly depends on the technical, syntactical, and organizational ones.

Solutions to support interoperability on IoT scenarios have been largely investigated
by the academic research as well as by European projects: we cite, among others, the
projects Arrowhead [46], BIG IoT [47] and Wise-IoT [48] that proposed reference platforms
to connect and deploy cross-domain IoT applications. As extensively surveyed in [7],
interoperability can be seen from different points of view, in particular by the (i) device, (ii)
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network, (iii) semantic and (iv) cross-domain perspectives. Device and network solutions (e.g.
the 6LoWPAN stack [49]) face the existing fragmentation by defining common addressing,
routing, and data-exchange rules. Vice versa, semantic solutions focus on the definition of a
common data model used by the IoT interacting components; to this aim, several IoT-related
ontologies have been proposed [50]. Cross-domain solutions (e.g. [51]) represent the most
general way of supporting interoperability on the IoT: rather than focusing on protocols
and data, they aim to define common interfaces that should be implemented by the IoT
components, in order to be discoverable and queryable.

García Mangas and Suárez Alonso [52] make an interesting separation between solutions
for interoperability that use a classic approach (non-WoT) and the ones that instead are based
on the Web. The Open Connectivity Foundation (OCF) Core specification [53] provides
explicit descriptions (profiles) for resources and devices depending on the different vertical
markets they are used on, like for instance smart home, industrial, healthcare, just to cite a
few. From a technical point of view, it is based on a REST architecture with CoAP (with
both UDP or TCP) and CBOR serialization. Both REST and CoAP are also proposed
by LwM2M [54], despite only UDP is taken into account. All LwM2M clients also act
as servers, since they expose object instances containing their set of resources. A similar
approach is also considered by the servient architecture in the W3C Web of Things [2].
The oneM2M [55] standard is based on three main functional entities: Application Entity
(AE), Common Services Entity (CSE), and Network Services Entity (NSE). The first is an
entity in the application layer that represents the M2M application service logic. The second
entity contains a collection of oneM2M-specified common service functions that AEs are
able to use. These service functions are then exposed to be used by other entities. The
third one is the entity that provides services for the network layer. OneM2M follows REST
as architectural style and uses several application layer protocols (HTTP, CoAP, MQTT,
WebSockets). Kamienski et al. [56] introduce IMPReSS Systems Development Platform
(SDP) whose goal is to accelerate and facilitate the development of IoT applications. The
core of this proposal is the layered architecture: the top layer is represented by a reusable
User Interface (UI) set of components, the middle one consists of a set of middleware APIs
useful for implementing typical IoT services (like storage), while the last layer includes
several adaptors for concrete IoT devices and platforms, providing in this sense the possibility
to interconnect heterogeneous systems and hence enabling IoT interoperability.
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2.3 Web of Things

Although no standard definition exists [57], the Internet of Things is considered as the
enabler of intercommunication among heterogeneous devices, while the Web of Things aims
at bringing and solving the interoperability problem at the application layer. Despite this
separation line in their principles, these two worlds often overlap, making their distinction
not clear enough and generally creating some confusion. As highlighted by Negash et al.
[58], in contrast to the current Internet - also called Internet of people [59] -, the Internet
of Things, and hence the Web of Things, enhances the real world by adding connected
devices capable of sensing and acting through the Internet. Nevertheless, since the beginning
the Web of Things has been considered as an extension of the IoT: the main idea is the
possibility to adopt Web standards and Web technologies in order to map smart things to web
services, hence building new kinds of applications and services based on devices’ capabilities.
Continuous improvements both in electronics and in software have led to a new generation of
small, cheap, and low-power devices. As pointed out by Raggett [60], this paves the way for
a Web of Things world, where "Things" can be considered as proxies for physical or abstract
realities and the "Web" refers to the possibility that these "Things" communicate via Web
technologies, like for instance HTTP.

The concept of the Web of Things starts to appear at the beginning of the 2000s, when
Kindberg et al. [61] presented the idea of Web presence, an extension of the Home page
concept to also include all physical entities. Web presence can be considered as a description
model of a Thing and its entry point for interacting with it. This is obtained by embedding
web servers into the Things - like printers, projectors, whiteboards - or by hosting their web
presence within a web server. Authors also set the basis for a location-aware system by
proposing an infrastructure where URLs are used to address the Web presences, localized
web servers function as directories for URL sensing, and beaconing is used for the discovery.
In 2007, another study was made by Wilde [62] where the author proposed to assign a URI
to each device - for instance to each sensor of a sensors network - and to interact with it
through the basic verbs of REST, i.e., PUT, GET, POST, DELETE. Each device can be
represented as Web resources by using HTML, XML or JSON format. Following the same
principle, Guinard and Trifa [63] defined the Web of Things as "a refinement of the Internet
of Things by integrating smart things not only into the Internet (network), but into the Web
Architecture (application).". The same authors in [64] claimed that the realization of the WoT
needs to extend the existing Web by involving real-world objects and embedded devices.
Instead of just using Web protocols as transport protocol - like most of WS-* Web services
-, they intended to make devices an integral part of the WoT by using HTTP as application
layer, as also analyzed in [65]. This can be achieved by making devices’ functionalities
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available through RESTful APIs over HTTP and this can be done in two possible ways:
Direct integration or Indirect integration. In the first approach, devices directly embed a web
server - becoming already part of the Web -, while in the second one an intermediate Smart
Gateway is in charge of translating requests/responses across protocols. This last vision is
also considered by Karim et al. [66], where a monitoring system for smart agriculture is
presented: a smart gateway is responsible of collecting data from a Wireless Sensors Network
(WSN) and share it over the Internet in order to be analyzed and visualized by means of a
Web application. However, in this work authors seem to limit the role of the Web in WoT to
be only a nice GUI for an Internet of Things system.

Social Web of Things Social Web of Things can be considered as the convergence of the
Social Web and the Web of Things. More in detail, it enables users to manage, access,
share and integrate smart Things/objects through Social Network Sites (SNS) [67]. SNSs
are online platforms where people publish, collaborate, and share information with other
individuals or groups and build social relationships. Ciortea et al. [68] define the Social WoT
as the convergence of three dimensions: pervasiveness, meaning that the Web extends to the
physical world by integrating everyday objects and things. Pro-activeness, since the Web is
composed of several proactive entities that, exactly like normal users, produce and consume
content by interacting with each other. Finally, Socialness, because the Web centers around
its entities both humans and non-humans.

Fig. 2.2 WoT evolution from [1].

Semantic Web of Things Technologies for Semantic Web [69] can play an important role
in the Web of Things, and in fact they can be considered as the interoperability enablers
for some WoT environments. Researchers have formulated several proposals for including
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the Semantic Web in the WoT architecture, forming the so-called Semantic Web of Things
(SWoT).

As shown in figure 2.2 and highlighted by Jara et al. [1], integrating the Semantic Web
into the Web of Things is the last step for reaching what is defined as global interoperability.
More in detail, this can be obtained if information is semantically enriched and systems can
achieve high degrees of autonomic capability to discover, manage and store information
and to provide transparent access to information sources in a given area. Clearly, data in
this way must be machine-understandable. The first phase can be seen as the fundamental
step of interconnecting everything to the Internet and can be mapped into the Internet of
Things growth, while the second one had the goal to enable seamless interoperability among
heterogeneous entities by the adoption of common application protocols, i.e., web protocols.
Despite the fact that the WoT allows almost all kinds of devices to communicate with
each other thanks to web technologies, shared data can be represented in very different
ways, bringing different meanings and hence basically disabling interoperability at the
data layer. For this reason, the main goal of SWoT is to face this problem by defining a
common description that allows data to be universally understandable, creating extensible
annotations (from minimal to more elaborate ones), ad agreeing on a catalogue of semantic
descriptions (ontologies). It is then important to set up ontologies to regulate the relations
among Web-enabled devices (or better Web resources).

2.3.1 Requirements

In the vision of Heuer et al. [70], applying Web Technologies to the information exchange
among Things and creating Thing-to-Thing mashups, should enable an analogous potential
offered by the WWW in sharing information. They found four main questions to which
researchers need to answer in order to enable such innovation: (i) how interactions happen
between Things and the physical world, (ii) how to take advantage of constrained devices -
that mainly compose the IoT layer - that have limited resources, both in terms of power and
capabilities, (iii) how to manage sporadic user interactions or event-triggered updates, and
(iv) how to handle continuous multiple dataflows. These questions can then be summarized
into three main challenges that need to be faced to bring the IoT into the WoT:

1. the real world needs to be mapped and described through existing devices, i.e., smart
things, in an effective way and possibly covering all the aspects that can be of interest

2. mashup applications need to take into account the device constraints and hence they
should be tuned depending on the scenario
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3. communication strategies (protocols and technologies) need to be designed and adapted
according to new kinds of demands

Thing classification is proposed by Mathew et al. [71]: considering the high degree of
variation, Things need to be abstracted and classified in order to be represented in the Web.
For this reason, they identify four main dimensions that characterize the Things’ capabilities:
Identity, Processing, Communication, and Storage. The first one refers to the need of a
Thing to be uniquely identifiable through the use of an appropriate identification system,
like Barcode, RFID, or an IP address, that can be used to address and access the Thing
as a unique resource. Clearly, this is a mandatory minimum requirement to be respected
in order to be integrated into the Web world. The second aspect represents the processing
capability of a Thing, i.e., a system that defines the functionalities of the Thing. The third
one identifies the communication interfaces available for communicating and interacting
with other Things. A Thing exposed in the Web (as a web service) should also provide a
minimal set of APIs to interact with it. Each interface requires precise inputs/outputs and
has its own set of requirements to be respected in the communication, like for instance the
medium, protocol or privacy policy. According to Kamilaris et al. [72], a Web platform can
be identified by the following elements:

• Integration of things to the web: Things should be accessible at the Web layer.
Several architectures have been proposed (see section 2.5), mainly divided into archi-
tectures based on gateways/proxies for bringing Things on the Web, or architectures
where Things are already web-enabled by embedding a web server

• Device discovery: Things can be automatically discovered by agents by means of
specific architectural patterns or protocols

• RESTful interaction with the things: Things can be accessed through a RESTful
interface

• RESTful interaction with the platform: Platforms can be accessed by clients through
a REST interface

• Data formats: which well-known Web data formats are used

• Multiple representations: multiple data formats are offered by the platform and
chosen by the client

• Security: well-understood web security protocols are used to enable the security level
(for example HTTPS, OAuth, Bearer)
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• Service semantics: semantics can be offered to enhance the description of services
provided by the platform

• Data semantics: semantics can be offered to enhance the meaning of exchanged data

• Physical Mashups: new services and functionalities can be enabled by mashups appli-
cation, i.e., applications that can be written in any programming language supporting
Web protocols and that involve multiple Web Things

• Sharing: Access to Web Things and services can be shared through several instruments,
like social networks

• Syndication techniques and/or web messaging: Interactions with Web Things and
services can be done on a publish-subscribe matter

A smart object classification is made by Mrissa et al. [73]. More in detail, they distinguish
the objects into the following categories. Resourceful objects already host all the services
they provide by means, for instance, of a WoT platform that they can embed. The installation
is pretty simple, since they are standalone and hence do not require additional infrastructures.
Resource-constrained objects are characterized by restricted resources and must rely on
external components that can help them to cover all the WoT platform stack. Finally,
Resourceless objects are basically passive objects that can be identified by unique identifiers
like QR codes or RFID tags. Given the lack of any computation, storage, and memory
capability, they need to be augmented through specific software deployed on cloud or
local network gateways. Because of the lack of standard specifications for developing
WoT applications, authors also highlight which design requirements are important for WoT
software platforms. In particular, they identify the following issues: interoperability should
be guaranteed in order to let applications interact with heterogeneous physical objects. The
Live reactive requirement is intended to make the platform dynamically adapt its behaviour
and structure to the environment at run-time. This can be achieved only if the platform
implements a strong resource management and is able to react to possible connectivity
disruptions that could happen among devices (disconnection tolerance). The platform must
be reliable and secure and hence responding to the safety requirement. Furthermore, it should
be carefully chosen where to deploy and execute each task (delegation), instead of using
only cloud infrastructures. A WoT platform should provide useful services for users, i.e.
user-understandable services, and these services/applications should allow a set of objects
to collaborate. In the Raggett [60]’s proposal, the idea is to enable worldwide discovery
and interoperability by exposing the already existing IoT platforms through the Web, by
respecting the following requirements. URIs are used for those things that serve as proxies for
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physical and virtual entities; there should be a way to retrieve things’ metadata in a standard
format, like for instance JSON-LD. Things’ owner, purpose, access control, and relations to
other things should be explicitly described, and all the things should be modeled according
to the Properties, Actions, and Events (PAE) paradigm. Each property represents a discrete
value that can smoothly change between data points. Finally a variety of communication
patterns, like request-response or publish-subscribe, should be available for the interactions
with the Things.

2.4 Web of Things: definitions

2.4.1 Web Thing

The concept of the Web Thing definition comes together with its description model. In
particular, several models have been proposed over the years, but the most important can be
considered the one proposed by Trifa et al. [74], and the one by the W3C Working Group [2].
In the first case, a Web Thing - or simply Thing - is "a digital representation of a physical
object accessible via a RESTful Web API". The core part of the definition is represented by
the RESTful Web API, that they consider as hosted on the Thing itself or on an intermediate
host in the network such as a Gateway or a Cloud service (for those Things that cannot
communicate through the Internet). In the second case, a Web Thing, also referred to simply
as a Thing, is defined as whatever entity can be semantically described. More precisely, and
reporting the working group’s words: a Thing is “an abstraction of a physical or a virtual
entity whose metadata and interfaces are described by a WoT Thing Description, whereas
a virtual entity is the composition of one or more Things.” [3]. A Thing can be a device, a
logical component of a device, a local hardware component, or even a logical entity such as
a location (e.g., room or building).

Fig. 2.3 W3C Web Thing architecture proposed in [2].
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Models and Thing description In order to interact with existing IoT devices and services
of various siloed ecosystems, W3C WoT leverages descriptive metadata, following the
architectural style of the Web, i.e. REST [75], with a focus on hypermedia controls (cf.
HATEOAS), and consolidated Web technologies like JSON [76] and Linked Data [77].
Metadata is serialized into a machine-understandable, but still human-readable WoT Thing
Description (TD [78]), a Web representation format based on JSON-LD [79]. One of the key
parts of the Thing Description is represented by the concept of Affordance. Norman [80] states
that "Affordance refers to the perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing could possibly be used.". Hence, the
description of the Thing Affordances into a TD makes the metadata self-descriptive, so that
consumers (users of a Thing) are able to identify what capabilities a Thing provides and how
to use them. Furthermore, in the context of REST [81], the term was adopted in the definition
of hypermedia: "the simultaneous presentation of information and controls such that the
information becomes the affordance through which the user obtains choices and selects
actions.". Affordances of Web Things consist of the information encoded in the high-level
interaction endpoints Properties, Actions, and Events (what capabilities) and the controls
encoded in their forms (how), defining the so-called PAE paradigm. The Thing Description
is hence the entry point of a Web Thing, describing four of its five main architectural blocks
of a Thing depicted in figure 2.3. The fundamental blocks of a Thing are:

• the Behaviour: it coincides with the Thing Application (TA), i.e., the application where
both the autonomous behaviour of the Thing and the handlers for the Thing affordances
are implemented.

• Interaction Affordances: it is basically the interaction model of the Thing, specifying
how consumers can interact with it through abstract operations and without referring
to a specific network protocol or data encoding. As previously introduced, it follows
the so-called Properties, Actions, and Events (PAE) paradigm. Each property is
considered as a state of the Thing and can be retrieved and possibly updated through
a writing operation. A property can also be observable, and in this case the Thing
is responsible to push the new state after the change to each consumer. An action
basically allows to invoke a function of the Thing, that typically manipulates a Thing
state or launches a process. An event describes an event source that can asynchronously
push data to a consumer.

• Data Schemes: they represent the information model (with the related payload structure
and data items) to be used in the interaction between Things and Consumers of the
Thing.
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• Security Configuration: it contains the security mechanisms provided by the Thing
in order to control access to its Interaction Affordances. The security configuration
includes the Public Security metadata and the Private Security Metadata. The first is a
component that describes the mechanisms and the rights for accessing a Thing, but
without including any secret or sensitive data. Therefore, it does not provide access
to the Thing by itself, but instead it only describes how to grant access to the Thing,
including any authentication mechanism. The second is a component of a security
configuration that is kept secret since it contains sensitive data to get/obtain access to
the Thing. This data is not shared with other devices or users.

• Protocol Bindings: they map each Interaction Affordance to messages with a specific
protocol and they are serialized as hypermedia controls

Apart from the Behaviour, all the other blocks are described in the WoT Thing Description
(TD). The TD is a fundamental architectural block of the entire W3C Web of Things
architecture, as better described in section 2.5.5. It is considered as the entry point of a Web
Thing, like the index.html for a website.

Listing 2.1 shows a TD sample for an Air Conditioner system. The conditioner has a
property called on/off - to represent the current state of the conditioner -, an action called
toggle - to toggle the conditioner -, and the temperatureThreshold event that is fired whenever
the desired temperature of the room is reached. Based on the fact that Forms in HTML are
controls for constructing dynamic requests on the client side (based on choices given by the
server), W3C WoT also takes this approach and makes forms also machine-understandable
following the attribute concept of Web Linking by providing a form context, an operation
type, a submission target, a request method, and optionally form fields. Protocol Bindings
define the mapping between affordance and concrete protocol message and, practically, they
must provide a vocabulary for the form attributes of a specific protocol together with default
assumptions and behavioral assertions for that protocol.
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1 {
2 "@context": "https://www.w3.org/2019/wot/td/v1",
3 "id": "urn:dev:ops:32473-WoT -AC",
4 "title": "MyAC",
5 "securityDefinitions": {
6 "bearer_sc": {
7 "in": "header",
8 "scheme": "bearer",
9 "format": "jwt",

10 "alg": "ES256",
11 "authorization": "https:// servient.example.com:8443/"
12 }
13 },
14 "security": ["bearer_sc"],
15 "properties": {
16 "on": {
17 "title" : "On/Off",
18 "type": "boolean",
19 "forms": [{"href": "https://myac.example.com/on"}]
20 },
21 },
22 "actions": {
23 "toggle" : {
24 "forms": [{"href": "https://myac.example.com/toggle"}]
25 }
26 },
27 "events":{
28 "temperaturebThreshold":{
29 "data": {"type": "number"},
30 "forms": [{
31 "href": "https://myac.example.com/threshold",
32 "subprotocol": "longpoll"
33 }]
34 }
35 }
36 }

Listing 2.1 Thing Description sample for an Air Conditioner

2.4.2 Mashup application

A Mashup application is considered as an application capable of enabling new kinds of
services and providing new kinds of functionalities in a certain system by combining data
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from multiple sources into a new single output based on specific criteria. For the WoT, this
translates into having an application that takes data from multiple Web Things and arranges
it in order to obtain a specific output useful for some purpose. A typical example is an
application that queries multiple Web Thing sensors spread over a large environment and
simply returns the average. Mashup applications can of course involve actuators: in this case,
depending on the mashup logic, actions can be performed on target Things. For instance,
let us assume that we have instantiated a Web Thing thermometer and several smart heat
controllers in a restaurant for adjusting the temperature. The rationale behind the temperature
regulation can be implemented into a mashup application, that first needs to retrieve the
current temperature value by probing the Web Thing thermometer and then sends to each
controller the right adjustment. According to Guinard and Trifa [64] and [82], mashup
applications can be mainly divided into two categories: physical-virtual mashups, also called
cyber-physical systems [83], and physical-physical mashups. In the first case, applications
are meant to manage data coming from computation and physical processes. In the second
case, applications combine real-world services provided only by physical devices.

2.5 Architecture

The architecture proposed by Guinard et al. [84] can be considered as a reference for all the
others. The main contribution in this sense is to arrange the already existing Web architecture
to also include the WoT. In particular, instead of focusing only on reaching an Internet-level
connectivity (often in terms of TCP and/or UDP)- as mainly done in the Internet of Things -,
they propose to re-use the REST architectural style to build interactions with smart things
around universally supported methods [85]. Devices do not necessarily need to have natively
RESTful interfaces, but instead they can take advantage of intermediaries like proxies or
reverse proxies to be wrapped in RESTful abstractions. Clearly, since REST is based on the
concept of Resource, the first step is to identify the smart things themselves as resources.
Despite REST being an architectural style, therefore not bound to specific technologies, the
authors propose to respect the five constraints of REST by adopting the same technologies
used for making the Web a RESTful system. More in detail, they identify the following
constraints:

• Resource Identification: resources are identified by URI, thus links to resources can be
established using a well-known identification scheme

• Uniform interface: resources are accessible through a uniform interface with a well-
defined interaction semantics, like Hypertext Transfer Protocol (HTTP). HTTP offers
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a very small set of methods with different semantics that make interactions optimized.
Almost all web applications have a RESTful interface (while the back-end is imple-
mented following other interaction models), and the same idea can be employed for
the Web of Things

• Self-Describing Messages: using standardized representation formats avoids individual
negotiations between servers and clients. On the WEB, media type support in HTTP
and the Hypertext Markup Language (HTML) allow peers to cooperate without indi-
vidual agreements, while instead formats like JSON (and JSON-LD) are widely used
for machine-oriented services

• Hypermedia Driving Application State: clients of RESTful services can explore the
services without the need for specific discovery capabilities, but just by following
links they found in resources. In this sense, the Resource Identification and the Self-
Describing Messages constraints play a fundamental role for this kind of operation

• Stateless Interactions: all the information needed for the request must be part of it,
meaning that requests are self-contained. This concept is part of HTTP since it only
considers the request/response interaction pattern. It is important to note that other
mechanisms - like cookies - can be used to obtain stateful interactions between client
and server.

Starting from this idea, a four-layer architecture has been proposed, as shown in 2.4.
The first layer is meant to turn every Thing into a Web Thing, granting interactions with it
through HTTP requests or Web Sockets, i.e., basically making each Web Thing a REST API
to allow interactions in the real world. The second layer has the goal to ensure that Web
Thing can be automatically discovered and used by other WoT entities. Authors propose to
re-use Web Semantic standards to describe Things and Services in order to enable searching
for things through search engines and other web indexes as well as the automatic generation
of user interfaces or tools to interact with Things. At this layer, different Thing models can be
considered for defining abstract sets of interfaces and resources that Things should expose, as
previously explained in section 2.4.1. The third layer is in charge of sharing data across Web
Things. In particular, it defines how data produced by Things should be shared in a secure
and efficient way. Clearly, at this layer all the Web security protocols, like TLS, or security
mechanisms, like OAuth, can be re-used to ensure secure communications. Social networks
can play an important role in order to share data, as previously described in section 2.3.
Finally, the fourth layer helps to build large-scale and meaningful applications for the Web
of Things by providing useful tools and mashup platforms (see 2.4.2).
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Fig. 2.4 Web Thing architecture proposed in [3].

2.5.1 Access Layer

In order to enable Web Things to communicate over the Internet, two main possibilities
are highlighted by Guinard and Trifa [64]: Direct Integration and Indirect Integration. In
the first kind of integration, Web Things are meant to be already IP-enabled and to own
enough resources to host a web server. The web server is in charge of providing capabilities
to understand and directly speak Web languages and protocols. At the same time, they can
expose the APIs needed to interact with the Web Things. Each Thing has an IP address and
on top of the Web server the RESTful APIs are used by the mashup applications. In the
second integration, because most of the times devices do not own enough resources to host
a web server, an intermediary gateway is needed in order to bring devices at the Web layer.
Smart Gateways have the main goal of exposing the communication interfaces of Things
through RESTful APIs, by abstracting proprietary communication protocols or custom APIs
of the embedded devices. In particular, requests coming to the RESTful APIs are mapped
by the gateway to the proprietary API that are then transmitted by using communication
protocols that devices can understand. Gateways can also be used to arrange several data
sources of different devices into a higher-level web service, so that mashup applications can
easily use device-level services. In this sense, a gateway can also serve as an orchestrator of
services. Trifa et al. [86] propose an architecture for smart gateways composed of three major
layers: the presentation layer, the control layer, and the device abstraction layer. The first
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layer is in charge of making the gateway components accessible from the web. It manages
requests coming from clients through a REST interface and handles different datatypes for
resources. Furthermore, in this layer each device’s name is mapped to a URI in order to
make every device connected to the gateway accessible on the Web. The second layer is
composed by several sub-components that are defined as plugins. Plugins are loaded at
the boot phase and custom plugins can be written in order to extend the functionalities of
the gateway. Two important plugins are always included: the Device management and the
Eventing plugins. The first one is meant to maintain a high-level view on devices registered
at the gateway by using the device abstraction, while the second one is used to map sensors’
updates to publish/subscribe events, hence avoiding polling made by the gateway. The third
architectural layer is responsible for creating an abstraction for each device, for making them
look the same at the higher levels, although their underlying implementations might differ.
On these bases, Guinard et al. [87] bring RFID tags to the Web by adapting and designing a
RESTful architecture for the Electronic Product Code Information Service (EPCIS). In this
way, each tagged object, location or RFID reader gets a unique URL that can be used by web
applications - like mashup applications - or easily shared across the Internet. Basically, a
RESTful EPCIS module translates the incoming requests into WS-* requests, since in the
EPCIS standard most features are accessible through a WS-* interface.

2.5.2 Find Layer

Nadim et al. [88] face the challenge of WoT service discovery by proposing a distributed WoT
service semantic discovery architecture that leverages three services filtering mechanisms:
clustering, indexing, and ranking, which are semantic annotation-based. Furthermore, the
architecture also deals with the dynamism of WoT services - thanks to an incremental
clustering algorithm - and the mobility of IoT gateways - thanks to WoT gateways. More in
detail, the main strategy is to reduce the number of services by aggregating them: geographic
location, measured property, the unit of measurement can be used as semantic features for
aggregation. Most of the discovery services for the Web of Things rely on Semantic Web
technologies. Nadim et al. [88] propose a distributed three-layer architecture to enable
semantic discovery for dynamic environments in the Web of Things. In particular, the
architecture can handle the dynamism of WoT Services thanks to a clustering algorithm and
the mobility of gateways through the use of WoT Gateways. The first architectural layer can
be considered as the same presented in Section 2.5.1, with a smart gateway whose main
tasks are: (i) letting devices communicate with the Web layer, (ii) registering, managing, and
controlling the connected objects, (iii) aggregating data coming from devices, (iv) publishing
and provide devices’ capabilities like web services, with specific Open APIs. The second
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and the third layers can instead be considered as a set of functionalities belonging to the
Find layer. In particular, the second layer is responsible of hosting the WoT gateways, the
discovery functions, the IoT gateways management and the service composition functions.
Each WoT Gateway contains the semantic description of the associated IoT service. Finally,
the third layer contains discovery and indexing servers, whose goal is to formulate the query
that can be submitted to the WoT Gateways, manage geo-spatial index of WoT gateways
to discover suitable WoT Gateways based on geographical features, and to rank/visualize
the results according to user preferences. Mayer and Guinard [89] propose DiscoWoT, an
extensible semantic discovery service for Web-enabled smart things where multiple discovery
strategies can be applied to a Web resource representation. Furthermore, users can create and
update their custom strategies in an easy way, since the final aim of the study is to facilitate
the discovery, selection, and utilization of smart things. From an architectural point of view,
DiscoWoT has been designed to be a standalone RESTful service, with a representation
layer that retrieves the Web resource representation and a semantic layer that is in charge
of applying and implementing the discovery strategies. The WOT Semantic Search Engine
(WOTS2E) is the proposal of Kamilaris et al. [72] that aims at realizing a scalable and flexible
way to discover almost in real-time web connected embedded devices and their semantic
data. WOTS2E is a search engine for the Semantic Web of Things that uses a web crawler
to discover Linked Data endpoints and, through them, web-enabled devices. The main
component of the architecture is the Discovery Module, that supports four steps: firstly, it
continuously scans the web to discover Linked Data endpoints through several web crawlers.
Secondly, it examines each discovered endpoint to understand if they contain IoT/WoT
datasets and ontologies and hence can be considered as Web things. Thirdly, it analyzes the
endpoints to acquire information about which IoT/WoT services are provided by the devices.
Fourthly, IoT/WoT services discovered are recorded along with their semantic description.
Ruta et al. [90] propose a general framework for the Semantic Web of Things that bases
on an evolution of classic Knowledge Base models. The adopted architecture also supplies
solutions for information storage, communication, and processing. A Knowledge base is the
combination of an ontology and a set of asserted facts, from which additional knowledge can
be inferred. Although it is usually considered a fixed and centralized component, in this case
it becomes a pervasive element, since ontology files can be managed by multiple nodes in
a Mobile Ad-hoc NETwork (MANET). Individual resources are instead spread across the
environment, being physically bound to the microservices deployed in the scenario. The
proposed architecture consists of two levels: the field layer, and the discovery layer. The
first one is in charge of interconnecting the micro-devices of the environment with hosts that
are able to extract their data. The second one provides means for knowledge dissemination
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and retrieval, hence enabling inter-host communication among devices. More in detail, each
network host acts as a cluster head for all the devices in its communication range, using
all the available network interfaces (RFID, ZigBee). All the resources acquired in the first
layer through different protocols are then shared with the second layer in a uniform way.
In particular, the following steps are proposed for the whole process of collecting and then
exposing semantically enriched resources: (i) extraction of resource parameters (objects
characteristics are shared with the discovery layer), (ii) resource information dissemination
(diffusion of resource characteristics at the discovery layer), (iii) peer-to-peer collaborative
resources discovery, and (iv) extraction of selected resource annotations, that can be used
for semantic-based queries and reasoning. The proposed framework provides services for
accessing information embedded into semantic-enhanced micro-devices, while information
processing and reasoning tasks are executed on local hosts or by a remote entity through a
gateway exposing a high-level interface, like for instance in the web. In the Semantic web
stack for the IoT proposed by Szilagyi and Wira [26], the Semantic layer is expanded into
three sub-layers: the modeling level, the data processing level, and the IoT Services and
Application. In the first case, semantic web technologies are used to provide a common
understanding of Things’ capabilities and characteristics, in particular by employing shared
vocabularies and ontologies to guarantee the integration of heterogeneous data generated by
different systems. The second case level is meant to enable reasoning and inference over
data by using description logic and OWL semantics. The last one instead enables service
publication, discovery, composition, and adaptation thanks to specialized description and
ontologies. In the system architecture of Mathew et al. [71], the ontology of the related
knowledge base acts also as a service directory for ubiquitous context-aware applications.
A knowledge base server is used to register all the Things on the Web and maintain their
profiles, hence acting also as a directory of services for applications that need to interact with
things on the Web and providing information about things’ attributes. The Ambient Space
Manager (ASM) component is in charge of acting on or probing ambient physical things and
provides a gateway to things on the Web to build ubiquitous applications.

2.5.3 Share layer

Shoaib et al. [91] proposes a system where users can share data produced by their sensors by
offering REST APIs which can be queried by any other web application in order to retrieve
recorded values. Access to sensors is guaranteed thanks to a SNS open API authentication
mechanism. An interesting approach is the one in which smart objects directly communicate
with APIs provided by SNS itself; obviously, these objects require capabilities to natively
communicate over the Internet and to be programmed according to formats required by
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the APIs. This is the case of Baqer [92]’s work, where each sensor has its own dedicated
social page where to publish its data. An Inter-portal communication is then required to
see published data from another social account. In the same direction, there is also the
SenseShare application [93] that proposes to use Facebook as the main front end by taking
advantage of its API. In particular, it uses authentication, privacy, and security settings
offered directly by the SNS to share the sensed data. Guinard et al. [94] propose Social
Access Controller (SAC), an application that creates a link between web-enabled devices
and SNS through RESTful API. The architecture requires a special component that acts
as authentication layer and a social access controller, i.e., its main role is to retrieve data
from devices’ API and to publish it on different Social Networks. A similar approach is also
considered by Kamilaris and Pitsillides [95] to share smart home data across social networks.
Web-enabled devices communicate directly or by a smart gateway to a central web server
that hosts a Web application that sends data to SNSs through their REST APIs. In [96],
authors propose a three-layer architecture for enabling social interactions not only between
humans, but also between humans and devices or between devices only. The first layer, called
External resource layer, consists of several types of devices (sensors, actuators, and smart
devices provided by different vendors). These devices communicate with the platform layer,
which is in charge to abstract resources from data and capabilities of devices. Its goal is
hence to store all the received data by adding semantic meaning to it. In this way, a Natural
language component can easily interpret data and translates it to natural language in order to
be published on SNSs. Finally, the third architectural layer (3rd party/user Layer) is about
users to get access to stored data in the platform via programmable Web APIs. Paraimpu [97]
is a platform that lets people connect, use, share and compose physical and virtual things,
services, and devices in order to create their custom applications. For authors, a Thing is
intended not only as a hardware device, but also as already existing virtual things on the
Web, like SNSs. Users can interact with Web Things through SNS, sending for instance
commands to execute on specific actuators. There exist also several approaches to bring
Body Sensor Networks (BSNs) into the Web through SNSs. Among others, we cite [98]
and SenseFace [99] studies. In the first one authors propose an architecture for integrating
BSNs into Social networks through IP multimedia subsystem; only authorized social users
can monitor data coming from other members’ BSN in real-time. In the second approach,
researchers present a 4-tiers architecture in order to bring sensor data to Social Networks.
First, body sensor data is collected by gateways in order to reach the Internet. After that,
data is manipulated according to the Social Network destination format required. Clearly,
in this way, by acting on the third layer, several Social Networks can be considered for this
architecture.
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2.5.4 Compose Layer

The compose layer includes features for composing services and mashups that rely on them.
In this sense, Mainetti et al. [22] investigate the possibility to easily mash-up constrained
application protocol (CoAP) resources by proposing a four-layered WoT architecture whose
goal is not only to monitor but also to control them, thanks to a bidirectional communication.
Such architecture has been designed to lower the entry barrier for developers and foster rapid
prototyping, allowing a wider range of developers to build new services on top of smart
things. At the same time, authors claim to guarantee high usability of the architecture for a
direct and ubiquitous access for users, meaning that smart things data and services should be
accessible from everywhere and by means of different kinds of systems and platforms. In this
sense, a lightweight access to data is provided, in order to let resource-constrained devices
consume and process data that hence can support a low computational load because of their
low computational and memory resources. The architecture is composed of four layers: (i)
the accessibility layer, (ii) the execution layer, (iii) the proxy layer, and (iv) the composition
layer. The first one deals with physical devices that have to expose their resources for the
WoT services and applications through a common way that abstracts their heterogeneous
hardware features. Embedded devices can act as small servers and can expose their resources
as Web resources. There is no need for devices to be aware of the business logic, so in
this sense they can preserve their computing and memory resources. The second level is in
charge of virtualizing the physical devices and monitoring their connectivity, and of executing
the business logic of the running applications. The third layer enables the communication
between the user environment and the running applications: together with the previous layer,
this part of the architecture is responsible to discover and indexing the available resources and
to send the result of the business logic executions to the client applications at the above layer.
Finally, at the last layer user can design and easily implement and compose applications that
leverage smart things data. Ideally, this part should provide simple APIs for developers that
can hence easily collect data from embedded devices and possibly control them by changing
their state.
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Reference Description of the main contribution Mapping Layer
[64] Web Things can communicate over the Internet in two possible ways: Direct Integration or Indirect Integration. Access Layer
[86] Architecture for smart gateways composed of three major layers: presentation layer, control layer, device abstraction layer. Access Layer
[87] RESTful architecture for the Electronic Product Code Information Service (EPCIS) for bringing RFID tags into the Web. Access Layer
[91] Distributed WoT services semantic discovery architecture with clustering, indexing, and ranking filtering mechanisms. Find Layer

[88]
Distributed three-layers architecture to enable semantic discovery for WoT environments and that can handle the dynamism
of Wot Services thanks to a clustering algorithm and the mobility of gateways through the use of Wot Gateways. Find Layer

[89]
DiscoWoT is an extensible semantic discovery service for Web Things, where multiple discovery strategies can be applied to
a Web resource representation. Find Layer

[72]
WOTS2E is a search engine for the Semantic Web of Things that uses a web crawler for discovering Linked Data endpoints and through them
web-enabled devices. Find Layer

[90]
Framework for the Semantic Web of Things that bases on an evolution of classics Knowledge Base models. The adopted architecture supplies
also solutions for information storage, communication and processing. Find Layer

[26]
The Semantic layer is expanded into three sub-layers: the modeling level for a common understanding of Things, the data processing level to enable
inference over data, and the IoT Services and Application for handling service publication and discovery. Find Layer

[71] System architecture where the ontology of the related knowledge base acts also as a service directory for ubiquitous context-aware applications. Find Layer

[91]
System for sharing data produced by users’ sensors by offering REST API which can be queried by any other web application in order to retrieve
recorded values. Share Layer

[92]
Each sensor is mapped to its dedicated social page where to publish its data. An Inter-portal communication allows seeing published data from
other social accounts. Share Layer

[93] SenseShare allows users to share sensor data with their friends through Facebook. It also allows owners to apply different filters to the data before sharing it. Share Layer
[94] Social Access Controller (SAC) as an application that creates a link between web-enabled devices and SNS through RESTful API. Share Layer

[95]
Web-enabled devices communicate directly or by a smart gateway to a central web server that hosts a Web application that sends data to SNSs through
their REST APIs in a smart home context. Share Layer

[96]
Three-layer architecture for enabling social interactions not only between humans, but also between humans and devices
or between devices only. Share Layer

[97]
Platform that allows people to connect, use, share and compose physical and virtual things, services, and devices in order to create
their custom applications. Share Layer

[98] Architecture for integrating BSNs into Social networks through IP multimedia subsystem. Share Layer
[99] SenseFace: 4-tiers architecture in order to bring body sensor data to Social Networks. Share Layer
[22] Four-layered WoT architecture for monitoring, controlling and mash-up constrained application protocol (CoAP) resources. Compose Layer

Table 2.1 Summary of the studies presented in Section 2.5
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2.5.5 W3C WoT

Fig. 2.5 W3C Web of Things Architecture [2]

The goal of W3C WoT standard is to ease the deployment of IoT scenarios by solving
the problem of the interoperability, regardless of the scenario. For this reason, the standard is
thought to be able to cover almost all the interesting use cases for IoT and WoT, like Industry
4.0, domotics, smart agriculture, just to name a few. Figure 2.5 shows the architecture
proposed by the W3C WoT working group and all the possible entities and interactions
covered by the standard. The main interaction patterns are the following:

• Device Controllers: this pattern involves a local device that is controlled by a user
through a remote controller, possibly in a local network. The remote controller can be
implemented as a browser or native application and mainly acts as a client, in order to
send message requests to the controlled device, like for instance to read a sensor value
or to execute a command on the device. This one hence must act as server in order to
receive the requests and reply accordingly. Clearly, if events are enabled on device,
it has to assume a client role in order to emit the notification to the controller, that in
this situation acts as a server. This is the case, for example, of a smart air conditioner
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directly controlled by a smartphone application, that can send a confirmation message
when the room reaches the desired temperature.

• Thing-to-Thing: this scenario involves two devices that directly communicate with
each other. In this case, both devices have a server role, but at least one must assume
also the client mode to issue requests to the other in order to actuate/reply accordingly.
As an example, one device can be a temperature sensor that, once a threshold has been
overcome, turns on the other device for increasing the room temperature.

• Remote Access: this pattern regards the case in which a mobile remote controller, as for
instance a smartphone, can switch between different network connections and protocols,
like between a cellular network and a home network. As previously described, when
the controller is at home it is considered in a trusted environment and there is no need
for additional security mechanisms. On the contrary, when the controller is outside the
local network, an access control is required to ensure trusted information exchange
between the devices.

• Smart Home Gateways: the previous case can be easily managed by a smart home
gateway, located between a local network and the Internet. Its main role is to enable
a trusted and safe communication between devices in the local network and external
controllers that send commands over the Internet. The home gateway has both the
role of client and server, since it has to listen for requests coming from Internet and
forwards them accordingly to the right devices.

• Edge Devices: an edge device can be considered as an augmented home gateway. Like
this last one, it mainly has to bridge between public and trusted networks, but it also
owns local computational capabilities to manipulate data and can also bridge between
different protocols. Edge devices are often used in industrial scenarios where they
provide pre-processing, filtering and aggregation of data.

• Cloud digital twin: the W3C standard identifies a digital twin as a virtual representation,
i.e., a model of a device or a group of devices that resides on a cloud server or edge
device. In the cloud scenario, a digital twin is meant to mirror the gateway with all
the connected appliances, managing them and so co-working in conjunction with the
gateway. The cloud can receive requests and messages for the Things from remote
controllers, which hence can be located anywhere.

We remark that devices often need to act both as client and server at the same time. This
mixed use of roles justifies the meaning of a software component called Servient that, as
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Fig. 2.6 Implementation of a Servient using the WoT Scripting API [2]

the word itself suggests, can behave as server and a client simultaneously. The Servient is
the software stack implementation of the WoT Thing building blocks shown in figure 2.3.
It provides means for parsing and producing TDs, and typically supports multiple Protocol
Bindings to enable interactions with different IoT platforms. On one hand, a thing is im-
plemented by a Servient, that exposes a representation of the Thing called Exposed Thing
and makes available to consumers the Thing network-facing interfaces. The exposed thing
can also be used by other software layers of the Servient, like for instance the application
one for implementing the Thing behaviour. On the other hand, Consumers must be always
implemented by a Servient, since they need to parse and process the TD and must enable the
right protocol stack according to the Thing capabilities. Once the Thing has been handled by
the consumer, the Servient provides the so-called Consumed Thing software object, making
it available to those applications running on the Servient (like for instance a Mashup applica-
tion) that want to interact with the Things. An Intermediary is a component implemented
by a Servient that performs both the role of a Consumer to the Thing and a Client to the
Consumers, being located in the middle between a Thing and its Consumers. Hence, in this
case the Servient contains both the Consumed Thing and Exposed Thing instances of the
Thing. This layer separation is well depicted in Figure 2.6, where there are represented all the
blocks that compose the software stack for a Servient. The behaviour defines the application
logic of a Thing, and includes the autonomous behaviour of a Thing (the internal functioning
of sensors and actuators), the handlers of the Thing affordances (which operation to perform
when an affordance is activated), the consumer behaviour (controlling Things or running
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mashups), and the intermediary behaviour (proxying or composing Thing aggregation).
Clearly, depending on the behaviour implementation, Servient hosts Things, Consumers,
and Intermediaries accordingly. The WoT Runtime represents the implementation of the
interaction model and it is the execution environment for the behaviour, hence it is able to
fetch, parse, serialize, and serve TDs. The optional Scripting API component defines the
application-facing interface that follows the Thing abstraction, enabling the Thing behaviour
to run at run-time through the application scripts. The WoT Runtime is in charge of in-
stantiating the software representation of the Thing: an exposed Thing represents a Thing
hosted locally and accessible through the protocol stack implementation of the Servient;
a consumed Thing represents a remotely hosted Thing that needs to be accessed thanks to
a communication protocol. It can be considered as a proxy/stub for a Thing. In practice,
both Consumed Things and Exposed Things are software objects that can be manipulated
(created, destroyed, queried, and so on) by the application scripts. Nevertheless, some
operations may be restricted depending on which security mechanisms are in place. The
Private Security Data is managed by the WoT Runtime but intentionally kept apart from
the application; instead it is used by protocol bindings in order to authorize and protect the
integrity and confidentiality of interactions. The Protocol Stack implementation implements
the network-facing interfaces of an Exposed Thing for letting Consumers access the WoT
Interfaces of a remote Thing via its Consumed Thing. More in detail, the protocol stack
produces the right messages to communicate over the network. Clearly, several protocols
can be supported at the same time. The System APIs aim at providing local hardware or
systems services to behaviour implementations through the Thing abstraction, as if they
could be accessible over a communication protocol. In particular, the WoT Runtime enables
the behaviour implementation to instantiate a Consumed Thing that internally communicates
with the system instead of the protocol stack. This can be the case of Things connected via
proprietary protocols or protocols that are not natively WoT-enabled.
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Chapter 3

Tools

3.1 WoT Store

3.1.1 Overview

The success of the W3C WoT initiative strongly depends on its wide acceptance from
the academic and industrial communities, as well as from the end-users. At present, the
existing W3C WoT implementation frameworks (e.g. [25] [100]) provide several low-
level functionalities for the Thing modeling and creation; however, their usage requires a
solid knowledge of the W3C WoT standards and coding skill, hence they are not easily
accessible from the non-technical personnel. The literature on W3C WoT is quite scarce,
and mainly limited to proof-of-concept applications [101][102][103][104]. Hence, there is a
concrete need of service tools (the so-called Software Ecosystem (SECO) [105]) that can
facilitate the adoption of the W3C WoT technology on existing and novel IoT scenarios.
In addition, IoT/WoT deployments are often characterized by dynamism, e.g. the need of
adding/removing new devices, of re-defining the devices’ behaviour (e.g. software updates),
of tuning system parameters, just to cite few examples. A straightforward research challenge
is how to support the IoT deployment reconfiguration seamlessly, i.e. avoiding the manual
intervention on the field. In this Section, we address both the research questions (RQs)
mentioned so far, i.e.:

• (RQ1) how to ease the discovery and the management of WoT resources (e.g. Things),
in both private and public environments?

• (RQ2) how to support the dynamic reconfiguration of the WoT scenario, e.g., the
deployment of new WoT resources or the interconnection among the existing ones,
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while minimizing the need of manual configuration (for system administrators) and
coding (for programmers)?

The solution to the RQs above is constituted by WoT Store, a novel platform for managing
and deploying resources on the W3C WoT. The WoT Store is not an implementation of the
W3C WoT (like [25]), rather a service platform that can be installed on top of it, adding novel
functionalities for the end-users. Indeed, the WoT Store allows the dynamic discovery and
managing of the active Things available on a public or private deployment; through the Web
dashboard, the users can search and list the Things in the scenario, monitor their properties
and events, and execute their commands, without any change to the IoT layer. More generally,
the WoT management means general-purpose functionalities like for instance: find the Things
satisfying specific requirements (e.g. location), perform actions on them or display property
values, that we expect to be present in any W3C WoT deployment, regardless of the use
case. In addition, thanks again to the fact that the Thing interfaces are well defined and
non-ambiguous, the WoT Store allows the management of applications that can make use of
the available resources: in this sense, the platform recalls the operations of popular software
repositories used for mobile applications. In this Section the WoT Store platform is presented,
both in terms of components and evaluation results. More in detail:

• We present the WoT Store main functionalities, architecture, implementation, and use
cases. The framework is micro-services oriented, with three main modules available, i.e:
the Things Manager, the Application Manager and the Data Manager. We illustrate
the operative flow from the Thing discovery and management to the installation
and execution of the applications until the aggregation and visualization of the data
produced.

• We validate the components of the WoT Store in a real-world testbed composed of three
Wireless Sensor Networks (WSNs) mapped on different wireless access technologies
(Wi-Fi, BLE and Zigbee). Specifically, the analysis provides evidence of the dynamic
discovery of Things/sensors and highlights the possibility to deploy WoT applications
orchestrating the sensing operations, regardless of the M2M technology used by each
sensor.

• We test the scalability of the WoT Store architecture on a mixed real/simulated large-
scale IoT application, i.e. a pedestrian crowdsensing system; each Thing is associated
to a simulated mobile smartphone, providing the sensing values and the positions
over time on an urban scenario (the downtown area of Bologna). We demonstrate the
capability of the Data Manager to aggregate and visualize the data streams originated
by the WoT applications in two formats (time-series and geographic data).
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Fig. 3.1 WoT Store functionalities and sequence of operations: Things discovery and deploy
of a Mashup application.

The WoT Store framework is designed to be micro-services oriented, with the possibility
to easily load/unload new modules based on the specific user requirements. WoT Store
services can be grouped into three main areas, i.e.:

1. Things Management: the WoT Store allows discovering the available Things in the
environment, and/or to select a subset of them according to user-defined, semantic
criteria (e.g. the location). Through the GUI, the user can interact with each of them
according to its TD, i.e. display properties, execute actions or observe the notifications
of events.

2. Application Management: beyond monitoring the existing resources, the WoT Store
allows to perform changes to the actual WoT scenario, by instantiating new Things or
executing applications involving the interaction among the available Things. Here, the
WoT Store acts as an application repository: via semantic queries, the users can search
for software matching specific criteria (e.g. the compatibility with the actual devices).
In addition, the application can be executed on any of the Servient registered to the
WoT Store, again minimizing the manual configuration efforts. A distinction between
Thing Applications (TAs) and Mashup Applications (MAs) was provided previously
on in section 2.4.

3. Data Management: the WoT Store allows to process and aggregate the data produced
by a WoT application, by providing proper facilities in order to gather the data streams,
aggregate them and visualize the results on a Web dashboard.

Figure 3.1 and figure 3.2 show how the services can be used in pipeline in two typical use
cases, respectively the discovery and management and the reconfiguration of the scenario. Let
us consider a generic IoT environment with heterogeneous devices in terms of communication
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Fig. 3.2 WoT Store functionalities and sequence of operations: reconfiguration of the scenario
through the instantiation of new Things and the update of the Thing Applications.

protocols, data formats and implementations. No assumption is made regarding them; they
could be native W3C WoT compliant devices or they could have been mapped into the W3C
WoT ecosystem by means of any of the architectural patterns shown in Figure 2.5. In any case,
we assume that the corresponding Web Things have been deployed on some Servient. We
recall that a W3C Web Thing (WT), also referred to simply as Thing, is the representation of
an IoT Thing through the W3C WoT Standard, hence describing it with a Thing Description
and possibly providing its Thing Behaviour, as explained in Section 2.4. Furthermore, the
instantiation of such Web Thing is made through the deployment of a software stack called
Servient, that is in charge of turning the description of a Web Thing into a software object that
is capable of communicating and interacting with the rest of the components in the scenario.
In the first use case, through the Discovery Service, the Things are registered to the WoT
Store tool; they are now searchable and displayable from the Web dashboard. For instance,
let us assume the presence of a Thing connected to a Smart Bulb device; as soon as the Thing
is connected to the platform, the user can perform the action turnOn or turnOff directly
from the GUI. As next step, the user might be interested in downloading applications from
the Store through which it might implement coordinated or autonomic behaviours involving
multiple Things at the same time. For instance, assuming the Web Things associated to a
Smart Bulb and a Smart Lock are both available and active, the user might run an application
that issues the action turnOn each time the Lock generates an open event, in an automatic
way. Behind the actuation, some applications might also produce streams of data that can be
relevant for the context. In the previous example, the user might monitor the sequence of
decisions performed by the application (i.e. the turnOn or turnOff actions) over a temporal
window. This is possible by connecting the application to the proper data facilities of the
WoT Store, hence closing the pipeline.

In the second use case, let us assume the Things have been already registered and deployed
in the WoT Store tool. From the dashboard it is possible to perform a search operation, for
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Fig. 3.3 The operations of the Things Discovery Service (TDS).

instance based on the @type of the Thing, for selecting a subset of them. The user can now
update their behaviour: first he searches and downloads a new Thing Application according to
his needs, then he issues an update operation on the selected Things. The user can also decide
to instantiate a new Thing with the same TA and using one of the already registered Servients
available for this purpose, hence creating a new Web resource. Finally, as in the previous
use case, Things are now ready to display data from the Data Management component or
to be managed through the Thing Management component. In section 3.1.2 we provide
an in-depth description of the three main modules of the WoT Store. The implementation
details and the technologies used are sketched in Section 3.1.3.

3.1.2 Service Components

We detail here the main modules of the WoT Store i.e. the Thing Manager, the Application
Manager and the Data Manager.

Things Manager

The Things Manager module allows the users to interact with the Things already available
in the WoT environment. We further distinguish between two sub-modules. i.e.: the Thing
Discovery Service (TDS), that is in charge of registering the active Things on our tool, and
the Thing Visualizer Service (TVS), that is in charge of displaying the registered Things on
the GUI of the WoT Store.

Things Discovery Service (TDS) The overall discovery procedure is depicted in Figure
3.3. The procedure is initiated by the Web Things when they register themselves to the WoT
Store and more specifically to the Thing DIrectory (TDI) module, assuming that the URI
of this latter is fixed and known. In the registration phase, each Thing provides its Thing
Description (TD). The TDI works as a broker and as a repository of TDs; in the first case, it
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Fig. 3.4 A portion of the TD of the Device Thing of Table 3.3. The Thing is associated to a
wireless sensor producing temperature values.

Fig. 3.5 The rendering of the actions of the TD of Figure 3.4 within the WoT Store.
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notifies the presence of a new Thing to all the clients, including the TVS described below.
Each client can then retrieve the TDs directly from the Things, in order to consume the most
updated version. In addition, the TDI stores a copy of the TD of all the registered Things;
this is required since the TDI can support search and filter operations, issued by the user
through the Web dashboard. Two usage modes of the TDI are considered, according to its
visibility level: i.e. public TDI or private TDI. In the first case, all the Things registered to
the TDI are searchable from the clients: this might be the case for instance of a smart city
willing to share its IoT resources with all its citizens. Vice versa, in the private case, the
access to the Things is restricted, and proper authorization mechanisms are employed by the
WoT Store: this is the case of smart home or industrial IoT deployments with severe security
concerns. The visibility flag must be set during the TDI configuration process, together with
other meta-data such as the authentication mechanisms (e.g. header-based authorization,
token-based authorization like OAuth 2.01) required by clients to access the TDI.

Things Visualizer Service The TVS is a Web dashboard and the main GUI of the WoT
Store. It allows to visualize the list of available Things registered to the TDI (by subscribing
to it). Moreover, it supports search operations, where a subset of Things is selected according
to user-defined conditions; search operations are enabled by a Web form with a list of
predefined fields that can be filled through the GUI, and involve a subset of the meta-data
contained in the TDs. Finally, the TVS allows the user to interact with each Thing available
in the TDI or contained in the result of a search operation; this is performed by parsing the
corresponding TD and creating an ad-hoc Web GUI, through which it is possible to monitor
the state properties, click and execute actions (passing the needed parameters if requested),
or receive notifications of the events occurred. Figure 3.4 shows a small portion of the TD of
a Device Thing measuring temperature values and used in the Pervasive Sensing testbed of
Section 3.1.4; the full interaction model is reported in Table 3.3. The corresponding GUI
rendered within the WoT Store with the list of available actions and properties is depicted in
Figure 3.5.

Applications Manager

The Application Manager supports the dynamic search, download and execution of third-
party WoT applications, involving the interactions with the available resources, or the
creation/update of new resources. The current applications can be assumed to be coded in
Javascript (JS), since this is the language of the WoT implementation made available by the

1https://oauth.net/2/
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WoT W3C community [25], although this choice does not impact the general functionalities
of the WoT Store.

Conceptually we distinguish between two classes of WoT applications supported by the
WoT Store, i.e.: Things Applications (TAs), and Mash-up Applications (MAs). The TAs
correspond to the source code of a Thing, hence to a static object that can be activated when
executing it. Through the TAs, it is possible to instantiate a new Thing in the WoT Store,
or to update the behaviour of current Things, as better described in the following. Vice
versa, the MAs implement automatic policies that involve the interactions of multiple Things
(active and registered on the TDI); the result of a MA can be an actuation or a data stream
that can be processed through the Data Manager described in Section 3.1.2. More in detail,
the Application Manager provides three main functionalities:

1. App Storing. The source code of the WoT applications is stored in a database. Moreover,
each application (MA or TA) is associated to a semantic description, including a list of
meta-data, like its category, description, and the resources required (e.g. the type of
Things used). For instance, Table 3.1 contains the RDF description of a MA that queries
all Things of type "Temperature" registered to the TDI and computes the average of
sensed data. In the current implementation, we describe each WoT application through
a list of RDF fields; clearly, more formal descriptions of the MA and TA can be
considered, by means of dedicated WoT ontologies.

2. App Searching. Through the Web dashboard and the compilation of specific fields,
the user can build SPARQL queries2 in order to filter the WoT applications matching
specific criteria, defined again through the meta-data. The results are then displayed
on the WoT Store GUI.

3. App Executing. After having selected the application meeting his/her requirement, user
can download and execute it. In this case, the proper run-time environment (i.e. the
Servient where to deploy the application) must be selected among the ones registered
to the WoT Store. Additional features for the execution of the TAs can occur in Normal
or Update mode. The first case is equivalent of creating a new Thing, and registering
it to the TDI. The second case (Update), instead, gives the possibility to replace a
list of active Things with new ones implementing the behaviour described by the TA
downloaded by the WoT Store. Hence, a SPARQL search query is issued on the TDI
in order to select the Things to unregister; then, a new set of Things is deployed with
the updated source code provided by the TA.

2The SPARQL code in all the search operations must not be inserted manually, rather, it is generated
automatically based on the search option fields filled by the user on the Web GUI.
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subject predicate object
<WoTStore://smartAtmosphere> schema:applicationCategory Domotics
<WoTStore://temperatureMonitor> schema:downloadUrl coap://wotstore.cs.unibo.it:8081/market/actions/getApplication?application=smartAtmosphere
<WoTStore://temperatureMonitor> schema:downloadUrl http://wotstore.cs.unibo.it:8080/market/actions/getApplication?application=smartAtmosphere
<WoTStore://temperatureMonitor> wotstore:involve sosa:Actuator
<WoTStore://temperatureMonitor> rdf:type schema:SoftwareApplication

<WoTStore://temperatureMonitor> dcterm:description
smartAtmosphere is an application that sets a RGB color
to each smart bulb, in order to reproduce different kinds of atmosphere

<WoTStore://temperatureMonitor> rdfs:label smartAtmosphere

Table 3.1 Example of RDF Description of a MA application available in the WOT STORE.

Data Manager

This module contains functionalities for the processing and visualization of the data produced
by the running WoT applications. The block components of the Data Manager are the data
streams; each data stream can be configured in order to be attached to a MA, and to gather
data from it through a set of APIs made available by the WoT Store. Each data stream
consists of two sub-components: a data aggregator, that filters/aggregates the output of the
MA, and a data plotter, that creates the proper Web dashboard of the processed data. Clearly,
the stages above are strictly dependent on the data format, on the MA in use and on the
user needs; it is nearly impossible to cover all possible requirements. For this reason, at
the moment we provide basic data stream templates that must be extended/customized by
users/developers. Moreover, as proof of concepts, we implemented two specific data-flows:
one for temporal data-series (composed by a time-stamp and a numeric field), the other one
supporting geo-data (in GEOJSON) and generating the corresponding heatmap. Further
details regarding the two data streams are provided in Section 3.1.4.

3.1.3 Implementation

The WoT Store is composed of four internal components, reported in Figure 3.6: the Market
Service (MS) and the Thing DIrectory (TDI) on the server side, the Market Interface (MI) on
the client side, and the Runner (RNN) on the physical device hosting the W3C WoT Servient.
The WoT Store implementation involved the usage of several software libraries: we briefly
discuss here the main solutions adopted, while Table 3.2 provides a mapping of the service
components of Section 3.1.2 with the enabling technologies.
The Market Service (MS) has been implemented as a Node.js3 v10.x application using
the LoopBack4 v3 framework and the Socket.IO5 library. The MS exposes the REST APIs
for all the Things-related and application-related operations and a WebSocket endpoint for

3https://nodejs.org
4https://loopback.io
5https://socket.io
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real-time notifications. In addition, it stores the platform information through four database
technologies: (i) Minio, an object storage server containing the WoT applications (MAs and
TAs) source code, (ii) MongoDB, the popular NOSQL database used to store the user data,
(iii) Blazegraph, the triplestore used to save the application metadata and the TDs and (iv)
Redis, a high-performance in-memory database, used for the real-time processing of the
Things notifications. A complete LoopBack connector for Blazegraph implementing all the
necessary methods to initialize the connection has been developed, the data migrations and
CRUD operations. In addition, a second component is in charge of converting the JSON-LD
to N-Quads when pushing the data to the triplestore, and from JSON to JSON-LD when they
are pulled out.
The Runner (RNN) is a piece of software developed to facilitate the installation of the WoT
Store, and to automatize the execution of the WoT applications on the devices. The RNN is
written in JavaScript and exploits the ShellJS library. When installed on a machine (which
could be a physical device, like a Raspberry Pi, or a Virtual Machine), the RNN registers
the machine to the MS. Then, through the RNN, the user can install the WoT Servient
on its device, by choosing the version compliant with the current hardware and software
(operating system) configuration.6 The RNN allows issuing commands from the WoT Store
directly on the device, like for instance the execution of a MA or a TA selected from the
repository. To this aim, it supports multiple run-time environments through the executors, i.e.
the Shell and Docker7 in the current implementation, while the support for Kubernetes8

can be considered as future work. Finally, the Market Interface (MI) is an Angular9 v6
web application composed of several modules. Among these, there is the Thing Visualizer
Module, which implements the TVS introduced in the previous Section, i.e. it renders a
Thing starting from its TD. Properties and events are updated in real-time thanks to libraries
such as ngx-mqtt and rxjs-websockets; for each action, a specific form is created with
the necessary constraints for the data input.

3.1.4 Components Validation

The components of the WoT Store have been validated through two evaluation studies: (i)
a small case testbed of a pervasive sensing scenario (Section 3.1.4), and (ii) a large-scale
simulation combining real Things and virtual devices in an urban crowdsensing scenario
(Section 3.1.4). The studies addressed different goals and evaluated different components of

6At present, we rely on the JS Servient made available in [? ]; however, we imagine the case where multiple
Servient implementation will be available for a specific device.

7https://docker.com
8https://kubernetes.io
9https://angular.io
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Area Service Technologies / Libraries
Thing Manager TDS Node.js, Blazegraph, SPARQL.
Thing Manager TVS Angular, ngx-mqtt, rxjs-websockets, socket.io-client.
Application Manager App Storing Minio, MongoDB, Blazegraph.
Application Manager App Searching SPARQL.
Application Manager App Executing Docker, shelljs.
Data Manager Data Aggregator bull.
Data Manager Data Plotter ngx-echarts.

Table 3.2 List of technologies used for the implementation of the WoT Store service compo-
nents of Section 3.1.2.

the WoT Store framework. In the testbed, we focus on the Thing Manager and Application
Manager modules; more specifically, we demonstrate the possibility to orchestrate the
sensing operations of multiple, heterogeneous wireless sensors through the MAs, and we
provide evidence of the Thing Discovery Service. The crowdsensing study aims to verify
the scalability of the WoT architecture and of the WoT Store under an increasing number
of Things to manage; moreover, it demonstrates the capabilities of the Data Manager to
aggregate and visualize both time-series and geographic data streams produced by MAs
orchestrating the sensing operations of simulated mobile devices.
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Fig. 3.7 The IoT/WoT monitoring system deployed in this study.

Pervasive Sensing Testbed

The testbed represented in Figure 3.7 consists of an indoor monitoring system composed of
three layers: sensing, fog, and processing. The sensing layer is constituted by three Wireless
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Sensor Networks (WSNs), operating at different rooms of the same building: an IEEE
802.15.4 WSN network, an IEEE 802.11 Wi-Fi WSN network and a Bluetooth Low Energy
(BLE) WSN. The 802.15.4 network includes four devices (Arduino Xbee boards), with one
Coordinator and three Leaf nodes equipped with sensing units (ThinkerKit temperature
sensor). The Wi-Fi network includes three devices (two NodeMCU and one Arduino WiFly
board), all provided with a direct link toward the Access Point (AP) and with a DHT11
temperature/humidity sensor. The BLE WSN consists of one ESP32 board, provided with a
DHT11 sensor. The 802.15.4 coordinator, the BLE and the Wi-Fi devices are connected to a
Fog node, via USB cable links (for the 802.15.4 Coordinator) or wireless links (for the BLE
and the IEEE 802.11 devices). Finally, the processing layer is constituted by a Linux server,
connected to the Fog nodes via Wi-Fi links. The W3C WoT architecture and the WoT Store
have been deployed as follows:

• Edge devices, i.e. the wireless sensors, implement low-level communication and
sensing operations in the embedded firmware (written in C language). The implemen-
tation as well as the list of operations and the data format used by each device are
technology-dependent. This layer is part of the IoT, while it is not covered by the WoT
architecture.

• Fog nodes run a W3C WoT Servient, by using the JavaScript (JS) framework available
at [25]. Each Fog node exposes two types of Web Things, i.e.: multiple (i) Thing
Devices, describing the properties, events and actions of physically managed edge
devices, and one (ii) Thing Network, describing the overall performance of the virtual
WSN composed by the list of connected Thing Devices. Table 3.3 displays some of the
properties, actions, and events described in the Thing Description (TD) for a Device
Thing.

• Finally, the Processing node hosts the WoT Store. This latter allows to manage the
Web Thing Devices and Web Thing Networks through the Thing Manager presented in
Section 3.1.2. Also, we implemented multiple MAs that are in charge of orchestrating
the sensing operations, i.e. of selecting a subset of devices to query at each sensing
slot, according to MA-specific policies. At each interval, the MA works by querying
the TDI and gathering the list of Things Devices available on the WoT Store; hence
the MAs are also able to adapt to dynamic conditions where the number of available
Things is varying over time, as demonstrated by the analysis below.

We highlight that the WSNs are heterogeneous in terms of M2M technology and network
performance. To this purpose, Figure 3.8(a) depicts the average per-sensor Round Trip Time
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Name Type Description
DeviceID Property Device identifier in the network.
NetworkID Property Network identifier the device belongs to.
Temperature Property Last temperature value.
State Property Current state of the device.
GetData Action Get the temperature data.
Start Action Start sending data at each time slot.
Stop Action Stop sending data.
NewData Event This event is fired when new sensor data is produced.
ChangeState Event This event is fired when the connection state changes.

Table 3.3 List of Properties, Actions, and Events of a Device Thing.
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Fig. 3.8 The per-sensor RTT and PDR metrics are shown respectively in Figures 3.8(a) and
3.8(b).

(RTT), computed as the delay to issue the getData command from the MA and to receive
the sensor data. As expected the Wi-Fi devices experience the lowest RTT values due to
the higher channel bandwidth provided by the M2M technology. Figure 3.8(b) shows the
per-sensor Packet Delivery Ratio (PDR), defined as the ratio of successful getData command
issued by the MA. As expected, the Wi-Fi sensors are also the most reliable nodes. Based on
these results, we implemented three MAs on the WoT Store, simply denoted as P1, P2, P3.
Each MA selects M different Things Device to query at each sensing slot, but according to
different policies, i.e.: (i) the MA P1 (RTT-aware) selects the M Things with the lowest mean
RTT values; (ii) P2 (PDR-aware) selects the M Things with the highest mean PDR values;
(iv) P3 (PDR-RTT aware) selects the M Things providing the best RTT-PDR trade-off. We
assume that -at system startup- the MAs have no knowledge about the WSN performance (i.e.
the results shown in Figures 3.8(a) and 3.8(b)), and hence they have to discover the optimal
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Fig. 3.9 The impact of the Thing Discovery Service on the PDR and RTT performance
indexes in a scenario with a varying number of available Things/devices is shown in Figure
3.9(a). The Thing/device utilization over time is depicted in Figure 3.9(b).

set of M Things maximizing the specific policy in use. This is implemented through basic
online reinforcement learning mechanisms, provided by the Q-learning algorithm [106]: the
MA computes a numeric reward each time the getData command is issued toward a sensor,
related to the specific policy (e.g. the packet RTT in case of MA P1). More details of how the
Q-learning algorithm has been applied in the testbed, since they can be found in 4.1, while
here we focus on the operations of the Things and Applications Managers.

To this purpose, Figures 3.9(a) and 3.9(b) provide a validation of the Thing Discovery
Service (TDS). We considered the following experiment: at system startup, only the BLE and
Zigbee Things are registered to the WoT Store. Hence, the MA relies exclusively on them for
sensing operations. At t=1200 seconds, the Wi-Fi Things are activated; they autonomously
publish their TDs and hence become discoverable by the MA via the TDI. We highlight
that the process above occurs in an autonomic way without any manual configuration. At
t =2100 seconds, the Wi-Fi devices are physically detached from the environment, without
notifying the WoT Store. Figure 3.9(a) shows the average PDR and RTT metrics over time
as computed by the running MA (in this case, we used P3). It is easy to notice the impact
of the TDS since both the metrics improve from t >1200 seconds, as a direct consequence
of the fact that the Wi-Fi devices are used by the MA; we recall that -in accordance with
the results of Figures 3.8(a) and 3.8(b)- the Wi-Fi technology maximizes both the RTT and
PDR performance. At the same time, it easy to notice that the RTT decrease and the PDR
increase occur gradually and not instantaneously; this is due to the Q-learning convergence
delay, since the usage of Wi-Fi is reinforced at each packet transmission, hence increasing
the selection probability over time. Finally, both the performance indexes become worse
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Fig. 3.10 The RTT and PDR values when switching the MA in use over time.

when the Wi-Fi devices stop sending the data because of the hardware crash. Figure 3.9(b)
supports the discussion by showing the sensor utilization over time. For t <1200 seconds,
the MA queries the BLE and two Zigbee Things, while from 1200 ≤ t < 2100, it mostly
relies on the Wi-Fi Things; however, the Wi-Fi Things do not achieve the 100% of utilization
due to random actions performed by the Q-learning for the periodic exploration phase [106].
Thanks to it, the Q-learning mechanism is able to discover alternative sensor selections once
the Wi-Fi devices become not available (t >2100 seconds).

Figure 3.10 shows the RTT and PDR metrics over time when dynamically switching
from one MA to another. Moreover specifically, from t=0 to t=3000, policy P1 is used (delay
minimization), then P2 from t=3001 to t=6000 (PDR maximization), finally P3 (delay-PDR
trade-off) from t > 6000. We remark that the application replacement is performed through
the WoT Store GUI, and consists of selecting a new software, and the Servient where to
execute it. No hardware or software re-configuration of the WSNs is required. We can notice
the values of the metrics (RTT and PDR) vary over time in accordance with the MA that is in
execution in that temporal instant. We remark that a deeper analysis of this kind of scenario
is presented later in section 4.1.

Urban Crowdsensing Scenario

In the second study, we consider an urban crowdsensing application composed of multiple,
heterogeneous mobile devices (e.g. smartphones). Like in most existing crowdsensing
systems [107], the mobile devices perform environmental sensing through their embedded
sensors and transfer the data to a central processing unit; here, data are aggregated and
analyzed. We assume that the central unit is also in charge of orchestrating the sensing
operations, similarly to the testbed described in the previous Section. The overall architecture
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Fig. 3.11 The crowdsensing system considered in this study is depicted in Figure 3.11(a).
The abstraction of the WoT deployment with the WoT Store and the real/simulated entities
is represented in Figure 3.11(b).

of the crowdsensing system is reported in Figure 3.11(a). A W3C Thing is associated to
each mobile device: the list of actions and properties is provided in Table 3.4. The system
administrators can download MAs implementing different sensing policies from the WoT
Store; in addition, they can aggregate and visualize the data gathered from the mobile devices
through the Data Manager. Differently from the testbed, the system APIs of the Web Things
do not query a physical device rather a simulated entity -denoted as Virtual Smartphone (VS)-
that provides the current position and the result of each sensing action. In the following, we
detail how the mobility and the sensing phases have been modeled.
Mobility simulation
We consider a pedestrian mobility model on a realistic city map (in this case, the downtown
area of Bologna), extracting the street information from the OpenStreetMap web service10.
A random direction model is considered: each user moves toward a random point of the
scenario on the shortest path (computed over the graph of streets), and stops there for a
random interval before selecting a new destination. We assume that the sensing and mobility
phases are not mutually dependent; hence, the mobility traces of the N users have been
generated offline and saved on N different files. The position information of each Thing (i.e.
the Latitude and Longitude properties at each time slot tk) is provided by the VS by reading
the corresponding entry on the trace file owned by the Thing.
Event simulation
We model the sensing operations through a function that returns the sensing value at each
location of the environment and at each time slot. To this purpose, we consider a generic
situation where an event occurs in the urban scenario -and more specifically in its central

10https://www.openstreetmap.org
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Name Type Description
PhoneID Property Smartphone unique identifier.
Latitude Property Current latitude coordinate.
Longitude Property Current longitude coordinate.
State Property Current state of the device (connected/disconnected).
GetSensingData Action Perform a sensor reading.
NewData Event This event is fired when new sensor data is produced.

Table 3.4 List of Properties, Actions, and Events of a Virtual Smartphone Thing in the
crowdsensing scenario.

position- and the crowdsensing system is used to monitor the event and its evolution over
time. Let C = ⟨clat ,clong⟩ denote the center of the scenario that coincides with the event
origin. We abstract from the physical meaning of the event, of the sensing values and of
the type of sensor in use, since they are not relevant for this study. Let S(i, tk) be the event
sensing function that provides the intensity of the event as sensed by Thing i at time slot tk
(i.e., the values returned after invoking the GetSensingData action). The S(i, tk) function is
modeled as follows:

S(i, tk) = e
di(tk ,C)

σ · I(tk)+χ (3.1)

where di(tk,C) is the distance between the position of Thing i at time slot tk (denoted as
Pi(tk) = ⟨lati(tk), longi(tk)⟩) and the event origin C, σ is a normalization value, χ is a Gaus-
sian noise with zero mean and variance equal to β (it models the sensing error of each device)
and I(tk) is the function modeling the event intensity over time. Hence, on the spatial domain,
the event intensity assumes the maximum value in C while it decreases proportionally with
the distance from it. Let Imax and Imin be the maximum and minimum event intensity values.
The I(tk) function defines an event with a time-varying intensity, i.e.: (i) it is equal to the
minimal value (i.e. I(tk) = Imin) until instant tk=900 seconds; (ii) it increases linearly until
instant tk=1350 seconds, when the maximum value (Imax) is achieved; (iii) it remains equal
to the maximum value (Imax) until instant tk=2150 seconds; (iv) it decreases linearly until
becoming equal again to the minimum value (Imax) at time instant tk=2600 seconds. Let
Imin < η < Imax be a system threshold; a Thing/device11 is said to detect the event at time tk
if S(i, tk)> η .

11Things and devices are used indifferently in the following, since each Thing corresponds to one device; we
used the word device when referring to the operations of the crowdsensing system, and Thing when referring to
its implementation using the WoT architecture.
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The WoT deployment of the crowdsensing system with real/simulated entities is shown in
Figure 3.11(b). In order to save the battery of the mobile devices, the controller is querying
only a subset of the available N devices at each sensing interval tk. Let Ψ(tk) be such subset,
and M be the number of devices queried, assumed constant over time. More formally:
M = |Ψ(tk)|= ⌊N ·γ⌋, with 0 < γ ≤ 1. Also, we denote with Ω(tk)⊆Ψ(tk) the list of devices
detecting the event at time slot tk, i.e Ω(tk) = {i ∈Ψ(tk)|S(i, tk)> η}. We implemented two
MAs in WoT Store with differentiated policies to compute the Ψ(tk) set:

• Random MA. At each sensing interval tk, the MA chooses randomly the subset of M
sensors to query among the available N.

• Adaptive MA. Like the previous policy, the MA chooses M sensor to query at each
sensing interval; it chooses them randomly if |Ω(tk)| ≤ α , the number of devices
detecting the event is below a system threshold α . Vice versa, when |Ω(tk)|> α , the
MA attempts to estimate the area where the event is occurring and to concentrate
the sensing operations over it. To this purpose, the position of the event Cest(tk) =
⟨cest

lat(tk),c
est
long(tk)⟩ at time tk is estimated as the centroid of the position of the users

detecting it, i.e.:

cest
lat(tk) =

∑i∈Ω(tk) lati(tk)
|Ω(tk)|

(3.2)

cest
long(tk) =

∑i∈Ω(tk) longi(tk)
|Ω(tk)|

(3.3)

Similarly, the radius of the event R(tk) is estimated as the maximum distance be-
tween Cest(tk) and all the devices that detected the event in Ω(tk), i.e. R(tk) =
maxi∈Ω(tk) (di(tk,Cest(tk)). In order to build the list of devices to query at the next
time slot (i.e. Ψ(tk+1)), we consider only the devices at a distance lower than R(tk)
from cest

long. Let Γ(tk) denote such set. Then, we order Γ(tk) according to the distance
values di(tk,Cest(tk)), and we select the top M elements. In case |Ψ(tk+1)| < M, the
remaining M−|Ψ(tk+1)| devices are randomly chosen as for the Random Policy.

Clearly, much more complex MAs can be defined for the scenario in use. However, we
remark that the goal of the study is not on the crowdsensing algorithms rather on the deploy-
ment and execution of MAs through the WoT Store. Unless stated otherwise, we used the
following parameters in the tests: N=400, M=80, γ=0.2, η=5, α=2, β=2, σ=300.

We implemented two data streams in the Data Manager, one handling time-series data and
the other handling geographic data, coded in GEOJSON. Each MA generates two time-series:
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Fig. 3.12 The average sensing value and the number of Things detecting the event for the
Random MA are shown in Figure 3.12(a). The same metrics for the Adaptive MA are shown
in Figure 3.12(b).

(i) the average sensing intensity at each tk, computed as the average value over the M queried

devices, i.e.
∑i∈Ψ(tk)

S(i,tk)
M , and (ii) the number of devices detecting the event at each tk, i.e.

|Ω(tk)|. For readability reasons, we visualized both the time-sequences in the same plot.
Figure 3.12(a) refers to the Random MA, while Figure 3.12(b) to the Adaptive MA. Both
the plots show a similar trend, since the average sensing intensity follows the variations over
time of the event intensity, provided by the I(tk) values; however, it is easy to notice that the
absolute values are much greater for the Adaptive MA compared to the Random MA, since
the sensing activities are focused on the area where the event is occurring. As a result, the
number of devices detecting the event is also significantly higher for the Adaptive MA. In
addition to the time-series, at pre-defined time slots each MA generates a GEOJSON file,
containing the position (i.e. Pi(tk)) and the instantaneous sensing value (i.e. S(i, tk)) of the
Things queried (i.e. belonging to the set Ψ(tK)). The Data Manager allows visualizing the
GEOJSON file as heatmaps. Figure 3.13(a) and 3.13(b) show the heatmaps of the Random
MA at tk=100 and tk=1000, i.e. before and during the occurrence of the event. We can notice
that the sensing actions of the Random MA are equally distributed over the scenario in both
cases. Figure 3.14(a) and 3.14(b) show the heatmaps of the Adaptive MA at the same time
slots. Before the occurrence of the event (Figure 3.14(a)), the Adaptive MA behaves similarly
to the Random MA since no device has detected the event, and hence the device selection is
performed randomly. Vice versa, after the occurrence (Figure 3.14(b)), most of the M sensing
actions are performed on the central area of the scenario, i.e. on the estimated event origin
Cest that also coincides with the real event origin C. This result further justifies the higher
performance of the Adaptive MA in terms of number of devices detecting the event compared
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(a) (b)

Fig. 3.13 The geodata stream visualization for the Random MA before the occurrence of the
event (Figure 3.13(a)) and during the occurrence (Figure 3.13(b)).

(a) (b)

Fig. 3.14 The geodata stream visualization for the Adaptive MA before the occurrence of the
event (Figure 3.14(a)) and during the occurrence (Figure 3.14(b)).

to the Random MA (Figures 3.12(a) and 3.12(b)). In conclusion, the Data Manager can be
useful to monitor the crowdsensing operations over both the time and space dimensions;
moreover, since different MA can be installed from the WoT Store, the Data Manager allows
to compare the performance of different sensing control policies in a straightforward way.

We conclude the analysis by investigating the scalability of our platform when increasing
the number of deployed Things. Figure 3.15 shows the usage of resources (RAM utilization,
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Fig. 3.15 The resource (CPU, RAM) utilization of the WoT Store for increasing number of
deployed Things in the crowdsensing scenario.

CPU time) of the machine12 hosting the Servient. It is easy to see that the resource utilization
increases linearly with the number of Things to manage, and in any case no performance
bottlenecks are introduced even for large-scale WoT deployments.

12Core i5 7600 Kaby 3,5GHz with 16GB RAM DDR4 and ArchLinux OS.
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3.2 Web of Things as REST APIs and communication with
legacy IoT Systems

The WoT Store has been explicitly designed to represent a concrete solution for all those IoT
scenarios in which the Web of Things could mitigate the interoperability problems. WoT
is, nowadays, the most promising standardization effort within the application layer of the
IoT, however there can be many cases in which legacy, obsolete, or even proprietary systems
need an ad-hoc integration with such world. For this reason, in this Section we propose
a bridge solution for interconnecting these systems to the WoT Store, hence enabling the
transition to the Web of Things. Additionally, this proposal aims at encouraging developers
and system maintainers to make use of the WoT Store - with all its WoT-native services and
applications - even in cases where this transition might be complex and not straightforward.
From this point of view, the following study shows how the integration can be twofold: on
one hand, it brings WoT services and devices to IoT systems in a transparent way, making
them available to be easily consumed by the IoT services. On the other hand, it lets the WoT
Store use services registered and integrated into old legacy IoT systems. For this purpose,
the Arrowhead Framework [16] has been chosen as a candidate for such IoT systems, since
its architecture and nature represent a good example for such study. In particular, besides a
consistent set of other useful functionalities, it perfectly suits this use case because every IoT
service is exposed through a REST API, and for this reason, the integration with the WoT
Store ecosystem is quite straightforward. Clearly, despite this particular case, the goal of this
study is to be as generic as possible, since the same approach can be replicated for hundreds
of other IoT systems with similar characteristics: the only requirement in this sense is to
expose functionalities through some kind of APIs. We believe that this kind of integration
can significantly boost the usage of the WoT Store, easing the design and developing tasks
especially in those situations where Web technologies are already in place.

3.2.1 Overview

Over the last decades, ecosystems revolving around IoT in its various facets have shown the
common trend of shifting from monolithic or ad-hoc deployments to architectures in which
each entity is responsible for producing or consuming services, as in any Service-Oriented
Architecture. The Arrowhead Framework (AHF) [16]is the result of an effort of more than
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80 European partners [108] and has been used extensively in several other EU initiatives
such as Productive 4.013, Far-Edge14 and Arrowhead Tools15.

The Framework, designed for supporting IoT automation scenarios at any application
level, is based on the key guidelines that characterize a SOA: late binding, loose coupling, and
lookup [109]. More in detail, each System of Systems (SoS) based on the AHF is deployed
in connected local clouds, each of them managing their internal services and communicating
with each other in a non-hierarchical structure, therefore separating responsibilities while still
guaranteeing interoperability. Each local cloud hosts several Systems, defined as the software
components that interact with each other and shape the application workflow. Systems can
expose a number of Services as well as consume other services in the network, they are
indeed defined as Service Providers or Service Consumers (clearly any system can be both).
The interaction between systems and services within each local cloud is given by the “Core
Systems” (CS) - one instance is deployed per local cloud - that support and orchestrate the
exchange of information. They are divided into “Mandatory” CS, which have to be deployed
within a local cloud to make it Arrowhead-compatible, and “Support CS” [110]. Mandatory
CS are described in detail below:

• The Service Registry system is responsible for the registration of each service within
the local cloud. It acts as a repository, against which other systems can perform a
service lookup - i.e. a discovery operation - in order to obtain the information and the
endpoint of the service they are looking for. In the last version of the CS (4.1.3 at the
time of writing), the service lookup is performed through HTTP REST calls.

• The Authorization system is responsible for the correct interaction between producers
and consumers according to their rights. It manages the correct authentication of
providers and consumers as well as their authorization for consuming or producing
resources based on a set of rules that can be added or modified by the cloud manager.

• The Orchestration system is responsible for coordinating the interactions between
systems freeing the consumers from the burden of establishing their preferences at
design time. With the Orchestration system, the Service Provider that is best suitable
for the consumer’s request can be chosen dynamically based on a list of orchestration
rules about the type of service requested. This can potentially handle cases of faults
and perform load balancing.

13https://productive40.eu/
14http://faredge.eu/#/
15https://www.arrowhead.eu/arrowheadtools

https://productive40.eu/
http://faredge.eu/##/
https://www.arrowhead.eu/arrowheadtools
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Support CS are not mandatory and can be included in any local cloud where needed. Ex-
amples of available Support CS are: QoS Manager, Translator System, Event Handler, and
Configuration Manager. Furthermore, the Gatekeeper System and the Gateway System,
which are still Support CS, are devoted to the inter-cloud communication, mediating the
exchange of, respectively, lookup requests and chunks of data [111]. The latest version of all
the AHF components (4.1.3 at the time of writing) can be found in [46].

In this proposal, we analyze a possible integration between the Arrowhead Framework
and the W3C Web of Things (WoT) paradigm. In particular, the goal is to enable the
twofold communication between the WoT Store and other IoT legacy systems, i.e., making
possible for Web Things to request services registered on Arrowhead and the same time
letting Arrowhead services use Web Things’ capabilities. For this last purpose, Web Things
could be considered as a simple REST APIs. The integration is shown through a proposed
three-layered architecture in which a standalone WoT ecosystem is integrated within an
Arrowhead local cloud and vice versa.

More in detail, the contributions of this study can be summarized by the following three
points:

• we propose a three-layered architecture thanks to which clients compatible with both
the Arrowhead Framework and the W3C WoT will be able to interact with the IoT
devices.

• we design an essential middleware component, defined as WAE, that acts as a discovery
bridge for the WoT layer.

• we validate the proposed architecture providing performance evaluation in a real-world
scenario in which a multitude of Web Things is instantiated and published to the main
service broker.

3.2.2 Architecture

In this Section, we define in detail the architectural structure of our proposal for enabling
the communication within Web Things and services available at the Arrowhead Framework.
Despite the great potential of WoT paradigm, since the process of making an already existing
service W3C WoT-compliant requires some effort, there can still be cases - especially
those involving old legacy systems - in which a service could be interested to benefit from
capabilities offered by Web Things, without joining the WoT ecosystem. At the same
time, the same services could offer useful information to native Web Things without being
necessarily turned into Web Things too. This proposal hence is also designed for such
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components that may either be unable to understand the same language and use the same
protocols as the WoT ecosystem does, or be unaware of the location of the Web Things that
need to be queried. More in detail, we envision an ecosystem in which a set of Web Things,
which are devoted to collect data through sensors, expose their data to potential consumers
that are external to their ecosystem. Simultaneously, a set of legacy services registered on
Arrowhead offer data that can be consumed by some Web Things, in order to augment the
set of their capabilities. In particular, the architecture proposed mainly focuses on enabling
the interactions for:

• a consumer that is able to communicate using the WoT standard and that does not
know how to reach and query the legacy IoT services registered on Arrowhead.

• a consumer that has no information about the WoT ecosystem and communicates only
using another legacy protocol (say, HTTP).

In order for the whole ecosystem or the System of Systems (SoS), as it is defined in the
Arrowhead official documentation model16, to be able to cope with such cases, we propose
an architecture in which each Web Thing is also a Service Provider of an Arrowhead local
cloud, therefore exposing sensor data as a service. The Arrowhead Framework allows indeed
each service to be discoverable through its main component: the Service Registry. As
anticipated in Section 3.2.1, the Service Registry acts as the main service broker in a SOA:
for each service in the local cloud that advertises its endpoint through a publish call, it
keeps in memory a service record, encoded in JSON, that includes a set of service metadata.
The record includes the type of service, its endpoint, and the protocol used, although other
metadata can be added upon need. In a typical and simple scenario, a Service Provider
first publishes its service record, then a Service Consumer willing to consume such service
performs a service lookup call against the Service Registry and obtains information about
the endpoint and the protocol of the desired service. Once this information is held by the
Service Consumer, the communication with the Service Registry is no longer needed and the
Service Provider and the Service Consumer can communicate directly.

Note that in an Arrowhead service consumption the Orchestration module also has its
part: it gets queried by the Service Consumer for a service of a defined type and it searches
the Service Registry for the most suitable service record, based on a set of rules. The use
of the Orchestration service is out of the scope of this study, therefore we intentionally
simplify the interaction bypassing the Orchestration and only demonstrating the architectural
integration.

16https://www.arrowhead.eu/arrowheadframework/this-is-it/documentation-model/

https://www.arrowhead.eu/arrowheadframework/this-is-it/documentation-model/
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Fig. 3.16 The System Architecture

Service Interactions

In order to support different types of external consumers interacting with the WoT ecosystem,
the layered architecture in Figure 3.16 is proposed. The architecture consists of three
conceptual layers: the Physical layer, the WoT Layer, and the Arrowhead Layer. Entities
on each layer can communicate directly with other entities belonging to the same layer as
they are assumed to use the same application protocol. For different layers, instead, entities
either have an abstraction or an inter-layer communication channel, as will be explained later.
On the bottom-left corner the physical sensors are depicted, the only entity of the physical
layer. Sensors can be of any type as long as they produce a numerical observation from the
real world. Each sensor gets abstracted onto a Web Thing, according to the WoT paradigm.
Each Web Thing is then registered onto the Thing Directory of the WoT Store. The central
component of the WoT Layer, the WoT Arrowhead Enabler (WAE), can be classified as a
WoT Mashup Application, a concept previously outlined in 3.1.2. In detail, it periodically
queries the Thing Directory to detect new Web Things right after they spawn (i.e. the binding
with the actual sensor is generated). As new Web Things are detected, the WAE performs
a publish operation for each of them against the Service Registry in the Arrowhead Layer
to publish Web Things as new Arrowhead services. The communication between the WAE
and the SR is the sole case of the inter-layer communication channel, in which a component
(in this case the WAE) acts as a proxy able to use two different communication protocols.
Furthermore, each Web Thing is extended onto the Arrowhead Layer by a new module, called
Arrowhead Thing Mirror (ATM). The ATM exposes the Web Thing service endpoint as an
HTTP Web Service in the Arrowhead local cloud. Note that a Web Thing and its relative
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ATM can run on the same piece of software as well as in separate components connected by
a custom communication link. The ATM plays, to some extent, the role of an Arrowhead
service adapter, however, it does not perform publish operation, as they are handled by the
WAE.

The record published by the WAE exposes by default the endpoint and the metadata of
the ATM related to the Thing, while the JSON-LD description of the Thing at the WoT Layer
must be retrieved through its endpoint. This way, a consumer can interact with the Web
Thing in two ways, depending on its communication capabilities:

• An HTTP-enabled Consumer queries the Service Registry, selects the service that
provides the type of data needed and gets the endpoint of the service, which corresponds
to the endpoint of the related ATM. The Consumer then performs the consume calls
against the service offered by the ATM which, in turn, queries the Web Thing and
retrieves the data point. Response data travels then backwards to the Consumer.

• A WoT-enabled Consumer queries the WAE, which retrieves the list of services from
the Service Registry. As the consumer is only able to interact with WoT-enabled
systems, the WAE acts as a Web Thing Proxy, whose affordances reflect the capabilities
of the legacy service required by the Web Thing. The proxy hence is in charge of
turning the request coming from a Web Thing into a REST interaction, collecting the
result of the query and returning the result back to the Web Thing.

The whole interaction for the two types of consumers is shown in detail through the sequence
diagram in Figure 3.17. In particular, it shows mainly two patterns:

Web Things’ publication on SR

When a Web Thing is generated, it automatically instantiates an ATM to be able to fulfill a
request coming from an AH Consumer. At the same time, the Web Thing publishes itself on
the Thing Directory, according to the draft of the W3C standard proposal. The WAE is in
charge of keep checking if new Web Things appear on the Thing Directory, and in case to
publish themselves on the SR. This can be achieved in two ways, depending on the WAE
implementation: either the WAE polls the Thing Directory or the WAE is implemented as a
Web Thing, so it can subscribe to Thing Directory’s events. The SR is listening from queries
of services’ consumers and replies with all the Services is aware of, including the Arrowhead
ones that however are not shown in this diagram.
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Fig. 3.17 Sequence diagram presenting the interactions of all the components of the three-layer architecture
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Name Type Description
listOfWebThings Property List of all the Web Things the WAE is aware of.

startCrawling Action Start to look for new Web Things that are published on the TD.

query Action Forward the query of a Wot Consumer to the WAE.

proxyQuery Action
Forward and translate a query coming from a Web Thing to an AH
service and returns the response.

newWebThing Event
This event is fired when a new Web Thing has been discovered on the
TD by the WAE.

Table 3.5 List of Properties, Actions, and Events of the WAE Thing.

Services/Web Things’ consuming

Once the services related to Web Things become available on the SR, they can be queried
by consumers. An AH Consumer has only to query the SR, to get the list of services and
to directly interact with them through their ATM. A Wot Consumer instead requires more
steps in order to be able to interact with a legacy service. First, it has to send the query to the
WAE in order to retrieve the list of available services from the Arrowhead registry. Hence,
the WAE forwards the request to the SR and waits for the list of services that match the query
originally coming from the WoT Consumer. After that, the WAE returns the list to the WoT
Consumer, which is now able to select the proper service from the list according to its needs.
The Web Thing communicates to the WAE the service it is interested in, which then starts the
proxy service to be able to handle and satisfy all the requests for the legacy service coming
from the Web Thing.

3.2.3 Implementation and Validation

The implementation of the main components of the architecture is here briefly described.
The Service Registry is a JAVA server that exposes some REST APIs. In particular, we
used the API already available as an open-source project [46]. All Web Things involved in
the scenario have been implemented and instantiated by using node-wot [25], the official
W3C framework for the WoT. The WAE component has been designed as a Web Thing -
for being able to natively speak to other W3C WoT entities - and as an HTTP client - in
order to use the SR’s APIs. As shown in table 3.5, following the paradigm Properties, Action,
Events explained in section 2.3, the WAE Web Thing exposes the listOfWebThings Property
for listing all the already known Web Things it has published. Additionally, it exposes
also the startCrawling and the query actions. The first is automatically invoked once the



3.2 Web of Things as REST APIs and communication with legacy IoT Systems 69

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30  35
 0

 2

 4

 6

 8

 10

D
is

co
ve

re
d 

S
er

vi
ce

s

O
nl

in
e 

T
hi

ng
s

Time (sec)

Discovered Services
Online Things

(a)

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  50  100  150  200  250  300  350  400  450  500
 0

 10

 20

 30

 40

 50

 60

 70

 80

D
et

ec
te

d 
V

al
ue

 (
dB

)

O
nl

in
e 

T
hi

ng
s

Time (sec)

Detected Value
Online Things

(b)

Fig. 3.18 Figure 3.18(a) shows the Online Things vs Discovered Services, while Fig-
ure 3.18(b) shows the mean detected value over all the sensors.

WAE has been deployed to look for new Web Things that have been published on the Thing
Directory. The second one is invoked by a WoT Consumer in order to query the SR and
to get the list of services that match its request. Finally, a generic event newWebThing is
fired each time new Web Things have been discovered by the WAE. Both the HTTP client
of WAE and the AH Consumer have been customized for the need by taking advantage of
the already existing open-source NodeJS Arrowhead Client [46]. Each WoT Consumer is
a Mashup Application, i.e., a javascript application that uses the node-wot framework as a
library and simply consumes multiple Things to interact with them in order to collect data
and manipulate it for its needs. Lastly, the ATM is an ExpressJS web server that maps each
Web Thing Affordance to a REST API and that uses the node-wot as a library behind the
scenes in order to interact with the Web Thing it represents.

In order to validate this proposal, we created a proof-of-concept scenario where the com-
ponents of the architecture previously described were deployed. The goal of the validation
is dual: first, we want to prove the functionalities of the Arrowhead discovery in conjunc-
tion with the WoT ecosystem. Secondly, we want to show the benefits of such discovery
method for a generic Consumer that is agnostic of the real nature of the services used for
its application. In particular, we instantiated a WoT Arrowhead Enabler (WAE) which is
in charge of discovering new Web Things and publishing them on the Arrowhead SR to
make them available to all the possible legacy consumers. Each new Web Thing is launched
after λ seconds from the previous one, and then published as soon as it has been discovered
by the WAE. Additionally, after a pre-defined T IMEMAX interval of time, Web Things start
disconnecting every λ seconds and so they are unregistered from the SR. This means that,
depending on the WAE’s Update Frequency (WUP), there could be some delay before Web
Things become available/unavailable on the SR. Figure 3.18(a) shows the total number of
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services made available on the SR and the number of Web Things online. In this case, since
λ = 1 second and WUP = 3 seconds, the plot shows the misalignment between the online
Web Things and the ones registered as Arrowhead services in the Arrowhead SR. Both Web
Things and their correspondent Arrowhead services increase until T IMEMAX is reached and
then they start decreasing accordingly respectively to λ and WUP frequencies. While in the
first case the focus is on validating the Thing Discovery, in the second case we set up a testbed
for validating a Consumer entity. In particular, we instantiated an Arrowhead consumer that
retrieves values from some services and elaborates them. More in detail, the services are
WoT services that return the value of acoustic sensors, with an error estimated of ±5dB,
while the application’s goal is to detect the walk of a human inside a room. The application
first queries the Arrowhead SR for looking for all the available sensors, then it retrieves the
detected values and computes the average of the value obtained. Depending on the use case,
a threshold can be set for identifying a particular feature. Figure 3.18(b) shows the behaviour
of the application over the time, with the number of Web Thing Services that changes over
the time. For this testbed, the parameters are set to: λ = 3 seconds, WUP = 1 second, and
T IMEMAX = 250 seconds. It is clear that the more WoT Things services contribute to the
detection phase, and the more the average gets closer to 35 dB, that is a reasonable sound
level for human walking.



Chapter 4

Use cases validation

Considering that the Web of Things is eligible to be adopted in almost every IoT scenario,
the WoT Store can be potentially deployed in all the cases where the Web of Things is
required to mitigate the IoT interoperability problems. This means, among the others, that
one fundamental requirement for the WoT Store is the ability to dynamically adapt to the
conditions of the environment, enabling features and functionalities customized for that
specific case. Although the WoT Store includes a market functionality to share and use
third-party WoT applications designed for a specific use case, a scalable solution to this
problem cannot be represented only by the possibility to find an existing application ready
for all the possible IoT scenarios. Instead, the WoT Store proposes to make available to
developers and maintainers a set of tools that can be customized and configured depending on
specific needs. For this reason, in this Section we introduce and show two use cases - taken
as examples - where the WoT Store has been effectively used and analyzed for validating its
effectiveness as well as its potential.

Similarly to the Web of Things architecture proposed in [38], and following the same
level of abstraction, the WoT Store considered as a software stack can be mapped into a
layered architecture, as shown in Figure 4.1: on the bottom layers we can find the Network
Layer and the Access Layer, that are responsible for the communication and the manipulation
of the Web Things. More in detail, the first one is in charge of enabling the communication
between devices that natively do not speak any Web protocol, and hence cannot be mapped
into W3C native Web Things. For instance, these include all kinds of micro-controllers, or
devices that speak network protocols of lower level, like Zigbee or Bluetooth. The second
instead allows to add/remove devices that have been turned into W3C Web Things or that can
natively communicate through a Web protocol - or a protocol that can be wrapped into one
of them -, like HTTP or CoAP. Furthermore, it allows users to interact with the Web Things.
The upper layers are the Find and Share Layer and the Application Layer that include all the
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Fig. 4.1 The WoT Store Architecture mapped into a layered architecture

functionalities for discovering and managing services built upon Web Things. In particular,
the first one is in charge of providing services for registering/unregistering the Web Things
on the WoT Store, as well as services for retrieving them via semantic queries. The last
layer allows users to look for applications already present in the WoT Store and to load
them as new behaviors of the devices, or to use them as services that make use of the Web
Things handled by the WoT Store. That said, in this Chapter we present two contributions
whose goal is to validate the WoT Store from the layers perspective: the first study deeply
investigates the ability of the WoT Store to be used in environments characterized by the
presence of heterogeneous devices that do not speak Web protocols. On top of them an
orchestrator application is in charge of collecting data based on different policies that take
into account some parameters strictly influenced by the network nature used by the devices
for communicating, like the RTT or Packet Delivery Ratio. In this sense, the study
principally focuses on the first and last layer of the architecture presented so far. Instead, the
second contribution is about a SHM scenario and almost covers all the layers, since the goal
is to collect and analyze data in order to make predictive maintenance of buildings. Sensors
built on purpose have been modeled and accurately turned into Web Things, so validating the
first and second layers. On top of them, a precise searching mechanism has been designed for
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selecting and discovering Web Things, possibly handling different access policies. Finally,
the data collected is visualized and manipulated through the last layer in order to enable
services for predictive analysis. We remark that, differently from the component validation
proposed in Section 3.1.2, this Chapter aims at validating the WoT Store in its whole, and
precisely by focusing on the architectural layers as previously explained.
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4.1 Heterogeneous environmental monitoring

4.1.1 Heterogeneous Sensing Scenario

Recently, the Industry 4.0 has emerged as a new paradigm able to radically transform the
organizations’ production and business in a myriad of sectors beside the smart manufacturing
one [8] [9]. The core of the paradigm that justifies also its generality and viability on different
markets is the concept of Cyber-Physical Systems (CPSs), i.e. the strict integration between
physical elements and computational data enabled by the recent advances on the Internet of
Things (IoT) [8]. Hence, the ability to collect, aggregate and analyze sensor data is crucial for
the growth of the Industry 4.0 model. At the same time, today’s IoT is a chaotic environment
characterized by heterogeneous hardware devices, network protocol stacks and data formats.
The generality of the WoT architecture makes it suitable for all those scenarios characterized
by the need of aggregating data from multiple, heterogeneous sources, like the Industry 4.0.
However, due also to its recent appearance, few implementations and test-bed of the W3C
WoT have been described so far in the literature [112][102].
In this Section, we attempt to extend the WoT Store proposal as enabler for the Industry 4.0, by
describing the design and implementation of a WoT testbed, consisting of a monitoring system
of a generic production site that must retrieve and process sensor data from heterogeneous
devices using different wireless access technologies (i.e. Wi-Fi, 802.15.4/Zigbee, BLE). The
overall goal is to devise mash-up applications able to orchestrate the sensing operations over
the target scenario regardless of the network protocols and hardware, hence decoupling the
rationale of the monitoring process (e.g. minimal scenario coverage) from its implementation
(i.e. the technology used to query the sensor). More specifically, we introduce three main
contributions in this study:

• First, we describe how the scenario can be modeled within the WoT W3C framework.
One Thing is associated to each sensing device, and one Thing to the sensor network,
by defining the metadata of each. Moreover, we discuss how the components of the
WoT W3C architecture have been concretely modeled in this application.

• Second, we describe the design and implementation of mash-up applications aimed to
orchestrate the sensing operations on the target scenario. Four different sensing policies
are taking into account, aimed to balance the coverage of the scenario with the network
performance (e.g. delay, packet delivery ratio and energy). All the policies are in charge
of dynamically selecting the sensors to query at each instant in order to maximize the
policy-specific metric: to this purpose, given the dynamism of the environment, we
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employ the Reinforcement Learning (RL) framework [106] to optimally balance the
exploration-exploitation tasks.

• Third, we report a subset of the experimental results from the WoT testbed. We
investigate the performance of the sensing mash-up applications with respect to the
policy goal (e.g. delay), and the convergence over time. Moreover, we show the
benefit introduced by the WoT architecture in terms of adaptive design, i.e. the possi-
bility to dynamically switch the sensing policies over time without re-configuring the
communication infrastructure, and the overhead introduced by the WoT components.

4.1.2 Testbed and Architecture
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Fig. 4.2 The IoT/WoT monitoring system deployed in this study.

The goal of this study is to investigate the suitability - both in terms of ease of deployment
and of performance - of the W3C WoT architecture for Industry 4.0 applications. To this
purpose, a generic IoT monitoring system of a production site is considered, characterized
by the presence of heterogeneous sensors using different communication technologies. The
overall architecture of the testbed, depicted in Figure 4.2, is structured on three tiers:

• Edge layer. This layer is composed of three Wireless Sensor Networks (WSNs),
operating over the same environment: an IEEE 802.15.4 WSN network, an IEEE
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802.11 Wi-Fi WSN network and a BLE device. The 802.15.4 network includes four
devices (Arduino Xbee boards), with one Coordinator and three Leaf nodes equipped
with sensing units (ThinkerKit temperature sensor). The Wi-Fi network includes three
devices (two NodeMCU and one Arduino WiFly board), all provided with a direct link
toward the Access Point (AP) and with a DHT11 temperature/humidity sensor. Finally,
the BLE WSN consists of one ESP32 board, provided with a DHT11 sensor.

• Fog layer. The 802.15.4 coordinator, the BLE and the Wi-Fi devices are connected to
the corresponding Fog node, via USB cable links (for the 802.15.4 Coordinator) or
Wireless links (for the BLE and the IEEE 802.11 devices). Each fog node is constituted
by a Raspberry PI3B+ board and it is in charge of exposing the corresponding Web
avatar (i.e. the Web Thing) for each managed device and WSN.

• Processing layer. This layer implements the logic of the monitoring system. It is
constituted by a local instance of the WoT Store running the mash-up applications
further defined in Section 4.1.3, and connected to the Fog nodes via Wi-Fi links. More
specifically, the layer is in charge of: (i) orchestrating the sensing operations, by
properly selecting the devices to query at each time slot according to the policies
of Section 4.1.3; (ii) storing the collected data within a time-series database; (iii)
processing and analyzing the data in order to implement the Digital Twin model of the
monitored site.

We omit the data analytics process and the creation of the Digital Twin model, and instead,
we detail here the data retrieval operations, and specifically the way we implemented the
WoT W3C components of the architecture reported in Figure 4.2. More in detail:

• Edge devices implement low-level communication and sensing operations in the
embedded firmware. The implementation as well as the list of operations and the data
format used by each device is technology-dependent. This layer is part of the IoT,
while it is not covered by the WoT architecture.

• Fog nodes run a W3C WoT Servient, by using the official JavaScript (JS) framework
provided by the W3C [25]. Each Fog node exposes two types of Web Things, i.e.:
multiple (i) Thing Devices, describing the properties, events and actions of physically
managed edge devices, and one (ii) Thing Network, describing the overall performance
of the virtual WSN composed by the list of connected Thing Devices. Moreover, we
consider three possible protocol bindings for each Thing, i.e. interaction modes with
the Things, based on the HTTP (default choice), the CoAP or the MQTT protocols.
The System APIs are implemented in Javascript, and further structured into two
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Name Type Description
DeviceID Property Device identifier in the network.
NetworkID Property Network identifier the device belongs to.
Temperature Property Last temperature value.
State Property Current state of the device.
GetData Action Get the temperature data.
Start Action Start sending data at each time slot.
Stop Action Stop sending data.
NewData Event This event is fired when new sensor data is produced.
ChangeState Event This event is fired when the connection state changes.

Table 4.1 Example of Properties, Actions, and Events described in a Thing Description of a
Device Thing.

layers, i.e.: (i) a Device Query level, that is in charge of issuing request-response
communication with the Edge device, based on the wireless technology and the
protocol stack supported by this latter (e.g. UDP socket for the WiFi devices, Serial
socket for the Zigbee Coordinator, BLE connected mode for the BLE device), (ii) an
Inter-Process Communication (IPC) level, that makes the sensor data available to the
upper Scripting APIs via IPC facilities (in our case, implemented through the ZeroMQ
library1).

• Finally, the Processing node interacts with each Fog node/Servient in order to consume
Things, e.g. by periodically invoking the getData action from the Things selected
according to the actual mash-up policy.

Table 4.1 shows some of the properties, actions, and events described in the Thing Description
(TD) for a Device Thing. The TD of a Network Thing includes only properties that are
referred to the average network performance (i.e. the delay, the packet delivery ratio and
the throughput) and actions that can be invoked from the entire network, like for instance
getAllData(). Similarly, the snippet below shows a code fragment of the mash-up application,
specifically the way how to query a sensor device in order to read its temperature value. We
can notice that - through the WoT architecture - the mash-up application is agnostic on the
wireless access technology in use, and retrieves data from heterogeneous sensors by means
of a common API regardless of the WSN implementation. The rationale of the sensing
applications is presented in the Listing 4.1.

1ZeroMQ Project Website, http://zeromq.org
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1 let type = "http :// wots.unibo.it/labWireless/testbed"
2 let THINGS = []
3 //get Thing Descriptions from the discovery service
4 for(var t in discovery.discoverByType(type)) {
5 // Consume things
6 let thing = await consumer.consumeThing(t);
7 //Set http as protocol required
8 thing.getClients ().set(’http’, http_client);
9 THINGS.push(thing)

10 }
11 for(var i = 0; i < lambda; i++) {
12 // invoke the getData action for collecting data
13 let thing = THINGS[i%THINGS.length];
14 var res = await thing.actions[’getData ’].invoke ();
15 }

Listing 4.1 Example code for discovering and invoking actions on Things.

4.1.3 Mashup sensing Policies

Using W3C WoT in a heterogeneous environment - like the one presented in the previous
Section - has the concrete advantage of hiding all the complexity for handling different tech-
nologies and protocols. This translates into the fact that, for instance, it is easier to implement
and manage applications that benefit from heterogeneous sensing sources, without explicitly
addressing different kinds of operations. For this reason, we demonstrate the possibility to
decouple the mash-up policies from the network functionalities, and we evaluate the overhead
introduced by the WoT approach. We implemented multiple mash-up sensing policies, and
we tested the functionality of switching among them in a seamless way in Section 4.1.4.
To this purpose, let D be the set of available devices, and W (di), ∀di ∈ D, be the function
describing the WSN type. In the testbed, W : D→ {WiFi,BLE,Zigbee}. We can assume
the time to be divided into discrete time slot, i.e. T = {t0, t1, ....}, corresponding to sensing
events when the mash-up application is issuing getData command toward a selected subset
of the available devices. Let tinterval be the temporal interval between two measurements, i.e.
the time difference between ti+1 and ti, assumed constant. Moreover, let κ : D×T →{0,1}
the function indicating whether device di is active, i.e. it is used at time slot t j (in this
case, κ(di, t j) = 1, otherwise κ(di, t j) = 0). All sensing policies share a common rationale,
i.e.: they keep the area covered higher than a predefined threshold, while maximizing a
performance index I. In our case, the area coverage is expressed in terms of number of active
devices (M) at each time slot. More formally, all policies address the optimization problem
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formally defined below:

Goal : Maximize I

Constraint : ∑
di∈D

κ(di, t j) = M,∀t j ∈ T (4.1)

The performance I can vary according to the sensing policy in use. We implemented and
tested four different metrics:

• Static Energy-aware policy (P0). The mash-up application selects the M active devices
at each time slot according to a pure round-robin scheme, in order to discharge them at
the same rate.

• Dynamic Delay-aware policy (P1). The mash-up application takes into account the
average delay required to issue a getData command and to receive the corresponding
reply message. The M devices with the lowest Round Trip Time (RTT) are selected at
each time slot.

• Dynamic PDR-aware policy (P2). The mash-up application takes into account the
communication reliability of each sensor expressed in terms of average Packet Delivery
Ratio (PDR), i.e. the ratio of received replies over the total number of getData
requests sent toward each di. Specifically, the M devices with the highest PDR values
are selected at each time slot.

• Dynamic Delay-PDR-aware policy (P3). The mash-up application takes into account
both the delay and the PDR, as better explained in the following.

Excluding P0, all the other policies compute the M sensors to query at each time slot based
on the current traffic loads and network conditions. For this reason, we employ a dynamic,
learning-based scheme based on the Reinforcement Learning (RL) framework[106]. In brief,
this latter refers to a class of machine learning algorithms where an agent learns over time the
optimal sequence of actions needed to perform a task, by dynamically interacting with the
environment and by receiving a numeric reward at each interaction. More formally, the RL
framework can be represented as a Markov Discrete Process (MDP) < S,A,R,T R > where: S
is the set of States, A is the set of Actions, R : {S,A}→ IR is the Reward function, expressing
a numeric reward received by the agent when executing action a j ∈ A in state si ∈ S, and
T R : {S,A}→ S is the transition function, expressing the next state s j after performing action
a j from state si (a deterministic environment is assumed). The goal of the RL agent is hence
to determine the optimal policy function τ : S→ A that indicates the optimal action to execute
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at each state, so that the long-term reward is maximized. In this modeling, we omit the state
function S, while the list of action A coincides with the list of devices D. The immediate
reward R(di) is computed when issuing a getData command on sensor di, according to the
policy in use:

• P1: this is the RTT for each getData command. Only successful requests (i.e. reply
messages are received) are considered.

• P2: this is a positive value (+1) if the getData is successful, 0 otherwise.

• P3: similarly to P1, however a penalty equal to ttimeout is applied in case no reply is sent
back after a timeout.

Each time a getData is issued on di, and the immediate reward R(di) is computed, the
Q-value entry is also updated at time slot t for di as follows:

Qt(di) = Qt−1(di)+α · (R(di)−Qt−1(di)) (4.2)

where α is a learning rate, set equal to 0.7 in the experiments. Balancing the exploration
and exploitation issue is a crucial issue in dynamic environments [106]. For this reason, we
consider an ε-greedy exploration scheme, i.e.: each time a getData is executed, the policy
selects with probability 1− ε the sensor with the k-th highest Q-value, and it performs a
random selection over D otherwise (avoiding duplicates). We repeat the ε-greedy selection
M times at each time slot, since all policies need to guarantee an M-coverage of the scenario
(in other words, the k above varies between 0 and M−1). The ε parameter is progressively
discounted at each time slot, i.e. εt = εt−1 ·ψ , with 0 < ψ < 1, in order to reduce the
exploration over time. At the same time, the ε parameter cannot decrease below a minimal
threshold (εmin), i.e. a default exploration rate is kept anyway in order to detect any possible
change in the scenario, and to adapt the system policy accordingly. In the testbed ε=0.8,
ψ=0.97, εmin=0.1.

4.1.4 Evaluation

In this Section, we report a subset of experimental results collected through the WoT testbed
described above. The experimental analysis is divided into three stages: (i) first, we charac-
terize the overall performance of different WSNs and sensors; (ii) second, we evaluate the
four different mash-up policies of Section 4.1.3; (ii) finally, we demonstrate the possibility
of dynamic mash-up policy replacement and quantify the overhead introduced by the W3C
WoT architecture. Figures 4.3(a), 4.3(b) and 4.3(c) refer to the first analysis. Specifically,



4.1 Heterogeneous environmental monitoring 81

ble WiFi0 WiFi1 WiFi2 ZigBee0 ZigBee1 ZigBee2
Sensor

0

200

400

600

800

1000

1200

1400

1600

RT
T 

(m
s)

(a)

ble WiFi0 WiFi1 WiFi2 ZigBee0 ZigBee1 ZigBee2
Sensor

0

20

40

60

80

100

PD
R 

(%
)

(b)

ble WiFi0 WiFi1 WiFi2 ZigBee0 ZigBee1 ZigBee2
Sensor

0

200

400

600

800

1000

1200

1400

1600

RT
T 

CO
AP

 (m
s)

(c)

Fig. 4.3 The average per-device RTT and PDR is shown in Figures 4.3(a) and Figure 4.3(b),
respectively. The per-device RTT for the CoAP protocol is shown in Figure 4.3(c).

Figure 4.3(a) and 4.3(b) show respectively the average RTT and PDR for each device and
WSN type, when the HTTP protocol is used to interact with each Web Thing. It is easy to
notice that Wi-Fi devices are producing the lowest RTT values. The PDR original results
demonstrated that the Wi-Fi WSN is also the most reliable technology. However, in order to
differentiate the mash-up policies, we introduced a probabilistic packet filter on the Wi-Fi
Servient, discarding the sensor data messages with a loss rate equal to 70% to emulate a
congested access point. As a result, comparing Figures 4.3(a) and 4.3(b), we can notice that
the sets of M=3 nodes maximizing the RTT or the PDR depends on the selected performance
index. Finally, Figure 4.3(c) shows the per-device RTT when the CoAP protocol is used for
data gathering. Only minimal differences can be noticed compared to the HTTP case (Figure
4.3(a)).

In Figures 4.4(a)-4.5(a), the performance of different mash-up policies is evaluated.
Figure 4.4(a) shows the RTT values of P0,P1,P2,P3 algorithms over time slots; as expected,
P1 produces the lowest delay since it takes into account the per-packet RTT as an immediate
reward. Also, we can appreciate the learning phases of P1: the RTT is high during the
exploration phase and it is progressively reduced when increasing the amount of exploitation.
After time slot 1000, the RL algorithm has discovered the optimal set of sensors, however
it keeps performing random actions for continuous, minimal exploration. This justifies the
jagged shape of the plot. In Figure 4.4(b) the per-device ratio of utilization over time for
the policy P1 is depicted. While during exploration all the devices are equally used, after
time slot 1000 the mash-up policy is mostly exploiting the three Wi-Fi devices since -in
accordance with Figure 4.3(a)- they are associated to the lowest RTT values. Figure 4.4(c)
compares the policies in terms of PDR. Here, the optimal policy is P2; from Figure 4.5(a)
we can notice that, after the exploration phase, the three Zigbee devices are maximally used,
hence conversely to Figure 4.4(b) but again in accordance with Figure 4.3(b). We tested
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Fig. 4.4 The RTT and PDR values for the four mash-up policies are shown in Figures 4.4(a)
and 4.4(c). The device utilization ratio for the P1 policy is shown in Figure 4.4(b).
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Fig. 4.5 The device utilization ratio for the P2 policy is shown in Figure 4.5(a). The RTT and
PDR values when replacing the active policy at run-time are shown in Figure 4.5(b). The
RTT when enabling/disabling the WoT approach is shown in Figure 4.5(c).

the dynamic policy replacement in Figure 4.5(b); i.e. from time slot 1 to 3000, policy P1

is used (delay minimization), then P2 from 3001 to 6000 (PDR maximization), finally P3

(delay-PDR trade-off) starts from instant 6001. We remark that the policy replacement is
simply implemented as the shut-down of a Javascript process and the execution of a new one,
thanks to the abstraction provided by the W3C WoT architecture; no hardware or software
re-configuration of the WSNs is required. Finally, we evaluate in Figure 4.5(c) the overhead
introduced by the W3C WoT deployment, and specifically by the WoT servient: to this aim,
the RTT required to perform a sensor request directly at the System API level is computed.
We can notice that most of the overhead is due to the channel access and the processing
at the firmware level, while the overhead introduced by the Servient and by the additional
communication with the Web Thing is negligible.
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4.2 Structural Health Monitoring (SHM)

4.2.1 SHM Scenario

Structural Health Monitoring (SHM) identifies the general process of assessing the condition
of aging structures and infrastructures by checking their current integrity status. In addition,
SHM data can be used to feed prognostic schemes to predict the remaining useful life of
structures/infrastructures [113]. Thanks to its potential to reduce the vulnerability of strategic
structures and increase the preservation of architectural heritage, and to some extent to save
human lives, SHM can play a crucial role in modern smart cities [114].

Several research studies recently demonstrated the possibility to improve both the effi-
ciency and the reliability of SHM systems through the adoption of Internet of Things (IoT)
technologies for sensors data management and analytics [115]. Indeed, it has been proved
that big-data techniques can support distributed storage and real-time processing of SHM
deployments, even in presence of high sampling rates and long-lasting measurements [116].
Hence, given the huge amount of collected datasets, Machine Learning (ML) and Artificial
Intelligence (AI) strategies provide useful tools for the condition assessment and/or for
structural damage identification. For example, such ML/AI-driven approaches demonstrated
to be particularly effective in presence of image-based inspection [117]. Thus, to ensure
real-time and over-time functionalities, a complete SHM system must jointly optimize all the
different architectural layers. While several ad-hoc software deployments have been reported
in the literature about SHM systems (e.g. [114][118][119]), only a few propose complete
and versatile IoT platforms for sensor-to-cloud data collection and analytics [120].

In this Section, we address two main requirements of IoT-based SHM scenarios, namely
the system scalability and the interoperability. The first issue not only relates to the need
for managing large data volumes, but also implies the optimal balancing of the computation
among the available resources of the network in a cloud-to-edge continuum. On the other
hand, the necessity for interoperability is often determined by the heterogeneity of sensor
devices that may be installed on the structure [121], a solution that is usually preferred to
effectively increase the robustness of the SHM systems [122]. Despite this, sensor devices can
actually be produced by different manufacturers, be mapped on different data protocols (e.g.
MQTT, MODBUS, etc), or even exploit different sensing technologies (e.g., accelerometers,
hygrometers, strain-gauges). Therefore, such a fragmentation of devices, communication
protocols and data formats is a primary reason of high computational and installation costs,
that may unavoidably hamper the full-scale applicability of present IoT implementations.

This section presents the MODRON platform, an extension/customization of the WoT
Store framework (previously presented in section 3.1) for SHM scenarios. Specifically, the
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framework addresses sensor data acquisition from the monitoring layer, sensor management,
distributed data storage, data visualization, and analytics. The MODRON software platform -
installed on a remote cloud infrastructure - is a novel and versatile software framework for
sensor-to-cloud data acquisition and management in SHM scenarios. MODRON relies on the
WoT W3C standard in order to support heterogeneous sensor environments: this is achieved
by means of a layered architecture, with an edge layer composed of WTs exposing the sensor
data, and a remote cloud layer consuming the WTs and accessing their affordances. Beside
interoperability, and like WoT Store, the platform is designed in order to be (i) extensible,
thanks to the modular design which allows, for instance, to support new classes of sensor
devices by designing their corresponding WTs and (ii) highly adaptive, since the cloud
platform is able to update its functionalities (e.g. the GUI) according to the TDs of the active
WTs, and hence it abstracts as much as possible from the sensing technologies in use. We
present the MODRON platform in three stages:

• First, we expand the illustration of the WoT Store architecture 3.1, by focusing on edge
software components and cloud nodes. We discuss how sensing data acquisition and
storage have been handled with the WoT approach, and the overall data modeling of
the SHM scenario.

• Second, we discuss the current software implementation, which supports two classes
of sensor devices, namely MEMS accelerometers and piezoelectric sensors. Beside
the enabling technologies, the TD of the MEMS accelerometer is illustrated.

• Third, we present a preliminary SHM testbed (related to the BRIC MAC4PRO [41]
project founded by INAIL) involving the utilization of the MODRON platform for
sensor data acquisition and storage. The testbed involves the real-time monitoring of
a metallic structure located at the University of Bologna, instrumented with multiple
sensor networks of low-power and low-cost inertial devices.

4.2.2 Architecture

The layered architecture proposed for the MODRON platform is depicted in Figure 4.6. The
monitoring layer includes the sensor devices and the network infrastructure installed on the
physical structure and it is in charge of generating real-time data streams related to vibration
and acoustic events. The edge layer defines the hardware/software components (located on the
structure or in its close proximity) which implement the first steps of the SHM data pipeline,
i.e. data acquisition, cleaning, filtering, and pre-processing. The data management layer is
constituted by the software platform addressing the storage, aggregation, and visualization
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Fig. 4.6 Proposed layered SHM architecture.

of the acquired data, and the remote control of the sensor devices. Finally, the analytics
give meaning to the collected data by techniques of condition assessment and damage
detection/localization/prediction. The focus of the contribution deals with the software
platform deployed on the edge/cloud levels. The overall software architecture (depicted
in Figure 4.7) is designed to abstract from the sensing technology in use, and to support
interoperability across heterogeneous data sources of the monitoring layer. At the same time,
the current implementation and system validation rely on the MEMS accelerometer devices,
whose characteristics are detailed in Section 4.2.4.

Edge Layer

The software layer running on the edge device is in charge of: (i) acquiring data from the mon-
itoring layer, by supporting the most common IoT and messaging protocols (e.g. MODBUS,
OPC UA, MQTT, etc); (ii) making sensor values and devices’ status information available to
the data management layer, by hiding the heterogeneity of acquisition protocols/hardware
while supporting the remote control and configuration. The requisites above have been
addressed by resorting to a W3C WoT approach, hence developing a collection of W3C WTs
on the edge node. More specifically, we distinguished among two types of WTs: Sensor WTs
and Digital Twin WTs. In the first case, each WT corresponds exactly to one sensor device
(e.g. an accelerometer), and allows to tune its property or to acquire new data, based on a
publish-subscribe or request-response paradigm; the communication with the monitoring
layer is handled by the System API of the WT [24]. More in detail, we associated three
Sensor WTs to each device: the Observable Sensor WT, the Controllable Sensor WT, and
the Debug WT, respectively. An Observable Sensor WT exposes only properties and actions
allowing to read sensors’ measurements but not to modify the sensor configuration. Con-
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Fig. 4.7 The MODRON software platform with the edge/cloud components.

versely, a Controllable Sensor WT also supports the remote device configuration, including
the possibility to upload at run-time a new Behaviour of the WT. A Debug WT offers specific
Affordances for the diagnostic and self-testing functionalities, which can be useful during the
installation and calibration of the SHM system. The hierarchy of Sensor WTs is motivated
by security reasons: in a typical SHM scenario, multiple categories of end-users might
access the software platform, with different roles and duties (e.g. system administration,
data consuming, maintenance and testing). Effective access control policies can be devised
through the mapping of the user profiles with the instances of the Sensor WTs, as depicted in
Figure 4.7. Finally, a Digital Twin WT models a virtual entity derived from the aggregation
of multiple Sensor WTs. For instance, we consider a Digital Twin of the monitored structure
as a whole entity (e.g. the bridge); the WT provides new descriptive properties (e.g. the
GPS coordinates and the 3D model) as well as the list of the installed Sensor WTs. The
Sensor Area Network (SAN) [123], namely a single daisy-chain connection of sensors, is
also modeled as a Digital Twin WT.
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Data Management and Analytics Layers

In MODRON, we exploit the Thing Manager module for the WT discovery, while at the
same time we deploy ad-hoc Mash-up Applications (MAs) for data gathering and storage.
Similarly, the Data Manager presented in section 3.1.2 has been customized to process
and visualize SHM sensor data. The internal architecture of the MODRON cloud platform
includes the six components of Figure 4.7, i.e. the Thing Discovery Service (TDS), the Thing
Visualizer Service (TVS), the Persistence and Analytics MAs and the SHM Data Aggregator
and Plotter. The TDS serves as WoT directory: each time a new WT is spawned on the edge
server, its related TD is registered onto the TDS. The TVS allows for the visualization of the
list of WTs currently registered to the TDS. Moreover, it allows end-users to interact with
each registered WT or with a filtered subset of them. This operation can be performed by
parsing the corresponding TDs and dynamically generating an ad-hoc Web GUI, through
which it is possible to monitor the state properties, click and execute actions (passing the
needed parameters if requested), or receive notifications about the occurred events. As a
result, an end-user with a Consumer profile can visualize the status and the last recorded data
of an Observable Sensor WT; similarly, an end-user with Administrator profile can start/stop
or update an Observable Sensor WT with a button click. We remark the extensibility of
this approach, since the cloud platform is agnostic with respect to the available WTs: in
case a new sensor device is added to the SHM system, no changes are required to the TVS
since the latter parses the TD and dynamically creates the corresponding Web interface. The
Persistence MAs are in charge of gathering data from the Observable WTs; to this purpose,
they consume the WTs registered in TDS and query them at fixed intervals (for request-
response interactions) or register the events produced by the WTs (for publish-subscribe
interactions). The sensing data are then stored in a distributed database, entailing data
consistency and replication capabilities (see Section 4.2.3 for further details). Again, we
remark the generality of the Persistence MA, which is able to extract the data structure from
the Affordances property of the WT, and based on them to build the corresponding tables
(one for each sensor) and to expose the corresponding CRUD operations. The Analytics MAs
(not implemented yet) process the stored data and provide the signal processing techniques
for structural integrity evaluation. Finally, a custom Data Manager for SHM systems has
been deployed and organized in two sub-modules: (i) a Data Aggregator, allowing to select,
merge or extract features from the stored time-series, and (ii) a Data Plotter supporting the
visualization of the output of the Data Aggregator, and/or their exportation on files.
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4.2.3 Implementation and Validation

The MODRON architecture has been validated by implementing its components and de-
ploying them in a real use case scenario, as also explained in the next Section. The goal of
this operation is to provide evidence of the fact that MODRON hides all the differences - in
terms of protocols and technologies - of the sensors involved, providing a transparent and
uniform management of heterogeneous resources. We validated the MODRON platform by
implementing its architecture and deploying whose goal is to show

The MODRON platform implementation is based on state-of-the-art front-end and back-
end Web technologies. More in detail:

Edge Layer. The WoT run-time environment is constituted by the node-wot Servient [25]
for JS language. We implemented a basic W3C WT of a SANSensor, which later was ex-
tended in order to support two classes of sensor devices: tri-axial MEMS accelerometers and
piezoelectric sensors. In both cases, the communication with the monitoring layer (System
API) is mapped over a USB Serial port. The TD is semantically annotated by using the
Semantic Sensor Network Ontology (SOSA) [20]. Table 4.2 reports the main Affordances of
a MEMS accelerometer device.

Data Management Layer. The cloud platform uses a wide number of JS libraries/tools
and database systems. The back-end functionalities are implemented through Node.js2

and related libraries, including, among the others: LoopBack, SocketIO, and Nest.js.
The TVS exposes APIs for WT registering, searching and filtering based on GraphQL3,
an open-source data query and manipulation language. Also, the framework includes a
combination of database technologies, such as: (i) textttBlazegraph4, a triplestore used to
save the application metadata and the TD; (ii) Apache Cassandra5, a NOSQL database
used to store the sensing data gathered by the Persistence MA; (ii) Redis6, an in-memory
data structure store used as a temporary cache of sensor data. Specifically, the Redis tool
is used to optimize the performance of high-frequency sensing applications: the sensor
data gathered by the Persistence MA when consuming the Observable Sensor WTs are
immediately saved in Redis so as to be immediately available to the upper-layer services (e.g.
the Analytics MA), and then periodically transferred to the Cassandra database management
system. The latter has been configured for distributed operations: the cluster is composed of

2https://nodejs.org/
3https://graphql.org
4https://blazegraph.com
5https://cassandra.apache.org
6https://redis.io
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Name Type Description
AccelerometerSample Property Current accelerometer 3-axial values.
GyroscopeSample Property Current gyroscope 3-axial values.
AccThresold Property Accelerometer threshold value.
Start Action Start the data acquisition.
Stop Action Stop the data acquisition.
OnOverThreshold Event Even triggered when the accelerometer

module is greater than the AccThreshold.

Table 4.2 List of Affordances of a Controllable Sensor WT.

three instances, and employs a distributed data balancer (the Murmur3Partitioner policy)
and a basic replication strategy with a factor equal to the number of available instances.

4.2.4 Deploy

The proposed MODRON platform has been employed within the INAIL 2018 MAC4PRO [41]
project for the monitoring and predictive maintenance of manifold industrial plants and civil
structures. In particular, the metallic truss structure in Figure 4.9, which is located at the
research laboratory of the Department of Civil Engineering of the University of Bologna, was
considered as a preliminary testbed. The data measurement layer consists of light-weight,
low-cost and small-footprint MEMS accelerometers, each of them featuring a 6 Degree-
of-freedom system in package LSM6DSL inertial measurement unit (IMU) providing both
tri-axial accelerations and as many angular velocities. The sensor device integrates an ST
Microelectronics STM32F303 32bit, 3.3 V low-power microcontroller unit (MCU) embed-
ding Digital Signal Processing (DSP) functionalities and a floating-point unit (FPU) [123]
compliant with basic data pre-processing. As far as the network topology is concerned, the
sampling positions in Figure 4.9 were chosen, which are arranged in two distinct chains of six
accelerometers (identified with red and green colors, respectively) bolted in correspondence
of the junction elements. Sensors are connected in a daisy-chain fashion by means of a Sensor
Area Network (SAN) bus, which leverages data-over-power communication capabilities
on the basis of the EIA RS-485 standard. Data are transmitted sequentially, in packets, by
exploiting a proprietary lossless encoding technique; for this reason, a Gateway (GW) edge
device has been purposely developed to connect the SAN bus with external communication
protocols [124]. To maximize redundancy and minimize the data losses, two logical SANs
are configured and installed on the structure: the GWs are in turn connected (via USB cables)
to a Raspberry PI 3b+ device, which serves as edge node for the architecture of Figure 4.6.
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(a) (b)

(c) (d)

Fig. 4.8 Screenshots of the MODRON platform: the landing page (Figure 4.8(a)), the list of
available WTs (Figure 4.8(b)), the rendering of a Controllable Sensor WT (Figure 4.8(c))
and of a Digital Twin WT (Figure 4.8(d)
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The Raspberry PI hosts the WoT Servient framework and hence the Sensor and Digital
Twin WTs described in Section 4.2.2. We highlight that -through the WoT layer- the MOD-
RON framework can access and control each single accelerometer device, albeit they are
not directly connected to the Internet. Indeed, the WT provides a Web interface for each
sensor both by communicating with the GW according to the target SAN protocol and
also by virtualizing the sensor device. Figures 4.8(b), 4.8(c), 4.8(d) and 4.11 show four
screenshots of the MODRON GUI. More specifically, Figures 4.8(b) and 4.8(c) depict some
operations of the TVS supporting the interaction with the registered WTs. In 4.8(b), the
user (with Administration privileges) is listing the set of WTs in the system: by clicking
on one Controllable Sensor, the corresponding TD is rendered as in 4.8(c), allowing the
users to check the last property values (e.g. the current acceleration value), or to set some
writable properties (e.g. the alarm threshold). Similarly, by clicking on the Digital Twin
WT of the metallic structure, its 3D model is displayed (Figure 4.8(d)). Finally, Figure 4.11
shows the GUI of the Data Plotter; the user can create the data query to filter the sensors
and the time interval of interest by filling the proper Web forms, which are dynamically
built according to the WT TDs. The query is executed by the Data Aggregator, returning the
selected time-series which are then displayed by the Data Plotter. The user can also export
the acquired data to different file formats.
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Fig. 4.9 The monitored metallic truss structure and relative sensor equipment: two logical
SANs (red and green colors, respectively) are connected to as many GW interface devices
(black boxes).

Fig. 4.10 The MODRON Data Manager allowing the selection, visualization, and exportation
of sensor time-series.
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Fig. 4.11 The MODRON Data Manager detail of sensor data.





Chapter 5

Improvements for WoT

The W3C standard is quite new and still under definition. Because of its recent appearance,
there are some scenarios of possible WoT applications that need to be investigated more
deeply. This kind of process not only highlights the great potential of the WoT, but sometimes
it reveals possible lacks in this kind of solution. In our effort to augment and improve the
WoT Store, we often had to face some obstacles - both in the standard and in the official
software stack implementation - that encouraged us to advance some proposals that can be
useful for solving those criticisms that could come to the surface once new kinds of studies
are conducted. In particular, in this Chapter we present two different studies: the first work
is intended to explore the suitability of the Web of Things in the context of Industry 4.0,
specifically where strict QoS requirements must be guaranteed. More in detail, the objective
is to define and design an automatic process for configuring the Time Sensitive Networks,
according to the QoS resulting from merging both the QoS requirements of the Mashup
Application and the QoS capabilities of the Web Things. For this purpose, it was necessary to
bring the TSN technologies as well as the OPC UA standard into the W3C WoT ecosystem.
During this process, we encountered some lacks in the standard that drove us to propose
accurate solutions to have the standard include also this kind of technologies. The other work
presented in this Chapter is about migrating WoT services: the main goal is the ability to
dynamically migrate services from the edge to the cloud and vice-versa in order to guarantee
the edge-to-cloud continuum. Clearly, this research has been made from the WoT perspective,
revealing that the task appears quite complicated without any modifications to the official
W3C WoT implementation. Hence, also in this case, new proposals are advanced in order to
augment the node-wot software stack for W3C WoT.
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5.1 Industrial WoT on the Edge

5.1.1 Scenario

Most quality of service (QoS) solutions proposed for the Internet of Things (IoT) rely on
service and/or path selection strategies or prioritized message handling, but cannot provide
guarantees [125]. Industrial IoT, however, where IT converges with OT (Operational Tech-
nology), requires strict QoS guarantees to fulfill the requirements of real-time applications:
messages have to arrive at deterministic times with low jitter and virtually zero loss. Here,
Time-Sensitive Networking (TSN) is emerging as a common standard for industrial automa-
tion (but also other domains such as automotive or the fronthaul of the mobile network).
However, given its complex Layer-2 ecosystem and classic OT approach, deterministic
networking forms its own silo with specialized protocols such as LRP/RAP, NETCONF, and
its YANG models.

The W3C Web of Things (WoT) (see section 2.5.5) aims at breaking up such silos to
enable cross-vendor, and cross-domain IoT applications. It also explicitly lists industrial
use cases as its target. However, so far W3C WoT has not considered bindings toward the
required field-level communication mechanisms with hard real-time QoS.

Industrial IoT applications are also in the scope of W3C WoT [126]. Here, TD is a good
candidate for the realization of the Asset Administration Shell of the German Industry 4.0
initiative[127]. TDs can be enriched with arbitrary information, also over time, and different
views can be serialized dynamically depending on the use case from a holistic knowledge
graph (e.g., user interaction, maintenance, digital forensics).

QoS, however, has so far not been investigated by the WoT community. In this Section,
we consider QoS parameters used for industrial automation to give guarantees for certain
traffic types:

Zero congestion loss: Control loops managing heavy and fast-moving machine parts
must rely on guaranteed message delivery. As physically broken channels are rare in wired
environments (e.g., a severed cable), the main reason for message loss is congestion in the
network: when the bandwidth of an outgoing (egress) link is exceeded, packets have to be
buffered and will be dropped if the congestion lasts too long, as the buffers are limited. Tight
control over the resource allocation in the network must ensure that critical traffic will never
encounter congestion. This QoS requirement is usually combined with the following two.

Deadline: Control loops also require that input data arrives by a certain time, so that the
output can be computed, sent, and delivered within one cycle of the loop. Hence, networks
must be able to guarantee that such messages always arrive by the given deadline. For this,
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applications must also send their messages in time, and hence are synchronized to a common
time. This is also called the isochronous traffic type.

Latency: Slightly less demanding applications only require a guarantee for the latency
between sending a message and receiving it at the destination. Usually, these messages are
periodic and the required latency corresponds to this application cycle time, but it can also be
a standing reservation for critical event-based messages. This is also called the cyclic traffic
type.

Bandwidth: For other applications it is enough, when they are allowed to send and re-
ceive messages within a given period of time, i.e., their transmission is not starving completely.
Examples are discovery (e.g., LLDP), configuration (e.g., NETCONF), parameterization
(i.e., application configuration), and any kind of diagnostics.

Best effort: The IT part in the IT/OT convergence usually has no QoS requirements (e.g.,
for PCs and printers connected to the shop floor network). However, just like in offices,
messages should come through eventually. Hence, a portion of the network resources usually
remains unallocated and available for this traffic type.

Fieldbuses are industrial computer network protocols that provide such QoS guaran-
tees. Modern examples are PROFINET, EtherCAT, PowerLink, or EtherNet/IP. They are
maintained in quasi-open standardization groups, but are mainly driven by their creator
companies, and hence form silos up to the engineering tools. Controllers usually support
multiple fieldbuses, so that they can integrate into existing factory environments. In 2018,
for the first time the majority of fieldbuses in use were Ethernet-based with a share of 59%
and growing in 2019.1 Wireless such as Wi-Fi 6 or 6TiSCH currently plays a minor role in
IIoT with only 6%, although a lot is promised with 5G, not fully considering the cost and
complexity of running a mobile network core for a local installation.

OPC UA [128] is a relevant IIoT technology, as it provides a whole suite of specifica-
tions covering communication protocols, security, functional safety, and most importantly
information modeling of industrial systems. Thus, it has become popular at the management
level of industrial systems. With its Field-Level Communications (FLC) initiative [129],
the OPC Foundation is now pushing downward to the device level and could establish a
converged alternative to the plethora of fieldbuses. FLC uses OPC UA PubSub as underlying
communication framework, as it is light enough for constrained devices and can leverage
real-time QoS mechanisms through its UDP and Layer 2 transports. For the latter, FLC
aims at using the IEC/IEEE 60802 Industrial Automation Profile for TSN2. Yet also other

1https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/
industrial-network-market-shares-2019-according-to-hms

2https://1.ieee802.org/tsn/iec-ieee-60802/

https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms
https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms
https://1.ieee802.org/tsn/iec-ieee-60802/
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fieldbuses are converging to 60802, as it will enable cheaper silicon and common off-the-shelf
hardware.

5.1.2 Time-Sensitive Networking

The origin of Ethernet QoS lies in the IEEE 802.1p Task Group, which introduced traffic
classes as QoS technique based on a 3-bit Priority Code point (PCP) and a Strict Priority
selector for which Ethernet frame a bridge (network switch) should send next on a given
bridge egress port. Both concepts were ultimately incorporated in the IEEE 802.1Q standard
[130] using the VLAN tag/header.

The Audio/Video Bridging (AVB) Task Group added 802.1Qav3 defining the Credit-Based
Shaper (CBS), which can prevent traffic bursts from congesting the network, as well as the
802.1AS standard for isochronous time synchronization4. However, AVB only provided two
traffic classes with CBS, as it was intended for multimedia streaming applications and not
control data traffic. [131]

The Time-Sensitive Networking (TSN) Task Group5 evolved Ethernet QoS further to
achieve delivery of data with bounded low latency, low delay variation (jitter), and low loss.
TSN encompasses over 30 standards and amendments, many of them already incorporated
into the ever growing 802.1Q standard. This study only highlights a few specifications to
explain the QoS concept for W3C WoT:

802.1Qbv – Time-Aware Shaper (TAS) uses a cyclic schedule to control a transmission
gate for each queue of a bridge egress port as seen in Figure 5.1. This schedule is executed
in hardware and defined by the so-called Gate Control List (GCL), which contains entries
with a specific time within the cycle and an 8-bit vector for the gate states (open/closed).
With this, one can define TAS windows in which a certain traffic class can be given exclusive
usage of the network for some time (cf. virtualization or slicing). In extreme cases, such
TAS windows are defined for a single (periodic) frame and are adjusted for each hop, so that
the frame can pass the network without any queuing delay along its path.

802.1Qbu/.3br – Frame Preemption allows the ongoing transmission of a frame to be
preempted by a frame marked as express traffic. This can allow especially short control
message frames to overtake potentially large frames currently blocking the egress port, and
thereby lower the latency. Preemption can also help to reduce guard band sizes, which are
required before exclusive TAS windows to ensure the port is idle and ready to send.

3The lowercase letters indicate amendment for the uppercase standard
4Updated by the TSN Task Group to cover multiple TSN domains as 802.1AS-2020
5https://1.ieee802.org/tsn/

https://1.ieee802.org/tsn/
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Fig. 5.1 Different TSN concepts at the egress port

802.1Qcc – Stream Reservation comprises improvements and new definitions for the
network management and outlines three fundamental configuration models. However, Qcc
is just a framework, as several other standards and amendments are required to provide the
managed objects to perform proper network management for TSN-enabled Ethernet. Critical
traffic is managed as so-called streams, which are identified by an assigned multicast MAC
address and 12-bit VLAN ID and represent frames flowing from a Talker to one or more
Listeners (both are end stations and considered users) following certain QoS parameters.
Usually, it is assumed that the forwarding path of a stream is configured statically (802.1Qca
– Path Control), opposed to the usually learned forwarding entries of bridges with the default
flooding behavior. There are three models how streams can be configured in the network:

Fully Distributed is the original model used for AVB. The user QoS requirements are
propagated along the active topology using a link-local protocol (originally MSRP, but to
be replaced by LRP/RAP through 802.1Qdd). The lack of a centralized configuration entity
means that the resource allocation decisions are performed locally without the knowledge of
the entire network.

Centralized Network / Distributed User (Hybrid) overcomes this limitation by central-
izing the resource allocation at a Centralized Network Configuration (CNC) entity, which
is a full view of all streams and the entire network. The configuration is pushed to the
bridges using a remote network management protocol and standardized managed objects,
e.g., NETCONF [132] and YANG [133], resp. The limitation of this model is that the CNC
can only configure bridges, but not the end stations - 802.1Qdd will fix this.
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Fully Centralized introduces a new entity called Centralized User Configuration (CUC).
The CUC is responsible for the discovery of end-stations, retrieval of end-station QoS
requirements and capabilities, and configuration of TSN features in the end stations. For this,
the CUC communicates with the CNC through an interface currently being standardized in
802.1Qdj. The configuration of the bridges is pushed from the CNC similar to hybrid above.

Note that CUC and CNC are abstract entities in 802.1Qcc and their implementation is
left open. PubSub TSN Centralized Configuration (PTCC) [134] is a proposal for a CUC
using OPC UA as interface to the users. [135] proposes TSN configuration using OpenFlow,
yet does not align with the interfaces of typical industrial equipment. This study proposes an
approach using the W3C WoT abstractions, where user QoS capabilities are embedded in
TDs, user QoS requirements declared in the mashup applications, and CUC/CNC are running
on a WoT Servient with NETCONF and OPC UA protocol bindings.

5.1.3 Design

Term (qos:) Description Assignment Type
flowName Unique name for data flow (unique within QoS domain, e.g.,

TSN domain)
mandatory string

talker Source of the data flow (e.g., interface MAC address) mandatory string
listener Destination of the data flow (e.g., interface MAC address) mandatory string
trafficClass Traffic class for the data flow (Literal, one of deadline,

latency, bandwidth)
mandatory string

cycleTime Interval between messages or for bandwidth definition in
nanoseconds

mandatory integer

maxBytes Maximum message size in bytes above Layer 2 (same as QoS
capability, originates in Form)

mandatory integer

deadline Relative time within cycle by when the message must be
received in nanoseconds

m. for deadline integer

offset Relative time within cycle after which the message is sent o. for deadline integer
lossLimit Number of acceptable message losses in a row optional integer

Table 5.1 QoS requirement terms are assigned values by the mashup application and define
the class FloW. They need to be parameterized through QoS capabilities (cycleTime between
minCycle and maxCycle of the Thing, maxBytes given in Form). The combined parameters
are passed as inputs to an ScheduleFlow Action of a scheduler Thing to request network
configuration.

WoT applications, or physical mashups[82], are quite similar to industrial automation
applications, where one or more controllers contain all the application logic and exchange
control messages with devices such as drives or remote I/Os, which can be represented as
Things.
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Fig. 5.2 Industrial IoT environment with TSN-enabled Ethernet connectivity and end-devices
with OPC UA interfaces, orchestrated through a W3C Web of Things Servient

Concrete QoS requirements are defined by the application logic, as only it knows at what
rate and precision it requires inputs and at what rate and precision it wants to control outputs.
These requirements, however, can only be met if the Things used have the capability to meet
the choices by the application. Hence, Things must declare their QoS capabilities, so that the
right application behavior including QoS can be verified. Thing QoS capabilities result from
various aspects such as network interface bandwidth or processing power marking a lower
bound on the possible cycle time, or mechanical reasons calling for an upper bound between
the control messages.

WoT Thing Description in general is designed to retrofit metadata to existing devices.
Hence, TDs can also retrofit QoS information to industrial devices that are not aware of
TSN or similar QoS mechanisms, but have documented capabilities. This helps to use such
devices in a TSN-enabled converged network and, with the right network configuration, give
them the illusion of exclusive network usage to meet QoS, while in reality IT traffic and even
other real-time applications may co-exist in the same network.

Figure 5.2 shows the operational flow for enabling QoS as part of W3C WoT in an
Industrial IoT environment. More in detail:
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1. WoT applications such as the ’Controller App’ fetch the TDs for the consumed Things
as usual, however, the TDs are annotated with QoS capabilities.

2. WoT applications then first validate their internal QoS requirements against the QoS
capabilities. If this fails, they have to discover alternative Things or notify the QoS
mismatch. (Note that this can also be done offline.)

3. WoT applications then use the QoS requirements terms to request the necessary stream
reservations from a scheduler such as the ’TSN Scheduler App’ (cf. CUC/CNC). (Note
that the Scheduler App may also run in its own Servient or even as an existing service,
as long as it provides an exposed Thing interface described by a TD).

4. Schedulers try to calculate a possible schedule for the network.

5. If successful, schedulers try to push out the schedule over a remote network manage-
ment protocol such as NETCONF.

6. If successful, schedulers confirm the WoT application request. If this or the previous
step failed, the request is rejected and the WoT application has to perform error
handling (e.g., notify user).

7. If confirmed, WoT applications can start operation

Note that ideally the network components, i.e., bridges, are also treated as Things. The
’TSN Scheduler App’ consumes bridge Things through their TDs and uses the NETCONF
protocol binding (see Section 5.1.5) to configure them. This may not be the case, when an
existing service is chosen as the scheduler.

TD Vocabulary

As the vocabulary is not reviewed by the W3C WG yet, we use the example namespace
http://example.org/2020/wot/qos#.
The recommended prefix to use in TDs is qos:.

The QoS requirements terms listed in Table 5.1 are used to manage data within the WoT
application requiring QoS and serve as DataSchema definitions for the network configuration
request.

The QoS vocabulary terms in Table 5.2 are used to annotate device TDs with QoS
capabilities and parameters. Most got into an instance of the class Capabilities, which is
similar to the VersionInfo container [78]. All of them are optional.
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Term (qos:) Description Class Type
capabilities Container for the QoS capabilities Thing Capabilities
workingClock ID of the working clock (e.g., 802.1AS) if synchronized;

required by trafficClass deadline
Capabilities string

minCycle Fastest supported cycle time in nanoseconds Capabilities integer
maxCycle Slowest supported cycle time in nanoseconds Capabilities integer
maxBytes Maximum message size in bytes above Layer 2 (i.e., includ-

ing IP headers if any)
Form integer

Table 5.2 QoS capability terms, which are defined by the Thing. Their assignment is optional
for TDs, but they are required if the Thing shall be used with QoS. The working clock must
be identical to the one of the application (e.g., same PTP domain).

5.1.4 Protocol Bindings: OPC-UA

OPC UA has two modes of communication: client-server and PubSub. Client-server uses
a binary protocol over TCP (UA-Binary). The often mentioned HTTP support has little
relevance today, as it actually is WS-* (SOAP). PubSub reuses UA-binary over four possible
transports: AMQP, MQTT, UDP, and Ethernet (Layer 2). The UA JSON format intended
for browser applications is usually not spoken by devices. The information modeling on top
is inspired by the Web and uses nodes (identified by namespace and ID) that have attribute
values (defined per node type) and are connected via bidirectional, browsable references.
FLC is expected to use client-server for configuration and connection establishment, while
PubSub is used for the operational (real-time) data.

Design Challenges

Mapping to Properties, Actions, and Events: The read/write/monitorable variable nodes
(Properties), method nodes (Actions), and nodes with alerts (Events) fit directly onto the
WoT affordance classes. Other OPC UA nodes serve for structuring the information, which
is done with the Linked Data annotations inside the TD. Opposed to variable values, node
attributes are usually static and can become TD annotations (e.g., AccessLevel bitmasks can
be converted to the standard readOnly/writeOnly TD fields).

DataSchema: Since OPC UA uses binary data types, JSON schema is not sufficient to
describe how data will travel on the wire. Hence, the DataSchema has to be extended with
the explicit OPC UA types (e.g., Float vs Double), so that the data can be encoded correctly.
This information is binding-specific, and hence should go into the form field. However,
the form field is not available to the entity processing the content based on the content
type (ContentSerdes and its codecs in node-wot). Furthermore, forcing it into the form
field would require repeating the whole structure description done by the DataSchema (e.g.,
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complex types with object/array). Hence, the opc:dataType annotation within DataSchema
has been used for this purpose.

Form: href URI: Many protocols lack a URI scheme to string-encode their addressing
information. While the scheme opc.tcp: is used by OPC UA, it is not registered with
IANA. It is only used to pass host address and port; the path part is left open for custom
interpretation by each server. To integrate OPC UA better into the Web world, we propose a
stricter and more useful definition for the URI scheme: it shall be able to point to address
an individual node through the URI. A blocker for this is that numeric IDs are generated
non-deterministically on server startup, yet string IDs do work in practice. There are multiple
options to encode namespace and node ID such as normal query notation with ? and & or
assigning specific path segments like in a RESTful API. Note that the URI scheme defines
how the rest after the first colon is interpreted. We decided to reuse the notation that is already
used in most of the OPC UA tooling, which uses semicolons to separate the ID tokens:

1 opc.tcp :// localhost :5050/ server -path?ns=1;s=mynode

Although methods are defined for nodes, they are called through a special method service,
which requires node-info for the method and for the node on which it is called. We added
this as additional semicolon-separated tokens prefix with m for method:

1 opc.tcp :// localhost :5050? ns=1;s=mynode;mns=1;mb =9997 FFAA

Form: contentType There is no available media type for UA-Binary payloads. Thus,
we use application/x.opcua out of the experimental range.

Resulting Binding Template

The OPC UA binding requires the definition of a URI scheme. The scheme-specific syntax is
mostly similar to http URIs. The query-like node-info uses a semicolon delimiter and fixed
variables:

1 opc -URI = "opc.tcp:" "//" authority path -abempty [ "?" node -info ]

The possible node-info variables are ns (namespace), i (numeric ID), s (string ID), g (GUID),
b (opaque/hex ID), and once more with an m-prefix to address a method node.

The binding vocabulary is given in Table 5.3. The possible method names map directly
to the OPC UA services except for Monitor. This is a shorthand to make the creation of
subscriptions for monitored items transparent and leave the management of monitored items
to the binding implementation (similar to the hidden session establishment).
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Term (opc:) Description Class Assignment Type
methodName OPC UA method name (Literal, one of Read,

Write, HistoryRead, HistoryWrite, Call,
Monitor)

Form default string

dataType OPC UA specific type (one of Null, Boolean, SByte,
Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64,
Float, Double, String, DateTime, Guid, ByteString,
XmlElement, Guid, ExpandedNodeId, StatusCode,
QualifiedName, LocalizedText, ExtensionObject,
DataValue, Variant, DiagnosticInfo)

DataSchema mandatory for
opc.tcp form

string

Table 5.3 OPC UA Binding Template vocabulary

A TD sample with OPC UA binding is given in Listing 5.1. Note that the binding
vocabulary does not cover the application-specific OPC UA information model annotations.
Converting these OPC UA core and companion standards to Linked Data is out of the scope
of this work.

1 "properties": {
2 "Velocity": {
3 "type": "number",
4 "observable": true,
5 "opc:dataType": "Double",
6 "forms": [{
7 "href": "opc.tcp://xts.local:5050/ns=1;
8 s=GVL.OPC_Interface.MOVER[1].Input.Velocity",
9 "contentType": "application/x.opcua -binary" }] },

10 ... },
11 "actions": {
12 "Execute": {
13 "input": {
14 "type": "boolean", "opc:dataType": "Boolean" },
15 "output": {
16 "type": "boolean", "opc:dataType": "Boolean" },
17 "forms": [{
18 "href": "opc.tcp://xts.local:5050/ns=1;s=GVL.OPC_Interface.
19 XTS.Input.Execute",
20 "contentType": "application/x.opcua -binary",
21 "opc:method": "Call" }] } }

Listing 5.1 Thing Description sample with OPC UA binding for one of the ten transport
system movers used in Section 5.1.6
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5.1.5 Protocol Bindings: NETCONF

The Network Configuration (NETCONF) protocol is a network management protocol devel-
oped and standardized by the IETF [132]. It is XML-based and uses RPCs over SSH to install,
manipulate, and delete configurations of network devices. The information modeling used
for the XML messages is YANG [133], which is modular and specialized for the recurring
structures in network equipment. There are also two relatives following YANG: RESTCONF
[136] mainly used for SDN controllers and the CoAP-based CoRECONF mainly used for
LP-WANs. Network devices such as managed bridges, however, usually have a NETCONF
server, as there are slightly more features for close control.

Design Challenges

Mapping to Properties, Actions, and Events: YANG structures fit quite well with Web
resources, which is intuitive considering RESTCONF. Leaf-nodes contain read-/writable
data like Properties and defined RPCs map to Actions. Some NETCONF servers have a
notification capability that can be used through Events.

DataSchema: Since NETCONF uses text-based XML, JSON schema mostly works. The
only obstacle is that some values need to be qualified through a namespace. NETCONF does
this through XML node attributes, which are not supported in JSON. Many JavaScript XML
libraries as well as RESTCONF solve this by reserving special characters or member names
to carry attributes for the parent member. However, due to the JSON-LD nature of TD, this
pattern is not used so far and should be avoided. Hence, we flag an object as nc:container
and mark each property representing an attribute with nc:attribute (both terms are of type
boolean):

1 "type": "object",
2 "nc:container": true,
3 "properties":{
4 "xmlns":{
5 "type": "string", "format": "urn", "nc:attribute": true
6 },
7 "value":{ "type":"string" }
8 }

Form: href URI: NETCONF uses SSH and XPath to address nodes in its YANG
structure. This information has to be encoded in a potential netconf: URI. SSH host and
port are trivial, while XPath has special notations that are not allowed by the generic URI
syntax (e.g., brackets to select list items). Hence, it made sense to adopt the URI path logic
(with selectors and inlined namespaces) from RESTCONF, which is already URI compatible.
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This still requires an adaptor to recreate the XPath for NETCONF. Hence, we included an
improvement that enables support for the different datastores that NETCONF servers provide:
running for the current configuration, candidate for staging updates, and startup for the
configuration after boot. RESTCONF defines implicit rules on how data is copied between
these stores. The proposed NETCONF URI scheme uses the first path segment to explicitly
address the datastore, and thereby keeps this feature. Examples:

1 n e t c o n f : / / l o c a l h o s t : 8 3 0 / c a n d i d a t e / i e t f − i n t e r f a c e s : i n t e r f a c e s / i n t e r f a c e ? t y p e = iana−i f−t y p e : modem

1 n e t c o n f : / / l o c a l h o s t : 8 3 0 / r u n n i n g / i e t f − i n t e r f a c e s : i n t e r f a c e s / i n t e r f a c e = e t h 0 / t y p e

Form: contentType: Because of RESTCONF, there is a suitable media type registered
with IANA: application/yang-data+xml.

Special: Different datastores There is another speciality attached to the NETCONF
datastores. After writing the Properties, a commit RPC is required to apply the new configu-
ration (copy it to the running store). One option is to make the commit immediately after
each successful edit like RESTCONF. Another is to implement the writemultiple operation
for the binding and performed the commit on a complete batch. NETCONF is still used on
network devices because of its detailed explicit features. Hence, we use an explicit commit
Action that is semantically annotated with a term from the NETCONF vocabulary.

Special: Namespaces: NETCONF uses namespace CURIEs, a short prefix that must be
associated with the fill namespace URI. It is also required to make the href URI work. As
this is just additional binding metadata, it simply goes into the form field:

1 "nc:curies": {
2 "ietf -interfaces": "urn:ietf:params:xml:ns:yang:ietf -interfaces",
3 "iana -if -type": "urn:ietf:params:xml:ns:yang:iana -if -type"
4 }

Special: YANG complexity:
YANG models are specialized for deep and repetitive structures. There might be hundreds

of leaf nodes for a single interface, while large bridges might have 48 interfaces or more.
This gets very verbose with the flat TD structure. Hence, we recommend making good use of
URI Templates (cf. uriVariables) when creating TDs with NETCONF binding.

Resulting Binding Template

The NETCONF binding requires the definition of a URI scheme. The scheme-specific
syntax is identical to http URIs, except for the netconf: scheme and a default of 830
when the port subcomponent is missing. The semantics of the URI scheme is identical to
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Term (nc:) Description Class Assign. Type
methodName NETCONF RPC to be used in the request (Lit-

eral, e.g., get-config, edit-config, commit,
cancel-commit, copy-config, validate,
lock, unlock)

Form default string

curies Dictionary mapping namespace URIs/URNs to
CURIEs (used in href and data)

Form optional Map of string

container If true, indicates that the object member has at-
tributes in addition to properties

DataSchema optional boolean

attribute If true, indicates that the property is an attribute of
the parent container

DataSchema optional boolean

Target Class to be used as @type annotation indicating the URI variable defines the datastore
CommitRPC Class to be used as @type annotation indicating the Action triggers a commit

Table 5.4 NETCONF Binding Template vocabulary

RESTCONF [136], except that the root resource must be a single path segment that identifies
the datastore (i.e., NETCONF "target") and is directly followed by the YANG path (and not
the RESTCONF mandatory or optional API resource such as data or operation):

1 netconf -URI = "netconf :" "//" authority "/" datastore
2 path -abempty [ "?" query ]

The binding vocabulary is given in Table 5.4. The possible method names map to the
NETCONF-defined RPCs, but also custom YANG-defined RPCs are allowed.

A TD sample with NETCONF binding is given in Listing 5.2. Note that the binding
vocabulary does not cover the application-specific YANG semantics. Converting YANG
modules to Linked Data is out of the scope of this work.
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1 "properties": {
2 "admin -control -list": {
3 "type": "array",
4 "items": {
5 "type": "object",
6 "properties": {
7 "index": {
8 "type": "number",
9 "minimum": 0, "maximum": 127 },

10 "time -interval": {
11 "type": "number",
12 "minimum": 0, "maximum": 4294967295 },
13 "gate -state": {
14 "type": "number",
15 "minimum": 0, "maximum": 255 } } },
16 "uriVariables": {
17 "datastore": {
18 "@type": "nc:Target",
19 "type": "string",
20 "enum": ["candidate", "running", "startup"] },
21 "interface": {
22 "type": "integer",
23 "minimum": 0, "maximum": 7 } },
24 "forms": [{
25 "href": "netconf://172.17.0.2:830/{datastore}/
26 huawei:tsn -configuration/
27 interface={interface}/
28 gate -parameters/admin -control -list",
29 "contentType": "application/yang -data+xml",
30 "nc:curies": { "huawei":

"urn:ietf:params:xml:ns:yang:huawei -tsn" } }] },
31 ...

Listing 5.2 Thing Description sample with NETCONF binding for a switch used in
section 5.1.6

5.1.6 Proof of Concept

The implementations of the proposed protocol bindings have been merged into Eclipse
Thingweb’s6 node-wot7, the official reference implementation of the W3C WoT Working

6https://www.thingweb.io/
7https://github.com/eclipse/thingweb.node-wot

https://www.thingweb.io/
https://github.com/eclipse/thingweb.node-wot
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Group. It is available under Eclipse Public License v. 2.0 and/or W3C Software Notice and
Document License (2015-05-13) (similar to MIT License).

The OPC UA binding implemented in the binding-opcua package uses the node-opcua8

library for communication. Currently, only the client part is implemented, as this is the main
use case for WoT applications, but exposing a Thing over OPC UA would also be possible.
OPC UA clients and their sessions are handled via the ClientFactory pattern. The main effort
is to adapt between the DataSchema-based JSON inputs/outputs and the node-opcua API,
which requires a library-specific format with UA-specific types.

The NETCONF binding implemented in the binding-netconf package uses the node-
netconf9 library for the XML messaging layer and SSH transport, for which in turn the ssh210

package is used. The sessions are already abstracted by the library. The main effort is to
convert from the href URI to the internally used XPath and namespaces, and to match the
JSON inputs/outputs against the library API, which uses its own JSON convention.

The ContentSerdes (Content Serializer/Deserializer) of node-wot is designed to handle
the JSON input/output mapping to protocol payloads based on media types. The protocols,
and hence libraries of the binding implementations, however, do not follow this uniform
interface constraint and require a library-specific representation of the body. Hence, we had
to implement ContentSerdes codecs that register for a media type, but actually produce and
parse library-specific target formats. Forcing the codecs to a standard representation format
would increase the implementation as well as processing effort notably. More experience has
to show if the split into bindings and ContentSerdes makes sense in the long run; it did make
sense for HTTP and CoAP.

The credentials for connecting to the OPC UA server and the ones required for the SSH
connection to the NETCONF server can be added into the wot-servient.configuration.json
as usual.

The TSN Scheduler App is implemented using a proprietary scheduler developed in
Java. It provides an interface for the stream requirements (input) and schedule with network
configuration (output), which can be used to build a WoT wrapper that exposes the scheduler
as Thing.

The design and implementation have been validated through a proof of concept on a
real TSN testbed. The testbed hardware is shown in Figure 5.3. It consists of a linear drive
transport system as its center, where two-colored levers are mounted on the movers. A
retractable cylinder connected to a remote I/O can flip over selected levers by extending at
the right time. A robot arm can re-erect selected levers when it is triggered at the right time.

8https://github.com/node-opcua/node-opcua
9https://github.com/darylturner/node-netconf

10https://github.com/mscdex/ssh2

https://github.com/node-opcua/node-opcua
https://github.com/darylturner/node-netconf
https://github.com/mscdex/ssh2
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TSN Switches

Remote I/O

Edge node with
WoT Servient

Transport System

Robot

Fig. 5.3 TSN Testbed with WoT-based supervisory logic on edge node and field devices with
OPC UA interface

The WoT Servient with the supervisory logic is running on an edge computing node. All
components are connected through a TSN fabric provided by some prototype TSN switches
made by Huawei.

The demo application is to flip all levers of a selected color and erecting them again
through the robot. For this, the supervisory logic requires cyclic updates of the mover
positions and must be able to trigger the flipping cylinder and the robot at exact points in
time. This can be disturbed by cross-traffic by an exemplary video stream from an IP camera
to an HMI (Human-Machine Interface, an industrial touchscreen) and more drastically by a
traffic generator.

This implementation proofs that the W3C-WoT based QoS concept is equivalent to classic
network management with CUC/CNC. The QoS metadata in the TDs and application itself
allows the scheduler to calculate a valid schedule. The network is successfully configured
through the NETCONF binding and the operations are carried out correctly through the OPC
UA binding.

Neither the industrial devices nor the network equipment were modified for this evaluation.
It shows that the TD model is powerful enough to access all features through the affordances
and that the concept and bindings work for existing real-world equipment.

Note that at the time of writing, OPC UA PubSub is not available for the industrial
equipment used. We thus used client-server, which still works given the generated schedules
for the gigabit TSN fabric.
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5.2 Web Things migration from Cloud To Edge

5.2.1 Context and Motivations

Problem statement The impressive growth of the Internet of Things (IoT) in terms of
devices connected and of data produced can be explained by the versatility of its paradigm,
which applies to a wide range of different use cases: from digital manufacturing to smart cities
and environmental monitoring [137]. Most of those IoT environments are characterized by
the heterogeneity of hardware and software components involved in the system deployment,
as well as by the dynamism of the interactions among them. In fact, the actual IoT landscape
comprises an uncountable number of protocols, stacks, and cloud ecosystems. Although
cloud ecosystems are able to mitigate some of the interoperability issues by means of
Web technologies (i.e. REST APIs, JSON, Web Sockets), they are often based on silos
architectures with implicit or explicit vendor lock-in. Furthermore, such solutions employ
a sensor-to-cloud approach in which devices are managed thanks to cloud connectivity,
again with limited extensibility. The WoT architecture and its reference implementation [25]
envisage that the run-time environment of a WT (called Servient) is statically deployed on
a network node. In this Section, we aim at extending the WoT potential for dynamic IoT
environments, characterized by the presence of computational nodes on the full IoT spectrum
(edge/fog/cloud). More specifically, We address the following key questions:

1. How to enable seamless migration of a WT between two different nodes?

2. How to optimize the performance of a WoT deployment by orchestrating the Web
Thing (WT) allocations on a cloud-edge continuum?

Research context Besides the wide literature on live migration of Virtual Machines (VMs)
in data-centers, service mobility has gained considerable interest also in the IoT domain for
different purposes. On the one side, several large-scale IoT applications operate in dynamic
environments, characterized by the rapid changes of bandwidth/computational requests,
of devices connected, and of service requirements. To this purpose, IoT platforms like
[138][139] provide seamless workload mobility on the edge-cloud continuum, to distribute
software tasks to the available computational nodes. On the other side, mobile IoT devices
generating space/time-variant data streams are further pushing the research towards flexible
platforms able to self-configure to meet the Quality of Service (QoS) for the user applications
[140]. To this aim, Mobile Edge Computing (MEC) [141] (and closely related concepts
such as Cloudlet [142], Fog Computing [143], and Follow Me Cloud [144]) denote recent
computational architectures aimed at running processing tasks in the proximity of the data
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sources. A core component of MEC approaches is the seamless service offloading towards
the edge/fog servers closer to the current user position [141]; this is typically implemented
employing container/VM mobility [145][146]. On the other hand, several studies focused on
the migration policies, e.g. to forecast the physical mobility of the IoT devices [147]. The WT
migration proposed in this study can be considered a quite novel research problem compared
to the literature on MEC systems, both in terms of potential and technical challenges.
Regarding the latter, the mobility of a WT from one node to another might impact the
operations of other WTs that were currently consuming it; hence, the WT handoff must
be properly managed. At the same time, since uniform software interfaces (i.e. the TDs)
describe the interactions among the WTs, it is possible to engineer fine-grained and adaptive
allocation policies. Those policies can migrate groups of WTs to meet system-wide QoS
requirements taking into account the actual network and computational load conditions.

To address the issues above, we propose in this Section the Migratable Web of Things
(M-WoT), an architectural framework providing dynamic allocation of W3C WTs to the
computational nodes in the edge/cloud spectrum. Specifically, we investigate how to support
the stateful migration of WTs among different nodes by managing the handoff procedure on
the consumer entities. At the same time, we envisage the presence of a WoT orchestrator,
which is in charge of monitoring the interactions among the WTs, and of optimizing the
WoT deployment at run-time by allocating the WTs to nodes according to high-level policies
(e.g. data locality maximization, latency minimization, etc). More in detail, three main
contributions are addressed:

• we present the components of the M-WoT software architecture (including the Thing
Directory, the Thing Monitoring layer, and the Thing Orchestrator) and discuss the
advantages of WoT migration mechanisms on two target IoT use cases. Moreover,
we propose an implementation of the M-WoT framework which relies on Docker
containers for Servient mobility.

• Although the framework is general and abstracts from the policy used to compute the
WoT deployment, we formulate the WT allocation as a multi-objective optimization
problem, by taking into account the inter-host communication load (generated by the
interactions among WTs) and the computational load of each host. Then, we propose a
centralized heuristic that allows to balance both the metrics above, i.e. to maximize
the privacy/data locality while taking into account the fairness on the utilization of the
computational resources.

• we validate the M-WoT operations through two testbeds. First, the performance of
different allocation policies is evaluated when varying the number of WTs and the
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interactions among them. Second, we investigate the effectiveness of the M-WoT
framework on a generic IoT monitoring scenario, where real-time diagnostic services
are dynamically migrated from cloud to edge nodes based on context conditions.

The evaluation analysis demonstrates that the proposed heuristic can effectively balance the
inter-host communication and the computational load when compared to greedy policies.
Moreover, in the IoT monitoring use case, the M-WoT solution is able to effectively reduce
the diagnostic latency compared to a state-of-the-art, no-migrate approach.

IoT Service Migration A multitude of approaches has been proposed to enable the seam-
less service migration among nodes of a distributed IoT system. In most cases, the software
mobility is aimed at supporting the physical mobility of IoT devices, by ensuring that the
data management/processing is always occurring at the edge of the network, hence as close
as possible to the current device location. Such a conceptual model is generally denoted
as Mobile Edge Computing (MEC) [141], although it presents several overlaps with other
state-of-the-art architectures, such as Cloudlet [142], Fog Computing [143], and Follow Me
Cloud (FMC) [144]. A detailed illustration of service migration techniques and strategies can
be found in [141]; here, the unique challenges of MEC compared to live migration for data
centers and to handover management in cellular networks are highlighted. Similarly, in [148],
the authors propose the concept of Companion Fog Computing (CFC), a software architecture
composed of distributed layers, one running on the mobile device, and another on a fog server;
the latter is dynamically allocated to nodes of the fog infrastructure in order to minimize
the distance from the current device location. Generally speaking, MEC-related platforms
must address two main issues: (i) how to define the service migration strategy, by taking into
account the current resource utilization of the infrastructure nodes as well as the QoS of the
IoT application; (ii) how to implement the software mobility, by also handling the migration
of the execution state. Regarding the first issue (migration policy), most of QoS-aware service
migration policies consider delay as the principal indicator of performance [149] and relies on
multi-dimensional Markov Decision Process (MDP) models to capture the system evolution
(i.e. the device mobility and consequential service mobility actions) over time (e.g. [147]).
Since mobility patterns might be difficult to collect in advance, an increasing number of stud-
ies is investigating the application of Machine Learning (ML) techniques for the estimation
of the optimal migration policy; an example is constituted by [139], where the usage of Deep
Reinforcement Learning (DRL) technique is proved to maximize the users’ reward, defined
as the difference between the QoS and the migration cost. Among the non-delay oriented
studies, we cite the self-organizing service management platform for smart-city proposed
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Fig. 5.4 The M-WoT migration environment.

in [150], wherein the ETX (Expected Transmission Count) metric is used to determine the
optimal positioning of IoT services over the fog nodes. Regarding the second issue (i.e.
software mobility), Virtual Machines (VMs) and containers represent the most investigated
techniques to implement stateless or stateful service migration. Proactive migration of VMs
according to predicted device mobility is considered in [145]; moreover, in order to reduce
the network overhead induced by the VM transfer, a container synthesis technique is applied
allowing a fog node to quickly resume the VM execution by applying deltas over a base
image. The possibility to perform horizontal (roaming) and vertical (offloading) migration
of IoT functions based on Docker containers is demonstrated in [146]. From a performance
perspective, the container-based implementation is often considered more suitable for the
virtualization at the network edge than the VM-based [151]. This is confirmed by several
experimental studies, including [152] that investigates the implementation of Docker-based
virtualization mechanisms for IoT data management and demonstrates that the energy impact
on single-board computers is negligible. An alternative to the usage of VM/containers is
constituted by the migration of active code: to this purpose, the ThingMigrate framework
[153] enables the migration of active Javascript processes between different machines by
employing injection mechanisms to track the local state of each function.

Before illustrating the technical contributions of this study, we introduce the concept of
WT migration, and motivate its usefulness on target IoT/WoT use cases.
Let us consider a distributed scenario composed of a set of computing nodes distributed in the
full stack of the IoT spectrum (from edge to the cloud), as depicted in Figure 5.4; each node
is W3C WoT enabled, i.e. it can host one or more Servients (i.e. the run-time environment of
the W3C WoT architecture), and each Servient contains one single WT in running state. WT
migration can be defined as the capability of dynamically offloading a WT between different
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Fig. 5.5 Two possible M-WoT use cases: the data processing service migration (Figure 5.5(a))
and the Digital Twin migration (Figure 5.5(b)).

nodes, by stopping the execution on the source node and re-spawning it on a destination node.
The migration process is assumed stateful, i.e. the internal state of a WT and its TD should
be moved and updated together with the code. In particular, all the current values of its
Properties and the information describing the current computational context of the WT should
be considered as part of its state and hence should be migrated. Based on the definitions
above, the WT Migration can be considered a particular instance of agent-based live migration
[154], where the agents are the WTs and the run-time is represented by the Servient. At
the same time, the WoT scenario introduces some unique issues and advantages that are
not considered in classical migration approaches (VM/container/agent-based) previously
reviewed, and that justify the need of radical different solutions:

• Thing handoff management. The W3C WoT allows seamless interactions among
heterogeneous software through the operations of WT consuming; if a WT migrates to
a different node, all the other WTs that were consuming it must be notified in order to
update their Consumed objects and point to the new TD address. The case is depicted
in Figure 5.4, where both WTs A and B are consuming WT C; the latter is migrated
from Host 1 to Host 2 at some future instant. As a result, a proper signaling procedure
must be employed in order to inform WTs A and B of when the activation of WT C at
Host 2 has been completed, so that they could consume again the TD of WT C. Also,
the migration process introduces a handoff interval, during which WT C might not be
able to process remote invocations from WTs A and B; the duration of such handoff is
clearly a critical parameter affecting the system performance.

• Support to Edge-cloud continuum. Although our implementation is based on the
reference W3C WoT run-time [25], Servients might have been designed with minimal
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requirements in terms of CPU/memory in order to be executed also on edge servers
or even on the extreme edge (i.e. small devices, micro-controllers). As a result, an
edge-cloud computing continuum can be devised by allowing WoT software to be
seamlessly deployed and dynamically moved over all the nodes of the continuum,
in order to guarantee system goals such as delay minimization, workload balancing,
network traffic reduction, privacy maximization.

• Advantage: Support to Group migrations. As followup of the previous point, a WoT
Migration framework could support the mobility of groups of software components
(rather than of a single service like it occurs normally in MEC approaches [141]) as a
consequence of the active data dependencies (i.e. interactions) among the WTs. Indeed,
each WT exposes its Affordances through the TD in a standardized way; as a result, it
is possible to build a real-time dependency graph among all the WTs of a distributed
WoT system (as further detailed in Section 5.2.3) and consequently envisage allocation
policies that determine group migrations of interacting subsets of WTs in order to
maximize the data locality. Clearly, group-based migration policies could be deployed
also on top of other micro-services architectures; however, for the case of M-WoT, this
feature could be supported in a general, protocol-agnostic way since the interactions
among the WTs occur according to a standardized interface, and hence they could be
easily accounted through the M-WoT monitoring layer described in Section 5.2.2.

Figures 5.5(a) and 5.5(b) show two possible use cases of the WoT migration, related to slightly
different conceptual models of WTs: the data processing service migration (Figure 5.5(a))
and the Digital Twin migration (Figure 5.5(b)). More specifically, Figure 5.5(a) depicts a
Structural Health Monitoring (SHM) application based on IoT/WoT technologies [155][115],
as proposed in the MAC4PRO project [41]. We assume that the monitoring system can
work in two modes: Normal and Critical, denoting two different QoS requirements for risk
detection. On the extreme edge there are the sensors (e.g. accelerometers) monitoring the
vibrations of a building over time. The sensor data is made available through the Sensor Web
Things (SWT) providing functionalities of data querying, and device status querying and
updating. The sensor data processing is handled by migratable WTs T1, T2, T3, and T4 that
implement respectively the functionalities of data fusion, data cleaning, data alerting, data
forecasting. In Normal mode, T1, T2 are executed on a shelter/fog node in the proximity of
the monitored structure, while T3 and T4 are hosted on a remote cloud; this introduces some
network latency in detecting anomalous/dangerous situations (computed by T3) but at the
same time it minimizes the load on fog nodes. At one point of the system execution, we
can assume that consecutive data anomalies are detected on the row data (T2), and hence the
monitoring system switches its mode from Normal to Critic; this action might also request a
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higher degree of responsiveness for the diagnostic system. In the M-WoT environment, the
mode change can be automatically handled by migrating the T3 service from the cloud to fog
nodes (or vice-versa when the mode switches again to Normal), without any manual need of
configuration, and without introducing any explicit signaling mechanism among the involved
WTs (i.e. T2 and T3).
Figure 5.5(b) depicts the second M-WoT use case where the migration involves WoT digital
twins. The latter is defined in the W3C standard as a virtual representation of a device or a
group of devices that resides on a cloud or edge node (...) they can model a single device,
or they can aggregate multiple devices in a virtual representation of the combined devices"
[24]. To this purpose, we consider a WoT application for the automotive industry like the
one proposed in [102]; a WT is associated to each in-vehicle component in order to enable
seamless access and interaction to car signals, as proposed in [102]. Like in the previous use
case, the Sensor Web Things (SWTs) are in charge of acquiring the data from the hardware of
the vehicle. In addition, we assume the presence of a Vehicle Web Thing (VWT), defined as
the digital twin of the vehicle as a whole; the VWT is the unique point of access to a subset
of the SWTs properties/actions/events, but it also exposes new Affordances derived from the
processing and fusion of multiple sensor data, e.g. for real-time vehicle diagnostic. Due to
the energy overhead, the VWT is hosted externally to the vehicle, on fog nodes owned by the
municipality. While the vehicle moves within the scenario, its VWT is dynamically spawned
on the closest fog node, similarly to the MEC applications [148][149], although here the
physical mobility of a device induces the mobility of a WT digital twin. In addition, we
conceive a city-wide scenario with many and heterogeneous VMTs, associated to different
vehicle types (e.g. cars, bikes, buses); the VMTs are in turn consumed by cloud-based City
Web Things (CWTs) that provide advanced mobility-related services, such as smart parking,
traffic monitoring, multi-modal routing, just as example. We highlight that the number of
VMTs can be highly dynamic over time, i.e. new Things might be created or disposed, as
an effect of the ground mobility; similarly, the computational load needed for the execution
of the VMTs and CWTs might vary over time. In our M-WoT environment, the VMTs are
dynamically allocated among the cloud/fog nodes as they appear in the system; moreover,
multi-goal load-balancing policies can be used, i.e. to minimize the distance from the data
source (i.e. the vehicle) while maximizing the utilization of the computational resources of
the fog/cloud nodes.

5.2.2 Architecture

The M-WoT software architecture is depicted in Figure 5.6. We assume a set of W3C WoT
Servients, deployed on different nodes; each Servient hosts exactly one WT. Differently
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Fig. 5.6 The M-WoT software architecture.

from a legacy W3C WoT deployment, which is assumed static, the M-WoT enables WT
mobility between different nodes. To this aim, the M-WoT features two novel components,
respectively the Orchestrator and the Thing Directory; these modules do not migrate and
can be deployed either on the edge (if the computational requirements are met) or on cloud
servers. In addition, a Monitoring Layer has been added to the Servient’s stack. In the
following, We detail the internal structure of the three modules, while in Section 5.2.2 we
clarify the modules’ operations when a WT migration process occurs.

Thing Directory

The Thing Directory (TDir), as introduced in Section 3.1.2, serves as registry of the M-WoT
resources, i.e. of the active Thing Descriptors (TDs). More in detail, we assume two types of
TDs, one associated to WTs, and one with Servients; the latter describes the capabilities of
the run-time environment, and it is used to enable the functionalities of the Monitoring Layer
described in Section 5.2.2. Once activated, each Servient registers its TD and the TD of the
hosted WT on the TDir. The TDir itself plays two main roles. First, it serves as discovery
service, i.e. when queried by clients, it returns the list of TDs meeting the query parameters;
as a result, the Orchestrator module can be aware of the list of Servients currently available
in the WoT scenario. Second, it supports generic push notifications towards WTs/Servients
once specific system events are detected, like for instance a WT handoff completion. To this
purpose, let us assume that WT T1 has been consumed by T2, which is periodically accessing
one of its properties. In case T1 is migrated on a different node, the actual data pipeline
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is broken unless T2 is notified about the mobility event and the new service location. The
notification process is illustrated in the sequence diagram of Fig. 5.9, discussed later in
Section 5.2.2. Alternatively, a polling mechanism might be employed (involving T1 and TDir
in our example). However, this approach might introduce significant network overhead with
consequent bandwidth wastage. Therefore it has not been considered in our solution.

WT Orchestrator

The Orchestrator constitutes the core component of the M-WoT architecture. As explained
before, it exploits the TDir to retrieve the list of active Servients (i.e. of their TDs). Then,
it periodically queries each Servient through its WoT interface in order to collect live
statistics, like the utilization of the CPUs and the network traffic involved by the WT
interactions. Based on the received metric values and on the optimization policy in use, the
Orchestrator determines the proper allocation of WTs/Servients to nodes. The allocation
plan is then transferred to an underlying layer (external to M-WoT), generically called here
Migration Substrate which is in charge of implementing the physical software mobility
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between the source and destination nodes. The steps above are continuously executed by
the Orchestrator during the system lifetime; as a result, the dynamicity of the IoT/WoT
environment concerning the WT creation/disposal, network bandwidth variation, policy
update at run-time, is fully supported. Moreover, in order to favour the platform extensibility,
the structure of the Orchestrator has been split into the three main submodules of Figure 5.7,
reflecting the internal data pipeline:

1. Thing Manager: it periodically polls data from the TDir to manage the list of the active
Servients/WTs and their TDs. The list is used to gather periodic reports from each
Servient.

2. Optimizer: it runs the WT/Servient allocation policy. At the current stage of imple-
mentation, the module hosts the graph-based optimization algorithm defined in Section
5.2.3 and the other greedy policies evaluated in Section 5.2.6; however, we remark that
any user-defined policy implementing the interface towards the upper (i.e. the Thing
Manager) and lower (i.e. the Migration) layers can be installed and used.

3. Migration: it receives the deployment plan from the Optimizer, and it implements
the WT handoff events. First, it stops the execution of the WTs to migrate at their
actual nodes; then, through specific connectors, it issues actions towards the Migration
Substrate to enable the physical transfer of the Servients (and of the hosted WTs) from
the source to the destination nodes.

The M-WoT architecture does not depend on any specific software mobility technology.
Instead, we have introduced an abstraction layer - called the Migration Substrate - which
can employ any state-of-the-art solution (via proper migration connectors), such as Docker
containers, VMs, or Javascript processes [141][153]. Those connectors will actuate the
Optimizer output plan received as input. Concretely, the current implementation relies on
Docker Swarm as a default migration connector, as better detailed in Section 5.2.5.

M-WoT Servient

Finally, the M-WoT framework introduces light modifications to the Servient runtime [25] in
order to feed the Optimizer with real-time data about system performance. More specifically,
a Monitoring API layer has been introduced between the WT application and the Scripting
WoT run-time as depicted in Figure 5.8. The layer is in charge of intercepting the invocations
to the Scripting API and of generating periodic Thing Reports (TRs). The latter can be
considered a snapshot of the current Servient/WT execution, and it contains the metrics’
values (both for the Servient and WT) required by the Optimizer. The Monitoring layer



122 Improvements for WoT

SERVIENT

Monitoring API

Protocol Stack Implemenattion System

Application Script

Behavior Implementation

Scripting WoT Runtime

WoT Scripting API

Private Security Data

Exposed Thing Consumed Thing

Fig. 5.8 The M-WoT Servient internal structure. The new Monitoring API module is
highlighted in solid green.

exposes all the data collected through a proper Affordance action, which has been added to
the Servient TD; by invoking it, the Orchestrator can issue a new request of TR generation to
the Servient.

Migration example

To summarize the operations of the three components presented so far, we provide an example
of the WT migration process. We consider two WTs/Servients, respectively TA/TB and SA/SB

(with TA running on SA and TB on SB), hosted on nodes N1 and N2. We also assume that TB has
consumed TA and it is periodically reading some of its properties. At time instant t, the Thing
Manager queries SA and SB in order to collect the TRs; this is implemented by consuming
the TDs of the Servients and issuing a retrieveReport command (details in Section 5.2.5).
Then, the Optimizer is executed; a new allocation is produced where TA must be moved to N2.
The sequence of operations performing the migration of TA from N1 to N2 is shown in Figure
5.9. First, the current execution of TA is stopped: this is performed by the Orchestrator (and
more specifically by the Migration submodule) by invoking the stop action on SA which, in
sequence, stops the WT application, cleans the system resources, retrieves the application
data context (i.e. the current state) and returns it. Hence, the application context of TA is
stored as metadata inside the TDir for later use. Next, the Orchestrator (through a proper
Connector) issues a request to the Migration Substrate (e.g. Docker Swarm) in order to move
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TA/SA to the destination node (N2). After SA has been respawned, it registers its new TD
(with the updated network addresses of its Affordances) in the TDir. Consequently, it queries
the TDir to retrieve the TA’s context; the latter is deserialized and injected as a global object
inside the TA’s application script. Finally, TA starts the initialization process and exposes
itself by triggering the registration of its TD on the TDir. At this point, TA resumes in the
same state of when it has been stopped and it is considered fully migrated. The TDir pushes
a notification to TB regarding the handoff process; TB retrieves the new TD of TA from the
TDir and consumes it again in order to point to the updated service location. Finally, TB

restarts interacting with TA and accessing its affordances.
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5.2.3 Migration Policy

In the following, we formally characterize the operations of the Optimizer as a multi-objective
optimization problem. For the purpose of this study, we consider a twofold optimization
process that takes into account the load-balancing issue (i.e. how much each host11 is loaded),
and the network communication overhead (i.e. how much data is exchanged among hosts).
The optimization problem is formally defined in Section 5.2.3. Next, a graph-based heuristic
is proposed in Section 5.2.4; its computational complexity is calculated in Section 46.Table
5.5 reports the list of variables introduced in Section 5.2.3.

Problem formulation Regardless of the target use case, we consider a generic WoT de-
ployment with NWT active WTs. The system evolves over ordered time slots T = {t0, t1, . . .};
each slot has a duration of tslot seconds and is equal to the interval between consecutive
executions of the migration policy. Let WT = {wt1,wt2, ...,wtNWT } be the set of WTs,
which can be heterogeneous in terms of data model (e.g. the Affordances). Without loss
of generality, let Ai = {a1

i ,a
2
i , ...,a

NAi
i } be the Affordances exposed by wti in its TD; each

Affordance can represent a property, an action, or an event. The set Ai is assumed static, i.e.
wti cannot update its TD at run-time (e.g. by defining new properties). The set Ai is assumed
static, i.e. wti cannot update its TD at run-time (e.g. by defining new properties Let H be
the set of hosting nodes, with H = {h1,h2, ...,hNH} and assumed heterogeneous in terms
of hardware. Indeed, each node may have a different computational power; without loss
of generality, this is modeled through a generic computational power index γ(hl),∀hl ∈ H
which abstracts from the hardware details, and it is defined as the maximum number of
Things that can be executed on that host. The allocation of WTs/Servients12 to hosts is
defined by the policy function P : WT ×T → H; for each WT wti, the value P(wti, tk) = hm

specifies the machine (i.e. hm) which is hosting it at time slot tk. Based on the output of
the allocation policy, the set PTm,k ⊆WT denotes the list of WTs that are hosted by host
hm at time slot tk, i.e.: PTm,k = {wti ∈WT | P(wti, tk) = hm}. According to the W3C WoT
architecture presented in Section 2.5.5, each WT wti can interact with another WT wt j by
first consuming it. This is modeled by assuming that, at each time slot tk, wti can issue
a list of requests Ri, j,k={r1

i, j,k,r
2
i, j,k, ...} on the consumed wt j; each request ry

i, j,k refers to
an Affordance of wt j, and it consists in: a property reading/writing, action invoking or
event processing. The mapping between Affordance and requests, i.e. which Affordance
is activated by each request, is modeled through a function f : Ri, j,k → A j. The cost of a

11The terms hosts and nodes are used interchangeably in this study.
12For ease of disposition, we refer to WT migration in the following by meaning also the migration of the

Servient hosting it. We do not model the Servient in the theoretical framework, since we assume that each
Servient hosts exactly one WT.
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request is defined as the cost of the corresponding Affordance activated on the consumed
WT, i.e. C(ry

i, j,k) =C(ax
j), with ax

i ∈ A j and ax
j = f (ry

i, j,k). It is worth highlighting that the
notation above assumes that the same Affordance ax

i might be activated multiple times by
wti during the same time slot, although they are considered different requests (e.g. WT wti
reads twice the same property ax

j on WT wt j during time slot tk). The implementation of
each request ry

i, j,k involves some data exchange between WTs wti and wt j; let B(ry
i, j,k) be

the data exchanged (in bytes) between the two WTs, including both the eventual parameters
passed from wti to wt j as well as the eventual return values from wt j to wti. The B(ry

i, j,k)

value is included in the TR message, which is periodically sent by each WT to the Optimizer
as previously described in Section 5.2.2. We denote with B(i, j,k) = ∑B(ry

i, j,k) ∀r
y
i, j,k ∈ Ri, j,k

the total communication load occurring between WTs wti and wt j at time slot tk. Clearly,
B(i, j,k) = 0 whether wti is not consuming wt j at time tk, or no interaction occurs among
them (i.e. Ri, j,k = /0).
The goal of the Optimizer is to determine the policy which computes - at each time slot tk-
the optimal trade-off between computational resource utilization (i.e. load balancing over the
hosts) and data locality (i.e. how much data is transferred among the hosts). To this purpose,
we define the Network Overhead (NO) metric as the total inter-host communication load (in
bytes) occurring due to interactions among WTs hosted by different nodes. More formally:

NO(tk) = ∑
wti∈WT,wt j∈WT,P(wti,tk )̸=P(wt j,tk)

B(i, j,k) (5.1)

It is important to clarify that the NO(tk) metric above quantifies the end-to-end, application-
layer, communication traffic between nodes of the M-WoT cluster, generated by the inter-
actions among different WTs; it does not include the network-layer overhead (e.g. caused
by multi-hop message forwarding among the routers) since the M-WoT framework is imple-
mented at the application layer and the knowledge of the topology of the underlying network
infrastructure is not assumed. Similarly, we introduce the Host Fairness (HF) metric defined
as the difference between the most loaded and most unloaded host of the cluster, i.e.:

HF(tk) = maxhm∈HL(hm, tk)−minhm∈HL(hm, tk) (5.2)

here, L(hm, tk) defines the computational load ratio of hm at time slot tk, and it is related to
the number of WTs hosted by it over its computational power, i.e.:

L(hm, tk) =
|PTm,k|
γ(hm)

(5.3)
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Let ptk
wti,hm

be the binary variable indicating the WT allocations, defined ∀tk ∈ T , ∀wti ∈
WT , and ∀hm ∈ H as follows:

ptk
wti,hm

=

{
1 if P(wti, tk) = hm

0 otherwise
(5.4)

Through the NO and HF metric introduced above, the migration problem can be formally
defined as follows:

min
p

tk
wti,hm

NO(tk) (5.5)

s.t. L(hm, tk)≤ 1 ∀hm ∈ H (5.6)

HF(tk)≤ ∆ (5.7)

Constraint 5.6 ensures that the allocation on each host does not exceed the computational
capabilities of that host (γ(hm)). In Constraint 5.7, ∆ is a user-defined parameter, which
quantifies the trade-off previously mentioned. It is easy to notice that the HF and NO metrics
are tightly coupled: minimizing the network load can be achieved by a policy that allocates
all the WTs to the same host. However, this constitutes the worst-case for the load fairness.
Hence, two extreme scenarios are possible:

• The system goal is to minimize the data exchanged over the network, regardless of
the service latency; this might the case of an edge-cloud IoT scenario, where the
stake-holder is interested in minimizing the amount of data transferred toward a remote
infrastructure for privacy reasons. In this case, ∆ = ∞.

• The system goal is to minimize the service latency, by avoiding the presence of
performance bottlenecks, i.e. overloaded hosts, while still mitigating the amount of
inter-host communications. In this case, ∆≤ 1.

All the intermediate situations are modeled through a proper tuning of the ∆ parameter, which
is assumed as input of the optimization problem.

5.2.4 Proposed Heuristic

We propose a graph-based heuristic that ensures the constraint 5.7, while relaxing the
constraint 5.6 and addressing the goal function (Equation 5.5) through a greedy approach.
The solution relies on the construction of a WT dependency graph G(V,E,W,L) which
models the interactions among the WTs:
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Parameter Description
tslot Slot Length (interval between consecutive migration policy executions)

T = {t0, t1, ...tk} Temporal evolution as sequence of fixed-length time slots
H Set of hosting nodes composing the M-WoT cluster

NH = |H| Number of hosting nodes
WT Set of Web Things (WTs)

NW = |WT | Number of Web Things (WTs)
γ(hl) Computational power of hosting node hl

P(wti, tk) Allocation function, returning the hosting node of WT wti at time tk
ptk

wti,hm
Binary variable defining the allocation of the WTs over time depending on P(wti, tk)

PTm,k Set of WTs hosted by node hm at time wti
Ai = {a1

i ,a
2
i , ...,a

NAi
i } List of Affordances exposed by WT wti

ry
i, j,k ∈ Ri, j,k Affordance request issued by wti toward wt j at time tk

Ri, j,k Cumulative list of Affordance requests issued by wti towards wt j at time tk
B(ry

i, j,k) Traffic load (in bytes) between WTs wti and wt j to execute request ry
i, j,k

B(i, j,k) Total traffic load (in bytes) exchanged between wti and wt j at time tk
NO(tk) Total inter-host communication at time tk in the M-WoT cluster

L(hm, tk) Load Ratio of host hm at time tk: number of WTs hosted, normalized over γ(hm)
HF(tk) Difference between most loaded and unloaded hosting nodes (loads expressed in terms of L(hm, tk))

∆ User-defined constraint on the HF(tk) value

Table 5.5 List of variables and parameters introduced in Section 5.2.3.

• V is the set of vertexes; each vertex represents a WT, hence V = WT and vi = wti
∀wti ∈WT .

• E is the set of edges; each edge el(vi,v j) connects two vertexes vi,v j ∈V and models
the interaction between the two WTs. More specifically, there exists the edge el(vi,v j)

only if B(i, j,k)> 0 or B( j, i,k)> 0.

• W : E → R is a weight function, assigning a cost to each edge el(vi,v j) ∈ E. Here,
the value W (el(vi,v j)) quantifies the total data exchanged among WTs, in case wti is
consuming wt j or vice versa, i.e. W (el(vi,v j)) = B(i, j,k)+B( j, i,k).

• L : V → R is a load function, assigning a cost to each vertex v ∈V . If we assume to
know the CPU load (C(r)) induced by each request received by wt j, then L(v j) can be
defined in a fine-grained way as L(v j) = ∑wti∈WT ∑r∈Ri, j,k

C(r). In this study, we do
not assume such knowledge, hence we generally set L(vi) = 1 ∀vi ∈V , i.e. all WTs are
assumed to produce the same load, while the total load of host hm (denoted as L(hm)

in the following) is simply the number of WTs hosted.

The graph G is built and continuously updated by the Optimizer by processing the TR
messages received by each Servient. At the beginning of each time slot (e.g. tk), the
Optimizer visits the graph and allocates the WTs to hosts according to the policy output (i.e.
the PT (hi, tk) values); since the policy is computed once for each slot, we omit the temporal
notation (i.e. the tk) in the rest of this Section.
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Algorithm 1: The graph-based heuristic
Input: Dependency graph G(V,E,W,L), time slot tk
Output: Allocation sets PT (hm, tk)∀hm ∈ H

1 GC = {G1,G2, ...,GNC}← GetGomponent(G)
2 forall Gi ∈ GC do
3 L(Gi)← ∑v∈Gi L(vi)
4 end
5 GC← Sort(GC,L)
6 H← Sort(H,γ)
7 cont← 0
8 while GC ̸= /0 do
9 Gh← Head(GC)

10 PT (cont, tk)← PT (cont, tk)
⋃

Gh
11 L(hcont)← L(hcont)+L(Gh)
12 cont← (cont +1)%NH

13 end
14 ⟨balanced,hmin,hmax⟩ ← CheckBalanced(H,∆)
15 while balanced ==false do
16 forall vi ∈ PT (hmax, tk) do
17 loss← TotInteractions(vi,PT (hmax, tk))
18 gain← TotInteractions(vi,PT (hmin, tk))
19 overhead(vi) = loss−gain
20 end
21 vs← argmin(overhead(vi)) ∀vi ∈ PT (hmax, tk)
22 PT (hmin, tk))← PT (hmin, tk)

⋃
{vs}

23 L(hmin)← L(hmin)+L(vs)
24 PT (hmax, tk))← PT (hmax, tk)\{vs}
25 L(hmax)← L(hmax)−L(vs)
26 ⟨balanced,hmin,hmax⟩ ← CheckBalanced(H,∆)

27 end
28 return PT
29

30 Function CheckBalanced(H,∆):
31 hmin← argmin(L(hi)) ∀hi ∈ H
32 hmax← argmax(L(hi)) ∀hi ∈ H
33 niter← niter +1
34 if L(hmax)−L(hmin)≤ ∆ then
35 balanced← true
36 else
37 balanced← false
38 end
39 return balanced,hmin,hmax

40

41 Function TotInteractions(vs,S):
42 interactions← 0
43 forall v j ∈ S do
44 interactions← interactions+W (e(vi,v j))
45 end
46 return interactions
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The rationale of the proposed policy is the following. First, we compute the set of con-
nected components on the dependency graph G. By construction, each component contains a
closed set of interacting WTs; hence, the network overhead occurring among different graph
components is equal to zero. The load of each component is defined as the sum of loads
of its WTs; next, graph components are ordered based on their load values, and assigned
to hosts in a round-robin way. In case the constraint 5.7 (load fairness) is satisfied, the
algorithm stops its execution. Otherwise, we break the connected components computed so
far (hence, introducing some network overhead at each iteration) by iteratively migrating one
WT from the most loaded host to the most unused one, until the constraint 5.7 is satisfied (or
alternatively a maximum round of interactions have been executed). The migrated WT wti is
selected in a greedy way as the one which minimizes the network overhead, computed as the
difference between: (i) the new overhead generated when detaching wti from the source host
and (ii) the performance gain on the destination host, caused by the fact that wti has become
a local service on that host.
Algorithm 1 shows the pseudo-code of the proposed heuristic. First, we build the dependency
graph G(V,E,W,L) and we compute its set of connected components, denoted as GC at line 1.
The load of each component Gi (i.e. L(Gi)) is estimated as the sum of the loads of its vertices
(line 3). Then, we order the set GC based on the load values, and the set of hosts H based on
the computational power of it, represented by the γ metric. To this purpose, at lines 5-6, the
function Sort (not reported here) is sorting a set passed as the first argument in descending
order according to the metric values given by the second argument. The loop at lines 8-13
assigns sub-graphs to hosts in a round-robin, by also updating the load for each host as the
load of its vertexes/WTs (line 11). Next, we check whether constraint 5.7 is satisfied through
the CheckBalanced function (lines 30-39), which also returns the hosts associated to the
highest and lowest load values, respectively hmax and hmin. If the load difference is lower than
the user-threshold ∆, than the current allocation is returned. Vice-versa, a greedy mechanism
is implemented through the loop at lines 15-27; here, at each iteration, a candidate WT
vs is migrated from hmax to hmin (lines 22-25) (by consequently updating the per-host load
information) and the load balance condition is evaluated again at line 26. The WT/vertex
to migrate (vs) is selected as the one that minimizes the overhead function at line 21. This
latter takes into account: (i) the total amount of network communications (in bytes) between
vs and any other WT hosted by hmax, which will now become inter-host communications
and hence will constitute a network overhead after the WT migration (the value is stored
within the loss variable at line 17); (ii) the total amount of network communications (in
bytes) between vs and any other WT hosted by hmin, which will now occur locally (intra-host
communication) and hence will reduce the network overhead (the value is stored within
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the loss variable at line 18). The computation of gain/loss values is performed through the
helper function TotInteractions (lines 41-46) that returns the total number of interactions
occurring between a target vertext/thing (vs) and a set of vertexes (S) provided as inputs, over
the dependency graph G.

Computational Complexity

The computational complexity is expressed in terms of NW (number of WTs) and NH (number
of nodes) for the worst-case scenario. At line 1 of Algorithm 1, the connected components of
graph G are computed; this operation is completed in time O(NW ) through a DFS graph visit.
Then, from line 8 to line 13, the connected components are assigned to the computational
nodes; again this is performed in O(NW ). The complexity of the balancing loop (from line
15 to line 26) depends on the ∆ value and on the L function definition. We assume that
We assume that all hosts are homogeneous (γ(hm)=1 ∀hm ∈ H), hence L(hm, tk) = PTm,k.
The assumption is compliant with the experimental analysis presented in Section 5.2.6. By
considering a totally unbalanced allocation of WTs to nodes, the loop is executed for NW −∆

times; the internal loop (lines 16-20) has a complexity of O(NW
NH

)2 since we visit each WT
hosted by the most used node, and for each WT we compute the total NO with the WTs
hosted on the most unused node. Finally, the CheckBalance function loops over the NH set
hence it has a complexity of O(NH). Since we expect that NW >> NH , the overall complexity
of Algorithm 1 is ∼ O(N2

W ).

5.2.5 Implementation

The implementation of the architecture components presented in Section 5.2.2 is detailed
here. This solution can be considered an extension of the Thingweb node-wot[25], the official
reference implementation of the W3C WoT Working Group, to which we added specific
primitives in order to support the WT migration process.

Thing Directory & Orchestrator

The TDir is implemented as a dedicated (non-migratable) WT, which is hosted by a WoT
Servient exposing a specific API for managing TDs and contexts. Among the most impor-
tant interaction affordances we cite: the registerThing action that takes a TD as input,
and makes it globally available to the other M-WoT components; the getThingById and
listThings actions, which respectively return one or more TDs based on the id or on a
semantic filter; the getContextById action which returns the context associated to a WT,
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and the thingRegistered event, which is triggered each time a WT registers itself on
the TDir, and causes its TD to be broadcasted to all the subscribers. The Orchestrator is
implemented as a Node.js application written in TypeScript and using the Nest13 (v6)
framework in standalone application mode. The Orchestrator includes several modules
working in synergy, and corresponding to the three components presented in Section 5.2.2:

• Thing Manager: it provides a TasksManager capable of executing generic tasks
at a specific schedule; the functionality is implemented by the @nestjs/schedule
package, which in turn uses the node-cron14 package. Among the others, we cite the
the collectReports task that periodically retrieves the list of active WTs through the
TDir and invokes the retrieveReport action on each one of them in order to get the
corresponding TRs.

• Optimizer: it provides the data structures representing the current status of the M-WoT
deployment. In particular, it records the live metrics of WTs (i.e. interactions with other
WTs) and the list of the hosting nodes. Moreover, it provides the Policy abstract class,
with a getAllocation method that returns the planned allocation of WTs to nodes
(i.e. the PT (hm, tk) sets of Algorithm 1). Any new policy installed in the Optimizer
must implement the method above.

WoT Servient

The default node-wot [25] framework has been extended in two directions: the script run
time has been proxied with a monitoring module, and the default CLI implementation has
been modified to handle WT state injection and retrieval.

Monitor APIs The Monitoring API is a collection of Typescript classes and func-
tions collecting the data needed by the Optimizer. More specifically, the Monitoring API
intercepts any invocation of the WTs to the underlying WoT scripting functions and updates
the number of activations of each property/action/event as well as the total time of completion.
Then, it stores such data inside the TR.The main fields of the TR include: the id of the WT
being monitored, the hostID of the node hosting the WT/Servient, the serviceID used
to map the WT to the corresponding docker swarm service, the average CPU and memory
utilization of the node, and the Interaction List. The latter contains statistics related to the
interaction with each consumed WT, and more specifically the number of times a specific
Affordance has been activated, and the latency involved in the request-response.

13https://nestjs.com/
14https://github.com/kelektiv/node-cron
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Context migration In the case of active WT, the M-WoT framework supports the
migration of its context, i.e. all the information characterizing the internal state and including:
Global variables of the Thing Application, the Properties values and the current
State of eventual external libraries in use. Before migration can start, all the possible
running operations should be interrupted and the context must be collected. This has
been implemented by adding the stop method to the TD of the WT, which disables all its
Affordances in order to avoid a possible state change during the context saving process. After
that, it collects the WT Context and returns it to the Servient; the context is then stored
on the TDir as described in Section 5.2.2. After the new Servient has been deployed, and
before running the migrated WT, it makes a request to the TDir (by using the Thing ID)
for retrieving the context. The latter is then passed to the WT to be loaded, hence restoring
the state at the time of migration. For sake of simplicity, and to ease the programmers’
tasks, we automatized the process of adding all the auxiliary functionalities inside the WT
behaviour. More in detail, the methods for stopping the WT Affordances and returning
the context are automatically injected into the code of the WT application by the Servient
before exposing it. The servient searches for a specific comment in the script (/*INIT*/ )
to understand whether and where the M-WoT code should be inserted. The only operation
required to the programmer in order to make a WT migration-enabled is to add such comment
to the application code.

5.2.6 Validation

In this Section, the performance of the M-WoT framework via a twofold experimental
evaluation is tested. First, we compare different migration policies, including multiple
variants of the graph-based heuristic presented in Section 5.2.3, on ad-hoc edge scenarios.
Then we investigate the effectiveness of the WT migration mechanisms on the edge-cloud
continuum for an IoT monitoring use case. More in detail, we evaluate a concrete IoT
structural monitoring application inspired by one of the use cases presented in Section
5.2.1 (see Figure5.5(a)). The characteristics and parameters of each scenario are discussed
separately in Sections 5.2.6 and 5.2.6.

Policy Analysis

We consider a distributed setup composed of three edge servers (i.e. NH = 3), physically
located at the DISI/ARCES departments of the University of Bologna, and connected through
an Ethernet LAN, at one hop distance one from each other. Specifically, two servers are
equipped with 4-core 2 GHz CPUs and 4 Gb of RAM, while the third server is equipped
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Fig. 5.10 The NO, T F and CF metrics for the six policies when varying the number of active
WTs are shown respectively in Figures 5.10(a), 5.10(b) and 5.10(c).

NoMigrate Graph-based,  = Graph-based,  = 1 Graph-based,  = 5
Algorithm

0

20

40

60

80

100

No
rm

al
ize

d 
CP

U 
Ut

iliz
at

io
n 

(%
)

Host1
Host2
Host3

(a)

5 10 15 20 25
# Web Things

0

10000

20000

30000

40000

50000

60000

70000

80000

In
te

ra
ct

io
ns

 L
at

en
cy

 (µ
s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based,  = 
Graph-based,  = 1
Graph-based,  = 5

(b)

1 2 3
# WT Degree

0

250

500

750

1000

1250

1500

1750

Ne
tw

or
k 

Ov
er

he
ad

 (#
m

es
sa

ge
s)

NoMigrate
Greedy NetLoad
Greedy CPULoad
Graph-based,  = 
Graph-based,  = 1
Graph-based,  = 5

(c)

Fig. 5.11 The average utilization of each computational node is shown in Figure 5.11(a).
The IL metric when varying the number of active WTs is shown in Figure 5.11(b). The NO
metric as a function of the WT degree is reported in Figure 5.11(c).

with an Intel Xeon E5440 processor with 32 Gb of RAM. Moreover, the Orchestrator and
the TDir have been installed on a different node within the same data center. Therefore, in
total, the experimental setup is composed of 4 nodes, three of which constitute the M-WoT
deployment space, and can be used to host the WTs. On this space, we deployed NWT

Servients, each hosting exactly one WT; at the startup, the Servients are randomly allocated
over the available nodes. The WT interactions are modeled as follows. We abstract from
the physical meaning of the WT and the correspondence to specific real-world applications
since the focus is on the assessment of the migration operations and on the evaluation of the
policies’ performance. Hence, each WT exposes exactly one action in its TD (e.g. test),
which computes a sequence of trigonometric operations (mainly tan and atan) in order to
generate some CPU load. Each WT (e.g. wti) consumes exactly other NC WTs, chosen
randomly among the NWT available. On each consumed thing wt j, wti issues a request for
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the test action every 1.5 seconds. In order to automatically apply the test configurations
on each WTs, we implemented a Mashup application, i.e. a WoT client that is in charge of
consuming the WTs involved in each test instance and of passing them the proper setup (e.g.
the list of WTs to consume). Every 45 seconds, the Orchestrator collects the Thing Reports
(TR) produced by each Servient; every 190 seconds, a new WT allocation is computed by the
Optimizer according to the current policy, and implemented through proper WT migrations
among the edge servers. The latter is also the duration of one time slot (i.e. tslot=190 seconds),
in accordance with the problem formulation presented in Section 5.2.3. The setting of t f

and tslot parameters allows the Optimizer to collect at least three reports from each WT and
hence to estimate the WT interactions before computing a new allocation of WTs to nodes.
The performance analysis is based on the following metrics:

• Network Overhead (NO): this is the performance index defined by Equation 5.1 and
quantifying the amount of inter-host network communications produced by remote
WT interactions. Differently from the theoretical model, we compute the NO in terms
of number of interactions rather than of bytes, since all the WT interactions refer to
the same affordance (i.e. the test action); this is the equivalent to set B(i, j,k)=1 in
Equation 5.1, ∀wti,wt j ∈WT, tk ∈ T .

• CPU Fairness (CF): this is the performance index defined by Equation 5.2 and
quantifying the fairness unbalance in terms of max-min difference of the average CPU
occupation loads among the NH nodes of the cluster. We set γ(hl) = 1,∀hl ∈ H.

• Thing Fairness (T F): this is similar to the CF metric, however the fairness unbalance
is expressed in terms of number of WTs hosted respectively by the most loaded and
unloaded node (rather than of average CPU values).

• Interaction Latency (IL): this is the average latency required to perform a WT action
invocation issued by an external WT; more explicitly, this is the average time lapsed
from when wti issues a test action on wt j to when the corresponding reply is received.
Hence, it takes into account both the processing delay and the network delay in case
wti and wt j are executed on different nodes of the cluster.

We compared the following policies:

• NoMigrate: this is the state-of-the-art WoT solution, i.e. the WTs are statically
deployed on nodes and they are not migrated during the whole system lifetime.

• Greedy NetLoad: this is a greedy policy that aims at minimizing the NO metric. At
each time slot, it selects the WT generating the highest NO, and moves it towards the
same node of the consumer WT.
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Fig. 5.12 The CF and IL metrics when varying the WT degree are shown respectively in
Figures 5.12(a) and 5.12(b). The NO over time slots in a dynamic WoT deployment where
the number of WTs is varied over time is reported in Figure 5.12(c).

• Greedy CPULoad: this is a greedy policy that aims at minimizing the CF metric. At
each time slot, it selects the edge node of the cluster associated with the highest average
CPU load, detaches one WT and moves it towards the node with the lowest CPU load.

• Graph-based, ∆ = ∞: this is the WT dependency-graph policy presented in Section
5.2.3; we set ∆ = ∞, hence the policy aims exclusively at minimizing the NO metric,
while no load-balancing action is executed (i.e. lines 16-26 of Algorithm 1 are skipped).

• Graph-based, ∆=5: this is again the policy of Section 5.2.3, where the balance param-
eter is put into action. The latter is expressed in terms of number of WTs, hence the
policy computes a minimal NO solution ensuring that T F metric cannot exceed the ∆

threshold equal to 5.

• Graph-based, ∆=1: this is similar to the previous policy, however we request the
maximum balancing of the WT allocations over the nodes of the cluster.

For each configuration, we ran 10 repetitions, and then averaged the metric values; on
each repetition, a random initial allocation of WTs to nodes, and random dependencies
among the WTs are considered.
Figure 5.10(a), 5.10(b), 5.10(c) and 5.11(a) show the metrics previously introduced when
varying the policy in use and the NWT configuration, i.e. the number of WTs in the scenario.
The NC value is fixed and equal to 3, i.e. each WT consumes exactly 3 peers, randomly
selected. From the NO values of Figure 5.10(a), we can notice that the amount of inter-host
communications increases with the number of active WTs, as expected. At the same time,
the Graph-based and the NetLoad policies are more effective than the NoMigrate and the
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Fig. 5.13 The T F over time slots in a dynamic WoT deployment where the number of WTs
is varied over time is reported in Figure 5.13(a). The NO over time in the IoT monitoring use
case is shown in Figure 5.13(b); the processing latency for the same scenario is reported in
Figure 5.13(c).

CPULoad since they both aim at allocating interacting WTs on the same node; the NO
performance gain of the Graph-based policy can be tuned through the ∆ parameter. For
∆ = ∞, the NO is always zero, since the WT dependency graph is likely connected (this
is also due to NC=3); as a result, all the WTs are moved to the same edge node, as better
highlighted below. For ∆ = 1 and ∆ = 5, the Graph-based policy introduces some NO due
to the load-balancing constraint, but still lower than the NoMigrate, hence it is preferable
to a random allocation. The load-balancing capabilities of the six policies are investigated
in Figure 5.10(b) which shows the T F metric as a function of the number of WTs; for the
Graph-based with ∆ = ∞, the T F is always equal to the number of WTs in the scenario,
since all the WTs are allocated to the same node. Vice versa, we can notice that, for ∆ = 1
and ∆ = 5, the T F value is always lower than the required threshold, demonstrating the
effectiveness of the load-balancing mechanism. The fairness in terms of WTs translates into
a better utilization of computational resources, as investigated in Figure 5.10(c). Here, the
CF metric is shown for the six policies; we can notice that the Graph-based heuristic with
∆ = ∞ and ∆ = 1 are respectively the worst and optimal cases, once again demonstrating
the versatility of the proposed approach. By comparing Figures 5.10(a) and 5.10(c), we
can also appreciate that the Graph-based policies (with ∆ ̸= ∞) are able to achieve a better
trade-off between NO and CF metrics when compared to the two Greedy policies; based
on the system requirements (i.e. data locality or resource utilization), the administrator
can achieve the wanted performance trade-off by properly tuning the ∆ parameter, whose
optimal setting is clearly scenario-dependant. Figure 5.11(a) provides additional insights on
the WT allocation, by showing, for the Graph-based policies and different values of ∆, the
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average CPU utilization of each node of the cluster (denoted by the colors on each bar); the
CPU values are normalized between 0 and 100%. It is easy to notice that lower values of ∆

correspond to more balanced utilization of the computational resources of the cluster, while
for ∆ = ∞ only one node is used. Finally, Figure 5.11(b) shows the IL metric for the six
policies; we highlight that the latency is not taken into account in the optimization framework
of Section 5.2.3, although delay-aware policy can be designed and installed in the Optimizer
as future work. Nevertheless, the Graph-based with ∆ = ∞ overcomes the other competitors
for all the configurations of WTs; this is due to the reduction of communication latency since
all the WT interactions occur locally on the same node. In Figures 5.12(a), 5.12(b), 5.12(c)
we expand the evaluation by considering the impact of different WT interaction amounts on
the system performance. More specifically, we consider a fixed number of WTs (NWT =15),
while on the x-axis we vary the WT degree (NC), i.e. the number of peers consumed by
each WT, again selected in a random way. Figure 5.12(a) depicts the NO metric for the six
policies; as expected, the amount of inter-host communication increases with the NC values
on the x-axis. The only exception is the Graph-based with ∆ = ∞: similarly to the previous
analysis, the NO is zero since interacting WTs are allocated to separate nodes, however
more than one connected component is found on the dependency graph for NC=1 and NC=2.
As a result, the CF metric of the Graph-based with ∆ = ∞ shows the increasing trend of
Figure 5.12(a); for NC=1 and NC=2, a more balanced allocation is achieved since the graph
components are allocated to different nodes, while for NC=3 the graph is fully connected
hence the whole workload is allocated to the same node. Comparing 5.11(c) and 5.12(a),
we can appreciate a gain how the Graph-based policies (with ∆ ̸= ∞ ) are able to capture a
better NO-CF tradeoff than the NoMigrate and greedy policies. This translates into a relevant
performance gain of the Graph-based policies for the IL metric in Figure 5.12(b); for NC=1,
the latency reduction provided by the Graph-based policy over the NoMigrate is up to 37%
with ∆ = ∞, 13% with ∆ = 5.
In the analysis presented so far, we considered WoT scenarios where the number of WTs
is fixed at startup, hence the WT discovery process can be considered static over time. In
Figures 5.12(c) and 5.13(a) we analyze the performance of M-WoT in a dynamic environment
where the number of active WTs (and hence the amount of traffic and computational loads) is
varying over time. More specifically, we set up the system with NWT =0. Every 360 seconds,
a new WT is created and added to the scenario; each WT consumes exactly one peer (NC=1).
Figure 5.12(c) shows the NO metric over system evolution, expressed in time slots; we
remind that each time slot corresponds to the execution of the Optimizer policy, and this
event occurs every 190 seconds. It is easy to notice that the NO metric increases significantly
over time for the NoMigrate policy as a consequence of the creation of the new WTs, and
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hence of the additional inter-host communication introduced in the system; vice versa, the
Graph-based policies are able to adapt the WT allocation so that the NO minimization goal
is continuously met. The adaptiveness of M-WoT to network load conditions is further
demonstrated by Figure 5.13(a) which shows the T F metric over time slot; for the case
of Graph-based with ∆ = ∞, the T F increases over time as a consequence of the fact that
- by adding new WTs in the system - larger connected components could be created and
migrated to the same node. Vice versa, the Graph-based policies with ∆ = 5 and ∆ = 2
dynamically allocate the WTs so that the load-balancing constraint (reflected by the ∆ value)
is continuously satisfied.

(a) (b)

Fig. 5.14 CPU load (Figure 5.14(a)) and RAM consumption (Figure 5.14(b)) of the Orches-
trator for different numbers of deployed WTs.

Finally, we evaluated the scalability of the proposed solution by monitoring the CPU
and RAM consumption on the Orchestrator and Thing Directory node. Figures 5.14(a) and
5.14(b) show our findings. The results were obtained by sampling the container metrics
every second, and then averaging the results for different numbers of deployed WTs. It
is possible to notice that the consumption grows linearly but it is pretty negligible even
with 100 WTs. Also, the overhead introduced by the Graph-based policy is only slightly
higher than a NoMigrate policy, although M-WoT must execute the WT allocation procedure
and the handoff procedure detailed in section 5.2.2. Clearly, despite such positive results,
the centralized Orchestrator might still become a performance bottleneck in large-scale
WoT deployments; to address the issue, we can envisage the usage of a federated network
of Orchestrators, each controlling a specific region of nodes. Such distributed M-WoT
framework would require proper data replication, load-balancing, and gossiping mechanisms,
which can be investigated as future works.
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Use case Analysis

Let us consider an IoT monitoring application, which mimics the operations of the SHM use
case presented in Section 4.2 and briefly introduced with 5.5(a). Specifically, we assume
that a W3C WoT system has been designed to acquire and process the IoT data of a smart
building. The WoT system involves three WTs:

• A Sensing WT, which performs data acquisition from an IoT sensor device (e.g. an
accelerometer) through a Serial connection. More specifically, we assume that the
Sensing WT can run in two modes, which differ from the sensor query frequency (q f ),
respectively the Normal mode (with 1 sample every 5 seconds) and Warning mode
(with 1 sample every second); the mode switch (i.e. from Normal to Warning and
vice versa) occurs when the last consecutive three readings are higher or lower than a
static threshold; in other words, the granularity of the monitoring system is adjusted
according to the detection of possible data anomalies.

• A Processing WT, which continuously receives the real-time measurements from the
Sensing and applies a statistical method (i.e. the ARIMA regression) to forecast the
next sensor values.

• A Reporting WT, which produces a notification (e.g. an alarm) based on the output of
the Processing WT.

We abstract from the specific physical meaning of the IoT sensing values, while we focus
on the capabilities of the WoT system to minimize the latency of processing especially in
Warning mode, i.e. the time from when the data is acquired to when the forecast value is
produced in the output. We consider an initial setup with two nodes (NC=2), respectively an
edge server (connected to the IoT sensor device) and a remote cloud server on the Internet.
Two scenarios are configured and compared in the evaluation analysis:

• Migration OFF. This represents the state-of-the-art WoT environment, where the WT
migration is not enabled. The Sensing and Reporting WTs are deployed on the edge
node, while the Processing WT is deployed on the cloud due to its higher computational
power.

• Migration ON. This corresponds to the M-WoT environment, where the Processing
WT is configured as migratable, i.e. it can be dynamically moved on the edge or
on the cloud node based on the actual sensing mode. To this purpose, we deployed
in the Optimizer a scenario-specific policy that checks the number of interactions
between the Sensing and Processing WTs at each time slot; in case such value is higher
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than a threshold (set equal to the s f configuration in Normal Mode), the Optimizer
realizes that the Sensing WT is working in Warning mode, and hence it migrates the
Processing WT on the edge node, i.e. closer to the acquisition in order to minimize the
communication latency. Otherwise, the Processing WT is allocated to the cloud node.

In the test-bed, the Sensing WT starts in Normal mode for 5 seconds, then it switches to
Warning mode for 1 second, then again it repeats the same sequence for other two times.
Figure 5.13(b) shows the NO metric over the time slots; for the Migration OFF configuration,
the NO value at each slot is equal to the number of messages exchanged by the Sensing
and Processing WTs, since they are hosted by different nodes. The peaks correspond to
intervals where the Sensing WT switches to the Warning mode. It is interesting to notice
that: (i) the Migration ON configuration follows the same curve of the Migration OFF when
the inter-host communication load is below a threshold; (ii) the NO of the Migration ON is
zero in correspondence of Warning periods, since the Processing WT is migrated to the edge
node, and hence all the communication occurs locally. Such action impacts the utilization of
computational resources on the cloud/edge nodes as well as the processing latency. we report
only the latter in Figure 5.13(c). We can notice the effectiveness of the M-WoT framework in
terms of latency reduction for the Migration ON, which is more evident during the Warning
periods since the edge-cloud communication delay is canceled.
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Conclusions





Chapter 6

Conclusions

The main goal of this thesis was to experiment and investigate the suitability of the Web
of Things as a means for countering the fragmentation of the IoT, in particular by taking
advantage of the recent appearance of the new W3C Web of Things standard. Despite being
still under definition, the latter can be considered as one of the most promising efforts to
tackle the interoperability problem in several IoT scenarios. More specifically, we addressed
the following research questions:

• How to map heterogeneous IoT systems into the WoT?

• How to easily design and deploy WoT scenarios?

• Is the W3C standard effectively complete and covering all requirements of IoT scenar-
ios? How to improve and contribute to it?

The answers to these questions have been provided in the WoT Store tool (Section 3.1), a
novel platform for managing and deploying resources on the W3C WoT, with a particular
focus on the dynamic discovery of Things, the possibility to easily manage their software,
and to collect, control and analyze their data. The WoT store represents a concrete solution
for system maintainers and users that need to deploy WoT Scenarios, fully respecting the
new W3C WoT Standard. In order to speed up and facilitate the transition to the WoT Store,
as well as to enable the possibility to use its registered Things in other legacy IoT systems,
we proposed a software architecture (Section 3.2) to turn each Web Thing into an IoT service,
and, on the contrary, to bring each IoT legacy service onto the WoT Store as a Web Thing.

That being said, the WoT Store has been validated on two different use case scenarios that
can be considered as representative examples; first, it has been deployed for a heterogeneous
environmental monitoring, where different Wireless Sensor Networks (WSNs) (Section 4.1)
have been mapped into Web Things and brought to the WoT Store, in order to ease and
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manage the sensing orchestration directly from the WoT Store interface. Second, the WoT
Store has been customized for a structural health monitoring (SHM) scenario (Section 4.2),
where different kinds of ad-hoc sensors collect important data that is then processed and
analyzed through custom applications deployed directly in the WoT dashboards. In both
cases, the effort of mapping the Sensor Networks and the ad-hoc sensors to Web Things has
been precisely described. This kind of validation highlighted some lacks and improvements
to be made both in the standard as well as in the official WoT implementation. In particular,
we made a proposal for bringing the TSN - with strict QoS parameters - of industrial
contexts (Section 5.1) in the W3C standard. Furthermore, we also designed a process for the
automatic configuration of such scenarios, taking into account both the QoS requirements
of the applications and the QoS capabilities offered by the Things. Finally, an additional
study has been conducted for the migration of WoT services and Web Things (Section 5.2).
The main objective of such research was to dynamically redistribute the WoT services on
different hosts based on precise policies. This study was useful to understand that the WoT
official implementation [25] needs to be augmented by adding a monitoring layer that, in our
case, can be used to collect usage statistics through a service orchestrator.

The final results of this thesis can be summarized in the following: given the Web of
Things paradigm, and given the new W3C WoT Standard, we deeply investigated how to con-
cretely apply the WoT in IoT scenarios that are affected by interoperability issues, analyzing
all the possible obstacles that can be encountered and hence proposing dedicated solutions.
We strongly believe that the availability of support tools constituting the WoT SECO can
facilitate the adoption of the W3C standard by academic and industrial communities, as well
as the definition of novel use cases, and in this sense WoT Store could be considered as a
reference point.

6.1 Current and future research directions on the WoT

The W3C Web of Things standard is quite new and several other studies need to be conducted
on different scenarios and with different kinds of devices/things. A particular example can
be represented by those devices that cannot be brought to the WoT or directly turned into
Web Things. In fact, differently from sensors used in the heterogeneous sensing use case,
there are devices that cannot take advantage of the System API layer in the WoT Servient
to enable the communication with the WoT layer: not all low-network technologies can be
mapped into Web Things directly through the System APIs. LORA [156], for instance, that
we already deeply investigated in some of our previous works [157][158], uses LoRaWAN
protocol to send data to the Cloud. Since data is encrypted in the communication between
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device-gateway-cloud, it is not possible to capture the data directly from the sensors in order
to map it to the respective Web Things. Hence, for this specific case, we are working on
an auxiliary software architecture to bring this kind of device onto the WoT Store, that
is able to work mainly at the Application Layer. More in detail, a dedicated component
deployed in the Cloud is in charge of collecting data arriving from sensors, mapping it to
semantic data and making it available for the Thing instance (this last can also be instantiated
on a different layer). For this use case, Thing Descriptions for sensors must be already
available and hence exposed by that component. LORA sensors are particularly suitable for
smart agriculture scenarios, since the characteristics of such technology perfectly match the
application requirements [43]. In particular, the data throughput is quite small, and both the
sensing frequency and the power capability of the devices are very limited. Having success
in this kind of research will also open the door to the possibility of employing the WoT Store
in yet another scenario.

Directly related to this work, and aiming to enable the porting of other kinds of devices
into the WoT, we designed and implemented a Micro WoT Servient, i.e., a servient capable
of running on micro-controllers. This can be particularly useful for those devices that already
offer networking features, like NodeMCU or ESP32, but that at the moment need to use
an external device that runs a Servient, and hence require the System API to communicate
with the WoT layer. Instead, through a native servient running on the micro-controller, this
can natively expose and consume Things, avoiding intermediate steps in the communication.
Clearly, the biggest challenges in this research are related to the hardware architecture and
the limited capabilities - both in terms of power and computational resources - of the devices.
In this sense, an accurate and precise design work has been made to adapt the functionalities
of the Servient to such hardware limitations.

Finally, another interesting improvement we are currently working on, especially for the
migration work presented in Section 5.2, is represented by the dynamic aggregator. This is a
component in charge of collecting data directly from the Things, with the additional duty
of aggregating it based on different kinds of policies. Furthermore, once it has obtained the
data, it also saves it to the persistor component - basically, to a database. It is interesting to
note that, in particular scenarios - like the SHM presented in Section 4.2, it would be very
useful and efficient to dynamically move the aggregator on different layers, depending on
the current conditions. This would allow analysts to be informed as soon as the danger has
been detected on the edge and to observe aggregated data on the cloud, implying also a faster
response of the system and a considerable reduction in terms of data exchange.
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