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Introduction

This thesis is made up of two, quite distinct parts. The first part fits in the stream of literature

on the theory of SPDEs in Hölder spaces; the second one on the other hand concerns the study of

density estimates for diffusion processes with unbounded drift. Although the two themes may seem

far from each other, we shall see that a large class of SPDEs is still heavily connected with the theory

of diffusions, as they describe the evolution of the conditioned distributions of some underlying

partially observable, finite dimensional processes. On the other hand, some key techniques and

strategies used throughout the study are also shared between the two parts; the most prominent

example is the parametrix method, which we could present both in its analytic and in its more

probabilistic interpretations in a single work.

Part I: The parametrix method for evolution SPDEs

Interest in Stochastic Partial Differential Equations (SPDEs) of evolution type began to arise in the

early seventies, driven by the demand from modern applications and advances in natural sciences.

Indeed this kind of equations, which naturally generalize both ordinary stochastic equations (SDEs)

and deterministic evolution PDEs, are well suited to model any kind of stochastic influence in nature

or man-made complex systems. The most notable examples are turbolent flows in fluid dynamics,

diffusion and waves propagation in random media, as well as population growth, among many

others (see, for instance [4], [10], [30], [12], [21]).

Another relevant source of SPDEs is provided by the study of stochastic flows defined by

ordinary SDEs. The following result is due to Krylov ([33], [40]).

Example 0.0.1 (Backward diffusion equation). Consider the diffusion defined by the SDE

dXt,x
s “ bpXt,x

s qds` σpX
t,x
s qdBs, s ą t, Xt,x

t “ x P R,

where Bs is a Brownian motion. Then, as a function of t and x, the process Xt,x
s is a solution to
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the backward SPDE

´dXt,x
s “

`

σ2pXt,x
s qB

2
xX

t,x
s ` bpXt,x

s qBxX
t,x
s

˘

dt` bpXt,x
s qBxX

t,x
s ‹ dBt, t ă s,

Xs,x
s “ s P R,

where ‹dBt denotes the backward Itô integral.

As we shall see, the backward diffusion equation also comes in play in the study of conditional

distributions of finite dimensional processes. Here stochastic (ultra)parabolic type equations appear

naturally in the form of filtering equations.

Example 0.0.2 (Filtering equation). The filtering problem, in his most simple formulation, con-

sists in estimating a certain ’signal’, by observing it when it is mixed with a noise. Suppose that

the signal X is modelled by a diffusion

dXs “ bpXsqds` σpXsqdBs, s ą 0, X0 “ x P R,

and we are given an observation with dynamics

dYs “ hpXsqds` dWs, (0.0.1)

where Ws is a different Brownian motion than Bs: for instance Ys may describe the position of a

moving object on the basis of a GPS observation, Ws the measurement error, and the signal Xs

the true coordinates of the object. If Bs and Ws are independent, then the function of the paths

tYs, 0 ď s ď T u which best approximates, in the least squared sense, a quantity fpXT q, is given by

E rfpXT q | σpYs, 0 ď s ď T qs “

ż

R
Γp0, x, T, ξqfpξqdξ,

where Γ is the normalized stochastic fundamental solution of the SPDE

dpspξq “

ˆ

1

2
Bξξ

`

σ2pξqpspξq
˘

´ Bξ pbpξqpspξqq

˙

ds` hpξqpspξqdYs, s ě 0,

which generalizes the classic Fokker-Plank equation of Xs.

Filtering models may encompass much more general situations as well. For instance, while

in (0.0.2) the variance of the noise Ws is equal to s, in applications it is much more likely that

the scattering of the observed process is dependent on its position; the noises could be possibly

correlated, and the dynamics of the signal could be affected by the observations Ys as well. As a

matter of fact, filtering models provide a large and relevant class of evolution SPDEs that can be

written in the form

duspξq “ Luspξqds`
d1
ÿ

k“1

GkuspξqdW k
s , s ě 0, ξ P Rd, (0.0.2)
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where L is a (possibly degenerate) second order operator, pGkqk“1,¨¨¨d1 are first order operators

and Ws “ pW 1
s , ¨ ¨ ¨ ,W

d1
s q is a multi-dimensional Brownian motion on some probability space;

importantly, since the coefficients of these equations may depend on the observation process Y ,

they are generally assumed to be random and only measurable in the time variable. Equations

(0.0.3) in Hölder classes will be the main subject of this study.

The Cauchy problem for evolution SPDEs has been studied by several authors. Under coercivity

conditions analogous to uniform ellipticity for PDEs, there exists a complete theory in Sobolev

spaces (see e.g. [62] and the references therein) and in the spaces of Bessel potentials ([34], [35]).

Classical solutions in Hölder classes were first considered in [61], [64] and more recent results were

proved in [11] and [50], but in these cases the authors only considered equations with non-random

coefficients and with no derivatives of the unknown function in the stochastic term. As we will

explain in detail in Section 1.2 these restrictions are ultimately needed to recover a Duhamel

principle, which does not hold in the stochastic framework in general. On the other hand, because

of what we said above, it is worth to consider equations with random coefficients; moreover the

filtering equation can include derivatives of the unknown function in the operators G even in very

simple models.

In the last decades, the use of analytical or PDE techniques in the study of SPDEs has become

widespread. For instance, the results in [11], [50], [19], [73] are based on classical methods of deter-

ministic PDEs, such as the Duhamel principle and a priori Schauder estimates; the Lp estimates

in [15] are proved by adapting the classical Moser’s iterative argument; [66] provides short-time

asymptotics of random heat kernels. A further remarkable example is given by the recent series of

papers by Krylov [36, 37, 38] where the Hörmander’s theorem for SPDEs is proved; see also the

very recent results in [60] for backward SPDEs.

In this thesis we aim at extending another classical tool that, to the best of our knowledge,

has not yet been considered in the study of SPDEs, the well-known parametrix method for the

construction of the fundamental solution of PDEs with Hölder continuous coefficients.

In Chapter 1 we begin investigating the possibility to use a parametrix based method to prove

existence and estimates of the fundamental solution to a parabolic SPDE. More precisely we consider

Luspξq “
1

2
aspξqBξξuspξq ` bspξqBξuspξq ` cspξquspξq, (0.0.3)

Gkuspξq “ σks pξqBξuspξq,

under the coercivity assumption

as ´ σsσ
˚
s ě λ ą 0, s ą 0.

The lack of the Duhamel principle and the roughness of the coefficients we already mentioned
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constitute the two main obstacles that one faces when trying to apply the parametrix method to

SPDEs. Specifically the Duhamel principle is the core of the usual parametrix iterative procedure.

We propose to use the Itô-Wentzell formula to make a random change of variables and transform

the SPDE to a PDE with random coefficients; the latter admits a Duhamel principle and we use

it to extend the parametrix method to parabolic PDEs with measurable coefficients in the time

variable. Importantly, this approach allows the operators in (0.0.4) to sport random (stochastic

Hölder) coefficients, which compensate the extra-regularity required in the coefficients of Gk to

allow the change of variables.

In Chapter 2 we examine a stochastic version of the degenerate Fokker-Plank equation

Buspξ, νq “ aspξ, νqBννuspξ, νq, B “ Bs ` νBξ,

which is characterized by a linear (unbounded) drift and it is a standard example of equation

satisfying the weak Hörmander condition. As far as we are aware this is a novely in the context

of SPDEs. Here we anticipate that, compared to the uniformly parabolic case, as well as the

deterministic degenerate case, two main new difficulties arise in the analysis: the Itô-Wentzell

transform drastically affects the drift B which will no longer have polynomial coefficients after the

change of variables; moreover, again the roughness in time prevents the use of the so called intrinsic

Hölder spaces, which would be more natural in the study of the singular kernels that come into

play in the parametrix procedure (see [58], [16]).

Finally, in Chapter 3 we will show how the results on the Fokker-Plank SPDE allow to directly

derive the filtering equations for a system of SDEs of Langevin type, both in their forward and

backward formulations, without resorting to the general results from filtering theory. Here we follow

the approaches recently proposed by Krylov and Zatezalo [42] and Veretennikov [70]. Again, as far

as we are aware, this kind of problem was never considered in the literature, possibly because the

known results for hypoelliptic SPDEs don’t apply in this case.

Many of the results presented in Chapters one, two and three are taken from our works [57],

[55], [56] with A. Pascucci.

Part II: Brownian SDEs with unbounded measurable drift

Consider the following diffusion

dXs “ bps,Xsqds` σps,XsqdWs, s ě 0, X0 “ x P Rd. (0.0.4)

When both coefficients b, σ are bounded and Hölder continuous and σ is separated from zero (non-

degeneracy condition), it is well known that there exists a unique weak solution to (0.0.5) which
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admits a density (see for instance [67], [25], [9]), that is for all A P BpRdq (Borel σ-field of Rd),

P pXs P A|X0 “ xq “

ż

A
Γp0, x; s, ξqdξ.

Furthermore, it can be proved by the parametrix method that the transition density Γp0, x, s, ξq

enjoys the following two sided Gaussian estimates on a compact set in time:

C´1Γµ´1ps, x´ ξq ď Γp0, x; s, ξq ď CΓµps, x´ ξq (0.0.5)

as well as the following gradient estimate

|∇jxΓp0, x; s, ξq| ď Cs´
j
2 Γµps, x´ ξq, j “ 1, 2,

where

Γµpt, xq :“ t´
d
2 exp

`

´ µ|x|2{t
˘

, µ P p0, 1s, t ą 0, (0.0.6)

and the constants µ P p0, 1s, C ě 1 only depend on the regularity of the coefficients, the non-

degeneracy constants of the diffusion coefficients, the dimension d, and for the constant C, on the

maximal time considered (see [24] and [1], [2]). Such methods have been successfully applied to

derive upper bounds up to the second order derivative for more general cases, such as operators

satisfying a strong Hörmander condition (see [5]), Kolmogorov operators with linear drift (see [58]

and [16]), as well as the SPDEs in Chapters one and two. A different approach consists in viewing

a logarithmic transformation of Γ as the value function of a certain stochastic control problem, as

proposed by Fleming and Sheu in [22]: this idea allows then to get the desired density estimates

by choosing appropriate controls and eventually an upper bound for the logarithmic gradient (see

[63]).

When the drift is unbounded and non-linear fewer results are available. In fact, in this case it

is no longer expected that the two sided estimates as given in (0.0.6) hold.

Example 0.0.3. The following Ornstein-Uhlenbeck (OU)-process

dXs “ Xsds` dWs, X0 “ x,

has, with the notations of (0.0.7), the non-spatial homeogenous density

ΓOUp0, x; s, ξq “ pπpε2s ´ 1qq´d{2Γs{pε2s´1qpt, ε
sx´ ξq.

In [14], Delarue and Menozzi derive two sided density bounds for a class of degenerate operators

with unbounded and Lipschitz drift, satisfying a weak Hörmander condition, by combining the two
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previous approaches: parametrix and logarithmic transform. Indeed, when the drift is unbounded

it becomes difficult to get good controls for the iterated kernels in the parametrix expansion. In

our non-degenerate parabolic setting those bounds still hold provided the drift is globally Lipschitz

continuous in space. Then, they read as:

C´1Γµ´1ps, γspxq ´ ξq ď Γp0, x; s, ξq ď CΓµps, γspxq ´ ξq, (0.0.7)

where γ stands for the deterministic flow associated with the drift, that is

9γspxq “ bps, γspxqq, s ě 0, γ0pxq “ x

and C, µ ą 0 both depend on the maximal time considered. This means that the diffusion starting

from x, oscillates around γspxq at time s with fluctuations of order s´
1
2 . Notice that if b is bounded,

then (0.0.8) reduces to (0.0.6) since

s´
1
2 |x´ ξ| ´ }b}8s

1
2 ď s´

1
2 |γspxq ´ ξ| ď s´

1
2 |x´ ξ| ` }b}8s

1
2 .

Hence, taking or not into consideration the flow does not give much additional information. The

above control also clearly emphasizes why C might depend on some maximal time interval consid-

ered. In the case where b is bounded but not necessarily smooth, the above bounds remain valid

for any regularizing flow.

Diffusion with dynamics (0.0.5) and unbounded drifts appear in many applicative fields. We

can mention for instance the work [26] which concerned issues related to statistics of diffusions and

also [52] for the numerical approximation of ergodic diffusions.

In these frameworks, estimates on the density and its derivatives are naturally required. Some

gradient estimates of the density were established in [26]. The approach developed therein relies

on the Malliavin calculus and thus required some extra regularity on the drift. Also, since the

deterministic flow was not taken into consideration, an additional penalizing exponential term in

the right hand side of the bounds appeared. Similar features appeared in the work [13] which

established the existence of fundamental solutions for a strictly sublinear Hölder continuous drift.

In Chapter 2 we obtain some estimates for the derivatives in the non-degenerate direction for a

Kolmogorov equation with Lipschitz drift that appears after the change of variables in the SPDE:

these controls reflect both the singularities associated with the differentiation, as in equation (0.0.6)

above, and also reflect the key importance of the flow for unbounded drifts as it appears in the two-

sided heat kernel estimate (0.0.8). The analysis here builds on the work of Delarue and Menozzi:

specifically, we remark that the density lower bound allows to recover, a posteriori, the good controls

on the iterated kernels which allow to pursuit the usual parametrix procedure.
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In Chapter 4 we concentrate only on the non-degenerate case but we develop a new approach

to the derivation of these estimates, based on a circular argument: the point of this work is to be

completely self-contained, to provide estimates both in the forward and in the backward variables

under minimal regularity assumptions, and to be sufficiently robust to be generalized, as soon as

some suitable two sided bounds hold. We can actually address various frameworks. We manage

to obtain two-sided heat kernel bounds for a Hölder continuous in space diffusion coefficient σ in

(0.0.5) and a drift b which is uniformly bounded in time at the origin and has linear growth in

space. Importantly, when the drift b is itself not smooth, the heat kernel bounds can be stated

in the form (0.0.8) for any flow associated with a mollification of b. In particular, if the drift is

continuous in space they actually hold for any Peano flow. These conditions are also sufficient to

obtain gradient bounds with respect to the backward variable x. To derive controls for the second

order derivatives with respect to x, an additional spatial Hölder continuity assumption naturally

appears for the drift. Eventually, imposing some additional spatial smoothness on the diffusion

coefficient, we also succeed in establishing a gradient bound with respect to the forward variable y.

To the best of our knowledge, ours are among the first results for derivatives of heat kernels

with unbounded drifts.

The results presented in Chapter 4 are part of our work ([49]) (with S. Menozzi and X. Zhang).

Some general notations

In the following analysis, the main settings will substantially change from chapter to chapter,

making it difficult to keep a consistent notation throughout. Nonetheless we try to follow as much

as possible some general guidelines.

The time variables are denoted with t or s, where t usually stands for the initial time and s stands

for the final time when it matters; the spatial variables in RN are denoted with x “ px1, ¨ ¨ ¨xN q

and ξ “ pξ1, ¨ ¨ ¨ ξN q, with x usually standing for the initial point and ξ for the final point; similarly

the spatial points in RN`1 are denoted with z “ px, vq and ζ “ pξ, νq, and share the analogous

convention. Moreover, as a general rule, when a quantity depends on both an initial state and a

final state, the variables which describe the initial state are always appended first, regardless of

whether they may act as the pole or not: in particular this is the case when denoting deterministic

or stochastic flows, conditioned or unconditioned densities, deterministic or stochastic fundamental

solutions.

We use the notation ∇,∇2 to denote respectively the gradient and Hessian matrix with respect

to the spatial variable; by extension, we denote by ∇j the jth order derivative. When required by

the context, we may use the notation Bi for the ith partial derivative and Bij “ BiBj , as well as the
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multi-index notation Bβ “ Bβ1
1 ¨ ¨ ¨ B

βN
N , with β P NN0 .

Throughout the work, the summation convention over repeated indices is enforced regardless of

whether they stand at the same level or at different ones; the letter C usually stands for a positive

constant, only dependent on the quantities in the assumptions; in the context of the proofs, its value

may update from line to line. Other possible dependences are explicitly indicated when needed.

Next, we introduce the general functional setting to be used throughout the study. Let k P N,

α P p0, 1q and 0 ď t ă T . Denote by mBt,T (resp. bBt,T ) the space of all real-valued (resp.

bounded) Borel measurable functions f “ fps, xq on rt, T s ˆ Rd and

• C0
t,T (resp. C0

t,T ) is the space of functions f P mBt,T (resp. f P bBt,T ) that are continuous in

x;

• Cαt,T (resp. bCαt,T ) is the space of functions f P mBt,T (resp. f P bBt,T ) that are α-Hölder

continuous in x uniformly with respect to s P rt, T s, that is

sup
sPrt,T s
x‰ξ

|fps, xq ´ fps, ξq|

|x´ ξ|α
ă 8;

We also denote by C0,1
t,T the space of functions f P mBt,T that are Lipschitz continuous in x

uniformly with respect to s P rt, T s;

• Ckt,T (resp. bCkt,T ) is the space of functions f P mBt,T (resp. f P bBt,T ) that are k-times

differentiable with respect to x with derivatives in C0
t,T (resp. bC0

t,T );

• Ck`αt,T (resp. bCk`αt,T ) is the space of functions f P mBt,T that are k-times differentiable in

with respect to x with derivatives in Cαt,T (resp. bCαt,T )

As a general rule, a random field u “ ups, ξ, ωq on r0,8q ˆ Rd ˆ Ω is denoted by uspξq and

we shall systematically omit the explicit dependence on ω P Ω; we keep the notation ups, ξq for

deterministic functions on r0,8q ˆ Rd.
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2.5 Itô-Wentzell change of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Time-dependent and drift adapted parametrix method . . . . . . . . . . . . . . . . . 53

2.6.1 Proof of Theorem 2.6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.2 Proof of Theorem 2.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

11



12 CONTENTS

2.7 The backward Langevin SPDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Filtering under the weak Hörmander condition 77
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Chapter 1

The parametrix method for parabolic

SPDEs

1.1 Introduction

In this chapter, we introduce the fundamental tools and ideas that constitute the starting point of

our analysis: here we set the stochastic Hölder spaces which will be used throughout the dissertation

and the notion of stochastic fundamental solution; we recall the Itô-Wentzell formula and establish

the time-dependent parametrix for a parabolic SPDE.

Let pΩ,F , P q be a complete probability space with an increasing filtration pFtqtě0 of complete

with respect to pF , P q σ-fields Ft Ď F . Let d1 P N and let W k, k “ 1, ¨ ¨ ¨ , d1, be one-dimensional

independent Wiener processes with respect to pFtqtě0. We consider the parabolic SPDE

duspξq “ pLsuspξq ` fspξqq ds`
´

Gksuspξq ` gks pξq
¯

dW k
s , ξ P Rd (1.1.1)

where Ls is the second-order operator

Lsuspξq “
1

2
aijs pξqBijuspξq ` b

j
spξqBjuspξq ` cspξquspξq

and Gks is the first-order operator

Gksuspξq “ σiks pξqBiuspξq.

The coefficients as, bs, σ
k
s , cs and fs are intended to be random and not smooth.

In the remaining part of this section we introduce the functional setting, set the assumptions and

state the main result on the SPDE (1.1.1), Theorem 1.1.5; for illustrative purposes, the particular

13



14 CHAPTER 1. THE PARAMETRIX METHOD FOR PARABOLIC SPDES

case of the stochastic heat equation is discussed in Section 1.2. In Section 1.3 we recall the Itô-

Wentzell formula and provide some estimates for the related flow of diffeomorphisms. In Section

1.4 we present the parametrix method. Since the complete proofs are rather technical and to a

large extent similar to the classical case, we only provide the details on those aspects that require

significant modifications: in particular, in Section 1.4.3 we present a proof of the Gaussian lower

bound for the fundamental solution which requires some non trivial adaptation of an original

argument by Aronson (cf. [20]).

1.1.1 Functional setting and main results

Let k P NYt0u, α P r0, 1q and Pt,T be the predictable σ-algebra on rt, T s ˆΩ. We denote by Ck`α
t,T

the family of functions f “ fspx, ωq on rt, T s ˆ Rd ˆ Ω such that:

i) ps, xq ÞÑ fspx, ωq P C
k`α
t,T P -a.s.;

ii) ps, ωq ÞÑ fspx, ωq is Pt,T -measurable for any x P Rd.

Moreover, bCk`α
t,T is the space of functions f P Ck`α

t,T such that

ÿ

|β|ďk

sup
sPrt,T s

xPRd

|Bβfspxq| ă 8 P -a.s.

We say that f “ fspxq is non-rapidly increasing uniformly on pt, T s ˆ Rd if, for any δ ą 0,

e´δ|x|
2
|fspxq| is a bounded function on pt, T s ˆ Rd, P -a.s.; in case f does not depend on s, we

simply say that f is non-rapidly increasing on Rd.

Definition 1.1.1. A stochastic fundamental solution Γ “ Γpt, x, s, ξq for the SPDE (1.1.1) is a

function defined for 0 ď t ă s ď T and x, ξ P Rd, such that for any pt, xq P r0, T q ˆ Rd we have:

i) Γpt, x; ¨, ¨q P C2
t0,T
pRdq and with probability one satisfies

Γpt, x; s, ξq “ Γpt, x; t0, ξq `

ż s

t0

LτΓpt, x; τ, ξqdτ `

ż s

t0

GkτΓpt, x; τ, ξqdW k
τ (1.1.2)

for t ă t0 ď s ď T and ξ P Rd;

ii) for any continuous and non-rapidly increasing function ϕ on Rd and x0 P Rd

lim
ps,ξqÑpt,x0q

sąt

ż

Rd
ϕpxqΓpt, x; s, ξqdx “ ϕpx0q, P -a.s.

Next we state the standing assumptions on the coefficients of the SPDE (1.1.1).
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Assumption 1.1.2 (Regularity). For some α P p0, 1q and for every i, j “ 1, . . . , d and k “

1, . . . , d1, we have: aij P bCα
0,T , σik P bC3`α

0,T and bj , c P bC0,T .

Assumption 1.1.3 (Coercivity). Let

αtpxq :“
´

aijt pxq ´ σ
ik
t pxqσ

jk
t pxq

¯

i,j“1,...,d
.

There exists a positive random variable m such that

xαtpxqξ, ξy ě m|ξ|2, t P r0, T s, x, ξ P Rd, P -a.s.

We now introduce a random change of coordinates that will play a central role in the following

analysis. We fix pt, xq P r0, T q ˆ Rd and consider the stochastic ordinary differential equation

xs “ x´

ż s

t
σkτ pxτ qdW

k
τ , s P rt, T s. (1.1.3)

It is well-known (see, for instance, Theor. 4.6.5 in [44])) that, under Assumption 1.1.2, equation

(1.1.3) admits a solution γIW “ γIW
t,s px, ωq that is a stochastic flow of diffeomorphisms: precisely,

γIW
t,s P C3`α1

t,T , for any α1 ă α, the matrix ∇γIW
t,s pxq satisfies

∇γIW
t,s pxq “ Id ´

ż s

t
∇σkτ pγIW

t,τ pxqq∇γIW
t,τ pxqdW

k
τ , (1.1.4)

and, for any i, j “ 1, . . . , d, B2
ijγ

IW
t,s pxq satisfies

B2
ijpγ

IW
t,s pxqqh “´

ż s

t

”

p∇σkτ pγIW
t,τ pxqqB

2
ijγ

IW
t,τ pxqqh (1.1.5)

`

´

p∇γIW
t,τ pxqq

˚∇2σhkτ pγ
IW
t,τ pxqq∇γIW

t,τ pxq
¯

ij

ı

dW k
τ

with probability one.

Since we are going to use γIW as a global change of variables, we need some control over the

stochastic integrals in (1.1.4) and (1.1.5) for x varying in Rd: this issue is addressed in Section 1.3

(see, in particular, Proposition 1.3.2) under the following additional condition. For any suitably

regular function f “ fpwq : RN ÝÑ R, ε ą 0 and multi-index β P NN0 , we set

tfuε,β :“ sup
wPRN

p1` |w|2qε|Bβwfpwq|. (1.1.6)

Assumption 1.1.4. There exist ε ą 0 and a random variable M P Lp̄pΩq, with p̄ ą max
 

2, d, d2ε
(

,

such that, with probability one

sup
tPr0,T s

tσkt uε,β ďM, |β| “ 1, 2, 3, k “ 1, ¨ ¨ ¨ , d1.
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Assumption 1.1.4 requires that σkt pxq flattens as xÑ8: in particular, this condition is clearly

satisfied if σ depends only on t or, more generally, if the spatial gradients of σ has compact support.

In order to state the main result of this section we introduce the following notation: let C “
`

Cij
˘

1ďi,jďd
be a constant, symmetric and positive definite matrix. We denote by

ΓheatpC, xq “ 1
a

p2πqd det C
e´

1
2
xC´1x,xy, x P Rd, (1.1.7)

the d-dimensional Gaussian kernel with covariance matrix C. Clearly Γheat is a smooth function

and satisfies

BtΓ
heatptC, xq “ 1

2
tr
´

C∇2ΓheatptC, xq
¯

, t ą 0, x P Rd.

The main result of the chapter is the following

Theorem 1.1.5. Let Assumptions 1.1.2, 1.1.3 and 1.1.4 be in force. Then there exists a funda-

mental solution Γ for the SPDE (1.1.1). Moreover, there exist two positive random variables µ1

and µ2 such that, with probability one we have

Γpt, x; s, ξq ě µ´1
2 Γheat

´

µ´1
1 Is´t, γIW,´1

t,s pξq ´ x
¯

, (1.1.8)

Γpt, x; s, ξq ď µ2Γheat
´

µ1Is´t, γIW,´1
t,s pξq ´ x

¯

,

|∇ξΓpt, x; s, ξq| ď
µ2

?
s´ t

Γheat
´

µ1Is´t, γIW,´1
t,s pξq ´ x

¯

, (1.1.9)

ˇ

ˇ∇2
ξΓpt, x; s, ξq

ˇ

ˇ ď
µ2

s´ t
Γheat

´

µ1Is´t, γIW,´1
t,s pξq ´ x

¯

,

for every 0 ď t ă s ď T and x, ξ P Rd, where γIW,´1
t,s is the inverse of the Itô-Wentzell stochastic

flow ζ ÞÑ γIW
t,s pζq and It denotes the diagonal dˆ d matrix diagpt, ¨ ¨ ¨ , tq.

The proof of Theorem 1.1.5 is postponed to Section 1.4.4.

Corollary 1.1.6. Let u0 be a F0bB-measurable function on ΩˆRd such that u0pω, ¨q is continuous

and non-rapidly increasing on Rd for a.e. ω P Ω. Let f P Cᾱ
0,T , for some ᾱ P p0, 1q, be non-rapidly

increasing uniformly on r0, T s ˆ Rd. Then

uspξq “

ż

Rd
u0pxqΓp0, x; s, ξqdx`

ż s

0

ż

Rd
fτ pxqΓpτ, x; s, ξqdxdτ

is a classical solution of (1.1.1) with initial value u0, in the sense that u P C2
0,T and with probability

one satisfies

uspξq “ u0pξq `

ż s

0

`

Lτuτ pξq ` fτ pξq
˘

dτ `

ż s

0
Gkτ uτ pξqdW k

τ , s P r0, T s, ξ P Rd.
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Such a solution is unique in the class of functions with quadratic exponential growth: precisely, u

is the unique solution such that there exists a positive random variable C such that |uspξq| e
´C|ξ|2

is bounded on r0, T s ˆ Rd, P -a.s.

1.2 Stochastic heat equation and Duhamel principle

For illustrative purposes, in this section we consider the prototype case of the stochastic heat

equation. We focus our attention on the Duhamel principle that is the crucial ingredient in the

parametrix method for the construction of the fundamental solution. More generally, the Duhamel

principle is a powerful tool for studying the existence and regularity properties of parabolic PDEs.

In the framework of SPDEs of the form (1.1.1), it is still possible to have a Duhamel representation

when the coefficients aij are deterministic and Gks are replaced by an operator of order zero: this

case has been considered in [64] and [50] where the Cauchy problem for parabolic SPDEs is studied.

For the general SPDE (1.1.1) however, as also noticed by other authors (see, for instance, Sowers

[65], Sect.3), measurability issues arise that do not appear in the deterministic case.

To be more specific, let us consider the stochastic heat equation

duspξq “
a2

2
Bξξuspξqds` pσBξuspξq ` gspξqq dWs. (1.2.1)

Under the coercivity condition α2 :“ a2 ´ σ2 ą 0, the Gaussian kernel

p pt, x; s, ξq :“
1

a

2πα2ps´ tq
exp

ˆ

´
pξ ` σpWs ´Wtq ´ xq

2

2α2ps´ tq

˙

, s ą t ě 0, x, ξ P R, (1.2.2)

is well defined, and if σ “ 0 or g ” 0 then the function

uspξq :“

ż

R
u0pxqp p0, x; s, ξq dx`

ż s

0

ż

R
gτ pxqp pτ, x; s, ξq dx dWτ (1.2.3)

is a classical solution to (1.2.1), for any suitable initial value u0. This follows directly from the Itô

formula and the fact that the change of variable

ûspξq :“ uspξ ´ σWsq

transforms the homogeneous version of (1.2.1) into the deterministic heat equation

dûspξq “
α2

2
Bξξûspξqds.

The difficulty in considering the case when σ and g are both not null, comes from the fact

that the integrand gτ pxqp pτ, x; s, ξq in (1.2.3) becomes measurable with respect to the future σ-

algebra Fs in the filtered space: thus in general the last integral in (1.2.3) is not well-defined in the
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framework of classical Itô-based stochastic calculus. For this reason, in the context of SPDEs, the

Duhamel principle has been used only under rather specific assumptions.

We observe that a naive application of the parametrix method for SPDE (1.1.1) would consist

precisely of a successive application of the Duhamel formula (1.2.3) with g and σ “ σspξq that are

not null and not even constant. Hence, the lack of a general Duhamel formula seems to preclude a

direct use of the whole parametrix approach.

Incidentally formula (1.2.2) shows that, even for SPDEs with constant coefficients, the stochastic

fundamental solution p has distinctive properties compared to the Gaussian deterministic heat

kernel. In particular, the asymptotic behaviour near the pole of p is affected by the presence of the

Brownian motion: this fact was studied also in [65] in the more general framework of Riemannian

manifolds and is coherent with the Gaussian lower and upper bounds (1.1.8).

1.3 Itô-Wentzell change of coordinates

In this section we consider the random change of coordinates (1.1.3) and use the Itô-Wentzell

formula to transform the SPDE (1.1.1) into a PDE with random coefficients. For simplicity, we

only consider the case t “ 0 and set γspξq ” γIW
0,spξq. We define the operation “hat” which transforms

any function uspξq into

ûspξq “ uspγspξqq (1.3.1)

and recall the classical Itô-Wentzell formula (see, for instance, Theor. 1.17 in [62] or Theor. 3.3.1

in [44]).

Theorem 1.3.1 (Itô-Wentzell). Let u P C2
0,T , h P C0

0,T and gk P C1
0,T be such that

duspξq “ hspξqds` g
k
s pξqdW

k
s . (1.3.2)

Then we have

dûspξq “

ˆ

ĥspξq `
1

2
{

σikt σ
jk
s pξqzBijuspξq ´

yBigks pxqσ̂
ik
s pξq

˙

ds`
´

ĝks pξq ´
zGksuspξq

¯

dW k
s . (1.3.3)

In order to apply Itô-Wentzell formula to our SPDE, we prove the following crucial estimate

for the gradient of γspξq.

Proposition 1.3.2. Let

Ys :“ p∇γsq´1.

We have ∇γ, Y P bC1
0,T and there exists a positive random variable rm such that

|Y ˚s pξqx|
2
ě rm|x|2, s P r0, T s, x, ξ P Rd, P -a.s. (1.3.4)
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The proof of Proposition 1.3.2 is based on the following preliminary lemma:

Lemma 1.3.3. Let Z be a continuous random field defined on rt, T s ˆ Rd. Assume that for some

ε ą 0 and p ą
`

d_ d
2ε

˘

there exists a constant C ą 0 such that

E

«

sup
sPrt,T s

|Zspxq|
p

ff

ď Cp1` |x|2q´εp, (1.3.5)

E

«

sup
sPrt,T s

|∇Zspxq|p
ff

ď Cp1` |x|2q´εp, (1.3.6)

for every x P Rd. Then Z has a modification in bC
1´ d

p

t,T .

Proof. By the classical Sobolev embedding theorem, for every f PW 1,ppRdq, with p ą d, we have

|fpxq| `
|fpxq ´ fpyq|

|x´ y|
1´ d

p

ď N}f}W 1,ppRdq, a.e. x, y P Rd,

where N is a constant dependent only on p and d. Hence the statement directly follows from the

following estimate

sup
sPrt,T s

}Zs}W 1,ppRdq ă 8 P -a.e.

and the continuity of Z. To this end, we check that

E

«

sup
sPrt,T s

}Zs}W 1,ppRdq

ff

ă 8.

By (1.3.5) and since p ą d
2ε , we have

E

«

sup
sPrt,T s

}Zs}
p
LppRdq

ff

ď E

«

ż

Rd
sup
sPrt,T s

|Zspxq|
pdx

ff

ď

ż

Rd
Cp1` |x|2q´εpdx ă 8,

and analogously by (1.3.6) we have

E

«

sup
sPrt,T s

}∇Zs}pLppRdq

ff

ď

ż

Rd
Cp1` |x|2q´εpdx ă 8.

Proof of Proposition 1.3.2. Let

Zspξq :“ ∇γspξq ´ I “
ż s

0
∇σkτ pγτ pξqq∇γτ pξqdW k

τ . (1.3.7)
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We show that the matrix-valued random field Ztpxq satisfies estimates (1.3.5) and (1.3.6) of Lemma

1.3.3 for every p such that
`

2_ d_ d
2ε

˘

ă p ă p̄, with ε and p̄ as in Assumption 1.1.4. Indeed, by

the well-known Lp-estimates for γspξq (see [44], Chapter 4), for any 0 ď s ď T and x P Rd we have

E
“

p1` |γspξq|
2qp

‰

ď N1p1` |ξ|
2qp, p P R, (1.3.8)

E
”

ˇ

ˇ∇jγspξq
ˇ

ˇ

p
ı

ď N2, p ě 2, 1 ď j ď 3, (1.3.9)

where the constants N1 and N2 depend only on p and d. We have

E

«

sup
sPr0,T s

ˇ

ˇZijs pξq
ˇ

ˇ

p

ff

ď C
d1
ÿ

k“1

d
ÿ

h“1

E

«

sup
sPr0,T s

ˇ

ˇ

ˇ

ˇ

ż s

0
Bhσ

ik
τ pγτ pξqqBjγ

h
τ pξqdW

k
τ

ˇ

ˇ

ˇ

ˇ

p
ff

(by Burkolder inequality)

ď C 1p

d1
ÿ

k“1

d
ÿ

h“1

E

«

ˆ
ż T

0

´

Bhσ
ik
τ pγτ pξqqBjγ

h
τ pξq

¯2
dτ

˙

p
2

ff

(by Hölder inequality with conjugate exponents p
2 and p

p´2)

ď C 1pT
p´2

2

d1
ÿ

k“1

d
ÿ

h“1

ż T

0
E
”ˇ

ˇ

ˇ
Bhσ

ik
τ pγτ pξqqBjX

h
τ pξq

ˇ

ˇ

ˇ

pı

dτ

(by Hölder inequality with conjugate exponents r and q ă p̄
p)

ď C 1pT
p´2

2

d1
ÿ

k“1

d
ÿ

h“1

ż T

0
E
”ˇ

ˇ

ˇ
Bhσ

ik
τ pγτ pξqq

ˇ

ˇ

ˇ

pqı 1
q
E
”ˇ

ˇ

ˇ
Bjγ

h
τ pξq

ˇ

ˇ

ˇ

prı 1
r
ds

(by the flattening Assumption 1.1.4 and estimate (1.3.9))

ď C2pT
p´2

2 N
1
r

2

ż T

0
E
“

Mpqp1` |γτ pξq|
2q´εpq

‰
1
q ds

(by Hölder inequality with conjugate exponents r̄ and q̄ :“ p̄
pq ą 1)

ď C2pT
p´2

2 N
1
r

2

ż T

0
E
“

M p̄
‰

p
p̄ E

“

p1` |γτ pξq|
2q´εpqr̄

‰
1
qr̄ ds

(by estimate (1.3.8))

ď C2pT
p
2N

1
qr̄

1 N
1
r

2 }M}
p
p̄p1` |ξ|

2q´εp.

This proves (1.3.5). Estimate (1.3.6) is obtained in a similar way from the identity BhZ
ij
s “ B

2
hjγ

i
s,

with B2
hjγ

i
s satisfying SDE (1.1.5), and employing estimate (1.3.9) with |β| “ 2. Hence, by Lemma
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1.3.3, Z has a bC
1´ d

p

0,T -modification and therefore ∇γ is bounded as a function of ps, ξq P r0, T sˆRd,
P -a.e. by (1.3.7).

Next we prove that det∇γspξq is bounded from above and below by a positive random variable

for all ps, ξq, P -a.s. By Itô formula (see [37], Lemma 3.1 for more details), with probability one we

have

det∇γspξq “ exp

ˆ

´

ż s

0
trp∇σkτ qpγτ pξqqdW k

τ `
1

2

ż s

0
tr
´

p∇σkτ q2
¯

pγτ pξqqdτ

˙

. (1.3.10)

Since both parts of the equality are continuous w.r.t ps, ξq, the equality holds for all ps, ξq at once

with probability one. Thus the assertion follows from the boundedness of the integrals appearing

in (1.3.10), which again can be proved as an application of Lemma 1.3.3, estimate (1.3.8) and

Assumption 1.1.4.

Then the matrix Ytpxq is well defined and detYspξq is bounded from below by a positive random

variable for all ps, ξq, P -a.s. This fact, together with the uniform boundedness of the entries of

∇γspξq, implies (1.3.4).

It remains to prove that∇γspξq and Ys have uniformly bounded spatial derivatives P -a.s. Again,

this is a consequence of formula (1.1.5), Lemma 1.3.3 and the simple equality

BjYspξq “ ´YspξqBjp∇γspξqqYspξq.

Theorem 1.3.4. The function u is a classical solution of SPDE (1.1.1) if and only if û in (1.3.1)

solves

dûspξq “
´

Lsûspξq ` f̂spξq
¯

ds (1.3.11)

where

Ls “
1

2
āijs Bij ` b̄

i
sBi ` c̄s (1.3.12)

is the parabolic operator with coefficients āij , b̄j , c̄ P bCα
0,T given explicitly by

āijs “ pYsα̂sY
˚
s qij , (1.3.13)

b̄is “ Y ir
s

ˆ

b̂rs ´
{

Bjσrks σ
jk
s ´ â

jh
s

`

Y ˚s p∇2γrsqYs
˘

jh

˙

,

c̄s “ ĉs.

Moreover, for some positive random variable µ, the following coercivity condition is satisfied

xāspξqx, xy ě µ|x|2, s P r0, T s, x, ξ P Rd, P -a.s. (1.3.14)
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Proof. By assumption, us satisfies (1.3.2) with hs “ Lsus ` fs P Cα
0,T and gks “ Gksus P C1`α

0,T .

Thus, by the Itô-Wentzell formula (1.3.3) we get

dûs “

ˆ

1

2
α̂ijs

zBijus `

ˆ

b̂js ´
{

Biσ
jk
s σiks

˙

yBjus ` ĉtûs ` f̂

˙

ds. (1.3.15)

Now, we have

Bj ûapξq “ xBiuspξqBjγ
i
spξq “

´

y∇uspξq∇γspξq
¯

j
,

Bij ûspξq “
´

∇γ˚s pξqz∇2uspξq∇γspξq
¯

ij
`

´

zBhuspξq∇2γhs pξq
¯

ij
,

or equivalently

y∇uspξq “ ∇ûspξqYspξq,
z∇2uspξq “ Y ˚s pξq∇2ûspξqYspξq ´

´

Y ˚s pξq∇2γhs pξqYspξq
¯

zBhuspξq.

Plugging these formulas into (1.3.15) and rearranging the indexes, we get (1.3.11)-(1.3.12)-(1.3.13).

Moreover, from expressions (1.3.13) combined with Assumption 1.1.2 and Proposition 1.3.2 it is

straightforward to see that aij , bj , c P bCα
0,T . Eventually, by Assumption 1.1.3 and estimate (1.3.4)

of Proposition 1.3.2 we have

xα̂spξqY
˚
s pξqx, Y

˚
s pξqxy ě m|Y ˚s pξqx|

2 ě m rm|x|2

for any s P r0, T s, x, ξ P Rd, P -a.s. and this proves (1.3.14).

1.4 Time-dependent parametrix

In this section we consider equation (1.3.11) for fixed ω P Ω; more generally we consider the

(deterministic) parabolic PDE

Ksups, ξq :“ Lsups, ξq ´ Bsups, ξq “ 0 (1.4.1)

where

Lsups, ξq “
1

2
aijps, ξqBijups, ξq ` b

ips, ξqBiups, ξq ` cps, ξqups, ξq. (1.4.2)

Since the coefficients will be assumed only measurable in the time variable, equation (1.4.1) has to

be understood in the integral sense: a solution to the Cauchy problem

$

&

%

Ksups, ξq ` fps, ξq “ 0, ξ P Rd, a.e. s P pt, T s,

upt, ξq “ ϕpξq, ξ P Rd,
(1.4.3)
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is a function u P C2
t,T pRdq that satisfies

ups, ξq “ ϕpxq `

ż s

t
pLτupτ, ξq ` fpτ, ξqqdτ, ps, ξq P rt, T s ˆ Rd.

The main idea of the parametrix method is to construct the fundamental solution Γ “ Γpt, x; s, ξq

of Ks using as a first approximation the so-called parametrix, that is the Gaussian kernel of the heat

operator obtained by freezing the coefficients of Ks at the pole pt, xq. If Z “ Zpt, x; s, ξq denotes

the parametrix, one looks for the fundamental solution of Ks in the form

Γpt, x; s, ξq “ Zpt, x; s, ξq ` pΦb Zqpt, x; s, ξq, (1.4.4)

where the symbol b denotes the convolution operator

pΦb Zqpt, x; s, ξq :“

ż s

t

ż

Rd
Φpt, x; τ, yqZpτ, y; s, ξqdydτ. (1.4.5)

The unknown function Φ is determined by imposing KsΓpt, x; s, ξq “ 0: this implies that Φ should

satisfy the integral equation

Φpt, x; s, ξq “ KsZpt, x; s, ξq ` pΦbKsZqpt, x; s, ξq (1.4.6)

for any x, ξ P Rd and a.e. s P pt, T s. By recursive approximation we have

Φpt, x; s, ξq “
`8
ÿ

k“1

Hbkpt, x; s, ξq (1.4.7)

where

Hb1pt, x; s, ξq “ Hpt, x; s, ξq :“ KsZpt, x; s, ξq,

Hbpk`1qpt, x; s, ξq :“ pHbk bHqpt, x; s, ξq, k “ 2, 3, ¨ ¨ ¨ .

To prove convergence of the series (1.4.7) and show that the candidate Γ in (1.4.4)-(1.4.6) is

indeed a fundamental solution for Ks, we need to impose some conditions.

Assumption 1.4.1. There exists a positive constants λ, α P p0, 1q such that aij P Cα0,T with Hölder

constant λ for every i, j “ 1, ¨ ¨ ¨ , d and

λ´1|x|2 ď xaps, ξqx, xy ď λ|x|2, |bjps, ξq| ` |cps, ξq| ď λ, s P r0, T s, x, ξ P Rd.

Notation 1.4.2. We introduce for notational convenience the following parameter set which gathers

important quantities appearing in the assumptions:

Θ :“ pT, α, λ, dq,

where again T ą 0 stands for the fixed considered final time.
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As opposed to the classical parametrix method, in Assumption 1.4.1 we do not require any

regularity of the coefficients in the time variable. Instead, here we only require Hölder continuity

in the spatial variables. The reason lies in the fact that we are going to adopt a time-dependent

definition of parametrix: namely, we do not freeze the time variable in the definition of Z (see

(1.4.14) below) and take as parametrix the fundamental solution of a parabolic equation with

coefficients depending on s.

Remark 1.4.3. Using the enhanced version of the parametrix method proposed in [13], we can

weaken the conditions on the first- and zero-order coefficients that can be supposed to be unbounded

with sub-linear growth at infinity.

Definition 1.4.4. A fundamental solution Γ “ Γpt, x; s, ξq for equation (1.4.1) is a function defined

for 0 ď t ă s ď T and x, ξ P Rd, such that for any pt, xq P r0, T q ˆ Rd we have:

i) Γpt, x; ¨, ¨q P C2
t0,T
pRdq for any t0 P pt, T q and satisfies KsΓpt, x; s, ξq “ 0 for any ξ P Rd and

a.e. s P pt, T s;

ii) for any continuous and non-rapidly increasing function ϕ on Rd and x0 P Rd

lim
ps,ξqÑpt,x0q

sąt

ż

Rd
ϕpxqΓpt, x; s, ξqdx “ ϕpx0q.

Next we state the main result of this section.

Theorem 1.4.5 (Existence of the fundamental solution). Under Assumption 1.4.1, there exists a

fundamental solution Γ for equation (1.4.1). Moreover, assume that ϕ “ ϕpxq is continuous and

non-rapidly increasing on Rd, and f “ fps, xq is non-rapidly increasing uniformly on rt, T s ˆ Rd

and such that f P Cα
1

t,T for some α1 P p0, 1q. Then

ups, ξq “

ż

Rd
ϕpxqΓpt, x; s, ξqdx`

ż s

t

ż

Rd
fpτ, xqΓpτ, x; s, ξqdxdτ (1.4.8)

is a solution to the Cauchy problem (1.4.3). Such a solution is unique in the class of functions with

quadratic exponential growth (cf. Corollary 1.1.6).

Theorem 1.4.6 (Properties of the fundamental solution). Under the same assumptions of Theorem

1.4.5, the fundamental solution Γ enjoys the following properties:

i) Γ verifies the Chapman-Kolmogorov identity

Γpt0, x0; s, ξq “

ż

Rd
Γpt0, x0; t, xqΓpt, x; s, ξqdx, t0 ă t ă s, ξ, x0 P Rd;
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and, if c “ cs is independent of ξ, we have
ż

Rd
Γpt, x; s, ξqdx “ e

şs
t cτdτ , t ď s ď T, ξ P Rd. (1.4.9)

In particular, if c ” 0 then Γpt, ¨; s, ξq is a density;

ii) there exist two positive constants µ “ µpΘq ě 1, C “ CpΘq ě 1, such that

C´1Γheat
`

µ´1Is´t, ξ ´ x
˘

ď Γpt, x; s, ξq ď CΓheat pµIs´t, ξ ´ xq , (1.4.10)

|∇ξΓpt, x; s, ξq| ď
C

?
s´ t

Γheat pµIs´t, ξ ´ xq , (1.4.11)

ˇ

ˇ∇2
ξΓpt, x; s, ξq

ˇ

ˇ ď
C

s´ t
Γheat pµIs´t, ξ ´ xq , (1.4.12)

for every 0 ď t ă s ď T and x, ξ P Rd.

1.4.1 Preliminary Gaussian and potential estimates

We freeze the coefficients of Ls in (1.4.2) at a fixed point x0 P Rd and consider the operator with

time-dependent coefficients

rLx0
s “

1

2
aijps, x0qBξiξj

acting in the ξ-variable. We denote by

rΓx0pt, x; s, ξq “ ΓheatpCt,spx0q, ξ ´ xq, Ct,spx0q :“

ż s

t
apτ, x0qdτ, (1.4.13)

the fundamental solution of rLx0
s ´Bs. Notice that rΓx0 is well defined for 0 ď t ă s ď T in virtue of

Assumption 1.4.1 and solves

BsrΓ
x0pt, x; s, ξq “ rLx0

s
rΓx0pt, x; s, ξq

for any x, ξ P Rd and almost every s P pt, T s. Finally, we define the parametrix for Ks as

Zpt, x; s, ξq “ rΓxpt, x; s, ξq, 0 ď t ă s ď T, x, ξ P Rd. (1.4.14)

The following Gaussian estimates are standard consequences of Assumption 1.4.1.

Lemma 1.4.7. We have

λ´dΓheat
`

λ´1Is´t, ξ ´ x
˘

ď rΓx0pt, x; s, ξq ď λdΓheatpλIs´t, ξ ´ xq, (1.4.15)

for any 0 ď t ă s ď T and x, ξ, x0 P Rd. Moreover, rΓx0pt, x; s, ξq verifies the Gaussian estimates

(1.4.11)-(1.4.12) for some positive constants µ,C dependent on Θ.
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Proposition 1.4.8. There exists k0 P N such that, for every t P r0, T r and x P Rd, the series

8
ÿ

k“k0

Hbkpt, x; ¨, ¨q

converges in L8ppt, T s ˆRdq. The function Φ defined by (1.4.7) solves the integral equation (1.4.6)

and there exist two positive constants µ,C dependent on Θ such that

|Φpt, x; s, ξq| ď Cps´ tq´1`α
2 ΓheatpµIs´t, ξ ´ xq, (1.4.16)

|Φpt, x; s, ξq ´ Φpt, x; s, yq| ď C
|ξ ´ y|

α
2

ps´ tq1´
α
4

ˆ

ˆ

´

ΓheatpµIs´t, ξ ´ xq ` ΓheatpµIs´t, y ´ xq
¯

, (1.4.17)

for every x, y, ξ P Rd and almost every s P pt, T s.

Proof. We first establish the following elementary inequality: for any ε ą 0 and n P N there exists

a positive constant cε,n such that

|λ|ne
´λ2

µ ď cn,εe
´ λ2

µ`ε , λ P R. (1.4.18)

Next prove the preliminary estimate

ˇ

ˇ

ˇ
Hbkpt, x; s, ξq

ˇ

ˇ

ˇ
ďMkps´ tq

´1`αk{2ΓheatpµIs´t, ξ ´ xq x, ξ P Rd, a.e. s P pt, T s, k P N, (1.4.19)

where C “ CpΘq is a positive constant, Mk “ Ck
ΓkEp

α
2 q

ΓEp
αk
2 q

and ΓE is the Euler Gamma function.

For k “ 1, we have

|Hpt, x; s, ξq| “
ˇ

ˇ

ˇ
pLs ´ rLxs qZpt, x; s, ξq

ˇ

ˇ

ˇ

ď
1

2

ˇ

ˇaijps, ξq ´ aijps, xq
ˇ

ˇ |BijZpt, x; s, ξq| `

`
ˇ

ˇbips, ξq
ˇ

ˇ |BiZpt, x; s, ξq| ` |cps, ξqZpt, x; s, ξq|

“: I1 ` I2 ` I3.

By Assumption 1.4.1, Lemma 1.4.7 and (1.4.18), we have

I1 ď Cps´ tq´1`α
2

ˆ

|ξ ´ x|
?
s´ t

˙α

ΓheatpµIs´t, ξ ´ xq ď Cps´ tq´1`α
2 Γheatppµ` 1qIs´t, ξ ´ xq.

Since the coefficients are bounded, by Lemma 1.4.7 we also have

I2 ď Cps´ tq´
1
2 ΓheatpµIs´t, ξ ´ xq, I3 ď CΓheatpµIs´t, ξ ´ xq,
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and this proves (1.4.19) for k “ 1. Now we assume that (1.4.19) holds for k and prove it for k ` 1:

by inductive hypothesis and the Chapman-Kolmogorov property of the heat kernel we have

ˇ

ˇ

ˇ
Hbpk`1qpt, x; s, ξq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż s

t

ż

Rd
Hbkpt, x; τ, yqHpτ, y; s, ξqdydτ

ˇ

ˇ

ˇ

ˇ

ď

ďMkM1

ż s

t
pτ ´ tq´1`αk

2 ps´ τq´1`α
2ˆ

ˆ

ż

Rd
ΓheatpµIτ´t, y ´ xqΓheatpµIs´τ , ξ ´ yqdydτ ď

ďMkM1pt´ sq
´1`αpk`1q

2 ΓheatpµIs´t, ξ ´ xq
ż 1

0
τ´1`αk

2 p1´ τq´1`α
2 dτ

that yields (1.4.19) thanks to the properties of the Gamma function. From (1.4.19) we directly

deduce the uniform convergence of the series and estimate (1.4.16). The proof of (1.4.17) follows

the same lines as in the classical case (see [24], Ch.1, Theor.7) and is omitted.

We close this section by stating a generalization of a classical result about the so-called volume

potential defined as

Vf ps, ξq “

ż s

t0

ż

Rd
fpt, xqZpt, x; s, ξqdxdt, ps, ξq P rt0, T s ˆ Rd, (1.4.20)

where Z denotes the parametrix. The proof is based on classical arguments (see [24], Ch.1, Sec.3

and [28]) that can be applied to the time-dependent parametrix Z in (1.4.14) without any significant

change.

Lemma 1.4.9. Let Vf be the volume potential in (1.4.20) with f P Cαt0,T pR
dq, non-rapidly increasing

uniformly w.r.t. t. Then Vf P C
2
t0,T

`

Rd
˘

satisfies

∇jξVf ps, ξq “
ż s

t0

ż

Rd
fpt, xq∇jξZpt, x; s, ξqdxdt, j “ 1, 2,

BsVf pt, xq “ fps, ξq `

ż s

t0

ż

Rd
fpt, xqBsZpt, x; s, ξqdxdt,

for any ξ P Rd and a.e. s P pt0, T s.

1.4.2 Proof of Theorem 1.4.5

Let Γ “ Γpt, x; s, ξq be the function defined by (1.4.4)-(1.4.7) for 0 ď t ă s ď T and x, ξ P Rd. By

Proposition 1.4.8, it is clear that Γpt, x; ¨, ¨q P C0
t,T pRdq for any pt, xq P r0, T q ˆ Rd. Next, we fix

t0 P pt, sq and notice that by (1.4.16)-(1.4.17) the function f :“ Φpt, x; ¨, ¨q, defined on rt0, T s ˆRd,
satisfies the conditions of Lemma 1.4.9: hence the volume potential

VΦps, ξq :“

ż s

t0

ż

Rd
Φpt, x; τ, yqZpτ, y; s, ξqdydτ
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is twice continuously differentiable in ξ and satisfies

KsVΦps, ξq “

ż s

t0

ż

Rd
Φpt, x; τ, yqHpτ, y; s, ξqdydτ ´ Φpt, x; s, ξq, a.e. s P pt0, T s.

On the other hand, we also have

Ks
ż t0

t

ż

Rd
Φpt, x; τ, yqZpτ, y; s, ξqdydτ “

ż t0

t

ż

Rd
Φpt, x; τ, yqHpτ, y; s, ξqdydτ

by the dominated convergence theorem. Consequently, we have

KsΓpt, x; s, ξq “ Hpt, x; s, ξq ` pΦbHqpt, x; s, ξq ´ Φpt, x; s, ξq “ 0

for a.e. s P pt, T s, because Φ solves equation (1.4.6). This proves property i) of Definition 1.4.4 of

fundamental solution. To prove property ii), it suffices to notice that

ż

Rd
ϕpxqΓpt, x; s, ξqdx “ I1pt, s, ξq ` I2pt, s, ξq

where

lim
ps,ξqÑpt,x0q

sąt

I1pt, s, ξq “ lim
ps,ξqÑpt,x0q

sąt

ż

Rd
ϕpxqZpt, x; s, ξqdx “ ϕpx0q,

lim
ps,ξqÑpt,x0q

sąt

|I2pt, s, ξq| ď lim
ps,ξqÑpt,x0q

sąt

ż

Rd

ż s

t

ż

Rd
|ϕpxqΦpt, x; τ, yq|Zpτ, y; s, ξqdydτdx ď

(by (1.4.15)-(1.4.16) and since ϕ is non-rapidly increasing, taking δ ą 0 suitably small, with C “

Cpλ, δq)

ď lim
ps,ξqÑpt,x0q

sąt

ż

Rd

ż s

t
Ceδ|x|

2
pτ ´ tq´1`α

2ˆ

ˆ

ż

Rd
ΓheatpµIτ´t, y ´ xqΓheatpµIs´τ , ξ ´ yqdydτdx

ď lim
ps,ξqÑpt,x0q

sąt

ż

Rd

ż s

t
Cpτ ´ tq1´

α
2 ΓheatpµIs´t, ξ ´ xqeδ|x|

2
dτdx “ 0.

(1.4.21)

Finally, the standard proof of existence for the Cauchy problem (see for instance [24], Ch.1,

Theor.12, or [28]) applies without modification. Uniqueness follows from the maximum princi-

ple.
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1.4.3 Proof of Theorem 1.4.6

The Chapman-Kolmogorov identity follows from uniqueness of the Cauchy problem (1.4.3) and

representation (1.4.8) with f ” 0 and ϕ “ Γpt0, x0; t, ¨q, for fixed pt0, x0q P r0, tqˆRd. Analogously,

formula (1.4.9) follows from uniqueness of the Cauchy problem (1.4.3) with f ” 0 and ϕ ” 1.

Next we prove the Gaussian estimates for Γ. By the Chapman-Kolmogorov property for Γheat

we have

|pΦb Zqpt, x; τ, ξq| ď

ż s

t

ż

Rd
|Φpt, x; τ, yq|Zpτ, y; s, ξqdydτ

ď CΓheatpµIs´t, ξ ´ xq
ż s

t
pτ ´ tq´1`α

2 dτ ď Cps´ tq
α
2 ΓheatpµIs´t, ξ ´ xq

for some positive C, µ. Since Γ “ Z `ΦbZ, the previous estimate combined with (1.4.15) proves

|Γpt, x; s, ξq| ď C1ΓheatpµIs´t, ξ ´ xq

and in particular, the upper bound for Γ in (1.4.10). The proof of (1.4.11)-(1.4.12) is similar.

Notice that by the maximum principle (in the form of Lemma 5 p.43 in [24]) applied to ups, ξq “
ş

Rd ϕpxqΓpt, x; s, ξqdx, where ϕ is any bounded, non-negative and continuous function, one easily

infers that Γ is non-negative.

To prove the Gaussian lower bound we adapt a procedure due to Aronson that is essentially

based on a crucial Nash’s lower bound (see [20], Sect. 2). The main difference is that in our setting

we replace Nash’s estimate with a bound that we directly derive from the parametrix method.

Let us first notice that, for µ ą 1, we have ΓheatpµIt, xq ď Γheatpµ´1It, xq if |x| ď %µ
?
t where

%µ “
b

µd
µ2´1

logµ. Thus, by (1.4.15) and (1.4.16) we have

Γpt, x; s, ξq ě Zpt, x; s, ξq ´ |pΦb Zqpt, x; s, ξq| ě

(if |ξ ´ x| ď %µ
?
s´ t)

ě

´

µ´d ´ Cps´ tq
α
2

¯

Γheatpµ´1Is´t; ξ ´ xq

ě
1

2
µ´dΓheatpµ´1Is´t; ξ ´ xq (1.4.22)

if 0 ă s´ t ď Tµ :“ p2Cλdq´
2
α ^ T .

For any pt, xq P r0, T q ˆ Rd, ps, ξq P pt, T s ˆ Rd we set m to be the smallest natural number

greater than

max

"

4%´2
µ

|ξ ´ x|2

ps´ tq
,
T

Tµ

*

.
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Then we set

ti “ t` i
s´ t

m` 1
, xi “ x` i

ξ ´ x

m` 1
, i “ 0, . . . ,m` 1.

Denoting by Dpx; rq “ ty P Rd, |x´ y| ă ru the Euclidean ball centered at x with radius r ą 0, by

the Chapman-Kolmogorov equation we have

Γpt, x; τ, ξq “

ż

Rmd
Γpt, x; t1, y1q

m´1
ź

i“1

Γpti, yi; ti`1, yi`1qΓptm, ym; s, ξqdy1 ¨ ¨ ¨ dym

(since Γ is non-negative)

ě

ż

Rmd
Γpt, x; t1, y1q

m´1
ź

i“1

Γpti, yi; ti`1, yi`1q1Dpxi;rqpyiqˆ

ˆ Γptm, ym; s, ξq1Dpxm;rqpymqdy1 ¨ ¨ ¨ dym. (1.4.23)

Now we have

ti`1 ´ ti “
s´ t

m` 1
ď

T

m` 1
ď Tµ, i “ 0, . . . ,m

by definition of m. Moreover, if yi P Dpxi; rq for i “ 1, . . . ,m, by the triangular inequality we have

|yi`1 ´ yi| ď 2r ` |xi`1 ´ xi| “ 2r `
|ξ ´ x|

m` 1
ď

(again, by definition of m)

ď 2r `
%µ
2

c

s´ t

m` 1
ď %µ

c

s´ t

m` 1
, (1.4.24)

if we set

r “
%µ
4

c

s´ t

m` 1
ą 0.

For such a choice of r, we can use (1.4.22) repeatedly in (1.4.23) and get

Γpt, x; s, ξq ě p2λdq´pm`1q

ż

Rmd
Γheat

´

µ´1I s´t
m`1

, y1 ´ x
¯

ˆ

ˆ

m´1
ź

i“1

Γheat
´

µ´1I s´t
m`1

, yi`1 ´ yi

¯

1Dpxi;rqpyiqˆ

ˆ Γheat
´

µ´1I s´t
m`1

, ξ ´ ym

¯

1Dpxm;rqpymqdy1 ¨ ¨ ¨ dym

(by (1.4.24) and denoting by ωd the volume of the unit ball in Rd)

ě p2λdq´pm`1qpωdr
dqm

ˆ

µpm` 1q

2πps´ tq

˙
d
2
pm`1q

exp

˜

´
µ%2

µ

2
pm` 1q

¸

.
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It follows that there exists a positive constant C “ CpΘq such that

Γpt, x; s, ξq ě C´1
0 ps´ tq´

d
2 exp p´Cmq ,

and this implies the required estimate: indeed if |ξ ´ x|2 ě
T%2

µ

4Tµ
ps´ tq, then, by the definition of m

it follows that m ă 8|ξ ´ x|2p%2
µps´ tqq

´1 and then

Γpt, x; s, ξq ě C1p2πps´ tqq
´ d

2 exp

ˆ

´
µ̄

2

|ξ ´ x|2

s´ t

˙

“ C2Γheatpµ̄´1Is´t, ξ ´ xq.

Otherwise if we have m ă 2T {Tµ, and then

Γpt, x; s, ξq ě C3p2πps´ tqq
´ d

2 ě C3p2πps´ tqq
´ d

2 exp

ˆ

´
µ̄

2

|ξ ´ x|2

s´ t

˙

“ C4Γheatpµ̄´1Is´t, ξ ´ xq.

1.4.4 Proof of Theorem 1.1.5

For any fixed t P r0, T q, we consider the stochastic flow γIW
t,s defined as in (1.1.3) for s P rt, T s.

Let Lt,s be the operator defined as in (1.3.12)-(1.3.13) through the random change of variable γIW
t,s .

By Theorem 1.4.5, Kt,s “ Lt,s ´ Bs is a parabolic operator on the strip rt, T s ˆ Rd with random

coefficients, that satisfies Assumption 1.4.1 on rt, T sˆRd for almost every ω P Ω. Then, by Theorem

1.4.5, Kt,s admits a fundamental solution Γptqpt, x; s, ξq defined for s P pt, T s and x, ξ P Rd. We put

Γpt, x; s, ξq :“ Γptq
´

t, x; s, γIW,´1
t,s pξq

¯

, s P pt, T s, x, ξ P Rd. (1.4.25)

Combining Theorems 1.3.4 and 1.4.5, we infer that Γpt, x; ¨, ¨q P C2
τ,T pRdq and satisfies (1.1.2) with

probability one. Moreover, let us consider a continuous and non-rapidly increasing function ϕ on

Rd; proceeding as in the proof of Theorem 1.4.5 we have
ż

Rd
ϕpxqΓpt, x; s, ξqdx´ ϕpξq “ I1pt, s, ξq ` I2pt, s, ξq

where I2pt, s, ξq is defined and can be estimated as in (1.4.21); whereas, recalling the definition of

parametrix in (1.4.13), (1.4.14), we have

lim
ps,ξqÑpt,x0q

sąt

I1pt, s, ξq “ lim
ps,ξqÑpt,x0q

sąt

ż

Rd
pϕpxq ´ ϕpx0qqΓheat

´

Ct,spxq, γIW,´1
t,s pξq ´ x

¯

dx

“ lim
ps,ξqÑpt,x0q

sąt

ż

Rd

´

ϕpγIW,´1
t,s pξq ´ xq ´ ϕpx0q

¯

Γheat
´

Ct,spγIW,´1
t,s pξq ´ xq, x

¯

dx “ 0

by the dominated convergence theorem. This proves that Γ is a fundamental solution for the SPDE

(1.1.1).
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The Gaussian bounds (1.1.8) follow directly from the definition (1.4.25) and the analogous

estimates (1.4.10) for Γptq in Theorem 1.4.6. Moreover, since

∇ξΓpt, x; s, ξq “ p∇Γptqq
`

t, x; s, γIW,´1
t,s pξq

˘

∇γIW,´1
t,s pξq,

the gradient estimate (1.1.9) follows from the analogous estimate (1.4.11) for Γptq and from Propo-

sition 1.3.2. The proof of (1.4.10) is analogous.



Chapter 2

On a class of Langevin and

Fokker-Plank SPDEs

2.1 Introduction

In this chapter we expand on the first study and consider a stochastic version of the Fokker-Plank

equation

Bsu`
n
ÿ

j“1

νjBξju “
1

2

n
ÿ

i,j“1

aijBνiνju. (2.1.1)

Here the variables s ě 0, ξ P Rn and ν P Rn respectively stand for time, position and velocity, and

the unknown u “ uspξ, νq ě 0 stands for the density of particles in phase space.

We study a kinetic model where the position and the velocity of a particle are stochastic

processes pXs, Vsq only partially observable through some observation process Ys. We consider

the two-dimensional case, n “ 1, and propose an approach that hopefully can be extended to the

multi-dimensional case. If FYs “ σpYτ , τ ď sq denotes the filtration of the observations then, under

natural assumptions, the conditional density given FYs solves a linear SPDE of the form

dBuspζq “ As,ζuspζqds` Gs,ζuspζqdWs, ζ “ pξ, ν1, ¨ ¨ ¨ νdq P Rd`1, (2.1.2)

where B “ Bs ` ν1Bξ and

As,ζuspζq :“
1

2
aijs pζqBνiνjuspζq ` b

i
spζqBνiuspζq ` cspζquspζq;

Gs,ζuspζq :“ σispζqBνiuspζq ` hspζquspζq.

In (2.1.2) W is a Wiener process defined on a complete probability space pΩ,F , P q endowed

with a filtration pFsqsě0 satisfying the usual conditions. The symbol dB indicates that the equation

is solved in the Itô (or strong) sense:

33
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Definition 2.1.1. A solution to (2.1.2) on rt, T s is a process us “ uspξ, νq P C0
t,T that is twice

differentiable in the variables ν and solves the equation

us
`

γBs´tpζq
˘

“ utpζq `

ż s

t
Aτ,γBτ´tpζquτ pγ

B
τ´tpζqqdτ `

ż s

t
Gτ,γBτ´tpζquτ pγ

B
τ´tpζqqdWτ , s P rt, T s,

where s ÞÑ γBs pξ, νq denotes the integral curve, starting from pξ, νq, of the advection vector field

ν1Bξ, that is

γBs pξ, νq “ esBpξ, νq “ pξ ` sν1, νq, B “

˜

0 1 01ˆpd´1q

0dˆ1 0dˆ1 0dˆpd´1q

¸

,

where 0nˆm denotes the nˆm null matrix.

Definition 2.1.2. A stochastic fundamental solution Γ “ Γpt, z; s, ζq for the SPDE (2.1.2) is a

function defined for 0 ď t ă s ď T and z, ζ P Rd`1, such that for any pt, zq P r0, T q ˆ Rd`1 and

t0 P pt, T q we have:

i) Γpt, z, ¨, ¨q is a solution to (2.1.2) on rt0, T s;

ii) for any ϕ P bCpRd`1q and z0 P Rd`1, we have

lim
ps,ζqÑpt,z0q

sąt

ż

R2

Γpt, z; s, ζqϕpzqdz “ ϕpz0q, P -a.s.

The actual dimension of the equation can be possibly greater than two: this is still coherent

with the two-dimensional model and it is due to the fact that the set of variables carried by Y may

also enter the equation, as will become clear in Chapter 3. On the other hand, this only affects

the elliptic part of (2.1.2), and in this sense, the cases d “ 1 and d ą 1 are completely analogous.

In case the observation process Y is independent of X and V , the SPDE (2.1.2) boils down to the

deterministic PDE (2.1.1) with n “ 1.

Compared to the uniformly parabolic case, two main new difficulties arise:

i) the Itô-Wentzell transform drastically affects the drift B: in particular, after the random

change of coordinates, the new drift has no longer polynomial coefficients. Consequently,

a careful analysis is needed to check the validity of the Hörmander condition in the new

coordinates. This question is discussed in more detail in Section 2.2;

ii) in the deterministic case, the parametrix method has been applied to degenerate Fokker-

Planck equations, including (2.1.2) with σ ” 0, by several authors, [58], [16], using intrinsic

Hölder spaces. Loosely speaking, the intrinsic Hölder regularity reflects the geometry of
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the PDE and is defined in terms of the translations and homogeneous norm associated to the

Hörmander vector fields: this kind of regularity is natural for the study of the singular kernels

that come into play in the parametrix iterative procedure. Now, under the weak Hörmander

condition, the intrinsic regularity properties in space and time are closely intertwined and

cannot be studied separately. However, assuming that the coefficients are merely predictable,

we have no good control on the regularity in the time variable; for instance, even in the

deterministic case, the coefficients are only measurable in s and consequently they cannot

be Hölder continuous in px, vq in the intrinsic sense. On the other hand, assuming that the

coefficients are Hölder continuous in px, vq in the classical Euclidean sense, the parametrix

method still works as long as we use a suitable time-dependent parametrix and exploit the

fact that the intrinsic translations coincide with the Euclidean ones for points ps, x, vq and

ps, ξ, ηq at the same time level. We comment on this question more thoroughly in Section 2.3.

The chapter is organized as follows. In the remaining part of this section we set the assumptions

on (2.1.2) and state the main result, Theorem 2.1.6. In Sections 2.2 and 2.3 we go deeper into the

issues mentioned above. In Section 2.4 we prove some crucial estimates for stochastic flows of

diffeomorphisms: these estimates, which can be of independent interest, are based on the ideas

introduced in Section 1.3 and extend some result of [44]. In Section 2.5 we exploit the results of

Section 2.4 to perform the reduction of the SPDE to a PDE with random coefficients. In Section 2.6

we build on the work by [14] to develop a parametrix method for Kolmogorov PDEs with general

drift (Theorem 2.6.6) and in Section 2.6.2 we complete the proof of Theorem 2.1.6 for d “ 1.

In Section 2.7 we explain how our methods can be tweaked to apply to the backward version of

equation (2.1.2).

2.1.1 Assumptions and main results

We start by setting the standing assumptions on the coefficients of the SPDE (2.1.2).

Assumption 2.1.3 (Regularity). For some α P p0, 1q we have: a P bCα
0,T , σ P bC3`α

0,T , b, c P bC0,T

and h P bC2
0,T .

Assumption 2.1.4 (Coercivity). There exists a random, finite and positive constant m such that

xatpzq ´ σtpzqσ
˚
t pzqζ, ζy ě m|ζ|2, t P r0, T s, z, ζ P Rd`1, P -a.s.

We make again use of an Itô-Wentzell transform, but this time we only need to operate on the

directions νj : for fixed t P r0, T s we consider the SDE in Rd

γIW
t,s px, vq “ v ´

ż s

t
στ px, γ

IW
t,τ px, vqqdWτ . (2.1.3)
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Assumption 2.1.3 ensures that (2.1.3) is solvable in the strong sense and the map px, vq ÞÑ
`

x, γIW
t,s px, vq

˘

is a stochastic flow of diffeomorphisms of Rd`1 (see Theorem 2.4.1 below). To have a control on its

gradient, recalling the notation (1.1.6), we impose the following additional

Assumption 2.1.5. There exist ε ą 0 and two random variables M1 P L
ppΩq, with p ą max

 

2, 1
ε

(

,

and M2 P L
8pΩq, such that with probability one

sup
tPr0,T s

`

tσtuε,β ` tσtu1{2`ε,β1
˘

ďM1, |β| “ 1, |β1| “ 2, 3,

sup
tPr0,T s

thtu1{2,β ďM2, |β| “ 1.

In order to state the main result of this section, Theorem 2.1.6 below, we need to introduce

some additional notation: we denote by gIW,´1 the inverse of the Itô-Wentzell stochastic flow

px, vq ÞÑ gIW
t,s px, vq :“

`

x, γIW
t,s px, vq

˘

defined by (2.1.3). Moreover, we consider the vector field

Yt,spzq :“
´

pγIW
t,s q1pzq,´pγ

IW
t,s pzqq1p∇vγIW

t,s q
´1pzqBxγ

IW
t,s pzq

¯

, (2.1.4)

with ∇vγIW “ pBvjγ
IW
i qi,j“1,¨¨¨d and Bxγ

IW “ pBxγ
IW
i qi“1,¨¨¨d. Eventually, equation

γt,spzq “ z `

ż s

t
Yt,τ pγt,τ pzqqdτ, s P rt, T s,

defines the integral curve of Yt,s starting from pt, zq.

The central result of this chapter is the following theorem whose proof is postponed to Section

2.6.

Theorem 2.1.6. Under Assumptions 2.1.3, 2.1.4 and 2.1.5, the SPDE (2.1.2) has a fundamental

solution Γ and there exist two positive random variables µ1 and µ2 such that, with probability one

we have

Γpt, z; s, ζq ě µ´1
2 Γheat

´

µ´1
1 Ds´t, gIW,´1

t,s pζq ´ γt,spzq
¯

(2.1.5)

Γpt, z; s, ζq ď µ2Γheat
´

µ1Ds´t, gIW,´1
t,s pζq ´ γt,spzq

¯

, (2.1.6)

|∇νΓpt, z; s, ξ, νq| ď
µ2

?
s´ t

Γheat
´

µ1Ds´t, gIW,´1
t,s pξ, νq ´ γt,spzq

¯

, (2.1.7)

ˇ

ˇ∇2
νΓpt, z; s, ξ, νq

ˇ

ˇ ď
µ2

s´ t
Γheat

´

µ1Ds´t, gIW,´1
t,s pξ, νq ´ γt,spzq

¯

, (2.1.8)

for every 0 ď t ă s ď T , ζ “ pξ, νq, z P Rd`1, where Dλ is the pd ` 1q ˆ pd ` 1q matrix

diagpλ3, λ, ¨ ¨ ¨ , λq.

Remark 2.1.7. We would like to emphasize that Theorem 2.1.6 is new even in the deterministic

case, i.e. when σ ” 0, h ” 0 and the coefficients are deterministic functions. In fact, a study of
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Kolmogorov PDEs with coefficients measurable in time was only recently proposed in [7]: however

in [7] the coefficients are assumed to be independent of the spatial variables that is a very particular

case where the fundamental solution is known explicitly.

2.2 Stochastic Langevin equation and the Hörmander condition

For illustrative purposes, we examine the case of constant coefficients and introduce the stochastic

counterpart of the classical Langevin PDE.

Let B,W be independent real Brownian motions, a ą 0 and σ P r0,
?
as. The Langevin model

is defined in terms of the system of SDEs
$

&

%

dXt “ Vtdt,

dVt “
?
a´ σ2dBt ´ σdWt.

(2.2.1)

We interpret W as the observation process: if σ “ 0 the velocity V is unobservable, while for

σ “
?
a the velocity V is completely observable, being equal to W . To shorten notations, we

denote by ζ “ pξ, νq and by z “ px, vq the points in R2. Setting Zt “ pXt, Ytq, equation (2.2.1) can

be rewritten as

dZt “ BZtdt` e2dp
a

a´ σ2Bt ´ σWtq, (2.2.2)

with

B “

˜

0 1

0 0

¸

, e2 “

ˆ

0

1

˙

. (2.2.3)

In this section we show in two different ways that the SPDE

dBus “
a

2
Bννusds` σBνusdWs, B :“ Bs ` νBξ, (2.2.4)

is the forward Kolmogorov (or Fokker-Planck) equation of the SDE (2.2.1) conditioned to the

Brownian observation given by FWs “ σpWt, t ď sq. In the uniformly parabolic case, this is a

well-known fact, proved under diverse assumptions by several authors (see, for instance, [72], [39]

and [54]).

In the first approach, we solve explicitly the linear SDE (2.2.2) and find the expression of the

conditional transition density Γ of the solution Z: by Itô formula, we directly infer that Γ is the

fundamental solution of the SPDE (2.2.4). The second approach, inspired by [42], is much more

general because it does not require the explicit knowledge of Γ: we first prove the existence of

the fundamental solution of the SPDE (2.2.4) and then show that it is the conditional transition

density of the solution of (2.2.1).

The following result is a consequence of the Itô formula and isometry.
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Proposition 2.2.1. The solution Z “ Zz of (2.2.2), with initial condition z “ px, vq P R2, is given

by

Zzs “ esB
ˆ

z `

ż s

0
e´τBe2 dp

a

a´ σ2Bτ ´ σWτ q

˙

with e2 as in (2.2.2). Conditioned to FWs , Zzs has normal distribution with mean and covariance

matrix given by

mspzq :“ E
“

Zzs | FWs
‰

“ esB
ˆ

z ´ σ

ż s

0
e´τBe2dWτ

˙

“

˜

x` sv ´ σ
şs
0ps´ τqdWτ

v ´ σWs

¸

, (2.2.5)

Cs :“ cov
`

Zzs | FWs
˘

“ pa´ σ2qQs, Qs :“

ż s

0

`

eτBe2

˘ `

eτBe2

˘˚
dτ “

˜

s3

3
s2

2
s2

2 s

¸

.

In particular, if σ “
?
a then the distribution of Zzs conditioned to FWs is a Dirac delta centered at

mspzq; if σ P r0,
?
aq and s ą 0 then Zzs has density, conditioned to FWs , given by

Γp0, z; s, ζq “
1

2π
?

det Cs
exp

ˆ

´
1

2
xC´1
s pζ ´mspzqq, pζ ´mspzqqy

˙

, ζ P R2. (2.2.6)

More explicitly, we have Γp0, z; s, ζq “ Γ0ps, ζ ´mspzqq where

Γ0ps, ξ, νq “

?
3

πs2pa´ σ2q
exp

ˆ

´
2

a´ σ2

ˆ

ν2

s
´

3νξ

s2
`

3ξ2

s3

˙˙

, s ą 0, pξ, νq P R2. (2.2.7)

By the Itô formula, Γp0, z; s, ζq is the stochastic fundamental solution of SPDE (2.2.4), with pole

at p0, zq.

As an alternative approach, we construct the fundamental solution of the SPDE (2.2.4). First we

transform (2.2.4) into a PDE with random coefficients, satisfying the weak Hörmander condition;

by a second change of variables, we remove the drift of the equation and transform it into a

deterministic heat equation; going back to the original variables, we find the stochastic fundamental

solution of (2.2.4), which obviously coincides with Γ in (2.2.6). Eventually, we prove that Γp0, z; s, ¨q

is a density of Zzs conditioned to FWs . We split the proof in three steps.

[Step 1] We set

ûspξ, νq “ uspξ, ν ´ σWsq. (2.2.8)

By Itô formula, u solves (2.2.4) if and only if û solves the Langevin PDE

Bsû` pν ´ σWsqBξû “
a´ σ2

2
Bνν û. (2.2.9)

By this change of coordinates we get rid of the stochastic part of the SPDE; however, this is done

at the cost of introducing a random drift term. For the moment, this is not a big issue because σ
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is constant and, in particular, independent of ν: for this reason, the weak Hörmander condition is

preserved since the vector fields Bν , Bs ` pν ´ σWsqBξ and their Lie bracket

rBν , Bs ` pν ´ σWsqBξs “ Bξ

span R3 at any point.

[Step 2] In order to remove the random drift, we perform a second change of variables:

ūspξ, νq “ ûspγspξ, νqq, γspξ, νq :“

ˆ

ξ ` sν ´ σ

ż s

0
Wτdτ, ν

˙

. (2.2.10)

The spatial Jacobian of γs equals

∇γspξ, νq “
˜

1 s

0 1

¸

so that γs is one-to-one and onto R2 for any s. Then, (2.2.9) is transformed into the deterministic

heat equation with time-dependent coefficients

Bsūspξ, νq “
a´ σ2

2

`

s2Bξξ ´ 2sBξν ` Bνν
˘

ūspξ, νq. (2.2.11)

Equation (2.2.11) is not uniformly parabolic because the matrix of coefficients of the second order

part

as :“ pa´ σ2q

˜

s2 ´s

´s 1

¸

is singular. However, in case of partial observation, that is σ P r0,
?
aq, the diffusion matrix

Cs “
ż s

0
aτdτ “ pa´ σ

2q

˜

s3

3 ´ s2

2

´ s2

2 s

¸

is positive definite for any s ą 0 and therefore (2.2.11) admits a Gaussian fundamental solution.

For σ “ 0, this result was originally proved by [31] (see also the introduction in [27]). Going back

to the original variables we recover the explicit expression of Γ in (2.2.6).

Incidentally, we notice that (2.2.11) also reads

Bsūspξ, νq “
a´ σ2

2
V2
s ūspξ, νq, Vs :“ Bν ´ sBξ,

where the vector fields Bs and Vs satisfy the weak Hörmander condition in R3 because rVs, Bss “ Bξ.

[Step 3] We show that Γ is the conditional transition density of Z: the proof is based on a

combination of the arguments of [42] with the gradient estimates for Kolmogorov equations proved

in [17] and anticipates some of the arguments we will develop in greater generality in Chapter 3.



40 CHAPTER 2. ON A CLASS OF LANGEVIN AND FOKKER-PLANK SPDES

Theorem 2.2.2. Let Zz denote the solution of the linear SDE (2.2.2) starting from z P R2 and

let Γ “ Γp0, z; s, ¨q in (2.2.6) be the fundamental solution of the Langevin SPDE (2.2.4) with σ P

r0,
?
aq. For any bounded and measurable function ϕ on R2, we have

E
“

ϕpZzs q | FWs
‰

“

ż

R2

ϕpζqΓp0, z; s, ζqdζ.

Proof. Let

Ispzq :“

ż

R2

ϕpζqΓp0, z; s, ζqdζ, s ą 0, ζ P R2.

By (2.2.5)-(2.2.6), Ispzq is FWs -measurable: then, to prove the thesis we show that for any bounded

and FWs -measurable random variable G we have

E rGϕpZzs qs “ E rGIspzqs .

By an approximation argument it suffices to take ϕ in the class of test functions and G of

the form G “ e´
şs
0 cτ pWτ qdτ , where c “ cspwq is a smooth, bounded and non negative function on

r0, T s ˆ R. Let

Lpσq “ 1

2
paBνν ´ 2σBνη ` Bηηq ` νBξ

be the infinitesimal generator of the three-dimensional process pX,V,W q. For σ P r0,
?
aq, Bs`Lpσq

satisfies the weak Hörmander condition in R4 and has a Gaussian fundamental solution (see, for

instance, formula (2.9) in [17]). We denote by f “ ftpξ, ν, ηq the classical solution of the backward

Cauchy problem

$

&

%

`

Bt ` Lpσq
˘

ftpξ, ν, ηq ´ ctpηqftpξ, ν, ηq “ 0, pt, ξ, ν, ηq P r0, sq ˆ R3,

fspξ, ν, ηq “ ϕpx, vq, pξ, ν, ηq P R3,

and set

Mt :“ e´
şt
0 cτ pWτ qdτ

ż

R2

ftpζ,WtqΓp0, z; t, ζqdz, t P r0, ss.

By definition, we have

E rMss “ E
”

e´
şs
0 cτ pWτ qdτIspzq

ı

and, by the Feynman-Kac representation of f ,

E rM0s “ f0pz, 0q “ E
”

e´
şs
0 cτ pWτ qdτϕpZzs q

ı

.



2.2. STOCHASTIC LANGEVIN EQUATION AND THE HÖRMANDER CONDITION 41

Hence the thesis follows by proving that M is a martingale. By the Itô formula, we have

dftpξ, ν,Wtq “

ˆ

Btft `
1

2
Bηηft

˙

pξ, ν,Wtqdt` pBηftq pξ, ν,WtqdWt

“

ˆ

´Lpσqft ` ctft `
1

2
Bηηft

˙

pξ, ν,Wtqdt` pBηftq pξ, ν,WtqdWt.

Moreover, since Γ solves the SPDE (2.2.4), setting et :“ e´
şt
0 cτ pWτ qdτ for brevity, we get

dMt “ ´ctpWtqMtdt` et

ż

R2

ˆ

´Lpσqft ` ctft `
1

2
Bηηft

˙

pξ, ν,WtqΓp0, z; t, ξ, νqdξdν dt

` et

ż

R2

pBηftq pξ, ν,WtqΓp0, z; t, ξ, νqdξdν dWt

` et

ż

R2

ftpξ, ν,Wtq

´a

2
Bνν ´ νBξ

¯

Γp0, z; t, ξ, νqdξdν dt

` etσ

ż

R2

ftpξ, ν,WtqBνΓp0, z; t, ξ, νqdξd v dWt

` etσ

ż

R2

Bηftpξ, ν,WtqBνΓp0, z; t, ξ, νqdξdν dt.

Integrating by parts, we find

dMt “ et

ż

R2

pBηfs ´ σBνftq pξ, ν,WtqΓp0, z; t, ξ, νqdξdν dWt,

which shows that M is at least a local martingale.

To conclude, we recall the gradient estimates proved in [17], Proposition 3.3: for any test

function ϕ there exist two positive constants ε, C such that

|Bνftpξ, ν, ηq| ` |Bηftpξ, ν, ηq| ď Cps´ tqε´
1
2 , pt, ξ, ν, ηq P r0, sq ˆ R3.

Thus, we have

E

«

ż s

0

ˆ
ż

R2

pBηft ´ σBνftq pξ, ν,WtqΓp0, z; t, ξ, νqdξdν

˙2

dt

ff

ď

ż s

0
Cps´ tq2ε´1E

«

ˆ
ż

R2

Γp0, z; t, ξ, νqdξdν

˙2
ff

dt

“

ż s

0
Cps´ tq2ε´1dt ă 8

and this proves that M is a true martingale.
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2.3 Intrinsic vs Euclidean Hölder spaces for the deterministic

Langevin equation

The parametrix method requires some assumption on the regularity of the coefficients of the PDE:

in the uniformly parabolic case, it suffices to assume that the coefficients are bounded, Hölder

continuous in the spatial variables and measurable in time (cf. [24]).

In this study, we apply the parametrix method assuming that the coefficients of the Langevin

SPDE (2.1.2) are predictable processes that are Hölder continuous in the Euclidean sense. From

the analytical perspective this is not the natural choice: indeed, it is well known that the natural

framework for the study of Hörmander operators is the analysis on Lie groups (see, for instance,

[23]). In this section, we motivate our choice to use Euclidean Hölder spaces rather than the

intrinsic ones. We recall that [45] first studied the intrinsic geometry of the Langevin operator in

(2.2.4) with σ “ 0:

La :“
a

2
Bνν ´ νBξ ´ Bs.

They noticed that La is invariant with respect to the homogeneous Lie group pR3, ˚, δq where the

group law is given by

pt, x, vq ˚ ps, ξ, νq “ pt` s, x` ξ ` sv, v ` νq, pt, x, vq, ps, ξ, νq P R3, (2.3.1)

and δ “ pδλqλą0 is the ultra-parabolic dilation operator defined as

δλpt, x, vq “ pλ
2t, λ3x, λvq, pt, x, vq P R3, λ ą 0.

More precisely, La is invariant with respect to the left-˚-translations `pt,x,vqps, ξ, νq “ pt, x, vq ˚

ps, ξ, νq, in the sense that

Lapf ˝ `pt,x,vqq “ pLafq ˝ `pt,x,vq, pt, x, vq P R3,

and is δ-homogeneous of degree two, in that

Lapf ˝ δλq “ λ2 pLafq ˝ δλ, λ ą 0.

It is natural to endow pR3, ˚, δq with the δ-homogeneous norm

|pt, x, vq|L “ |t|
1
2 ` |x|

1
3 ` |v| (2.3.2)

and the distance

dL pps, ξ, νq, pt, x, vqq “ |pt, x, vq
´1 ˚ ps, ξ, νq|L. (2.3.3)
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The intrinsic Hölder spaces associated to dL are particularly beneficial for the study of existence

and regularity properties of solutions to the Langevin equation because they comply with the

asymptotic properties of its fundamental solution Γ near the pole: let us recall that

Γpt, x, v; s, ξ, νq “ Γ0

`

pt, x, vq´1 ˚ ps, ξ, νq
˘

, t ă s,

where Γ0 is the fundamental solution of L in (2.2.7) with σ “ 0 and pt, x, vq´1 “ p´t,´x` tv,´vq

is the ˚-inverse of pt, x, vq. Notice also that Γ is δ-homogeneous of degree four, where four is the

so-called δ-homogeneous dimension of R2.

Based on the use of intrinsic Hölder spaces defined in terms of dL, a stream of literature has

built a complete theory of existence and regularity, analogous to that for uniformly parabolic PDEs:

we mention some of the main contributions [58], [59], [47], [46], [16], [18], [53] and, in particular,

[58], [16], [32] where the parametrix method for Kolmogorov PDEs was developed.

On the other hand, intrinsic Hölder regularity can be a rather restrictive property as shown by

the following example.

Example 2.3.1. For x, ξ P R and s ‰ t, let

z “

ˆ

x,´
x´ ξ

s´ t

˙

, ζ “

ˆ

ξ,´
x´ ξ

s´ t

˙

(2.3.4)

Then we have

pt, zq´1 ˚ ps, ζq “ ps´ t, 0, 0q ,

and therefore

dLppt, zq, ps, ζqq “ |s´ t|
1
2 .

Since x and ξ are arbitrary real numbers, we see that points in R3 that are far from each other

in the Euclidean sense, can be very close in the intrinsic sense. It follows that, if a function

fpt, x, vq “ fpxq depends only on x and is Hölder continuous in the intrinsic sense (i.e. with

respect to dL), then it must be constant: in fact, for z, ζ as in (2.3.4), we have

|fpξq ´ fpxq| “ |fps, ζq ´ fpt, zq| ď C|s´ t|α

for some positive constants C,α and for any x, ξ P R and s ‰ t.

When it comes to studying the stochastic Langevin equation, the use of Euclidean Hölder spaces

seems unavoidable. The problem is that we have to deal with functions f “ ftpx, vq that are:

- Hölder continuous with respect to the space variables px, vq in order to apply the parametrix

method;
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- measurable with respect to the time variable t because f plays the role of a coefficient of the

SPDE that is a predictable process (i.e. merely measurable in t).

As opposed to the standard parabolic case, in terms of the metric dL there doesn’t seem to be a

clear way to separate regularity in px, vq from regularity in t: indeed this is due to the definition

of ˚-translation that mixes up spatial and time variables (see (2.3.1)). On the other hand, we may

observe that the Euclidean- and ˚- differences of points at the same time level coincide:

pt, x, vq´1 ˚ pt, ξ, νq “ p0, ξ ´ x, ν ´ vq, x, v, ξ, ν P R.

Thus, to avoid using ˚-translations, the idea is to combine this property with a suitable definition of

time-dependent parametrix that makes the parametrix procedure work: this will be done in Section

2.6.

Concerning the use of the Euclidean or homogeneous norm in R2, let us denote by bCαpR2q

and bCαLpR2q the space of bounded and Hölder continuous functions with respect to the Euclidean

norm and the homogeneous norm |x|
1
3 ` |v|, respectively. Since |px, vq| ď |x|

1
3 ` |v| for |px, vq| ď 1,

we have the inclusion

bCαpR2q Ď bCαLpR2q. (2.3.5)

Preferring simplicity to generality, we shall use Hölder spaces defined in terms of the Euclidean norm

(cf. Assumption 2.1.3): by (2.3.5), this results in a slightly more restrictive condition compared to

the analogous one given in terms of the homogeneous norm. On the other hand, all the results of

this Chapter can be proved using the homogeneous norm |x|
1
3 ` |v| as in [58], [16] and [32]: this

would be more natural but would increase the technicalities.

We close this section by giving some standard Gaussian estimates that play a central role in the

parametrix construction. After the change of variables (2.2.10) with σ “ 0, the Langevin operator

La is transformed into

La “
a

2
V2
s ´ Bs, Vs :“ Bν ´ sBξ.

Since La is a heat operator with time dependent coefficients, its fundamental solution is the Gaus-

sian function Γapt, z; s, ζq “ Γapt, 0; s, ζ ´ zq where

Γapt, 0, 0; s, ξ, ηq “

?
3

aπps´ tq2
exp

ˆ

´
2

aps´ tq3
`

3ξ2 ` 3ξηpt` sq ` η2pt2 ` ts` s2q
˘

˙

(2.3.6)

for t ă s and ξ, η P R.
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Lemma 2.3.2. For every ε ą 0 there exists a positive constant c such that

|VsΓapt, 0, 0; s, ξ, ηq| ď
c

?
s´ t

Γa`εpt, 0, 0; s, ξ, ηq,

ˇ

ˇV2
sΓapt, 0, 0; s, ξ, ηq

ˇ

ˇ ď
c

s´ t
Γa`εpt, 0, 0; s, ξ, ηq, (2.3.7)

for every 0 ď t ă s ď T and ξ, η P R.

Proof. We remark that Γapt, 0, 0; s, ξ, ηq has different asymptotic regimes as sÑ t` depending on

whether or not t is zero: in fact, if t “ 0 then the quadratic form in the exponent of Γa is similar

to that of the Langevin operator, that is

1

a

˜

6
s3

3
s2

3
s2

2
s

¸

.

On the other hand, if t ‰ 0 we see in (2.3.6) that all the components of the quadratic form are

Opps´ tq´3q as sÑ t`. We have

|VsΓapt, 0, 0; s, ξ, ηq| “
1

?
s´ t

ˇ

ˇ

ˇ

ˇ

ˇ

6ξ ` 2ηps` 2tq

aps´ tq
3
2

ˇ

ˇ

ˇ

ˇ

ˇ

Γapt, 0, 0; s, ξ, ηq ď

(by (1.4.18) with n “ 1)

ď
C

?
s´ t

Γa`εpt, 0, 0; s, ξ, ηq.

The proof of (2.3.7) is similar, using that

V2
sΓapt, 0, 0; s, ξ, ηq “

4

aps´ tq

ˆ

p3ξ ` ηps` 2tqq2

aps´ tq3
´ 1

˙

Γapt, 0, 0; s, ξ, ηq.

2.4 Pointwise estimates for Itô processes

In this section we build on the ideas of Lemma 1.3.3 and Proposition 1.3.2 and prove some esti-

mates for stochastic flows of diffeomorphisms that will play a central role in the following sections.

Information about stochastic flows in a more general framework can be found in [44]. Since the

following results are of a general nature and may be of independent interest, in this section we reset

the notations and give the proofs in the more general multi-dimensional setting.

Specifically, until the end of the section, the point of Rd is denoted by z “ pz1, . . . , zdq and we

set ∇z “ pBz1 , . . . , Bzdq and Bβ “ Bβz “ B
β1
z1 ¨ ¨ ¨ B

βd
zd for any multi-index β. We will also employ the

notation

xzy :“
a

1` |z|2, z P Rd.
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First, we recall some basic facts about stochastic flows of diffeomorphisms. Let k P N. A

Rd-valued random field ϕt,spzq, with 0 ď t ď s ď T and z P Rd, defined on pΩ,F , P q, is called a

(forward) stochastic flow of Ck-diffeomorphisms if there exists a set of probability one where:

i) ϕt,tpzq “ z for any t P r0, T s and z P Rd;

ii) ϕt,s “ ϕτ,s ˝ ϕt,τ for 0 ď t ď τ ď s ď T ;

iii) ϕt,s : Rd ÝÑ Rd is a Ck-diffeomorphism for all 0 ď t ď s ď T .

Stochastic flows can be constructed as solutions of stochastic differential equations. Let B a n-

dimensional Brownian motion and consider the stochastic differential equation

ϕspzq “ z `

ż s

t
bτ pϕτ pzqqdτ `

ż s

t
στ pϕτ pzqqdBτ (2.4.1)

where b “ pbitpzqq, σ “ pσ
ij
s pzqq are a d-valued and pdˆnq-valued processes respectively, on r0, T sˆ

RdˆΩ. The following theorem summarizes the results of Lemmas 4.5.3-7 and Theorems 4.6.4-5 in

[44].

Theorem 2.4.1. Let b, σ P bCk,α
0,T for some k P N and α P p0, 1q. Then the solution of the

stochastic differential equation (2.4.1) has a modification ϕt,s that is a forward stochastic flow of

Ck-diffeomorphisms. Moreover, ϕt,¨ P Ck,α1

t,T for any α1 P r0, αq and t P r0, T q, and we have the

following estimates: for each p P R there exists a positive constant c1,p such that

E rxϕt,spzqy
ps ď c1,pxzy

p, z P Rd, (2.4.2)

and for each p ě 1 there exists a positive constant c2,p such that

E
”ˇ

ˇ

ˇ
Bβϕt,spzq

ˇ

ˇ

ˇ

pı

ď c2,p, z P Rd, p ě 1, 1 ď |β| ď k. (2.4.3)

Now, consider ϕt,s as in Theorem 2.4.1, Fi “ Fi,tpz; ζq P Ck
0,T pR2dq, i “ 1, 2, and a real Brownian

motion W . The goal of this section is to prove some pointwise estimate for the Itô process

It,spzq :“

ż s

t
F1,τ pz;ϕt,τ pzqqdWτ `

ż s

t
F2,τ pz;ϕt,τ pzqqdτ, 0 ď t ď s ď T, z P Rd, (2.4.4)

in terms of the usual Hölder norm in Rd

|f |α “ sup
zPRd

|fpzq| ` sup
z,ζPRd
z‰ζ

|fpzq ´ fpζq|

|z ´ ζ|α
, α P p0, 1q,

under the following
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Assumption 2.4.2. There exist ε1, ε2 P R with ε :“ ε1`ε2 ą 0 and a random variable M P Lp̄pΩq,

with p̄ ą
`

2_ d_ d
ε

˘

, such that

ÿ

|β|ďk

sup
tPr0,T s

z,ζPRd

xzyε1xζyε2 |Bβz,ζFi,tpz; ζq| ďM i “ 1, 2, P -a.s.

The main result of this section is the following theorem which provides global-in-space pointwise

estimates for the process in (2.4.4).

Theorem 2.4.3. Let ϕt,s be as in Theorem 2.4.1 and Fi P Ck
0,T pR2dq, i “ 1, 2, for some k P N.

Let I “ It,spzq be as in (2.4.4) and set

I
pδq
t,s pzq :“ xzyδIt,spzq.

Under Assumption 2.4.2, for any p, α and δ such that

ˆ

2_ d_
d

ε

˙

ă p ă p̄, 0 ď α ă
1

2
´

1

p
, 0 ď δ ă ε´

d

p
,

there exists a (random, finite) constant m such that

ÿ

|β|ďk´1

|BβI
pδq
t,s |1´ d

p
ď mps´ tqα P -a.s. (2.4.5)

Proof. The proof is based on a combination of sharp Lp-estimates, Kolmogorov continuity theorem

in Banach spaces and Sobolev embedding theorem.

Let us first consider the case k “ 1. We prove some preliminary Lp-estimates for It,s and BβIt,s

with |β| “ 1. Below we denote by c̄ various positive constants that depend only on p, d, T and the

flow ϕ. By Burkölder’s inequality we have

E
”

|I
pδq
t,s pzq|

p
ı

ď c̄ xzyδpE

«

ˆ
ż s

t
F 2

1,τ pz;ϕt,τ pzqqdτ

˙

p
2

ff

` c̄ xzyδpE

„ˆ
ż s

t
F2,τ pz;ϕt,τ pzqqdτ

˙p

ď

(by Hölder’s inequality)

ď c̄ xzyδpps´ tq
p´2

2

ż s

t
E r|F1,τ pz;ϕt,τ pzqq|

ps dτ

` c̄ xzyδpps´ tqp´1

ż s

t
E r|F2,τ pz;ϕt,τ pzqq|

ps dτ ď

(by Assumption 2.4.2)

ď c̄ xzypδ´ε1qpps´ tq
p´2

2

ż s

t
E
“

Mpxϕt,τ pzqy
´ε2p

‰

dτ ď
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(by Hölder’s inequality with conjugate exponents q :“ p̄
p and r)

ď c̄ xzypδ´ε1qpps´ tq
p´2

2 }M}pLp̄pΩq

ż s

t
E
“

xϕt,τ pzqy
´ε2pr

‰
1
r dτ ď

(by (2.4.2))

“ c̄ xzypδ´εqpps´ tq
p
2 . (2.4.6)

The same estimate holds for the gradient of It,s, that is

E
”

|∇Ipδqt,s pzq|p
ı

ď c̄ xzypδ´εqpps´ tq
p
2 . (2.4.7)

Indeed, let us consider for simplicity only the case δ “ 0 since the general case is a straightforward

consequence of the product rule: for j “ 1, . . . , d, we have

E
“

|BzjIt,spzq|
p
‰

ď c̄E

„ˇ

ˇ

ˇ

ˇ

ż s

t

´

pBzjF1,τ qpz;ϕt,τ pzqq ` x∇ζF1,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
¯

dWτ

ˇ

ˇ

ˇ

ˇ

p

` c̄E

„ˇ

ˇ

ˇ

ˇ

ż s

t

´

pBzjF2,τ qpz;ϕt,τ pzqq ` x∇ζF2,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
¯

dτ

ˇ

ˇ

ˇ

ˇ

p

ď c̄ps´ tq
p´2

2

ż s

t
E
“

|pBzjFi,τ qpz;ϕt,τ pzqq|
p `

ˇ

ˇx∇ζFi,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
ˇ

ˇ

p‰
dτ.

The terms containing BzjFi,τ can be estimated as before, by means of Assumption 2.4.2. On the

other hand, by Hölder’s inequality with conjugate exponents q and r with 1 ă q ă p̄
p , for every

i, j “ 1, ¨ ¨ ¨ , d we have

E
“
ˇ

ˇx∇ζFi,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
ˇ

ˇ

p‰
ď E r|∇ζFi,τ pz;ϕt,τ pzqq|pqs

1
q E

“
ˇ

ˇBzjϕt,τ pzq
ˇ

ˇ

pr‰ 1
r ď

(by Assumption 2.4.2 and (2.4.3))

ď c̄
1
r
2,prE

“

Mpqxϕt,τ pzqy
´ε2pq

‰
1
q xzy´ε1p ď

(by Hölder inequality with conjugate exponents q̄ :“ p̄
pq ą 1 and r̄)

ď c̄
1
r
2,pr}M}

p
Lp̄pΩqE

“

xϕt,τ pzqy
´ε2pqr̄

‰
1
qr̄ xzy´ε1p ď

(by (2.4.2))

ď c̄}M}pLp̄pΩq xzy
´εp.

This proves (2.4.7) with δ “ 0.

Now, we have

E
”

}I
pδq
t,s }

p
W 1,ppRdq

ı

“ E

„
ż

Rd

´

|I
pδq
t,s pzq|

p ` |∇Ipδqt,s pzq|p
¯

dz



ď
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(by (2.4.6) and (2.4.7))

ď c̄ps´ tq
p
2

ż

Rd
xzypδ´εqpdz “

(since pε´ δqp ą d by assumption)

“ c̄ps´ tq
p
2 . (2.4.8)

Estimate (2.4.8) and Kolmogorov’s continuity theorem for processes with values in the Banach

space W 1,ppRdq (see, for instance, [44], Theor.1.4.1) yield

}I
pδq
t,s }W 1,ppRdq ď mps´ tqα, 0 ď t ď s ď T, P -a.s.

for some positive and finite random variable m and for α P r0, p´2
2p q. This is sufficient to prove

(2.4.5) with k “ 1: in fact, by the Sobolev embedding theorem, we have the following estimate of

the Hölder norm

|I
pδq
t,s |1´ d

p
ď N}I

pδq
t,s }W 1,ppRdq (2.4.9)

where N is a positive constant that depends only on p and d. Thus, combining (2.4.5) and (2.4.9),

we get the thesis with k “ 1.

Noting that

BzjIt,spzq “

ż s

t

´

pBzjF1,τ qpz;ϕt,τ pzqq ` x∇ζF1,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
¯

dWτ

`

ż s

t

´

pBzjF2,τ qpz;ϕt,τ pzqq ` x∇ζF2,τ pz;ϕt,τ pzqq, Bzjϕt,τ pzqy
¯

dτ,

for j “ 1, . . . , d, the thesis with k “ 2 can be proved repeating the previous arguments and using

(2.4.5) for k “ 1 and Assumption 2.4.2 with k “ 2.

We omit the complete proof for brevity and since in the rest of the Chapter we will use (2.4.5)

only for k “ 1, 2. The general result can be proved by induction, using the multi-variate Faà di

Bruno’s formula.

Remark 2.4.4. Let It,s as in (2.4.4) with coefficients rF1, rF2 P bC1
0,T pR2dq and let δ ą 0 and

α P r0, 1
2q. Applying Theorem 2.4.3 with Fi,spz; ζq :“ xzy´δ rFi,spz; ζq, i “ 1, 2, we get the existence

of a (random, finite) constant m such that, with probability one,

|It,spzq| ď m xzyδps´ tqα, 0 ď t ď s ď T, z P Rd.
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2.5 Itô-Wentzell change of coordinates

We go back to the main SPDE (2.1.2) and suppose that Assumptions 1.1.3, 1.1.2, 1.1.4 are satisfied

and d “ 1. In this section we study the properties of a random change of variables which plays

the same role as transformation (2.2.8) in Step 1 of Section 2.2 for the Langevin SPDE. The main

result of this section is Theorem 4.1.5 which shows that this change of variables transforms SPDE

(2.1.2) into a PDE with random coefficients.

We denote by pξ, γIW
t,s pξ, νqq the stochastic flow of diffeomorphisms of R2 defined by equation

(2.1.3), that is

γIW
t,s pξ, νq “ ν ´

ż s

t
στ pξ, γ

IW
t,τ pξ, νqqdWτ , s P rt, T s, pξ, νq P R2. (2.5.1)

By Theorem 2.4.1, γIW
t,¨ P C3,α1

t,T for any α1 P r0, αq. Global estimates for γIW and its derivatives are

provided in the next:

Lemma 2.5.1. There exists ε P
`

0, 1
2

˘

and a random, finite constant c such that, with probability

one,

|γIW
t,s pξ, νq| ď c

a

1` ξ2 ` ν2, (2.5.2)

e´cps´tq
ε
ď Bνγ

IW
t,s pξ, νq ď ecps´tq

ε
, (2.5.3)

|Bξγ
IW
t,s pξ, νq| ď cps´ tqε, (2.5.4)

|BβγIW
t,s pξ, νq| ď

cps´ tqε
a

1` ξ2 ` ν2
, (2.5.5)

for any pξ, νq P R2, 0 ď t ď s ď T and |β| “ 2.

Proof. Estimate (2.5.2) follows directly from Remark 2.4.4 (with δ “ 1). Differentiating (2.5.1), we

find that Bνγ
IW
t,s solves the linear SDE

Bνγ
IW
t,s pξ, νq “ 1´

ż s

t
pB2στ qpξ, γ

IW
t,τ pξ, νqqBνγ

IW
t,τ pξ, νqdWτ ,

where B2σs denotes the partial derivative of σsp¨, ¨q with respect to its second argument. Hence we

have

Bνγ
IW
t,s pξ, νq “ exp

ˆ

´

ż s

t
pB2στ qpξ, γ

IW
t,τ pξ, νqqdWτ ´

1

2

ż s

t
pB2στ q

2pξ, γIW
t,τ pξ, νqqdτ

˙

.

Now we apply Theorem 2.4.3 with ϕt,spξ, νq “ pξ, γ
IW
t,s pξ, νqq and Fi,spζ; ξ, V q “ pB2σspξ, V qq

i, i “

1, 2: thanks to Assumption 1.1.4, we get estimate (2.5.3). Incidentally, from Theorem 2.4.3 we also

deduce that the first order derivatives of Bνγ
IW
t,s are bounded:

|BβBνγ
IW
t,s pξ, νq| ď cps´ tqε, |β| “ 1. (2.5.6)
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This last estimate is used in the next step, for the proof of (2.5.4).

Similarly, we have

Bξγ
IW
t,s pξ, νq “ ´

ż s

t

`

pB1στ qpξ, γ
IW
t,τ pξ, νqq ` pB2στ qpξ, γ

IW
t,τ pξ, νqqBξγ

IW
t,τ pξ, νq

˘

dWτ .

Thus, we have a linear SDE whose solution is given by

Bξγ
IW
t,s pξ, νq “ ´Bνγ

IW
t,s pξ, νq

ż s

t

pB1στ qpξ, γ
IW
t,τ pξ, νqq

BνγIW
t,τ pξ, νq

dWτ

´ Bνγ
IW
t,s pξ, νq

ż s

t

pB1στ qpξ, γ
IW
t,τ pξ, νqqpB2στ qpξ, γ

IW
t,τ pξ, νqq

BνγIW
t,τ pξ, νq

dτ,

Again, (2.5.4) follows from Theorem 2.4.3 thanks to Assumption 1.1.4 and estimates (2.5.3) and

(2.5.6).

Eventually, the same argument can be used to prove (2.5.5): indeed, differentiating (2.5.1) we

have that BβγIW
t,s satisfies a linear SDE whose solution is explicit. Thus, for |β| “ 2, BβγIW

t,s can

be expressed in the form (2.4.4) with the coefficients satisfying Assumption 2.4.2 for some ε ą 1.

Applying Theorem 2.4.3 with δ “ 1 we get estimate (2.5.5).

We introduce the “hat” operator which transforms any function fspξ, νq, s P rτ, T s, into

f̂τ,spξ, νq :“ fspξ, γ
IW
τ,spξ, νqq.

Let uspξ, νq a solution to (2.1.2) on rτ, T s. Then we define

vτ,spζq :“ %τ,spζqûτ,spζq, %τ,spζq :“ exp

ˆ

´

ż s

τ
ĥtpζqdWt ´

1

2

ż s

τ
ĥ2
t pζqdt

˙

.

We have the following

Theorem 2.5.2. us is a solution to the SPDE (2.1.2) on rτ, T s if and only if vτ,s is a solution on

rτ, T s to the PDE with random coefficients

dB̂vτ,spζq “
`

a˚τ,spζqBννvτ,s ` b
˚
τ,spζqBνvτ,spζq ` c

˚
τ,spζqvτ,spζq

˘

ds, B̂ “ Bs `Yτ,s, (2.5.7)

where

Yτ,s “ Yτ,spξ, νq :“ pγIW
τ,sq1pξ, νqBξ ´ pγ

IW
τ,spξ, νqq1pBνγ

IW
τ,sq

´1pξ, νqBξγ
IW
τ,spξ, νqBν , (2.5.8)

is the first order operator identified with the vector field in (2.1.4) (with d “ 1) and the coefficients

a˚τ,¨, b
˚
τ,¨, c

˚
τ,¨ are defined in (2.5.11) below. Moreover, a˚τ,¨ P bCα

τ,T , b˚τ,¨, c
˚
τ,¨ P bC0

τ,T , Yτ,¨ P C0,1
τ,T ,

BνpYτ,¨q1 P bCᾱ
τ,T for any ᾱ P r0, αq, and there exist two random, finite and positive constants λ1,

λ2 such that, for s P rτ, T s, ζ P R2, we have

λ´1
1 ď a˚τ,spζq ď λ1, λ´1

2 ď BνpYτ,spζqq1 ď λ2, (2.5.9)

with probability one.
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Proof. By a standard regularization argument, we may assume u P C2
τ,T so that equation (2.1.2)

can be written in the usual Itô sense, namely

duspζq “ pAs,ζ ´ ν1Bξquspζqds` Gs,ζuspsqdWs.

By the Itô-Wentzell formula 1.3.1 and the chain rule we have

dûτ,s “

ˆ

{As,ζuτ,s ´ γIW
τ,s
yB1uτ,s `

1

2
σ̂2
τ,s
yB2

2uτ,s ´
yB2Gs,ζ σ̂τ,s

˙

ds` ĥτ,sûτ,sdWs

“ pLτ,s ´Yτ,sq ûτ,sdt` ĥτ,sûτ,sdWs,

where Lτ,s :“ āτ,sBvv ` b̄τ,sBv ` c̄τ,s with

āτ,s “
1

2
pBνγ

IW
τ,sq

´2pâτ,s ´ σ̂
2
τ,sq,

b̄τ,s “ pBνγ
IW
τ,sq

´1
´

b̂τ,s ´ σ̂τ,sĥτ,s ´ pBνγ
IW
τ,sq

´1σ̂τ,sBν σ̂τ,s ´ āτ,sBννγ
IW
τ,s

¯

,

c̄τ,s “ ĉτ,s ´ pBνγ
IW
τ,sq

´1σ̂τ,sBν ĥτ,s.

(2.5.10)

Notice that the change of variable is well defined by the estimates of Lemma 2.5.1. Next we compute

the product vτ,s “ %̂τ,sûτ,s: by the Itô formula d%τ,s “ ´%τ,sĥτ,sdWs and therefore

dvτ,spζq “ %τ,spζqdûτ,spζq ` ûτ,spζqd%τ,s ` dxûτ,¨pζq%τ,¨pζqys

“
`

%τ,spζqLτ,sp%
´1
τ,svτ,sqpζq ´ %τ,spζqpYτ,sp%

´1
τ,svτ,sqqpζq ´ h̄

2
τ,spζqvτ,spζq

˘

ds.

Now we notice that

%τ,spζqpYτ,sp%
´1
τ,svτ,sqqpζq “ pYτ,svτ,sqpζq ` pYτ,s ln %´1

τ,sqpζqvτ,spζq,

and eventually, by a standard application of the Leibniz rule, we get

dvτ,spζq “
`

a˚τ,spζqBvvvτ,spζq ´ pYτ,svτ,sqpζq ` b
˚
τ,spζqBvvτ,spζq ` c

˚
τ,spζqvτ,spζq

˘

ds,

where

a˚τ,s “ āτ,s “
1

2
pBνγ

IW
τ,sq

´2pâτ,s ´ σ̂
2
τ,sq, (2.5.11)

b˚τ,s “ b̄τ,s ` 2āτ,sBν ln %´1
τ,s,

c˚τ,s “ c̄τ,s ` b̄τ,sBν ln %´1
τ,s ` āτ,s

`

Bν ln %´1
τ,s ` B

2
ν ln %´1

τ,s

˘

`Yτ,s ln %´1
τ,s ´ ĥ

2
τ,s.

The regularity of the coefficients and (2.5.9) follows directly from (2.5.11), Assumption 2.1.4 and

Lemma 2.5.1.
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2.6 Time-dependent and drift adapted parametrix method

In this section we study equation (2.5.7) for fixed ω P Ω and 0 ď τ ă T ă 8. More generally, we

consider a deterministic equation of the form

Ksups, ζq “ Lsups, ζq ´ Bsups, ζq “ 0 (2.6.1)

where

Lsups, ζq :“
1

2
aps, ζqBννups, ζq`bps, ζqBνups, ζq ´ xY ps, ζq,∇ζups, ζqy ` cps, ζqups, ζq,

for s P rτ, T s, ζ “ pξ, νq P R2, and Y “ pY1, Y2q is a generic vector field. We assume the following

conditions on the coefficients.

Assumption 2.6.1. There exist positive constants α, λ1 such that a P Cατ,T with Hölder constant

λ1 and

λ´1
1 ď aps, ζq ď λ1, |bps, ζq| ` |cps, ζq| ď λ1 ps, ζq P rτ, T s ˆ R2. (2.6.2)

Assumption 2.6.2. Y P Cτ,T and is uniformly Lipschitz continuous in the sense that

sup
sPrτ,T s
z‰ζ

|Y ps, zq ´ Y ps, ζq|

|z ´ ζ|
ď λ2

for some positive constant λ2. Moreover BνY1 P C
α
τ,T and

λ´1
2 ď BνY1ps, ζq ď λ2, ps, ζq P rτ, T s ˆ R2. (2.6.3)

Notation 2.6.3. Similarly to Section 1.4 we introduce the parameter

Θ :“ pα, λ1, λ2, T q

which gathers the important quantities appearing in the assumptions.

Remark 2.6.4. When the coefficients are smooth, conditions (2.6.2) and (2.6.3) ensure the validity

of the weak Hörmander condition: indeed the vector fields
?
aBν and Y , together with their com-

mutator, span R3 at any point. In this case a smooth fundamental solution exists by Hörmander’s

theorem.

Since the coefficients are assumed to be only measurable in time, a solution to (2.6.1) has to be

understood in the integral sense according to the following definition.

Definition 2.6.5. A fundamental solution Γ “ Γpt, z; s, ζq for equation (2.1.2) is a function defined

for τ ď t ă s ď T and z, ζ P R2, such that for any pt, zq P rτ, T q ˆ R2 we have:
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i) for t ă t0 ď s ď T and z P R2, Γpt, z; ¨, ¨q belongs to Ct0,T , is twice continuously differentiable

in ν and satisfies

Γpt, z; s, γt0,spζqq “Γpt, z; t0, ζq `

ż s

t0

´

ap%, γt0,%pζqqBννΓpt, z; %, γt0,%pζqq`

` bp%, γt0,%pζqqBνΓpt, z; %, γt0,%pζqq ` cp%, γt0,%pζqqΓpt, z; %, γt0,%pζqq
¯

d%

where γt0,spzq stands for the integral curve of the field Y with initial datum γt0,t0pζq “ ζ;

ii) for any bounded and continuous function ϕ and z0 P R2, we have

lim
ps,ζqÑpt,z0q

sąt

ż

R2

Γpt, z; s, ζqϕpzqdz “ ϕpz0q.

The main result of this section is the following

Theorem 2.6.6. Under Assumptions 2.6.1 and 2.6.2 there exists a fundamental solution Γ for the

PDE (2.6.1). Moreover, there exist two constants µ “ µpΘq ě 1, C “ CpΘq ě 1 such that, for any

ζ “ pξ, νq, z P R2 and τ ď t ă s ď T ,

C´1Γheat
`

µ´1Ds´t, ζ ´ γt,spzq
˘

ď Γpt, z; s, ζq ď CΓheat pµDs´t, ζ ´ γt,spzqq , (2.6.4)

|BνΓpt, z; s, ξ, νq| ď
C

?
s´ t

Γheat pµDs´t, ζ ´ γt,spzqq , (2.6.5)

|BννΓpt, z; s, ξ, νq| ď
C

s´ t
Γheat pµDs´t, ζ ´ γt,spzqq . (2.6.6)

where Dλ is as in Theorem 2.1.6 and γt,spζq is as in Definition 2.6.5.

2.6.1 Proof of Theorem 2.6.6

Parametrix expansion

For fixed pt0, z0q P rτ, T q ˆ R2, let

γt,spz0q “ z0 `

ż s

t
Y p%, γt,%pz0qq d%, s P rτ, T s, (2.6.7)

be the integral curve of Y starting from pt0, z0q. Following [14] we linearize Y “ Y ps, ζq at pt0, z0q

setting

rY t0,z0ps, ζq “ Y ps, γt0,spz0qq `DY ps, γt0,spz0qq pζ ´ γt0,spz0qq , s P rt0, T s, ζ P R2.

where DY stands for a reduced Jacobian defined as

DY :“

˜

0 BvY1

0 0

¸

.
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Then we consider the linear approximation of Ls defined as

rLt0,z0s :“
1

2
aps, γt0,spz0qqBνν ´ xrY

t0,z0ps, ζq,∇y.

The diffusion coefficient of rLt0,z0s depends on s only (apart from t0, z0 that are fixed parameters),

while the drift coefficients depend on s and linearly on ξ, ν. Notice that rLt0,z0s ´ Bs is the forward

Kolmogorov operator of the system of linear SDEs

dZs “ rY t0,z0 ps, Zsq ds`
b

aps, γt0,spz0qqe2dBs. (2.6.8)

Let Zt,zs denote the solution of (2.6.8) starting from z at time t P rt0, T q. Then Zt,zs is a Gaussian

process: the mean rγt0,z0t,s pzq :“ E
”

Zt,zs

ı

solves the ODE

rγt0,z0t,s pzq “ z `

ż s

t

rY t0,z0p%, rγt0,z0t,s pzqqd%, s P rt, T s, (2.6.9)

and the covariance matrix is given by

rCt0,z0t,s “

ż s

t
ap%, γt0,%pz0qq

`

Et0,z0%,s e2

˘ `

Et0,z0%,s e2

˘˚
d%, (2.6.10)

where Et0,z0%,s is the fundamental matrix associated with pDY qps, γt0,spz0qq, that is the solution of

Et0,z0%,s “ Id`

ż s

%
pDY qpu, γt0,upz0qqE

t0,z0
%,u du, s P r%, T s,

with Id equal to the p2ˆ 2q-identity matrix.

Lemma 2.6.7. For any z0 P R2 and τ ď t0 ď t ă s ď T , we have det rCt0,z0t,s ą 0.

Proof. By Assumption 2.6.1 it is enough to prove the assertion for a ” 1. Suppose that there exist

z P R2z t0u, z0 P R2 and τ ď t0 ď t ă s ď T such that xrCt0,z0t,s z, zy “ 0. Since rCt0,z0t,s is positive

semi-definite, this is equivalent to the condition

|pEt0,z0%,s e2q
˚z|2 “ 0, a.e. % P pt, sq,

that is ppEt0,z0%,s q˚zq2 “ 0, for a.e. % P pt, sq. We have

B%pE
t0,z0
%,s q˚z “ ´DY ˚p%, γt0,%pz0qqpE

t0,z0
%,s q˚z,

and therefore

0 “ B%ppE
t0,z0
%,s q˚zq2 “ BνY1p%, γt0,%pz0qqppE

t0,z0
%,s q˚zq1.

Since ppEt0,z0%,s q˚zq2 “ 0 and BνY1 P rλ
´1
2 , λ2s by Assumption 2.6.2 we have pEt0,z0%,s q˚z ” 0, for a.e.

% P pt, sq, which is absurd.
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Lemma 2.6.7 ensures that the Gaussian process in (2.6.8) admits a transition density that is

the fundamental solution of rLt0,z0s ´ Bs. To be more precise we have the following:

Proposition 2.6.8. For any 0 ď τ ď t0 ď t ă s ď T and z, ζ, z0 P R2, the function

rΓt0,z0pt, z; s, ζq :“ Γheat
´

rCt0,z0t,s , ζ ´ rγt0,z0t,s pzq
¯

is the fundamental solution of rLt0,z0s ´ Bs, evaluated at ps, ζq and with pole at pt, zq.

We are now in position to define the parametrix Z for Ks in (2.6.1). We set

Zpt, z; s, ζq :“ rΓt,zpt, z; s, ζq, τ ď t ă s ď T, z, ζ P R2.

Since

γt,spzq “ z `

ż s

t
Y p%, γt,%pzqqd% “ z `

ż s

t

rY t,zp%, γt,%pzqqd%

we have γt,spzq “ rγt,zt,s pzq and therefore the parametrix reads

Zpt, z; s, ζq “ Γheat
´

rCt,zt,s , ζ ´ γt,spzq
¯

(2.6.11)

for τ ď t ă s ď T and z, ζ P R2.

Finally, in analogy to Section 1.4 we set

Γpt, z; s, ζq “ Zpt, z; s, ζq ` pΦb Zq pt, z; s, ζq, (2.6.12)

with

Φpt, z; s, ζq “
ÿ

kě1

Hbkpt, z; s, ζq, (2.6.13)

for Hpt, z; s, ζq “ pKsZqpt, z; s, ζq, and we are going to prove that Γ is indeed the fundamental

solution for Ks.

Gaussian bounds for the parametrix

Proposition 2.6.9. There exists a positive constant µ “ µpΘq ě 1 such that

µ´1|D?s´tζ|2 ď xrCt0,z0t,s ζ, ζy ď µ|D?s´tζ|2, τ ď t ă s ď T , z0, ζ P R2. (2.6.14)

Proof. By Assumptions 2.6.1 it is enough to prove the assertion for a ” 1. For λ ą 0, let Uλ be the

set of 2 ˆ 2, time-dependent matrices Ypsq, with entries uniformly bounded by λ, and such that

pYpsqq1,2 P rλ´1, λs. Let Ypsq P Uλ and

Ct,s :“

ż s

t
pE%,se2q pE%,se2q˚ d%, τ ď t ă s ď T,



2.6. TIME-DEPENDENT AND DRIFT ADAPTED PARAMETRIX METHOD 57

where E%,s denotes the resolvent associated with Ypsq. We split the proof in two steps.

Step 1. First we prove that

c´1|ζ|2 ď xC0,1ζ, ζy ď c|ζ|2, (2.6.15)

where c “ cpλq ą 0. As in [14] (see Proposition 3.4), we consider the map

Ψ : L2pr0, 1s,M2pRqq ÝÑ R, ΨpYq :“ det C0,1,

where M2pRq is the space of 2 ˆ 2 matrices with real entries. Notice that Uλ is compact in the

weak topology of L2pr0, 1s,M2pRqq because it is bounded, convex and closed in the strong topology

(cf., for instance, [8], Corollary III.19). On the other hand, Ψ is continuous from L2pr0, 1s,M2pRqq,
equipped with the weak topology, to R. Therefore the image ΨpUλq is a compact subset of Rą0 by

Lemma 2.6.7. Thus there exists λ̄ ą 0 such that inftdet C0,1 | Y P Uλu ě λ̄´1 and supt}C0,1} | Y P
Uλu ď λ̄. This suffices to prove (2.6.15).

Step 2. We use a scaling argument. For every τ ď t ă s ď T we show that D 1?
s´t
Ct,sD 1?

s´t

coincides with some matrix Ĉ0,1 to which we can apply the result of Step 1. We have

D 1?
s´t
Ct,sD 1?

t´s
“

ż s

t

ˆ

D 1?
s´t
E%,sD?s´te2

˙ˆ

D 1?
s´t
E%,sD?s´te2

˙˚ d%

s´ t

“

ż 1

0

´

Ê t,s%,1e2
¯´

Ê t,s%,1e2
¯˚

“: Ĉt,s0,1

where

Ê t,s%1,%2
“ D 1?

s´t
Et`%1ps´tq,t`%2ps´tqD?s´t,

solves the differential system

B%2 Ê t,s%1,%2
“ ps´ tqD 1?

s´t
Ypt` %2ps´ tqqD?s´tÊ t,s%1,%2

“: Ŷt,sp%2qÊ t,s%1,%2

with Ê t,s%,% “ I2. A direct computation shows that

pŶt,sp%qq1,2 “ pYpt` %ps´ tqqq1,2 P rλ´1, λs, }Ŷt,sp%q}8 ď p1` T 2q}Yp%q}8.

Therefore (2.6.15) holds for Ĉt,s1,0, uniformly in t, s, with c dependent only on λ and T .

Remark 2.6.10. Since, for τ ď t ă s ď T , rCt,zt,s is a symmetric and positive definite matrix, (2.6.14)

also yields an analogous estimate for the inverse: we have

µ´1

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
ζ

ˇ

ˇ

ˇ

ˇ

2

ď xprCt0,z0t,s q´1ζ, ζy ď µ

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
ζ

ˇ

ˇ

ˇ

ˇ

2

, τ ď t ă s ď T , z0, ζ P R2. (2.6.16)

The following result is a standard consequence of (2.6.14) and (2.6.16) (cf., for instance, Propo-

sition 3.1 in [16]).
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Proposition 2.6.11. There exists a positive constant µ “ µpΘq ě 1, such that

µ´2Γheat
`

µ´1Ds´t, ζ ´ γt,spzq
˘

ď Zpt, z; s, ζq ď µ2Γheat pµDs´t, ζ ´ γt,spzqq , (2.6.17)

for every τ ď t ă s ď T and z, ζ P R2.

Next we prove some estimates for the derivatives of Zpt, z; s, ζq. We start with the following

Lemma 2.6.12. We have

ps´ tq2´i
ˇ

ˇ

ˇ

´

prCt0,z0t,s q´1w
¯

i

ˇ

ˇ

ˇ
ď

C
?
s´ t

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w

ˇ

ˇ

ˇ

ˇ

, (2.6.18)

ps´ tq4´i´j
ˇ

ˇ

ˇ

ˇ

´

prCt0,z0t,s q´1
¯

ij

ˇ

ˇ

ˇ

ˇ

ď
C

s´ t
(2.6.19)

for every i, j P t1, 2u, τ ď s ă t ď T and w, ζ, z0 P R2.

Proof. We have

ps´ tq2´i
ˇ

ˇ

ˇ

´

prCt0,z0t,s q´1w
¯

i

ˇ

ˇ

ˇ
“

1
?
s´ t

ˇ

ˇ

ˇ

ˇ

ˆ

D?s´tprCt0,z0t,s q´1D?s´tD 1?
s´t
w

˙

i

ˇ

ˇ

ˇ

ˇ

ď
1

?
s´ t

›

›

›
D?s´tprCt0,z0t,s q´1D?s´t

›

›

›

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w

ˇ

ˇ

ˇ

ˇ

.

In order to get (2.6.18) it suffice to notice that, by (2.6.16), we have

›

›

›
D?s´tprCt0,z0t,s q´1D?t´s

›

›

›
ď C.

Taking w “ ej we also get (2.6.19).

We are ready to state the last result for this section, which is a standard consequence of estimates

(2.6.18), (2.6.19) and Proposition 2.6.11 (cf., for instance, Proposition 3.6 in [16]).

Proposition 2.6.13. For any j “ 0, 1, ¨ ¨ ¨ there exist two positive constants Cj , µj ě 1 depending

on Θ such that, for any τ ď t ă s ď T and ζ “ pξ, νq, z P R2 we have

|BiξB
j
νZpt, z; s, ξ, νq| ď Cijps´ tq

´
3i`j

2 Γheat pµijDs´t, ζ ´ γt,spzqq , (2.6.20)

and, for every ζ, ζ 1 P R2 such that |ζ ´ ζ 1|B ď
?
s´ t,

|BiξB
j
νZpt, z; s, ζq ´ B

i
ξB
j
νZpt, z; s, ζ

1q| ď Cj
|z ´ ζ 1|B

ps´ tq
1`3i`j

2

Γheat pµjDs´t, ζ ´ γt,spzqq , (2.6.21)

where |px, vq|B :“ |x|
1
3 `|v| is the spatial part of the δ-homogeneous norm in (2.3.2). Notice as well

that |ζ ´ ζ 1|B “ dL pps, ζq, ps, ζ
1qq where dL is the intrinsic distance in (2.3.3).
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Proof. For simplicity consider the case i “ 1, j “ 0, since the other cases are analogous. By (2.6.11)

we have

|BξZpt, z; s, ξ, νq| ď
ˇ

ˇ

ˇ

´

prCt,zt,s q´1w
¯

1

ˇ

ˇ

ˇ
Zpt, z; s, ζq

(by (2.6.18) and Proposition 2.6.11)

ď Cps´ tq´
3
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w

ˇ

ˇ

ˇ

ˇ

Γheat

ˆ

µId,D 1?
s´t
w

˙

(by (1.4.18))

ď C 1ps´ tq´
3
2 Γheat

ˆ

pµ` εqId,D 1?
s´t
w

˙

“ C 1ps´ tq´
3
2 Γheat ppµ` εqDs´t, ζ ´ γt,spzqq .

Let us now turn to estimate (2.6.21):

|BξZpt, z; s, ζq ´ BξZpt, z; s, ζ
1q|

ď sup
λPr0,1s

`

|B2
ξZpt, z; s, ζ ` λpζ

1 ´ ζqq||pζ ´ ζ 1q1| ` |BξBνZpt, z; s, ζ ` λpζ
1 ´ ζqq||pζ ´ ζ 1q2|

˘

ď
`

ps´ tq´3|ζ ´ ζ 1|3B ` ps´ tq
´2|ζ ´ ζ 1|B

˘

sup
λPr0,1s

Γheat
`

µDs´t, ζ ` λpζ 1 ´ ζq ´ γt,spzq
˘

ď ps´ tq´2|ζ ´ ζ 1|BΓheat
`

µ1jDs´t, ζ ´ γt,spzq
˘

,

where in the last inequality we noticed that, for |ζ ´ ζ 1|B ď
?
s´ t,

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ` λpζ 1 ´ ζq ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pλpζ 1 ´ ζqq

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

´ 2.

The proof is complete.

Gaussian bounds for the parametrix series

Next we need some estimates for the iterated kernels which appear in the parametrix expansion.

Recall from Chapter 1, Proposition 1.4.8 the crucial role of the reproduction property of the Gaus-

sian kernel Γheat to obtain estimates that are uniform with respect to the iteration parameter. This

passage here is not trivial, since it becomes necessary to handle both the presence of the dila-

tion matrix Ds´t and, most importantly, the transport term γt,s. We start with some preliminary

lemmas. For simplicity we assume τ “ 0 throughout the section.
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Lemma 2.6.14 (Reproduction formula). For any c1, c2 ą 0 we have

Λpc1, c2q´1Γheat

ˆ

c1 ^ c2

2
Ds´t, ζ2 ´ ζ 1

˙

ď

ż

R2

Γheat
`

c1Ds´%, η ´ ζ2
˘

Γheat
`

c2D%´t, ζ 1 ´ η
˘

dη

ď Λpc1, c2qΓheat
`

pc1 _ c2qDs´t, ζ2 ´ ζ 1
˘

,

for every 0 ď t ă % ă s ď T , ζ 1, ζ2 P R2, where Λpc1, c2q “

b

2pc1_c2q
c1^c2 .

Proof. It is a direct consequence (see also [14], Lemma B.1) of the following trivial estimate

c1 ^ c2

2
Ds´t ď c1Ds´% ` c2D%´t ď pc1 _ c2qDs´t.

Remark 2.6.15. Let τ “ 0, T “ 1. If Ŷ is a vector field satisfying Assumption 2.6.2 and γ̂s is

the integral curve

γ̂spzq “ z `

ż s

0
Ŷ%pγ̂%pzqqd%, s P r0, 1s,

then γ̂1p¨q is a diffeomorphism of R2. Moreover, since Ŷ is Lipschitz continuous, we have

m´1|z ´ γ̂1pζq| ď |γ̂
´1
1 pzq ´ ζ| ď m|z ´ γ̂1pζq|, z, ζ P R2, (2.6.22)

for a constant m which depends only on λ2.

Lemma 2.6.16. Let γt,spzq be as in (2.6.7). There exists a positive constant m, only dependent on

λ2 and T , such that

m´1

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pz ´ γt,spζqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pγs,tpzq ´ ζq

ˇ

ˇ

ˇ

ˇ

ď m

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pz ´ γt,spζqq

ˇ

ˇ

ˇ

ˇ

, (2.6.23)

for every 0 ď t ă s ď T and z, ζ P R2.

Proof. We use again a scaling argument: we set z1 “ D?s´tz and

γ̂%pzq “ D 1?
s´t
γt,t`%ps´tqpz

1q, Ŷ p%, zq “ ps´ tqD 1?
s´t
Y pt` %ps´ tq, z1q, % P r0, 1s.

Then we have

γ̂%pzq “ z `

ż %

0
Ŷupγ̂upzqqdu, % P r0, 1s.

As in the proof of Proposition 2.6.9, we have that Ŷ satisfies Assumption 2.6.2. By Remark 2.6.15,

estimate (2.6.22) holds for γ̂%pzq. To conclude, it suffices to substitute z and ζ with z̄ “ D 1?
s´t
z

and ζ̄ “ D 1?
s´t
ζ in (2.6.22).
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Assume now we need to compute

Ipt, z; s, ζq “

ż

R2

Γheat pµDτ´t, y ´ γt,τ pzqqΓheat pµDs´τ , ζ ´ γτ,spyqq dy.

In order to apply Lemma 2.6.14, we need to use (2.6.23) and get

Ipt, z; s, ζq ď m

ż

R2

Γheat pµDτ´t, y ´ γt,τ pzqqΓheat pmµDs´τ , γs,τ pζq ´ yq dy

ď CpmqΓheat pmµDs´t, γs,τ pζq ´ γt,τ pzqq
ď C 1pmqΓheat

`

m2µDs´t, ζ ´ γt,spzq
˘

.

This precisely show how the diffusion constant grows at each iteration, and therefore a direct

estimate of the series (2.6.13) seems not possible. This problem has already been addressed in the

work of Delarue and Menozzi [14]: here the authors truncate the series at a suitable iteration and

proceed by estimating the remainder through some stochastic control techniques. We will resort to

similar computations to get some crucial bounds in chapter four.

Here we notice that, by the results in [14] it is possible to verify that the full parametrix

series converges: the idea is to exploit the lower bound in [14] to rewrite the controls (2.6.17),

(2.6.20)-(2.6.21) in terms of the transition density of some auxiliary diffusion, for which an exact

reproduction formula holds. More precisely, for some δ ą 0 we introduce the SDE

dZs “ Y ps, Zsqds` δe2dBs, s ě 0.

By [14], Theorem 1.1 and [48], Theorem 1.1 there exists the corresponding density pδ “ pδpt, z; s, ζq,

satisfying the two sided bounds

C´1Γheat
`

c´1Ds´t, ζ ´ γt,spzq
˘

ď pδpt, z; s, ζq ď CΓheat pcDs´t, ζ ´ γt,spzqq ,

for all 0 ď t ă s ď T and z, ζ P R2, for some constants c, C ě 1 depending on λ2, T and δ.

Therefore, with the notations of Propositions 2.6.11 and 2.6.13, and noting that

|z|B “
?
s
ˇ

ˇ

ˇ
D 1?

s
pzq

ˇ

ˇ

ˇ

B
, z P R2, s P rt, T s,

we can chose µ and then δ “ δpµq such that, for all i “ 0, 1, j “ 0, 1, 2, β P r0, 3s, 0 ď t ă s ď T

and z, ζ P R2 we have

|ζ ´ γt,spzq|
β
B|B

i
ξB
j
νZpt, z; s, ξ, νq| ď Cps´ tq

β´3i´j
2 pδpt, z; s, ζq, (2.6.24)

and, for any ζ, ζ 1 P R2 such that |ζ ´ ζ 1|B ď
?
s´ t,

|ζ ´ γt,spzq|
β
B|B

i
ξB
j
νZpt, z; s, ζq ´ B

j
ξB
j
νZpt, z; s, ζ

1q| ď C
|ζ ´ ζ 1|B

ps´ tq
1`3i`j´β

2

pδpt, z; s, ζq,
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where C only depends on Θ, δ and β. Similarly, we also have

|ζ ´ γt,spzq|
β
B|B

i
ξB
j
ν
rΓt0,z0pt, z; s, ξ, νq|pt0,z0q“ps,ζq ď Cps´ tq

β´3i´j
2 pδpt, z; s, ζq, (2.6.25)

Indeed, by Lemma 2.6.16
ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

ζ ´ rγs,ζt,s pzq
¯

ˇ

ˇ

ˇ

ˇ

ě m´1

ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

rγs,ζs,t pζq ´ z
¯

ˇ

ˇ

ˇ

ˇ

“ m´1

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pγs,tpζq ´ zq

ˇ

ˇ

ˇ

ˇ

ě m´2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

,

and analogously
ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

ζ ´ rγs,ζt,s pzq
¯

ˇ

ˇ

ˇ

ˇ

ď m2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

,

and therefore one can argue as in Propositions 2.6.11 and 2.6.13.

We fix from now δ such that (2.6.24)-(2.6.25) hold, and write p “ pδ. In particular we have
ż

R2

ppt, z; %, yqpp%, y; s, ζqdy “ ppt, z; s, ζq, 0 ď t ă % ă s ď T, z, ζ P R2. (2.6.26)

We are now ready to prove the main result of the section.

Proposition 2.6.17. For every t P r0, T s, z P R2 the series (2.6.13) is uniformly convergent in

s0, T s ˆ R2. Moreover there exists a constant C ě 1 such that

|Φpt, z; s, ζq| ď
C

ps´ tq1´
α
2

ppt, z; s, ζq, (2.6.27)

|Φpt, z; s, ζq ´ Φpt, z; s, ζ 1q| ď C
|ζ ´ ζ 1|

α
2
B

ps´ tq1´
α
4

`

ppt, z; s, ζq ` ppt, z; s, ζ 1q
˘

(2.6.28)

for every 0 ď t ă s ď T and z, ζ, ζ 1 P R2.

Proof. The proof follows the same lines as for the parabolic case (cf. Proposition 1.4.8), as well as

for the Kolmogorov operators with linear drifts (see [58], Lemma 2.3 and Corollary 2.3, and [16],

Lemma 4.3). In the former case, the proxy operator rLt,z does not need to include any first order

derivative, since they don’t add any singular contribution to the estimate of H “ KsZ. On the

other hand, for the Kolmogorov case, the first order derivatives in the degenerate directions carry

the most singular contributions: in [58] and [16] the authors include the full drift Y in the definition

of the proxy rLt,z so that they don’t add in the estimate; in the present case however, rLt,z include as

approximated version of Y which poses the main concerns, because it leaves some critical singular

terms to handle. It turns out that Assumption 2.6.2 is enough to make the procedure work.

We prove the preliminary estimate
ˇ

ˇ

ˇ
Hbkpt, z; s, ζq

ˇ

ˇ

ˇ
ď

Mk

ps´ tq1´
kα
2

ppt, z; s, ζq, 0 ď t ă s ď T, z, ζ P R2, (2.6.29)



2.6. TIME-DEPENDENT AND DRIFT ADAPTED PARAMETRIX METHOD 63

where Mk “ Ck
ΓkEp

α
2 q

ΓEp
kα
2 q

and ΓE is the Euler Gamma function.

For k “ 1, we have

Hpt, z; s, ζq “ pLs ´ rLt,zs qZpt, z; s, ζq

“
1

2
paps, ζq ´ aps, γt,spzqqq BννZpt, z; s, ζq`bps, ζqBνZpt, z; s, ζq`

` xY ps, ζq ´ rY t,zps, ζq,∇Zpt, z; s, ζqy ` cps, ζqZpt, z; s, ζq
“: E1 ` E2 ` E3 ` E4.

By Assumption 2.6.1 and (2.6.24) we have

|E1| ď λ1|ζ ´ γt,spzq|
αBννZpt, z; s, ζq

ď Cp|ζ ´ γt,spzq|
α
B ` |ζ ´ γt,spzq|

3α
B qBννZpt, z; s, ζq ď Cps´ tq

α
2
´1ppt, z; s, ζq.

By Assumption 2.6.1 and (2.6.24) we also have

|E2 ` E4| ď Cps´ tq´
1
2 ppt, z; s, ζq.

As for E3, we have

|pY ps, ζq ´ rY t,zps, ζqq1| “ |Y1ps, ζq ´ Y1ps, γt,spzqq ´ BνY1ps, γt,spzqqpζ ´ γt,spzqq2|

ď |Y1ps, ζq ´ Y1ps, pγt,spzqq1, ζ2q|`

` |Y1ps, pγt,spzqq1, ζ2q ´ Y1ps, γt,spzqq ´ BνY1ps, γt,spzqqpζ ´ γt,spzqq2|

ď C
`

|pζ ´ γt,spzqq1| ` |pζ ´ γt,spzqq2|
1`α

˘

,

because BνY1 is Hölder continuous by Assumption 2.6.2: here we use the elementary inequality

ˇ

ˇ

ˇ

ˇ

ż 1

0
pf 1py ` tpx´ yqq ´ f 1pyqqpx´ yqdt

ˇ

ˇ

ˇ

ˇ

ď cα|x´ y|
1`α.

which is valid for f P C1`α. On the other hand, we have

|pY ps, ζq ´ rY t,zps, ζqq2| ď λ2|ζ ´ γt,spzq|.

Therefore, by (2.6.24), we have

|E3| ď C
`

|ζ ´ γt,spzq|
1`α
B BξZpt, z; s, ζq ` |ζ ´ γt,spzq|BBνZpt, z; s, ζq

˘

`

` C|ζ ´ γt,spzq|
3
B pBξZpt, z; s, ζq ` BνZpt, z; s, ζqq

ď Cps´ tq
α
2
´1ppt, z; s, ζq.
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The general case k ą 1 follows by induction as in the proof of Proposition 1.4.8, exploiting the

reproduction property (2.6.26). Then the convergence of the series and (2.6.27) follow immediately.

Estimate (2.6.28) can be directly derived from (2.6.27) if |ζ ´ ζ 1|B ě
?
s´ t. When |ζ ´ ζ 1|B ď

?
s´ t we may again proceed by induction. We consider the case k “ 1 only. Write

ˇ

ˇHpt, z; s, ζq ´Hpt, z; s, ζ 1q
ˇ

ˇ

“

ˇ

ˇ

ˇ

´

Ls ´ rLt,zs
¯

Zpt, z; s, ζq ´
´

Ls ´ rLt,zs
¯

Zpt, z; s, ζ 1q
ˇ

ˇ

ˇ

ď
ˇ

ˇaps, ζq ´ aps, ζ 1q
ˇ

ˇ

ˇ

ˇBννZpt, z; s, ζ
1q
ˇ

ˇ

` |aps, ζq ´ aps, γt,spzqq|
ˇ

ˇBννZpt, z; s, ζq ´ BννZpt, z; s, ζ
1q
ˇ

ˇ

`
ˇ

ˇY1ps, ζq ´ Y1ps, ζ
1q ` BνY1ps, γt,spzqqpζ ´ ζ

1q2
ˇ

ˇ

ˇ

ˇBξZpt, z; s, ζ
1q
ˇ

ˇ

` |Y1ps, ζq ´ Y1ps, γt,spzqq ` BνY1ps, γt,spzqqpζ ´ γt,spzqq2|
ˇ

ˇBξZpt, z; s, ζq ´ BξZpt, z; s, ζ
1q
ˇ

ˇ

` tnon singular termsu

(by (2.6.24)-(2.6.25) and neglecting the terms in the parentheses for brevity)

ď C
´

|ζ ´ ζ 1|α

s´ t
ppt, z; s, ζ 1q `

|ζ ´ ζ 1|B

ps´ tq
3
2
´α

2

ppt, z; s, ζq`

`
|ζ ´ ζ 1|1`α

ps´ tq
3
2

ppt, z; s, ζ 1q `
|ζ ´ ζ 1|B

ps´ tq2´
1
2
p1`αq

ppt, z; s, ζq ` ¨ ¨ ¨
¯

(using that |ζ ´ ζ 1|B ď ps´ tq
1
2 )

ď C
|ζ ´ ζ 1|

α
2
B

ps´ tq1´
α
4

`

ppt, z; s, ζq ` ppt, z; s, ζ 1q
˘

.

Potential estimates and C2
ν regularity

Proposition 2.6.18. There exist positive constants C, µ ě 1 depending on Θ such that, for any

j “ 1, 2, 0 ď t ă s ď T and ζ “ pξ, νq, z P R2 we have

|BjνΓpt, z; s, ξ, νq| ď Cps´ tq´
j
2 Γheat pµDs´t, ζ ´ γt,spzqq .

Proof. The derivative of the main term of the parametrix expansion BjνZ is readily controlled using

the bounds 2.6.20. The main difficulty is therefore to prove that BjνpΦb Zq exists and satisfies the

indicated bounds. We proceed in two steps:

1. We prove that Φb BjνZ is indeed well defined and satisfies the stated estimates.
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2. We justify that actually ΦbBjνZ “ B
j
νpΦbZq. This last identity amounts to say that the spatial

derivatives can be exchanged with the integrals of the time-space convolution b. This point is

established by taking the limit in a suitable cut-off in time procedure which allows to get away

from the pole.

Such an approach was already used for instance in [24].

The first derivative estimate directly follows from the parametrix representation (2.6.12), esti-

mate (2.6.24) and the controls of Proposition 2.6.17. Namely

|pΦb BνZqpt, z; s, ζq| ď C

ż s

t
p%´ tq

α
2
´1ps´ %q´

1
2

ż

R2

ppt, z; %, yqpp%, y; s, ζqdyd%

ď Cps´ tq´
1
2
`α

2 ppt, z; s, ζq.

When trying to get controls for higher order derivatives, some time singularities appear in the

integrals. A way to overcome such a problem is to exploit cancellation properties of the derivatives

of the Gaussian kernels, namely for fixed pt0, z0q P r0, T s ˆ Rd:
ż

R2

Bjν
rΓt0,z0pt, z; s, ζqdz “ 0, j “ t1, 2u. (2.6.30)

Then we have

pΦb BννZqpt, z; s, ζq “

ż s

t

ż

R2

Φpt, z; %, yq
´

BννZ ´ BννrΓ
t0,z0

¯

p%, y; s, ζqdyd%`

`

ż s

t

ż

R2

`

Φpt, z; %, yq ´ Φpt, z; %, y1q
˘

BννrΓ
t0,z0p%, y; s, ζqdyd%.

It then remains to appropriately choose the freezing parameters pt0, z0q and y1 to exploit the regu-

larity of the terms in the above r.h.s. in order to balance the singularities deriving from the spatial

differentiation Bνν .

To do so, and conclude the proof of Proposition 2.6.18, we need the following lemma, whose

proof is postponed to the Appendix A.

Lemma 2.6.19. There exist positive constants C, µ ě 1 depending on Θ such that, for any j “

0, 1, 2, ζ “ pξ, νq, z P R2 and 0 ď t ă s ď T , we have

ˇ

ˇ

ˇ
Bjν
rΓt0,z0pt, z; s, ζq ´ BjνZpt, z; s, ζq

ˇ

ˇ

ˇ

pt0,z0q“ps,ζq
ď Cps´ tq

α´j
2 Γheat pµDs´t, ζ ´ γt,spzqq . (2.6.31)

The above Lemma suggests that a natural choice consists in choosing pt0, z0q “ ps, ζq, y1 “

γs,τ pζq. Indeed one gets from (2.6.30) and Proposition (2.6.17)
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|pΦb BννZqpt, z; s, ζq|

ď C

ż s

t

ż

R2

p%´ tq
α
2
´1Γheat pµD%´t, y ´ γt,%pzqq ps´ %q

α
2
´1Γheat pµDs´%, ζ ´ γ%,spyqq dyd%

` C

ż s

t

ż

R2

|y ´ γs,%pζq|
α
2

p%´ tq1´
α
4

´

Γheat pµD%´t, y ´ γt,%pzqq ` Γheat pµD%´t, γs,%pζq ´ γt,%pzqq
¯

ˆ

ˆ ps´ %q´1Γheat pµDs´%, ζ ´ γ%,spyqq dyd%

(reasoning as in the proof of Proposition 2.6.17 )

ď Cps´ tq
3α
4
´1Γheat pµDs´t, ζ ´ γt,spzqq (2.6.32)

Observe now that the previous computations could be reproduced to estimate for all ε ą 0

BjνGεpt, z; s, ζq :“ Bjν

ż s

t`ε

ż

Rd
Φpt, z; %, yqZp%, y; s, ζqdyd% “

ż s

t`ε

ż

Rd
Φpt, z; %, yqBjνZp%, y; s, ζqdyd%,

where the last equality follows from the bounded convergence Theorem. We would obtain, uniformly

in ε P p0, ε0q, ε0 ą 0 meant to be small, a control similar to (2.6.32) for BjνGεpt, z; s, ζq.

Letting now ε go to zero, we derive that BjνpΦ b Zqpt, z; s, ζq “ pΦ b BjνZqpt, z; s, ζq, which

together with (2.6.32) completes the proof of the statement for the derivatives.

Proof of Theorem 2.6.6

Let us now derive, under Assumptions 2.6.1 and 2.6.2 the main result of Theorem 2.6.6. We already

proved that the function Γ “ Γpt, z; s, ζq defined in (2.6.12) belongs to Ct0,T for any τ ă t ă t0 ă T ,

z P R2, is twice continuously differentiable in the variable ν and satisfies the Gaussian upper bounds

in (2.6.4)-(2.6.6). It remains to prove that Γ is indeed the fundamental solution for Ks and that it

satisfies the lower bound in (2.6.4).

We introduce a regularized version of the PDE (2.6.1): let aε :“ a ‹ϕε, b
ε :“ b ‹ϕε, c

ε :“ c ‹ϕε,

Y ε :“ Y ‹ϕε where ϕεp¨q “ ε´3ϕp¨{εq, ϕ P C80 pR3;R`q is a standard time-space mollifier in R3 and

‹ denotes the time-space convolution. It follows from the Hörmander theorem that the PDE

aεps, ζqBννups, ζq ` b
εps, ζqBνups, ζq ` c

εps, ζqups, ζq “ Bsups, ζq ` xY
εps, ζq,∇ζups, ζqy,

admits a smooth fundamental solution Γε “ Γεpt, z; s, ζq. In particular Γε satisfies

Γεpt, z; s, γεt0,spζqq “Γεpt, z; t0, ζq `

ż s

t0

´

aεp%, γεt0,%pζqqBννΓεpt, z; %, γεt0,%pζqq` (2.6.33)

` bεp%, γεt0,%pζqqBνΓεpt, z; %, γεt0,%pζqq ` c
εp%, γεt0,%pζqqΓ

εpt, z; %, γεt0,%pζqq
¯

d%
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for every t ă t0 ď s ď T and z P R2, where γεt0,spζq stands for the integral curve of Y ε with initial

datum γεt0,t0 “ ζ, and

lim
ps,ζqÑpt,z0q

sąt

ż

R2

Γεpt, z; s, ζqfpzqdz “ fpz0q, (2.6.34)

for any bounded and continuous function f and z0 P R2. Importantly, it also satisfies the upper

bounds in (2.6.4)-(2.6.6), uniformly in ε P p0, ε0s, ε0 ą 0 meant to be small.

On the other hand, it is clear that we can write

Γεpt, z; s, ζq “ Zεpt, z; s, ζq ` pΦε b Zεq pt, z; s, ζq, (2.6.35)

with the obvious definitions of Zε and Φε, which satisfy as well, uniformly in ε P p0, ε0s the estimates

in (2.6.17), (2.6.20), (2.6.27), (2.6.28).

Observe now that the RHS of (2.6.35) converges pointwise to Γ by construction. Similarly BjνΓε

converges pointwise to BjνΓ for j “ 1, 2. Moreover, a direct computation shows that, for any z P R3,

t0 P pt, T q, there exists a constant c such that

ˇ

ˇ

ˇ

ˇ

D 1?
%´t
pζ ´ γt,%pzqq

ˇ

ˇ

ˇ

ˇ

´ c ď

ˇ

ˇ

ˇ

ˇ

D 1?
%´t

`

ζ ´ γεt,%pzq
˘

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

D 1?
%´t
pζ ´ γt,%pzqq

ˇ

ˇ

ˇ

ˇ

` c,

for any ε P p0, ε0s, % P rt0, ss and ζ P R2. Therefore we deduce that for any z P R2, τ ď t ă t0 ă T ,

the functions BjνΓεpt, z; ¨, ¨q converge pointwise and boundedly to BjνΓpt, z; ¨, ¨q in rt0, T s ˆ R3. Thus

we can take the limit for ε Ñ 0 in equations (2.6.33) and (2.6.34) under the integral signs by the

bounded convergence theorem and get the first part of the thesis.

Lower bound for the fundamental solution. Similarly to the parabolic case, we first derive a local

bound, starting from the parametrix expansion (2.6.12) and exploiting the results of the previous

Sections . We have

Γpt, z; s, ζq ě Zpt, z; s, ζq ´

ż s

t

ż

R2

|Φpt, z; %, yqZp%, y; s, ζq|d%dy ě

(by Proposition 2.6.11 and Lemma 2.6.17)

ě C´1Γheat
`

µ´1Ds´t, ζ ´ γt,spzq
˘

´

ż s

t
Cp%´ tq

α
2
´1

ż

R2

ΓheatpµD%´t, y ´ γt,%pzqqΓheatpµDs´%, ζ ´ γ%,spyqqd%dy ě

ě C´1Γheat
`

µ´1Ds´t, ζ ´ γt,spzq
˘

´
C

2
ps´ tq

α
2 Γheat pµDs´t, ζ ´ γt,spzqq .

Let dt1,t2pz1, z2q :“
ˇ

ˇ

ˇ
D 1?

t2´t1

pz2 ´ γt1,t2pz1qq

ˇ

ˇ

ˇ
denote the “control metric” of the system. A direct

computation shows that ΓheatpcDs´t, ζ´γt,spzqq ď Γheatpc´1Ds´t, ζ´γt,spzqq if dt,spz, ζq ď %c where
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%c “
b

4c ln c
c2´1

. Then we have

Γpt, z; s, ζq ě

˜

1

C2
´
ps´ tq

α
2

2

¸

Γheatpµ´1Ds´t, ζ ´ γt,spzqq (2.6.36)

ě
1

2C
Γheatpµ´1Ds´t, ζ ´ γt,spzqq

if dt,spz, ζq ď %µ and 0 ă s´ t ď TC :“ C´
4
α .

In order to pass from the local to the global bound, we use a chaining procedure: we first define

a sequence of points ptk, zkq such that t0 “ t, z0 “ z, tM`1 “ s, zM`1 “ ζ for some integer M (to

be defined later), along which we can control the increments with respect to the control metric

dtk´1,tkpzk, zk`1q. Let us consider the controlled version of the system (2.6.7):

ψt,%pzq “ z `

ż %

t
pY pu, ψt,upzqq ` vpuqe2q du, % P rt, ss.

We have the following (see [14], Propositions 4.1 and 4.2):

Lemma 2.6.20. There exists a control pvp%qqtď%ďs with values in R2 such that

i) the solution ψt,%pzq associated with vp%q reaches ζ at time s, that is ψt,spzq “ ζ;

ii) there exist two constants m1,m2 ą 0, only dependent on the constants of Assumptions 2.6.1-

2.6.2, such that

ż s

t
|vp%q|2d% ě m1

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

2

, sup
tď%ďs

|vp%q|2 ď
m2

s´ t

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

2

.

We set

ti “ t` i
s´ t

M ` 1
“ t` iε, zk “ ψt,tkpzq, i “ 1, ¨ ¨ ¨ ,M,

where ψt,%pzq is the optimal path of Lemma 2.6.20 and M is the smallest integer greater than

max

#

K2d2
t,spz, ζq

%2
µ

,
T

TC

+

.

with K “ 12m2m2
m1

, where m, m1 and m2 are the constants in Lemmas 2.6.16 and 2.6.20. Finally

we define the sets

Biprq :“

"

y P R2 |

ˇ

ˇ

ˇ

ˇ

D 1?
ε
py ´ γti´1,tipzi´1qq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
ε
pzi`1 ´ γti,ti`1pyqq

ˇ

ˇ

ˇ

ˇ

ď r

*

,

and write

Γpt, z; s, ζq ě

ż

B1p%c{3q
¨ ¨ ¨

ż

BM p%c{3q
Γpt, z; t1, ζ1q

M´1
ź

j“1

Γptj , ζj ; tj`1, ζj`1qΓptM , ζM ; s, ζqdζ1 . . . dζM .

(2.6.37)
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By definition of M we have

tj`1 ´ tj “
s´ t

M ` 1
ď

T

M ` 1
ď TC .

On the other hand, if ζi P Bi
`

%c
3

˘

for i “ 1, . . . ,M ´ 1 we have

dti,ti`1pζi, ζi`1q

“

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

ζi`1 ´ γti,ti`1pζiq
˘

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

ζi`1 ´ γti,ti`1pziq
˘

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

zi`1 ´ γti,ti`1pziq
˘

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

zi`1 ´ γti,ti`1pζiq
˘

ˇ

ˇ

ˇ

ˇ

“: E1 ` E2 ` E3,

where E1 ` E3 ď
2
3%µ. By Lemma 2.6.20, we have

E2 ď m´1
1

ˆ
ż ti`1

ti

|vp%q|2d%

˙

1
2

ď
m2

m1

c

ε

s´ t

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

“
m2

m1

dt,spz, ζq
?
M ` 1

ď
%µ

12m2
. (2.6.38)

Therefore dti,ti`1pζi, ζi`1q ď %µ and we can use (2.6.36) repeatedly in (2.6.37) to get

Γpt, z; s, ζq ě p2Cq´pM`1q

ˇ

ˇ

ˇ

ˇ

ˇ

M
ź

i“1

Bi

´%µ
3

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

CpM ` 1q2

ps´ tq2

˙M`1

exp

ˆ

´
C

2
%2
µpM ` 1q

˙

.

Assume for a moment the validity of the inequality

ˇ

ˇ

ˇ
Bi

´%µ
3

¯ˇ

ˇ

ˇ
ě C0π

ˆ

s´ t

M ` 1

˙2

%2
µ (2.6.39)

for some positive constant C0 (only dependent on the constants of Assumptions 2.6.1-2.6.2). Then

we have

Γpt, z; s, ζq ě C1C
M
2

1

2π
a

detDs´t
exp

ˆ

´
C

2
%2
µM

˙

ě
C3

2π
a

detDs´t
exp

ˆ

´
C4

2
M

˙

,

for some positive constants C1, . . . , C4. Now, if TT´1
C ď

K2d2
t,spz,ζq

%2
µ

and M ă 2
K2d2

t,spz,ζq

%2
µ

, we have

Γpt, z; s, ζq ě
C3

2π
a

detDs´t
exp

ˆ

´
C5

2
d2
t,spz, ζq

˙

“ C6ΓheatpC´1
5 Ds´t, ζ ´ γt,spzqq.

On the other hand, if M ă 2TT´1
C then

Γpt, z; s, ζq ě
C7

2π
a

detDs´t
ě

C7

2π
a

detDs´t
exp

ˆ

´
C5

2
d2
t,spz, ζq

˙

“ C8ΓheatpC´1
5 Ds´t, ζ ´ γt,spzqq,
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and this proves the lower bound.

We are left with the proof of (2.6.39). Let rBiprq “ ty P R2, |D 1?
ε
py ´ ziq| ď ru: a direct

computation shows | rBiprq| “ πε2r2. Then it is enough to show that Bi
`%µ

3

˘

Ě rBi
`%µ
C

˘

for a

positive constant C (only dependent on Θ). For any y P rBiprq we have

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

y ´ γti´1,tipzi´1q
˘

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

zi`1 ´ γti,tt`1pyq
˘

ˇ

ˇ

ˇ

ˇ

ď

ď

ˇ

ˇ

ˇ

ˇ

D 1?
ε
pz ´ ziq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
ε

`

zi ´ γti´1,tipzi´1q
˘

ˇ

ˇ

ˇ

ˇ

`m

ˇ

ˇ

ˇ

ˇ

D 1?
ε
pz ´ ziq

ˇ

ˇ

ˇ

ˇ

`m2

ˇ

ˇ

ˇ

ˇ

D 1?
ε
pzi`1 ´ γti,ti`1pziqq

ˇ

ˇ

ˇ

ˇ

(by (2.6.38))

ď p1`mqr `
%µ
6
.

Then it is sufficient to take r ď
%µ

6p1`mq and this concludes the proof.

2.6.2 Proof of Theorem 2.1.6

For any fixed t P r0, T q and ω P Ω, let Kptq the operator of the form (2.6.1), as defined by (2.5.7)

and (2.5.11) through the random change of variable γIW
t,s . By Assumptions 2.1.3-2.1.4 and Lemma

2.5.1, Kptq satisfies Assumptions 2.6.1-2.6.2 for a.e. ω P Ω. Then, by Theorem 2.6.6, Kptq admits a

fundamental solution Γptq: we set

Γpt, z; s, ξ, νq “ Γptqpt, z; s, ξ, γIW,´1
t,s pξ, νqq, t ă s ď T, ξ, ν P R, z P R2. (2.6.40)

Combining Theorems 2.5.2, 2.6.6 and Lemma 2.5.1 we infer that Γpt, z; ¨, ¨q P C0
t0,T

for any t0 P

pt, T s, is twice continuously differentiable in the variable ν and is a solution to (2.1.2) in rt0, T s (in

the sense of definition 2.1.1). Now, for any bounded and continuous function ϕ and z0 P R2, we

have

ż

R2

ϕpzqΓpt, z; s, ζqdz ´ ϕpz0q “

ż

R2

ϕpzqΓptqpt, z; s, ζqdz ´ ϕpz0q`

`

ż

R2

ϕpzq
´

Γptqpt, z; s, ξ, γIW,´1
t,s pξ, νqq ´ Γptqpt, z; s, ζq

¯

dz “

“ I1pt, s, ζq ` I2pt, s, ζq.

Now, by Theorem 2.6.6 and the dominated convergence theorem, we have

lim
ps,ζqÑpt,z0q

sąt

Iipt, s, ζq “ 0, i “ 1, 2.

This proves the first part of the thesis.
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The Gaussian bounds (2.1.5), (2.1.6) follow directly from the definition (2.6.40) and the analo-

gous estimates (2.6.4) for Γptq in Theorem 2.6.6. Moreover, since

BνΓpt, z; s, ζq “ pBνΓptqq
´

t, z; s, ξ, γIW,´1
t,s pξ, νq

¯

Bνγ
IW,´1
t,s pξ, νq,

the gradient estimate (2.1.7) follows from the analogous estimate (2.6.5) for Γptq and from Lemma

2.5.1. The proof of (2.1.8) is analogous.

2.7 The backward Langevin SPDE

In this section we show how the general results from Section 2.1.1 can be derived without significant

modifications to our methods, for the backward version of equation (2.1.2), that is

´dButpzq “ At,zutpzqdt` Gt,zutpzq ‹ dWt, B “ Bt ` v1Bx. (2.7.1)

Here the symbol ‹dWt means that (2.7.1) is written in terms of the backward Itô integral : for

reader convenience we recall its definition and some basic results about the backward Itô calculus

in Appendix B.

We denote by ~C
k`α

t,T (and b ~C
k`α

t,T ) the stochastic Hölder spaces formally defined as in Section

1.1.1 with Pt,T in condition ii) replaced by the backward predictable σ-algebra ~Pt,T defined in

terms of the backward Brownian filtration (cf. Section B). Again, (2.7.1) is understood in the

strong sense:

Definition 2.7.1. A solution to (2.7.1) on r0, ss is a process u “ utpx, vq P ~C
0

0,s that is twice

continuously differentiable in the variables v and such that

ut
`

γBs´tpzq
˘

“ uspzq `

ż s

t
Aτ,γBs´τ pzquτ pγ

B
s´τ pzqqdτ `

ż s

t
Gτ,γBs´τ pzquτ pγ

B
s´τ pzqq ‹ dWτ , t P r0, ss.

Definition 2.7.2. A fundamental solution for the backward SPDE (2.7.1) is a stochastic process

~Γ “ ~Γpt, z; s, ζq defined for 0 ď t ă s ď T and z, ζ P Rd`1, such that for any ps, ζq P p0, T s ˆ Rd`1

and t0 P p0, sq we have:

i) ~Γp¨, ¨; s, ζq is a solution to (2.7.1) on r0, t0s;

ii) for any ϕ P bCpRd`1q and z0 P Rd`1, we have

lim
pt,zqÑps,z0q

tăs

ż

R2

~Γpt, z; s, ζqϕpζqdζ “ ϕpz0q, P -a.s.
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For a fixed s P r0, T q and px, vq P Rd`1 the backward SDE

~γIW
t,spx, vq “ v `

ż s

t
στ px, ~γIW

τ,spx, vqq ‹ dWτ , t P r0, ss, (2.7.2)

defines a backward flow of diffeomorphism px, vq ÞÑ ~gIW
t,spx, vq :“ px, ~γIW

t,spx, vqq, which replaces gIW
t,s

in the analysis; moreover

~γt,spζq “ ζ `

ż s

t

~Yτ,sp ~γτ,spζqqdτ, t P r0, ss,

defines the integral curve, ending at ps, ζq, of the vector field ~Yt,s, which is defined analogously to

Yt,s in (2.1.4), formally replacing γIW with ~γIW.

Finally we replace Assumption 2.1.3 in Section 2.1.1 with the following:

Assumption 2.7.3. For some α P p0, 1q, we have: a P b ~C
α

0,T , σ P b ~C
3`α

0,T , b, c P b ~C
0

0,T , h P

b ~C
2

0,T .

Theorem 2.7.4. Under Assumptions 2.7.3, 2.1.4 and 2.1.5, the backward SPDE (2.7.1) has a

fundamental solution ~Γ satisfying estimates

~Γpt, z; s, ζq ě µ´1
2 Γheatλ´1

´

µ´1
1 Ds´t, ~gIW,´1

t,s pzq ´ ~γt,spζq
¯

,

~Γpt, z; s, ζq ď µ2Γheat
´

µ1Ds´t, ~gIW,´1
t,s pzq ´ ~γt,spζq

¯

, (2.7.3)
ˇ

ˇ

ˇ
Bvi

~Γpt, x, v; s, ζq
ˇ

ˇ

ˇ
ď

µ2
?
s´ t

Γheat
´

µ1Ds´t, ~gIW,´1
t,s px, vq ´ ~γt,spζq

¯

, (2.7.4)

ˇ

ˇ

ˇ
Bvivj

~Γpt, x, v; s, ζq
ˇ

ˇ

ˇ
ď

µ2

s´ t
Γheat

´

µ1Ds´t, ~gIW,´1
t,s px, vq ´ ~γt,spζq

¯

, (2.7.5)

for every 0 ď t ă s ď T , z “ px, vq, ζ P Rd`1 and i, j “ 1, . . . d, with probability one.

In the next chapter, we will use a deterministic backward Kolmogorov PDE to which Theorem

2.7.4 applies. Precisely, we will use the following

Corollary 2.7.5. Let Assumption 2.1.4 with σ ” 0 be satisfied and let a P bCα0,T , b, c P bC0
0,T , for

some α P p0, 1q, and ϕ P bCpRd`1q. Then there exists a bounded solution of the backward Cauchy

problem
$

&

%

´dBfpt, zq “ At,zfpt, zqdt,
fpT, ¨q “ ϕ,

(2.7.6)

in the sense of Definition 2.7.1, that is

f
`

t, γBT´tpzq
˘

“ ϕpzq `

ż T

t
As,γBT´spzqf

`

s, γBT´spzq
˘

ds, pt, zq P r0, T s ˆ Rd`1, (2.7.7)
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where γBs px, vq “ px ` sv1, vq. Moreover, if ϕ P bCαpRd`1q for some α P p0, 1q then there exists a

positive constant C such that,

sup
px,vqPRˆRd

|Bβv fpt, x, vq| ď CpT ´ tq´
|β|´α

2 , 1 ď |β| ď 2.

Proof of Theorem 2.7.4. In the backward case the computations are completely analogous to the

forward one, since it only suffices to reverse the time in equations (2.1.2) and (2.5.7). Precisely, we

introduce the “check” transform

f̌t,spx, vq :“ ftpξ, ~γIW
t,spx, vqq, t P r0, ss,

with ~γIW
t,s as in (2.7.2). For a solution ut “ utpzq to (2.7.1) on r0, ss, we define

vt,spzq :“ %t,spzqǔt,spzq, %t,spzq :“ exp

ˆ

´

ż s

t
ȟτ pzq ‹ dWτ ´

1

2

ż s

t
ȟ2
τ pzqdτ

˙

,

which solves, on r0, ss, the deterministic equation with random coefficients

´d ~B
vt,spzq “

´

~a˚t,spzqBvvvt,s `
~b
˚

t,spzqBvvt,spzq ` ~c˚t,spzqvt,spzq
¯

dt, ~B “ Bt ` ~Yt,s, (2.7.8)

where ~Yt,s and the coefficients are defined similarly to (2.5.8) and (2.5.10), exchanging the hat-

and check-transforms in the definitions. As for the forward case, by Assumption 2.7.3 and Lemma

2.5.1, a˚¨,s P b ~C
α

0,s, b
˚
¨,s, c

˚
¨,s P b ~C

0

0,s,
~Y¨,s P ~C

0,1

0,s, Bvp
~Y¨,sq1 P b ~C

ᾱ

0,s, for any ᾱ P r0, αq, and there exist

two random, finite and positive constant λ1, λ2 such that, for t P r0, ss and z P R2, we have

λ´1
1 ď ~a˚t,spzq ď λ1, λ´1

2 ď Bvp ~Yt,spzqq1 ď λ2,

with probability one, which ensures the weak Hörmander condition to hold.

Next, we reset the notations and rewrite equation (2.7.8) as

~Atutpzq ` ~Ytutpzq ` Btutpzq “ 0, t P r0, sq, z “ px, vq P R2, (2.7.9)

where ~At is a second order operator of the form

~At “ ~atBvv ` ~btBv ` ~ct, z “ px, vq P R2,

and ~Yt “ p ~Ytq1Bx ` p ~Ytq2Bv. For a fixed ps0, ζ0q P p0, ss ˆ R2, we define the linearized version of

(2.7.9), that is

~As0,ζ0t utpzq ` ~Y
s0,ζ0
t utpzq ` Btutpzq “ 0, t P r0, sq, z P R2, (2.7.10)
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where the definition of ~Y
s0,ζ0
t is analogous to that of Yt0,z0

s in (2.1.4) and

~As0,ζ0t :“ ~atp ~γt,s0pζ0qqBvv, ~γt,s0pζ0q “ ζ0 `

ż s0

t

~Yτ p ~γτ,s0pζ0qqdτ, t P r0, s0s.

Equation (2.7.10) has an explicit fundamental solution ~Γ
s0,ζ0

“ ~Γ
s0,ζ0

pt, z; s, ζq of Gaussian type,

that satisfies estimates analogous to (2.6.17) and (2.6.20). The backward parametrix for (2.7.9) is

defined as

~Zpt, z; s, ζq “ ~Γ
s,ζ
pt, z; s, ζq, 0 ď t ă s ď T, z, ζ P R2.

As for the forward case, we set

~Γpt, z; s, ζq “ ~Zpt, z; s, ζq ` p ~Z b ~Φqpt, z; s, ζq, (2.7.11)

with

Φpt, z; s, ζq :“
8
ÿ

k“1

~H
bk
pt, z; s, ζq, (2.7.12)

where ~Hpt, z; s, ζq “
´

~At ` ~Yt ´ ~As0,ζ0t ´ ~Y
s0,ζ0
t

¯

~Zpt, z; s, ζq and the rest of the proof proceeds as

in the forward case. In particular, existence and estimates for the fundamental solution of (2.7.8)

(in the sense of Definitions 2.7.2) follow from the parametrix expansions (2.7.11) and (2.7.12).

Eventually, it suffices to go back to the original variables to conclude the proof.

Proof of Corollary 2.7.5. By Theorem 2.7.4 there exists a fundamental solution ~Γ of equation

(2.7.7), in the sense of Definition 2.7.2. Moreover, since σ ” 0, ~Γ satisfies estimates (2.7.3),

(2.7.4) and (2.7.5) with ~gIW,´1
t,s ” Id and ~γt,spζq “ γBt´spζq as in Definition 2.7.1. Then, the function

ftpzq :“

ż

Rd`1

~Γpt, z, T, ζqϕpζqdζ, pt, zq P r0, T s ˆ Rd`1,

solves problem (2.7.6). Since ϕ P bCpRd`1q, we have

sup
zPRd`1

|ftpzq| ď }ϕ}8 sup
zPRd`1

ż

Rd`1

~Γpt, z, T, ζqdζ ď C

for a positive constant C. Moreover, since

ż

Rd`1

∇jvΓpt, x, v, T, ζqdζ “ ∇jv
ż

Rd`1

Γpt, x, v, T, ζqdζ “ 0, 1 ď |j| ď 2,

for any w P R3 we have

ˇ

ˇ∇jvftpx, vq
ˇ

ˇ ď

ż

Rd`1

ˇ

ˇ∇jvΓpt, x, v, T, ζq
ˇ

ˇ |ϕpζq ´ ϕpwq| dz
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(choosing w “ γBT´tpzq)

ď CpT ´ tq´
j
2

ż

Rd`1

Γheat
`

µDT´t, γBT´tpzq ´ ζ
˘ ˇ

ˇγBT´tpzq ´ ζ
ˇ

ˇ

α
dζ

ď C 1pT ´ tq
α´j

2

ż

Rd`1

Γheat
`

µ1DT´t, γBT´tpzq ´ ζ
˘

dζ ď C2pT ´ tq
α´j

2 .

The proof is complete.





Chapter 3

Filtering under the weak Hörmander

condition

3.1 Introduction

In this chapter we study the filtering problem for the partially observable kinetic model we intro-

duced in the previous chapter. Having an existence and regularity theory for degenerate SPDEs at

hand, we can pursue the “direct” approaches proposed by Krylov and Zatezalo [42] and Vereten-

nikov [70] to derive both the forward and backward filtering equations, avoiding the use of general

results from filtering theory. In particular, as in [70] we derive the backward filtering equation “by

hand”, without resorting to prior knowledge of the SPDE, in a more direct way compared to the

classical approach in [54], [29], [44] or [62].

To be more specific, we consider the following general setup: we assume that the position Xt

and the velocity Vt of a particle are scalar stochastic processes only partially observable through

some observation process Yt. The joint dynamics of X,V and Y is given by the system of SDEs

$

’

’

’

&

’

’

’

%

dXt “ Vtdt,

dVt “ bpt,Xt, Vt, Ytqdt` σ
ipt,Xt, Vt, YtqdW

i
t ,

dYt “ hpt,Xt, Vt, Ytqdt` 0σ
ipt, YtqdW

i
t ,

(3.1.1)

where, as usual, Wt “ pW 1
t , ¨ ¨ ¨ ,W

d1
t q denotes a d1-dimensional Brownian motion, with d1 ě 2,

defined on a complete probability space pΩ,F , P q with a filtration pFtqtPr0,T s satisfying the usual

assumptions. Hereafter, for simplicity we set Zt “ pXt, Vtq and denote by z “ px, vq and ζ “ pξ, νq

the points in R2.

Let FYt,T “ σpYs, t ď s ď T q define the filtration of observations and let ϕ be a bounded and

77
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continuous function, ϕ P bCpR2q. The filtering problem consists in finding the best FYt,T -measurable

least-square estimate of ϕpZT q, that is the conditional expectation E
”

ϕpZT q | FYt,T
ı

.

Consider the case when h ” 0σ ” 0, that is no observation is available on the solution Zt,z

starting from z at time t. Then, it is well known that, under suitable regularity and non-degeneracy

assumptions on σ, we have

E
”

ϕpZt,zT q
ı

“

ż

R2

Γpt, z;T, ζqϕpζqdζ, (3.1.2)

where the density Γ “ Γpt, z;T, ζq is the fundamental solution of the backward Kolmogorov operator

K “ |σ|
2

2
Bvv ` bBv ` vBx ` Bt (3.1.3)

with respect to the variables pt, x, vq and of its adjoint, the Fokker-Plank operator K˚, w.r.t

the forward variables pT, ξ, νq. When Y is not trivial, we prove a representation formula for

E
”

ϕpZT q | FYt,T
ı

that is analogous to (3.1.2) in the sense that it is written in terms of the funda-

mental solution of a backward and a forward SPDE, whose existence is guaranteed by Theorems

2.1.6 and 2.7.4.

In Section 2.2 we already derived the forward equation in the particular case of a kinetic system

with constant coefficients, by adapting the direct approach by Krylov and Zatezalo [42]. Such

approach mimicks the derivation of the standard Kolmogorov operator (3.1.3): roughly speaking,

assuming that the filtering SPDE is known in advance, one takes a solution ut (whose existence

is guaranteed by Theorem 2.1.6), applies the Itô formula to utpZtq and finally takes expectations.

This is the approach we follow again in Section 3.2 to prove the existence of the forward filtering

density and the representation of the conditional expectation E
”

ϕpZT q | FYt,T
ı

in terms of it.

On the other hand, the direct approach by Veretennikov [69], [70], allows to derive the backward

filtering SPDE “by hand”, without knowing the equation in advance: the main tools are the

backward Itô calculus and the remarkable backward diffusion SPDE of Theorem B.1. We follow

this approach in Section 3.3 to derive the backward filtering SPDE and the corresponding filtering

density. Note however that in Section 3.3 we only provide an informal, yet quite detailed, derivation:

a full proof would require a generalization of the results of Section B to degenerate diffusions. This

is certainly possible but would require some additional effort and is postponed to future research.

Throughout this section we assume the following non-degeneracy condition: there exists a

positive constant m such that

|0σpt, yq|
2 ě m, x

ˆ

I ´
0σpt, yq0σ

˚pt, yq

|0σpt, yq|2

˙

σpt, z, yq, σpt, z, yqy ě m, t P r0, T s, z P R2, y P R.

(3.1.4)
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Equivalently, |Qpt, yqσpt, z, yq|2 ě m, where Q is the orthogonal projector on Ker0σ.

Under condition (3.1.4), up to a straightforward transformation (see [62], Section 6.1), system

(3.1.1) can be written in the canonical form

$

’

’

’

&

’

’

’

%

dXt “ Vtdt,

dVt “ bpt,Xt, Vt, Ytqdt` σ
ipt,Xt, Vt, YtqdW

i
t ,

dYt “ hpt, Zt, Ytqdt` 0σpt, YtqdW
1
t ,

(3.1.5)

where W “ pW 1, ¨ ¨ ¨ ,W d1q is a d1-dimensional Brownian motion. Setting 1σ :“
`

σ2, . . . , σd1
˘

so

that σ “ pσ1, 1σq, assumption (3.1.4) becomes

Assumption 3.1.1 (Coercivity). There exists a positive constant m such that

0σpt, yq
2 ě m, |1σpt, z, yq|

2 ě m, t P r0, T s, z P R2, y P R.

Moreover, system (3.1.5) can be written more conveniently as

$

&

%

dZt “ BZtdt` e2

`

bpt, Zt, Ytqdt` σ
ipt, Zt, YtqdW

i
t

˘

,

dYt “ hpt, Zt, Ytqdt` 0σpt, YtqdW
1
t ,

(3.1.6)

with B and e2 as in (2.2.3).

3.2 Forward filtering SPDE

We consider the solution pZt,zs , YsqsPrt,T s of system (3.1.6) with initial condition Zt,zt “ z P R2; we

do not impose any initial condition on the Y -component. We introduce the stochastic processes

σspζq :“ σps, ζ, Ysq, 0σs :“ 0σps, Ysq, bspζq :“ bspζ, Ysq, rhspζq :“
hps, ζ, Ysq

0σps, Ysq
,

The forward filtering SPDE for system (3.1.6) reads as follows

dBvspξ, νq “ A˚svspξ, νqds` G˚s vspξ, νq
dYs

0σs
, B “ Bs ` νBξ, (3.2.1)

where A˚ and G˚ are the adjoints of the differential operators (with random coefficients)

As :“
|σspξ, νq|

2

2
Bνν ` bspξ, νqBν , Gs :“ σspξ, νqBν ` rhspξ, νq,

respectively.

In order to apply to (3.2.1) the general results of Sections 2.1.1 and 2.7, in particular Theorem

2.1.6 and Corollary 2.7.5, we assume the following conditions. We recall notation (1.1.6) and that

σ “ pσ1, σ̂q ” pσ1, σ2, . . . , σd1q.
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Assumption 3.2.1 (Regularity). The coefficients of (3.1.6) are such that σ1 P bC3`α
0,T pR

3q, 1σ P

bC2`α
0,T pR

3q, 0σ P bC
α
0,T pRq, b P bC1

0,T pR3q, h P bC2
0,T pR3q.

Assumption 3.2.2 (Flattening at infinity). There exist two positive constants ε,M such that

sup
tPr0,T s
yPR

`

tσ1pt, ¨, yquε,β ` tσ
1pt, ¨, yqu1{2`ε,β1 ` thpt, ¨, yqu1{2,β

˘

ďM

for |β| “ 1 and |β1| “ 2, 3.

Remark 3.2.3. With regard to the existence of solutions to (3.2.1), let us introduce the process

ĂWs :“

ż s

t
0σ
´1
τ dYτ “W 1

s ´W
1
t `

ż s

t

rhτ pZ
t,z
τ qdτ, s P rt, T s.

By Girsanov’s theorem, pĂWsqsPrt,T s is a Brownian motion w.r.t the measure Q defined by dQ “

p%t,zT q
´1dP where

d%t,zs “ rhspZ
t,z
s q

2%t,zs dt`
rhspZ

t,z
s q%

t,z
s dW

1
s , %t,zt “ 1. (3.2.2)

Moreover, pĂWsqsPrt,T s is adapted to pFYt,sqsPrt,T s. Then, equation (3.2.1) can be written in the equiv-

alent form

dBvspζq “ A˚svspζqds` G˚s vspζqdĂWs (3.2.3)

under Q. Under Assumptions 3.1.1, 3.2.1 and 3.2.2, by Theorem 2.1.6 a fundamental solution

Γ “ Γpt, z; s, ζq for (3.2.3) exists, satisfies estimates (2.1.5) - (2.1.8) and s ÞÑ Γpt, z; s, ζq is adapted

to pFYt,sqsPrt,T s. We say that the stochastic process

Γ̂pt, z; s, ζq “
Γpt, z; s, ζq

ş

R2 Γpt, z; s, ζ1qdζ1
, 0 ď t ă s ď T, z, ζ P R2,

is the forward filtering density for system (3.1.6). This definition is motivated by the following

Theorem 3.2.4. Let pZt,zs , YsqsPrt,T s denote the solution of system (3.1.6) with initial condition

Zt,zt “ z. Under Assumptions 3.1.1, 3.2.1 and 3.2.2, for any ϕ P bCpR2q we have

E
”

ϕpZt,zT q | FYt,T
ı

“

ż

R2

Γ̂pt, z;T, ζqϕpζqdζ, pt, zq P r0, T s ˆ R2. (3.2.4)

Proof. By Remark 3.2.3,
ş

R2 Γ̂pt, z;T, ζqϕpζqdζ P mFYt,T . We prove that, for any bounded and

FYt,T -measurable random variable G, we have

E
”

GϕpZt,zT q
ı

“ E

„

Gp%t,zT q
´1

ż

R2

Γpt, z;T, ζqϕpζqdζ



, (3.2.5)
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with %t,z as in (3.2.2). From (3.2.5) with ϕ ” 1 it will follow that

E
”

p%t,zT q
´1 | FYt,T

ı

“

ˆ
ż

R2

Γpt, z;T, ζqdζ

˙´1

and therefore also (3.2.4) will follow from (3.2.5).

By a standard approximation argument, it is enough to take ϕ in the class of test functions

and G of the form G “ e´
şT
t csds where cs “ cps, Ysq with c “ cps, yq being a smooth, bounded and

non-negative function on rt, T s ˆ R. Thus, we are left with the proof of the following identity:

E
”

e´
şT
t csdsϕpZt,zT q

ı

“ E

„

e´
şT
t csdsp%t,zT q

´1

ż

R2

Γpt, z;T, ζqϕpζqdζ



. (3.2.6)

To this end, we consider the deterministic backward Cauchy problem

f
´

s, epT´sqBζ, y
¯

“ ϕpζq `

ż T

s
p rAτ ´ cpτ, yqqf

´

τ, epT´τqBζ, y
¯

dτ, ps, ζ, yq P rt, T s ˆ R2 ˆ R,

(3.2.7)

where

rAτ :“
1

2

`

|σpτ, ζ, yq|2Bνν ` 20σpτ, yqσpτ, ζ, yqBνy ` 0σ
2pτ, yqByy

˘

` bpτ, ζ, yqBν ` hpτ, ζ, yqBy.

In differential form, (3.2.7) reads as
$

&

%

´dBfps, ζ, yq “
´

rAsfps, ζ, yq ´ cps, yqfps, ζ, yq
¯

ds,

fpT, ζ, yq “ ϕpζq.

Corollary 2.7.5 ensures existence and estimates of a strong solution f to (3.2.7).

Next, we consider the process

M t,z
s :“ e´

şs
t cτdτ p%t,zs q

´1

ż

R2

Γpt, z; s, ζqfps, ζ, Ysqdζ, s P rt, T s.

By definition, we have

M t,z
T “ e´

şT
t csdsp%t,zT q

´1

ż

R2

Γpt, z;T, ζqϕpζqdζ.

On the other hand, by the Feynman-Kac theorem we have

M t,z
t “ fpt, z, Ytq “ E

”

e´
şT
t csdsϕpZt,zT q | Yt

ı

.

Hence to prove (3.2.6) it suffices to check that M “ pM t,z
s qsPrt,T s is a martingale: to this end, we

prove the representation

M t,z
T “M t,z

t `

ż T

t
Gt,zs dW

1
s ,

Gt,zs “ e´
şs
t cτdτ p%t,zs q

´1

ż

R2

Γpt, z; s, ζq pGs ` 0σsByq fps, ζ, Ysqdζ, s P rt, T s, (3.2.8)
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and conclude by showing that

E

„
ż T

t
|Gt,zs |

2ds



ă 8. (3.2.9)

We first compute the stochastic differential dBfps, ζ, Ysq: by Corollary 2.7.5 we have

dBfps, ζ, Ysq “

ˆ

´ rAs `
1

2
0σ

2
sByy ` cs

˙

fps, ζ, Ysqds` Byfps, ζ, YsqdYs

“

ˆ

´ rAs `
1

2
0σ

2
sByy ` hspZsqBy ` cs

˙

fps, ζ, Ysqds` 0σsByfps, ζ, YsqdW
1
s .

On the other hand, we have

dBΓpt, z; s, ζq “ A˚sΓpt, z; s, ζqds` G˚sΓpt, z; s, ζq
dYs

0σs

“

´

A˚s ` rhspZsqG˚s
¯

Γpt, z; s, ζqds` G˚sΓpt, z; s, ζqdW 1
s .

Then, by Itô formula we have

dB pfps, ζ, YsqΓpt, z; s, ζqq “ I1pt, z; s, ζqds` I2pt, z; s, ζqdW
1
s

where

I1pt, z; s, ζq “ fps, ζ, Ysq
´

A˚s ` rhspZsqG˚s
¯

Γpt, z; s, ζq

` Γpt, z; s, ζq

ˆ

´ rAs `
1

2
0σ

2
sByy ` hspZsqBy ` cs

˙

fps, ζ, Ysq

` 0σsG˚sΓpt, z; s, ζqByfps, ζ, Ysq,

I2pt, z; s, ζq “ fps, ζ, YsqG˚sΓpt, z; s, ζq ` 0σsΓpt, z; s, ζqByfps, ζ, Ysq.

This means that for any s P pt, T s we have

fpT, epT´sqBζ, YT qΓpt, z;T, e
pT´sqBζq “ fps, ζ, YsqΓpt, z; s, ζq

`

ż T

s
I1pt, z; τ, e

pτ´sqBζqdτ `

ż T

s
I2pt, z; τ, e

pτ´sqBζqdW 1
τ .

Next, we integrate over R2 the previous identity and apply the standard and stochastic Fubini’s

theorems (see, for instance, [62], Chapter 1) to get
ż

R2

fpT, epT´sqBζ, YT qΓpt, z;T, e
pT´sqBζqdζ “

ż

R2

fps, ζ, YsqΓpt, z; s, ζqdζ

`

ż T

s

ż

R2

I1pt, z; τ, e
pτ´sqBζqdζdτ

`

ż T

s

ż

R2

I2pt, z; τ, e
pτ´sqBζqdζdW 1

τ .
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By the estimates of the fundamental solution in Theorem 2.1.6, the estimates of the solution f

and its derivatives in Corollary 2.7.5, the boundedness of the coefficients and the non-degeneracy

condition of Assumption 3.1.1, we have
ż T

s

ż

R2

|I1pt, z; τ, ζq|dζdτ ď

ż T

s

C

pT ´ τq
1
2 ps´ tq

ż

R2

Γheat
´

µDτ´t, gIW,´1
t,τ pζq ´ γt,τ pzq

¯

dζdτ

ď C 1pT ´ sq
1
2 ps´ tq´1,

and, analogously

ż T

s

ˆ
ż

R2

|I2pt, z; τ, ζq|dζ

˙2

dτ ď

ż T

s

˜

C

ps´ tq
1
2

ż

R2

Γheat
´

µDτ´t, gIW,´1
t,τ pζq ´ γt,τ pzq

¯

dζ

¸2

dτ

ď C 1ps´ tq´1,

for some positive constants C,C 1. This justifies the use of Fubini’s theorems.

Now, since the Jacobian of the transformation ζ 1 “ esBζ equals one for any s, the previous

equality yields
ż

R2

fpT, ζ, YT qΓpt, z;T, ζqdζ “

ż

R2

fps, ζ, YsqΓpt, z; s, ζqdζ

`

ż T

s

ż

R2

I1pt, z; τ, ζqζdτ `

ż T

s

ż

R2

I2pt, z; τ, ζqdζdW
1
τ .

Integrating by parts and using the identity
ż

R2

ˆ

fps, ζ, YsqA˚sΓpt, z; s, ζq ` Γpt, z; s, ζq
1

2
0σ

2
sByyfps, ζ, Ysq ` 0σsG˚sΓpt, z; s, ζqByfps, ζ, Ysq

˙

dζ

“

ż

R2

Γpt, z; s, ζq

ˆ

As `
1

2
0σ

2
sByy ` 0σsσsByν ` hspζ, YsqBy

˙

fps, ζ, Ysqdζ

“

ż

R2

Γpt, z; s, ζq rAsfps, ζ, Ysqdζ,

we get
ż

R2

fpT, ζ, YT qΓpt, z;T, ζqdζ “

ż

R2

fps, ζ, YsqΓpt, z; s, ζqdζ

`

ż T

s

ż

R2

Γpt, z; τ, ζq
´

rhτ pZτ qGτ ` hτ pZτ qBy ` cτ
¯

fpτ, ζ, Yτ qdζdτ

`

ż T

s

ż

R2

Γpt, z; τ, ζq pGτ ` 0στByq fpτ, ζ, Yτ qdζdW
1
τ .

Eventually, we multiply the expression above by e´
şs
t cτdτ p%t,zs q´1: since

d
´

e´
şs
t cτdτ p%t,zs q

´1
¯

“ e´
şs
t cτdτ p%t,zs q

´1
´

´csds´ rhspZsqdW
1
s

¯

,

dxe´
ş¨

t cτdτ p%t,z¨ q
´1,

ż

R2

fp¨, ζ, Y¨qΓpt, z; ¨, ζqdζys “ ´

ż

R2

Γpt, z; s, ζq
´

rhspZsqGs ` hspZsqBy
¯

fps, ζ, Ysqdζds,
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by Itô formula, for s P pt, T s we have

M t,z
T “ e´

şT
t cτdτ p%t,zT q

´1

ż

R2

fpT, ζ, YT qΓpt, z;T, ζqdζ

“M t,z
s `

ż T

s
e´

şτ
t c%d%p%t,zτ q

´1

ż

R2

Γpt, z; τ, ζq pGτ ` 0στByq fpτ, ζ, Yτ qdζdW
1
τ

“M t,z
s `

ż T

s
Gt,zτ dW

1
τ .

with Gt,zτ as in (3.2.8). Now, again by the estimates of the fundamental solution (cf. Theorem

2.1.6), the estimates of the solution f and its derivatives (cf. Corollary 2.7.5), the boundedness of

the coefficients and the non-degeneracy condition of Assumption 3.1.1, we deduce the estimate

|Gt,zτ | ď Cp%t,zτ q
´1

ż

R2

ΓheatpµDτ´t, gIW,´1
τ,t pζq ´ γt,τ pzqqdζ ď C 1

for some positive constants C,C 1. This implies (3.2.9) and concludes the proof.

3.3 Backward filtering SPDE

As in the previous section, in order to apply the general results of Sections 2.1.1 and 2.7 to the

filtering SPDE for system (3.1.6), we impose the following conditions:

Assumption 3.3.1 (Regularity). The coefficients of (3.1.6) are such that σ1 P bC3`α
0,T pR

3q, 1σ P

bCα0,T pR3q, 0σ P bC
3`α
0,T pRq, b P bC

0
0,T pR3q, h P bC2

0,T pR3q.

Assumption 3.3.2 (Flattening at infinity). There exist two positive constants ε,M such that

sup
tPr0,T s

`

tσ1pt, ¨, ¨quε,β ` tσ
1pt, ¨, ¨qu1{2`ε,β1 ` t0σpt, ¨quε,β ` t0σpt, ¨qu1{2`ε,β1 ` thpt, ¨, ¨qu1{2,β

˘

ďM

for |β| “ 1 and |β1| “ 2, 3.

The backward filtering SPDE for system (3.1.6) reads

´dButpz, yq “ rAtutpz, yqdt` rGtutpz, yq ‹
dYt

0σpt, yq
, B :“ Bt ` vBx, (3.3.1)

where z “ px, vq and

rAt :“
1

2

`

|σpt, z, yq|2Bvv ` 20σpt, yqσpt, z, yqBvy ` 0σ
2pt, yqByy

˘

(3.3.2)

` bpt, z, yqBv ` hpt, z, yqBy,

rGt :“ σpt, z, yqBv ` 0σpt, yqBy ` rhpt, z, yq, rhpt, z, yq :“
hpt, z, yq

0σpt, yq
.
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Before presenting the main result of this section, we comment on the existence of solutions to

(3.3.1). Let pZt,z,ys , Y t,z,y
s , %t,z,y,ηs qsPrt,T s be the solution, starting at time t from pz, y, ηq, of the

system of SDEs
$

’

’

’

&

’

’

’

%

dZt “ BZtdt` e2pbpt, Zt, Ytqdt` σ
ipt, Zt, YtqdW

i
t ,

dYt “ hpt, Zt, Ytqdt` 0σpt, YtqdW
1
t ,

d%t “ rhpt, Zt, Ytq
2%tdt` rhpt, Zt, Ytq%tdW

1
t .

(3.3.3)

By Girsanov’s theorem, the process

ĂW t,z,y
s :“

ż s

t
0σ
´1pτ, Y t,z,y

τ qdY t,z,y
τ

“W 1
s ´W

1
t `

ż s

t

rhpτ, Zt,z,yτ , Y t,z,y
τ qdτ, s P rt, T s,

is a Brownian motion w.r.t the measure Qt,z,y defined by dQt,z,y “ p%t,z,y,1T q´1dP . Notice also that

pĂW t,z,y
s qsPrt,T s is adapted to pFYt,sqsPrt,T s where FYt,s “ σpY t,z,y

τ , t ď τ ď sq. Then equation (3.3.1)

can be written in the equivalent form

´dBuspz, yq “ rAsuspz, yqds` rGsuspz, yq ‹ dĂW t
s (3.3.4)

or, more explicitly,

ut
`

γBT´tpz, yq
˘

“ uT pz, yq `

ż T

t

rAsuspγBT´spz, yqqds`
ż T

t

rGsuspγBT´spz, yqq ‹ dĂW t
s , t P r0, T s,

(3.3.5)

where γBs pz, yq “ γBs px, v, yq “ px ` sv, v, yq. In (3.3.4) and (3.3.5), we simply write ĂW t
s instead

of ĂW t,z,y
s because the starting point of the Brownian motion is irrelevant in the stochastic integra-

tion. Theorem 2.7.4 guarantees that a fundamental solution ~Γ “ ~Γpt, z, y; s, ζ, ηq for (3.3.4) exists

and satisfies estimates (2.7.3), (2.7.4) and (2.7.5). Moreover, t ÞÑ ~Γpt, z, y;T, ζ, ηq is adapted to

pFYt,T qtPr0,T s. The main result of this section is the following

Theorem 3.3.3. Let pZt,z,yT , Y t,z,y
T q denote the solution of system (3.1.6) starting from pz, yq at

time t P r0, T q and ϕ P bCpR3q. Under Assumptions 3.1.1, 3.3.1 and 3.3.2, we have

E
”

ϕpZt,z,yT , Y t,z,y
T q | FYt,T

ı

“
u
pϕq
t pz, yq

u
p1q
t pz, yq

, pt, z, yq P r0, T s ˆ R2 ˆ R, (3.3.6)

where u
pϕq
t denotes the solution to (3.3.1) with final datum u

pϕq
T “ ϕ.

Definition 3.3.4 (Backward filtering density). The normalized process

Γ̄pt, z, y;T, ζ, ηq “
~Γpt, z, y;T, ζ, ηq

ş

R3

~Γpt, z, y;T, ζ1, η1qdζ1dη1

,
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for 0 ď t ă T and pz, yq, pζ, ηq P R2 ˆ R, is called the backward filtering density of system (3.1.6).

By Theorem 3.3.3, we have

E
”

ϕpZt,z,yT , Y t,z,y
T q | FYt,T

ı

“

ż

R3

Γ̄pt, z, y;T, ζ, ηqϕpζ, ηqdζdη, pt, z, yq P r0, T s ˆ R2 ˆ R, (3.3.7)

for any ϕ P bCpR3q.

Remark 3.3.5. Notice that formulas (3.3.6) and (3.3.7) represent the conditional expectation in

terms of solutions to the Cauchy problem for the backward filtering SPDE. This is not the case for

formula (3.2.4) in the forward case.

In the rest of the section we sketch the proof of Theorem 3.3.3. First, notice that under Qt,z,y

we have

%t,z,y,ηs “ η exp

ˆ
ż s

t

rhpτ, Zt,z,yτ , Y t,z,y
τ qdĂW t

τ ´
1

2

ż s

t

rhpτ, Zt,z,yτ , Y t,z,y
τ q2dτ

˙

, s P rt, T s,

and system (3.3.3) reads

$

’

’

’

’

&

’

’

’

’

%

dZt,z,ys “ rBps, Zt,z,ys , Y t,z,y
s qds` e2

´

1σ
ips, Zt,z,ys , Y t,z,y

s qdW i
t ` σps, Z

t,z,y
s , Y t,z,y

s qdĂW t
s

¯

,

dY t,z,y
s “ 0σps, Y

t,z,y
s qdĂW t

s ,

d%t,z,y,ηs “ rhps, Zt,z,ys , Y t,z,y
s q%t,z,y,ηs dĂW t

s ,

(3.3.8)

where rBps, z, yq “ Bz ` e2pbps, z, yq ´ rhps, z, yqσps, z, yqq. Recalling the notation z “ px, vq P R2

and omitting the arguments of the coefficients for brevity, the correspondent characteristic operator

is

L “ 1

2

´

|σ|2Bvv ` 0σ
2Byy ` η

2
rh2Bηη ` 2σ0σBvy ` 2ησrhBvη ` 2η0σrhByη

¯

` x rB,∇zy.

We write the backward diffusion SPDE for system (3.3.8). Assuming that ϕ is smooth and letting

Vspz, yq :“ ϕpZs,z,yT , Y s,z,y
T q, by Corollary B.4 we have

´dpVspz, yq%
s,z,y,η
T q “ LpVspz, yq%s,z,y,ηT qds

` BvpVspz, yq%
s,z,y,η
T q

´

1σ
ips, z, yq ‹ dW i

s ` σps, z, yq ‹ d
ĂW t
s

¯

` BypVspz, yq%
s,z,y,η
T q0σps, z, yq ‹ dĂW

t
s ` BηpVspz, yq%

s,z,y,η
T qηrhps, z, yq ‹ dĂW t

s
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(noting that BηZ
t,z,y
T “ BηY

t,z,y
T “ Bηη%

t,z,y,η
T “ 0 and ηBη%

t,z,y,η
T “ %t,z,y,ηT )

“
1

2

`

|σpt, z, yq|2Bvv ` 0σ
2pt, z, yqByy ` 2σ0σpt, z, yqBvy

˘

pVspz, yq%
s,z,y,η
T qds

`

´

rhps, z, yqpσBv ` 0σByq ` x rBpt, z, yq,∇zy
¯

pVspz, yq%
s,z,y,η
T qds

` 1σ
ips, z, yqBvpVspz, yq%

s,z,y,η
T q ‹ dW i

s

`

´

σps, z, yqBv ` 0σps, z, yqBy ` rhps, z, yq
¯

pVspz, yq%
s,z,y,η
T q ‹ dĂW t

s

(noting that rhps, z, yqpσBv ` 0σByq ` x rBpt, z, yq,∇zy “ vBx ` bpt, z, yqBv ` hpt, z, yqBy)

“ rLpVspz, yq%s,z,y,ηT qds` 1σ
ips, z, yqBvpVspz, yq%

s,z,y,η
T q ‹ dW i

s

`

´

σps, z, yqBv ` 0σps, z, yqBy ` rhps, z, yq
¯

pVspz, yq%
s,z,y,η
T q ‹ dĂW t

s .

where rL “ rAt ` vBx, with rAt as in (3.3.2), is the infinitesimal generator of pZt, Ytq. Therefore we

have

ϕpZt,z,yT , Y t,z,y
T q%t,z,y,1T “ ϕpz, yq ` Vtpz, yq%

t,z,y,1
T ´ VT pz, yq%

T,z,y,1
T

“

ż T

t

rLpVspz, yq%s,z,y,ηT qds`

ż T

t
1σ
ips, z, yqBvpVspz, yq%

s,z,y,η
T q ‹ dW i

s

`

ż T

t

rGspVspz, yq%s,z,y,ηT q ‹ dĂW t
s . (3.3.9)

Now we take the conditional expectation in (3.3.9) and exploit the fact that pW 2, . . . ,W d1q is

independent of FYt,T under Qt,z,y (this follows from the crucial assumption that 0σ is a function of

t, y only): setting

u
pϕq
t pz, yq “ EQ

t,z,y
”

Vtpz, yq%
t,z,y,1
T | FYt,T

ı

,

and applying the standard and stochastic Fubini’s theorems, we directly get the filtering equation

u
pϕq
t pz, yq “ ϕpz, yq `

ż T

t

rLsupϕqs pz, yqds`

ż T

t

rGsupϕqs pz, yq ‹
dY t,z,y

s

0σps, yq

which is equivalent to (3.3.1). Analogously,

u
p1q
t pz, yq :“ EQ

t,z,y
”

%t,z,y,1T | FYt,T
ı

solves the same SPDE with terminal condition u
p1q
T pz, yq ” 1. To conclude, it suffices recall the

Bayes representation for conditional expectations or the Kallianpur-Striebel’s formula (cf. [62],

Lemma 6.1) according to which we have

E
”

ϕpZt,z,yT , Y t,z,y
T q | FYt,T

ı

“

EQ
t,z,y

”

ϕpZt,z,yT , Y t,z,y
T q%t,z,y,1T | FYt,T

ı

EQt,z,y
”

%t,z,y,1T | FYt,T
ı .





Chapter 4

Density and gradient estimates for

non degenerate Brownian SDEs with

unbounded measurable drift

4.1 Introduction

In this chapter we provide Aronson-like bounds and corresponding pointwise estimates for the

derivatives up to order two for the transition probability density of the following d-dimensional,

non-degenerate diffusion

dXs “ bps,Xsqds` σps,XsqdWs, s ě 0, X0 “ x, (4.1.1)

where pWsqsě0 is a standard d-dimensional Brownian motion on the probability space pΩ,F , P q
with filtration pFsqsě0, satisfying the usual assumptions. The diffusion coefficient σ is assumed to

be rough in time, and Hölder continuous in space. The drift b is assumed to be measurable and to

have linear growth in space. Importantly, we will always assume throughout the chapter that the

diffusion coefficient σ is bounded and separated from 0 (usual uniform ellipticity condition).

The chapter is organized as follows. Our main results are stated in details in Section 2.1.1;

Section 4.2 is dedicated to the proof of our main results when the coefficients satisfy our previous

assumptions and are also smooth. Importantly, we prove that the two-sided heat-kernel bounds do

not depend on the smoothness of the coefficients but only on constants appearing in Assumptions

4.1.1 and 4.1.2 below, the fixed final time horizon T ą 0 and the dimension d. We also establish

there bounds for the derivatives through Malliavin calculus techniques which is precisely possible

because the coefficients are smooth. Those bounds serve as a priori controls to derive in Section

89
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4.3, through a circular type argument based on the Duhamel-parametrix type representation of the

density, that those bounds actually do not depend on the smoothness of the coefficients. We then

deduce the main results passing to the limit in a mollification procedure through convergence in

law and compactness arguments. We eventually discuss in Section 4.4 some possible extensions

for the estimation of higher order derivatives of the heat kernel when the coefficients have some

additional smoothness properties.

4.1.1 Assumptions and main results

We make the following assumptions on the coefficients of (4.1.1).

Assumption 4.1.1 (Non degeneracy). There exists a positive constant λ1 ě 1, such that

λ´1
1 |ξ|2 ď xσσ˚pt, xqξ, ξy ď λ1|ξ|

2, x, ξ P Rd, t ě 0.

Assumption 4.1.2 (Regularity). For some α P p0, 1q we have σ P bCα0,T . Moreover there exists a

positive constant λ2 ą 0 and β P r0, 1s such that for all x, y P Rd and t ě 0,

|bpt, 0q| ď λ2, |bpt, xq ´ bpt, yq| ď λ2p|x´ y|
β _ |x´ y|q. (4.1.2)

It should be noticed that when β “ 0, b can possibly be an unbounded measurable function with

linear growth. For instance, bpt, xq “ x`b0pt, xq with b0 being bounded measurable satisfies (4.1.2).

The drift bpt, xq “ c1ptq ` c2ptq|x|
β, β P r0, 1s where c1, c2 are bounded measurable functions of

time, also joins this class.

Under Assumptions 4.1.1 and 4.1.2, for any pt, xq P R` ˆ Rd, it is well known that there exists

a unique weak solution to (4.1.1) starting from x at time t (see e.g. [67], [3], [14], [48]).

To state our main result, we prepare some deterministic regularized flow associated with the

drift b. Let ρ be a non-negative smooth function with support in the unit ball of Rd and such that
ş

Rd ρpxqdx “ 1. For ε P p0, 1s, define

ρεpxq :“ ε´dρpε´1xq, bεpt, xq :“ bpt, ¨q ˚ ρεpxq “

ż

Rd
bpt, yqρεpx´ yqdy, (4.1.3)

i.e. ˚ stands for the usual spatial convolution. Then for each j “ 1, 2, ¨ ¨ ¨ , it is easy to see that

|∇jxbεpt, xq| “
ˇ

ˇ

ˇ

ˇ

ż

Rd
pbpt, yq ´ bpt, xqq∇jxρεpx´ yqdy

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd
|bpt, yq ´ bpt, xq||∇jxρε|px´ yqdy

ď λ2ε
β

ż

Rd
|∇jxρε|px´ yqdy ď cεβ´j . (4.1.4)



4.1. INTRODUCTION 91

On the other hand, from (4.1.2) we also have

|bεpt, xq ´ bpt, xq| ď

ż

Rd
|bpt, yq ´ bpt, xq|ρεpx´ yqdy ď λ2ε

β. (4.1.5)

For fixed pt, xq P R` ˆ Rd, we denote by θ
pεq
t,s pxq the deterministic flow solving

9γ
pεq
t,s pxq “ bεps, γ

pεq
t,s pxqq, s ě 0, γ

pεq
t,t pxq “ x. (4.1.6)

Note that pγ
pεq
t,s pxqqsět stands for a forward flow and pγ

pεq
t,s pxqqsďt stands for a backward flow. More-

over, after the regularization, equation (4.1.6) is well posed.

The following lemma, which provides a kind of equivalence between mollified flows, is our

starting point for treating the unbounded rough drifts.

Lemma 4.1.3 (Equivalence of flows). Let Assumptions 4.1.1 and 4.1.2 be in force. For any

ε P p0, 1s, the mapping x ÞÑ γ
pεq
t,s pxq is a C8-diffeomorphism and its inverse is given by x ÞÑ γ

pεq
s,t pxq.

Moreover, for any T ą 0, there exists a constant C “ CpT, λ2, dq ě 1 such that for any ε P p0, 1s,

all |s´ t| ď T and x, y P Rd,

|γ
p1q
t,s pxq ´ y| ` |s´ t| —C |γ

pεq
t,s pxq ´ y| ` |s´ t| —C |x´ γ

pεq
s,t pyq| ` |s´ t|,

where Q1 —C Q2 means that C´1Q2 ď Q1 ď CQ2.

Proof. By (4.1.4), it is a classical fact that x ÞÑ γ
pεq
t,s pxq is a C8-diffemorphism and its inverse is

given by x ÞÑ γ
pεq
s,t pxq. Below, without loss of generality, we assume t ă s. By (4.1.6) and (4.1.3),

(4.1.4), (4.1.5), we have

|γ
pεq
t,s pxq ´ γ

p1q
t,s pxq| ď

ż s

t

ˇ

ˇ

ˇ
bεpτ, γ

pεq
t,τ pxqq ´ b1pτ, γ

pεq
t,τ pxqq

ˇ

ˇ

ˇ
dτ `

ż s

t

ˇ

ˇ

ˇ
b1pτ, γ

pεq
t,τ pxqq ´ b1pτ, γ

p1q
t,τ pxqq

ˇ

ˇ

ˇ
dτ

ď 2λ2ps´ tq ` }∇b1}8
ż s

t
|γ
pεq
t,τ pxq ´ γ

p1q
t,τ pxq|dτ.

By the Gronwall inequality we get

|γ
pεq
t,s pxq ´ γ

p1q
t,s pxq| ď 2λ2ps´ tqε

}∇b1}8ps´tq,

and therefore we have

|γ
p1q
t,s pxq ´ y| ď |γ

pεq
t,s pxq ´ y| ` 2λ2ε

}∇b1}8ps´tq|s´ t|.

By symmetry, we obtain the first —C . As for the second one, note that by the Gronwall inequality

we derive

|γ
p1q
t,s pxq ´ γ

p1q
t,s pyq| —ε}∇b1}8ps´tq |x´ y| ñ |γ

p1q
t,s pxq ´ y| —ε}∇b1}8ps´tq |x´ γ

p1q
s,t pyq|. (4.1.7)

By (4.1.7) and by the first —C , we obtain the second —C .
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Notation 4.1.4. For notational convenience we introduce the parameter

Θ :“ pT, α, β, λ1, λ2, dq, (4.1.8)

where again T ą 0 stands for the fixed considered final time. It is not restrictive to assume that λ1

is also the Hölder modulus of σ.

Our main result is the following theorem.

Theorem 4.1.5. Under Assumptions 4.1.1 and 4.1.2 with β “ 0, for any T ą 0, x, y P Rd and

0 ď t ă s ď T , the unique weak solution Xt,spxq of (4.1.1) starting from x at time t admits a density

ppt, x; s, yq which is continuous in x, y P Rd. Moreover, ppt, x; s, yq enjoys the following estimates:

(i) (Two-sided density bounds) There exist two constants µ0, C0 ě 1 depending on Θ such that

for any x, y P Rd and 0 ď t ă s ď T we have

C´1
0 Γheatpµ´1

0 Is´t, γ
p1q
t,s pxq ´ yq ď ppt, x; s, yq ď C0Γheatpµ0Is´t, γp1qt,s pxq ´ yq. (4.1.9)

(ii) (Gradient estimate in x) There exist two constants µ1, C1 ě 1 depending on Θ such that for

any x, y P Rd and 0 ď t ă s ď T we have

|∇xppt, x; s, yq| ď
C1

?
s´ t

Γheatpµ1Is´t, γp1qt,s pxq ´ yq. (4.1.10)

(iii) (Second order derivative estimate in x) If Assumption 4.1.2 holds for some β P p0, 1s, then

there exist two constants µ2, C2 ě 1 depending on Θ such that for any x, y P Rd and 0 ď t ă

s ď T we have

ˇ

ˇ∇2
xppt, x; s, yq

ˇ

ˇ ď
C2

s´ t
Γheatpµ2Is´t, γp1qt,s pxq ´ yq. (4.1.11)

(iv) (Gradient estimate in y) If Assumption 4.1.2 holds for some β P p0, 1s and σ P bC1,α
0,T for

some α P p0, 1q, then there exist two constants µ3, C3 ě 1 depending on Θ and the Hölder

modulus of ∇σ such that, for any x, y P Rd and 0 ď t ă s ď T we have

|∇yppt, x; s, yq| ď
C3

?
s´ t

Γheatpµ3Is´t, γp1qt,s pxq ´ yq. (4.1.12)

Remark 4.1.6. By Lemma 4.1.3, the above γ
p1q
t,s pxq can be replaced by any regularized flow γ

pεq
t,s pxq.

Importantly, if b satisfies Assumption 4.1.2 for some β P p0, 1s, then γ
p1q
t,s pxq can be replaced as well

by any Peano flow solving 9γt,spxq “ bps, γt,spxqq, γt,tpxq “ x. Indeed, it is plain to check that, in

this case, the result of Lemma 4.1.3 still holds with γt,spxq instead of γ
pεq
t,s pxq.

Remark 4.1.7. Under the assumptions of the theorem, in fact, we can show the Hölder continuiy

of ∇xp, ∇2
xp and ∇yp in the variables x and y (see Appendix C).
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4.2 A priori heat kernel estimates for SDEs with smooth coeffi-

cients

In this section we suppose Assumptions 4.1.1 and 4.1.2 to be in force, and consider the mollified bε

and σε. In particular, we have

λ
pεq
j :“

ÿ

k“1,¨¨¨j

´

}∇kxbε}8 ` }∇kxσε}8
¯

ă 8, j P N. (4.2.1)

In the following, for ease of notations, we shall drop the subscripts ε. In other words, we assume

that the coefficients b and σ satisfy Assumptions 4.1.1, 4.1.2 and (4.2.1), and call (S) this set of

Assumptions. Under (S), it is well known that for each pt, xq P R` ˆ Rd, the following SDE has a

unique strong solution:

dXt,s “ bps,Xt,sqds` σps,Xt,sq dWs, s ě t, Xt,t “ x. (4.2.2)

The following theorem is well known in the theory of the Malliavin calculus. We refer to [51], [71,

Remarks 2.1 and 2.2] or [75, Theorem 5.4] for more details.

Theorem 4.2.1. Under (S), for any j, j1 P N, p ą 1 and T ą 0, there is a constant C “

CpΘ, j, j1, κj`j1q such that for all x P Rd, 0 ď t ă s ď T and f P bC8pRdq,
ˇ

ˇ

ˇ
∇jE

”

∇j1fpXt,spxqq
ıˇ

ˇ

ˇ
ď

Cp

ps´ tq
j`j1

2

E r|fpXt,spxqq|
ps

1{p . (4.2.3)

In particular, Xt,x
s has a density ppt, x; s, yq, which is smooth in x, y.

Remark 4.2.2. By Itô’s formula, one sees that ppt, x, s, yq satisfies the backward Kolmogorov

equation

Btppt, x; s, yq ` Lt,xppt, x; s, yq “ 0, lim
tÑs´

ż

Rd
ppt, x; s, yqfpxqdx “ fpyq, (4.2.4)

and the forward Kolmogorov equation (Fokker-Planck equation):

Bspps, x; t, yq ´ L˚s,yppt, x; s, yq “ 0, lim
sÑt`

ż

Rd
ppt, x; s, yqfpyqdy “ fpxq, (4.2.5)

where, setting a “ σσ˚{2,

Lt,xfpxq “ tr
`

apt, xq∇2
xfpxq

˘

` xbpt, xq,∇xfpxqy

and

L˚s,yfpyq “ ByiByj paijps, yqfpyqq ´ divpbps, ¨qfqpyq.
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4.2.1 The Duhamel representation

Fix now pt0, x0q P R`ˆRd as freezing parameters to be chosen later on. Let rX
pt0,x0q

t,s pxq denote the

process starting at x at time t, with dynamics

d rX
pt0,x0q

t,s “ bps, γt0,spx0qqds` σps, γt0,spξqqdWs, s ě t, rX
pt0,x0q

t,t “ x, (4.2.6)

i.e. rX
pt0,x0q

t,s denotes the process derived from (4.2.2), when freezing the spatial coefficients along

the flow γt0,¨px0q, where γt0,¨px0q is the unique solution of ODE (4.1.6) corresponding to b. For any

choice of freezing couple pt0, x0q, rX
pt0,x0q

t,s has a Gaussian density

rpt0,x0pt, x; s, yq “
expt´xprCt0,x0

t,s q´1pϑt0,x0
t,s ` x´ yq, ϑt0,x0

t,s ` x´ yy{2u
b

p2πqd detprCt0,x0
t,s q

, (4.2.7)

where

ϑt0,x0
t,s :“

ż s

t
bpr, γt0,rpx0qqdr, rCt0,x0

t,s :“

ż s

t
σσ˚pr, γt0,rpx0qqdr.

In particular, rpt0,x0pt, x, s, yq satisfies for fixed ps, yq P R` ˆ Rd:

Btrp
t0,x0pt, x; s, yq ` rLt0,x0

t,x rpt0,x0pt, x; s, yq “ 0, pt, xq P r0, sq ˆ Rd, (4.2.8)

subjected to the final condition

lim
tÑs´

ż

Rd
rpt0,x0pt, x; s, yqfpxqdx “ fpyq, (4.2.9)

where

rLt0,x0
t,x “ tr

`

apt, γt0,tpx0qq ¨∇2
x

˘

` xbpt, γt0,tpx0qq,∇xy

denotes the generator of the diffusion with frozen coefficients in (4.2.6).

The following lemma is direct by the explicit representation (4.2.7), the uniform ellipticity

condition (4.1.1) and the chain rule.

Lemma 4.2.3 (A priori controls for the frozen Gaussian density). For any j “ 0, 1, 2, ¨ ¨ ¨ , there

exist constants µj , Cj ą 0 depending only on j, λ1, d such that for all pt0, x0q P R` ˆ Rd, x, y P Rd

and 0 ď t ă s ă 8,

rpt0,x0pt, x; s, yq ě C0Γheat
`

µ´1
0 Is´t, ϑt0,x0

t,s ` x´ y
˘

,

and

ˇ

ˇ∇jxrpt0,x0pt, x; s, yq
ˇ

ˇ “
ˇ

ˇ∇jyrpt0,x0pt, x; s, yq
ˇ

ˇ ď Cjps´ tq
´
j
2 Γheat

`

µjIs´t, ϑt0,x0
t,s ` x´ y

˘
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Moreover, for each j, j1 P N, there are constants C 1, µ1 depending on Θ and λj1 such that
ˇ

ˇ

ˇ
∇jx∇j

1

ξ rp
t0,x0pt, x; s, yq

ˇ

ˇ

ˇ
ď C 1ps´ tq´

j
2 Γheat

`

µ1Is´t, ϑt0,x0
t,s ` x´ y

˘

. (4.2.10)

Proof. We focus on (4.2.10) for which it suffices to note that for any k P N, T ą 0,

|∇kξϑt0,x0
t,s | ` |∇kξ rCt0,x0

t,s | ď Ck|s´ t|, 0 ď t ă s ď T, pτ, ξq P rs, ts ˆ Rd,

where the constant Ck depends on the bound of ∇jb and ∇jσ, j “ 1, ¨ ¨ ¨ , k.

The starting point of our analysis is the following Duhamel type representation formula which

readily follows in the current smooth coefficients setting from (4.2.4)-(4.2.5) and (4.2.8)-(4.2.9):

ppt, x; s, yq “ rpt0,x0pt, x; s, yq `

ż s

t

ż

Rd
rpt0,x0pt, x; r, zqpLr,z ´ rLt0,x0

r,z qppr, z; s, yqdzdr (4.2.11)

“ rpt0,x0pt, x; s, yq `

ż s

t

ż

Rd
ppt, x; r, zqpLr,z ´ rLt0,x0

r,z qrpt0,x0pr, z; s, yqdzdr, (4.2.12)

where

Lr,z ´ rLt0,x0
r,z “ TrpAt0,x0

r,z ¨∇2
zq `B

t0,x0
r,z ¨∇z (4.2.13)

and

At0,x0
r,z :“ apr, zq ´ apr, γt0,rpx0qq, Bt0,x0

r,z :“ bpr, zq ´ bpr, γt0,rpx0qq. (4.2.14)

If we take pt0, x0q “ pt, xq in (4.2.11) and set Z0pt, x, s, yq :“ rpt,xpt, x, s, yq, then we obtain the

forward representation

ppt, x; s, yq “ Z0pt, x; s, yq `

ż s

t

ż

Rd
Z0pt, x; r, zqpLr,z ´ rLt,xr,zqppr, z; s, yqdzdr,

and in this case

ϑt,xt,s ` x´ y “

ż s

t
bpr, γt,rpxqqdr ` x´ y “ γt,spxq ´ y; (4.2.15)

it involves the forward deterministic flow γt,spxq in the frozen Gaussian density. If we now take

pt0, x0q “ ps, yq in (4.2.12) and set Z1pt, x; s, yq :“ rps,ypt, x; s, yq, we then obtain the backward (cf.

Section 2.7) representation

ppt, x; s, yq “ Z1pt, x; s, yq `

ż s

t

ż

Rd
ppt, x; r, zqpLr,z ´ rLs,yr,z qZ1pr, z; s, yqdzdr, (4.2.16)

and in this case

ϑs,yt,s ` x´ y “

ż s

t
bpr, γs,rpyqqdr ` x´ y “ x´ γs,tpyq.

It involves the backward deterministic flow γs,tpyq in the frozen Gaussian density.
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4.2.2 Two-sided Estimates

We first deal here with the two-sided estimates for the density in the current smooth coefficients

setting. Importantly, we emphasize as much as possible that all the controls obtained are actually

independent of the derivatives of the coefficients, or even of the continuity of the drift b, but only

depend on the parameters gathered in Θ introduced in (4.1.8). We first iterate in Section 4.2.2 the

Duhamel representation (4.2.16) to obtain the parametrix series expansion of the density. We then

give some controls related to the smoothing effects in time of the parametrix kernel.

As seen is Section 2.6.1, a specific feature of the heat kernels associated with unbounded drifts

is that the corresponding parametrix series needs to be handled with care. Indeed, it is not direct

to prove that it converges unless a suitable lower bound for the density is already available, and

therefore some truncation step is needed. Here we use a similar kind of argument than in [14],

based on slightly different techniques deriving from the stochastic control representation of some

Brownian functionals, see [6], [74] and Section 4.2.2 below.

We can assume here without loss of generality that T ď 1. Indeed, once the two-sided estimates

are established in this case, they can be easily extended to any compact time interval r0, T s through

Gaussian convolutions using the scaling properties (see Lemma 4.2.9).

Two-sided heat kernel estimates parametrix series

For notational convenience, we write from now on for x, y P Rd and 0 ď t ă s ď T

Z1pt, x; s, yq “ rpps,yqpt, x; s, yq, Hps, x; t, yq :“ pLr,z ´ rLs,yr,z qZ1pt, x; s, yq. (4.2.17)

Thus, from the Duhamel representation (4.2.16), recalling notation (1.4.5), we have

ppt, x; s, yq “ Z1pt, x; s, yq ` ppbHqpt, x; s, yq. (4.2.18)

For N ě 2, by iterating N ´ 1-times the identity (4.2.18), we obtain

pps, x; t, yq “ Z1pt, x; s, yq `
N´1
ÿ

j“1

pZ1 bH
bjqpt, x; s, yq ` ppbHbN qpt, x; s, yq. (4.2.19)

We shall now use the following notational convention without mentioning the flow γ
p1q
t,s pxq. For

x, y P Rd and 0 ď t ă s ď T , we define for µ ą 0 :

Γµpt, x; s, yq :“ ΓheatpµIs´t, γp1qt,s pxq ´ yq “
1

p2πq
d
2 ps´ tq

d
2

exp

˜

´
|γ
p1q
t,s pxq ´ y|

2

µps´ tq

¸

, (4.2.20)

recalling (1.1.7) for the last equality. From Lemmas 4.2.3 and 4.1.3 we derive
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Lemma 4.2.4. For any T ą 0 and j “ 0, 1, 2, ¨ ¨ ¨ , there exist constants rµj , rCj ą 0 depending only

on Θ such that for all x, y P Rd and 0 ď t ă s ď T ,

Z1pt, x; s, yq ě rC0Γ
rµ´1

0
pt, x; s, yq,

and for all α P r0, 1s,

|x´ θs,tpyq|
α
ˇ

ˇ∇jxZ1pt, x; s, yq
ˇ

ˇ ď rCjps´ tq
α
2
´
j
2 Γ

rµj pt, x; s, yq. (4.2.21)

The following convolution type inequality is also an easy consequence of Lemma 4.1.3.

Lemma 4.2.5. For any T ą 0, there is an ε “ εpΘq ą 1 such that for any µ ą 0, there is a

Cε “ CεpΘ, µq ą 0 such that for all x, y P Rd and 0 ď t ă s ď T and r P rs, ts ,

ż

Rd
Γµpt, x; r, zqΓµpr, z; s, yqdz ď CεΓεµpt, x; s, yq.

Proof. By definition and Lemma 4.1.3, we have for some ε ą ε1 ą 1,

ż

Rd
Γµpt, x; r, zqΓµpr, z; s, yqdz “

ż

Rd
Γheat

`

µIr´t, γp1qt,r pxq ´ z
˘

Γheat
`

µIs´r, γp1qr,s pzq ´ y
˘

dz

ď Cε1

ż

Rd
Γheat

`

ε1µIr´t, γp1qt,r pxq ´ z
˘

Γheat
`

ε1µIs´r, z ´ γp1qs,r pyq
˘

dz

“ Cε1Γ
heat

`

ε1µIs´t, γp1qt,r pxq ´ γp1qs,r pyq
˘

ď CεΓεµpt, x; s, yq,

where the second equality is due to the Chapman-Kolmogorov property for the Gaussian semigroup,

and the last inequality again follows from Lemma 4.1.3 and the following control

|γ
p1q
t,s pxq ´ y| “ |γ

p1q
r,s ˝ γ

p1q
t,r pxq ´ γ

p1q
r,s ˝ γ

p1q
s,r pyq| ď C|γ

p1q
t,r pxq ´ γ

p1q
s,r pyq|. (4.2.22)

The proof is complete.

Next we give the control for the iterated convolutions of the parametrix kernel H which appears

in the expansion (4.2.19), that is similar to (1.4.19) and (2.6.29), but with a crucial difference.

Indeed, because of the flow we are not able to recover an estimate that is uniform in the iteration

parameter.

Lemma 4.2.6. Under Assumptions 4.1.1 and 4.1.2, for any T ą 0 and N P N, there are constants

CN , µN ą 0 depending only on Θ such that, for all x, y P Rd and 0 ď t ă s ď T ,

|HbN pt, x; s, yq| ď CN ps´ tq
´1`Nα

2 ΓµN pt, x; s, yq,

where µN Ñ8 as N Ñ8.
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The proof proceeds in the same manner as for Propositions 1.4.8 and 2.6.17, starting from

the definition of H in (4.2.17) and exploiting Lemmas 4.2.4 and 4.2.5, and therefore is omitted.

From the above lemma, (4.2.19) and (4.2.21), we thus derive that for all N P N, x, y P Rd and

0 ď t ă s ď T :

ppt, x; s, yq ď C̄ΓµN´1pt, x; s, yq ` |pbHbN pt, x; s, yq|, (4.2.23)

which is almost the expected upper-bound except that we explicitly have to control the remainder

to stop the iteration at some fixed N to avoid the collapse to 8 of µN as N goes to infinity. This

is precisely the purpose of the next subsection.

Stochastic control arguments and truncation of the parametrix series

In this section, we aim at controlling the remainder term ppbHbN qpt, x; s, yq in the almost Gaussian

upper-bound (4.2.23).

To this end, we use the variational representation formula to show the a priori derivative es-

timates of the density when the coefficients are smooth, following a similar idea as in [14]. The

following variational representation formula was first proved by Boué and Dupuis [6].

Theorem 4.2.7. Fix T ą 0 and let F be a bounded Wiener functional on the classical Wiener

space pΩ,F , P q1 which is FT measurable. Then it holds that

´ lnE
“

eF
‰

“ inf
hPS

E

„

1

2

ż T

0
| 9hpτq|2ds´ F pω ` hq



,

where S denotes the set of all Rd-valued Ft-adapted and absolutely continuous processes with

E

„
ż T

0
| 9hpτq|2dτ



ă 8.

Using the above variational representation formula, we obtain the following important lemma.

Lemma 4.2.8. Let ` : Rd Ñ p0,8q be a bounded measurable function s.t. for all x P Rd, ζ´1 ď

`pxq ď ζ for some ζ ě 1. Under Assumptions 4.1.1 and 4.1.2, for any T ą 0, there is a constant

C “ CpΘq ą 0 such that for all x P Rd and 0 ď t ă s ď T ,

E r`pXt,spxqqs ď C sup
zPRd

exp
!

ln `pzq ´ C´1|z ´ γ
p1q
t,s pxq|

2
)

.

1We recall that for the Wiener space, the fundamental set Ω “ CpR`,Rdq and in this framework ω P Ω simply

stands here for an Rd-valued continuous function. Also, the canonical process
`

ωptq
˘

tě0
is a standard d-dimensional

Brownian motion under the measure P.
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Proof. Without loss of generality, we assume t “ 0 and write Xs :“ X0,spxq. Since in the current

smooth coefficients setting Xs can be viewed as a functional of the Brownian path, taking F “

lnp`pXsqq, we derive from Theorem 4.2.7 that

´ lnE r`pXsqs “ inf
hPS

E

„

1

2

ż s

0
| 9hpτq|2dτ ´ ln `pXh

s q



,

where Xh solves the following SDE:

dXh
s “

´

bps,Xh
s q ` σps,X

h
s q

9hpsq
¯

ds` σps,Xh
s qdWs, Xh

0 “ x,

i.e. the control process h enters the dynamics in the drift part. Note that γs :“ γ0,spxq solves the

following ODE:

9γs “ bps, γsq, γ0 “ x.

By Itô’s formula, we have

E
”

|Xh
s ´ γs|

2
ı

“ E

„
ż s

0

´

2xXh
τ ´ γτ , bpτ,X

h
τ q ´ bpτ, γτ q ` σpτ,X

h
τ q

9hpτqy ` pσσ˚qpτ,Xh
τ q

¯

dτ



.

Recalling

|bps, xq ´ bps, yq| ď λ2p1` |x´ y|q,

the Young inequality yields

E
”

|Xh
s ´ γs|

2
ı

ď CE

„
ż s

0

´

|Xh
τ ´ γτ |

2 ` | 9hpτq|2
¯

dτ



` Cs.

From the Gronwall inequality, we thus obtain

E
”

|Xh
s ´ γs|

2
ı

ď CE

„
ż s

0
| 9hpτq|2dτ



` Cs.

Hence we have,
1

2
E

„
ż s

0
| 9hpτq|2dτ



ě C´1E
”

|Xh
s ´ γs|

2
ı

´ Cs.

Therefore, we eventually derive

´ lnE r`pXsqs ě inf
hPS

E
”

C´1|Xh
s ´ γs|

2 ´ ln `pXh
s q

ı

´ Cě inf
zPRd

`

C´1|z ´ γs|
2 ´ ln `pzq

˘

´ C.

The desired estimate eventually follows from Lemma 4.1.3.

Next we state a direct yet important scaling lemma. We refer to Section 2.3 of [14] for additional

details.
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Lemma 4.2.9 (Scaling property of the density). Fix 0 ď t ă s ď T and let λ :“ s´ t. Introduce

for u P r0, 1s, pXλ
u :“ λ´

1
2Xt,t`uλ. Then, p pXλ

u quPr0,1s satisfies the SDE

d pXλ
u “ λ

1
2 b
`

t` uλ, pXλ
uλ

1
2

˘

du` σ
`

t` uλ, pXλ
uλ

1
2

˘

dxW λ
u “

pbλpu, pXλ
u qdu` pσλpu, pXλ

u qd
xW λ
u ,

where xW λ
u “ λ´

1
2Wuλ is a Brownian motion. It also holds that:

ppt, x; s, yq “ λ´
d
2
ppλ
´

0, λ´
1
2x; 1, λ´

1
2 y
¯

,

and introducing for z P Rd, u P r0, 1s, Bupγλ0,upzq “ pbλpu, pγ0,upzqq, pγ
λ
0,0pzq “ z,

ˇ

ˇ

pγλ0,1pλ
´ 1

2xq ´ λ´
1
2 y
ˇ

ˇ

2
“ λ´1|γt,spxq ´ y|

2.

Proof. We only focus on the last statement. The other ones readily follow from the change of

variable. Write:

λ´
1
2γt,spxq “ λ´

1
2x` λ´

1
2

ż s

t
bpr, γt,rpxqqdr “ λ´

1
2x` λ

1
2

ż 1

0
bpt` uλ, γt,t`uλpxqqdu.

Setting now for u P r0, 1s, γ̄0,upxq “ γt,t`uλpxq, the above equation rewrites:

λ´
1
2 γ̄0,1pxq “ λ´

1
2x` λ

1
2

ż 1

0
bpt` uλ, γ̄0,upxqqdu “ λ´

1
2x`

ż 1

0

pbλpu, λ´
1
2 γ̄0,upxq

˘

du

from which we readily derive by uniqueness of the solution to the ODE that for u P r0, 1s,

λ´
1
2 γ̄u,0pxq “ pγλu,0pλ

´ 1
2xq “ λ´

1
2γt,t`uλpxq,

which gives the statement.

We will now use the previous Lemmas 4.2.8 and 4.2.9 to establish the following result from

which the Gaussian upper-bound will readily follow.

Lemma 4.2.10 (Control of the remainder). Choose N large enough in order to have:

´1`
Nα

2
ą
d

2
. (4.2.24)

There exist constants C0, µ0 ą 0 depending only on Θ such that for all x, y P Rd and 0 ď t ă s ď T ,

|ppbHbN qpt, x; s, yq| ď C0Γµ0pt, x; s, yq.
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Proof. From the scaling property of Lemma 4.2.9 above, we can assume without loss of generality

that t “ 0 and s “ 1. By Lemmas 4.2.6, 4.2.8, we have

|ppbHbN qp0, x; 1, yq| ď

ż 1

0

ˇ

ˇ

ˇ

ˇ

ż

Rd
pp0, x, r, zqHbN pr, z; 1, yqdz

ˇ

ˇ

ˇ

ˇ

dr

“

ż 1

0

ˇ

ˇE
“

HbN pr,X0,rpxq; 1, yq
‰
ˇ

ˇ dr

ď CN

ż 1

0
p1´ rq´1`Nα

2 E rΓµN pr,X0,rpxq; 1, yqs dr

ď CN

ż 1

0
p1´ rq´1`Nα

2 sup
zPRd

exp
!

ln ΓµN pr, z; 1, yq ´ C´1|z ´ γ
p1q
0,r pxq|

2
)

dr.

Since by (0.0.7),

ln ΓµN pr, z; 1, yq “ ln ΓheatpµNI1´r, γ
p1q
r,1 pzq ´ yq “ ´

d

2
lnp1´ rq ´ µN |γ

p1q
r,1 pzq ´ y|

2{p1´ rq,

we have

sup
z
pln ΓheatpµNI1´r, γ

p1q
r,1 pzq ´ yq ´ C

´1|z ´ γ
p1q
0,r pxq|

2q

ď ´
d

2
lnp1´ rq ´ inf

z
pµN |γ

p1q
r,1 pzq ´ y|

2{p1´ rq ` C´1|z ´ γ
p1q
0,r pxq|

2q

ď ´
d

2
lnp1´ rq ´ µ1N inf

z
p|z ´ γ

p1q
1,r pyq|

2{p1´ rq ´ Cp1´ rq ` |z ´ γ
p1q
0,r pxq|

2q

ď ´
d

2
lnp1´ rq ´ µ1N |γ

p1q
1,r pyq ´ γ

p1q
0,r pxq|

2{2` C

ď ´
d

2
lnp1´ rq ´ µ2N |γ

p1q
0,1pxq ´ y|

2 ` C,

where the last step is due to (4.2.22). Therefore, from the condition (4.2.24) and the above com-

putations, there exist constants C0, λ0 ą 0 depending only on Θ such that

|ppbHbN qp0, x; 1, yq| ď C0Γheatpµ0I1, γ
p1q
0,1pxq ´ yq “ C0Γµ0p0, x; 1, yq.

The general statement for arbitrary s, t again follows from the scaling arguments of Lemma 4.2.9.

Final derivation of the two-sided heat kernel estimates

We are now in position to prove the following two-sided estimates.

Theorem 4.2.11. Under Assumptions 4.1.1 and 4.1.2, for any T ą 0, there exist constants

C0, µ0 ě 1 depending only on Θ such that for all x, y P Rd and 0 ď t ă s ď T ,

C´1
0 Γµ´1

0
pt, x; s, yq ď ppt, x; s, yq ď C0Γµ0pt, x; s, yq.
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Proof. (i) (Upper bound) The upper bound is a direct consequence of the expansion (4.2.23) and

the previous Lemma 4.2.10 up to a possible modification of the constants C0, µ0 that anyhow still

only depend on Θ.

(ii) (Lower bound) By the upper bound and Lemmas 4.2.6 and 4.2.5, we get for some µ1 ą µ0

and ε ą 1:

|pbHpt, x; s, yq| ď C

ż s

t
ps´ rq´1`α

2

ż

Rd
Γµ1pt, x; r, zqΓµ1pr, z; s, yqdzdr

ď C2ps´ tq
α
2 Γεµ1pt, x; s, yq.

Hence, for |γ
p1q
t,s pxq ´ y| ď

?
s´ t, recalling (4.2.18) and (4.2.20), we have

ppt, x; s, yq ě
´

C1 ´ C2ps´ tq
α
2

¯

Γεµ1pt, x; s, yq ě
´

C1 ´ C2ps´ tq
α
2

¯

ps´ tq´d{2e´εµ1 .

In particular, letting s´ t ď δ with δ small enough, we obtain that

ppt, x; s, yq ě C3ps´ tq
´d{2 on |γ

p1q
t,s pxq ´ y| ď

?
s´ t. (4.2.25)

Next we propose yet another chaining argument to obtain the lower bound when |γ
p1q
t,s pxq ´ y| ě

?
s´ t. The idea is again to consider a suitable sequence of balls between the points x and y, for

which the diagonal lower estimate (4.2.25) holds, and which also have a large enough volume to

consent to derive the global off-diagonal lower bound. The usual strategy to build such balls

consists in considering the “geodesic” line between x and y. In the non-degenerate case, when the

coefficients are bounded, this is nothing but the straight-line joining x and y: this is precisely the

strategy used in Section 1.4.3. When dealing with unbounded coefficients, a possibility is to consider

the optimal path associated with the deterministic controllability problem 9ϕu “ bpu, ϕuq `ϕu, u P

rt, ss, ϕr “ x, ϕs “ y with ϕ P L2prt, ss,Rdq. This is the strategy adopded in Section 2.6.1 for a

Lipschitz continuous b; the constants in the lower bound estimates obtained therein actually depend

on the Lipschitz modulus b.

We adopt here a slightly different strategy which only involves the mollified flow γp1q but which

will have the main advantage to provide constants that will again only depend on Θ and not on

the smoothness of b, using thoroughly the controls established in Lemma 4.1.3. We now detail such

a construction which is in some sense original though pretty natural. From the scaling arguments

of Lemma 4.2.9, we can assume without loss of generality that δ “ 1, t “ 0 and s “ 1. Suppose

|γ
p1q
0,1pxq ´ y| ą 1 and let M be the smallest integer greater than 4ε2}∇b1}8 |γ

p1q
0,1pxq ´ y|

2, i.e.,

M ´ 1 ď 4ε2}∇b1}8 |γ
p1q
0,1pxq ´ y|

2 ăM. (4.2.26)

Importantly, we recall from (4.1.4) that under Assumptions 4.1.1 and 4.1.2, }∇b1}8 ď Cpλ1q. Let

tj :“ j{M, j “ 0, 1, ¨ ¨ ¨ ,M.
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The important point for the proof is the following claim.

Claim: Set ξ0 :“ x and ξM :“ y. There exist pM ` 1q-points ξ0, ξ1, ¨ ¨ ¨ , ξM such that

|ξj`1 ´ γ
p1q
tj ,tj`1

pξjq| ď
1

2
?
M
, j “ 0, 1, ¨ ¨ ¨ ,M ´ 1.

Indeed, let Q1 :“ B1{p2
?
Mqpγ

p1q
0,t1
pxqq and recursively define for j “ 2, ¨ ¨ ¨ ,M ,

Qj :“
ď

zPQj´1

B1{p2
?
Mqpγ

p1q
tj´1,tj

pzqq “
!

z : dist
´

z, γ
p1q
tj´1,tj

pQj´1q

¯

ď 1{p2
?
Mq

)

.

Letting λ :“ }∇b1}8 and noting that (see (4.1.7))

e´λ{M |z ´ z1| ď |γ
p1q
tj ,tj`1

pzq ´ γ
p1q
tj ,tj`1

pz1q| ď eλ{M |z ´ z1|,

by the previous induction method and noting that γ
p1q
tj ,tj`1

˝ γ
p1q
0,tj
pxq “ γ

p1q
0,tj`1

pxq, we have

Bjε´pj´1qλ{M {p2
?
Mqpγ

p1q
0,tj
pxqq Ă Qj , j “ 1, 2, ¨ ¨ ¨ ,M.

Intuitively, the image of a ball with radius r under the flow γ
p1q
tj´1,tj

contains a ball with radius

ε´λ{Mr. In particular, by (4.2.26),

ξM “ y P B?Mε´λ{2pγ
p1q
0,1pxqq Ă BMε´pM´1qλ{M {p2

?
Mqpγ

p1q
0,tM

pxqq Ă QM .

The claim then follows. The idea of the construction is illustrated in Figure 4.1.

Now let κ :“ 1{p2pε}∇b1}8 ` 1qq and z0 :“ x, zM`1 :“ y and Σj :“ Bκ{
?
M pξjq. From the

previous claim, we have that for zj P Σj and zj`1 P Σj`1,

|γ
p1q
tj ,tj`1

pzjq ´ zj`1| ď |γ
p1q
tj ,tj`1

pzjq ´ γ
p1q
tj ,tj`1

pξjq| ` |γ
p1q
tj ,tj`1

pξjq ´ ξj`1| ` |ξj`1 ´ zj`1|

ď ε}∇b1}8 |zj ´ ξj | ` |γ
p1q
tj ,tj`1

pξjq ´ ξj`1| ` |ξj`1 ´ zj`1|

ď
κpε}∇b1}8 ` 1q

?
M

`
1

2
?
M
“

1
?
M
“

a

tj`1 ´ tj .

This precisely means that the previous diagonal lower bound holds for pptj , zj , tj`1, zj`1q. Thus,

by the Chapman-Kolmogorov equation and (4.2.25), we have

pp0, x; 1, yq “

ż

Rd
¨ ¨ ¨

ż

Rd
ppt0, z0; t1, z1q ¨ ¨ ¨ pptM´1, zM´1; tM , zM qdz1 ¨ ¨ ¨ dzM´1

ě

ż

Σ1

¨ ¨ ¨

ż

ΣM´1

ppt0, z0; t1, z1q ¨ ¨ ¨ pptM´1, zM´1; tM , zM qdz1 ¨ ¨ ¨ dzM´1

ě pC3M
d{2qM

ż

Σ1

¨ ¨ ¨

ż

ΣM´1

dz1 ¨ ¨ ¨ dzM´1 “ pC3M
d{2qM pM´d{2κd|B1|q

M´1

“ CM3 Md{2pκd|B1|q
M´1 “Md{2 exptM lnpC3κ

d|B1|qu{pκ
d|B1|q

ě C4 exptM logpC3κ
d|B1|qu ě C5 expt´C6|γ

p1q
0,1pxq ´ y|

2u,

recalling the definition of M in (4.2.26) and that C3κ
d|B1| ď 1 for the last inequality.
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Figure 4.1: Construction of the chaining balls for the lower bound.

4.2.3 Estimates for the derivatives of the heat kernel with smooth coefficients

We insisted in the previous section on the fact that, even though we considered smooth coefficients,

all our estimates for the two-sided Gaussian bounds were actually uniform w.r.t. Θ which only

depends on parameters appearing in Assumptions 4.1.1 and 4.1.2.

Our point of view is here different since we mainly want to derive some a priori bounds on the

derivatives of the heat-kernel when the coefficients are smooth which will then serve in a second

time, namely in the circular argument developed in Section 4.3, to prove that those estimates are

actually again independent of the smoothness of the coefficients. Anyhow, in the current section,

we fully exploit such a smoothness and obtain controls on the derivatives which do depend on

the derivatives of b, σ. To this end, we restart from the representation (4.2.18) of the density and

exploit the gradient estimate (4.2.3).

Proof of the main estimates

Theorem 4.2.12 (Controls on the derivatives of the heat kernel with smooth coefficients). Under

(S), for j P t1, 2u, there exist constants Cj :“ Cj
`

Θ, λj
˘

, µj :“ µjpΘq ą 0, such that, for every

x, y P Rd and 0 ď t ă s ď T ,

|∇jxppt, x; s, yq| ď Cjps´ tq
´
j
2 Γµj pt, x; s, yq, |∇yppt, x; s, yq| ď C1ps´ tq

´ 1
2 Γµ1pt, x; s, yq.
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Proof. (i) Let us first establish the estimates on the derivatives w.r.t. the backward variable x.

Write from (4.2.18):

∇jxppt, x; s, yq “ ∇jxrp1pt, x; s, yq `∇jx
`

pbH
˘

pt, x; s, yq.

From Lemma 4.2.4 it readily follows that

|∇jxZ1pt, x; s, yq| ď Cjps´ tq
´
j
2 Γµj pt, x; s, yq.

For the other contribution, setting u :“ s`t
2 ,

pbHpt, x; s, yq “

ż s

u
E rHpr,Xt,rpxq; s, yqs dr `

ż u

t
E rHpr,Xt,rpxq; s, yqs dr “: I1pxq ` I2pxq.

Consider I1 first: choosing p ą 1 such that d`α´2
2p ą d

2 ´ 1, by (4.2.3) and Lemmas 4.2.6 and 4.2.5,

we get

|∇jxI1pxq| ď Cj

ż s

u
pr ´ tq´j{2E r|Hpr,Xt,rpxq; s, yq|

ps
1{p dr (4.2.27)

“ Cj

ż s

u
pr ´ tq´j{2

ˆ
ż

Rd
ppt, x, r, zq|Hpr, z; s, yq|pdz

˙1{p

dr

ď C 1jps´ tq
´j{2

ż s

u
ps´ rq

´ 1
p
` α

2p
` d

2p
´ d

2

ˆ
ż

Rd
Γµ0pt, x; r, zqΓµ1

p
pr, z; s, yqdz

˙1{p

dr

ď C2j ps´ tq
´j{2

ˆ
ż s

u
ps´ rq

´ 1
p
` α

2p
` d

2p
´ d

2 dr

˙

Γ1{p
µ2
pt, x; s, yq

ď C3j ps´ tq
´j{2ps´ tq

1´ 1
p
` α

2p
` d

2p
´ d

2 Γ1{p
µ2
pt, x; s, yq

ď rCjps´ tq
´j{2Γµ2ppt, x; s, yq.

To treat I2pxq, we only consider j “ 1 since the case j “ 2 is similar. By the chain rule, we have

∇xE rHpr,Xr,spxq; t, yqs “ E rp∇xHq pr,Xt,rpxq; s, yq ¨∇xXt,rpxqs ,

and for all k P t1, ¨ ¨ ¨ , du,

BxkHpt, x; s, yq :“ tr
`

Bxkapt, xq ¨∇2
xZ1pt, x; s, yq

˘

` Bxkbpt, xq ¨∇xZ1pt, x; s, yq

` trpapt, xq ´ apt, γs,tpyqqq ¨ Bxk∇2
xZ1pt, x; s, yq

` pbpt, xq ´ bpt, γs,tpyqqq ¨ Bxk∇xZ1pt, x; s, yq.

Thus by Lemma 4.2.4, (4.2.1) and (4.2.21), it is easy to see that for some µ3 ą 0,

|∇xHpt, x; s, yq| ď Cps´ tq´1Γµ3pt, x; s, yq.



106 CHAPTER 4. BROWNIAN SDES WITH UNBOUNDED DRIFT

We carefully emphasize that the constants denoted by C above, do depend on the smoothness of

the coefficients. Using the same argument as above, from the Hölder inequality, one sees that for

p “ d
d´1 ,

|∇xI2pxq| ď C1

ż u

t
E r|p∇xHqpr,Xt,rpxq; s, yq|

ps
1{p dr

ď C 11

ż u

t
ps´ rq´1E

“

Γpµ3
pr,Xt,rpxq; s, yq

‰1{p
dr ď ps´ tq´

1
2 Γµ4pt, x; s, yq.

We thus obtain the gradient estimate in the variable x.

(ii) Let us now turn to the gradient estimate w.r.t. y. We restart from (4.2.16) differentiating

first w.r.t. y. This can be done for arbitrary freezing parameters pt0, x0q. Write:

∇yppt, x; s, yq “ ∇yrpt0,x0pt, x; s, yq `

ż s

t

ż

Rd
ppt, x; r, zqpLr,z ´ rLt0,x0

r,z q∇yrpt0,x0pr, z; s, yqdzdr

“ ´∇xrpt0,x0pt, x; s, yq ´

ż s

t

ż

Rd
ppt, x; r, zqpLr,z ´ rLt0,x0

r,z q∇zrpt0,x0pr, z; s, yqdzdr,

(4.2.28)

where we have used the explicit expression (4.2.7) for the second equality. Letting again u “ s`t
2

and taking pt0, x0q “ ps, yq, we can split

∇yppt, x; s, yq “ ´∇xZ1pt, x; s, yq ´ J1pyq ´ J2pyq,

where

J1pyq :“

ż u

t

ż

Rd
ppt, x; r, zqpLr,z ´ rLs,yr,z q∇zZ1pr, z; s, yqdzdr,

J2pyq :“

ż s

u

ż

Rd
ppt, x; r, zqpLr,z ´ rLs,yr,z q∇zZ1pr, z; s, yqdzdr.

For J1pyq, from the Gaussian upper-bound of Theorem 4.2.11, (4.2.21) and Lemma 4.2.5 (see also

Lemma 4.2.6), we have

|J1pyq| ď C1

ż u

t
ps´ rq´3{2

ż

Rd
Γµ0pt, x; r, zqΓµ5pr, z; s, yqdzdr ď C 11ps´ tq

´1{2Γµ6pt, x; s, yq.

Consider now J2: integrating by parts and recalling (4.2.13) and (4.2.14), we have

|J2pyq| ď

ż s

u

ˇ

ˇ

ˇ

ˇ

ż

Rd
∇zppt, x; r, zqpLr,z ´ rLs,yr,z qZ1pr, z; s, yqdz

ˇ

ˇ

ˇ

ˇ

dr

`

ż s

u

ˇ

ˇ

ˇ

ˇ

ż

Rd
ppt, x; r, zq∇zb ¨∇zZ1pr, z; s, yqdz

ˇ

ˇ

ˇ

ˇ

dr

`

ż s

u

ˇ

ˇ

ˇ

ˇ

ż

Rd
ppt, x; r, zq∇za ¨∇2

zZ1pr, z; s, yqdz

ˇ

ˇ

ˇ

ˇ

dr

“: J21pyq ` J22pyq ` J23pyq.
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For J21pyq, recalling from (4.2.17) that pLr,z ´ rLs,yr,z qZ1pr, z; s, yq “ Hpr, z; s, yq, we derive from

(4.2.3) and as in (4.2.27) that

J21pyq “

ż s

u

ˇ

ˇ

ˇ

ˇ

ż

Rd
ppt, x; r, zq∇zHpr, z; s, yqdz

ˇ

ˇ

ˇ

ˇ

dr “

ż s

u
|E rp∇zHqpr,Xr,spxq; s, yqs| dr

ď C1

ż s

u
pr ´ tq´1{2E r|Hpr,Xr,spxq; s, yq|

ps
1{p dr ď ps´ tq´1{2Γµ7pt, x; s, yq.

For J22pyq, from the upper bound in Theorem 4.2.11 and (4.2.21), we have

J22pyq ď C1

ż t

u
ps´ rq´1{2

ż

Rd
Γµ0pt, x; r, zqΓµ1pr, z; s, yqdzdr ď C 11ps´ tq

´1{2Γµ8pt, x; s, yq.

For J23, since |∇2
zrp1pr, z; s, yq| has the singularity ps´ rq´1, noting that

∇za ¨∇2
zZ1 “ ∇2

zp∇za ¨ Z1q ´∇3
za ¨ Z1 ´∇2

za ¨∇zZ1,

as above, by (4.2.3) we still have

J23pyq ď Cps´ tq´1{2Γµ9pt, x; s, yq.

Combining the above estimates, we obtain the derivative estimate in y. The proof is complete.

Remark 4.2.13. We point out that Theorem 4.2.12 anyhow has some interest by itself. A careful

reading of the proof shows that actually the statements about the derivatives w.r.t. x hold true if

additionally to Assumption 4.1.1 and 4.1.2, the coefficients b, σ are twice continuously differentiable

with bounded derivatives and that the second order derivatives are themselves Hölder continuous.

In this framework, the Duhamel representation (4.2.18) coupled to the heat-kernel estimates of

Theorem 4.2.11 provides an alternative approach to the full Malliavin calculus viewpoint developed

in [26].

4.3 Proof of Main Theorem

In the following proof, the final time horizon T ą 0 is fixed. We first work under the assumptions

(S) aiming at obtaining constants in the estimates of Section 4.2.3 that only depend on Θ :“

pT, α, β, λ1, λ2, dq introduced in (4.1.8).

With the same reasoning as for Section 2.6.1, we introduce for δ ą 0 the SDE (4.2.2) with

diffusion coefficient σpt, xq “ δIdˆd and denote by p̄δ the corresponding density. By the lower

bound estimate proven in Theorem 4.2.11 and scaling techniques similar to those presented in

Lemma 4.2.9, it holds that for any µ ą 0, there exists δ :“ δpµq large enough and C̄δ ą 0, µ1

depending on Θ̄ “ pT, β, δ, λ2, dq such that for all 0 ď t ă s ď T and x, y P Rd,

C̄´1
δ Γµpt, x; s, yq ď p̄δpt, x; s, yq ď C̄δΓµ1pt, x; s, yq. (4.3.1)
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Importantly, with the notations of Section 4.2.1, we choose µ, and then δ :“ δpµq s.t. for all

θ P r0, 1s, 0 ď t ă s ď T , x, y P Rd and j P t0, 1, 2u,

|γt,spxq ´ y|
θ|∇jyZ0pt, x; s, yq| ` |x´ γs,tpyq|

θ|∇jxZ1pt, x; s, yq| ď Cδps´ tq
θ
2
´
j
2 p̄δpt, x; s, yq, (4.3.2)

where Cδ here only depends on Θ and δ, θ.

Without further declaration, we shall fix from now on a δ such that (4.3.2) holds. From the

definition of H in (4.2.17) and the proof of Lemma 4.2.6, we also derive from this choice of δ that,

under the sole Assumptions 4.1.1 and 4.1.2, there exists C :“ CpΘq such that, for all 0 ď t ă s ď T ,

x, y P Rd:
|Hpt, x; s, yq| ď Cps´ tq´1`α

2 p̄δpt, x; s, yq. (4.3.3)

For simplicity we will write from now on p̄ “ p̄δ. In particular, for all 0 ď t ă s ď T , x, y P Rd,
r P rt, ss:

ż

Rd
p̄pt, x; r, zqp̄pr, z; s, yqdz “ p̄pt, x; s, yq. (4.3.4)

For the rest of the section, we use the convention that all the constants appearing below only

depend on Θ. Again, we have shown in the previous section that for smooth coefficients the

expected bounds for the derivatives hold. The constants in Theorem 4.2.12 however do depend

on the derivatives of the coefficients, since we use the gradient estimate (4.2.3). We aim here at

proving that we can obtain the same type of estimates as in Theorem 4.2.12 under Assumptions

4.1.1, 4.1.2 and (4.2.1) but for constants that only depend on Θ. This is the purpose of Sections

4.3.1 to 4.3.3. We will then eventually derive in Section 4.3.4 the main results of Theorem 4.1.5

thanks to some compactness arguments (Ascoli-Arzelà theorem) to the uniformity of the controls

obtained for mollified parameters.

4.3.1 First order derivative estimates in the backward variable x

Without loss of generality we shall assume t “ 0 and for s P p0, T s, we define

f1psq :“ sup
x,y
|∇xpp0, x; s, yq|{p̄p0, x; s, yq.

From Theorem 4.2.12 and (4.3.1), we know that

ż T

0
f1psqds ă 8.

By the forward representation formula (4.2.18), we have

|∇xpp0, x; s, yq| ď |∇xZ1p0, x; s, yq| ` |∇xp| b |H|p0, x; s, yq.
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Observe first that, from Lemma 4.2.4 and (4.3.2)

|∇xZ1p0, x; s, yq| ď C1t
´1{2Γλp0, x; s, yq ď C 11t

´1{2p̄p0, x; s, yq.

Secondly, (4.3.3) yields

|∇xp| b |H|p0, x; s, yq ď

ż s

0

ż

Rd
f1prqp̄p0, x; r, zq|Hpr, z; s, yq|dzdr

ď C1

ż s

0
f1prqps´ rq

´1`α
2

ż

Rd
p̄p0, x; r, zqp̄pr, z; s, yqdzdr

“ C1

ˆ
ż s

0
f1prqps´ rq

´1`α
2 dr

˙

p̄p0, x; s, yq,

using also (4.3.4) for the last identity. Thus,

f1ptq ď C1

ˆ

s´
1
2 `

ż s

0
ps´ rq´1`α

2 f1prqdr

˙

.

By the Volterra type Gronwall inequality, we obtain

f1ptq ď C 11s
´ 1

2 ñ |∇xpp0, x; s, yq| ď C 11s
´ 1

2 p̄p0, x; s, yq. (4.3.5)

4.3.2 Second order derivative estimates in the backward variable x

We assume for this section that Assumption 4.1.2 holds for some β P p0, 1s. It is crucial to take

here β ą 0. Below we fix s P p0, T s and define for t ă s

f2ptq :“ ps´ tq ¨ sup
x,y
|∇2

xppt, x; s, yq|{p̄pt, x; s, yq. (4.3.6)

By Theorem 4.2.12 and (4.3.1), we have

sup
tďs

f2ptq ă 8.

To derive the estimate of the second order derivative of the density, we use the backward Duhamel

representation (4.2.11). And for fixed freezing parameters pt0, x0q we differentiate twice w.r.t. x to

derive:

∇2
xppt, x; s, yq “ ∇2

xrp
t0,x0pt, x; s, yq `

ż s

t

ż

Rd
∇2
xrp
t0,x0pt, x; r, zq

´

Lr,z ´ rLt0,x0
r,z

¯

ppr, z; s, yqdzdr

“ ∇2
yrp
t0,x0pt, x; s, yq `

ż s

t

ż

Rd
∇2
zrp
t0,x0pt, x; r, zq

´

Lr,z ´ rLt0,x0
r,z

¯

ppr, z; s, yqdzdr,

(4.3.7)
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using again the explicit expression (4.2.7) for the second equality. Let us now denote for a parameter

ε ą 0 that might depend on r to be specified later on,

Aε,t0,x0
r,z :“ aεpr, zq ´ aεpr, γt0,rpx0qq, Āt0,x0

r,z :“ At0,x0
r,z ´Aε,t0,x0

r,z , (4.3.8)

where similarly to (4.1.3), aεpr, zq “ apr, ¨q ˚ ρεpzq. Choosing the freezing point pt0, x0q “ pt, xq and

setting as well

Z0pt, x; s, yq “ rpt,xpt, x; s, yq, u :“ pt` sq{2,

we decompose the expression in (4.3.7) as follows:

∇2
xppt, x, s, yq “:

5
ÿ

i“1

Iipt, x, s, yq, (4.3.9)

where I1pt, x; s, yq :“ ∇2
yZ0pt, x; s, yq and

I2pt, x; s, yq :“

ż u

s

ż

Rd
∇2
zZ0pt, x; r, zqtrpAt,xr,z ¨∇2

zppr, z; s, yqqdzdr

I3pt, x; s, yq :“

ż s

u

ż

Rd
∇2
zZ0pt, x; r, zqtrpAε,t,xr,z ¨∇2

zppr, z; s, yqqdzdr

I4pt, x; s, yq :“

ż s

u

ż

Rd
∇2
zZ0pt, x; r, zqtrpĀε,t,xr,z ¨∇2

zppr, z; s, yqqdzdr

I5pt, x; s, yq :“

ż s

t

ż

Rd
∇2
zZ0pt, x; r, zqBt,x

r,z ¨∇zppr, z; s, yqdzdr.

By Lemma 4.2.3, (4.2.15) and (4.3.2), it is easy to see that

|I1pt, x; s, yq| ď Cps´ tq´1ΓheatpµIs´t, γt,spxq ´ yq ď Cps´ tq´1p̄pt, x; s, yq.

For I2, by Assumption 4.1.1 and again (4.3.2), we have

|I2pt, x; s, yq| ď C

ż u

t

ż

Rd

ΓheatpµIr´t, γt,rpxq ´ zq
r ´ t

|z ´ θt,rpxq|
α|∇2

xppr, z; s, yq|dzdr

ď C

ż u

t

pr ´ tq
α
2 f2prq

pr ´ tqps´ rq

ż

Rd
p̄pt, x; r, zqp̄pr, z; s, yqdzdr

ď ps´ tq´1p̄pt, x; s, yq

ż s

t
pr ´ tq´1`α

2 f2prqdr.

For I3, integrating by parts, we have

|I3pt, x; s, yq| ď C

ż s

u

ż

Rd

ˇ

ˇ∇3
zZ0pt, x; r, zq

ˇ

ˇ ¨ |Aε,t,xr,z | ¨ |∇zppr, z; s, yq|dzdr

`

ż s

u

ż

Rd

ˇ

ˇ∇2
zZ0pt, x; r, zq

ˇ

ˇ ¨ |∇zAε,t,xr,z | ¨ |∇zppr, z; s, yq|dzdr.
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Note that by the property of convolutions,

|∇zAε,t,xr,z | ď Cε´1`α, |Aε,t,xr,z | ď C|z ´ γt,rpxq|
α, |Āε,t,xr,z | ď Cεα.

In particular, taking ε “ ps ´ rq
1
2 , by Lemma 4.2.3, (4.2.15), (4.3.2) and using as well the bound

(4.3.5) on the gradient established in the previous section, we obtain

|I3pt, x; s, yq| ď C

ż s

u

ż

Rd

p̄pt, x; r, zq

pr ´ tq
3
2

¨ pr ´ tq
α
2 ¨

p̄pr, z; s, yq

ps´ rq
1
2

dzdr

`

ż s

u

ż

Rd

p̄pt, x; r, zq

r ´ t
¨ ps´ rq

α
2 ¨

p̄pr, z; s, yq

s´ r
dzdr

ď Cp̄pt, x; s, yq

ˆ
ż s

u
pr ´ tq´

3´α
2 ps´ rq´

1
2dr `

ż s

u
pr ´ tq´1ps´ rq´1`α

2

˙

dr

ď Cp̄pt, x; s, yqps´ tq´1`α
2 ,

and

|I4pt, x; s, yq| ď C

ż s

u

ż

Rd

p̄pt, x; r, zq

r ´ t
¨ ps´ rq

α
2 ¨

f2prqp̄pr, z; s, yq

s´ r
dzdr

ď Cp̄pt, x; s, yqps´ tq´1

ż s

u
ps´ rq´1`α

2 f2prqdr.

For I5, from (4.3.2), we derive similarly to I2 that

|I5pt, x; s, yq| ď C

ż s

t

ż

Rd

ΓheatpµIr´t, γt,rpxq ´ zq
r ´ t

p|z ´ γt,rpxq|
β ` |z ´ θt,rpxq|q

p̄pr, z; s, yq

ps´ rq
1
2

dzdr

ď Cp̄pt, x; s, yq

ż s

t

pr ´ tq
β
2 ` pr ´ tq

1
2

pr ´ tqps´ rq
1
2

dr ď Cp̄pt, x; s, yqps´ tq´1.

Combining the above estimates for the pIjqjPt1,¨¨¨ ,5u, we obtain from (4.3.9) and (4.3.6) that:

f2ptq ď C

ˆ

1`

ż s

t
pr ´ tq´1`α

2 f2prqdr `

ż s

t
ps´ rq´1`α

2 f2prqdr

˙

.

Finally, from the Volterra type Gronwall inequality, we obtain

sup
tPr0,ss

f2ptq ď C ñ |∇2
xppt, x; s, yq| ď Cps´ tq´1p̄pt, x; s, yq. (4.3.10)

4.3.3 First order derivative estimate in y

We assume for this section that Assumption 4.1.2 holds for some β ą 0 and that the diffusion

coefficient σ P bC1,α
0,T . Fix t ą 0. For s P pt, T s, we define

f3psq :“ sup
x,y
|∇yppt, x; s, yq|{p̄pt, x; s, yq. (4.3.11)
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By Theorem 4.2.12 and (4.3.1) we know that
ż T

t
f3psqds ă 8.

In (4.2.28), taking pt0, x0q “ ps, yq and recalling the notations of (4.2.14) and Z1pt, x; s, yq “

rps,ypt, x; s, yq, by the integration by parts, we have

∇yppt, x; s, yq “ ´∇xZ1pt, x; s, yq `

ż s

t

ż

Rd
∇zppt, x; r, zqtrpAs,yr,z ¨∇2

zZ1qpr, z; s, yqdzdr

`

ż t

s

ż

Rd
ppt, x; r, zqtrpp∇zaqpr, zq ¨∇2

zZ1qpr, z; s, yqdzdr

´

ż t

s

ż

Rd
ppt, x; r, zqBs,y

r,z ¨∇2
zZ1pr, z; s, yqdzdr “:

4
ÿ

i“1

Jipt, x; s, yq. (4.3.12)

For J1, we readily get from (4.3.2)

|J1ps, x; t, yq| ď Cps´ tq´
1
2 p̄pt, x; s, yq.

For J2, using again (4.3.2) and (4.3.11) gives:

|J2pt, x; s, yq| ď C

ż s

t

ż

Rd
|∇zppt, x; r, zq| ¨ ps´ rq´1`α

2 p̄pr, z; s, yqdzdr

ď C

ż s

t
f3prq

ż

Rd
p̄pt, x; r, zq ¨ ps´ rq´1`α

2 p̄pr, z; s, yqdzdr

ď Cp̄pt, x; s, yq

ż t

s
f3prqps´ rq

´1`α
2 dr.

For J3, we further write

J3pt, x; s, yq “

ż s

t

ż

Rd
ppt, x; r, zqtr

´

pp∇zaqpr, zq ´ p∇zaqpr, γs,rpyqqq ¨∇2
zZ1

¯

pr, z; s, yqdzdr

`

ż s

t

ż

Rd
ppt, x; r, zqtr

´

p∇zaqpr, γs,rpyqq ¨∇2
zZ1

¯

pr, z; s, yqdzdr

“: J31pt, x, s, yq ` J32pt, x; s, yq.

For J31, as above, by (4.3.2) we have

|J31pt, x; s, yq| ď C

ż s

t

ż

Rd
p̄pt, x; r, zq ¨ ps´ rq

α
2
´1p̄pr, z; s, yqdzdr ď Cp̄pt, x; s, yq.

For J32, again by the integration by parts, we derive

|J32pt, x; s, yq| ď C

ż s

t

ż

Rd
|∇zppt, x; r, zq| ¨ |∇zZ1pr, z; s, yq|dzdr

ď C

ż t

s
f3prq

ż

Rd
p̄pt, x; r, zq ¨ ps´ rq´

1
2 p̄pr, z; s, yqdzdr

ď Cp̄pt, x; s, yq

ż t

s
f3prqps´ rq

´ 1
2dr.
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Finally, we derive similarly to the term J31 that

|J4pt, x; s, yq| ď Cp̄pt, x; s, yq.

Combining all the estimates above for pJiqiPt1,¨¨¨ ,4u, from (4.3.12) and (4.3.11) we get

f3ptq ď C

ˆ

ps´ tq´
1
2 `

ż s

t
f3prqps´ rq

´1`α
2 dr

˙

,

which in turn yields

f3ptq ď Cps´ tq´
1
2 ñ |∇yppt, x; s, yq| ď Cps´ tq´

1
2 p̄pt, x; s, yq. (4.3.13)

4.3.4 Proof of Theorem 4.1.5

Now we go back the notations of Section 2 and keep the index ε, associated with the spatial

mollification of the coefficients. Thus, let pε be the corresponding heat kernel and Xε
t,spxq the

solution of SDE (4.2.2) corresponding to bε and σε. It is well known, see e.g. Theorem 11.1.4 in

[67], that under Assumptions 4.1.1 and 4.1.2, for any f P bC8pRdq

lim
εÑ0

E
“

fpXε
t,spxqq

‰

“ E rfpXt,spxqqs .

Moreover, from Theorem 4.2.11 we have the following uniform estimate: there exist constants

µ0, C0 ą 0 depending only on Θ such that for all ε P p0, 1q,

C´1
0 Γµ´1

0
pt, x; s, yq ď pεpt, x; s, yq ď C0Γµ0pt, x; s, yq.

Similarly, we derive from (4.3.5), (4.3.10) and (4.3.13) that under Assumptions 4.1.1 and 4.1.2,

sup
ε
|∇xpεpt, x; s, yq| ď C1ps´ tq

´1{2Γµ1pt, x; s, yq, (4.3.14)

and under Assumptions 4.1.1 and 4.1.2 with β P p0, 1q, j P t1, 2u,

sup
ε
|∇jxpεpt, x; s, yq| ď C2ps´ tq

´j{2Γµ2pt, x; s, yq, (4.3.15)

and under Assumptions 4.1.1 and 4.1.2 with β P p0, 1q and σ P bC1,α
0,T ,

sup
ε
|∇ypεpt, x; s, yq| ď C 11ps´ tq

´1{2Γµ11pt, x; s, yq, (4.3.16)

where in the above equations (4.3.14)-(4.3.16) the constants C1, C2, C
1
1 only depend on Θ and not

on the mollification parameter ε.
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In particular, for every non-negative measurable function f , we eventually derive

C´1
0

ż

Rd
Γµ´1

0
pt, x; s, yqfpyqdy ď E rfpXt,spxqqs ď C0

ż

Rd
Γµ0pt, x; s, yqfpyqdy,

which implies that Xt,spxq has a density ppt, x; s, yq having lower and upper bound as in (4.1.9).

This proves point (i) of the theorem.

Moreover, for each t ă s, we now aim at proving that

px, yq ÞÑ ∇xpεpt, x; s, yq is equi-continuous on any compact subset of Rd ˆ Rd, (C1)

and

px, yq ÞÑ ∇2
xpεpt, x; s, yq is equi-continuous on any compact subset of Rd ˆ Rd, (C2)

px, yq ÞÑ ∇ypεpt, x; s, yq is equi-continuous on any compact subset of Rd ˆ Rd. (C3)

Assume for a while that such a continuity condition holds. Then, from the Ascoli-Arzelà theorem,

one can find a subsequence εk such that for each x, y P Rd,

∇jxpεkpt, x; s, yq Ñ ∇jxppt, x; s, yq, j “ 0, 1, 2, ∇ypεkpt, x; s, yq Ñ ∇yppt, x; s, yq.

The gradient and second order derivative estimates follow, under the previously recalled additional

assumptions when needed, from (4.3.14), (4.3.15) and (4.3.16). This completes the proof of points

(ii) to (iv) of the theorem up to the proof of (C1), (C2) and (C3). This equicontinuity property is

proved in Appendix C.

4.4 Extension to higher order derivatives

We explain here how the estimates (4.1.10), (4.1.11), (4.1.12) can be extended for higher order

derivatives in our analysis. We claim that under (S) the a-priori bounds of Theorem 4.2.12 can

be obtained for any j P N, using the same techniques based on the Duhamel representation of the

density and (4.2.3). On the other hand the circular arguments used in Section 4.3 can be repeated

as well, provided that the coefficients are smooth enough.

For instance, let us assume (S) to be in force; assume as well that }∇σ}8 ` }∇b}8 ă 8 and

for some α, β P p0, 1s, λ3 ě 1,

|∇σpt, xq ´∇σpt, yq| ď λ3|x´ y|
α, |∇bpt, xq ´∇bpt, yq| ď λ3|x´ y|

β, x, y P Rd. (4.4.1)

We aim here at proving that we can obtain bounds on the third order derivatives which only depend

on Assumptions 4.1.1 and 4.1.2 (with Hölder indexes equal to one) and the constants in (4.4.1).
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Namely, we want to illustrate a kind of parabolic bootstrap property, i.e. in (4.4.1) we give some

Hölder conditions on the first derivatives of the coefficients which together with the assumptions

4.1.1, 4.1.2 lead to a uniform control of the third order derivatives.

As in (4.3.7), for the choice of the freezing parameters pt0, x0q “ pt, xq and recalling Z0pt, x; s, yq “

rpt,xpt, x; s, yq, we have the following representation for the derivatives of order three:

∇3
xppt, x; s, yq “ ´∇3

yZ0pt, x; s, yq ´

ż s

t

ż

Rd
∇3
zZ0pt, x; r, zq

´

Lr,z ´ rLt,xr,z
¯

ppr, z; s, yqdzdr. (4.4.2)

Let us now concentrate on the most singular term in (4.4.2). Setting u “ pt ` sq{2 and At0,x0
r,z ,

Aε,t0,x0
r,z , Āε,t0,x0

r,z as in (4.2.14), (4.3.8) we write
ż s

t

ż

Rd
∇3
zZ0pt, x; r, zqtr

`

At,xr,z ¨∇2
zppr, z; s, yq

˘

dzdr

“

ż s

u

ż

Rd
∇3
zZ0pt, x; r, zqtr

`

pAε,t,xr,z ` Āε,t,xr,z q ¨∇2
zppr, z; s, yq

˘

dzdr

`

ż u

t

ż

Rd
∇3
zZ0pt, x; r, zqtr

`

At,xr,z ¨∇2
zppr, z; s, yq

˘

dzdr “: G1pt, x; s, yq `G2pt, x; s, yq.

When r P ru, ss, pr ´ tq´
3
2 — ps ´ tq´

3
2 is not singular. Therefore we may control G1 similarly to

the terms I3 and I4 appearing in Section 4.3.2, owing to the fact that the upper bound on ∇2
zp is

already available at this point.

When r P rt, us, then pr ´ tq´
3
2 is indeed singular. Thus, to control G2 the point is precisely

to exploit the regularity of the coefficients and perform an integration by parts to balance the

singularity. We write

G2pt, x; s, yq “ ´

ż u

t

ż

Rd
∇2
zZ0pt, x; r, zqtr

`

∇zAt,xr,z ¨∇2
zppr, z; s, yq

˘

dzdr

´

ż u

t

ż

Rd
∇2
zZ0pt, x; r, zqtr

`

At,xr,z ¨∇3
zppr, z; s, yq

˘

dzdr,

and define

f3ptq :“ ps´ tq
3
2 sup
x,y
|∇3

xppt, x; s, yq|{p̄pt, x; s, yq;

Then, exploiting the uniform bounds for the derivatives of order lower or equal than 2 obtained in

Section 4.3, we eventually derive

f3psq ď C

ˆ

1`

ż u

t
pr ´ tq´1`α

2 f3ptqdt

˙

ñ sup
tPr0,ss

f3psq ď C,

which yields the desired estimate for ∇3
xp. In the same manner, starting from the Duhamel expan-

sion (4.2.16), and assuming in addition that }∇2σ}8 ă 8 and |∇2σpt, xq ´∇2σpt, yq| ď λ4|x´ y|
α

for some α P p0, 1q we could derive

|∇2
yppt, x; s, yq| ď Cps´ tq´1p̄pt, x; s, yq.
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A careful reading of the proof suggests that the above arguments may be repeated for any

derivative of order j ą 3 in the backward variable x as soon as we have appropriate regularity

assumptions on ∇j´2σ and ∇j´2b. More precisely, assuming that

}∇j1σ}8 ` }∇j
1

b}8 ă 8, j
1 “ 1, ¨ ¨ ¨ , j ´ 2,

and for some α, β P p0, 1s, µj´2 ě 1,

|∇j´2σpt, xq´∇j´2σpt, yq| ď κj´2|x´ y|
α, |∇j´2bpt, xq´∇j´2bpt, yq| ď µj´2|x´ y|

β, x, y P Rd,

then we may derive

|∇jxppt, x; s, yq| ď Cps´ tq´
j
2 p̄pt, x; s, yq.

On the other hand, the derivative with respect to the forward variable ∇j´1
y requires an additional

assumption on ∇j´1σ. Again, assuming that for some α P p0, 1q, |∇j´1σpt, xq ´ ∇j´1σpt, yq| ď

µj´1|x´ y|
α for any x, y P Rd, then we may derive

|∇j´1
y ppt, x; s, yq| ď Cps´ tq´

j´1
2 p̄pt, x; s, yq.
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Appendix

A Proof of Lemma 2.6.19 of Chapter 2

We start this Section by proving two important technical results about the sensitivity of the flow

and the covariance matrix with respect to the choice of the freezing parameters.

Lemma A.1. There exists a constant C “ CpΘq ě 1 such that, for every 0 ď t ă s ď T and

z, ζ P R2 with ps´ tq
1
2

ˇ

ˇ

ˇ
D 1?

s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ
ď c0, we have:

ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

γt,spzq ´ rγs,ζt,s pzq
¯

ˇ

ˇ

ˇ

ˇ

ď Cps´ tq
α
2

˜

1`

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

1`α
¸

. (A.1)

Proof. By (2.6.7) and (2.6.9) we write

D 1?
s´t

´

γt,spzq ´ rγs,ζt,s pzq
¯

“ D 1?
s´t

!

ż s

t
pY p%, γt,%pzqq ´ Y p%, γs,%pζqqq d%`

ż s

t
pDY qp%, γs,%pζqq

´

γ%,spζq ´ rγs,ζt,% pzq
¯

d%
)

“ D 1?
s´t

!

ż s

t

˜

Y1p%, γt,%pzqq ´ Y1p%, pγs,%pζqq1, pγt,%pzqq2q

Y2p%, γt,%pzqq ´ Y2p%, γs,%pζqq

¸

d%`

`

ż s

t

”

pY1p%, pγs,%pζqq1, pγt,%pzqq2q ´ Y1p%, γs,%pζqqq e1

´ pDY qp%, γs,%pζqq pγt,%pzq ´ γ%,spζqq
ı

d%`

ż s

t
pDY qp%, γs,%pζqq

´

γt,%pzq ´ rγs,ζt,% pzq
¯

d%
)

“: I1 ` I2 ` I3

117
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Then, by Assumption 2.6.2 we have

|I1| ď C

ż s

t

˜

|pγt,%pzq ´ γs,%pζqq1|

ps´ tq
3
2

`
|γt,%pzq ´ γs,%pζq|

ps´ tq
1
2

¸

d%

ď C

ż s

t

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pγt,%pzq ´ γs,%pζqq

ˇ

ˇ

ˇ

ˇ

ď ps´ tq
1
2 ;

|I2| ď C

ż s

t

1

ps´ tq
3
2

|pγt,%pzq ´ γs,%pζqq2|
1`α d%

ď C

ż s

t

1

ps´ tq
3
2
´ 1

2
p1`αq

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pγt,%pzq ´ γs,%pζqq

ˇ

ˇ

ˇ

ˇ

1`α

d%

ď Cps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

1`α

.

Lastly we notice that by the upper diagonal structure of DY and Assumption (2.6.2), for any

% P rt, ss we have
›

›

›

›

D 1?
s´t
pDY qp%, γs,%pζqqD?s´t

›

›

›

›

ď Cps´ tq´1

Therefore, we have

|I3| ď

ż s

t

›

›

›

›

D 1?
s´t
pDY qp%, γs,%pζqqD?s´t

›

›

›

›

ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

γt,%pzq ´ rγs,ζt,% pzq
¯

ˇ

ˇ

ˇ

ˇ

d%

ď Cps´ tq´1

ż s

t

ˇ

ˇ

ˇ

ˇ

D 1?
s´t

´

γt,%pzq ´ rγs,ζt,% pzq
¯

ˇ

ˇ

ˇ

ˇ

d%.

Gathering all the terms together we get (A.1) by the Gronwall inequality.

Lemma A.2. There exists a constant C “ CpΘq ě 1 such that, for every 0 ď t ă s ď T and

z, ζ P R2:
›

›

›

›

D 1?
s´t

´

rCt,zt,s ´ rCs,ζt,s
¯

D 1?
s´t

›

›

›

›

ď Cps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

α

.

Proof. By (2.6.10) we write

›

›

›

›

D 1?
s´t

´

rCt,zt,s ´ rCs,ζt,s
¯

D 1?
s´t

›

›

›

›

“ sup
|y|“1

!

ż s

t
pap%, γt,%pzqq ´ ap%, γs,%pζqqq xpE

t,z
%,se2qpE

t,z
%,se2q

˚D 1?
s´t
y,D 1?

s´t
yyd%`

`

ż s

t
xap%, γs,%pζq

”

pEt,z%,se2qpE
t,z
%,se2q

˚ ´ pEs,ζ%,se2qpE
s,ζ
%,se2q

˚
ı

D 1?
s´t
y,D 1?

s´t
yyd%

)

“: I1 ` I2
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By Assumption 2.6.1 and Proposition 2.6.9 it is easy to see that

|I1| ď Cps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

α

.

For I2 we have

|I2| ď ps´ tq
´1

ż s

t

›

›

›

›

D 1?
s´t

´

Et,z%,s ´ E
s,ζ
%,s

¯

D?s´t
›

›

›

›

›

›

›

›

D 1?
s´t

´

Et,z%,s ` E
s,ζ
%,s

¯

D?s´t
›

›

›

›

d%

ď Cps´ tq´1

ż s

t

›

›

›

›

D 1?
s´t

´

Et,z%,s ´ E
s,ζ
%,s

¯

D?s´t
›

›

›

›

d%

where we used that D 1?
s´t
Et0,z0%,s D?s´t is a positive, bounded matrix, uniformly in t0 P r0, T s,

z0 P R2 and % P rt, ss, by the structure of the resolvent. Moreover, by the upper diagonal structure

of pDY q and Assumption 2.6.2 we have
›

›

›

›

D 1?
s´t

´

Et,z%,s ´ E
s,ζ
%,s

¯

D?s´t
›

›

›

›

ď

ż s

%

›

›

›

›

D 1?
s´t
pDY qpu, γt,upzqqD?s´t

›

›

›

›

›

›

›

›

D 1?
s´t

´

Et,zu,s ´ E
s,ζ
u,s

¯

D?s´t
›

›

›

›

du

`

ż s

%

›

›

›

›

D 1?
s´t
ppDY qpu, γt,upzqq ´ pDY qpu, γs,upζqqqD?s´t

›

›

›

›

›

›

›

›

D 1?
s´t
Es,ζu,sD?s´t

›

›

›

›

du

ď Cps´ tq´1

ż s

%

›

›

›

›

D 1?
s´t

´

Et,zu,s ´ E
s,ζ
u,s

¯

D?s´t
›

›

›

›

du

` Cps´ tq´1

ż s

%
|BvY1pu, γt,upzqq ´ BvY1pu, γs,upζqq| du

ď Cps´ tq´1

ż s

%

›

›

›

›

D 1?
s´t

´

Et,zu,s ´ E
s,ζ
u,s

¯

D?s´t
›

›

›

›

du` ps´ tq´1

ż s

%
|γt,upzq ´ γs,upζq|

αdu.

ď Cps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

α

.

where we used the Gronwall inequality in the last step. Coming back to I2 we directly derive

|I2| ď Cps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

α

,

and this proves the assertion.

Proof of Lemma 2.6.19. Assume that ps ´ tq
1
2

ˇ

ˇ

ˇ
D 1?

s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ
ě c0. Then (2.6.31) can be

directly derived by (2.6.24) and (2.6.25). Indeed we can write

ˇ

ˇ

ˇ
Bjν
rΓt0,ηpt, z; s, ζq ´ BjνZpt, z; s, ζq

ˇ

ˇ

ˇ

pt0,ηq“ps,ζq
ď C

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

α

ps´ tq
j´α

2

Γheat pµDs´t, ζ ´ γt,spzqq

ď Cps´ tq
α´j

2 Γheat
`

µ1Ds´t, ζ ´ γt,spzq
˘

.
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Assume now that ps´ tq
1
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pζ ´ γt,spzqq

ˇ

ˇ

ˇ

ˇ

ď c0 to be determined. We will prove the statement

when j “ 0. The statement for j “ 1, 2 would be derived similarly from usual computations on

gaussian kernels. We denote for simplicity C1 “ rCt,zt,s , C2 “ rCs,ζt,s , w1 “ ζ ´ γt,spzq, w2 “ ζ ´ rγs,ζt,s pzq.

Then the thesis for j “ 0 follows from the following estimates:

ˇ

ˇ

ˇ
pdetC2q

´ 1
2 ´ pdetC2q

´ 1
2

ˇ

ˇ

ˇ
ď Cps´ tq´2`α

2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

α

;

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´
1

2
xC´1

1 w1, w1y

˙

´ exp

ˆ

´
1

2
xC´1

2 w2, w2y

˙ˇ

ˇ

ˇ

ˇ

ď ps´ tq
α
2 exp

˜

´
1

2µ

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2
¸

. (A.2)

By proposition 2.6.9 we have

ˇ

ˇ

ˇ
pdetC1q

´ 1
2 ´ pdetC2q

´ 1
2

ˇ

ˇ

ˇ
ď ps´ tq´2 |detC1 ´ detC2|

ps´ tq4

ď ps´ tq´2

ˇ

ˇ

ˇ

ˇ

detD 1?
s´t
C1D 1?

s´t
´ detD 1?

s´t
C2D 1?

s´t

ˇ

ˇ

ˇ

ˇ

ď ps´ tq´2}D 1?
s´t
pC1 ´ C2qD 1?

s´t
}

(by Lemma A.2)

ď ps´ tq´2`α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

α

.

Let us now turn to the proof of (A.2). Write:

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´
1

2
xC´1

1 w1, w1y

˙

´ exp

ˆ

´
1

2
xC´1

2 w2, w2y

˙
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´
1

2
xC´1

1 w1, w1y

˙

´ exp

ˆ

´
1

2
xC´1

2 w1, w1y

˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

exp

ˆ

´
1

2
xC´1

2 w1, w1y

˙

´ exp

ˆ

´
1

2
xC´1

2 w2, w2y

˙ˇ

ˇ

ˇ

ˇ

“: I1 ` I2.

For the first term we have

I1 ď
ˇ

ˇxpC´1
1 ´ C´1

2 qw1, w1y
ˇ

ˇ

ż 1

0
exp

"

´
1

2

“

xC´1
1 w1, w1y ` λ

`

xC´1
2 w1, w1y ´ xC

´1
1 w1, w1y

˘‰

*

dλ.
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Exploiting the equality C´1
2 ´ C´1

1 “ C´1
2 pC1 ´ C2qC

´1
1 , Remark 2.6.10 and Lemma A.2 we get

ˇ

ˇxpC´1
1 ´ C´1

2 qw1, w1y
ˇ

ˇ

ď
›

›D?s´tpC´1
1 ´ C´1

2 qD?s´t
›

›

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2

ď
›

›D?s´tC´1
2 D?s´t

›

›

›

›

›

›

D 1?
s´t
pC2 ´ C1qD 1?

s´t

›

›

›

›

›

›D?s´tC´1
1 D?s´t

›

›

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2

ď ps´ tq
α
2

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2`α

.

and, for every λ P r0, 1s

exp
 

ρ
`

xpC´1
2 ´ C´1

1 qw1, w1y
˘(

ď exp

#

Cc0

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2
+

,

which eventually yields

I1 ď Cps´ tq
α
2 exp

#

´
1

2µ

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2
+

provided c0 “ c0pΘq is small enough. On the other hand we have

I2 ď
ˇ

ˇxC´1
2 pw1 ` w2q, pw1 ´ w2qy

ˇ

ˇˆ

ˆ

ż 1

0
exp

"

´
1

2

“

xC´1
2 w1, w1y ` λ

`

xC´1
2 w2, w2y ´ xC

´1
2 w1, w1y

˘‰

*

dλ.

By Lemma A.1 we get

ˇ

ˇ

ˇ

ˇ

C
´ 1

2
2 pw1 ´ w2q

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pw1 ´ w2q

ˇ

ˇ

ˇ

ˇ

ď ps´ tq
1
2

˜

1`

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

1`α
¸

;

ˇ

ˇ

ˇ

ˇ

C
´ 1

2
2 pw1 ` w2q

ˇ

ˇ

ˇ

ˇ

ď C

ˆˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
pw1 ´ w2q

ˇ

ˇ

ˇ

ˇ

˙

ď C.

Then it suffices to notice that for all λ P r0, 1s and η P p0, 1s:

exp

"

´
1

2
%
`

xC´1
2 ω2, ω2y ´ xC

´1
2 ω1, ω1y

˘

*

ď exp

#

C

2

«

η

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2

` pη´1 ` 1qc2
0T

ff+

,

which eventually gives, for η small enough:

I2 ď Cps´ tq
α
2 exp

˜

´
1

2µ

ˇ

ˇ

ˇ

ˇ

D 1?
s´t
w1

ˇ

ˇ

ˇ

ˇ

2
¸

.

The proof is complete.
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B Backward Itô calculus

In this section we collect some basic result about backward Itô integrals and the backward diffusion

SPDE (or Krylov equation according to [62]). This is standard material which resume the original

results in [33], [40], [41], [43], [68] (see also the monographs [62] and [44]).

Let W “ pWtqtPr0,T s be a d-dimensional Brownian motion on pΩ,F , P,FW q where FW denotes

the standard Brownian filtration satisfying the usual assumptions. We consider

FW,tT “ σpGt YN q, Gt “ σpWs ´Wt, t ď s ď T q, t P r0, T s,

the augmented σ-algebra of Brownian increments between t and T . Notice that pFW,tT q0ďtďT is a

decreasing family of σ-algebras. Then the process

~W t :“WT ´WT´t, t P r0, T s,

is a Brownian motion on pΩ,F , P, ~Fq where

~F t :“ FW,T´tT , t P r0, T s,

is the “backward” Brownian filtration. The backward stochastic Itô integral is defined as

ż s

t
ur ‹ dWr :“

ż T´t

T´s
uT´rd ~W r, 0 ď t ď s ď T, (B.1)

under the assumptions on u for which the RHS of (B.1) is defined in the usual Itô sense, that is

i) t ÞÑ uT´t is ~F-progressively measurable (thus ut P mFW,tT for any t P r0, T s);

ii) u P L2pr0, T sq a.s.

For practical purposes, if u is continuous, the backward integral is the limit

ż s

t
ur ‹ dWr :“ lim

|π|Ñ0`

n
ÿ

k“1

utk
`

Wtk ´Wtk´1

˘

(B.2)

in probability, where π “ tt “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ su denotes a partition of rt, ss.

A backward Itô process is a process of the form

Xt “ XT `

ż T

t
bsds`

ż T

t
σs ‹ dWs, t P r0, T s,

also written in differential form as

´dXt “ btdt` σt ‹ dWt. (B.3)
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Theorem B.1 (Backward Itô formula). Let v “ vpt, xq P C1,2pRě0 ˆ Rdq and let X be the

process in (B.3). Then

´dvpt,Xtq “

ˆ

pBtvqpt,Xtq `
1

2
pσtσ

˚
t qijpBxixjvqpt,Xtq ` pbtqipBxivqpt,Xtq

˙

dt`pσtqij pBxivq pt,Xtq‹dW
j
t .

(B.4)

A crucial tool in our analysis is the following

Theorem B.2 (Backward diffusion SPDE). Assume b, σ P bC3pRě0ˆRdq and denote by s ÞÑ Xt,x
s

the solution of the SDE

dXt,x
s “ bps,Xt,x

s qds` σps,X
t,x
s qdWs (B.5)

with initial condition Xt,x
t “ x. Then the process pt, xq ÞÑ Xt,x

T solves the backward SPDE

$

&

%

´dXt,x
T “ LXt,x

T dt` σijpt, xqBxiX
t,x
T ‹ dW j

t ,

XT,x
T “ x,

(B.6)

where

L “ 1

2
pσpt, xqσ˚pt, xqqijBxjxi ` bipt, xqBxi

is the characteristic operator of X. More explicitly, in (B.6) we have

LXt,x
T ”

1

2
pσpt, xqσ˚pt, xqqijBxjxiX

t,x
T ` bipt, xqBxiX

t,x
T .

Remark B.3. The regularity assumption of Theorem B.2 on the coefficients is by no means optimal:

[62], Theorem 5.1, proves that pt, xq ÞÑ Xt,x
T is a generalized (or classical, under non-degeneracy

conditions) solution of (B.6) if b, σ P bC1pRě0 ˆ Rdq.

Proof. For illustrative purposes we only consider the one-dimensional, autonomous case. A general

proof can be found in [62], Proposition 5.3. Here we follow the “direct” approach proposed in [68].

By standard results for stochastic flows (cf. [44]), x ÞÑ Xt,x
T is sufficiently regular to support the

derivatives in the classical sense. We use the Taylor expansion for C2-functions:

fpδq ´ fp0q “ δf 1p0q `
δ2

2
f2pλδq, λ P r0, 1s. (B.7)

We have

Xt,x
T ´ x “ Xt,x

T ´XT,x
T

“

n
ÿ

k“1

´

X
tk´1,x
T ´Xtk,x

T

¯

“
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(by the flow property)

“

n
ÿ

k“1

˜

X
tk,X

tk´1,x

tk
T ´Xtk,x

T

¸

“

(by (B.7) with fpδq “ Xtk,x`δ
T and δ “ ∆kX :“ X

tk´1,x
tk

´ x)

“

n
ÿ

k“1

ˆ

∆kXBxX
tk,x
T `

p∆kXq
2

2
BxxX

tk,x`λk∆kX
T

˙

(B.8)

for some λk “ λkpωq P r0, 1s. Now, we have

∆kX “ X
tk´1,x
tk

´ x “

ż tk

tk´1

bpX
tk´1,x
s qds`

ż tk

tk´1

σpX
tk´1,x
s qdWs.

Thus, setting

∆kt “ tk ´ tk´1, ∆kW “Wtk ´Wtk´1
, r∆kX “ bpxq∆kt` σpxq∆kW,

by standard estimates for solutions of SDEs, we have

∆kX ´ r∆kX “

ż tk

tk´1

´

bpX
tk´1,x
s q ´ bpxq

¯

ds`

ż tk

tk´1

´

σpX
tk´1,x
s q ´ σpxq

¯

dWs “ Op∆ktq,

BxxX
tk,x`λk∆kX
T ´ BxxX

tk,x
T “ Op∆ktq,

in the square mean sense or, more precisely,

E

„

|∆kX ´ r∆kX|
2 `

ˇ

ˇ

ˇ
BxxX

tk,x`λk∆kX
T ´ BxxX

tk,x
T

ˇ

ˇ

ˇ

2


ď cp1` |x|2qp∆ktq
2

with c depending only on T and the Lipschitz constants of b, σ. From (B.8) we get

Xt,x
T ´ x “

n
ÿ

k“1

˜

r∆kXBxX
tk,x
T `

pr∆kXq
2

2
BxxX

tk,x
T

¸

`Op∆ktq.

Next we recall (B.2) and notice that BxX
tk,x
T , BxxX

tk,x
T P mFW,tkT . Thus, passing to the limit, we

have

n
ÿ

k“1

r∆kXBxX
tk,x
T ÝÑ

ż T

t
bpt, xqBxX

s,x
T ds`

ż T

t
σpxqBxX

s,x
T ‹ dWs,

n
ÿ

k“1

pr∆kXq
2BxxX

tk,x
T ÝÑ

ż T

t
σ2pxqBxxX

s,x
T ds,

in the square mean sense and this concludes the proof.

We have a useful corollary of Theorem B.2.
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Corollary B.4 (Invariance of the backward diffusion SPDE). For v P bC2pRdq and X as in

(B.5), let V t,x
T “ vpXt,x

T q. Then V t,x
T satisfies the same SPDE (B.6), that is

´dV t,x
T “ LV t,x

T dt` σijpt, xqBxiV
t,x
T ‹ dW j

t

with terminal condition V T,x
T “ gpxq.

Proof. To fix ideas, we first consider the one-dimensional case: by the backward SPDE (B.6) and

the backward Itô formula (B.4), we have

´dvpXt,x
T q “

ˆ

σ2pt, xq

2
v2pXt,x

T qpBxX
t,x
T q

2 `
σ2pt, xq

2
v1pXt,x

T qBxxX
t,x
T ` bpt, xqv1pXt,x

T qBxX
t,x
T

˙

dt

` σpt, xqv1pXt,x
T qBxX

t,x
T ‹ dWt “

(using the identities BxV
t,x
T “ v1pXt,x

T qBxX
t,x
T and BxxV

t,x
T “ v2pXt,x

T qpBxX
t,x
T q

2 ` v1pXt,x
T qBxxX

t,x
T )

“

ˆ

σ2pt, xq

2
BxxV

t,x
T ` bpt, xqBxV

t,x
T

˙

dt` σpt, xqBxV
t,x
T ‹ dWt

and this proves the thesis. In general, we have

BxhV
t,x
T “ p∇vqpXt,x

T qBxhX
t,x
T ,

BxhxkV
t,x
T “ pBijvqpX

t,x
T qpBxhX

t,x
T qipBxkX

t,x
T qj ` p∇vqpX

t,x
T qpBxhxkX

t,x
T q,

(B.9)

and by (B.6) and (B.4)

´dvpXt,x
T q “

ˆ

1

2

´

p∇Xt,x
T qσpt, xqpp∇X

t,x
T qσpt, xqq

˚
¯

ij
pBijvqpX

t,x
T q

˙

dt

`

ˆ

1

2
pσpt, xqσ˚pt, xqqijBxjxiX

t,x
T ` bpt, xq∇Xt,x

T

˙

p∇vqpXt,x
T qdt

` p∇vqpXt,x
T qp∇X

t,x
T qσpt, xq ‹ dWt “

(by (B.9))

“

ˆ

1

2
pσpt, xqσ˚pxqqijBxjxiV

t,x
T ` bpt, xq∇V t,x

T

˙

dt`∇V t,x
T σpt, xq ‹ dWt.

C Proof of the equicontinuity (C1), (C2) and (C3) of Chapter 4

In this section, we drop the subscripts and superscripts in ε for notational convenience. However, it

must be recalled that we aim at proving some equicontinuity properties for the densities associated

with the SDE (4.2.2) with mollified coefficients and their derivatives.

In this section we devote to proving the following Hölder continuity of the derivatives.
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Lemma C.1. Suppose that Assumptions 4.1.1 and 4.1.2 hold. Let T ą 0, α1 P p0, 1q, α2 P p0, αq

and α3 P p0, α^ βq.

(C1) There exist constants C, µ ą 0 depending only on Θ, α1, α2 such that for all 0 ď t ă s ď T

and x, x1, y, y1 P Rd,

|∇xppt, x; s, yq ´∇xppt, x1; s, yq| ď C
|x´ x1|α1

ps´ tqp1`α1q{2

´

Γµpt, x; s, yq ` Γµpt, x
1; s, yq

¯

|∇xppt, x; s, yq ´∇xppt, x; s, y1q| ď C
|y ´ y1|α2

ps´ tqp1`α2q{2

´

Γµpt, x; s, yq ` Γµpt, x; s, y1q
¯

.

(C2) If β P p0, 1s, there exist constants C, µ ą 0 depending only on Θ such that for all 0 ď t ă s ď T

and x, x1, y, y1 P Rd,

|∇2
xppt, x; s, yq ´∇2

xppt, x
1; s, yq| ď C

˜

|x´ x1|

ps´ tq
3
2

`
|x´ x1|α ` |x´ x1|β

s´ t

¸

ˆ (C.1)

ˆ

´

Γµpt, x; s, yq ` Γµpt, x
1; s, yq

¯

,

|∇2
xppt, x; s, yq ´∇2

xppt, x; s, y1q| ď C

˜

|y ´ y1|α2

ps´ tq1`
α2
2

`
|y ´ y1|α ` |y ´ y1|β

s´ t

¸

ˆ

ˆ

´

Γµpt, x; s, yq ` Γµpt, x
1; s, yq

¯

.

(C3) If σ P bC1,α
0,T for some α P p0, 1q and β P p0, 1q, then there exist constants C, µ ą 0 depending

only on Θ, α1, α3 such that for all 0 ď t ă s ď T and x, x1, y, y1 P Rd,

|∇yppt, x; s, yq ´∇yppt, x; s, y1q| ď C
|y ´ y1|α3

ps´ tqp1`α3q{2

´

Γµpt, x; s, yq ` Γµpt, x; s, y1q
¯

,

|∇yppt, x; s, yq ´∇yppt, x1; s, yq| ď C
|x´ x1|α1

ps´ tqp1`α1q{2

´

Γµpt, x; s, yq ` Γµpt, x; s, y1q
¯

.

Proof. We only prove (C2) and focus on the sensitivity w.r.t the variable x. The sensitivity w.r.t.

the variable y could be established similarly. Also, the inequalities in conditions (C1) and (C3)

could be shown more directly.

First of all, if |x´ x1|2 ą pt´ sq{4, then by (4.3.15), we clearly have

|∇2
xppt, x; s, yq ´∇2

xppt, x
1; s, yq| ď Cps´ tq´1

´

Γµpt, x; s, yq ` Γµpt, x
1; s, yq

¯

À r.h.s. of (C.1).

Next we restrict to the so-called diagonal case

|x´ x1|2 ď pt´ sq{4.
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For any fixed freezing point pt0, x0q and r P pt, sq, by (4.2.11), one sees that

ppt, x; s, yq “ rP t0,x0
t,r ppr, ¨; s, yqpxq `

ż r

t

ż

Rd
rpt0,x0pt, x;u, zqpLu,z ´ rLt0,x0

u,z qppu, z; s, yqdzdu,

where, with the notations of (4.2.6),

rP t0,x0
t,r fpxq “

ż

Rd
rpt0,x0pt, x; r, zqfpzqdz.

Let us now differentiate w.r.t. r. We obtain for all pt0, x0q P r0, T s ˆ Rd:

0 “ Brr rP
t0,x0
t,r ppr, ¨; s, yqpxqs `

ż

Rd
rpt0,x0pt, x; r, zqpLu,z ´ rLt0,x0

u,z qppr, z; s, yqdz. (C.2)

Fix t̄ P pt, sq. Now, integrating (C.2) between t̄ and s and taking x0 “ x10, we get

0 “ rpt0,x
1
0pt, x; s, yq ´ rP

t0,x10
t,t̄

ppt̄, ¨; s, yqpxq `

ż s

t̄
dr

ż

Rd
rpt0,x

1
0pt, x; r, zqpLu,z ´ rLt0,x

1
0

u,z qppr, z; s, yqdz.

Moreover, integrating (C.2) between t and t̄, we obtain

0 “ rP t0,x0

t,t̄
ppt̄, ¨; s, yqpxq ´ ppt, x; s, yq `

ż t̄

t
dr

ż

Rd
rpt0,x0pt, x; r, zqpLu,z ´ rLt0,x0

u,z qppr, z; s, yqdz;

Summing up the two equalities we get the following new representation for ppt, x, s, yq:

ppt, x; s, yq “rpt0,x
1
0pt, x; s, yq `

´

rP t0,x0

t,t̄
´ rP

t0,x10
t,t̄

¯

ppt̄, ¨; s, yqpxq

`

ż s

t̄
dr

ż

Rd
rpt0,x

1
0pt, x; r, zqpLu,z ´ rLt0,x

1
0

u,z qppr, z; s, yqdz

`

ż t̄

t
dr

ż

Rd
rpt0,x0pt, x; r, zqpLu,z ´ rLt0,x0

u,z qppr, z; s, yqdz,

which, together with (4.2.11) yields

ppt, x; s, yq ´ ppt, x1; s, yq “rpt0,x
1
0pt, x; s, yq ´ rpt0,x

1
0pt, x1; s, yq `

´

rP t0,x0

t,t̄
´ rP

t0,x10
t,t̄

¯

ppt̄, ¨; s, yqpxq

`∆
t0,x10,x

1
0

diag pt, s, x, x1, yq `∆
t0,x0,x10
off´diagpt, s, x, x

1, yq, (C.3)

where

∆
t0,x10,x

1
0

diag pt, s, x, x1, yq “

ż s

t̄
dr

ż

Rd

”

rpt0,x
1
0pt, x; r, zq ´ rpt0,x

1
0pt, x1; r, zq

ı

pLr,z ´ rLt0,x
1
0

r,z qppr, z; s, yqdz

and

∆
t0,x0,x10
off´diagpt, s, x, x

1, yq “

ż t̄

t
dt

ż

Rd

”

rpt0,x0pt, x; r, zqpLr,z ´ rLt0,x0
r,z qppr, z; t, yq`

´ rpt0,x
1
0pt, x1; r, zqpLr,z ´ rLt0,x

1
0

r,z qppr, z; s, yq
ı

dz.
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Observe that for any freezing couple pt0, x0q and h P Rd,

∇2
xrp
t0,x0pt, x` h; s, yq “ ∇2

yrp
t0,x0pt, x; s, y ´ hq.

After differentiating twice in x for both sides of (C.3) and taking t0 “ t and x0 “ x, x10 “ x1, we

obtain

∇2
xppt, x; s, yq ´∇2

xppt, x
1; s, yq “

4
ÿ

i“1

Iipt, s, x, x
1, yq,

where, with the notation Z0ps, x; t, yq “ rpt,xpt, x; s, yq,

I1pt, s, x, x
1, yq :“ ∇2

yZ0pt, x
1; s, y ` x1 ´ xq ´∇2

yZ0pt, x
1; s, yq,

I2pt, s, x, x
1, yq :“

ż

Rd
∇2
zprp

t,xpt, x; t̄, zq ´ rpt,x
1

pt, x; t̄, zqqppt̄, z; s, yqdz,

I3pt, s, x, x
1, yq :“

ż s

t̄
dr

ż

Rd

”

∇2
zZ0pt, x

1, r, z ` x1 ´ xq ´∇2
zZ0pt, x

1; r, zq
ı

pLr,z ´ rLt,x1r,z qppr, z; s, yqdz,

I4pt, s, x, x
1, yq :“

ż t̄

t
dr

ż

Rd

”

∇2
zZ0pt, x; r, zqpLr,z ´ rLt,xr,zqppr, z; s, yq`

´∇2
zZ0pt, x

1; r, zqpLr,z ´ rLt,x1r,z qppr, z; s, yq
ı

dz.

Note that by Lemma 4.2.3, for j P N and h P Rd with |h|2 ď ps´ tq{4,

ˇ

ˇ

ˇ
∇jyZ0pt, x; s, y ` hq ´∇jyZ0pt, x; s, yq

ˇ

ˇ

ˇ
ď |h| sup

%Pr0,1s

ˇ

ˇ∇j`1
y Z0pt, x; s, y ` %hq

ˇ

ˇ

ď C|h|ps´ tq´pj`1q{2 sup
%Pr0,1s

ΓheatpµIs´t, γt,spxq ´ py ` %hqq

ď C 1|h|ps´ tq´pj`1q{2ΓheatpµIs´t, γp1qt,s pxq ´ yq, (C.4)

using Lemma 4.1.3 for the last step. On the other hand, we also have

ˇ

ˇ

ˇ
∇jyZ0pt, x; s, y ` hq

ˇ

ˇ

ˇ
ď Cps´ tq´j{2ΓheatpµIs´t, γp1qt,s pxq ´ yq.

Thus, by interpolation, we get for any θ P p0, 1q,

ˇ

ˇ

ˇ
∇jyZ0pt, x; s, y ` hq ´∇jyZ0pt, x; s, yq

ˇ

ˇ

ˇ
ď C|h|θpt´ sq´pj`θq{2ΓheatpµIs´t, γp1qt,s pxq ´ yq.

Hence,

|I1pt, s, x, x
1, yq| ď C|x´ x1|θps´ tq´1´ θ

2 Γµpt, x; s, yq.
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To treat the remaining terms, we take t̄ “ t` |x´ x1|2. We have the following claim:

ˇ

ˇ

ˇ
rpt,xpt, x; t̄, yq ´ rpt,x

1

pt, x; t̄, yq
ˇ

ˇ

ˇ
ď C

`

|x´ x1|α ` |x´ x1|β
˘

Γµpt, x; t̄, yq. (C.5)

Indeed, by Lemma 4.1.3, there is a constant C “ CpΘq such that

|γt,rpxq ´ γt,rpx
1q| ď C

`

|x´ x1| ` |t´ r|
˘

, x, x1 P Rd, r P rt, t̄s.

Recalling ϑt0,x0

t,t̄
“

şt̄
t bpr, γt0,rpx0qqdr from the notations of Section 4.2.1, we have:

|ϑt,x
t,t̄
´ ϑt,x

1

t,t̄
| ď

ż t̄

t
|bpr, γt,rpxqq ´ bpr, γt,rpx

1qq|dr

ď λ2

ż t̄

t
|γt,rpxq ´ γt,rpx

1q|βdr ď C|x´ x1|2`β,

where the last step is due to |r ´ t| ď |x ´ x1|2 ď |s ´ t|{4. Then desired claim (C.5) follows by

(4.2.7), reasoning as in the proof of Lemma 2.6.19.

Now, integrating by parts, we get from (4.3.10), (C.5) and Lemma 4.2.5

|I2pt, s, x, x
1, yq| ď

ż

Rd
|rpt,xpt, x; t̄, zq ´ rpt,x

1

pt, x; t̄, zq| ¨ |∇2
zppt̄, z; s, yq|dz,

ď C
`

|x´ x1|α ` |x´ x1|β
˘

pt̄´ tq´1

ż

Rd
Γµpt, x; t̄, zqΓµ1pt̄, z; s, yqdz

ď C 1
`

|x´ x1|α ` |x´ x1|β
˘

ps´ tq´1Γµ2pt, x; s, yq.

For I3, by (C.4) and using arguments completely similar to those of Section 4.3.2, we have

|I3pt, s, x, x
1, yq| ď C|x´ x1|αps´ tq´1Γµ2pt, x; s, yq.

Finally, for I4, from (4.3.2), we have

|I4pt, s, x, x
1, yq| ď C

ż t̄

t

ż

Rd

pΓµ1pt, x; r, zq ` Γµ1pt, x
1; r, zqqΓµ2pr, z; s, yq

pr ´ tq1´
α
2 ps´ rq

dzdr

ď C 1
`

Γµ3pt, x; s, yq ` Γµ3pt, x
1; s, yq

˘

ż t̄

t

dr

pr ´ tq1´
α
2 ps´ rq

ď C2
|x´ x1|α

s´ t

`

Γµ3pt, x; s, yq ` Γµ3pt, x
1; s, yq

˘

,

where we have used that |x´x1|2 ď ps´ tq{4 and t̄ “ t`|x´x1|. Combining the above calculations,

we obtain (C.1).
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Probab. 28, 1 (2000), 74–103.



BIBLIOGRAPHY 135

[51] Nualart, D. The Malliavin Calculus and Related Topics. Springer, 2006.

[52] Pagès, G., and Panloup, F. Total Variation and Wasserstein bounds for the ergodic

Euler-Naruyama scheme for diffusions. Preprint (2020).

[53] Pagliarani, S., Pascucci, A., and Pignotti, M. Intrinsic Taylor formula for Kolmogorov-

type homogeneous groups. J. Math. Anal. Appl. 435, 2 (2016), 1054–1087.

[54] Pardoux, E. Stochastic partial differential equations and filtering of diffusion processes.

Stochastics 3, 2 (1979), 127–167.

[55] Pascucci, A., and Pesce, A. On stochastic Langevin and Fokker-Planck equations: the

two-dimensional case. arXiv:1910.05301 (2019).

[56] Pascucci, A., and Pesce, A. Backward and forward filtering under the weak Hörmander
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