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Introduction

This thesis is made up of two, quite distinct parts. The first part fits in the stream of literature
on the theory of SPDEs in Holder spaces; the second one on the other hand concerns the study of
density estimates for diffusion processes with unbounded drift. Although the two themes may seem
far from each other, we shall see that a large class of SPDEs is still heavily connected with the theory
of diffusions, as they describe the evolution of the conditioned distributions of some underlying
partially observable, finite dimensional processes. On the other hand, some key techniques and
strategies used throughout the study are also shared between the two parts; the most prominent
example is the parametrix method, which we could present both in its analytic and in its more

probabilistic interpretations in a single work.

Part I: The parametrix method for evolution SPDEs

Interest in Stochastic Partial Differential Equations (SPDESs) of evolution type began to arise in the
early seventies, driven by the demand from modern applications and advances in natural sciences.
Indeed this kind of equations, which naturally generalize both ordinary stochastic equations (SDEs)
and deterministic evolution PDEs, are well suited to model any kind of stochastic influence in nature
or man-made complex systems. The most notable examples are turbolent flows in fluid dynamics,
diffusion and waves propagation in random media, as well as population growth, among many
others (see, for instance [4], [10], [30], [12], [21]).

Another relevant source of SPDEs is provided by the study of stochastic flows defined by
ordinary SDEs. The following result is due to Krylov ([33], [40]).

Example 0.0.1 (Backward diffusion equation). Consider the diffusion defined by the SDE
dXb® = p(XE%)ds + o(XE®)dB,, s>t, X]" =z eR,

. . . . t.x - .
where By is a Brownian motion. Then, as a function of t and x, the process Xs is a solution to



the backward SPDE

—dXP" = (o*(XI")02 X" + b(XL")0, XE7) dt + b(XL")0, X" «dBy,  t < s,
X =seR,

where xdBy denotes the backward Ito integral.

As we shall see, the backward diffusion equation also comes in play in the study of conditional
distributions of finite dimensional processes. Here stochastic (ultra)parabolic type equations appear

naturally in the form of filtering equations.

Example 0.0.2 (Filtering equation). The filtering problem, in his most simple formulation, con-
sists in estimating a certain ‘signal’, by observing it when it is mired with a noise. Suppose that

the signal X is modelled by a diffusion
dXs = b(Xs)ds + 0(Xs)dBs, s>0, Xg=x€R,
and we are given an observation with dynamics
dYs = h(Xs)ds + dWs, (0.0.1)

where Wy is a different Brownian motion than Bs: for instance Ys may describe the position of a
moving object on the basis of a GPS observation, Wy the measurement error, and the signal X,
the true coordinates of the object. If Bs and Wy are independent, then the function of the paths
{Ys, 0 < s < T} which best approzimates, in the least squared sense, a quantity f(Xr), is given by

ELf(Xr) | o(Ye, 0 <5 <T)] = er<o,x,T, ) F(©)de.

where ' is the normalized stochastic fundamental solution of the SPDE

i0(6) = (06 (P(Op(©) — 2 (BHOPE) ) ds + MO 530,

which generalizes the classic Fokker-Plank equation of Xs.

Filtering models may encompass much more general situations as well. For instance, while
in the variance of the noise Wy is equal to s, in applications it is much more likely that
the scattering of the observed process is dependent on its position; the noises could be possibly
correlated, and the dynamics of the signal could be affected by the observations Y; as well. As a
matter of fact, filtering models provide a large and relevant class of evolution SPDEs that can be

written in the form

dy
dus(§) = Lug(€)ds + > GFug(dWE, s>0, e RY, (0.0.2)
k=1



where £ is a (possibly degenerate) second order operator, (G¥)x_1..4, are first order operators
and Wy = (W},--. W) is a multi-dimensional Brownian motion on some probability space;
importantly, since the coefficients of these equations may depend on the observation process Y,
they are generally assumed to be random and only measurable in the time variable. Equations
in Holder classes will be the main subject of this study.

The Cauchy problem for evolution SPDEs has been studied by several authors. Under coercivity
conditions analogous to uniform ellipticity for PDEs, there exists a complete theory in Sobolev
spaces (see e.g. [62] and the references therein) and in the spaces of Bessel potentials ([34], [35]).
Classical solutions in Holder classes were first considered in [61], [64] and more recent results were
proved in [I1] and [50], but in these cases the authors only considered equations with non-random
coefficients and with no derivatives of the unknown function in the stochastic term. As we will
explain in detail in Section these restrictions are ultimately needed to recover a Duhamel
principle, which does not hold in the stochastic framework in general. On the other hand, because
of what we said above, it is worth to consider equations with random coefficients; moreover the
filtering equation can include derivatives of the unknown function in the operators G even in very
simple models.

In the last decades, the use of analytical or PDE techniques in the study of SPDEs has become
widespread. For instance, the results in [11], [50], [19], [73] are based on classical methods of deter-
ministic PDEs, such as the Duhamel principle and a priori Schauder estimates; the LP estimates
in [I5] are proved by adapting the classical Moser’s iterative argument; [66] provides short-time
asymptotics of random heat kernels. A further remarkable example is given by the recent series of
papers by Krylov [36] 37, [38] where the Hérmander’s theorem for SPDEs is proved; see also the
very recent results in [60] for backward SPDEs.

In this thesis we aim at extending another classical tool that, to the best of our knowledge,
has not yet been considered in the study of SPDEs, the well-known parametriz method for the
construction of the fundamental solution of PDEs with Holder continuous coefficients.

In Chapter 1 we begin investigating the possibility to use a parametrix based method to prove

existence and estimates of the fundamental solution to a parabolic SPDE. More precisely we consider

Luy(€) = éas@)a&us(&) + b5(€)0eus () + cs(§)us(€), (0.0.3)
Grus(€) = 0¥ (€)deus(€),
under the coercivity assumption
as— o508 2 A>0, s>0.

The lack of the Duhamel principle and the roughness of the coefficients we already mentioned



constitute the two main obstacles that one faces when trying to apply the parametrix method to
SPDESs. Specifically the Duhamel principle is the core of the usual parametrix iterative procedure.
We propose to use the It6-Wentzell formula to make a random change of variables and transform
the SPDE to a PDE with random coefficients; the latter admits a Duhamel principle and we use
it to extend the parametrix method to parabolic PDEs with measurable coefficients in the time
variable. Importantly, this approach allows the operators in to sport random (stochastic
Hélder) coefficients, which compensate the extra-regularity required in the coefficients of G to
allow the change of variables.

In Chapter 2 we examine a stochastic version of the degenerate Fokker-Plank equation
Bus(f,u) :as(f)y)awjus(éaV)a B:as+Va§7

which is characterized by a linear (unbounded) drift and it is a standard example of equation
satisfying the weak Hdérmander condition. As far as we are aware this is a novely in the context
of SPDEs. Here we anticipate that, compared to the uniformly parabolic case, as well as the
deterministic degenerate case, two main new difficulties arise in the analysis: the Ito-Wentzell
transform drastically affects the drift B which will no longer have polynomial coefficients after the
change of variables; moreover, again the roughness in time prevents the use of the so called intrinsic
Holder spaces, which would be more natural in the study of the singular kernels that come into
play in the parametrix procedure (see [58], [16]).

Finally, in Chapter 3 we will show how the results on the Fokker-Plank SPDE allow to directly
derive the filtering equations for a system of SDEs of Langevin type, both in their forward and
backward formulations, without resorting to the general results from filtering theory. Here we follow
the approaches recently proposed by Krylov and Zatezalo [42] and Veretennikov [70]. Again, as far
as we are aware, this kind of problem was never considered in the literature, possibly because the
known results for hypoelliptic SPDEs don’t apply in this case.

Many of the results presented in Chapters one, two and three are taken from our works [57],
[55], [56] with A. Pascucci.

Part II: Brownian SDEs with unbounded measurable drift

Consider the following diffusion
dXs = b(s, X,)ds + o(s, Xs)dW,, s3>0, Xg=xecR% (0.0.4)

When both coefficients b, o are bounded and Holder continuous and o is separated from zero (non-

degeneracy condition), it is well known that there exists a unique weak solution to (0.0.5) which



admits a density (see for instance [67], [25], [9]), that is for all A € B(R?) (Borel o-field of R?),
P(Xse Al Xg=1x) = J (0, z; s, &)dE.
A

Furthermore, it can be proved by the parametrix method that the transition density I'(0,z, s, &)

enjoys the following two sided Gaussian estimates on a compact set in time:
C_lfuq(s,x — &) <T'(0,2;5,&) <CT,(s,x —&) (0.0.5)
as well as the following gradient estimate
\ng(O,x;s,£)| < C’s_%l“#(s,x -&), j=12,
where
Iyt x) = s exp (— plz/t), pe(0,1],¢>0, (0.0.6)

and the constants p € (0,1], C' = 1 only depend on the regularity of the coefficients, the non-
degeneracy constants of the diffusion coefficients, the dimension d, and for the constant C, on the
maximal time considered (see [24] and [I], [2]). Such methods have been successfully applied to
derive upper bounds up to the second order derivative for more general cases, such as operators
satisfying a strong Hormander condition (see [5]), Kolmogorov operators with linear drift (see [58]
and [16]), as well as the SPDEs in Chapters one and two. A different approach consists in viewing
a logarithmic transformation of I' as the value function of a certain stochastic control problem, as
proposed by Fleming and Sheu in [22]: this idea allows then to get the desired density estimates
by choosing appropriate controls and eventually an upper bound for the logarithmic gradient (see
[63).

When the drift is unbounded and non-linear fewer results are available. In fact, in this case it

is no longer expected that the two sided estimates as given in hold.

Example 0.0.3. The following Ornstein-Uhlenbeck (OU)-process
dXs = Xgds +dW,, Xg==x,
has, with the notations of , the non-spatial homeogenous density
Lou(0,7;5,€) = (m(e® — 1)) 2T ey (t, %2 — &).

In [T4], Delarue and Menozzi derive two sided density bounds for a class of degenerate operators

with unbounded and Lipschitz drift, satisfying a weak Hormander condition, by combining the two



previous approaches: parametrix and logarithmic transform. Indeed, when the drift is unbounded
it becomes difficult to get good controls for the iterated kernels in the parametrix expansion. In
our non-degenerate parabolic setting those bounds still hold provided the drift is globally Lipschitz

continuous in space. Then, they read as:
C_lr,u_l (S, 75(1') - 5) < F(Oa x;s, 5) < CF/L(Sa 78(1:) - 5)7 (0'0'7)
where v stands for the deterministic flow associated with the drift, that is

’YS(x) = b<37'>’s($)), $s=0,v(r)=2x

and C, u > 0 both depend on the maximal time considered. This means that the diffusion starting

from z, oscillates around vs(x) at time s with fluctuations of order s72. Notice that if b is bounded,

then (0.0.8)) reduces to since
_1 FR 1 1
s 2| =& = [blloos? < 572 |ys(w) =&l < 872w — &) + b oos.

Hence, taking or not into consideration the flow does not give much additional information. The
above control also clearly emphasizes why C' might depend on some maximal time interval consid-
ered. In the case where b is bounded but not necessarily smooth, the above bounds remain valid
for any regularizing flow.

Diffusion with dynamics and unbounded drifts appear in many applicative fields. We
can mention for instance the work [26] which concerned issues related to statistics of diffusions and
also [52] for the numerical approximation of ergodic diffusions.

In these frameworks, estimates on the density and its derivatives are naturally required. Some
gradient estimates of the density were established in [26]. The approach developed therein relies
on the Malliavin calculus and thus required some extra regularity on the drift. Also, since the
deterministic flow was not taken into consideration, an additional penalizing exponential term in
the right hand side of the bounds appeared. Similar features appeared in the work [I3] which
established the existence of fundamental solutions for a strictly sublinear Hélder continuous drift.

In Chapter 2 we obtain some estimates for the derivatives in the non-degenerate direction for a
Kolmogorov equation with Lipschitz drift that appears after the change of variables in the SPDE:
these controls reflect both the singularities associated with the differentiation, as in equation
above, and also reflect the key importance of the flow for unbounded drifts as it appears in the two-
sided heat kernel estimate (0.0.8). The analysis here builds on the work of Delarue and Menozzi:
specifically, we remark that the density lower bound allows to recover, a posteriori, the good controls

on the iterated kernels which allow to pursuit the usual parametrix procedure.



In Chapter 4 we concentrate only on the non-degenerate case but we develop a new approach
to the derivation of these estimates, based on a circular argument: the point of this work is to be
completely self-contained, to provide estimates both in the forward and in the backward variables
under minimal regularity assumptions, and to be sufficiently robust to be generalized, as soon as
some suitable two sided bounds hold. We can actually address various frameworks. We manage
to obtain two-sided heat kernel bounds for a Holder continuous in space diffusion coefficient ¢ in
and a drift b which is uniformly bounded in time at the origin and has linear growth in
space. Importantly, when the drift b is itself not smooth, the heat kernel bounds can be stated
in the form for any flow associated with a mollification of b. In particular, if the drift is
continuous in space they actually hold for any Peano flow. These conditions are also sufficient to
obtain gradient bounds with respect to the backward variable x. To derive controls for the second
order derivatives with respect to z, an additional spatial Hélder continuity assumption naturally
appears for the drift. Eventually, imposing some additional spatial smoothness on the diffusion
coefficient, we also succeed in establishing a gradient bound with respect to the forward variable y.

To the best of our knowledge, ours are among the first results for derivatives of heat kernels
with unbounded drifts.

The results presented in Chapter 4 are part of our work ([49]) (with S. Menozzi and X. Zhang).

Some general notations

In the following analysis, the main settings will substantially change from chapter to chapter,
making it difficult to keep a consistent notation throughout. Nonetheless we try to follow as much
as possible some general guidelines.

The time variables are denoted with ¢ or s, where ¢ usually stands for the initial time and s stands
for the final time when it matters; the spatial variables in RY are denoted with z = (xy, - - - TN)
and £ = (&1, - &n), with x usually standing for the initial point and £ for the final point; similarly

RN*1 are denoted with z = (x,v) and ¢ = (¢,v), and share the analogous

the spatial points in
convention. Moreover, as a general rule, when a quantity depends on both an initial state and a
final state, the variables which describe the initial state are always appended first, regardless of
whether they may act as the pole or not: in particular this is the case when denoting deterministic
or stochastic flows, conditioned or unconditioned densities, deterministic or stochastic fundamental
solutions.

We use the notation V, V2 to denote respectively the gradient and Hessian matrix with respect
to the spatial variable; by extension, we denote by V7 the j** order derivative. When required by

the context, we may use the notation ¢; for the i*® partial derivative and 0ij = 0;0;, as well as the
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multi-index notation 0% = 8’?1 ---8ﬁN, with 3 € N.

Throughout the work, the summation convention over repeated indices is enforced regardless of
whether they stand at the same level or at different ones; the letter C' usually stands for a positive
constant, only dependent on the quantities in the assumptions; in the context of the proofs, its value
may update from line to line. Other possible dependences are explicitly indicated when needed.

Next, we introduce the general functional setting to be used throughout the study. Let k € N,

€ (0,1) and 0 < t < T. Denote by mB;r (resp. bB:r) the space of all real-valued (resp.

bounded) Borel measurable functions f = f(s,z) on [t,T] x R? and

° CgT (resp. CgT) is the space of functions f € mB;r (resp. f € bB; ) that are continuous in
x;

v (resp. bC{7) is the space of functions f € mByr (resp. f € bBy7) that are a-Holder

continuous in z uniformly with respect to s € [¢,T], that is

sup |f(s,2) — f(s,8)] < o
selt.7) |z —&[@

We also denote by C’? % the space of functions f € mB; r that are Lipschitz continuous in x

uniformly with respect to s € [¢,T;

. CﬁT (resp. bC’t’fT) is the space of functions f € mB; 1 (resp. f € bB;r) that are k-times

differentiable with respect to x with derivatives in CgT (resp. bC’gT);

° Cf}o‘ (resp. bC’f}o‘) is the space of functions f € mB;r that are k-times differentiable in

with respect to z with derivatives in Cy' (resp. bCy'7)

As a general rule, a random field u = u(s,&,w) on [0,00) x R? x Q is denoted by us(£) and
we shall systematically omit the explicit dependence on w € §2; we keep the notation u(s,§) for

deterministic functions on [0,00) x R?.
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Chapter 1

The parametrix method for parabolic
SPDEs

1.1 Introduction

In this chapter, we introduce the fundamental tools and ideas that constitute the starting point of
our analysis: here we set the stochastic Holder spaces which will be used throughout the dissertation
and the notion of stochastic fundamental solution; we recall the It6-Wentzell formula and establish
the time-dependent parametrix for a parabolic SPDE.

Let (2, F, P) be a complete probability space with an increasing filtration (F%),-, of complete
with respect to (F, P) o-fields F; € F. Let dy € N and let W¥, k = 1,--- ,d;, be one-dimensional
independent Wiener processes with respect to (}-t)go- We consider the parabolic SPDE

dug(€) = (Lous(€) + fo(€)) ds + (GEus(&) + gb(©)) aWE,  ¢eR (1.1.1)

where L; is the second-order operator

Lous(6) = 50 (©)017us(6) + (ODsus(E) + es(€)us(€)

and G¥ is the first-order operator

Ghus(€) = ¥ (€)dus(€).

The coefficients as, bs, af , ¢s and fs are intended to be random and not smooth.

In the remaining part of this section we introduce the functional setting, set the assumptions and
state the main result on the SPDE ([1.1.1]), Theorem for illustrative purposes, the particular

13



14 CHAPTER 1. THE PARAMETRIX METHOD FOR PARABOLIC SPDES

case of the stochastic heat equation is discussed in Section [[.2] In Section [I.3] we recall the Ito-
Wentzell formula and provide some estimates for the related flow of diffeomorphisms. In Section
[1.4] we present the parametrix method. Since the complete proofs are rather technical and to a
large extent similar to the classical case, we only provide the details on those aspects that require
significant modifications: in particular, in Section [1.4.3| we present a proof of the Gaussian lower
bound for the fundamental solution which requires some non trivial adaptation of an original

argument by Aronson (cf. [20]).

1.1.1 Functional setting and main results

Let ke NU {0}, @ € [0,1) and Py 1 be the predictable o-algebra on [¢,T] x Q. We denote by Cf}o‘
the family of functions f = fy(z,w) on [t,T] x R% x Q such that:

i) (s,z) — fo(z,w) € ij}o‘ P-as.;
ii) (s,w) — fs(x,w) is P;r-measurable for any = € R%.

Moreover, bCf}ﬁa is the space of functions [ € Cff}a such that

> sup |°fi(z)| <o Pas.

e[t,T]
‘B'gk SweRd

We say that f = f(z) is non-rapidly increasing uniformly on (t,T] x R? if, for any § > 0,
e~dlel” |fs(z)| is a bounded function on (¢,7] x R?, P-a.s.; in case f does not depend on s, we

simply say that f is non-rapidly increasing on R<.

Definition 1.1.1. A stochastic fundamental solution T' = T'(t,x,s,§) for the SPDE (1.1.1)) is a
function defined for 0 <t < s < T and x,& € R?, such that for any (t,x) € [0,T) x R? we have:

i) T'(t,x;-,-) € C?O’T(Rd) and with probability one satisfies
L(t,z;s,8) =T(tx;t0,8) + | LT(t,x;7,8)dr + J GrD(t, x; 7, €)dWE (1.1.2)
to to

fort <ty <s<T and € RY;

ii) for any continuous and non-rapidly increasing function ¢ on R? and zo € RY

lim J(p(:ﬁ)r(t,x;s,ﬁ)dx=g0(xo), P-a.s.
(6= (1w0) Ja

Next we state the standing assumptions on the coefficients of the SPDE (|1.1.1]).
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Assumption 1.1.2 (Regularity). For some o € (0,1) and for every i,j = 1,...,d and k =
1,...,d1, we have: a¥ € bCg 7, otk e bCS}O‘ and b, c € bCo .

Assumption 1.1.3 (Coercivity). Let
ai(@) i= (a (2) = o (@)of" () .
ij=1,,d
There exists a positive random variable m such that
(an(2)€,6) = mlef*,  te[0,T], 2,6 €R?, P-as.

We now introduce a random change of coordinates that will play a central role in the following

analysis. We fix (t,2) € [0,T) x R? and consider the stochastic ordinary differential equation
S
T —x—f ok (x.)dWE, se[t,T]. (1.1.3)
t

It is well-known (see, for instance, Theor. 4.6.5 in [44])) that, under Assumption [I.1.2] equation
admits a solution 4" = 4% (z,w) that is a stochastic flow of diffeomorphisms: precisely,

Vs € C%ﬁa , for any o’ < a, the matrix V% (z) satisfies
V(@) = la | VoEGR @)V @dWE, (114

and, for any ¢, =1,...,d, &’Z]% W(x) satisfies

S

B @I == | [(TotO@)Ea @), (115)

+ (V@) Vol Oy @)V (@) [

with probability one.
Since we are going to use v'V as a global change of variables, we need some control over the

stochastic integrals in (1.1.4) and (T.1.5) for  varying in R?: this issue is addressed in Section

(see, in particular, Proposition [1.3.2) under the following additional condition. For any suitably

regular function f = f(w) : RY — R, & > 0 and multi-index 3 € N}, we set

{Flep = sup (1+ w05 f(w)]- (1.1.6)

weRN
Assumption 1.1.4. There exist € > 0 and a random variable M € LP()), with p > max {2 d, 25}
such that, with probability one

sup {oftes <M, |B|=1,2,3, k=1, ,di.
te[0,T7]



16 CHAPTER 1. THE PARAMETRIX METHOD FOR PARABOLIC SPDES

Assumption requires that of(x) flattens as 2 — oo: in particular, this condition is clearly
satisfied if o depends only on ¢ or, more generally, if the spatial gradients of ¢ has compact support.
In order to state the main result of this section we introduce the following notation: let C =

(Cij )1 <ij<d be a constant, symmetric and positive definite matrix. We denote by

1 _
Fheat(c’x) _ Wdtce—é@ 1w,$>’ re Rd, (1.1.7)
T (]

the d-dimensional Gaussian kernel with covariance matrix C. Clearly I'"®t is a smooth function
and satisfies
heat 1 21 heat d
oM (tC, x) = itr (CV r (tC,x)) , t>0, zeR"

The main result of the chapter is the following

Theorem 1.1.5. Let Assumptions[1.1.3,[1.1.5 and[1.1.]] be in force. Then there exists a funda-
mental solution T' for the SPDE (1.1.1)). Moreover, there exist two positive random variables

and po such that, with probability one we have

[(t,x;5,€) = py ' The (ul_lls_t,’y;g’_l(ﬁ) - w) , (1.1.8)
D(t,7;5,€) < pol™ <M11-87t’,7;\;/,71(§) - ~"3> :
Vel (b2, < 2T (T 070~ 2) (119
|V§I‘(t,x; s,8)| < %Fheat (ulIsft,vi,Vﬁ’fl(é’) - =T) ;

for every 0 <t < s <T and x,€ € R, where 'y;?’:’*l 1s the inverse of the Ito-Wentzell stochastic
flow ¢ — ¥ (C) and I; denotes the diagonal d x d matriz diag(t,--- ,t).

The proof of Theorem [1.1.5]is postponed to Section |1.4.4]

Corollary 1.1.6. Let ug be a Fo@B-measurable function on £ x RY such that ug (w, ) is continuous
and non-rapidly increasing on R for a.e. we Q. Let f € C877T, for some a € (0,1), be non-rapidly

increasing uniformly on [0,T] x R%. Then
w(@) = | w@Ows8d+ | [ @D ¢dodr
R4 0 JRrd

is a classical solution of (1.1.1)) with initial value ug, in the sense that u € C&T and with probability
one satisfies

S

€)= w0(©) + [

(cfu45>+—L45»d7+-fsgfu4£ﬁHWf7 s [0,T], £eRY
0 0
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Such a solution is unique in the class of functions with quadratic exponential growth: precisely, u
is the unique solution such that there exists a positive random variable C such that |u(¢)| e~
is bounded on [0,T] x R¢, P-a.s.

1.2 Stochastic heat equation and Duhamel principle

For illustrative purposes, in this section we consider the prototype case of the stochastic heat
equation. We focus our attention on the Duhamel principle that is the crucial ingredient in the
parametrix method for the construction of the fundamental solution. More generally, the Duhamel
principle is a powerful tool for studying the existence and regularity properties of parabolic PDEs.
In the framework of SPDEs of the form , it is still possible to have a Duhamel representation
when the coefficients a¥/ are deterministic and G¥ are replaced by an operator of order zero: this
case has been considered in [64] and [50] where the Cauchy problem for parabolic SPDEs is studied.
For the general SPDE however, as also noticed by other authors (see, for instance, Sowers
[65], Sect.3), measurability issues arise that do not appear in the deterministic case.
To be more specific, let us consider the stochastic heat equation
2

() = G- decus (E)ds + (00¢us(€) + .(€)) AW (1.2.1)

Under the coercivity condition a? := a®> — 0® > 0, the Gaussian kernel

1 (E+a(Ws— W) — x)?
2ra(s —t) b ( 20%(s — t)

p(tx;s,§) = ) s>t>0, x,£eR,(1.2.2)

is well defined, and if 0 = 0 or g = 0 then the function
us(§) = f uo(z)p (0,2;8,&) do —i—f f g (x)p (1,25 8,€) de dW- (1.2.3)
R 0o Jr

is a classical solution to (|1.2.1)), for any suitable initial value ug. This follows directly from the Ito

formula and the fact that the change of variable

(&) = us(§ — oWs)

transforms the homogeneous version of ((1.2.1)) into the deterministic heat equation
o2
dis(€) = & ket (€)ds.
The difficulty in considering the case when ¢ and g are both not null, comes from the fact

that the integrand g,(z)p (7, x;s,£) in (1.2.3) becomes measurable with respect to the future o-
algebra F; in the filtered space: thus in general the last integral in ((1.2.3)) is not well-defined in the
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framework of classical It6-based stochastic calculus. For this reason, in the context of SPDESs, the
Duhamel principle has been used only under rather specific assumptions.

We observe that a naive application of the parametrix method for SPDE (|1.1.1]) would consist
precisely of a successive application of the Duhamel formula (1.2.3)) with g and o = 04(¢) that are
not null and not even constant. Hence, the lack of a general Duhamel formula seems to preclude a
direct use of the whole parametrix approach.

Incidentally formula shows that, even for SPDEs with constant coefficients, the stochastic
fundamental solution p has distinctive properties compared to the Gaussian deterministic heat
kernel. In particular, the asymptotic behaviour near the pole of p is affected by the presence of the
Brownian motion: this fact was studied also in [65] in the more general framework of Riemannian

manifolds and is coherent with the Gaussian lower and upper bounds (|1.1.8]).

1.3 Ito-Wentzell change of coordinates

In this section we consider the random change of coordinates (1.1.3) and use the It6-Wentzell
formula to transform the SPDE ((1.1.1) into a PDE with random coefficients. For simplicity, we
only consider the case t = 0 and set v;(£) = 75's(£). We define the operation “hat” which transforms

any function us(§) into
s (€) = us(75(£)) (1.3.1)

and recall the classical It6-Wentzell formula (see, for instance, Theor. 1.17 in [62] or Theor. 3.3.1
in [44]).

Theorem 1.3.1 (It6-Wentzell). Let u € C&T, he C8,T and g~ € C%],T be such that
dus(€) = hs(&)ds + g&(§)dWY. (1.3.2)

Then we have

—_
o~

(€)= (n(©) + Gl ol OTO) - gt @)oh(©) ) s+ (3h(©) - FFun() awh. (133)

In order to apply Ito-Wentzell formula to our SPDE, we prove the following crucial estimate

for the gradient of ~,(&).

Proposition 1.3.2. Let
Y, := (V)L

We have Vv, Y € bC(I)?T and there exists a positive random variable m such that

YX(Ox)* = mlz|?,  s€[0,T], z,£€RY P-as. (1.3.4)



1.3. ITO-WENTZELL CHANGE OF COORDINATES 19

The proof of Proposition [I.3.2] is based on the following preliminary lemma:

Lemma 1.3.3. Let Z be a continuous random field defined on [t,T] x R?. Assume that for some

e>0andp> (d v 2%) there exists a constant C' > 0 such that

E | sup |Zs(z)]"| < O+ [2*)~F, (1.3.5)

s€(t,T]

E [ sup |VZ ()P | < CA + |z*)~¢P, (1.3.6)

s€(t,T]

1—4
for every x € R®. Then Z has a modification in bC, "

Proof. By the classical Sobolev embedding theorem, for every f e W1P(R?), with p > d, we have

S+ W < Nflwirgs,  ae 2,y R,
x—y| r

where N is a constant dependent only on p and d. Hence the statement directly follows from the
following estimate

sup [ Zsllw1pmay <0 P-ae.
se(t, T

and the continuity of Z. To this end, we check that

E[ sup \ZS]WLP(W)] < 0.
se[t,T]

By (1.3.5) and since p > %, we have

E <FE

J sup |Zs(ac)|pd1:] < J C(1 + |z|*)~Pdx < oo,
R R4

sup | Zs|;
D 4 seltT]

se[t, T

and analogously by (|1.3.6) we have

E [ sup vzs’ip(u{d)] < f C(1 4+ |z|*)~Pdx < 0.
se[t, T R4

Proof of Proposition [1.5.9. Let

2(6) = V() =1 = [ Vot )V eavt. (1.3.7)
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We show that the matrix-valued random field Z;(x) satisfies estimates (|1.3.5)) and (1.3.6)) of Lemma
for every p such that (2 vdv 2%) < p < p, with € and p as in Assumptlon Indeed, by

the well-known LP-estimates for () (see [44], Chapter 4), for any 0 < s < T and = € Rd we have
E[(L+y@P)P] <ML+ [E?P,  peR, (1.3.8)
E([Vin@©f | <N pz2,1<5<3, (1.3.9)

where the constants N1 and Ny depend only on p and d. We have

e 3n

k=1h=1

sup

E[ sup |Z§j( P
s€[0,T]

s€[0,T]

f oo™ (12(€)) 21 (€)W

|

C;:;éE ( [ (ot m(f))&ﬂf(f))QdT)g]

. . . . . p p
(by Holder inequality with conjugate exponents £ and m)

(by Burkolder inequality)

j [[ono n(pasxtie)] | ar
k 1h=1

(by Holder inequality with conjugate exponents r and g < g)

1
: Pq pv‘ ;
f [enonten|]" B[Jon@f "] as
1h 1
(by the flattening Assumption and estimate ({1.3.9))
p—2 1 T 1
<CUTENG [ B[ e (OR) ) ds
0
(by Holder inequality with conjugate exponents 7 and q := % > 1)
T _p a1
<CT JO E[MP]7 E[(1+ |y (6)[*)~P7 |+ ds

(by estimate (|1.3.8))
I -
< CpT2 N{" Ny | M[5(1 + |¢[*) P

This proves . Estimate 1} is obtained in a similar way from the identity Op 2 = 6,%72,
with 8,2”75 satlsfymg SDE (1.1.5), and employing estimate with |3] = 2. Hence, by Lemma
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d

1—4
1.3.3| Z has a bC, ;" -modification and therefore Vv is bounded as a function of (s, &) € [0,7] x RY,

P-a.e. by (1.3.7).

Next we prove that det Vy4(€) is bounded from above and below by a positive random variable

for all (s,€), P-a.s. By Itd formula (see [37], Lemma 3.1 for more details), with probability one we
have

det V(€)= exp (— [ wTotstenaws + 1 [Cun ((94?) <%<s>>df) (1310

0

Since both parts of the equality are continuous w.r.t (s,&), the equality holds for all (s,&) at once

with probability one. Thus the assertion follows from the boundedness of the integrals appearing
in (1.3.10f), which again can be proved as an application of Lemma estimate (1.3.8) and
Assumption [I.1.4]

Then the matrix Y;(x) is well defined and det Y;(§) is bounded from below by a positive random

variable for all (s,§), P-a.s. This fact, together with the uniform boundedness of the entries of

V~s(§), implies ((1.3.4]).
It remains to prove that V~,(§) and Y have uniformly bounded spatial derivatives P-a.s. Again,
this is a consequence of formula (1.1.5)), Lemma and the simple equality

05Y5(§) = =Y5(£)05(V5()) Y5 (E)-
U

Theorem 1.3.4. The function u is a classical solution of SPDE (1.1.1)) if and only if u in (1.3.1])

solves

diy(€) = (Lsas(g) n fs(g)) ds (1.3.11)

where
1 .. _
Lo = 5ad 0y + Vi + & (1.3.12)

is the parabolic operator with coefficients @,V ,¢ e bC{ 1 given explicitly by

a = (Yoa,Y7),;, (1.3.13)

b=y (z;;“ — djohol" — &l (V7 (V2))Ys) jh> )

Cs = Cs.
Moreover, for some positive random variable p, the following coercivity condition is satisfied

(as(&)x, ) = plz)?, se[0,T], =, & e R, P-a.s. (1.3.14)
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Proof. By assumption, us satisfies (1.3.2) with hy = Lous + f5 € Cor and g* = Ghu, € Cé}a.
Thus, by the Ito-Wentzell formula ((1.3.3) we get

1 . N — \ _— .
dis = <2d?8ijus + (b@ — (%aﬁkagk) Ojug + Cplls + f) ds. (1.3.15)

Now, we have

o~

07a(§) = G (274 = (VO V(9) -

J
0is(€) = (VOO V(). + (Fu©VHL©)

)

ij
or equivalently

Vus(€) = Viis (€)Y (&),

V2u,(§) = YOV (©)Ya(€) — (Y (O VALOY(E) ) Fus(©):

Plugging these formulas into and rearranging the indexes, we get (1.3.11)-(1.3.12)-(1.3.13]).
Moreover, from expressions combined with Assumption and Proposition it is
straightforward to see that a”/, b7, c e bC{ 1. Eventually, by Assumption and estimate (|1.3.4))
of Proposition we have

(as(OYS(E)a, Y (E)a) = m|Y ()] > mi|z|

for any s € [0,T], z,£ € R?, P-a.s. and this proves (1.3.14)). O

1.4 Time-dependent parametrix

In this section we consider equation ([1.3.11) for fixed w € €); more generally we consider the
(deterministic) parabolic PDE

Ksu(s,§) := Lsu(s, &) — dsu(s, ) =0 (1.4.1)
where
Lsu(s, &) = %aij(s,f)ﬁiju(s,g) + (8, €)0iu(s, &) + c(s, &)u(s, £). (1.4.2)

Since the coefficients will be assumed only measurable in the time variable, equation ((1.4.1]) has to

be understood in the integral sense: a solution to the Cauchy problem

Ksu(s, &) + f(5,6) =0, £eRe ae. se(t,T],
U(t, 5) = 90(6)7 §€ Rd,

(1.4.3)
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is a function u € CE’T(R‘Z) that satisfies

u(s, &) = p(x) + Jj(ﬁTU(T,f) + f(7,€))dr, (s,€) € [t,T] x R%.

The main idea of the parametrix method is to construct the fundamental solution I' = I'(¢, z; s, §)
of ICs using as a first approximation the so-called parametriz, that is the Gaussian kernel of the heat
operator obtained by freezing the coefficients of g at the pole (¢t,z). If Z = Z(t,x;s,£) denotes

the parametrix, one looks for the fundamental solution of /Cg in the form
L(t,xz;8,8) = Z(t,x;5,8) + (P® Z)(t, z;5,8), (1.4.4)
where the symbol ® denotes the convolution operator
(P® Z)(t,x;8,&) = fs fRd O(t,z;1,9)Z(T,y; 8, §)dydT. (1.4.5)
¢

The unknown function ® is determined by imposing K I'(, x; s,£) = 0: this implies that ® should

satisfy the integral equation
D(t,z;8,8) = K Z(t,x;8,8) + (PR K Z)(t, 58, &) (1.4.6)

for any z,£ € R? and a.e. s € (¢,T]. By recursive approximation we have

+00

Ot 55,8) = Y HE(t,2;5,) (1.4.7)
k=1

where

H®\(t,2;5,8) = H(t,2;5,£) i= K Z(t, 33 ,€),
H®(k+1)(t7$;57£) = (H®k®H)(t,l';S,£), k= 2737"' .

To prove convergence of the series ((1.4.7) and show that the candidate I' in (1.4.4)-(1.4.6]) is

indeed a fundamental solution for K, we need to impose some conditions.

Assumption 1.4.1. There exists a positive constants X, « € (0,1) such that a”/ € C&T with Holder

constant A for everyi,j =1,---,d and
Az < Ca(s, Oz ay < Mal?, P (s,6) +le(s, ) <A, s€[0,T], 2,6 R™

Notation 1.4.2. We introduce for notational convenience the following parameter set which gathers

important quantities appearing in the assumptions:
0 :=(T,a, \,d),

where again T > 0 stands for the fized considered final time.
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As opposed to the classical parametrix method, in Assumption [I.4.1] we do not require any
regularity of the coefficients in the time variable. Instead, here we only require Holder continuity
in the spatial variables. The reason lies in the fact that we are going to adopt a time-dependent
definition of parametrix: namely, we do not freeze the time variable in the definition of Z (see
below) and take as parametrix the fundamental solution of a parabolic equation with

coefficients depending on s.

Remark 1.4.3. Using the enhanced version of the parametriz method proposed in [13], we can
weaken the conditions on the first- and zero-order coefficients that can be supposed to be unbounded

with sub-linear growth at infinity.

Definition 1.4.4. A fundamental solution I' = I'(t, x; s,£) for equation (1.4.1) is a function defined
for0<t<s<T andxz,&eR?, such that for any (t,z) € [0,T) x R? we have:

i) T'(t,x;-,-) € CfmT(Rd) for any to € (t,T) and satisfies KI'(t,;5,&) = 0 for any € € RY and
a.e. se(t,T);

ii) for any continuous and non-rapidly increasing function ¢ on R? and zo € RY

lim J o(x)D(t, 3 8,&)dx = p(x).
Rd

(s,8)—(t,z0)
s>t

Next we state the main result of this section.

Theorem 1.4.5 (Existence of the fundamental solution). Under Assumptz’on there exists a
fundamental solution I' for equation . Moreover, assume that ¢ = @(x) is continuous and
non-rapidly increasing on RY, and f = f(s,z) is non-rapidly increasing uniformly on [t, T] x R?
and such that f € C't“% for some o' € (0,1). Then

u(s, &) = J}Rd o(x)L(t, z;8,&)dx + f: fRd f(r,2)0(1, 258, §)dxdr (1.4.8)

is a solution to the Cauchy problem (1.4.3)). Such a solution is unique in the class of functions with
quadratic exponential growth (cf. Corollary .

Theorem 1.4.6 (Properties of the fundamental solution). Under the same assumptions of Theorem

the fundamental solution T' enjoys the following properties:

i) T verifies the Chapman-Kolmogorov identity

F(t07x0;5)£) = f F(tO)antax)F(t7xa S,f)d.’ﬂ’ tO <t< S, 551‘0 € Rda
R4
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and, if ¢ = cs is independent of £, we have
J L(t,x;s,8)de = el erdr t<s<T, R (1.4.9)
Rd

In particular, if ¢ =0 then T'(t,-;s,£) is a density;

ii) there exist two positive constants p = p(0©) =1, C = C(O) = 1, such that

cirhet (T, & — 1) < T(t,238,€) < CTM (UToy, & — 1), (1.4.10)
C
Vel(t, 28, €)| < ———TPet (uZ, 4. & — 1), 1.4.11
|V§F(t, z;8,8)| < %I‘heat (WTs—t, & — ), (1.4.12)
s [e—

for every 0 <t < s <T and z, & € RY.

1.4.1 Preliminary Gaussian and potential estimates

We freeze the coefficients of £, in (.4.2) at a fixed point 29 € R? and consider the operator with
time-dependent coefficients

~ 1 ..
£ = a5, 20)0,

acting in the &-variable. We denote by

S

I20(t, x;5,€) = rheat (e, ((xo), & — ), Ci s(x0) = f a(T, zo)dr, (1.4.13)
t

the fundamental solution of E;”U — 0,. Notice that I'™ is well defined for 0 <t < s < T in virtue of

Assumption [1.4.1| and solves
0T (1, w58, 6) = LOT™ (8, 25 5,€)
for any z,£ € R? and almost every s € (t,T]. Finally, we define the parametrix for K, as
Z(t,x;s,8) =%, x;5,6), 0<t<s<T, z,cR% (1.4.14)

The following Gaussian estimates are standard consequences of Assumption [1.4.1

Lemma 1.4.7. We have
Amdrheat (\TLT € —2) < To0(t,2;8,€) < ANTHN (AT, € — ), (1.4.15)

forany 0 <t < s <T and z,€,x9 € R, Moreover, [0 (t,z;5,&) verifies the Gaussian estimates

(1.4.11)-(1.4.12)) for some positive constants p,C' dependent on O.
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Proposition 1.4.8. There exists ko € N such that, for every t € [0, T[ and x € R?, the series

(e0)
Z H®k(t,x; . )

k=ko

converges in L*((t,T] x R?). The function ® defined by (1.4.7) solves the integral equation (1.4.6)

and there exist two positive constants u, C' dependent on © such that

[®(t, 2;5,8)| < Cs =) TP (UL, & — ), (1.4.16)

C |€ B y‘ia %
(s—t)'%

x (P Ty € = ) + T Ty = 2)), (147)

|(I)(t,.7); S)g) - (I)(tvx§ S)y>| <

for every x,y, € € R® and almost every s € (t,T).

Proof. We first establish the following elementary inequality: for any € > 0 and n € N there exists

a positive constant c , such that

A2 A2

IA"e w < cpee BFE, AeR. (1.4.18)

Next prove the preliminary estimate

H®*(t, 255, 6)| < My(s — t)y~treki2pheat 7 ¢ —2) z,6eR% ae. se(t,T], keN, (1.4.19)

k(2
where C' = C(©) is a positive constant, My = C* IF E((o?k)) and I'g is the Euler Gamma function.
(%
For k = 1, we have

[H(t@35,€)| = (Lo — LD Z(t,35,€)
< 5 19 (5,€) — a9 (5,0)] 0 (8,35, )| +
+ [0 (5, )] 10:Z (¢, 5, )| + le(s, ) Z (¢, 23 5,6))|

=1+ Iy + Is.

By Assumption Lemma and (|1.4.18), we have

€ — |
Vs —t

Since the coefficients are bounded, by Lemma [1.4.7] we also have

fos Cls— 08 (22 06— a) € Cs = ) AT+ DT - )

I, <C(s— t)_%l“heat(,uls,t,ﬁ —x), I3 < T (T, € — ),
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and this proves (|1.4.19)) for £ = 1. Now we assume that ((1.4.19)) holds for £ and prove it for k£ + 1:
by inductive hypothesis and the Chapman-Kolmogorov property of the heat kernel we have

D 1,215, 6)| =

S
J H®*(t, 27, 9)H (1, 958, §)dydr| <
t JRI

S
< MMy f (r— t)_1+a7k(s — ) ek
t

x f Thet (uT, .,y — 2)T (T, o, € — y)dydr <
R4

1
| {7y R ) J TS (1) i dr
0

a(k+1)

< MMy (t — S)fl+

that yields (|1.4.19)) thanks to the properties of the Gamma function. From ((1.4.19) we directly
deduce the uniform convergence of the series and estimate ((1.4.16)). The proof of (|1.4.17) follows

the same lines as in the classical case (see [24], Ch.1, Theor.7) and is omitted. O

We close this section by stating a generalization of a classical result about the so-called volume

potential defined as
Vf(s,g)zf ft,x)Z(t,z;5,6)dxdt,  (s,€) € [to, T] x RY, (1.4.20)
to JRA

where Z denotes the parametrix. The proof is based on classical arguments (see [24], Ch.1, Sec.3
and [28]) that can be applied to the time-dependent parametrix Z in ({1.4.14]) without any significant

change.

Lemma 1.4.9. Let V} be the volume potential in (1.4.20)) with f € C%T(Rd), non-rapidly increasing
uniformly w.r.t. t. Then Vi € Cf T (Rd) satisfies

Vij J ft, ac)VjZ(t x;s,&)dxdt, j=1,2,
to JRA
0ya) = f(5.) + [ [ f(t.0)020 055, )dwa,
to JRY

for any € e RY and a.e. s e (to, T).

1.4.2 Proof of Theorem (1.4.5

Let I' = I'(t, z; 5,€) be the function defined by (T.4.4)-(T.4.7) for 0 <t < s < T and z,¢ € RY. By
Proposition m it is clear that I'(t,z;-,-) € CY(R?) for any (¢,z) € [0,7) x RY. Next, we fix
to € (t,s) and notice that by (1.4.16)-(1.4.17) the function f := ®(t,x;-,-), defined on [tg, T] x R?,

satisfies the conditions of Lemma [1.4.9} hence the volume potential

Vos.6) o= | [ @t.aim (e €)duar
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is twice continuously differentiable in £ and satisfies
KsVg(s J f (t,x;m,y)H(T,y; 8, &)dydr — ®(t, x; 8, &), a.e. s € (to, T].
to JRA

On the other hand, we also have

to to

K| | etmn 2 i = [ | etsinpH s dydr

t JRd t JR4
by the dominated convergence theorem. Consequently, we have

ICSF(t, xss, f) = H(tv s, f) + (Q) ® H)(t7 x;s, 5) - (I)(t> x;s, 5) =0

for a.e. s € (t,T], because ® solves equation ([1.4.6). This proves property i) of Definition of

fundamental solution. To prove property ii), it suffices to notice that

J}Rd o(x)D(t, z;8,8)de = I1(t, 8,&) + I2(t, 8,€)

where

lim  I1(t,s,&) = lim f o(x)Z(t,x; s,&)dx = o(xg),

(s,6)—(t,z0) (s, 5)—>(t z()
s>t
lim  |2(t, s,8)| lim J f f O(t,z;1,9)| Z(7,y; 8, &)dydrdr <
() > (tw0) (0-(w0) Jga Jy Jpa
s>

(by (1.4.15)-(1.4.16) and since ¢ is non-rapidly increasing, taking § > 0 suitably small, with C' =
C(A,9))

s
. 2 _ o
< lim cedlel (7 — )1+
(375)"(;710) Rd Jt
s>

xf Thet (T, — )T (T, € — y)dydrda

< lim f f —p)l-srheat (7, ¢ — 2)e " drde = 0.
Rd

(s §)—>(t zq)

(1.4.21)

Finally, the standard proof of existence for the Cauchy problem (see for instance [24], Ch.1,
Theor.12, or [28]) applies without modification. Uniqueness follows from the maximum princi-

ple.
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1.4.3 Proof of Theorem (1.4.6

The Chapman-Kolmogorov identity follows from uniqueness of the Cauchy problem and

representation with f =0 and ¢ = I'(to, zo;t, -), for fixed (tg,z0) € [0,%) x R%. Analogously,

formula follows from uniqueness of the Cauchy problem with f =0 and ¢ = 1.
Next we prove the Gaussian estimates for I'. By the Chapman-Kolmogorov property for I'heat

we have

(P® Z)(t,x;7,8)| jj O(t,z;1,9)| Z(1,y;5 8, &)dydr

S
<Cﬂm%wwﬂ_h§—xX[(T—ﬂ_Hng<(XS—Q3FMM@IkU§—x)
t
for some positive C, p. Since I' = Z + & ® Z, the previous estimate combined with (|1.4.15)) proves
|F(t7 x5s, 5)‘ < Clrheat(,u/zs—ta 5 - LU)

and in particular, the upper bound for I" in (1.4.10). The proof of — is similar.
Notice that by the maximum principle (in the form of Lemma 5 p.43 in [24]) applied to u(s,§) =
Spa ()L (t, 25 5,&)dx, where ¢ is any bounded, non-negative and continuous function, one easily
infers that I' is non-negative.

To prove the Gaussian lower bound we adapt a procedure due to Aronson that is essentially
based on a crucial Nash’s lower bound (see [20], Sect. 2). The main difference is that in our setting
we replace Nash’s estimate with a bound that we directly derive from the parametrix method.
Let us first notice that, for u > 1, we have '8 (T, ) < I'Peat(y~17, x) if |z| < 0,4/t Where

O =4/ Mﬂl log t. Thus, by (1.4.15)) and (1.4.16)) we have

L(t,x;5,8) = Z(t,155,8) = [(P® Z)(t, 3 5,8)| =

(if |€ — 2| < opv/s — 1)

=

N

Hfd _ C(S _ t)%) Fheat('ulflzs_t; £ — .T)

> Sp T (T T € — ) (1.4.22)

N |

if0<s—t<T,:=(20\)"a AT.
For any (t,z) € [0,T) x R, (5,&) € (t,T] x R? we set m to be the smallest natural number

-z T
max{élgu (S_t),T—N .

greater than
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Then we set

. s—t - .
, xi:x+zm+1, 1=0,...,m+ 1.

Denoting by D(z;7) = {y € R%, |z —y| < r} the Euclidean ball centered at = with radius r > 0, by

the Chapman-Kolmogorov equation we have

m—1
F(t,ZE, T?E) :f J t x5 tlayl H F layu i+1 yz+1)r(tmyym; Svg)dyl T dym
Rm i=1

(since I' is non-negative)

-1

> J , Ut zsty,yn) | | D@ vistivs, Yie1) L) (3i) X
R N

3

%

F<tm7 Ym; S g)ﬂD (zm;r) (ym)dyl e dym (1423)
Now we have
s—1 T
i —t = < <T,, ,=0,...,
TR T T T mt K ’ mn
by definition of m. Moreover, if y; € D(z;;r) for i = 1,...,m, by the triangular inequality we have
E—=x
|yi+1 — yi| <2r+ ‘$i+1 — .CC,’ =2r + |7n+ 1| <
(again, by definition of m)
Op | S—1 < s—1
Sp o — < oA | ——, 1.4.24
2 Vm+1 On m+1 ( )
if we set
Ou | S—t
= — > 0.
TN mr1

For such a choice of r, we can use (|1.4.22)) repeatedly in (|1.4.23)) and get
D(t.ais.€) > (A7)0 |

) Fheat <“—1I%’y1 _ :L‘) >
R™ m

m—1

X 1_! Fheat (M_lzﬁyyi-&-l - yi) ]lD(xi;r) (yi)x
i=

x Theat (N_lzﬁag - ym) ]lD(a:m;r) (Ym)dy1 - - dym,

(by (T.4.24) and denoting by wy the volume of the unit ball in R?)

m (m+1) 2
= (2)\d) (m—i—l)(wdr ™ (M) exp (_MQQM(m + 1)) .

[NlfsH
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It follows that there exists a positive constant C' = C'(©) such that

D(t,z;5,€) = Cyt(s — t)fg exp (—Cm),
2
and this implies the required estimate: indeed if |¢ — x|? > %(S —t), then, by the definition of m
it follows that m < 8] — x|2(gi(s —t))~! and then

e 2
(15,9 > Crlea(s = ) foxp (5 EZ20) — car iz, g ).

Otherwise if we have m < 27'/T},, and then

T(t,2;8,€) = C3(2m(s — 1)) ~2 _ )% Ry heat (- —1 _
,138,6) = C3(2m(s — 1)) "2 = C3(2m(s — t)) "2 exp Ph— = o rheat(giT, 6 — ).

1.4.4 Proof of Theorem (1.1.5

For any fixed ¢ € [0,T), we consider the stochastic flow ;% defined as in for s € [t,T].
Let L; s be the operator defined as in — through the random change of variable ;.
By Theorem Kis = Ly s — 05 is a parabolic operator on the strip [¢,T] x R with random
coefficients, that satisfies Assumption on [t, T] xR? for almost every w € . Then, by Theorem
K; s admits a fundamental solution I (t, 2;5,€) defined for s € (t,T] and z, £ € RY. We put

T (t,2;5,6) =T (t,x;s,vifi"l(a) . se(tT], z,6eRY (1.4.25)

Combining Theorems and we infer that I'(¢t,z;-,-) € CiT(Rd) and satisfies (1.1.2) with

probability one. Moreover, let us consider a continuous and non-rapidly increasing function ¢ on
R?; proceeding as in the proof of Theorem we have

|, e@r (a5, 6)dn = 09 = 1t.5.6) + Balt. .0

where I(t,s,§) is defined and can be estimated as in ([1.4.21]); whereas, recalling the definition of
parametrix in (1.4.13)), (1.4.14), we have

fim D€ = Jim [ (el) = o) P (€)1 7O — ) da

(s,§)—(t,z0) (s,6)—(t,z0)
s>t s>t

. w,—1 . . heat w,—1 _ —
cdim L (P00 =) = o) P s — ) e =0

by the dominated convergence theorem. This proves that I' is a fundamental solution for the SPDE

[T.1.1).
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The Gaussian bounds (1.1.8)) follow directly from the definition (1.4.25) and the analogous
estimates (T.4.10)) for T® in Theorem Moreover, since

VeD(tx;s,€) = (VIO) (235,70 1) VAry ' (€),

the gradient estimate (T.1.9)) follows from the analogous estimate (T.4.11]) for I'") and from Propo-
sition The proof of (1.4.10) is analogous.



Chapter 2

On a class of Langevin and
Fokker-Plank SPDEs

2.1 Introduction

In this chapter we expand on the first study and consider a stochastic version of the Fokker-Plank

equation
n

n
1
Osu + 2 I/jagju = 5 Z aija,,ﬂ,ju. (211)
Jj=1 5,5=1

Here the variables s = 0, £ € R” and v € R" respectively stand for time, position and velocity, and
the unknown u = us(§, v) > 0 stands for the density of particles in phase space.

We study a kinetic model where the position and the velocity of a particle are stochastic
processes (X, Vs) only partially observable through some observation process Ys. We consider
the two-dimensional case, n = 1, and propose an approach that hopefully can be extended to the
multi-dimensional case. If F) = o(Y;, 7 < 5) denotes the filtration of the observations then, under

natural assumptions, the conditional density given F) solves a linear SPDE of the form
dpus(C) = Ascus(Q)ds + Gs cus(Q)dWs, ¢ = (&,11, -+ 1) € RITL, (2.1.2)

where B = 05 + v10¢ and

Aqcus(©) = 50Oy us(€) + DO s(0) + (0

gs,cus(C) = U;(C)aulus(C) + hs(()“s(()
In (2.1.2) W is a Wiener process defined on a complete probability space (2, F, P) endowed

with a filtration (Fj),- satisfying the usual conditions. The symbol dp indicates that the equation

is solved in the It6 (or strong) sense:

33
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Definition 2.1.1. A solution to (2.1.2)) on [t,T] is a process us = us(§,v) € C?,T that is twice

differentiable in the variables v and solves the equation
B _ ° B ° B
0 OBO) =€)+ [ Arp ur OB O+ [ Gp 0BV, e e.T),

where s — YB(€,v) denotes the integral curve, starting from (&,v), of the advection vector field

1%} 65, that is

12 (&) = e B (&) = (€ + sv1,v), B = ( | ' 01X<d1)> 7

0d><1 del de(d—l)
where 0,,,, denotes the n x m null matriz.

Definition 2.1.2. A stochastic fundamental solution T' = I'(t, z;s,() for the SPDE (2.1.2)) is a
function defined for 0 <t < s < T and z,¢ € R¥, such that for any (t,z) € [0,T) x R4 and
to € (t,T) we have:

i) T'(t,z,-,-) is a solution to (2.1.2) on [to,T];

i) for any ¢ € bC(RI¥1) and zg € R¥*!, we have

lim j L'(t, z;8,Q)p(2)dz = p(20), P-a.s.
R2

(s,$)—=(t,20)
s>t

The actual dimension of the equation can be possibly greater than two: this is still coherent
with the two-dimensional model and it is due to the fact that the set of variables carried by Y may
also enter the equation, as will become clear in Chapter On the other hand, this only affects
the elliptic part of , and in this sense, the cases d = 1 and d > 1 are completely analogous.
In case the observation process Y is independent of X and V, the SPDE ([2.1.2)) boils down to the
deterministic PDE (2.1.1)) with n = 1.

Compared to the uniformly parabolic case, two main new difficulties arise:

i) the Ito-Wentzell transform drastically affects the drift B: in particular, after the random
change of coordinates, the new drift has no longer polynomial coefficients. Consequently,
a careful analysis is needed to check the validity of the Hormander condition in the new

coordinates. This question is discussed in more detail in Section

ii) in the deterministic case, the parametrix method has been applied to degenerate Fokker-
Planck equations, including (2.1.2]) with o = 0, by several authors, [58], [16], using intrinsic

Holder spaces. Loosely speaking, the intrinsic Holder regularity reflects the geometry of
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the PDE and is defined in terms of the translations and homogeneous norm associated to the
Hormander vector fields: this kind of regularity is natural for the study of the singular kernels
that come into play in the parametrix iterative procedure. Now, under the weak Hormander
condition, the intrinsic regularity properties in space and time are closely intertwined and
cannot be studied separately. However, assuming that the coefficients are merely predictable,
we have no good control on the regularity in the time variable; for instance, even in the
deterministic case, the coefficients are only measurable in s and consequently they cannot
be Holder continuous in (x,v) in the intrinsic sense. On the other hand, assuming that the
coefficients are Holder continuous in (z,v) in the classical Euclidean sense, the parametrix
method still works as long as we use a suitable time-dependent parametrix and exploit the
fact that the intrinsic translations coincide with the Euclidean ones for points (s, z,v) and

(s,&,7n) at the same time level. We comment on this question more thoroughly in Section

The chapter is organized as follows. In the remaining part of this section we set the assumptions

on (2.1.2) and state the main result, Theorem In Sections and [2.3| we go deeper into the

issues mentioned above. In Section we prove some crucial estimates for stochastic flows of
diffeomorphisms: these estimates, which can be of independent interest, are based on the ideas
introduced in Section and extend some result of [44]. In Section we exploit the results of
Section [2.4]to perform the reduction of the SPDE to a PDE with random coefficients. In Section 2.6
we build on the work by [14] to develop a parametrix method for Kolmogorov PDEs with general
drift (Theorem and in Section we complete the proof of Theorem for d = 1.

In Section [2.7] we explain how our methods can be tweaked to apply to the backward version of

equation (2.1.2)).

2.1.1 Assumptions and main results
We start by setting the standing assumptions on the coeflicients of the SPDE ((2.1.2)).

Assumption 2.1.3 (Regularity). For some a € (0,1) we have: a € bCGp, 0 € bcg?a, b,ce bCyr
and h € bC{ 7.

Assumption 2.1.4 (Coercivity). There exists a random, finite and positive constant m such that
(@) = oot ()G, O = mlCP, e [0,T), ¢ e R, Poas,

We make again use of an It6-Wentzell transform, but this time we only need to operate on the

directions v;: for fixed t € [0,7] we consider the SDE in R?

S

Vis (T,0) = v — f or(z, 7y (x,0)dW;. (2.1.3)
t
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Assumption ensures that (2.1.3) is solvable in the strong sense and the map (z,v) — (z,7}% (z,v))
is a stochastic flow of diffeomorphisms of R%*! (see Theorem below). To have a control on its

gradient, recalling the notation ([1.1.6)), we impose the following additional

Assumption 2.1.5. There exist e > 0 and two random variables My € LP(QY), with p > max {2, % ,
and My € L*(Q), such that with probability one

sup ({Jt}e,ﬁ + {Ut}1/2+5,6’) < Ml, |B| = 17 |B,‘ = 2a3a
te[0,T']
sup {hi}i28 < Mo, 18] = 1.
te[0,T]

In order to state the main result of this section, Theorem below, we need to introduce
some additional notation: we denote by ¢"™:~! the inverse of the It6-Wentzell stochastic flow
(2,0) = gi¥(x,v) :== (2,7}%(x,v)) defined by (2.1.3). Moreover, we consider the vector field

Yio(2) = (()1(2), =R D1 (Vo) T @) (=) ) (2.1.4)
with Vo y™ = (0p;7;")ij=1,.a and 0z = (07;" )i=1,..4- Eventually, equation
Yoa(z) = 2 + j Yo (o (2))dr,  se[tT],
t

defines the integral curve of Y ¢ starting from (¢, z).

The central result of this chapter is the following theorem whose proof is postponed to Section

Theorem 2.1.6. Under Assumptions|2.1.5, |2.1.4 and [2.1.5, the SPDE (2.1.2)) has a fundamental

solution T' and there exist two positive random variables py and po such that, with probability one

we have
T(t,2;8,C) > pp TN (M#Ds_t,gifi"l(o - %,s(z>) (2.1.5)
T(t,2;5,¢) < pl ™ (ulDS_t,giLV’*l(o - %,s(z)) , (2.1.6)
VLTt 25 5,€,0)| < %Fheat (11 Dsts g0 T (V) = 10(2)) (2.1.7)
[VED(t, 255, 6,v)] < 2T (1D, g0 7 (60) = as(2)) (2.1.8)

for every 0 < t < s < T, ¢ = (&v),z € R where Dy is the (d + 1) x (d + 1) matriz
diag(A3, A, -+, A).

Remark 2.1.7. We would like to emphasize that Theorem [2.1.6 is new even in the deterministic

case, i.e. when o =0, h = 0 and the coefficients are deterministic functions. In fact, a study of
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Kolmogorov PDEs with coefficients measurable in time was only recently proposed in [7]: however
in [7] the coefficients are assumed to be independent of the spatial variables that is a very particular

case where the fundamental solution is known explicitly.

2.2 Stochastic Langevin equation and the Hormander condition

For illustrative purposes, we examine the case of constant coefficients and introduce the stochastic
counterpart of the classical Langevin PDE.

Let B, W be independent real Brownian motions, a > 0 and o € [0, +/a]. The Langevin model
is defined in terms of the system of SDEs

dX; = Vidt,

(2.2.1)
dV; = Va — 02dB; — odW.

We interpret W as the observation process: if o = 0 the velocity V is unobservable, while for
o = 4/a the velocity V' is completely observable, being equal to W. To shorten notations, we
denote by ¢ = (£,v) and by z = (z,v) the points in R2. Setting Z; = (X, Y;), equation can
be rewritten as

dZt = Btht + GQd( Va— 0'2Bt - O'Wt), (222)

B— (g ;) L e <(1)) (2.2.3)

In this section we show in two different ways that the SPDE

with

dpus = géwusds + 00, usdWs, B := 05 + v, (2.2.4)

is the forward Kolmogorov (or Fokker-Planck) equation of the SDE conditioned to the
Brownian observation given by F/V = o(W;, t < s). In the uniformly parabolic case, this is a
well-known fact, proved under diverse assumptions by several authors (see, for instance, [72], [39]
and [54]).

In the first approach, we solve explicitly the linear SDE and find the expression of the
conditional transition density I' of the solution Z: by It6 formula, we directly infer that T is the
fundamental solution of the SPDE . The second approach, inspired by [42], is much more
general because it does not require the explicit knowledge of I': we first prove the existence of
the fundamental solution of the SPDE (2.2.4) and then show that it is the conditional transition
density of the solution of .

The following result is a consequence of the It6 formula and isometry.
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Proposition 2.2.1. The solution Z = Z% of (2.2.2)), with initial condition z = (z,v) € R?, is given
by
S
AR esB (z + f e "Be, d(vVa—0o%B; — O'WT))
0

with ey as in (2.2.2). Conditioned to F)V', Z? has normal distribution with mean and covariance

matriz given by

ma(z) = B[22 | FV] = e°P <z e J e_TBeQdWT> - (x v ofols = T>dWT> , (2.2.5)

0 v — oW
2)

In particular, if ¢ = /a then the distribution of Z? conditioned to FV is a Dirac delta centered at
ms(2); if 0 € [0,4/a) and s > 0 then ZZ? has density, conditioned to FYV, given by

0

Cs := cov (Zj ] .7:![/) = (a— 0'2)Q5, Qs = JS (eTBeg) (eTBez)*dT = (

N"mw w‘mo:
» w“”

1 1
I'(0, z;5,() = %\/TTGXP <—2<C81(C —ms(z)), (¢ — ms(z))>) , CeR%  (2.26)
More explicitly, we have T'(0, z; s,() = To(s,{ — ms(z)) where

2 2

s 52 53

Lo(s, & v) =

By the Ité formula, T'(0, z;s,C) is the stochastic fundamental solution of SPDE (2.2.4)), with pole
at (0, z2).

As an alternative approach, we construct the fundamental solution of the SPDE ([2.2.4)). First we
transform into a PDE with random coefficients, satisfying the weak Hérmander condition;
by a second change of variables, we remove the drift of the equation and transform it into a
deterministic heat equation; going back to the original variables, we find the stochastic fundamental
solution of , which obviously coincides with I' in . Eventually, we prove that T'(0, z; s, -)
is a density of ZZ conditioned to .7-";/‘/ . We split the proof in three steps.

[Step 1] We set
us(&,v) = us(§, v — aWy). (2.2.8)

By It6 formula, u solves (2.2.4)) if and only if 4 solves the Langevin PDE

a—o? .
By this change of coordinates we get rid of the stochastic part of the SPDE; however, this is done

at the cost of introducing a random drift term. For the moment, this is not a big issue because o
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is constant and, in particular, independent of v: for this reason, the weak Hormander condition is

preserved since the vector fields 0, ds + (v — cW,)0¢ and their Lie bracket
[0y, 0s + (v — o W) 0¢] = 0%

span R? at any point.

[Step 2] In order to remove the random drift, we perform a second change of variables:

B(6,0) = i((E0)), () = <£ bov—a [ Whn, u) | (2.2.10)

Vs(6,v) = (; 1)

so that 7, is one-to-one and onto R? for any s. Then, (2.2.9) is transformed into the deterministic

The spatial Jacobian of 7 equals

heat equation with time-dependent coefficients

— o2

2

dsiis(E,v) = (5*0ge — 250, + o) Us(&, V). (2.2.11)

Equation (2.2.11)) is not uniformly parabolic because the matrix of coefficients of the second order

as = (a — 0?) <82 _8>
-s 1

is singular. However, in case of partial observation, that is o € [0, +/a), the diffusion matrix

part

s s s
Cs:f ardr = (a—o%) | 3, 2
0 -5 s

is positive definite for any s > 0 and therefore admits a Gaussian fundamental solution.
For o = 0, this result was originally proved by [3I] (see also the introduction in [27]). Going back
to the original variables we recover the explicit expression of I' in .

Incidentally, we notice that also reads

a_
2

2
Ostis (&, 1) = T V2a,(&,v),  Vgi= 0, — s,

where the vector fields 05 and V satisfy the weak Hérmander condition in R3 because [V, 0s] = 0.

[Step 3] We show that I' is the conditional transition density of Z: the proof is based on a
combination of the arguments of [42] with the gradient estimates for Kolmogorov equations proved

in [17] and anticipates some of the arguments we will develop in greater generality in Chapter
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Theorem 2.2.2. Let Z* denote the solution of the linear SDE ([2.2.2) starting from z € R? and
let T'=TY(0,z;s,-) in (2.2.6) be the fundamental solution of the Langevin SPDE (2.2.4) with o €

[0,+/a). For any bounded and measurable function ¢ on R?, we have

Be(Z) | 7] = | 0.5,

Proof. Let
L() = [ elOFO.z5,0d, 520, CeR2
]RQ

By (2.2.5)-(2.2.6)), I,(z) is F/V-measurable: then, to prove the thesis we show that for any bounded

and FV-measurable random variable G we have
E[Gp(Z7)] = E[GI(2)].

By an approximation argument it suffices to take ¢ in the class of test functions and G of
the form G = e~ % er(Wr)dr  where ¢ = cs(w) is a smooth, bounded and non negative function on

[0,T] x R. Let

1 (alyy — 200,y + Opy) + V0g

(o) —
£ 2

be the infinitesimal generator of the three-dimensional process (X, V,W). For o € [0, /a), 05+ L)
satisfies the weak Hormander condition in R* and has a Gaussian fundamental solution (see, for
instance, formula (2.9) in [I7]). We denote by f = fi(&,v,n) the classical solution of the backward
Cauchy problem

(at + E(U)) ft(gaya 77) - ct(n)ft(§7 v, 77) = 07 (t7£71/7 77) € [07 S) X Rsv
fs(f,l/,n)IQO(.%,U), (§7V777)ER3;

and set

M, = eggcT(WT)de F(CWOT(0, 2:¢,Q)dz,  te0,s].
R2

By definition, we have
B [Ms] - B [6_ 55 cT(WT)dTIS(Z)]
and, by the Feynman-Kac representation of f,

E[My] = fo(2,0) = E e~ %er Wt 72) |
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Hence the thesis follows by proving that M is a martingale. By the It6 formula, we have

dfs (&, v, Wy) = (@ft + ;@mft) (& v, Wy)dt + (0 ft) (&, v, Wy)dW;

1
= <_£(U)ft + e fe + 25nnft> (&, v, We)dt + (O ft) (&, v, Wi)dW,.
Moreover, since T' solves the SPDE ([2.2.4), setting e; := e~ fo er(Wa)dr gor brevity, we get

dM; = —Ct(Wt)Mtdt + etf

1
] (—d")ft +efi + zannft) (& v, W)T(0, 2; 8, €, v)dédv dt
R

+ e JRZ (anft) (& v, W)T(0, z;t, &, v)dEdv dWy
+ e JRQ fe(& v, Wy) (%&/u — Vag) T(0, 2;t, &, v)dédy dt
+ etaf (& v, W)o, (0, 2, ¢, &, v)déd vdWy

RQ

e f On i€ v, WR)O,T0, 2 1,6, v)ded db.
R2

Integrating by parts, we find

th = € J]RQ (a’!]fs - Ual/ft) (57 v, Wt)r(ov Z3 tv 57 V)dfdl/ th7

which shows that M is at least a local martingale.

To conclude, we recall the gradient estimates proved in [I7], Proposition 3.3: for any test

function ¢ there exist two positive constants e, C' such that
_1
00 fe(& )] + 0nfe(& ) S Cls —1)772,  (8,&v,m) € [0,5) x R,

Thus, we have
’ 2
y “ (JR (Onfi = 000 f2) (& v, Wt)r(oaz;t,f,V)dde> dt]

0
2
(J I‘(O,z;t,{,u)d{du) ]dt
RQ

0
=| C(s—t)*dt <o
0

< f Cls— )% 1B

and this proves that M is a true martingale. O
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2.3 Intrinsic vs Euclidean Holder spaces for the deterministic

Langevin equation

The parametrix method requires some assumption on the regularity of the coeflicients of the PDE:
in the uniformly parabolic case, it suffices to assume that the coefficients are bounded, Holder
continuous in the spatial variables and measurable in time (cf. [24]).

In this study, we apply the parametrix method assuming that the coefficients of the Langevin
SPDE are predictable processes that are Holder continuous in the Euclidean sense. From
the analytical perspective this is not the natural choice: indeed, it is well known that the natural
framework for the study of Hérmander operators is the analysis on Lie groups (see, for instance,
[23]). In this section, we motivate our choice to use Euclidean Hoélder spaces rather than the

intrinsic ones. We recall that [45] first studied the intrinsic geometry of the Langevin operator in

(2.2.4) with o = 0:

a

Lai= 50 — vl — 0.

They noticed that £, is invariant with respect to the homogeneous Lie group (R3, %, ) where the

group law is given by
(t,z,v) = (s,&,v) = (t + s, + &+ sv, v+ v), (t,x,v), (s, & v) € R3, (2.3.1)
and § = (d))r>0 is the ultra-parabolic dilation operator defined as

Ox(t, z,v) = (N2, N3z, ), (t,z,v) e R3, A > 0.

More precisely, £, is invariant with respect to the left-+-translations £ ,.)(s,§,v) = (t,7,v) *

(s,&,v), in the sense that
La(folian) = (Laf) oLz (t,z,v) € R?,
and is /-homogeneous of degree two, in that
Lo(fody) =M (Laf)obdy, A>0.
It is natural to endow (R3, *,§) with the 6-homogeneous norm
(8,2, 0)|c = [tZ +[2]5 + [o] (2.3.2)

and the distance
de ((5,6,0), (t2,0)) = |(t,2,0) 7" * (5,6, v)| 2. (2.3.3)
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The intrinsic Holder spaces associated to d, are particularly beneficial for the study of existence
and regularity properties of solutions to the Langevin equation because they comply with the

asymptotic properties of its fundamental solution I' near the pole: let us recall that
L(t,z,v;s,&v) =T ((t,z,v)_l # (s, &, u)) , t < s,

where I'g is the fundamental solution of £ in with o = 0 and (t,z,v)"! = (—t, —x + tv, —v)
is the =-inverse of (¢,z,v). Notice also that I' is d-homogeneous of degree four, where four is the
so-called 6-homogeneous dimension of R2.

Based on the use of intrinsic Holder spaces defined in terms of d, a stream of literature has
built a complete theory of existence and regularity, analogous to that for uniformly parabolic PDEs:
we mention some of the main contributions [58], [59], [47], [46], [16], [18], [53] and, in particular,
[58], [16], [32] where the parametrix method for Kolmogorov PDEs was developed.

On the other hand, intrinsic Holder regularity can be a rather restrictive property as shown by

the following example.

Example 2.3.1. For z,£ € R and s # t, let
r—£ x—&
— _ = — 2.3.4
. <x St>, ¢ (5, H) (23.4)

(tv'z)il * (&C) = (S - t7070)7

Then we have

and therefore
de((t,2), (5.0)) = |s — #]7.

Since © and & are arbitrary real numbers, we see that points in R3 that are far from each other
in the FEuclidean sense, can be very close in the intrinsic sense. It follows that, if a function
flt,z,v) = f(z) depends only on x and is Hélder continuous in the intrinsic sense (i.e. with

respect to dr ), then it must be constant: in fact, for z,( as in (2.3.4), we have

|f(&) = f(x)] =[f(s,0) = f(t,2)| < Cs — t|*
for some positive constants C,« and for any x,£ € R and s # t.

When it comes to studying the stochastic Langevin equation, the use of Euclidean Holder spaces

seems unavoidable. The problem is that we have to deal with functions f = f;(z,v) that are:

- Holder continuous with respect to the space variables (z,v) in order to apply the parametrix

method;
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- measurable with respect to the time variable ¢ because f plays the role of a coefficient of the

SPDE that is a predictable process (i.e. merely measurable in ¢).

As opposed to the standard parabolic case, in terms of the metric ds there doesn’t seem to be a
clear way to separate regularity in (x,v) from regularity in ¢: indeed this is due to the definition
of #-translation that mixes up spatial and time variables (see (2.3.1])). On the other hand, we may

observe that the Euclidean- and - differences of points at the same time level coincide:
(t’x7v)_1*(t’§’y):(O’§7$’V7U)7 x?”?é-?VER‘

Thus, to avoid using *-translations, the idea is to combine this property with a suitable definition of
time-dependent parametriz that makes the parametrix procedure work: this will be done in Section
2.0

Concerning the use of the Euclidean or homogeneous norm in R?, let us denote by bC®(R?)
and bC?(R?) the space of bounded and Hélder continuous functions with respect to the Euclidean
norm and the homogeneous norm |x|% + |v], respectively. Since |(z,v)| < |x|% + |v] for |(z,v)| <1,
we have the inclusion

bO*(R?) < bOZ(R?). (2.3.5)

Preferring simplicity to generality, we shall use Holder spaces defined in terms of the Euclidean norm

(cf. Assumption [2.1.3)): by ([2.3.5]), this results in a slightly more restrictive condition compared to

the analogous one given in terms of the homogeneous norm. On the other hand, all the results of
this Chapter can be proved using the homogeneous norm |ZL'|§ + |v| as in [58], [16] and [32]: this

would be more natural but would increase the technicalities.

We close this section by giving some standard Gaussian estimates that play a central role in the
parametrix construction. After the change of variables (2.2.10) with o = 0, the Langevin operator

L, is transformed into

Lo = gvg — 8y V=0, — sie.

Since L, is a heat operator with time dependent coefficients, its fundamental solution is the Gaus-

sian function T'y(¢, 255, ¢) = T (t,0;s,( — z) where

L'y(t,0,0;8,&,n) = \/ét)Q exp (a(s?—t)f* (352 +3¢n(t + 8) + (2 + ts + 32))> (2.3.6)

an(s

for t < s and £, neR.
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Lemma 2.3.2. For every € > 0 there exists a positive constant ¢ such that
c
|V8Fa(t7 07 07 S, €7 77)| < \/ﬁraﬁ-&‘(t? 07 07 S, 67 77)7
’V?Fa<t, 07 07 87 67 77)‘ < %I‘a-i-c?(t? 07 07 87 Ev 77)7 (237)
S —
forevery0 <t <s<T and &,neR.

Proof. We remark that T'y(¢,0,0; s,£,n) has different asymptotic regimes as s — ¢t depending on

whether or not ¢ is zero: in fact, if ¢ = 0 then the quadratic form in the exponent of I'; is similar

6 3
lis =

] .
“\z

On the other hand, if ¢ # 0 we see in (2.3.6)) that all the components of the quadratic form are
O((s —t)73) as s —> tT. We have

to that of the Langevin operator, that is

I\

1
Vs—t

6¢ + 2n(s + 2t)
3

a(s —t)2

'VsT4(t,0,058,&,m)| = Ly(t,0,058,&,1m) <

(by (1.4.18) with n = 1)
C
< —
Vs—1
The proof of (2.3.7)) is similar, using that

Fa-l—&(ta 07 07 S, 57 77)

2
VELL(1.0.0:5.6.) = = <(3f Z(Z(fj)f r 1) Lo(t,0,055,8,1).

2.4 Pointwise estimates for Itdo processes

In this section we build on the ideas of Lemma and Proposition and prove some esti-
mates for stochastic flows of diffeomorphisms that will play a central role in the following sections.
Information about stochastic flows in a more general framework can be found in [44]. Since the
following results are of a general nature and may be of independent interest, in this section we reset
the notations and give the proofs in the more general multi-dimensional setting.

Specifically, until the end of the section, the point of R? is denoted by z = (z1, ..., z4) and we
set V, = (0s,...,0,,) and 07 = of =l .. 05; for any multi-index 3. We will also employ the

notation

(zy:=/14 |2/, zeR%
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First, we recall some basic facts about stochastic flows of diffecomorphisms. Let £ € N. A
R%-valued random field ¢; ¢(2), with 0 < ¢t < s < T and z € R?, defined on (Q, F, P), is called a

(forward) stochastic flow of C*-diffeomorphisms if there exists a set of probability one where:
i) ¢14(2) = 2 for any t € [0,7] and z € R%
i) prs =prsopirfor 0<t<7<s<T;
iii) ¢ R — R%is a C’k—diffeomorphism forall0<t<s<T.

Stochastic flows can be constructed as solutions of stochastic differential equations. Let B a n-
dimensional Brownian motion and consider the stochastic differential equation

S S

br(pr(2))dr + L o (pr(2))dB; (2.4.1)

ps(z) = Z+f

t

where b = (bi(2)), o = (62 (2)) are a d-valued and (d x n)-valued processes respectively, on [0, T] x
R? x Q. The following theorem summarizes the results of Lemmas 4.5.3-7 and Theorems 4.6.4-5 in
[44].

Theorem 2.4.1. Let b, o € bClg’;ﬁ for some k € N and a € (0,1). Then the solution of the
stochastic differential equation (2.4.1) has a modification ¢y that is a forward stochastic flow of
C*-diffeomorphisms. Moreover, ;. € Cf’g, for any o € [0,a) and t € [0,T), and we have the

following estimates: for each p € R there exists a positive constant 1, such that

E [{pr,s(2))P] < c1p(z)?, zeRY, (2.4.2)

and for each p = 1 there exists a positive constant cop such that

E H&ﬁ@t,s(z)’p] < cap, zeRY p=1, 1<|B| <k (2.4.3)

Now, consider ¢y s as in Theorem F; = Fi1(2,Q) € CIST(RM), 1 = 1,2, and a real Brownian
motion W. The goal of this section is to prove some pointwise estimate for the It6 process

S

S
L(2) = f Fin (5 010 () AW + f For(sionn(2)dr,  O<t<s<T, zeR%  (2.4.4)
t t
in terms of the usual Holder norm in R4

fla = sup |£(2)] + sup LEZSOL
2€Rd z,zcinézd ‘Z - C’

ae (0,1),

under the following



2.4. POINTWISE ESTIMATES FOR ITO PROCESSES 47

Assumption 2.4.2. There exist €1,&3 € R with € := &1 +¢&3 > 0 and a random variable M € LP(2),
with p > (2 vdv g), such that

Z sup]<z>51<C>52|8§7CFi,t(Z;C)| <M i=1,2, P-a.s.

te[0,T
|ﬁ| <k z,geRd

The main result of this section is the following theorem which provides global-in-space pointwise
estimates for the process in (2.4.4).

Theorem 2.4.3. Let ;s be as in Theorem and F; € CIS’T(RM), i = 1,2, for some k € N.
Let I = I; 4(z) be as in (2.4.4) and set

I(2) = (P Lo (2).

Under Assumption[2.4.3, for any p,« and § such that

1 1
(2\/dvd><p<p, 0<a< - ——, 0<5<5—§,
£ 2 p
there exists a (random, finite) constant m such that
2 ]86[&)]17% <m(s—1t)* P-a.s. (2.4.5)

|Bl<k—1

Proof. The proof is based on a combination of sharp LP-estimates, Kolmogorov continuity theorem
in Banach spaces and Sobolev embedding theorem.

Let us first consider the case k = 1. We prove some preliminary LP-estimates for I; s and 0P I
with |8| = 1. Below we denote by ¢ various positive constants that depend only on p,d, T and the
flow . By Burkolder’s inequality we have

P

B[] < e E| (| Firtins i) ] + e | ([ Burtesnronar) | <

(by Holder’s inequality)

< e (s — )T fEUFLT(z;%,T(z))W] dr
Fe@m(s -0t | B[ (2 o (2)P] dr <

(by Assumption [2.4.2)

S

< e (s _ )T ft B [MP(g1.0(2))"*] dr <
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48
(by Holder’s inequality with conjugate exponents ¢ g and 1)
s =) B (Mg [ B [prrla)) 7] dr <
(by 24.2)
= ()0 (5 — )3, (2.4.6)
The same estimate holds for the gradient of I; 4, that is
—1)2. (2.4.7)

E|[VI) ()] < )05 — 1)

Indeed, let us consider for simplicity only the case § = 0 since the general case is a straightforward
d, we have
p]

consequence of the product rule: for j =1

[10:,105(2)P] < eE H f (05, F1.0) (5 000 (2)) + (Ve Fur (25 01 (2))s 05, 01 ) dw.

t
+8 || [ (10 Far )00 () + VP ) () )
<e(s—t)2 ft [0z Fiir) (25 01,0 ()P + (Ve Fir (25 01,0(2)), 02 0,7 ()] dr
The terms containing 0, F; ; can be estimated as before, by means of Assumption “ On the
; D
p?

.. P,
other hand, by Holder’s inequality with conjugate exponents ¢ and r with 1 < ¢ < £, for every
<

d we have
1 prq:
E{|V(F; (25017 (2 NP E Hazjgptﬂ'(z)‘ ]T

'] <

7:7j = 17 )
E[KVCE,T(Z;(PLT(Z)) z](PtT

-

(by Assumption [2.4.2|and (2.4.3))
(M7 o1 (20~ ] 1 ()77 <

< égypTE
= % > 1 and 7)

(by Holder inequality with conjugate exponents ¢
L
E [t (2)) 2P| 7 ()™ <

< c27p7“H

(by (22))
< ML) ).

This proves (2.4.7) with 6 = 0.

Now, we have
1 §
B 11y | = [ f (1D ) + v ()p) dz] <



2.4. POINTWISE ESTIMATES FOR ITO PROCESSES 49

(by @46) and [Z17))

(since (e — 0)p > d by assumption)
= (s —1)2. (2.4.8)

Estimate (2.4.8) and Kolmogorov’s continuity theorem for processes with values in the Banach
space W1P(RY) (see, for instance, [44], Theor.1.4.1) yield

Hlt(,?HWLP(Rd) <m(s—1t)", 0<t<s<T, P-as.
for some positive and finite random variable m and for « € [0, p%p?). This is sufficient to prove

(2.4.5) with £ = 1: in fact, by the Sobolev embedding theorem, we have the following estimate of

the Holder norm

0 0
11_s < NI e (2.4.9)

S

where N is a positive constant that depends only on p and d. Thus, combining (2.4.5)) and (2.4.9)),
we get the thesis with k = 1.
Noting that

S

0z, I s(z) = J

(0PG5 01r (2)) + TeFi (33 1 (2)), 217 () ) vy

+ f (@ For) (55 01 (2)) + (VB (25 01 (2)). 0 00 (1)),

for j = 1,...,d, the thesis with kK = 2 can be proved repeating the previous arguments and using

(2.4.5) for k =1 and Assumption with k& = 2.
We omit the complete proof for brevity and since in the rest of the Chapter we will use (2.4.5))
only for kK = 1,2. The general result can be proved by induction, using the multi-variate Faa di

Bruno’s formula. O

Remark 2.4.4. Let I, as in (2.4.4) with coefficients F\,F, € bC{ +(R*) and let § > 0 and
a € [0, %) Applying Theorem with F; s(z;C) = <z>*515i,s(z;g*), i = 1,2, we get the existence

of a (random, finite) constant m such that, with probability one,

Ls(2)] <m{2)’(s =), 0<t<s<T, 2eR%
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2.5 Ito-Wentzell change of coordinates

We go back to the main SPDE and suppose that Assumptions|1.1.3}|1.1.2} |1.1.4] are satisfied
and d = 1. In this section we study the properties of a random change of variables which plays
the same role as transformation in Step 1 of Section [2.2] for the Langevin SPDE. The main
result of this section is Theorem 4.1.5| which shows that this change of variables transforms SPDE
into a PDE with random coeflicients.

We denote by (&,7;%(§,v)) the stochastic flow of diffeomorphisms of R? defined by equation

, that is

S

Vs (€5 )—V—J or (&N (Ev)dW,,  se[t,T], (§v)eR> (2.5.1)

t

By Theorem [2.4.1} ;" € Ci’ ’;f/ for any o' € [0, ). Global estimates for 'V and its derivatives are

provided in the next:

Lemma 2.5.1. There exists € € (0, %) and a random, finite constant ¢ such that, with probability

one,

iy (€ v)| < ev/1+ € + 2, (2.5.2)

e—c(s—t)s < 1/715 s (ga ) €C(S_t)€7 (253)
06705 (6, V)] < e(s —1)°, (2.5.4)
08 (€, v)] < et (2.5.5)

V1+E 402

for any (§,v)eR%, 0<t<s<T and|B| =2.

Proof. Estimate (2.5.2)) follows directly from Remark (with § = 1). Differentiating (2.5.1)), we
find that 0,7, solves the linear SDE

S

AN (E,w) = 1 —j (2200) (€. A (E, )2 (€, 1)WY

¢
where 0205 denotes the partial derivative of o4(-,-) with respect to its second argument. Hence we

have

o) = exo (= [ @etc - 3 [ @ e atiemhar )

Now we apply Theorem with ¢y s(§,v) = (57%5(& v)) and F5(GE, V) = (G205(&, V)", i =
1,2: thanks to Assumption we get estimate (2.5.3). Incidentally, from Theorem we also

deduce that the first order derivatives of d,7;" are bounded:

[P0y (€ v <cls =), |Bl=1. (2.5.6)
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This last estimate is used in the next step, for the proof of (2.5.4)).

Similarly, we have

857 (57 ) = = f: ((6107)(577%,\/7\'](67 V)) + (&207)(57 7;,\’7\'/(&7 V))‘%%?X(é? V))dWT

Thus, we have a linear SDE whose solution is given by

ao-T s T, \So
Ocvbs (V) = =03 (&, )J - V)f(yf 7(5 (5) Do,
a Or s T, \S a Or ,
e,y )L (0107) (&, 1Y (5ﬂt)>((£2 ))(m V(g v ))dﬂ

Again, (2.5.4) follows from Theorem thanks to Assumption and estimates (2.5.3) and
2.5.9).
Eventually, the same argument can be used to prove (2.5.5): indeed, differentiating (2.5.1)) we

have that 0377{7‘2 satisfies a linear SDE whose solution is explicit. Thus, for || = 2, 657;2;’ can
be expressed in the form (2.4.4)) with the coefficients satisfying Assumption for some ¢ > 1.
Applying Theorem with § = 1 we get estimate ([2.5.5]). O

We introduce the “hat” operator which transforms any function fs(§,v), s € [7,T], into

fra(&v) i= Fo(&m5(E V).
Let us(€, v) a solution to on [7,T]. Then we define

0rs(€) = 0rs (s (Q), 07,6(C) i= exp (— f RIS if

T

h? (g‘)dt)

We have the following

Theorem 2.5.2. uy is a solution to the SPDE (2.1.2)) on [7,T] if and only if vr s is a solution on
[7,T] to the PDE with random coefficients

dBUT,S(C) = (ai,s(C)ava,s + bi,s(oaVUT,S(C) + Cj,s(C)UT,S(O) ds, B= Os + Yo, (2.5.7)

where

YT,S = YT,S(§7 V) = (7‘11'\:‘3/)1(57 V)aﬁ - (77'3(57 )) ( VfYTs) 1(57 )aff)/ (57 ) LS (258)

is the first order operator identified with the vector field in (2.1.4)) (with d = 1) and the coefficients
by., c;. are defined in (2.5.11) below. Moreover, a}. € bCTT, bt ., c* € bC?yT, Y, € CS:IT,

7'7 Cr, 7, Cr,.

&V(YT,.)l € bC2p for any & € [0, ), and there exist two mndom, finite and positive constants Ai,
X2 such that, for s € [7,T], ¢ € R?, we have

AT <ak () < A, A< 0,(Yrs(O)1 < g, (2.5.9)

with probability one.
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Proof. By a standard regularization argument, we may assume u € C2 1. so that equation (2.1.2)

can be written in the usual It6 sense, namely
dus(C) = (As ¢ — 110 )us(Q)ds + Gs cus(s)dWs.
By the It6-Wentzell formula and the chain rule we have
. - = 1.9 5 == . s
di,s = <AS,<UT7S — Y01ty s + iozﬁagum - 62g8,40775> ds + hr stz sdWs
= ('ST,S - YT,S) éLT,Sdt + iLT,sﬁT,des,

where £, 5 1= Gy 50py + br 50y + 75 With

—_

e = (@A) e — 02,
BT,S = (5;/7?2)_1 (67,5 - a"1',5]A7f7',s - (81/771—\:;)_15'7',5&1/67,8 - dT,SaI/V ;YZ) s (2510)

67"5 = éT’S - (anYE,}Z)_lOA—T,Sal/iLT,S'
Notice that the change of variable is well defined by the estimates of Lemma Next we compute

the product v, s = 07 slr s by the Itd formula do, s = — QT7SiLT7SdWS and therefore

dvT,S(C) = QT,S(C)dﬁT,S(C) + aT,S(C)dQT,S + d<ﬁT,(C)QT,(C)>S
= (0r.5(Q)Lr5 (07 207,5)(C) = 0r,s(O)(Yrs (07 2076))(C) — h2 (Q)vr5(C)) ds.

Now we notice that

QT,S(O (YT,S(Q;;UT,S))(O = (YT,SUﬂS)(C) + (YT,S In Q;;)(C)”T,S(C)a

and eventually, by a standard application of the Leibniz rule, we get

dU‘r,s(C) = (a;k—,s(g)avvvf,s(C) - (YT,SUT,S)(C) + b:,s(C)avU‘r,s(C) + Ci,S(C)UT,S(C)) ds,

where

_ 1 2,4 .
075 = s = 5(075) " (Grs = 07), (2.5.11)

b%, = brs + 207,50, In 0, ],

¢y =Crs+brs0yIn g;i + Grs (OyIn g;i +0%In Q;i) +Y, lng;i - his.

The regularity of the coefficients and (2.5.9)) follows directly from ([2.5.11f), Assumption and
Lemma 2.5.1] O
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2.6 Time-dependent and drift adapted parametrix method

In this section we study equation (2.5.7) for fixed w € 2 and 0 < 7 < T < 0. More generally, we

consider a deterministic equation of the form
Ksu(s, () = Lsu(s, () — dsu(s,() =0 (2.6.1)

where

1

Lsu(s, ¢) 1= 5als, )duwuls, C)+b(s, ()dvuls, ¢) — (Y(s, ), Veuls, ¢)) + e(s, Quls, ¢),

for se [1,T], ¢ = (£,v) e R?, and Y = (Y1, Y3) is a generic vector field. We assume the following

conditions on the coefficients.

Assumption 2.6.1. There exist positive constants o, \1 such that a € CT“’T with Holder constant
A1 and
M <a(sQ) <A, (s, Ol +le(s, Ol < (5,0 € [, T] x R (26.2)

Assumption 2.6.2. Y € C. 1 and is uniformly Lipschitz continuous in the sense that

Y(s,2) = Y(s, Q)|

sup < Ao
selr,T] |z — (]
z#(
for some positive constant Ao. Moreover 0,Y1 € C?,T and
A< a,Y1(5,¢) < Mg, (5,¢) € [1,T] x R% (2.6.3)

Notation 2.6.3. Similarly to Section we introduce the parameter
O = (Oé, )\1, )\2, T)

which gathers the important quantities appearing in the assumptions.

Remark 2.6.4. When the coefficients are smooth, conditions (2.6.2)) and (2.6.3)) ensure the validity
of the weak Hérmander condition: indeed the vector fields /a0, and Y, together with their com-

mutator, span R3 at any point. In this case a smooth fundamental solution exists by Hormander’s

theorem.

Since the coefficients are assumed to be only measurable in time, a solution to (2.6.1) has to be

understood in the integral sense according to the following definition.

Definition 2.6.5. A fundamental solution I = T'(t, z; s, () for equation (2.1.2)) is a function defined

for T <t <s<T and 2z, € R?, such that for any (t,z) € [1,T) x R? we have:
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i) fort <ty <s<T and z € R T'(t,z;-,-) belongs to Cy, T, is twice continuously differentiable

mn v and satisfies

S

L(t, 255,70,5(C)) =L'(t, 23 to, ¢) +f (a(g,%o,g(C))ﬁwF(t,z; 0 Yto,0(€)) +
to
+0(0:710,0(C)) ATt 23 0,710,0(C)) + €2, 71,0 (ONT' (2 25 0, %O,Q(C)))de
where vy, s(2) stands for the integral curve of the field Y with initial datum v 4,(C) = ¢;

ii) for any bounded and continuous function ¢ and zo € R?, we have

lim J T(t, z;8,0)p(2)dz = (z20).
R2

(s,0)—=(t,20)
s>t

The main result of this section is the following

Theorem 2.6.6. Under Assumptions[2.6.1 and[2.6.9 there exists a fundamental solution I" for the
PDE (2.6.1). Moreover, there exist two constants p = u(0) =1, C = C(O©) = 1 such that, for any

(=(v),zeR?andT <t <s<T,

CTITM (W Dy, ¢ = 15(2)) < T(E,258,0) < CT™™ (D54, ( —5(2)),  (2.6.4)
C ea
|al/r(t’ z3 8, 57 V)| < ﬁFh t (MDs—t)C - ’Yt,s(z)) ) (265)
C
|6V1/F(t) Z58, g? 1/)| < ;Fheat (MDS*MC - ’Yt,S(Z)) . (266)

where Dy is as in Theorem and vt,+(C) is as in Definition .

2.6.1 Proof of Theorem [2.6.6

Parametrix expansion

For fixed (tg,20) € [7,T) x R?, let

S

ves(20) = 20 + L Y (0. m0(z0) do.  se[n T, (2:6.7)

be the integral curve of Y starting from (¢o, zo). Following [14] we linearize Y = Y (s, () at (¢o, 20)

setting
?to,zo (87 C) = Y(Sa 'Yto,S(ZO)) + DY(Sv fYto,S(ZO)) (C - 'Yto,s(z())) ’ S€ [t07 T]a C € RQ-

where DY stands for a reduced Jacobian defined as

0 oY1
DY := .
0 O
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Then we consider the linear approximation of L4 defined as

~ 1 v
2020 = Za(5,%005(20) s — (170 (5,0), ).

The diffusion coefficient of £ depends on s only (apart from tg, zp that are fixed parameters),

~to,zo0
S

while the drift coefficients depend on s and linearly on &, v. Notice that £ — 05 is the forward

Kolmogorov operator of the system of linear SDEs

dZs = Y% (5, Z,) ds + 4 Ja(s,Vty,s(20))e2dBs. (2.6.8)

Let Z* denote the solution of (2.6.8)) starting from z at time t € [to,T'). Then Z5* is a Gaussian
process: the mean ?f?s’zo(z) =F [Z;’Z] solves the ODE

S
’NYf?Syzo(z) =z+ J Yoo (o, ,7:?87%(2))(1@, s€[t,T], (2.6.9)
t
and the covariance matrix is given by
S
Ciy™ = f a(0,V0,0(20)) (ER;?e2) (BN e2)" do, (2.6.10)
t

where E™ is the fundamental matrix associated with (DY)(s, 7z,.s(20)), that is the solution of

S

EZ?;ZO =1Id + J (DY)(u,7t07u(zo))EZ?ﬁZ0du, s € [o,T],
)

with Id equal to the (2 x 2)-identity matrix.

Lemma 2.6.7. For any zo € R? and 7 <ty <t < s < T, we have det CNf?S’ZO > 0.

Proof. By Assumption it is enough to prove the assertion for a = 1. Suppose that there exist
ze RA\{0}, 20 e R and 7 < tp < t < s < T such that <C~1ff’foz,z> = 0. Since CNfOSZO is positive

semi-definite, this is equivalent to the condition
|(EZ?§Z°e2)*z\2 =0, a.e. o0€(ts),
that is ((E2°)*2)s = 0, for a.e. g€ (t,s). We have
Ba(EI5)* 5 = —DY*(0,0,0(20)) (E0570) "2,

and therefore
0 = 0o((ER)*2)2 = 0, Y1(0: Vi.0(20)) (BRF0)*2)1.

Since ((Eg%)*z)2 = 0 and 8,Y; € [A\; 1, A2] by Assumption we have (ER%°)*z = 0, for a.e.
0 € (t,s), which is absurd. O
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Lemma ensures that the Gaussian process in (2.6.8) admits a transition density that is
the fundamental solution of EN';O’ZO — 0s. To be more precise we have the following:

Proposition 2.6.8. For any 0 <7 <ty <t <s<T and z,(, 2 € R?, the function

1020 (8, 2; 5, ) o= Tho0t (CN;,OS’ZO,C - 70"20(?:))

t,s
is the fundamental solution of L — 0, evaluated at (s,¢) and with pole at (t,z).

We are now in position to define the parametrix Z for Ky in (2.6.1). We set
Z(t,z;8,() = ft’z(t,z;s,C), r<t<s<T, z(eR%

Since
S

Ye,s(2) = 2+ J

Y (0, e.0(2))do = 7 + f P2 (0, 70.0(2))do
t t

we have v, 4(z) = ﬁfj(z) and therefore the parametrix reads
Z(t,25,¢) = T (G172, ¢ = (2)) (2.6.11)

for 7 <t <s<T and z,(eR2

Finally, in analogy to Section [1.4] we set

[(t,z;8,0) = Z(t,z;5,0) + (P® Z) (t, 2; 5, (), (2.6.12)
with
O(t, z;5,() = Y HE(t,2;5,0), (2.6.13)
k=1

for H(t,z;s,¢) = (KsZ)(t,2;s,(), and we are going to prove that I' is indeed the fundamental

solution for &Cs.

Gaussian bounds for the parametrix
Proposition 2.6.9. There exists a positive constant p = u(©) =1 such that
pD sl < G060 < uDys=Cl’, T<t<s<T, 2,(eR” (2.6.14)

Proof. By Assumptions [2.6.1]it is enough to prove the assertion for ¢ = 1. For A > 0, let Uy be the
set of 2 x 2, time-dependent matrices )(s), with entries uniformly bounded by A, and such that
(V(s))12 € [A"L,A]. Let Y(s) €Uy and

S
Cis = f (Ep5€2) (Eps€2)™ do, T<t<s<T,
t
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where &, ¢ denotes the resolvent associated with J(s). We split the proof in two steps.
Step 1. First we prove that
cHCPP < (Coag, O < el¢P (2.6.15)

where ¢ = ¢(\) > 0. As in [I4] (see Proposition 3.4), we consider the map
U L2([0,1], M2(R)) — R, (V) :=detCo

where M3(R) is the space of 2 x 2 matrices with real entries. Notice that Uy is compact in the
weak topology of L%([0, 1], M2(R)) because it is bounded, convex and closed in the strong topology
(cf., for instance, [8], Corollary IT1.19). On the other hand, ¥ is continuous from L?([0, 1], M2(R)),
equipped with the weak topology, to R. Therefore the image W (i) is a compact subset of R~ by
Lemmam Thus there exists A > 0 such that inf{detCo1 | Y € Up} = A~! and sup{|Co1| | V €
Uy} < A. This suffices to prove (2.6.15)).

Step 2. We use a scaling argument. For every 7 < t < s < T we show that D CisD_1

1
Vs—t s5—

coincides with some matrix CAOJ to which we can apply the result of Step 1. We have

s * dQ
D\/%Ct,spﬁ :L ('D\/:Ttgg’S’D\/Qe2> <,D\/31Tt€9’sp\/ge2> E

Vs At * st
’s 7S —_— 78
= JO (597162) (59’182) = CO,l

o~

where
5t,s
5917@2 - D\/%gt"’_gl(s_t)?t"’_QQ(s_t)D\/ s—t7

solves the differential system

OEiln = (5= DD _L VIt + 02ls —0)Dysmityilys = V(@€

with éé:‘z = I5. A direct computation shows that

V()12 = +ols =)o e NHAL 1Y(0)o < (1+T2)[Y(0)]oo-
Therefore ([2.6.15)) holds for CAif), uniformly in ¢, s, with ¢ dependent only on A and T O

Remark 2.6.10. Since, fort <t <s<T, wa”j is a symmetric and positive definite matriz, (2.6.14])
also yields an analogous estimate for the inverse: we have

2 2

p D 1 ¢ , r<t<s<T, z,(eR> (2.6.16)

Vot

The following result is a standard consequence of (2.6.14) and (2.6.16)) (cf., for instance, Propo-
sition 3.1 in [16]).

<<<5I?S’Z°>—1<,<><u]2> ¢

s—t
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Proposition 2.6.11. There ezists a positive constant pu = u(©) = 1, such that

pPT (1Dy g, ¢ = s(2)) < Z(E 238, C) < T (D, € = 71,6(2)) 4 (2.6.17)
for every r <t <s<T and z,( € R

Next we prove some estimates for the derivatives of Z(t, z; s, (). We start with the following

Lemma 2.6.12. We have

N C
_\2—t to,z0\—1
(s —1t) ((Ct,s ) w)i < s—t ‘D\/:Ttw ’ (2.6.18)
s C
_ p\4—i—j 0,20\—1
(s —1) ((Ct,s ) )J < (2.6.19)

for everyi,je{1,2}, 7 <s<t<T and w,(, 2z € R%

Proof. We have

—1i 510,20\ — 1 S o

(s =7 |(€h) ). _WKD @) 1Dmf>ﬁ%w)
1 Sto.70r 1

< [P @Dy o]

In order to get (2.6.18)) it suffice to notice that, by (2.6.16]), we have

5t0,20

HD\/s—t( t,s )_ID\/t—s
Taking w = e; we also get (2.6.19). O

< C.

We are ready to state the last result for this section, which is a standard consequence of estimates
(2.6.18), (2.6.19) and Proposition [2.6.11] (cf., for instance, Proposition 3.6 in [16]).

Proposition 2.6.13. For any j = 0,1,--- there exist two positive constants Cj, pj = 1 depending

on © such that, for any 7 <t <s<T and ¢ = (£,v),z € R? we have
. 3itj
B3 2t 2 5,6,0)] < Cigls — ) 5T (D, € = 71u(2)) (2.6.20)

and, for every ¢, (" € R? such that |¢ — {'|p < /5 —t,

.. .. 2 — (!

003 Z(t, 235 8,C) — 0O Z(L, 23 5, ) < C’j(|t)€+‘5+jfheat (1jDs—t,C —15(2)), (2.6.21)
s — 2

where |(x,v)|p 1= |x\% + |v] is the spatial part of the 6-homogeneous norm in (2.3.2). Notice as well

that |¢ — {'|p = dg ((s,€), (s,¢")) where dg is the intrinsic distance in (2.3.3)).
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Proof. For simplicity consider the case ¢ = 1, j = 0, since the other cases are analogous. By ([2.6.11])

we have
02tz ,6.0)] < | (€ Mw) | 2(t215,0)

(by (2.6.18) and Proposition [2.6.11))

w

<C(s—t) 2

D 1w
Vs—t

[heat (uId, D . w>
L

s—t

(by (1.4.18))

< C,(S — t)_%l“heat ((M + €)Id,’D1UJ>

Vo=t

= C'(s =) 2T (1 + &)Dymt, ¢ = 0s(2))
Let us now turn to estimate (2.6.21]):

|a§Z(taZ;SaC) —aEZ(t,Z;S,C/”
< sup (|02Z(t, 25, C+ M = ONC = il + 100, Z (8, 235, ¢ + A = O)IIC = ¢al)

Ae[0,1]

<((=17°l¢ =+ (s =1)72¢ — ¢'lB) Nt PRt (UDs—, ¢+ A(C =€) = .(2))

< (s —)72|¢ = BT (WD, ¢ — ,5(2))

where in the last inequality we noticed that, for |¢ — ('|p < +/s — 1,

—t s—t

D1 (CHAC =0 = a2 [P_u (€= ruateh)| [ 06 - )

i

> [D_ (= eale)| -2

1
s—t

The proof is complete. ]

Gaussian bounds for the parametrix series

Next we need some estimates for the iterated kernels which appear in the parametrix expansion.
Recall from Chapter 1, Proposition the crucial role of the reproduction property of the Gaus-
sian kernel I'"® to obtain estimates that are uniform with respect to the iteration parameter. This
passage here is not trivial, since it becomes necessary to handle both the presence of the dila-
tion matrix Ds_; and, most importantly, the transport term ;5. We start with some preliminary

lemmas. For simplicity we assume 7 = 0 throughout the section.
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Lemma 2.6.14 (Reproduction formula). For any ¢/, " > 0 we have

dac

2

A(Cla c”)ilrheat ( Ds—t7 CH - CI) < J]RQ Fheat (C/DS—Qv n—- CH) Fheat (C/IDQ—ta C/ - 77) d77

< A(C/, C//)Fheat ((C/ v C”)Ds—t, C” _ C/) ,

2(c've)
N

!N 2 rom
Y ’ ) ’ -
forevery0 <t <po<s<T,(, ("eR? where A(c, ")

Proof. Tt is a direct consequence (see also [I4], Lemma B.1) of the following trivial estimate

d Anc”

2

Doy < Ds_y+ "Dyy < (' v ")Ds_y.
O

Remark 2.6.15. Let 7 =0, T = 1. If Y is a vector field satisfying Assumption and s 1S

the integral curve
S

Su(z) = 2 + L Vo(3a(2))do,  se0,1],

then 41(+) is a diffeomorphism of R%. Moreover, since Y is Lipschitz continuous, we have
mHz = (Ol < () =< <mlz =), 2 CeRY (2.6.22)

for a constant m which depends only on As.
Lemma 2.6.16. Let v, 4(2) be as in (2.6.7). There exists a positive constant m, only dependent on
Ao and T, such that

D=2l € [P (i) 0 < m{D_ e, e

Vs—t

for every 0 <t < s <T and z,{ € R?.

Proof. We use again a scaling argument: we set 2/ = D vs—t% and

Ye(2) = D_1_utrots—1)(2), Y(o.2)= (s~ HD_1 Y(t+o(s—1),7),  ee[01].

Then we have
e .
Yo(2) = z + J Yo (Fu(2))du, o€ [0,1].
0

As in the proof of Proposition we have that Y satisfies Assumption By Remark [2.6.15
estimate (2.6.22)) holds for 4,(z). To conclude, it suffices to substitute z and ( with z =D_1_ =z

Vs—t

and ( = D%C in (2.6.22)). O
s—t
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Assume now we need to compute
55,0 = [T (WDt = 2 () (4Dar, € = 7 (0))
In order to apply Lemma we need to use and get
Itz <m | TP (uDr i,y — 71,7 (2)) T (mpDs 7, 757(C) — ) dy
< COMT™™ Dy, 35 (C) — 71 (2))
< C'(m)rheat (mQ,uDs,t,C —Y1,5(2)) -

This precisely show how the diffusion constant grows at each iteration, and therefore a direct
estimate of the series seems not possible. This problem has already been addressed in the
work of Delarue and Menozzi [14]: here the authors truncate the series at a suitable iteration and
proceed by estimating the remainder through some stochastic control techniques. We will resort to
similar computations to get some crucial bounds in chapter four.

Here we notice that, by the results in [I4] it is possible to verify that the full parametrix
series converges: the idea is to exploit the lower bound in [I4] to rewrite the controls ,
— in terms of the transition density of some auxiliary diffusion, for which an exact

reproduction formula holds. More precisely, for some § > 0 we introduce the SDE
dZs =Y (s,Zs)ds + deadBs, 5= 0.

By [14], Theorem 1.1 and [48], Theorem 1.1 there exists the corresponding density ps = ps(t, z; s, (),
satisfying the two sided bounds

C_lrheat (C_lpsftac - %,s(z)) < p(S(ta Z5 8, C) < Cl“heat (CDS*D C - ’Yt,s(z)) ’

for all 0 < t < s < T and z,¢ € R?, for some constants ¢,C > 1 depending on Ay, T" and 4.

Therefore, with the notations of Propositions [2.6.11] and [2.6.13] and noting that

]z\BZ\/E‘Dﬁ(z)‘B, zeR? se[t,T),
we can chose p and then 6 = 6(u) such that, for alli = 0,1, 5 =0,1,2, 8€[0,3],0<t<s<T
and z, ¢ € R? we have
. B—3i—j
¢ = s ()IBIOERZ(t 25,6, v)| < Cls — 1) 2 ps(t, 235,0), (2.6.24)

and, for any ¢, ¢’ € R? such that | — (| < /s — 1,
I(—{'IB

—— 5 Ps(t, 258, C),
2

K—%A@@@%Z@mao—%%Z@m&C)<C( .
.
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where C only depends on O, § and 5. Similarly, we also have

i A7 T3t0, 2 Bodin
|C_’yt78(z)|g|a§airt0’ O(t7z;87§7 I/)|(t0,zo):(s,g) < C(S _t) 2 7p5(t72;37<)7 (2625)

Indeed, by Lemma [2.6.16

= mil

D (3500 - 2)

Vot

D_1 (754(C) — =)

Vot

’D\/;Tt (C - ’Yt,s(z))

)

and analogously

<m? —

L <m?\D_1_ (¢~ na(2))
and therefore one can argue as in Propositions [2.6.11] and [2.6.13]

We fix from now 4 such that (2.6.24)-(2.6.25) hold, and write p = ps. In particular we have

Lp(t,Z; 0,y)p(0,y;s,Q)dy = p(t, z; 5, C), 0<t<o<s<T, z(eR%. (2.6.26)
R

)

D (c- )

We are now ready to prove the main result of the section.

Proposition 2.6.17. For every t € [0,T], z € R? the series (2.6.13) is uniformly convergent in

10, T] x R2. Moreover there exists a constant C = 1 such that

|q)(t,2:;3,€)’ < (S_f')lgp(taz;sac)a (2627)
Bt 255.0) — Bt 2:5,()| < c('c_‘gl'f (p(t,z5,Q) +plt.mi5,C))  (26.28)

for every 0 <t <s<T and z,(, (" € R

Proof. The proof follows the same lines as for the parabolic case (cf. Proposition , as well as
for the Kolmogorov operators with linear drifts (see [58], Lemma 2.3 and Corollary 2.3, and [16],
Lemma 4.3). In the former case, the proxy operator L£5* does not need to include any first order
derivative, since they don’t add any singular contribution to the estimate of H = K;Z. On the
other hand, for the Kolmogorov case, the first order derivatives in the degenerate directions carry
the most singular contributions: in [58] and [16] the authors include the full drift Y in the definition
of the proxy L7 so that they don’t add in the estimate; in the present case however, L5 include as
approximated version of Y which poses the main concerns, because it leaves some critical singular
terms to handle. It turns out that Assumption [2.6.2]is enough to make the procedure work.
We prove the preliminary estimate

M,
i —p(t,2;8,(), 0<t<s<T, z(eR? (2.6.29)

H®(t, 2:5,0)| <« —————
(-t %
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where M, = C*
2

For k = 1, we have

ri(3)
E

(i) and I'g is the Euler Gamma, function.

H(t,z;s,¢) = (Ls — EI;’Z)Z(t,z;s,C)
% (a(5,0) — al5,71.5(2))) A Z(t, 2 5, C)+b(s, )0y Z(t, 5 5, C)+
+{Y(s,¢) — }N/t’z(s, C),VZ(t, z;8,())+c(s,Q)Z(t, 2;8,C)

=: 1+ Es + E5+ E4.

By Assumption [2.6.1) and (2.6.24])) we have

[Er] < M€ —15(2)[* 0 Z (8, 235, C)
< O(¢ = s(2)[% +1¢ = s (2)[F) 0w Z(t, 235,¢) < Cls — )37 p(t, 235, 0).

By Assumption [2.6.1) and (2.6.24]) we also have

Bz + Ea| < C(s — )7 2p(t, 255, ).
As for E3, we have

(Y (5,¢) = Y (5,O))1] = [Ya(s,Q) = Yi(s,9,5(2) — 8, Y1(5,79,5(2)) (€ — 7s(2))2
< [Ya(s, Q) = Ya(s, (9,5(2))1, G2) |+
+[Y1(s, (1,5(2))1, C2) = Y1(8,7,5(2)) — A Y1(5,7,5(2)) (¢ — Y,5(2))2|
< C (¢ = sl + (¢ = ms(2))2' )

because 0, Y7 is Holder continuous by Assumption here we use the elementary inequality

1
fo (F'(y +tz — ) — F )@ — y)dt] < calz — y[I*e.

which is valid for f € C'T®. On the other hand, we have
(Y (5,¢) = Y (5,0))2] < Aal¢ = s(2)]:
Therefore, by (2.6.24]), we have

‘E?)‘ < C (‘C - '715,5(3) 1B+aa§Z(t7Z;s7C) + K - ’Yt,s(z)’BaVZ(tyz;&C)) +
+ Cl¢ = 71,5(2) 5 (0 Z(t, 235, C) + 0, Z(, 2; 5, ()
< C(s—t)2 7 p(t, 235, 0).
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The general case k > 1 follows by induction as in the proof of Proposition [T.4.8] exploiting the
reproduction property ([2.6.26)). Then the convergence of the series and ([2.6.27)) follow immediately.

Estimate ([2.6.28) can be directly derived from (2.6.27) if | — {'|p = v/s —t. When |( — {'|p <

Vs —t we may again proceed by induction. We consider the case kK = 1 only. Write

|H (t,2;5,¢) — H(t, 25 5,¢)|
= (0= 27) 2(t,25,0) = (L4 = £47) Z(t, 255,C)
< la(s,¢) — a(s, ()] |0 Z(t, 2;5,()]

+la(s, Q) — a(s,ve,s(2)| |0 Z(t, 2 5,() — O Z(t, 3 5,()]

+|Y1(5,¢) = Yi(s,¢") + 0 Y1(5,76,5(2))(C = ()] |06 Z (¢, 255, (')

+ [Y1(s,¢) = Yi(s,71,5(2)) + 0,Y1(5,71,5(2)) (¢ = 1,5(2))2| [0 Z (8, 255, C) — 0 Z(t, 235, (')

+ {non singular terms}

(by (2.6.24)-(2.6.25)) and neglecting the terms in the parentheses for brevity)
e—dls
(s — t)%_%
A+
Lle=¢l

. / |C_</|B
o) p(t,z;5,¢) + (s o2 30

< C(wp(t, z8,¢) + p(t, 25, Q)+

s—t

p(t,Z;s,C)Jr"')

(using that |¢ — ¢'|p < (s — 1)?)

< C% (p(t, z;8,C) + p(t, z; SaC’)) .
(s—t) 1

Potential estimates and C? regularity

Proposition 2.6.18. There exist positive constants C, p = 1 depending on © such that, for any
j=1,2,0<t<s<T and ¢ = (£&,v),z € R? we have

GIT(t, 215, &, 0)| < Cs — ) 3T (D4, ¢ — y.4(2)) .

Proof. The derivative of the main term of the parametrix expansion &7 is readily controlled using
the bounds|2.6.20f The main difficulty is therefore to prove that 6{;(@ ® Z) exists and satisfies the

indicated bounds. We proceed in two steps:

1. We prove that & ® é’f;Z is indeed well defined and satisfies the stated estimates.



2.6. TIME-DEPENDENT AND DRIFT ADAPTED PARAMETRIX METHOD 65

2. We justify that actually ® @ d)Z = 813;((1) ® Z). This last identity amounts to say that the spatial
derivatives can be exchanged with the integrals of the time-space convolution &. This point is
established by taking the limit in a suitable cut-off in time procedure which allows to get away

from the pole.

Such an approach was already used for instance in [24].
The first derivative estimate directly follows from the parametrix representation (2.6.12)), esti-
mate (2.6.24)) and the controls of Proposition [2.6.17, Namely

(0©2,2)t55.01 < C | (0=0F =07 | pltzi0.00pless Odude

< C(s— t)_%Jr%p(t, 2;8, Q).

When trying to get controls for higher order derivatives, some time singularities appear in the
integrals. A way to overcome such a problem is to exploit cancellation properties of the derivatives

of the Gaussian kernels, namely for fixed (o, 29) € [0,T] x R%:

N T (t2y5,()dz =0, j={1,2}. (2.6.30)

Then we have

(@®5uu2)(t,2;8,0 = J f O(t, 25 0,y) ((91,1,2 - @Wf‘tom) (0,y;5,C)dydo+
t JR2

+ J JR2 (®(t, 2 0,y) — (L, 2:0,9)) BT (0, y; 5, () dydo.
t

It then remains to appropriately choose the freezing parameters (to, z9) and 3y’ to exploit the regu-
larity of the terms in the above r.h.s. in order to balance the singularities deriving from the spatial
differentiation 0.

To do so, and conclude the proof of Proposition we need the following lemma, whose
proof is postponed to the Appendix [A]

Lemma 2.6.19. There exist positive constants C, = 1 depending on © such that, for any j =
0,1,2, (= (&,v),2e R2 and 0 < t < s < T, we have

a—

<CO(s—1) T T (4D, ¢ —yi4(2).  (2.6.31)

é’ifto’zo t,2;5,C) — L Z(t, 2 s,
( ¢) ( Q) (torm)—(5.0)

The above Lemma suggests that a natural choice consists in choosing (to,20) = (s,¢), ¥ =

¥s,7(¢). Indeed one gets from ([2.6.30) and Proposition (2.6.17))
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‘ q)C@al/uz t, 28 C)‘

< [ (0= 03I Dty = 202D (5~ )3T (4D, — 7o) i

|2
+ CJ J Iy - ,78791_), (Fheat (MDQ—ty Y- 'Yt,g(z)) + [heat (UDg—t,7s,0(C) — ’Yt,g(z))> x
R2 — t 4

(s — 9) theat (D59, ¢ = 70,5 (y)) dydo
(reasoning as in the proof of Proposition [2.6.17])
< O(s = 1) T (D, ¢ — y1.4(2)) (2.6.32)

Observe now that the previous computations could be reproduced to estimate for all € > 0

AG(t,2;5,¢) = GZ/J f O(t,2;0,9)Z(0,y; 5,¢)dydo = J ®(t, 25 0,9)0,Z(0,y; 5, Q)dydo,
t+e JRY R4

t+e
where the last equality follows from the bounded convergence Theorem. We would obtain, uniformly
in e € (0,¢€p), €p > 0 meant to be small, a control similar to for 8£G5(t, 2;8,().

Letting now € go to zero, we derive that &%(® @ Z)(t,2;5,¢) = (® @ &L2Z)(t, 2 s,¢), which
together with completes the proof of the statement for the derivatives.

Proof of Theorem |2.6.6

Let us now derive, under Assumptions[2.6.1] and [2.6.2] - 2| the main result of Theorem [2.6.6] We already
proved that the function I' = T'(¢, z; s, C) defined in (2.6.12)) belongs to Cy, 7 for any 7 <t < tg < T,
z € R?, is twice continuously differentiable in the variable v and satisfies the Gaussian upper bounds

in (2.6.4))-(2.6.6)). It remains to prove that I" is indeed the fundamental solution for s and that it

satisfies the lower bound in (2.6.4).
We introduce a regularized version of the PDE (2.6.1)): let a® := ax ¢, b° := b*x ., ¢ := c* g,

Y=Y *p. where p.(-) = e 3p(-/2), ¢ € C(R3;R,) is a standard time-space mollifier in R? and

* denotes the time-space convolution. It follows from the Héormander theorem that the PDE

a*(s, Q) (s, C) + b°(s,¢)dvuls, C) + (s, Qu(s, ¢) = dsuls, ¢) +{Y*(s, (), Vcu(s, (),

admits a smooth fundamental solution I'* = I'*(¢, z; s, (). In particular I'® satisfies

S

P(t, 2 5,75, 4(C)) =T*(t, 2:t0,C) + f

+0°(0,75,0(0) 0T (2, 25 0,75, 0 () + € (0,750 (OIS (2, 25 0, vfo,g(C)))dQ

(as(g, Vig.0(©)) O TE(t, 25 0,75, o(C))+ (2.6.33)

0
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for every t < to < s <T and z € R?, where 7f ,(¢) stands for the integral curve of Y with initial

datum v;, 4, = ¢, and

lim j I'*(t, z;5,C) f(2)dz = f(z0), (2.6.34)
R2

(s,0)—(t,20)
s>t

for any bounded and continuous function f and zy € R?. Importantly, it also satisfies the upper

bounds in (2.6.4)-(2.6.6)), uniformly in € € (0,£¢], g > 0 meant to be small.

On the other hand, it is clear that we can write
Lo(t, 258,¢) = Z°(t, 235, ¢) + (2°® Z°) (L, 235, C), (2.6.35)

with the obvious definitions of Z¢ and ®¢, which satisfy as well, uniformly in € € (0, ¢] the estimates
in (2.6.17)), (2.6.20), (2.6.27), (2.6.28]).
Observe now that the RHS of (2.6.35)) converges pointwise to I' by construction. Similarly oire

converges pointwise to AN j = 1,2. Moreover, a direct computation shows that, for any z € R3,

to € (t,T), there exists a constant ¢ such that

D\/% (¢ — %,g(z))‘ —c< ’D\/% (C — 7{2@(2))’ < ‘D\/% (€ —M0(2)| + ¢,

for any € € (0,¢0], 0 € [to, s] and ¢ € R?. Therefore we deduce that for any z € R?, 7 <t <tq < T,

the functions 0ZFE(t, z;+,+) converge pointwise and boundedly to GZI‘(t, 2;+,+) in [to, T] x R3. Thus

we can take the limit for ¢ — 0 in equations (2.6.33)) and (2.6.34)) under the integral signs by the

bounded convergence theorem and get the first part of the thesis.

Lower bound for the fundamental solution. Similarly to the parabolic case, we first derive a local
bound, starting from the parametrix expansion (2.6.12f) and exploiting the results of the previous

Sections . We have
[(t,2;5,¢) = Z(t, 2;5,() — J JRQ |D(t, 25 0,y)Z(0,y; 5,¢)|dody =
t

(by Proposition [2.6.11] and Lemma [2.6.17)
> C—theat (,U'_lps—tv C o P)/t,s(z))
S
- [ Cle= 03 [ T Dty D (1D~ 20 (0)) oy >
t

_ oar . C 2 ~hea
> O (1 Dy, ¢ — s(2)) — S=1) 2T (UDyy, € — y1.6(2)) -

Let dy, t,(21, 22) = ‘D 1 (22— Yt (zl))‘ denote the “control metric” of the system. A direct

A/ ta—t1

computation shows that TP (¢D,_;, C—s(2)) < rheat(c=1p 4, C—,s(2)) if di 5(2,¢) < 0. where
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Oc = A::‘élnc Then we have

[(t,2;5,¢) = (;2 — (5;)2> rheat (=D 4 ¢ — y1.6(2)) (2.6.36)

1 _
= ﬁrheat(ﬂ "Dy, ¢ — 1.5(2))
if dis(2,¢) <opand 0 <s—t<Tg:= C-a.
In order to pass from the local to the global bound, we use a chaining procedure: we first define
a sequence of points (tg, zx) such that tg = t, 20 = z,tapr+1 = S, 2pm+1 = ¢ for some integer M (to
be defined later), along which we can control the increments with respect to the control metric
dt, o (2K, 2k4+1)- Let us consider the controlled version of the system ([2.6.7)):
0
Yro(2) = 2+ f (Y (u, Y,u(2)) + v(u)ez) du, o€ [t,s].
t
We have the following (see [14], Propositions 4.1 and 4.2):

Lemma 2.6.20. There exists a control (v(0))i<o<s with values in R? such that
i) the solution 1 ,(z) associated with v(p) reaches ¢ at time s, that is Py 4(2) = (;

i1) there exist two constants myi, ma > 0, only dependent on the constants of Assumptions

such that
2

s 2
2 2 mo
do = D - , s < D —_
t [v(@)Fde = m1|D_1_(C—,5(2)) Sup [v(e)l” < o= [P_L (€ = s(2))
We set
ti:t+iﬂ‘211:t+z’g, 2k = Yre, (2), i=1,---,M,

where 9 ,(z) is the optimal path of Lemma [2.6.20| and M is the smallest integer greater than
{K 2B, (20) T }
max{ ————— — > .

02 " Te

with K = %, where m, m1 and mg are the constants in Lemmas [2.6.16| and |2.6.20} Finally

we define the sets

Bi(r) = {yeRﬂ]m . 1>>MD (ziﬂ—%,tm(y))\@},

1
7
and write
M—
MtssOz | oo 0 rtsng) ) TT Tt5:Crtty1, Gyt Dltars o s - s
Bi(ee/3)  IBur(ee/3) it

(2.6.37)
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By definition of M we have

s—t T
== S St

On the other hand, if ¢; € B; (%) for i = 1,..., M — 1 we have
di; 541 (Gis Gi1)

,D\% (Ci+1 = Vtistigr (CZ))'

< ‘D} (Cir1 — ’Yti,tm(zi))‘ + ‘D}E (zi41 — ’Yti,t,-+1(zi))‘ + ‘D\If (zi1 = Yoot (G)

=: k1 + FEs + Ej5,

where F1 + F3 < %Q#. By Lemma [2.6.20, we have

1 tit1 5 %
By <mr ( [ o) dg>
t

@dt,s(zvg) < Ou
miv/M+1  12m2’

mo 93
< —
mi —

‘Dﬁ% (¢ — %75(,2))’ - (2.6.38)

s—t

Therefore dy, 4, (Cis Gi+1) < 0, and we can use (2.6.36) repeatedly in (2.6.37) to get
M 2\ M+1

()| (CWM +1)7 _C
EBZ(?)) ( e exp 2‘(_)M(M—I—l) )

Assume for a moment the validity of the inequality

‘Bi (%")‘ > Corr <A‘21t1>2 0 (2.6.39)

for some positive constant C (only dependent on the constants of Assumptions 2.6.2)). Then

T(t,2;5,¢) > (20) M+

we have

(t,25,¢) = C1Cy"

;ex (_C 2M> > Lex (_C4M>
o /det Doy P\ 2% ) T orJdetD, P\ T2 )

. . _ K2d? (z, K2d? (2,
for some positive constants C1,...,Cy. Now, if TTC1 < % and M < 2%, we have
n w
Cs

C _
F(ta Z5 8, C) = exp <—25d?75(2’7 C)) = Cﬁrheat(CB 1DS—t7C - ’Yt,s(Z)>-

277'\ /det Ds—t

On the other hand, if M < 2TT;' then

Cy Cr < Cs
p

> ex =d? (z, = TP (CMD, 4, ¢ — 1.6(2)),
2m\/det Dy 2my/det Dy, L <)> s Dty € = ,(2))

I'(t,z;s,¢) =

-5,
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and this proves the lower bound.
We are left with the proof of (2.6.39). Let B;(r) = {y € R2, \D% (y — z)| < r}: a direct
computation shows |B;(r)| = w22, Then it is enough to show that B; (%) 2 B; (%) for a

positive constant C' (only dependent on ©). For any y € Ez(r) we have

'Dls (y - Vti—l,ti(zi—l))' + ’D 1 (Zi+1 - fytivttJrl(y))‘ <

L
< "D\k (Z - zl) + ‘D\}g (Zz - 7t¢—17ti(zi1))' +m ‘D\}g (Z - zl) + m2 ’D\}g (zi+1 - 'Yti,ti+1(zi))
(by (2.6.38))
< O
<A +m)r+ 5
Then it is sufficient to take r < =2~ and this concludes the proof. ]

6(1+m)

2.6.2 Proof of Theorem [2.1.6

For any fixed t € [0,7) and w € Q, let K*) the operator of the form (2.6.1)), as defined by (2.5.7)
and (2.5.11)) through the random change of variable ;. By Assumptions [2.1.3 and Lemma

K® satisfies Assumptions for a.e. w e . Then, by Theorem K® admits a

fundamental solution I'®: we set

I'(t, 28,6 v) = F(t)(t, z; s,f,’y?’;”_l(f, v)), t<s<T, &veR, zeR2 (2.6.40)

Combining Theorems and Lemma we infer that T'(t,2;-,-) € Cng for any to €

(t,T1], is twice continuously differentiable in the variable v and is a solution to (2.1.2)) in [to, T] (in
the sense of definition [2.1.1)). Now, for any bounded and continuous function ¢ and zy € R?, we

have

f P(2)T(t, 255, C)dz — p(z0) = f P()TD (L, 2;5,C)dz — p(20)+
R2 R2

+ f 2(2) (POt 215,621 (6,0) = T (2, 215,0) ) dz =
R2 ’
= Il(ta S, C) + IQ(ta S, C)
Now, by Theorem and the dominated convergence theorem, we have

lim Ii(t,s,{) =0, 1=1,2.
(5,:0)—(t,20) it:5,0)

s>t

This proves the first part of the thesis.
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The Gaussian bounds (2.1.5)), (2.1.6)) follow directly from the definition (2.6.40|) and the analo-
gous estimates (2.6.4)) for T®) in Theorem Moreover, since

aL(t 255,0) = (@TD) (t,25, 670 T € w)) A (€, v),

the gradient estimate (2.1.7)) follows from the analogous estimate (2.6.5) for I'® and from Lemma

The proof of (2.1.8) is analogous. O

2.7 The backward Langevin SPDE

In this section we show how the general results from Section [2.1.1|can be derived without significant

modifications to our methods, for the backward version of equation (2.1.2)), that is
—dput(z) = A yui(2)dt + Gy pui(2) * AWy, B =0, + v10,. (2.7.1)

Here the symbol *dW; means that is written in terms of the backward Ité integral: for
reader convenience we recall its definition and some basic results about the backward It6 calculus
in Appendix [B]

We denote by éf;a (and béf ;a) the stochastic Holder spaces formally defined as in Section
with P, 7 in condition ii) replaced by the backward predictable o-algebra 75t,T defined in
terms of the backward Brownian filtration (cf. Section [B]). Again, is understood in the

strong sense:

<0
Definition 2.7.1. A solution to (2.7.1) on [0,s] is a process u = w(w,v) € Cy that is twice

continuously differentiable in the variables v and such that

w (B40) =)+ [ s OB @+ [ G uB ) e dW tefo.s]

Definition 2.7.2. A fundamental solution for the backward SPDE 15 a stochastic process
I = f‘(t,z;s,() defined for 0 <t < s < T and z,( € R, such that for any (s,¢) € (0,T] x R+

and tg € (0,s) we have:

i) T(-,;5,¢) is a solution to [2.7.1)) on [0,o];

ii) for any ¢ € bC(RY) and zg € R, we have

lim f L(t, z; 5, O)(C)d¢ = o(z0), P-a.s.

t,z)—(s,
(1) (s.20) g2
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For a fixed s € [0,T) and (z,v) € R¥*! the backward SDE

S

Fis (x,0) = v + J or(x, ¥rs(x,v) » dWr, t €0, s], (2.7.2)
¢

defines a backward flow of diffeomorphism (z,v) — g,%(z,v) := (z,%,% (2,v)), which replaces g;"y

in the analysis; moreover
O =t [ Yraliu@pdr tefo.s),
t

defines the integral curve, ending at (s, (), of the vector field S?t’S, which is defined analogously to

Y. in (2.1.4)), formally replacing vV with ™
Finally we replace Assumption in Section with the following:

- =3 =0
Assumption 2.7.3. For some a € (0,1), we have: a € ng’T, o€ bCOj;a, b,ce bCyr, h €
<2
bC 1.

Theorem 2.7.4. Under Assumptions |2.7.5, [2.1.4) and [2.1.5, the backward SPDE (2.7.1)) has a

fundamental solution r satisfying estimates

)

B(t,25,0) 2 3 T (0 Ds 0, 57 (2) = 1,0(0))

D(t,25,¢) < uzrheat (mDS Ly () —%,s(o), (2.7.3)
(%ZI‘ (t,z,v;s,C) ’ Fheat (,uﬂ)s t,gts Wl (2, v) —’7t7s(C)> , (2.7.4)
avw]]‘-‘ t T,v;8 C ’ Iu2 Fheat (,U/le t7.gts _l(xav) - ’?t,s(C)> ) (275)

for every0 <t <s<T, z=(x,v), e R and i,j = 1,...d, with probability one.

In the next chapter, we will use a deterministic backward Kolmogorov PDE to which Theorem

applies. Precisely, we will use the following

Corollary 2.7.5. Let Assumption with o = 0 be satisfied and let a € bCFp, b, c € ng’T, for
some a € (0,1), and p € bC(RYY). Then there exists a bounded solution of the backward Cauchy

problem
—df(t,z) = A f(t,2)dt
f(T) = o,

in the sense of Definition[2.7.1], that is

(2.7.6)

f (AR () = jA%J>sﬁ4mM (t2)e[0,7] xRS, (27.7)
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where ¥B(x,v) = (x + svi,v). Moreover, if ¢ € bC®(R¥1Y) for some a € (0,1) then there exists a

positive constant C such that,

[B]—ex
swwp [0Szl <@ -0, 1<)8 <2
(z,v)eERxR4

Proof of Theorem [2.7.4). In the backward case the computations are completely analogous to the
forward one, since it only suffices to reverse the time in equations (2.1.2)) and (2.5.7)). Precisely, we

introduce the “check” transform
fs(@,v) = fi& 705 (x0),  te[0,s],
with 44"y as in (2.7.2). For a solution u; = u(2) to (2.7.1)) on [0, s], we define
s 1 (5.
U s(2) 1= 01,5(2)Uss(2), 01.5(2) == exp <—J he(z)  dW, — 2[ h%(z)dr) ,
t t
which solves, on [0, s], the deterministic equation with random coefficients

—digurs(2) = (T2 00t + Bya(2)00ns () + Fu(Durs(2)) dt,  B=or+ Yoy, (278)

where ?t,s and the coefficients are defined similarly to (2.5.8)) and (2.5.10]), exchanging the hat-

and check-transforms in the definitions. As for the forward case, by Assumption [2.7.3]and Lemma
o <0 o 0,1 - e _ )
2.5.1, a¥, € ngl’s, b, €bCp,, Y. s€Cpy, 0n(Y.5)1 € bcas, for any a € [0, ), and there exist

two random, finite and positive constant A1, A2 such that, for ¢ € [0,s] and z € R?, we have

AU <ar () <A, AT < 0u(Yes(2) < Ao,

with probability one, which ensures the weak Hormander condition to hold.

Next, we reset the notations and rewrite equation as
Aguy(2) + Youg(2) + dug(z) = 0, te0,s), z = (z,v) € R? (2.7.9)
where ;lt is a second order operator of the form
.:th = QOpp + Etav + ¢, z = (x,v) € RQ,

and Yy = ()10, + (Y¢)20,. For a fixed (sg, o) € (0,s] x R2, we define the linearized version of
ET9). that is

A Cu(z) + ¥, Cun(z) + daun(z) =0, tel0,s), ze R, (2.7.10)
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where the definition of ¥;” “ s analogous to that of Y* in and

S0, - /e — %0 o —
A = at(Ve.50(€0)) 000y Ft,50(C0) = Co + j Y (Vrs(C0))dr,  te [0, 0]
t

Equation (2.7.10} m has an explicit fundamental solution r 00 _ I‘SO’CO(

that satisfies estimates analogous to (2.6.17) and (2.6.20). The backward parametriz for (2.7.9) is
defined as

t,z;s,¢) of Gaussian type,

Z(t,25,() = ’C(t,z;s,C), 0<t<s<T, z(eR%

As for the forward case, we set

D(t,2:8,¢) = Z(t,z;5,0) + (Z @ ®)(t, 2 5,), (2.7.11)

with .
D(t,2;8,C) : Z ®ktzs§ (2.7.12)

k=1

where ﬁ(t, 2;8,() = (:th 1Y, - ;lfo’go - ?fo’@) E(t, z;8,() and the rest of the proof proceeds as
in the forward case. In particular, existence and estimates for the fundamental solution of (2.7.8|)

(in the sense of Definitions [2.7.2)) follow from the parametrix expansions (2.7.11) and (2.7.12)).

Eventually, it suffices to go back to the original variables to conclude the proof. O

Proof of Corollary[2.7.5. By Theorem there exists a fundamental solution T' of equation

(2.7.7), in the sense of Definition m Moreover, since o = 0, T satisfies estimates (2.7.3),
(2.7.4) and (2.7.5)) with 5?; ! =1d and Yes(C) = B .(¢) as in Definition Then, the function

f) = | BT 0p0de,  (62)€ 0.7] xR
Rd+1
solves problem (2.7.6)). Since ¢ € bC(R*1), we have

sup |fu(2)] < lelo sup f Pt 2 T,0)d¢ < C
Rd+1

z€Rd+1 zeRa+1

for a positive constant C'. Moreover, since

VIT(t,x,v,T,()d¢ = V) f L(t,z,0,T,()d¢ =0, 1<]j| <2,
Rd+1

Rd+1

for any w € R? we have

|vz;ft<x7v>|\f VIt 2,0, T, 0)| |9(C) — lw)] d

Ra+1
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(choosing w = vB_.(2))

<OT—1t)3 fRdH rheat (yDyp_y vB_(2) =€) vR_y(2) — ¢|" d¢

<C(T-1)% J TP (1 Dy 7B, (2) — ¢) d¢ < CO"(T — 1)°7.

Rd+1

The proof is complete. O






Chapter 3

Filtering under the weak Hormander

condition

3.1 Introduction

In this chapter we study the filtering problem for the partially observable kinetic model we intro-
duced in the previous chapter. Having an existence and regularity theory for degenerate SPDEs at
hand, we can pursue the “direct” approaches proposed by Krylov and Zatezalo [42] and Vereten-
nikov [70] to derive both the forward and backward filtering equations, avoiding the use of general
results from filtering theory. In particular, as in [70] we derive the backward filtering equation “by
hand”, without resorting to prior knowledge of the SPDE, in a more direct way compared to the
classical approach in [54], [29], [44] or [62].

To be more specific, we consider the following general setup: we assume that the position X;
and the velocity V; of a particle are scalar stochastic processes only partially observable through

some observation process Y;. The joint dynamics of X,V and Y is given by the system of SDEs

dX, = Vidt,
d‘/;f = b(tht)‘/taYVt)dt+O-l(t)Xta‘/t7}/t)thl7 (311)
dY; = h(t, Xy, Vi, Yy)dt + oo’ (t, Yy)dWY,

where, as usual, Wy = (W}, .- ,Wtdl) denotes a di-dimensional Brownian motion, with d; > 2,
defined on a complete probability space (€2, F, P) with a filtration (7)o, satisfying the usual
assumptions. Hereafter, for simplicity we set Z; = (X, V;) and denote by z = (z,v) and ¢ = (&, v)
the points in R2.

Let ]:t%/T = o0(Ys,t < s < T) define the filtration of observations and let ¢ be a bounded and

77
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continuous function, € bC(R?). The filtering problem consists in finding the best FgT—measurable
least-square estimate of ¢(Zr), that is the conditional expectation E [@(ZT) | fng].

Consider the case when h = ,0 = 0, that is no observation is available on the solution Z?
starting from z at time ¢. Then, it is well known that, under suitable regularity and non-degeneracy

assumptions on o, we have

plezi)] - [ T s 000, (3.1.2)

where the density I' = I'(¢, z; T', {) is the fundamental solution of the backward Kolmogorov operator

_loP

k=5

Oy + b0y + 00y + 04 (3.1.3)

with respect to the variables (¢,z,v) and of its adjoint, the Fokker-Plank operator K*, w.r.t
the forward variables (7,&,v). When Y is not trivial, we prove a representation formula for
E [gp(ZT) | .FET] that is analogous to in the sense that it is written in terms of the funda-
mental solution of a backward and a forward SPDE, whose existence is guaranteed by Theorems
2.1.6l and 274

In Section we already derived the forward equation in the particular case of a kinetic system
with constant coefficients, by adapting the direct approach by Krylov and Zatezalo [42]. Such
approach mimicks the derivation of the standard Kolmogorov operator (3.1.3)): roughly speaking,
assuming that the filtering SPDE is known in advance, one takes a solution u; (whose existence
is guaranteed by Theorem , applies the It6 formula to u.(Z;) and finally takes expectations.
This is the approach we follow again in Section to prove the existence of the forward filtering
density and the representation of the conditional expectation E [@(ZT) | ]-"t}jT] in terms of it.

On the other hand, the direct approach by Veretennikov [69], [70], allows to derive the backward
filtering SPDE “by hand”, without knowing the equation in advance: the main tools are the
backward It6 calculus and the remarkable backward diffusion SPDE of Theorem We follow
this approach in Section to derive the backward filtering SPDE and the corresponding filtering
density. Note however that in Section[3.3]we only provide an informal, yet quite detailed, derivation:
a full proof would require a generalization of the results of Section [B]to degenerate diffusions. This

is certainly possible but would require some additional effort and is postponed to future research.

Throughout this section we assume the following non-degeneracy condition: there exists a

positive constant m such that

00 (t,y)oo* (t,y)
oo (t,y)|?

‘Oo—(t7 y)‘z 2 m7 <<I - ) O—(t? z7y)70—(t7 Z7y)> 2 m? t € [O’T]7 zZE€ R27 y € R'

(3.1.4)
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Equivalently, |Q(t,y)o(t, z,y)|? = m, where @ is the orthogonal projector on Kero.
Under condition (3.1.4)), up to a straightforward transformation (see [62], Section 6.1), system
(3.1.1) can be written in the canonical form

dX, — Vidt,
d‘/;f = b(t,Xt,‘/t,}/i)dt+O'l(t,Xt,W,)/;f)de’, (315)
dY; = h(t, Zy, Yy)dt + 4o (t, ;) AW,

where W = (W1, ... ,Wdl) is a dj-dimensional Brownian motion. Setting o := (02, .. ,adl) SO
that o = (¢!, ,0), assumption (3.1.4) becomes

Assumption 3.1.1 (Coercivity). There exists a positive constant m such that
wo(t,y)? =m, Lot z,y)|> = m, te[0,T], zeR? yeR.
Moreover, system ([3.1.5) can be written more conveniently as

dZ; = BZydt + e3 (b(t, Zy, Yy)dt + o' (t, Zy, Yy)dWY) | (3.1.6)
dY: = h(t, Ze, Yi)dt + oo(t, i) AW, h

with B and ez as in ([2.2.3]).

3.2 Forward filtering SPDE

We consider the solution (Zﬁ’z, Ys)se[e,r) of system (3.1.6) with initial condition Zf # = 2z e R?; we

do not impose any initial condition on the Y-component. We introduce the stochastic processes

7 h S, 7}/3
SN0 PR RS 7 RV S S RS PN (oS NN (o PR O
00_(87 }/S)
The forward filtering SPDE for system (3.1.6) reads as follows
dYs
dpvs(&,v) = Afvs(&,v)ds + GEvs (&, v) — B = 0, + v0g, (3.2.1)
0Ys

where A* and G* are the adjoints of the differential operators (with random coefficients)

2
A = “’5(52”’)'&”” + bs(£,0)0,, Gs := 05(£,0)0y + hs(E, 1),

respectively.

In order to apply to (3.2.1) the general results of Sections and in particular Theorem
and Corollary we assume the following conditions. We recall notation (1.1.6) and that

o= (c',6)=(c'0% ... 0N).
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Assumption 3.2.1 (Regularity). The coefficients of (3.1.6) are such that o' € ng}a(R?)), o€
bCZ52 (RP), 40 € bOGr(R), be bCL - (B?), h e bCZ 1 (R?).

Assumption 3.2.2 (Flattening at infinity). There exist two positive constants e, M such that

ts[%g] ({Ul(tv B y)}Eﬁ + {Ul(ta '73/)}1/2+s,,6” + {h(tv ',Z/)}l/Q,,B) <M
yeR

for |Bl =1 and |p'| = 2,3.

Remark 3.2.3. With regard to the existence of solutions to (3.2.1)), let us introduce the process

~

Woim [ ortav, = wh-wis [ h(ztyin, selnT)
t t

By Glirsanov’s theorem, (WN/s)se[t’T] is a Brownian motion w.r.t the measure @ defined by dQ =
(Qé,lz)*ldP where
dob® = hs(Z5%)2 b2 dt + hy(Z0%) b2 dW), o) = 1. (3.2.2)

~

Moreover, (Ws)gep, ) is adapted to (]:t},/s)se[t,T]' Then, equation (3.2.1)) can be written in the equiv-

alent form

dBus(C) = A*vy(C)ds + GFvs()dW,y (3.2.3)

under Q. Under Assumptions|3.1.1], [3.2.1 and |3.2.2, by Theorem [2.1.0| a fundamental solution
I' =T'(t,2;s,C) for (3.2.3) exists, satisfies estimates (2.1.5) - (2.1.8)) and s — I'(t, z; 5, () is adapted

to (.7-'2;)86[,577«]. We say that the stochastic process

r F(t,Z;S,C) 2
T(t, 2 5,C) = 0<t<s<T, 2(ecR
(7Z)S7C) SRQF(t,Z;S,Cl)dQ’ <SS z CE

is the forward filtering density for system (3.1.6)). This definition is motivated by the following

Theorem 3.2.4. Let (Zﬁ’Z,Ys)se[t’T] denote the solution of system (3.1.6)) with initial condition
Z* = z. Under Assumptions|3.1.1,3.2.1 and [3.2.2, for any ¢ € bC(R?) we have

B2y | Fiy| = JRQ P(t, 2T, Op(C)dC, (1 2) € [0,T] x R, (3.2.4)

Proof. By Remark SR f‘(t,z;T, Qp(Q)d¢ € mFgT. We prove that, for any bounded and

fg/T—measurable random variable G, we have

plopzi)] - £ e | resT.0v0) (3.25)
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with ¢ as in (3.2.2). From ([3.2.5)) with ¢ =1 it will follow that
—1
B | | - ( fR2 Tt T, <)dc)

and therefore also (3.2.4)) will follow from (3.2.5).
By a standard approximation argument, it is enough to take ¢ in the class of test functions
and G of the form G = e~ ¥ 9 where cs = c(s,Ys) with ¢ = ¢(s,y) being a smooth, bounded and

non-negative function on [t,T'] x R. Thus, we are left with the proof of the following identity:

B eV edu(zi)| = B {e‘f euds (gh) ! fw Tt %7, o«p(Odc] - (3.2.6)

To this end, we consider the deterministic backward Cauchy problem
T ~
£(5:e™9PC0) =00+ [ (A= clrag)s (re 0 y)dr, (s.G)e [1T] X B xR
’ (3.2.7)

where

AVT = (|O’(T, <7 y)|281/1/ + 2[)0-(7—5 y)U(Tv Ca y)auy + 00-2(7—5 y)ayy> + b(T, <7 y)al/ + h(T7 (7 y)ay

N

In differential form, (3.2.7) reads as

—dnf(5.¢y) = (Aof(5,C ) = els,9) (5, C.w) ) ds,
F(T,¢y) = ¢(Q)-
Corollary ensures existence and estimates of a strong solution f to (3.2.7)).

Next, we consider the process

M i et ) [ N s OF (s GV s T

By definition, we have
M = Vet () [ TS T OO
RQ
On the other hand, by the Feynman-Kac theorem we have
t,z2 _ 7ST csds t,z
Mt _f(t727}/t)_E € t SO(ZT)|}/;5 .

Hence to prove (3.2.6)) it suffices to check that M = (Mg’z)se[t’T] is a martingale: to this end, we

prove the representation
T
Mp* = My* + f GLrdwy,
t

L7 = e Gierdr(gh)1 ng T(t,255,0) (G +0050,) f(5,C,Yo)AC, s [t,T],  (3.28)
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and conclude by showing that
T
E U |fo|2ds] < . (3.2.9)
t
We first compute the stochastic differential dp f (s, (,Ys): by Corollary we have

~

dBf(Sa C?YS) = <_-As + %Oazayy + cs) f(37 Ca }fs>ds + ayf(é” Cv YS)dYS

~ 1
= <_-As + 50036312; + hs(Zs)0y + Cs) f(s,¢,Ys)ds + 4050, f (s, Ys)dWsl

On the other hand, we have
dYs

00s

dsT(t,z;5,¢) = AT(t, 2;5,()ds + GXT(t, z; 5, ()
- (A: + ﬁs(zs)g:) T(t, 25, C)ds + GT(t, 5, C)dWL.
Then, by It6 formula we have
dp (f(s,¢, YT (t, 235,Q)) = Ii(t, 235, ()ds + Ip(t, 255, () AW,
where
1(t,255,C) = f(s,C. Ya) (A% + ho( 267 T(t, 255, ¢)
F 0 515,0) (<At 50020 4 (200, 4 60 ) F(5.G V)

+ ()Usg:F(ta Z; 57 C)ayf(sa C? YYS)v
IQ(t7 z5 8, C) = f(sa C,Y’S)Q:F(t, Z5 8, g) + ()Usr(ta z35 8, C)ayf(sv Ca YS)

This means that for any s € (¢,T] we have
HT, T8¢ YDt 2 T, eT=950) = f(s, ¢, V)T (t, 2:5.0)

T T
+ f Ltz 7, T8 dr + J Ir(t, z; T, e(T_S)BC)dWTI.

S S

Next, we integrate over R? the previous identity and apply the standard and stochastic Fubini’s

theorems (see, for instance, [62], Chapter 1) to get

I O e A I (CY R AL (G
T
Li(t, 2z 7, e T8 )d¢d
+£ fw 1t 27 e ()dCdr

T
+f f I(t, z; 7, eTB)dcdw}t
s JR2?
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By the estimates of the fundamental solution in Theorem [2.1.6] the estimates of the solution f
and its derivatives in Corollary the boundedness of the coefficients and the non-degeneracy
condition of Assumption we have
T T C 1
| [ msnolacr < | o I (e SR ) P
s JR2 s (T—T)ﬁ(s—t) R2 ’
(S - t)_17

NI

< C(T - s)

and, analogously

2
JT <JR2 |Io(t, z; 7, ()|dg>2 dr < LT ((S _C’t)é jRZ Theat </LD77t,g;7\Z’71(C) _ %,T(z)> dC) dr

S

< C,(S - t)ila

for some positive constants C,C’. This justifies the use of Fubini’s theorems.
Now, since the Jacobian of the transformation ¢’ = e*P( equals one for any s, the previous

equality yields
|, rcynresTod - [ fs YRz, 0

+LT JR2 Ltz T, C)CdTJrLT JRz L(t, 27, C)d¢cdWL.

Integrating by parts and using the identity

[ (7506 VA0 355.0) 4 T 255,00 31020 (5.6, V) + 00,020,555, 00, (5. 2) )
R2
= J F(t, z5 S, C) <-/45 + %()Uzayy + ()Uso'sayu + hS(Ca }/s)ay> f(s, Ca }/s)dc

R2

_ JRQ T(t, 2 5, O)As (s, ¢, Ya)dC,

we get

J f(T,¢,Yr)D(t, 2, T, {)d¢ = J F(s, ¢, YOI, 218, 0)dC
R2 R?
T
+ f fRz L'(t,2;7,0) (%T(ZT)QT + he (Z,)0, + cT) f(r,¢, Yy )dCdr

n JT f I 2 |
,257,C) (Gr + 00+0y) f(1,¢, Y7 )dCAW .
s JR2

Eventually, we multiply the expression above by e~ §i CTdT(QE’Z)_I: since

d (e— 57 CTdT(Q?Z)_l) = e 5 CTdT(Q?Z)_l (—CSdS — ﬁs(Zs)dWsl) )

d<€_ St CTdT(QPZ)_l:J f(v C? Y)F(t, 25 G)dg>8 = - f F(t? z3 8, C) <7LS(ZS)QS + hS(ZS)ay) f(37 Cv }/;)dcd37
R2 R2
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by Itd formula, for s € (¢,T] we have
My = eS| AT 5 T O
= M7+ fT el ceta(glr) ! fR2 Lt 2 7.C) (Gr +0070y) f(7, ¢, Yr)dCAW

T
= MLY% + J GLAdw}.

s

with G%* as in (3.2.8). Now, again by the estimates of the fundamental solution (cf. Theorem
2.1.6)), the estimates of the solution f and its derivatives (cf. Corollary [2.7.5]), the boundedness of

the coefficients and the non-degeneracy condition of Assumption [3.1.1] we deduce the estimate
G2 < C (o)} f 2 rheat (U, giy T (C) — e (2))dC < C
R

for some positive constants C, C’. This implies (3.2.9) and concludes the proof. O

3.3 Backward filtering SPDE
As in the previous section, in order to apply the general results of Sections and to the
filtering SPDE for system (3.1.6)), we impose the following conditions:

Assumption 3.3.1 (Regularity). The coefficients of (3.1.6)) are such that o' € bC’g}a(R?’), 0 €
bC§r(R?), yo € bCo ¥ (R), b e bCY 1 (R?), h € bCE (R?).

Assumption 3.3.2 (Flattening at infinity). There exist two positive constants e, M such that

ts[gl;] ({Ul (tv "y '>}€,,3 + {Ul(tv K ')}1/2+5,ﬁ’ + {OU(t? ')}57,3 + {OU(tv ')}1/24—5,,8/ + {h(tv K ')}1/2,,8) <M
€[u,

for |Bl =1 and |p'| = 2,3.
The backward filtering SPDE for system (3.1.6]) reads
dYy

—dpuy(z,y) = Avu(z, y)dt + Gy (2, ) * , B := 0 + v0y, (3.3.1)
Oa(tay)
where z = (z,v) and
~ 1
Ay = 5 (|0(t, 2,9)|20us + 200 (L, y)o (t, 2,Y)Opy + (,02(t,y)é’yy) (3.3.2)
+b(t, 2,y)0p + h(t, z,y)0y,
h(t, z,y)

Gi:=0(t,2,9)00 + 00 (t,y)y + h(t, 2,y), ht z,y) = 0o (t,y)
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Before presenting the main result of this section, we comment on the existence of solutions to
(3.3.1). Let (Zﬁ’z’y,Y;t’z’y,Qg’z’y’")se[uﬂ be the solution, starting at time ¢ from (z,y,n), of the
system of SDEs

dZ; = BZydt + ex(b(t, Zy, Yy)dt + o'(t, Zy, Yy)dWY,

dY; = h(t, Z;, Yy)dt + go(t, Y;)dW, (3.3.3)

dor = h(t, Zy,Yy)? ordt + h(t, Zy, Yy) rdW}.

By Girsanov’s theorem, the process

S

Wst’z’y = J oo (T, yhav)ay ey
t
S
=Wl -w}+ L h(r, Zb=v YE*¥%)dr,  se[t,T),

is a Brownian motion w.r.t the measure Q%*Y defined by dQ"*Y = (gélz’y’l)_ldP. Notice also that
(W;’Z’y)se[t,T] is adapted to (F},)sef 7] where F, = o(YP*Y t < 7 < s5). Then equation (3.3.1))

can be written in the equivalent form
—dpus(z,y) = ./Zsus(z, y)ds + ésus(z, y) * dV[N/; (3.3.4)

or, more explicitly,

T T
w (OF (200) = wreo) + | AaaOf s + | GaunGR (e #dWE e 0.1,

: : (3.3.5)
where vB(z,y) = vB(z,v,9) = (z + sv,v,y). In and (3.3.5)), we simply write W! instead
of V[N/; Y because the starting point of the Brownian motion is irrelevant in the stochastic integra-
tion. Theorem m guarantees that a fundamental solution T = f‘(t, z,9;8,¢,m) for exists
and satisfies estimates ([2.7.3), [2.7.4) and ([2.7.5). Moreover, t — IL'(t,z y;T,(,n) is adapted to

(fng)te[07T]. The main result of this section is the following

Theorem 3.3.3. Let (Zy7Y,Y2™Y) denote the solution of system ([B.1.0) starting from (z,y) at
time t € [0,T) and p € bC(R?). Under Assumptions|3.1.1}[3.3.1 and |3.5.9, we have

ut?) (2, y)

) , (t,z,y) € [0,T] x R? x R, (3.3.6)
ut (Zvy)

E [SO(Z;,%ZJ’YY{,Z,?J) | ft},/T] _

where ugw) denotes the solution to (3.3.1)) with final datum u(TLp) = .

Definition 3.3.4 (Backward filtering density). The normalized process

—

T F(t727y§T7C777)

I‘tazay;T7C777 = = )
( ) §T(t, 2,4 T, G, )dCdm
R?)
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for 0 <t <T and (z,y),(¢,n) € R? x R, is called the backward filtering density of system (3.1.6)).
By Theorem [3.5.5, we have

E [so(Z%Z’y,Y%’Z’y) | f?fT] = ff(t,z,y;T,c,nw(c,n)dcdn, (t,2,y) € [0,T] x R* x R, (3.3.7)
R3

for any ¢ € bC(R3).

Remark 3.3.5. Notice that formulas (3.3.6) and (3.3.7)) represent the conditional expectation in
terms of solutions to the Cauchy problem for the backward filtering SPDE. This is not the case for

formula (3.2.4) in the forward case.

In the rest of the section we sketch the proof of Theorem [3.3.3] First, notice that under Qb*¥

we have

s — 1 s
0 = ey ([ iz viemawt - g |
t

h(r, 2L, Yf’z’y)2d7> . se[t, T,
t

and system (|3.3.3)) reads

dZ§7z7y — §(87 Z.grzvy’ Ystvz7y)d8 + e <]0.’i(s7 Z£7Z7y’ Ystvz7y)thZ + O.(S’ Z£727y7}/st7z7y)df/‘7;) ,
dYStvz7y — ()U(S, Yst7zvy)dM~/§,

dgh o1 = To(s, 255 Y E=0) e iy,
(3.3.8)
where B(s, z,y) = Bz + ea(b(s, z,y) — h(s, z,y)0(s, z,y)). Recalling the notation z = (z,v) € R
and omitting the arguments of the coefficients for brevity, the correspondent characteristic operator

is
1 - - - N
L= (\ay%w 0020y, + 12 R200, + 200080, + 200 hdwy + Qnoahayn> (B, V).

We write the backward diffusion SPDE for system (3.3.8). Assuming that ¢ is smooth and letting
Vi(z,y) == (Z77Y,Y7%Y), by Corollary we have

—d(Va(z,9)op™"") = L(Vi(z,y)op™"")ds
+ 0 (Va5 9)057) (107(5, 2, ) + AW + (s, 2,) « AW

+ 0y (Va(2,9) 057 oo (5, 2, y) * AWE + 0y(Va(z,9) 057 )nh(s, 2, y) x AW
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(noting that 8,Z77Y = 0,Y,"Y = 0,057 = 0 and 70, 077" = oh7¥")
1
-5 (|0(t, Z, y)|2é’w + 002(15, 2,Y)Oyy + 2040(t, z,y)&vy) (Vs(z, y)gs 2V ds

+ (Rs,2.9) (00, +008,) + (B(t,2.9), V) ) (Valz,y) oy ")ds
+10'(8,2,9) 00 (Vs (2,y) 077 Y") % AW
< $,2,Y)0y + 00(8,2,Y)0y +h(s z y)) (Va(z,y) sz,y”])*th

(noting that 71(3, 2,y)(00y +¢00y) + <§(t, 2,Y), V) = 00y + b(t, 2,y) 0y + h(t, z,y)0y)

~

= L(Vi(z,9) 077" M) ds + 10" (s, 2,4) 00 (Vs (2, y) 077" % AW
+ <a(s, 2,Y)0y + 00 (8, 2,y)0y + iNL(s, z,y)) (Vs(z,y)027"") % dW;

where £ = A, + v0,, with A, as in (3.3.2), is the infinitesimal generator of (Zy,Y;). Therefore we

have

W(Z%Z’yvngzzy)g%zzy’ _ sD(Z y) + ‘/'t(z y) tZyl VT(Z, y)gg}'z:y’l
T
= [ 2 s + [ oo, 5 Vil )i w
t t

T
+ J Gs(Vs(2, ) 077") » AW, (3.3.9)
t

Now we take the conditional expectation in and exploit the fact that (W2 ..., W) is
independent of ]:tE/T under QV*Y (this follows from the crucial assumption that (o is a function of
t,y only): setting

u? (2,y) = B |Vilz )™ | B |

and applying the standard and stochastic Fubini’s theorems, we directly get the filtering equation

dystvzzy
00(57 y)

u? (2,9) = (=) + f " Eal) s + f Gl )
which is equivalent to . Analogously,
ufV(z,y) = B o0 | Fly
solves the same SPDE with terminal condition u(Tl )(z,y) = 1. To conclude, it suffices recall the
Bayes representation for conditional expectations or the Kallianpur-Striebel’s formula (cf. [62],

Lemma 6.1) according to which we have

ZED t7 ) t7 ) t7 ) ’1
E@Y [@(Zszvysz)Qsz | ng]

tuzvy t,z,y Y —
E [SO(ZT YY) | }—t,T] = EQby [Q?z,yﬂ | ]:YT]
t7






Chapter 4

Density and gradient estimates for
non degenerate Brownian SDEs with

unbounded measurable drift

4.1 Introduction

In this chapter we provide Aronson-like bounds and corresponding pointwise estimates for the
derivatives up to order two for the transition probability density of the following d-dimensional,

non-degenerate diffusion
dXs =b(s, Xs)ds + o(s, X5)dWs, s=0, Xy ==z, (4.1.1)

where (W;)s>0 is a standard d-dimensional Brownian motion on the probability space (€2, F, P)
with filtration (Fs)s>0, satisfying the usual assumptions. The diffusion coefficient o is assumed to
be rough in time, and Holder continuous in space. The drift b is assumed to be measurable and to
have linear growth in space. Importantly, we will always assume throughout the chapter that the
diffusion coefficient ¢ is bounded and separated from 0 (usual uniform ellipticity condition).

The chapter is organized as follows. Our main results are stated in details in Section [2.1.1}
Section is dedicated to the proof of our main results when the coefficients satisfy our previous
assumptions and are also smooth. Importantly, we prove that the two-sided heat-kernel bounds do
not depend on the smoothness of the coefficients but only on constants appearing in Assumptions

[4.1.1] and [4.1.2] below, the fixed final time horizon 7" > 0 and the dimension d. We also establish

there bounds for the derivatives through Malliavin calculus techniques which is precisely possible

because the coefficients are smooth. Those bounds serve as a priori controls to derive in Section

89
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[4:3] through a circular type argument based on the Duhamel-parametriz type representation of the
density, that those bounds actually do not depend on the smoothness of the coefficients. We then
deduce the main results passing to the limit in a mollification procedure through convergence in
law and compactness arguments. We eventually discuss in Section [£.4] some possible extensions
for the estimation of higher order derivatives of the heat kernel when the coefficients have some

additional smoothness properties.

4.1.1 Assumptions and main results

We make the following assumptions on the coefficients of (4.1.1]).
Assumption 4.1.1 (Non degeneracy). There exists a positive constant A1 = 1, such that

AUEP < (oo™ (t,2)E, ) < M€, x,6eRY > 0.

Assumption 4.1.2 (Regularity). For some a € (0,1) we have o € bCa.p. Moreover there exists a
positive constant Ao > 0 and 3 € [0,1] such that for all z,y € R and t > 0,

b(#,0)] < Ao, bt @) — b(t,y)] < Nallz — yl v & — y)). (4.1.2)

It should be noticed that when 8 = 0, b can possibly be an unbounded measurable function with
linear growth. For instance, b(t, z) = z+bo(t, ) with by being bounded measurable satisfies (4.1.2)).
The drift b(t,z) = c1(t) + cao(t)|x|?, B € [0,1] where c1,cz are bounded measurable functions of
time, also joins this class.

Under Assumptions and for any (¢,2) € Ry x R?, it is well known that there exists
a unique weak solution to (4.1.1)) starting from z at time ¢ (see e.g. [67], [3], [14], [48]).

To state our main result, we prepare some deterministic regularized flow associated with the
drift b. Let p be a non-negative smooth function with support in the unit ball of R¢ and such that
Sga p(x)dz = 1. For € € (0,1], define

pe(@) i= e~p(e™1a), bu(t,z) = b(t,) * pe(x) = fRd bt y)p-(z —y)dy,  (4.1.3)
i.e. * stands for the usual spatial convolution. Then for each j = 1,2, it is easy to see that
Vibe(t.)] = || 0t) ~ bt ) V(o — )y

< | btt) = bt [Vl — )y

< Mg fRd |V pe|(z — y)dy < e, (4.1.4)
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On the other hand, from (4.1.2)) we also have

|be(t, x) — b(t, x)| < JRd b(t,y) — b(t, 2)|pe(x — y)dy < Aoe. (4.1.5)
For fixed (¢,z) € Ry x R%, we denote by 92585) (x) the deterministic flow solving

1@ = b5, (@), 520, AP (@) = 2. (4.1.6)

Note that (vt(? (x))s>t stands for a forward flow and (yt(’gs) (x))s<t stands for a backward flow. More-

over, after the regularization, equation (4.1.6)) is well posed.
The following lemma, which provides a kind of equivalence between mollified flows, is our

starting point for treating the unbounded rough drifts.

Lemma 4.1.3 (Equivalence of flows). Let Assumptions |4.1.1| and |{.1.9 be in force. For any
€ (0,1], the mapping x — vt(;) () is a C*-diffeomorphism and its inverse is given by x — vgi) (z).
Moreover, for any T > 0, there exists a constant C = C(T, A2, d) = 1 such that for any € € (0,1],

all |s —t| < T and 2,y € RY,

1
(@) =yl + s — t] =c 13 (@) =yl + |s — t] =c [ =20 W)] + |s — ¢,

where Q1 =¢ Q2 means that C71Qy < Q1 < CQ-.

Proof. By (4.1.4), it is a classical fact that z — yt(;) (z) is a C*-diffemorphism and its inverse is
given by = — ’ySt) (x). Below, without loss of generality, we assume t < s. By (4.1.6) and (4.1.3)),

(4.1.4), (4.1.5), we have
() = 7Y (@)] <L

<2>\2(5—t)+|VblooJ (@) - 42(@)]dr.
t

b1, ) = ba(r o) + [

b (7,715 (@) = bu (7,72 (@) dr

By the Gronwall inequality we get

) (@) = 3 ()] < 2Xa(s — t)el Vorle(s=0),

and therefore we have
W) — y] < 72 (@) — y| + 2xge! Volols=0)|5 _ 3.
1,5 yl < v y

By symmetry, we obtain the first =c. As for the second one, note that by the Gronwall inequality

we derive

D (@) =)

)

W] =9t |2 =yl = (@) =yl =awmloen [ =7 @) (4.1.7)

By (4.1.7) and by the first =¢, we obtain the second =¢. O
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Notation 4.1.4. For notational convenience we introduce the parameter
0 := (T7a757)‘1a)\2>d)a (418)

where again T > 0 stands for the fixed considered final time. It is not restrictive to assume that A1

1s also the Holder modulus of o.

Our main result is the following theorem.

Theorem 4.1.5. Under Assumptions |4.1.1 and |4.1.9 with B = 0, for any T > 0, z,y € R* and
0 <t <s<T, the unique weak solution X ¢(x) of (4.1.1)) starting from x at time t admits a density

p(t,x;s,y) which is continuous in z,y € RE. Moreover, p(t,z;s,y) enjoys the following estimates:

(i) (Two-sided density bounds) There exist two constants g, Co = 1 depending on © such that

for any x,y e R? and 0 <t < s < T we have

Cy ' T (g Ty, 7S (@) — y) < plt, 25 5,y) < CoT™™ (0Tt 1o (2) — y). (4.1.9)

t,s s

(ii) (Gradient estimate in x) There exist two constants pi, C1 =1 depending on © such that for

any x,y € R and 0 <t < s <T we have

Ch heat (1)
—_T"e? Ls—t,7 . 4.1.10
/s — ¢ (Ml ty It,s (33') y) ( )

(i1i) (Second order derivative estimate in x) If Assumption holds for some (€ (0,1], then

there exist two constants o, Cy = 1 depending on © such that for any x,y € R? and 0 < t <

(Vep(t, x5, y)| <

s < T we have

Co

TN (T, (2) — ). (4.1.11)

s

IV2p(t,z;5,y)| <

(iv) (Gradient estimate in y) If Assumption holds for some B € (0,1] and o € bC’é’; for
some « € (0,1), then there exist two constants pus, Cs = 1 depending on © and the Hélder

modulus of Vo such that, for any z,y € R* and 0 <t < s < T we have

C
IVt 25 8,9)| < ——=T" 3Ty, 12 (2) — 1) (4.1.12)

Jo—1

Remark 4.1.6. By Lemmal|/.1.3, the above 'yt(}s) () can be replaced by any reqularized flow 7(5) (z).

t,s

Importantly, if b satisfies Assumption|f.1.9 for some 8 € (0,1], then ’y(l)(a:) can be replaced as well

t,s

by any Peano flow solving 4 s(x) = b(s,ye.s(x)), ee(z) = x. Indeed, it is plain to check that, in
this case, the result of Lemma |4.1.5 still holds with -y s(x) instead of ’yt(;) (x).

Remark 4.1.7. Under the assumptions of the theorem, in fact, we can show the Hélder continuiy

of Vup, V2p and Vyp in the variables x and y (see Appendiz @
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4.2 A priori heat kernel estimates for SDEs with smooth coeffi-
cients

In this section we suppose Assumptions and to be in force, and consider the mollified b,

and o.. In particular, we have
A= 3 (195l + [ Vhoal) <0, jeN. (42.1)
k=1,-j

In the following, for ease of notations, we shall drop the subscripts . In other words, we assume
that the coefficients b and o satisfy Assumptions 4.1.1} 4.1.2 and (4.2.1]), and call (S) this set of
Assumptions. Under (8), it is well known that for each (¢,z) € R, x R, the following SDE has a

unique strong solution:
dXt,s = b(S, Xt75)d8 + O'(S,Xt75) dWS, s = t, Xt,t = . (422)

The following theorem is well known in the theory of the Malliavin calculus. We refer to [51], |71,
Remarks 2.1 and 2.2] or [75, Theorem 5.4] for more details.

Theorem 4.2.1. Under (S), for any j,7 € N, p > 1 and T > 0, there is a constant C =
C(O,4,5,Kj4;) such that for allz e R4, 0 <t < s < T and f € bOP(RY),

VB[V f(Xus(a)]| € — P BIA s @)1 (1.23)

+J
(s—1)°

In particular, X5 has a density p(t,x; s,y), which is smooth in x,y.

Remark 4.2.2. By Ité’s formula, one sees that p(t,x,s,y) satisfies the backward Kolmogorov

equation

owp(t, x5 s,y) + Legp(t,z;s,y) =0,  lim | p(t,2;8,9)f(z)de = f(y), (4.2.4)

t—s— JRd

and the forward Kolmogorov equation (Fokker-Planck equation):

Osp(s,z;t,y) — L5, p(t,z;8,y) =0,  lim | p(t,z;s,9)f(y)dy = f(x), (4.2.5)

s—tt Jrd

where, setting a = oo™ /2,

Liqf(z) = tr(a(t, x)Vﬁf(m)) +{b(t,x), Vo f(z))

and

L3y f(y) = 0y,0y,(aij(s,y) f(y)) — div(b(s, ) f) ().
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4.2.1 The Duhamel representation

Fix now (tg,z9) € Ry x R? as freezing parameters to be chosen later on. Let )th(?’xo)(a:) denote the

process starting at x at time ¢, with dynamics
dX ) = b(s, 71,5 (20))ds + 0(5,%10,5()) AW, 5 > 1, X" =z, (4.2.6)

i.e. )N(t(fso’m) denotes the process derived from (4.2.2)), when freezing the spatial coefficients along
the flow ~,..(z0), where 74, .(2¢) is the unique solution of ODE (4.1.6) corresponding to b. For any

choice of freezing couple (tg, xg), x (to,@0)

e has a Gaussian density
9

510,20\ — to, to,
exp{_<(ct708$0) 1(1915?510 +T— y)7 ﬁt?sxo +r— y>/2}

POt a8, y) = — (4.2.7)
\/(2m)d det (G
where
S S
0 = [ b landr, C = [ 00" (vt (a0
t t
In particular, p'®0 (¢, z, s, y) satisfies for fixed (s,7) € Ry x R%:
OO (8, w58, y) + LiGTOPOT (2 s,y) =0, (t,x) € [0,5) x R, (4.2.8)
subjected to the final condition
lim | pTo(t,z;,y) f(x)dz = f(y), (4.2.9)

t—s™ JRd
where
Ei?afco = tr(a(u%fo,t(xo)) ’ v?ﬁ) + <b(t7 fyto,t(xo))a VCC>

denotes the generator of the diffusion with frozen coefficients in (4.2.6)).
The following lemma is direct by the explicit representation (4.2.7]), the uniform ellipticity
condition (4.1.1)) and the chain rule.

Lemma 4.2.3 (A priori controls for the frozen Gaussian density). For any j = 0,1,2,---, there
exist constants p;, C; > 0 depending only on j, A\1,d such that for all (to, o) € Ry x R?, 2,y e RY

and 0 <t < s <o,
PO (t,m;5,) = Col™ ™ (g ' Ty, 971%™ + 2 — ),
and

[VIPro (b, s, y)| = [Viporo (b, s, y)| < Cj(s — )72 (yZoy, 057 + 2 — y)
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Moreover, for each j,j' € N, there are constants C’', /' depending on © and \j; such that
(V;vg'ﬁ’two (t, 2 5, y)‘ < /(s — )BT (T, 9700 4 g — ). (4.2.10)
Proof. We focus on for which it suffices to note that for any ke N, T' > 0,
[VEI™ | + |VECS™| < Crls —t], 0<t<s<T, (1,6 €[st] xR,
where the constant Cj, depends on the bound of V7b and Vig, j =1,--- k. [

The starting point of our analysis is the following Duhamel type representation formula which

readily follows in the current smooth coefficients setting from (4.2.4)-(4.2.5)) and (4.2.8])-(4.2.9):
S
p(t,x;8,y) = O™ (t, z;5,y) —I—J f POt w51, 2) (L — LI0)p(r, 238, y)dzdr (4.2.11)
t JRd '

= PO (¢ x5, y) + f fde(t,x; r2)(Lre = L070)p0" (v, 215, y)dzdr, (4.2.12)
t
where
Ly, — Ll = Tr(Al®0 . v2) 4 Blom . v, (4.2.13)
and
Afn?z’xo = a(r, z) — a(r, Yo, (%0)), Bﬁ?f” = b(r, z) — b(r, Yeo,r (%0))- (4.2.14)

If we take (tg,79) = (t,z) in (£.2.11)) and set Zy(t,z,s,y) := p-*(t,x,s,y), then we obtain the

forward representation

s
p(t,:r, 57?J) = ZO(th; 87y) + f f Z(](t,.%'; T, z)(ﬁr,z - Efjﬁ)p(’r? Z58, y)dZd?",
t JRd ’

and in this case

S

Ity = J b(r, v (@))dr + 2 — y = Yi,5(x) — y; (4.2.15)
t

it involves the forward deterministic flow v, 4(x) in the frozen Gaussian density. If we now take
(to,x0) = (s,y) in (4.2.12) and set Z1(t,x;s,y) := p*Y(t,x; s,y), we then obtain the backward (cf.
Section representation

S
p(t,x;s,y) = Z1(t, z;8,y) + f f p(t,x;r, 2)(Lr — L3Y)Z1(r, 23 8, y)dzdr, (4.2.16)
t JRe '

and in this case

S

Ytz —y= f b(ry v (1)) + & — y = & — sa(y).
t

It involves the backward deterministic flow 75+(y) in the frozen Gaussian density.
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4.2.2 Two-sided Estimates

We first deal here with the two-sided estimates for the density in the current smooth coefficients
setting. Importantly, we emphasize as much as possible that all the controls obtained are actually
independent of the derivatives of the coefficients, or even of the continuity of the drift b, but only
depend on the parameters gathered in © introduced in . We first iterate in Section “ 2| the
Duhamel representation (4.2.16)) to obtain the parametriz series expansion of the density. We then
give some controls related to the smoothing effects in time of the parametrix kernel.

As seen is Section [2.6.1] a specific feature of the heat kernels associated with unbounded drifts
is that the corresponding parametrix series needs to be handled with care. Indeed, it is not direct
to prove that it converges unless a suitable lower bound for the density is already available, and
therefore some truncation step is needed. Here we use a similar kind of argument than in [14],
based on slightly different techniques deriving from the stochastic control representation of some
Brownian functionals, see [0], [74] and Section below.

We can assume here without loss of generality that 7' < 1. Indeed, once the two-sided estimates
are established in this case, they can be easily extended to any compact time interval [0, 7] through

Gaussian convolutions using the scaling properties (see Lemma [4.2.9)).

Two-sided heat kernel estimates parametrix series

For notational convenience, we write from now on for z,y e R? and 0 <t <s < T
Zi(t,x;s,y) = POV (t,xys,y), H(s,z;t,y) = (Lrn — Eﬁ:g)Zl(t,x;s,y). (4.2.17)
Thus, from the Duhamel representation (4.2.16)), recalling notation , we have
p(t,x;s,y) = Z1(t,z;8,9) + (p® H)(t, x5 8,y). (4.2.18)

For N > 2, by iterating N — 1-times the identity (4.2.18]), we obtain

N—
p(s,z;t,y) = Z1(t,x; 8,) 2 (Z1 @ H)(t,z;5,y) + (p® HON)(t,2;5,9).  (4.2.19)

We shall now use the following notational convention without mentioning the flow fyf,ls) (x). For

z,ye R and 0 <t < s < T, we define for > 0 :

¢! 2
; 1 @)~
Lyt zys,y) = rh t(MIs—t,’Yg,ls)(x) —y) = — 2, 4 XP e , (4.2.20)
(2m)2 (s —t)2 p(s —1t)

recalling ([1.1.7)) for the last equality. From Lemmas and we derive
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Lemma 4.2.4. For any T >0 and j =0,1,2,---, there exist constants [i;, 6']- > (0 depending only

on O such that for all z,y e R and 0 <t < s < T,
Zl(tvx; Say) = éorﬂgl(t7$;37y)a

and for all a € [0,1],

w|R

= u eI [VAZ1 (1,5 5,9)| < s — )3 73T (t,235,). (4.221)

The following convolution type inequality is also an easy consequence of Lemma [4.1.3

Lemma 4.2.5. For any T > 0, there is an ¢ = £(©) > 1 such that for any p > 0, there is a
C. = C.(0, ) > 0 such that for all z,y e R* and 0 <t <s < T andr € [s,t] ,

f F,U«(tv €T, Z)F“(T, Z3 8, y)dZ < Csrs,u(ta Zz;s, y)
R4
Proof. By definition and Lemma, we have for some € > ¢’ > 1,

f Lyt z;r, 2)T,(r, 2y s,y)dz = f
]Rd

rheat (T, 4 (@) — 2) T (T, 40 (2) — ) dz
Rd ’ ’

< Cu [ T, A - AT T, 25

= O [heat (E’MIS_t,fy(l)(x) — vgl)(y)) < CTepu(t, @8, y),

t,r ,T

where the second equality is due to the Chapman-Kolmogorov property for the Gaussian semigroup,

and the last inequality again follows from Lemma and the following control
1 1 1
s @) =yl = bR 076 (@) = 2R 01wl < Chi) (@) = R ()l (4.2.22)
The proof is complete. O

Next we give the control for the iterated convolutions of the parametrix kernel H which appears
in the expansion (4.2.19)), that is similar to (1.4.19) and (2.6.29), but with a crucial difference.

Indeed, because of the flow we are not able to recover an estimate that is uniform in the iteration

parameter.

Lemma 4.2.6. Under Assumptions|[{.1.1 and[{.1.3, for any T > 0 and N € N, there are constants

Cn, iy > 0 depending only on © such that, for all z,y e R and 0 <t <s < T,
Na
|HON (8,255, y)] < Cn(s — )71 2 Ty (t, 255, y),

where pn — 0 as N — 0.



98 CHAPTER 4. BROWNIAN SDES WITH UNBOUNDED DRIFT

The proof proceeds in the same manner as for Propositions [1.4.8] and [2.6.17], starting from
the definition of H in (4.2.17)) and exploiting Lemmas [4.2.4] and |4.2.5] and therefore is omitted.
From the above lemma, ([#.2.19) and ([4.2.21]), we thus derive that for all N € N, z,5 € R? and

O0<t<s<T:

p(t,a;s,y) < CToy , (tx35,y) + [p@ HOV (t, 238, 9)), (4.2.23)

which is almost the expected upper-bound except that we explicitly have to control the remainder
to stop the iteration at some fixed N to avoid the collapse to o of uy as N goes to infinity. This

is precisely the purpose of the next subsection.

Stochastic control arguments and truncation of the parametrix series

In this section, we aim at controlling the remainder term (p@ H®V)(t, x; s, y) in the almost Gaussian

upper-bound (4.2.23)).

To this end, we use the variational representation formula to show the a priori derivative es-
timates of the density when the coefficients are smooth, following a similar idea as in [I4]. The

following variational representation formula was first proved by Boué and Dupuis [6].

Theorem 4.2.7. Fiz T > 0 and let F be a bounded Wiener functional on the classical Wiener
space (82, F, P)E| which is Fr measurable. Then it holds that

—InE[e] = inf [; LT \h(7)[2ds — F(w + h)] ,

where S denotes the set of all R*-valued F;-adapted and absolutely continuous processes with
T .
E [J |h(7)|2d7'] < 0.
0
Using the above variational representation formula, we obtain the following important lemma.
Lemma 4.2.8. Let £ : RY — (0,00) be a bounded measurable function s.t. for all x € R? (7! <

() < ¢ for some ¢ = 1. Under Assumptions|4.1.1 and|4.1.3, for any T > 0, there is a constant
C = C(0©) >0 such that for allze R and 0 <t <s < T,

El(X¢s(x))] < C sup exp { Inl(z) —C7 Yz — ’yt(ls)(x)\Q}

z€R4

!We recall that for the Wiener space, the fundamental set Q = C(Ry,R?) and in this framework w € Q simply
stands here for an R%-valued continuous function. Also, the canonical process (w(t)) >0 1s a standard d-dimensional

Brownian motion under the measure P.
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Proof. Without loss of generality, we assume ¢ = 0 and write X, := X ¢(x). Since in the current
smooth coefficients setting X can be viewed as a functional of the Brownian path, taking F' =
In(4(X5)), we derive from Theorem that

1
—~InE[{(X,)] = inf E [J |h(T)|2dT — 1ne(Xf)] ,
heS 2 Jo
where X" solves the following SDE:
dxh = (b(s, XM + o(s,Xg)iz(s))ds +o(s, XMW, Xt =z,

i.e. the control process h enters the dynamics in the drift part. Note that s := 79 s(x) solves the
following ODE:

’3/8 = b(5a75)7 Y = L.

By Ito’s formula, we have

B[ixt -] - B [ [[ (262 =085 X2 = b0 + o1 Xt + () Xf))df] |

Recalling
b(s, ) — b(s,y)| < A2(1 + |z — yl),

the Young inequality yields
E [|X;1 - 73|2] <CE {J: (|Xf — 2+ |h(7‘)|2> dT} + Cs.
From the Gronwall inequality, we thus obtain
E [[X;‘ - 75\2] <CE [JOS ‘h(7)2d7:| + Cs.

Hence we have,
1 s
5B U h(T)]2dT] >0 lE [\Xf - %IQ] — Cs.
0

Therefore, we eventually derive

~mE[((X,)] > inf B [0—1\)(5 2 - maxg)] — = inf (C7z =2 —Inl(2)) - C.
€

2€R4

The desired estimate eventually follows from Lemma O

Next we state a direct yet important scaling lemma. We refer to Section 2.3 of [14] for additional

details.
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Lemma 4.2.9 (Scaling property of the density). Fiz 0 <t < s < T and let X\ := s —t. Introduce
foruwe[0,1], A{) = )\_%Xt,Hu,\. Then, ()A(é‘)ue[m] satisfies the SDE

dX) = A2b(t+ ud, X)AT)du + o (t+ud, X2A2)dIW) = 0w, X du + 6 (u, X2)dW),
where I//[\/qf‘ = )\_%Wu)\ is a Brownian motion. It also holds that:
—d ) _1 _1
p(t,@;s,y) = A"2p (O,A 2w 1A 2y>,
and introducing for z € R, v e [0, 1], 8u%\u(z) = p(u,%,u(z)), %‘70(,2) =z,
—1 2 -1 2
"701 AT 255 - A 2?/’ = A" ys(x) —yl”

Proof. We only focus on the last statement. The other ones readily follow from the change of

variable. Write:
)\_%'yt,s(ac) —Aig + A2 f b(r, v, (z))dr = A2 + A2 J b(t + uX, Y t4un(2))du.
t

Setting now for u € [0, 1], Jo,u(x) = Vt.t+ur(z), the above equation rewrites:

1

1
b(t + u, Jo,u(x))du = )\_%CL' + f bA(u, )\_%%m(:v))du

)\_%’7071(1‘) = )\_%l' + )\% J
0

0

from which we readily derive by uniqueness of the solution to the ODE that for u € [0, 1],

=

A2 q0(z) = %\,0()\_%@ = )‘_%/yt,t-i-u)\(x)a

which gives the statement. O

We will now use the previous Lemmas [4.2.8] and [4.2.9| to establish the following result from

which the Gaussian upper-bound will readily follow.

Lemma 4.2.10 (Control of the remainder). Choose N large enough in order to have:

1+ = > (4.2.24)

N« g
2 2

There exist constants Co, jig > 0 depending only on © such that for all z,y e R and 0 <t < s < T,

[(p®@ HON)(t, 23 5,y)| < Col' iy (t, 73 5, 9).
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Proof. From the scaling property of Lemma [£.2.9] above, we can assume without loss of generality

that t = 0 and s = 1. By Lemmas we have

1

(p® HOV)(0, 251, y)| < f i

0

f p(0,2,7, ) HON (1, 21, y)dz
Rd

1
:JO B [H®N (r, X0 (z); 1,y)]| dr

1
<Cy f (1= 1) BT ()Xo (2); 1)) dr
0

1
< C'Nf (1-— r)_H% sup exp { InT,,(r,2;1,y) — C_1|z — ’y(()lr) (:c)|2}d7‘.
0 zeRd '

Since by ,
InT,,(r,2;1,y) = ltheat(MNIl_T,fyf,,ll)(z) —y) = —g In(l1—r)— MN\*yﬁll)(z) — y\z/(l —r),
we have
sup(In T (un Ty, 71 () = ) = €7 |z =7, (@)])
<~ 201 =)~ inf(av ()~ yP/(1 - 1) + O e =A@
< —§1n<1 = 1) =y inf (]2 = W)/ = 1) = 1= r) + 2 = 1§ @) )
< Sl — )~ iy ) 2@/ +
d

< 51— r) = uiyhpy (@) -yl + .

where the last step is due to (4.2.22)). Therefore, from the condition (4.2.24)) and the above com-
putations, there exist constants Cy, A\g > 0 depending only on © such that

(p® HEN) (0,231, y)| < Col™™* (o1, 7§ (x) — y) = Col'y (0,31, ).

The general statement for arbitrary s, t again follows from the scaling arguments of Lemma
O

Final derivation of the two-sided heat kernel estimates

We are now in position to prove the following two-sided estimates.

Theorem 4.2.11. Under Assumptions [{.1.1] and [{.1.9, for any T > 0, there exist constants
Co, o = 1 depending only on © such that for all z,y e R* and 0 <t <s< T,

Co‘lfual(t,m; s,y) < p(t,z;s,y) < Col'yy(t, 758, y).
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Proof. (i) (Upper bound) The upper bound is a direct consequence of the expansion and
the previous Lemma up to a possible modification of the constants Cp, g that anyhow still
only depend on ©.

(ii) (Lower bound) By the upper bound and Lemmas and we get for some p; > po

and € > 1:
lp® H(t,z;s,y)| < C’f:(s — 7“)_1+% fRd Ly (tz;r, 2)Tp, (1,2, 8,y)dzdr
< Co(s — 1) 2Ty, (t, 235, ).
Hence, for ]’y,&ls) () — y| < /s —t, recalling and (4.2.20)), we have
p(t,z;s,y) = (C’l — Ca(s — t)%> Pep, (t,x38,y) = <C’1 — Cy(s — t)%> (s — 1) Y2eom,
In particular, letting s — ¢t < § with § small enough, we obtain that
p(t,z;s,y) = Cs(s —t)~%? on |’Yt(,18) (x) —y| <Vs—t. (4.2.25)

Next we propose yet another chaining argument to obtain the lower bound when |’yt(i,) () —y| =
v/s —t. The idea is again to consider a suitable sequence of balls between the points x and y, for
which the diagonal lower estimate holds, and which also have a large enough volume to
consent to derive the global off-diagonal lower bound. The usual strategy to build such balls
consists in considering the “geodesic” line between = and y. In the non-degenerate case, when the
coefficients are bounded, this is nothing but the straight-line joining x and y: this is precisely the
strategy used in Section[I.4.3] When dealing with unbounded coefficients, a possibility is to consider
the optimal path associated with the deterministic controllability problem ¢, = b(u, @,,) + @u, u €
[t,s], ©r = ,ps =y with ¢ € L%([t,s],R?). This is the strategy adopded in Section for a
Lipschitz continuous b; the constants in the lower bound estimates obtained therein actually depend
on the Lipschitz modulus b.

We adopt here a slightly different strategy which only involves the mollified flow v(!) but which
will have the main advantage to provide constants that will again only depend on © and not on
the smoothness of b, using thoroughly the controls established in Lemma We now detail such
a construction which is in some sense original though pretty natural. From the scaling arguments
of Lemma [4.2.9], we can assume without loss of generality that § = 1, ¢ = 0 and s = 1. Suppose

|7((]711) () —y| > 1 and let M be the smallest integer greater than 452||Vb1H°°|'y(()711) (z) —y|?, ie.,
M —1 < 4e8Vhile (D ) — g2 < 0. (4.2.26)

Importantly, we recall from (4.1.4) that under Assumptions and Vb1l < C(A1). Let

tj:=j/M, j=0,1,---, M.
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The important point for the proof is the following claim.

Claim: Set &y := x and &ys := y. There exist (M + 1)-points &y, &1, -+, & such that

|§]+1 ’}/t],tj+1(£])| =~ 2\/7 O) 17. o 7M -1

Indeed, let Q1 := By 5, /37 ('y(()’t)l (x)) and recursively define for j = 2,--- | M,
U Bl/(m/M)('Yt(jlzl,tj(Z)) = {Z d1st(z Ve, o0t (Qh— 1)) < 1/(2@)}

2€Qj -1
Letting A := ||Vb1 |« and noting that (see (4.1.7))
_ 1
e MMz — 2| < i () = () < M|~ 2,

(1) (1)( ) = (1)

by the previous induction method and noting that +, V0,541 (x), we have

titis1 © 0,

By onas oy (0, (#) € @5, = 1,20+, M.
(1)

Intuitively, the image of a ball with radius r under the flow Vi; ¢, contains a ball with radius

e=MMp In particular, by (4.2.26)),
(1)

1
€1 =Y € B /7.2 (17 (2)) € Byyeca—vt o (Toiay (2)) € Qur.
The claim then follows. The idea of the construction is illustrated in Figure
Now let & := 1/(2(/Vil> 1)) and zp := 2, zpr41 = y and %, := Bn/m(é.j)' From the

previous claim, we have that for z; € ¥; and 211 € ¥j41,

e () = 21l < ¥ (23) = Y, D+ i (6) = &l + €501 — 2541
Vb1
< elVhile)z; — g + \’Ytj,tjﬂ(éj) — &l + 1641 — 2]
K/((E*HVble + 1) 1
+ tit1 —
STt ey v =V
This precisely means that the previous diagonal lower bound holds for p(t;, zj,tj+1, zj+1). Thus,
by the Chapman-Kolmogorov equation and (4.2.25)), we have

p(0,7;1,y) = Jd : "Jdp(to,zo;thzﬂ o p(tar—1, 213 tar, 2a)dzy - - - dzpr 1
R R
> f f p(to, 203 t1,21) - p(tm—1, 2M—13 tar, 2 )dze - dzp—1
¥ Yy
> (CsMYH)M f f dz1 -+ dzar—1 = (CsMY)M (M| By )M
YXym-1

= CM MY (B )M = MY exp{M In(C3%| By )}/ (x| B1 )
> Oy exp{M log(C3x%| B1])} = Cs exp{—Cs1{ () — yI?},

recalling the definition of M in (4.2.26)) and that C3x?|B;| < 1 for the last inequality. O
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®

Figure 4.1: Construction of the chaining balls for the lower bound.

4.2.3 Estimates for the derivatives of the heat kernel with smooth coefficients

We insisted in the previous section on the fact that, even though we considered smooth coefficients,
all our estimates for the two-sided Gaussian bounds were actually uniform w.r.t. © which only
depends on parameters appearing in Assumptions and

Our point of view is here different since we mainly want to derive some a priori bounds on the
derivatives of the heat-kernel when the coefficients are smooth which will then serve in a second
time, namely in the circular argument developed in Section to prove that those estimates are
actually again independent of the smoothness of the coefficients. Anyhow, in the current section,
we fully exploit such a smoothness and obtain controls on the derivatives which do depend on

the derivatives of b, 0. To this end, we restart from the representation (4.2.18)) of the density and
exploit the gradient estimate (4.2.3]).

Proof of the main estimates

Theorem 4.2.12 (Controls on the derivatives of the heat kernel with smooth coefficients). Under
(S), for j € {1,2}, there exist constants C;j := C} (@,)\j), pi = p;(©) > 0, such that, for every

z,ye R and 0 <t <s < T,

; _i _1
|V]a:p(t7$75’y)| < CJ(S - t) QFuj (t,l‘;S,y), |Vyp(t,:n,s,y)| < CI(S - t) QF,Ul(t?x;Say)'
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Proof. (i) Let us first establish the estimates on the derivatives w.r.t. the backward variable z.

Write from (4.2.18]):
Vip(t, s s,y) = Vipi(t @5 5,9) + Vi (p® H) (¢, 23 5,y).
From Lemma it readily follows that

[V421(t 23 5,9)| < Cj(s — ) 2T, (+ 33 5,1).

For the other contribution, setting u := ST“,

p® H(t,x;s,y) = JSE [H(r, X;,r(x);s,y)]dr + LuE [H(r, X;,r(x);s,y)]dr =: I (z) + Ix(x).

Consider I first: choosing p > 1 such that %}7—2 > % —1, by (4.2.3) and Lemmas and

we get

V@) < G [ (=0 PE[H X ()i )PP dr (4.2.27)

s , 1/p
- [r-n" (j p(t,x,r,zﬂH(r,z;s,y>|pdz) dr
u Rd

S
< Cj(s — t)_j/2f (s — r)_%+5+%_

u

[S1ISW

1/p
<J Fuo(t,a:;r,z)Fm(r,z;s,y)d2> dr
R4 ?
<’ i st gy | TYP(L, 2
< Cj(s—1t) (s —r) v hz o 2dr | T2(E 75, y)
u
<Ofs =) P (s =) TR TR s, )

< CN']-(S - t)_j/QFm,p(t, x;8,Y).
To treat Iz(x), we only consider j = 1 since the case j = 2 is similar. By the chain rule, we have
Vo [H(r, Xrs(2)it,y)] = E[(VoH) (1, Xep(2);8,9) - VaXip ()],
and for all k€ {1,--- ,d},

Ou H (2,75 8,y) 1=t (Onpalt,z) - V2Z1(t, 3;8,y)) + 03, b(t, x) - Vi Zy (¢, 25 5, 9)
+tr(a(t,z) — alt,Ys:(y))) - 0u, V2Z1(t, 73 5,9)
+ (0(t, 2) = b(t,75,(y))) - O, Ve Za (8, 25 8, y).

Thus by Lemma (4.2.1) and (4.2.21)), it is easy to see that for some pz > 0,

|VCEH(t7 Z;$, y)| < C(S - t)_lr,us (tv LS, y)
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We carefully emphasize that the constants denoted by C' above, do depend on the smoothness of

the coefficients. Using the same argument as above, from the Holder inequality, one sees that for

_d
P=g3

Vela@)) < O [ BITLH)0, Xorl)s, )P P

< Jt (s = 1) B [0, (r, Xop(2); 5,9)] 77 dr < (s — )73, (1 25 5,y).

We thus obtain the gradient estimate in the variable x.

(ii) Let us now turn to the gradient estimate w.r.t. y. We restart from (4.2.16]) differentiating

first w.r.t. y. This can be done for arbitrary freezing parameters (to, o). Write:

S
Vyp(t,;8,y) = Vo0 (t, x5 5,y) + J Jde(t’ 31, 2) (Lre — LI9570)Vyp O™ (r, 25 5, y)dzdr
t

=~V plomo(t, a;8,y) — fs fRd p(t,x;r, 2)(Ly, — Eﬁ?fo)vzﬁto’mo (r,z;8,y)dzdr,
t
(4.2.28)
where we have used the explicit expression for the second equality. Letting again u = ST”
and taking (to,xo) = (s,y), we can split
Vyp(t, w5 8,y) = =VaZi(t, 25 8,y) — Ji(y) — J2(y),

where

) =J J p(t,x;r,z)(ﬁm—Eﬁ:g)szl(r,z;s,y)dzdr,
t JRrd

= J J p(t,z;r, 2)(Lr sy — Eﬁ’g)VZZl(r, z; 8, y)dzdr.
u JRA ’

For Ji(y), from the Gaussian upper-bound of Theorem {4.2.11] (4.2.21]) and Lemma (see also
Lemma 4.2.6)), we have

U
|1 (y)] < ClJ (s — T)_?’/Qf Lo (b, w57, 2)T s (1, 25 8, y)dzdr < Cf(s — )7 PT (8, 25 8, ).
t R?
Consider now Jo: integrating by parts and recalling (4.2.13]) and (4.2.14)), we have

()| < f

dr

f Vop(t,z;r, 2) (L, — Eﬁ:g)Zl(r,z;s,y)dz

p(t,x;7r, 2)V bV, Z1(r, 25 8,y)dz| dr

p(t,z;7, 2)Vaa - V22 (1, 2; 5, y)dz| dr

J21( ) Joa(y) + Ja3(y).
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For Jo1(y), recalling from (4.2.17) that (£, . — Ef«jzz/)Zl(r,z;s,y) = H(r, z;s,y), we derive from
(4.2.3) and as in (4.2.27) that

Tata) = [ | [ pttoain o) Vot s

< le (r =) PE[H(r, Xrs(@);s,y) P17 dr < (s = 1) 72T (1,235, y).

u

ar = [ E(V-1)( X, @i dr

For Jos(y), from the upper bound in Theorem [4.2.11) and (4.2.21)), we have

¢
Jrn(y) < Cq J

u

(s — 7‘)_1/2 fRd Lotz 2)Tp, (v, 23 8, y)dzdr < C(s — t)_1/21—‘u8 (t,x;8,9).
For Jo3, since |V2p1(r, z; 5,y)| has the singularity (s — r)~!, noting that
V.a-V3Z =Vi(V.a- 7)) —Via-Zy —V3a-V.Z,
as above, by we still have
Tos(y) < C(s — )72 (t, 25 5,y).
Combining the above estimates, we obtain the derivative estimate in y. The proof is complete. [

Remark 4.2.13. We point out that Theorem anyhow has some interest by itself. A careful

reading of the proof shows that actually the statements about the derivatives w.r.t. x hold true if

additionally to Assumption|/.1.1] and[].1.9, the coefficients b, o are twice continuously differentiable

with bounded derivatives and that the second order derivatives are themselves Holder continuous.
In this framework, the Duhamel representation coupled to the heat-kernel estimates of
Theorem [{.2.11] provides an alternative approach to the full Malliavin calculus viewpoint developed
in [26].

4.3 Proof of Main Theorem

In the following proof, the final time horizon T' > 0 is fixed. We first work under the assumptions
(S) aiming at obtaining constants in the estimates of Section that only depend on © :=
(T, o, B, A1, A2, d) introduced in .

With the same reasoning as for Section we introduce for 6 > 0 the SDE with
diffusion coefficient o(t,z) = 6ljxq and denote by ps the corresponding density. By the lower
bound estimate proven in Theorem and scaling techniques similar to those presented in
Lemma m it holds that for any g > 0, there exists  := &(u) large enough and Cs > 0, u’
depending on © = (T, 3,0, A2, d) such that for all 0 <t < s < T and z,y € R?,

CY(S_IF,U«(t’x; S, y) < 55(7571'; S, y) < Oéru/(ta €T Say)' (431)
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Importantly, with the notations of Section we choose p, and then § := 0(p) s.t. for all
0e0,1,0<t<s<T,z,yeR%and je{0,1,2},

i ; 0 _J _
s (x) — Yl |V2 Zo(t, s 5,9)] + |7 — 70 W) V4.Z1 (¢, 255, 9)| < Csls — )2 2ps(t 1 5,y), (4.3.2)

where Cj here only depends on © and 9, 6.

Without further declaration, we shall fix from now on a § such that holds. From the
definition of H in and the proof of Lemma we also derive from this choice of § that,
under the sole Assumptions [4.1.1]and [4.1.2] there exists C' := C(©) such that, forall0 < ¢t < s < T,
z,y € R%:

|H(t,z;5,y)| < C(s —t) " T2 ps(t, 235, 1). (4.3.3)

For simplicity we will write from now on p = ps. In particular, for all 0 <t < s < T, z,y € R?,
r e [t,s]:

J p(t,z;r, 2)p(r, z; 8, y)dz = p(t, x; 8,y). (4.3.4)
Rd

For the rest of the section, we use the convention that all the constants appearing below only
depend on O. Again, we have shown in the previous section that for smooth coefficients the
expected bounds for the derivatives hold. The constants in Theorem [£.2.12] however do depend
on the derivatives of the coefficients, since we use the gradient estimate . We aim here at
proving that we can obtain the same type of estimates as in Theorem under Assumptions
{4.1.1) 4.1.2f and (4.2.1) but for constants that only depend on ©. This is the purpose of Sections
to We will then eventually derive in Section the main results of Theorem

thanks to some compactness arguments (Ascoli-Arzela theorem) to the uniformity of the controls

obtained for mollified parameters.

4.3.1 First order derivative estimates in the backward variable zx

Without loss of generality we shall assume ¢ = 0 and for s € (0, 7], we define

fl(s) := Sup |vzp(07 Z;s, y)|/ﬁ(0a Z;s, y)
z,y

From Theorem [4.2.12| and (4.3.1)), we know that

T
J fi(s)ds < o0.
0
By the forward representation formula (4.2.18]), we have

|Vap(0, 23 5,y)| < |VaZi(0,2;5,y)| + [Vap| @ |H|(0, 23 5, 5).
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Observe first that, from Lemma [4.2.4] and (4.3.2])

V210,258, y)| < C’1t*1/2FA(O,x; s,y) < C’{til/Qﬁ(O,x; 5,Y).
Secondly, yields
Vap| @ |H|(0, 258, y) < f: fRd fi(r)p(0, @37, 2)|[H (7, 25 5, y)|dzdr
<O LS filr)(s —r)71F2 fRd p(0,z; 7, 2)p(r, z; 8, y)dzdr
—a ([ a0 -0 g0,

using also (4.3.4) for the last identity. Thus,

fi(t) < Cy (S_é + Js(s - r)‘”gfl(r)dr) )

0

By the Volterra type Gronwall inequality, we obtain
i) < Cs™2 = [Vap(0,2;5,9)| < Cps™2p(0, 23 5, ). (4.3.5)

4.3.2 Second order derivative estimates in the backward variable z

We assume for this section that Assumption holds for some 3 € (0,1]. It is crucial to take
here 8 > 0. Below we fix s € (0,7'] and define for ¢t < s

fo(t) = (s = ) -sup Vap(t, 5, 9)|/B(t, 3 5, y). (4.3.6)

By Theorem |4.2.12] and (4.3.1)), we have

sup fa(t) < oo.

t<s

To derive the estimate of the second order derivative of the density, we use the backward Duhamel
representation . And for fixed freezing parameters (to, xg) we differentiate twice w.r.t. = to
derive:

s

V2p(t, @ s,y) = VPO (¢, x5 5, y) + f

N V2ptoto(t, z 1, 2) (Em — Eﬁ?fo) p(r, z; 8, y)dzdr
t

S
= Vop'oro(t, x5, y) + J f VIt 2) (Cr,z — Ei?;“) p(r, z; 5, y)dzdr,
t JR

(4.3.7)
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using again the explicit expression 7)) for the second equality. Let us now denote for a parameter
€ > 0 that might depend on 7 to be spe(nﬁed later on,

AR = ag(r, 2) — ac(r, Yo, (20)), AR 1= AT — AR, (4.3.8)

where similarly to (4.1.3), a-(r,z) = a(r, ) * p-(z). Choosing the freezing point (to,z¢) = (¢, z) and

setting as well
Zo(t,a;s,y) = D0 (t w55,y), ui= (t+5)/2

we decompose the expression in as follows:
Vip(t,z,s,y) = ZIi(t,x,s,y), (4.3.9)
where I (t,x;s,y) := VgZo(t,m; s,y) and
Is(t,x;8,y) f f V22Z(t, x;, 2)tr(ALL - Vip(r, z; s, y))dzdr
Is(t,x;s,y) := J N V2Z(t, x;, z)tr(AE’t’x V2p(r, z; 5, y))dzdr
u
Iy(t,x;s,y) := JS N V22Z(t, x;r, z)tr(Ae’t"r V2p(r, z;5,y))dzdr
Is(t, z;8,y) := JS » V2Z(t,m;r,2)BEE - V.op(r, z;5,y)dzdr.
t
By Lemma |4.2.3 u m ) and , it is easy to see that
| (t, @58, 9)] < C(s — ) T (UZyy, v s(z) —y) < C(s — ) ' p(t, z;8,9).

For Iy, by Assumption and again (4.3.2), we have

Fheat Ir Ve >
|I2(t, x; 8, y)] C’f de (s Tt_’Y; (z) = )|z—0t7r( ¥V 2p(r, 23 5, y)|dzdr

CJ ::; (2 T;J p(t,z;r, 2)p(r, z; 8, y)dzdr

< (s— ) 'p(t,z:5,) f (r— )75 fo(r)dr

t

For I3, integrating by parts, we have
S
Bitisg)| < C [ [ V3200000 2] |45 [Vplr. 255, p)dedr
u JR

—l—f J |V§Z0(t7:c;r, )| |VZAi:Z’I | V.p(r, z; 8,y)|dzdr.
u JRA
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Note that by the property of convolutions,
Ast:c <C —14+a Aa,t,az <Clz— « Asta: < O™
|V € ) | rz | |Z PYt,T'(x)| ) | e

In partlcular taking ¢ = (s — T) by Lemma (4.2 3L (4.2.15)), (4.3.2) and using as well the bound
on the gradient established in the previous section, we obtain

o(t, a P
|I5(t, z; s, y)] JJ T 2) ——= . (r—t)2 - Md dr
R4 rft (sfr)z)
t a D )
Rd rft s—r

u u

< Cp(t,x;s,y) (Js(r — t)*g’fTa(s — r)*%dr + Js(r — ) (s - r)”g) dr
< Cp(t,z;s,y)(s —t) 112

and

t a D N
st 5,9) Cff z;r, 2 _(S_r)f_fz(r)p(r,z,s,y)dzdr
Rd Cor—t s—r

<cmumswxs—w—Jks—m-“%hva

u

For I, from (4.3.2)), we derive similarly to I that

s ["heat Tt Vir .
syl <[ [ U D 4o P s, @) A gy
Rd r—t (s —7)2

RN S
<Cﬁ(t,x;s,y)f (=) +(r—1)

t (r—t)(s— 7")%
Combining the above estimates for the (Ij)je{l .,5}» We obtain from (4.3.9) and ) that:

N[

dr < Cp(t,l‘, S, y)(S - t)_l

S

hit) <€ (1 + f(r — )7 fo(r)dr + f

t

(s — ’r‘)_1+3f2(’/’)d’l“> )

Finally, from the Volterra type Gronwall inequality, we obtain

sup fo(t) < C = |Vap(t,z;s,y)| < C(s — )" 'p(t, x5, y). (4.3.10)
te[0,s]

4.3.3 First order derivative estimate in y

We assume for this section that Assumption holds for some 8 > 0 and that the diffusion

coefficient o € bCé 7. Fix t > 0. For s € (¢,T], we define

f3(s) := sup [Vyp(t, z; s, y)|/D(t, 25 5, y). (4.3.11)
T,y
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By Theorem [4.2.12 and (4.3.1)) we know that

T
J f3(s)ds < o0.
¢

In (4.2.28), taking (to,z9) = (s,y) and recalling the notations of (4.2.14) and Zi(t,z;s,y) =
poY(t, z; s,y), by the integration by parts, we have

Vyp(t,x;s,y) = —VaZi(t, x;s,y) + J Vep(t, z;r, 2)tr(A7Y - VzZl)(r, 2;8,y)dzdr
t Jrd
¢
" j | pltsair 2e(9-a)r,2) - V220) 1235,

4
f f (t,x5r, 2)ByY - V2Zi(r, 28, y)dzdr =: 2 Ji(t,x;8,y). (4.3.12)
R’ i=1

For Jy, we readily get from (4.3.2)

1 (s, 2 t,y)] < Cls — )" 2p(t, 3 5, y).

For Js, using again and (| gives:
otz 5,)] <cf f Vaplt i, 2)| - (5 — )73 B0 255, y)dzdr
Rd
C’f fa(r f p(t,x;r, 2) - (s —r)_1+%ﬁ(r,z;s,y)dzdr

< Cp(t, 23 5,7) f f3(r)(s — 1)1+ dr.

For Js, we further write
Tataisg) = || ot 2 ((a)02) = (T2 ) V220) (5. 9)dodr
t JR4

w ][t ou((90) 0 0) - V22 (0555, dzdr
t JRA
=: J31(t,x,s,y) + J3a(t, 255, 9).

For Js1, as above, by (4.3.2]) we have

Tt 5 ,9)] < cf f Bt z37,2) - (5 — )5~ p(r, 21 5, y)dzdr < Cp(t, 23 5,y).
t JRA

For J39, again by the integration by parts, we derive

|J32(ta$;57y)| < CJ J |Vzp(t,:c;r, Z)| : |VZZ1(TaZ;Svy)|dZdT
C’f fa(r J p(t,x;r,z) - (s —r)_%p(r,z;s,y)dzdr

< Cp(t,x;s,9) f fa(r)(s — r)_%dr.
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Finally, we derive similarly to the term J3; that
|[Ja(t, 25 8,y)| < Cp(t, z; 5, y).
Combining all the estimates above for (J;)e1,... 43, from and we get
Ao < (=075 [ A0 -0 Har).

which in turn yields

4.3.4 Proof of Theorem 4.1.5

Now we go back the notations of Section 2 and keep the index e, associated with the spatial
mollification of the coefficients. Thus, let p. be the corresponding heat kernel and X§ s(x) the
solution of SDE (4.2.2)) corresponding to b. and o.. It is well known, see e.g. Theorem 11.1.4 in

[67], that under Assumptions and for any f € bC®(R?)
tim B[ (X7, (2))] = B [f(X,.(2)].

Moreover, from Theorem we have the following uniform estimate: there exist constants
o, Co > 0 depending only on © such that for all € € (0, 1),

C()_lrual (ta z; s, y) < pe(ta €5 s, y) < COF,UO (t, €38, y)-
Similarly, we derive from (4.3.5)), (4.3.10) and (4.3.13]) that under Assumptions and

sup |Vap:(t, x; s,9)| < Ci(s — 75)*1/21]1 (t,z;5,y), (4.3.14)

and under Assumptions and with 8 € (0,1), j € {1, 2},

sup |Vip.(t, z; 5, y)| < Ca(s — If)_j/QI’#2 (t,z;s,9), (4.3.15)
&€
and under Assumptions and with € (0,1) and o € bC’é T
Sup [ Vype (t, 5 5,9)| < Ci(s - t) V2T (t 5 8,y), (4.3.16)

where in the above equations (4.3.14))-(4.3.16) the constants C1, Ca, C only depend on © and not

on the mollification parameter €.
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In particular, for every non-negative measurable function f, we eventually derive
C((]_1 4 Fual (tv €58, y)f(y)dy <FE [f(Xt,s(x))] < CO J 4 Fuo (t7 Zz;s, y)f(y)dy,
R R
which implies that X, () has a density p(t,z;s,y) having lower and upper bound as in (4.1.9).
This proves point (i) of the theorem.

Moreover, for each t < s, we now aim at proving that

(z,y) — Vape(t, ;5,y) is equi-continuous on any compact subset of R? x R?, (C1)
and

(z,y) — V2pe(t,z;5,y) is equi-continuous on any compact subset of R? x R?, (Co)

(x,y) — Vyp(t,z;s,y) is equi-continuous on any compact subset of R? x R, (Cs)

Assume for a while that such a continuity condition holds. Then, from the Ascoli-Arzela theorem,

one can find a subsequence ¢, such that for each z,y € R?,
Vipe, (t,x;5,y) = Vip(t,z;s,y), j=0,1,2, Vype, (t,7;5,y) = Vyp(t,z; 5,).

The gradient and second order derivative estimates follow, under the previously recalled additional
assumptions when needed, from (4.3.14)), (4.3.15)) and (4.3.16). This completes the proof of points

(ii) to (iv) of the theorem up to the proof of (Ci)), (Csf) and (Cs)). This equicontinuity property is
proved in Appendix [C]

4.4 Extension to higher order derivatives

We explain here how the estimates (4.1.10), (4.1.11)), (4.1.12) can be extended for higher order
derivatives in our analysis. We claim that under (S) the a-priori bounds of Theorem can
be obtained for any j € N, using the same techniques based on the Duhamel representation of the
density and . On the other hand the circular arguments used in Section can be repeated

as well, provided that the coefficients are smooth enough.

For instance, let us assume (S) to be in force; assume as well that Vo[ + V]|l < 00 and

for some a, f € (0,1], A\3 = 1,
]Va(t,:v) - va—(t7y)’ < )\3|l’ - y|a’ |Vb(t,.%’) - Vb(tay)| < )‘3‘:6 - y‘ﬁv T,y € Rd' (441)

We aim here at proving that we can obtain bounds on the third order derivatives which only depend

on Assumptions 4.1.1] and 4.1.2| (with Holder indexes equal to one) and the constants in (4.4.1)).
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Namely, we want to illustrate a kind of parabolic bootstrap property, i.e. in we give some
Hoélder conditions on the first derivatives of the coefficients which together with the assumptions
lead to a uniform control of the third order derivatives.

Asin , for the choice of the freezing parameters (tg, z¢) = (¢, ) and recalling Zy(t, x; s,y) =

PUE(t, z;8,y), we have the following representation for the derivatives of order three:
S
Vip(t,x;s,y) = V3 Zo(t, 23 5,y) - j ViZo(tair,2) (L — L) plr s, y)dadr. (44:2)
t JR
Let us now concentrate on the most smgular term in ([4.4.2). Setting u = (¢ + s)/2 and A0,
Ai;o’xo, A 0,20 a5 in m, we write

f J V32Zo(t, z;7, 2)tr (Am V2p(r, z; s ,y)) dzdr
J f V32 (t,z;7, 2)tr ((ARL™ 4+ AZLY) - V2p(r, z;s,y)) dzdr
Rd ’

J V32 (t, z;7, 2)tr (AL V2p(r, z;8,y)) dzdr =: G1(t,2;5,y) + Ga(t, ;5 5, 9).
t JR4

3
2

When r € [u,s], (r — t)fg = (s—1t)"
the terms I3 and I, appearing in Section owing to the fact that the upper bound on V?2p is

already available at this point.

is not singular Therefore we may control G similarly to

When r € [t,u], then (r — t)fg is indeed singular. Thus, to control G2 the point is precisely
to exploit the regularity of the coefficients and perform an integration by parts to balance the

singularity. We write

Ga(t,x;s,y) = —f y V2Z0(t,z; 7, 2)tr (V. Atw Vip(r, z; s ,y)) dzdr
t

—f V2Z0(t, ;7 2)tr (Am Vip(r, z;8,y)) dzdr,
t JR

and define

3
f3(t) == (s — t)2 sup |Vap(t, z; 5,9)|/B(t, 73 8, 9);
x7y

Then, exploiting the uniform bounds for the derivatives of order lower or equal than 2 obtained in

Section we eventually derive

a1+ [ =07 2 i) = swp fils) <

te[0,s]

which yields the desired estimate for V3p. In the same manner, starting from the Duhamel expan-
sion ([4.2.16)), and assuming in addition that |[V20|ls < c0 and |V20(t,2) — V20(t, y)| < M|z — y|®

for some a € (0,1) we could derive

IV2p(t,2;5,9)] < C(s — )" 'plt, @3 5,9).
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A careful reading of the proof suggests that the above arguments may be repeated for any
derivative of order j > 3 in the backward variable x as soon as we have appropriate regularity

assumptions on V/~2¢ and V7/~2b. More precisely, assuming that
V7 0o + [V blloo < 0, j' =1,++,j =2,
and for some a, 5 € (0,1], pj—2 =1,
\Vi725(t,x) — VI 20 (t,y)| < Kj_olz—y|*,  |VI72b(t, ) — VI 2b(t, )| < pjo|z—y|®, z,yeRY,

then we may derive

IVip(t,a;s,y)| < C(s — )72 5(t, z; 5, y).

On the other hand, the derivative with respect to the forward variable V‘;_l requires an additional
assumption on V/~lo. Again, assuming that for some a € (0,1), |Vi7lo(t,2) — V/"lo(t,y)| <

fj—1] —y|® for any z,y € RY, then we may derive

VI p(t, @3 s,y)| < C(s — )T p(t, 25 5,y).



Chapter 5

Appendix

A Proof of Lemma [2.6.19| of Chapter 2

We start this Section by proving two important technical results about the sensitivity of the flow

and the covariance matrix with respect to the choice of the freezing parameters.

Lemma A.1. There exists a constant C = C(©) = 1 such that, for every 0 < t < s < T and
. 1
z,¢ € R? with (s —t)2 D\/% (€ —m,s(2)) ‘ < ¢y, we have:

D, () = 35) | < Ol - 0 (1+ LS

1+a
) . (A1)

Proof. By (12.6.7)) and (2.6.9) we write

D (%3(2)— e >)
V(102 = V(e O ot [ (DY)e20(0) (104(0) = 35(2)) de}

1 f (y wg ~Yi(e ,<vs,g<<>>1,(%,g<z>>2>> do
7= U w )) = Ya(2:%5.0(0))

(Y1(2, (95,0(O))1: (11,0(2))2) = Yi(2:75,0(C))) €1

D_.

I
i
%

I
@

«*

S

_|_

—

= (DY)(2:700l€)) () = 7050 Jdo + | (DY) 100(0)) (0l2) ~ 75 (2) ) de

=L+ 1+ I3

117
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Then, by Assumption [2.6.2] we have

e CJS <I(%,g(z) o ONl | Prel2) = y?g(g”) “o
t (s —1)2 (s—1t)2
< cf

Bl<c|

\/57

D (%ﬁ @( ) — VS,Q(C))‘ < (3 - t>%§

o(2) = 7s,0(C))2| T do

1
<C
j S —t)% %(1+0¢)

<C(s—t)2

1+a
do

1 (e(2) = 75.0(C)

1+a

ID\/% (C - 'Vt,s(z))

Lastly we notice that by the upper diagonal structure of DY and Assumption (2.6.2)), for any

0 € [t, s] we have

Hﬂﬁwyxm,@(o) <o -

Therefore, we have

S
| I3] <J
t

<C(s—t)! f;

D1 (D)0 1m0V | [P, (ale) = 352) o

s—t

D 1 (’Yt,g(z) - ’7’;’5(@) ‘ do.
Gathering all the terms together we get (A.1)) by the Gronwall inequality. O

Lemma A.2. There exists a constant C = C(0) = 1 such that, for every 0 <t < s < T and
z,( e R%:

(6%
L (Cs-a)p | <c-0t P L (- o)
Proof. By (2.6.10) we write
le (CNfo - 5f§> D_._
s—t ’ ’ s—t
S
= sup { | (@l 300(2)) 0l 700(0)) (Bliea) (ELen) D_y_yD_y_y)de+

lyl=1 * Jt Vet

S
+ | aleneale) [(Bized (Blien)” - (Byfen) (Eifer)| D v.D_ yydo}

t S—

=L+
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By Assumption [2.6.1] and Proposition [2.6.9] it is easy to see that

«

L] < C(s - )%

D\/slft (C - 'Yt,s(z))

For I we have

Ll < (s — 1)~ f
t

<C(s—t)7! J:

D_1 (i~ Bf) Dy

D (Eg;+Eg;§)

v/s—t

—| do

—| do

s—t

D_. (EZ;-E;;ﬁ)

where we used that D_. EZ,%ZOD /5= is a positive, bounded matrix, uniformly in ¢y € [0, 7],

Voot

20 € R? and g € [t, s], by the structure of the resolvent. Moreover, by the upper diagonal structure
of (DY) and Assumption we have

‘D L (Eg - E;;§>

El

S
< | [P PV IPyem| [P (B~ i) Dy
S
+ f D #«DY)(u () = (DY) 70(O) Doy [P BaSD s
Os=07" | |D_o E@;—Ez;g) | du

O —t)! f 103 (11, Y2,0(2)) = 20 Y1 (0 75,0(C))| ds

<C(s—t)7! f

<C(s—1)2|D_1_
=

D, (Bl - B

s—t

du+ (s — ! j ia(2) = Yo (€)*du.
o

(C - 'Yt,s(z))

where we used the Gronwall inequality in the last step. Coming back to I» we directly derive

[0

L] <C(s—t)2

)

,D\/;Tt (C - ’Yt,s(z))

and this proves the assertion. O

Proof of Lemma[2.6.19. Assume that (s — t)% D1 (¢ —'ytys(z))‘ > ¢p. Then (2.6.31) can be
V=

directly derived by (2.6.24]) and ([2.6.25]). Indeed we can write

N . ID\/% (C t, s( ))
TNt 275, C) = B Z(t, 23 5,0) <C e D (D, C = 1,s(2)
(to.1)=(5) (s — )"
< O(s —t) "z Theat (W Ds—t,¢ = m,5(2)) -
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Assume now that (s — t)% ’D 1 (C— %75(2))’ < ¢p to be determined. We will prove the statement
A/s—t
when j = 0. The statement for j = 1,2 would be derived similarly from usual computations on
At ~s7<

gaussian kernels. We denote for simplicity Cy = Cvf:j’ Cy=Cpy, w1 = —y,s(2), w2 =(— %SSC(Z)

Then the thesis for j = 0 follows from the following estimates:

](det Co)"% — (det C) 3| < C(s — )23 D 1wy

By proposition [2.6.9 we have

det C7 — det C

‘(detCﬁ)_%—(detCz)_% é(s—t)_2| : (Sl_t)j d
<(s—t)2|detD_1 C1D_1 —detD_1 CoD_1
s—t s—t s—t s—t

< (S—t)_QHDﬁ}j(Cl _02)D¢jj|‘

(by Lemma [A.2)

Let us now turn to the proof of (A.2). Write:

1 1
exp (—2<Cf1w1,w1>> — exp (—2<02_1w2,w2>>‘
exp _§<C1 wy,wi)y | —exp —§<02 wy, wy )
exp —§<C2 wy,wi) | —exp —§<C2 wa, Wa )

=11 + Is.

<

S

+

For the first term we have

! 1
I < |<(C’;1 _ C;l)wh w1>| JO exp {—2 [<C;1w1, w1> + A (<C;1w1, w1> — <C;1w1, w1>)]} dA.
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Exploiting the equality Cgl — C’fl = 051(01 — C’g)C’fl, Remark [2.6.10| and Lemma we get

K(CTH = C3 Hwr,we))|
2

< DOyt = Gy D ]| [P wn
2
< ”D\/ECQ_]'D\/E“ ’D\/%(Cg _Cl)D\/slit‘ “D\/ﬁcl_lp\/ﬁu D\/%wl
24+«
< (S - t)% D 1 wl

o

s—

and, for every \ € [0, 1]

D1w1
Vst

)

)

exp {p (((Cy3* — CTHwi,wi))} < exp {Cco

which eventually yields

a 1
I1<C(s—t)ZeXp{—2‘D 1wy
12 s—t

provided ¢p = ¢o(0) is small enough. On the other hand we have

I < KCQ_l(wl + wa), (w1 — w2)>‘ X

. fl exp {_; [(Cy M wn, wr) + A ((Cy s, wn) — (Cy i, w1>)]} dx.

0
1+
;

By Lemma [AT] we get

1

Cz_i(wl — wy) \/%(wl — wy)

<(S—t)% <1+‘D1w1

Vot

)<c

<C‘D

1

Cy 2 (w1 + w2)

+ ‘Dl(ﬂ]l —'LUQ)

s—t

<C (’171101

s—t

Then it suffices to notice that for all A € [0,1] and n € (0, 1]:

1 C
exp {—2Q (<C2_1w2, woy — <C’2_1w1,w1>)} < exp {2

which eventually gives, for 1 small enough:

N]])

I <C(S—t)

1
exp| —=— |D_1_wy
2/JJ s—t

The proof is complete. O]
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B Backward Ito calculus

In this section we collect some basic result about backward Ité integrals and the backward diffusion
SPDE (or Krylov equation according to [62]). This is standard material which resume the original
results in [33], [40], [41], [43], [68] (see also the monographs [62] and [44]).

Let W = (W¢)se[o,1) be a d-dimensional Brownian motion on (€2, F, P, F WY where FY denotes

the standard Brownian filtration satisfying the usual assumptions. We consider
f:,I:V’t:U(gtUN), gt:U<Ws_Wt7t<3<T)7 tE[O,T],

the augmented o-algebra of Brownian increments between ¢ and 7. Notice that (Fjwt)ogtgj’ is a

decreasing family of o-algebras. Then the process
Wyi=Wpr—Wp_y,  tel0,T],
is a Brownian motion on (2, F, P, 7_-') where
Fy= ]'"}V’T_t, t e [0,T],

is the “backward” Brownian filtration. The backward stochastic It integral is defined as
s T—t -
J Up * AW, 1= up—pdWp, 0<t<s<T, (B.1)
t T—s

under the assumptions on u for which the RHS of (B.1) is defined in the usual It6 sense, that is
i) t— up_y is j-"—progressively measurable (thus u; € m]—";/v’t for any t € [0,T1);
i) uwe L%([0,T]) a.s.

For practical purposes, if u is continuous, the backward integral is the limit
n

J Uy * dWr = | 1|11'I(1)+ Z Uty, (Wtk — Wtkfl) (B2)
t T k=1

in probability, where m = {t =ty < t; < --- <t, = s} denotes a partition of [t, s].

A backward It6 process is a process of the form

T T
thXT—i—J bsds—kf s * dWs, te[0,T1,
¢

t

also written in differential form as

—dX; = bidt + oy x dW;. (B3)
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Theorem B.1 (Backward It6 formula). Let v = v(t,z) € CY2(Rsg x R?) and let X be the
process in (B.3)). Then

—du(t, Xy) = ((&tv)(t,Xt) + %(Utaf)ij(ﬁxixjv)(t,Xt) + (bt)i(ﬁxiv)(t,Xt)) dt+(0¢)ij (0z,v) (t,Xt)*thj.
(B.4)

A crucial tool in our analysis is the following

Theorem B.2 (Backward diffusion SPDE). Assume b, o € bC?(Rso x R?) and denote by s — X&°
the solution of the SDE
dXb" = b(s, X¥)ds + o (s, XL")dW (B.5)

with initial condition Xf’x = x. Then the process (t,x) — X%x solves the backward SPDE

—dXE" = LXERdt + 045(t, 3)0y, X5F * dW (B.6)
X%’I =z,

where
£ = Lo 20" (1. 2))y a0, + (L)

is the characteristic operator of X. More explicitly, in we have

LX7" = 5 (o(t,2)0* (t,2))ij0ue Xp" + bilt, )00, X"

N =

Remark B.3. The regularity assumption of Theorem[B.4 on the coefficients is by no means optimal:
[62], Theorem 5.1, proves that (t,x) — Xélx is a generalized (or classical, under non-degeneracy
conditions) solution of if b, € bO(Rsg x RY).

Proof. For illustrative purposes we only consider the one-dimensional, autonomous case. A general
proof can be found in [62], Proposition 5.3. Here we follow the “direct” approach proposed in [68].
By standard results for stochastic flows (cf. [44]), = — erp’x is sufficiently regular to support the

derivatives in the classical sense. We use the Taylor expansion for C?-functions:

2
10) = 1(0) =6£0) + T '09),  Aefo.1] (B.7)

We have

- 3 (- xp) -



124 CHAPTER 5. APPENDIX

n fk 1.®
tk)7 tk,ﬂ? —
T =

(by " with f((s) = Xéf“’gc""s ds= th LT 1‘)

(by the flow property)

n AL X)2
D (AanxX%’z+( ’“2 ) amxgzwx“kﬁk)‘> (B.8)
k=1

for some A\ = Ai(w) € [0,1]. Now, we have

tr

ApX = X0 g = f
t

i
b(X ") ds + J o (X2 AW,

k—1 te—1

Thus, setting
Akt =t —tp_1, AkW = Wtk — Wtkil, AkX = b($)Akt + U(:E)AkVV,

by standard estimates for solutions of SDEs, we have

ti i

ARX — ApX = (b(Xﬁ’H’I) - b(x)) ds + f

te—1 te—1

Opa X T TMERN _ o X" — O(Apt),

(a(Xﬁ’H’I) - U(x)> AW, = O(At),

in the square mean sense or, more precisely,

tr,x+ A A X tr,T
T - axCE‘)(T

X 2 2 2 2
v [ka_Am ; }< (1 + |2 ?) (Axt)

with ¢ depending only on 7" and the Lipschitz constants of b, 0. From (B.8) we get

Xpt =z =] <5kxawxw (A’“X ’ Ops X717° ) + O(Agt).
k=1

Next we recall (B.2) and notice that (9xX¥’I,(9MX¥’I € m]—"}/v’t’“. Thus, passing to the limit, we

have

n T T
Z AkXﬁwXél“’I — J b(t, )0, X7 ds + J o(2)0x X7" * dWs,
t t

2 (ApX)2 0 X" — f )0z X 3" ds,

in the square mean sense and this concludes the proof. O

We have a useful corollary of Theorem



C. PROOF OF THE EQUICONTINUITY (C;), (C2) AND (Cs) OF CHAPTER 4 125
Corollary B.4 (Invariance of the backward diffusion SPDE). For v e bC?(RY) and X as in
(B.5), let V:,t«’z = U(X;lx). Then V%’x satisfies the same SPDE (B.6)), that is

— V" = LVEEdt + 04(t, ©) 0, V" % AW

with terminal condition V:,T’gc =g(z).

Proof. To fix ideas, we first consider the one-dimensional case: by the backward SPDE and
the backward It6 formula (B.4)), we have

2(¢
g (2’ ”“")u’(X;m)amX;"” ot x)v’(X;f)amX;’f> dt

2
x t? x xr
du(X5) = (" ) oty o i) +

+o(t, ) (X5") 0. X5T « dW, =

(using the identities 0, V" = v/ (X3")0, X0 and 0., V™ = 0" (X57) (0 X55)2 4+ 0/ (X5") 0a X57)

2
= (" (;’“")amv;@ + b(t,a;)axv;@> dt + o(t,2)0, V" * dW,

and this proves the thesis. In general, we have

Oy, V¥ = (V) (X57) 0y, X5,

(B.9)
avhll?kvjt"x = (6ZJU)(X%m)(aith?z)l(&l’kX’?x)] + (vv)(X%aC)(&iBhinX;x)?
and by and
xr 1 x x x
~ao(xy) = (5 (VX (VX (0. 0)") | @) X8 ) a
1
+ (2(0(75, 2)0* (b, 2))ij0;a, X727 + (L, x)vngf) (Vo) (X77)dt
+ (Vo) (XE)N VX )a(t, ) « dW; =
(by (B.9))
1
= <2(J(t, 2)0* ()i 0,2, V" + b(t,m)Vij’w> dt + VVE o (t, ) « dW.
O

C Proof of the equicontinuity (C;), (Cs) and (C3) of Chapter 4

In this section, we drop the subscripts and superscripts in ¢ for notational convenience. However, it
must be recalled that we aim at proving some equicontinuity properties for the densities associated
with the SDE (4.2.2) with mollified coefficients and their derivatives.

In this section we devote to proving the following Holder continuity of the derivatives.
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Lemma C.1. Suppose that Assumptions|{.1.1 and|4.1.2 hold. Let T > 0, ay € (0,1), az € (0, )

and az € (0, A ).

(C1) There exist constants C, > 0 depending only on ©, aj, o such that for all0 <t < s<T

and z,x',y,y’ € R,

x— 2|

Vap(t, @5 s,y) — Vap(t, 2’5 s,y)] < C(s|—t)<1+|m)/2 (Tu(t, ;5,y) + Tut, 2's s, y))
y—y|*

Ve(tais) = Vonltoziony)) < Ol (Ui + Dyttass)

(C2) If B € (0,1], there exist constants C, > 0 depending only on © such that for all0 <t <s<T

and z, 2’ y,y € RY,

st et seet),

(s—1)2 s—t
X <Fu(t,.’lf, S7y) + Fu(t7m/; 87 y))v

[ N et W e B A LA
(s — )+ s—t

IV2p(t,m;s,y) — Vap(t,a'ss,y)| < C (

IV2p(t,z;s,y) — Vap(t,z;s,y)| < C (

X (Fu(t,x;s,y) + Fu(tvw';s,y))

(Cs) Ifo e bCé’% for some a € (0,1) and 5 € (0,1), then there exist constants C,u > 0 depending
only on ©, oy, az such that for all0 <t < s <T and z,2',y,y € R,
|y - y/’ag . . /
(s —)1raa)2 (F#(t, z;s,y) + Dt 58,y )>>
|z — 2'|™
(s — t)(1+a1)/2

\Vyp(t, x5 s,y) — Vyp(t, x58,9')| < C

IV up(t, w5 5,) = Vyplta's 5,9)| < C (Cult.a5.9) + Dulti235,9))

Proof. We only prove (Cz) and focus on the sensitivity w.r.t the variable x. The sensitivity w.r.t.
the variable y could be established similarly. Also, the inequalities in conditions (C;) and (Cs)

could be shown more directly.
First of all, if |z — 2/|> > (t — s)/4, then by (4.3.15]), we clearly have

IVap(t, @i s,y) — Vap(t,a'ss,y)| < C(s — )~ (F#(tam; s,y) + Tp(t,2'; S,y)> < rhes. of (C.).
Next we restrict to the so-called diagonal case

lv —2/)? < (t —5)/4.
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For any fixed freezing point (to,zo) and r € (¢,s), by (4.2.11]), one sees that

p(t,z;s,y) = ﬁéi’xop(r, 5 s,y)(z) + f: Jﬂw pro-2o (t,xyu, 2)(Ly, — ENZO”Z‘”O)p(u,z; s,y)dzdu,
where, with the notations of ,

Bl fla) = [ 9o i 2) ()

Let us now differentiate w.r.t. 7. We obtain for all (¢, z¢) € [0,T] x R%:

0= 6T[]3tt3’$0p(r, ss,y)(x)] + J PO (t, @, 2) (L — fffjf“)p(r, z;8,y)dz. (C.2)
b Rd b

Fix t € (t,s). Now, integrating (C.2)) between ¢ and s and taking zo = z{,, we get

/
~t0,T

S
/ ~to,x! /
0= poo(t,a55,y) — P,y Op(t, s, y)(a) + J dr fRd Pt (t, x5, 2) (Luz — Lus *)p(r, 25 8, y)dz.
t

Moreover, integrating (C.2|) between ¢ and ¢, we obtain

t
0= Ptt%’xop(t_, 58,y)(x) — plt,z;s,y) + f drf dﬁto’xo (t, ;7 2) (L — Efﬁfo)p(r, z;8,y)dz;
’ t R
Summing up the two equalities we get the following new representation for p(t, z, s, y):
/ ~t , ~t , / _
Pt wss,y) =070 (8 235,y) + (P9 = By )(f, 55,9)()
S /
—i—J drj ﬁo’xé(t,aﬁ;r, 2)(Ly,z — fo,’zxo)p(r,z;s,y)dz
t R4
{ ~
w [ [ Bt (Lo - Lo,
t Rd '
which, together with (4.2.11)) yields
Pt s s,) = plt,als 5,y) =0 (1,5 s,) = POt @5 s,) + (B9 = B ) p(E, 5 ,9) (@)
to,zh, ! t0,0,T"
+ Adoiago Ot,s,x,x',y) + AO%_Odi;g(t, s,z, 7, y), (C.3)
where
’oo S , , /
ARt sty = [ | [P0 i) - D' )| (£ — Bl 25 )i
i R
and
t0,%0,T/ t Y
A saaty) = [ at [ [P0t o)L = Lo it

— PO, 7, 2) (L — £ O)p(r, 23, y) |de.
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Observe that for any freezing couple (tg,zo) and h € R?,
VPOt @ + hys,y) = Vopomo (¢, s,y — h).

After differentiating twice in z for both sides of (C.3) and taking top = ¢t and zo = x, z{, = 2/, we

obtain

4

Vip(t, Z; Svy) - Vip(t,:xl, S)y) = Z IZ(t7 S, 1"7'T,a Z/),
=1

where, with the notation Zy(s,x;t,y) = pb*(t, z; s,y),

Li(t, s,z 2 y) = V;Zo(t, s, y+ a2 —x)— VgZo(t, 7’5 s,y),
Ly(t,s,x, 2" y) = J;Rd V2N (4, a1, 2) — pYV (t, s, 2))p(E, 23 5, y)dz,
I3(t,s,x, 2" y) = J_S dr J}Rd [VgZo(t, rz+a —x)— VzZo(t, ', z)] Ly — Eﬁ”ﬁ,)p(r, z;8,y)dz,
£
Li(t,s,z, 2 y) = Lt dr JRd [VZZO(t, xyr, 2) (L, — Eﬁ’é)p(r, 2;8,Y)+
— VzZo(t, ', 2) (L — eqj’ﬁl)p(r, Z; 8, y)]dz.
Note that by Lemma for j € N and h e R? with |h|? < (s — t)/4,
V;Zo(t,az; s,y +h)— V;Zo(t,:n; s, y)‘ < |h| sup |Vi+1Zo(t,x; s,y + oh)|

0€[0,1]

< Clh|(s —t)~U+D/2 st] TP (T g, ye,s(x) — (y + oh))
0€[0,1

< C'|h|(s — )=OFDRrheRt (T () — ), (C.4)
using Lemma for the last step. On the other hand, we also have
V3 Zo(ts w5,y + B)| < Cls = ) 7T (T, 5 (@) — ).
Thus, by interpolation, we get for any 6 € (0, 1),
V) Zo(ts s,y + B) = Vi Zo(tas s, )| < CIAI (¢ = )"0 ORTR T 5 (@) — ).

Hence,

1(t,s, 2,2, y)| < Clz — 2/ |°(s — )77 5T, (¢, 3 5, y).
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To treat the remaining terms, we take £ = t + |z — 2/|2. We have the following claim:
’ﬁt’x(tﬂf;t,y) —ph* (tyw;t,y)’ <C(lz—2|* + o — 2/ )P)Tult, s L y). (C.5)
Indeed, by Lemma there is a constant C' = C(©) such that

e (@) = (@) < C(lz —2| + [t —7]), z,2"eRY retd].

Recalling 19?’{’9”0 = Sf_b(r, Vto,r(20))dr from the notations of Section 4.2.1, we have:

7
|19§j§ - 19;:? | < £ b(r, Yer () — b(r, 1,0 () |drr
7
< )\2J e (2) = e (@)Pdr < Clz — 2/ 7,
t

where the last step is due to |r —t| < |z — 2/|? < |s — t|/4. Then desired claim (C.5) follows by

(4.2.7)), reasoning as in the proof of Lemma [2.6.19
Now, integrating by parts, we get from (4.3.10)), (C.5) and Lemma

a(t,5,2,2', )| < de P, 2) — 5 (2| [0 2, 9)
Clz —2'|* + [z — 2'|°) (¢ J (t,x;t,2)Tw(t, 25, y)dz
<C"(|x—m'|a+|m x|ﬂ)( t)~ir w (b5 8,y).
For I3, by and using arguments completely similar to those of Section we have
|I3(t, s, 2,27, y)| < Clo —2'|*(s — ) 7' Ty (1,25 5,y).

Finally, for Iy, from (4.3.2)), we have

La(t, 5,22 1) CJJ mtxrz)+f‘m(tx rz))Fm(r,z;s,y)dZdr
R? (r—t)t~ (s—r)

t dr
< C' (T (t,z;s,y) + T (t,2's s, f =
(Tps (£, 235, ) + Ty ( w) | T —

<C”M(F (t,55,y) + Tus (1,25 5, 9))
~ S—t M3 7$787y 3 7x787y 9

where we have used that |z —2'|?> < (s —t)/4 and t = t + |z —2'|. Combining the above calculations,

we obtain ((C.1)).
O






Bibliography

[1]

ARONSON, D. G. The fundamental solution of a linear parabolic equation containing a small
parameter. Ill. Journ. Math. 3 (1959), 580-619.

ARONSON, D. G. Bounds for the fundamental solution of a parabolic equation. Bull. Amer.

Math. Soc. 73 (1967), 890-896.

BAss, R. F., AND PERKINS, E. A new technique for proving uniqueness for martingale
problems. Astérisque, 327 (2009), 47-53 (2010).

BENSOUSsAN, A., AND TEMAM, R. Equations stochastiques du type Navier-Stokes. J.
Functional Analysis 13 (1973), 195-222.

BonFiGLIOLI, A., LANCONELLI, E., AND UGUzzONI, F. Fundamental solutions for non-

divergence form operators on stratified groups. Transactions of the American Mathematical

Society 356, 7 (2004), 2709-2737.

Boug, M., AND Dupuis, P. A variational representation for certain functionals of Brownian
motion. Ann. Probab. 26, 4 (1998), 1641-1659.

BRAMANTI, M., AND POLIDORO, S. Fundamental solutions for Kolmogorov-Fokker-Planck

operators with time-depending measurable coefficients. arXiv:2002.12042 (2020).

Brezis, H. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maitrise.
[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et

applications. [Theory and applications].

CHEN, Z., Hu, E., XIE, L., AND ZHANG, X. Heat kernels for non-symmetric diffusion
operators with jumps. J. Differential Equations 263 (2017), 6576-6634.

CHow, P. L. Stochastic partial differential equations in turbulence related problems. In
Probabilistic analysis and related topics, Vol. 1. 1978, pp. 1-43.

131



132

[11]

[12]

[13]

[14]

[20]

[21]

22]

BIBLIOGRAPHY

Craow, P. L., AND JiANG, J.-L. Stochastic partial differential equations in Holder spaces.
Probab. Theory Related Fields 99, 1 (1994), 1-27.

DawsoN, D. A. Stochastic evolution equations and related measure processes. J. Multivariate
Anal. 5 (1975), 1-52.

Deck, T., AND KRUSE, S. Parabolic differential equations with unbounded coefficients - a
generalization of the parametrix method. Acta Appl. Math. 74, 1 (2002), 71-91.

DELARUE, F., AND MENOzzI, S. Density estimates for a random noise propagating through
a chain of differential equations. J. Funct. Anal. 259, 6 (2010), 1577-1630.

DENis, L., MATOUSSI, A., AND STOICA, L. LP estimates for the uniform norm of solutions
of quasilinear SPDE’s. Probab. Theory Related Fields 133, 4 (2005), 437-463.

D1 FRANCESCcO, M., AND Pascucci, A. On a class of degenerate parabolic equations of
Kolmogorov type. AMRX Appl. Math. Res. Express 3 (2005), 77-116.

D1 FRANCESCO, M., AND Pascucct, A. A continuous dependence result for ultraparabolic
equations in option pricing. J. Math. Anal. Appl. 336, 2 (2007), 1026-1041.

D1 FRANCESCO, M., AND POLIDORO, S. Schauder estimates, Harnack inequality and Gaus-
sian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Differential
Equations 11, 11 (2006), 1261-1320.

Du, K., AND Liu, J. A Schauder estimate for stochastic PDEs. C. R. Math. Acad. Sci. Paris
354, 4 (2016), 371-375.

FaBEs, E. B., AND STROOCK, D. W. A new proof of Moser’s parabolic Harnack inequality
using the old ideas of Nash. Arch. Rational Mech. Anal. 96, 4 (1986), 327-338.

FLEMING, W. H., AND RISHEL, R. W. Deterministic and stochastic optimal control. Springer-
Verlag, Berlin-New York, 1975. Applications of Mathematics, No. 1.

FLEMING, W. H., AND SHEU, S. J. Stochastic variational formula for fundamental solutions
of parabolic PDE. Appl. Math. Optim. 13, 3 (1985), 193-204.

FoLrLanD, G. B., aAND STEIN, E. M. Hardy spaces on homogeneous groups, vol. 28 of

Mathematical Notes. Princeton University Press, Princeton, N.J.; University of Tokyo Press,
Tokyo, 1982.




BIBLIOGRAPHY 133

[24]

[25]

[26]

[27]

28]

[30]

31]

[32]

FRrRIEDMAN, A. Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1964.

FRIEDMAN, A. Stochastic differential equations. Chapmann-Hall, 1975.

GOBET, E. LAN property for ergodic diffusions with discrete observations. Ann. Inst. H.
Poincaré Probab. Statist. 38, 5 (2002), 711-737.

HORMANDER, L. Hypoelliptic second order differential equations. Acta Math. 119 (1967),
147-171.

IL 1IN, A. M., KALAHSNIKOV, A. S., AND OLEINIK, O. A. Second-order linear equations of
parabolic type. Uspehi Mat. Nauk 17, 3 (105) (1962), 3-146.

KALLIANPUR, G. Stochastic filtering theory, vol. 13 of Applications of Mathematics. Springer-
Verlag, New York-Berlin, 1980.

KELLER, J. B. Stochastic equations and wave propagation in random media. In Proc. Sympos.
Appl. Math., Vol. XVI (1964), Amer. Math. Soc., Providence, R.I., pp. 145-170.

KoLMOGOROV, A. Zufallige Bewegungen. (Zur Theorie der Brownschen Bewegung.). Ann. of
Math., II. Ser. 35 (1934), 116-117.

KoNnakov, V., MENOZzI, S., AND MOLCHANOV, S. Explicit parametrix and local limit
theorems for some degenerate diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 46,
4 (2010), 908—923.

KryLov, N. V. The selection of a Markov process from a Markov system of processes, and the
construction of quasidiffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 691-708.

KryLov, N. V. On L,-theory of stochastic partial differential equations in the whole space.
SIAM J. Math. Anal. 27, 2 (1996), 313-340.

KryLov, N. V. An analytic approach to SPDEs. In Stochastic partial differential equations:

six perspectives, vol. 64 of Math. Surveys Monogr. Amer. Math. Soc., Providence, RI, 1999,
pp. 185-242.

KRryLov, N. V. Hormander’s theorem for parabolic equations with coefficients measurable in
the time variable. STAM J. Math. Anal. 46, 1 (2014), 854-870.

KryLov, N. V. Hormander’s theorem for stochastic partial differential equations. Algebra i
Analiz 27, 3 (2015), 157-182.



134

[38]

[39]

[40]

[48]

[49]

BIBLIOGRAPHY

KryrLov, N. V. Hypoellipticity for filtering problems of partially observable diffusion pro-
cesses. Probab. Theory Related Fields 161, 3-4 (2015), 687-718.

Kryrov, N. V., AND Rozovskil, B. L. The Cauchy problem for linear stochastic partial
differential equations. Izv. Akad. Nauk SSSR Ser. Mat. 41, 6 (1977), 1329-1347, 1448.

KryrLov, N. V., AND R0ozovsky, B. L. On the first integrals and Liouville equations for

diffusion processes. In Stochastic differential systems (Visegrad, 1980), vol. 36 of Lecture Notes

in Control and Information Sci. Springer, Berlin-New York, 1981, pp. 117-125.

KRryLov, N. V., AND R0zovskKY, B. L. Characteristics of second-order degenerate parabolic
It6 equations. Trudy Sem. Petrovsk., 8 (1982), 153-168.

KRryLov, N. V., AND ZATEZALO, A. A direct approach to deriving filtering equations for
diffusion processes. Appl. Math. Optim. 42, 3 (2000), 315-332.

Kunita, H. On backward stochastic differential equations. Stochastics 6, 3-4 (1981/82),
293-313.

KuniTa, H. Stochastic flows and stochastic differential equations, vol. 24 of Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

LANCONELLI, E., AND POLIDORO, S. On a class of hypoelliptic evolution operators. Rend.
Sem. Mat. Univ. Politec. Torino 52, 1 (1994), 29-63.

LUNARDI, A. Schauder estimates for a class of degenerate elliptic and parabolic operators
with unbounded coefficients in RY. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 1 (1997),
133-164.

MANFREDINI, M. The Dirichlet problem for a class of ultraparabolic equations. Adv.
Differential Equations 2, 5 (1997), 831-866.

MENOZZI, S. Parametrix techniques and martingale problems for some degenerate Kolmogorov
equations. Electron. Commun. Probab. 16 (2011), 234-250.

MENOZZI, S., PESCE, A., AND ZHANG, X. Density and gradient estimates for non degenerate

brownian sdes with unbounded measurable drift. Journal of Differential Equations 272 (2021),
330 — 369.

MikULEVICIUS, R. On the Cauchy problem for parabolic SPDEs in Holder classes. Ann.

Probab. 28, 1 (2000), 74-103.



BIBLIOGRAPHY 135

[51]

[52]

[57]

[58]

NuALART, D. The Malliavin Calculus and Related Topics. Springer, 2006.

PAGES, G., AND PaNLoupr, F. Total Variation and Wasserstein bounds for the ergodic

Euler-Naruyama scheme for diffusions. Preprint (2020).

PAGLIARANI, S., PAscucor, A., AND PigNOTTI, M. Intrinsic Taylor formula for Kolmogorov-
type homogeneous groups. J. Math. Anal. Appl. 435, 2 (2016), 1054-1087.

PArDOUX, E. Stochastic partial differential equations and filtering of diffusion processes.

Stochastics 3, 2 (1979), 127-167.

Pascucci, A., AND PESCE, A. On stochastic Langevin and Fokker-Planck equations: the
two-dimensional case. arXiv:1910.05301 (2019).

Pascucct, A., AND PESCE, A. Backward and forward filtering under the weak Hormander
condition. arXiv:2006.13325 (2020).

Pascucci, A., AND PESCE, A. The parametrix method for parabolic spdes. Stochastic
Processes and their Applications 130, 10 (2020), 6226 — 6245.

PorLiborO, S. On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type.
Matematiche (Catania) 49, 1 (1994), 53-105.

PoLiDORrRO, S. A global lower bound for the fundamental solution of Kolmogorov-Fokker-
Planck equations. Arch. Rational Mech. Anal. 137, 4 (1997), 321-340.

Qiu, J. Hormander-type theorem for Itd processes and related backward SPDEs. Bernoulli

24, 2 (2018), 956-970.

Rozovskil, B. L. Stochastic partial differential equations. Mat. Sb. (N.S.) 96(138) (1975),
314-341, 344.

Rozovsky, B. L., AND LOTOTSKY, S. V. Stochastic evolution systems, vol. 89 of Probability

Theory and Stochastic Modelling. Springer, Cham, 2018. Linear theory and applications to

non-linear filtering, Second edition of | MR1135324].

SHEU, S. J. Some estimates of the transition density of a nondegenerate diffusion Markov
process. Ann. Probab. 19, 2 (1991), 538-561.

SHIMIZU, A. Fundamental solutions of stochastic partial differential equations arising in nonlin-
ear filtering theory. In Probability theory and mathematical statistics (Thilisi, 1982), vol. 1021
of Lecture Notes in Math. Springer, Berlin, 1983, pp. 594-602.




136

[65]

[66]

[67]

[68]

[69]

[70]

[71]

BIBLIOGRAPHY

SOWERS, R. B. Recent results on the short-time geometry of random heat kernels. Math.
Res. Lett. 1, 6 (1994), 663-675.

SOWERS, R. B. Short-time geometry of random heat kernels. Mem. Amer. Math. Soc. 132,
629 (1998), viii+130.

STROOCK, D. W., AND VARADHAN, S. R. S. Multidimensional diffusion processes, vol. 233

of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences|. Springer-Verlag, Berlin, 1979.

VERETENNIKOV, A. Y. “Inverse diffusion” and direct derivation of stochastic Liouville equa-
tions. Mat. Zametki 33, 5 (1983), 773-779.

VERETENNIKOV, A. Y. On backward filtering equations for SDE systems (direct approach).
In Stochastic partial differential equations (Edinburgh, 1994), vol. 216 of London Math. Soc.
Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1995, pp. 304-311.

VERETENNIKOV, A. Y. On SPDE and backward filtering equations for SDE systems (direct
approach). https://arxiv.org/abs/1607.00333 (July 2016).

WANG, F. Y., AND ZHANG, X. Derivative formula and applications for degenerate diffusion
semigroups. J. Math. Pures Appl. 99 (2013), 726-740.

ZAKAI, M. On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 11 (1969), 230-243.

ZATEZALO, A. Filtering of partially observable stochastic processes. ProQuest LLC, Ann
Arbor, MI, 1998. Thesis (Ph.D.)-University of Minnesota.

ZHANG, X. A variational representation for random functionals on abstract Wiener spaces. J.
Math. Kyoto Univ. 49, 3 (2009), 475-490.

ZHANG, X. Fundamental solutions of nonlocal Héormander’s operators. Commun. Math. Stat.
4 (2016), 359-402.




	Introduction
	Part I: The parametrix method for evolution SPDEs
	Part II: Brownian SDEs with unbounded measurable drift
	Some general notations

	The parametrix method for parabolic SPDEs
	Introduction
	Functional setting and main results

	Stochastic heat equation and Duhamel principle
	Itô-Wentzell change of coordinates
	Time-dependent parametrix
	Preliminary Gaussian and potential estimates
	Proof of Theorem 1.4.5
	Proof of Theorem 1.4.6
	Proof of Theorem 1.1.5


	On a class of Langevin and Fokker-Plank SPDEs
	Introduction
	Assumptions and main results

	Stochastic Langevin equation and the Hörmander condition
	Intrinsic vs Euclidean Hölder spaces
	Pointwise estimates for Itô processes
	Itô-Wentzell change of coordinates
	Time-dependent and drift adapted parametrix method
	Proof of Theorem 2.6.6
	Proof of Theorem 2.1.6

	The backward Langevin SPDE

	Filtering under the weak Hörmander condition
	Introduction
	Forward filtering SPDE
	Backward filtering SPDE

	Brownian SDEs with unbounded drift
	Introduction
	Assumptions and main results

	A priori estimates for SDEs with smooth coefficients
	The Duhamel representation
	Two-sided Estimates
	Estimates for the derivatives of the heat kernel with smooth coefficients

	Proof of Main Theorem
	First order derivative estimates in the backward variable x
	Second order derivative estimates in the backward variable x
	First order derivative estimate in y
	Proof of Theorem 4.1.5

	Extension to higher order derivatives

	Appendix
	Proof of Lemma 2.6.19 of Chapter 2
	Backward Itô calculus
	Proof of the equicontinuity (C1), (C2) and (C3) of Chapter 4

	Bibliography

