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by Riccardo Zanella

Nowadays robotic applications are widespread and most of the manipulation tasks
are efficiently solved. However, Deformable Objects (DOs) still represent a huge lim-
itation for robots. The main difficulty in DOs manipulation is dealing with the shape
and dynamics uncertainties, which prevents the use of model-based approaches
(since they are excessively computationally complex) and makes sensory data dif-
ficult to interpret.

This thesis reports the research activities aimed to address some applications in
robotic manipulation and sensing of Deformable Linear Objects (DLOs), with par-
ticular focus to electric wires. In all the works, a significant effort was made in the
study of an effective strategy for analyzing sensory signals with various machine
learning and deep learning algorithms.

In the former part of the document, the main focus concerns the wire terminals,
i.e. detection, pose estimation, grasping, and insertion. First, a pipeline that in-
tegrates vision and tactile sensing is developed. Then, further improvements are
proposed for each module in subsequent works. A novel procedure is proposed
to gather and label massive amounts of training images for object detection in the
field with minimal human intervention. Together with this strategy, we extend a
generic object detector based on Convolutional Neural Networks (CNNs) for orien-
tation prediction. The insertion task is initially addressed in open-loop by grasping
the wire close to the terminal, while a regressor fed with tactile sensor data is used
to analyze the contact forces and verify the success. Then, also this component is
extended by developing a closed-loop control capable to guide the insertion of a
longer and curved segment of wire through a hole, where the contact forces are
estimated by means of a Recurrent Neural Network (RNN). The approach here pro-
posed shows how a cheap sensor embedded with suitable artificial intelligence can
provide information comparable to a more expensive force sensor.

In the latter part of the thesis, the interest shifts to the entire DLO and to its shape.
Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place
primitives driven by visual data. In the proposed system, a decision making process
learns the optimal grasping locations exploiting Deep Q-learning and finds the best
releasing point. The success of the solution leverages on a reliable interpretation
of the DLO shape. For this reason, further developments are made on the visual
segmentation.

https://dei.unibo.it/en
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Chapter 1

Introduction

Deformable Object (DO) is an umbrella term that covers all the objects capable of
changing their shape under the action of a force. DOs are very common in our ev-
eryday life and are present in every setting, from natural to human environment and
from houses to factories. Few example objects that can be considered deformable
are cloths, pillows, curtains, electric cables, paper sheets, food products, plants, veg-
etables, human/animal bodies. A common classification of DOs is based on their
geometry, and it defines three classes:

• uniparametric or linear objects, commonly known as Deformable Linear Ob-
jects (DLOs), are all those DOs having one dimension significantly larger than
the other two (e.g. cables, strings, ropes and wires);

• biparametric or planar objects, are those having one dimension considerably
smaller than the other two (e.g. paper, cloths and leaves);

• triparametric or volumetric objects are those like sponges, plush toys, bread
and flesh.

Another useful categorization for DOs uses their physical properties. In this way
they can be 1) plastic, if they hold the undergone deformation in response to applied
forces also after these are removed; 2) elastic, if they return to the original shape and
size after the forces that induce the deformation are removed. However, most of the
DOs have elasto-plastic properties, which means that they exhibit elastic behavior
for small loads, but when the load is further increased the material can undergo plas-
tic deformation. Electric wires, paper and bread are examples of this last category.

As already stated, DOs are present in every domain, thus DOs manipulation is
an essential skill for robots to enter the human living and working environments or
to extend their involvement in industrial applications. For instance, robots could be
able to handle fragile products in the food industry and in agriculture; they could
become more involved in caregiving activities (e.g. dressing, feeding) for the elderly
and disabled; they could be employed medical or surgery applications (e.g. manipu-
lating catheter, electrode arrays, surgery threads); or, they could manipulate flexible
objects to lessen physical burden on workers in manufacturing plants.

FIGURE 1.1: Examples of deformable objects.
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Unfortunately, robotic manipulation of DOs can be extremely difficult due to the
infinite amount of possible state configurations. Manipulation of rigid objects con-
sists basically in changing their pose (position and orientation), while avoiding col-
lisions, in the context of pick-and-place or assembly tasks. When DOs are involved,
instead, manipulation in most cases also affects their shape, with geometrical or
topological changes. Unlike rigid objects, whose dynamics are well-understood, the
motion of a DO depends on a large and complex set of parameters that define its
stiffness, friction, and volume preservation.

Therefore, recognize the DO state is a crucial issue in robotic manipulation. Sens-
ing devices, like cameras, tactile or force/torque sensors, are employed to perceive
the deformations and the shape. A dynamics model or a physics simulator of the
DOs can also be built by estimating the physical parameters from the sensors. Simi-
larly to the manipulation of rigid objects, a dynamics model could be used to design
a suitable control system [1, 2]. Unfortunately, the complicated dynamics would re-
sult in a significant difficulty in modeling, or in an unrealistic and useless model.
Alternatively, physics simulations can be incorporated into the motion planner to
generate the robot trajectory based on the simulated deformation [3, 4]. However,
simulators are difficult to calibrate to be consistent with real-world physics. In par-
ticular, the quality of the simulation is extremely sensitive to the model parameters.
In addition, running a physically-based simulation is time-consuming and thus in-
feasible for estimating fast or large deformation in real time. Due to these difficulties,
it is often preferable to find a robot trajectory or a control action that relies solely on
sensor feedbacks [5, 6, 7, 8, 9] or possibly to encode the sensor data on a geomet-
ric description of the object state [10]. Even this approach is not straightforward,
since sensor data concerning DOs may be hard to interpret and use effectively for
extracting the information sought. This difficulty can be circumvented by utilizing
deep learning-based approaches [8, 11, 12, 13], at the price of having to create, if
not existing, large training dataset [14] (raging among the different shapes configu-
ration, points of view, light setups, etc.). Moreover, in many realistic applications,
operating conditions on the task or constructive constraints on the setup may lead
to limitations in the sensory systems that prevent the use of some approaches. For
example, when significant occlusions are present, an integration of vision data with
forces or tactile feedback should be considered [7]. On the other hand, there are also
complex problems that require a combination of multiple feedbacks to reduce the
information uncertainty or acquire a certain level of perception [5].

This thesis focuses on DLOs, with particular interest in electric wires. This spe-
cific category of DOs is commonly used in an extremely wide set of applications,
ranging from Information and Communications Technology to constructions and
from industrial manufacturing to power distribution systems.

For instance, in the manufacturing industry, switchgear wiring represents a very
challenging industrial application from the robotic manipulation point of view.
Switchgears and control panels (shown in Figure 1.2) are basic components of power
generation and distribution stations, commercial and institutional buildings, indus-
trial plants and automated factories, automatic machines and civil houses. In the ac-
tual scenario, the switchgear wiring is mostly executed by human operators because
of the complex manipulation tasks and the large variability of the design, usually
characterized by highly-customized solutions and small lot or single item produc-
tion. In general, the wiring is composed of a sequence of single wire connections.
Each wire connection implies: 1) the localization in the switchgear of the compo-
nents to be connected, i.e. the points in which the two wire ends will be placed
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(A) Example of a switchgear. (B) Connection of a wire in a electrome-
chanical component.

FIGURE 1.2: Switchgear wiring.

(since their position is known with some uncertainty); 2) first wire-terminal connec-
tion; 3) wire routing inside the wire collector; 4) second wire-terminal connection.
Steps from 2) to 4) must be repeated for all the connections in the switchgear net list.
Moreover, step 2) can be further decomposed in the following phases: i) wire local-
ization; ii) wire grasping; iii) wire pose detection and correction; iv) insertion into the
terminal; v) tightening of the terminal screw (that can be achieved by a screwdriver
or is automatic depending on the terminal type); vi) wire connection check. Even a
single wire connection is really a challenging task for a robotic system, since it can be
seen as a sub-millimeter precision peg-in-hole problem involving the manipulation
of a deformable object, i.e. the wire. The terminals are also difficult to see and to
access, due to their location on both sides of the electromechanical components, the
proximity of other components and wire collectors, and the presence of previously
connected wires. These issues limit the applicability of vision systems to guide and
control the wiring process.

Wiring harness assembly in cars is another very complicated manipulation activity
executed entirely by hand in the automobile industries along the production chain.
In this example, the wiring harness is initially in an unknown configuration and
needs to be untangled and arranged in the body of the car, plugging the connectors
to all the electromechanical components. This requires to reshape the cables, make
them pass through narrow holes and fix them to the specific supports on the body of
the car. Figure 1.3 reveals the incredibly complex wiring harness of a Bentley’s car.

Generally speaking, in a robotic application that involves DLOs manipulation,
we can identify some recurring and basic tasks, which can be also divided into sub-
tasks or smaller challenges. Every robotic application usually starts by grasping the
object to handle. To perform this task the robot needs to know where the object
located is in the space, with respect to its reference frame. This information often
comes from a vision system, which detects the object and estimates its pose [14].
In several applications with DLOs, the system also requires a shape estimation and
a suitable representation [10, 15, 16] of the DLO. This information is particularly
necessary when the specific grasping point matters to the task. In fact, there are in-
finite points that are eligible candidates for grasping along a DLO and they are all
closely coupled, hence moving one of them or another entail different deformation
and state changes. After grasping, other two very common and basic tasks in DLO
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FIGURE 1.3: Wiring harness scheme of a Bentley Bentayga SUV.

manipulation are the reshaping and the insertion. In both the cases dynamic model,
physics simulator and shape representation can be employed. The shape control of-
ten requires visual feedback for planning the robot trajectory in order to minimize
the errors between the current and the target shape [16]. Whereas, tactile or force/-
torque data can be exploited, especially for inserting, to predict the deformation by
means of a model [17] or they can directly be used to drive the manipulator [18, 8,
19]. A common approach in most of the works published in the last decade is the
use of deep-learning methods, in particular to extract useful information from visual
data. For example, some authors proposed to employ a CNN for learning an inverse
model of the DLO by freely interacting with it and then use this model for imitating
human demonstrations [20, 21]. In other works the authors proposed to learn in-
stead a forward model of the DLO dynamics, in a state or latent space, and use it for
planning the robot actions with a model predictive control [22, 16]. Recent success
in deep reinforcement learning also provides a promising direction for learning to
manipulate DOs with data driven methods by directly mapping the input images
into the robot actions [23, 24, 25, 26].

The works presented in this thesis cover all the aforementioned basic tasks (i.e.
grasping, reshaping and inserting), proposing in each case a data-driven solution
that embeds suitable learning-based algorithms. Particular attention is paid to the
deformation sensing and shape representation, exploiting vision and tactile sensors.

The research activities reported in this thesis are motivated and supported
by WIRES (Wiring Robotic System for Switchgears) an ECHORD++ experiment and
REMODEL (Robotic technologies for the manipulation of complex deformable linear
objects), a four-year project funded by the European Commission in the Horizon
2020 programme. WIRES aimed to develop tools and techniques for enabling the
robotized switchgear wiring in the industrial scenario. Whereas, REMODEL plans
to extend the results of the ECHORD++ WIRES, by enabling the implementation of
manufacturing activities involving the manipulation of complex deformable objects
in industrial automated production lines. The main target is the robotic handling
of DLOs, by deeply understanding their complex behavior, including elasticity and
plasticity, and embedding this knowledge, together with proper manipulation skills
and perception, based on vision and tactile sensing, into a bimanual robotic system.

The remaining of this document can be organized as follow:
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The first part focuses on the insertion of a DLO in a hole.

• In chapter 2, a pipeline that integrates vision and tactile feedback for grasping
and inserting an electrical wire in a hole is presented.

• In chapter 3, the vision modules of the aforementioned pipeline are extended
and a new strategy for 3DoF pose estimation is proposed.

• In chapter 4, also the task of inserting a wire inside a hole is improved by
exploiting a closed-loop control.

The second part focuses on the reshaping of a DLO.

• In chapter 5, an autonomous system for reshaping a soft DLO from visual data
is presented.

• In chapter 6, two state-of-the-art algorithms for image segmentation are
trained using an auto-generated dataset of electric wires to improve the visual
perception.
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Chapter 2

A Robotic System for
Wire-Terminal Pick & Insertion
Tasks

The electric wiring task, as already outlined in chapter 1 for the use case of a
switchgear, consists of a sequence of single wire connections that generally starts
and ends with the insertion of the wire terminal into a hole. In this chapter we
investigate this problem in details by braking it down in subtasks, i.e. detect the ter-
minal, estimate its planar pose for the grasping, verify the grasp, estimate the new
terminal pose in the gripper, perform the insertion while verifying the correctness.

2.1 Introduction

In this work, we present how to complementary exploit and combine vision and tac-
tile feedback with several machine learning approaches to solve the problem of wire
detection, manipulation and insertion into the terminal hole. It is worth mentioning
that, even if no occlusion given by other wires or components is present in the ex-
perimental setup, the gripper used to grasp the wire generally prevents by itself the
usage of a vision system to provide a close view of the terminal from front. It will
be shown that the features and characteristics of the vision and tactile sensors are
complementary for the task at hand. As a matter of fact, they both provide informa-
tion that are strictly needed to achieve the required precision. This is due by the fact
that, in a realistic scenario, the tight spaces between wires and components prevent
the use of the vision system, in particular during the final part of the wire insertion,
also when the same task is performed by a human being. It results that, in most
of the practical cases, when a sensor can generate useful information, the other can
not and vice versa. In the insertion phase, the tactile sensor can be used to quantify
a collision, in order to evaluate if the insertion is correctly achieved. Moreover, in
this work a novel technique to automatize and speed up the generation of training
datasets is presented. This technique is exploited to train a Convolutional Neural
Network (CNN) in order to detect small objects (like wire terminals), and a new
method to estimate their 3D positions using multiple CNN predictions is shown.
Additionally, Multi-Layer Perceptrons (MLPs), Random Forests (RFs) and Support
Vector Machines (SVMs) are either trained to produce an affordable output from the
tactile sensor to evaluate the correctness of the wire insertion task and detect faults.
The research paper [7] which introduced the results presented in this chapter has
been awarded as 2020 IEEE T-ASE Best New Application Paper. We may additionally
affirm that the application considered in this work can be of great interest for the
overall robotic community since it implies several issues related to micro-assembly
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FIGURE 2.1: The system’s pipeline is composed by four components:
1) The wire detection, that exploits a self-trained multiple CNN trian-
gulation for pose estimation; 2) The wire grasp during which a tactile
sensor is used together with MLP to classify the grasp; 3) The pose
correction of the wire; 4) The wire insertion into the terminal hole ex-

ploits a the tactile sensor and a MLP trained to detect collisions.

processes, manipulation of deformable objects, occlusion in computer vision sys-
tems, tactile sensing, vision-tactile fusion and machine learning.

The chapter is organized as follows. section 2.2 reports a summary of the pre-
vious researches carried out by other authors in this field. section 2.3 introduces an
high-level vision of the wire insertion problem. section 2.4 presents the hardware
setup exploited during experiments. section 2.5 describes in detail the components
of the system pipeline. Finally, section 2.6 reports the set of experimental tasks that
show the effectiveness of the proposed approach.

2.2 Related Works

A number of previous research activities can be found in literature about the model-
ing, the manipulation and the visual tracking of Deformable Linear Objects (DLOs)
such as electric wires, demonstrating the large interest in this field.

In [27] a method to calculate the force acting on a purely-elastic flexible wire
from its shape observed by stereo vision is developed. The same authors presented
a method to insert a purely-elastic flexible wire into a hole observing the shape
of the wire by stereo vision in [28]. The task of picking up cables from approxi-
mately known positions with an industrial robot using two light barriers has also
been investigated in [29]. In [30, 31] the authors presented the static and the dy-
namic modeling of DLOs based on differential geometry coordinates, respectively.
In [32] a path planning algorithm for DLOs subject to manipulation constraints is
presented. In [33] a motion planner for manipulating DLOs and tying knots using
two cooperating robotic arms is developed. In [34] a DLOs model based on mechan-
ically rigorous and geometrically exact dynamic splines including both elastic and
plastic deformation is described. In [35] a modeling of electric cables based on the
visual measurement of their static and dynamic deformation is performed for ca-
ble insertion in electric and automotive industries. In [36] an algorithm for tracking
DLOs based on a probabilistic generative model that incorporates observation and
the physical properties of the tracked object is presented. In [3] the manipulation
planning problem of a DLO handled by a gripper at one of its extremities in free
or contact space is considered. In [37], the robot is guided to grasp the wire on the
clamp cover adopting a SIFT (Scale-Invariant Feature Transform) based algorithm.
The problem of assembling flexible wire harness into instrument panel frame is ad-
dressed in [38] by making use of vision sensors and markers attached on the surfaces
of the clamp.
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Tactile sensing and vision are two synergistic modalities for manipulation. Vi-
sion systems provide rich information regarding unknown objects, in fact they be-
came one of the main feedback source in robotics. However, they are often difficult to
be applicable when the objects are occluded or visually confused. Recent progress in
artificial touch sensing hardware allowed the robotics community to endow robots
with touch capabilities and to show that tactile sensing can be efficiently employed
in robot grasping. In order to deal with complex tactile information, machine learn-
ing algorithms have been widely used to address the classification problem. A grasp
detection deep network is proposed in [39] to detect the grasp rectangle from the vi-
sual image with a new metric to assess the stability of the grasp. In [40] a novel
method to systematically solve the visual-tactile fusion in object recognition tasks
using multivariate time series is developed. In [41] visual modality is used to aid
learning tactile modality during the training phase. In [42] the authors propose a
cross-modal approach based on the use of visuo-tactile data for object recognition.
A comparative analysis of classification algorithms for tactile sensors mounted on
humanoid hand is presented in [43]. In [44] they present a robotic agent that learns
to derive object grasp stability from touch. Classification is conducted through ker-
nel logistic regression, applied to a low- dimensional approximation of the tactile
data read from the robot’s hand. The implementation of tactile object identification
and feature extraction techniques is discussed in [45], where two methods of tactile
data interpretation are combined on data acquired during a single unplanned grasp:
a random forests classifier and parametric object property estimators.

In this work, our aim is to combine vision, tactile sensing and machine learn-
ing to manipulate electric wires and insert them into electromechanical components,
taking into account the real manufacturing application constraints. This work will
be part of an automatic switchgear wiring system under development. Previous
approaches to similar manufacturing problems are mainly based on vision. The
strength of the approach presented in this chapter relies mainly on the synergistic
combination of vision and tactile data to overcome the application constraints. The
way how to combine these sensors has been selected taking into account that there
are working conditions in which one of these two sensors can be ineffective or unre-
liable. Moreover, the whole development is performed trying to reduce complexity
and cost of the final system.

This manufacturing application is really relevant in the industrial scenario, since
the switchgear wiring still today represents a completely manual operation, that in
turn results the major cost in the production of these highly customized items. More-
over, the interest in this field is confirmed by the number of literature works and
companies involved. The proposed work is relevant because first there is no litera-
ture dealing with the overall task sequence, secondly it investigates a novel solution
based on the combination of different technologies, i.e. vision, tactile sensing and
machine learning to solve a problem that remains unsolved in the actual industrial
practice.

The assumptions considered in this work are the following:

• only a limited part of the complete wiring task is taken into account to simplify
the analysis;

• since the system is designed for an industrial setting, we suppose to operate in
a partially structured environment;

• the resolution of the vision system and tactile sensor is somehow limited by
the use of low-cost devices.
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6-dof Industrial
ManipulatorATI SI-130-10

FT Sensor

Asus Xtion
RGB-D Camera

Microsoft
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Schunk PG70
Electric GripperTactile

Sensor

FIGURE 2.2: The end effector used during the experiments. The Mi-
crosoft RGB Camera (referred as side Camera) is mounted on the end
effector for evaluation purposes. In the real scenario the side Camera

will be fixed to ground, to reduce the end-effector encumbrance.

Besides this latter point is a benefit form the point of view of the overall system cost,
resolution problems are mitigated by the introduction on suitable techniques, such
as the exploitation of multiple views and machine learning, to achieve the desired
task success rate.

2.3 Task Description

The task considered in this work consists in the insertion of an electric wire termi-
nal in a hole that emulates the electromechanical component connector. Since it is
really difficult to evaluate the correct alignment and the contact of the wire terminal
using a real electromechanical component, an emulation body composed by a beam
with a 5 mm pass-through hole has been used to ease the evaluation of the system
performance without affecting results. With reference to Figure 2.1, the task to be
executed by the robot is composed by the following operations: 1) Detect the pose
of the wire terminal using vision feedback in order to grasp it; 2) grasp the wire and
validate the grasp through tactile feedback to evaluate if the following steps can be
correctly executed; 3) Estimate the pose of the wire end w.r.t. the gripper with the
required precision using vision feedback in order to correctly execute the insertion
task; 4) Execute the wire insertion into the terminal hole detecting possible collisions
by means of tactile feedback.

In the 2nd frame of Figure 2.1 the blind icon is shown to emphasize that the vi-
sion system can’t be used for monitoring the scene in this phase since the grasp,
obviously, needs to be monitored by a device able to detect the physical contact with
the object, e.g. the tactile sensor. The same holds for the 4th frame, showing the
wire insertion, since in the real scenario the limited space available and the presence
of other components and wires in the neighborhood of the working region prevent
the scene observation by the camera, because both of occlusion problems and the
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FIGURE 2.3: Layout of the tactile sensor PCB on the left and pictures
of the sensor components on the right.

impossibility of placing the camera close to the fingers. It results that the designed
tactile sensor only fits with the available space in the region close to the wire con-
nection point in the application scenario. This assumption is clearly not true in our
experimental setup created ad-hoc to evaluate the effectiveness of the system, but
we selected to not use the vision during the insertion to recreate the real working
conditions.

2.4 The Experimental Setup

The hardware setup used during the experiments here described is shown in Fig-
ure 2.2. The system is composed by an industrial manipulator, a COMAU Smart Six,
equipped with a commercial gripper, a Schunk PG70 electric parallel gripper and
an ATI SI-130-10 Force Torque (FT) sensor mounted on the wrist (between the robot
interface and the gripper). Moreover, an Asus Xtion 3D camera with VGA resolu-
tion is mounted on the one gripper side pointing downward, to provide a top view
of the scene (namely, the hand camera in the following). The 3D feature of this cam-
era is useful for the reconstruction of the component location and encumbrance in
the switchgear (these problems are not treated in this work), but the 3D resolution
is too poor for the purpose of wire terminal detection and grasping. Therefore, a
computer vision algorithm has been developed, as reported in subsection 2.5.2, for
reconstructing the 3D pose of the wire using multiple RGB images only provided by
this camera.

On the other hand, to provide a close view of the task execution, an additional
Microsoft 2D LifeCam camera with HD resolution is mounted on one gripper side
(namely, the side camera in the following). In the experiments here reported, this
camera was used also to estimate the wire pose after the grasp, as detailed in sub-
section 2.5.4. In normal conditions, this operation is performed by a fixed camera
placed in a known position reachable by the robot to reduce the end-effector encum-
brance.

A custom tactile sensor [46, 47] has been developed on the base of the one pre-
sented in [48] for the task here considered, see Figure 2.3, and it has been mounted on
one gripper’s finger to provide a tactile image of the grasped objects, e.g. the wire. It
is constituted by 16 taxels organized as a 4×4 matrix and a deformable layer with a
flat shape. Each taxel is constituted by a single SMT photo-reflector integrating both
an infrared LED and a PhotoTransistor (PT). When a contact with the deformable
layer occurs, it produces vertical displacements of the reflective surfaces of the cells
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3D camera

Screwdriver

Tactile sensor

4-DOF gripper

FT sensor

FIGURE 2.4: CAD of the final end effector developed for the WIRES
project.

for all taxels. These displacements produce variations of the reflected light and, ac-
cordingly, of the photocurrents measured by the PTs. The taxel signals are acquired
by a 16 channels ADC with Serial Peripheral Interface (SPI). The mechanical proper-
ties of the silicone cap determine the maximum load applicable to the sensor before
cell saturation and, as a consequence, its sensitivity. The implemented sensor uses a
shore hardness of 26 A, resulting in a maximum applicable force up to 30 N, with a
sensitivity of about 0.3 N. An Arduino-based µcontroller board is then used to send
the data to the control PC via USB connection.

The control system has been developed exploiting the ROS middleware to allow
the communication between the different parts (sensors, robot, gripper, cameras,
etc.) that compose the experimental setup.

Despite the gripper previously described is a preliminary solution, the end effec-
tor that will be adopted for the implementation of the whole cabling process is much
more complex, see Figure 2.4. The whole end effector will integrate an FT sensor
at the wrist interface, a 3D camera providing top view of the scene, an computer-
controlled screwdriver (for the execution of phase 5)) and a 4-DOFs gripper (gripper
opening and finger x-y-z position w.r.t. to the screwdriver tip) equipped with the
aforementioned tactile sensor. In the final process implementation, the robot arm
will be used to position the screwdriver tip on the terminal screw, and the FT sensor
will be used to control the contact with the screw during the tightening. Therefore,
the end effector will be held in an almost fixed position, just the screw motion during
the tightening will be compensated. Consequently, the wire insertion (phase 4)) will
be performed by using the gripper DOFs only. It results that the FT sensor cannot
be used during the insertion and for the tightening check, because the magnitude of
the force generated by the wire contact during phase 4) is much lower than the one
generated by the contact between the screwdriver and the screw, making the former
indistinguishable. In this work, the FT sensor has been used as ground through to
train the tactile sensor integrated into the fingertip, as described in subsection 2.5.5.

Moreover, while the vision system can be easily applied during phase 1) and
3), it would be complex to adopt vision during phase 4) and 6) due to occlusion
problems. In fact, several wires and components are usually present in the same
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FIGURE 2.5: Different views of a switchgear during the assembly.
The cables and components, often very similar and of the same color,
make complex the detection of a specific terminal or wire from the

scene.

scene, as shown in Figure 2.5. Moreover, even if a camera will be mounted in the
end effector, the field of view of this camera will provide a top view of the cables
and components, for the execution of step A) and phase 1), while during phase 3)
the point of view of this camera will be ineffective. Additionally, during phase 4) the
wire insertion point (i.e. the terminal) will likely be occluded by the component itself
(since the terminals are usually located on two opposite sides of the component). The
use of a stereo or 3D camera for phase 3) was discarded because, due to the relative
position of the wire tip and the camera, the vision system must be explicitly designed
for this phase to achieve the required precision and range of view. It follows that
the same camera cannot be used for other operations such as step A) that requires
a much larger vision field. Therefore, we opted for a 3D camera providing a top
view of the scene with a vision field selected mainly for step A). In the final setup,
a second 2D fixed camera will be placed close to the wire picking point (and not
mounted on the end effector as in Figure 2.2). After phase 2), the robot will place
the gripper in front this fixed camera to obtain a lateral view of the wire to execute
phase 3). This solution do not increase the end-effector complexity, can be easily
implemented since no space restrictions are present in the neighborhood of the wire
picking region, is cheap and provide the better point of view to correct the most
likely wire misalignment, i.e. in the gripper grasping plane.

2.5 System Pipeline

In this section, the self-labeling of the vision system training dataset by the robot will
be introduced first, that represents the main novelty of the developed system. Sec-
ondly, the whole task execution pipeline as depicted in Figure 2.1 will be presented.
Each of the four modules will be described in detail, highlighting the adopted ma-
chine learning algorithms along with the related training techniques.
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FIGURE 2.6: The overall Pipeline of our System resumed as an High
Level Flowchart. The system is split into 3 sub-systems to facilitate
its representation and labeled edges are depicted to understand bet-
ter the dataflow. Each subsystem is described in detail in the related
subsection: B-Detection in the subsection 2.5.2; C-Grasp in the subsec-
tion 2.5.3; D-Correction in the subsection 2.5.4 and E-Insertion in the
subsection 2.5.5 (the latter is not represented as a detailed flowchart
module because its simple nature, and furthermore it’s the topic of a
future research. The notation m ∈ Rh×w×3, introduced in this graph,

represents a generic 3-channel image (e.g. an RGB image).

An overview of the pipeline is depicted in Figure 2.6. In this picture the system
is presented with the flowchart metaphor to understand better the dataflow and
the interconnections between subsystems. It should be noted that the self-training
procedure, described in subsection 2.5.1, is not present because technically, as de-
scribed later, it is functionally equal to the procedure described in subsection 2.5.2
and, moreover, it is an offline procedure not strictly related to the online pipeline.

2.5.1 CNN Self-Training for Wire Terminal Detection

The major novelty of the vision system here developed is the self-learning procedure
exploited by the robot to train the CNN for wire terminals recognition. A popular
approach introduced in Mitash et. al. [50], that uses synthetic data (physics emula-
tion), is not suitable for deformable objects like wires. Also the approach proposed
by Georgakis et. al. [51] cannot scale enough to industrial environment due to the
lack of public datasets outside the service robotics field. In our approach, a CNN [49]
was trained to detect square-regions around the wire end in RGB images gathered
by the hand camera (the camera mounted on the end effector). The adopted CNN
also discerns good terminals from bad ones (e.g. bad-crimped ferrules). This CNN
differs from a classical Region Based CNN (R-CNN) [52] because reframes the prob-
lem of detecting a square region and, at the same time, classifies the object within as
a unique regression problem.

The CNN is not trained from scratch, instead a Fine-Tuning procedure is per-
formed starting from the original network [49] pre-trained over the ImageNet[53]
dataset. We trained the network for 100000 steps with a batch size of 24. In Fig-
ure 2.7a an example of self-labeled entries is presented. Our experimental dataset
contains over 5000 RGB images, built in 4 hours (0.5 hours of human work + 3.5
hours of robot work). Considering an average time of 1 hour per 100 images, (esti-
mated during our observations), the same labeling procedure done by hand would
last at least 50 hours. With the term labeled image, we mean an image with square
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Defective ferrule

Resemblance
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Wire Terminal

(A) A couple of self-labeled random frames. This procedure generates more than
5000 labeled images in approximately 4 hours. The same labeling task if had been
entrusted to a distributed service like Amazon Mechanical Turk, minimizing user
rewards, it would cost around 1000$. Our labeling procedure trains the network
to distinguish between the wire terminals (Class1=C1) and defective ferrules, or

other resembling things (Class2=C2).
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(B) Precision-Recall curves of the YOLO Object Detector ([49]) varying the output
threshold. The mean average precision is 0.854.

FIGURE 2.7: Qualitative and quantitative results for the self-labeling
procedure. The presented approach provides high performance with

minimal human intervention.

regions drawn around target objects used to train a CNN to detect the same objec-
t/region in new unseen pictures. As for other machine learning approaches, also in
this case the larger is the number of training samples, the better is the CNN recogni-
tion rate.

The solution here proposed exploits the inverse technique shown in Figure 2.8,
that will be detailed in the next subsection. Given the position pn of the wire ter-
minals in homogeneous coordinates w.r.t. the robot reference frame, e.g. through
measurement or by touching them with the end effector (this is the only human in-
tervention), for every picture taken with the hand camera, it is possible to compute
the projection yn of pn in the image coordinates using the pinhole camera equation

yn = A
[
Rcam tcam

]
pn, A =

 fx 0 cx
0 fy cy
0 0 1

 (2.1)

where A represents the intrinsic camera matrix (a camera dependent parameter).
The matrix

[
Rcam tcam

]
∈ R3×4 represents the poses of the hand camera in the

world coordinate frame (i.e. the camera extrinsic parameters). This matrix can be
computed given by the position of the robot end effector (provided by the robot) and
the relative position between the end effector and the hand camera (known from the
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end-effector design). In this way, given a scene with cables in known positions, it is
possible to collect an arbitrary number of self-labeled training images just moving
the hand camera around using the robot.

The outcome of this CNN is a set of rectangular frames, i.e. the "predictions",
identified by both their 2D center coordinates x, y in the image plane, width w and
height h, along with a label l identifying good (l = 1) or bad terminals (l = 0).

The Figure 2.7b shows Precision-Recall curves for the object detector used during
experiments (YOLO [49]). The mean Average Precision (mAP) for the overall detec-
tion task is 0.854, with a 0.88 mAP for wire terminals and 0.77 mAP for defective
ferrules. This precision gap is justified on the grounds that a wire terminal is higher
in visual cues w.r.t. a simple defective ferrule. Considering that:

• the human intervention takes only 30 minutes;

• this labeling procedure needs to be repeated whenever the environmental con-
ditions change or a new class of Wire Terminals is provided;

• in an industrial setting, the environmental conditions can be controlled and
maintained fairly constant;

• just two classes of wire terminals are used in the actual industrial production;

the overall performance represents a suitable trade-off between functionality of the
automatic system and required operator time. However, the proposed approach
allows to easily generate training datasets in an extremely wide set of working con-
ditions, far beyond the industrial scenario.

2.5.2 Wire Detection through CNN

It is worth mentioning that, in the real scenario, the wires to be connected into the
switchgear will be produced and stored in a known region by an dedicated machine.
Therefore, we can assume that the wires are arranged on a plane in such a way the
gripper can grasp each wire without colliding with other wires or the environment.
However, due to possible wire bends, the robot needs to locate the wire terminal and
estimate its pose with sufficient precision to plan a correct grasp by using the hand
camera.

This module exploits the output of the CNN described in the previous section to
estimated the wire terminal 3D location in each image provided by the hand cam-
era. This procedure is needed since the 3D hand camera resolution is not sufficient to
achieve the desired wire grasp success rate. Thus, we need to reconstruct the 3D po-
sition of the target object, in this case the wire terminal, only exploiting multiple 2D
information provided by the CNN. This is the well-known technique called Struc-
ture From Motion (SFM) [54], which exploits the triangulation algorithm to recon-
struct the 3D coordinates of a 2D feature seen from multiple known vantage points.
In the classical SFM approach, as well as in SLAM systems, the camera pose is com-
puted simultaneously to the reconstruction phase. Unlike these approaches, we rely
on the technique described in [55]. This technique exploits the robot high repeata-
bility, along with a precise hand camera calibration, to compute in a closed form the
6-DOF pose of the hand camera. Theoretically, if we know the exact homogeneous
coordinate yn of our target object in the image In, two viewpoints only are needed
to obtain a suitable triangulation result. However, in our case only a coarse region
around our target terminal is available, as depicted in Figure 2.8. If the center of
the square-region is chosen as 2D reference feature, a non-perfect overlapping with
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FIGURE 2.8: Depth estimation through multiple CNN detections.
Three images were captured from the camera poses C{1,2,3} respec-
tively, obtaining 3 different square regions through the “predictions”.
By projecting the rays r{1,2,3} passing through each region’s center
yc{1,2,3}, the wire terminal pw is found. Conversely, knowing the wire
terminal position pw in the robot coordinate system and moving the
hand camera using the robot, images from an arbitrary number of
known camera poses Cn can be collected. Therefore, pw can be pro-
jected into the images coordinates ŷcn, generating an arbitrary num-

ber of self-labeled images for the CNN training.

the tracked object center is obtained (this error strictly depends upon CNN archi-
tecture and is not treated in this work). Therefore, more vantage points are needed
to achieve a more accurate 3D reconstruction. For each vantage point, a ray rn can
be computed, i.e. a unit vector in the camera reference frame, corresponding to the
selected 2D feature:

rn =
∥∥∥A−1yn

∥∥∥ (2.2)

Together with the center of the camera frame cn, rn generates a 3D line ln = (rn, cn).
In the camera reference frame, cn is zero, otherwise it represents the position of the
hand camera in the world coordinate frame. Thus, given a set of lines ln, the closest
point p, i.e. the point with minimum distance from all the lines (since a common
intersection point could not exist with real measurements) can be computed by

p = (∑
i

I− r̂i r̂T
i )
−1(∑

i
(I− r̂i r̂T

i ) ci)

where r̂i is any perpendicular unit vector to ri [56].
In Figure 2.9 the results of the proposed algorithm scanning three different wires

(in color and dimension) with different camera movements (parallel and orthogonal
to the image plane) are presented. The achieved precision is approximately 1 cm col-
lecting more than 20 images from different viewpoints. At the same time our results
show that the best performance is achieved by moving the camera parallel to image
plane. These experiments are designed as a proof of the approach correctness and
not to evaluate best hyper-parameters to reduce the error (i.e. the optimal distance
between camera and target object). To generalize the error in the depth estimation,
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FIGURE 2.9: Wire terminal depth estimation error w.r.t. the number of
images collected from different viewpoints moving the hand camera
by using the robot. Three wire terminals, Red, Yellow and Blue, and
two motion directions, Parallel or Orthogonal to the plane on which
the cable lies, were tested. The Parallel movement provides better
results since it minimizes the likelihood between the rays, achieving

an error lower than 1 cm after 10÷15 images.

the Stereo Vision error formulated by Gallip et. al [57] can be used

εz =
z2

b · f
εd

where εz is the depth estimation error, z is the distance, f is the focal length of the
camera, b is the baseline (e.g. the distance between the two camera, in a classical
stereo vision setup, or the two vantage points in our system) and ed is the disparity
error. Since the 6-DOF camera pose can be controlled by moving the manipulator, it
is possible to select the couple (z, b) to reduce the error εz according to the circum-
stances. Now, we can define a generic function:

τ(y0, ..., yn, C0, ..., Cn) = p (2.3)

to compute the 3D position p, corresponding to the 2D feature y using multiple
images.

Unfortunately, just one 2D feature is not enough to infer a 3D reference frame as-
sociated with the wire terminal. Therefore, at least 2 features are needed to estimate
a 3D vector corresponding to the final part of the wire by means of the Equation 2.3.
In Figure 2.10 the algorithm used to infer a 2D reference frame Hw of the wire ter-
minal is shown starting from a square region of the image, in a nutshell: starting
from the image 1) an adaptive threshold is applied to the target region obtaining in
2) a binary image enhancing wire’s pixels and removing background; 3) the region
is rotated w.r.t. a custom reference frame H⊥ placed on the mid point of one side
of the frame, chosen such that it is the nearest point to the intersection of the wire
with the square region; 4) an orthogonal regression is applied to the binary image to
estimate the best fitting line L = {(x, y) | y = mx + q} onto wire points; use the
rightmost wire’s pixel projection onto line as the center of Hw and the angle of L as
its orientation, i.e.

Hw = (yw, θw) = (yw, tan−1(m)) (2.4)
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FIGURE 2.10: 2D wire terminal reference frame estimation. Each row
represents a pipeline iteration: 1) CNN detection over the wire image;
2) binary output obtained by the adaptive threshold; 3) the detected
region is rotated w.r.t. H⊥ and the fitting line is superimposed; 4)
the wire reference frame Hw1 is laid out. In the second row, another
iteration is performed carving out a circular region around yw1 and

repeating the line fitting process.

In Figure 2.10 a case in which the cable is strongly bent is shown: this situation
is useful to show the effectiveness of the proposed algorithm but it is unlikely in a
real scenario. This sequence can be considered as the worst case, in which the ferrule
is almost orthogonal to the portion of the cable intersecting the square region. The
proposed algorithm produces a quite inaccurate wire end pose after the first itera-
tion in this case. However, it is possible to see how a second iteration applied to a
cropped region around the previous estimated center yw ensures that line fitting is
relative only to the terminal part and not to the whole wire within the region. In
subsection 2.5.4 the way how this algorithm is applied to the images provided by
the side camera to estimate the wire end reference frame for pose correction will be
further explained. Here, instead, we can just take advantage of the center homoge-
neous coordinate yw of Hw and use Equation 2.3 to estimate its 3D position in the
robot reference frame. Thus, from the pairs yw, yc, where yc is the homogeneous co-
ordinate of the center of the aforementioned CNN detection, see Figure 2.8, collected
from multiple viewpoints, we can compute their corresponding 3D points

pw = τ(yw{1,...,n}, C{1,...,n}), pc = τ(yc{1,...,n}, C{1,...,n})

Thus, given the pair (pw, pc),

vwx =
(pw − pc)

‖pw − pc)‖

represents the unit vector oriented along the wire terminal symmetry axis, while

vwz = vwx ×±ux, ux = [1 0 0]T
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(A) The binary classifier distinguishes between Good (1) and Bad (0) grasps using
tactile sensor measurements.
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(B) Classification metrics over RF, MLP and SVC. MLP shows better results and the lowest prediction
time.

FIGURE 2.11: The wire grasp classifier. This classifier was self-trained
over the outcomes of the system module described in subsection 2.5.4
choosing – by design – the thresholds that would affect the rest of the
task (e.g. an escaping terminal shorter than 1 cm is considered a bad

grasp).

indicates the forward direction w.r.t. the robot reference frame. Therefore, the pose
0Tw of the wire end can be defined as

0Tw =

[
vwx vwx × vwz vwz pc
0 0 0 1

]
=

[
Rw pc
0 1

]
(2.5)

Note that the orientation Rw is chosen by construction considering that the wire
terminal is symmetric along its vwx axis. Thus, the vwz component, can be arbitrarily
chosen to point toward the ceiling. To this end, the sign of ux is chosen case-by-case
to avoid that vwz points to the floor instead. The 6-DOF pose of the wire 0Tw is then
used by the robot in order to perform the grasp.

2.5.3 Wire Grasp

In order to facilitate the insertion, the wire should be grasped at the center of the
gripper fingers. It is important here to recall that, both in the real scenario and during
the experiments here reported, the wire lays on a plane with its terminal section in
the free space. This allows the gripper to grasp the wire without colliding with other
wires or the environment.

Even though the module described in subsection 2.5.4 can be used to detect if the
wire as been effectively grasped or not, there will be no way to recover from a grasp
failure at this stage, mainly because it will be very challenging to perform a re-grasp
once the wire has been removed from its docking position. For this reason, the out-
come of the wire pose detection module described in subsection 2.5.2 is exploited to
train a classifier able to detect if the cable is in a suitable pose w.r.t. the fingers from
tactile sensor data only. Therefore, the use of the tactile sensor allows to evaluate
immediately the grasp correctness, removing in this way the possibility of reaching
unrecoverable situations. Three different machine learning algorithms for classifi-
cation are tested and compared: a Multi-layer Perceptron Neural Network (MLP)
with 3 hidden layers composed of 16, 8 and 2 neurons; a Random Forest (RF) with
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200 trees; and a Support Vector Classifier (SVC) with a radial basis function kernel.
Figure 2.11 shows some example of good and bad grasps together with some classi-
fication benchmark among different classifiers trained during our experiments. The
generic classifier is fed with xt ∈ IR16, representing the 4×4 matrix of the tactile mea-
surement, coupled with ĥ ∈ {1, 0}, that is a boolean information representing if the
wire grasp configuration is within an admissible range or not respectively. Taking
into account Equation 2.4, the parameter ĥ is defined as

ĥ =

{
1 lmin ≥ ‖⊥yw‖ ≥ lmax ∧ θ(⊥Hw) ≤ θmax

0 otherwise

where θ(⊥Hw) means the orientation of the 2D reference frame ⊥Hw (i.e. is Hw ex-
pressed in H⊥) and θmax, łmin, łmax are the parameters defining the terminal orien-
tation/position admissible range with respect to the fingers. The results shown in
Figure 2.11(b) were obtained with a dataset of over 200 grasp samples. The best
performance is provided by the MLP algorithm. However, since the purpose of this
classifier is to ensure that bad grasps are detected, the objective is to maximize pre-
cision and not recall. Therefore, any of the evaluated classifiers can be used for this
problem because all reach precision equal to 1 in the precision-recall curve. In case
of bad grasp is detected, the gripper is retracted without removing the wire from
its docking, and the procedure restarts from the wire pose detection. Increasing the
number of viewpoints can be used in this case to possibly reduce the wire pose esti-
mation error.

2.5.4 Wire Pose Correction

In this stage of the pipeline, the system aims to estimate the pose of the wire w.r.t.
the gripper by means of the side camera framing laterally the fingers, as depicted in
Figure 2.12. This problem is a simplification of the one seen in the subsection 2.5.2.
Indeed, here the pose of the side camera eeTcam w.r.t to the gripper is known by
construction. Therefore, the pose of the side camera in world coordinates can be
easily computed as 0Tcam = 0Tee

eeTcam, where 0Tee is the actual forward kinemat-
ics solution. In case a fixed camera is used to that purpose, the camera position
0Tcam is known and the camera position w.r.t. the end effector eeTcam can be com-
pute inverting the previous formula. A mandatory step of this module is to calibrate
correctly the pose of the side camera 0Tcam in the robot coordinate system. To per-
form a correct extrinsic calibration, the method seen in [55] is exploited by means of
an Augmented Reality marker [58] printed in a known pose w.r.t. the fingers of the
gripper. The marker attached to the back side of finger is visible in Figure 2.12. This
approach allows to calibrate the side camera pose on-line, enabling to use a moving
camera instead of a fixed one (e.g. camera mounted on another robot).

By exploiting the knowledge of the camera and the gripper position, the distance
of the grasp plane (i.e. the plane on which the wire lies after grasp) can be computed
in analytical form as dw = cam pzee , where cam pzee is the z component of the translation
part of camTee. Then, given the depth dw of the image pixels, the conversion from
homogeneous to 3D coordinates (in the camera reference system) can be computed
as

π(y) = π(
[
u v 1

]T
) = p = dw

[
(v−cx)

fx

(u−cy)
fy

1
]T

(2.6)

where y =
[
u v 1

]T are the homogeneous coordinates of a generic pixel in the
2D image, p is the corresponding 3D point, cx, cy, fx and fy are the parameters of
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AR Marker

Gripper Plane

FIGURE 2.12: Estimation of the wire terminal pose after grasp. The
flattest part of the finger contains the Augmented Reality Marker used
to calibrate the camera 6-DOF pose related to the robot reference

frame.

the camera matrix A. Thus, the systems exploits the same algorithm seen in sub-
section 2.5.2 (see Figure 2.10). The only difference is that, in this case, the refer-
ence frame H⊥ is chosen to be as close as possible to the fingers’ center. The whole
procedure is shown in Figure 2.12. Hence, given the position of the wire terminal
w.r.t. the end effector eeTw, the wire terminal position in the world coordinates is
0Tw = 0Tee

eeTw.
In Figure 2.13 the error rate on the 2D wire pose estimation after the grasp vary-

ing the tilt of the cable is reported. In Figure 2.13(b) we can see how, choosing a
desired crop size e.g. between 1 and 2, the estimation error is under 5 pixel for the
position and 5 deg for the orientation (the dotted black line) considering a wire tilt
angle in the range ±45 deg (i.e. for the first three curves in the legends).

Obviously, the error metric derived from the pixel error is proportional to the
distance between the camera and the target object; for a distance of 0.1 m we have
a conversion factor of k = 0.0002, then 5 pixel = 0.0001 m error. As presented in
Figure 2.13 we can predict, with the side camera at a distance of about 0.15 m, an
average error on the estimated terminal position under 1 cm, and below 10 deg for
the orientation. This tolerance is permissible because we can correct the end-effector
pose to align the wire terminal and perform a correct insertion. However the in-
sertion task may fail (despite the further pose correction module) in the following
possible situations: 1) The wire is too close to the finger bottom edges (possible loss
during the transport); 2) The orientation is impossible to correct by a twist of the
end-effector (gripper kinematic limitations).

2.5.5 Wire Insertion

After the wire pose correction accomplished during the previous stage, the inser-
tion task can be executed by planning a trajectory of the wire terminal frame 0Tw
toward the component hole. This task can be seen as a peg-in-hole problem. In this
phase, machine learning is exploited to infer from the tactile sensor data the same
information coming from the FT sensor. This is needed to detect impact between
cable terminal and the component, and eventually to correct the wire trajectory dur-
ing the insertion into the terminal. Normal and tangential forces components can be
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Estimated Orientation with
Tactile Sensor

Real Terminal
Orientation

Angle
Error

Tactile Sensor
2D View

(A) 2D view of the tactile sensor is superimposed over a
real RGB image of a grasped wire. The red dashed line

represent the best fit provided by the tactile sensor.
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(B) Estimation error varying the angle of the wire terminal w.r.t. the prediction of
the tactile sensor. The x-axis reports the crop radius normalized over the ferrule

size (in pixel).

FIGURE 2.13: Detection of the pose of a grasped wire by the vision
system.

distinguished by the tactile sensor described in [48] since they are related, respec-
tively, to symmetric and asymmetric variations of the measured pressure map. As
a consequence, during a collision, a strong correlation exists between the direction
of movement of the grasped object and the signal pattern xt provided by the 4× 4
taxels matrix. For this reason, xt is exploited to train a regressor able to provide a
scalar continuous variable representing the magnitude of the collision force in the
tactile sensor plane.

Aiming at comparing alternative solutions, several regressors are trained by the
robot itself, collecting data during many collisions between a flexible barrier and
a grasped terminal in known pose (as provided by the wire pose correction mod-
ule). These data are used to predict a real value associated with the impact force
and quantify the latter in a continuous manner. In Figure 2.14 the data used during
the training procedure involving tactile and force sensor data are shown. From this
figure, it is clear that the MLP produces a suitable prediction of the contact force.
Figure 2.14 shows a Mean Square Error (MSE) and Dynamic Time Warping (DTW)
analysis [59] performed over the regressor. The regressor is trained over 15000 sam-
ples collected during controlled impacts with different cable diameters in different
angle w.r.t. the fingers. During training, the wrist-mounted FT sensor is used as
ground truth. From these results, it is possible to conclude that the insertion task
can be monitored exploiting the tactile sensor only, without using a vision system or
a more expensive FT sensor.
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FIGURE 2.14: Training and the Prediction phases of the collision de-
tection regressor. On the left plot, a couple of impacts measured by
both the force sensor (top) and the tactile sensor (bottom); the green
curve is the normalized output of the force sensor used as training
reference. On the right plot, the execution of the predictors RF (Ran-
dom Forest), MLP (Multi-Layer Perceptron) and SVR (Support Vector
Regression) speculating about terminal collisions. On the bottom ta-
ble, the performance of the predictors in terms of MSE (Mean Square

Error) and DTW (Dynamic Time Warping [59]).

A Regressor is adopted during the wire insertion to quantify the collisions instead
of a simple Classifier that can simply detect it. By exploiting this approach, it is possi-
ble to distinguish between actual collisions, as shown in Figure 2.17a, from rubbing
of the wire end inside the component terminal hole, as reported in Figure 2.17b.
While in the former case the insertion task is stopped and completely replanned, in
the latter one the task is very likely to be successfully accomplished. In chapter 4, we
extend this step by exploiting the regressor output as a feedback signal to guide the
insertion task. The aim is to increase the insertion success rate even in case of lateral
contact between the wire end and the component terminal hole.

2.6 Evaluation of the Insertion Task Sequence

In Figure 2.15 a sequence showing the wire pose correction and insertion into the
component simulacrum hole is shown. Starting from a common configuration (1),
in the top sequence a wrong alignment is provided to the system at step (2) to shown
the effect of collisions. It results that the wire terminal is not aligned with the ref-
erence line and, as a consequence, with the hole at stage (3), causing a collision at
stage (4). In Figure 2.17a the artificial wrong wire terminal orientation, the robot
x-axis position and the filtered output of the MLP regressor over tactile sensor dur-
ing the wire pose correction and insertion task are reported for the wrong sequence
in Figure 2.15. Looking in particular at the MLP output, the effect of the collision
measured by the tactile sensor can be clearly seen in the final part of the insertion
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TABLE 2.1: Wire insertion results for a cable with external diameter
of 2.0 mm on the left and 3.5 mm on the right. Parameters m and d
refer to initial condition of the wire w.r.t. the gripper, while c refers to

the result of insertion where c = 1 is a positive outcome.

# m [deg] d [mm] c
1 -5.7 48.0 1
2 -1.0 32.5 1
3 4.0 38.9 1
4 -2.9 27.6 1
5 27.5 46.5 1
6 -32.6 40.6 0
7 -15.6 38.5 1
8 12.4 39.4 1
9 14.0 29.5 1
10 10.8 24.4 0
11 46.4 56.0 0
12 42.9 60.9 1
13 -28.4 45.3 0
14 41.3 65.9 0
15 33.0 39.0 1

# m [deg] d [mm] c
1 13.5 27.0 1
2 -20.3 30.0 1
3 4.6 29.4 1
4 4.0 30.0 1
5 -12.4 29.0 1
6 23.3 43.0 0
7 -19.8 41.0 1
8 0.6 40.0 1
9 24.2 48.0 0
10 21.8 52.0 1
11 52.9 56.0 0
12 7.4 35.6 1
13 47.5 52.0 1
14 58.6 95.0 0
15 44.7 69.2 0

phase. The bottom sequence, instead, shows how the vision system allows to cor-
rectly align the wire terminal with the reference line at step (2) and, consequently,
with the insertion hole at step (3). It results that the wire is correctly inserted into
the hole at step (4). Figure 2.17b shows the wire terminal orientation, position and
the MLP output over the tactile sensor data during the wire pose correction and in-
sertion task reported in the good sequence of Figure 2.15. After the initial estimation
of the wire terminal pose, the end-effector orientation is corrected and the insertion
task is executed: during the insertion, the MLP output allows to detect a contact
between the wire terminal and the internal part of the hole causing friction. The
output of the MLP regressor is not considered during the other phases to avoid false
positive.

The performance of the overall pipeline were evaluated by executing the whole
task for about 30 times with a wide range of working conditions. In Table 2.1 two
subsets of 15 runs executed with two wires which external diameter is 2 mm and
3.5 mm, respectively, are reported. In these tables, m is the estimated wire terminal
orientation, d denotes the distance of the wire tip from the finger center and c is 1 in
case of successful insertion or 0 in case of failure. With reference to Figure 2.17

c =

{
0, Position > 0.65∧MLP output > 0.5
1, Position > 0.65∧MLP output < 0.5

where the position threshold means that the wire terminal is inserted. The data
reported in Table 2.1 include also experiments performed in extreme conditions to
test the system robustness. It results a overall success rate of about 66%. Looking at
these results in the {m, d}-plane, as reported in Figure 2.16, it is possible to define
an admissible working region of m = ±20 deg and d ≤ 50 mm containing almost
only successful wire insertions, 15 over 16, resulting in a success rate of about 95%.
This working region can be easily addressed in the partially structured application
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vision feedback (bottom sequence).
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scenario.
A qualitative evaluation for each building block of the insertion pipeline is

shown in the supplementary material.

2.7 Conclusions

In this chapter, we described a system that performs wire detection, grasping and in-
sertion into a component hole using suitable combinations of vision and tactile feed-
back. The synergy between cameras and tactile sensors allows to deal with the typ-
ical issues in the switchgear wiring scenario. Several machine learning algorithms
are exploited for the system development, both for the vision and for the tactile mod-
ule. Moreover, suitable techniques are developed for the automatic generation of the
training datasets, allowing to significantly speed up the implementation of the target
application.
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FIGURE 2.17: Execution of the wire pose correction and insertion
tasks.





29

Chapter 3

Self-Supervised Learning for 3DoF
Pose Estimation

In this chapter we further look into the technique presented in subsection 2.5.1 for
generating the dataset that we used to train a wire-terminal detector. We show that
the proposed method can be effectively applied, not only to wire terminals lying on
an homogeneous white background, but also to other objects with different amount
of visual features on both simple and complex backgrounds.

Moreover, we propose a strategy that leverage on classical CNN-based Object
Detectors for estimating the angle of a target object as a classification problem. The
resulting algorithm, that we named LOOP [60], can readily replace the hand-crafted
solution used in subsection 2.5.2 and subsection 2.5.4 to infer the 2D reference frame
of the wire terminal, bringing an improvement to the entire system reliability.

3.1 Introduction

For relevant robotic applications, such as, for instance, a fully automatic pick-and-
place, the Pose Estimation from visual data is an essential stage of the overall
pipeline. Unfortunately, the availability of training data hinders deployment of Con-
volutional Neural Networks (CNNs). In fact, we observe that while 2D Object De-
tection with category-level classification has achieved great effectiveness thanks to
CNNs [49],[61],[62], the more complex perception task of the 3D Pose estimation
has not experienced the same strengthening, notwithstanding remarkable results
[63],[64],[65] have endorsed CNNs also for this task. We argue that between the key
reasons for this state-of-affairs is the lack of training data: while for 2D Object De-
tection huge datasets like Pascal VOC [66] or COCO [67] define a reliable testbed for
the community, the same can not be said for the 3D counterpart (with the exception
of some small datasets e.g. like [68],[69]). Thus, the claim of our work is that for a
real industrial application it is not sufficient to develop advanced data-driven mod-
els, like a convolutional neural networks, but – simultaneously – the data sourcing
problem should be addressed. Thus, we propose to tackle the object detection and
3-DoF pose estimation task by an integrated framework based on CNNs wherein the
required labeled training data are sourced autonomously, i.e. with negligible human
intervention.

The basic idea of our approach is to take advantage of the known difficulty
of CNNs to learn rotational invariant image features. As shown in [70],[71] these
networks redundantly learn multiple representation of sought objects when they
exhibit multiple rotation in the training images. As opposed to approaches like
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[72],[70], which try to learn rotation-invariant representation, we leverage on classi-
cal CNN-based Object Detectors to formulate the angle estimation task as a classi-
fication problem by leading the network to interpret each single object orientation
as a stand-alone class (for this reason we name the algorithm LOOP: Leveraging on
a generic Object detector for Orientation Prediction). As previously mentioned, we
endow our approach with an automated dataset generation technique that allows to
label an entire video sequence easily, provided that the sequence features the same
type of image acquisitions conditions as those in which the detector is exptected to
operate at test time (e.g. a quite-planar scene in front of the camera). This approach
enables collections of massive amounts of training data which, in turn, allow the
creation of an almost perfect object detector (i.e. ∼ 0.99 mAP according to our exper-
iments). An open source implementation of the proposed method is available online
1.

3.2 Related Works

Nowadays, object detection and 3-DoF Pose Estimation in industrial settings is
mainly addressed by classical computer vision approaches based on hand-crafted
2D features, which can effectively represent the orientation of salient local image
structures. SIFT [73] is one of the most popular 2D feature detector and descriptor
by which it is possible to implement a full Object Detection pipeline for textured
objects. By matching multiple 2D local features it is possible to estimate the ho-
mography (or even a rigid transform) between a model image and the target scene.
SIFT can be replaced by other popular alternatives, like SURF, KAZE, ORB, BRISK
etc.. [74] presents a comprehensive evaluation of the main algorithms for 2D feature
matching. As stated before, the aforementioned methods are suitable – mostly – for
textured objects detection, but the same matching pipeline can be deployed replac-
ing them with detectors/descriptor based on geometrical primitives (e.g. oriented
segments) amenable to texture-less objects. One of the leading texture-less object de-
tectors is BOLD [75], which was then followed by BORDER [76] (and its extension,
referrred to as BIND [77]). A popular alternative to features, instead, is Rotation-
Invariant Template Matching like OST [78], OCM [79] or Line2D [80]. However, a
tamplate-based approach may not be the most efficient solution for real-time appli-
cations.

The above-mentioned considerations have lead us to compare LOOP mainly
with SIFT [73] and BOLD [75], undoubtedly two state-of-the-art approaches in tex-
tured and texture-less object detection, respectively. Our claim is to propose a real-
time deep learning alternative able to cope with both textured as well as untextured
models and, seamlessly, over plain and cluttered backgrounds. As stated in sec-
tion 3.1, as we can exploit any generic CNN Object Detector, we investigated here
about well established approaches like YOLO [49] and SSD[61], which resolve the
2D object detection and recognition task with a single image analysis pass, as well
as Faster R-CNN[62], which instead conceptually splits the detection and recogni-
tion parts. We found that YOLOv3 [81], the newest declension of the classical YOLO
algorithm, represents a satisfactory test case for our experiments, though is worth
pointing out that LOOP is detector-agnostic.

Another research line to attain robotic grasping systems concerns direct estima-
tion of grasping points from images by means of CNNs. One of the most used ap-
proach, conceptually similar to our method, is the 2D Rectangular Representation

1 https://github.com/m4nh/loop

https://github.com/m4nh/loop
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FIGURE 3.1: The overall pipeline of LOOP. The starting point is the
creation of a dataset of oriented bounding boxes (oriented labels) with
minimal human intervention. The oriented labels are converted in un-
oriented labels, by means of the fo2u function , suitable to train a clas-
sical object detector, which encodes objects orientation in the classifi-
cation process. Hence the detector infers unoriented predictions (yi),
with the same orientation encodings. The unoriented predictions are
then transformed in oriented predictions (y̆i) by means of the fu2o func-

tion.

 BBOBB

FIGURE 3.2: Graphic representation of the conversion between
Oriented-to-Unoriented bounding boxes. The real angle θ is converted
in the index Cθ of the corresponding quantized bin among the k =

d 2π
θ̂
e possible bins.

of grasp, as described in [82]. The authors demonstrated that a 2D representation
of grasp is enough to perform a 3D manipulation with a robotic arm. Recent works
like [83] or [84] estimate the position and the orientation of these 2D Rectangular
Representation of grasp by means of a CNN, as either a regression or classificatiton
problem, respectively. However, we believe that the full 2D Oriented Bounding Box
of the sought objects yielded by our approach is a better representation for grasp
in planar setting, because it allows to perform both obstacle avoidance as well as
model-based grasp points computation.

3.3 LOOP: Leveraging on a generic Object detector for Ori-
entation Prediction

As illustrated in Figure 3.1, given an RGB image, the LOOP framework can produce
a set of predictions y̆i = {b̆i, θi, ci}, where b̆i = {x, y, w, h} ∈ R4 represents the
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FIGURE 3.3: A graphical representation of the conversion between
Unoriented-to-Oriented bounding boxes. It is important to know the
ratio of the sought object in order to produce a commesurate oriented

bounding box.

coordinates of the Oriented Bounding Box (OBB in short) clockwise-rotated by an
angle of θi and ci ∈ Z+ is the object class. As already mentioned, we leverage on
a classical object detector, which outputs a set of simpler predictions yi = {bi, ĉi}
where bi = {x, y, W, H} ∈ R4 represents the coordinates of the unoriented Bounding
Box (BB in short) and ĉi ∈ Z+ encodes, with our formulation, both the object class as
well as orientation information. In subsection 3.3.1 we will explain how to transform
an oriented prediction y̆i into an un-oriented one, yi, while in subsection 3.3.2 we will
describe the inverse procedure. Finally, in subsection 3.3.3 we will explain how to
generate Oriented Bounding Box labels for an entire video sequence by labeling just
the first frame.

3.3.1 fo2u: The Oriented-to-Unoriented Function

As stated before, our approach is an extension of a classical 2D Object Detector to
make it capable of estimating also the orientation of a target object. We formulate
the angle estimation problem as a classification task by simply quantizing the angu-
lar range into k bins and by expanding all the C categories, managed by the object
detector, into C′ = kC new classes. Thus, as shown in Figure 3.2, for each object
instance, we can compute its real-valued angle with θ = arccos(ux · vx), as the angle
between the unit vector vx, directed as the first edge of the corresponding OOB, and
the x axis of the image ux. Obviously the theta angle so defined, only for illustrative
intent, is limited to the range [0, π], for this reason it is necessary to calculate it using

θ =

{
atan2(vxy , vxx), if vxy >= 0
2π + atan2(vxy , vxx), if vxy < 0

(3.1)

where (vxy , vxx) are the components of the vx vector. The real-valued angle θ is then
converted into the corresponding bin index Cθ , with Cθ = b θ

θ̂
e ∈ {0, ..., k}, where θ̂ is

quantization step so that k = d 2π
θ̂
e. In order to build an unique formulation to obtain

the final converted class we can write:

fo2u(ci, θ, θ̂) = cik + Cθ = cik + bθ/θ̂e = ĉi (3.2)

where fo2u (i.e. o2u: Oriented-to-Unoriented) is the function used to convert the origi-
nal object class ci in the expanded class ĉi which encodes not only the object type but
also its quantized orientation. The corresponding BB is computed simply by apply-
ing the minimum bounding box algorithm to the 4 vertices of the original OOB.
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3.3.2 fu2o: The Unoriented-to-Oriented Function

Assuming yi = {bi, ĉi} the generic prediction of the Object Detector, where ĉi is the
predicted class (built with the Equation 3.2) and bi the corresponding un-oriented
bounding box, the purpose of the fu2o function, as depicted in Figure 3.1, is to pro-
duce an equivalent oriented prediction y̆i = {b̆i, θi, ci} where ci is the original class,
mapping the object of belonging only, and b̆i is an oriented bounding box (when
omitted in images, the angle θi is represented, for simplification, with the red arrow
oriented as the longest axis of an OBB). This procedure can be thought as the inverse
of that described in subsection 3.3.1. The function to determine the original class, ci,
and the predicted angle θi is pretty simple:

fu2o(ĉi, θ̂) =

{
ci = b ĉi

k c
θi = θ̂i · (ĉ mod k)

(3.3)

where θ̂ is the same discretization step as used in the fo2u counterpart. Conversely,
the estimation of the OBB (b̆i) given the simple BB (bi) and the corresponding an-
gle θi is not a trivial problem because of the infinite number of solutions with no
constraints. However, for each object in the dataset we can compute the ratio r of
its bounding box in a nominal condition (e.g. when it exhibit 0◦ in an image) and
use it as a constraint to reduce the complexity of the procedure. If we define with
Pb̆i

= {p0, p1, p2, p3} the set of OBB’s 4 expressed in the reference frame Fbi cen-
tered in the bounding box bi (the clockwise order, as depicted in the last frame of
Figure 3.3, has to be reliable in order to have that vx = p1−p0

||p1−p0|| ), the ratio can be

computed easily as r = p1−p0
p3−p0

. Thanks to the object aspect ratio we can execute the
pipeline depicted in Figure 3.3 to build an OBB: starting from the original BB and an
angle θ, we superimpose a small version of the corresponding OBB, b̆smi (built only
using the aspect ratio information), in the center of the BB rotating it by the provided
angle; we estimate as d = |W2 + plmx | the distance between the leftmost vertex of the
OBB, plm, and the left edge of the original BB; we enlarge b̆smi by a scaling factor s,
in order to have d = 0. Therefore, taking the example of Figure 3.3, if plm := p3,
we can simplify the above mentioned distance condition, obtaining the new desired
x coordinate of p3 as p̂3x = −W

2 . And then reformulating it as a scaling problem
p̂3x = s · p3x we get that s = − W

2p3x
. The factor s can be used to generate a scaling

matrix and transform all 4 vertices consistently.
As mentioned above, due to the error introduced by the Object Detector in the

estimation of bi instances, the construction of a BB from an OBB is not perfectly
invertible, so the algorithm just proposed tries to minimize one of the many possible
constraints (the proximity of the left-most point). Surely an optimization algorithm
could take into account more than one constraint (e.g. the proximity of all 4 vertices)
but in our case this approach is sufficiently precise and fast to test the rest of the
pipeline.

3.3.3 Automatic Dataset Generation

In section 3.1 we underlined the importance to provide a smart solution to collect
training data for data-driven models to be deployed in real industrial applications.
For this reason, we endowed LOOP with an automated labeling tool based on video
sequences. The hypotheses allowing the tool to work well are:

1. the video sequence frames a tabletop scene with the image plane as parallel as
possible to the supporting surface;
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FIGURE 3.4: For each pair of consecutive frames Ii, Ii+1 it is possible
to estimate the rigid transformation A such that Ii+1 = AIi, by means
of a 2D feature matching pipeline, like e.g. ORB[85]. The same trans-

formation A can be applied to each OOB label.

2. camera movements have to be, as much as possible, only rotational (Rotate
around the camera z axis) and translational (Lift along the z axis);

3. the height of target objects has to be mostly uniform.

Figure 3.4 exemplifies the above requirements by showing two consecutive frames
of a suitable video sequence. The figure shows clearly how restricted camera move-
ments (i.e. lift and rotate) leads to a controlled rigid transformation A between the
two consecutive images Ii, Ii+1 such that Ii+1 = AIi. The same rigid transformation
A can be applied to each OOB b̆i present in the image Ii so as to obtain a new set of
OOB such that b̆i+1 = Ab̆i. This procedure can be repeated for each consecutive pair
of images in the video sequence, it is therefore clear how the sole human intervention
is to create the OOB labels in the first frame I0. To estimate the rigid transformation
A any 2D feature-based matching pipeline, described in section 3.2, may be used.
We decided to use ORB [85], a patent-free solution, to make our software completely
open-source1.

3.4 Results

In this section we will describe both data and models used in our experiments in
order to maximize reproducibility. In subsection 3.4.1 we will introduce a novel
dataset, dubbed the LOOP Dataset, used in our quantitative and qualitative ex-
periments. In subsection 3.4.2 we will describe how the core object detector has
been trained over the LOOP Dataset in order to obtain different declensions of
the more complex LOOP Detector. To prove the effectiveness of our solution, in
subsection 3.4.3 we analyze the absolute LOOP’s performances, while in subsec-
tion 3.4.4 we present a detailed comparison between LOOP and the state-of-the-art
approaches based on handcrafted features. Finally, in subsection 3.4.5, a qualitative
evaluation of our approach within a typical robotic task is provided.
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FIGURE 3.5: LOOP Dataset objects grouped in Textured and Untex-
tured.

FIGURE 3.6: In the left column: 4 samples coming from the LOOP
Dataset one for each background category. The right column shows

the synthetic version of each sample.

3.4.1 LOOP Dataset

Thanks to the technique examined in subsection 3.3.3, we created our an experimen-
tal –public– dataset with 12 objects equally divided into Textured and Untextured (as
shown in Figure 3.5), submerged in several challenging scenes, in order to exten-
sively compare our approach with classical ones. We collected 15 tabletop scenes,
with randomly arranged objects, featuring different backgrounds: 3 scenes with ho-
mogeneous background; 3 scenes with wood; 3 scenes with black background and 5
scenes with an high-clutter background (several prints of Pollock’s painting). This
increasing variability is used in order to achieve Domain Randomization [86] during
training and very challenging scenes during the test. These 4 different scene cate-
gories are shown in Figure 3.6, where they are intentionally presented in increasing
order of complexity. We collected a total of 7155 self-labeled images (strictly speak-
ing, we manually labeled only 15 images, one per scene). Moreover, by using the
ground truth coming from the whole dataset we also built a Synthetic version of it
just by stitching one version of each model with the same arrangement proposed
by the original dataset (right column in Figure 3.6 illustrates synthetic version of
the real images in the left column). This version of the dataset is built in order to
reproduce a version of the training data in which the distribution of the objects in
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terms of position and orientation is identical to the real one (also the backgrounds
are intentionally similarly synthetized) but the variance of objects semblance, in the
images space, is purposely kept low: i.e. stitching the same version of the object
synthetically rotated is, under our hypothesis, less effective than produce real ro-
tated viewpoints, especially dealing with deep neural models, not to mention that
even the variations of light conditions and perspective are not correctly captured by
a synthetic dataset generated this way.

3.4.2 Deep Object Detector

As reference for our benchmarks we used YOLOv3 [81], a state-of-the-art Object De-
tector based on CNNs. We fine-tuned the YOLOv3 model, pretrained on ImageNet
[53], with the LOOP approach using 13 scenes of the LOOP Dataset (about 6200 la-
beled images) with a 80%/20% split for training and test. The training strategy is to
freeze weights of the network’s feature extractor (namely, the backend), for 2 epochs
training only the object detection layers (namely, the frontend), then fine-tuning the
whole architecture for 50 further epochs, with a learning rate of 0.001. The two re-
maining scenes of the dataset (i.e. one with wood background, thought as a simple
testbench, and one with high clutter background thought as a complex one), never
used during the training phase are used to evaluate the performance of the whole
system. We will call these two scenes Simple Scene (477 images) and Hard Scene (477
images) in the rest of this section.

We trained several models using different θ̂ (i.e. angle discretization parame-
ter, as described in subsection 3.3.1), thereby producing different declensions of the
detector useful in understanding how the discretization factor goes to affect perfor-
mances. For the sake of convenience, we will adopt the short nickname LOOPα to
identify a LOOP model trained using the discretization angle θ̂ = α (e.g. LOOP10
identifies a model trained by quantizing the whole angle turn in 36 bins of 10◦ each).
Moreover, we add the letter S to the above mentioned notation (e.g. LOOPS

α) to rep-
resent the same model trained with the synthetic version of the LOOP Dataset.

3.4.3 LOOP performances

In the claim of this work we said that with the LOOP approach it is possible to build
effortlessly an Object Detector, based on CNNs suitable to real industrial applica-
tions. In this section, indeed, we evaluate LOOP over the LOOP Dataset to under-
stand if its performances are good enough to embody it into a reliable industrial
system.

Figure 3.7 groups together several Precision/Recall curves obtained by varying
the threshold over the confidence output of the YOLOv3 model. Figure 3.7 (a), (b)
and (c) depict the precision/recall of several detectors (i.e. each of which trained
with a different angle discretization θ̂) over the Simple Scene, Hard Scene and both,
respectively. In the same plots also the LOOPS

10 model, thus trained only over syn-
thetic data, is depicted in order to assess its performance compared to its counter-
party trained on real data (i.e. LOOP10). Table 3.1 resumes the mean average precision
for the considered models: in this concise summary it is even clearer how deploy-
ing a synthetic dataset is significantly less effective than leveraging on real imagery,
especially when it comes to very complex real situations.

From these results we can conclude that LOOP10 is the best version of our detec-
tor. The LOOP5 and LOOP20 versions resulted slightly worse. This analysis shows,
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FIGURE 3.7: Precision/Recall curves for the LOOP approach. These
plots have been produces by varying the threshold of the predictions
confidence between 0.0 and 1.0 with a step of 0.05. The first column
compares various discretization angles. The second column shows
performances of the best version, LOOP10, for each single object in

the dataset.
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Model Simple Hard Overall

LOOP5 0.96 0.96 0.96
LOOP10 0.99 0.98 0.99
LOOPS

10 0.95 0.86 0.92
LOOP20 0.95 0.97 0.96
LOOP30 0.90 0.88 0.89
LOOP45 0.69 0.70 0.69

TABLE 3.1: The mean average precision (mAP) computed for each
model, across all objects, for the Simple Scene, Hard Scene and both.

clearly, how the angle discretization parameter θ̂ affects performances in both di-
rection: too small a value may cause a dramatic increase of detector categories C′

(e.g. with θ̂ = 5 we have C′ = 360
5 12 = 864); on the other hand, if θ̂ is too high, the

angle prediction is subject to a large discretization error producing low IoU scores.
Moreover, training on synthetic data only (LOOPS

10), although acceptable, is worse
than training on real data. With regard to single objects precision/recall, as will be
described in more detail later, symmetric objects are – unsurprisingly – somewhat
confusing the algorithm.

3.4.4 Hand-crafted features vs Deep Learning

We used our LOOP Dataset to test the LOOP approach compared with the state-of-
the-art algorithms based on hand-crafted features. The first competitor is, certainly,
SIFT [73], one of the most used feature-based approach for Textured objects detection.
For the Untextured counterpart, we chose BOLD [75], which uses highly repeatable
geometric primitives as 2D features in order to perform object detection also with
monochrome targets. Both methods are implemented in the same object detection
pipeline as described in [75]: 1) key-points detection; 2) key-point description; 3)
features correspondences validated through Generalized Hough Transform (as de-
scribed in [73])and 4) Pose Estimation. The Pose Estimation in this case is modified
in order to obtain a Rigid Transform instead of a Full Affine (homography). In this
way we are sure that both detectors will yield predictions similar to y̆i = {b̆i, θi, ci}
without producing distorted bounding boxes, as it is the case of homographies.

We compare the output of the previous two pipelines with the output directly
obtained with the LOOP approach. We measured the performances with the classi-
cal precision/recall metric computed taking into account the Intersection Over Union
(IoU) of the predicted OBB: each detection, of a generic algorithm, is counted as True
Positive if its IoU is > 0.5 compared with the corresponding ground truth OBB. With
this metric we can analyse: Precision, Recall, FScore and Average IoU for each algo-
rithm. We introduce also an additional term called Oriented Intersection Over Union
(OIoU) which measures the classical IoU commesurate to the effectiveness of the al-
gorithm in predicting the correct angle. Formally OIoU = IoU×max

(
vx ·v̂x
‖vx‖‖v̂x‖ , 0

)
,

so the Oriented IoU is inversely proportional to the angle between the two vx of
the ground truth and the predicted OBB; it is forced to be between 0 and 1, with
the max operator, in order to discard a priori opposed angles. The OIoU term is
introduced to measure the capability of each algorithm in distinguishing quite sym-
metric objects: in the LOOP Dataset, for instance, the two objects artifact_orange and
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box_brown seems very symmetrical even thought they are not. In such cases, if the
angle prediction is completely wrong, the IoU may be high but the OIoU is very low.

Under the assumption that, as deduced in subsection 3.4.3, the model with the
best trade-off between precision and recall is LOOP10, we used the latter to compete
with the state-of-the-art. In Table 3.2 and Table 3.3 several comprehensive results are
shown. The first table compares SIFT and BOLD with LOOP10 and LOOPS

10 dealing
with the Simple Scene, i.e. the scene with a low clutter background. The second table,
instead, deals with the Hard Scene containing an highly cluttered background. Both
tables contain performances dealing with each object, a summary for Textured and
Untextured objects and an Overall index. As vouched by these experimental results,
LOOP outperforms both SIFT and BOLD in both scenarios: our approach is able to
cope with both Textured and Untextured objects seamlessly and is very robust to
the high level of clutter in the Hard Scene. On the other hand, as pointed out in Ta-
ble 3.2, the OIoU index shows a slight fall of LOOP when dealing with symmetric
objects (e.g. the box_brown OIoU is 0). This conceptual problem can be easily resolved
treating symmetrical objects differently during the angle discretization process, de-
scribed in subsection 3.3.1, with a formulation similar to the one introduced in [65].
A qualitative evaluation is present in Figure 3.9 featuring a real output of the LOOP
detector on two samples randomly picked between the Simple and the Hard scenes
subsets.
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Index Precision Recall FScore IOU OIOU
Method Sift Bold LOOP10 LOOPS

10 Sift Bold LOOP10 LOOPS
10 Sift Bold LOOP10 LOOPS

10 Sift Bold LOOP10 LOOPS
10 Sift Bold LOOP10 LOOPS

10

artifact_black 0.50 0.84 0.99 0.97 0.00 0.81 0.96 0.98 0.00 0.82 0.97 0.97 0.75 0.77 0.85 0.84 0.75 0.75 0.85 0.84
artifact_metal 0.00 0.00 0.97 0.95 0.00 0.00 0.98 0.86 0.00 0.00 0.97 0.90 0.00 0.00 0.77 0.77 0.00 0.00 0.77 0.77
artifact_orange 0.54 0.96 0.91 0.78 0.12 0.96 0.91 0.88 0.20 0.96 0.91 0.83 0.71 0.86 0.86 0.86 0.62 0.43 0.78 0.37
artifact_white 0.62 0.00 0.97 0.90 0.85 0.00 1.00 0.98 0.72 0.00 0.98 0.94 0.78 0.00 0.84 0.80 0.78 0.00 0.84 0.79
clip 0.78 0.60 0.95 0.91 0.63 0.60 0.93 0.92 0.70 0.60 0.94 0.91 0.76 0.76 0.81 0.75 0.76 0.74 0.81 0.74
screwdriver 0.76 0.58 0.95 0.97 0.05 0.58 0.85 0.89 0.10 0.58 0.89 0.93 0.71 0.73 0.81 0.79 0.71 0.72 0.81 0.79
Untextured 0.53 0.50 0.95 0.91 0.28 0.49 0.94 0.92 0.29 0.49 0.95 0.91 0.62 0.52 0.82 0.80 0.60 0.44 0.81 0.72
battery_black 0.48 0.82 0.98 0.94 0.81 0.82 1.00 1.00 0.60 0.82 0.99 0.97 0.76 0.71 0.84 0.83 0.75 0.68 0.84 0.83
battery_green 0.65 0.44 0.93 0.90 0.83 0.43 0.93 0.91 0.73 0.43 0.93 0.90 0.69 0.70 0.85 0.85 0.69 0.59 0.82 0.79
box_brown 0.65 0.68 0.97 0.87 0.77 0.68 0.92 0.95 0.71 0.68 0.95 0.91 0.80 0.75 0.74 0.73 0.80 0.65 0.00 0.02
box_yellow 0.49 1.00 0.98 0.98 1.00 1.00 0.98 0.59 0.66 1.00 0.98 0.73 0.82 0.81 0.86 0.80 0.82 0.81 0.86 0.79
glue 0.37 0.99 0.97 0.95 1.00 0.99 0.91 0.97 0.54 0.99 0.94 0.96 0.80 0.81 0.82 0.83 0.80 0.80 0.82 0.83
pendrive 0.78 0.91 0.98 0.92 0.36 0.91 0.94 0.85 0.49 0.91 0.96 0.89 0.75 0.74 0.76 0.73 0.74 0.73 0.76 0.71
Textured 0.58 0.79 0.97 0.92 0.75 0.78 0.94 0.86 0.61 0.78 0.95 0.88 0.77 0.76 0.81 0.79 0.77 0.71 0.67 0.64
global 0.54 0.72 0.96 0.91 0.54 0.65 0.94 0.90 0.54 0.68 0.95 0.91 0.77 0.77 0.82 0.80 0.77 0.70 0.75 0.69

TABLE 3.2: Performances of our approach, compared to SIFT[73] and BOLD[75], in the Simple Scene scenario (boldface text highlights
the best score in the related pane). The overall Precision/Recall index of LOOP is about 96%/94% showing its flexibility in general

purpose real applications.

Index Precision Recall FScore IOU OIOU
Method Sift Bold LOOP10 LOOPS

10 Sift Bold LOOP10 LOOPS
10 Sift Bold LOOP10 LOOPS

10 Sift Bold LOOP10 LOOPS
10 Sift Bold LOOP10 LOOPS

10

artifact_black 0.00 0.01 0.96 0.90 0.00 0.01 0.94 0.90 0.00 0.01 0.95 0.90 0.00 0.64 0.80 0.75 0.00 0.05 0.80 0.74
artifact_metal 0.43 0.00 0.97 0.83 0.01 0.00 0.98 0.93 0.02 0.00 0.97 0.87 0.70 0.00 0.82 0.76 0.70 0.00 0.82 0.76
artifact_orange 0.75 0.00 0.91 0.78 0.41 0.00 0.88 0.92 0.53 0.00 0.89 0.85 0.85 0.00 0.87 0.86 0.84 0.00 0.82 0.68
artifact_white 0.73 0.00 0.96 0.80 0.10 0.00 0.96 0.98 0.18 0.00 0.96 0.88 0.68 0.00 0.80 0.80 0.68 0.00 0.79 0.76
clip 0.00 0.40 0.96 0.91 0.00 0.40 0.97 0.87 0.00 0.40 0.97 0.89 0.00 0.71 0.79 0.80 0.00 0.63 0.79 0.78
screwdriver 0.00 0.11 0.94 0.94 0.00 0.11 0.90 0.48 0.00 0.11 0.92 0.63 0.00 0.75 0.76 0.75 0.00 0.75 0.76 0.74
Untextured 0.32 0.09 0.95 0.86 0.09 0.09 0.94 0.85 0.12 0.09 0.94 0.84 0.37 0.35 0.81 0.79 0.37 0.24 0.80 0.74
battery_black 0.59 0.91 0.98 0.91 0.58 0.91 0.99 0.97 0.58 0.91 0.98 0.94 0.74 0.61 0.84 0.81 0.74 0.24 0.84 0.81
battery_green 0.67 0.04 0.94 0.84 0.90 0.04 0.87 0.50 0.76 0.04 0.90 0.63 0.68 0.62 0.80 0.75 0.68 0.54 0.75 0.71
box_brown 0.37 0.24 0.78 0.74 0.99 0.24 0.84 0.46 0.54 0.24 0.81 0.57 0.80 0.70 0.74 0.69 0.80 0.69 0.51 0.23
box_yellow 0.47 1.00 0.96 0.96 0.82 1.00 0.96 0.97 0.60 1.00 0.96 0.97 0.85 0.84 0.84 0.83 0.85 0.84 0.84 0.83
glue 0.59 0.94 0.99 0.94 0.81 0.94 0.95 0.79 0.68 0.94 0.97 0.86 0.78 0.79 0.84 0.79 0.78 0.79 0.84 0.79
pendrive 0.88 0.81 0.96 0.90 0.09 0.81 0.85 0.81 0.17 0.81 0.90 0.85 0.64 0.63 0.78 0.73 0.64 0.55 0.78 0.71
Textured 0.58 0.58 0.93 0.88 0.67 0.57 0.90 0.72 0.53 0.57 0.91 0.78 0.75 0.72 0.80 0.76 0.75 0.67 0.75 0.67
global 0.53 0.42 0.94 0.87 0.39 0.37 0.92 0.80 0.45 0.40 0.93 0.83 0.77 0.72 0.81 0.78 0.77 0.62 0.78 0.73

TABLE 3.3: Performances of our approach, compared to SIFT[73] and BOLD[75], in the Hard Scene scenario (boldface text highlights the
best score in the related pane). Here, the overall Precision/Recall index of LOOP is about 94%/92% showing its robustness against high

clutter backgrounds, a typical situation in real industrial environments.
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3.4.5 Real Robotic application

As a qualitative evaluation of our approach we designed a proof-of-concept
pick&place robotic application based on the outcome of the LOOP detector. Note
this application is similar to the wire-terminal picking in section 2.5. In fact, we
use almost the same experimental setup presented in section 2.4. In particular, we
use an industrial robotic arm (COMAU smart six) with a parallel gripper as end ef-
fector and an eye-on-hand camera on board. The camera mounted in this way can
be thought as the secondary end-effector and than can be arbitrarily moved with
high precision. The image plane of the camera is kept parallel to a table-top scene
with randomly arranged objects belonging to the LOOP Dataset (same camera-table
configuration seen in subsection 3.3.3). The distance between camera and the table
plane is known. Given that the output of the pipeline is a set of oriented prediction
y̆i = {b̆i = {xi, yi, wi, hi}, θi, ci} we exploit their position (xi, yi) and orientation (θi)
to build a simple control scheme, for robot guidance, in such a way as to move the
camera in order to align a target object with the center of camera viewpoint, ori-
ented as the canonical x axis of the image. A proportional-only control scheme is
used, thus, to minimize et and eθ , the translational and rotational error respectively
et = {xi − cx, yi − cy} and eθ = −sign(sin(θi))(cos(θi)− 1), with (cx, cy) the center
of the image. The control scheme will produce a linear velocity v = KPt ev and an an-
gular velocity ω = KPθ

eθ to the end effector, i.e. the camera reference frame (KPt and
KPθ

are tunable proportional gains). The sign(·) function is simply the sign function
with sign(0) = 1 to avoid singularities. The above simplified robot guidance scheme
is used to lead the robot in a easier condition suitable to estimate the 3D pose of the
object because: knowing the extrinsics parameters of the mounted camera and the
height of the table w.r.t. the robot base, it is trivial to know the 3D coordinates of an
object centered in the camera viewpoint. Figure 3.8 exemplifies the described proce-
dure by presenting a real execution of it. In the supplementary material several runs
of experiment are shown from the on-board and off-board cameras. We have ac-
complished this task on 20 scenes with completely unseen backgrounds. The overall
success rate of the final grasp is 100% for each object, except for artifcat_orange and
box_brown, which instead scored 60% and 50% respectively. Hance, the success rate
for the entire dataset is 92.5%. As expected from the conclusions of subsection 3.4.4,
the grasp for highly symmetrical objects (like artifcat_orange and box_brown) becomes
very challenging, due to the difficulty of estimating unambiguous orientation for
these samples. In these cases, the indecision of the detector combined with the state-
less nature of a CNN-based Object Detector (i.e. there is no online tracking method
like in [87], where a Recurrent Neural Network is used in order to achieve a con-
tinuous estimate of the pose) leads to a detrimental oscillation of the output in the
control module. Then, we corrected the model by modifying the rotational error in
such a way as to treat objects as symmetric, with{

et = {xi − cx, yi − cy}
eSym

θ = sign(tan(θ))(|sin(θ)|)
. (3.4)

Accordingly, the robot guidance scheme leads the camera to move towards the near-
est horizontal configuration of the target object (0◦ or 180◦ indifferently), reaching
100% of success rate also for each object (the control schemes were tested again over
20 scenes).
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FIGURE 3.8: An exemplification of the pick-and-place system de-
signed using LOOP as a module of the control scheme. The first
row depicts frames coming from the on-board camera, with superim-
posed predictions, showing the robot guidance control phases. The
second row shows images coming from an off-board camera framing

the grasp sequence downstream of the alignment procedure.

3.5 Conclusions

In this chapter we proposed an extension of classical CNN-based Object Detectors
able to produce Oriented Bounding Boxes suitable for the 3-DoF pose estimation
task. We provided our detector with a simplified procedure to gather a huge amount
of training data in the field, with trifling human intervention. With this work we
extend the solution pretended in subsection 2.5.1 while we provide a possible im-
provement also the pose estimation of the wire-terminals studied in subsection 2.5.2
and subsection 2.5.4. More in general we can state that, this work shows how to ef-
fectively use Deep Learning in a real industrial setting, exploiting a neural network
as a module of a more complex control scheme.
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FIGURE 3.9: This picture shows the real output of our software for
the simple and hard scene, respectively. The middle column shows
Unoriented Predictions (BB) coming from the generic object detec-
tor, while the right column shows the derived Oriented Predictions

(OBB).
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Chapter 4

Insertion of a DLO in a Hole using
Tactile Data

In subsection 2.5.5 we trained a regressor to infer, from tactile sensor data, the contact
forces exerted on a wire terminal. However, the pipeline presented in chapter 2 uses
this regressor only to monitor the success of the wire-terminal insertion task, and
possibly replan the operation. Moreover, this procedure relies on the simplifying
assumption of grasping the wire sufficiently close to the terminal to be considered
always straight and stiff. Thus, the insertion task of subsection 2.5.5 is not very
different from a peg-in-hole task in open-loop.

In this chapter, we aim to improve the this component of the system by develop-
ing a closed-loop strategy to guide the insertion of the electrical wire into a hole by
analyzing the feedback coming from a tactile sensor. We also tackle issues related to
the deformability of the cable, empowering the insertion of longer and curved wire
segments too.

4.1 Introduction

Traditionally, in an robotic assembly systems, the interaction between the end-
effector and the environment during task is measured by means of a Force/Torque
(F/T) sensor placed between the robot’s wrist and tool. This F/T configuration im-
pedes to directly measure the forces/torques exerted on the tool-tip, not to mention
the fact that measures will be distorted by the inertial effects acting on the tool it-
self. Moreover, in situation like the one described in section 2.4, where an additional
multi-joint gripper like the one in Figure 2.4 is mounted downstream of the force sen-
sor, non-static system dynamics prevent robust control based on force/torque feed-
back. Thus, as already proposed in chapter 2, we replace the classic wrist-mounted
F/T sensor with by a finger-mounted tactile sensor which, by exploiting a Recurrent
Neural Network (RNN), has been trained to emulate the more complex F/T output.
In this way, as discussed in [8], we are able to estimate all the forces acting on the
cable (not only the classic ones of a tactile sensor orthogonal to its contact surface),
with a sensor placed directly in contact with it and therefore free of further external
disturbances.

The remainder of this chapter is structured as follows. section 4.2, reports an
overview of previous works in this field. section 4.3 describes the sub-system used
to estimate external forces exerted on the wire through the tactile sensor. section 4.4
describes conceptually the insertion algorithm, while section 4.5 provides the control
equations. Finally, in section 4.6, in order to validate the proposed approach several
experiments will be provided.
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(A) Configuration 1 (C1). (B) Configuration 2 (C2).

FIGURE 4.1: Two different (most likely) configurations of an elasto-
plastic wire in real scenarios. On the left the wire features a simple

curvature. On the right, instead, an s-shaped configuration.

4.2 Related Works

For an autonomous system, the main problem in DLOs manipulation is dealing with
uncertainty about their shape. The natural approach is the use of vision systems
in order to ameliorate these uncertainties. Inaba et al.[88] developed an hand-eye
system to insert a rope into a hole. In their work, the insertion was performed by
measuring the rope’s tip center using stereo vision, and by computing the relative
position between tip and target hole. An alternative approach is presented in [89]
where a desired trajectory equivalent to the curve formed by the DLO is defined.
When the clearance between the DLO and the hole detected by vision is tight, then
the position and orientation of the tool is adjusted. In [90] the authors propose a
method to estimates forces acting on a flexible wire by measuring its shape through
a 3D reconstruction. More robust results were obtained fusing force and visual data
together. In these works a model of the wire is computed and updated in real-time
so as to match the observations of the real cable. In [91], for instance, the authors pro-
pose a method for calculating the shape of a filiform object by minimizing the energy
of its configuration. Then, using the above mentioned technique, a method for in-
serting a flexible wire is developed in [92], where the amount of plastic deformation
is estimated by stereo vision and an F/T sensor. Unfortunately, in many real applica-
tions, such as the one under examination, the reduced space of the system does not
allow the use of a vision system with a not negligible encumbrance. To overcome the
gripper’s inertial effects, that clearly plays a fundamental role in every force control
system, the robotics community worked for a long time on several solutions [93],
[94], [95], [96]. The main idea developed is to estimate the force/torque measures
corresponding to the contact of the tool-tip with an object by compensating the in-
ertial forces and moments caused by the tool by means of wrist-mounted inertial
sensors. In our work, as stated before, we avoid the inertia problem by replacing the
F/T sensor with a finger-mounted tactile sensor directly in contact with the object to
be manipulated. Control strategies based on force/torque measures or prior knowl-
edge on the DLO’s dynamic model are therefore developed. In robotic surgery, an
automated electrode array insertion, for cochlear implant, was developed in [97].
This application domain, as stated in the work, does not allow 3D vision systems,
thus an hybrid position-admittance control is proposed, where the insertion path
planner is modified by introducing in-vivo force measurements in order to reduce
sensitivity to misalignment errors.

At the best of our knowledge, our system is the only one able to completely
replace the force sensor in the control scheme, with a tactile sensor whose capabilities
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have been augmented by means of an RNN used to regress the three components of
the force acting on the cable, even that tangent to the plane of the sensor itself, all
without exploiting any visual feedback.

4.3 Tactile Feedback

The estimation of position, orientation and buckle of the grasped object is very useful
for executing an insertion task. Unfortunately, in many real applications, e.g. wiring
tasks, the narrow spaces available in the workspace may not be enough for using
a vision system alone and sometimes is not even feasible. In these situations, the
controller relies only on a force/torque feedback. In this work, a tactile sensor with
16 optoelectronic taxels and a flat deformable layer has been specifically designed
for wires grasping [98]. Tactile data are often interconnected and noisy. Machine
learning approaches have already extensively been used to relate such complex data
to object classes [45] and grasping stability [99], for instance. The tactile data have
been used by three regressors able to map the 16 signals into a three-dimensional
vector which represents an estimation of the force vector f (t) ∈ R3 detected on the
finger. We define f with respect to the current tool-frame {TL}, namely the frame
attached to the robot end-effector, which has origin ptl centred in the gripper finger
and axes defined by the unit vectors x̄tl , ȳtl and z̄tl . This force estimate can be later
used to describe the interaction of the grasped object with the environment. In order
to evaluate this procedure, a simple controller has been developed to perform the
insertion of a flexible electric wire in an hole, as described in section 4.5.

4.3.1 Data Gathering

Since we want the networks to map the 16-dimensional tactile signal into a unbiased
and undisturbed 3-dimensional force signal, we used as ground truth the signal pro-
duced by a strain gauge F/T sensor, mounted between the robot wrist and the two-
fingers gripper (with axes parallel to the tool-frame {TL} axes), cleared out by the
biases (e.g. gravity) and smoothed with a moving average filter. Moreover, the data
gathering phase has been designed ad hoc to avoid the inertial/gravity distortion
effects and other disturbance such as undesired points of contact with the environ-
ment (apart from the contact with the grasped wire). In each iteration of this phase:
1) the robot grasps a straight wire from a well known position, with a pose displace-
ment changing in every iteration; 2) the tactile sensor is reset to remove the offsets
of the specific grasp and read only the deformation on the wire; 3) the robot presses
the wire terminal on a board along its three Cartesian axes x̄wt, ȳwt and z̄wt, per-
forming 6 distinct moves, one for each axis direction. The wire terminal axes, here
defined only for the data gathering phase, are always such that the plane {ȳwt, z̄wt}
is parallel to the gripper plane {ȳtl , z̄tl}. During these moves the sensors data are
collected for the training. Each move is linear along one wire terminal axis, in order
to acquire only one force component exerted on the wire decoupled from the others
two, as depicted in Figure 4.2. The end-effector is moved slow enough to consider
the inertial effects negligible while the gravity effects are compensate and the force
measures transformed in the wire terminal frame. This procedure is iterated on 30
different grasp and each iteration last 40 s. The data are sampled with period 25 ms,
hence we collected 48000 samples.
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4.3.2 Tactile-Force Regression

The three regressors implemented in this work are three Recurrent Neural Networks
(RNNs) with Long-Short Term Memory (LSTM) cells. RNNs are basically designed
to process time-series data, and they have achieved good performance in applica-
tions such as speech and text recognition [100]. All RNNs have the form of a chain
of repeating modules of neural network. In standard RNNs, this repeating module
will have a very simple structure, i.e. a single layer with an an activation such as hy-
perbolic tangent. In theory, these networks are absolutely capable of handling short
and long-term dependencies in the data sequences. In practice, they have a ten-
dency to suffer from vanishing or exploding gradients: back-propagated through
time error signals either shrink rapidly, or grow out of bounds [101]. To overcome
this problem, LSTM [102] was proposed, which incorporates memory units and gate
functions.

Each RNN built in our system consists of a sequence of 2 LSTM layers (with 100
cells each), and a densely-connected Neural Network (3 hidden layers with 16, 8,
4 neurons respectively and with hyperbolic tangent activation function) to process
the output data. The networks are fed with a tactile data sequence of length 5 (read
window size), where each sample is taken with a period 25 ms and has 16 features
(number of sensor cells). The sequences themselves are sliding windows and hence
shift by 1 step each time, causing a constant overlap with the prior windows.

The predictions of the RNNs, on test data, are compared in Figure 4.3 with the
F/T sensor reads on the 3 axes and the prediction of a Artificial Neural Networks
(ANN) (1 hidden layer with 16 neurons and hyperbolic tangent activation function).
The hyper-parameter of this ANN are found by means of a grid search procedure.
As already visible from the figure, the RNN can efficiently decoupled the force com-
ponents while the ANN shows in each axis the effects of the other two axes too. Also
the Mean Average Errors (MAE) obtained on the test data with the RNN, i.e. 0.0384,
0.0789, 0.0718 for x, y and z axis respectively, are significantly smaller than those
obtained with the ANN, i.e. 0.3755, 0.3247, 0.3033 on the same axes.

The forces estimated by the RNN along each axis are cut by a threshold-based
function. Let f̂i be the raw data produced by the regressor for the i-th axis and f thr

i
the correspondent threshold, we cut this through the function fi = fi( f̂i), that is an
identity for

∣∣∣ f̂i

∣∣∣ > f thr
i and null otherwise. We also assume f (t) = 0, ∀t < 0.

4.4 Insertion Task

Inserting a wire which has been plastic deform into a hole can be difficult even for a
human being for the first time. This is especially true when a large amount of friction
is generated between the edges of the hole and the wire. In fact such a friction
complicates the insertion task because the wire is easily bent by external forces. In
flexible peg-in-hole tasks, it can be assumed that a part is deformed, buckled or bent,
only by the axial or lateral forces. In most real applications, the wire deformation is
locally contained, thus we can consider only deformations modeled by a polynomial
up to the third order absolutely monotonic, Figure 4.1.

The insertion task starts by simply moving the wire tip in the direction of the
hole axis, therefore we need only to know the tip position and orientation. If the
manipulator senses a larger resistance force than a given value during the insertion,
the position and orientation of the end-effector is adjusted to decrease the resistance
force.
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FIGURE 4.2: Training data of one single grasp. The tactile input data
consists of 16 signals, one for each cell of tactile sensor. The ground

truths are 3 signals, one for each axis for the force sensor.
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(B) Y-axis.
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FIGURE 4.3: Here we compare the force signals given by the FT-
sensor and the predictions yield by the ANN end the RNN on the
same test data. The data are acquired exerting three distinct forces

along the three F/T sensor axes.

To perform the insertion we assume that the tip of the wire is initially aligned
with hole’s longitudinal axis x̄h. The hole-frame {H}, namely the frame of the hole
where we want to insert the DLO, has origin in ph. The frame axis x̄h is pointing
inside the hole and it is aligned with the hole’s axis, while the axes ȳh and z̄h lie in
a plane parallel to the hole surface. We also assume the hole reference frame to be
known and fixed. The controller leads the robot toward the hole while it adjust the
gripper pose in order to reduce the estimated forces (if greater than some thresh-
olds). We can isolate the following three control actions:

• The forward translation control leads the tool in a linear motion along the
hole axis x̄h with velocity inversely proportional to the norm of the force. This
implies that the forward motion is slowed down or even stopped when the
forces along the three axes are over the threshold, preventing the wire curling.

• backward translation control is a linear motion proportional to the force along
x̄h. This could lead to a backward movement along x̄h facilitating the rotational
correction.
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FIGURE 4.4: Starting from the configuration depicted in (a), (d), the
tool moves straight forward along the x̄h axis. The contact between
the wire hump and the hole edge is detected by tactile sensor (b),
(e). The controller lead the system to minimize the force on the wire

combining a translations and a rotation on of the tool (c), (f).

• The angular regulation control combines the rotation about the axis ȳh and z̄h.
Such rotations intend to minimize the force component on the two axes.

The task is considered accomplished when the force f reaches the equilibrium con-
tact force f ∗ and the distance between tool and hole reaches a desired value ∆∗p,
which means that the tool enters in a neighbourhood of the hole approaching point.

4.5 Controller Design

Let us introduce the error state vector with the following equation:

e(t) =
[
eρr(t) eθy(t) eθz(t) ed(t)

]> ∈ R4 (4.1)

whose components are error functions defined as

eρr(t) =
∣∣∣min

(
0, x̄>h Rtl(t) f (t)

)∣∣∣− f ∗r

eθy(t) = Rtl(t)z̄tl(t)> f (t)

eθz(t) = Rtl(t)ȳtl(t)
> f (t)

ed(t) = ‖ph − ptl(t)‖ − ∆∗p



4.5. Controller Design 51

where the first element of eρr is the negative part of the force projected on the hole
axis x̄h, Rtl(t) is the rotation matrix between the hole and the tool frames and f ∗r ∈
R+ is the desired contact force (along x̄h); eθy and eθz are the force errors along the
axes z̄tl and ȳtl respectively; ed is the distance between tool ptl and hole ph with an
offset ∆∗p ∈ R+, corresponding to the desired distance.

In the next section we develop a controller that makes the error state Equation 4.1
converge to the origin of R4. The target pose, Q∗tl , is updated through the control
matrix M, that is a transformation with respect to (wrt) the base frame {B}.

4.5.1 Translation Control

We decompose the transformation matrix M in a translation component Mρ for the
motion along hole axis the hole x̄h = Rhūx (wrt the base-frame), re-defined as ūr,
and a rotation component Mθ for the angular pose correction about the axes of the
plane orthogonal to the hole, ȳh and z̄h (wrt the base-frame)

M(t) = Mρ(t)Mθ(t).

The translation component

Mρ(t) =
[

I3 ρr(t)ūr(t)
0T 1

]
has a translation step ρr(t) that is the superimposition of a damped-forward translation
ρr+(t), a spring-backward translation ρr−(t) and a contact-force compensation term ρ∗

ρr(t) = ρr+(t)− ρr−(t)− ρ∗.

The first one is a translation toward the hole axis with a variable step ρr+(t) ∈
(0, ∆a] ⊂ R+ inversely proportional to the angular errors eθy and eθz through a gain
k f , and scaled by the distance error ed saturated in [0, 1]

ρr+(t) =
∆a

1 + k f

[
e2

θy
(t) + e2

θz
(t)
]sat(βed(t), 0, 1), (4.2)

where sat(x, xmin, xmax) is a saturation function limited in [xmin, xmax], while β > 1 is
a scaling factor. Let us consider β big enough to keep sat(βed, 0, 1) = 1 for almost
all the task and bring it to zero only when ed ' 0, in order to turn off the forward
translation action when the tool is close to the desired distance.

The second translation is on the opposite direction of the hole axis regulated by
a PI action on the force

ρu
r−(t) = krP eρr(t) + krI

∫ ∆t

0
eρr(t− τ)dτ, (4.3)

that is then saturated between (0, 2∆a],

ρr−(t) = 2∆asat
(

ρu
r−(t)
2∆a

, 0, 1
)
∈ (0, 2∆a] ⊂ R+. (4.4)

Finally the contact-force compensation is a feed-forward term, ρ∗(t) = (krP +
kri ∆t) f ∗r , depending on the desired contact force f ∗r .
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4.5.2 Rotation Control

The rotation component is a concatenation of two rotations by the angles of θy(t)
and θz(t) about the hole axes ȳh = Rhūy and z̄h = Rhūz respectively

Mθ(t) = QhR̃ȳh
(θy(t))R̃z̄h(θz(t))Q−1

h (4.5)

where R̃ī(θ) is the homogeneous transformation employing the pure rotation of an
angle θ about the axis ī. Since the transformation Equation 4.5 is done on the base-
frame we first have to change the coordinates to the hole-frame by Q−1

h , then apply
the rotations, and finally change back to base-frame by Qh.

The rotation angles θy(t) and θz(t) are PI actions on the estimated force feedback

θi(t) = kiP eθi(t) + kiI

∫ ∆t

0
eθy(t− τ)dτ (4.6)

where i ∈ {z, y}. Observe that in the angular correction we use as feedback the y
and z components of the force on the tool-frame, through the errors eθy(t) and eθz(t),
while for the linear correction we take, through the error eρr(t), the absolute value of
this force projected onto the hole longitudinal axis x̄h (thus we use the x component
on the hole-frame).

4.6 Experimental Results

The proposed control strategy was validated through a series of insertions of electric
wires (3.5mm) in a component simulacrum hole (5mm), visible in Figure 4.4. In these
tests the wire does not reach the bottom of the hole, thus we set a null equilibrium
contact force f ∗r = 0, while the desired distance takes into account the fingers size
and is set at 1.5 cm, i.e. ∆∗p = 0.015 m.

In order to implement the controller presented in section 4.5 in the experimental
setup, we make a discrete-time approximation. Hence, a generic time-dependent
function g(t), t ∈ R, is replaced by its sampled version g(k) = g(Tk), k ∈ N,
where T ∈ R+ is the sampling period, set to T = 10ms. The integrals in the con-
trol actions Equation 4.3 and Equation 4.6 are approximated as

∫ ∆t
0 g (kT − τ) dτ ≈

∑d
∆t/Te

i=0 g(kT − i)T.
Since the equilibrium would be reached asymptotically, in the experiments we

consider the task completed when the errors are around the origin eρr ∈ Bερr
(0), eθy ∈

Bεθy
(0), eθz ∈ Bεθz

(0), ed ∈ Bεd(0) with radius respectively given by ερr , εθy , εθz , εd ∈ R.

4.6.1 Experimental Setup

The hardware setup used during the experiment here described is shown in Fig-
ure 4.4. The system is composed by an industrial manipulator, a COMAU Smart
Six, equipped with a commercial gripper, a Schunk PG70 electric parallel gripper.
A custom tactile sensor developed in [98] has been mounted on one gripper’s fin-
ger to provide a tactile image of the grasped objects. It is constituted by 16 taxels
organized as a 4×4 matrix and a deformable layer with a flat shape. Each taxel is
constituted by a single SMT photo-reflector integrating both an infrared LED and a
PhotoTransistor (PT). An Arduino-based µcontroller board is then used to send the
data to the control PC via USB connection. The control system has been developed



4.6. Experimental Results 53

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time [s]

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

M
a

g
n

it
u

d
e

e
r

e
y

e
z

e
d

Initial condition Tool-pose correction

Wire-hole
contact

FIGURE 4.5: Errors signals during the insertion task.

exploiting the ROS middleware to allow the communication between the different
parts (sensors, robot, gripper, etc.).

4.6.2 Results

The sequence of insertion is shown in Figure 4.4 for the configuration C2. The tests
are run 12 times for the configuration C1, Figure 4.1a, and 17 times for the config-
uration C2, Figure 4.1b, with a success rate of 83.3% and 76.5% respectively. These
two configuration are identified as the most likely deformation in a elastoplastic wire
considering a realistic scenario. In each test the wire was re-grasped in a different po-
sition and with different lengths, while the wire was bent manually with a different
deformation (in the two scenarios of Figure 4.1). The few failures reported during
the experiments can be attributed to the following two main reasons: 1) the defor-
mation curves were too pronounced, i.e. close to 90 deg; 2) the wire was grasped too
far from the tip. In fact, when the curve is close or over 90 deg, the forces acting on
the wire and estimated on the grasping point are in directions opposite to the needed
correction. The backward translation action Equation 4.4 has been added to the con-
trol to prevent the wire to buckle between hole and the gripper. Unfortunately this
situation might still happen when the deformation angle is close to 90 deg and the
friction between the wire and the hole is sufficiently large (in the considered setup
the wire is covered by a rubbery coating which produce an very large friction). To
correct such issue might be sufficient increase the backward translation gains krP and
krI . Another limit that rises always in DLOs manipulation based on force feedback
is the difficulties to detect the external forces acting on the object when they are far
from the measurement point. Hence, when the wire is grasped too far from tip the
estimation of the contact forces become inefficient.

In Figure 4.5 the error signals from the insertion task shown in the sequence
of Figure 4.4 are reported. Since the experiment starts with a simple approach to-
ward the hole without any contact (initial condition), the error position ed linearly
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decrease. When the first contact takes place (wire-hole contact), the magnitude of
the force error eθz increases in negative value, due to the deformation C2 of the wire
under consideration. As consequence, the tool starts rotating around ȳh (tool-pose
correction), while it keeps moving toward the hole. This forward movement ensures
to maintain the contact between wire and hole, in this way the tool continue rotation
until the wire is not aligned with the hole. In fact, the error decreases significantly
only in the last phase when the wire is aligned with the hole and the remaining part
of the wire can be inserted straight. The error eρr increases when the wire is buckling,
resulting in a backward translation on the tool, while the rotation continue. In fact,
notice that eθz decrease, if the task preceded without the backward translation, this
error would become positive and the tool would change the rotation on the opposite
and wrong direction ending in a failure. Hence, a trad-off between the forward and
backward translation must be found adjusting the gains krP , krI and k f , in order to
keep contact between wire and hole but without pushing too hard (and buckling the
wire).

4.7 Conclusion

In this work an automated robotic system for the insertion of a DLO inside a hole has
been developed. We have provided the robot with a controller capable of correcting
the orientation of the target cable during insertion to avoid bending; the controller is
fed with feedback coming from a tactile sensor processed by an RNN able of regress-
ing the 3 components of the force acting on the cable, including the force tangential
to the sensor walls. The experimental results have shown that this control scheme
is robust at various initial cable deformations (single and double bending). Future
activities will be devoted to the integration with a model of the DLO in order to ex-
tend the manipulation capability to more complex wire deformations and obtain an
higher success rate. Moreover, a formal proof of stability for the controlled system
will be provided.
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Chapter 5

A Robotic System for DLOs
Reshaping in Cluttered
Backgrounds

In the previous chapters, which constitute the first part of this thesis, we investigated
the robotic manipulation and sensing of DLOs for grasping and inserting the termi-
nals in a hole. In this and the next chapters instead, the attention is moved on DLOs
reshaping. Hence, similarly to the first part, we begin presenting a full system for
manipulate a DLO, while in the the next chapters we propose further improvements
and extensions to the DLO sensing.

The system presented in this chapter performs the manipulation of the DLO with
sequence of pick-and-drop primitives driven by visual data. We start by studying
the manipulation of an highly deformable object, i.e. a soft rope, with a single robotic
arm. In this case we can neglect the elastic component of the DLO e assume it is
purely plastic. The proposed solution relies on a decision-making process which
learns the optimal grasping location exploiting deep Q-learning and finds the best
releasing point from a path representation of the DLO shape. Hence, also this appli-
cation the DLO sensing represents a fundamental component for the whole system,
in fact we employ a state-of-the-art algorithm for building a geometrical model of
the DLO.

5.1 Introduction

Earlier works on deformable object manipulation have sought open-loop strategies,
which are ineffective since the material can shift in unpredictable ways [103]. Succes-
sive works attempted to develop various model-based strategies for controlling the
object shape through robot manipulation [90, 104]. This is a common and effective
approach with rigid objects, but it results weak with non-rigid objects. Indeed, there
is no obvious mapping from an observation of the object to a compact representation
in which planning can be performed.

Deep Reinforcement Learning (DRL) is becoming more and more popular in
robotic manipulation [105, 11, 19, 106, 107, 108]. We are actually witnessing a run
for the best DRL algorithm (in terms of flexibility and efficiency), that would en-
able the robot to perform any kind of manipulation, without engineering but only
through its personal interacting experience with the environment [109]. However
even the state-of-the-art solutions based on DRL algorithms produce results [106,
107, 108] quite far from those achievable with classical engineering methods.
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FIGURE 5.1: Pick-and-drop trajectories performed by the robot dur-
ing every iteration of the proposed algorithm. It starts acquiring an
image of the table with the hand camera (a). The decision process
select a grasping point based on this image, and compute the cor-
responding releasing point. In the second step the right arm move
toward the grasping point and stops 0.05m over the table (b). Then it
grasps the DLO in the decided point (c) and returns to the approach-
ing point (d). In the last two steps approaches the releasing point (e)
and opens the gripper (f). Finally returns in the initial configuration

ready to start over, by taking a new image (a).

The challenge in these works is the development of an algorithm which could
learn the joint torque trajectories for a generic task directly from the input raw im-
ages by means of a rewarding system. This process demands to the agent to intrin-
sically learn operations like inverse kinematics, trajectory planning, visual feature
extraction, object detection and semantic segmentation. All problems extensively
studied and efficiently solved in literature.

Anyway, in order to discard the requisite of a model, one of the major challenge
when interacting with deformable objects, reinforcement learning seems a very rea-
sonable and very attractive approach [19, 110]. In fact, the optimization skills and
the flexibility of DRL are essential to overcome the complex behaviour of deformable
objects. However, to the state-of-the-art of DRL, a worth solution would be lighting
the learning load by integrating the DRL algorithms with other non-learning-based
tools and engineering consideration, in order to make the most of their capabilities.

In this work, we build a smart integration between efficient engineered solutions
and DRL algorithms. In particular we propose a wise use of DRL algorithms in the
few tasks in which the process needs to predict the optimal interaction with the DLO.
While we prefer to employ a stable inverse kinematics (IK) solver and a trajectory
planner to perform the robot motion. Moreover, we lighten the information extrac-
tion from visual data with a state-of-the-art vision technique specifically designed
for DLOs [10]. The presented work is motivated by the lack of effective application
solutions for DLO manipulation in tasks like untangle, spread and routing a wire
in assembly processes [37, 111]. Thus, our study wants to move a step forward into
these challenging tasks, proposing a solution able to control the shape of a DLO in a
clutter environment using vision feedback.

In line with our work, also other authors adopted similar approaches. Boularias
et al. [112] explores the use of DRL combined with well-known techniques for im-
age segmentation, for manipulating unknown objects. They propose a pipeline that
first segments images into separated objects, predicts pushing and grasping actions,
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FIGURE 5.2: Image segmentation algorithm for DLOs. The first step
consists in segmenting the input image into adjacent sub-regions (su-
perpixels) and creating an adjacency graph. From the extremity of
the DLO, an arbitrary number of walks are started, by moving into
adjacent superpixels. Each walk moves forward along the adjacency
graph by choosing the best next superpixels until it reaches the other
extremity (this walk is masked as ’closed’). As a set of random walks
are started, Ariadne keeps only the most likely one, among those

marked as ’close’.

extracts hand-tuned features for each action, then executes the action with highest
expected reward. In [20] and [113], to make training tractable on a real robot, they
simplified the action space to a set of end-effector-driven motion primitives. They
formulate the task as a pixel-wise labeling problem: where each image pixel – and
image orientation – corresponds to a specific robot motion primitive executed on the
3D location of that pixel in the scene. Similarly to these works, we turn action pre-
diction into a classification problem by discretizing the action space and we define
specific robot motion primitive (grasping and releasing).

The main contributions of our work are: (1) a novel robot learning-based sys-
tem for autonomous deformation of a rope from/to a general shape using visual
feedback capable to work with any cluttered background; (2) a study on DLOs de-
formation through a re-positioning sequence, in particular we investigated different
strategies to decide the grasp/release locations and their relations.

The remainder of this chapter is structured as follows: section 5.2, reports an
overview of previous works in this field; section 5.3 presents the experimental setup;
section 5.4 provides relevant background on reinforcement learning and Deep Q-
Network; section 5.5 describes the proposed method in details; finally, in section 5.6,
we examine the experiments and make some piratical considerations.

5.2 Related Works

The problem of DLOs manipulation has been studied before, with particular atten-
tion to tying knots. For instance, Yamakawa et al. [114] proposed a trajectory plan-
ning approach where a knot can be tied with a single robot arm at high speed. Mayer
et al. [115] examined the use of recurrent neural networks to learn the knot tying
trajectories. Learning from Demonstration (LfD) was proposed by Lee et al. [116]
to learn a function that maps a pairs of correspondence points, while minimizing a
bending cost.

The insertion of a DLO in a hole is another widely investigated task, due to all
the useful applications that it would have in assembly operations [7, 111]. Inaba
et al. [88] developed an hand-eye system to insert a rope into a hole using stereo
vision for computing the relative position between rope tip and hole. In [117] they
presented a method to insert string through tight workspace openings online using
an approximate Jacobian to estimate the motion of the string. In [8] the insertion
of a DLO into a hole is performed by analyzing the feedback coming from a tactile
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sensor by means of a recurrent neural network which estimate the force acting on
the wire itself.

Few works attempt to address the shape control of a DLO using a robot. Rambow
et al. [118] used a two-arm robot to mount a deformable tube in a desired config-
uration based on a single teleoperated demonstration. Nair at al. [20] developed a
learning-based system where a robot takes as input a sequence of images showing
small deformations of a rope from an initial to the goal configuration, performed
by a human demonstrator, and outputs a sequence of actions that would lead the
rope to the target shape, imitating the demonstrator deformations sequence. In [20]
a Baxter robot has been configured to collect interaction data with the rope for 500
hours, used later to learn an inverse dynamics model which is finally employed to
imitate the human demonstration. Similarly, also Sundaresan et al. [21] proposed
an approach using imitation learning to arrange the configuration of a rope. They
also show that the proposed solution can be used for a knotting task from human
demonstration and assuming to start always from the same configuration containing
a single loop. To brake symmetry and enable consistent correspondence mapping
with target shape in [21] and [119] added, respectively, a ball and a blue tape. More-
over, in [119] they also tied one end of the rope to a clamp attached to the table. In
this work, instead, we use a perfectly symmetric rope, with both the extremity free
and identical. Another recent work on the same topic is [16], where they estimate
a state-space representation of the rope and learn a dynamics model with an LSTM
network and solve the rope manipulation with MPC. The weakest point of this so-
lution is the assumption of having a strong color contrast between the rope and the
table for a correct state estimation.

Differently from the over mentioned works, we addresses the problem of au-
tonomous deformation of a rope from/to a general shape by training a reinforce-
ment learning agent from scratch on a real robot, without: (1) the necessity of
demonstrate the intermediate deformation steps in test time; (2) adding easily dis-
tinguishable object to brake the rope symmetry; (3) fixing any extremity to the table;
(4) making any restrictions on the background color. In the sequence of Figure 5.4
we used a white background to make images clearer and to facilitate readers in the
vision of the rope. However, as explained in subsection 5.5.2, the system is designed
to work on heterogeneous and confusing backgrounds.

5.3 Experimental Setup

For the experiments described in the work, we employ a Rethink’s Baxter robot,
which has a wrist-mounted gripper with two degrees of freedom (one rotational
and one for closing/opening the two fingers). An RGB camera integrated with the
robot hand provides visual data, with a resolution of 960× 600 px.

The setup is illustrated in Figure 5.1. Also in this case, a white background is
used to make images clearer and to facilitate readers in the vision of the rope. How-
ever, it is worth to remark that, as explained in subsection 5.5.2, the system is de-
signed to work on heterogeneous and confusing backgrounds, see e.g Figure 5.2.

A perfectly symmetric DLO (i.e. a rope), lies free on a table, at a known height
z∗, in front of the robot. We define a fixed camera pose over the table to acquire the
input RGB image. The interaction of the robot with the rope is limited to two simple
motion primitives consisting of grasping the rope at location (u1, v1) and releasing it
at location (u2, v2), where u1, v1, u2, v2 are pixel coordinates in the input RGB image.
Since both the table height and hand-camera pose are known with respect to the
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robot base frame, we can estimate the grasping (x1, y1, z∗) and releasing (x2, y2, z∗)
coordinates in the base frame.

As shown in Figure 5.1, during the grasping the robot first approaches the point
(x1, y1, z∗) from the top, with and offset of z′ = 0.05 m along the vertical z-axis and
the gripper open. It moves down with a linear trajectory in the Cartesian space
along z to z∗, then it close the gripper’s fingers before rising back to z∗ + z′. The
motion sequence for dropping the rope is the same, with the intuitive difference that
it starts with the gripper close, and opens it after the descent to z∗. In both the motion
primitives, the motion planning is automatically executed with the native Baxter’s
IK solver.

5.4 Preliminaries on DRL

We formulate the grasping task as a Markov decision process defined by (S ,A, p, r).
Where state space S and action spaceA, that represent respectively all possible com-
bination of current and target shape and all possible grasping point in the scene, are
assumed to be discrete. In subsection 5.5.2 and subsection 5.5.4 we illustrate the dis-
cretization strategy and we define the environment’s state, while in subsection 5.5.5
we define the agent’s actions. The unknown state transition probability p(st+1|st, at)
represents the probability density of the next state st+1 given the current state st
and current action at. For each state st at time t of the environment (i.e. the DLO),
the agent (i.e. the robot) chooses and executes an action at according to the policy
π(at|st), which implies the transition of the environment to a new state st+1 and the
formulation of a reward rt as defined in subsection 5.5.4. Under this formulation,
the goal is to find an optimal policy π∗ that maximizes the expected sum of fu-
ture rewards ∑+∞

t=i E(st,at)∼pπ
[rt], where we use ρπ to denote the state or state-action

marginals of the trajectory distribution induced by a policy π(at|st).
In this work, we investigate the use of deep Q-learning, that is a Q-learning

where a deep neural network is used to approximate the Q-value function
Qπ(st, at) = ∑T

ti=t Eπθ
[rt|st, at], which measures the expected reward of taking ac-

tion at in state st at time t. The network that approximates Q-value function is called
Deep Q-Network (DQN) [120] and the training data are processed by using stochas-
tic gradient updates. In Q-learning, a greedy policy π(at|st) is trained to choose opti-
mal actions by maximizing the action-value function Qπ(st, at). Formally our learn-
ing objective is to iteratively minimize the temporal difference error δt of Qπ(st, at)
to a fixed target value yt,

δt = |Qπ(st, at)− yt|

yt = rt + γ Qπ

(
st+1, argmax

a′∈A
Qπ

(
st+1, a′

))

where γ ∈ R+ is called the discount rate.

5.5 Method

5.5.1 Overview

In this section, we describe our method to reshape a DLO using a single arm robot.
The proposed method relies on a DQN-based decision process that leverages on
an effective visual representation of the DLO shape. Current and target shapes are
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modeled using both a Key Points Path and a Spatial Grid Matrix, detailed in sub-
section 5.5.2. The interaction with the DLO, and its reshaping process, take place
through a sequence of grasping and releasing operations. The decision process, de-
tailed in subsection 5.5.3, learns to predict the best grasping point from the input
image while the corresponding releasing point is computed by projection. A sam-
ple sequence of steps that leads the DLO to the target shape is shown in Figure 5.4.
Since the proposed method relies on a reinforcement learning algorithm, in subsec-
tion 5.5.4 and subsection 5.5.5, we formally define states, actions and rewards, while
in subsection 5.5.6 some considerations about the training and how we speed it up
when starting from scratch are made.

5.5.2 Shape Representation

In order to effectively exploit its decision-making skills, the DRL agent has been in-
tegrated into a framework that lightens the learning load, as will be detailed in sub-
section 5.5.3. This process is based on two representations of the DLO, both shown
in Figure 5.3, processed from the visual input. The first representation, consists of a
sorted sequence of key points belonging to the DLO. This representation allows us
to effectively identify the releasing point on the target shape as a projection of the
grasping point (taken from the current shape). In this way the agent needs to learn
only the grasping point. In the second representation, a dimensionality reduction of
the visual data is performed by mapping the segmentation mask into a spatial grid
matrix. This matrix will later compose the state of the environment that the agent
uses to predict the best action to perform.

Both the representations relays on a algorithm called Ariadne [10], able to per-
form simultaneously instance segmentation and b-spline modeling of DLOs. The
basic idea of Ariadne is to detect the DLOs as suitable walks over the Region Adja-
cency Graph built on a super-pixel over-segmentation of the source image. In Fig-
ure 5.2 is visible an example of segmentation on a cluttered background.

Key Points Path

Ariadne segments the image into adjacent sub-regions (superpixels) then finds a
walk that connects the two extremities of the DLO. This walk is essentially a sorted
list of superpixels, that can be represented by their centroids, hence it can be con-
verted into a sorted list of image points P = [p1, . . . , pn]. Each walk need to be
initialized with seed superpixels located at the DLOs’ extremities. Purposely, we
deployed YOLO v2 [121], an object detection tool based on convolutional neural
networks. We fine-tuned the YOLO v2 model, pretrained on ImageNet, on a dataset
that we created with the black rope used in the experiments. To create this dataset
we developed an automated labeling tool based on video sequences that we allows
us to easily gather massive amounts of training images in the field with minimal
human intervention [60]. The tool is based on the idea that restricted camera move-
ments (i.e. lift and rotate) leads to a controlled rigid transformation A between the
two consecutive images Ii, Ii+1 such that Ii+1 = AIi. The same rigid transformation
A can be applied to each bounding box (BB) b̆i present in the image Ii so as to ob-
tain a new set of BB such that b̆i+1 = Ab̆i. This procedure can be repeated for each
consecutive pair of images in the video sequence, it is therefore clear how the sole
human intervention is to create the BB labels in the first frame I0.
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Key Points PathSpatial Grid

(a)

(b) (c)

FIGURE 5.3: The input raw image is processed by Ariadne (a). Since
it needs to be initialized with the DLO extremities, YOLO object de-
tector is employed for the purpose. Ariadne produces a binary mask
and a list of image points that describes a walk along the DLO. From
the binary mask we create the spatial grid (b) and define the matrix

Mgt , while from the points path (c) we obtain the list of points P t

Spatial Grid Model

A uniform space partitioning is performed on a binary image mask Imask
t ⊆

[0, 1]h×w obtained as segmentation of the DLO from the input RGB image It ⊆
[0, 255]3×h×w. This partitioning consists of a set with size nrows × ncols of rectan-
gular regions of pixels {Ψi,j ∈ Rψh×ψw}i∈nrows,j∈ncols (image windows) with con-
stant size ψh × ψw = h

nrows
× w

ncols
. Each region is mapped into a scalar value

gi,j
t = Ω[0,1]

(
1

ψhψw
∑u,v∈Ψi,j

Imask
t [u, v], gTh

)
, that is the average of all the region-pixels

binarized through the function Ω[0,1](x, xTh), which gets 1 only when x ≥ xTh

and 0 otherwise. From these values we define the spatial grid matrix at time t as
Mgt = [gi,j

t ]i∈nrows,j∈ncols ∈ [0, 1]nrows×ncols , where every cell (i, j) and every region Ψi,j
have a bijective correspondence. To simplify position calculations, each region is
represented by its center point.

5.5.3 Decision Process

The goal is to reshape a DLO by means of a sequence of grasp and release operations.
To achieve this we employ the decision-making process schematically outlined in
Figure 5.5. This process aims to determine the optimal grasping and releasing points,
respectively pgrasp ∈ R2 and prelease ∈ R2, in order to maximize the visual overlap
between the current and the target shapes, using as input data the image of the
current scene.

A straightforward approach that we initially explored is to train an agent for
learning jointly the two optimal locations pgrasp and prelease from the observation of
the current scene st. However, the releasing location is strongly dependent on the
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t = 1 t = 2

r = 16 r = 15 

t = 3 t = 4 t = 5t = 0

r = 16 r = 5 r = 20 

𝜚 = 1.0 𝜚 = 0.91 𝜚 = 0.73𝜚 = 0.1 𝜚 = 0.64  𝜚 = 0.82 

FIGURE 5.4: Example of grasping-and-releasing sequence for reshap-
ing the DLO. From the target and the current input visual data (first
row) we define the state st (second row) and predict the Q-value
φQ(st) (third row). We use a visual representation of the state where

a cell can be: black if part of the background (si,j
t = 0); white if part of

the current shape only (si,j
t = 2); light-grey if part of the overlapped

region (si,j
t = 3); dark-grey if part of the target shape only (si,j

t = 1). In
each step t, we obtain the action at as the coordinates to the highest
value of φQ(st) (red star). On the input images we draw the grasping
(red circle) and the releasing (green circle) points correspondent to
the predicted action at. For each transaction we also compute the re-
ward r(at, st, st+1), as a function of the overlap score $(st) (see Equa-

tion 5.3).

grasping point, but the over mentioned approach does not take into account this
conditional nature of the two operations.

To address this problem, we could combine two agents in a cascade, where
the first predicts the grasping point and the second the releasing point. In
other words, instead of learning jointly the two locations with an unique policy
π([pgrasp, prelease]|st), we define two policies: one that learns the grasping point from
the current state πgrasp(pgrasp|st); while the other one learns the releasing point from
both the state and the predicted grasping location πrelease(prelease|st, pgrasp). Nev-
ertheless, training this policy is inefficient. In fact, the two operations would re-
quire two dedicated rewards, but we can only generate one reward after the releas-
ing which is proportional to the visual overlap between the current and the target
shapes. Clearly, in this setup, the decision process does not have the possibility to
understand if an high (or low) reward is due to πgrasp or πrelease.

Ultimately, to overcome also this action reward assignment issue, we propose to
only learn the grasping point, while the releasing point is derived from the key points
path representation of current and target shapes presented in subsection 5.5.2. In
fact, given the target shape path P∗ = [p∗1 , . . . , p∗m] and the current shape path P t =
[pt

1, . . . , pt
n], we can easily project a point form one path to the other. In particular we

can project the grasping point pt
k, taken from P t, into a releasing point p∗s belonging

to P∗, where s =
⌊
k m

n + 1
2

⌋
.

Having established that we can find the placing location with this projection
strategy, one might wonder if we can choose also the picking point simply form
the representations, without learning it. The most trivial solution would be grasp-
ing every time a random point from those that are not overlapped with the target
shape. This is clearly very ineffective, since it neglects the DLO property of inter-
connection among the key points. Moreover, if we grasp only the free points, i.e.
those that are not-overlapped, we can not ensure to really reshape the rope, since
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FIGURE 5.5: Scheme representing the proposed method. We high-
light in green the robot side, which includes the image acquired by the
hand camera and the deformation (grasp and releasing operations)
executed on the DLO. The decision making process is highlighted in
yellow and the agent in red. The scheme shows also the agent’s mem-
ory update, with dashed lines and grey boxes. In particular, the bot-
tom part of the scheme reports the new state and new overlap that are
obtained from the same scheme in the successive time step, from the

new image acquired after the deformation.

the algorithm would simply aim to clean all the free points moving them to the tar-
get location. Hence, a trivial solution such as winding the rope in a small region
that completely overlaps just a portion the target would conclude erroneously the
task if there no free point is left. On the other hand, if we grasp also those already
overlapped, we risk to make many pointless re-positioning actions. Another trivial
approach would be following the order in the path, but also in this case we are not
taking into account the interlinked nature of the object. In fact every time we place
a point we might erroneously move those that we placed earlier.

As already stated, in the proposed solution we develop a decision process based
on a DQN agent that learns the optimal grasping cell (action) in a grid that combine
the spatial information of both the target and the current shapes (state). As shown
in Figure 5.5 the agent is wrapped into a structure that defines the agent’s state by
extracting the useful features from the input image and derives the grasping and
releasing point from the agent’s action. The task starts by providing a goal that can
be either a key points path and a spatial grid or a raw image of the rope in a target
shape. In each iteration the system acquires a new RGB image of the scene. Then,
the visual segmentation algorithm, creates the binary mask and the key points path
for the current shape. The mask is reduced to the correspondent spatial grid matrix,
which is combined with the target’s one, as defined in subsection 5.5.4, to obtain
the state. The agent predicts the best action for the current state, i.e. it provides the
optimal grasping cell of the spatial grid, as detailed in subsection 5.5.5. This action
needs to be mapped into a grasping point with respect to robot frame {B}, so first
we find the point in the input image as center of the region of pixels corresponding
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to the grasping cell, and then, with the knowledge of the camera pose, we transform
it with respect to {B}. The releasing point, as explained previously in this section, is
obtained from the key points path and the grasping point. While the angle is simply
estimated with a line fit algorithm from the image window contained in a the cor-
responding cell. Note that this estimation is affected by an ambiguity of π between
current and target shapes. This would imply an undesired twist when releasing the
rope. To have a consistent angle between the two shapes we can use the sorting
information of the key points in the path. By consistently defining the two extremi-
ties on target and current shapes, the ambiguity is automatically solved. Obviously,
arises a new problem on defining the extremities, since the DLO is perfectly sym-
metric. Let A and B be the end points of the current shape and A∗ and B∗ those of
the target one. Thus, we define A∗ as the end point of the target closer to A, which
is instead arbitrarily assigned, and B∗ the other one.

Once the robot has performed the deformation as explained in section 5.3, a new
iteration starts. In the successive iteration, the reward, that is function of the overlap
score, and the new state are computed and sent to the agent, which records the
transaction state, action, new state and reward for the learning. The task ends when
the overlap score reaches a given threshold.

5.5.4 Environment

We model each state st as a linear combination of the spatial grid matrix of the scene
at time t, Mgt , and the one of the target shape, Mg∗ ,

st = 2Mgt + Mg∗ . (5.1)

In this way the state is a matrix st ∈ [0, 3]nrows×ncols where each element si,j
t corre-

sponds to the cell (i, j) of the spatial grid built on the scene. Note that it can be
rewritten as

si,j
t =


0 if Ψi,j is part of the background
1 if Ψi,j is part of the target shape only
2 if Ψi,j is part of the current shape only
3 if Ψi,j is an overlapped region

, (5.2)

where the overlapped regions are set of image pixels belonging to both the target
and the current shape.

5.5.5 Agent

This work uses an implementation of deep Q-learning, where the DQN φQ(st) that
approximate the Q-function Qπ(st, at) is a convolutional neural network (CNN)
schematically represented in Figure 5.6. Since both state and action space are quite
simple by construction, simple network architectures can be used as well. The de-
fault architecture consists of five convolutional layers interleaved with nonlinear
activation functions (ReLU) [119] and spatial batch normalization [122]. As already
said, the input and the output of the DQN have the same size, that is the size of the
spatial grid, nrows × ncols.

Actions The agent predicts a vector action at = [i j]>, where i ∈ Nnrows and j ∈
Nncols are the coordinates of a target region in the spatial grid where to perform
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FIGURE 5.6: The DQN is a CNN with five convolutional layers, where
input and output have the same size 10× 16.

the grasping. These coordinates are easily inferred from the DQN’s output φQ(·) ∈
Rnrows×ncols . In fact, the matrix φQ has the same size of the spatial grid matrix Mgt ,
thus we have a one-to-one correspondence between the elements. This implies that
we can take φ

i,j
Q (st), the value in coordinate i, j of φQ(·), as the approximated Q-

value Qπ(st, at) of the action at = [i j]>, or in other words, φ
i,j
Q (st) can be considered

as the expected future reward of grasping the DLO in the region (i, j). Hence, the
action that maximizes the Q-function is the couple of indices corresponding to the
region with the highest Q-value across the spatial grid matrix: argmaxa′Qπ(st, a′) =
argmax(i,j)φ

i,j
Q (st).

Reward Shaping In our decision process we use a shaped reward. In fact, shaped
reward functions compared to sparse reward functions, require more design effort as
they incorporate knowledge of the problem into the reward structure, but in general
they require less time to train, or at least they should speed-up the training in a
complex setup.

The reward scheme we designed is very simple. First of all let us consider the
state as written in Equation 5.2. We can easily assert that only the regions belonging
to the current DLO shape are worth considering for grasping, which means that we
can assign a reward r(at, st, st+1) = 0 to all the actions at = [i j]> that leads the robot
to the regions corresponding to the value si,j

t ∈ {0, 1} or equivalently gi,j
t = 0 (void

grasping).
Let us consider now a valid action, at ∈ {[i j]> : si,j

t ∈ {2, 3}}. Our goal is to
maximize the number of overlapped regions, ideally the algorithm should converge
to a state in which current and target shapes are completely overlapped in the spatial
grid model, that is st : si,j

t ∈ {0, 3}, ∀i, j.
We define an overlap score $(st) =

nst=3
nst 6=0

at time t as the number of overlapped
regions nst=3 over the number of all regions that are either part of the current or the
target shape nst 6=0. Hence, assuming that $(st+1) − $(st) > 0, the reward that we
assign to a valid action is directly proportional to the increment in the overlap score

r(at, st, st+1) = k
[

1 +
$(st+1)− $(st)

1− $(st)

]
, (5.3)

where k ∈ R is a gain that we set to k = 10.
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Moreover, to penalize the actions that cause an overlap loss, $(st+1)− $(st) ≤ 0,
we assign a constant reward r(at, st, st+1) =

k
2 , greater than zero (since the action is

still valid) but always smaller than Equation 5.3.

5.5.6 Training and Test

We train the DQN using Adam optimization with fixed learning rates of 10−4. Our
models are implemented in PyTorch and trained with an NVIDIA GeForce GTX 1080
Ti on an Intel Core i7-7700K CPU clocked at 4.20GHz. We train with prioritized ex-
perience replay [123] using stochastic rank-based prioritization, approximated with
a power-law distribution. Our exploration strategy is ε-greedy, with ε initialized at
0.7 then annealed over training to 0.1. Our future discount γ is constant at 0.5. The
experience replay uses batches of size 132.

At the beginning of the training the DQN has random values and the agents can
only take random actions in order to explore the environment. To speed this process
up, human expertise can be used as agent’s prior knowledge or heuristic. Hence,
in the first phase of the training a human demonstrator provides a sequence of pick
points on the rope toward the target shape, while the agent only collects data (i.e.
state, action, reward and new state). Ideally, once the process is over, the agent has
learnt a raw but satisfactory policy. Thus, in the second phase of the training, the
agent can acts autonomously on the system and collects more self-generated data.
Differently to other works like [20] or [21], the human demonstrations are used only
to initialize the agent’s experience and no longer needed in test time.

The demonstration phase is useful for gathering a large amount of meaningful
data, possibly that cover a wide set of different scenarios. Hence, the demonstrator
should to prevent the system to fall in some irrecoverable state (highly tangled DLO)
or in a loop of similar transitions, that could cause an over-fit in the DQN training.
For this reason, in the first phase, we change target shape as soon as we reach an
overlap score of $Th = 0.5, since over this threshold we are performing small ad-
justments and the state would remain similar in a long sequence of transitions. This
fine learning can be done in the second phase of autonomous exploration, when
the agent has already some raw experience on the task. Following this principle we
gradually increase the overlap score threshold $Th up to 0.8 every 50 transitions with
step ∆$ = 0.1.

We observed that, the agent first learns to find the non-empty regions taking into
account that all the regions are linked because part of the same DLO and some of
them are already correctly aligned with the target. In order to avoid over-fitting the
agent on a particular shape, we collected 30 target shapes and change among them
every n = 15 transitions or every time the overlap score reaches the given threshold.

5.6 Evaluation

In this section we evaluate the proposed method on our experimental setup. The
spatial grid considered for the DLO shape representation has size ncols × nrows =
16× 10. We collected 200 transactions by demonstration and other 300 during the au-
tonomous exploration phase. We evaluate the performance by counting the number
of steps required to reach an overlap score greater than 90% ($(st) > 0.9). By run-
ning the experiment on 30 different scenarios, we estimate a success rate of 76.7%
(23/30 tests) in achieving the goal with less than 12 steps and 86.7% (26/30 tests)
with less than 18 steps. In 4/30 tests we assumed a failure due to an undesired
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tangling. In Figure 5.7 and Figure 5.8 the 10 experiments are reported, showing the
intermediate deformation steps performed by the robot and the agent’s state. In this
figure, the images have been binarized to improve readability. It is worth noticing
that the system learns to stretch the DLO in only 2 steps by simply adjusting the two
extremities.

The experimental data reported in Figure 5.4 show an example of correct learn-
ing, where the agent predicts as optimal grasping locations those that are not aligned
with the reference shape. In particular, this behaviour is clearly visible in the first
two steps and in the last one. Note also that the estimate Q-values are zero in the
cells that are empty or occupied by the target shape only (not suitable for grasping).
Moreover, while the cells not aligned with the reference are frequently preferred to
those already aligned, these are not excluded, as happens in the 4th step of Fig-
ure 5.4.

5.7 Conclusions

In this work we studied the robotic manipulation of a deformable linear object lying
on a table, i.e. a rope, using visual data. The proposed method relays on a deci-
sion making process that learns the optimal grasping location from the input visual
data, by means of a DQN agent, and finds the best releasing point from a path rep-
resentation of the rope shape. Also other solutions are examined and discarded for
inefficiency or inadequacy. Differently from other studies in that field, the proposed
technique only needs very limited human intervention during the initial training
phase, while the system is able to learn autonomously how to deal with generic
scenarios thereafter.

Experimental results of reshaping tests are provided, showing the intermediate
steps of deformation that lead the rope from its initial configuration to the target
and we examined the output of the DQN in each step of a sample experiment. This
results show that our system is capable to manipulate ropes into a variety of different
shapes in few steps.

Since our technique only assumes a Q-learning algorithm with CNNs, we believe
it can be easily improved by applying state-of-the art algorithms, e.g. HER [124] or
including some awareness of the sequential deformation by integrating recurrent
neural networks.
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FIGURE 5.7: First set of 5 experiments that shows the DLO defor-
mation steps performed by the robot using the proposed method.
The images are binarized for visual clearance. The final shape cor-
responds to an overlap score greater than 90% ($(st) >= 0.9). The
state cells are: black if si,j

t = 0; white if si,j
t = 2; light-grey if si,j

t = 3;
dark-grey if si,j
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FIGURE 5.8: Second set of 5 experiments that shows the DLO de-
formation steps performed by the robot using the proposed method.
The images are binarized for visual clearance. The final shape cor-
responds to an overlap score greater than 90% ($(st) >= 0.9). The
state cells are: black if si,j

t = 0; white if si,j
t = 2; light-grey if si,j
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dark-grey if si,j

t = 1.





71

Chapter 6

Image Segmentation on
Auto-generated Training Datasets

As stated multiple times in this thesis, the presence of a reliable sensing system is a
necessary condition to successfully manipulate a DLO, but often it is also one of the
biggest challenge in the task development. In this chapter we investigate the image
segmentation of electric wires with the dual objective of simplifying the process of
training dataset generation and maximizing the quality of the predictions. The study
here exposed is preparatory to the development of an algorithm, named Ariadne+,
that is still in progress and and aims to improve the reliability and the velocity of the
system presented in chapter 5.

6.1 Introduction

The availability of big public datasets [125, 126, 67] has promoted advances of deep
learning algorithms in computer vision applications, such as image classification,
object detection and semantic segmentation. Thus, the key issue in modern com-
puter vision deals more and more with gathering and labeling big amounts of data.
Usually, the process of segmenting and annotating the training images is performed
manually, and it is notoriously tedious, inaccurate and time consuming. Moreover,
the more complex the visual perception task is, the slower becomes the required
annotation procedure. For instance, labeling a single image for 2D semantic seg-
mentation can take several hours per image. Innovative companies, like Scale.ai1,
Superannotate.ai2, Segments.ai3 and many others, are basing their business on ad-
vanced image labeling pipeline that can speed-up and lighten the burden. These
solutions often exploit a superpixel algorithm which helps the user to quickly select
large portions of the image instead of individual pixels. Other new approaches rely
on weakly supervised learning [127] as Segments.ai that iterates between image la-
beling and model training in order to provide the user with initial – coarse – labels
for each new image instead of having it labeled from scratch.

The aforementioned big public datasets [125, 126, 67] usually concern general
classes (e.g. person, car, tree, cat, dog, etc.) that may not suit the needs of a spe-
cific task. Robotic applications, especially in industrial settings, typically require
the detection or segmentation with very high success rate of small but very specific
set of object instances captured from different viewpoints in highly-cluttered scenes.
Electric wires, more than other objects, have some peculiarities that bring to some
interesting challenges on segmentation tasks: 1) they are deformable objects, which

1https://scale.ai
2https://superannotate.ai
3https://segments.ai

https://scale.ai
https://superannotate.ai
https://segments.ai
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means that they are not characterized by a specific shape; 2) they are very lacking in
features; 3) they aren’t characterized by any particular color. Since a cable can feature
a wide variety of shapes and colors, to train a segmentation model, the generation
of a large scale dataset to cover such great variability is necessary.

This work is motivated by the lack of simple and effective solutions to gener-
ate big image dataset for training, specifically in the field of cable-like objects. We
present here a method, introduced in [128], which relies on the chroma-key tech-
nique and enables to easily label a given object on an entire video sequence. Image
segmentation is a key point to address sub-tasks like cable grasp, terminal insertion
and wire routing. Therefore, in this work we focus mainly on electric wires, even
thought we show also the applicability of the proposed method to other object ty-
pologies. To generate large datasets, a novel labeling pipeline demanding a minimal
human intervention despite the volume of produced labeled data is implemented.
First, a video sequence of the target object is taken with a proper background which
should be homogeneous and easy to be distinguished from the target. Then, the
user does not have to manually label the acquired images, but, instead: a) he/she
has simply to tune 1 (possibly 3) parameter once per video sequence; b) the tar-
get object will be automatically segmented in the entire sequence, by producing a
superimposed pixels mask for each frame, by exploiting chroma key (a well known
technique used to compose two images); c) the original video sequence backgrounds
can, therefore, be replaced to increase the domain randomization. The main contri-
butions of this work can be summarized as follows:

• The first chroma key approach for data labeling;

• An easy and reliable procedure to automatically generate large training
datasets of specific items for semantic segmentation;

• A public high-quality dataset4 of electric wires for semantic segmentation in
general purpose applications;

• Tests and comparisons of different state-of-the-art algorithms on this dataset.

6.2 Related Works

The annotation processes for semantic segmentation is labor-intensive using tradi-
tional methods [129, 67]. A lot of research effort have been spent on investigating
alternative strategies to help the human operator in this task [130]. Advanced solu-
tions like weakly or semi-supervised segmentation have been proposed.

Weakly supervised learning studies attempt to construct predictive models by
learning with incomplete, inexact or inaccurate supervision [127]. Weakly super-
vised learning for semantic segmentation employs different levels of supervision,
like labeling only few pixels (e.g. interactive methods [131]), grouping images con-
taining common objects (e.g. co-segmentation [132]) or providing only image-level
labels [133]. In interactive segmentation frameworks [131] small portions of target
objects are roughly highlighted by human operators through markers, called seeds.
These seeds are used for a training stage that will produce some rough labels for all
other images. The user can then produce more seeds and repeat the procedure until
the desired quality level is reached.

Object co-segmentation [132] aims to detect and segment the semantically sim-
ilar objects from a set of images. It gives very weak prior that the images contain

4https://www.kaggle.com/zanellar/electric-wires-image-segmentation

https://www.kaggle.com/zanellar/electric-wires-image-segmentation
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the same objects for automatic object segmentation. Although there is a certain gap
between models trained by weak/semi-supervision and models trained by full su-
pervision, many researchers are making efforts to reduce the gap.

Several approaches for creating datasets have been developed also within the
robotics research community. A semi-automatic method to create labeled datasets
for object detection is presented in [134]. The system leverages on moving a 2D
camera by means of a robot and an augmented reality pen to define initial object
bounding box. Zeng et al. [135] present a 6D pose estimation system for Amazon
Picking Challenge, where they segment and label the set of target objects placed
on the shelf from depth and multi-view information. This work, not only requires
depth information, but is also strongly tailor-made on the task’s domain. Besides
the robotic community, another popular approach to speed-up creation of training
datasets consists in the use of synthetic rendered images [136, 86, 137, 138, 139].
However, obtaining a dataset of realistic images requires hours of highly special-
ized human work to design suitable synthetic scenes along with high-performance
graphical hardware. In these cases, a non-photorealistic scene (i.e. a simple CAD
model rendered on random background) can cause a well-known problem called
domain shift [140]. In order to reduce this shift, and avoid spending time on photore-
alism, several domain adaptation techniques are applied [141, 142, 143]. Recent works
[141, 144, 145] focus on developing ad-hoc adaptation techniques to close the perfor-
mance gap between training and test distribution. Unfortunately, the performance
achievable is still quite far from those obtainable training on real data or fine-tuning
on few annotated samples.

In this work we propose a method to automatically create a training dataset for
semantic segmentation from real images and we validate it on electric wires by train-
ing different segmentation algorithms. To the best of our knowledge this is the first
public dataset for semantic wire segmentation, moreover we are the first present-
ing this method for generating high-quality datasets from real images with minimal
human intervention.

Visual perception of Deformable Linear Objects (DLOs), e.g. wires, cables, ropes,
etc., has been typically addressed in fairly simple settings. In [38] Augmented Real-
ity markers are deployed to track end-points, while in other works, like [146], detec-
tion relies on background removal. Yan at al. [16] developed a more sophisticated
method that relies on Gaussian Mixture Models, but it requires the assumption of
having a good color contrast between object and background (which has to be ho-
mogeneous). The state-of-the-art solution for DLOs detection is presented in [10].
This algorithm, called Ariadne, is based on biased random walks over the Region
Adjacency Graph built on a super-pixel over-segmentation of the source image. Un-
fortunately, this approach has some weakness: it requires an external detector to lo-
calize cable terminals; the prediction is intrinsically quite slow due to the exploration
process; it can easily fail due to perspective effects or when cables are adjacent.

6.3 Automatic Dataset Generation

In section 6.1 we underlined the importance of a smart solution to collect training
data for data-driven models that requires less human intervention possible. In this
section, we detail our method and we present a dataset generated for semantic seg-
mentation of electric wires. The proposed strategy employs chroma key to firstly
label a set of images and then replacing the background to randomize the domain
and enlarge the dataset.
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6.3.1 Auto-labeling with Chroma Key

The Chroma Key (CK) is a technique widely used in film and motion picture indus-
tries to combine two images together (usually foreground and background). It re-
quires a foreground image Ifg containing a target object that we want to overlap to a
background image Ibg. The target must be placed in front of a monochromatic panel,
called screen (usually green or blue). The technique consists of a chroma-separation
phase, where we isolate the target object (foreground) from the monochromatic
panel (original background) and then an image-overlay phase, where we compose
the foreground and a new background. In the chroma-separation phase, we choose
a specific hue range which contains solely the color of the screen (e.g. green) and
exclude any other color belonging to the foreground. Then, by finding the pixels
within that range, we obtain a mask for the target Imt and a complementary mask
for the monochromatic background Ims. Thus, creating a dataset with this technique
is really straightforward and it can be done in 2 steps:

1. record an high quality video of the target object on a green screen, from which
we gather the input images;

2. find the chroma range of the pixels belonging to the monochromatic back-
ground and create the corespondent mask with chroma separation.

In our dataset, while gathering the images, we hold the electric wire by its ex-
tremities and we move it within the frame composing different shapes. To general-
ize more we also change the light setups, the wire color and the number of wire in
the scene. From a random video frame we easily find the hue levels for the specific
screen color we are using (green or blue). These levels, once found for one image,
remain valid for any other image taken with the same light temperature setting and
white balance. Hence, known the chroma range of the screen we immediately obtain
the mask for the wire from each frame in the video.

6.3.2 Domain Randomization

The labeling procedure with chroma separation automatically generates labeled data
ready to be used for training, but with a low variability. In fact, in the gathering
phase we need to randomize the scene featuring target object in the following as-
pects: number of instances, color, size, position and shape. Nevertheless, the back-
ground is always uniform and monochromatic. The performance of a segmentation
algorithm trained with images in homogeneous backgrounds would be significantly
degraded when working in a complex and chaotic environment. Clutter background
in fact easily confuses the algorithm, due to possible similarities between the target
and the background, especially if it has never seen them in training. This weakness
can be readily overcome by replacing the background in the input images (image-
overlay phase). In fact, by using the masks, we can combine the foreground with a
random background that replaces the green screen. This process, known as domain
randomization [143, 86], aims to provide enough synthetic variability in training
data such that at test time the model is able to generalize to real-world data. Hence,
the choice of the background images is a key point for generalizing well to multiple
real-world target domains without the need of accessing any target scenario data in
training.

The backgrounds that we propose for a domain-independent dataset can be di-
vided in 3 categories: (1) lowly textured images with shadows and lights; (2) highly
textured images with color gradients and regular or geometric shapes; (3) highly
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FIGURE 6.1: Schematic process to generate the 8 synthetic images by
background-foreground separated augmentation and image-overlay.

textured images with chaotic and irregular shapes. These backgrounds introduce
high variance in the environment properties that should be ignored in the learning
task. For instance, in our task the segmentation algorithm will ignore shadows and
cubic or spherical objects, while it should focus more in cylindrical shapes, hence we
chose the set of backgrounds in Figure 6.2 according to these considerations.

The presented method introduces two main difficulties that must be faced. The
first evident issues of CK concerns the color of the target object. In fact, the color his-
togram of the object should be well far enough to the range reserved for the screen,
or in other words we can not have green wires on a green screen. This implies that
the segmentation algorithm never sees green wires in training, thus if it encounters
a green wire in a real scene, it would likely produce some false negative. The solu-
tion to this issue are two: we can use a different background for the green objects
(e.g. a blue screen) or, as we actually do in our dataset, we can randomize the hue
of the wire trying to cover also the missing color range (i.e. green). Another issues
is caused by the background replacement, which introduces a discontinuity in the
synthetic image generated. This may be problematic for the learning, especially in
our case with the wires, since the algorithm will probably focus on that sharp fea-
ture to segment the object, compromising the prediction in a real image, devoid of
the learnt discontinuity. To overcome this issue, the output image Iout is obtained
according to the following formula

Iout = IGmt Ifg + (1h×w − IGmt)Ibg. (6.1)

i.e. as a linear combination of the foreground Ifg and background Ibg images
weighted respectively by the target mask processed by a Gaussian filter IGmt = G(Imt)
and its complement (1h×w − IGmt), where 1h×w is a unit matrix with the same size of
the mask.

6.3.3 Electric Wire Dataset

The strategy presented in this section has been employed to generate a dataset of
28584 RGB images 720× 1280 for semantic segmentation of electric wires. The raw
dataset has 3176 images and it includes blue, red, yellow, white and black wires, with
different light setups and shapes.To improve the screen and wire separation, besides
the hue, we also use the saturation and value channels. For each raw image, a back-
ground image (4000× 2248) is randomly picked among the 15 shown in Figure 6.2
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FIGURE 6.2: Images used to replace the background in the output
dataset.

and 8 new synthetic images are created, as visible in Figure 6.1. In each new image,
foreground and background are separately augmented (by using the mask) before
the merging. In particular, the background is randomly flipped, shifted, scaled and
rotated (all with probability p = 0.5). Then, it is processed with motion blur and
elastic transformation (p = 0.2), and in the end it is randomly cropped at 1280× 720
(p = 1). The foreground, instead, is transformed only by shuffling the channels
(p = 0.5), converting to grey (p = 0.1) and randomizing the hue in the range of
[−100, 100] (p = 0.5).

6.3.4 Final Considerations on the Output Dataset

The dataset produced by our method contains mainly synthetic images produced by
chroma-key overlay. However, the reality gap in the resulting dataset is considerably
small compared to those that might be obtained from rendering or simulation. In
fact, the main visual discrepancy between real and output images is the object’s
contour, which has already been smoothed with the combination in Equation 6.1. To
further reduce the gap, we add to the dataset also the input images with the original
background, and to avoid over-fitting on green background we randomize the hue
and shuffle the channels in training.

The types of background that we suggest to use are intended to make the dataset
general purpose and domain-independent. In fact, in the next section we are go-
ing to experimentally validate our wires dataset on several scenarios, empirically
proving that a set of abstract backgrounds is sufficient to obtain highly satisfactory
predictions also in real environments never seen in training. Clearly, to improve the
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results on a specific real domain, fine-tuning can be also performed. We point out
that there are actually two ways to do so. The first is the traditional fine-tuning on a
small set of manually labeled images. The second consists in creating a dataset using
photos of the specific task environment as backgrounds.

6.4 Semantic Segmentation

Two deep learning networks are exploited to perform the training and testing
needed to validate our work, namely DeeplabV3+ [147] and HRNet [148].

DeepLabV3+ [147] is an encoder-decoder network which is at the state of the
art in deep learning semantic segmentation. It is the last iteration of the famous
DeepLab family models. It employes the encoder-decoder structure combined with
atrous spacial pyramid pooling (ASPP). As encoder module, DeepLabV3 is used. It
is able to encode multi-scale contextual information. The presence of atrous convo-
lutions, instead of the common convolutions, allows the explicitly control the reso-
lution of features computed (via the output stride parameter). For the semantic seg-
mentation task, an output stride of 16 (or 8) is used for denser features. Concerning
the decoder, it consists of a simple yet effective module which refines the segmenta-
tion results along object boundaries. Here, the low-level features are concatenated
to the bi-linearly upsampled (4x) high-level features coming from the decoder. Sev-
eral convolutions are performed to refine the features and a final upsampling (4x)
is performed. Compared to a straightforward one bi-linearly 16x upsampling, the
presented decoder module performs much better.

High-Resolution Network (HRNet) [148] is the state of the art in diverse fields
such as human pose estimation, semantic segmentation and object detection. It
maintains high-resolution representations through the whole network layers by con-
necting the high-to-low resolution convolution streams in parallel and by repeatedly
exchange the information across resolutions. The benefit of such structure consists
in having a representation semantically richer and spatially more precise.

6.4.1 Training and Test

We train DeepLabV3+ with a ResNet-101 backbone for 200 epochs, with batch size
10, output stride 16, separable convolutions, using Adam for the optimization and
employing a polynomial learning rate adjustment policy starting from 10−6 to a min-
imum of 10−9, with power 0.95. HRNet is instead initialized with a pretrained model
on ImageNet. The network is then trained for 270 epochs, with batch size 6, using
SGD for the optimization, weight decay 5 × 10−4, momentum 0.9, initial learning
rate of 1× 10−5. The learning rate adjustment policy is polynomial with a power of
0.9. The early stopping in both the training is configured to end the process when the
validation loss does not decrease for 5 epochs in a row. Both the models are imple-
mented in PyTorch 1.4.0 and trained with an NVIDIA GeForce GTX 2080 Ti on an In-
tel Core i9-9900K CPU clocked at 3.60GHz. The data augmentation scheme include
hue randomization, channel shuffling, flipping and finally resizing (360× 640).

The training dataset is obtained from 90% of the original dataset auto-generated
as in section 6.3, while the validation is done on the remaining 10%. To test the algo-
rithms, we use another dataset of 60 manually labeled images collected in different
real scenarios. The test dataset is composed by 4 categories of 15 images each:

C1: scenes with only the target wires laying on a surface and no other disturbing
objects. The difficulties in this scenes are the high contrast shadows of the
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Algorithm C1 C2 C3 C4 Tot.

DeepLabV3+ 0.928 0.934 0.943 0.935 0.935
HRNet 0.923 0.939 0.911 0.926 0.925
Ariadne 0.655 0.512 0.632 0.595 0.598

TABLE 6.1: The average Dice Coefficient computed for each algo-
rithm, across the images of each test set (C1, C3, C4, C2) and the union

(Tot). In all the tests the predictions are thresholded at 0.5.

wires, possible chroma similarities between the wires and the background, the
dense crosses of wires, the light settings and the perspective distortions.

C2: scenes with the target wires only on a highly-featured and complex back-
ground and no other disturbing objects. Here the challenge for the algorithms
is to extract the correct features belonging to the wires in a cluttered scene.

C3: scenes with the target wires in a realistic industrial setting like an electric panel.
These can be considered as an example of an application setting, where the
difficulties may be given by metallic surface reflecting the wires and other dis-
turbing objects like commercial electromechanical components characteristic
of these panels.

C4: scenes with the target wires in other generic realistic settings among other ob-
jects of different nature. The difficulties in these scenes are several and a com-
bination of those found before.

Each algorithm produces a mask Mp which corresponds to the the predicted seman-
tic segmentation of the wire. We evaluate and compare the outputs by means of

the Dice coefficient Dice = 2 |Mp∩Mgt|
|Mp|+|Mgt| , where Mgt is the ground truth. Table 6.1

resumes the average Dice obtained in the test dataset by DeepLabV3+, HRNet and
Ariadne [10], state-of-the-art algorithm for DLO segmentation. Ariadne yields a
b-spline model for each wire which is here used as predicted mask Mp. In order
to make the the comparison with Ariadne more meaningful, we tuned the param-
eters specifically for the given test dataset and we manually found for each wire
the b-spline thickness best fitting with the target. In Figure 6.4 are visible few ex-
ample of test images for each category and the outputs of both DeepLabV3+ and
HRNet, where true positive (Mp ∩Mgt), false positive (Mp−Mgt) and false negative
(Mgt −Mp) are shown in yellow, red and green respectively.

From these tests we can conclude that the auto-generated dataset reaches an high
level of reliability (Dice > 0.9) for both HRNet and DeepLabV3+ in any scenario
without any fine-tuning. More in detail, with reference to Figure 6.4, we can ob-
serve that prospective distortions (C1-Sample5, C2-Sample 4), color similarities with
the background (C1-Sample3, C1-Sample4), multiple-wire dense intersections (C1-
Sample2, C2-Sample5), wire reflections in metallic surfaces (C3-Sample3) and strong
shadows (C1-Sample2) are all correctly solved using both the algorithms. Moreover,
the hue randomization trick used in the foreground images enables the algorithms
to correctly recognize also green wires (C3-Sample4); whereas the selection of back-
ground images allows to effectively segment electric wires in settings never seen in
training, very confusing and also with other objects that might look similar to them,
such as the table border in C4-Sample5 or the handle of the pliers in C4-Sample1.
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FIGURE 6.3: Sample images from other hypothetical dataset auto-
generated with the proposed CK-based technique.

The quantitative results of Table 6.1 show that DeepLabV3+ performs on average
slightly better than HRNet. In fact, from the qualitative comparison of Figure 6.4, we
observe that the predictions of HRNet are on average a little less confident and sharp
at the edges (C1-Sample2, C1-Sample3). This might be due to an higher sensitivity
of HRNet to the reality gap, already discussed in subsection 6.3.2, that we tried to
reduce by introducing the Gaussian blur on the mask in Equation 6.1. However, even
thought the predictions of DeepLabv3+ are more precise, it produces evident false
negative (like those in C2-Sample3) more frequently than HRNet. Table 6.1 revels
also that both DeepLabV3+ and HRNet trained on our dataset obtain significantly
higher performance than the baseline Ariadne.

6.5 Conclusions

In this work, we address the problem of recognising and segmenting electric wires
from images, which are deformable objects very common in many applications but
also lacking of visual features. A novel strategy to automatically generate a domain-
independent dataset has been presented and experimentally validated by training
and testing two algorithms, namely HRNet and DeepLabv3+. The experimental re-
sults show the effectiveness of the dataset, that enables the segmentation algorithms
to correctly recognize the wires in different settings never seen in training with an
Average Dice index greater than 0.92. We underline that the presented approach to
create the electric-wire dataset can be applied to any other object small enough to be
placed and moved in front of a monochromatic panel, like those in Figure 6.3. In fu-
ture works, we will formally extend this method to generic objects, then we will also
further reduce the human intervention in the chroma-separation phase by employing
a learning-based methods and improve the image-composition phase by reducing the
reality gap in the edges.
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FIGURE 6.4: Qualitative evaluation of DeepLabV3+ and HRNet using
20 sample images from the test set (5 images from each category). The
yellow areas are the true positives, the red areas the false positive and

green areas the false negative.



81

Chapter 7

Conclusions and Future Works

Robotic applications that deal with DLOs have usually to face two main challenges:
the insertion of the DLO in a hole and the control of its shape. In this thesis we
investigated both these tasks, exploiting tactile and visual sensors embedded with
suitable deep-learning techniques. Due to the complex dynamics of DLOs and their
infinite amount of possible state configurations, classical model-based approaches
turn out to be ineffective, since they oblige the search for a compromise between
very slow computation and poor reliability. For these reasons and thanks to huge ad-
vances in deep learning, the robotics community has now almost entirely shifted to
using these algorithms to tackle difficult problems such as manipulating deformable
objects. In particular, the effectiveness of learning-based algorithms for sensors data
analysis is undeniable, in fact they are able to quickly extract useful and reliable in-
formation, that can be later used for the manipulation. Inside the works presented
in this thesis we employed different learning-based algorithms for several purposes:
In chapter 2 we employed YOLO [49] (a CNN-based object detector) to locate the
wire terminal on the table, while we trained and compared different machine learn-
ing algorithms for regression and classification (i.e. MLP, SVM, RF) to evaluate the
grasp and insertion of the wire; In chapter 3 we developed a novel approach to esti-
mate the bi-dimensional pose of a target object using YOLOv3 [81] Object Detector
(providing also a fast and reliable labeling method); In chapter 4, a RNN with LSTM
cells maps the signals from a tactile sensor into an estimate of the force vector ex-
erted on the grasped wire, in order to guide the insertion into a hole; In chapter 5, a
decision making process uses a DQN agent with a CNN-based critic for predicting
the optimal grasping point on a DLO in order to achieve a target deformation; In
chapter 6, DeepLabV3+ [147] and HRNet [148] (two CNN-based image segmenta-
tion algorithms) are trained on an auto-generated dataset of electric wires and com-
pared.

The main contributions introduced with the research activities that compose this
thesis are: 1) a pipeline for inserting a DLO in a hole that starts by grasping the
extremity from an unknown pose on the table; 2) a novel approach to guide the blind
insertion of a DLO into a hole by analyzing only the tactile feedback from a fingers-
mounted sensor; 3) a robot learning-based system for autonomous deformation of
a rope from/to a general shape using visual feedback capable to work with any
cluttered backgrounds. Both these contributions are enhanced by two dedicated
methods for generating large training dataset with minimum human intervention.
To conclude, let us point out that bringing together all the contributions presented
in the thesis, a preliminary development of an automatic wiring system naturally
emerges. In fact, reminding the wiring process outlined in the Introduction: the
connection of the wires-terminals with the electromechanical components can be
addressed using the results of chapter 2, chapter 3, chapter 4, while the detection
and rearrangement of the wires was investigated in chapter 6, chapter 5.
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7.1 Current and Future Works

In this section we introduce two works currently in progress. The first is a novel
algorithm that uses the results of chapter 6 to estimate the shaped of electric wired
as a b-spline models. The second is a pipeline that extends the work presented in
chapter 5 to more generic DLOs which might have also elastoplastic properties. Fur-
ther improvements can also be done to each work presented in the thesis in terms
of speed and reliability, few of these are reported in the corresponding chapters. Fi-
nally, other futures works can be concerning the extension of all the works to three-
dimensional sensing and reshaping of DLOs.

7.1.1 Instance Image Segmentation and Shape Estimation of DLOs

In chapter 6 we investigated the image segmentation of electric wires and we trained
two state-of-the-art algorithms (i.e. DeepLabV3+ and HRNet) on an auto-generated
dataset. Using the results of this work we are able to efficacy recognize the wires
in an image, or in other words we can find the sets of pixels in the image belong-
ing to the target objects. However, this information might not be sufficient for a
robotic manipulation task, like the one represented in chapter 5, since it does not
carry an explicit shape estimation of the DLO. In fact, the algorithm employed in
subsection 5.5.2 for DLOs detection (namely Ariadne [10]), yields a b-spline model
of the detected object alongside a segmentation of the whole image. Unfortunately,
Ariadne has few drawbacks: the computations are highly time consuming (1382ms
for the initialization and 2506ms for the discovery phase); the results are often insuf-
ficiently reliable; it requires a tedious manual tuning of a large set of parameters.

In a current work we are developing a novel method that combines a seman-
tic segmentation algorithm like DeepLabV3+ with the core idea of Ariadne, we call
this algorithm Ariadne+. The goal of Ariadne+ is to obtain the instance segmenta-
tion masks and the shape estimation (b-splines) of all the electric-wires in a given
RGB image. Ariadne+ aims not only to significantly improve the time complexity,
the reliability and the precision of its predecessor Ariadne, but also to reduce the
parameters that requires manual tuning.

The proposed solution is based on a Region Adjacency Graph, built on a masked
superpixel segmentation of the input image, which has a node for each superpixel
and each node is connected with an edge to all the nodes that correspond to neigh-
boring superpixels. Generally, speaking a superpixel segmentation consists in parti-
tioning images into local meaningful subregions by capturing local similarity among
the pixels. Whereas, a masked superpixel segmentation [149] is able to perform the
clustering only within regions of interest given by a binary mask. Hence, to our
purpose, we use one of the two image segmentation algorithms, i.e. DeepLabV3+,
trained in chapter 6 for detecting electric wires. The Region Adjacency Graph build
in this way, allows us to effectively find the b-spline models of all the wires in the
input image as different paths on the graph (as was done in Ariadne). In fact, once
detected the wires with a image segmentation algorithm, the entire procedure that
identifies each wire is based on simple and fast computations on the graph (or to
the correspondent superpixels). The success of Ariadne+ against Ariadne, is mainly
due to the strategic employment of few learning-based solutions. In fact, the graph
build on the wire detection provided by DeepLabV3+ is significantly simpler than
the one built on the raw image (as done in Ariadne). This makes the path searching
process faster and more precise, since along a single wire without crosses each node
has only 2 neighbors. In this settings, the only difficulty is encountered in the cross
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points, where the algorithm must choose the correct path continuation. Differently
to Ariadne, in Ariadne+ we use a CNN with triplet loss to predict the next node.
This CNN provides a "similarity score" among the image patches corresponding the
nodes around the cross point. Finally, another CNN is trained to classify which wire
in on the top in a cross. Preliminary experiments, ran on a test set of images with
cluttered background and multiple crosses, show a Average Precision of 0.78 for Ari-
adne+ and 0.32 for Ariadne, while the mean execution time is 560ms for the former
and 3800ms for the latter.

In summary, the main contributions of this work will be: 1) a reliable and time
effective complete approach for the instance segmentation of wires in real scenarios;
2) modeling of the detected wires in terms of b-splines; 3) an open source implemen-
tation of the entire algorithm; 4) a comprehensive experimental validation in terms
of segmentation capabilities and timings performances of the approach; 5) a compar-
ison against standard Ariadne, the current state-of-the-art segmentation algorithm
for DLOs.

7.1.2 Dual-arm Manipulation of Generic DLO with Elastoplastic Proper-
ties

In chapter chapter 5 we addressed the shape control of a highly deformable object
laying on a table, using a single arm robot and a sequence of pick-and-drop actions.
Note that, in those settings the target DLO can be considered purely plastic, since it
holded the given shape. Hence, another research activity currently in progress aims
to extend the manipulation capabilities of the reshaping system presented in chap-
ter 5 to a generic elastoplastic DLO. In this settings, where elasticity is introduced
and DLO stiffness can be increased, the system setup previously suggested need to
be modified. In fact, a dual-arm robot with a new sequence of motion primitives
resulting from the synergistic combination of the two arms would provide a better
solution. A straight forward approach might be a sequence of hold-and-move oper-
ations, where an arm holds the DLO in a point while the other grasps and moves
another point in a target releasing location. Here, the deformation trajectory must
be consistent with the segment of DLO between the two grippers, to avoid excessive
tension that can compromise the grasp. In other words we can state that, the eu-
clidean distance between the holding point and the target one must be less then the
arc distance along the DLO between the two grasped points. In order to manipulate
the DLO, we need an estimate of the its shape as a keypoints path. Hence, both the
algorithms Ariadne and it extension Ariadne+ (discussed in the previous subsection)
can be exploited for the purpose. When the DLO has elastoplastic properties, the
releasing point should also be chosen correctly. In fact, the system need to be ca-
pable of predicting the elastic deformation occurring in the object after it opens the
gripper. A learning-based method can be trained in self-supervised learning or us-
ing reinforcement learning, by autonomously interacting with the DLO. Using the
shape information provided by Ariadne or Ariadne+, the algorithm can easily learn
to map the initial and target shapes into a optimal deformation.
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