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Abstract

Network monitoring is of paramount importance for effective network manage-
ment: it allows to constantly observe the network’s behavior to ensure it is working
as intended, and can trigger both automated and manual remediation procedures
in case of failures and anomalies. The concept of Software-Defined Networking
(SDN) decouples the control logic from legacy network infrastructure to perform
centralized control on multiple switches in the network, and in this context the re-
sponsibility of switches is only to forward packets according to the flow control in-
structions provided by controller. However, as most widely adopted SDN switches
(e.g. OpenFlow-based) only expose simple per-port and per-flow counters, the
controller has to do almost all the processing to determine the network state, which
causes significant communication overhead and excessive latency for monitoring
purposes. The absence of programmability in the data plane of SDN prompted the
advent of programmable switches, which allow developers to customize the data-
plane pipeline (e.g. match-action table) and implement novel programs operating
at wire speed directly in the switches. This means that we can offload certain moni-
toring tasks to programmable data planes, to perform fine-grained monitoring even
at very high packet processing speeds.

Given the central importance of network monitoring exploiting programmable
data planes, the principal goal of this thesis is to enable a wide range of monitoring
tasks in programmable switches, with a specific focus on the ones equipped with
programmable ASICs (Application-Specific Integrated Circuits). Indeed, most of
the network monitoring solutions available in literature do not take computational
and memory constraints of programmable switches into due account, preventing,
de facto, their successful implementation in real commodity switches.

This claims that network monitoring tasks can also be executed in programmable
switches. To achieve this goal, this thesis makes three main contributions: (i.) We
enhance P4-enabled data plane programmability for network monitoring; (ii.) We
design and develop several network monitoring tasks in programmable data planes;
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(iii.) We combine multiple tasks in a single commodity switch to collect various
metrics for different monitoring purposes.

In terms of the first contribution, we propose new algorithms to approximate
the arithmetic operations in the programmable switches, which enhances the data
plane programmability for network monitoring. They can be used as additional
building blocks to further implemented monitoring tasks described in the second
contribution. When it comes to the second contribution, we studied and developed
five different kinds of monitoring tasks for programmable data planes: heavy-hitter
detection to detect heavy flows with large packet counts, flow cardinality estima-
tion to estimate the number of distinct flows in millions of packets, network traffic
entropy estimation to track the flow distribution, total traffic volume estimation to
know how many packets are in the network, and volumetric DDoS detection to
detect potential volumetric DDoS attacks according to the change of normalized
entropy and per-source flow cardinality to the same destination host. The aim of
this contribution is to offload as much as possible these network monitoring func-
tionalities into the switch, that is, in the best case, the task can be executed entirely
in programmable data planes thus performing in-network monitoring. Focusing
on the third contribution, we revisited our designed tasks in the second contribu-
tion, and proposed a new way to combine them into a single real hardware switch:
we only use the programmable switch to store flow and packet statistics, and the
responsibility of the controller is to compute and track different monitoring met-
rics. In this way, the five tasks mentioned in the second contribution can work
together in a single programmable switch to perform high speed monitoring, while
the controller can guarantee high accuracy on the estimation of monitoring metrics
to diagnose performance and security issues.

Our evaluations have shown that the contributions in this thesis could be used
by network administrators, network operators, as well as network security engi-
neers, to better understand the network status depending on different monitoring
metrics, and thus prevent network infrastructure and service outages.
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1
Introduction

1.1 Network monitoring in Software-Defined networks

Network monitoring is of primary importance: it is the main enabler of various
network management and security tasks, ranging from accounting [56][58] to traf-
fic engineering [62][38], anomaly detection [83], Distributed Denial-of-Service
(DDoS) detection [121], Super-spreader detection [91], and scans detection [128][118],
among others. With the advent of Software-Defined Networking (SDN), the signif-
icance of network monitoring has been certainly increased. This is because SDN,
with the idea of a (logically) centralized control, allows an easier coupling of net-
work management operations with the observed network status. As a result, SDN
has been seen as the answer to many of the limitations of legacy network infras-
tructures [77][119][68]. However, such a noble intent has been limited by SDN’s
current predominant incarnation, the OpenFlow (OF) protocol. Indeed, current
OpenFlow APIs are ill-suited for monitoring large network data streams and cannot
provide accurate data-plane measurements: the main mechanism exposes simple
per-port and per-flow counters available in the switches [97]. An application run-
ning on top of the controller can periodically poll each counter using the standard
OF APIs and then react accordingly, instantiating the appropriate rule changes. As
a consequence, OF suffers from two important limitations: (i) the controller has to
monitor all flows in the network and (ii) as the data plane exposes just simple coun-
ters, the controller needs to do all the processing to determine the network state.
This also causes that OF-enabled devices are only able to collect raw flow statistics
to be sent to a monitoring collector, causing significant communication overhead
for monitoring purposes. This limitation is well-know for legacy devices as well
(e.g. SNMP- and sFlow-supporting equipment) [117]. Another limitation of legacy
devices is large detection latency (the monitoring interval is mostly greater than 1
minute [9]), which imposes strict time limits on the analysis done by the collector.

Lately, the advent of the so-called programmable switches (e.g. P4-enabled
switches [42]) has introduced the possibility to program data plane with advanced
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functionality and enabled the possibility to implement more refined monitoring so-
lutions directly in the switch hardware while performing line-speed packet pro-
cessing (in the order of nanoseconds). Such an innovative technology has at-
tracted a growing number of researchers and practitioners that in turn have pro-
posed many different solutions to enhance SDN capabilities in the context of net-
work monitoring [93][89][132][74][113]. As a result, the prospect of realizing
fine-grained network-wide monitoring, by analyzing the exposed information from
all the switches in a network, has attracted a lot of interests [132][36][69]. For
instance, memory-efficient data structures, such as sketches [131][48], have been
proven to be implementable in programmable switches to reduce redundant moni-
toring information.

1.2 Challenges in network monitoring via programmable
data planes

There are many challenges when network monitoring comes to programmable data
planes, including but not limited to: (i.) limited computational and memory re-
sources on-board programmable switches; (ii.) how to design and implement the
monitoring tasks that fit the programmable data plane switches; (iii.) how to ar-
range limited resource for a wide range of monitoring tasks in the programmable
switch to maximize the monitoring visibility.

• Challenge 1: overcoming limited programmability and resources of pro-
grammable switches. To assure line-rate packet processing, the domain-
specific languages, such as P4 [42] and POF [88], truncates many common
arithmetic and logical instructions in well known programming language
(e.g. C/C++). For instance, the loops (i.e. For and While) are not allowed to
use. This is because if the switch uses iterations to process the same packet,
the following incoming packets have to wait until the this packet has been
processed. This will significantly delay the packet processing in the switch.
For a similar reason, in the hardware switch, such as ASIC (Application-
specific integrated circuit), the same metadata (i.e. the fields in the packet
header) cannot be executed more than one time of computation. Moreover,
the programmable switches have only few tens of MB, which means that
the memory efficiency should be taken into consideration. In summary, to
enable new functionalities in the programmable switches, a good design con-
sidering both computational and memory limitations is necessary.

• Challenge 2: design and development of monitoring solutions in pro-
grammable data planes. A wide range of network monitoring tasks can be
executed in the monitoring servers, but not all of them can be offloaded to the
programmable switches. To enjoy the benefits of programmable switches,
the first step is to understand which tasks are possible and useful to be devel-
oped in the switch. Afterwards, we need to investigate which compact data
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structures (e.g. sketches) or actions (e.g. sample the packets) are suitable for
specific monitoring tasks. Finally, we should not ignore the resource limi-
tations of programmable switch described in the last section and make the
tasks executable in data plane.

• Challenge 3: combination of monitoring tasks. Due to high cost of pro-
grammable switches (e.g., a Tofino switch costs more than 10,000 dollars)
and increasing throughput requirements of modern networks, if we can en-
able several tasks together in a switch and deploy this switch in an appro-
priate position of the network, this will significantly reduce the required
hardware-upgrade budget. Thus, another challenge is how to combine multi-
ple tasks in the programmable switch to perform high-speed monitoring. In
this case, we need to consider not only the resource limitation in the switch
but also the resource allocation for different tasks.

1.3 Goals, Research Questions and Approaches

On the basis of the challenges listed in Section 1.2, we define the first research goal
of this thesis as follows:

J
Goal 1: To investigate network monitoring and programmable data
plane in Software-Defined Networks, learn how to program switches
and enhance their P4-enabled data plane programmability for moni-
toring.

We also point out that to develop monitoring tasks in programmable switches,
we need to know their different requirements. For this reason we define a second
research goal of this thesis as follows:

J
Goal 2: To study network monitoring tasks and how to offload them in
programmable data planes.

Finally, measuring different metrics to perform various monitoring together in
a single switch is an interesting topic to discuss. This leads us to the final research
goal of this thesis:

J
Goal 3: To combine studied monitoring tasks in suitable network sce-
narios composed of programmable switches.

1.3.1 Goal 1: Enhancement of data plane programmability

Research questions

In the first goal we expressed that we want to investigate the state of the art of
network monitoring. This leads to our first research question:
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ª
RQ1: Why network monitoring is so important in modern telecommu-
nication networks? In particular, what are the benefits to implement it
in the data plane?

We answer RQ 1 in all chapters of this thesis.

Upon we understand the importance of network monitoring in the data plane,
the next thing to know is how to develop the interesting tasks into programmable
switch. This leads to our second research question:

ª
RQ2: How does a programmable data plane work? How is the data
plane of a switch programmed? What are the limitations of this type of
functionality?

We address RQ 2 in Chapter 2.

To implement the tasks for monitoring requires specific operations, which are miss-
ing in programmable data plane switches. This brings us to the third research ques-
tion:

ª
RQ3: Is there any way to improve P4-enabled data plane pro-
grammablity? If yes, how?

We address RQ 3 in Chapter 3.

Approach

To address the research questions above, we investigated several typical monitor-
ing tasks, including heavy-hitter detection, flow cardinality estimation, network
traffic entropy estimation, and volumetric DDoS detection. The outcome of those
tasks can be further used to diagnose the network performance and security issues.
We then studied the domain-specific language P4 for programmable switches and
learned the constraints for implementation. To overcome those constraints, we
propose some approximation methods (e.g. logarithm and expoential function es-
timation) as building blocks to support further implemented monitoring tasks.

1.3.2 Goal 2: Network monitoring in programmable data planes

The second goal of this thesis is to study diverse monitoring solutions in the con-
text of executing them on a programmable switch, which includes their usages for
network management and security as well as factors that drive their use. We define
the first research question towards meeting this goal as:
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Research questions

ª
RQ4: What is heavy-hitter detection? Why do we need to track heavy
flows? How to detect them by using the programmable switch? What
is the performance in a network composed of partially deployed pro-
grammable switches?

We address RQ 4 in Chapter 4.

After studying the heavy flow identification, our next research question focuses
on how to know number of distinct flows in millions of packets:

ª
RQ5: What is flow cardinality estimation? Why is it necessary for mon-
itoring? How do we design new idea for flow cardinality estimation on
a programmable switch? What is the performance with respect to the
state-of-the-art?

We address RQ 5 in Chapter 5.

We then switch to another monitoring task: network traffic entropy estimation,
and the research question is:

ª
RQ6: What is network traffic entropy estimation? Which metric of
network does network traffic entropy indicate? Any problems while
implementing it in the data plane of programmable switch?

We address RQ 6 in Chapter 6.

Afterwards, we address another practical problem named network-wide total traffic
volume estimation:

ª
RQ7: Why do we need to know network-wide total traffic volume esti-
mation? What is the key problem to coordinate multiple programmable
switches for packet counting in the network? How do we solve it?

We address RQ 7 in Chapter 7.

Finally, we study volumetric DDoS detection by using some common metrics that
can be collected and analyzed from the packet header:

ª
RQ8: What is volumetric DDoS attack? What are the detection meth-
ods? What is the difference between different methods? How to design
and implement them in programmable switches?



1.3. GOALS, RESEARCH QUESTIONS AND APPROACHES 6

We address RQ 8 in Chapter 8 and Chapter 9.

Approach

As the first goal is to understand the importance of monitoring, our approach to
answering the research questions for the second goal is to design and develop prac-
tical monitoring solutions in programmable data planes. We started with simula-
tions to understand the behaviors of multiple network monitoring tasks. We then
designed some interesting monitoring ideas and implemented them in P4. After-
wards, the P4 program is compiled and installed in the simulated switches. We
then conducted experiments with simulated switches in an emulated environment
(i.e., mininet [8]) to better understand the workflow of programmable switches. Fi-
nally, considering more strict hardware constraints, we implemented some feasible
monitoring solutions in the programmable switches equipped with ASIC, proving
that our proposed approaches can be deployed in real network scenarios.

1.3.3 Goal 3: Combination of tasks

The final goal of this thesis is to study potential problems with the combination of
multiple monitoring tasks in a single programmable switch.

Research questions

ª
RQ9: How to coordinate multiple monitoring tasks in a single pro-
grammable hardware switch while overcoming the resource limita-
tions?

We address RQ 9 in Chapter 10.

Approach

Our approach to answering the last research question is in line with the previous
approaches. We first deeply investigated the resource usages of multiple moni-
toring tasks, and we then realized that executing all monitoring tasks entirely in
programmable switches is not feasible. Thus, we only use compact data structures
in programmable switches to store flow and packet statistics. More complicated
operations, such as complex computations, are executed in SDN controller or in
the control plane of the programmable switch. This allows the switches to report
summarized flow and packet statistics instead of raw data to controller while pro-
cessing the packets at line rate. On the other side, controller can perform very
accurate estimations on different monitoring tasks, meanwhile it consumes a small
amount of communication overhead with switches.
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Figure 1.1: The scheme of thesis

Figure 1.1 shows a schematic structure of this thesis. The scheme shows the re-
lation between chapters, as well as how chapters compose distinct parts of the the-
sis. Moreover, the scheme also specifies how the proposed approaches have been
tested, including simulations in Python, emulations in mininet, and experiments in
programmable commodity switches. In the following, we provide a summary for
each chapter with corresponding publications.

Chapter 2: Background on network monitoring in pro-
grammable data planes

In this chapter we provide background information on network monitoring in pro-
grammable data planes. We will show a brief background on the SDN and explain
the advantages of programmable data planes for today’s network. Then we will
outline how the packets are processed in programmable data planes together with
P4. Afterwards, a sequence of network monitoring tasks are introduced.

Chapter 3: Estimation of logarithmic and exponential func-
tions in P4

In this chapter we will take the first step to investigate P4 and report its limitations.
We then show how we overcome those limitations to estimate logarithms and ex-
ponential functions with a given precision by only using P4-supported arithmetic
operations. This enhancement helps several monitoring tasks to implement entirely
in programmable data planes.

This chapter is based on the part of following peer-reviewed papers:
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• Damu Ding, Marco Savi, and Domenico Siracusa. Estimating logarithmic
and exponential functions to track network traffic entropy in P4. IEEE/IFIP
Network Operations and Management Symposium (NOMS) 2020.

• Damu Ding, Marco Savi, and Domenico Siracusa. Tracking Normalized
Network Traffic Entropy to Detect DDoS Attacks in P4 submitted to IEEE
Transactions on Dependable and Secure Computing (TDSC).

Chapter 4: Network-wide heavy-hitter detection robust to
partial deployment

This chapter discusses why the detection of heavy hitter is necessary in the net-
work. Furthermore, we present a network-wide heavy-hitter detection strategy for
identifying global heavy flows in the network composed by fully deployed pro-
grammable switches. To optimize our network-wide heavy-hitter detection perfor-
mance in case of partial deployment of prorgammable switches, we also propose an
incremental deployment algorithm to maximize the flow visibility in the network.

This chapter is based on the following peer-reviewed publications:

• Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. Incre-
mental deployment of programmable switches for network-wide heavy-hitter
detection. IEEE Conference on Network Softwarization (NetSoft) 2019.

• Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. An
incrementally-deployable P4-enabled architecture for network-wide heavy-
hitter detection. IEEE Transactions on Network and Service Management
17.1 (2020): 75-88.

Chapter 5: Flow cardinality estimation

In Chapter 5, we design a new flow cardinality estimator of a large packet stream in
programmable data planes. Such an estimation can be used to monitor the number
of active connections in a link and distinct flows in the network. The monitored
results can be further used to diagnose network security problems, such as DDoS
attacks and port scans.

This chapter is based on part of the following paper under review:

• Damu Ding, Marco Savi, and Domenico Siracusa. Tracking Normalized
Network Traffic Entropy to Detect DDoS Attacks in P4 submitted to IEEE
Transactions on Dependable and Secure Computing (TDSC).

Chapter 6: Network traffic entropy estimation

Chapter 6 focuses on Entropy: the most widely-used metric to evaluate traffic dis-
tribution, which is an important indicator to understand the network behavior. This
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metric can be used to support a wide range of tasks including congestion control,
load balancing, port-scan detection, distributed denial-of-service (DDoS) attacks
detection, and worm detection.

This chapter is based on the following peer-reviewed publication:

• Damu Ding, Marco Savi, and Domenico Siracusa. Estimating logarithmic
and exponential functions to track network traffic entropy in P4. IEEE/IFIP
Network Operations and Management Symposium (NOMS) 2020.

Chapter 7: Network-wide total traffic volume estimation

In this chapter we aim to solve a fundamental problem arising when exploiting pro-
grammable data planes for network-wide monitoring: how to estimate the overall
number of packets in the network (i.e., the traffic volume) while avoiding packet
double counting. Its correct estimation is necessary to support a broad range of
monitoring tasks, such as configuring the detection threshold of network-wide
heavy hitters. If the traffic volume is computed by summing the packet counters
as recorded by all the switches (i.e., the double counting problem is not consid-
ered), the result will be largely overestimated and so affect the network monitoring
performance.

This chapter is based on the following peer-reviewed publication:

• Damu Ding, Marco Savi, Federico Pederzolli, and Domenico Siracusa. IN-
VEST: Flow-based Traffic Volume Estimation in Data-plane Programmable
Networks IFIP Networking Conference 2021.

Chapter 8: Per-flow cardinality-based DDoS detection

In this chapter, we first introduce the BACON Sketch, a memory-efficient data
structure to estimate per-destination flow cardinality, and theoretically analyze its
error bounds. Then we propose a simple in-network DDoS victim identification
strategy relying on BACON Sketch to detect the destination hosts for which the
number of incoming connections exceeds a pre-defined threshold. We successfully
implement our DDoS detection idea in a programmable switch equipped with on a
Tofino ASIC while overcoming the limitations imposed by real hardware.

This chapter is based on the following paper under review:

• Damu Ding, Marco Savi, Federico Pederzolli, and Domenico Siracusa. In-
Network Volumetric DDoS Victim Identification Using Programmable Com-
modity Switches submitted to IEEE Transactions on Network and Service
Management (TNSM).
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Chapter 9: Normalized network traffic entropy-based DDoS
detection

In this chapter, we combined the achievements in Chapter 5 for flow cardinality
estimation and Chapter 6 for network traffic entropy estimation to track the nor-
malized entropy of distinct destination IPs and then to address a more practical
security issue in the network: volumetric DDoS detection. During a DDoS attack,
the normalized entropy of distinct destination IPs observed in the network signifi-
cantly decreases comparing to previous observations windows. Based on this ob-
servation, we propose a new normalized entropy-based DDoS detection approach
and implement it entirely in programmable data plane.

This chapter is based on the following paper under review:

• Damu Ding, Marco Savi, and Domenico Siracusa. Tracking Normalized
Network Traffic Entropy to Detect DDoS Attacks in P4 submitted to IEEE
Transactions on Dependable and Secure Computing (TDSC).

Chapter 10: Combination

This chapter is entirely new. Unlike some of previous chapters the experiments are
designed and conducted in emulated environment, we combined and implemented
several monitoring tasks in ASIC switching. The motivation of this chapter is
to demonstrate that our ideas are practical and can be deployed in real industrial
network scenarios.

Chapter 11: Conclusion

After studying all previous chapters, we conclude this thesis in the final chapter. In
addition, we outline some possible directions for future work.
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The purpose of this chapter is to give the reader basic background information
on programmable data planes within the Software-Defined Networks landscape.
We will start by providing a brief background on SDN and explain why the advent
of programmable data planes is necessary for today’s networks. Then we will out-
line how packets are processed in programmable data planes. Afterwards, we will
address the high-level domain-specific language, named P4, for programmable
switches and report its workflow. Specifically, we provide an introduction to dif-
ferent types of network monitoring tasks that can be executed in programmable
switches. Finally, we report the experimental environment used for the evaluation
of our developed monitoring tasks.

2.1 Software-Defined Networks

SDN architectures [66] are based on the fundamental idea of data and control
plane separation. Particularly, the SDN architecture can be modeled as three lay-
ers: application layer, controller layer, and network hardware layer. The layers
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are connected by two types of interfaces: Southbound interfaces allow the com-
munications between the controller layer and the network hardware layer. In the
meanwhile, Northbound interfaces permit the engineers to develop applications to
control the high-policy and network.

At the top of the SDN stack lies the application layer, which includes all the
applications that exploit the services provided by the controller in order to perform
network-related tasks, like load balancing, network virtualization etc. One of the
most important features of SDN is the portability, this provides to third-party devel-
opers via the abstractions and defines for the easy development and deployment of
new applications in various networked environments from data centers and WANs
to wireless and cellular networks.

Due to well-defined Northbound APIs, Intent framework in SDN allows an
application to request a new service without knowing how the service is applied.
This enables the network manager to program the network at a high level, they just
need to specify their intent: a policy statement or connectivity requirement.

Moving to the next layer we can observe the controller layer. SDN controller
provides services that can realize a distributed control plane, as well as abet the
concepts of state management and centralization. A network operating system of-
fers a more general abstraction of network state in switches, revealing a simplified
interface for controlling the network. This abstraction assumes a logically central-
ized control model, in which the applications view the network as a single system.
In other words, the network operating system acts as an intermediate layer respon-
sible for maintaining a consistent view of network state, which is then exploited
by control logic to provide various networking services for topological discovery,
routing, management of mobility and statistics etc. Therefore, SDN controller
plays a key role in SDN architecture. Nowadays, various types of SDN controllers
have been researched in literature, such as ONOS [11], ODL [12], and RYU [27].

The southbound protocols is very important for the manipulation of the be-
haviour of network hardware by the controller. It is the way that SDN attempts
to program the network. There are several southbound protocols which can be
adopted at this moment, such as OpenFlow and Netconf

At the bottom of the SDN architecture is the network hardware. Prior to 2014,
switches in the SDN are often represented as basic forwarding hardware accessible
via an open interface, as the control logic and algorithms are offloaded to a con-
troller. The recent advent of programmable data plane switches and P4 [42] allows
developers to execute part of the network monitoring/security operations directly in
their data plane pipeline and deliver to the centralized monitoring/control plane in-
formation that is partially or fully processed. The reason is that the programmable
switches can achieve several orders of magnitude higher throughput and lower la-
tency compared with highly optimized software solutions [79].
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Figure 2.1: The scheme of P4Runtime

2.1.1 Programmable data plane switches

Current trends in SDN have extended the network programmability to the data
plane through programmable switching ASICs (Application-Specific Integrated
Circuits) and domain-specific languages (e.g., P4 [42]). In programmable switches,
packets are processed sequentially in a pipeline, including registers for the store
and count of packets, match-action table for data plane customization, and stateful
ALUs for computation. Match-action tables match certain packet fields or meta-
data and apply actions on the packet. Each table modifies packet fields and gen-
erates metadata through which tables can share information. Using programmable
switches, programmers can customize data plane logic with domain-specific lan-
guages like P4.

2.1.2 P4 language

P4 [42] is a high-level domain-specific language designed for programmable data
planes. In a P4 program, developers can customize packet headers, build packet
processing graphs, and specify entries in match-action tables. The compiler pro-
vided by switch vendors can compile the programs into binaries and generate in-
teractive APIs. The compiled binaries specify data plane contexts, and then they
are loaded into switches Finally, the generated APIs are used by control plane ap-
plications to communicate with the data plane.

2.1.3 P4Runtime

Control planes manage the runtime behavior of P4 targets via data plane APIs.
Alternative terms are control plane APIs and runtime APIs. The data plane API
is provided by a device driver or an equivalent software component. It exposes
data plane features to the control plane in a well-defined way. Figure 2.1 shows



2.2. NETWORK MONITORING TASKS IN PROGRAMMABLE DATA PLANES 14

the main control plane operations: data plane APIs facilitate runtime control of P4
entities (Match-action tables and externs). They typically also comprise a packet
I/O mechanism to stream packets to/from the control plane. They also include
reconfiguration mechanisms to load P4 programs onto the P4 target. Control planes
can control data planes only through data plane APIs, that is, if a data plane feature
is not exposed via a corresponding API, it cannot be used by the control plane.

2.1.4 Controller use case patterns

Embedded/Local Controllers

Embedded/Local Controllers are implemented by the device driver and are exe-
cuted on the local CPU of the device that applies the programmable data plane.
The APIs are usually presented as a set of C function calls just like for other de-
vices that operating system are accessing.

Remote Controllers

The controllers at remote add the ability to invoke API calls from a separate sys-
tem. This increases system stability and modularity, and is essential for SDN and
any system with centralized control. Remote control APIs follow the base method-
ology of remote procedure calls (RPCs) but rely on modern message-based frame-
works that allow asynchronous communication and concurrent calls to the API,
such as Thrift [1] or gRPC [5]. For instance, gRPC uses HTTP/2 for transport and
includes many functionalities ranging from access authentication, streaming, and
flow control. The data structures, services, and serialization schemes of protocols
are described by using protocol buffers (protobuf) [4].

2.2 Network monitoring tasks in programmable data planes

In this section, we briefly present various types of monitoring tasks and report their
practical usages.

2.2.1 Heavy hitter detection

Heavy hitters are identified as the flows that carry more than a fraction of the overall
packets in the network. Alternatively, the heavy hitters can be the top k flows by
size (the “top-k” problem). Many network management applications can benefit
from finding the set of heavy flows contributing significant amounts of traffic to a
link: for example, to relieve link congestion [39], to plan network capacity [61], or
to detect network anomalies and attacks [82].
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2.2.2 Flow cardinality estimation

Flow cardinality estimation is the task of determining the number of distinct flows
in a stream of packets [137]. In the domain of online traffic monitoring of high-
speed networks, the cardinality estimation can be used to detect traffic anomalies,
such as network IP/port scan and distributed denial-of-service (DDoS) attacks.
Moreover, such an estimation can also be used to monitoring the number of ac-
tive connections in a link. However, as pointed out in [71], cardinality estimation
over large data sets presents a challenge in terms of computational resources and
memory. A non-negligible fraction of packets in the network may not be computed
since they exceeded the available memory.

2.2.3 Network traffic entropy estimation

Network traffic entropy is a metric that gives an indication of the traffic distribu-
tion across the network [55]. Relying on the definition of Shannon entropy [110],
the traffic entropy reaches 0 when all packets belong to the same flow, while it
reaches its maximum value when each flow carries the same number of packets.
The knowledge of the flow distribution helps diagnose performance and counter-
measures the security issues of network, including congestion control [78], load
balancing [125], port-scan detection [67][40], distributed denial-of-service (DDoS)
attacks detection [85][94] and worm detection [120].

2.2.4 Total traffic volume estimation

The ability to precisely estimate the total traffic volume [36] (i.e., number of dis-
tinct packets flowing in the network), and the related number of distinct flows and
average flow size (i.e., average number of packets per flow) is necessary to support
a broad range of monitoring tasks. In general, whenever a metric requires to set
the network-wide threshold for a monitoring task, then an accurate estimation of
the total traffic volume is of paramount importance. For instance, the threshold of
heavy hitter detection is usually set as a given fraction of total traffic volume.

2.2.5 Volumetric DDoS detection

A volumetric DDoS attack can be identified according to many different metrics,
such as looking for a significant decrease of the normalized entropy in distinct des-
tination IP addresses observed in the network [65][80][122], or a large number of
distinct flows (sequences of packets with the same source IPs) contacting a specific
destination host (i.e., per-destination flow cardinality) [134][93][74]. Note that
entropy-based DDoS detection can only detect DDoS attacks, but flow cardinality-
based DDoS detection is also able to identify the DDoS victims, which allows
operators to mitigate the impact on targeted nodes as soon as an attack is detected.
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2.3 Experimental environment

In this section, we describe the environments that we used in this thesis to evaluate
the performance of our work.

2.3.1 Behavioral model and emulated environment

The P4 behavioral model, named Bmv2 [13], is a simulator used to describe the
behavior of P4 switches, including parsers, tables, actions, ingress and egress in
the P4 pipeline. The P4 code in Bmv2 simulator can be easily deployed in a server,
which acts as a software switch. In case of emulation, Mininet [8] is a good choice
for the deployment of P4 switches implementing the network monitoring tasks.
The P4 code is compiled by p4c compiler [19] into a JSON file that describes the
behavior of P4 switch. The JSON file is then loaded by any P4 switch created
according to the behavioral model. Finally, a topology in Mininet is created con-
necting such behavior-defined P4 switches.

2.3.2 ASIC switching

Recently, programmable ASICs (Application-Specific Integrated Circuits) have
been introduced: apart from standard data plane features (i.e., high-speed switching
and forwarding), they offer the possibility to customize functionalities, if properly
programmed through domain-specific programming languages like P4 [42]. For
instance, programmable switches equipped with the Tofino ASIC [2] can always
forward packets at line-rate once the P4 program (including innovative features) is
compiled and installed in the switches. For the other chips, like Network Interface
Cards (NICs), Field Programmable Gate Arrays (FPGAs) and Network Processing
Units (NPUs), they cannot perform high-throughput and low-latency at the same
level as ASICs [136].

Tofino ASIC architecture

Figure 2.2 shows the architecture of programmable commodity switches with Tofino
ASIC. There are multiple pipes (each composed by an ingress and egress pipeline)
in the switch, and several ports are associated with one ingress or egress pipeline.
Programs executed in different pipes are independent in terms of memory and com-
putational resources. For instance, register values in pipe 1 cannot be read by pro-
grams running in pipe 2. When packets enter the switch, they are first processed by
the input port’s ingress pipeline, then, after crossing the switching matrix, are pro-
cessed again by the output port’s egress pipeline. Each pipeline contains a limited
number of stages, each including one or more code blocks (i.e., sets of operations)
that are applied to each packet in sequence. Boundaries on the number of opera-
tions executed within each stage exist to ensure that the ASIC can process packets
at line rate, irrespective of the custom logic being implemented. Blocks can contain
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Figure 2.2: Tofino-based switch data plane architecture

operations including (i.) applying match-action tables for customized packet pro-
cessing, (ii.) reading or writing counters/meters/registers for counting or storing
packets, and (iii.) calls to Arithmetic Logic Units (ALUs) for local computations.
Note that each stage has limited hardware resources, such as memory size (Static
and Ternary Random Access Memory, i.e., SRAM and TCAM) and number of
ALUs.

2.3.3 Concluding remark

Upon understanding the background on network monitoring in programmable data
planes, this thesis puts forth the claim that the barriers between the development
of monitoring tasks and the constraints of programmable switches can be effec-
tively overcome with the support of properly designed novel network monitoring
strategies. To achieve this goal, we started with simulations to understand differ-
ent monitoring behaviors and propose new ideas. Then we implemented our new
ideas with a domain-specific language for programmable switches and tested them
in an emulated environment (i.e. mininet). Finally, we migrated our work into a
programmable switch equipped with Tofino ASIC in our physical testbed.
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In this chapter we take the first steps towards the enhancement of P4. We
address some limitations on P4 language and provide two new estimation algo-
rithms for logarithm and exponential-function with a given precision by only using
P4-supported arithmetic operations, which can be used to design various of new
network monitoring tasks in programmable data planes.

This chapter is based on our previously published paper "Damu Ding, Marco
Savi, and Domenico Siracusa. Estimating logarithmic and exponential functions
to track network traffic entropy in P4. NOMS 2020-2020 IEEE/IFIP Network Op-
erations and Management Symposium. IEEE, 2020." [55] and paper "Tracking
Normalized Network Traffic Entropy to Detect DDoS Attacks in P4" submitted to
IEEE Transactions on Dependable and Secure Computing (Under review).
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3.1 Introduction

In order to assure line rate packet processing, the domain-specific language for
programmable data planes, namely P4, removes many arithmetic and logical oper-
ations that may delay the packet processing, including loops (e.g. For and While),
division, logarithm, exponentiation and floating numbers. However, many network
monitoring tasks rely on those operations, and without them, the switches have
to report all raw data to the controller, so that it can perform such computations,
which incurs large communication overhead and delay. A straightforward solution
to overcome these limitations could be executing all arithmetic operations unsup-
ported by the P4 language at SDN controller, but this would almost nullify the ben-
efits of the proposed solution as discussed so far. If the necessary operations can
be approximated in P4, the tasks are implementable in the switches. This means
that they can summarize the network statistics directly in the switch, and then only
report the filtered information to controller.

In this chapter we take the first steps toward this goal. We start by theoreti-
cal analysis to approximate logarithmic and exponential functions by only using
P4-supported operations. We then successfully implemented them in P4 (namely
P4Log and P4Exp), and they can be used to enable the execution of monitoring
tasks requiring the computation of such functions.

In this chapter we focus on answering the following questions:

• How do we overcome the limitations to estimate logarithmic and exponential
functions in P4?

• Which monitoring tasks need our estimations?

3.2 Basic knowledge

3.2.1 Hamming weight computation for logarithmic estimation

Hamming weight represents the number of non-zero values in a string. In a binary
string, the Hamming weight indicates the overall number of ones. For example,
given the binary string 01101, the Hamming weight is 3. Hamming weight can be
computed by means of different algorithms: as part of P4Log, in this chapter we
adopt the Counting 1-Bits algorithm presented in [123], as it only relies on bitwise
operations that are completely supported by P4 language [17].

3.2.2 Binomial series expansion of exponential function 2x

The proposed P4Exp algorithm relies on binomial series expansion [104] of 2x,
where x is a real positive number. In general, the binomial series expansion of
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Table 3.1: Operations supported by P4 and their symbols [17]
Symbol Operation

+ Addition
− Subtraction
· Multiplication
� Logical right shift (Division by power of two)
� Logical left shift (Multiplication by power of two)
ˆ Bitwise XOR
| Bitwise inclusive OR

& Bitwise inclusive AND
∼ Bitwise COMPLEMENT

(1+α)x is defined in the following way:

(1+α)x =
+∞

∑
k=0

(
x
k

)
α

k

When α = 1 we have the binomial series expansion of 2x:

2x =
+∞

∑
k=0

(
x
k

)
= 1+ x+

x(x−1)
2!

+ · · ·︸ ︷︷ ︸
Nterms

With α = 1, the series converges absolutely iff Re(x) > 0 or x = 0. In our case
this always holds, since x is a real positive number. In P4Exp we will rely on a
truncation of the binomial series to the first Nterms terms.

3.3 Estimation of Log and Exp Functions in P4

In this section, we propose P4Log and P4Exp, two new algorithms for the estima-
tion of logarithm and exponential function that leverage only arithmetic and logical
operations supported by the P4 language (see Table 3.1) and can be executed en-
tirely in the data plane. The P4 code of two algorithms is open sourced in [23].

3.3.1 P4Log algorithm

Given an L-bit integer x and a logarithmic base d, the goal is to estimate logd x.
Since operations on floating numbers are forbidden in P4, our algorithm computes
logd x amplified by 210 times (i.e, logd x ·210). This amplification (similar to what
is done in [85]) is performed to deal with integer numbers without loosing accu-
racy on decimal parts, and can be done using the left shift operator (�). This is
needed because P4, in the case of operations resulting in floating numbers, trun-
cates the resulting value to its integer part: without any amplification our algorithm
(as any other algorithm dealing with floating numbers) would result in a very bad
estimation accuracy. Additionally, we will show that an amplification of 210 times
is enough to achieve very good accuracy on the estimation (see Section 3.4).
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Algorithm 1: P4Log algorithm
Input: An L-bit integer x (L ∈ {16, 32, 64, 128}) and a given logarithmic base d
Output: An L-bit integer estimation of logd x amplified 210 times

(logd x ·210 ≡ logd x� 10)
1 Function log2ES(x):
2 w← x|(x� 1)
3 for int i ∈ {1, . . . , log2 L−1} do
4 w← w|(w� 2i)

5 b← HammingWeight(w)
6 n← b−1

7 log2 x� 10← n� 10+ log2(1+
x̄−2Nbits

2Nbits
)� 10︸ ︷︷ ︸

Tree search →Ndigits

8 return log2 x� 10

9 Function logdES(x, logd 2� 10):
10 logd x� 10← (log2ES(x) · logd 2� 10)� 10
11 return logd x� 10

To compute logd x, we can write it as logd x = log2 x · logd 2. Since d is known,
logd 2 is a constant value that can be pre-computed and loaded in the P4 program.
Thus, logarithm estimation in P4 language reduces to the estimation of log2 x: if
we can estimate log2 x, then it is always possible to estimate the logarithm of an
input value x with any given base d, as far as the constant value logd 2 has been
stored in the P4 program as a constant.

As shown in Algorithm 1, the algorithm first estimates log2 x (log2ES(x) func-
tion). Initially, it computes the integer part of log2 x, which is equal to the index
of leftmost 1 of x when expressed in binary notation. To get this information, all
bits at the right of leftmost 1 of x are iteratively converted to 1 and the result is
stored in a binary string named w (Lines 2 - 4). For instance, given a binary value
010010, the resulted w is 011111. This operation is needed because, in P4, num-
bers are always handled in decimal notation, while we need a binary string as input
of the next step. Then, the Hamming weight of w (see Section 3.2.1) is retrieved,
indicating the number of bits from the leftmost 1 (including itself) and denoted by
b (Line 5). Hence, the index of the leftmost 1, called n and equal to b− 1, stores
the integer part of log2 x (Line 6).

The algorithm then estimates the decimal part. Note that log2 x = n+ log2(1+
x−2n

2n ), meaning that the estimation of the decimal part reduces to the estimation of
log2(1+

x−2n

2n ). We adopt the first Nbits bits starting from the leftmost 1 to estimate
it, using a set of pre-computed decimal values stored in the P4 program as constants
and rounded to a float with Ndigits digits of precision. If Nbits bits are used to
estimate the decimal part, it means that 2Nbits constants need to be pre-computed
and stored in the program. We call x̄ the binary sub-string used to estimate the
decimal part. For example, considering Nbits = 2, there are four possible cases:
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x̄ = 1∗∗

x̄ = 10∗ x̄ = 11∗

x̄ = 100 x̄ = 101 x̄ = 110 x̄ = 111

x < xˆ(x� 1) x > xˆ(x� 1)

x < xˆ(x� 2) x > xˆ(x� 2) x < xˆ(x� 2) x > xˆ(x� 2)

0� 10 0.322� 10 0.585� 10 0.807� 10

Figure 3.1: Binary-tree data structure to extract the first Nbits = 2 bits of x̄ and
retrieve the estimated decimal part (Ndigits = 3)

x̄ ∈ {100,101,110,111} (the leftmost 1 is always included in the sub-string). With
Ndigits = 3, each of the four cases leads to the following different estimations of the
decimal part, computed as log2(1+

x̄−2Nbits

2Nbits
):

x̄ = 100 =⇒ log2(1+
(000)2

(100)2
) = log2(1+

0
4
) = 0

x̄ = 101 =⇒ log2(1+
(001)2

(100)2
) = log2(1+

1
4
)≈ 0.322

x̄ = 110 =⇒ log2(1+
(010)2

(100)2
) = log2(1+

2
4
)≈ 0.585

x̄ = 111 =⇒ log2(1+
(011)2

(100)2
) = log2(1+

3
4
)≈ 0.807

The greater Nbits and Ndigits are, the more accurate the estimation of the decimal
part is. However, the bigger Nbits is, the more pre-computed constants must be
stored. Note also that, if n < Nbits, the algorithm performs zero padding.

Unfortunately, for the same limitation of P4 recalled above, retrieving the x̄
binary sub-string is not straightforward. However, by iteratively comparing x with
xˆ(x� j), where j ∈ {1, . . . ,Nbit} (integer), it is possible to obtain the string x̄ and
get the associated estimated decimal part. In fact, if x < xˆ(x� j), it means that
the ( j+1)-th bit of x̄ is 1, otherwise it is 0, being the first bit always 1 by definition.
To this aim, we can define a binary tree in the P4 program by using 2Nbits−1 if-else
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statements. An example of such a binary tree, in the case Nbits = 2 and Ndigits = 3,
is shown in Fig. 3.1. As shown in the figure, the constant decimal values are am-
plified 210 times to ensure that they are integer numbers. Once the decimal part is
retrieved, it is added to n (also amplified 210 times) to get an integer (amplified)
estimation of log2 x. All these operations are summarized in Line 7 and 8 of Al-
gorithm 1. Finally, the amplified estimated value of log2 x (output of log2ES(x))
is used to estimate logd x (logdES(x, logd 2� 10) function). The constant value
logd2 is stored amplified 210 times to prevent it being a floating number. For this
reason, the result of log2 x · logd 2, where both terms are amplified 210 times, re-
quires a division by 210 to obtain an estimation of logd x still amplified 210 times.
This can be done using the right-shift operator (�) (Lines 10-11).

3.3.2 P4Exp algorithm

Given an L-bit integer x and an exponent d, the goal is to estimate an integer ap-
proximation of xd , with d being any real number (expdES(x,d) function). Since
xd = 2d log2 x, xd first requires the estimation of log2 x by means of P4Log, and then
the computation of 2y where y = d log2 x. Our initial idea was to calculate 2y by
executing 1� d log2 x in P4 language [17]. Unfortunately, in our case it is not
possible to do so. In fact, the output of log2ES(x) in Algorithm 1 is the estimation
of log2 x amplified 210 times (to prevent accuracy losses) and 2y cannot exceed L
bits (2L−1 is the biggest possible value), otherwise the computed number is set to
0 by P4. To ensure that the estimated 2y value does not exceed L bits, the exponent
y cannot be bigger than log2 L. Considering the biggest possible value for L, i.e.,
L= 128, the inequality d log2 x ·210 < 128 holds only in the case that d log2 x< 2−3,
which is still a too small value to make this approach meaningful.

To work around such a limitation, the algorithm decomposes d log2 x = eint +
edec, where eint is its integer part and edec is its decimal part, meaning that xd = 2eint ·
2edec . P4Exp initially stores the result of log2ES(x) (i.e., log2 x� 10) multiplied by
d in an integer variable called exp� 10 (Line 2). Note that the decimal part of the
product is neglected and that this is the amplified version of the exponent. eint (not
amplified) is then calculated by computing exp� 10, leveraging the limitation of
P4 that a resulting floating number is always truncated to its integer part (Line 3).
The algorithm then computes the amplified version of edec as difference between
the amplified versions of exp and eint (Line 4). The estimated amplified version of
2edec is retrieved by truncating its binomial series expansion to the first Nterms terms
(see Section 3.2.2).

All constants in the binomial series expansion need to be amplified by 210

times. The inverse of the factorial number v! in the binomial series can be esti-
mated by b210

v! c � 10, where b210

v! c is a pre-computed constant in the P4 program.
For example, 1

2! =
1
2 can be computed by b210

2 c � 10 = 512� 10 = 1
2 . As Nterms

increases, more and more multipliers are amplified 210 times, with the risk of going
out of the L-bit range. Thus, the algorithm right-shifts 10 bits after each multipli-
cation in the polynomial: this ensure that the resulted 2edec is only amplified 210
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Algorithm 2: P4Exp algorithm
Input: An L-bit integer x (L ∈ {16, 32, 64, 128}) and a given exponent d
Output: An L-bit integer approximation of xd

1 Function expdES(x,d):
2 exp� 10← d · log2ES(x)
3 eint ← exp� 10
4 edec� 10← exp� 10− eint � 10
5 2edec � 10← (1� 10)+ edec� 10
6 +(edec� 10 · (edec� 10− (1� 10))

7 � 10 · b 210

2! c)� 10+ · · ·︸︷︷︸
until Nterms

(Binomial series expansion)

8 if eint < 10 then
9 xd ← ((1� eint) · (2edec � 10))� 10

10 else
11 xd ← (1� (eint −10)) · (2edec � 10)

12 return xd

Table 3.2: Default parameters for P4Log and P4Exp
Alg Parameter Value

P4Log
Digits of precision for decimal part (Ndigits) 3

Number of bits for estimation of decimal part (Nbits) 4

P4Exp
Digits of precision in log2ES(x) (Ndigits) 3

Number of bits in log2ES(x) (Nbits) 7
Number of terms in binomial series (Nterms) 7

times. Lines 5-7 reports the estimation of 2edec � 10 with Nterms = 3.
Since computed values larger than 2L− 1 are set to 0, it must be ensured that

xd will not be out of range for reasonable values of d. Thus, in the case eint < 10
(small integer part), xd is estimated by calculating 2eint (not amplified and smaller
than 210), multiplying it by 2edec (amplified as computed above) and dividing it by
210, to get a non-amplified integer approximation (Lines 8-9).

Conversely, for eint ≥ 10 integer parts, the algorithm compensates the 210-times
amplification of 2edec by computing 2eint−10 and multiplying it by the amplified
version of 2edec (Lines 10-11). Reducing the size of the exponent of eint by a factor
of 10 helps prevent xd being out of range.

3.4 Evaluation of P4Log and P4Exp

We implemented P4Log and P4Exp in Python for evaluation and sensitivity analy-
sis, reported in this section.
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3.4.1 Evaluation metrics and settings

Metrics

We consider relative error as key metric. For P4Log, given an input value x and
base d, relative error is defined as |logdES(x,logd 2)−logd x|

logd x · 100%, where logd x is the
exact value. For P4Exp, given input base x and exponent d, the relative error is

defined as |expdES(x,d)−xd|
xd ·100%. In both cases, we consider as acceptable target a

relative error of 1%, as also done in previous work [111].

Default experimental settings

Unless otherwise specified, the default tuning parameters in all experiments are the
ones reported in Table 3.2.

3.4.2 Evaluation of P4Log

Testing values for P4Log

When using Nbits to estimate the logarithm in our P4Log algorithm, all the bits
after them are ignored and considered as 0. Intuitively, the algorithm leads to
worst-case estimations when most significant bits after Nbits are 1s. To make it as
general as possible, we choose five different l-bit-length (i.e., l = 4,8,16,32,64 bit)
input values where all bits are 1s (and thus the respective decimal value is 2l−1).
Moreover, we always consider d = 2 as logarithmic base since, as shown in Section
3.3.1, different bases only require the multiplication of log2 x with the constant
value log2 d, and this operation does not affect the relative error to the exact value.
We also randomly select 5 · 106 integer numbers such that x ∈ {1,264− 1} and
average the relative error in logarithm estimation, named AVG in the following.
With 5 ·106 randomly-selected number, 95% confidence-interval width of relative
error is always smaller than 0.01%, and we do not plot it in shown graphs since it
would overlap with the plotted markers.

Sensitivity to Nbits and Ndigits

Figure 3.2 shows the sensitivity of P4Log with respect to a variation of Nbits and
Ndigits. As shown in Fig. 3.2(a), the relative error of log2 x decreases as Nbits in-
creases, with more significant improvement when the input value x is small. When
Nbits = 4, the relative error is below 1% in all the considered cases, becoming al-
most 0 when Nbits = 6. Instead, Fig. 3.2(b) shows that (i) an increase of Ndigits does
not improve much the relative error, (ii) all relative errors are below 1% and (iii)
when Ndigits = 4 the relative error reaches its minimum. The AVG curve always
shows an average relative error below 1%.
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Figure 3.2: Sensitivity of P4Log to Nbits (a) and Ndigits (b)

3.4.3 Evaluation of P4Exp

Testing values for P4Exp

In this case, we evaluate the performance of the algorithm when both base and
exponent of xd vary. We choose input values according to the following rules:
(i) to evaluate the impact of base variation, we fix a 64-bit integer base x to a
chosen value, then we find the integer exponent d that maximizes the output xd

within 64 bits (we call this test chosen-base variation); (ii) to evaluate the impact
of exponent variation, we fix the integer exponent d to a chosen value, then we
find the largest 64-bit integer base x that maximizes the output xd within 64 bits
(we call this test chosen-exponent variation); (iii) we select 5 ·106 integer numbers
with base x ∈ {1,232−1} and exponent d ∈ {2,32} both randomly chosen (these
ranges ensure that xd is always within 64 bit) and average the relative error in
exponential function estimation, named AVG in the following. Also in this case,
95% confidence interval has a width smaller than 0.01% and is not plotted in the
graphs.

We analyze the sensitivity of P4Exp with respect to a variation of Nbits and
Ndigits of Log2ES(x) used for exponential estimation (see Algorithm 2) and to a
variation of Nterms.

Sensitivity to Nbits

As shown in Fig. 3.3(a), in the case of chosen-base variation, when Nbits ≥ 3 all
the relative errors of considered xd are under 1%. When Nbits is too small (Nbits =
2) a very large relative error (around 80%) is experienced for bases x ≥ 9. This is
because a small Nbits causes a bad estimation of d · log2ES(x) that is exponentially
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Figure 3.3: Sensitivity of P4Exp to Nbits

amplified when computing 2d·log2 ES(x). Such a bad estimation is especially evident
when d · log2ES(x) is large. Figure 3.3(b) shows instead that exponential functions
with small exponent d but large base x are more sensitive to Nbits and, as shown
also above, the relative error decreases as Nbits increases. When Nbits = 7 relative
errors of all estimations are below 1%. The AVG curve shows that, on average, a
large relative error is experienced when Nbits is small and that Nbits ≥ 7 ensures an
average error below 1%.

Sensitivity to Ndigits

As shown in Fig. 3.4(a), in the case of chosen-base variation (and thus bigger
exponents), for Ndigits ≥ 3 the relative error reaches values below 1%. Instead,
Fig. 3.4(b) shows that computations involving smaller exponents but bigger bases
are not very sensitive to Ndigits, being relative errors always under 1%, and that
considering bigger Ndigits may in some cases even prove counterproductive. The
AVG curve shows a similar trend: on average, an increase in Ndigits does not affect
much performance, and the average relative error is always below 1%.

Sensitivity to Nterms

Figure 3.5(a) shows that Nterms strongly affects the estimation of xd especially when
the exponent is large and the base is small. Relative errors oscillate but, in a long
term, decrease as Nterms increases. Oscillation is due to the way how binomial
series converges. When Nterms ≥ 7 relative error for all estimations is under 1%.
Instead, as shown in Fig. 3.5(b), with small chosen exponents and large bases,
relative errors are all below 1% when Nterms ≥ 6. Oscillation is also well visible in
the AVG curve that shows how Nterms ≥ 6 leads to an average relative error below
1%.
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Figure 3.4: Sensitivity of P4Exp to Ndigits
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Figure 3.5: Sensitivity of P4Exp to Nterms

3.5 Evaluation of packet processing time in programmable
data planes

In the previous section, we proposed and evaluated the accuracy of two algorithms
for exponential function and logarithm estimation. We believe that a comparison
of packet processing time between P4Exp, P4Log and the corresponding state of
the art strategies is important to understand how the different approaches affect
packet processing in the P4 pipeline, and to take a decision on what exponential
function and logarithm estimation algorithms we should leverage for the design
and implementation of network monitoring tasks as presented in the next Chapters.

We chose Mininet [8] as emulated network environment for a single P4 switch.
The data plane pipeline is described by P4 code compiled using the bmv2 behav-
ioral model [13]. We then connected the P4 switch to two hosts, ensuring that
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Table 3.3: P4 programs properties
Algorithm Parameter [55] Value [55] Instructions M+A entries

P4Log
Ndigits 3

47 1
Nbits 4

P4Exp Nterms 7 64 1
M+A_Log - - 0 1920
M+A_Exp - - 0 2049
Forwarding - - 0 1
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Figure 3.6: Cumulative distribution function of packet processing time

packets can be forwarded from one to the other host through the switch. The em-
ulated environment is built on top of a virtual machine deployed by OpenStack on
our local testbed with dedicated access to 4 × 2.7GHz CPU cores and to 4GB of
RAM. We used WireShark [29] to capture a packet timestamp tin at the ingress
interface of the switch and the timestamp tout at the egress interface when the same
packet is forwarded to the destination host. The packet processing time is thus
calculated by tout − tin.

In addition to P4Exp and P4Log implementations, we implemented the log-
arithmic and exponential function estimation strategies reported in [111], named
here as M+A_Log and M+A_Exp, respectively. For 64-bit operands in P4, to en-
sure a relative error below 1% for the estimated values with respect to the real
ones, M+A_Exp needs 2048 entries in an exact match table, while M+A_Log re-
quires 1919 entries in a ternary match table (to be stored in TCAM). However, in
behavioral model [13], any M+A table can include at most 1024 entries, so we
had to assign two exact match tables for M+A_Exp and two ternary match tables
for M+A_Log. A simpler benchmark strategy, named Forwarding, is also imple-
mented: it only requires a M+A table for forwarding the packets from source to
destination host according to pre-defined flow rules. All the other strategies imple-
ment the same forwarding logic in their pipeline. P4Log and P4Exp parameters are
taken from [55] and shown in Table 3.3. The table also summarizes the number of
required instructions (i.e., logical and arithmetical operations) and of M+A entries
for all the considered strategies (including forwarding capabilities), showing the
inherent differences of the approaches.
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We then evaluate the packet processing time, considering base-2 logarithm and
exponential function. We generated and forwarded 10000 packets: Fig. 3.6 shows
the cumulative distribution function (CDF) of packet processing time. As shown
in Fig. 3.6(a), both P4Log and M+A_Log cause a higher processing time than
Forwarding since they need to carry out more complex operations. However, their
CDF curves are almost overlapped: this means that P4Log does not cause any
additional overhead on processing time with respect to M+A_Log, but it has the
benefits of not requiring any M+A table. Likewise, Fig. 3.6(b) reveals that both ex-
ponential function estimation strategies slightly increase the processing time with
respect to Forwarding. P4Exp has just a slightly higher packet processing time than
M+A_Exp but, also in this case, it does not require any M+A table to work. Note
also that packets, in real high-performance programmable switches, are expected
to be processed in few hundreds of ns, thus such a difference in processing time
would impact even less on performance (in absolute terms). We have shown that
P4Log and P4Exp have comparable accuracy (see [55]) and efficiency as the state
of the art, while preventing from the usage of expensive and power-hungry switch
memory (e.g. TCAM) for their execution: we thus chose to leverage P4Log and
P4Exp for all the logarithmic and exponential-function estimations needed in the
following Sections.

3.6 Related work

3.6.1 Logarithmic and exponential function estimation in P4

Since P4 language does not support logarithm and exponential function compu-
tation, many advanced algorithms leveraging on those operations (e.g., Hyper-
LogLog for linear counting [63]) are not directly implementable using such domain-
specific language. However, these advanced algorithms are useful for executing
many network functionalities, such as congestion control [78], flow-cardinality es-
timation [111] and DDoS detection [85][121], so finding a way to support them
is of paramount importance. Naveen et al. [111] have already successfully imple-
mented estimation of logarithm and exponential function in P4, but their strategy
requires the storage of appropriate pre-computed values in TCAM. It is shown that,
to ensure a relative error in the estimation below 1%, they require around 0.5KB of
TCAM memory occupation. This is something that P4Exp and P4Log algorithms
do not need.

3.7 Concluding remarks

In this chapter, we first propose a novel algorithm for the estimation of logarithm,
called P4Log, that only uses arithmetic operations supported by the P4 language.
Moreover, we propose another algorithm, called P4Exp, for the estimation of ex-
ponential functions with real-number exponent.
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We then evaluate P4Log and P4Exp by means of simulations to show their ef-
fectiveness and their sensitivity to different tuning parameters. Results show that
our algorithms can ensure similar relative error as state-of-the-art solutions that
leverage on ternary Match+Action (M+A) tables to store some pre-computed val-
ues for estimation. The advantage of our strategies with respect to the state of the
art is three-fold. First, our approach avoids the usage of any M+A table: this is es-
pecially beneficial to save memory consumption of TCAM (which is used to store
ternary M+A tables but is limited, power-hungry and expensive). Additionally, our
approach does not require any interaction with the control plane in executing the
foreseen operations. Conversely, state-of-the-art solutions require that M+A tables
are properly populated by a controller, generating some communication overhead:
this is why we claim that our strategies work entirely in the data plane.

The results in the emulated network environment show that P4Log does not
cause any additional overhead on processing time with respect to state-of-the-art
solution, and P4Exp has just a slightly higher packet processing time but, also in
this case, it does not require any M+A table to work. Note also that packets, in
real high-performance programmable switches, are expected to be processed in
few hundreds of ns, thus such a difference in processing time would impact even
less on performance (in absolute terms).

We have shown that P4Log and P4Exp have comparable accuracy and effi-
ciency as the state of the art, while avoiding from the usage of expensive and
power-hungry switch memory (e.g. TCAM) for their execution: we thus chose to
leverage P4Log and P4Exp for all the logarithmic and exponential-function estima-
tions needed in the following chapters. The two algorithms will be used in Chapter
6 for network traffic entropy estimation, Chapter 5 for flow cardinality estimation
and Chapter 9 for normalized network traffic entropy-based DDoS detection.
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In this chapter, we present our study on the heavy hitter phenomenon in pro-
grammable switches. We start by proposing a new network-wide heavy hitter de-
tection incorporating programmable switches and SDN controller, aiming at min-
imizing communication overhead and maximizing the detection performance. We
then consider a partial deployment as well with the goal to use the smallest number
of switches to achieve the best performance in the ISP network.

This chapter is based on our previously published paper "Damu Ding, Marco
Savi, and Domenico Siracusa. "Incremental deployment of programmable switches
for network-wide heavy-hitter detection." 2019 IEEE Conference on Network Soft-
warization (NetSoft). IEEE, 2019." [53] and "Damu Ding, Marco Savi, and Domenico
Siracusa "An incrementally-deployable P4-enabled architecture for network-wide
heavy-hitter detection." IEEE Transactions on Network and Service Management
(2020): 75-88." [54].
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4.1 Introduction

In the last chapter we have investigated the limitations of P4 and developed the
enhancements. Starting from this chapter, we present several monitoring tasks that
have been implemented by us in programmable data planes.

Heavy hitters refer to all flows that are larger (in number of packets or bytes)
than a fraction of the total packets seen on the link. Identifying the “heavy hitter”
flows or flows with large traffic volumes in the data plane is of primary importance
for several applications, such as flow-size aware routing, DoS detection, and traffic
engineering. However, measurement in the data plane is constrained by the need
for limited memory in switching hardware and large communication overhead with
controller.

The goal of this chapter is twofold. First, we study network-wide heavy-
hitter detection strategy by analyzing the exposed filtered information from all pro-
grammable switches in the network. And second, we propose a novel approach for
an incremental deployment of programmable switches in Internet Service Provider
(ISP) networks with the goal to have visibility over the largest number of distinct
flows.

We propose a new algorithm that is capable of detecting network-wide heavy
flows (i.e., heavy hitters) using as input only partial information from the data
plane. We evaluate our incremental deployment strategy alongside the proposed
heavy-hitter detection algorithm in simulation. We also implemented our heavy-
hitter detection strategy in P4 [42] and tested it in an emulated environment. We
then propose a novel approach for an incremental deployment of programmable
switches in Internet Service Provider (ISP) networks. To optimize network-wide
monitoring practices, it is important to have visibility over the largest number of
distinct flows. To this end, we exploit the HyperLogLog algorithm [63] that is
generally used for the count-distinct problem, approximating the number of dis-
tinct elements in a multi-set. By comparing our incremental deployment solution
with state-of-the-art proposals, results show that we can achieve a better monitor-
ing accuracy using less switches. Moreover, our heavy-hitter detection strategy
outperforms existing ones in terms of F1 score while relying on less information
from the data plane, while leading to only slightly higher packet processing times
in executing the programmable switch pipeline.

In this chapter, we focus on answering the following questions:

• How to effectively detect heavy hitters in programmable data planes?

• How SDN controller coordinates programmable switches to perform network-
wide heavy hitter detection?

• How to deploy limited number of programmable switches in the network?

• What is the performance of our network-wide heavy hitter detection in the
network with partially deployed programmable switches?
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4.2 Basic knowledge and used compact data structure

4.2.1 Estimation of flow packet count for heavy-hitter detection

Estimating the number of packets for a specific flow is fundamental for a proper
detection of heavy hitters. Different algorithms exist to perform such an estima-
tion: we choose to use Count-Min Sketch [48], which relies on a probabilistic data
structure (i.e., sketch) based on pairwise-independent hash functions. Count-Min
Sketch envisions two types of operations: Update and Query. Update operation
is responsible for continuously updating the sketch with information on incoming
packets in the switch, whereas Query operation is used to retrieve the estimated
number of incoming packets for a specific flow. To formalize the problem, we
consider a stream of packets S = {a1,a2, ...,am}. The Count-Min Sketch algorithm
returns an estimator of packet count f̂x of flow x ∼ (srcIPx,dstIPx) satisfying
the following condition: Pr[| f̂x− fx|> ε|S|]≤ δ , where ε (0≤ ε ≤ 1) is the relative
biased value and δ (0 ≤ δ ≤ 1) is the error probability. In Count-Min Sketch, the
space complexity is O(ε−1log2(δ

−1)), and per-update time is O(log2(δ
−1)) [50].

Additionally, the estimation of packet count satisfies fx ≤ f̂x ≤ fx + ε|S|, where fx

is the real packet count value. The accuracy of Count-Min Sketch depends on ε

and δ , which can be tuned by respectively defining (i) the output size Ns of each
hash function and (ii) the number Nh of hash functions of the data structure.

In previous definitions, a heavy hitter is a flow whose packet count overcomes
a threshold ϑ |S| (0 < ϑ < 1). If a Count-Min Sketch is adopted, the probability to
erroneously detect a heavy hitter due to packet miscount is defined in the following
way: Pr[∃x| f̂x ≥ (ϑ + ε)|S|] ≤ δ . If Nh is large enough, error probability δ is
negligible.

4.2.2 Estimated count of distinct flows

An efficient and effective method to count a number of distinct items from a set is
HyperLogLog [63]. In our specific case, given a packet stream S = {a1,a2, ...,am},
where each packet is characterized by a specific (srcIP,dstIP) pair (generically
called flow key), it returns an estimation of cardinality of flows, i.e., how many
(srcIP,dstIP) distinct pairs exist in the stream1. In this chapter, we use n̂←
Hll(S) as notation to indicate input and output of the HyperLogLog algorithm: Hll
indicates the algorithm, S the input packet stream and n̂ the cardinality of flows (i.e.,
number of distinct flows). The relative error of HyperLogLog is only 1.04√

m , where m
is the size of HyperLogLog register. Apart from its high accuracy, HyperLogLog
is also very fast since the query time complexity is O(1). Moreover, calculating
the union (or merge) of two or more HyperLogLog data structures (also called
sketches) is also very efficient, and can be used to count the number of distinct
flows in the union of two (or more) data streams, e.g. Sa and Sb. In our notation,

1Note that in this chapter, without any loss of generality, we consider source/destination pairs as
flow identifiers. However, other definitions could also be adopted (e.g. 5-tuple).
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Table 4.1: Main symbols and meanings
S Packet stream
|S| Packet count of stream S
δ Error probability of Count-Min Sketch
ε Relative biased value of Count-Min Sketch

Nh Number of hash functions in Count-Min Sketch
Ns Output size of hash functions in Count-Min Sketch
n̂ Estimated number of distinct flows
f̂x Estimated packet count of flow x
fx Real packet count of flow x

θH Heavy-hitter identification fraction (controller)
K Sampling rate for heavy-hitter detection (switch)
W Local ratio for heavy-hitter detection (switch)
R Recall
Pr Precision
F1 F1 score
Tint Time interval
N Number of P4 switches in the network
P Number of legacy switches to be replaced by programmable switches

Hll HyperLogLog algorithm
m Register size in HyperLogLog

this can be written as n̂union← Hll(Sa∪Sb), where n̂union is the number of distinct
flows of the packet streams union Sa∪Sb.

4.3 A network-wide heavy-hitter detection strategy robust
to partial deployment

In this section we propose a novel network-wide heavy-hitter detection strategy.
While taking inspiration from an existing approach [69], it differs from the state of
the art by introducing the concept of local and global sample lists, which make it
robust to partial deployments aiming at maximizing the network flow visibility.

Figure 4.1 shows the interaction between switches and a centralized controller
for network-wide heavy-hitter detection, in the case of partial deployment of pro-
grammable switches (i.e., when only some switches can perform monitoring opera-
tions in the data plane). Time is divided in intervals, and in every time interval each
programmable switch dynamically stores in a sample list only those flows whose
packet count is larger than a dynamic sampling threshold. At the end of each time
interval, if any programmable switch stores in its sample list one or more flows
with packet count larger than a dynamic local threshold, it reports a true flag to the
centralized controller. The flows whose packet count overcomes the local thresh-
old are called potential heavy hitters. The controller, if at least one true-flag report
is received, then polls all the programmable switches in the network to gather the
{flow key, packet count} pairs of all the flows stored in their sample lists. This
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Figure 4.1: Interaction between controller and programmable switches for
network-wide heavy-hitter detection in a partial deployment scenario

information is used to estimate the whole network volume, i.e., the number of all
the unique packets transmitted in the network in the given time interval. Finally,
the controller computes the so-called global threshold leveraging the estimated
network volume and gets all the network-wide heavy hitters, i.e., the flows from
sample lists whose packet count is larger than the global threshold. Finally, all the
flow and packet statistics are reset and a new time interval is started.

In the following subsections, we formalize the problem of network-wide heavy-
hitter detection and describe in detail the algorithms running both in the pro-
grammable switches and in the controller to implement the proposed high-level
strategy.

4.3.1 Problem definition

We formulate the network-wide heavy-hitter detection problem as follows.
Given:

• A heavy-hitter identification fraction θH (0 < θH < 1);

• A time interval Tint ;

• The set of unique packets S transmitted in the network;

Identify the set of flows which are network-wide heavy hitters (HH), i.e., carry
in the time interval Tint a number of packets larger than the global threshold θH |S|tot ,
where |S|tot is the network volume (i.e., number of transmitted packets).
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Figure 4.2: Scheme of the proposed network-wide heavy-hitter detection strategy

4.3.2 Algorithm in programmable switches (Data plane)

As shown in Fig. 4.2, when a packet comes into a programmable switch i, a packet
counter named |Si| is updated to count all the incoming packets. A Count-Min
Sketch data structure, which is used to store the estimated packet counts for all the
flows, is updated to include the information from the current packet, and then it is
queried to retrieve the estimated packet count f̂x for the flow x∼ (srcIPx,dstIPx)
such packet belongs to. This information is used to understand whether the packet
belongs to a flow that must be inserted in the sample list.

The flow x is inserted in the sample list if f̂x ≥ (WθH+ε)|Si|
K , where (WθH+ε)|Si|

K
is the sampling threshold. The parameters W (W ≥ 1) and K (K ≥ 1) affect the
size of the sample list: the larger W and the smaller K are, the smaller the sample
list size is, thereby consuming less memory in the switch. However, as we will
report in the next subsection, this would reduce the accuracy on the estimation of
the overall network volume and on the identification of heavy hitters. Therefore,
K (called sampling rate) should be carefully set in each programmable switch to
store only flows carrying a significant number of packets. ε is instead the biased
value caused by Count-Min Sketch (see Section 4.2): we sum ε = 1/Ns to WθH in
order to compensate such bias. The sample list is thus used to dynamically store
the packet counts for the most frequent flows crossing the switch.

Since at the beginning of each time interval Tint the sampling threshold is low,
being |Si| a small value (that can even be < 1), flows with small packet counts
would be stored in the sample list.

We thus introduce a parameter min operating in conjunction with the sampling
threshold: only if packet count of the considered flow is larger than both min and
sampling threshold (WθH+ε)|Si|

K , the flow is inserted in the sample list. This is de-
scribed in Lines 6-11 of Algorithm 3.

At the end of the time interval Tint , |Si| counts all the incoming packets in the
considered time frame. Thus, as shown in Lines 13-14, the algorithm removes
from the sample list all those flows with packet count lower than (WθH+ε)|Si|

K , where
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Algorithm 3: Network-wide heavy-hitter detection algorithm - Pro-
grammable switch i ∈P (Data plane)

Input: Flow stream S, Local minimum min, Heavy-hitters identification
fraction θH , Local ratio W , Sampling rate K, Count-Min Sketch
size Nh×Ns, Time interval Tint

Output: f lag (true if potential heavy hitters are identified in Tint , false
otherwise)

1 ε ← 1/Ns

2 Function StoreFlowsInSampleList:
3 |Si| ← 0
4 f lag← false
5 while currentTime ∈ Tint do
6 for Each packet belonging to flow x∼ (srcIPx,dstIPx) received do
7 |Si| ← |Si|+1
8 if f̂x ≥ min and f̂x ≥ (WθH+ε)|Si|

K then
9 SampleListi(x)← f̂x

10 Function PotentialHHsDetection:
11 if currentTime = End time of Tint then
12 for Each flow x in SampleListi do
13 if f̂x <

(WθH+ε)|Si|
K then

14 SampleListi.remove(x)

15 if SampleList(x)≥ (WθH + ε)|Si| then
16 f lag← true

17 return f lag

|Si| is the final stored value. This means that the algorithm keeps in the sample list
only those flows which have packet counts larger than the final sampling threshold,
while discarding the flows with packet counts greater than the temporary threshold
dynamically computed and updated within the time interval. Note that the sample
list stores at most K

(WθH+ε) flows, and thus its memory occupation increases as K
increase or W decrease, as already discussed.

Finally, the algorithm evaluates whether potential heavy hitters cross the switch.
They are the flows whose packet counts are greater than the switch local threshold,
set as (WθH + ε)|Si|. A true flag is sent to the controller if at least one poten-
tial heavy hitter is detected, otherwise no information is sent (Lines 15-17). Note
that local threshold and sampling threshold are similar: with respect to sampling
threshold, local threshold just misses in its definition K, which has been introduced
to set the size of the sample list. The primary role of W is instead to set the propor-
tion (or ratio) between the local threshold (WθH + ε)|Si| and the global threshold
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θH |S|tot , being Si a local (and smaller) value than |S|tot .

4.3.3 Algorithm in centralized controller (Control plane)

At the end of the time interval Tint , once the controller receives from programmable
switches any report including a true flag, it polls all of them to obtain their sample
lists. Note that different sample lists can include the estimated packet count for
the same flows: this happens if a flow crosses multiple programmable switches.
To avoid an overestimation of |S|tot , Algorithm 4 makes sure that (i) only the
minimum-estimated packet count is kept, i.e., the one less overestimated by Count-
Min Sketch, and (ii) it is stored in a list (i.e., GlobalSampleList) including all dis-
tinct flows from sample lists (Lines 2-8). The algorithm then sums up the packet
counts for all the identified distinct flows and estimates the whole network vol-
ume |S|tot (Lines 9-12). If packet counts of flows belonging to GlobalSampleList
(which surely includes the potential heavy hitters) are larger than the global thresh-
old θH |S|tot , we consider them as network-wide heavy hitters HH (Lines 13-17).
At last, the controller triggers the reset of counters in all programmable switches.

4.3.4 Implementation in P4 language

Programmable switches (Data plane)

We have implemented our prototype of algorithm in P4, leveraging the P4 be-
havioral model [13] to describe the behavior of P4 switches (e.g., parsers, tables,
actions, ingress and egress in the P4 pipeline). The source code is available at
[16]. In P4-enabled switches, registers are stateful memories whose values can be
read and written [18]. We first allocate a one-sized register Si to count the overall
number of packets in the given time interval Tint . When each packet arrives at the
switch, the value in this register is incremented by one.

Moreover, we allocated several one-dimensional registers for Count-Min Sketch
implementation. We chose xxhash [46] to implement the needed pairwise-independent
hash functions by varying the seed of each hash function, which is associated to a
different register. In our case, the seed is set to be the same value as the index of
each register. In the Count-Min Sketch Update operation, each register relies on its
corresponding hash function, which takes as input x ∼(srcIP,dstIP), to obtain
as output the index of the register cell whose value must be incremented by one.

To perform the Query operation on the Count-Min Sketch, we set a count-min
variable to the queried value obtained from the first register, which is associated to
the first hash function. Consequently, the queried value for the remaining registers
is compared with count-min. If the queried value for a register is smaller than
current count-min value, then count-min is updated accordingly. Its final value is
thus the packet count estimation count-min = f̂x for the queried flow x.

One of the drawbacks of P4 language is that it does not allow variable-sized
lists, as sample list is. We thus used three same-sized registers, named sam-
plelist_src, samplelist_dst and samplelist_count to implement the sample list and
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Algorithm 4: Network-wide heavy-hitter detection algorithm - Cen-
tralized controller (Control plane)

Input: Heavy-hitter identification fraction θH , Time interval Tint , Sample
lists SampleListi from all programmable switches i ∈P

Output: Set of network-wide heavy hitters HH in Tint

1 Function RetrieveDistinctFlowsPacketCounts:
2 for Each switch i ∈P do
3 for Each flow x in SampleListi do
4 if flow x is in GlobalSampleList then
5 if SampleListi(x)< GlobalSampleList(x) then
6 GlobalSampleList(x)← SampleListi(x)

7 else
8 GlobalSampleList(x)← SampleListi(x)

9 Function EstimateVolume:
10 |S|tot ← 0
11 for Each flow x in GlobalSampleList do
12 |S|tot ← |S|tot +GlobalSampleList(x)

13 Function GetNetworkWideHH:
14 for Each flow x in GlobalSampleList do
15 if GlobalSampleList(x)≥ θH |S|tot then
16 HH.add(x)

17 return HH

to store srcIP, dstIP and packet count of flows, respectively. Information on flow
keys (srcIP,dstIP) associated to significant packet counts is stored in these reg-
isters. Since P4 language does not support for loops to find the flows with smallest
packet count in the sample list to be replaced, the hash function CRC32 is used to
decide whether to replace list’s entries.

When the stored count-min value is larger than both the pre-set minimum value
min and sampling threshold (WθH+ε)|Si|

K (where the value of Si is read from register
Si), the algorithm hashes the flow key (srcIP,dstIP) using CRC32 hash function
and checks whether the sample list register cells indexed by the output value of
CRC32 are empty or not. If they are empty, srcIP, dstIP and packet count are
added to sample list registers in the same indexed position. Otherwise, the switch
compares the current estimated packet count f̂x with stored packet count f̂y (from
the generic stored flow y) in samplelist_count. If the current packet count f̂x is
larger than existing packet count f̂y, the algorithm replaces srcIP, dstIP and packet
count to new values from flow x. Additionally, if packet count f̂x is larger than
current largest value max stored in the register count_max, max is replaced by f̂x.
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Table 4.2: Simulation parameters
Time interval Tint 5s [93]
Sampling rate K 10

Local ratio W 3
Heavy-hitter identification fraction θH 0.05% [93]

Local minimum min 1
Count-Min Sketch size (Nh×Ns) 40×10000

Using the P4 behavioral model, ingress_global_timestamp allows to record the
timestamp when the switch starts processing the incoming packet. Hence, when
ingress_global_timestamp is larger than current time interval Tint end time, and
max in the register count_max is larger than current local threshold (WθH + ε)|Si|,
the switch clones the current packet and embeds a customized one-field header
including the field Flag with binary value 1. This cloned packet is sent to the
controller to report that a potential (and local) heavy hitter exists, while the original
packet is forwarded to the expected destination.

Centralized controller (Control plane)

We implemented a preliminary version of the centralized controller in Python. The
controller can read the registers in the switches by using the simple_switch_CLI
offered by the P4 behavioral model. If the controller receives packets from P4
switches at the end of time interval Tint , it gathers the registers samplelist_src, sam-
plelist_dst and samplelist_count from P4 switches and merges them into a global
sample list. Finally, according to the heavy-hitter global threshold θH |S|tot , the
controller is able to detect network-wide heavy hitters. Finally, the controller re-
sets all registers in P4 switches and starts a new round of heavy-hitter detection.

4.4 An algorithm for the incremental deployment of pro-
grammable switches

In this section we propose a novel algorithm for the incremental upgrade of a legacy
infrastructure with programmable switches, which aims at ensuring good network
monitoring performance, as discussed in Section 4.4.1.

4.4.1 Hints for improved monitoring performance with limited flow
visibility

When only a limited number of programmable switches can be deployed in an ISP
network, the network operator must ensure that they are deployed in such a way it
is made the best use of them in terms of monitoring performance, measured as we
will explain later by F1 score. Fig. 4.3 shows the results of a simple test: we simu-
lated an ISP topology of 100 nodes [70] with real traffic, and we evaluated the F1
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Figure 4.3: F1 score of Harrison’s heavy-hitter detection strategy with single
programmable-switch deployment
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Figure 4.4: Number of distinct flows crossing each switch

score of an existing threshold-based network-wide heavy-hitter detection strategy,
proposed by Harrison et al. [69] (see Section 4.5 for more details on simulation set-
tings and evaluated metrics) when only one legacy switch/router2 is replaced with
a programmable switch. The graph shows all the 100 possible deployments. What
we can see is that the F1 score (i) is in all cases low but (ii) substantially varies
depending on the placement position of the programmable switch. Consideration
(i) comes from the fact that by replacing only one switch the flow visibility is very
low, since only heavy hitters crossing such switch can be detected, while (ii) proves
that how we deploy programmable switches in the network is a fundamental aspect
to ensure good monitoring performance with limited flow visibility.

Our intuition is that, when deploying a single programmable switch, an effec-
tive strategy is to replace the one crossed by the highest number of distinct flows.

2In the remainder of this chapter, we will use the generic term legacy device to generically refer
to legacy switches or routers. In fact, programmable switches can support both Layer-2 and Layer-3
functionalities.
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This is because the highest the number of monitored flows is, the highest (on aver-
age) the chance of monitoring some heavy hitters is. This consideration holds also
for any other flow-based network-wide monitoring algorithm (e.g. heavy changes
detection [89], network traffic entropy estimation [93], etc.), whose analysis is
however out of the scope of this chapter. Fig. 4.4 shows the number of distinct
flows crossing each one of the switches in the given time interval. Two observa-
tions can be made: (i) if a switch crossed by a few number of distinct flows is
replaced, it is highly probable that it cannot detect any heavy hitters (i.e., F1 score
is often zero); (ii) a (weak) correlation between F1 score and number of monitored
distinct flows indeed exists. For example, replacing the switch with ID 44 leads
to the highest F1 score, and the same switch is one of the switches crossed by the
highest number of distinct flows. However, the network-wide heavy-hitter detec-
tion strategy proposed in [69] has not been explicitly designed to best exploit the
available information on switches’ monitored distinct flows, unlike our proposed
strategy (see Section 4.3), so correlation between F1 score and number of distinct
flows is small.

The same considerations can be made when more than one programmable
switches have to be deployed in the network. In this case, it must be ensured that
the subset of programmable switches to be deployed monitors the highest number
of distinct flows overall (i.e., neglecting duplications): this guarantees satisfactory
performance in the execution of monitoring tasks such as heavy-hitter detection.
The considerations and intuitions discussed in this section have thus guided us in
the design of our algorithm for incremental deployment of programmable switches,
shown in Section 4.4.

4.4.2 Problem definition

Our problem of incremental deployment of programmable switches can be formal-
ized in the following way.
Given:

• An ISP network topology of a legacy network infrastructure G = (N ,L ),
where N is the set of legacy devices and L the set of interconnection links;

• A long-term estimation of the transmitted packets in the network between
different sources and destinations (i.e., traffic matrix T ), including their rout-
ing paths and possible re-routing paths in case of failures. From this informa-
tion it is possible to retrieve the estimated packet stream Ti for each switch
i ∈N . Note that, unlike in intra data-center scenarios, traffic distribution
in ISP networks is much less dynamic, being routes prevalence and persis-
tence increasing over time [45]. For this reason, it is possible to estimate a
reasonable traffic matrix T using historical data;

• A number P ≤ |N | of legacy devices to be replaced with programmable
switches;
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Algorithm 5: Incremental deployment algorithm
Input: Long-term traffic statistics T , Network topology G , Number of

legacy devices P to be replaced
Output: Set of legacy devices P to be replaced

1 max← 0, P ← {}, n̂← 0;
2 n̂pre ← 0, T pre← {}, key← empty;
3 for Each legacy device i ∈N carrying traffic Ti do
4 n̂← Hll (Ti);
5 if n̂ > max then
6 max← n̂
7 key← i

8 P.add(key)
9 if P > 1 then

10 n̂pre ← max
11 T pre ← Tkey
12 while P.size()≤ P do
13 for Each switch i ∈N \P carrying traffic Ti do
14 n̂← Hll(T pre∪Ti)
15 if n̂ > max then
16 max← n̂
17 key← i

18 P.add(key)
19 n̂pre ← max
20 T pre← T pre∪Tkey

21 return P

Replace a subset of P (such that P= |P|) of legacy devices with programmable
switches with the goal of monitoring the highest number of distinct flows in the net-
work and in an incremental way. This means that it must be assured that any subset
of programmable switches Z (with |Z | ≤ P) that have been already deployed in
the network as intermediate step, monitors the highest number of distinct flows as
well.

4.4.3 Incremental deployment algorithm

As we mentioned above, HyperLogLog has good performance on estimating the
distinct flows from an union of packet streams, so we use it to estimate the num-
ber of distinct flows passing through a set of legacy devices [26]. The pseudo
code of our proposed algorithm is shown in Algorithm 5. To place the first pro-
grammable switch, we compute the estimated number of distinct flows n̂ carried
by each of the i ∈N legacy devices using the HyperLogLog algorithm. The input
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of HyperLogLog, for each device i ∈N , is Ti. For the replacement with a pro-
grammable switch, the algorithm selects the legacy device crossed by the highest
number (max) of distinct flows (Lines 4-7). Such legacy device is added to P .
Once the first legacy device has been replaced, the principle to replace any other
legacy device consists in progressively finding the one that, if replaced, allows to
overall monitor the highest number of distinct flows in the network. The choice
must be carefully taken, since different devices may be crossed by the same flows,
and thus some flow information can be duplicated. To do so, we exploit the union
property of HyperLogLog (Line 14), recalled in Section 4.2. As shown in Lines
10-21, the algorithm estimates the number of monitored distinct flows n̂pre coming
from the union of packet streams (i) of all the previously-upgraded programmable
switches (T pre) and (ii) of any legacy device i ∈N \P still in the network (Ti).
Then, the algorithm selects for replacement (and thus addition to set P) the legacy
device i leading to the largest number of monitored distinct flows overall (max).
This operation is iterated until a number P = |P| of legacy switches has been re-
placed. Once the set P has been defined, the network operator can proceed with
the physical replacement of the legacy devices with programmable switches, while
ensuring interoperability in a hybrid environment [119]. Note that our incremental
deployment algorithm focuses on the replacement of switches instead of new ad-
ditions to the network. In fact, adding new switches may imply changes to routing
and flow statistics alteration, making our algorithm ineffective.

4.5 Simulation results

Based on open source implementation of Count-Min Sketch [25], we implemented
our incremental deployment algorithm and we simulated both our and Harrison’s
[69] network-wide heavy-hitter detection strategies in Python. In the following the
simulation settings are reported.

4.5.1 Simulation settings and evaluation metrics

Traces and network topology

We divided 50 seconds 2018-passive CAIDA flow trace [3] into 10 time intervals.
The programmable switches send reports to the controller when they detect poten-
tial heavy hitters at the end of any of those time intervals: in each time interval
are transmitted around 2.3 million packets. As testing topology, we adopted a
100-nodes ISP backbone network [30]: adjacency matrix and plotted topology are
available in [16]. A 32-bit cyclic redundancy check (CRC) [43] function was used
to randomly assign each packet (characterized by a specific (srcIP,dstIP) pair)
to a source/destination node couple in the network, and each packet is routed on
the shortest path.
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Tuning parameters

Unless otherwise specified, we set the simulation parameters as reported in Table
4.2. For HyperLogLog, we considered m = 212 because it leads to small-enough
relative errors for our purposes (see Section 4.2). We then chose Tint and θH as per
[93] and a Count-Min Sketch with size Nh = 40 × Ns = 10000. Considering that
each counter in Count-Min Sketch occupies 4 Bytes, the memory to be allocated
for the sketch in each switch can be quantified as 10000 · 40 · 4B = 1.6MB. Since
the total memory of a real programmable switch chip (i.e., Barefoot Tofino [2])
is few tens of MB [109], it may be a reasonable size for a real large-scale ISP
network scenario. However, in the following we will give a sensitivity analysis
of monitoring performance with respect to Ns and Nh, analyzing what happens
if more stringent memory requirements arise in the switch. Moreover, we chose
W = 3 and K = 10 after a rigorous sensitivity analysis since, as will be shown
later, these values lead, for the considered network topology, to the best trade-off
between communication overhead, occupied memory and F1 score (i.e., they allow
to overcome state-of-the-art performance for all the considered metrics).

Metrics

We set recall R and precision Pr as key metrics to evaluate our network-wide
heavy-hitter detection strategy. They are defined in the following way:

R =
Countdetected/true

HeavyHitters

Countdetected/true
HeavyHitters +Countundetected/true

HeavyHitters

(4.1)

Pr =
Countdetected/true

HeavyHitters

Countdetected/true
HeavyHitters +Countdetected/ f alse

HeavyHitters

(4.2)

In our evaluations, we consider F1 score (F1) as compact metric taking into con-
sideration both precision and recall, and measuring the accuracy of our strategy. It
is defined as:

F1 =
2 ·Pr ·R
Pr+R

(4.3)

Additionally, we consider each {flow key, packet count} pair as unit to evaluate
both consumed communication overhead (when sent) and overall occupied mem-
ory (when stored in programmable switches). We consider as unit also flags sent
by programmable switches to controller for local heavy-hitter notification3. All the
reported results are the average value obtained in the considered 10 time intervals.
We did not include the Count-Min Sketch size in the evaluated occupied mem-
ory, since it is constant: Table 4.5 gives an insight on Count-Min Sketch memory
occupation for some sketch sizes, including Nh = 40×Ns = 10000.

3In real scenarios, each flag can be encoded by one bit, while {flow key, packet count} pairs
require few bytes to be encoded. However, we consider both of them as a single unit for the purpose
of easier quantification.
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Table 4.3: Sensitivity to W in the case of full deployment (K = 10)

Evaluated metrics SOTA
NWHHD+

W=1 W=3 W=5 W=20
F1 score 0.821 0.948 0.907 0.881 0.823

Communication
overhead

71877 131707 60354 41076 13898

Occupied memory 760042 131608 60255 40977 13799

Table 4.4: Sensitivity to K in the case of full deployment (W = 1)

Evaluated metrics SOTA
NWHHD+

K=1.2 K=10 K=20 K=100
F1 score 0.821 0.846 0.948 0.970 0.998

Communication
overhead

71877 24760 131707 218370 570956

Occupied memory 760042 24661 131608 218264 570875

4.5.2 Evaluation of the network-wide heavy-hitter detection strategy
in a full deployment scenario

We evaluate NWHHD+ strategy against SOTA also in a full deployment scenario,
i.e., when all the legacy devices have been replaced with programmable switches.
In NWHHD+, we have introduced two parameters, i.e., ratio W and sampling rate
K, which allow network operators to explore the trade-off between F1 score, com-
munication overhead and memory occupation. Tables 4.3 and 4.4 show the sensi-
tivity of NWHHD+ to W and K, and a performance comparison with SOTA. Note
that, in the two tables, the columns related to W = 1 and K = 10 report results for
the same settings we used in previous subsections on partial deployment, showing
(as expected) a much higher F1 score and lower memory consumption than SOTA,
but greater communication overhead. The tables also show that by properly tun-
ing W and K it is possible to get a desired performance trade-off among F1 score,
communication overhead and memory occupation.

As shown in Table 4.3, an increase of W leads to a decrease in the sample
list size, which means that less {flow key, packet count} pairs are reported to the
controller when the switches are polled (i.e., less communication overhead). Ad-
ditionally, a decrease in the sample list size means that less memory is occupied
in the switches. Intuitively, as side effect, the detection accuracy is affected (i.e.,
lower F1 score). Table 4.3 also shows that with W = 20, NWHHD+ and SOTA
have comparable F1 score, but NWHHD+ leads to a significant reduction of both
memory occupation and communication overhead.

Similar results can be obtained by properly tuning K (Table 4.4). An increase of
K leads to a smaller sample list and, consequently, to less memory consumption.
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Moreover, communication overhead is also reduced, because less information is
sent when the switches are polled by the controller. Also in this case, with K = 1.2,
NWHHD+ and SOTA have similar F1 score, but NWHHD+ considerably reduces
communication overhead and memory occupation.

Note that such a tuning of W and K leads to analogous trends also in the case
of partial deployment, but we omit a quantitative evaluation for the sake of con-
ciseness.
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Figure 4.5: Performance comparison of NWHHD+ with a state-of-the-art strategy
[69]

4.5.3 Evaluation of the incremental deployment algorithm

We compare our Incremental deployment algorithm, where programmable switches
are used for the detection of network-wide heavy hitters, with four existing algo-
rithms: Highest volume, Highest closeness, Highest betweenness and Random lo-
cations. The Highest volume algorithm exploits long-term flow statistics to replace
first the switches overall crossed by the largest number of packets. In the Highest
closeness algorithm, the switches are ordered according to decreasing closeness,
and in a partial deployment of P programmable switches only the top P switches in
the list are replaced [101]. The Highest betweenness algorithm behaves in the same
way, but betweenness of nodes [99] is evaluated instead of closeness. Both of these
algorithms only depend on the network topology, and their underlying assumption
is that nodes with highest centrality should be replaced first. Finally, the Random
locations algorithm replaces P randomly-selected nodes: we average results over
five randomized instances.

As shown in Fig. 4.5, which reports F1 score as a function of the number of de-
ployed programmable switches, our Incremental deployment algorithm allows net-
work operators to deploy a less number of programmable switches while ensuring
the same F1 score of the other algorithms. It especially works well when a small
number of programmable switches is deployed (i.e., for less than 50 switches),
while it has comparable performance as the other algorithms when more than half
programmable switches are deployed. This means that our strategy of first replac-
ing switches that monitor the highest number of distinct flows effectively improves
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Figure 4.6: F1 score of NWHHD+ with single-programmable-switch deployment

flow visibility when it is inherently limited, also with respect to a strategy defined
on the same long-term flow statistics (i.e., Highest volume algorithm). In fact,
this latter strategy misses to consider that switches could carry many packets be-
longing to a multitude of small flows, and network-wide heavy hitters may remain
undetected.
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Figure 4.7: Sensitivity analysis of sampling rate K in NWHHD+ (W = 3)

4.5.4 Evaluation of the network-wide heavy-hitter detection strategy
in an incremental deployment scenario

We compare the performance of our proposed network-wide heavy-hitter detection
strategy, named NWHHD+ for the sake of brevity, with the state-of-the-art strategy
(called SOTA in the remainder of the section) proposed by Harrison et al. [69].
In order to fairly compare these two strategies, we set the global threshold for
SOTA to Tg = dθH |S|tot , where d is the average path length for the flows in all the
time intervals, θH is fraction for heavy-hitter identification, and |S|tot is the whole
network volume. Smoothing parameter is α = 0.8 as per [69].

Figure 4.5(a) shows that NWHHD+, when deploying programmable switches
using our incremental deployment algorithm, always leads to higher F1 score than
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Figure 4.8: Sensitivity analysis of local ratio W in NWHHD+ (K = 10)
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Figure 4.9: Sensitivity analysis of hash function output size Ns in NWHHD+ (W =
3 and K = 10)
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Figure 4.10: Sensitivity analysis of number of hash functions Nh in NWHHD+
(W = 3 and K = 10)

SOTA, especially when the number of programmable switches in the network is
small. This means that NWHHD+ better exploits partial flow information provided
by the programmable switches to detect the network-wide heavy hitters.

Figure 4.5(b) shows instead a comparison on the average-generated commu-
nication overhead. It clearly shows that NWHHD+ has a comparable communi-
cation overhead as SOTA, and NWHHD+ leads to less communication overhead
than SOTA as the number of programmable switches increases. In NWHHD+, if
at least one local heavy hitter is identified in a given time interval (as always hap-
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Figure 4.11: Impact of ε in NWHHD+ (W = 3 and K = 10)

pens in our simulations), at the end of it the controller polls all the programmable
switches to estimate the global network volume. Such an approach may cause
high communication overhead, but by properly tuning W (as shown later) the local
threshold can be increased, significantly reducing communication exchanges be-
tween switches and controller. Conversely, the SOTA strategy coarsely estimates
the overall network volume at the controller and polls the programmable switches
only if the estimated value is above the defined global threshold.

Figure 4.5(c) shows the average occupied memory by the two strategies. NWHHD+
outperforms SOTA, always occupying much less memory. This happens because
NWHHD+ only stores (i) the sample list (and not all the {flow key, packet count}
pairs, as SOTA does) and (ii) one local threshold for all the flows in each pro-
grammable switch (while SOTA stores per-flow local thresholds).

Note that unlike SOTA, as can be noticed from all the graphs of this section,
NWHHD+ leads to very similar communication overhead and memory occupation
results. In fact, communication overhead units in NWHHD+ are equal to {flow
key, packet count} pair units stored in the switches sample lists, since such lists
from all programmable switches are sent to the controller at the end of any time
interval in which at least a local heavy hitter has been detected, plus the number
of flags reported by programmable switches to controller to notify the existence
of local heavy hitters. This means that the unit difference between communication
overhead and memory occupation is at most the number of deployed programmable
switches, and this small value cannot be noticed on the graphs.

Additionally, Fig. 4.6 recalls the simple test described in Section 4.4.1. What
we report in the figure is F1 score for all the possible 100 deployments for the
programmable switch when NWHHD+ is adopted. Compared to Fig. 4.3, we can
see that the F1 score is generally higher in NWHHD+ (as already discussed), and
that in most of the cases the peaks in F1 score correspond to IDs of switches that
are crossed by a high number of distinct flows (see Fig. 4.4). This means that
NWHHD+ better exploits the distinct flows information than SOTA. This can be
even further proven by computing the normalized cross-correlation in τ = 0 [115]
between the number of distinct flows and F1 score, which is 13.11 for NWHHD+
and 6.57 for SOTA.
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Table 4.5: Count-Min Sketch size and its memory occupation
Nh×Ns Memory occ. Nh×Ns Memory occ.

40×10000 1.6MB 10×2000 80KB
10×100 4KB 10×5000 200KB
4×2000 32KB 40×2000 320KB

In order to show how the performance of NWHHD+ is sensitive to different
tuning parameters, we ran simulations by varying the following parameters one at
a time, while fixing the others to the values specified in Table 4.2.

Sensitivity to sampling rate K

Figure 4.7 shows the sensitivity analysis of NWHHD+ performance on sampling
rate K. As shown in Figure 4.7(a), when K increases, F1 score increases as well,
especially from K = 10 to K = 100. Figure 4.7(b) shows that also communica-
tion overhead significantly increases as K increases, as well as occupied memory
(Figure 4.7(c)). The reason is that an increase of K leads to a smaller sampling
threshold and thus to a bigger sample list to be stored and sent to the controller.
In summary, choosing a larger K leads to a performance improvement on heavy-
hitter detection, but implies an extra consumption of memory and communication
resources. In our case, K = 10 is a good trade-off choice since it leads to compara-
ble F1 score than choosing larger K while using much less memory and generating
much less communication overhead.

Sensitivity to local ratio W

Figure 4.8 shows the sensitivity analysis of NWHHD+ performance on local ratio
W . As shown in Figure 4.8(a), F1 score decreases as W increases, and the dif-
ference of F1 score is substantial between W = 5 and W = 20. Figure 4.8(b) and
Figure 4.8(c) show that both communication overhead and occupied memory also
significantly decrease when W increases. This happens because, opposite to K, an
increase of W leads to a decrease in the sample list size, which means that less
{flow key, packet count} pairs are reported to the controller when the switches are
polled (i.e., less communication overhead) and less memory is also occupied. As
side effect, the detection accuracy is also affected (i.e., lower F1 score). Thus, a
smaller W enhances the performance on heavy-hitter detection, but more memory
and communication overhead are required. According to the shown results, W = 3
leads to a good trade-off among F1 score, communication overhead and memory
occupation.
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Sensitivity to Count-Min Sketch hash function output size Ns

Figure 4.9 shows the sensitivity analysis of NWHHD+ performance on hash func-
tion output size Ns of Count-Min Sketch. For better understanding, we report the
memory occupation of various Count-Min Sketches in Table 4.5. The blue cells
recall the sketch size adopted in this chapter, unless otherwise specified. As shown
in Figure 4.9(a), if the output size is too small (i.e., Ns = 100), Count-Min Sketch
highly overestimates flows packet count and this causes very poor F1 score. By
increasing the value of Ns, F1 score significantly increases until around Ns = 2000.
However, after this value (i.e., for Ns = 10000) F1 score slightly decreases. The
reason of this behavior is that Ns = 2000 leads to a slight overestimation of packet
count for flows stored in sample lists that does not badly affect heavy-hitter detec-
tion. Conversely, such slight overestimation compensates missing packet counts of
small flows that are not stored in those lists, leading to an estimated whole network
volume Stot very close to the real value. This effect makes the controller able to
identify network-wide heavy hitters with a more accurate global threshold, thus
leading to high F1 score.

Figures 4.9(b) and 4.9(c) show that the overestimated packet count due to too
small output size also causes very large-sized and badly-estimated sample lists and
consequently leads to high and unnecessary occupied memory and communication
overhead. While increasing Ns, communication overhead and memory occupation
decrease until a minimum is reached at around Ns = 2000 then, for larger Ns, they
marginally increase. This slight increase is due to the value ε = 1/Ns used in Algo-
rithm 3 for bias compensation in sampling and local thresholds (see Section 4.3.2).
The effectiveness of introducing ε in our strategy is shown in Figure 4.11: consid-
ering ε in the computation of sampling and local thresholds not only increases F1
score, but also decreases communication overhead and memory occupation. On
the other hand, considering ε = 1/Ns also means that Ns directly affects the value
of sampling threshold (WθH+ε)|Si|

K and local threshold (WθH + ε)|Si|. If the output
size Ns is larger, ε is smaller: this leads to smaller sampling and local thresholds.
A smaller sampling threshold generates a larger sample list to be stored and sent to
the controller (i.e., higher communication overhead and occupied memory). Con-
versely, having a smaller Ns leads to less communication overhead and occupied
memory, and this explains why lower Ns (but not too small, where overestimation
dominates) generates lower communication overhead and requires less memory
than sketches with larger output size.

Sensitivity to number of Count-Min Sketch hash functions Nh

Figure 4.10 shows the sensitivity analysis of NWHHD+ performance on number
of hash functions Nh of Count-Min Sketch. As shown in Figure 4.10(a), F1 score
increases as the number of hash functions Nh increases. Nevertheless, when Nh
is large enough to correctly estimating flow packet counts, further increasing it
does not improve heavy-hitter detection performance anymore. Figures 4.10(b) and
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4.10(c) show that communication overhead and memory occupation decrease as
the number of hash function Nh increases. Especially, if Nh is too small, wrongly-
estimated flow packet counts lead to high communication overhead and memory
consumption. Finally, note that sketch sizes of 10× 2000 and 40× 2000 both lead
to better results than sketch size of 40 × 10000. This happens because, as shown
previously, a too large Ns has bad impact on NWHHD+ performance: results thus
show that NWHDD+ is more sensitive to variations to Ns than to Nh.

4.6 Evaluation in emulated P4 environment

Based on an open source P4 implementation of Count-Min Sketch [14], we imple-
mented both our network-wide heavy-hitter detection (i.e., NWHHD+) and Harri-
son’s (i.e., SOTA) strategies in P4 language and tested them. In the following, we
report some details on the emulated network environment.

4.6.1 Environment settings and evaluation metrics

Emulated network environment

We chose Mininet [8] as our emulated network environment for the deployment of
P4 switches implementing the network-wide heavy-hitter strategies. The P4 code
is compiled by p4c compiler [19] into a JSON file that describes the behavior of P4
switch (i.e., parser, tables and actions in the P4 pipeline). Then, the JSON file is
loaded by any P4 switch created according to the behavioral model [13]. Finally,
a topology in Mininet is created connecting such behavior-defined P4 switches.
The adopted topology is composed by three interconnected switches, and there is
a host connected to each switch. All the packets are forwarded from source host
to destination host on the shortest path. We did not consider a larger topology for
scalability reasons, since all the P4 switches are emulated on a virtual machine
deployed by OpenStack on our testbed with dedicated access to 4 × 2.7GHz CPU
cores and to 4GB of RAM. However, given the nature of the performed tests, as we
will show later, this does not represent a limitation. The controller is implemented
in Python as we explained in Section 4.3.4.

Tuning parameters

We used the same settings as our simulations in Python shown in Table 4.2, unless
otherwise specified. Additionally, we set the size of register Si to 1 and all the
remaining registers but Count-Min Sketch (e.g., sample list) to 100. Count-Min
Sketch registers size is set to Ns.

Metrics

We evaluate NWHHD+ performance in terms of packet processing time. We be-
lieve that packet processing time is an important metric to evaluate, since it dis-
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(a) Comparison with SOTA and simple forwarding

(b) Sensitivity to output size of hash functions Ns

(c) Sensitivity to number of hash functions Nh

Figure 4.12: Cumulative distribution function of packet processing time for
NWHDD+ (10000 packets)

closes whether the algorithm implemented in the P4 pipeline performs well or not
and whether it can be used for line-rate transmissions. We used Wireshark to cap-
ture the time when each packet arrives at an input interface of a P4 switch and
the time when it is forwarded by an output interface of the same switch. The
packet processing time is defined as the difference between such times and esti-
mates the time spent by the packet in the P4 switch pipeline. We also implemented
a simple forwarding strategy, where no heavy-hitter detection (neither SOTA nor
NWHHD+) is performed and the packet is just forwarded to the right output inter-
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face.
As additional metric, we also evaluate the controller response time. This met-

ric represents the time overhead generated in the interaction between data plane
and control plane for the identification of heavy hitters.To measure such response
time, we captured the following timestamps at the controller: (i) the timestamp re-
lated to the first true-flag packet that arrives at the controller, meaning that at least
one potential heavy-hitter exists in the network and (ii) the timestamp when any
network-wide heavy hitter has been detected (if it exists). The response time is
then defined as the difference between the latter and the former timestamps.

4.6.2 Evaluation of packet processing time

Figure 4.12 reports the cumulative distribution function of packet processing time
measured for 10000 generated packets. As shown in Figure 4.12(a), both NWHHD+
and SOTA strategies lead to more packet processing time than simple forward-
ing, since more operations need to be performed on the packet. However, 50% of
the packets can be processed within 1500 µs in the switch when the Count-Min
Sketch size is set to Nh×Ns = 10× 2000. Since our strategy has more read and
write actions in the additional registers (e.g., sample list) than SOTA, SOTA leads
to slightly lower processing times. Increasing the output size Ns (up to a certain
threshold) and the number of hash functions Nh can improve F1 score for heavy-
hitter detection as shown in Figures 4.9 and 4.10, but this also has some impact on
packet processing time in P4 switches. Figure 4.12(b) shows how Ns affects packet
processing time: it slightly increases as Ns increases significantly. This happens
because a higher Ns requires a hash function performing more lookups to obtain
the output value. Figure 4.12(c) shows instead the impact of Nh: results clearly
show that increasing the number of hash functions Nh has a more impacting effect
on packet processing time than increasing the output size of hash functions Ns.

These evaluations confirm that the size of Count-Min Sketches implemented
in the data plane must be carefully defined. In fact, an increase in Nh improves
monitoring performance (see Figure 4.10) but requires larger packet processing
time. Moreover, by also referring to Figure 4.9, correctly dimensioning Ns is of
paramount importance to avoid both large packet processing time and F1 score
reduction. Finally, note also that packet processing times shown in this section
(i.e., in the order of few ms) include the time needed to cross several virtualized
layers in the single-node emulated environment. In real carrier-grade hardware
(e.g. Barefoot Tofino, with throughput in the order of 6.5 Tb/s or more [2]), packet
processing time is expected to be several orders of magnitude lower (i.e., in the
order of ns or few µs).

4.6.3 Evaluation of the controller response time

For each different time interval size, we measured the response time in 10 intervals
and computed the average response time. Table 4.6 shows the average response
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Table 4.6: Average controller response time
Time interval Tint 5s 10s 15s 20s

Response time 1.4488s 1.4542s 1.4656s 1.5036s

time. It is around 1.5 s and slightly increases while increasing Tint , since more data
needs to be processed for longer time intervals. These results mean that network-
wide heavy hitters are detected in average 1.5s after that the controller receives
the first flag from any switch identifying a potential heavy hitters. Note that this
time depends on the computational capacity of the controller, so we expect it to
be even smaller while adopting carrier-grade hardware for the controller in real
deployments. Moreover, we do not include in the evaluated response time the re-
trieval time of the flag messages from the programmable switches, which strongly
depends on where the controller is placed and is at most in the order of few tens of
ms [112] (i.e., negligible with respect to the controller response time).

4.7 Related work

4.7.1 Network-wide heavy-hitter detection in programmable data planes

In the last years, many strategies have been proposed to monitor heavy hitters di-
rectly in the data plane by exploiting the flexibility of programmable switches.
Some among them are OpenSketch [134], UnivMon [93], Elastic Skecth [132],
FlowRadar [89] , SketchVisor [74], NitroSketch [92], SketchLearn [76] and Hash-
Pipe [113]. However, they only focused on heavy-hitter detection at a single SDN
switch, but this is not enough for heavy-hitter detection in large networks, since
some heavy hitters may be undetected or wrongly detected by relying on limited
information at a single location.

Thus, the concept of network-wide heavy hitter has been introduced in litera-
ture [49][95][133][75]. A network-wide heavy hitter uses distributed information,
which can be made available by programmable switches, to accurately and effec-
tively monitor heavy hitters from a global perspective. Harrison et al. [69] and
Basat et al. [36] have proposed two different strategies to monitor network-wide
heavy hitters. In Harrison’s strategy [69], at the end of each time interval, if any
heavy hitter has been detected through a local threshold-based mechanism in P4-
enabled switches, the controller polls the programmable switches and uses a differ-
ent (global) threshold-based mechanism to decide whether local heavy hitters are
network-wide heavy hitters or not. However, in their strategy, packets belonging
to the same flow are counted multiple times by different switches, and this dupli-
cated information is not discarded by the controller while estimating network-wide
heavy hitters: for this reason, it is very difficult to correctly set the global threshold.
Basat’s work [36] provides a solid method for network-wide heavy-hitter detection
by using a data streaming model, but the introduced communication overhead and



4.8. CONCLUDING REMARKS 58

occupied memory are significant. Another key limitation is that the hash functions
needed by their strategy do not exist in practice. Our network-wide heavy-hitter
detection strategy is similar to the one proposed by Harrison et al., but we define
new and more intuitive local and global thresholds and we exploit information on
distinct flows to prevent duplicate counting of packets, thus reducing the commu-
nication overhead and occupied memory in programmable switches and improving
monitoring performance.

4.7.2 Partial deployment of SDN solutions in ISP networks

The appearance of SDN simplifies the network management and enhances the flex-
ibility of the network. However, currently it is not feasible to upgrade all legacy
switches to SDN switches due to the limitation of budgets and operational burdens,
so the current trend for network operators is to deploy a limited number of SDN
switches and make the network best work in a hybrid environment. A good strat-
egy for partial SDN deployment is thus needed to cost-effectively bring benefits
to ISPs. Unfortunately, obtaining the best partial deployment of SDN switches is
a NP-hard problem [72]. In literature, most of the works focus on the problem
of partial deployment of OpenFlow switches [97] in legacy infrastructures, and
either Integer Linear Programming (ILP) [96] or incremental deployment heuris-
tic algorithms [72][129][73][87] have been adopted to solve such problem, focus-
ing on interoperability and routing issues in a hybrid environment while achieving
the best load balancing or maximizing the throughput. Incremental deployment
heuristic strategies are a good approach to solve the problem of partial deploy-
ment, since they aim at iteratively replacing legacy equipment by ensuring local
optimal performance. However, the previous work neither takes into account the
problem of incremental deployment of programmable switches in a legacy infras-
tructure to improve network monitoring performance nor proposes a solution for
topological placement of programmable switches: with our chapter, we try to fill
this gap. Moreover, our solution is inter-operable with other techniques: the raw
data gathered from legacy devices could be used with filtered data collected from
programmable switches for an improved network monitoring.

4.8 Concluding remarks

In this chapter, we proposed a novel network-wide heavy-hitter detection strat-
egy incorporating programmable switches and controller in Software-Defined Net-
works. This strategy has been implemented in P4 language and tested in an em-
ulated environment. We also presented a new greedy algorithm suitable for an
effective incremental deployment of SDN programmable switches in legacy infras-
tructures that aims at monitoring as many distinct network flows as possible. This
algorithm best supports monitoring tasks such as heavy-hitter detection when only
a limited number of legacy devices can be replaced with programmable switches.
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Both the network-wide heavy-hitter detection strategy and the incremental deploy-
ment algorithm were proven to outperform existing approaches. By adopting our
incremental deployment algorithm, network operators can ensure very good mon-
itoring performance by replacing less than half of the legacy devices in the net-
work. Moreover, our network-wide heavy-hitter detection strategy outperforms
an existing approach both when only a limited number of programmable switches
is deployed and when the network is entirely upgraded, since it allows network
operators to strike a balance between heavy-hitter detection accuracy, communi-
cation overhead and occupied memory. As marginal side effect, our strategy has
been shown to lead to slightly more packet processing time in the execution of the
P4 pipeline than the considered state-of-the-art approach. Our heavy-hitter detec-
tion can be built in conjunction with per-flow cardinality-based DDoS detection
presented in Chapter 8 for detection DDoS victims under a large traffic volume
attack.
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In this chapter we study the flow cardinality estimation in programmable data
planes, which can be used to monitor the number of active hosts and distinct flows
in the network. The monitored results can be further used to detect network anoma-
lies, such as DDoS attacks and port scans. We put an emphasis on how number of
distinct flows is estimated in case of a large packet stream in ISP networks.

This chapter is based on the paper "Tracking Normalized Network Traffic En-
tropy to Detect DDoS Attacks in P4" submitted to IEEE Transactions on Depend-
able and Secure Computing (Under review).

5.1 Introduction

Counting the number of different connections is basically identifying the number of
distinct elements (connections) in a set (packets) which has been widely studied.
This problem is also known as flow cardinality estimation and many algorithms
have been proposed over the years. As the number of packets is usually very large
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in the network, programmable switches need a compact data structure to count the
incoming packets to efficiently estimate the number of flows.

To this aim, based on P4-based solutions for the estimation of logarithm (P4Log)
and exponential function (P4Exp) in Chapter 3, we here propose P4LogLog, a
novel memory-efficient strategy that takes inspiration from LogLog algorithm [57]
for the estimation of flow cardinality in P4. P4LogLog can guarantee high accuracy
while ensuring small memory usage.

The main contributions of this chapter include:

• We design a new cardinality estimation approach, named P4LogLOg, which
is built on top of P4Log and P4Exp algorithms presented in Chapter 3

• We implement the prototype of P4LogLog in P4 behavioral model [13], and
such a monitoring task can act as an in-network monitoring task in the pro-
grammable switches

• The results show that P4LogLog can achieve high accuracy of large packet
streams in the network while ensuring small memory usage.

5.2 Basic knowledge and used compact data structure

5.2.1 LogLog algorithm for flow cardinality estimation

LogLog [57] is a sketch-based algorithm that can be adopted to estimate the number
of distinct flows crossing a switch. In brief, it works as follows. Given an incom-
ing packet with flow key i, LogLog applies to i a hash function with output size
os: the resulted os-bit binary string s is denoted by s = {sos−1sos−2 · · ·s0}. LogLog
then updates an m-sized LogLog register Reg. Let bucket be the rightmost k bits
of s (with k = log2 m) and x the remaining bits, i.e., bucket = {sk−1 · · ·s0} and x =
{sos−1 · · ·sk}. Reg is updated following this rule: Reg[bucket] =max(Reg[bucket],value),
where value is the index of the rightmost 1 of x plus one. For instance, x is 1000,
then value is 4. Reg can then be queried to estimate the flow cardinality n̂, which is
computed as n̂ = αmm2

1
m ∑

m−1
bucket=0 Reg[bucket], where αm is a bias correction parameter.

An interesting property of LogLog is that multiple LogLog sketches can be merged
to a single sketch, which can be used to count the flow cardinality of the union of
many packet streams.

5.2.2 Hamming weight computation for LogLog

Hamming weight represents the number of non-zero values in a string. In a binary
string, the Hamming weight indicates the overall number of ones. For example,
given the binary string 01101, the Hamming weight is 3. It can be computed by
means of different algorithms: as part of P4LogLog, in this chapter we adopt the
Counting 1-Bits algorithm presented in [123], as it only relies on bitwise operations
that are completely supported by P4 language [17].
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5.3 Flow cardinality estimation: P4LogLog

In this section, we propose P4LogLog for the estimation of flow cardinality. The
problem is formulated as follows:

Problem definition: Given a stream S of incoming packets, each one belong-
ing to a specific flow i, returns the estimated flow cardinality n̂ of S, i.e., the esti-
mated number of distinct flows in S.

For instance, if we identify as flow key i each packet destination IP, meaning
that a flow includes all the packets towards a specific destination. Then the flow
cardinality of destination IPs represents the number of destination IPs in the net-
work. Same consideration would hold for any other flow definition (e.g. packets
with the same 5-tuple, same source/destination IP pair, etc.) without any loss of
generality. In the following, we report the details of Update and Query operations
of P4LogLog, which both follow specifications from LogLog [57] (see Section
5.2.1) while only using P4-supported instructions. The P4 source codes are avail-
able in [24].

Update

As shown in Algorithm 6, Update function iteratively updates a readable and
writable stateful register Reg for each incoming packet, which belongs to a flow
with flow key i. The flow key i of the packet is hashed by a given hash function,
and the output value is converted to a os-bit binary string s (Line 6). In this chap-
ter, we consider os = 32 and an m-sized register Reg, where m = 2k and integer
k ∈ {4, ...,16} (as per [57]). The index of the register’s cell to be updated, named
bucket (0 ≤ bucket ≤ m− 1), is the binary number represented by the rightmost
k bits of s, which can be obtained by s&(2k− 1), i.e., s&011 · · ·1︸ ︷︷ ︸

k

(Line 7). & is

the bitwise inclusive AND operator and 2k− 1 (in binary) is pre-stored in the P4
program once k is chosen. The algorithm then right-shifts s to k bits to get a binary
string x where the first k bits are 0s and the remaining os−k bits are the first os−k
bits of s (Line 8). The index of rightmost 1 in x, called value, is then used to up-
date the LogLog register’s cell in bucket position. Unfortunately, retrieving such
rightmost 1 is not trivial. As shown from Lines 9 to 12, the algorithm adopts the
following strategy: all bits of x on the left of the rightmost 1 are iteratively con-
verted to 1, and the result of this iterative operation is stored in w ( | is the bitwise
inclusive OR operator). For example, an os-bit binary value x = 00 · · ·01︸ ︷︷ ︸

os−1

0 is con-

verted to w = 11 · · ·11︸ ︷︷ ︸
os−1

0. The algorithm for Hamming weight recalled in Section

5.2.2 is then used to count b, i.e., the number of 1s in x (Line 12): value is equal
to os+1−b (Line 13). Finally, if value is larger than bucket-indexed value in the
register, value replaces the stored value (Lines 14-15).
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Algorithm 6: P4LogLog
Input: Packet stream S
Output: Flow cardinality estimation n̂

1 m← 2k (k ∈ {4, ...,16})
2 os← 32
3 Reg← m-sized empty LogLog register
4 Function Update(Reg):
5 for Each received packet belonging to flow i do
6 s← (Hash(i)→{0,1}os)
7 bucket← s&(2k−1)
8 x← (s� k)
9 w← x|(x� 1)

10 for int l ∈ {1, · · · , log2(os)−1} do
11 w← w|(w� 2l)

12 b← HammingWeight(w)
13 value← os+1−b
14 if value > Reg[bucket] then
15 Reg[bucket]← value

16 return Reg

17 αm← 0.39701� 10
18 Function Query(Reg):
19 exp← P4Exp((∑m−1

bucket=0 Reg[bucket])� k)
20 n̂← (exp ·αm ·m)� 10
21 return n̂

Query

Query function in Algorithm 6 estimates the flow cardinality directly in the switch.
The flow cardinality estimation n̂ is computed as in [57] and Section 5.2.1 from all
LogLog register’s stored values by exploiting P4Exp. The k-bit right-shift opera-
tion carried out on the sum of values from Reg is equivalent to dividing such sum
by m = 2k (Line 19). The floating parameter αm, chosen as in [57], is amplified
210 times through left shift operation, and the resulted value from the computation
executed in Line 20 is right-shifted 10 bits to get the estimated flow cardinality n̂.

5.4 P4LogLog evaluation

We implemented P4LogLog in Python and simulated them for evaluation. The
results are reported in this section.
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Figure 5.1: Performance comparison of P4LogLog with an existing flow cardinal-
ity estimation approach [134]

5.4.1 Evaluation metrics and simulation settings

Testing flow trace and methodology

P4LogLog: We use 2018-passive CAIDA flow trace [3], including 50 seconds of
network traffic, and divide it into 50 1-second time intervals (or observation win-
dows). In each considered time interval there are around 460K packets.

Evaluated metrics

We consider relative error as an evaluation metric.
P4LogLog: Being n the exact number of distinct flows (either identified by source
IP or destination IP as flow key) in a time interval and n̂ its estimated value, the
relative error is defined as the average value of |n−n̂|

n · 100% in all the consecutive
50 time intervals.

Tuning parameters

The default tuning parameters for P4Log and P4Exp, adopted for both P4LogLog,
are set as in Tab. 3.3 of Chapter 3. The sketch (either Count-min or Count Sketch)
used by P4NEntropy has size Nh = 5 × Ns = 2000.

5.4.2 Evaluation of P4LogLog

As shown in Fig. 5.1, we compare our P4LogLog with another existing flow car-
dinality estimator (Linear counting [134]), implementable in a programmable data
planes, in terms of relative error. 1 bit is used for each Linear counting register cell
[124], while 5 bits are allocated for each P4LogLog register cell [57]. Given this,
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we vary the memory size of each register for both the approaches (i.e., we vary the
number of cells in the registers, which can be easily retrieved).

Figure 5.1(a) focuses on the estimation of distinct source IPs in the trace. The
relative error on such flow cardinality estimation by adopting Linear counting is
50% higher than by adopting P4LogLog when the memory size is below 320 bytes,
and its value for Linear counting is high for any memory size below 640 bytes.
Conversely, our P4LogLog leads to acceptable relative errors with only 80 bytes. If
we assign 1280-bytes registers to P4LogLog and Linear counting, the relative error
of both is around 1%. Likewise, Fig. 5.1(b) shows the estimated number of distinct
destination IPs in the trace. Our P4LogLog algorithm still outperforms Linear
counting for small memory sizes. When the memory occupation reaches 640 bytes,
the relative error of P4LogLog is below 3%, which is assumed as acceptable target.

Another solution for flow cardinality estimation is proposed in [93]. However
such a solution always needs much more memory (i.e., at least 0.2MB) than Linear
Counting and P4LogLog to get reasonable accuracy.

5.5 Related work

5.5.1 Flow cardinality estimation for network monitoring

Many cardinality-estimation algorithms have been implemented to be executed in
programmable data planes for the purpose of network monitoring [134][132][93],
often based on linear counting [124]. However, all of them are able to only perform
the update operation directly in the data plane, while the query operation has still
to be executed by the controller. This is because programmable switches do not
support arithmetic operations such as logarithm and exponential function compu-
tation, which are needed for flow cardinality estimation. Conversely, by leveraging
our proposed strategies for logarithm and exponential-function estimation in the
data plane, named P4Log and P4Exp [55], we developed P4LogLog, a flow car-
dinality estimation algorithm that takes inspiration from LogLog [57]. P4LogLog
enables a flow cardinality estimation entirely in programmable switches, where
both update and query operations can be executed in the data plane. Moreover,
our P4LogLog can estimate cardinality with high accuracy while consuming less
memory than existing approaches. Note that HyperLogLog [63] has higher theo-
retical accuracy than LogLog, but it is currently not implementable in P4 language
due to the computation of harmonic mean.

5.6 Concluding remarks

In this chapter, relying on recently-proposed logarithmic and exponential function
estimation solutions, we presented P4LogLog to estimate the number of distinct
flows in the network by only using P4-supported operations. We also evaluated our
proposed approach and compared it with state-of-the-art solutions. Results show
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that P4LogLog has better accuracy than the state of the art especially when memory
availability is small (i.e., smaller than 640 Bytes). The flow cardinality estimation
is necessary for both Chapter 8 per-cardinality-based DDoS detection and Chapter
9 normalized network traffic entropy-based DDoS detection.
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For the purpose of management, network operators need to constantly monitor
the status of the network and ensure that it behaves as intended. Network traffic
distribution is an important indicator to understand the network behavior: the most
widely-used metric to evaluate traffic distribution is entropy. In this chapter, we
leverage the logarithmic and exponential function estimation proposed in Chapter
3 to estimate traffic entropy entirely in the switch data plane.

This chapter is based on the previously published paper "Damu Ding, Marco
Savi, and Domenico Siracusa. "Estimating logarithmic and exponential functions
to track network traffic entropy in P4." NOMS 2020-2020 IEEE/IFIP Network Op-
erations and Management Symposium. IEEE, 2020." [55]

6.1 Introduction

The entropy of flow size indicates the network traffic distribution. A periodical
tracking of this metric helps diagnose performance and security issues, by support-
ing the execution of tasks such as congestion control [78], load balancing [125],
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port-scan detection [67][40], distributed denial-of-service (DDoS) attacks detec-
tion [85][94] and worm detection [120].

As our network traffic entropy estimation strategy relies on the calculation of
logarithm and division, we first used P4Log proposed in Chapter 3 to estimate the
logarithm. Moreover, since division operation A

B can be expressed as 2log2 A−log2 B,
we then adopted P4Exp in conjunction with P4Log for the computation of divi-
sions. Based on these two algorithms, we then present a novel strategy, named
P4Entropy, to disclose network traffic distribution by leveraging Shannon entropy
[110] computation. A prototype of P4Entropy has been implemented in P4 be-
havioral model [13] and has been proven to be fully executable in a P4 emulated
environment.

We then evaluate P4Entropy by means of simulations to show their effective-
ness and their sensitivity to different tuning parameters. Our P4Entropy algorithm
overcomes the limitation of the state-of-the-art benchmark strategy: while the ex-
isting strategy needs to set a fixed observation window on the number of processed
packets to compute network traffic entropy, our approach allows to set as observa-
tion window any time interval, regardless of the number of processed packets. This
is useful in the case estimated entropy values from multiple switches must be sent
to the collector in a synchronized way.

The main contributions of this chapter are as follows:

• Based on proposed P4Log and P4Exp algorithms in Chapter 3, we present
a new network traffic entropy estimation strategy, named P4Entropy, in P4-
programmable data plane

• We implement the prototype of P4Entropy in P4 behavioral model [13],
and such a monitoring task can be entirely executed in the programmable
switches without constraining the number of packets in a given observation
interval.

• The results show that the required memory of our algorithms in the switches
is much smaller than that of the state-of-the-art solution while reaching the
same accuracy.

6.2 Basic knowledge and used compact data structure

6.2.1 Network traffic entropy

Network traffic entropy [84] gives an indication on traffic distribution across the
network. Each network switch can evaluate the traffic entropy related to the net-
work flows that cross it in a given time interval Tint . Relying on the definition of
Shannon entropy [110], network traffic entropy can be defined as H =−∑

n
i=1

fi
|S|tot

logd
fi
|S|tot

,
where fi is the packet count of the incoming flow i, |S|tot is the total number of pro-
cessed packets by the switch during Tint , n is the overall number of distinct flows
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and d is the base of logarithm. Traffic entropy reaches H = 0 when in Tint all pack-
ets |S|tot belong to the same flow i, while it reaches its maximum value H = logd n
when each of the n flows i transports only one packet.

6.2.2 Sketch-based estimation of flow packet count

Estimating the number of packets for a specific flow crossing a programmable
switch ( fi) is fundamental for network traffic entropy computation. Such an es-
timation can be performed by means of sketches [74], which are probabilistic data
structures associated to a set of pairwise-independent hash functions. The size of
each sketch data structure depends on the number of associated hash functions Nh
and on the output size of each function Ns, and is Nh×Ns. Update and Query oper-
ations are used to store and retrieve information from the sketch: Update operation
is responsible for updating the sketch to keep track of flow packet counts, while
Query operation retrieves the estimated number of packets for a specific flow. Two
well-known algorithms to Update and Query sketches are Count-min Sketch [48]
and Count Sketch [44]. A detailed theoretical analysis on the accuracy/memory
occupation trade-off for these sketching algorithms is reported in [48][44]. From a
high-level perspective, as any of Nh and Ns increase, memory consumption is larger
but estimation is more accurate. Count Sketch leads to a better accuracy/memory
consumption trade-off than Count-min Sketch, but its update time is twice slower
[47].

6.3 Network traffic entropy estimation

Based on proposed P4Log and P4Exp algorithms in Chapter 3, we propose a new
strategy, named P4Entropy, to estimate the network traffic entropy entirely in the
programmable switches’ data plane. The prototype of P4Entropy has been imple-
mented in P4 behavioral model [13] and is executable in an emulated environment
as Mininet [8]. The source code is available in [21]. Formally, the problem is
defined as follows.

Problem definition: Given a stream of incoming packets S in a switch and a
time interval Tint , returns Shannon entropy estimation (see Section 6.2.1) at the end
of Tint .

6.3.1 Derivation of estimated entropy in P4

The goal of this section is to provide an estimation of network traffic entropy by
only using P4-supported arithmetic operations and reducing as much as possible
their number. The section also shows how relevant statistics, used for entropy
estimation at the end of Tint , are iteratively updated every time a packet crosses the
switch.
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We first rewrite the Shannon entropy in the following way:

H(|S|tot) =−
n

∑
i=1

fi(|S|tot)

|S|tot
logd

fi(|S|tot)

|S|tot

= logd |S|tot −
1
|S|tot

n

∑
i=1

fi(|S|tot) logd fi(|S|tot)

We consider d = 2 without any loss of generality. With respect to the definition
given in Section 6.2.1, we use the notation fi(|S|tot) to make explicit that fi refers
to its value when |S|tot packets have been received (i.e., at the end of Tint). As
packets arrive in the switch, the overall number of processed packets |S| increases
and must be stored in the switch to ensure that H(|S|tot) can be computed at the
end of Tint , when |S|= |S|tot . We define Sum(|S|) = ∑

n
i=1 fi(|S|) logd fi(|S|), which

must be updated as well. To understand how to update Sum(|S|), let’s assume that
a new packet for a specific flow arrives and is the |S|-th packet. We call its packet
count f̄i(|S|). It holds that:{

fi(|S|) = fi(|S|−1) ( fi(|S|) 6= f̄i(|S|))
fi(|S|) = fi(|S|−1)+1 ( fi(|S|) = f̄i(|S|))

This allows us to re-write Sum(|S|) in the following way:

Sum(|S|) = Sum(|S|−1)+ f̄i(|S|) log2 f̄i(|S|) +
− ( f̄i(|S|)−1) log2( f̄i(|S|)−1)

Sum(|S|) thus needs two logarithmic computations for each incoming packet, and
would require running P4Log twice with corresponding computational effort.

In the next step, we show how it is possible to estimate Sum(|S|) with only
(at most) one logarithmic computation. When f̄i(|S|) = 1, we estimate Sum(|S|) =
Sum(|S|−1), being f̄i(|S|) log2 f̄i(|S|)= 1log2 1= 0 and defining ( f̄i(|S|)−1) log2( f̄i(|S|)−
1) = 0log2 0 = 0 [93]. Instead, when f̄i(|S|) > 1, we need to re-write once again
Sum(|S|) in the following way:

Sum(|S|) = Sum(|S|−1)+ log2 f̄i(|S|) +

+( f̄i(|S|)−1) log2(1+
1

f̄i(|S|)−1
)

According to L’Hopital’s rule [114]:

lim
f̄i(|S|)→+∞

( f̄i(|S|−1) log2 (1+
1

( f̄i(|S|−1)
) =

1
ln2

Thus, we set 1/ln2≈ 1.44 as the approximation of the third term of Sum(|S|). This
approximation best works when most of the flows in Tint carry a number of packets
much greater than 1 (as usually happens in an ISP backbone network, which is
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Figure 6.1: Scheme of P4Entropy

the most suitable scenario where to apply our strategy). Finally, Sum(|S|) can be
estimated as:

Sum(|S|)≈

{
Sum(|S|−1) ( f̄i(|S|) = 1)
Sum(|S|−1)+ log2 f̄i(|S|)+1/ln2

( f̄i(|S|)> 1) (6.1)

This estimation requires at most one logarithm computation.
Since P4 language does not support division, we re-write 1

|S|tot
= 2− log2 |S|tot . So,

entropy can be written as:

H(|S|tot) = log2 |S|tot −2(log2 Sum(|S|tot)−log2 |S|tot)

In this form, entropy can be estimated by only using P4-supported operations,
leveraging P4Log and P4Exp algorithms. In the following, we show how it is
possible to further slightly reduce complexity in entropy estimation.

When |S|tot =∑
n
i=1 fi(|S|tot)> Sum( fi|Stot |), it holds that 0< 2(log2 Sum(|S|tot)−log2 |S|tot)<

1. This is a corner case that happens only when flow distribution is almost uniform
(i.e., when most of flows carry only one or very few packets). In this case, we ne-
glect the computation of 2(log2 Sum(|S|tot)−log2 |S|tot), meaning that we estimate entropy
as flow distribution was perfectly uniform. Network traffic entropy can then finally
be estimated as follows:

H(|S|tot)≈
{

log2(|S|tot) (|S|tot > Sum(|S|tot))

log2(|S|tot)−2(log2 Sum(|S|tot)−log2 |S|tot)

(|S|tot ≤ Sum(|S|tot)) (6.2)

6.3.2 P4Entropy algorithm

Figure 6.1 and Algorithm 7 show the scheme and pseudocode of P4Entropy algo-
rithm, leveraging outcomes from Section 6.3.1. First, the algorithm continuously
updates Sum(|S|) until the end of Tint (UpdateSum function) with flow information
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Algorithm 7: P4Entropy algorithm
Input: Packet stream S, time interval Tint
Output: Entropy estimation H(|S|tot) of S in Tint

1 |S| ← 0
2 Sum(|S|)← 0
3 Function UpdateSum:
4 while currentTime < Tint do
5 for Each received packet belonging to flow i do
6 |S| ← |S|+1
7 f̄i(|S|)← Sketch({srcIP,dstIP}i)
8 if f̄i(|S|)> 1 then
9 Sum(|S|)� 10← Sum(|S|)� 10

10 +log2ES( f̄i(|S|))+1.44� 10

11 Sum(|S|tot)← (Sum(|Stot |)� 10)� 10
12 return Sum(|S|tot), |S|tot

13 Function EstimateEntropy(Sum(|S|tot), |S|tot ):
14 if currentTime = Tint then
15 if |S|tot > Sum(|S|tot) then
16 H(|S|tot)� 10← log2ES(|S|tot)

17 else
18 diff← log2ES(Sum(|S|tot))− log2ES(|S|tot)
19 H(|S|tot)� 10←log2ES(|S|tot)− expdES(2,diff)

20 return H(|S|tot)� 10

from incoming packets. A counter |S| is used to count all incoming packets in the
switch. We consider as flow key the source IP-destination IP pair of the packet, with
i ∼ {srcIP,dstIP}i. However, other flow definitions could be considered (e.g. 5-
tuple) without any loss of generality. A sketch data structure (e.g., Count Sketch or
Count-min Sketch, see Section 6.2.2) is used to store the estimated packet count for
all the flows, being continuously updated to include information from new packets,
and then it is queried to retrieve the estimated packet count f̄i(|S|) for the flow i
the current incoming packet belongs to. This value is then passed to a readable and
writable stateful register named Sum(|S|), which is updated as specified in Eq. 6.1.
All the floating numbers in the equation must be amplified 210 times, since P4Log
outputs an amplified integer value. Only at the end of Tint , Sum(|S|tot) is reduced
by a factor of 210 and its final value, together with |S|tot , is returned (Lines 1-12 of
the pseudocode).

Traffic entropy is then estimated as specified in Eq. 6.2. The resulted value of
H(|S|tot) is amplified 210 times since output values of P4Log are amplified, while
output values of P4Exp are not. Finally, the switch reports the amplified entropy
estimation value to the controller, which can reset all the switch registers to start
another estimation in the next Tint .
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6.4 Evaluation of P4Entropy

We implemented P4Entropy in Python and simulated it for evaluation. We report
results in this section.

6.4.1 Evaluation metrics and simulation settings

Testing flow trace

We use 2018-passive CAIDA flow trace [3] for evaluation into 10 observation win-
dows with a fixed number of packets equal to 221 each. Fixing the number of
packets in an observation window is needed to compare our approach with a state-
of-the-art solution [85], named SOTA_entropy for the remainder of the section,
which can only be applied to observation windows where the number of packets is
fixed to a power of two.

Metrics

We consider relative error as metric. We call Ĥ the estimated traffic entropy in
an observation window and H its exact value. The relative error is defined as the
average value of |H−Ĥ|

H ·100% in the 10 observation windows.

Tuning parameters

Unless otherwise specified, the default tuning parameters are set as per Table 6.1.

6.4.2 Simulation results

We simulate both our strategy and SOTA_entropy in the case that flow packet
counts are estimated in the data plane by adopting either Count-min Sketch or
Count Sketch (see Section 6.2.2). We show how entropy estimation is affected
while changing the size Nh×Ns of the sketch (Fig. 6.2). Fig. 6.2(a) shows the
relative error in network traffic entropy estimation for the two strategies when Ns

is fixed and Nh varies. It shows that the relative error slightly decreases as Nh
increases in all the cases. Moreover, P4Entropy and SOTA_entropy lead to sim-
ilar relative error. It can be noted that, when adopting Count-min Sketch, both
P4Entropy and SOTA_entropy have large relative error (around 20%) meaning that
Count-min Sketch, with our settings, badly estimates flow packet counts f̄i and both
entropy estimation strategies result ineffective. Additionally, in this case, the rel-
ative error of SOTA_entropy is slightly higher than the one of P4Entropy, which
is caused by the different ways how Sum( fi) is estimated. In SOTA_entropy, the
Longest Prefix Match (LPM) lookup table for F( fi) = fi log2 fi− ( fi−1) log2( fi−
1) (see [85]) is sensitive to the large packet count ( fi) overestimation caused by
Count-min Sketch. Conversely, P4Entropy needs to calculate log2 fi +

1
ln2 (see Eq.
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Table 6.1: Default parameters for P4Entropy
Alg Parameter Value

P4Entropy P4Log
Ndigits 3
Nbits 4

P4Exp Nterms 7
Sketch size Nh×Ns 10×1000
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Figure 6.2: Performance comparison of P4Entropy with an existing approach [85]

6.1), which is less sensitive to large overestimations (i) due to the logarithm na-
ture and (ii) because 1

ln2 is a constant value. This effect does not happen while
adopting Count-Sketch, since overestimations are much less frequent. In that
case, P4Entropy leads to slightly worse results than SOTA_entropy because, un-
like SOTA_entropy, it uses an approximation for the computation of the network
traffic entropy (see Eq. 6.2).

Fig. 6.2(b) shows instead the impact of a variation of Ns on relative error in
entropy estimation. Results are similar to what shown in Fig. 6.2(a), but it can
be noted that both strategies are more sensitive to a variation of Ns than of Nh. In
this case, when adopting Count Sketch, relative error is always close to 3%. Note
that a relative error of 3% is the maximum possible value ensuring that accuracy of
practical monitoring applications is not affected [84].
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6.5 Related work

6.5.1 Network traffic entropy estimation in data plane

Many works can be found in literature dealing with network traffic entropy esti-
mation partially performed in the switches’ data plane. For example, SketchVisor
[74], UnivMon [93] and Elastic Sketch [132] all envision some operations to be
executed in the programmable data plane and send to the controller only summa-
rized data. However, entropy estimation is executed at the controller due to the
need of logarithm calculation. Our approach, instead, allows to compute the esti-
mated entropy directly in the data plane, without any interaction with the controller.
Additionally, Lapolli et al. [85] recently implemented network traffic entropy es-
timation in the data plane using the P4 language, with the aim of detecting DDoS
attacks. Their approach is valid but they require the usage of TCAM, which is
instead avoided by P4Entropy. Moreover, P4Entropy adopts a time-interval-based
observation window, while [85] requires an observation window including a fixed
power-of-two number of packets. Our approach is more beneficial since it allows a
controller to synchronize the retrieval of estimated entropy among all deployed pro-
grammable switches to estimate traffic distribution on a network-wide scale [53],
thus improving statistical relevance of monitored values.

6.6 Concluding remarks

Based on P4Log and P4Exp reported in Chapter 3, we proposed P4Entropy, a
novel strategy allowing the estimation of network traffic entropy entirely in the data
plane, which has been implemented in P4 as well. We also proved that P4Entropy
has comparable accuracy to an existing approach but, as P4Log and P4Exp, does
not require the usage of TCAM. Moreover, unlike the state of the art, P4Entropy
does not need a fixed-packet observation window, being then more suitable when
entropy estimation from multiple switches has to be delivered to the controller in a
synchronous fashion. This allows our P4entropy to be easily integrated with other
network monitoring tasks in programmable data plane.

Combing this chapter with flow cardinality estimation presented in Chapter
6, it is possible to detect volumetric DDoS attacks entirely in programmable data
planes. The details will be reported in Chapter 9.
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In this chapter, we aim to solve a fundamental problem arising when exploit-
ing programmable data planes for network-wide monitoring: how to estimate the
overall number of packets in the network (i.e., the traffic volume), and the related
number and size of flows, while avoiding packet double counting. The ability to
precisely estimate the traffic volume (i.e., number of distinct packets flowing in
the network), and the related number of distinct flows and average flow size (i.e.,
average number of packets per flow) is necessary to support a broad range of
monitoring tasks that we mentioned in all chapters of this thesis. Most existing
works solve this problem by ensuring that each packet is counted only once on its
path, which limits routing or requires coordination among devices. We propose
a different approach, INVEST, a flow-based traffic volume estimator for P4-based
switches, that relies on and can reuse commonly employed data structures while
naturally solving the double-counting problem.

The study discussed in this chapter is based on the paper "INVEST: Flow-based
Traffic Volume Estimation in Data-plane Programmable Networks" published in
IFIP Networking Conference 2021.
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7.1 Introduction

In the context of network monitoring, the ability to precisely estimate the traffic
volume [36] (i.e., the number of distinct packets flowing in the network) in a time
frame is fundamental. Its correct estimation is necessary to support a broad range of
monitoring tasks, including heavy-hitter [36][69][54] and heavy-changer [74][93]
detection, network traffic entropy estimation [132][55], DDoS attacks [85] and
superspreaders [116] detection.

Obviously, traffic volume can be deterministically computed as the sum of
packet counts of all ingress (or egress) interfaces of all border routers; however,
this solution is cumbersome since it requires regularly polling possibly almost all
network devices; in addition, it cannot be used to (easily) estimate flow count and
size, which are also important for the tasks above.

Several network-wide monitoring solutions exploiting the potential of pro-
grammable data planes have already been proposed in literature [69][74][93][132].
However, as already pointed in [36], most of them assume that each packet is mon-
itored and counted by only one programmable switch on its path. If this assump-
tion does not hold, the proposed strategies are not accurate, due to packet double
counting, which leads to degraded monitoring performance. Unfortunately, such
an assumption has strong implications on how routing should be performed and/or
necessitates a coordination between the programmable switches in the network,
which makes such strategies either imprecise or impractical.

In this chapter, we propose INVEST (Improved Network traffic Volume ES-
timaTion), an accurate and memory-efficient method for the estimation of traffic
volume (as well as number of distinct flows and average flow size) at the SDN con-
troller. It adopts generic (and commonly used) data structures that (i.) are allocated
and updated in the data plane of a (potentially) reduced number of aggregation
programmable switches and (ii.) is inherently robust with respect to packet double
counting. More precisely, INVEST relies, in each programmable switch, on a local
packet counter and on a distinct flow counter based on HyperLogLog [63]. Using
these, our strategy is able to estimate, at the controller, the number of distinct flows
in the network and the average flow size (i.e., number of packets per flow), which
can then be used for total traffic volume estimation. The advantages of our method
include that it does not require any control over border routers, exploits data struc-
tures that can be useful for a variety of flow-based monitoring tasks beyond traffic
volume estimation, and can be feasibly deployed as a stand-alone module in ex-
isting network-wide measurement systems relying on programmable data planes
[74].

We also theoretically analyze and experimentally evaluate INVEST, proving
that it can estimate the traffic volume accurately by consuming low memory, once
tuning parameters (e.g. HyperLogLog register size and flow type) are properly set.
We implemented the INVEST data structures in a carrier-grade Tofino-based [2]
P4-programmable switch and show that the method can process packets at line-
rate with only small hardware resource usage overhead.
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In summary, this chapter makes the following contributions:

• We design INVEST, a flow-based method that exploits programmable data
planes to estimate the traffic volume while solving the double counting prob-
lem;

• We theoretically analyze INVEST, reporting bounds on the relative error of
traffic volume estimation according to different tuning parameters;

• As a building block of INVEST, we implement the HyperLogLog Update
procedure [63] for flow cardinality estimation in P4_16 [42];

• Based on our HyperLogLog Update implementation, we developed a pro-
totype of INVEST, installed it in a carrier-grade programmable switch with
Tofino Application Specific Integrated Circuit (ASIC) [2], and evaluated it.

7.2 Basic knowledge and used compact data structure

In this section we recall some background notions that will be exploited in the
chapter.

7.2.1 HyperLogLog algorithm

HyperLogLog (HLL) [63] is a sketch-based algorithm for the estimation of the car-
dinality of a data stream. In our context, it can be adopted to estimate the number
of distinct flows (i.e., flow cardinality) crossing a switch while requiring low mem-
ory occupation. HLL uses an m-sized register M, where m indicates the number
of counters (each allocated to d bits) included in the register, which is updated to
include data from new elements of the data stream and queried to get an estimation
of the cardinality.

The Query operation works as follows. When an incoming packet with flow key
id arrives at the switch, HLL applies a hash function with output size 2os to id (with
os≥ log2 m+2d): the resulting os-bit binary string H is denoted by H = [0 : os−1],
meaning that 0 is the index of the leftmost bit, while os−1 is the index of the right-
most one. HLL then updates register M. Let bucket be the leftmost log2 m bits of H
and x the remaining bits, i.e., bucket = H[0 : log2 m−1] and x = H[log2 m : os−1];
M is updated following the rule: M[bucket] = max(M[bucket],value), where value
is the index of the rigthtmost 1 of x plus one.

The Query operation is used to estimate the flow cardinality n̂M: it is computed
as a harmonic mean of the m counters: n̂M = αm ·m2 · (∑m−1

bucket=0 2−M[bucket])−1,
where αm is a bias correction parameter. The standard error of HLL has been
proven to be 1.04√

m [63].
An interesting property of HLL, leveraged in this work, is that multiple HLL

registers, e.g. Mm and Mn, can be merged into a single register Mmn = Mm∪Mn to
count the flow cardinality of the packet streams that have independently updated
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Mm and Mn, i.e., n̂Mm∪Mn , avoiding any double counting (i.e., in general n̂Mm +
n̂Mn ≥ n̂Mm∪Mn , and only where each flow traverses only one of the two switches
n̂Mm + n̂Mn = n̂Mm∪Mn).

7.2.2 Strong Law of Large Numbers

Given a sequence of i.i.d. (independent and identically distributed) random vari-
ables X1,X2,X3, . . . ,Xn with finite expectation µ , and its sample mean defined as
X̄n = ∑

n
i=1 Xi
n , the Strong Law of Large Numbers states that X̄n converges almost

surely to µ as n→ ∞, i.e., P(limn→∞ X̄n = µ) = 1.

7.2.3 Central Limit Theorem

Given a sequence of i.i.d. random variables X1,X2,X3, . . . ,Xn (i.e., whole popula-
tion), ni variables, each denoted by X sample

j,i (i.e., X sample
1,i ,X sample

2,i , . . . ,X sample
i,ni

), are
randomly picked from the sequence: such a selection is called random sample, and

the sample mean is defined as X̄ sample
i =

∑
ni
j=1 X sample

j,i
ni

. The Central Limit Theorem

states that the sample mean X̄ sample
i follows a Gaussian distribution N (µ, σ2

ni
) as

ni→ ∞, where µ and σ2 are the expectation and variance of the random variables
Xk belonging to the whole population, respectively.

7.3 Estimation of traffic volume

In this section, we present our traffic volume estimation method, named INVEST
for the sake of brevity, and provide the theoretical foundations of its workings.

7.3.1 Problem definition

We start by formally defining the problem. Given:

• A time interval Tint ;

• A packet stream S in Tint ;

• The total number of packets |Si| that have traversed each switch i at the end
of Tint ;

• The updated HLL register Mi (size m) for each switch i at the end of Tint ;

• The number q of programmable switches in the network;

Returns an estimation of the traffic volume (i.e., the overall number of packets
from stream S), denoted by |Ŝtot |, that have crossed the network in Tint .
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Algorithm 8: INVEST Estimation Method
Input: A time interval Tint , a packet stream S in Tint , the number q of

programmable switches in the network, an m-sized HLL register
Mi for each programmable switch i, a packet counter |Si| for each
programmable switch i

Output: An estimation of the overall number of packets in the network
|Ŝtot | in Tint

1 Function Update(S, Mi, Si, Tint , q):
2 |Si| ← 0 ∀i ∈ {1, . . . ,q}
3 Mi← Empty m-sized HLL register ∀i ∈ {1, . . . ,q}
4 while currentTime < Tint do
5 for Each packet in S identified by flow key id and traversing

programmable switch i do
6 |Si| ← |Si|+1
7 Mi.U pdateHLL(id);

8 return |Si|, Mi ∀i ∈ {1, . . . ,q}
9 Function Query(Mi, Si, Tint , q):

10 Mtop−k← Empty m-sized HLL register
11 k← 0, R̂tot ← 0, n̂tot ← 0,
12 n̂i← 0 ∀i ∈ {1, . . . ,q}
13 if currentTime = Tint then
14 n̂i← QueryHLL(Mi) ∀i ∈ {1, . . . ,q};
15 n̂tot ← QueryHLL(M1∪M2∪·· ·∪Mq);
16 N ←{n̂1, n̂2, · · · , n̂q}
17 Naux←{n̂1, n̂2, · · · , n̂q}
18 while QueryHLL(Mtop−k)< n̂tot do
19 n̂max←Max(Naux);
20 i← index in N corresponding to n̂max

21 Mtop−k←Mtop−k∪Mi

22 k← k+1
23 R̂tot ← R̂tot +

|Si|
n̂i

24 Naux←Naux \ n̂max

25 R̂tot ← 1
k R̂tot

26 |Ŝtot | ← n̂tot R̂tot

27 return |Ŝtot |

7.3.2 INVEST estimation method

The INVEST estimation method consists of two operations, INVEST Update and
INVEST Query (see Fig. 7.1). INVEST Update is autonomously performed dur-



7.3. ESTIMATION OF TRAFFIC VOLUME 81

ing Tint by each programmable switch’s data plane every time it is crossed by a
packet, while INVEST Query is executed by the controller at the end of Tint using
information made available by the switches. In the following, we describe those
operations, whose pseudocode is reported in Alg. 8.

INVEST Update

Each time a packet crosses a switch, its data plane updates the counter |Si| and the
HLL register Mi. |Si| is simply increased by one, while Mi is updated using the
flow key id of the packet, as specified by the HLL Update operation [63].

INVEST Query

At the end of Tint , |Si| and Mi ∀i∈{1, . . . ,q} are retrieved by the controller. For each
of the switches, the controller estimates the number of distinct flows n̂i

1 obtained
by querying the HLL register Mi as specified by the HLL Query operation [63]:

n̂i = QueryHLL(Mi) ∀i ∈ {1, . . . ,q}

Due to the union property of HLL, the overall number of distinct flows n̂tot in
the network can then be estimated as:

n̂tot = QueryHLL(M1∪M2∪·· ·∪Mq)

Once n̂i ∀i ∈ {1, . . . ,q} and n̂tot have been estimated, the controller picks the
top-k largest n̂i ∈N = {n̂1, · · · , n̂q} with k being the minimum value that satisfies
QueryHLL(M1∪M2∪·· ·∪Mk)= n̂tot

2: the adopted procedure is described in Lines
18-24 of Alg. 8. Clearly, k ≤ q and the more the flows are concentrated on a few
number of switches (i.e., the traffic load is strongly unbalanced), the lower k is.

Then, the average number of packets per flow, denoted by R̂i, is computed
considering the switches belonging to the top-k set in the following way:

R̂i =
|Si|
n̂i

∀i ∈ {1, . . . ,k}

The average number of packets per flow R̂tot in the network is estimated as an
average of the average number of packets per flow per switch R̂i, by only consider-
ing the top-k switches:

R̂tot =
1
k

k

∑
i=1

R̂i =
1
k

k

∑
i=1

|Si|
n̂i

(7.1)

1In this chapter, the cap symbol identifies estimated values, such as n̂i, R̂i, |Ŝtot |. Their cap-less
counterparts ni, Ri, |Stot | indicate instead exact values.

2From now on the index i will refer, without any further ambiguity, to the switches belonging to
the top-k set (also abbreviated in top-k switches).
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Finally, the traffic volume |Stot | is estimated as:

|Ŝtot |= n̂tot R̂tot =
n̂tot

k

k

∑
i=1

|Si|
n̂i

Note that the accuracy of the estimation |Ŝtot | depends on two aspects: 1) how
accurate HLL is on estimating the exact values of ni and ntot and 2) how accurate
the estimation R̂tot is with respect to its exact value Rtot =

|Stot |
ntot

. Taking this into
account, in the next subsection we prove that INVEST does indeed converge to the
desired values in realistic scenarios.

7.3.3 Theoretical analysis

Theorem 1. The traffic volume estimator |Ŝtot | is an asymptotically unbiased esti-
mator of |Stot | as m→ ∞, ni→ ∞ ∀i ∈ {1, . . . ,k} and ntot → ∞.

Proof. In the considered Tint where |Stot | has to be estimated, the network is char-
acterized by a flow stream Ftot = { f1, f2, · · · , fntot}, where f j indicates the flow
packet count of flow j and ntot = |Ftot | is the overall number of distinct flows. It
thus hold that |Stot |= ∑

ntot
j=1 f j. If we define f i

j as the packet count of f j as recorded
in switch i, with ni being the number of distinct flows seen in switch i, we can also
write |Si|= ∑

ni
j=1 f i

j.
With respect to the relative error of HLL, called εHLL, it holds that P(|εHLL| ≤

3 1.04√
m ) ≥ 0.997 [106] and thus HLL accuracy depends on the register size m. So,

as m→ ∞, the estimations n̂i and n̂tot obtained by querying the HLL registers (and
their union) converge to the real values (i.e., n̂i

ni
= 1 ∀i and n̂tot

ntot
= 1)3 with arbitrary

high probability.
We now assume that the |Ftot | packet counts of distinct flows are independent

and identically distributed (i.i.d.) random variables, meaning that the number of
packets generated in a flow does not give any information on the number of packets
generated in another flow, and that the packet count random variables have all the
same probability distribution. This makes sense in practice even if we know that
there are many distinct types of flow, e.g. short-lived HTTP requests, VoIP calls,
file transfers, etc. yielding very different packet numbers per unit of time. Even
if the distribution of an f j clearly depends on the type of flow j, the distribution
of flow types during Tint can be viewed as fixed (though not easy to characterize),
hence the f j random variables can be seen as drawn from the combined distribution
mapping a flow to its type (or even instance) and then the number of packets (over
Tint) of that type.

We then pick k samples obtained by randomly sampling with replacement (i.e.,
with the possibility that the same flow f j is included in multiple random samples),
each associated to index i and characterized by Fi = { f i

1, f i
2, · · · , f i

ni
}. It is here

3In this demonstration, the notations ni and n̂i can be used interchangeably. The same holds for
ntot and n̂tot and for Ri =

|Si|
ni

and R̂i =
|Si|
n̂i

.
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assumed that F1 ∪F2 ∪ ·· · ∪Fk = Ftot , meaning that each flow belongs to at least
one of the k random samples. In the practical scenario considered in this chapter,
this means that any switch i among the selected top-k switches is randomly crossed
by ni flows and each flow j in Ftot is seen by at least one switch, which is ensured
by design, based on how k is chosen in our strategy, when all q switches in the
network are programmable switches and have installed the INVEST strategy. An
additional requirement is that all packets are always routed on the same path or,
alternatively, that a different flow key is specified for different routing paths (e.g. in
the case of multicast traffic); if this latter assumption does not hold, two different
switches may count a different number of packets for the same flow j while, to
apply INVEST, f i

j = f z
j must always hold if random samples Fi and Fz of i and z

both include f j
4.

As already introduced, Ri =
|Si|
ni

=
∑

ni
j=1 f i

j
ni

is the average flow packet count
in random sample i. According to the Central Limit Theorem, when ni → ∞

∀i ∈ {1, . . . ,k}, Ri =
|Si|
ni
∼N (µ, σ2

ni
), where µ is the expected number of pack-

ets per flow, σ2 the expected variance of the Gaussian distribution, and where Ri

are independent random variables, since they refer to different random samples
obtained by sampling with replacement.

As stated by the Strong Law of Large Numbers, as ntot → ∞, µ approaches the

expected number of packets per flow in Ftot , that is µ =
∑

ntot
j=1 f j

ntot
= |Stot |

ntot
= Rtot .

In INVEST, the estimation |Ŝtot | requires the estimation of Rtot , which is com-
puted as R̂tot =

1
k ∑

k
i=1 Ri. R̂tot is a Gaussian random variable, being a linear com-

bination of Gaussian random variables (i.e., Ri). Its expectation E[R̂tot ] can be
expressed, for ni→ ∞ ∀i ∈ {1, . . . ,k} and ntot → ∞, in the following way:

E[R̂tot ] =E
[

1
k

k

∑
i=1

Ri

]
=

1
k

k

∑
i=1

E
[
|Si|
ni

]
=

1
k

k

∑
i=1

µ =
|Stot |
ntot

R̂tot is thus an asymptotically unbiased estimator of Rtot as ntot → ∞ and ni → ∞

∀i ∈ {1, . . . ,k}, since E[R̂tot ]
Rtot

= 1.
|Ŝtot | is then estimated as |Ŝtot | = n̂tot R̂tot . |Ŝtot | is a Gaussian variable, being

so R̂tot . Since R̂tot is an asymptotically unbiased estimator of Rtot as ntot → ∞ and
ni→∞ ∀i∈ {1, . . . ,k}, |Ŝtot | is asymptotically unbiased as well if also m→∞ holds
(i.e., n̂tot

ntot
= 1):

E[|Ŝtot |]
|Stot |

=
n̂totE[R̂tot ]

|Stot |
=

n̂tot
|Stot |
ntot

|Stot |
= 1

�
4Note that, in our case, double counting a flow j does not generate any issue in flow cardinality

estimation, since the union property of HLL ensures that a packet counted twice (e.g. by switches i
and z) is considered only once when estimating the traffic volume.
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Remark. In a practical network scenario as the one considered in this chapter, ni

is upper-bounded by |Si| (i.e., the number of distinct packets crossing the switch i):
in this case, the Central Limit Theorem still holds if ni→ |Si| ∀i ∈ {1, . . . ,k} and
|Si| is big enough, a safe assumption for a large network such as that of an Internet
Service Provider (ISP).

Theorem 2. As m→ ∞, ni → ∞ ∀i ∈ {1, . . . ,k} and ntot → ∞, it holds that the
relative error

∣∣ |Ŝtot |−|Stot |
|Stot |

∣∣= 0, i.e., the estimation |Ŝtot | equals |Stot |.

Proof. As already defined in Theorem 1, the relative error of HLL estimation is
εHLL. Additionally, we define the relative error of the estimation R̂tot as εR̂tot

. Being
n̂tot estimated by querying a union of HLL registers, it is then possible to write:

|Ŝtot |= n̂tot R̂tot = (1+ εHLL)ntot(1+ εR̂tot
)Rtot

= (1+ εHLL)(1+ εR̂tot
)|Stot |

We recall that |εHLL| decreases as m increases, where m is the HLL register
size.

The relative error of the estimation R̂tot of Rtot can be instead obtained by look-
ing at the probability distribution of R̂tot . By Theorem 1, as ntot → ∞ and ni→ ∞

∀i ∈ {1, . . . ,k}, R̂tot is a Gaussian random variable with E[R̂tot ] = µ = |Stot |
ntot

. The
absolute value of the relative error |εR̂tot

| is the coefficient of variation of R̂tot :

|εR̂tot
|=

√
Var[R̂tot ]

E[R̂tot ]

Being R̂tot a linear combination of independent Gaussian random variables (i.e.,
Ri), Var[R̂tot ] is the following:

Var[R̂tot ] =Var
[

1
k

k

∑
i=1

Ri

]
=

1
k2

k

∑
i=1

Var[Ri] =
1
k2

k

∑
i=1

σ2

ni

As ni → ∞ ∀i ∈ {1, . . . ,k}, Var[R̂tot ] = 0 and |εR̂tot
| = 0 as well. Thus, if this

condition holds, the accuracy of the estimation |Ŝtot | is only affected by the HLL
register size m and improves as m increases:

|Ŝtot |= (1+ εHLL)|Stot |

The above formula implies:∣∣∣∣ |Ŝtot |− |Stot |
|Stot |

∣∣∣∣= |εHLL|=
1.04√

m

If also m→ ∞ holds, |εHLL|= 0 with arbitrary high probability and we can finally
write: ∣∣∣∣ |Ŝtot |− |Stot |

|Stot |

∣∣∣∣= 0

�
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Remark. Theorem 2 explains why INVEST considers only the top-k switches to
estimate the traffic volume, and not all the q switches. The reason is that, to ensure
good performance in a practical scenario, ni must be large enough for all the
switches involved in the estimation of R̂tot , so that Var[R̂tot ]→ 0. In the case of
networks characterized by unbalanced traffic matrices, it is not unusual that ni is
relatively small for some of the switches i, and including such ni in the computation
of R̂tot would jeopardize the estimation. By selecting the top-k switches (in terms
of ni) that cover all the flows in the network, such negative effect is instead strongly
mitigated. This will also be experimentally shown in Section 7.6.

Remark. In general, Theorems 1 and 2 tell us that the bigger m, ni and ntot are, the
better the estimation of |Stot | is. The value of m must be chosen big enough to en-
sure good estimations for ni and ntot , whose value instead depends on how a “flow"
is defined. In practice, the trivial best possible estimation of |Stot | can be obtained
when ni = |Si| and ntot = |Stot |, i.e., when each packet is considered as an inde-
pendent flow. However this solution, similar to the one proposed in [36], requires
a unique identifier/marker for each packet [35][138][90] (i.e., unique packet id),
which does not scale well. Our Theorems show that considering sufficiently fine-
grained flows (e.g., characterized by a {srcIP,dstIP} pair as flow key rather than
by simply srcIP or dstIP) can effectively enhance the estimation of |Stot |, since
such a choice increases ni and ntot .

Theorem 3. If F1∪F2∪·· ·∪Fk = Fk
tot ⊂ Ftot and thus nk

tot < ntot , as m→∞, ni→∞

∀i = 1, . . . ,k and ntot → ∞, it holds that
∣∣ |Ŝk

tot |−|Stot |
|Stot |

∣∣ = ∣∣nk
tot

ntot
−1
∣∣, where |Ŝk

tot | is the
estimation of the traffic volume over the k random samples.

Proof. By definition, R̂tot is the estimation of Rtot considering the k random sam-
ples, while by Theorem 2 it holds that, when m→ ∞, ni → ∞ ∀i = 1, . . . ,k and
ntot → ∞, |εR̂tot

|= 0 and |εHLL|= 0. We can then write:∣∣∣∣ |Ŝk
tot |− |Stot |
|Stot |

∣∣∣∣= ∣∣∣∣ |Ŝk
tot |
|Stot |

−1
∣∣∣∣= ∣∣∣∣ n̂k

tot R̂tot

ntotRtot
−1
∣∣∣∣

=

∣∣∣∣(1+ εHLL)nk
tot(1+ εR̂tot

)Rtot

ntotRtot
−1
∣∣∣∣

=

∣∣∣∣nk
tot

ntot
−1
∣∣∣∣ (As |εR̂tot

|= |εHLL|= 0)

�

Remark. Theorem 3 is relevant when it cannot be ensured that all flows are vis-
ible to INVEST, e.g. in a partial or incremental deployment scenario [54], where
a number of programmable switches, q, coexists with legacy non-programmable
devices. Theorem 3 shows that, in this case, it is better to first replace those non-
programmable switches that are crossed by the largest number of distinct flows
overall, so that nk

tot is maximized and approaches ntot . Such a strategy has already
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At the end
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Figure 7.1: Scheme of the proposed INVEST strategy

been proposed in [54] and, as a consequence of Theorem 3, yields the best possible
estimate of |Stot | in a hybrid scenario.

7.4 Implementation of INVEST in P4

We have successfully implemented our INVEST strategy, depicted in Fig. 7.1, in
a small network including a P4 programmable commodity switch with a Tofino
ASIC and a simple controller. An open-source version of the implemented P4_16
code has been released in [33]. In this Section, we report the details of our imple-
mentation.

7.4.1 INVEST Update (P4-enabled Switch)

Counting the number of packets |Si|

We use a register (a counter could also be used) to count all the incoming packets
in the switch.

Updating the HLL Register

We consider an m-sized HLL register with m = 2048, where each cell is assigned
d = 5 bits. A hash function with at least log2 m+ 2d = 43 bit of output size is
thus needed by the HLL Update operation (see Section 7.2.1). However, Tofino
ASIC only supports hash functions with output size up to 32 bits. To address
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Table 7.1: Properties of hash functions
Hash function name poly Reversed init xor

CRC32 0x104C11DB7 True 0 0xFFFFFFFF
CRC32c 0x11EDC6F41 True 0 0xFFFFFFFF

Table 7.2: Ternary match table used by INVEST Update
Mask (32 bits) Key (32 bits) Action (l value)

1000 · · ·0 0000 · · ·0 No Action
1000 · · ·0 1000 · · ·0 1
1100 · · ·0 0100 · · ·0 2
1110 · · ·0 0010 · · ·0 3

...
...

...
11 · · ·110 00 · · ·010 31

this limitation, we concatenate the 32-bit outputs obtained by hashing the flow
key id with two different supported hash functions, thus generating a 64-bit hash
H. Specifically, id is first hashed by the CRC32 hash function, setting the bits
H[0 : 31]. Bits H[32 : 63] are set by hashing id with the CRC32c hash function.
The properties of the adopted hash functions are reported in Table 7.1.

The bucket to be considered in the HLL register M for update is equal to the
last log2 m bits of H, which are easily obtained by truncating H. The value, which
is the index of the rightmost 1 of the bits H[log2 m : log2 m+31] plus one (in brief
l), is obtained with the help of a ternary match table where some pre-computed
values are stored, as shown in Table 7.2. The table includes 31 entries: for each
entry a mask, a key and an action (reporting the l value) are specified. The table is
scrolled from top to bottom: the considered mask is used, by applying the logical
AND operator with H[log2 m : log2 m+31], to retrieve the first l bits of H[log2 m :
log2 m+31]. Once the masked H[log2 m : log2 m+31] binary string is obtained, it
is compared with the corresponding key in the table. If the masked binary string is
equal to the key string, l, which is the value we are looking for, is retrieved from
the action column and the search is stopped, otherwise the next row is considered.

Finally, once value is retrieved, if it is larger than the bucket-indexed value
M[bucket] in the HLL register, the new value replaces the old value.

7.4.2 INVEST Query (Controller)

The controller is implemented on top of the application program interface (API)
provided by the switch vendor. In a large-scale scenario, it can pull |Si| and Mi

from each switch i in the network and can estimate the traffic volume by executing
the INVEST Query operation described in Alg. 8. We implemented the INVEST
Query logic in Python.
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7.5 INVEST adoption for network-wide monitoring

A good estimation of |Stot | is important for the execution of different network-wide
monitoring tasks [93][132], where (partially processed) information exposed by
multiple switches is collected by a centralized controller and used to take decisions
at a global scale. In this section, we discuss what are the network-wide monitoring
tasks that would benefit from a proper estimation of |Stot | or, more in general, from
exploiting the data collected by INVEST.

• Heavy-hitter detection: Network-wide heavy hitters are flows that carry
more than a small fraction of the overall packets in the network. P4-based
strategies for network-wide heavy-hitter detection have already been pro-
posed in literature. The one proposed in [69] does not prevent double packet
counting and overestimates the traffic volume |Stot | at the controller, making
it extremely hard to correctly set the global threshold for heavy-hitter detec-
tion. Conversely, in [54] the controller collects from each switch a sample
list that includes the local packet count of each flow overcoming a sampling
threshold, and uses this information to estimate |Stot |. In this case, double
counting is prevented, but a good |Stot | estimation is ensured only with low
sampling thresholds, making such a solution cumbersome, since huge sam-
ple lists would be needed to be stored and forwarded to the controller. For
both strategies, the adoption of INVEST would greatly simplify heavy-hitter
detection.

• Heavy traffic volume change detection: Estimating and comparing |Stot | in
consecutive time intervals makes it possible to detect heavy changes in the
number of packets flowing in the network. A significant decrease on the traf-
fic volume may help disclose malfunctioning in some areas of the network,
while a consistent increase may unveil flash-crowd events. With INVEST it
is possible to easily detect traffic volume changes at the controller.

• Traffic entropy estimation: Network traffic entropy is a metric that gives
an indication on the traffic distribution across the network. In [55] a method
to locally estimate network traffic entropy directly in each P4-based pro-
grammable switch’s data plane is proposed: since the entropy is computed
independently in each switch, it cannot be considered as a network-wide
strategy. The network-wide traffic entropy can instead be computed by the
controller as Htot = log2(|Stot |)− 1

|Stot | ∑
ntot
x=0 fx log2 fx (see [55]), where fx is

the packet count of flow identified by key x. If a method to compute the
different fx log2 fx in the programmable switches and deliver them to the
controller without double packet counts would be available (future work),
|Stot | in the formula could instead be estimated by INVEST.

• DDoS attack detection: When a DDoS attack is occurring, a destination
node (i.e., the target) is usually contacted by an abnormal number of sources.
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Figure 7.2: Configuration of the physical testbed

Some strategies for DDoS attack detection in P4-programmable switches
have been already proposed in literature [51][85]. These strategies, however,
focus on DDoS detection on a single switch, which may give false positives
or negatives compared to a network-wide approach. The data collected by
INVEST may help for the design of an effective network-wide DDoS de-
tection strategy. In fact, the HLL registers Mi gathered by the controller,
if updated using srcIP as flow key, can be merged to estimate the overall
number ntot of traffic sources in the network. If a method to estimate the
number of sources routing traffic towards a specific destination was properly
implemented in each programmable switch (future work), a threshold-based
network-wide DDoS detection strategy could be easily implemented by the
controller.

• Superspreader detection: A superspreader [74] is a source node dissem-
inating data to an abnormal number of destinations (i.e., targets). In some
aspects, superspreading is the opposite phenomenon of performing a DDoS
attack. A network-wide superspreader detection has been implemented in
P4 [116]. If we wanted to use the data collected by INVEST for network-
wide superspreader detection, same considerations hold as for network-wide
DDoS detection: the information stored in Mi (updated using dstIP as flow
key) can be used for this purpose.

• Flow cardinality and average flow size estimation: Flow cardinality es-
timation is the problem of estimating the number of distinct flows from a
packet stream [137], while average flow size [130] estimation is the problem
of estimating the average number of packets per flow. As already shown in
Section 7.3.2 and as a side effect of INVEST, both the network-wide flow
cardinality ntot and the network-wide average flow size Rtot can be estimated
by the controller, and can be useful metrics to collect beyond the scope of
estimating the traffic volume.
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7.6 Performance evaluation

We implemented our INVEST strategy in Python to simulate the traffic volume
estimation accuracy in large networks.

Additionally, we implemented INVEST Update in P4 (see Section 7.4 for de-
tails) in a commodity Edgecore Wedge-100BF-32X switch equipped with Barefoot
Tofino 3.3 Tbps ASIC [2]; the switch supports up to 32 100 Gbps ports. Due to the
prohibitive cost of 100 Gbps interfaces, we connected the switch to two servers
(Intel(R) Xeon(R), CPU E3-1220 V2 @ 3.10GHz, 16 GB RAM) using 10 Gbps
Ethernet interfaces, in the configuration shown in Figure 7.2. The information col-
lected by INVEST in the switch (i.e., packet counter |Si| and HLL register Mi) is
queried using a Command Line Interface that leverages the APIs provided by the
switch’s vendor.

We also implemented, in P4, a simple forwarding strategy for performance
comparison and benchmarking purposes. It works as follows: if the destination IP
of an incoming packet does not match any entry of an exact match-action table, the
packet is forwarded to a specific egress port by applying Least Prefix Match on the
entries of another match-action table.

In the following, we will report the results obtained by (i.) simulating the IN-
VEST estimation accuracy in large networks and (ii.) evaluating the performance
of the INVEST P4 implementation in the Tofino-based switch.

7.6.1 Evaluation metrics and simulation settings

Testing flow trace and topology

In our simulations, we used a 2018-passive CAIDA flow trace [3] collected from
a 10 Gbps backbone link, lasting 50 seconds. We divided the trace into different
time intervals, considering two different widths: Tint = 1s and Tint = 5s. In the
former case, each of the 50 resulting time intervals includes around 450 thousand
packets, while, in the latter, each of the 10 resulting time intervals includes around
2.3 million packets.

We considered two different ISP network topologies: the 45-nodes GÉANT
ISP backbone topology [31] and the 100-nodes DEFO synth100 topology [30]. The
traffic matrix is generated by adopting a CRC32 hash function to randomly assign
each packet to a source/destination node couple in the network. Unless otherwise
specified, the output size of the CRC32 hash function is set to the number of nodes
in the considered topology (45 for GÉANT and 100 for DEFO) and the source
(destination) node is obtained by hashing the source (destination) IP of the packet;
then, each packet is forwarded from source to destination on the shortest path.
We call this traffic matrix balanced, since any source/destination node couple has
almost the same probability to be chosen for a source IP/destination IP couple.
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Evaluated metric

We consider relative error as the evaluation metric. Being |Stot | the exact number
of packets in a time interval and |Ŝtot | its estimated value, the relative error is de-

fined as the average value of ||Ŝtot |−|Stot ||
|Stot | ·100% in all the consecutive time intervals

(which are 50 for Tint = 1s and 10 for Tint = 5s).

Tuning parameters

Unless otherwise specified, HLL register Mi size is set to m = 211 = 2048, with
bucket size of 5 bits. The packet counters |Si| occupy 32 bit each. The considered
flow key is {srcIP,dstIP} pair.

7.6.2 Evaluation and comparison with existing strategies

We compare INVEST with two estimation methods:

1. Sum: the traffic volume is estimated by summing the packet counters |Si| as
recorded by all the switches, thus neglecting the double counting problem.
This trivial strategy is expected to lead to large overestimations.

2. Sample: the work [54] prevented double counting by using a sampling-
based mechanism, where the packet count of the heaviest flows is kept in
the switches in a sample list and delivered to the controller for the estimation
of the traffic volume; we described such strategy in Section 7.5. However,
a long tail of light flows or the existence of many heavy flows might lead to
serious traffic volume underestimations.

According to the parameters specified in the previous subsection, the INVEST’s
data structure occupies 10272 bits of memory in each switch’s data plane (32 bits
for |Si| and 2048 · 5 bits for Mi). As specified in [54], each entry in a sample
list of the Sample strategy requires 96 bits (64 bits to store the flow key, which is
{srcIP,dstIP} pair, and 32 bits to store the respective packet count). To make a fair
comparison between INVEST and Sample, we thus consider a memory occupation
for each sample list equal to the memory occupied by INVEST, which means that
the number of entries of the sample list is set to 10272 bits

96 bits = 107.
Table 7.3 shows the comparison results. In all the cases, INVEST strongly

outperforms both Sum and Sample, being its relative error always below 3%. Note
that a relative error of 3% is the maximum possible value ensuring that accuracy of
practical monitoring applications is not affected [84].

As expected, results show that Sum is an inadequate estimation method (the
relative error is higher than 300%) as it does not handle the double counting prob-
lem. Moreover, sample has quite bad performance too. In fact, a sampling list size
with 107 entries is not large enough to ensure a good estimation, and the relative
error is always above 25%. This reveals that INVEST improves the estimation
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Table 7.3: Comparison of INVEST with existing strategies

Estimation
method

Relative error
GÉANT DEFO

Tint = 1s Tint = 5s Tint = 1s Tint = 5s
INVEST 2.33% 2.05% 2.44% 2.19%

Sum 333.01% 323.00% 412.79% 412.89%
Sample [54] 33.69% 38.78% 25.78% 30.71%

Table 7.4: Estimation accuracy of INVEST parameters

Estimated
parameter

Relative error
GÉANT DEFO

Tint = 1s Tint = 5s Tint = 1s Tint = 5s
|Stot | 2.33% 2.05% 2.44% 2.19%
Rtot 1.92% 1.91% 2.39% 2.06%
ntot 1.57% 1.91% 1.57% 1.91%

Table 7.5: Accuracy of INVEST with different flow key
types

Flow key # Distinct flows ntot Variance σ2 of Ftot
Relative error

in Tint in Tint GÉANT DEFO
1s 5s Tint = 1s Tint = 5s Tint = 1s Tint = 5s Tint = 1s Tint = 5s

srcIP ∼ 27K ∼ 67K ∼ 26K ∼ 111.7K 20.15% 26.43% 24.80% 32.35%
dstIP ∼ 22K ∼ 58K ∼ 46.5K ∼ 288K 23.94% 28.64% 29.13% 34.80%

{srcIP,dstIP} ∼ 47K ∼ 147K ∼ 13.8K ∼ 40K 2.33% 2.05% 2.44% 2.19%
{srcIP,dstIP, prot} ∼ 47.1K ∼ 147.6K ∼ 13.5K ∼ 39.8K 2.36% 2.73% 2.56% 2.37%

Unique packet id [36] ∼ 450K ∼ 2300K 0 0 0.48% 3.10% 0.48% 3.10%

accuracy of more than 20% while occupying the same amount of memory in the
switch.

Table 7.4 reports the estimation accuracy of the INVEST parameters, namely
|Stot | (shown also in Table 7.3), Rtot and ntot . It can be seen that, in most of the
cases, the relative error in the estimation of Rtot and ntot is below 2%, meaning that
the adoption of Eq. 7.1 to estimate Rtot and the usage of HLL to estimate ntot are
both effective means to keep the relative error of |Stot | low.

7.6.3 Sensitivity analysis

We now evaluate how the accuracy of INVEST is sensitive to different tuning pa-
rameters.

Sensitivity to flow key types

Table 7.5 shows how INVEST behaves when the HLL registers are updated con-
sidering different flow key types. As remarked in Section 7.3.3, as a consequence
of Theorems 1 and 2 when the flows are not sufficiently fine-grained (e.g. srcIP
or dstIP), high relative errors in the estimation occur (between 20% and 35%),
as the number of distinct flows traversing each switch ni is not large enough.
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Instead, when a flow is identified by the {srcIP,dstIP} pair key, which implies
finer-grained flows, the relative error significantly drops and is under 3%. We
also considered as flow key {srcIP,dstIP, protocol}, where protocol (in brief prot)
is, for instance, UDP, TCP, ICMP; in this case, the relative error is almost the
same as for {srcIP,dstIP}, without any notable improvement. We thus decided
to adopt {srcIP,dstIP} pair as default flow key for our evaluations, since it re-
duces the operations to be performed by INVEST in the data plane with respect
to {srcIP,dstIP, prot}. For completeness, Table 7.5 also reports the relative error
if INVEST was updated considering unique packet ids, similarly to [36]. In this
case, the relative error caused by the estimation R̂tot is zero. Results show that the
relative error in both Tint widths is inline with the standard error of HyperLogLog,
which is 1.04√

2048
= 2.3%. However, as already said, ensuring unique packet ids in

real scenarios is challenging and this case was not implemented in hardware.

Sensitivity to time interval width

Table 7.5 also shows the relative error of INVEST when different time interval
widths are considered. A larger width is naturally accompanied by a larger number
of monitored flows ntot , which should have a good effect on traffic volume estima-
tion according to Theorems 1 and 2 of Section 7.3.3; however, a higher variance
σ2 of flow packet counts in Ftot is also expected (see the table), and this negatively
impacts on the estimation. Increasing the time interval width has thus a counteract-
ing effect on traffic volume estimation but, unfortunately, the negative effect due
to higher flow packet count variance tends to dominate. Adopting fine-gained flow
keys can effectively mitigate such effect, since considering more flows in the net-
work leads on average to less packets per flow and reduces the flow packet count
variance.

Sensitivity to network topology

If the same flow trace and flow key type are considered, obviously the variance of
flow packet count in Ftot does not change when considering GÉANT and DEFO
topologies. Since DEFO has a larger number of nodes, each switch i is assigned
a smaller number of flows ni. As we explained in Theorem 2 of Section 7.3.3,
smaller number of flows ni leads to a higher variance on the estimation of Rtot :
this is why the relative error of traffic volume estimation |Ŝtot | is generally slightly
higher in DEFO.

Sensitivity to HLL register size m

Figure 7.3 shows how INVEST performs by varying the HLL register size m. In-
tuitively, the relative error decreases as m increases. When the HLL register size
m is small (e.g., 24 and 25), the relative error is very significant. While increasing
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Figure 7.3: Sensitivity to HLL register size m

m, at a certain point (i.e., when m = 211) the curve flattens to a relative error that is
always lower than 3%.

Sensitivity to flow distribution
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Figure 7.4: Sensitivity to flow distribution

As described in Section 7.6.1, in previous evaluations we have considered a
balanced traffic matrix, where any node in the network has the same probability
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to be picked as source (ingress) or destination (egress) of a traffic flow. Here, we
want to see how INVEST performs in the case of unbalanced traffic matrices. To
do so, instead of considering any node in the ISP topology as possible ingress or
egress node for the flows, we select a subset of nodes with cardinality p as possible
sources/destinations and we use the CRC32 hash function (with output size p) to
assign the flows’ source and destination IPs to the nodes in that subset. Once the
flows’ source and destination IPs have been assigned to the p switches, they are
routed as before on the shortest path. Thus, with this procedure, it is possible to
tune the skewness of the flow distribution: the smaller p is, the more skewed the
distribution is, leading to large variances on flow packet counts in the different
switches.

As remarked in Section 7.3.3, as a consequence of Theorem 2, selecting the
top-k switches for traffic volume estimation is beneficial in the case of unbalanced
traffic matrices, since it ensures to keep Var[R̂tot ] small. To evaluate the impact
of the top-k selection on the overall INVEST strategy, we introduce INVEST(q):
INVEST(q), instead of only considering the top-k switches in the estimation of
R̂tot , considers all of them, that is, Eq. 7.1 in Section 7.3.2 is replaced with R̂tot =
1
q ∑

q
i=1 R̂i =

1
q ∑

q
i=1
|Si|
n̂i

. In the case that |Si|= n̂i = 0, we define R̂i = 0.
Figure 7.4 shows the sensitivity of INVEST to different flow distributions. For

completeness, we include in the evaluation also the Sample strategy, while we do
not show results for Sum, which always leads to very large relative errors. The
relative error of Sample decreases as p increases. However, when the traffic matrix
is balanced, i.e., when p is equal to the overall number of nodes in the network, the
relative error is still high (above 25%) as already shown in the previous subsection.
INVEST(q) has even worse performance than Sample when p is small in both ISP
topologies, since the zero value of R̂i related to the nodes that are not traversed
by any flow compromises the estimated R̂tot . In contrast, INVEST always leads
to good estimation performance: no matter what network topology, time interval
width or flow distribution is considered, the relative error of INVEST is always
around 3%. Especially, using the top-k switches for estimating the traffic volume
is shown to be very effective, especially when the traffic matrix is strongly unbal-
anced.

Sensitivity to number of programmable switches

Unlike previous evaluations, in this subsection we consider a hybrid network com-
posed by both programmable switches and legacy devices (e.g., Openflow-based
or SNMP-based switches) when the traffic is balanced. Only some nodes are
programmable switches able to implement the INVEST Update strategy, while
the remaining legacy devices are assumed not to provide any information to the
SDN controller for the estimation of |Stot |. The incremental deployment of pro-
grammable switches in the hybrid network is performed using the algorithm de-
signed in [54], where the nodes leading to the largest union of distinct flows with
previously-deployed programmable switches are iteratively replaced to ensure the
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Figure 7.5: Sensitivity to number of programmable switches q in a hybrid network

highest possible flow visibility, until a number q of switches have been substituted
with programmable equipment.

Figure 7.5 reports the sensitivity of INVEST performance to a variation on
the number of programmable switches q deployed in such a hybrid network. We
include in the figure also Sample and INVEST(q) strategies. When more pro-
grammable switches q are deployed, the relative error of Sample decreases smoothly,
since more sampled flows are reported to the controller. However, as before, the
estimation is jeopardized by the missing statistics on the long tail of small flows.
Conversely, INVEST and INVEST(q) have good and comparable performance: the
relative error of INVEST(q) is slightly lower than of INVEST when q is large, since
INVEST(q) considers in the estimation more programmable switches, which may
be beneficial when the traffic is balanced (but leads to much worse performance
when the traffic is unbalanced, as shown in the previous evaluation). Another ob-
servation is that, being programmable only around 40% of the switches in a hybrid
network and being them deployed following the strategy proposed in [54], INVEST
is able to estimate |Stot | accurately (i.e., relative error < 5%).

7.6.4 Evaluation of impact on network performance

We used the testbed shown in Fig. 7.2 to evaluate the performance of our P4 imple-
mentation of INVEST Update as installed in a carrier-grade programmable switch.
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Table 7.6: Network performance of INVEST in a commodity switch

Type iPerf size Throughput Jitter Packet loss Average additional
processing time w.r.t.

simple forwarding
TCP 64 KB 9.44 Gbps / / 41 ns
TCP 128 KB 9.44 Gbps / / 36 ns
UDP 500 B 0.96 Gbps 0.004 ms 0.016% 30 ns
UDP 1000 B 1.79 Gbps 0.004 ms 0.04% 35 ns
UDP 1470 B 3.02 Gbps 0.004 ms 0.04% 34 ns
UDP 3000 B 4.91 Gbps 0.004 ms 0.06% 35 ns
UDP 6000 B 8.64 Gbps 0.005 ms 0.044% 39 ns
UDP 9500 B 9.46 Gbps 0.008 ms 0.0092% 29 ns

We used iPerf [32] to generate packets of different kind and size and indirectly
measure the network performance of the proposed strategy. The results are re-
ported in Table 7.6. We first generated 10 Gbps of TCP traffic with iPerf buffer
size of 64 KB and 128 KB respectively. In both cases, the throughput reached
more than 9.4 Gbps, meaning that the TCP traffic could be processed at line-rate
(remind that the testbed includes 10 Gbps interfaces). We then generated 10 Gbps
of UDP traffic with different iPerf sizes ranging from 500 Bytes to 9500 Bytes. Us-
ing canonical (e.g., 1470 Bytes) datagram sizes, the throughput could not approach
10 Gbps. The issue is not related to inefficiencies of the INVEST strategy, but to the
inability of our sender server to generate the required number of packets at the right
speed, being thus its CPU processing capability a bottleneck. With larger datagram
sizes, results show that the throughput signficantly increases and jitter marginally
increases, while packet loss is kept below 0.05% in all the experiments. When the
datagram size was set to 9500 Bytes, the throughput was 9.46 Gbps, indicating that
the CPU of the sender server was not a bottleneck anymore, and INVEST could
still process UDP datagrams at line-rate.

Additionally, we embedded two registers in our P4 program to monitor the
packet processing time. One was placed in the ingress pipeline and stored the
timestamp tin, to record when a packet enters the switch; the other was instead
placed in the egress pipeline to record the timestamp tout once the packet had been
processed. Per-packet processing time can thus be calculated as tout − tin. Results
show that INVEST only requires around 40 ns more than simple forwarding, which
is an acceptable time overhead.

7.6.5 Evaluation of resource usage

Table 7.7 shows the switch’s data plane resources required by INVEST Update and
simple forwarding implementations. To ensure a fair comparison, the INVEST Up-
date implementation also includes the simple forwarding logic for packet forward-
ing. INVEST plus simple forwarding requires around 25% stages (see Section 7.4)
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Table 7.7: Normalized switch resource usage of INVEST
Strategy No. stages SRAM TCAM No. ALUs PHV size

Simple forwarding 16.67% 2.5% 8.33% 4.17% 7.30%
INVEST Update +
Simple forwarding

41.67% 3.23% 9.03% 8.33% 7.68%

more than simple forwarding.
Simple forwarding needs 2.5% of the total available SRAM and 8.33% of

TCAM. Instead, INVEST Update plus simple forwarding uses only 3.23% of total
SRAM, which means that the occupied memory by both the packet counter |Si|
and HLL register Mi is quite low. Additionally, INVEST needs 31 entries in a
ternary match table (see 7.2) to compute the values in the HLL register, occupying
additional 0.7% of TCAM with respect to what is needed by simple forwarding.

The number of needed ALUs gives an indication on the computational resource
usage. Only 8.33% of total ALUs are used by INVEST plus simple forwarding to
process the packets, and the number of ALUs is almost doubled with respect to
simple forwarding.

The packet header vector (PHV) size indicates the amount of packet header
information that can be passed across the pipeline stages. INVEST plus simple
forwarding uses only 7.68% of PHV and, compared to the 7.30% of simple for-
warding, means that INVEST requires to pass across stages only few additional
customized metadata.

7.7 Related Work

7.7.1 Traffic volume estimation

The problem of estimating the number of packets in the network in a given time
window is not new and is fundamental to support network-wide monitoring, as
explained in Section 7.5. However, a common nomenclature for this metric has
never been defined. For instance, Lawniczak et al. [86] call it number of packets
in transit (NPT) and focus on the number of packets that, in a given instant, are on
their routes to their destinations. Salah et al. [107], focusing on the incoming traffic
to a host, refer to the term packet rate, which is the number of packets delivered
to the host in a one-second time window: clearly, the same term can be used, in
our context, to specify the number of unique packets traversing the network in a
second. More recently, Basat et al. [36] have introduced the term network traffic
volume, or simply traffic volume, to indicate the number of unique packets flowing
in the network in a given time interval: in this chapter, we use this latter name.

In their works, Basat et al. [36][37] have proposed a distributed traffic volume
estimation strategy that, as ours, rely on HLL-like cardinality estimation, is explic-
itly designed to avoid the double counting problem and can be executed in pro-
grammable switches’ data plane. In both papers they require that, to estimate the
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traffic volume exploiting the merge property of HLL, a unique identifier for each
packet is needed. However, non straightforward mechanisms should be adopted for
assigning a unique key to each packet [138][90] and, for this reason, it may be in-
feasible to adopt such a solution on high-speed carrier-grade networks. Conversely
our solution, which exploits the merge property of HLL as well, uses aggregated
per-flow information for an accurate estimation of the traffic volume, being a more
practical generalization of the strategies proposed in [36][37].

Ding et al. proposed a strategy to estimate the traffic volume without double
counting packets. It consists on locally storing the heaviest flows in a sample list
maintained in the switches’ data plane. The controller can prevent, when collecting
the sample lists from multiple switches, from double counting the packets belong-
ing to the same flow. The limitation of this solution is that the estimation accuracy
significantly depends on the size of the sample lists. Considering currently avail-
able memory in programmable switches, the long tail of small flows is neglected
in the traffic volume estimation. Contrariwise, INVEST can estimate the traffic
volume of large data streams, also including the small flows long tail, with good
accuracy and low memory occupation.

7.7.2 Network flow cardinality estimation

Many sketch-based algorithms for estimating the cardinality of large data streams
have been proposed in literature, including Linear Counting [124], Multiresolution
Bitmap [59], PCSA [64], LogLog [57] and HyperLogLog [63]; it has been proven
that HyperLogLog is able to achieve the same accuracy of the other methods by
requiring much less memory.

With the advent of programmable data planes, estimating the cardinality of
flows directly in the data plane pipeline has become an appealing solution to en-
hance network monitoring. Recently, AROMA [37] proposed and implemented a
customized HLL algorithm in P4, where each HLL register cell requires 32 bits
instead of the 5 bits required by standard HLL [63], breaking the best trade-off be-
tween estimation accuracy and memory occupation as evaluated in [63]. Instead,
INVEST implements the standard Update operation of HLL in P4, without any
need for additional memory occupation.

7.8 Concluding remarks

In this chapter we presented INVEST, a novel traffic volume estimation method
that exploits modern data-plane programmable switches to jointly estimate num-
ber of flows, average flow size and total packet count in the network, using a limited
number of sampling locations and robust against packet double counting. We pro-
vided the theoretical justification of why the method is an unbiased estimator and
can work with a relatively small number of measurement locations. In addition,
we overcame the strict resource constraints of real P4-programmable hardware
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switches, to successfully implement our logic in an Edgecore commodity switch
equipped with Tofino ASIC.

Our experimental evaluation showed that INVEST can estimate the traffic vol-
ume with high accuracy (relative error lower than 3%) and low memory occupation
(around few KB per switch), outperforming existing strategies. INVEST works
well also (i.) in the case of strongly unbalanced traffic matrices and (ii.) when
only 40% of the network switches implement it. It also ensures line-rate packet
processing, with only marginal time overhead with respect to a naïve forwarding
strategy, and does not require any priori knowledge on the network topology, on
routing and on flow distribution.
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Chapter 5 presents a possible approach for the flow cardinality estimation in
programmable data planes. A sensible curiosity that follows is: what is the poten-
tial application by using flow cardinality estimation? In this chapter, we first in-
troduce the BACON data structure based on sketches, to estimate per-destination
flow cardinality, and theoretically analyze it. Then we employ it in a simple in-
network DDoS victim identification strategy to detect the destination IPs for which
the number of incoming connections exceeds a pre-defined threshold. We describe
its hardware implementation on a Tofino-based programmable switch using the
domain-specific P4 language, proving that some limitations imposed by real hard-
ware to safeguard processing speed can be overcome to implement relatively com-
plex packet manipulations. Finally, we present some experimental performance
measurements, showing that our programmable switch is able to keep process-
ing packets at line-rate while performing volumetric DDoS detection, and also
achieves a high F1 score on DDoS victim identification.

This chapter is based on the paper "In-Network Volumetric DDoS Victim Iden-
tification Using Programmable Commodity Switches" submitted to IEEE Transac-
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tions on Network and Service Management (Under review).

8.1 Introduction

Distributed Denial-of-Service (DDoS) attacks are a critical security threat to mod-
ern telecommunication networks; not only do they cripple live services for legit-
imate users, but also cause large operational burdens on operators, which must
dedicate significant resources to detecting and mitigating them. As the number and
size of botnets and DDoS attacks persistently increases [108], so does this work-
load. In particular, volumetric DDoS attacks, designed to overwhelm network and
server capacity, are among the most common and dangerous DDoS attacks [105].

Many techniques to both perform and detect volumetric DDoS attacks are
documented in the scientific literature. Among the latter, a rather common fea-
ture of such attacks is the exploitation of a (large) number of (capacious) source
hosts to direct a considerable amount of packets to a specific victim destination
[134][93][74]. Attackers use seemingly legitimate TCP, UDP, or ICMP packets in
volumes large enough to overwhelm network devices and servers, or deliberately
incomplete packets designed to rapidly consume all available computing, storage,
and transmission resources in servers. A majority of such attacks also make use
of spoofed source IP addresses (e.g. DNS and NTP amplification DDoS attacks),
that is, they forge the address that supposedly generated the requests to prevent
source identification; this implies that tracking attack source IPs is usually ineffec-
tive. On the other hand, DDoS victim addresses cannot be spoofed, and identifying
the victims is a useful step for network operators to mitigate such attacks.

This chapter describes the implementation and validation of volumetric DDoS
victim detection and identification directly in Tofino-based [2] P4-enabled com-
modity switches. The proposed logic copes well with the aforementioned restric-
tions of data plane programmability. That is, unlike other recent works on this
subject, we actually implemented and tested our technique in a real switch instead
of limiting the work to a P4 simulator, such as the Behavioral model [13]. To that
end, after describing some background mathematical results and data structures
required by our technique, and we then propose two main contributions: BACON
Sketch and INDDoS. BACON is a new sketch (a probabilistic data structure) com-
bining a Direct Bitmap [59] and a Count-min Sketch [50], which allows switches
to estimate the number of distinct flows (i.e., packets with the same flow key) con-
tacting the same destination host. INDDoS is a simple volumetric DDoS victim
identification strategy built on top of BACON Sketch to identify the destination
IPs contacted by a number of source IPs greater than a threshold in a given time
interval. We include extensive theoretical analysis and detail the modifications
required to implement our approach in physical resource-constrained P4 Tofino
switches and provide some insights on the integration of INDDoS in a full DDoS
defense system, including attack detection and consequent mitigation steps. The
results show that, using optimal parameters derived from our theoretical analysis,
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our implementation can reach an F1 score higher than 0.95 on a real flow trace
[3] captured on a 10 Gbps backbone link, without performance degradation in the
switch’s packet-processing capabilities.

To sum up, we make the following contributions in this chapter:

• We propose BACON Sketch, a simple but effective data structure to estimate
the number of distinct flows to each destination.

• Based on BACON Sketch, we design a strategy, named INDDoS, to identify
DDoS victims that is contacted by a large number of hosts in the network.

• We theoretically analyze the estimation accuracy of BACON Sketch and vic-
tim detection accuracy of INDDoS.

• We implement the prototype of INDDoS in a programmable switch equipped
with Tofino ASIC while respecting the rigorous hardware constraints.

The work has been carried out within the GÉANT [6] GN4-3 project.

8.2 Basic knowledge and used compact data structure

8.2.1 Markov’s inequality

Given a non-negative random variable X and a positive value a, Markov’s inequal-
ity defines a constant upper bound for the probability that satisfies P(X ≥ a)≤ E[X ]

a ,
where E[X ] represents the expected value of X .

8.2.2 Direct Bitmap

Direct Bitmap [59] is a simple data structure that can be used to estimate the num-
ber of distinct flows occurring in a packet stream (also called flow cardinality):
it is based on a bit array called Bitmap register and relies on one or more hash
functions. Initially, all m cells in the Bitmap register are set to 0. When a packet
arrives, its flow key is hashed: the hashed key indicates the index of the register
cell to consider. The value of the indexed cell is set to 1 if it was previously 0,
otherwise it is not updated. Note that packets sharing the same flow key are always
hashed into the same cell, while different flows are hashed to different cells unless
a collision occurs. The number of distinct flows can then be (under-)estimated by
counting the number of bits with value 1 in the register.

8.2.3 Count-min Sketch

The estimation of per-flow packet count (i.e., number of packets carried by any
flow in the network during an interval of observation) can be performed by using a
Count-min Sketch [50], a probabilistic and memory-efficient data structure which
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implements Update and Query operations: the former is responsible for continu-
ously updating the sketch to count incoming packets in the switch, while the latter
retrieves the estimated number of incoming packets for a specific flow. Count-min
Sketch relies on d pairwise-independent hash functions, each with an output of size
w. The data structure is composed by a matrix of d ·w counters: the accuracy of
packet count estimation in Count-min Sketch increases as d or w increase, and vice
versa.

8.3 In-network DDoS victim identification

8.3.1 Threat model and deployment scenario

Threat model

In this chapter, we focus on volumetric DDoS attacks against victim destinations
in the network. For the purpose of overwhelming the available resources of the
victims, an attacker exploits a large number of distributed hosts (e.g. bots in a
botnet) to frequently send traffic to the target host(s) (e.g., a web server). The
attacker sources are usually spoofed to evade detection, which, coupled with the
fact that each source may send only a small amount of traffic to the victim (in a
stealthy volumetric DDoS attack), makes identifying attack sources (also called
superspreaders) less efficient than focusing on destinations for DDoS mitigation.
Unfortunately, there exists legitimate network events, such as flash crowds, that
exhibit similar characteristics to volumetric DDoS attacks, making a suspiciously
high number of sources contacting a destination a necessary but not sufficient con-
dition to determine whether a destination is under attack. To further discriminate
DDoS attacks from flash crowds in those destinations, a possible solution can be
found in [135], where the correlation of flows is used to determine whether they
are malicious or not.
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Deployment scenario for the proposed DDoS detection

We target an ISP network, for which the best placement of our DDoS detection
functionality involves deploying programmable switches at the edge of the net-
work, so that, as shown in Figure 8.1, at least one switch has visibility on all flows
towards each IP destination. Therefore, at least one switch is in the best place to
estimate the number of source hosts contacting any destination host. Once a DDoS
victim is identified, ideally after a more thorough analysis step at a centralized con-
troller, any border programmable switch can also be used to limit the traffic rate
towards it.

8.3.2 BACON Sketch

For the purpose of measuring flow cardinality directly inside switches, we com-
bined Direct Bitmap registers [59] and Count-min Sketch [50] in a new sketch,
which we named BACON (BitmAp COuNt-min) Sketch for the sake of brevity.
As shown in Figure 8.2, in BACON Sketch the counters of Count-min Sketch are
replaced with a m-sized Bitmap register, hence the size of BACON is d×w×m,
where d×w is the size of Count-min Sketch. BACON Sketch enables the estima-
tion of per-destination flow cardinality, with flows identified by different flow keys
keysrc, using very little memory in the switch. Two different flow keys are consid-
ered for each packet: the key keysrc must include the source IP of the flow together
with any subset of {source port, destination IP and port, protocol} without loss
of generality, and the choice of keysrc depends on the requirements of operators.
Likewise, the flow key of the destination host, denoted by keydst , can be either the
destination IP or the {destination IP, destination port} pair.

Formally, BACON Sketch solves the following problem. Given:

• a packet stream S

• a Bitmap register size m

• a number of hash functions in Count-min Sketch d

• an output size of hash functions in Count-min Sketch w

• a time interval Tint

• a flow key keydst

compute Êdst , the estimated value of Edst in Tint , where Edst is the number of flows
(identified by different keysrc keys) that contact the destination host identified by
keydst .

Algorithm 9 shows the pseudo code of BACON Sketch. For each incoming
packet, the switch hashes the flow key keysrc with hash function hbm and converts
the hashed value to be within range [0,m− 1]: this value, named bucket, is the
index in the Bitmap register (Line 7). Then each of the d pairwise-independent
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Algorithm 9: BACON Sketch
Input: Packet stream S, where each packet is characterized by keysrc and

keydst
Output: Estimated number of distinct flows contacting the packet’s

destination keydst (i.e., Êdst)
1 d← Number of hash functions hi

cm in Count-min
2 w← Output size of hash functions hi

cm in Count-min
3 m← Bitmap-register size with hash function hbm
4 for Each packet in S (with keysrc and keydst) do
5 Update(keysrc, keydst)

6 Function Update(keysrc, keydst):
7 bucket← hbm(keysrc)%m
8 for Each hash function hi

cm do
9 index← (hi

cm(keydst)%w) ·m+bucket
10 if BACONi[index] == 0 then
11 BACONi[index]← 1 // row i

12 Function Query(keydst):
13 Êdst ← 0
14 for Each hash function hi

cm do
15 id← (hi

cm(keydst)%w) ·m
16 Ei← ∑

id+m−1
j=id BACONi[ j]

17 if min == 0 then
18 Êdst ← Ei

19 else if Êdst > Ei then
20 Êdst ← Ei

21 return Êdst
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hash function in BACON, denoted by hi
cm, hashes the packet’s keydst to the slot

(hi
cm(keydst)%w) ·m + bucket in each row, setting the related register cell to 1

(Lines 8-11). Note that this way to compute the cell’s index to be updated as-
sumes that the Bitmap registers’ cells in each row are progressively numbered
from 0 to m ·w− 1, much like in an array. Concerning the Query operation for
any keydst , the involved Bitmap register in row i (i.e., the register indexes from
(hi

cm(keydst)%w) ·m to hi
cm(keydst)%w) ·m + m− 1) estimates the cardinality of

keydst by computing the sum of values in the register cells (i.e., the number of 1s).
This is done for each row and the minimum estimated cardinality among all d rows
is returned (Lines 14-20).

8.3.3 In-network cardinality-based DDoS victim identification

Using BACON Sketch, we propose a simple in-network volumetric DDoS detec-
tion mechanism, which we named INDDoS, aiming to identify likely DDoS vic-
tims, i.e., those hosts that are contacted by an abnormally high number of source
IPs, and hence the associated network flows.

Formally, the problem is formulated as follows.
Given:

• a number of source IPs n

• a BACON Sketch with size d×w×m (m < n)

• a DDoS threshold fraction θ (threshold: θn)

• a time interval Tint

return all destinations keydst , named DDoS victims, that satisfy Êdst > θn within
time interval Tint , where Êdst is the estimated number of sources contacting keydst
and obtained by querying the BACON sketch.

From this point onward, without any loss of generality, we will use src (the
source IP) as keysrc, and dst (the destination IP) as keydst , to estimate how many
flows from different source IPs are trying to contact a destination IP in a given
time interval Tint . Observe that the proposed strategy, which requires updating and
querying the BACON sketch for each incoming packet towards any destination
dst during the time interval, interacts with a remote controller only when at least
one attack is detected in the same interval, otherwise no communication between
controller and switches takes place.

8.3.4 Theoretical analysis

In this section we present a theoretical analysis of the accuracy of our proposed
DDoS detection strategy.
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Error bounds for estimated flow cardinality

Theorem 4. With probability at least 1−(1
2)

d
, the cardinality estimation Êdst from

BACON Sketch satisfies Edst −2(n−m(1− e−
n
m ))< Êdst .

Proof. Let us start with the Bitmap register. Since a register cell is touched (i.e.,
set to 1) as soon as it is selected for one incoming element, the probability of any
cell Xi to be touched after processing one element (packet) can be expressed as:

P(Xi = 1) =
1
m

so, the probability of i-th register cell to be untouched is:

P(Xi = 0) = 1−P(Xi = 1) = 1− 1
m
.

After processing Edst different elements (where Edst is the true number of src con-
tacting dst) we then have:

P(Xi = 0) = (1− 1
m
)Edst = ((1− 1

m
)m)

Edst
m .

Since limm→∞ (1− 1
m)

m = e−1 and in our case m is large (i.e., ≥ 128), (1− 1
m)

m ≈
e−1 and we have:

P(Xi = 0)≈ e−
Edst

m .

Hence, the probability of a cell to be touched after Edst elements is:

P(Xi = 1) = 1−P(Xi = 0) = 1− e−
Edst

m .

Since there are m cells in each Bitmap register, the expectation of our Bitmap
cardinality-estimation (i.e., the expected number of 1s in the register), for destina-
tion IP dst, is:

E[ÊBitmap
dst ] =

m

∑
i=1

Xi ·P(Xi = 1)+Xi ·P(Xi = 0)

=
m

∑
i=1

(1 ·P(Xi = 1))+0

=
m

∑
i=1

1− e−
Edst

m = m(1− e−
Edst

m ).

Note that, when there are no collisions in Count-min Sketch, E[Êdst ] = E[ÊBitmap
dst ].

Since ÊBitmap
dst ≤ Edst , the difference between E[Êdst ] and E[Edst ]

1 is:

f (Edst) = E[Edst ]−E[Êdst ] = Edst −m(1− e−
Edst

m ).

1The expectation of Edst is still Edst since Edst is a constant.
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The derivative of f (Edst), denoted by f ′(Edst), is:

f ′(Edst) = 1− e−
Edst

m .

Since e−
Edst

m < 1, f ′(Edst)> 0. For this reason, f (Edst) is monotonically increasing
and f (Edst)≤ f (n) = n−m(1−e−

n
m ). Then, applying Markov’s inequality yields:

P(Edst − Êdst ≥ 2(n−m(1− e−
n
m )))

≤ Edst −E[Êdst ]

2(n−m(1− e−
n
m ))

≤ n−m(1− e−
n
m )

2(n−m(1− e
−n
m ))

=
1
2
.

Considering that there are d hash functions in the Count-min Sketch part of BA-
CON Sketch:

P((Edst − Êdst)≥ 2(n−m(1− e−
n
m )))≤ (

1
2
)d

Thus, with probability at least 1− (1
2)

d ,

Êdst > Edst −2(n−m(1− e−
n
m )).

�

Theorem 5. With probability at least 1−(1
2)

d
, the cardinality estimation Êdst from

BACON Sketch satisfies Êdst ≤ Edst +2m(1− e−
n

mw ).

Proof. Count-min Sketch occasionally writes two different inputs to the same cell;
the expected number of such collisions is n−Edst

w [50]. Therefore, in BACON
Sketch, the actual average number of different elements being written to the same
Bitmap register is Edst +

n−Edst
w < Edst +

n
w , so the expectation of Êdst becomes:

E[Êdst ] =
m

∑
i=1

E[Xi] =
m

∑
i=1

1− e−
Edst+

n−Edst
w

m

= m(1− e−
Edst+

n−Edst
w

m )

< m(1− e−
Edst+

n
w

m ).

Then, the expectation of Êdst − ÊBitmap
dst is:

E[Êdst − ÊBitmap
dst ] = E[Êdst ]−E[ÊBitmap

dst ]

< m(1− e−
Edst+

n
w

m )−m(1− e−
Edst

m )

= me−
Edst

m (1− e−
n

mw )< m(1− e−
n

mw ).
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According to Markov’s inequality,

P((Êdst − ÊBitmap
dst )≥ 2m(1− e−

n
mw ))

≤
E[Êdst ]−E[ÊBitmap

dst ]

2m(1− e−
n

mw )

=
m(1− e−

n
mw )

2m(1− e−
n

mw )
=

1
2
.

Since there are d hash functions in Count-min Sketch:

P((Êdst − ÊBitmap
dst )≥ 2m(1− e−

n
mw ))≤ (

1
2
)d .

Hence, with probability at least 1− (1
2)

d ,

Êdst − ÊBitmap
dst < 2m(1− e−

n
mw ).

Since ÊBitmap
dst ≤ Edst , Êdst satisfies:

Êdst < 2m(1− e−
n

mw )+Edst .

�

Remark. The lower error bound for the cardinality estimation is Edst − 2(n−
m(1−e−

n
m )), while the upper error bound is Edst +2m(1−e−

n
mw ). This implies that

we should carefully choose m and w instead of setting the sketch width (i.e., number
of columns) as large as possible, due to their counteracting effect on estimation
quality.

Error bounds for DDoS detection

Lemma 1. With probability at least 1−(1
2)

d
, R≤ 2n

w , where R is the overestimation
of Edst caused by Count-min Sketch.

Proof. The expectation of R in each Bitmap register is E[R] = n−Edst
w ≤ n

w , applying
Markov’s inequality yields:

P(R≥ 2n
w
)≤ (

1
2
)d .

�

Given Lemma 1, Theorem 6 reports the false negative bound and Theorem 7
the false positive bound for INDDoS.

Theorem 6. When Edst ≥ θn+2(n−m(1−e−
n
m )), INDDoS reports dst as a DDoS

victim with a probability of at least 1− (1
2)

d
.
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Table 8.1: Properties of hash functions
Hash function name poly Reversed init xor

CRC32 0x104C11DB7 True 0 0xFFFFFFFF
CRC32c 0x11EDC6F41 True 0 0xFFFFFFFF
CRC32d 0x1A833982B True 0 0xFFFFFFFF
CRC32q 0x1814141AB False 0 0

CRC32mpeg 0x104C11DB7 False 0xFFFFFFFF 0

Proof. A victim should be reported if Edst > θn. By Theorem 4, Êdst ≥Edst−2(n−
m(1− e−

n
m ))≥ θn with probability at least 1− (1

2)
d . Therefore, dst is reported as

a DDoS victim with the same probability if and only if Êdst ≥ Edst −2(n−m(1−
e−

n
m )). �

Theorem 7. When Edst ≤ 2
w n and θ ≥ 4

w , BACON Sketch reports dst as a victim

with a probability of at most (1
2)

d
.

Proof.

P(Êdst ≥ θn)≤ P(Edst +R)≥ θn)

≤ P(R+
2n
w
≥ θn) (due to Edst ≤

2
w

n)

= P(R≥ (θ − 2
w
)n)

≤ P(R≥ (
4
w
− 2

w
)n) (due to θ ≥ 4

w
)

= P(R≥ 2
w

n)≤ (
1
2
)

d
(by Lemma 1).

�

Remark. The false negative and positive bounds for INDDoS show that increasing
the BACON sketch height (i.e., number of rows) improves the victim identification
performance (with equal column parameters).

8.4 Implementation in commodity switches

Figure 8.3 shows a schematic representation of our in-network DDoS detection im-
plementation within P4-enabled commodity switches. We implemented INDDoS
with 680 lines of P4_16 code, released as open source at [15]. Our implementation
of INDDoS fits entirely in the ingress pipeline, leaving the egress pipeline free for
other uses as discussed in Section 8.5.3. Here we report the details of the imple-
mentation of BACON Sketch and INDDoS in the Tofino-based hardware switch.

8.4.1 Implementation of pairwise independent hash functions

Since our P4-enabled commodity switch does not natively provide support for pair-
wise independent hash functions, we varied the usual poly, reverse, initial value,
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Figure 8.3: Scheme of INDDoS including Update (bottom) and Query (top) oper-
ations on BACON sketch as implemented in the commodity switch

and xor parameters in the available embedded CRC32 function to produce a set of
suitable pairwise independent hash functions, such as CRC32c, CRC32d, CRC32q
and CRC32mpeg (see Table 8.1). These hash functions guarantee that the hashed
values of the same flow key are independent.

8.4.2 BACON Sketch - Implementation of updates

We implemented BACON Sketch with d rows of w×m-sized registers. Consider-
ing that we cannot use more than two arithmetic operations to compute the input
of a register (due to the atomic action rule [103]), we cannot calculate the index of
the cell to be updated as (hi

cm(dst)%w) ·m+bucket (see Alg. 9). Thus, we express
index by concatenating bucket and hi

cm as a binary number (see Figure 8.4), where
the least significant bits index[0 : log2(m)−1] represent bucket, while the rest (i.e.,
index[log2(m) : log2(m)+ log2(w)−1]) represent hi

cm(dst). In order to assure that
log2(w) and log2(m) are integers, w and m must be powers of two.

The maximum size of registers in the switch is 217, which means that if log2(m)+
log2(w) is larger than 17, the concatenated index is truncated to 17 bits. In or-
der to overcome this limitation, it is possible, as shown in Figure 8.4, to ini-
tialize up to log2(m) + log2(w)− 17 registers in the switch, labeled from 0 to
log2(m)+ log2(w)−18. The most significant bits of index are the label of the reg-
isters that should be updated. For instance, if index[17 :] = k, the index index[0 : 16]
at the register labeled k will be updated to 1. Unfortunately, this approach requires
few additional pipeline stages in the switch due to using more registers.
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Figure 8.4: BACON Sketch updates to overcome the switch’s hardware limitations

8.4.3 BACON Sketch - Implementation of queries

Calculating the sum of values in a Bitmap register is a costly operation inside a
switch, since it needs to iteratively load and compute the sum of many individual
values. For this reason, we used an auxiliary Count-min Sketch to directly store
the updated sum of each Bitmap register (see Fig. 8.3). This Count-min Sketch
is composed by d×w counters, each associated with the number of 1s in the cor-
responding Bitmap register of BACON Sketch. This sketch is updated as follows:
when a packet arrives, the hi

cm(dst)-th counter may (i.) stay the same if indexi in
row i of BACON Sketch is already 1 or (ii.) increase by 1 if the same index of
BACON Sketch is 0. The updated value Ei in the counter indexi is the same as the
queried value in row i of BACON Sketch. Finally, the flow cardinality of dst is
obtained by using if-else statements to take the minimum of estimated cardinalities
Ei in each row of the auxiliary sketch.

8.4.4 Implementation of INDDoS

If a queried flow cardinality Êdst is equal to θn+1 for one or more destinations, the
switch’s data plane prepares a short digest packing the destination IPs for which the
flow cardinality estimation exceeds the threshold, and sends it to the controller. The
equality prevents generating multiple digests for the same dst in one time interval.
At the end of a time interval the switch resets all registers and starts a new round
of DDoS victim identification.

8.4.5 Limitations hindering the implementation of other solutions

In this subsection, we briefly explain why competing state-of-the-art sketch-based
per-flow cardinality estimation algorithms cannot currently be implemented in P4-
enabled programmable hardware switches:

Virtual HyperLogLog (vHLL) [126]

we were not able to implement this strategy for three reasons: (i.) we could not
find a way to count tailing 0s for the Update operation in HyperLogLog; (ii.) the
required Harmonic mean for querying cardinality is currently not implementable
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since P4 does not support the calculation of inverse numbers; (iii.) vHLL needs
to access several register cells to query the cardinality of a single flow but, in our
hardware, the same register cannot be accessed more than once per packet.

SpreadSketch [116] (combination of Multiresolution Bitmap [59] and Count-
min Sketch [50])

we were not able to implement this strategy for two reasons: (i.) P4 does not sup-
port the computation of logarithms, which is necessary for Multiresolution Bitmap
to estimate the cardinality (we proposed a logarithm estimation algorithm in P4 in
[55], but currently it can only be implemented in Behavioral model and not in hard-
ware); (ii.) arithmetic operations on the same metadata, in our hardware, cannot
occur more than twice, while more are required here.

Thus, unfortunately, we cannot perform a direct comparison of our strategy
with the state of the art since the solutions proposed in literature do not meet
the stringent hardware constraints of, and therefore they cannot be entirely im-
plemented in, current Tofino-based programmable switches. We are aware that, in
general terms, BACON Sketch is a rather simple solution for per-flow cardinality
estimation and more refined strategies have already been proposed. However, as
pointed out earlier, BACON is the only solution that can be implemented in exist-
ing commodity programmable switches.

8.5 Integrating INDDoS in a full DDoS Defense Mecha-
nism

In this section we explain how a DDoS defense system can benefit from the early
detection of potential DDoS traffic in the data plane, as performed by INDDoS, as
well as how the latter can benefit from the supervision of the former.

8.5.1 Setting the DDoS detection threshold

The performance of INDDoS depends on selecting an appropriate threshold frac-
tion θ , which determines the minimum number of sources contacting the same
destination that trigger an alarm, discriminating between legitimate and abnormal
traffic. In principle, to strike a good balance between false positives and false neg-
atives, θ should be chosen so that θn (i.) is larger than the largest flow cardinality
of any host in normal conditions (i.e., not under attack), and (ii.) is not so large that
it fails to detect some attacks. Additionally, the threshold should be dynamically
adapted to traffic changes.

Even though the definition of a detailed strategy for dynamic threshold setting
is beyond the scope of this chapter, we provide some indications on how it could
be designed. In the most simple case, it could be set by mirroring and analyzing a
large trace of legitimate traffic sampled in each switch. Alternatively, considering
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a more complex DDoS detection function at the controller, it could be set via a
slow negative feedback control loop: start with a relatively high threshold, and
slowly decrease it over time; at some point, the switch will start flagging some
destinations as potentially under attack, but the controller could determine whether
those are false positives, and if so raise the threshold back up. Finally, when θ

changes, the BACON sketch size should be tweaked according to our theoretical
analysis, in order to maximize the detection performance of INDDoS.

8.5.2 DDoS attack mitigation inside programmable switches

INDDoS enables the early detection of DDoS attack victims in the data plane
pipeline that can be exploited to immediately mitigate them. Once INDDoS has
identified a possible DDoS victim and sent a digest to the controller, two simple
DDoS victim-based mitigation operations can be triggered in the data plane, i.e.,
Drop and Rate limit:

• Drop: the controller automatically configures, in all programmable switches
in the network, the relevant egress Access Control List (ACL) with identified
attack traffic features (e.g. source, destination IPs, ports) in order to drop the
packets belonging to likely malicious flows.

• Rate limit: a meter is used to aggregate traffic towards the identified victim.
If the rate is larger than a pre-defined threshold, the traffic rate is limited.

Although we already implemented both operations in P4, we are keenly aware
that neither can actually implement proper DDoS mitigation alone. For that, ex-
ternal aid from the controller or an additional, more precise and computationally
expensive detection mechanism (operating on the limited subset of suspicious flows
identified by INDDoS) is needed, as outlined in the next subsection.

8.5.3 DDoS attack mitigation outside programmable switches

More refined and complex strategies, making use of external servers, have been
proposed in literature for DDoS attack mitigation. Here we describe a few and
explain how they can benefit from INDDoS.

Bohatei [60] is a strategy that spins up virtual machines (VMs) in servers for
the identification, analysis and mitigation of suspicious traffic as needed: once sus-
picious traffic is detected, a resource manager determines the type, number, and
location of VMs to be instantiated, and such traffic is steered to them for further
analysis (and possibly mitigation) with minimal impact on users’ perceived latency.
Another approach, named Poseidon [136], performs DDoS mitigation by combin-
ing the capabilities of programmable switches and of sets of external servers. The
additional mitigation functionalities provided by the servers, with respect to those
provided by programmable switches, significantly improves the performance with
respect to DDoS defense: Poseidon can mitigate sixteen different types of attacks
exploiting different protocols (i.e., ICMP, TCP, UDP, HTTP).
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Figure 8.5: The physical testbed for experiments on DDoS victim identification

However, both Bohatei and Poseidon consider a “DDoS-defense-as-a-service
scenario", that is, they assume that the DDoS victim is known a-priori. INDDoS
is complementary to these approaches since it can effectively detect and identify
likely DDoS victims, and hence route only a manageable subset of network traffic
towards these detection services.

8.6 Experimental evaluation

We implemented INDDoS in a commodity Edgecore Wedge-100BF-32X switch
equipped with Barefoot Tofino 3.3 Tbps ASIC [2], which supports up to 32 100 Gbps
ports. Due to the high cost of 100 Gbps interfaces, we connected the switch to
two servers (Intel(R) Xeon(R) CPU E3-1220 V2 @ 3.10GHz, 16 GB RAM) using
10 Gbps Ethernet interfaces, as shown in Figure 8.5. We also implemented a P4-
based simple forwarding strategy for comparison purposes. Packets are sent across
the switch via Tcpreplay [28].

8.6.1 Evaluation metrics and settings

Testing flow traces

In our first experiment we used, as done in previous works on DDoS detection
[74], a 50 s passive CAIDA flow trace [3] collected from a 10 Gbps backbone link,
which we divided into 10 time intervals. Each 5 s time interval contains around 2.3
million packets and 60 thousand distinct source IPs. Note that, although the trace
did not contain actual DDoS traffic, we were still able (by using a low, sensitive
threshold) to successfully detect outliers, despite the number of incoming connec-
tions for such cases being far smaller than in actual volumetric DDoS scenarios. In
other words, our experiment is a pressure test: if INDDoS can detect such outliers
accurately, by properly setting a threshold between legitimate and DDoS traffic, it
should have little trouble in properly distinguishing actual attack traffic where such
difference is more marked.

In a second experiment we then considered real DDoS attacks, namely from
Booter [108]. Booter is an on-demand service that provides illegal support to
launch DDoS attacks targeting websites and networks. We considered four 50 s
Booter DDoS attack traces with different number of attack source IPs; Table 8.2
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Table 8.2: Properties of DDoS flow traces [108]
DDoS trace name Packets per second Attack source IPs

Booter 6 ∼ 90000 7379
Booter 7 ∼ 41000 6075
Booter 1 ∼ 96000 4486
Booter 4 ∼ 80000 2970

reports their salient properties. For each trace, we split it into 10 time intervals as
for the CAIDA trace, and appended each 5s attack trace at the end of its respective
legitimate trace. In this way we generated four traces containing a single attack,
as well as a fifth Mixed trace containing all attacks simultaneously along with the
legitimate CAIDA traffic.

Metrics

We chose recall R and precision Pr as the key metrics to evaluate INDDoS, defined
as follows:

R =
Countdetected/true

DDoSvictim

Countdetected/true
DDoSvictim +Countundetected/true

DDoSvictim

Pr =
Countdetected/true

DDoSvictim

Countdetected/true
DDoSvictim +Countdetected/ f alse

DDoSvictim

The count of DDoS victims is obtained via the command line interface provided
by our Tofino-based switch.

In our evaluations, we considered the well known F1 score (F1) as a compact
metric incorporating both precision and recall, and thus measuring the accuracy of
our strategy. It is defined as:

F1 =
2 ·Pr ·R
Pr+R

All results are mean values computed across 10 time intervals.

Tuning parameters

The default BACON Sketch size d ×w×m is 3× 1024× 1024, and the DDoS
threshold fraction θ is set to 0.5% as per [74] in the first experiment, and to 1% in
the second, to better separate legitimate and DDoS traffic.

8.6.2 Exp 1: evaluation of DDoS victim identification accuracy

According to Theorems 1 and 2, the Bitmap register size m impacts both upper
and lower bounds on the quality of BACON Sketch’s estimation: increasing m
increases the distance between the upper bound of the estimation and the true flow
cardinality, but also reduces that between the lower bound and the true value. This
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Table 8.3: Comparison of INDDoS performance as a function of BACON Sketch
parameters

BACON Sketch size (d×w×m) Recall Precision F1 score
3×1024×1024 0.96 0.99 0.97
1×2048×1024 0.98 0.54 0.70
1×1024×2048 0.94 0.38 0.54
5×1024×512 0.12 1.0 0.22
5×512×1024 0.96 0.89 0.92
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Figure 8.6: Sensitivity analysis of INDDoS to the parameters of BACON Sketch

implies that m should be neither too large nor too small. In our flow trace, the
largest flow cardinality in each time interval is within [29,210], so we set m to 1024.
Conversely, larger output sizes w generate lower false negative bounds and do not
affect the false positive bound, but in order to apply the false positive bound proved
in Theorem 7, w should satisfy w ≥ 4

θ
. Therefore, given θ = 0.5% in our case, w

should be larger than 4
0.5% = 800. However, due to hardware limitations, we cannot

use arbitrarily large values for w; in fact, the only feasible parameter combinations
that satisfy all conditions on m and w, while not exceeding the available pipeline
stages, are: 3× 1024× 1024 and 1× 2048× 1024. Considering that 1× 2048×
1024 only uses 1 hash function, the estimated flow cardinality has a high chance
(i.e., 1

2 ) to be out of both upper bound and lower bound. Note that the number of
hash functions d = 2 was not considered since 2 hash functions support the same
largest register size (i.e., w×m = 1024×1024) as 3 functions within the available
pipeline stages. Likewise, 4 hash functions support the same largest register size
(i.e., w×m = 512×1024) as 5 functions, but neither can satisfy Theorem 4. Thus,
according to the theoretical analysis, the best choice of the sketch size should be
3×1024×1024 (hence our default choice).

Table 8.3 shows the performance of INDDoS for different BACON Sketch
sizes. In all cases listed in the table, all available pipeline stages are required to
implement the strategy. Results show good performance on both recall and preci-
sion for 3×1024×1024, which translates to a high F1 score. With only one hash
function in BACON Sketch, INDDoS shows high recall, i.e., it is able to identify
most DDoS victims, but low precision, meaning that a lot of false identifications
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take place. When instead m = 2048, the recall of 1×1024×2048 is as high as for
1×2048×1024, but its precision decreases by a third. In contrast, when m = 512
and the sketch size is 5×1024×512, the recall significantly decreases leading to
a much lower F1 score than for 5× 512× 1024. These two results indicate that
a larger m causes higher recall but lower precision, and vice versa. The recall for
sketch size 3×1024×1024 is comparable to the one for size 5×512×1024, but
the precision is 10 percentage points higher. Note that in higher-speed networks,
where the largest flow cardinality during a time interval may exceed 1024, IND-
DoS can still work properly even in currently available switches by shrinking the
time interval.

8.6.3 Exp. 1: sensitivity analysis of DDoS victim identification

In order to show how the performance of INDDoS is sensitive to different tun-
ing parameters (number of hash functions d, output size of hash functions w and
Bitmap register size m) in BACON, we conducted some experiments by varying
tuning parameters individually, while respecting the resource constraints of our
switch. The results are reported in Figure 8.6.

Sensitivity to number of hash functions d

Figure 8.6(a) shows how INDDoS behaves with d ranging from 1 to 3. Recall is
high in all three cases, but precision increases as d increases. This is because more
hash functions lead to smaller number of collisions in the Count-min Sketch side
of BACON Sketch, and hence to a lower overestimation of the number of source
IPs contacting a specific destination.

Sensitivity to output size of hash functions w

Figure 8.6(b) shows how INDDoS performs by varying w from 128 to 1024. Clearly,
precision is very sensitive to w, and it significantly decreases as w decreases. Con-
versely, even for small values of w (e.g., w = 128), recall remains above 0.75.

Sensitivity to Bitmap register size m

Figure 8.6(c) shows how INDDoS performance changes along with the value of m.
Since the threshold in each time interval is θn, which is around 0.5% ·60000 = 300
in our evaluation, when m is below 300, i.e., m ∈ {128,256}, no victim can be
detected and thus the F1 score is 0. Precision of m = 512 and of m = 1024 is
comparable, but recall is much lower for m = 512. As proven theoretically, a
smaller m causes a smaller lower bound on the flow cardinality estimation Êdst , so
it is more difficult for Êdst to exceed the threshold.
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Table 8.4: INDDoS performance for Booter DDoS attacks
DDoS attack flow trace Recall Precision F1 score

Booter 6 1.0 (1/1) 1.0 (1/1) 1.0 (1/1)
Booter 7 1.0 (1/1) 1.0 (1/1) 1.0 (1/1)
Booter 1 1.0 (1/1) 1.0 (1/1) 1.0 (1/1)
Booter 4 1.0 (1/1) 1.0 (1/1) 1.0 (1/1)
Mixed 1.0 (4/4) 1.0 (4/4) 1.0 (4/4)

Table 8.5: Network performance of INDDoS in the commodity switch

Type iPerf size Throughput Jitter Packet loss Average additional
processing time w.r.t.

simple forwarding
TCP 64 KB 9.02 Gbps / / 106 ns
TCP 128 KB 9.41 Gbps / / 101 ns
UDP 500 B 1.03 Gbps 0.003 ms 0% 102 ns
UDP 1000 B 1.95 Gbps 0.003 ms 0% 102 ns
UDP 1470 B 2.87 Gbps 0.004 ms 0% 102 ns
UDP 3000 B 5.45 Gbps 0.004 ms 0% 107 ns
UDP 6000 B 9.62 Gbps 0.004 ms 0% 104 ns
UDP 9000 B 9.67 Gbps 0.006 ms 0% 101 ns

8.6.4 Exp. 2: evaluation of DDoS victim identification accuracy under
Booter DDoS attacks

Table 8.4 shows the performance of INDDoS on victim identification under actual
DDoS attacks with different number of attack source IPs. The threshold is ap-
proximately 60000 ·1% = 600, which is larger than the largest flow cardinality for
legitimate traffic in each 5 s interval. Using these parameters, INDDoS can always
correctly identify the victim even though the number of attack source IPs in all
cases is greater than the Bitmap size (1024), since our threshold is lower than that
and a saturated count (i.e., all 1s in the Bitmap register) still results in flagging a
destination as potential DDoS victim. Even though there are four distinct DDoS
attacks in the Mixed case, INDDoS correctly identifies all four different victims.
This suggests that, when a suitable threshold is used (insights on how to set it are
given in Section 8.5), INDDoS can identify victims almost perfectly.

Furthermore, we observe that in our CAIDA flow trace the maximum flow
cardinality in 5 s time intervals is around 500, whereas in 1 s intervals it is about
260. Therefore, shrinking the time interval not only allows INDDoS to detect
attacks on faster networks, but it also increases the difference between legitimate
and DDoS traffic, simplifying the selection of a threshold and increasing detection
accuracy.
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8.6.5 Evaluation of impact on network performance

We used iPerf3 [7] to indirectly measure the performance of INDDoS in the switch.
The results are reported in Table 8.5. We first generated 10 Gbps of TCP traffic with
iPerf buffer size 64 KB and 128 KB from one server to the other across the switch.
In both cases, the throughput reached more than 9 Gbps, i.e., the TCP traffic could
be processed at line-rate (with 10 Gbps interfaces). We then generated 10 Gbps of
UDP traffic with different iPerf sizes ranging from 500 B to 9000 B. Using small
(e.g., 1470 B) datagrams our server could not reach 10 Gbps (the server’s CPU pro-
cessing capacity is a bottleneck in this settings), therefore we increased the max-
imum transmission unit (MTU) to allow UDP datagram sizes larger than 1470 B.
The results show that the throughput and jitter increased as packet size increased,
but without packet loss. When the datagram size reached 6000 B, the through-
put was 9.62 Gbps, indicating that INDDoS could also process UDP datagrams at
line-rate.

Additionally, we embedded two registers in our P4 program to monitor pro-
cessing time. One was placed at the ingress pipeline, and stored the timestamp
tin of when a packet entered the switch. The timestamp tout recorded in another
register at the egress pipeline when the packet had been processed. Per-packet pro-
cessing time could thus be calculated as tout − tin. This averaged around 200 ns for
simple forwarding, with INDDoS adding an additional 100 ns or so on top of that,
which we deem an acceptable time overhead.

8.6.6 Evaluation of resource usage

Table 8.6 shows the switch resources required by our INDDoS and simple forward-
ing implementation. Considering that each stage can only apply a single atomic
action, several stages must be used to carry out INDDoS calculations including
simple forwarding, meaning that we require all available stages in the switch to
achieve the best detection performance, whereas simple forwarding only requires
a small fraction of them (16.67%). Moreover, our strategy uses only 8.33% of the
total available SRAM. This is because each register cell in BACON Sketch only oc-
cupies 1 bit, and the size of Count-min Sketch is small (i.e., only 3×1024) though
each of its register cells occupies 32 bits. INDDoS needs 56.25% of total ALUs
for processing the packets. This is high since INDDoS not only needs to apply the
match-action table for simple packet forwarding (4.2% of all ALUs), but also main-
tains two sketches (BACON and auxiliary), which require more arithmetic opera-
tions. The packet header vector (PHV) size indicates the amounts of packet header
information passed across the pipeline stages. In our case, only 9.90% of PHV is
required for storing this information, compared to 7.30% for simple forwarding,
meaning that INDDoS does not embed much additional temporary metadata in the
packet.
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Table 8.6: Switch resource usage of INDDoS
Strategy No. stages SRAM No. ALUs PHV size

Simple forwarding 16.67% 2.5% 4.2% 7.30%
INDDoS +

Simple forwarding
100% 8.33% 56.25% 9.90%

8.7 Related works

In this section we describe recent related works and solutions on (i.) DDoS de-
tection in Software-Defined Networks, (ii.) programmable data plane capabilities
with ASICs and (iii.) in-network monitoring using programmable switches.

8.7.1 DDoS detection in the context of SDN

Many techniques have already been proposed to detect various kinds of DDoS at-
tacks in SDN networks. A DDoS attack can be identified according to many differ-
ent metrics, such as looking for a significant decrease of the normalized entropy in
distinct destination IP addresses observed in the network [65][80][122], or a large
number of distinct flows (sequences of packets with the same source IPs) contact-
ing a specific destination host (i.e., per-destination flow cardinality) [134][93][74].
Note that entropy-based DDoS detection can only detect DDoS attacks, but flow
cardinality-based DDoS detection is also able to identify the DDoS victims, which
allows operators to mitigate the impact on targeted nodes as soon as an attack is
detected. However, the state-of-the-art approaches [134][93][74] in SDN still need
the controller to periodically retrieve the information from the switches for further
processing. With our flow-cardinality-based INDDoS approach we make a step
further: we exploit data-plane programmable switches to just forward the informa-
tion on DDoS victims to the controller, offloading the DDoS detection task to the
switch.

8.7.2 Data plane programmable switches exploiting ASICs

Most of the existing SDN switches come with very limited (or no) programmability
with respect to the data plane functions that can be executed. To enable new kinds
of functionalities (e.g. support of additional protocols) it is necessary to upgrade
the hardware, which requires significant capital expenditure.

Recently, programmable ASICs have been introduced: they ensure standard
data plane features (i.e., high-speed switching and forwarding) while offering the
possibility of customizing functionalities, if properly programmed through domain-
specific programming languages like P4 [42]. For instance, programmable switches
equipped with Tofino ASIC [2] can always forward packets at line-rate once the P4
program (including innovative features) is compiled and installed in the switches.
Other programmable chips, like Network Interface Cards (NICs), Field Programmable
Gate Arrays (FPGAs) and Network Processing Units (NPUs), cannot currently en-
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sure high throughput and low latency on par with ASICs. Additionally, in the con-
text of network security, compared to highly-optimized software solutions, such as
inline Intrusion Detection Systems (IDSs) [81], the throughput ensured by ASICs
is orders of magnitude higher and introduces much lower latency (∼ 50µs−1ms)
[136]. This makes programmable ASICs well suited for the implementation of
some network monitoring/security tasks, such as the DDoS detection strategy pro-
posed in this chapter.

8.7.3 In-network monitoring tasks using programmable switches

Network monitoring has been widely studied, including in the context dealing with
the capability of programmable switches. Recently, researchers have started em-
bedding network monitoring tasks directly into programmable switches, such as
heavy hitter detection [113], network traffic entropy estimation [55] and entropy-
based DDoS detection [85]. Most of these solutions are based on sketches, proba-
bilistic data structures to track summarized information pertaining large numbers of
packets using fixed size memory. It has been proven that sketch-based monitoring
solutions have a better accuracy/memory trade-off than sampling-based solution,
at least over short time scales [132]. A common feature of these approaches is
that the monitoring outcomes gathered from sketches are reported to the controller
only when an anomalous event is detected, therefore overcoming the limitations
of large communication overhead and latency caused by the interaction between
data plane and control plane. Unfortunately, another common theme among these
works is that, unlike ours, their P4 code was only tested in the (largely resource-
unconstrained) P4 Behavior model [13] simulator. Exceptions to this include Tang
et al. [116], who proposed a new sketch for DDoS detection implementable in
Tofino-based switches. Howerver, their solution relies on the controller query-
ing the sketch for identifying the attacks, while in our proposal queries occur in-
side the switch, thus reducing switch-controller interaction needs. Dimolianis et
al. [52] presented another in-network DDoS detection scheme working in actual
Netronome SmartNICs [10]. Their approach measures three different features: to-
tal number of incoming traffic flows, subnet significance and packet symmetry.
However, it is only able to identify the subnet under attack, which may limit the
accuracy of deployed mitigation measures.

To the best of our knowledge, INDDoS is the first attempt to perform DDoS
detection with host victim identification entirely in commodity switches equipped
with programmable ASICs, while dealing with and overcoming all the constraints
set by the hardware.

8.8 Concluding remarks

In this chapter, we proposed a novel in-network DDoS victim identification strat-
egy, INDDoS, based on a new probabilistic data structure we named BACON
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Sketch, which combines a Direct Bitmap and a Count-min Sketch to estimate
the number of distinct flows contacting the same destination. INDDoS uses a
threshold-based rule to identify victims directly in the programmable data plane
of switches. We proved some parametric bounds on the quality of estimations pro-
duced by BACON and INDDoS, and implemented them using the P4 language
and toolchain in a Edgecore commodity switch with Tofino ASIC. The analysis of
the performance of our solution proves that it can precisely and accurately identify
DDoS victims without adversely affecting the packet processing capabilities of the
switch. Moreover, this approach only reports to the controller when a new victim is
detected, greatly reducing the communication strain on the monitoring infrastruc-
ture. This work contributes to the ongoing DDoS attack detection and mitigation
activities carried on in the GN4-3 project for upgrading the pan-European GÉANT
network.
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In Chapter 5 and 6 we studied two basic network monitoring tasks: (i) flow car-
dinality estimation (Chapter 5); and (ii) network traffic entropy estimation (Chap-
ter 6). The combination of them can address a more practical security issue in the
network: volumetric DDoS detection.

Unlike the previous chapter DDoS detection relying on the flow cardinality,
in this chapter we track normalized network traffic entropy in programmable data
planes and identify the DDoS attacks according to its variations

This chapter is based on the paper "Tracking Normalized Network Traffic En-
tropy to Detect DDoS Attacks in P4" submitted to IEEE Transactions on Depend-
able and Secure Computing (Under review).

9.1 Introduction

Distributed Denial-of-Service (DDoS) attacks are becoming one of the most signif-
icant threats for network operators and their customers as such attacks, carried out
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by many different compromised hosts, are able to flood a victim with a huge load
of superfluous traffic and exhaust its network and computational resources, caus-
ing service disruptions. In this context, detecting DDoS attacks in a smooth yet
effective way plays a key role in today’s network security. Periodical monitoring
of specific network metrics has been widely adopted as a strategy to detect DDoS
attacks. For instance, network traffic entropy is a statistical measure to describe
the flow distribution, and the entropy of distinct destination IPs observed in the
network significantly decreases during a DDoS attack [65][80][122]. Moreover, a
significant increase in the number of source IPs contacting a specific destination IP
[134][93][74] may also indicate that a DDoS attack is taking place.

Spotting variations of entropy over time, as done in previous works, may not
be the most effective way to detect DDoS attacks. In fact, the number of distinct
flows in the network (i.e., flow cardinality) changes dynamically, affecting, in turn,
the value of traffic entropy. A more suitable metric is therefore the normalized en-
tropy, which is normalized against flow cardinality and is more robust to legitimate
changes on the number of distinct flows.

The goal of this chapter is thus to propose novel strategies to track normal-
ized entropy with the final aim to accurately and timely detect DDoS attacks. To
this aim, combing with in-network flow cardinality estimation P4LogLog presented
in Chapter 5, we present P4NEntropy, a new strategy for normalized Shannon en-
tropy [110] estimation in P4, and P4DDoS, our approach for DDoS detection based
on P4NEntropy. The prototypes of P4DDoS have been implemented with the P4
behavioral model [13] and proven to be fully executable in a P4 emulated environ-
ment.

We then evaluate P4DDoS by means of simulations to show the effectiveness
and sensitivity to different tuning parameters, with critical improvements (to the
best of our knowledge) with respect to literature: P4DDoS ensures slightly better
performance than the existing P4-enabled entropy-based DDoS detection solution
[85]. In case of some stealthy DDoS attacks, such as an internal botnet DDoS attack
or a DDoS attack with spoofed source IPs, our P4DDoS outperforms the state-of-
the-art solution in terms of detection accuracy. Moreover, our P4DDoS does not
need any interaction with the control plane in executing the foreseen operations,
whereas [85] requires that a controller properly populates the TCAM of the switch
with any pre-computed value. This is why we can claim that our strategies work
entirely in the data plane.

9.2 Basic knowledge and used compact data structure

In this section we recall background concepts needed to understand the strategies
proposed in the following sections.
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9.2.1 Normalized network traffic entropy

Network traffic entropy [84] gives an indication on traffic distribution across the
network. Each network switch can evaluate the traffic entropy related to the net-
work flows that cross it in a given time interval Tint . Relying on the definition of
Shannon entropy [110], network traffic entropy can be defined as H =−∑

n
i=1

fi
|S|tot

logd
fi
|S|tot

,
where fi is the packet count of the incoming flow with flow key i (e.g. 5 tuple,
source IP-destination IP pair, etc.), |S|tot is the total number of processed packets
by the switch during Tint , n is the overall number of distinct flows and d is the
base of logarithm. Traffic entropy is H = 0 when in Tint all packets |S|tot belong
to the same flow i, while it assumes its maximum value H = logd n when packets
are uniformly distributed among the n flows. The normalized entropy is defined as
Hnorm = H

logd(n)
(0≤ Hnorm ≤ 1).

9.2.2 Sketch-based estimation of flow packet count

Estimating the number of packets for a specific flow crossing a programmable
switch ( fi) is fundamental for network traffic entropy computation. Such an es-
timation can be performed by means of sketches [74], which are probabilistic data
structures associated to a set of pairwise-independent hash functions. The size of
each sketch data structure depends on the number of associated hash functions Nh
and on the output size of each function Ns, and is Nh×Ns. Update and Query oper-
ations are used to store and retrieve information from the sketch: Update operation
is responsible for updating the sketch to keep track of flow packet counts, while
Query operation retrieves the estimated number of packets for a specific flow. Two
well-known algorithms to Update and Query sketches are Count-min Sketch [48]
and Count Sketch [44]. A detailed theoretical analysis on the accuracy/memory
occupation trade-off for these sketching algorithms is reported in [48][44]. From a
high-level perspective, as any of Nh and Ns increase, memory consumption is larger
but estimation is more accurate. Count Sketch leads to a better accuracy/memory
consumption trade-off than Count-min Sketch, but its update time is twice slower
[47].

9.3 Estimation of normalized traffic entropy

Based on Chapter 5, we use P4LogLog to estimate flow cardinality. P4LogLog is
then used by P4NEntropy, which estimates the normalized network traffic entropy.
The prototype of P4NEntropy has been implemented in P4 behavioral model [13]
and are executable in an emulated environment as Mininet [8]. The P4 source
codes are available in [22].
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9.3.1 Normalized traffic entropy estimation: P4NEntropy

In this section we present a new strategy, named P4NEntropy, to estimate the nor-
malized network traffic entropy using the P4 language in a given time interval.
Formally, the problem is defined as follows.

Problem definition: Given a stream S of incoming packets, each one belong-
ing to a specific flow i, and a time interval Tint , returns the normalized Shannon
entropy estimation Hnorm (see Section 9.2.1) at the end of Tint .

Derivation of estimated normalized entropy in P4

The goal of this section is to provide an estimation of network traffic normalized
entropy by only using P4-supported operations and reducing as much as possible
their number. The section also shows how relevant statistics, used for normalized
entropy estimation at the end of Tint , are iteratively updated every time a packet
crosses the switch.

We first rewrite the Shannon entropy as follows:

H(|S|tot) =−
n

∑
i=1

fi(|S|tot)

|S|tot
logd

fi(|S|tot)

|S|tot

= logd |S|tot −
1
|S|tot

n

∑
i=1

fi(|S|tot) logd fi(|S|tot)

We consider d = 2 without any loss of generality. With respect to the definition
given in Section 9.2.1, we use the notation fi(|S|tot) to make explicit that fi refers
to its value when |S|tot packets have been received (i.e., at the end of Tint). As
packets arrive in the switch, the overall number of processed packets |S| increases
and must be stored in the switch to ensure that H(|S|tot) can be computed at the
end of Tint , when |S|= |S|tot . We define Sum(|S|) = ∑

n
i=1 fi(|S|) logd fi(|S|), which

must be updated as well. To understand how to update Sum(|S|), let’s assume that
a new packet for a specific flow arrives and it is the |S|-th packet. We call its packet
count f̄i(|S|). It holds that:{

fi(|S|) = fi(|S|−1) ( fi(|S|) 6= f̄i(|S|))
fi(|S|) = fi(|S|−1)+1 ( fi(|S|) = f̄i(|S|))

This allows us to re-write Sum(|S|) as follows:

Sum(|S|) = Sum(|S|−1)+ f̄i(|S|) log2 f̄i(|S|) +
− ( f̄i(|S|)−1) log2( f̄i(|S|)−1)

Sum(|S|) thus needs two logarithmic computations for each incoming packet,
and would require running P4Log twice with corresponding computational effort.

In the next step, we show how it is possible to estimate Sum(|S|) with only
(at most) one logarithmic computation. When f̄i(|S|) = 1, we estimate Sum(|S|) =
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Sum(|S|−1), being f̄i(|S|) log2 f̄i(|S|)= 1log2 1= 0 and defining ( f̄i(|S|)−1) log2( f̄i(|S|)−
1) = 0log2 0 = 0 [93]. Instead, when f̄i(|S|) > 1, we need to re-write once again
Sum(|S|) in the following way:

Sum(|S|) = Sum(|S|−1)+ log2 f̄i(|S|) +

+( f̄i(|S|)−1) log2(1+
1

f̄i(|S|)−1
)

According to L’Hopital’s rule [114]:

lim
f̄i(|S|)→+∞

( f̄i(|S|−1) log2 (1+
1

( f̄i(|S|−1)
) =

1
ln2

Thus, we set 1/ln2≈ 1.44 as the approximation of the third term of Sum(|S|). This
approximation best works when most of the flows in Tint carry a number of packets
much greater than 1 (as usually happens in an ISP backbone network, which is
the most suitable scenario where to apply our strategy). Finally, Sum(|S|) can be
estimated as:

Sum(|S|)≈

{
Sum(|S|−1) ( f̄i(|S|) = 1)
Sum(|S|−1)+ log2 f̄i(|S|)+1/ln2

( f̄i(|S|)> 1) (9.1)

This estimation requires at most one logarithm computation. Since P4 language
does not support division, we re-write 1

|S|tot
= 2− log2 |S|tot . So, entropy can be written

as:

H(|S|tot) = log2 |S|tot −2(log2 Sum(|S|tot)−log2 |S|tot)

In this form, entropy can be estimated by only using P4-supported operations,
leveraging P4Log and P4Exp algorithms. In the following, we show how it is
possible to further slightly reduce complexity in entropy estimation.

When |S|tot =∑
n
i=1 fi(|S|tot)> Sum( fi|Stot |), it holds that 0< 2(log2 Sum(|S|tot)−log2 |S|tot)<

1. This is a corner case that happens only when flow distribution is almost uniform
(i.e., when most of flows carry only one or very few packets). In this case, we ne-
glect the computation of 2(log2 Sum(|S|tot)−log2 |S|tot), meaning that we estimate entropy
as flow distribution was perfectly uniform. Network traffic entropy can then be
estimated as follows:

H(|S|tot)≈
{

log2(|S|tot) (|S|tot > Sum(|S|tot))

log2(|S|tot)−2(log2 Sum(|S|tot)−log2 |S|tot)

(|S|tot ≤ Sum(|S|tot)) (9.2)

Finally, normalized entropy Hnorm(|S|tot) can be estimated as:

Hnorm(|S|tot) = 2log2(H(|S|tot))−log2(log2 n̂) (9.3)

The number of estimated distinct flows n̂ can be obtained using P4LogLog, that is,
by updating a LogLog register for each incoming packet and by querying it at the
end of Tint .



9.3. ESTIMATION OF NORMALIZED TRAFFIC ENTROPY 130

Packet
stream S

Update
counter
|S|

P4LogLog(S)

At the end of Tint
(|S|= |S|tot)

dstIPi

dstIPi

Update / Query Sketch

Update
Sum(|S|)
(Eq. 9.1)

f̄i(|S|)

Estimate Entropy H(|S|tot) (Eq. 9.2)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

Estimate Norm. Entropy
Hnorm(|S|tot) (Eq. 9.3)

At the end of Tint
(n̂dst)

Figure 9.1: Scheme of P4NEntropy

Algorithm 10: P4NEntropy
Input: Packet stream S, time interval Tint
Output: Normalized entropy estimation Hnorm(|S|tot) of S in Tint

1 |S| ← 0
2 Sum(|S|)← 0
3 Function UpdateSum(Sum(|S|)):
4 while currentTime < Tint do
5 for Each received packet belonging to flow i do
6 |S| ← |S|+1
7 f̄i(|S|)← Sketch(dstIPi)
8 if f̄i(|S|)> 1 then
9 Sum(|S|)� 10← Sum(|S|)� 10

10 +P4Log( f̄i(|S|))+1.44� 10

11 Sum(|S|tot)← (Sum(|Stot |)� 10)� 10
12 return Sum(|S|tot), |S|tot

13 Function EstimateNormEntropy(Sum(|S|tot), |S|tot ):
14 if currentTime = Tint then
15 if |S|tot > Sum(|S|tot) then
16 H(|S|tot)� 10← P4Log(|S|tot)

17 else
18 diff← P4Log(Sum(|S|tot))−P4Log(|S|tot)
19 H(|S|tot)�10←P4Log(|S|tot)−P4Exp(2,diff)

20 n̂dst ← P4LogLog(S,Tint)
21 diffn← P4Log(H(|S|tot)� 10)+
22 −(P4Log(P4Log(n̂dst))−10� 10)
23 if diffn > 0 then
24 Hnorm(|S|tot)� 10← P4Exp(2,diffn)

25 else
26 Hnorm(|S|tot)� 10← 0

27 return Hnorm(|S|tot)� 10
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Description of P4NEntropy strategy

Figure 9.1 and Algorithm 10 show the scheme and pseudocode of P4NEntropy
algorithm, leveraging outcomes from Sections 5.3 and 9.3.1. First, the algorithm
continuously updates Sum(|S|) until the end of Tint (UpdateSum function) with
flow information from incoming packets. A counter |S| is used to count all incom-
ing packets in the switch. Note that we consider as flow key the destination IP of
the packet, with i ∼ dstIPi. A sketch data structure (e.g., Count Sketch or Count-
min Sketch, see Section 9.2.2) is used to store the estimated packet count for all
the flows, being continuously updated to include information from new packets,
and then it is queried to retrieve the estimated packet count f̄i(|S|) for the flow
i the current incoming packet belongs to. This value is then passed to a register
named Sum(|S|), which is updated as specified in Eq. 9.1. All the floating num-
bers in the equation must be amplified 210 times, since P4Log outputs an amplified
integer value. Only at the end of Tint , Sum(|S|tot) is reduced by a factor of 210

and its final value, together with |S|tot , is returned (Lines 1-12 of the pseudocode).
Traffic entropy is then estimated as specified in Eq. 9.2 (Lines 15-19). The re-
sulted value of H(|S|tot) is amplified 210 times since output values of P4Log are
amplified, while output values of P4Exp are not. Such an amplification makes it
possible to use P4Exp in Eq. 9.3 to estimate Hnorm(|S|tot) amplified 210 times.
Note that H(|S|tot)� 10 may be smaller than log2(n̂dst) but, in this case, the nor-
malized network traffic entropy can be approximated to 0 (Lines 25-26). Since
the result of P4Log is left-shifted 10 bits, the computation of log2(log2(n̂dst)) must
be carefully handled. Considering that the result of P4Log(n̂dst) is log2(n̂dst)�
10, the output of P4Log(log2(n̂dst)� 10) can be expressed as log2(log2(n̂dst)�
10)� 10= log2(log2(n̂dst) ·210)� 10= log2(log2(n̂dst))� 10+10� 10. Hence,
log2(log2(n̂dst))� 10 is equivalent to P4Log(P4Log(n̂dst)) −10� 10 (Line 22).
The resulting value is used to compute the normalized network traffic entropy am-
plified 210 times (Line 24).

9.4 Normalized entropy-based DDoS detection

Based on P4NEntropy, we present a simple yet effective entropy-based DDoS de-
tection strategy in P4, named P4DDoS. The P4 code of P4DDoS is available in
[20]. Formally, the problem is defined as follows.

Problem definition: Given a k-th time interval T k
int , a stream Sk of incoming

packets during T k
int , the estimated normalized network traffic entropy of destination

IPs Hk
norm at the end of T k

int and an adaptive threshold λ k
norm, returns an alarm to the

controller, at the end of T k
int , if a potential DDoS attack is identified.

Our proposed strategy triggers an alarm if Hk
norm < λ k

norm. In fact, as empirically
evaluated in previous works (e.g. [100][34]), when a DDoS attack occurs, the
normalized network traffic entropy of destination IPs significantly decreases, since
traffic is concentrated around few destination nodes. The most critical aspect for
such an entropy-based strategy is how to set the threshold λ k

norm. This will be
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Figure 9.2: Scheme of P4DDoS

discussed in the next subsection.

9.4.1 Adaptive threshold setting

Since network traffic fluctuates over time, we define an adaptive threshold to pro-
tect our strategy from false positives that may be generated if using a fixed-value
threshold in such a dynamic environment. Our proposed adaptive threshold lever-
ages the computation of an Exponentially Weighted Moving Average (EWMA) of
Hk

norm across different time intervals. The moving average EWMAk
norm in time in-

terval T k
int is expressed as:

EWMAk
norm =

{
Hk

norm (k = 1)
αHk

norm +(1−α)EWMAk−1
norm(k > 1)

where α (0 <α < 1) is the smoothing factor for EWMAk
norm. We define a thresh-

old parameter ε (0≤ ε ≤ 1), used to compute the threshold λ k+1
norm in the next time

interval T k+1
int if no alarm is generated in T k

int :

λ
k+1
norm =

{
EWMAk

norm− ε (no alarm in T k
int)

λ k
norm (alarm in T k

int)

As shown above, the threshold λ k+1
norm is not updated if an alarm is generated in the

time interval: this ensures that the threshold is updated when only legitimate traffic
crosses the switch and its value is not biased by DDoS traffic. Note that setting
the parameter ε in a proper way is also fundamental to get good DDoS detection
performance. This aspect will be evaluated in Section 9.5.

9.4.2 Implementation in P4 language

Figure 9.2 and Algorithm 11 report the scheme and pseudocode of the P4DDoS
strategy, with focus on a given time interval T k

int . At the end of time interval T k
int ,

the DDoSDetection function is executed. Alarmk
ddos is set to 0 and the normalized

network traffic entropy Hk
norm is estimated by P4NEntropy, amplified 210 times

(Lines 2-3). It is then compared to the threshold λ k
norm� 10 (Line 4). If smaller,

the alarm Alarmk
ddos is set to 1 and the UpdateThreshold function is called (Lines 5-

7). Otherwise, the UpdateThreshold function is called without changing Alarmk
ddos

(Lines 9-10). If Alarmk
ddos = 1, the switch clones the current packet and embeds
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Algorithm 11: P4DDoS
Input: Packet stream Sk, time interval T k

int , threshold parameter ε , smoothing
factor α , threshold λ k

norm� 10 and average EWMAk−1
norm� 10 computed

in T k−1
int

Output: DDoS alarm Alarmk
ddos = 1 if a DDoS attack is detected in T k

int
1 Function DDoSDetection(λ k

norm� 10):
2 Hk

norm� 10← P4NEntropy(Sk,T k
int)

3 Alarmk
ddos← 0

4 if Hk
norm� 10 < λ k

norm� 10 then
5 Alarmk

ddos← 1
6 UpdateThreshold(k,α,Hk

norm� 10,ε,Alarmk
ddos,

7 EWMAk−1
norm� 10,λ k

norm� 10)

8 else
9 UpdateThreshold(k,α,Hk

norm� 10,ε,Alarmk
ddos,

10 EWMAk−1
norm� 10,λ k

norm� 10)

11 return Alarmk
ddos

12 Function UpdateThreshold(k,α,Hk
norm� 10,ε,

13 Alarmk
ddos,EWMAk−1

norm� 10,λ k
norm� 10):

14 if Alarmk
ddos = 0 then

15 if k = 1 then
16 EWMAk

norm� 10← Hk
norm� 10

17 else
18 EWMAk

norm�10← ((α � 10) ·Hk
norm� 10

19 +((1−α)� 10) ·EWMAk−1
norm� 10)� 10

20 λ k+1
norm� 10← EWMAk

norm� 10− ε � 10

21 else
22 λ k+1

norm� 10← λ k
norm� 10

23 return λ k+1
norm� 10,EWMAk

norm� 10

the value 1 in a customized header field. The cloned packet is then sent to the
controller to report that a potential DDoS attack has been detected.

The UpdateThreshold function updates EMWA and the adaptive threshold as
specified in Section 9.4.1. (Lines 12-23). Note that, since both EMWA and the
threshold λnorm are usually decimal numbers, all the operations are executed to
ensure that their value is amplified 210 times.

9.4.3 Insights on network-wide coordination

So far, we have focused on entropy-based DDoS detection in a single programmable
switch. The switch can generate alarms if, according to the traffic flowing through
its interfaces, a DDoS attack may be occurring. However, given the reduced net-
work visibility of a single switch, a final decision on whether a DDoS attack is
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actually carried out should be taken by the centralized controller from a network-
wide perspective, that is, by cross-checking collected information from multiple
switches and taking a global decision. For instance, UnivMon [93] and Elastic
Sketch [132] present a way to estimate network-wide traffic entropy: the idea be-
hind those works is to sample a set of flows with large packet count in any pro-
grammable switch, and send such statistics to the controller at the end of any time
interval. The controller estimates the entropy of reported sampled "heavy" flows
and considers it as a network-wide entropy estimation. As reported in [36], these
two approaches assume that packets for a specific flow are counted only once in the
network. By making the same strong assumption, in our case network-wide traffic
entropy Hnw can be expressed as:

Hnw = log2(
w

∑
j=1
|S j|tot)−

1
∑

w
j=1 |S j|tot

(
w

∑
j=1

Sum j)

where w is the number of switches in the network and Sum j =∑
n j
i=1 fi(|S j|tot) logd fi(|S j|tot)

(see Section 9.3.1). Additionally, according to the union property of LogLog (see
section 5.2.1), the normalized network-wide traffic entropy Hnw

norm can be expressed
as:

Hnw
norm =

Hnw

log2(LogLog(S1∪S2∪·· ·Sw))

In this case, the strong assumption considered above can be neglected, since the
union property of LogLog makes it possible to estimate the network-wide number
of distinct flows also if a packet is counted in different locations.

Given the above considerations, a network-wide strategy could be designed to
forward to the controller all the needed information from the switches (i.e., |S j|tot ,
Sum j and the j-th LogLog register) for the computation of network-wide normal-
ized entropy in support to a centralized network-wide DDoS detection. However,
since in real scenarios the packet may traverse multiple switches and generate dou-
ble packet counts, the accuracy of the computed network-wide entropy Nnw would
be compromised. How to overcome this issue is still open: we will work on refined
strategies for network-wide entropy-based DDoS detection in the future.

9.5 P4DDoS evaluation

We implemented P4DDoS in Python and simulated it for evaluation. Additionally,
we also implemented a state-of-the-art entropy-based DDoS detection approach
[85] executable in programmable switches, named SOTA_DDoS for the sake of
brevity, and compared them. To make a fair comparison, both DDoS detection
strategies have been implemented leveraging our proposed P4NEntropy strategy
and using a sketch, for packet count estimation, of the same size. Note, however,
that the original version of SOTA_DDoS uses SOTA_Entropy for entropy estima-
tion (see the previous subsection). Unlike P4DDoS, which triggers a DDoS alarm
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only when the normalized entropy of destination IPs decreses below a threshold,
SOTA_DDoS triggers a DDoS alarm when any of two conditions holds: (i) en-
tropy (not normalized) of source IPs increases above an adaptive threshold and (ii)
entropy (not normalized) of destination IPs decreases below an adaptive threshold.

9.5.1 Evaluation metrics and simulation settings

Testing flow trace and methodology

We consider three kinds of flow traces.
Trace1. Legitimate flow trace: The same CAIDA flow trace [3] that we used for
the evaluation of P4LogLog. The 50-seconds flow trace is divided into 50 1-second
time intervals.
Trace2. Legitimate flow trace mixed with Booter DDoS attack traffic [108]:
50-seconds traces are taken from a set of Booter DDoS attack traces, and split into
50 time intervals. Each 1-second attack trace is injected into the legitimate 50-
seconds flow trace according to its sequential 1-second time intervals. We took
four different packet-rate Booter DDoS attack traces into consideration: Tab. 9.1
reports their properties. This allows us to analyze DDoS attacks with different
packet rate and number of attack source IPs. Moreover, we also injected all four
Booter DDoS attack traces together into the legitimate flow trace: we name this
trace as Mixed. Such a mixed DDoS attack flow trace can help us evaluate the
performance of DDoS detection when multiple DDoS attacks occur simultaneously
in the network.
Trace3. Legitimate flow trace mixed with internal Botnet DDoS attack traffic:
In this case, we assume that some internal hosts of the network (e.g., a datacenter
network) are exploited by an attacker to reverse malicious traffic towards a DDoS
victim within the same network. We varied the attack traffic proportion (i.e., the
percentage of generated malicious traffic over the total traffic in the network) from
5% to 30%. This flow trace is generated by crafting Trace 1 in such a way that part
of the traffic is forwarded to one specific DDoS victim (by changing the destination
IP of a given proportion of the packets).

Evaluation metrics

We consider true-positive rate Dt p, false-positive rate D f p and detection accuracy
Dacc as evaluation metrics. Considering that (i) True Positive (TP) is the number
of time intervals with a triggered DDoS alarm while a DDoS attack is occurring in
those intervals, (ii) True Negative (TN) is the number of time intervals without any
triggered DDoS alarm while no DDoS attack is occurring, (iii) False Positive (FP)
is the number of time intervals with a triggered DDoS alarm while no DDoS attack
is occurring, and (iv) False Negative (FN) is the number of time intervals without
any triggered DDoS alarm while a DDoS attack is instead occurring, the metrics
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Table 9.1: Properties of DDoS flow traces [108]
DDoS trace name Packet per second Attack source IPs

Booter 6 ∼ 90000 7379
Booter 7 ∼ 41000 6075
Booter 1 ∼ 96000 4486
Booter 4 ∼ 80000 2970

introduced above are defined as:

Dt p =
T P

T P+FN
×100%

D f p =
FP

T N +FP
×100%

Dacc =
T P+T N

T P+T N +FP+FN
×100%

Tuning parameters

The smoothing factor in EWMAnorm and for the thresholds defined in SOTA_DDoS
is set to α = 0.13: with this value, all the previous computed averages (up to all the
50 time intervals) have some impact on EWMA. All the parameters for P4Log and
P4Exp are the ones reported in Tab. 3.3 of Chapter 3. We choose Count Sketch as
sketch for P4NEntropy, with Nh = 5×Ns = 2000. The register size in P4LogLog is
set to m= 2048, which corresponds to 1280 Bytes of memory. The considered time
intervals Tint , as already said, are 1-second wide. Finally, the normalized entropy
parameter is set to ε = 0.01 unless otherwise specified.

9.5.2 Detection performance (Booter DDoS attacks)

In this subsection, we evaluate our P4DDoS strategy against the state-of-the-art
approach SOTA_DDoS in terms of Dt p, D f p and Dacc in the case of Booter DDoS
attacks. We also perform a sensitivity analysis of P4DDoS against the parameter ε ,
showing how the detection performance is affected by changing its value. The test-
ing flow trace is composed by the concatenation of Trace1 and Trace2: we first run
50-seconds legitimate flow trace (Trace 1) so that adaptive thresholds on entropy,
for both strategies, are properly set in a legitimate traffic scenario: this trace allows
us to evaluate D f p. Then, Trace 2 including different packet-rate DDoS attacks
(also mixed), is used to evaluate Dt p and, together with results obtained in Trace 1,
Dacc.

Comparison with the state of the art

To fairly compare P4DDoS with SOTA_DDoS, we tuned the sensitivity coeffi-
cient k of SOTA_DDoS (see [85]) to different values: lower k leads to higher
true-positive rate but also higher false-positive rate. Evaluation results are re-
ported in Tab. 9.2. In the first 50 time intervals, four false alarms are detected
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Table 9.2: Comparison of P4DDoS detection performance with a state-of-the-art
approach [85] (Booter DDoS attacks)

Algorithm False-positive
rate D f p

True-positive rate Dt p / Detection accuracy Dacc

Booter 6 Booter 7 Booter 1 Booter 4 Mixed
P4DDoS 8% 100% / 96% 82% / 87% 96% / 94% 98% / 95% 100% / 96%

SOTA_DDoS
(k=5.5)

6% 96% / 95% 32% / 63% 62% / 78% 70% / 82% 100% / 97%

SOTA_DDoS
(k=4.5)

8% 100% / 96% 38% / 65% 82% / 87% 78% / 85% 100% / 96%

SOTA_DDoS
(k=3.5)

10% 100% / 95% 74% / 82% 100% / 95% 94% / 92% 100% / 95%

SOTA_DDoS
(k=2.5)

20% 100% / 90% 94% / 87% 100% / 90% 100% / 90% 100% / 90%

SOTA_DDoS
(k=1.5)

38% 100% / 81% 100% / 81% 100% / 81% 100% / 81% 100% / 81%

SOTA_DDoS
(k=0.5)

60% 100% / 70% 100% / 70% 100% / 70% 100% / 70% 100% / 70%
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Figure 9.3: Sensitivity analysis of P4DDoS to parameter ε

by P4DDoS, being thus the false-positive rate 8%. As said, the false-positive
rate of SOTA_DDoS increases as k decreases. False-positive rate of P4DDoS is
slightly higher than of SOTA_DDoS only when k = 5.5 but, in that case, P4DDoS
outperforms SOTA_DDoS on both true-positive rate and detection accuracy for
all the considered Booter attacks. The best trade-off between all the metrics for
SOTA_DDoS is obtained with k = 3.5. In this case, P4DDoS and SOTA_DDoS
have comparable performance (with slightly better performance for P4DDoS). This
means that, in this scenario, comparing the normalized entropy of destination IPs
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Table 9.3: Comparison of P4DDoS detection performance with a state-of-the-art
approach [85] for different Botnet DDoS attack traffic proportions (ATPs)

Algorithm False positive
rate D f p

True-positive rate Dt p / Detection accuracy Dacc

ATP: 5% ATP: 10% ATP: 15% ATP: 20% ATP: 25% ATP: 30%
P4DDoS 8% 36% / 64% 92% / 92% 100% / 96% 100% / 96% 100% / 96% 100% / 96%

SOTA_DDoS
(k=5.5)

6% 0% / 47% 12% / 53% 68% / 81% 100% / 97% 100% / 97% 100% / 97%

SOTA_DDoS
(k=4.5)

8% 0% / 46% 40% / 66% 96% / 94% 100% / 96% 100% / 96% 100% / 96%

SOTA_DDoS
(k=3.5)

10% 10% / 50% 50% / 70% 100% / 95% 100% / 95% 100% / 95% 100% / 95%

SOTA_DDoS
(k=2.5)

20% 20% / 50% 88% / 84% 100% / 90% 100% / 90% 100% / 90% 100% / 90%

SOTA_DDoS
(k=1.5)

38% 82% / 72% 94% / 78% 100% / 81% 100% / 81% 100% / 81% 100% / 81%

SOTA_DDoS
(k=0.5)

60% 96% / 68% 100% / 70% 100% / 70% 100% / 70% 100% / 70% 100% / 70%

against a well-defined threshold is enough to get good performance on DDoS de-
tection and that an evaluation of entropy of source IPs can be avoided (that is, same
performance can be obtained with a simpler strategy).

Sensitivity analysis

Figure 9.3 reports the sensitivity of P4DDoS to normalized network traffic entropy
parameter ε . Figure 9.3(a) shows that false-positive rate decreases as ε is smaller
and stabilizes to zero once ε is larger than 0.04. This is because larger ε results in a
smaller threshold, being more DDoS alarms triggered also when DDoS attacks are
not occurring. Figure 9.3(b) reveals the behavior of true-positive rate with respect
to an ε variation, showing that in general true-positive rate decreases as ε increases.
Figure 9.3(c) shows the impact of ε on detection accuracy. The shown curves, apart
from the Mixed case, have a maximum at around ε = 0.01: we then decided to set
ε to this value, since it leads to the best trade-off considering all the three metrics.

9.5.3 Detection performance (Botnet DDoS attacks)

Table 9.3 shows a comparison on DDoS detection performance in case of inter-
nal Botnet DDoS attacks. The same methodology as described in Section 9.5.2
is adopted to prepare the testing flow trace but, in this case, Trace1 and Trace3
are concatenated. In this attack scenario, the cardinality of source IPs in the net-
work does not change and the attack traffic proportion in Trace 3 is varied from
5% to 30%. Intuitively, the detection accuracy of P4DDoS increases as the attack
traffic proportion increases. When the attack traffic rate is low, i.e., 5%, the true-
positive rate of P4DDoS is 36%. This is the drawback of most normalized entropy-
based DDoS detection strategies: these strategies struggle to detect low-packet-rate
DDoS attacks since the normalized entropy may not significantly decrease. Nev-
ertheless, our P4DDoS still has higher (or at least comparable) detection accuracy
than SOTA_DDoS for any coefficient k. This is due to the fact that the entropy
of destination IPs (not normalized) may decrease because of either a decrease in
the cardinality of destination IPs in consecutive time intervals (see Section 9.2.1)
or because a DDoS attack is occurring. Instead, the normalized entropy (used by
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P4DDoS) decreases only when a DDoS attack is occurring, since it is normalized
to the cardinality of destination IPs. Thus, considering non-normalized entropy
as the metric to detect DDoS attacks as done by SOTA_DDoS, there is a higher
chance of false positives due to legitimate traffic oscillations in consecutive time
intervals. It is also important to note that the entropy of source IPs may not signifi-
cantly increase when a Botnet DDoS attack occurs (as proven in [41]), so a simpler
entropy-based DDoS detection system considering only normalized entropy of des-
tination IPs may suffice for the detection of a wide range of attacks.

9.6 Related work

9.6.1 Entropy-based DDoS detection

Entropy-based DDoS detection has been widely studied in the context of SDN:
a significant decrease in the (normalized) network entropy of destination IPs in a
given time interval can be an indication of occurrence of a DDoS attack [98][65][80][122].
However, in most of previous works, entropy estimation is executed by the con-
troller due to the complex way it is computed.

Some works can be found in literature dealing with network traffic entropy
estimation performed partially in the switches’ data plane. For example, papers
[74][93][132] all envision some operations to be executed by the programmable
data plane, so that only summarized data must be sent to the controller. However,
since the controller needs to frequently retrieve information from all the switches,
the generated communication overhead is significant. Recently, Lapolli et al. [85]
have demonstrated the feasibility of performing network traffic entropy estimation
in the data plane using the P4 language, with the aim of detecting DDoS attacks.
Their approach is valuable but it requires the usage of TCAM, which is instead
avoided by our proposed P4DDoS. Moreover, P4DDoS and P4NEntropy adopt a
time-based observation window, while [85] requires an observation window that
includes a fixed power-of-two number of packets, making their solution less flexi-
ble. In fact, our approach may allow a controller to synchronize the retrieval of the
estimated entropy from many programmable switches, paving the way towards the
estimation of network traffic entropy on a network-wide scale [53] to improve the
statistical relevance of monitored values.

9.7 Concluding remarks

In this chapter, P4DDoS has been designed on top of P4NEntropy, with the goal of
detecting DDoS attacks by means of an entropy-based system. We also evaluated
all of our proposed approach and compared them with a state-of-the-art solution.
P4DDoS outperforms existing DDoS detection solutions implemented in P4 in
terms of detection accuracy, especially in the case of internal Botnet DDoS attacks,
while implementing a simpler logic. Moreover, unlike existing approaches in liter-
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ature, all of our strategies avoid any communication overhead between controller
and programmable switches, since they work entirely in the data plane. Specifi-
cally, P4DDoS only reports an alarm to the controller when an attack is detected.

As future work, we plan to find a proper solution to detect low-packet-rate
DDoS attacks (i.e., with attack traffic proportion ≤ 5%) with high accuracy. Fur-
thermore, we also intend to work on an algorithm for the entropy-based detection
of DDoS attacks on a network-wide scale, by collecting and combining the dis-
tributed entropy information from multiple programmable switches.
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The previous chapters present single monitoring tasks relying on sketches in
programmable data planes. However, the sketches are designed for specific mea-
surement tasks, which poses a new challenge: is it possible to combine several
tasks working together in programmable hardware switches? In this chapter, we
combine and reuse two common sketches exploited in previous chapters, Hyper-
LogLog and Count Sketch, to track overall traffic distribution statistics, including
variance and entropy of flow packet count. The statistics can then be further used
to diagnose performance and security problems, such as heavy-hitter detection and
volumetric DDoS detection. We show that combination of monitoring tasks in pro-
grammable data planes is feasible while the packets can be processed at line rate.

This chapter has not been published before and is entirely new. The goal of
this chapter is to enhance the connections between previous chapters and to show
that the previously proposed monitoring solutions are practical in real network
scenarios.
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Figure 10.1: Deployment scenario

10.1 Introduction

Network operators often need to collect a variety of different network statistics
and measurements, including per-flow sizes, heavy hitters [54], and aggregated
information about flow distributions (called moments such as entropy [55] and
variance [127]), which may be used to detect anomalies and understand the flow
distribution in overall traffic patterns. However, in the previous chapters, we only
focus on the specific individual tasks in programmable data planes. Then a question
comes: is it possible to deploy several monitoring tasks in programmable hardware
switches while considering their strict resource constraints?

In this chapter, we propose SEAMEN (SkEtch-bAsed flow Moments Estima-
tioN), a sketch-based solution to estimate the flow moments as the building blocks
to support a wide-range of network monitoring tasks, including heavy-hitter detec-
tion and volumetric DDoS detection. The flow moments, such as flow cardinality,
packet count, and the sum of the square of packet count, indicate the overall con-
dition of the network traffic. Thus, the flow moment can be measured in time
intervals to monitor the status of a group of hosts and servers. A possible deploy-
ment scenario is shown in Figure 10.1: the programmable switch is deployed at the
border of a subnet. By tracking the flow moments, the controller can understand
the overall condition of the traffic in the subnet relying on the flow statistics in the
programmable switch, and so the anomalies or performance issues can be easily
detected.

We implemented the SEAMEN data structures in a P4-programmable switch
equipped with Tofino ASIC chip and show that the method can process packets at
line-rate and is able to estimate the flow moments with high accuracy.

In summary, we make the following contributions in this chapter:
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• We propose a sketch-based method, SEAMEN, to estimate the flow moments
traversing the programmable switch.

• We analyze the possible usages of flow moments to execute a wide range of
monitoring tasks

• We developed a prototype of SEAMEN, installed it in a programmable com-
modity switch with Tofino Application Specific Integrated Circuit (ASIC)
[2], and conduct evaluations on a physical testbed.

10.2 Basic knowledge and used compact data structure

In this section, we present the compact data structures that we used to implement
monitoring tasks in programmable data plane. Furthermore, we also present some
background information that will used in our approach.

10.2.1 HyperLogLog

HyperLogLog [63] is a sketch-based algorithm that can be adopted to estimate
large number of distinct flows (also named flow cardinality) crossing a network
monitoring point. It envisions two types of operations: Update and Query. The
Update operation updates the (Hyper)LogLog sketch with flow information from
the incoming packet, whereas the Query operation is adopted to retrieve from the
sketch the estimated flow cardinality.

The Update operation works as follows: given an incoming packet with flow
key id (e.g., any subset of 5 tuple) and an m-sized (m ∈ {24,25, · · · ,216}) Hyper-
LogLog register M with l bits each cell 1, HyperLogLog applies to id a uniform
distributed hash function h with output size os (os≥ 2l + log2 m): the resulted os-
bit binary string h(id) is denoted by h(id)= [os−1 : 0]. HyperLogLog then updates
an m-sized register M. Let j be the rightmost log2 m bits of h(id) and x the 2l bits
of remaining, i.e., j = h(id)[log2 m−1 : 0] and h(id) = H[log2 m+2l−1 : log2 m].
M is updated following this rule: M j = max(M j,v(x)), where v(x) is the index of
the rightmost 1 of x plus one. For instance, x is 0100, then v(x) is 3.

HyperLogLog estimates flow cardinality n̂ with Harmonic mean of power of 2,
that is, n̂ = αHLL

m m2(∑m−1
0 2−M j)−1, in which αHLL

m is a bias correction parameter of
HyperLogLog. The theoretical standard error of HyperLogLog is 1.04/

√
m, where

m is the size of register M.

10.2.2 Count Sketch

Count Sketch is a compact data structure associated to a set of pairwise-independent
hash functions, which is usually used to estimate the packet counts of flows in the
network. The size of this data structure depends on the number of associated hash

1l-bits register cells are able to estimate cardinality up to 22l
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functions Nh and on the output size of each function Ns, and is composed by Nh×Ns

counters. Update and Query operations are used to store and retrieve information
from the sketch: Update operation is responsible for updating the sketch to keep
track of flow packet counts, while Query operation retrieves the estimated number
of packets for a specific flow. For a packet stream in the programmable switches, it
works as follows: considering an Nh×Ns-sized Count Sketch CS, the flow key of
the packets id is hashed by two hash functions h j(id) and g j(id) in j-th row of the
sketch (0≤ j≤ Nh−1). The output of h j(id) is the index q (0≤ q≤ Ns−1) of the
row j to store the packet count of flow id, and that of g j(id) is either -1 or 1. The
result of g j(id) is then added to current counter CSi, j. Finally, the packet count of
the flow is queried with the median value of all counters in g j(id) ·CS j,h j(id)∀ j.

10.3 Sketch-based flow moments estimation for network
monitoring

In this section, we present SEAMEN, a flow moments-based approach to track the
overall condition of the network traffic. SEAMEN consists of two components,
data plane switch part and controller part. In data plane switch, SEAMEN per-
forms the updates in the registers (i.e. HyperLogLog and Count Sketch) to record
the packet and flow statistics during time interval, while in controller, SEAMEN
retrieves the available information from data plane switch to estimate flow mo-
ments at the end of the time interval, and then monitors the network status. In the
following, we report these two operations in detail.

10.3.1 Moments of data stream in programmable data planes

In this section, we present the kth-order (0 ≤ k ≤ 2) moments of data stream
∑

ntot
i=1 ( fi)

k and logarithmic order ∑
ntot
i=1 fi logd fi. Each of them can quantify the over-

all condition of the network traffic. We can measure the flow moment at regular
time intervals and obtain a time series about this metric. Then, by testing whether
its short-term change exceeds a threshold, we may detect the anomalies in the net-
work.

The zeroth-order moment

The zeroth-order moment ∑
ntot
i=1 ( fi)

0 is equal to the number of flows ntot , which can
be used to understand how many distinct flows there are in the switch.

The first-order moment

The first-order moment ∑
ntot
i=1 ( fi) is equal to the number of packets Stot , which

indicates the number of packets crossing the switch.
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The second-order moment

The second-order moment of all flow sizes SumSquare = ∑
ntot
i=1 f 2

i , can be used to
calculate the variance of the size distribution of all flows.

SumSquare+= F( fi) = f 2
i − ( fi−1)2 = 2 fi−1

The logarithmic-order moment

The logarithmic-order moment of all flow sizes SumLog = ∑
ntot
i=1 fi logd fi. We use

Euler’s number e as the base d, and so in our case SumLog = ∑
ntot
i=1 fi ln fi. This

metric can be used to measure the diversity of the size distribution of all flows.

SumLog+= G( fi) = fi ln( fi)− ( fi−1) ln( fi−1)

10.3.2 Estimate the variance of flow size and network traffic entropy
in controller

Problem definition

Given:

• A time interval Tint

• A packet stream S = { f1, f2, · · · , fntot}

• Number of packets Stot = ∑
ntot
i=1 fi

• Estimated number of distinct flows by HyperLogLog n̂tot

• The second-order moment of all flow sizes SumSquare = ∑
ntot
i=1 f 2

i

• The logarithmic-order moment of all flow sizes SumLog = ∑
ntot
i=1 fi log fi

Return: an estimated variance of flow packet count ˆVar[ fi] in packet stream S

Variance of flow size

The variance Var[ fi] can be expanded as follows

Var[ fi] = E[ f 2
i ]− (E[ fi])

2

Since E[ f 2
i ] =

SumSquare
ntot

and E[ fi] =
Stot
ntot

, we estimate Var[ fi] as:

ˆVar[ fi] =
SumSquare

n̂tot
− (

Stot

n̂tot
)2
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Application study: heavy hitter detection By Central Limit Theorem, it is
deserved to note that the mean value of any k flow packet counts ∑

k
i=1 fi
k follows a a

normal distribution ∑
k
i=1 fi
k ∼N (µ, σ2

k ), where µ is Stot
ntot

and σ2 = SumSquare
ntot

−(Stot
ntot

)2.
Then it is possible to use standard normal distribution table to analyze the de-

sired false positive rate (FPR), that is, FPR = 1−Φ(x) = 1−P(∑
k
i=1 fi
k < x) where

Φ(x) is the cumulative distribution function for the standard Normal distribution

N (0,1). For example, if x is set to 2, the probability of |∑
k
i=1 fi
k −µ| ≤ 2 σ√

k
is 95%,

and FPR should be only 5%. While x = 3 is chosen, FPR is just 0.3%. Relying
on such an analysis, the variance can be used to detect heavy hitters. If we track
k flows with packet count fi (e.g. a group of flows towards the same subnet) that
satisfy ∑

k
i=1 fi
k > µ + 3 σ√

k
, this means that there exist heavy hitters among k flows,

and they can be detected with only 0.3% false positive rate.

Normalized entropy of flow size

The Shannon entropy of flow size H can be rewritten as:

H =−
ntot

∑
i=1

fi

Stot
ln

fi(Stot)

Stot

= lnStot −
1

Stot

ntot

∑
i=1

fi ln fi

The entropy is estimated as:

H = lnStot −
1

Stot
SumLog

and its corresponding normalized entropy is estimated:

Hnorm =
lnStot − 1

Stot
SumLog

ln n̂tot

Application study: Volumetric DDoS detection As we explained in Chapter 9,
the variation of normalized entropy is a good metric to detect DDoS attacks. Once
the normalized entropy is retrieved from the programmable switch, there should be
a broad range of approaches to track volumetric DDoS attacks, such as P4DDoS
that we proposed in the last chapter.

10.4 Implementation in P4

We have successfully implemented our SEAMEN method, described in Fig. 10.2,
in a network including a P4 programmable commodity switch with a Tofino ASIC
and a simple controller. In this Section, we report the details of our implementation.
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At the end
of time interval

Controller

Stot+= 1

HyperLogLog
registerM

Count Sketch

Exact match table
SumSquare += 2f̂i−1

Exact match table
SumLog += f̂i ln f̂i

−(f̂i−1) ln( f̂i−1)
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Hnorm

Variance
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f̂i

Figure 10.2: Scheme in programmable data planes

10.4.1 SEAMEN Update (Programmable switch)

Algorithm 12 reveals the implementation details in programmable data plane.

Counting the number of packets Stot

We use a register (a counter could also be used) to count all the incoming packets
in the switch (Line 7).

Updating the HLL Register

As shown in Line 8 to 12, we first concatenate CRC32 and CRC32c as the 64-
bit hash function h to hash the flow id (e.g. any subset of 5 tuple) of the packet.
The value v(x) in HyperLogLog register (see Section 10.2.1 ) can be retrieved by
using a ternary match table. For instance, given a mask (0111)2 and a key 4, if the
hashed value x = h(id)[log2 m+31 : log2 m] satisfying x & (AND) mask = key, that
is, the left most three bits of x is (100)2, the output of ternary match table returns
3. We then compare v(x) to the value at the j-th indexed register cell M j, where j
is the rightmost log2 m bits of h(id). In case that v(x) is still greater than M j, v(x)
replaces M j.
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Algorithm 12: Update (Programmable data plane)
Input: Packet stream S
Output: HyperLogLog register M, packet counter Stot , sum of

logarithmic-order moment SumLog, sum of second-order
moment SumSquare

1 m← 2l (l ∈ {4, ...,16}), M← m-sized empty HyperLogLog register
2 os← 32, Stot ← 0, SumLog← 0, SumSquare← 0
3 CS← Nh ·Ns-sized empty Count Sketch
4 Function Update(M):
5 for Each received packet belonging to flow id do
6 C ←{}
7 Stot ← Stot +1
8 s← (Hash(id)→{0,1}os)
9 x← s[l +31 : l]

10 v(x)← (Index of rightmost one of x)+1
11 if v(x)> M j then
12 M j← v(x)

13 for each row j in Nh hash functions do
14 q← h j(id)
15 CS[ j][q]+ = g j(id)
16 C .add(g j(id) ·CS[ j][q])

17 f̂i← median(C )

18 SumLog+= f̂i ln f̂i− ( f̂i−1) ln( f̂i−1)
19 SumSquare+= 2 f̂i−1
20 return M, Stot , SumLog, SumSquare

Updating Count Sketch

Lines 13-16 report how we implement Count Sketch in programmable data planes
following the procedure described in Section 10.2.2. The Count Sketch CS is com-
posed by Nh registers and each with Ns outputs. Each register indexed j is associ-
ated with two different hash functions h j and g j. The hashed flow key id q = h(id)
indicates which counter in register j to update. Moreover, id is hashed by g(id)
with the output either -1 or 1, and then the counter q in register j is incremented
g(id). The estimated packet count of the incoming flow f̂i is queried as the me-
dian of g j(id) ·CS[ j][q] of all registers in Count Sketch, which can be computed by
using several if-else conditions in the switch.

Updating SumLog

Once the flow packet count f̂i is retrieved from the Count Sketch, we used an
exact match table to compute f̂i ln f̂i− ( f̂i− 1) ln( f̂i−1). This is because Tofino
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Algorithm 13: Query (Controller)
1 αHLL

m ← 0.7213/(1+1.079/m)
2 Function Query(M, Stot , SumLog, SumSquare):
3 if At the end of time interval then
4 n̂tot ← (αHLL

m ·m2 ·∑m−1
j=0 2−M j)

5 Hnorm←
lnStot− 1

Stot
SumLog

ln n̂tot

6 ˆVar[ fi]← SumSquare
n̂tot

− (Stot
n̂tot

)2

7 return n̂tot , Hnorm, ˆVar[ fi]

ASIC switching does not support complicated computations on the metadata but
we can pre-load the computational result in the match-action table. If an input f̂i

is matched in the table, the corresponding result of f̂i ln f̂i− ( f̂i−1) ln( f̂i−1) as a
fixed point value is retrieved. Then the computed value is added to current counter
in SumLog.

Updating SumSquare

Similar to what we did in SumLog, 2 f̂i−1 is calculated from an exact match table
and summed into the counter in SumSquare.

10.4.2 SEAMEN Query (Controller)

At the end of time interval, the controller retrieves the register values, including
packet counter Stot , HyperLogLog register M, sum of logarithmic-order moment
SumLog, sum of second-order moment SumSquare. After that, the controller resets
all counters in the switches. Then the estimated normalized entropy, variance, flow
cardinality traversing the switch can be easily computed as what we analyzed in
Section 10.3.2. This is because the controller is not limited by hardware constraint
as programmable switches, and so it has more computational resources. The two
applications, volumetric DDoS detection and heavy-hitter detection can be built on
top of estimated normalized entropy and variance, and we consider them as our
future work.

10.5 Evaluation

10.5.1 Testing flow trace and default settings

Testing flow trace

We use a 50-seconds 2018-passive CAIDA flow trace [3] for evaluation. The 50-
seconds flow trace is divided into 50 1-second time intervals. Each time interval
contains around 450 thousand packets.
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Metrics

We consider relative error as metric to evaluate the estimation performance. We
call Ĥnorm the estimated normalized traffic entropy in a time interval and Hnorm its

exact value. The relative error is defined as the average of |Hnorm−Ĥnorm|
Hnorm

· 100% in
50 time intervals. Similarly, being ˆVar the estimated variance of flow packet count
crossing the switch and Var its exact value, the relative error is the mean value of
|Var− ˆVar|

Var ·100% in 50 time intervals.

Tuning parameters

Unless otherwise specified, the default HyperLogLog register size is 210 = 1024,
and the register cell size is 5 bits each. The Count Sketch is composed by 3 registers
with output size 211 = 2048 each. The default flow key is {srcIP, dstIP} pair.

10.5.2 Evaluation of accuracy on normalized entropy and variance
estimation varying tuning parameters

We now evaluate how the accuracy of SEAMEN is sensitive to different tuning pa-
rameters. The goal of this work is to assure the relative error of estimated variance
and normalized entropy is below 3%, which is the largest value that does not affect
practical network monitoring performance [84].

Sensitivity to number of hash functions Nh

As shown in Figure10.3(a), we varied the number of hash functions Nh from 3
to 7. Choosing Nh as an odd number is recommended since there is only a unique
median. The results show that the relative error of variance and normalized entropy
does not vary much. This is because when the sketch size is large enough, the bias
caused by the sketch is small, and so the accuracy of the estimations remains stable.

Sensitivity to output size Ns

Figure10.3(b) reveals that the accuracy of normalized entropy estimation is more
sensitive to the output size of hash functions: increasing the output size from 29 to
212 would decrease more than 1% relative error, but all of them have the relative
error below 3%. Thus, the choice of Ns depends on the accuracy of variance. It can
be noted that the relative error of variance is below 3% once Ns reaches 211.

Sensitivity to HyperLogLog register size m

Figure10.3(c) shows the performance of SEAMEN by varying the HyperLogLog
register size m. Intuitively, the relative error of variance and normalized entropy
decreases as m increases. To guarantee the relative error of both of them is below
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Figure 10.3: Sensitivity analysis

3% while minimizing the memory usage in the switch, m = 210 is a preferable
solution.

10.5.3 Evaluation of resource usage in physical testbed

Table 10.1 shows the normalized switch’s data plane resources usage of simple
forwarding and SEAMEN. To assure a fair comparison, the implementation of
SEAMEN also contain the simple forwarding for packet processing.

While simple forwarding occupies 16.67% stages in the programmable hard-
ware switch, implementing SEAMEN requires additional 41.66% of overall stages.
Simple forwarding needs 2.5% of the total available SRAM since we assigned the
exact match-action table for packet forwarding the maximum size. The number
of needed ALUs indicates the computational resource usage. 12.5% of total ALUs
are used by SEAMEN plus simple forwarding to process the packets, and all ALUs
are performed in registers to update the count.

The packet header vector (PHV) size shows the amount of customized meta-
data in packet header that is used for packet processing. SEAMEN plus simple
forwarding uses 11.98% of PHV and, compared to the 7.30% of simple forward-
ing, meaning that they only require few additional customized metadata to pass
across stages.
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Table 10.1: Switch resource usage of SEAMEN
Strategy No. stages SRAM No. ALUs PHV size Processing time w.r.t. simple forwarding

Simple forwarding 16.67% 2.5% 4.2% 7.30% -
SEAMEN +

Simple forwarding
58.33% 6.04% 12.5% 11.98% 71ns

Finally, we perform the additional processing time with respect to simple for-
warding. To implement SEAMEN in ASIC, only 71ns are necessary.

10.6 Related work

10.6.1 Sampling-based and sketch-based monitoring

sFlow [102] and NetFlow [9] are two well-known approaches that provide generic
support for different measurement tasks: they collect flow-level counts for sam-
pled packets in the data plane to diagnose the network performance and security
problem. However, A high sampling rate would lead to a large number of coun-
ters, while a lower sampling rate may miss flows. This means that to assure a good
performance on network monitoring, both approaches need to too large resources,
including CPU, memory, and bandwidth.

As an alternative solution, many sketch-based streaming algorithms have been
proposed in research community [93][132], which provide efficient measurement
support for several management tasks. With respect to Sampling-based solutions,
sketch-based solutions can guarantee higher accuracy while using the same mem-
ory in the switch.

10.6.2 Network monitoring tasks using ASIC switching

Most of legacy SDN switches (e.g. Openflow-supported switches) come with
very limited programmability with respect to the data plane functions that can
be executed. To enable new kinds of network monitoring functionalities in the
switch it is necessary to upgrade the hardware, which incurs significant additional
cost. Recently, programmable ASICs have been introduced: they ensure standard
data plane features (i.e., high-speed switching and forwarding) while offering the
possibility of customizing new functionalities, if properly programmed through
domain-specific programming languages like P4 [42]. For example, programmable
switches equipped with Tofino ASIC [2] can always forward packets at line-rate
once the P4 monitoring program is compiled and installed in the switches. Even
though network monitoring can be executed in the server, but they cannot currently
ensure high throughput and low latency as ASICs [136].
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10.7 Concluding remarks

In this chapter, we successfully combined the monitoring tasks that we proposed
in the thesis. While implementing all tasks entirely in the programmable switches
is challenging due to the limited hardware resource, we only summarized the flow
statistics in the data plane and but left the more complicated computations for con-
troller. In this way, the switches can keep processing the packets at line-rate, while
the controller can understand the network status by retrieving the information from
the switches.
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In this final chapter we summarize and conclude our research presented in
earlier chapters. We first draw our main contributions in the thesis, with respect
to the three goals that we set out with at the start of this thesis. We then revisit
and discuss in detail each research question defined in the first chapter. Finally,
we provide prospects for future research that can build on the research presented
in this thesis.

11.1 Main conclusion

The absence of high-speed monitoring in modern computer networks constraints
the performance to detect network anomalies and failures. Network monitoring
in programmable data planes therefore becomes an appealing idea due to its fast
packet processing. As a result, the main contribution of this thesis is to leverage
network monitoring and opportunities arising from the data plane programmability
to track current network status and detect possible threats in the network.
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At the start of this thesis we identified three challenges surrounding this topic:
First, the design of network monitoring solutions needs to consider limited compu-
tational and memory resources in programmable switches. Second, how to offload
monitoring tasks into programmable switches without overwhelming resources;
Third, how to allocate resources for multiple monitoring tasks in the programmable
switch. Our goals, which we will revisit them later, are related to these three
challenges. We believe that the efforts to offload network monitoring into pro-
grammable switches are indispensable contributions for modern telecommunica-
tion networks.

We now draw our conclusions for each of the three goals that we presented at
the start of this thesis.

11.1.1 Goal 1

J
Goal 1: to investigate network monitoring and programmable data
plane in Software-Defined Networks, learn how to program switches
and enhance their P4-enabled data plane programmability for moni-
toring

The first goal focuses on understanding the state of the art on network monitor-
ing and programmable data planes in Software-Defined Networks The background
information has been described in Chapter 2. While we knew that the advantages of
programmable switch are line-speed packet processing and flexible program cus-
tomization, we planned to enable more new monitoring functionalities directly in
the switch to accelerate the network. We chose P4 as the programming language to
develop new programs in the switches. During the learning process, we discovered
some inherent limitations of P4 for the implementation of monitoring tasks. To
overcome those limitations, in Chapter 3 we propose new methods to approximate
some arithmetic operations that P4 does not support, including approximation log-
arithmic and exponential function estimation. They can be used as building blocks
to support further implemented monitoring tasks.

11.1.2 Goal 2

In the introduction of this thesis we pointed out the importance of network mon-
itoring in programmable data planes. Our second goal was defined with this in
mind:

J
Goal 2: to study network monitoring tasks and how to offload them in
programmable data planes

From Chapter 4 to Chapter 9, we studied five different kinds of monitoring
tasks: heavy-hitter detection, flow cardinality estimation, network traffic entropy
estimation, total traffic volume estimation, and volumetric DDoS detection. We
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would like to offload as much as possible the network monitoring functionalities
into the switch, that is, in the best case, the task can be executed entirely in pro-
grammable data planes to perform in-network monitoring. Given this goal, we
started with simulations to understand the behaviors of various network monitor-
ing tasks. We then designed and implemented new monitoring ideas in P4, and
tested the performance in an emulated environment. Finally, we set up the pro-
grammable switches in our physical testbed and tried to migrate available moni-
toring solutions from emulated environment to real hardware switch. In Chapter
4, we first designed a network-wide heavy hitter detection robust to partial deploy-
ment of programmable switches in ISP networks. The switches only report flows
with large packet counts to controller for further network-wide detection according
to a global threshold. The cardinality estimation (Chapter 5), entropy estimation
(Chapter 6), and normalized entropy-based DDoS detection (Chapter 9) have been
fully implemented in P4 and can be executed in an emulated environment. This
means that they can act as a software switch in the server. However, we failed
to migrate them into programmable switches with ASIC due to the hardware re-
source constraints. Hence, with this in mind, after this work, we started designing
monitoring ideas taking the hardware limitations into consideration. We therefore
overcame the limitations and implemented total traffic volume estimation in Chap-
ter 7 and flow cardinality-based volumetric DDoS detection in Chapter 8.

11.1.3 Goal 3

The final technical challenge that we pointed out relates to the combination of
multiple monitoring tasks. The different tasks have different requirements, how to
allocate the limited switch resources to each task is an open topic to discuss. With
this in mind, we defined Goal 3 as:

J
Goal 3: to combine studied monitoring tasks in suitable network sce-
narios composed of programmable switches

We first revisited our designed tasks in previous chapters, and sought the pos-
sibilities to migrate them into hardware switch With this in mind, we discovered
that implementing all tasks entirely in the switch is not practical due to both the
limitations in hardware and programming language P4. We therefore designed an
alternative solution in programmable data planes: we only track the flow moments
in programmable data plane. The tracked flow moments can provide SDN con-
troller support to understand overall condition of the network, including variance,
flow cardinality, and entropy estimation These tasks can then further be used in
controller to detect heavy hitters and volumetric DDoS attacks.
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11.2 Research questions revisited

In this section, we provide the answers for our RQs defined in Chapter 1 (Introduc-
tion). Each section contains the set of research questions that relate to a particular
goal.

11.2.1 Research Questions for Goal 1

In this section we discuss each of the three research questions that relate to the first
goal of this thesis.

ª
RQ1: Why network monitoring is so important in modern telecommu-
nication networks? In particular, what are the benefits to implement it
in the data plane?

We studied this research question in nearly every chapter of this thesis. Net-
work monitoring is the main enabler of various network management tasks, rang-
ing from accounting, traffic engineering, anomaly detection, Distributed Denial-
of-Service (DDoS) detection, Super-spreader detection, and scans detection. With
the advent of programmable data planes in Software-Defined Networking (SDN),
the monitoring functionalities can be offloaded into switches to diagnose perfor-
mance and security issues while processing packets at line rate. For instance, in
a programmable switch equipped with ASIC, the latency is only in the order of
nanoseconds.

Our second research question, RQ 2, built on the advantages of programmable
data planes answered in RQ1:

ª
RQ2: How does a programmable data plane work? How is the data
plane of a switch programmed? What are the limitations of this type of
functionality?

The answer is covered by Chapter 2. In the data plane of programmable
switches, packets are processed sequentially in a pipeline, and the pipeline can
be customized by a high-level domain-specific language named P4. In P4 pro-
grams,the developers can indicate which packet headers to modify and customize
the match-action tables for the purpose of forwarding and computations. In order
to assure fast packet forwarding, P4 removes many arithmetic and logical opera-
tions that may delay the packet processing, including loops (e.g. For and While),
division, logarithm, exponentiation and floating numbers. Then the developed pro-
gram can be compiled and installed into programmable switches, and meanwhile
the corresponding interactive APIs are generated. Finally, the generated APIs are
used by control plane applications to communicate with the data plane.
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Our third research question, RQ 3, relates to the enhancement of data plane pro-
grammability:

ª
RQ3: Is there any way to improve P4-enabled data plane pro-
grammablity? If yes, how?

In Chapter 3, we revealed that we used some mathematical operations in P4
to approximate logarithm and exponential function, as well as the division. With
respect to state-of-the-art solutions, our approximations only incur slightly higher
packet processing time but does not require any match-action table to work. Those
approximations are non-trivial building blocks for some monitoring tasks reported
in the latter chapters.

11.2.2 Research Questions for Goal 2

In this section we discuss the five research questions for the second goal of this
thesis, which concerns specific monitoring task in programmable data planes. The
first research question in this goal relates to heavy-hitter detection:

ª
RQ4: What is heavy-hitter detection? Why do we need to track heavy
flows? How to detect them by using the programmable switch? What
is the performance in a network composed of partially deployed pro-
grammable switches?

We tackled RQ 4 in Chapter 4 of this thesis, in which we identify heavy hit-
ters as the flows that carry more than a given fraction of total traffic volume in
the network. We first used Count-min Sketch to filter the flows with relatively
large packet counts during a given time interval. At the end of time interval, the
controller retrieved the filtered heavy flows from all programmable switches in the
network. Finally, if the packet counts of heavy flows are greater than the global
threshold, the network-wide heavy hitters are detected. In order to show that our
network-wide heavy-hitter detection is robust to partial deployment scenario, we
then propose an incremental deployment of programmable switches approach in
Internet Service Provider (ISP) networks with the goal to have visibility over the
largest number of distinct flows. The results show that when only a limited number
of programmable switches is deployed, our network-wide heavy-hitter detection
strategy outperforms an existing approach in terms of detection accuracy, memory
occupation and communication overhead.

Our fifth research question, RQ 5, relates to flow cardinality:
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ª
RQ5: What is flow cardinality estimation? Why is it necessary for mon-
itoring? How do we design new idea for flow cardinality estimation on
a programmable switch? What is the performance with respect to the
state-of-the-art?

Counting distinct flows or flow cardinality estimations are widely used in net-
work monitoring for security. They can be used, for example, to detect the malware
spread, network scans, or a denial of service attack. Many network anomalies and
cyber-attacks often involve sudden changes in the cardinality of the traffic data that
are related to them In Chapter 5, we studied LogLog data structure to estimate the
flow cardinality of large data streams composed by millions of packets. With re-
spect to state-of-the-art solution, our new flow cardinality estimator in P4 program
can guarantee high accuracy while ensuring small memory usage.

The sixth research question RQ 6 is

ª
RQ6: What is network traffic entropy estimation? Which metric of
network does network traffic entropy indicate? Any problems while
implementing it in the data plane of programmable switch?

The entropy of flow size indicates the network traffic distribution. Traffic en-
tropy reaches 0 when all packets belong to the same flow, which means that there
is only one flow in the network. On the other hand, it reaches its maximum value
when the flows are uniform distributed, i.e., each flow carries the same number of
packets. As network traffic entropy relies on the calculation of logarithm and divi-
sion, in Chapter 6, we designed a time interval-based entropy estimation strategy
relying on the estimations proposed in Chapter 3. A prototype has been imple-
mented in P4 behavioral model and has been proven to be fully executable in a P4
emulated environment.

In RQ 7, we pose a new challenge: how SDN controller coordinates multiple pro-
grammable hardware switches to perform network-wide monitoring?

ª
RQ7: Why do we need to know network-wide total traffic volume esti-
mation? What is the key problem to coordinate multiple programmable
switches for packet counting in the network? How do we solve it?

In Chapter 7, we presented a novel traffic volume estimation method that ex-
ploits data-plane programmable switches to estimate number of flows, average flow
size and total packet count in the network, which are necessary to support a broad
range of monitoring tasks that we mentioned in the thesis. Most network-wide
monitoring systems assume that each packet is monitored and counted by a single
programmable switch on its path through the network, which limits the routing or
requires coordination among switches. In the network that packets traverse mul-
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tiple switches, the proposed strategies are not accurate any more. We named this
problem packet double counting. We solved the double counting problem relying
on Central limit theorem and theoretically demonstrate that our method an unbi-
ased estimator of total traffic network volume. Finally, we overcame the hardware
resource constraints and successfully implemented the prototype on top of a Hy-
perLogLog data structure in an Edgecore commodity switch equipped with Tofino
ASIC.

Our final research question RQ8 in this goal is about problems with volumetric
DDoS detection:

ª
RQ8: What is volumetric DDoS attack? What are the detection meth-
ods? What is the difference between different methods? How to design
and implement them in programmable switches?

Volumetric DDoS attacks are a critical security threat that aims to overwhelm
the available resources of victims. The goal of volumetric DDoS detection in pro-
grammable data planes is to use some common metrics to detect potential DDoS
attacks. In Chapter 8, we first investigated DDoS detection based on per-flow car-
dinality. This is because when an attacker launches a number of bots to flood a
large amount of attack traffic to the victim, the per-source flow cardinality to the
destination victims will significantly increase. This prompted us to track the per-
source flow cardinality to all the destinations. An unexpected large increment of
per-source flow cardinality may indicate that a volumtric DDoS attack is taking
place. Another metric that we discovered to detect volumetric DDoS attacks is the
change of normalized entropy. As we mentioned in Chapter 9, the entropy indi-
cates the flow distribution in the network, when there are a number of distinct flows
with large packet counts towards the same destination, the entropy will drastically
decrease. Taking the flow fluctuation into consideration, normalized entropy is a
more suitable metric to detect volumetric DDoS attacks. The differences between
them are twofold: First, entropy-based DDoS detection can only detect DDoS at-
tacks, but per-flow cardinality-based DDoS detection is also able to identify the
DDoS victims. Second, per-flow cardinality-based DDoS detection requires more
switch resource usages than entropy-based solution.

11.2.3 Research Questions for Goal 3

In this section we discuss the research questions for the final goal of this thesis,
which concerns problems with combination of tasks.

ª
RQ9: How to coordinate multiple monitoring tasks in a single pro-
grammable hardware switch while overcoming the resource limita-
tions?
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In Chapter 10, we combined several monitoring tasks in a programmable switches
equipped with Tofino ASIC. While we realized that implementing a number of
tasks into programmable switches is not feasible, we used two sketches, Count
Sketch and HyperLogLog, only for storing the flow and packet statistics. The SDN
controller is responsible for retrieving the summarized statistics and performing
estimations on the metrics required by a wide range of monitoring tasks. In this
way, the packets can be processed at line rate in the programmable switches while
the operator can get the necessary information for monitoring.

11.3 Prospects for future research

In this final section of our final chapter we discuss prospects for future research.
We imagine three directions to advance our understanding of network monitoring
problem and to increase situational awareness about the security and robustness of
modern telecommunications networks.

ß
Machine-learning assisted monitoring: Machine learning is recog-
nized as primary anomaly detection methodology due to its ability to
automatically learn hidden patterns in traffic flows, which can help to
solve some inherent problems for monitoring. For instance, most moni-
toring tasks, such as DDoS detection and heavy-hitter detection, rely on
a threshold to detect network anomalies, how to effectively set a suit-
able threshold to maximize the detection performance (e.g. F1 score)
poses a new challenge. In this thesis, the threshold is configured based
on statistical methods, and we believe that building new strategies on
machine learning in SDN controller to provide adaptive thresholds is
another interesting topic.

ß
The protection of compact data structures for monitoring: The
monitoring tasks in programmable data planes usually accompanies
one or several compact data structures to filter and summarize the flow
and packet statistics. However, the security and robustness of those
compact data structures have not been taken into consideration. For in-
stance, an attacker can attempt to modify the counter values in Count-
min Sketch, which may lead to a number of undetected heavy hitters.
Similarly, a DDoS attack can evade the increments in HyperLogLog to
avoid the detection. We therefore consider the compact data structure
protection as potential future works.
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ß
Integrating programmable switches into a large-scale monitoring
system: This thesis focuses on offloading some application-layer tasks
to programmable switches for line-speed monitoring. We realize that
the programmable switches can only process the packet headers and
perform very limited number of functionalities with respect to the
servers. Hence, we believe that combing SDN controller, high-speed
forwarding programmable switches, and high-performance servers into
a large-scale monitoring system is a more preferable solution. While
the programmable switches perform line-rate packet processing and
update the raw data into compact data structures, the servers analyze
the statistics from the switches and provide the support for data stor-
age (e.g., key-value stores) and network protection (e.g. DDoS mitiga-
tion). Finally, SDN controller is responsible to synchronize the states of
switches and to carry out network-wide monitoring. We set this work
as our next goal in the future.
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