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DOTTORATO DI RICERCA IN

SCIENZE STATISTICHE

Ciclo 33

Settore Concorsuale: 13/D1 - STATISTICA

Settore Scientifico disciplinare: SECS-S/01 - STATISTICA

DESIGN OF EXPERIMENTS IN DRUG DEVELOPMENT: OPTIMAL
ALLOCATIONS IN MULTI-ARM CLINICAL TRIALS AND DESIGN SPACE FOR

MULTI-STEP PROCESSES

Presentata da: Rosamarie Frieri

Cordinatore Dottorato

Monica Chiogna

Supervisore

Maroussa Zagoraiou

Co-Supervisori

Marco Mariti

Marilena Paludi

Esame finale anno 2021





Abstract

In this thesis, we deal with the design of experiments in the drug development process, focusing on
the design of clinical trials for treatment comparisons (Part I) and the design of preclinical laboratory
experiments for proteins development and manufacturing (Part II).

In Part I, we propose a multi-purpose design methodology for sequential clinical trials. We derived
optimal allocations of patients to treatments for testing the efficacy of several experimental groups by
also taking into account ethical considerations. We first consider exponential responses for survival trials
and we then present a unified framework for heteroscedastic experimental groups that encompasses the
general ANOVA set-up. The very good performance of the suggested optimal allocations, in terms
of both inferential and ethical characteristics, are illustrated analytically and through several numerical
examples, also performing comparisons with other designs proposed in the literature.

Part II concerns the planning of experiments for processes composed of multiple steps in the context
of preclinical drug development and manufacturing. Following the Quality by Design paradigm, the
objective of the multi-step design strategy is the definition of the manufacturing design space of the
whole process and, as we consider the interactions among the subsequent steps, our proposal ensures
the quality and the safety of the final product, by enabling more flexibility and process robustness in the
manufacturing.
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Chapter 1

Introduction

In the last decades, the pharmaceutical industry is facing big challenges, not only due to the novel
COVID-19 outbreak. Because of the increasing competition at a global scale and the need to speed up
the drug development process, pharmaceutical industry is undergoing an accelerated structural change
with the objective of improving its operational performance (e.g., to reduce time to market, waste and
costs) and the quality of its products.1 Clearly all the procedures have to be compliant with the regula-
tory guidelines provided by the health authorities. Indeed, the pharmaceutical industry is one of the most
regulated in the world: the consequences of releasing harmful drugs would be devastating.2 The process
from the discovery of a new drug candidate to its introduction to the market is very long, complex and
expensive: on average 10–12 years are required for this process with a cost that was estimated to be more
than 1 billion US dollars in the early 2000s (note that this includes the amortized cost of failed drugs).
According to the statistics, among the 5000–10000 promising compounds, 5 will pass into clinical trials,
and only one will be approved for sales.2

1.1 The process of drug development

The drug development process consists of the following phases:

Discovery −→ Preclinical −→ Clinical −→Marketing Application and Approval.

As discussed in the next paragraphs, each phase of this process is supervised by the regulatory authorities
in order to ensure safety, efficacy and consistency of drugs for human subjects’ use.2

Drug discovery

Drug development starts with the identification of a “druggable target” (e.g. proteins, receptors, en-
zymes,...) that is involved in the pathology and causes or leads to the disease. Once a target has been
selected, the next step is the research of any substances that might result in some therapeutic effect on
it3 ending up with a small number of substances that may lead to a candidate drug and eventually to a
usable pharmaceutical. This is the second major stage of the research and development (R&D) process
and marks the transition from research into development.2
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2 INTRODUCTION

Preclinical Drug Development

In the preclinical research activities, the lead compounds are tested in vitro and in vivo (recently also
in silico) to check their safety and efficacy. These compounds are also modified to increase their ef-
fectiveness and to reduce toxicity. The resulting optimized compound becomes the drug candidate for
clinical trials in humans. Preclinical studies have to be compliant with the guidelines dictated by Good
Laboratory Practice (GLP) to ensure reliable results and required by authorities such as the Food and
Drug Administration (FDA) or the European Medicines Agency (EMA).4 This period is also dedicated
to the design of the process that will be used to manufacture trial batches of the substances for use in the
clinical trials (and eventually for full-scale manufacture).

Despite preclinical studies are not usually very large, they must provide detailed information on
dosing and toxicity levels which are essential to determine whether it is reasonable to test the drug in
people.4

Clinical Research

In clinical trials the drug dosage form intended to be commercialized is administered on human subjects.
Clinical trials must be performed in accordance with the Good Clinical Practice (GCP). GCP is “an
international ethical and scientific quality standard for designing, conducting, recording and reporting
trials that involve the participation of human subjects”.5 When clinical trial data are intended to be
submitted to the regulatory agencies, its generation should be in accordance with GCP. In addition, every
trial has to be approved by the regulatory authority in the country or region where the clinical trial is to
be conducted (from the United States FDA, from European Union EMA, ...).2

Clinical trials are conducted into four Phases.

• Phase I. These studies represent the first time that a drug is administered to humans. The popu-
lation of interest is usually a small number of healthy volunteers or people with the disease and
the primary goal is to investigate the drug’s safety and tolerability, its dosage and, if possible, the
pharmacokinetics (how the body affects the drug) and pharmacodynamics (how the drug affects
the body) of the product.6 Phase I studies involve from 20 to 100 subjects and last several months.
Around the 70% of drugs move to Phase II.7

• Phase II. The goal of the Phase II is to examine the safety and effectiveness of the drug in a group
of patients with the disease or condition for which the drug has been designed. Studies of Phase
II supply further safety data that researchers use to find the effective dose and the dosing regimen,
refine the research questions and to prepare the design of the next Phase research protocols.2,7 Ac-
cording to the disease and whether one or more experimental therapies are available, comparisons
may be performed between experimental groups and/or against a control group and/or a placebo
group.8 In Phase II trials are recruited up to several hundred of subjects and the length of the study
ranges from several months up to around 2 years. In this case, approximately the 33% of drugs
move to Phase III.7

• Phase III. This is the final stage before product registration. The main objective for which Phase
III studies are designed is to assess whether the drug delivers any therapeutic effects. As for Phase
II, Phase III trials may be multi-arm. The number of participants of Phase III trials goes from 300
to 3000 volunteers affected by the disease. The duration of the study is 1-4 years and around the
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25-30% of drugs move to Phase IV. As these studies are larger and last longer, the data are more
likely to show previously undetected long-term or rare adverse events.7

• Phase IV. These studies are performed after the drug approval. Commonly Phase IV trials may
regard additional drug-drug interaction, dose-response or safety studies.9

Manufacturing

The drug must be manufactured in accordance to the current Good Manufacturing Practice (cGMP)
following FDA, EMA or International Conference on Harmonization (ICH) directives. Regulatory au-
thorities can inspect manufacturing plants to ensure they follow cGMP guidelines to guarantee that the
drug manufactured is safe and effective for patients.

Marketing, Approval, and Postapproval

In the case of successful clinical trials results for a drug candidate, the next step is the submission of the
marketing authorization application to the regulatory authorities, which has to be reviewed and approved.
Even after the drug approval and its marketing, its safety and performance are still monitored to guarantee
that it is prescribed correctly and that adverse events are reported and investigated.2 Also the advertising
of drugs is checked by regulatory authorities, in order to ensure that correctly statements on the product
are delivered to patients.

1.1.1 How COVID-19 pandemic is changing pharmaceutical development

In the last years, the need to speed up the development process has been one of the main objectives
of regulators, researchers and industry leaders but the COVID-19 pandemic has incredibly push the
challenge beyond the limits: the rapid development of a therapeutics or a vaccine has become a global
imperative in 2020.

Since the end of 2019, a respiratory disease caused by a novel coronavirus has leaded to a pandemic
outbreak that is still ongoing. From the first cases reported in China, it rapidly spread all over the world.
The name of the virus is “SARS-CoV-2” and it lead to a disease that has been named “COVID-19”.10

On January 31, 2020, the Secretary of Health and Human Services has declared the state of public health
emergency related to COVID-19 and on March 11, 2020 the World Health Organization announced
COVID-19 outbreak as a pandemic.11 Such pandemic has caused widespread morbidity, mortality and
economic disruption, and the consequences of repeated epidemic waves could be unacceptably serious,
worldwide.12 Therefore, a safe and effective vaccine is urgently needed to control and hopefully stop
the pandemic. With this aim, pharmaceutical companies, academic researchers and government agen-
cies are working together and making an unprecedented effort to compress within months the process
of the COVID-19 vaccine development.13 Several national regulatory agencies have released a plethora
of documents with recommendations and guidelines on the procedures to facilitate the clinical develop-
ment10,14–16. For example FDA has created the Coronavirus Treatment Acceleration Program,17 a spe-
cial emergency plan for possible therapies with the aim of moving new treatments to patients as quickly
as possible, still preserving their safety. FDA has also provided the Emergency Use Authorization for
COVID-19 vaccines18 that contains recommendations regarding the data and information needed to sup-
port the issuance of an Emergency Use Authorization during the public health emergency. EMA outlined
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the rapid formal review procedures16 including e.g. the rolling reviews (data for an upcoming vaccine are
sent to EMA as they become available so that their assessment can start before the formal submission).
Moreover EMA introduced other regulatory mechanisms as the Conditional Marketing Authorisation
(less comprehensive data may also be accepted for its request in the case of emergency situations in
which the benefit of availability of the product on public health overcomes the risks) and compassion-
ate use programmes (the unauthorised medicine can be used under strict conditions for patients with a
disease for which no approved therapies exist).15

Also thanks to these accelerated regulatory procedures, new promising vaccines are emerging faster
than before and promising results seems to be close to come.19 However, the demand of obtaining timely
response on the vaccine performance should be balanced with the concern of scientific rigour that prove
its effectiveness but firstly its safeness. Indeed vaccines, unlike therapeutics, are administered to a large
number of otherwise healthy individuals so that safety must be the primary goal.12

1.1.2 The role of Statistics in pharmaceutical development

Nowadays, there is no aspect of pharmaceutical development in which Statistics is not involved: from
drug discovery to forecasting sales of the final product.20 In particular, the application of Statistics in
pharmaceutical research is gaining importance due to the growing number of new challenges, the need
to speed up the pharmaceutical development process and the high expectations of regulatory agencies.21

The significant role of statistical thinking in scientific and clinical research has been widely recognized
and discussed in the literature.20–24 Now that the COVID-19 pandemic situation is affecting everyone’s
life, the importance of scientific data is becoming the talk of the town. The role of data is crucial: starting
from the drugs approval, which requires the submission of data demonstrating its safety and effectiveness
in both preclinical and clinical stages, up to the communication to the public, for which is essential to
translate the information coming from data into user-friendly materials referencing publicly available
scientific studies.25 However, besides the manner in which data are analysed, the scientific validity and
reliability of any result is related to the way in which experimental and clinical data are collected: the
quality of the information extrapolated from data depends on the quality of the data itself.26 The design
of experiment is the branch of Statistics that deals with the statistical and mathematical methods aimed
at planning experimental study to effectively gain information form empirical data. Depending on the
field in which the experiments are performed, the research has been developed in several directions
in order to address problem-specific issues and to achieve purposeful experimental goals. Even in the
pharmaceutical development process itself, the design strategies for preclinical experiments substantially
differ from the planning of clinical studies in which humans are involved.

In this thesis we focus on two main aspects of the design of experiments in the drug development
process: the design of clinical trials for treatment comparisons and the design of preclinical laboratory
experiments for proteins development and manufacturing.

1.2 Content and thesis outline

This thesis is organized into two parts. Part I concerns the design of clinical experiments for testing
the efficacy of several heterogeneous treatment groups. We propose a methodology that is suitable for
the design of clinical Phase II/III sequential trials to derive optimal allocations of patients to treatments
by taking also into account ethical considerations. This topic is presented in Chapter 2 and 3 and the
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results are collected into two papers: paper A and paper B. The research addressed in Part II is placed
in the context of preclinical drug development and manufacturing. The aim of the work was the design
of experiments for processes composed of multiple subsequent steps, with the final objective of deriving
the manufacturing design space, which is one of the fundamental concept in the Quality by Design
paradigm.27 This is the subject of paper C, reported in Chapter 4.

1.2.1 Overview on Part I

The fundamental feature of clinical trials is randomization of patients to treatments.26 The large majority
of randomized clinical trials have been designed to achieve the equal allocation among the treatment
groups. The motivations behind the use of the balanced allocation is that it maximizes the inferential
precision in the estimation of the treatment effects in many set-ups. In addition, the balanced allocation
is consistent with the state of equipoise, i.e. a genuine uncertainty about which experimental therapy is
more effective.28 Traditionally, the state of equipoise was the ethical requirement to accept that patients
are assigned to treatments through randomization.26 However, the equal allocation may not be efficient
and strongly inappropriate for clinical trials for rare or lethal diseases. Therefore, especially in these
scenarios, the design of a clinical experiment should be aimed at finding a compromise29 between

(i) the ethical demand of maximizing patients’ care, by favouring the assignments to the superior
treatment(s) according to the evidence accrued thus far,

(ii) the inferential goal of deriving statistical conclusions with high precision.

This is the so called dilemma of individual versus collective ethics, i.e., what is best for the current
patient enrolled in the trial (i) versus what is best for reaching medical advances from which future
patients may benefit (ii).29,30 The trade-off between these conflicting goals can be formalized into a
combined/constrained optimization problem, whose solution is a target allocation. The target alloca-
tion is the proportion of patients to be assigned to each treatment group in order to achieve the desired
compromise. The target generally depends on the unknown model parameters so that it is a-priori un-
known. In the context of sequential experiments, Response Adaptive Randomization procedures can be
implemented under suitable conditions. According to Response Adaptive rules, as each subject joins the
trials, model parameters are estimated from previously accumulated responses and past assignments, and
the next allocation probabilities is randomly changed in order to asymptotically approach the target.29

The use of adaptive designs has been widely promoted to increase clinical trial efficiency and flexibil-
ity, also by the regulatory authorities.2,6,31 Moreover, the clinical development programs for COVID-19
vaccines encourage the implementation of adaptive clinical trial designs, whose use may accelerate the
drug development process.10

While most of the literature on the design of clinical experiments is focused on the estimation of
treatment effects, the problem of hypothesis testing has received limited attention. In this thesis we
address the problem of testing the null-hypothesis of equality among treatment effects in the presence
of several heteroscedastic experimental groups. More specifically, we derived the unconstrained optimal
target, namely the allocation proportion that maximizes the power of the multivariate Wald test. In
addition, to take into account ethical considerations, we also derived the constrained optimal target. This
target maximizes the power subject to a constraint on the allocation proportions, reflecting the treatment
efficacies. The global null-hypothesis considered in Paper A and B was adopted to test the equality of all
the treatment effects. Besides being a cornerstone in the statistical literature, it constitutes the first stage
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of multiple comparison methodologies for several stepwise procedures, like the well-known Fisher least
significant difference method.32 In addition, due to the strong increase of new potential drugs, mainly in
cancer research, one of the primary Phase II goals may be to evaluate the effectiveness of new treatments
and to identify which one(s) most warrants additional evaluation in a larger Phase III.8,33 Particularly
relevant to the present pandemic situation, the overall hypothesis of homogeneity may be appropriate
for cases in which no treatments with demonstrated efficacy exist and so no standard of care is available
to be set as an appropriate/fixed control. Indeed for rapidly emerging novel infectious diseases, such as
Ebola34 or COVID-19, clinical trials must start as soon as possible and the global null-hypothesis, as a
first step, allows to evaluate several candidate treatments at once.

Our research has started with paper A, in which we derived optimal designs for hypothesis testing in
the case of exponential responses. Among parametric models, the exponential one is typically assumed
for the lifetime distribution in survival trials, making our proposal very relevant in the context of clinical
studies. Indeed, in paper A, we deeply studied the properties of the constrained optimal design, match-
ing analytical results and numerical examples. We included comparisons with other designs proposed
in the literature from which a remarkable gain in terms of both power and ethics arise from our pro-
posal. Additionally, extensive simulation studies have been performed, including robustness studies to
model misspecification, robustness to misspecification of patients’ recruitment pattern and the redesign
of a real lung cancer trial. We addressed several natural complications of the design of adaptive survival
trials by also considering in the model the presence of censored observations, as well as delayed re-
sponses and patients staggered entries. We widely discussed their impact in the implementation through
Response Adaptive Randomization. Paper A has been published as Frieri R, Zagoraiou M. Optimal and
ethical designs for hypothesis testing in multi-arm exponential trials. Statistics in Medicine. 2021;1–26.
https://doi.org/10.1002/sim.8919.

Later, in paper B, we expanded our results by presenting a unified framework, that also encompass
the general ANOVA. The results of paper B own a particular theoretical relevance and fill the gap in the
literature on the optimal designs of experiments for comparing several treatments when the inferential
aim is testing the homogeneity of the treatment effects in the ANOVA set-up with heteroscedastic errors.
Due to the generality of the framework in which we analytically derived the optimal targets, the results
apply to the parametric models belonging to the so-called minimal exponential family, like, Binary,
Poisson and Exponential models with and without censoring. We finally illustrated both theoretically and
numerically the interesting properties of our targets also in comparisons with other designs previously
obtained.

1.2.2 Overview on Part II

The aim of pharmaceutical development is to design a product and its manufacturing process to consis-
tently obtain a drug with the intended quality.35 As previously mentioned, the manufacturing of drugs
must be carried out in compliance with cGMP and in 2002, FDA introduced a new initiative to cGMP:
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach.36 The main motivation was to
modernize the regulation of pharmaceutical manufacturing and product quality in order to promote faster
and more consistent product and process development.37 In addition, FDA has published as part of the
International Conference on Harmonization (ICH) guidelines several documents (Q8 on Pharmaceuti-
cal Development27, Q9 on Quality Risk Management35 and Q10 on pharmaceutical quality system38)
defining the Quality by Design (QbD) principles and its implementation. The underlying philosophy
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of QbD is that quality cannot be tested into a product (Quality by Testing), but must be built into it
and ensured since its design. QbD principles provide a science-based rather than empirical-based ap-
proach to design and develop a product and its manufacturing process to guarantee that the quality of
the products consistently attains the desired clinical performance. This new approach to pharmaceutical
development replaces the traditional Quality by Testing, by introducing more flexible approaches from
both the manufacturing and the regulatory perspective.39

One of the key stage in the implementation of the QbD is the identification of the critical quality
attributes that are properties or characteristics (physical, chemical, biological or microbiological) that
should be within an appropriate range to guarantee the desired product quality. The relationship between
the process inputs (material attributes and process parameters/input factors) and the critical quality at-
tributes can be described in the manufacturing design space which is defined as the “multidimensional
combination and interaction of input variables (e.g., material attributes) and process parameters that have
been demonstrated to provide assurance of quality”.27 The manufacturing design space is proposed by
scientists as a region of process capability and once it has been approved by the regulatory agencies pro-
vide an useful tool for the applicants. According to the guidelines, movements within the manufacturing
design space are not considered as a change. For instance, by using the manufacturing design space,
the pharmaceutical manufacturers are allowed to make small adjustments in the operating conditions
(inside the design space), without requiring long regulatory approval process. Notice that the changes
within the manufacturing design space of the manufacturing conditions may also potentially save from
batch failure.21 Whereas, operating outside of the manufacturing design space would normally initiate a
regulatory post approval change process. A manufacturing design space is based on mathematical mod-
els that can be derived from first principles reflecting physical laws or from experimental data (or from
their combination).40 The manufacturing design space is then established in terms of ranges of material
attributes and process parameters, or through more complex mathematical relationships.

In practice, most biochemical processes are composed of multiple subsequent steps. In each step, the
operations and the resources involved are controlled by multiple process parameters/input factors and the
outcome of each step affects the result of the subsequent steps. On this purpose, QbD guidelines27 high-
light that rather than defining a separate independent manufacturing design space for each unit operation
(often simpler to develop), a single manufacturing design space that spans the entire process can increase
the operational flexibility. However, in the case of multi-step processes, the relationship between the
process inputs and the critical quality attributes is really complex and, in general, models based on first
principles are not available.

In the context of the application of the QbD principles in the Technical R&D of GSK Vaccines
(Siena), in Paper C we present a multi-step experimental strategy to design experiments and derive the
manufacturing design space of a multi-step process. As we take into account the interactions among
subsequent steps in the definition of the manufacturing design space, our proposal guarantees the quality
and the safety of the final product with more flexibility and process robustness in the manufacturing.
We considered the application of the multi-step methodology to the biochemical process of expression
and purification of a recombinant protein. Paper C has been published as Frieri R, Mariti M, Paludi
M. Design of experiments and manufacturing design space for multi-step processes. Applied Stochastic
Models in Business and Industry. 2021; 1-19. https://doi.org/10.1002/asmb2620.
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Abstract

Multi-arm clinical trials are complex experiments which involve several objectives. The demand for
unequal allocations in a multi-treatment context is growing and adaptive designs are being increasingly
used in several areas of medical research. For uncensored and censored exponential responses, we pro-
pose a constrained optimization approach in order to derive the design maximizing the power of the
multivariate test of homogeneity, under a suitable ethical constraint. In the absence of censoring, we ob-
tain a very simple closed-form solution that dominates the balanced design in terms of power and ethics.
Our suggestion can also accommodate delayed responses and staggered entries, and can be implemented
via response adaptive rules. While other targets proposed in the literature could present an unethical be-
haviour, the suggested optimal allocation is frequently unbalanced by assigning more patients to the best
treatment, both in the absence and presence of censoring. We evaluate the operating characteristics of
our proposal theoretically and by simulations, also redesigning a real lung cancer trial, showing that the
constrained optimal target guarantees very good performances in terms of ethical demands, power and
estimation precision. Therefore, it is a valid and useful tool in designing clinical trials, especially onco-
logical trials and clinical experiments for grave and novel infectious diseases, where the ethical concern
is of primary importance.
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2.1 Introduction

In this paper, we deal with the design of randomized multi-arm clinical trials for treatment comparisons
to achieve a suitable trade-off between inferential and ethical demands. Most of the randomized clinical
trials have been designed to achieve balanced allocation among the treatment groups. Equal allocation
frequently maximizes the inferential precision in the estimation of the treatment effects and reflects the
condition of equipoise, that has been widely recognized as an ethically necessary condition that should
hold at the beginning of each trial.1 However, the balanced allocation may not be efficient and could
be strongly inappropriate for clinical trials, in which the ethical concern of individual care could be
of crucial importance. Indeed, it is becoming increasingly common the use of unequal allocations not
only for ethical reasons,2,3 and the absolute need of true equipoise is object of debate.4 Moreover, for
heterogeneous treatment groups, unequal randomization often outperforms the balanced design in terms
of statistical efficiency. Advantages of unequal randomization can be ramped up in multi-arm trials with
the promise of shortening drug development processes.5

Many clinical studies for severe/fatal diseases or oncological trials have time-to-event outcomes that
can be modelled with the exponential distribution; this model can be used in trials for diseases with a
very fast progression to death6,7 or in combination with a censoring scheme.8,9 In this context, the ethical
demand of maximizing patient’s care becomes prominent and the choice of the design should compro-
mise between the conflicting goals of assigning more patients to the best performing treatment(s), while
preserving power. These objectives can be formalized in a constrained/combined optimization prob-
lem,10–12 whose solution is the so-called optimal compromise target. This framework has been adopted
for example by Tymofyeyev et al13 for the binary model, by Biswas et al14 for both binary and continuous
outcomes and by Baldi Antognini et al15 for the linear homoscedastic model. In general, these optimal
targets depend on the unknown model parameters and, under suitable conditions, response-adaptive ran-
domization (RAR) procedures can be implemented to approach the desired target.16–18 Principles and
a variety of advantages of adaptive designs have been recently listed by FDA.19 However, the applica-
tion of RAR procedures in survival trials presents several complexities since: (i) the responses cannot
be observed immediately but are naturally delayed, (ii) censored observations may be present and (iii)
patients’ enrolment is often staggered in time.

Indeed, literature on RAR procedures for survival outcomes is quite scarce. To the best of our knowl-
edge, Zhang and Rosenberger20 were the first authors suggesting to design a survival trial on the basis
of optimality criteria. They derived targets for two-arm trials with exponential and Weibull distribution,
by minimizing an approximation of the total expected hazard, subject to power constraints. For several
treatments and in absence of censoring, Zhu and Hu21 derived analytically the optimal allocation that
maximizes power for fixed weighted sample size. On the other hand, Sverdlov et al22 introduced two op-
timal allocations for censored exponentially distributed outcomes, NP1 and NP2, based on non linear
programming; analytical solution is available only for NP1, while NP2 can be addressed numerically.
However, both these works21,22 are based on the same constrained optimization framework proposed
by Tymofyeyev et al,13 which requires the choice of two user-selected thresholds: one of them related
to a minimum percentage of allocations to each treatment (to avoid degenerate scenarios) and the other
regarding the chosen efficacy measure (which is, however, a priori unknown since it depends on the
model parameters). A further downside is related to the structure of the ensuing targets, since they do
not always send more patients to the best treatment. To overcome these drawbacks, Baldi Antognini et
al15 proposed a new multi-purpose design strategy for the normal homoscedastic model.
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This work deals with the problem of how to allocate subjects to K ≥ 2 treatments for exponential
trials. After introducing notation in Section 2.2, Section 2.3 discusses the simple set-up without cen-
sored observations. Firstly, we derive analytically the design maximizing the power of the multivariate
Wald test. In absence of treatments with the same efficacy, the optimal target is a Neyman allocation
involving just the clinically best and the worst treatments. Clearly, this allocation presents undesirable
properties for both inference and ethics and, on this purpose, we discuss the complex issue of how to
take into account patients’ health in the design of a trial for more than two treatments. Therefore, we
formalize a constrained optimization problem in which the power function is maximized subject to an
ethical constraint on the allocation proportions, reflecting the effectiveness of the treatments. We com-
pare the ensuing optimal target to several targets proposed in the literature and we demonstrate that it is
superior to the balanced design in terms of power and ethics. Then, in Section, 2.4 we generalize the
results by taking into account censored observations, also including delayed responses and staggered en-
tries. We implement our proposals with the Doubly adaptive Biased Coin Design23 (DBCD) to discuss
their operating characteristics in several experimental settings. We also perform robustness studies to
model misspecifications and we redesign the three-arm KEYNOTE-0108 clinical trial. In Section 2.5 we
conclude the paper with a discussion and future developments, while mathematical details are reported
in Section 2.6.

2.2 Framework and notation

Consider a clinical trial in which patients are allocated sequentially toK ≥ 2 treatments and let Yij be the
response of the j-th patient assigned to the i-th treatment where Yij follows an exponential distribution
with mean θi ∈ R+, for i = 1, . . . ,K. Let Nn = (N1n, . . . , NKn)> be the random allocation vector,
whose i-th component is the number of patients assigned to treatment i up to step n, where n = N>n 1K
and 1K is the K-dimensional vector of ones. Let πin = Nin/n, then πn = (π1n, . . . , πKn)> is the
vector of allocation proportions such that π>n 1K = 1.

After n steps, letting θ̂n = (θ̂1n, . . . , θ̂Kn)> be the vector of the MLEs of the treatment effects, by

a well-known result θ̂n
a.s.−→ θ and

√
n(θ̂n − θ)

d−→ N(0K ,M−1), where M = diag
(
πinθ

−2
i

)
i=1,...,K

is the Fisher information matrix and θ = (θ1, . . . , θK)>. In multi-arm trials, the inferential interest
is usually focused on the contrasts, so let us define γ = Aθ where A = [1K−1| − IK−1] and IK−1

is the (K − 1)-dim identity matrix so that γ = (θ1 − θ2, . . . , θ1 − θK)>. By denoting with γ̂n =
Aθ̂n the corresponding MLE, it is known that γ̂n is strongly consistent and asymptotically normal with
√
n(γ̂n − γ)

d−→ N(0K−1,Σ), where Σ = AM−1A>.
We define the target as the desirable treatment allocation proportion ρ = (ρ1, . . . , ρK)>, where

ρ>1K = 1 and ρi ≥ 0, for i = 1, . . . ,K. If the latter inequality is strict, namely if ρi > 0 for all
i = 1, . . . ,K, ρ is called non degenerate. The target can be seen, in a finite set-up, as the actual desired
proportion of treatment assignments. Otherwise, it can be found as a limit, for increasing n, to which
the allocation proportion should ideally converge. In general, the targets could depend on the unknown
parameters and, under suitable conditions, RAR procedures can be carried out to sequentially estimate
the model parameters, and then force the assignments to asymptotically approach the chosen target.17,18

Without loss of generality, in this work we assume that higher values for the response are more
desirable and we let θ1 ≥ θ2 ≥ . . . ≥ θK , i.e. the best treatment is indicated with label 1 and the
worst one with label K, admitting also groups of treatments with the same efficacy. This assumption
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is not restrictive since it is simply a label-coding choice. Indeed, the ordering of treatments is a priori
unknown, but for RAR rules the treatment effects are estimated step by step and then their ranking is
sequentially updated. Clearly, the contrasts can be defined with respect to any treatment (not necessary
the best one) by re-defining the matrix A. For instance, if we set A = [IK−1| − 1K−1], then γ = (θ1 −
θK , . . . , θK−1 − θK)> so that the contrasts are defined with respect to the worst performing treatment.

2.3 Optimal allocations for hypothesis testing for the exponential model

In this section we derive optimal targets for testing the hypothesis of homogeneity among treatment ef-
fects. Such overall null-hypothesis is a milestone in the statistical literature and it is the first stage of
multiple comparison techniques for many stepwise procedures24,25 (see also Section 2.5). We then com-
pare the ensuing target with the optimal allocations for the exponential model proposed in the literature
both theoretically and numerically.

2.3.1 Single-objective optimal allocation for hypothesis testing

Let us consider the problem of testing the null-hypothesis of equality among the treatment effects,{
H0 : γ = 0K−1

H1 : γ 6= 0K−1,

where 0K−1 is the K − 1 dimensional vector of zeros. After n steps, let M̂n and Σ̂n = AM̂−1
n A> be

consistent estimators of M and Σ, respectively. Under H0, Wald’s statistic Wn = n · γ̂>n Σ̂−1
n γ̂n

d−→
χ2
K−1(0), while under H1, Wn

d−→ χ2
K−1(nφ), where χ2

K−1(nφ) is a chi-squared r.v. with K − 1

degrees of freedom and non centrality parameter (NCP) nφ, where φ = φ(π) = γ> Σ−1 γ is given by
(see for example Zhu and Hu21)

φ(π) =

K∑
i=1

(
θ1 − θi
θi

)2

πi −
1∑K
i=1

πi
θ2
i

(
K∑
i=1

θ1 − θi
θ2
i

πi

)2

. (2.3.1)

For every sample size, the power of Wald’s homogeneity test monotonically increases as φ grows; as
a shorthand we shall often refer to φ as the NCP. In the next Theorem, following a similar set-up to
Tymofyeyev et al,13 we derive the allocation proportion maximizing the NPC.

Theorem 1. The target allocation ρ̃ = (ρ̃1, . . . , ρ̃K)> maximizing the power of Wald’s test is such that

φ(ρ̃) =
(
θ1−θK
θ1+θK

)2
. Given θ1 = · · · = θj > θj+1 ≥ · · · ≥ θh = · · · = θK , with 1 ≤ j < h ≤ K,

(i) if θj+1 > θh, then every allocation ρ̃ such that
∑j

i=1 ρ̃i = θ1
θ1+θK

, ρ̃j+1, . . . , ρ̃h−1 = 0 and∑K
i=h ρ̃i = θK

θ1+θK
is optimal;

(ii) if θj+1 = θh i.e. in presence of only two clusters of treatments, every allocation ρ̃ such that∑j
i=1 ρ̃i = θ1

θ1+θK
= 1−∑K

i=j+1 ρ̃i is optimal.

Proof. See Appendix 2.6.1.
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The targets in (i) are degenerate, since every ρ̃ provides at least an empty treatment arm. In particular, in
presence of a single superior and inferior treatments (j = 1 and h = K),

ρ̃ =

(
θ1

θ1 + θK
, 0, . . . , 0,

θK
θ1 + θK

)>
(2.3.2)

i.e. it is a generalization of Neyman allocation involving just the best and the worst treatments, not
collecting informations on the intermediates. Target in (2.3.2) is always a possible solution for both (i)
and (ii), and for K = 2 we retrieve the usual Neyman allocation. Notice that the only non degenerate
optimal targets ρ̃ are those obtained under scenario (ii) of Theorem 1.

Example 1. If θ = (4, 4, 4, 1)>, then ρ̃ =
(

4
5 , 0, 0,

1
5

)> is optimal with φ(ρ̃) = 9
25 . Moreover, every

combination of ρ̃1, ρ̃2 and ρ̃3 such that
∑3

i=1 ρ̃i = 4
5 is optimal, like e.g.,

(
2
5 ,

2
5 , 0,

1
5

)> or
(

2
5 ,

1
5 ,

1
5 ,

1
5

)>.

Remark 2.3.1. For trials comparing K > 2 treatments, the definition of the ethical issue is highly
debated and controversial. For example, the trial may be designed with the requirement of maximiz-
ing patients’ benefit by a) maximizing the number of subjects receiving the superior treatment(s) or b)
minimizing the number of patients treated with the inferior arm(s). While for K = 2 these two ethical
paradigms are equivalent, in the case of multi-arm trials the implementation of a) does not necessarily
satisfy b) and vice versa; moreover, even if a) and b) hold simultaneously, the conclusions may be ques-
tionable. For instance, under the-larger-the-better scenario and assuming θ1 > θ2 > θ3 > θ4, the target(

7
16 ,

2
16 ,

6
16 ,

1
16

)> complies with a) and b), but how it can be considered as ethical? Wouldn’t it be the

target
(

7
16 ,

6
16 ,

2
16 ,

1
16

)> more desirable for patients’ health? In this paper, a target will be considered as
ethical if its components are ordered according to the magnitude of the treatment effects (this definition
was mentioned in Theorem 1 of Sverdlov et al22). In this way not only a) and b) hold, but the ranking of
the ρis reflects the efficacy of θ, i.e. ρi ≥ ρi+1 ⇐⇒ θi ≥ θi+1 for all i = 1, . . . ,K − 1. Clearly, for
K = 2 the Neyman allocation for the exponential model is ethical since ρ1 ≥ ρ2 ⇐⇒ θ1 ≥ θ2.

Despite the optimal unconstrained design ρ̃ maximizes power, it presents undesirable characteristics
from both ethical and inferential perspective. In general, this target does not assign patients to the in-
termediate treatments, giving unreliable variance of the estimate of model parameters. Moreover, ρ̃ is
not attractive from an ethical point of view, since it always allocates a fraction of patients to the worst
treatment arm.

2.3.2 Multi-objective optimal allocation for hypothesis testing

In this section we introduce the multi-purpose optimal target ρC maximizing the NCP subject to an
ethical constraint reflecting the order among treatments. Specifically, in the following Theorem we
derive the closed form solution of the constrained optimization problem{

maxφ(ρ)

s.t. ρi ≥ ρi+1 for i = 1, . . . ,K − 1 and
∑K

i=1 ρi = 1.
(2.3.3)

Theorem 2. Given θ1 = · · · = θj > θj+1 ≥ · · · ≥ θh = · · · = θK (1 ≤ j < h ≤ K), let us define

x =

1
θ1

∑K
i=1

(
1
θi
− 1

θ1

)2[∑K
i=1

(
1
θi
− 1

θ1

)] [∑K
i=1

(
1
θ2
i
− 1

θ2
1

)] . (2.3.4)
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If x > K−1, then the balanced design ρB =
(

1
K , . . . ,

1
K

)> is optimal. Otherwise, when x ≤ K−1, the
solution of (2.3.3) is ρC = (ρC1 , . . . , ρ

C
K)> (with ρCi ≥ ρCi+1 for i = 1, . . . ,K − 1 and 1>Kρ

C = 1),
where

(i) if θj+1 > θh, then ρCj+1 = . . . = ρCK = x (and, clearly,
∑j

i=1 ρ
C
i = 1− (K − j)x);

(ii) in the case of just two clusters of treatments, namely when θj+1 = θh, then
∑j

i=1 ρ
C
i = 1− (K −

j)x = θ1/(θ1 + θK) = 1−∑K
i=j+1 ρ

C
i .

Proof. See Appendix 2.6.2.

The constrained optimal target presents very appealing properties: ρC has a very simple form and it
is non degenerate, so that there is no need to fix a lower bound for the treatment allocation proportion to
the worst treatment(s). Furthermore, it assigns the same proportion of patients to all the treatment arms
or it skews the allocations in favour of the best performing treatment(s).

The behaviour of ρC for K = 3 and several experimental settings is displayed in Table 2.1. The
optimal constrained target allocates a higher proportion of subjects to the superior treatment and this
proportion increases as the difference between θ1 and θ2 grows (Table 2.1a). Moreover, ρC1 increases as
the magnitude of the superior treatment increases (Table 2.1b). Note that, in the last scenario of Table
2.1a x = 1/6, so that all the targets with ρC2 + ρC3 = 1/3 are optimal.

Table 2.1: Behaviour of the optimal constrained target.

(a) Fixed θ1 and θ3 and decreasing θ2.

θ ρ1
C ρ2

C ρ3
C

(10, 9, 5)> 0.436 0.282 0.282
(10, 7, 5)> 0.590 0.205 0.205
(10, 5, 5)> 0.667 0.1665 0.1665

(b) Fixed θ2 and θ3 and increasing θ1.

θ ρ1
C ρ2

C ρ3
C

(10, 8, 4)> 0.546 0.227 0.227
(15, 8, 4)> 0.706 0.147 0.147
(20, 8, 4)> 0.774 0.113 0.113

2.3.3 Comparison of optimal targets for the exponential model

The aim of this section is to compare, both theoretically and with numerical examples, the constrained
optimal target with those proposed in the literature for exponential outcomes. By taking into account
the well known A-optimal criterion, Sverdlov and Rosenberger26 derived the optimal allocation ρA

minimizing the trace of Σ,

ρA1 =
θ1

√
K − 1

θ1

√
K − 1 +

∑K
k=2 θk

and ρAi =
θi

θ1

√
K − 1 +

∑K
k=2 θk

for i = 2, . . . ,K,

while Wong and Zhu27 found the D-optimal allocation ρD minimizing the determinant of Σ (this target
is not available in closed form but is derived as the unique root of a non linear system of equations).
Although for linear contrasts these criteria are usually called AA and DA, for the sake of notation, we
simply refer to them as ρA and ρD.

For exponential outcomes without censoring, Zhu and Hu21 derived the optimal allocation ρZ max-
imizing the NCP for fixed n, subject to the constraint that ρZi ≥ T for all i = 1, . . . ,K where
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T ∈ [0,K−1] is a user-selected threshold. Nevertheless, no guidelines are provided by the authors
to help the choice of T ; moreover, Theorem 1 of Zhu and Hu21 does not include trials in which the
treatments are grouped into two clusters (like, e.g., K = 3 with θ1 = θ2 > θ3).

To measure the effectiveness of such targets in terms of both statistical and ethical performances, we
evaluate:

1. the efficiency in terms of power of a given target ρ as Eφ(ρ) = φ(ρ)
φ(ρ̃) where ρ̃ is the unconstrained

optimal target defined in Theorem 1;

2. DA andAA efficiency, defined byEDA(ρ) =
[
|AM−1(ρD)A>|
|AM−1(ρ)A>|

] 1
K−1 andEAA(ρ) =

tr(AM−1(ρA)A>)
tr(AM−1(ρ)A>)

,

respectively. Accordingly, values ofEDA(ρ) orEAA(ρ) close to 1 point out that ρ has similar per-
formance in terms of estimation precision to ρD or ρA;

3. besides the ethical measures provided by ρ1 and ρK representing the assignments to the best and

worst treatments, to assess a global ethical performance we computeEe(ρ) =
∑K
i=1 θiρi
θ1

, that is the
ratio between the total expected responses under a given target ρ and the total expected outcomes
obtained by assigning all the subjects to the best treatment.

In the comparisons we also take into account the balanced design as a benchmark. However, equal allo-
cation may be suboptimal in trials with heterogeneous variance.3 In the following Theorem we demon-
strate that the constrained optimal target proposed in this paper has always better performance in terms
of power and ethical efficiency with respect to the balanced design.

Theorem 3. The optimal constrained target ρC dominates the balanced allocation ρB , namelyEφ(ρC) ≥
Eφ(ρB) and Ee(ρC) ≥ Ee(ρB), simultaneously.

Proof. See Appendix 2.6.3.

Remark 2.3.2. While ρD satisfies the property of Remark 2.3.1 (shown by Sverdlov et al22), i.e. θ1 ≥
... ≥ θK ⇔ ρD1 ≥ ... ≥ ρDK , targets ρZ and ρA could present a controversial behaviour in terms of
ethics. In general, ρA assigns more subjects to the reference treatment (that does not always coincide
with the best one, as in our framework). For instance, if θ = (25, 29, 30)> then ρA = (0.375, 0.307, 0.318)>,
so that more subjects receive the worst treatment. Moreover, also ρZ is unethical since it does not al-
ways satisfy a) and/or b) of Remark 2.3.1. Indeed, in the same scenario, by setting T = 0.2, we obtain
ρZ = (0.425, 0.2, 0.375)>, so it assigns the higher proportion of patients to the less effective treatment.

Further numerical comparisons are reported in Tables 2.2 and 2.3 forK = 3 and 5 and several values
of θ. We have included ρ̃ for completeness, even if it is strongly inadequate, as widely discussed in
Section 2.3.1. Let us first consider the case of K = 3. As far as power is concerned, the proposed
constrained target ρC always presents higher power than the competitors except in the scenario θ =
(8, 5, 4)>, with a loss of 0.7% with respect to ρZ . In the remaining cases, the gain of ρC in terms of
power efficiency on the second best is up to 3.4%. With regard to the ethical concern, ρC presents values
closest to one, except in the first scenario, in which ρA has essentially equivalent ethical efficiency. This
latter target represents the second best choice in terms of ethical demand. In general, the DA efficiency
of ρC is higher for narrower values of the relative differences among θ1 and θ2 and it is higher than 77%
in all these settings. Very good performances in terms of AA efficiency are achieved by the constrained
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target, with values always greater than 90.6%. Note that ρZ is nearly constant as the vector of treatment
effects changes. Indeed, the allocation proportion to the worst treatments is equal, or very close to T .
The results for K = 5 treatments enhance the value of our proposal and similar considerations to the
case of K = 3 treatments still hold. Note that the gain in terms of power efficiency reaches the 19% with
respect to other designs (see the last scenario). The undesirable behaviour in terms of patients’ benefit of
ρZ , discussed in Remark 2.3.2, holds for both K = 3 and K = 5.

Table 2.2: Comparison of optimal targets for K = 3 and 5 treatments in different experimental scenar-
ios with respect to power efficiency Eφ(ρ), ethical efficiency Ee(ρ), DA efficiency EDA(ρ), and AA
efficiency EAA(ρ).

θ> ρ Eφ(ρ) Ee(ρ) EDA(ρ) EAA(ρ)

(30, 20, 8)

ρA = (0.602, 0.284, 0.114)> 0.761 0.822 0.933 1
ρD = (0.441, 0.385, 0.174)> 0.765 0.744 1 0.905
ρ̃ = (0.789, 0, 0.211)> 1 0.845 → 0 → 0
ρC = (0.664, 0.168, 0.168)> 0.889 0.821 0.836 0.906
ρB 0.740 0.644 0.903 0.730
ρZ = (0.591, 0.200, 0.209)> 0.881 0.780 0.888 0.927

(30, 10, 8)

ρA = (0.702, 0.165, 0.133)> 0.868 0.792 0.864 1
ρD = (0.464, 0.295, 0.241)> 0.657 0.627 1 0.815
ρ̃ = (0.789, 0, 0.211)> 1 0.845 → 0 → 0
ρC = (0.768, 0.116, 0.116)> 0.900 0.839 0.770 0.973
ρB 0.501 0.533 0.954 0.620
ρZ = (0.600, 0.200, 0.200)> 0.807 0.720 0.953 0.956

(12, 5, 4)

ρA = (0.653, 0.193, 0.154)> 0.838 0.785 0.899 1
ρD = (0.449, 0.303, 0.248)> 0.668 0.658 1 0.856
ρ̃ = (0.750, 0, 0.250)> 1 0.833 → 0 → 0
ρC = (0.726, 0.137, 0.137)> 0.872 0.828 0.805 0.968
ρB 0.535 0.583 0.962 0.683
ρZ = (0.600, 0.200, 0.200)> 0.822 0.750 0.942 0.985

(8, 5, 4)

ρA = (0.557, 0.246, 0.197)> 0.760 0.809 0.944 1
ρD = (0.411, 0.321, 0.268)> 0.669 0.746 1 0.919
ρ̃ = (0.667, 0, 0.333)> 1 0.834 → 0 → 0
ρC = (0.628, 0.186, 0.186)> 0.801 0.837 0.876 0.973
ρB 0.603 0.708 0.979 0.814
ρZ = (0.555, 0.200, 0.245)> 0.808 0.802 0.931 0.980

ρA, AA optimal design; ρD, DA optimal design; ρ̃, optimal unconstrained target; ρC , optimal
constrained target; ρB , balanced design; ρZ , Zhu and Hu21 optimal target (with minimum allocation
proportion for each arm T equal to 0.2 for K = 3).
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Table 2.3: Comparisons of optimal targets for K = 5 treatments in different scenarios with respect to
power efficiency Eφ(ρ), ethical efficiency Ee(ρ), DA efficiency EDA(ρ), and AA efficiency EAA(ρ).

θ> ρ Eφ(ρ) Ee(ρ) EDA(ρ) EAA(ρ)

(12, 11, 10, 5, 3)

ρA = (0.453, 0.208, 0.189, 0.094, 0.057)> 0.660 0.854 0.858 1
ρD = (0.235, 0.232, 0.229, 0.182, 0.123)> 0.719 0.745 1 0.775
ρ̃ = (0.800, 0, 0, 0, 0.200)> 1 0.850 → 0 → 0
ρC = (0.540, 0.115, 0.115, 0.115, 0.115)> 0.810 0.818 0.791 0.856
ρB 0.723 0.683 0.966 0.676
ρZ = (0.373, 0.150, 0.150, 0.150, 0.177)> 0.796 0.742 0.912 0.869

(12, 10, 8, 6, 4)

ρA = (0.462, 0.192, 0.154, 0.115, 0.077)> 0.574 0.808 0.865 1
ρD = (0.231, 0.224, 0.211, 0.189, 0.144)> 0.562 0.701 1 0.763
ρ̃ = (0.750, 0, 0, 0, 0.250)> 1 0.833 → 0 → 0
ρC = (0.548, 0.113, 0.113, 0.113, 0.113)> 0.695 0.812 0.783 0.912
ρB 0.577 0.667 0.983 0.683
ρZ = (0.348, 0.150, 0.150, 0.150, 0.202)> 0.683 0.716 0.927 0.882

(12, 8, 7, 6, 3)

ρA = (0.500, 0.167, 0.146, 0.125, 0.062)> 0.548 0.774 0.840 1
ρD = (0.236, 0.221, 0.213, 0.202, 0.128)> 0.526 0.640 1 0.718
ρ̃ = (0.800, 0, 0, 0, 0.200)> 1 0.850 → 0 → 0
ρC = (0.612, 0.097, 0.097, 0.097, 0.097)> 0.716 0.805 0.716 0.898
ρB 0.565 0.600 0.973 0.628
ρZ = (0.363, 0.150, 0.150, 0.150, 0.187)> 0.674 0.672 0.918 0.877

ρA, AA optimal design; ρD, DA optimal design; ρ̃, optimal unconstrained target; ρC , optimal constrained target;
ρB , balanced design; ρZ , Zhu and Hu21 optimal target (with minimum allocation proportion for each arm T

equal to 0.15).

In Figure 2.1 we show the behaviour of the above-mentioned efficiency measures for three treatments
where θ1 varies between 10 and 30, θ2 = 9 and θ3 = 8. The constrained target ρC dominates the other
allocations in terms of power and ethics for values of θ1 ≥ 15, whereas for smaller values of θ1 the
maximum loss with respect to ρZ is 8.8% for θ1 = 10. The ethical efficiency of ρC is increasing in
θ1 for θ1 > 20 (the same behaviour can be observed only for ρA when θ1 > 22, whereas ρD, ρB and
ρZ are always decreasing in θ1), and the average gain of ρC on the second best (ρA) is 3.5%. The best
performance in terms of DA efficiency is given by ρB , while ρZ is the second best for high values of θ1.
On the other hand, EDA(ρC) and EDA(ρA) decrease as θ1 increases, having lower values with respect
to the other targets. Both ρZ and ρC present AA efficiency close to 1 (in particular highest values are
achieved by ρZ for θ1 ∈ [13, 26] while in the remaining configurations of parameters the highest values
are reached by ρC). It is worth notice that EAA(ρC) is nearly constant w.r.t. θ1 while AA efficiency
tends to decrease for the remaining targets.

The theoretical properties as well as the comparisons in Table 2.2 and Figure 2.1 show that the
optimal constrained target ρC guarantees very good performance in terms of power, estimation precision
and ethical concerns.
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Figure 2.1: Comparisons of optimal allocations with respect to several mea-
sures of efficiency for θ = (θ1, 9, 8)> as θ1 varies from 10 to 30.
ρA, AA optimal design; ρB , balanced design; ρC , optimal constrained target; ρD, DA optimal
design; ρZ , Zhu and Hu21 optimal target (with minimum allocation proportion for each arm T equal to
0.2).
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2.3.4 Implementing the optimal target with RAR procedures

In this section we apply the DBCD23 to implement the constrained target, under the assumption that
responses are available immediately (see e.g. Shulz et al7). This procedure starts with a sample of n0

patients allocated to the K treatments (usually by restricted randomization) to obtain initial estimates
of model parameters. After j > n0 subjects are assigned and the responses are observed, the unknown
parameters are estimated by θ̂j = (θ̂1j , . . . , θ̂Kj)

> and they are used to compute the estimated tar-
get ρ̂j = (ρ̂1j , . . . , ρ̂Kj)

>. Then, the (j + 1)th patient is randomized to treatment i with probability

Ψj+1,i = ρ̂ij

(
ρ̂ij
πij

)κ [∑K
i=1 ρ̂ij

(
ρ̂ij
πij

)κ]−1
, where κ ∈ [0,+∞). We apply the above-mentioned proce-

dure to target the constrained optimal design by setting κ = 2, that represents a good trade-off between
randomness and optimality.28 We take into account the scenarios of Tables 2.1a and 2.1b for different
sample sizes, where each trial has been replicated 10000 times. The first 1

10 of the total sample size is
assigned to the treatments with restricted randomization, then allocations become response adaptive. The
results are provided in Tables 2.4 and 2.5, in which we report for every scenario the estimates θ̂n, the
theoretical target, the simulated allocation proportions πn (with standard deviations in square brackets)
and the simulated average power (W) of Wald’s test.

The sequential procedure implementing ρC assigns a higher proportion of subjects to the more effec-
tive treatment. Clearly, the convergence to the optimal target improves for increasing n, even though, in
many experimental scenarios, good convergence is also achieved for n = 100 and the simulated alloca-
tion proportions are equal or really close to their target values for n = 250. Moreover, the convergence
improves as the efficacy of the best treatment grows (see Table 2.5) and the average power exhibits values
over 72% in all the considered settings, while for n ≥ 150 it is above 88%.

In Table 2.6 we summarize the results of the simulated type I error (Wα) of Wald’s test, where the
nominal value was set to 0.05. Clearly, under this setting ρC = ρB and DBCD gives simulated allocation
proportions that converge to the balanced design: even for n = 100, the type I error rate is really close
to the nominal value.

Table 2.4: Simulation results (Scenarios Table 2.1a). Estimates of model parameters θ̂n, simulated
allocation proportions πn (standard deviation in square brackets) and simulated average power W of
Wald’s test; 10000 iterations.

n θ> θ̂>n ρC π>n W
100

(10, 9, 5)

(9.6, 8.6, 4.9)

(0.44, 0.28, 0.28)>

(0.44, 0.32, 0.24) [.164, .140, .072] 0.721
150 (9.7, 8.7, 5.0) (0.44, 0.32, 0.24) [.143, .122, .050] 0.885
200 (9.8, 8.8, 5.0) (0.44, 0.31, 0.25) [.129, .108, .044] 0.965
250 (9.8, 8.8, 5.0) (0.44, 0.30, 0.26) [.119, .098, .041] 0.990
100

(10, 7, 5)

(9.8, 6.8, 4.9)

(0.60, 0.20, 0.20)>

(0.55, 0.24, 0.21) [.135, .093, .062] 0.731
150 (9.9, 6.8, 5.0) (0.56, 0.23, 0.21) [.110, .072, .049] 0.894
200 (9.9, 6.9, 5.0) (0.57, 0.22, 0.21) [.093, .058, .041] 0.960
250 (9.9, 6.9, 5.0) (0.57, 0.22, 0.21) [.083, .049, .038] 0.987
100

(10, 5, 5)

(9.9, 4.9, 4.9)

(0.66, 0.17, 0.17)>

(0.64, 0.18, 0.18) [.096, .056, .049] 0.880
150 (10.0, 4.9, 4.9) (0.65, 0.18, 0.17) [.067, .038, .034] 0.973
200 (10.0, 4.9, 4.9) (0.66, 0.17, 0.17) [.053, .030, .027] 0.996
250 (10.0, 5.0, 5.0) (0.66, 0.17, 0.17) [.044, .024, .023] 0.999
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Table 2.5: Simulation results (Scenarios Table 2.1b). Estimates of model parameters θ̂n, simulated
allocation proportions πn (standard deviation in square brackets) and simulated average power W of
Wald’s test; 10000 iterations.

n θ> θ̂>n ρC π>n W
100

(10, 8, 4)

(9.7, 7.6, 3.9)

(0.54, 0.23, 0.23)>

(0.51, 0.28, 0.21) [.166, .136, .062] 0.918
150 (9.8, 7.8, 3.9) (0.52, 0.27, 0.21) [.142, .113, .048] 0.988
200 (9.8, 7.8, 4.0) (0.53, 0.25, 0.22) [.123, .095, .042] 0.998
250 (9.9, 7.9, 4.0) (0.53, 0.25, 0.22) [.110, .081, .039] 1.000
100

(15, 8, 4)

(14.9, 7.6, 3.9)

(0.70, 0.15, 0.15)>

(0.70, 0.16, 0.14) [.106, .075, .044] 0.998
150 (14.9, 7.8, 3.9) (0.70, 0.15, 0.15) [.076, .049, .034] 1.000
200 (14.9, 7.8, 3.9) (0.70, 0.15, 0.15) [.058, .035, .028] 1.000
250 (15.0, 7.9, 4.0) (0.70, 0.15, 0.15) [.049, .028, .025] 1.000
100

(20, 8, 4)

(19.9, 7.6, 3.8)

(0.78, 0.11, 0.11)>

(0.77, 0.12, 0.11) [.073, .047, .034] 1.000
150 (20.0, 7.7, 3.9) (0.78, 0.11, 0.11) [.053, .031, .027] 1.000
200 (20.0, 7.9, 3.9) (0.78, 0.11, 0.11) [.043, .024, .022] 1.000
250 (20.0, 7.9, 3.9) (0.78, 0.11, 0.11) [.037, .020, .019] 1.000

Table 2.6: Simulation results of type I error Wα, estimates of model parameters θ̂n and simulated
allocation proportions πn (standard deviation in square brackets); 10000 iterations.

n θ> θ̂>n π>n Wα

100

(12, 12, 12)

(11.6, 11.9, 11.8) (0.32, 0.33, 0.35) [.114, .093, .108] 0.052
150 (11.7, 11.9, 11.9) (0.33, 0.33, 0.34) [.104, .083, .093] 0.048
200 (11.8, 11.9, 11.9) (0.33, 0.33, 0.34) [.099, .078, .087] 0.048
250 (11.8, 12.0, 12.0) (0.33, 0.33, 0.34) [.094, .075, .083] 0.046
100

(4, 4, 4)

(3.9, 4.0, 3.9) (0.32, 0.33, 0.35) [.114, .093, .108] 0.052
150 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.104, .083, .093] 0.048
200 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.099, .078, .087] 0.048
250 (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.094, .075, .083] 0.046

2.4 Optimal allocations for survival trials with right-censoring

Consider now a trial in which each patient has exponentially distributed survival time subjected to a
random censoring time C. Assuming that his/her censoring is independent of the outcomes (this is
considered a realistic assumption in many situations as stated, e.g., by Lawless29) and it is the same
for each treatment group, let εi be the probability that a patient belonging to the ith treatment group
experiences the event of interest (death/failure). Clearly, the probability ε depends on the censoring
scheme adopted in the study and one of the most popular20,22 has been introduced by Latta30 and further
studied by Rosenberger and Seshaiyer.31 This scheme can be summarized as follows: let R be the total
recruitment period and D the duration of the trial, subjects arrival times are assumed to be independent
and uniformly distributed in [0, R], while each patient is subjected to an independent censoring time over
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(0, D). In this setting, for any group i = 1, . . . ,K

εi = ε(θi) = 1− θi
D
− 2θ2

i

RD
exp

{
−D
θi

}
− θi
D

(
1− 2

θi
R

)
exp

{
−D −R

θi

}
(2.4.1)

is a monotonically non increasing function of θi, following the idea that the longer the expected survival
time is, the smaller the probability for a patient to fail before censoring. Clearly, the likelihood for
θ is modified (see e.g. Lawless29) and, after n assignments, the Fisher information matrix becomes
Mε = diag

(
πinεiθ

−2
i

)
i=1,...,K

and, thus,
√
n(γ̂n − γ)

d−→ N(0K−1,Σε), where Σε = AM−1
ε A>.

Accordingly, the NCP becomes φε(π) = γ>Σ−1
ε γ and, in general, it is hard to obtain a closed-form

expression of both the constrained and unconstrained optimal targets. Nevertheless, solutions can be
found numerically with standard optimization software (R, Matlab).

Under the censoring scheme in equation (2.4.1), Table 2.7 shows the behaviour of the unconstrained
optimal target, denoted by ρ̃ε. As in the uncensored set-up, this target is degenerate and presents similar
drawbacks to the one of Theorem 1, both from inferential and ethical viewpoints. Therefore, we apply
the same constrained optimization framework in equation (2.3.3), in which NCP is maximized under the
ethical constraint reflecting the effectiveness of the treatments. Since the closed-form solution of this
target, denoted by ρCε , is not available, in what follows we take into account a smoothing transformation
of it in order to obtain a continuous target function implementable via DBCD. In particular, we consider
the convolution of ρCε with a Gaussian kernel (see e.g. Tymofyeyev et al13) with σ2 = 1.

Table 2.8 presents the constrained optimal target ρCε for the same values of θ reported in Table
2.1, with R = 55 and D = 96. We display both the theoretical and the smoothed version (in italics).
The target ρCε skews the assignments to the best performing treatment arm and ρCε1 is increasing in
θ1 for fixed θ2 and θ3 (see Table 2.8b), whereas it is decreasing in θ2 for fixed θ1 and θ3 (Table 2.8a).
Furthermore, ρCε and its smoothed version substantially coincide: only small differences, of order 10−3,
are present. This behaviour was also confirmed by further computations not reported here for brevity
and it suggests that the smoothed target should have similar performance to ρCε . Hence, from now on
we will refer to the smoothed version of the constrained target with ρCε .

Table 2.7: Unconstrained optimal target ρ̃ε = (ρ̃ε1, ρ̃
ε
2, ρ̃

ε
3)>, under the right censoring scheme in equa-

tion (2.4.1) with R = 55 and D = 96.

θ ρ̃ε1 ρ̃ε2 ρ̃ε3

(30, 10, 5)> 0.876 0 0.124
(20, 10, 5)> 0.815 0 0.185
(10, 10, 5)> 0.336 0.336 0.328
(10, 7, 5)> 0.673 0 0.327
(10, 5, 5)> 0.674 0.163 0.163
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Table 2.8: Theoretical and smoothed (in italics) optimal constrained target for R = 55, D = 96 and
σ = 1.

(a) Fixed θ1, θ3 and decreasing θ2.

θ ρ1
Cε ρ2

Cε ρ3
Cε

(10, 9, 5)> 0.444 0.278 0.278
0.444 0.278 0.278

(10, 7, 5)> 0.594 0.203 0.203
0.594 0.203 0.203

(10, 5, 5)> 0.672 0.164 0.164
0.672 0.164 0.164

(b) Fixed θ2, θ3 and increasing θ1.

θ ρ1
Cε ρ2

Cε ρ3
Cε

(10, 8, 4)> 0.552 0.224 0.224
0.550 0.225 0.225

(15, 8, 4)> 0.714 0.143 0.143
0.714 0.143 0.143

(20, 8, 4)> 0.786 0.107 0.107
0.782 0.109 0.109

2.4.1 Comparisons of optimal targets under an independent right censoring scheme

In the presence of censoring, the following optimal allocations have been derived in the literature. The
allocation minimizing the trace of Σε can be easily derived from the general result for heteroscedastic
models,26 from which we obtained (by simply substituting the variance with the appropriate variance in
the case of censoring),

ρAε1 =

θ1√
ε1

√
K − 1

θ1√
ε1

√
K − 1 +

∑K
k=2

θk√
εk

and ρAεi =

θi√
εi

θ1√
ε1

√
K − 1 +

∑K
k=2

θk√
εk

for i = 2, . . . ,K. (2.4.2)

The D-optimal design (ρDε) minimizing the determinant of Σε can be obtained as a solution of a non
linear system of equations and it can be found numerically.22 In addition, based on non linear program-
ming, Sverdlov et al22 proposed two optimal allocations, ρNP1 and ρNP2, adopting the same constrained
optimization framework of Tymofyeyev et al.13 In particular ρNP1 and ρNP2 were derived by minimiz-
ing the total sample size and the total expected hazard, respectively, under the constraints of a minimum
desired (user-selected) proportion T ∈ [0,K−1] of subjects for each treatment group, and φε ≥ U ,
where U is a positive constant. Only ρNP1 admits a closed-form expression, while ρNP2 can be found
numerically (the code was kindly provided by the corresponding author of Sverdlov et al22). Since both
targets are discontinuous functions of the unknown model parameters, the authors apply a smoothing
transformation to the targets using the above-mentioned multivariate Gaussian kernel.

Remark 2.4.1. While ρDε and ρCε have their components ordered according to the treatment efficacies,
ρNP1 and ρNP2 do not always fulfil this characteristic. Indeed, for θ = (34, 34, 24)> with T = 0.2,
R = 55, D = 96 (namely under scenario IIc of Table I of Sverdlov et al22), the authors of the paper22

obtained ρNP1 = (0.3, 0.3, 0.4)> and ρNP2 = (0.32, 0.32, 0.36)>, where the higher proportion of
subjects is treated with the worst treatment. For ρAε similar considerations of Remark 2.3.2 hold: such
allocation is ethical as long as the reference treatment is also the superior one; whereas if e.g., θ =
(25, 29, 30)> (with R = 55 and D = 96), then ρAε = (0.367, 0.310, 0.323)>.

We now compare the constrained target in presence of censoring with those mentioned previously
by considering K = 3, R = 55 and D = 96. Table 2.9 reports the theoretical values of ρDε and ρAε ,
the smoothed constrained optimal target ρCε , ρNP1 and ρNP2 with T = 0.2. The efficiency criteria
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described in Section 2.3.3 have been considered to measure the performance of the competing targets
with respect to statistical and ethical considerations. In particular, the target whose power efficiency’s
values are closest to 1 is ρCε , except for θ = (7, 5, 4)>, in which the loss with respect to ρNP1 and
ρNP2 is 3.1% and 1.5%, respectively. The constrained target outperforms the other allocations in terms
of ethical efficiency (except in the first scenario in which ρAε gives nearly the same value). As far as
estimation efficiency is concerned, ρCε shows very good performance in terms of AA efficiency, always
higher than 90.2%, while DA efficiency is slightly lower. Note that, in all the experimental settings of
Table 2.9 except the last one, ρNP1 and ρNP2 coincide by allocating the same proportion T of patients
to the intermediate and the worst treatments. Finally, the proposed ρCε is superior to the balanced design
in terms of power and ethical efficiency.

Table 2.9: Comparisons of optimal targets in presence of censoring for K = 3 treatments in different
experimental scenarios with respect to power efficiency Eφ(ρ), ethical efficiency Ee(ρ), DA efficiency
EDA(ρ), and AA efficiency EAA(ρ). Censoring scheme in equation (2.4.1) with R = 55 and D = 96.

θ ρ Eφ(ρ) Ee(ρ) EDA(ρ) EAA(ρ)

(30, 20, 8)>

ρAε = (0.625, 0.274, 0.101)> 0.787 0.834 0.922 1
ρDε = (0.450, 0.389, 0.161)> 0.798 0.752 1 0.891
ρCε = (0.684, 0.158, 0.158)> 0.915 0.832 0.818 0.902
ρB 0.762 0.644 0.888 0.702
ρNP1 = ρNP2 = (0.6, 0.2, 0.2)> 0.900 0.787 0.884 0.929

(30, 10, 8)>

ρAε = (0.731, 0.150, 0.119)> 0.875 0.813 0.841 1
ρDε = (0.472, 0.293, 0.235)> 0.646 0.632 1 0.788
ρCε = (0.792, 0.104, 0.104)> 0.904 0.854 0.744 0.973
ρB 0.485 0.533 0.950 0.584
ρNP1 = ρNP2 = (0.6, 0.2, 0.2)> 0.788 0.720 0.958 0.931

(12, 5, 4)>

ρAε = (0.663, 0.188, 0.149)> 0.840 0.791 0.892 1
ρDε = (0.452, 0.302, 0.246)> 0.665 0.661 1 0.849
ρCε = (0.734, 0.133, 0.133)> 0.873 0.833 0.799 0.969
ρB 0.528 0.583 0.959 0.670
ρNP1 = ρNP2 = (0.6, 0.2, 0.2)> 0.817 0.750 0.943 0.980

(7, 5, 4)>

ρAε = (0.527, 0.263, 0.210)> 0.727 0.834 0.953 1
ρDε = (0.397, 0.329, 0.274)> 0.665 0.789 1 0.935
ρCε = (0.586, 0.207, 0.207)> 0.770 0.853 0.903 0.981
ρB 0.628 0.762 0.984 0.853
ρNP1 = (0.519, 0.200, 0.281)> 0.801 0.823 0.931 0.964
ρNP2 = (0.576, 0.200, 0.224)> 0.785 0.847 0.907 0.976

ρAε , AA optimal design; ρDε , DA optimal design; ρCε , smoothed version of the optimal constrained
target; ρB , balanced design; ρNP1 and ρNP2, Sverdlov et al22 optimal targets (with minimum
allocation proportion for each arm T equal to 0.2).
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2.4.2 RAR implementation under censoring

As in Section 2.3.4, we wish to implement DBCD to target the optimal constrained allocation by taking
into account delayed responses and staggered entries. Indeed, in trials with time-to-event outcomes the
response of patients to a given treatment is often unavailable before the randomization of the next subject.
However, it has been shown32 that DBCD is quite insensitive to delayed responses under widely satisfied
conditions that hold for exponential responses.20

We run 10000 trials to evaluate the operating characteristics of the optimal constrained design for
K = 3 in several illustrative examples. In this case, initial data for the RAR procedure were collected by
allocating subjects with equal probabilities until two events were observed in each treatment arm. After
that, at each step, subject j is randomized to treatment i with probability Ψji (as in Section 2.3.4). We
studied the convergence of the allocation proportion to the desired target and we estimated the power of
the Wald and log-rank (LR) tests. The proportion of responses observed during the recruitment, i.e. the
observations used in RAR (%obs) and the percentage of patients allocated with RAR (%RAR) will be
reported in the Tables.

Table 2.10 shows the results under the experimental scenarios of Table 2.8a for different choices of
the sample size. In these scenarios %obs=86% and the proportion of patients allocated with RAR varies
from 88% for n = 150 to 92-93% for n = 300. As n grows, the convergence to ρCε improves and the
standard deviations become smaller. For n ≥ 150 at least 83.7% of power is guaranteed for both tests in
all the scenarios, while for n ≥ 250 the simulated average power is always higher than 0.977.

The skewness in favour of the best performing treatment is achieved by DBCD, but, as is well-
known (see Hu et al32 and reference therein), the convergence to the desired target is affected by delayed
responses. Indeed, in many circumstances, patients’ outcomes may not be available before the random-
ization of the next patient and this delay could affect the estimators of the unknown parameters and
consequently influence other properties of the design.

To further investigate this aspect, we implement DBCD under experimental scenarios of Table 2.8b,
for n = 100 and n = 250. We fixed θ2 = 8 and θ3 = 4 and the duration of the trial (namelyD = 96) and
we choose two different lengths of the recruitment periodR; results are summarized in Table 2.11. Since
ε1 is decreasing in θ1 and inR (i.e. the censoring in the data is higher for longer survival times and clearly
longer recruitment period), it stands out how the effect on the convergence of an increasing sample size is
a minor matter with respect to the length of the recruitment, whose effect is as important as θ1 increases.
If the recruitment is longer, it is more likely that the number of responses observed, and used to allocate
the next patient, is higher, resulting in a better convergence rate. From R = 55 to R = 75, the gain
in terms of %obs is between 3% and 5%. An additional issue is related to %RAR, which is smaller
for longer survival times. Because of the combination of these factors better convergence is achieved
when θ1 = 10 whereas, as for increasing θ1 the target is more unbalanced in favour of treatment 1,
DBCD procedure is slower in approaching ρCε . On the other hand, standard deviations are smaller for
higher n and shorter R. With regard to power of the tests all these scenarios present values > 90%.
Furthermore, note that even if the convergence to the desired target is affected by delayed responses,
when the superiority of the best treatment is pronounced (e.g., θ1 = 15 or 20), the simulated allocation
proportion of subjects assigned to it is always more than twice with respect to that of the other treatments.
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Table 2.10: Simulation results for different sample sizes and scenarios of Table 2.8a. Estimates of model
parameters θ̂n, simulated allocation proportions πn (standard deviation in square brackets) and average
power of Wald’s test (W) and log-rank (LR) test, R = 55, D = 96 and 10000 iterations. In all these
settings %obs = 86%

θ = (10, 9, 5)>

n %RAR θ̂>n ρCε π>n W LR
150 88% (9.8, 8.9, 5.0)

(0.444, 0.278, 0.278)>

(0.40, 0.33, 0.27) 0.885 0.875
[.110, .088, .051]

200 90% (9.9, 8.9, 5.0) (0.40, 0.32, 0.28) 0.962 0.875
[.100, .079, .041]

250 91% (9.9, 8.9, 5.0) (0.40, 0.32, 0.28) 0.987 0.986
[.092, .073, .036]

300 92% (9, 9, 8.9, 5.0) (0.40, 0.32, 0.28) 0.995 0.996
[.088, .069, .034]

θ = (10, 7, 5)>

n %RAR θ̂>n ρCε π>n W LR
150 88% (9.9, 6.9, 5.0)

(0.594, 0.203, 0.203)>

(0.48, 0.27, 0.25) 0.837 0.842
[.107, .069, .052]

200 90% (9.9, 6.9, 5.0) (0.48, 0.27, 0.25) 0.938 0.931
[.095, .0.6, .044]

250 91% (9.9, 6.9, 5.0) (0.49, 0.26, 0.25) 0.977 0.975
[.088, .054, .041]

300 92% (9.9, 6.9, 5.0) (0.49, 0.26, 0.25) 0.992 0.991
[.084, .050, .039]

θ = (10, 5, 5)>

n %RAR θ̂>n ρCε π>n W LR
150 89% (9.9, 5.0, 5.0)

(0.672, 0.164, 0.164)>

(0.55, 0.23, 0.22) 0.944 0.947
[.089, .054, .046]

200 90% (10.0, 5.0, 5.0) (0.56, 0.22, 0.22) 0.985 0.985
[.075, .044, .037]

250 92% (10.0, 5.0, 5.0) (0.57, 0.22, 0.21) 0.996 0.996
[.065, .038, .032]

300 93% (10.0, 5.0, 5.0) (0.58, 0.21, 0.21) 0.999 0.999
[.058, .033, .029]
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Table 2.11: Simulation results for n = 100, 250 and 10000 iterations. Estimates of model parameters
θ̂n, simulated allocation proportions πn (standard deviation in square brackets) and average power of
Wald’s (W) and log-rank (LR) tests, different R and D = 96 for θ2 = 8 and θ3 = 4.

θ = (10, 8, 4)>

R n %obs %RAR θ̂>
n ρCε π>

n W LR

55

100 86% 85% (9.8, 7.8, 3.9)

(0.550, 0.225, 0.225)>

(0.45, 0.30, 0.25) 0.910 0.904
[.131, .102, .065]

250 86% 91% (9.9, 7.9, 4.0) (0.45, 0.29, 0.26) 1.000 1.000
[.096, .070, .038]

75

100 89% 87% (9.8, 7.7, 3.9)

(0.552, 0.224, 0.224)>

(0.47, 0.30, 0.24) 0.907 0.896
[.142, .111, .068]

250 90% 92% (9.9, 7.9, 4.0) (0.47, 0.28, 0.25) 0.999 1.000
[.102, .074, .039]

θ = (15, 8, 4)>

R n %obs %RAR θ̂>
n ρCε π>

n W LR

55

100 81% 84% (14.9, 7.8, 3.9)

(0.714, 0.143, 0.143)>

(0.55, 0.24, 0.21) 0.996 0.995
[.117, .081, .059]

250 81% 90% (15.0, 7.9, 4.0) (0.57, 0.22, 0.21) 1.000 1.000
[.076, .046, .036]

75

100 85% 85% (14.9, 7.7, 3.9)

(0.716, 0.142, 0.142)>

(0.59, 0.21, 0.20) 0.996 0.994
[.119, .081, .059]

250 86% 92% (15.0, 7.9, 4.0) (0.61, 0.20, 0.19) 1.000 1.000
[.073, .044, .034]

θ = (20, 8, 4)>

R n %obs %RAR θ̂>
n ρCε π>

n W LR

55

100 76% 82% (20.1, 7.8, 3.9)

(0.782, 0.109, 0.109)>

(0.60, 0.20, 0.20) 0.999 0.999
[.106, .068, .060]

250 77% 90% (20.0, 7.9, 4.0) (0.62, 0.19, 0.19) 1.000 0.999
[.065, .038, .034]

75

100 81% 84% (20.1, 7.7, 3.9)

(0.786, 0.107, 0.107)>

(0.64, 0.19, 0.17) 1.000 0.999
[.100, .067, .055]

250 82% 91% (20.0, 7.9, 4.0) (0.66, 0.17, 0.17) 1.000 0.999
[.060, .035, .031]

The impact of the magnitude of the treatment effects on the convergence is additionally supported by
the results in Table 2.12 which correspond to a set-up of a very rapid fatal disease. In this case the esti-
mated allocation proportions are really close to the target, ensuring that 60% of patients or more receive
the best treatment. These results show that, for small values of θ, our proposal has better performance
even for small-moderate sample sizes, particularly common in clinical trials for rare diseases.

Finally Table 2.13 shows the simulate average type I errors for the Wald and log-rank (LRα) tests.
Both of them are very close to the significance level, that was set to 0.05. Better convergence rate is
achieved by the second scenario θ = (4, 4, 4)> as in this case the proportion of data used in the RAR
procedure is greater than 90%, while in the first scenario it is not higher than 81%.
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Table 2.12: Simulation results for different sample sizes, 10000 iterations and ρCε =
(0.634, 0.183, 0.183)>. Estimates of model parameters θ̂n, simulated allocation proportions πn (stan-
dard deviation in square brackets) and average power of the Wald (W) and log-rank (LR) tests, R = 55,
D = 96. In all these settings %obs = 96%.

θ = (3, 2, 1)>

n %RAR θ̂>n π>n W LR
150 93% (3.0, 1.9, 1.0) (0.61, 0.20, 0.19) [.114, .074, .053] 0.998 0.999
200 94% (3.0, 2.0, 1.0) (0.61, 0.20, 0.19) [.093, .058, .042] 1.000 1.000
250 95% (3.0, 2.0, 1.0) (0.62, 0.19, 0.19) [.080, .048, .037] 1.000 1.000
300 95% (3.0, 2.0, 1.0) (0.62, 0.19, 0.19) [.072, .042, .034] 1.000 1.000

Table 2.13: Simulation results of type I error for the Wald (Wα) and log-rank (LRα) tests (ρCε = ρB).
Estimates of model parameters θ̂n and simulated allocation proportions πn (standard deviation in square
brackets), with R = 55, D = 96 and 10000 iterations.

θ = (12, 12, 12)>

n %obs %RAR θ̂>n π>n Wα LRα
150 80% 86% (11.8, 12.0, 12.0) (0.32, 0.35, 0.33) [.085, .075, .079] 0.048 0.061
200 81% 88% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.080, .070, .071] 0.051 0.057
250 81% 89% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.075, .066, .066] 0.047 0.054
300 81% 90% (11.9, 12.0, 12.0) (0.32, 0.35, 0.33) [.072, .064, .064] 0.047 0.053

θ = (4, 4, 4)>

n %obs %RAR θ̂>n π>n Wα LRα
150 92% 91% (3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.095, .077, .083] 0.048 0.056
200 92% 92% (3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.089, .071, .072] 0.048 0.055
250 93% 93% (3.9, 4.0, 4.0) (0.33, 0.34, 0.33) [.084, .068, .068] 0.047 0.055
300 93% 94% (3.9, 4.0, 4.0) (0.33, 0.33, 0.34) [.081, .066, .066] 0.046 0.054

2.4.3 Robustness of our methodology to model misspecifications and sensitivity analysis

In this section we investigate the performance of the optimal constrained target when the distribution
of the survival times is non exponential. To take into account different shapes of the hazard function,
assuming log Yij = log θj + s · ei and standard extreme value, standard logistic or standard normal
distribution for ei, then Yij follows Weibull (Weib), log-logistic (LL) or log-normal (LN) model. In
particular we consider Weib with parameters s = 0.8 and 1.25 (monotone increasing and decreasing
hazard, respectively), LL distribution with s = 0.5 and the LN distribution with s = 0.8 (non-monotone
hazards).

As it is well-known, in both conventional and adaptive designs, wrong parametric assumptions often
lead to power loss and type I error inflation of parametric tests.33 In our robustness studies, besides the
log-rank test, we consider the performance of the Wald test based on the correctly specified distribution
of the survival times (as also suggested by Sverdlov et al33). More specifically, we compute the test
statistic by analysing the final dataset with the distribution according to which the survival times were
generated and we report the average power/type I error of Wald’s test (W̃ and W̃α). We summarize in
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Table 2.14 the simulation results under different models for the survival times for the DBCD targeting
ρCε and the CRD intending to target ρB , taking into account n = 250 patients. These results show that
our proposal is - in general - slightly more powerful and it results in a fewer average number of deaths
than the balanced design even when the event time distribution is non exponential. The maximum loss of
power with respect to the one under the exponential model for ρCε occurs under a monotone increasing
hazard function (−12% and −10% for W̃ and LR respectively) which is, at the same time, associated to
a smaller average number of events in the study (−3 deaths). Conversely, when survival times follow a
Weib with s = 1.25, higher values of power are present. In the case of non-monotone hazard functions
an improvement in terms of power is combined with a substantial reduction in the number of deaths in the
trial. The type I error is around the nominal level in most of the scenarios considered; a slight inflation is
observed in the case of non-monotone hazards. We conclude that our procedure is quite robust to model
misspecification in all the considered experimental set-ups for both the log-rank test and the parametric
test W̃.

Table 2.14: Simulated average power/type I error of the Wald test (W̃ and W̃α) based on the correctly
specified model and the log-rank test (LR and LRα), average number of deaths (Deaths; with their
standard deviations in brackets) for the DBCD targeting ρCε and the CRD (intended to target ρB) for
n = 250 and 10000 iterations.

θ = (10, 7, 5)>

Model ρCε ρB

W̃ LR Deaths W̃ LR Deaths

Exp 0.977 0.975 229 (4) 0.970 0.972 231 (4)
Weib, s = 0.8 0.859 0.870 226 (5) 0.842 0.870 228 (4)
Weib, s = 1.25 0.999 0.998 230 (4) 0.999 0.998 232 (4)
LL, s = 0.5 0.996 0.985 218 (5) 0.996 0.983 221 (5)
LN, s = 0.8 0.999 0.996 221 (5) 0.999 0.995 223 (5)

θ = (12, 12, 12)>

Model ρCε ρB

W̃α LRα Deaths W̃α LRα Deaths

Exp 0.047 0.054 218 (5) 0.044 0.051 218 (5)
Weib, s = 0.8 0.050 0.052 213 (5) 0.044 0.050 213 (5)
Weib, s = 1.25 0.049 0.054 221 (5) 0.048 0.053 221 (4)
LL, s = 0.5 0.061 0.055 203 (6) 0.060 0.051 203 (6)
LN, s = 0.8 0.062 0.057 206 (6) 0.067 0.055 206 (6)

Another form of model misspecification may occur when the patients’ accrual rate is non-uniform; to
take into account several recruitment patterns we consider the Beta distribution.33 The cases Beta (1, 5)
and Beta (5, 1) (right/left skewed) encompass situations in which the accrual rate decreases/increases
over time respectively. On the other hand, Beta (1/5, 1/5) represents scenarios with accelerated recruit-
ment at the beginning and at the end of the trial and Beta (5, 5) refers to studies in which the highest
recruitment rate occurs in the middle of the trial. Table 2.15 shows the simulating operating characteris-
tics of the DBCD targeting ρCε and the CRD targeting ρB . We report the average proportion of patients
whose outcomes are observed during the recruitment, the simulated average power of the Wald test/type
I error and the total average number of events for n = 250 patients.
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Table 2.15: Simulated average power/type I error of the Wald test (W and Wα), average percentage
of observation during the recruitment period (%obs; only for the DBCD procedure), average number of
deaths (Deaths; with standard deviations in brackets) for the DBCD targeting ρCε and the CRD (intended
to target ρB) under different recruitment patterns, n = 250 patients and 10000 iterations.

θ = (10, 7, 5)> θ = (12, 12, 12)>

Recruitment ρCε ρB ρCε ρB

%obs W Deaths W Deaths %obs Wα Deaths Wα Deaths
Uniform 86% 0.977 229 (5) 0.970 231 (4) 81% 0.047 218 (5) 0.045 218 (5)
Beta (1, 5) 95% 0.974 230 (4) 0.974 231 (4) 91% 0.048 219 (5) 0.045 219 (5)
Beta (5, 1) 59% 0.965 230 (5) 0.972 231 (4) 48% 0.052 217 (5) 0.045 217 (5)
Beta (1/5, 1/5) 67% 0.980 229 (5) 0.975 231 (4) 64% 0.054 218 (5) 0.048 218 (5)
Beta (5, 5) 89% 0.972 230 (4) 0.972 231 (4) 81% 0.052 219 (5) 0.045 219 (5)

The power of the Wald test is similar across the five recruitment patterns with a maximum loss of
1.2% corresponding to the left-skewed Beta distribution. On the other hand, under Beta(1/5, 1/5) a
slight increase in power is observed. The type I error rate is close to 0.05 showing that our proposal is
also robust to misspecification of the recruitment pattern.

2.4.4 Redesign of KEYNOTE-010 clinical trial

In this section we illustrate the application of the constrained optimal target by redesigning the KEYNOTE-
010 clinical trial8 (registered at ClinicalTrials.gov, number NCT01905657). The aim of this Phase II/III
study was to compare two doses of pembrolizumab (MK-3475) versus docetaxel in patients with non-
small cell lung cancer and whose tumors were assessed as being PD-L1 positive. Between Aug 2013
and Feb 2015, 1034 participants were enrolled and were randomly allocate with a 1:1:1 ratio, with
a central interactive voice-response system, to receive treatment A (pembrolizumab 2 mg/kg), treat-
ment B (pembrolizumab 10 mg/kg) or treatment C (docetaxel). Among primary endpoints (overall
survival and progression-free survival) we were interested in the overall survival in the intent-to-treat
population. At the cut-off date, after 23 months, median overall survival was 10.4 months in group
A, 12.7 months in group B, and 8.5 months in group C. In designing this study the authors assumed
exponential distribution for overall survival, so that we run 10000 trials with n = 1034 patients with
θ = (θA, θB, θC)> = (15, 18, 12)>, adopting the above-mentioned censoring scheme with R = 18 and
D = 23. The DBCD procedure has been implemented to target the optimal allocations ρCε , ρAε , ρDε

and ρNP1 (with T = 0.2) and we included the CRD to target ρB , as sequential analogue to the equal
allocation adopted in the original trial. Results are presented in Table 2.16 in which, for sake of com-
parison, we have also reported the simulated average efficiencies (see Section 2.3.3), number of deaths,
total observed survival time, number of patients assigned to the inferior and to the superior treatment and
the total expected hazard in the study (H=

∑K
i=1Nin/θi). In all the procedures %obs and %RAR were

60% and 90-91% respectively. The optimal constrained design presents the highest degree of skewness
in favour of the best performing treatment arm (B in this case) with respect to to the other designs and the
ethical property of Remark 2.3.1 does not hold for NP1 and the AA allocations (see also Remark 3). All
the procedures present similar statistical properties of power and estimation efficiency. Nevertheless, our
proposal is superior in terms of ethical characteristics, resulting in 4-8 fewer deaths, longer total survival
time, lower average hazard and higher ethical efficiency compared to the other designs. In addition, nInf
and nSup highlight the potential advantages in adopting the optimal constrained design in which from 20
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up to 74 fewer patients are assigned to the inferior treatment, whereas 428 patients receive the superior
treatment, so that 24-83 more patients are injected with treatment B with the maximum gain achieved
with respect to the balanced design.

Note that this result provide further significance to the ethical definition of Remark 2.3.1. Given the
gravity of the outcome, a response-adaptive procedure targeting ρCε would provide a better trade-off
between statistical power and patients’ benefits.

Table 2.16: Redesign of KEYNOTE-0108 clinical trial.

Statistical properties Ethical characteristics
W LR Eφ EDA EAA Deaths TS nInf nSup H Ee

πAεn = (0.30, 0.34, 0.36)> 0.89 0.90 0.74 0.97 0.98 445 6533 365 354 70 0.83
[.028, .031, .029]

πDεn = (0.34, 0.36, 0.30)> 0.88 0.89 0.73 0.99 0.91 441 6569 311 376 71 0.84
[.020, .019, .019]

πCεn = (0.31, 0.41, 0.28)> 0.88 0.88 0.76 0.98 0.94 437 6595 291 428 69 0.86
[.053, .079, .035]

πBn = (0.33, 0.34, 0.33)> 0.88 0.89 0.72 0.98 0.87 444 6546 345 345 71 0.83
[.007, .007, .007]

πNP1
n = (0.29, 0.39, 0.32)> 0.89 0.89 0.77 0.96 0.91 441 6570 333 404 70 0.85

[.057, .065, .047]

2.5 Conclusions and future research

The design of multi-arm clinical experiments is complex, especially when different objectives are in-
volved. The proposed optimal constrained target guarantees a valid trade-off between the inferential goal
of maximizing the power of Wald’s test of homogeneity and the ethical demand of preserving subjects’
care, whereas some targets for time-to-event outcomes could lead to undesirable allocation proportions,
as we pointed out in this paper.

In addition, we implement our proposal via DBCD methodology. To assess its simulated operating
characteristics we considered several experimental settings. In the uncensored model, we assumed that
responses are available immediately and the convergence rate to the target is excellent. In the presence
of censored observations we have also included delayed responses and staggered entries, which could
seriously slowed down the convergence of the design. To assess such an impact, we ran simulation
studies directed to illustrate how the convergence is related to the complex interplay between sample
size, survival times, length of recruitment and duration of the trial. Overall, the optimal constrained
design reaches a good rate of convergence, provided that a sufficient amount of responses are observed
throughout the recruitment phase to let the adaptive procedure work. Moreover, even in experimental
scenarios with slower convergence, a fair degree of skewness in favour of the most promising treatment is
achieved. The practical applicability of our proposal has been also highlighted by performing robustness
studies to model misspecification and by redesigning a real lung cancer trial. Authors are working on
developing a user-friendly interface (R-based Shiny Web application) to implement the procedure, which
will be available in the future.

The problem of testing the null-hypothesis of equality among treatment effects considered in this
paper is useful in many applications. In multi-arm trials a global test comparing all treatments can be
carried out prior to making individual pairwise comparisons.13,21,22 Indeed, the overall null-hypothesis
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is the first stage of multiple comparison methodologies for several stepwise procedures.24,25 One of the
most powerful is the Fisher’s least significant difference method which is a two-step test for pairwise
comparisons; in the first stage the overall null-hypothesis of homogeneity is tested at level α and then,
in case of rejection, the pairs of interest are tested for equality at the same level of significance. As it
is well-known, the design should be tailored on trial objectives: a single global test may be of interest,
for instance, in Phase II trials.34 Especially in anticancer research, due to the dramatic increase of new
potential drugs under development, one of the primary Phase II objectives is to evaluate the effect of
new treatments and to identify the one(s) that most warrants additional evaluation in a larger Phase III
study.35,36 Others interesting set-ups concern trials in which the choice of the control treatment is not
unique: for instance, studies in which the new drug has to be compared to placebo, current commer-
cial products, competitors products (see the comments by Owen and by Bechhofer and Tamhane in the
discussion of Hedayat et al37). Finally there are situations such that no treatments with demonstrated
efficacy exist and so no standard of care is available to be set as an appropriate/fixed control. This is
particularly related to rapidly emerging novel infectious diseases such as Ebola38 or COVID-19. In these
cases clinical studies must start quickly and the overall null-hypothesis, as a first step, allows to evaluate
several candidate treatments at once.

A further significant aspect of this work is to provide support to the arguments in favour of unbalanced
allocation designs.2,3 Unequal randomization is often more appropriate for patients’ health and more
powerful than the balanced design, especially for heteroscedastic treatment groups, and we showed that
the proposed constrained target shares this property. Hence, the indiscriminate use of the popular equal
allocation design in clinical trials should be reconsidered.

The promising performance of this optimization approach leads to further methodological develop-
ments to extend its applicability. One of the main directions of future research is to adopt this framework
to derive optimal constrained targets for widely used heteroscedastic models like, e.g., for binary trials.
Another interesting issue consists in including covariates/prognostic factors, to take also into account
patients’ heterogeneity.

2.6 Proofs

2.6.1 Proof of Theorem 1

The following Lemma is preliminary to the proof.

Lemma 4. φ(·) is a concave function of the vector of allocation proportions.

Proof of Lemma 4. Let ωi = (ρiθ
−2
i )/(

∑K
k=1 ρkθ

−2
k ), then ωi ≥ 0 for i = 1, . . . ,K and

∑K
i=1 ωi = 1,

namely ω = (ω1, . . . , ωK)> could be regarded as a pdf of a (non-negative) discrete r.v. θ with K support
points θ1 ≥ . . . ≥ θK > 0. So, letting

θ̄ω =

K∑
i=1

θi ωi =

∑K
i=1 ρiθ

−1
i∑K

i=1 ρiθ
−2
i

(2.6.1)

and Mω(θ2) =
∑K

i=1 θ
2
i ωi =

(∑K
i=1 ρiθ

−2
i

)−1
, then by (2.3.1), it is possible to show that

φ(ρ) =
Mω(θ2)− θ̄2

ω

Mω(θ2)
=

Vω(θ)

Mω(θ2)
, (2.6.2)
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where Vω(θ) is the variance of θ evaluated w.r.t. ω. Moreover,

φ(ρ) =
1

Mω(θ2)

K∑
i=1

(θi − θ̄ω)2ωi =
K∑
i=1

aiρi, (2.6.3)

where ai =
(
1− θ̄ω/θi

)2, for i = 1, . . . ,K. Note that, for i = 1, . . . ,K,
∂φ(ρ)

∂ρi
=
∑K

j=1

∂aj
∂ρi

ρj + ai

where
∂aj
∂ρi

= 2

(
1− θ̄ω

θj

)(
− 1

θj

)
∂θ̄ω
∂ρi

and
∂θ̄ω
∂ρi

=
θ−1
i∑K

i=1 ρiθ
−2
i

(
1− θ̄ω

θi

)
.

Thus,

∂φ(ρ)

∂ρi
= ai −

2

θi

(
1− θ̄ω

θi

) K∑
j=1

{
ρjθ
−1
j∑K

i=1 ρiθ
−2
i

(
1− θ̄ω

θj

)}
= ai,

and
∂2φ(ρ)

∂ρ2
i

= −2Mω(θ2)

θ2
i

(
1− θ̄ω

θi

)2

,
∂2φ(ρ)

∂ρi∂ρj
= −2Mω(θ2)

θiθj

(
1− θ̄ω

θi

)(
1− θ̄ω

θj

)
.

Thus, the Hessian matrix is given by

Hφ(ρ) = −2Mω(θ2)

[(
1− θ̄ω

θ1

)
, . . . ,

(
1− θ̄ω

θK

)]> [(
1− θ̄ω

θ1

)
, . . . ,

(
1− θ̄ω

θK

)]
, (2.6.4)

having one eigenvalue equal to 0 (with multiplicity K − 1) and a non-null eigenvalue given by its trace,

i.e. tr{Hφ(ρ)} = −2Mω(θ2)
∑K

i=1

(
1− θ̄ω

θi

)2
< 0, which implies the concavity of NCP.

Proof of Theorem 1
Let CVω(θ) be the coefficient of variation of θ evaluated with respect to ω, by (2.6.2) the NCP can be

rewritten as φ(ρ) = Vω(θ)
(
Vω(θ) + θ̄2

ω

)−1
=
(

1 + 1
CV 2

ω (θ)

)−1
.

Within the class of pdfs with a given mean θ̄ω, the variance Vω(θ) is maximized by the one that
assigns all the mass of probability to the extremes, in this case θ1 and θK . So let P (θ = θK) =
ω∗ = 1 − P (θ = θ1), then θ̄ω = θ1(1 − ω∗) + θK ω

∗ and Vω(θ) = (θ1 − θK)2ω∗(1 − ω∗). Thus,
CV 2

ω (θ) = [θ1(1− ω∗) + θK ω
∗]−2(θ1 − θK)2ω∗(1− ω∗), where ∂CVω

∂ω∗ = 0 ⇔ ω∗ = θ1/(θ1 + θK).

In such a case, ω∗ = ρK
θ2
K

(
ρ1

θ2
1

+ ρK
θ2
K

)−1
, thus ρK = θK/(θ1 + θK) = 1 − ρ1 and, from (2.6.2), φ(ρ̃) =(

θ1−θK
θ1+θK

)2
.

As regards statement i), every allocation ρ̃ such that
∑j

i=1 ρ̃i = θ1
θ1+θK

= 1−∑K
i=h ρ̃i is optimal. In-

deed, in this case

θ̄ω =
(∑K

i=1
ρ̃i
θ2
i

)−1∑K
i=1

ρ̃i
θi

= 2θ1θK
θ1+θK

and thus, from (2.6.3), φ(ρ̃) =
(

1− θ̄ω
θ1

)2
θ1

θ1+θK
+
(

1− θ̄ω
θK

)2
θK

θ1+θK
=(

θ1−θK
θ1+θK

)2
.

The proof of (ii) is straightforward. Moreover, since the Hessian matrix in (2.6.4) is negative semi-
definite we have to check the stationary points. By setting the partial derivatives of the Lagrangian



Part I 39

L(ρ, λ) = φ(ρ) − λ
(∑K

i=1 ρi − 1
)

equal to zero, we obtain a system of K equations ai = λ for i =

1, . . . ,K, which admits solutions if and only if a1 = · · · = aK . Notice that, for every i = 1, . . . ,K−1,

ai ≥ ai+1 ⇔
(
θ̄ω
θi

+
θ̄ω
θi+1

)
≤ 2 or θi = θi+1 (2.6.5)

and, since θK < θ̄ω < θ1, from a1 = aK we obtain(
1− θ̄ω

θ1

)2

=

(
1− θ̄ω

θK

)2

⇔ θ̄ω = 2

(
1

θK
+

1

θ1

)−1

=
2θ1θK
θ1 + θK

. (2.6.6)

Clearly, from (2.6.5), if θi = θi+1 then ai = ai+1. Furthermore, if ∃ j ∈ {1, . . . ,K − 1} such that
θ1 = . . . = θj > θj+1 ≥ . . . ≥ θK then a1 = a2 = . . . = aj ; since θi 6= θ1 for i = j + 1, . . . ,K, from

(2.6.5) follows that ai = a1 ⇔ θ̄ω

(
1
θ1

+ 1
θi

)
= 2 ∀ i = j + 1, . . . ,K. By substituting θ̄ω in (2.6.6),

then θi = θK , for every i = j + 1, . . . ,K.
On the other hand, if ∃ h ∈ {2, . . . ,K} such that θ1 ≥ . . . ≥ θh−1 > θh = . . . = θK , then ah = . . . =

aK . Clearly, θi 6= θK for i = 1, . . . , h− 1 and therefore, from (2.6.5), ai = aK ⇔ θ̄ω

(
1
θi

+ 1
θK

)
= 2.

Thus, by substituting θ̄ω, it follows that θ1 = θi for every i = 1, . . . , h− 1.

2.6.2 Proof of Theorem 2

The following Lemma is preliminary to the proof.

Lemma 5. Given a non-degenerate target ρ (i.e. such that ρj > 0 for every j), we have

(i) If θ̄ω ∈
[

2θKθK−1

θK+θK−1
, 2θ1θ2
θ1+θ2

]
, then ∃ ĩ ∈ {2, . . . ,K − 1} such that

a1 ≥ a2 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK (2.6.7)

In particular, if θ̄ω ∈
[
θ2,

2θ1θ2
θ1+θ2

]
, then ĩ = 2; whereas, if θ̄ω ∈

[
2θKθK−1

θK+θK−1
, θK−1

]
, then ĩ = K−1.

(ii) If θ̄ω ∈
[

2θ1θ2
θ1+θ2

, θ1

)
then ĩ = 1, i.e.

a1 ≤ a2 ≤ · · · ≤ aK . (2.6.8)

(iii) If θ̄ω ∈
(
θK ,

2θKθK−1

θK+θK−1

]
, then ĩ = K, i.e

a1 ≥ a2 ≥ · · · ≥ aK . (2.6.9)

Notice that 2θKθK−1

θK+θK−1
≤ θK−1 and 2θ1θ2

θ1+θ2
≥ θ2.

Moreover,

(iv) if ā = a1, then (2.6.8) and (2.6.9) are impossible and, therefore, (2.6.7) holds with aK > a1;

(v) if ā > a1 then (2.6.9) is impossible;
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(vi) if ā > a1 ≥ a2, then (2.6.8) and (2.6.9) are impossible and, therefore, (2.6.7) holds with aK > a1.

Proof of Lemma 5. Clearly from (2.6.5), ai ≥ ai+1 ⇐⇒
(
θ̄ω
θi

+ θ̄ω
θi+1

)
≤ 2. Thus, if θ̄ω ∈ [θK−1, θ2],

then ∃ ĩ ∈ {2, . . . ,K − 1} such that a1 ≥ a2 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK .

Moreover, if θ̄ω ∈ (θ2, θ1) and
(
θ̄ω
θ1

+ θ̄ω
θ2

)
≤ 2 (i.e. θ2 < θ̄ω ≤ 2θ1θ2

θ1+θ2
), then a1 ≥ a2 ≤ a3 ≤ . . . ≤ aK ,

(namely (2.6.7) holds with ĩ = 2), while if θ̄ω ∈ (θ2, θ1) and
(
θ̄ω
θ1

+ θ̄ω
θ2

)
> 2 (i.e. 2θ1θ2

θ1+θ2
< θ̄ω < θ1),

then a1 < a2 ≤ a3 ≤ . . . ≤ aK , namely (2.6.7) holds with ĩ = 1. Furthermore, if θ̄ω ∈ (θK , θK−1)

and
(
θ̄ω
θK

+ θ̄ω
θK−1

)
≤ 2 (i.e. θK < θ̄ω ≤ 2θKθK−1

θK+θK−1
), then a1 ≥ a2 ≥ . . . ≥ aK−1 ≥ aK ,(namely (2.6.7)

holds with ĩ = K), whereas if if θ̄ω ∈ (θK , θK−1) and
(
θ̄ω
θK

+ θ̄ω
θK−1

)
> 2 (i.e. 2θKθK−1

θK+θK−1
< θ̄ω < θK−1),

then a1 ≥ a2 ≥ . . . ≥ aK−1 < aK , namely (2.6.7) holds with ĩ = K − 1. The rest of the proof is
straightforward.
The behaviour of the sequence {ai, i = 1, . . . ,K} will be used for the proof of Theorem 2.

Proof of Theorem 2
Maximization problem (2.3.3) can be address via Lagrange multipliers with L(ρ, λ1, . . . , λK) = φ(ρ)−∑K−1

i=1 λi(ρi+1 − ρi) − λK
(∑K

i=1 ρi − 1
)

. By setting ∂L(ρ, λ1, . . . , λK)/∂ρi = 0 for i = 1, . . . ,K

we obtain 
a1 + λ1 = λK

ai − λi−1 + λi = λK , i = 2, . . . ,K − 1,

aK − λK−1 = λK

namely, by summing all the equations, λi =
∑i

j=1(ā − aj) (i = 1, . . . ,K − 1) and λK = ā =

1
K

∑K
i=1

(
1− θ̄ω

θi

)2
> 0.

Case 1 λi > 0 ∀i = 1, . . . ,K − 1.
In this case ρ1 = . . . = ρK , namely the corresponding target is ρB , so that

θ̄ω =

(
K∑
i=1

1

θ2
i

)−1 K∑
i=1

1

θi
(2.6.10)

and, from (2.6.5), a1 ≥ a2 since
(

1
θ2
− 1

θ1

)2
+
∑K

i=3
1
θi

{(
1
θi
− 1

θ1

)
+
(

1
θi
− 1

θ2

)}
≥ 0.

Condition λ1 > 0, i.e., ā > a1, corresponds to
(∑K

i=1
1
θ2
i

)−1∑K
i=1

1
θi
> 2

(∑K
i=1

1
θi
− K

θ1

)(∑K
i=1

1
θ2
i
− K

θ2
1

)−1
⇔

x > K−1. Then, from (vi) of Lemma 5, the sequence {ai, i = 1, . . . ,K} behaves as in (2.6.7), with
at least aK > a1. Therefore iā >

∑i
j=1 aj for i = 2, . . . , ĩ, while for i > ĩ, the sequence becomes

increasing. Since K − 1 > (a1 + . . .+ aK−1)/aK (we recall that ai < aK for i = 1, . . . ,K − 1), then
(K − 1)ā >

∑K−1
j=1 aj and therefore λi > 0 for i = ĩ+ 1, . . . ,K − 1.

Case 2 λ1 = 0 and λi > 0 ∀i = 2, . . . ,K − 1.
In this case ρ2 = · · · = ρK = ζ, so the ensuing optimal target is (1− [K−1]ζ, ζ, . . . , ζ) (where, clearly,
ζ ∈ [0,K−1]), which is admissible iff ā = a1 and

iā >
i∑

j=1

aj i = 2, . . . ,K − 1. (2.6.11)
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Now, ā = a1 corresponds to

θ̄ω =
2
(∑K

i=1
1
θi
− K

θ1

)
∑K

i=1
1
θ2
i
− K

θ2
1

. (2.6.12)

Moreover, θ̄ω =

1
θ1

+ ζ
(∑K

i=1
1
θi
− K

θ1

)
1
θ2
1

+ ζ
(∑K

i=1
1
θ2
i
− K

θ2
1

) , so that ζ = x and the ensuing target ρC is admissible pro-

vided that x ≤ K−1. From (iv) in Lemma 5, the sequence of {ai, i = 1, . . . ,K} behaves as in (2.6.7),
with at least aK > a1, and we need to check that λi > 0 for every i = 2, . . . ,K − 1.

• If θ1 = θ2, then a1 = a2 which contradicts (2.6.11) (clearly, the same reasoning holds in the more
general case of a cluster of several superior treatments).

• If θ1 > θ2 = · · · = θK , then a2 = · · · = aK and, together with ā = a1, implies that a1 = · · · =
aK which contradicts (2.6.11).

• If θ1 > θ2 ≥ · · · ≥ θK with θ2 > θK , from (3.6.6) after tedious algebra it follows that(
θ̄ω
θ1

+ θ̄ω
θ2

)
< 2, i.e., a1 > a2 and, combined with ā = a1, it ensures that λi > 0 for i = 2, . . . , ĩ.

Moreover for i > ĩ, the sequence {ai} becomes increasing and, therefore, if (K−1)ā >
∑K−1

i=1 ai
then λi > 0, for i = ĩ+ 1, . . . ,K − 1. This condition is trivially satisfied, since ā = a1 and

(K − 1)ā+ aK >

K−1∑
i=1

ai + aK ⇐⇒ (K − 1)ā+ aK > Kā⇐⇒ aK > ā = a1. (2.6.13)

Case 3 λi = 0 ∀i = 1, . . . ,K − 1
In such a case, ā = a1 = · · · = aK−1, which clearly implies that aK = ā. As shown in 2.6.1, this
implies that θ1 = · · · = θj > θj+1 = · · · = θK (i.e., there are two clusters of treatments). Thus,
every ρC̃ = (ρC̃1 , . . . , ρ

C̃
K)> such that

∑j
i=1 ρ

C̃
i = θ1

θ1+θK
and

∑K
i=j+1 ρ

C̃
i = θK

θ1+θK
, is optimal. Indeed,

in such a case θ̄ω = 2θ1θK/(θ1 + θK) and φ(ρC̃) = ā = (θ1 − θK)2/(θ1 + θK)2, that coincides
with the maximum of φ in the unconstrained optimization. Moreover, adopting ρC̃ , x = θK

(K−j)(θ1+θK)

and therefore,
∑j

i=1 ρ
C̃
i = 1 − x(K − j)=1 −∑K

i=j+1 ρ
C̃
i . Since the components of ρC̃ are ordered

according to the magnitude of the treatment effects, then ρC̃j ≤ ρC̃k (for k = 1, . . . , j−1) and ρC̃j+1 ≥ ρC̃k
(for k = j+1, . . . ,K). Thus, ρC̃j ≤ 1−x(K−j)

j , ρC̃j+1 ≥ x(K−j)
K−j = x and, clearly, j−1[1−x(K−j)] ≥ x,

i.e., x ≤ K−1.
Case 4 λ1 > 0 and at least one λi = 0 for i ∈ [2;K − 1].
Under this scenario, ā > a1 and thus (2.6.9) of Lemma 5 is impossible. Therefore, the sequence {ai, i =
1, . . . ,K} behaves as in (2.6.7) or (2.6.8). Moreover, λi = 0⇔ i =

∑i
j=1 aj/ā (with 2 ≤ i ≤ K − 1).

Since a1
ā < 1, then it exists at least one al (with 2 ≤ l ≤ i) such that alā > 1, i.e. ā < al, and clearly

ā < al ≤ ai ≤ ai+1. However, this is impossible since

• if λi+1 = 0, then (i+ 1)ā =
∑i

j=1 aj + ai+1 ⇔ ā = ai+1 which contradicts ā < ai+1;

• if λi+1 > 0, then (i+ 1)ā >
∑i

j=1 aj + ai+1 ⇔ ā > ai+1 but this is impossible since ā < ai+1.
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Case 5 λ1 = 0 and at least one λi > 0 and λi+1 = 0 with i ∈ {2, . . . ,K − 2}
Under this setting, ā = a1 and from Lemma 5 the sequence behaves as in (2.6.7). Since λi+1 = 0, then

i =
a2

ā
+ · · ·+ ai+1

ā
. (2.6.14)

From (2.6.14) and λi > 0 (i.e. i > a1
ā + a2

ā + · · · + ai
ā ) it follows that ā = a1 < ai+1 and, given the

behaviour of {ai, i = 1, . . . ,K}, also ai+1 ≤ ai+2. This scenario is impossible since

• if λi+2 = 0, then (i+2)ā = a1 + · · ·+ai+1 +ai+2, which combined with (2.6.14), gives ā = ai+2

contradicting that ā < ai+1 ≤ ai+2;

• if λi+2 > 0, then (i+2)ā > a1 + · · ·+ai+1 +ai+2, which combined with (2.6.14), gives ā > ai+2

but this is impossible.

Case 6 λ1 = λ2 = · · · = λj = 0 and λi > 0 ∀i = j + 1, . . . ,K − 1

Under this setting, the ensuing optimal target is ρC̆ = (ρC̆1 , . . . , ρ
C̆
j , ν, . . . , ν)> with ρC̆i ≥ ρC̆i+1 ≥ ν for

i = 1, . . . , j − 1 and
∑j

i=1 ρ
C̆
i = 1− (K − j)ν (where, clearly, ν ≤ K−1). This target is admissible iff

i) ā = a1 = . . . = aj and ii) iā >
∑i

k=1 ak for i = j + 1, . . .K − 1.
Condition λ1 = 0 implies ā = a1, so that (3.6.6) holds and, from (iv) of Lemma 5, the sequence
{ai, i = 1, . . . ,K} behaves as in (2.6.7) with aK > a1.

• If θ1 > θ2 then by (2.6.5), a1 = a2 ⇔
(
θ̄ω
θ1

+ θ̄ω
θ2

)
= 2. Since θ1 > θ̄ω it has to be θ2 < θ̄ω,

namely a1 = a2 ≤ a3 ≤ . . . ≤ aK , which is impossible given that ā = a1. Similar reasoning
applies for all the pairs θi > θi+1 for i = 2, . . . , j − 1.

• If θ1 = · · · = θj > θj+1 ≥ . . . ≥ θK , with j ∈ {2, . . . ,K − 1}, then a1 = · · · = aj and

θ̄ω =
[1− (K − j)ν]θ−1

1 + ν
∑K

i=j+1 θ
−1
i

[1− (K − j)ν]θ−2
1 + ν

∑K
i=j+1 θ

−2
i

so that, from (3.6.6), after tedious algebra it follows that ν = x (clearly, x ≤ K−1 in order to be
admissible). Finally, we need to verify ii). These conditions are trivially satisfied following the
same arguments of Case 2 (see (2.6.13)).

Since the components of ρC̆ are ordered according to the magnitude of the treatment effects, then ρC̆j ≤
ρC̆k (for k = 1, . . . , j − 1) and, clearly, ρC̆j ≤ 1−x(K−j)

j (recalling that
∑j

i=1 ρ
C̆
i = 1 − (K − j)x).

Moreover, given the above-mentioned ordering, j−1[1 − x(K − j)] ≥ x, i.e., x ≤ K−1. When θj+1 =

. . . = θK , then x = θK
(K−j)(θ1+θK) and this is a special case of Case 3. In addition, note that under ρC̆ ,

φ(ρC̆) = a1[1− (K − j)x] + x

K∑
j=i+1

ai = ā−Kāx+Kāx = ā, (2.6.15)
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2.6.3 Proof of Theorem 3

Clearly, when x > K−1, ρC = ρB and thus, we will consider only the case x ≤ K−1. Denote by θ̄Bω =∑K
i=1

1
θi
/
∑K

i=1
1
θ2
i

the expression in (2.6.10). Then, from (2.6.3), φ(ρB) = 1
K

∑K
i=1

(
1− θ̄Bω

θi

)2
=

1− θ̄Bω 1
K

∑K
i=1

1
θi
.

• Under statement (i) of Theorem 2, ρC = (ρC1 , . . . , ρ
C
j , x, . . . , x)>, and letting θ̄Cω be (2.6.1) un-

der ρC , then from (2.6.15) follows that φ(ρC) = 1
K

∑K
i=1

(
1− θ̄Cω

θi

)2
= 1 − 2θ̄Cω

1
K

∑K
i=1

1
θi

+(
θ̄Cω
)2 1

K

∑K
i=1

1
θ2
i

.

Thus, φ(ρB) ≤ φ(ρC) since −θ̄Bω 1
K

∑K
i=1

1
θi
≤ −2θ̄Cω

1
K

∑K
i=1

1
θi

+
(
θ̄Cω
)2 1

K

∑K
i=1

1
θ2
i
⇔ (θ̄Bω −

θ̄Cω )2 ≥ 0.

• Under statement (ii) of Theorem 2, then φ(ρC) = φ(ρ̃) =
(
θ1−θK
θ1+θK

)2
and, clearly, Eφ(ρC) = 1.

Taking now into account the ethical efficiency, denoting by θ̄ = K−1
∑K

i=1 θi, then Ee(ρB) = θ̄
θ1

.

Under statement (i) of Theorem 2 we obtain Ee(ρC) = θ−1
1

{
θ1[1− (K − j)]x+ x

∑K
i=j+1 θi

}
=

θ−1
1

[
θ1(1−Kx) +Kxθ̄

]
. Thus, Ee(ρC) ≥ Ee(ρ

B) since θ1(1 − Kx) ≥ θ̄(1 − Kx) (recalling that
θ1 > θ̄). The case under statement (ii) follows easily by similar arguments.
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Abstract

This paper develops optimal design theory for testing the efficacy of several competing treatments.
Adopting the general framework of heteroscedastic treatment groups, we derive the design maximiz-
ing the power of the multivariate test of homogeneity. In general, this optimal design is a generalized
Neyman allocation involving only two experimental groups. In order to account for the ordering among
the treatments, particularly relevant in the clinical context for ethical reasons, we provide the optimal
design for testing under constraints reflecting their effectiveness. The advantages of the suggested al-
locations are illustrated both theoretically and through several numerical examples, also compared with
other designs proposed in the literature, showing a substantial gain in terms of both power and ethics.
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3.1 Introduction

This paper addresses the issue of designing experiments for comparing several treatments when the
principal inferential aim is testing the homogeneity of the treatment effects. Starting from the classical
one-way ANOVA of Sir. R.A. Fisher, the problem of comparing the equality of several means has a long
history in the statistical literature and covers all the applied fields. Over the past 50’s, there has been a
growing stream of papers about the design of experiments for treatment comparisons; however, they are
almost exclusively focused on estimation precision. In particular, having in mind the linear homoscedas-
tic model set-up, balancing the allocations among treatments is often considered as desirable, since this
strategy optimizes the usual alphabetical criteria for the estimation of the treatment effects. However,
balance could be highly inefficient in the case of heteroscedasticity, or when inference is focused on the
treatment contrasts; moreover, it could be strongly inappropriate for clinical trials, since the demand of
individual care often induces to skew the allocations to the best performing drugs.
Although the ability of detecting a significant treatment difference is a fundamental issue for statistical
inference, in the design of experiment literature very little attention has been devoted to hypothesis test-
ing, also due to the underlined complex mathematical structure. Only recently there has been a growing
interest on this topic, in particular in the clinical/pharmaceutical research, also due to the encourage-
ment of Health Authorities3. In the context of binary trials, Tymofyeyev et al9 were among the first
authors to derive the design maximizing the power of the test of homogeneity. In general, this design is a
degenerate allocation involving only the best and the worst treatments, with no observations on the inter-
mediate ones: for this reason, a lower bound of each treatment allocation proportion is superimposed and
the related constrained optimal design is derived. By applying the same methodology to exponential out-
comes, Zhu and Hu11 derived the corresponding optimal allocations, while Sverdlov et al8 extended their
results in the presence of censoring. In general, the ensuing designs are discontinuous (non-degenerate)
functions of the unknown model parameters (i.e., they are locally optimal) and, by suitable smoothing
transformations, they could be implemented in a sequential fashion via response adaptive randomization
procedures, namely sequential rules that change the treatment allocation probabilities to approximate the
chosen target (for a review see Baldi Antognini and Giovagnoli1 and Rosenberger and Lachin6).

Recently, Baldi Antognini et al2 derived the design maximizing the power of the test of homogene-
ity for normal homoscedastic data, which is a balanced allocation involving only the best and the worst
treatments; moreover, by imposing the ethical constraint that the treatment allocation proportions should
reflect the a-priori unknown ordering among their effects, they also derived a non-degenerate optimal
target implementable via response-adaptive randomization. Under the same framework, assuming that
the treatment ordering is known, Singh and Davidov7 discussed the optimal designs for restricted and
unrestricted statistical inference (which are equivalent for large samples) by adopting a maxi-min ap-
proach, in order to overcome local optimality problems.

The aim of the present paper is to present a unified framework for deriving optimal designs for hy-
pothesis testing in the presence of several experimental groups, also encompassing the general ANOVA
set-up with heteroscedastic errors. In particular, the optimal designs are generalized Neyman allocations
involving only two treatments, not necessarily the best and the worst ones. In order to account for the
ordering among treatments (which could be particularly relevant in the clinical context, for ethical rea-
sons), we derive constrained optimal designs, where the allocation proportions are themselves ordered
as the treatment efficacies. Since the ordering among the effects is generally a-priori unknown, the ensu-
ing allocations are locally optimal designs that can be approached by response-adaptive randomization
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procedures after suitable smoothing techniques. Several illustrative examples are provided for normal,
binary, Poisson and exponential data (with and without censoring), also amending some previously ob-
tained results (like e.g. Sverdlov et al8). The properties of these designs are described both theoretically
and through numerical examples, showing a substantial gain in terms of power and ethics as well.

The paper is structured as follows. Section 3.2 deals with optimal designs for hypothesis testing, tak-
ing into account both unconstrained and constrained optimization. Section 3.3 discusses the performance
of the proposed allocations both analytically and through numerical examples, also compared with other
designs suggested in the literature. Section 3.4 deals with a general discussion about our results, includ-
ing also their implementation via response-adaptive randomization and Section 3.5 concludes the paper.
The mathematical details are available in Section 3.6.

3.2 Main results

3.2.1 Preliminaries

Suppose we have K ≥ 2 competing treatments and let δi = (δi1, . . . , δiK)> be the indicator managing
the allocation of the ith subject, namely δik = 1 if he/she is assigned to treatment k (k = 1, . . . ,K)
and 0 otherwise. Given the assignments, the observations Yis are assumed to be iid belonging to the
exponential family parametrised in such a way that θk ∈ Θ ⊆ R denotes the mean effect of treat-
ment k, while vk = v(θk) ∈ R+ represents the corresponding variance (k = 1, . . . ,K) and we set
θ = (θ1, . . . , θK)> and v = (v1, . . . , vK)>. Special cases of practical relevance are binary B(θk)
(θk ∈ (0; 1), v(θk) = θk(1 − θk)) and Poisson P (θk) (θk ∈ R+, v(θk) = θk) trials for dichotomous
and count data, respectively, while normal model N(θk; vk) (with θk ∈ R and v(θk) = vk independent
from θk) is also encompassed for continuous responses as well as the exponential one exp(θk) (θk ∈ R+,
v(θk) = θ2

k) for survival outcomes.
After n allocations, let Nn =

∑n
i=1 δi, where Nnk =

∑n
i=1 δik denotes the number of assignments

to treatment k and, clearly, N>
n1K = n (here 1K is the K-dim vector of ones); while ρ = n−1Nn

is the vector of the treatment allocation proportions, where ρk = n−1Nnk ≥ 0 for k = 1, . . . ,K and
ρ>1K = 1 for every n. Let θ̂n = (θ̂n1, . . . , θ̂nK)> be the MLEs of the treatment effects θ (i.e., the sam-
ple means θ̂nk = N−1

nk

∑n
i=1 δikYi), under well-known regularity conditions θ̂n is strongly consistent

and asymptotically normal with
√
n(θ̂n − θ)

d−→ N(0K ,M−1), where 0K is the K-dim vector of zeros
and M = M(ρ) = diag (ρk/vk)k=1,...,K is the Fisher information associated with θ.

In this setting the inferential focus is on the contrasts A>θ where, considering without loss of
generality (wlog) the first treatment as the reference one, A> = [1K−1| − IK−1] and IK−1 is the
(K − 1)-dim identity matrix. The MLE A>θ̂n is strongly consistent and asymptotically normal with√
nA>(θ̂n − θ)

d−→ N(0K−1,A>M−1A). Let v̂kns be consistent estimators of the treatment variances,
then M̂n = diag (ρk/v̂kn)k=1,...,K and Wald statistic Wn = nθ̂>nA[A>M̂−1

n A]−1A>θ̂n is usually em-
ployed for testing the hypothesis of homogeneity of the effects H0 : A>θ = 0K−1 vs H1 : A>θ 6= 0K−1.
UnderH0,Wn

d−→ χ2
K−1, namely it converges to a (central) χ2 withK−1 degrees of freedom (df) (pro-

vided that ρk > 0 for every k = 1, . . . ,K), while under the alternative Wn converges to a non-central
χ2 distribution with K − 1 df and non-centrality parameter (NCP) nφ, denoted by χ2

K−1(nφ), where
φ = φ(ρ) = θ>A[A>M−1A]−1A>θ. Thus, the power of the α-level test could be approximated by
Pr
(
χ2
K−1(nφ(ρ)) > qK−1,α

)
, where qc,α is the (1− α)-percentile of a χ2

c . For fixed df the non-central
χ2 distribution is stochastically increasing in the NCP so that the power is an increasing function of
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φ(ρ). Thus, the problem is finding the design ρ̃, defined on the simplex ρ̃k ≥ 0 for every k = 1, . . . ,K
with ρ̃>1K = 1, maximizing φ(·). As is well-known, for K = 2 the NCP is maximized by the Neyman
allocation ρ̃1 = (1 +

√
v2/v1)−1 = 1− ρ̃2.

Notice that both the likelihood ratio and score tests are asymptotically equivalent to the Wald test
and so are their power functions. Moreover, for normal outcomes N(θk; vk), Wn ∼ χ2

K−1(nφ(ρ)) for
any sample size n and, in the case of homoscedasticity (vk = v, for k = 1, . . . ,K), likelihood ratio and
Wald’s tests coincide.

3.2.2 Unconstrained optimal design for testing

In this section we derive the optimal design maximizing the NCP. Assuming without loss of generality
that high responses are preferable, the treatment outcomes are ordered on the basis of their effects and,
for ease of notation (without loss of generality), we assume that θ1 ≥ . . . ≥ θK (i.e., the best treatment
will be labelled as the first one, while the Kth treatment as the worst, admitting also clusters with the
same efficacy), with at least one strict inequality. We wish to stress that this is a simple label-coding
intended to avoid more complex notation like θmax ≥ · · · ≥ θmin; clearly, the treatment ranking is a
priori unknown, since the treatment effects are a priori unknown too (we do not know which treatment
is associated to label 1 and which one to label K before the experiment). The treatment ordering can be
then estimated sequentially, as we will discuss in Section 3.4.

Before the experiment, the treatment ordering is unknown, since the treatment effects are a priori
unknown too (we do not know which treatment is associated to label 1 and which one to label K): the
coding θ1 ≥ · · · ≥ θK has been adopted in order to avoid a more complex notation like θmax ≥ · · · ≥
θmin.

For Bernoulli, Poisson, exponential and normal homoscedastic models, this ordering corresponds to
the classical stochastic order, while it does not imply a specific ordering for normal heteroscedastic data.

For a given design ρ, let π = (π1, . . . , πK)> with πk = πk(ρ) = ρkv
−1
k /(

∑K
i=1 ρiv

−1
i ) ≥ 0

(k = 1, . . . ,K) then π>1K = 1 and, after straightforward calculation,

φ(ρ) =

(
K∑
k=1

ρkv
−1
k

)
Vπ(θ), (3.2.1)

where Vπ(θ) =
∑K

k=1(θk − θ̄π)2πk and θ̄π =
∑K

k=1 θkπk are the variance and the mean of a discrete
r.v. θ (with K possibly different ordered support points θ1 ≥ . . . ≥ θK), evaluated with respect to the
pdf π. Clearly, for homoscedastic treatment groups vk = v (k = 1, . . . ,K) and π = ρ.

Remark 3.2.1. This representation is quite general and covers the case of exponential outcomes subject
to an independent right censoring scheme (which is a common feature of survival trials). Indeed, let
εk = ε(θk) : R+ → (0; 1) be the probability that a failure/death occurs before censoring in the kth group
(k = 1 . . . ,K), that are assumed to be constant for every subject in each group, then ε is a decreasing
function depending on the particular censoring scheme adopted in the trial (one of the most general is
described in10). In such a case, φ(ρ) in (3.2.1) should be simply re-parametrized by substituting each
treatment variance vk = θ2

k with v̇k = θ2
k/ε(θk) (k = 1, . . . ,K).

The next Lemma shows some general properties of the function φ(ρ).
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Lemma 3.2.1. Let a = (a1, . . . , aK)>, with ak = v−1
k

(
θk − θ̄π

)2 ≥ 0 for k = 1, . . . ,K. Then,
φ(ρ) = a>ρ is a concave super-harmonic function with non-negative gradient ∇φ = a and Laplacian
∇2φ < 0.

Proof. See Appendix 3.6.1.

From now on, we denote by e1, . . . , eK the canonical base ofRK and we set ςik =
(

1 +
√
vk/vi

)−1
=

1− ςki, for any i, k ∈ {1, . . . ,K}.
Theorem 3.2.1. For every sample size n, the unconstrained optimal design ρ̃ maximizing the NCP of
Wald test is such that

φ(ρ̃) = max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

. (3.2.2)

Thus, if the pair of treatments {̃i, k̃} maximizing the of (3.2.2) is unique, then

ρ̃ = ρ̃ĩk̃ = eĩς̃ik̃ + ek̃ςk̃ĩ =

(
0, . . . , 0,

√
vĩ√

vĩ +
√
vk̃
, 0, . . . , 0,

√
vk̃√

vĩ +
√
vk̃
, 0, . . . , 0

)>
,

i.e., ρ̃ corresponds to a Neyman allocation involving only this pair of treatments.
Moreover, if the pair {̃i, k̃} maximizing the right-hand side (RHS) of (3.2.2) is not unique, but there exists
one (or more) other pair(s) of indexes {̃i′, k̃′} such that(

θĩ − θk̃√
vĩ +

√
vk̃

)2

=

(
θĩ′ − θk̃′√
vĩ′ +

√
vk̃′

)2

= max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

, (3.2.3)

then ρ̃ĩk̃ and ρ̃ĩ′k̃′ are both optimal as well as every mixture, namely

φ(ρ̃ĩk̃) = φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
= φ(ρ̃ĩ′k̃′), ∀ω ∈ [0; 1].

Example 3.2.1. Let K = 3 be the treatments to be compared, with θ = (3, 2, 1)> and v = (1, 4, 9)>.
From (3.2.2), the maximum of φ is attained at the pair {1, 3}, so that the optimal design is ρ̃13 =
(1/4, 0, 3/4), with φ (ρ̃13) = 1/4. Under the same setting, if v3 = 25 (instead of v3 = 9) then ρ̃12 and
ρ̃13 are both optimal designs with φ(ρ̃12) = φ(ρ̃13) = 1/9; moreover, every convex combination of ρ̃12

and ρ̃13 is still optimal, i.e., every design ρ̃ = (ρ̃1, 4ρ̃1 − 2/3, 5/3− 5ρ̃1)> with ρ̃1 ∈ [1/3; 1/6] is such
that φ(ρ̃) = 1/9.

The presence of clusters of treatments is also accounted for as a special case, as the following Corol-
lary shows.

Corollary 3.2.1. If {̃i, k̃} is the pair of treatments maximizing the RHS of (3.2.2) and there exists one (or
more) other treatment(s) ĩ′ such that θĩ = θĩ′ and vĩ = vĩ′ (i.e., there exists a cluster of equal treatments
involved in the maximization), then also {̃i′, k̃} maximizes the RHS of (3.2.2) and

φ(ρ̃ĩk̃) = φ(ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃) = φ(ρ̃ĩ′k̃), ∀ω ∈ [0; 1],

namely every design ρ̃ s.t. ρ̃ĩ + ρ̃ĩ′ = ς̃ik̃ = ς̃i′k̃ and ρ̃k̃ = ςk̃ĩ is optimal.
If the treatments are grouped in two clusters, namely ∃h ∈ {1, . . . ,K − 1} s.t. (θ1, v1) = (θi, vi)

for i = 1, . . . , h and (θK , vK) = (θi, vi) for i = h + 1, . . . ,K, with θ1 > θK , then every design ρ̃ s.t.∑h
i=1 ρ̃i = ς1K and

∑K
i=h+1 ρ̃i = ςK1 is optimal (namely, the Neyman allocation is spanned over the

two clusters).
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Proof. See Section 3.6.3.

Remark 3.2.2. In general, the unconstrained optimal design ρ̃ is a (generalized) Neyman allocation
involving just two treatments (or mixture of Neyman targets in some special cases). However, adopting
ρ̃, the Wald test converges to a χ2

1-distribution, so that power becomes Pr
(
χ2

1(nφ(ρ̃)) > q1,α

)
. As

correctly stated by Singh and Davidov7, although ρ̃ is a degenerate target, it is still the design maximizing
the power, since Pr

(
χ2

1(nφ(ρ̃)) > q1,α

)
≥ Pr

(
χ2
b(nφ(ρ̃)) > qb,α

)
, for b ≥ 1 (recalling that, for every

fixed df b, χ2-distributions are stochastically increasing in the NCP).

As discussed in Remark 3.2.1, for exponential outcomes with censoring the treatment variance should
be re-scaled. Thus, from Theorem 3.2.1, the optimal design maximizing the NCP is the generalized
Neyman allocation ρ̃ĩk̃ = eĩς̃ik̃ + ek̃ςk̃ĩ, where now ς̃ik̃ =

(
1 + θk̃

√
ε(θĩ)/θĩ

√
ε(θk̃)

)−1
, on the pair

{̃i, k̃} such that

φ(ρ̃ĩk̃) = max
i,k∈{1,...,K}

 θi − θk
θi√
ε(θi)

+ θk√
ε(θk)

2

. (3.2.4)

The maximization of the RHS in (3.2.4) depends on the specific form of the adopted censoring through
ε(·), and it could involve each pair of treatments, not necessarily {1,K} (i.e., the one with the best and
the worst treatments). Thus, this result conflicts with the optimal design obtained in Sverdlov et al8

where, setting the minimum treatment allocation proportion equal to 0 leads to ρ̃1K , as the following
example shows.

Example 3.2.2. As in Sverdlov et al8, we take into account the censoring scheme suggested in Zhang
and Rosenberger10 with duration D = 96 and recruitment period R = 55, for K = 3 treatments with
θ> = (150, 5, 1) we obtain ε(θ1) = 0.239, ε(θ2) = 0.948 and ε(θ3) = 0.990. Thus, the maximum of the
RHS in (3.2.4) is given by the pair {2, 3} and therefore the optimal design is ρ̃23 = (0, 0.836, 0.164)>

with φ(ρ̃23) = 0.424, instead of ρ̃13 = (0.997, 0, 0.003)> for which φ(ρ̃13) = 0.234.

While the general cases of normal heteroscedastic outcomes and exponential responses with censor-
ing should be analysed by Theorem 3.2.1 and Corollary 3.2.1, the next Corollary provides some useful
simplifications for the most common models, where the Neyman target ρ̃1K involving the best and the
worst treatments is optimal.

Corollary 3.2.2. Let θ1 = . . . = θh ≥ θh+1 ≥ . . . ≥ θK−s > θK−s+1 = . . . = θK , where h, s are
positive integers with h+ s ≤ K, then

• for binary trials, every ρ̃ s.t.

h∑
i=1

ρ̃i =

√
θ1(1− θ1)√

θ1(1− θ1) +
√
θK(1− θK)

= ς1K = 1−
K∑

i=K−s+1

ρ̃i

is optimal with

φ(ρ̃) =

(
θ1 − θK√

θ1(1− θ1) +
√
θK(1− θK)

)2

;
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• under Poisson outcomes, every ρ̃ s.t.
∑h

i=1 ρ̃i =
√
θ1/(
√
θ1 +

√
θK) = ς1K = 1−∑K

i=K−s+1 ρ̃i

is optimal with φ(ρ̃) =
{

(θ1 − θK)/(
√
θ1 +

√
θK)

}2;

• under exponential responses in the absence of censoring, every design ρ̃ s.t.
∑h

i=1 ρ̃i = θ1/(θ1 +

θK) = ς1K = 1−∑K
i=K−s+1 ρ̃i is optimal with φ(ρ̃) = {(θ1 − θK)/(θ1 + θK)}2;

• under N(θk; v) for k = 1, . . . ,K, every ρ̃ s.t.
∑h

i=1 ρ̃i = 1/2 = ς1K =
∑K

i=K−s+1 ρ̃i is optimal
with φ(ρ̃) = (θ1 − θK)2/4v.

Moreover, when h = s = 1 (i.e., in the absence of clusters of better and worst treatments) the optimal
design ρ̃ = ρ̃1K = e1ς1K + eK(1− ς1K) is unique.

Proof. See Section 3.6.4.

Remark 3.2.3. Theorem 3.2.1 and Corollary 3.2.2 complement the results in Tymofyeyev et al9 and Zhu
and Hu11, by covering every possible scenario of clusters of treatments. Indeed, in both papers h and
s are assumed to be positive integers with h + s < K, therefore the special case when all treatments
are grouped into two clusters is excluded (e.g., for K = 3, h = 2 and s = 1 or h = 1 and s = 2),
also showing that every design spanning the Neyman target over the two clusters is optimal (instead of
assuming as unique solution ρ̃ = h−1ς1K

∑h
i=1 ei + s−1ςK1

∑K
i=K−s+1 ei as previously stated in the

literature8,9,11).

3.2.3 Constrained optimal designs for testing

This section deals with the problem of finding the design ρ∗ = (ρ∗1, . . . , ρ
∗
K)> maximizing the NCP of

the multivariate Wald test of homogeneity under the (ethical) constraints ρ∗1 ≥ . . . ≥ ρ∗K , reflecting the
treatment ordering θ1 ≥ . . . ≥ θK . Due to the complexity induced by this general framework, we need
to introduce the following notation. Let

T =

[∑K
k=1 v

−1
k

] [∑K
k=1(θ1 − θk)2v−1

k

]
[∑K

k=1(θ1 − θk)v−1
k

]2 (3.2.5)

and, for i = 1, . . . ,K − 1,

σi =
1
i

∑i
k=1 v

−1
k

1
K

∑K
k=1 v

−1
k

, βi =
1
i

∑i
k=1(θ1 − θk)v−1

k
1
K

∑K
k=1(θ1 − θk)v−1

k

, γi =
1
i

∑i
k=1(θ1 − θk)2v−1

k
1
K

∑K
k=1(θ1 − θk)2v−1

k

where, clearly, β1 = γ1 = 0.

Lemma 3.2.2. For every i = 1, . . . ,K − 1, σi ≥ βi ≥ γi ≥ 0 and, if γi = 1, then βi > 1. Moreover,
T > 1.

Proof. See Section 3.6.5.

Theorem 3.2.2. If there exists k̆ ∈ {1, . . . ,K − 1} such that:

P1a: βk̆
(
2σk̆ − βk̆ − βk̆σk̆

)
/σ2

k̆
< T (1− γk̆) ≤ 1 + σk̆ − 2βk̆,



56 Paper B

P1b: A2
k̆
(1− σi)− 2Ak̆(1− βi) + T (1− γi) > 0, for every i 6= k̆,

where

Ak̆ =


T (1−γk̆)

1−βk̆+[(1−βk̆)2−T (1−σk̆)(1−γk̆)]
1/2 , if γk̆ 6= 1

2(βk̆ − 1)/(σk̆ − 1), if γk̆ = 1,
(3.2.6)

then

ρ∗ = ρ∗
k̆

=

(
1− τ(K − k̆)

k̆

)
k̆∑
i=1

ei + τ
K∑

i=k̆+1

ei, (3.2.7)

with

τ =
(σk̆Ak̆ − βk̆){

K[1− βk̆ −Ak̆(1− σk̆)]
}

and

φ(ρ∗
k̆
) =

(
A2
k̆
− 2Ak̆ + T

TK

)
K∑
k=2

(θ1 − θk)2v−1
k . (3.2.8)

If k̆ is not unique but there exists (one or more) ĭ satisfying P1 (namely P1a and P1b, where now P1b
should hold for every i 6= {k̆, ĭ}), then Ak̆ = Aĭ and ρ∗ can be obtained by any convex combination of
the corresponding constrained optimal designs ρ∗

k̆
and ρ∗

ĭ
in (3.2.7), so that NCP in (3.2.8) still holds.

Whereas, if

P2: T (1− γi) > 1 + σi − 2βi, for i = 1, . . . ,K − 1,

the constrained optimal design is balanced, namely ρ∗ = ρB = K−11K , with

φ(ρB) =

(
T − 1

TK

) K∑
k=2

(θ1 − θk)2v−1
k . (3.2.9)

In all the other scenarios ρ∗t =
(
ρ∗t[K−ċ],0

>
ċ

)
, where ċ ∈ {1, . . . ,K − 2} is the minimum number

of inferior treatments that should be omitted in order to satisfy P1 or P2 and ρ∗[K−ċ] is the previously
defined constrained optimal design evaluated by taking into account the remaining K − ċ (superior)
treatments.

Proof. See Section 3.6.6.

Remark 3.2.4. If ċ = K− 2, then P1b vanishes, while P1a and P2 identify two exhaustive and disjoint
sets, namely T ≤ 1 + σ1 (i.e., v1 ≥ v2) and T > 1 + σ1, respectively. In such a case,

ρ∗t =

{(
ς12; ς21,0

>
K−2

)
, if v1 ≥ v2,(

2−11>2 ,0
>
K−2

)
, if v1 < v2

and therefore the constrained optimal design is the Neyman or a balanced allocation involving just the
two superior treatments.
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Example 3.2.3. Consider now the case of K = 3 treatments. When θ = (23, 22.5, 22)> and v =
(100, 10, 11)>, condition P2 holds and therefore the constrained optimal design is the balanced one, i.e.
ρ∗ = 3−113, with φ(ρ∗) = 0.0057. Under the same setting, if v = (65, 10, 3.1)> then there exists a
unique k̆ ∈ {1, 2} satisfying P1a-P1b, namely k̆ = 1, so that ρ∗ = ρ∗1 = (0.508, 0.246, 0.246)> with
φ(ρ∗1) = 0.0104, whereas if v = (80, 10, 3.1)> then k̆ = 2 and therefore ρ∗ = ρ∗2 = (0.361, 0.361, 0.278)>

with φ(ρ∗2) = 0.0096. When v = (65.37, 10, 3.1)>, then both k̆ = 1 and k̆ = 2 satisfy P1a-
P1b and A1 = A2 = 0.965; thus, every combination ρ∗ = ωρ∗1 + (1 − ω)ρ∗2 - where ω ∈ [0; 1],
ρ∗1 = (0.504, 0.248, 0.248)> and ρ∗2 = (0.360, 0.360, 0.280)> - is optimal with φ(ρ∗) = φ(ρ∗1) =
φ(ρ∗2) = 0.0103. If v = (5, 1, 65)> instead, neither P1a nor P2 are satisfied and ċ = 1; since v1 > v2,
then ρ∗t = (ς12, ς21, 0) = (0.691, 0.309, 0) with φ(ρ∗) = 0.0239; analogously, ċ = 1 also when
v = (1, 5, 65)>, but now ρ∗ = (0.5, 0.5, 0)> with φ(ρ∗) = 0.0208, since v1 ≤ v2.

Despite the generality of Theorem 3.2.2, the next Corollary shows that in many practical situations
the constrained optimal design ρ∗ is a non-degenerate target having a simple functional form.

Corollary 3.2.3. Assume that the variance v(·) is non-decreasing and

σ1(1− γi) ≥ σi + γi − 2βi, for i = 2, . . . ,K − 1. (3.2.10)

Thus, when θ1 > θ2, the constrained optimal design is

ρ∗ =

{
ρ∗1 if T ≤ 1 + σ1,

ρB if T > 1 + σ1.
(3.2.11)

Whereas, in the presence of a cluster of superior treatments θ1 = · · · = θj > θj+1 ≥ · · · ≥ θK
(j = 2, . . . ,K − 1), then ρ∗ = ρB when T > 1 + σ1, while for T ≤ 1 + σ1 every convex combination
of ρ∗1, . . . ,ρ

∗
j is optimal.

In particular, normal homoscedastic, Poisson and exponential models satisfy condition (3.2.10) and

τ =



∑K
k=2(θ1−θk)2

2[
∑K
k=2(θ1−θk)]

2 , for N(θk; v);

θ1
[∑K

k=2

(
1
θk
− 1
θ1

)]1/2
−[
∑K
k=2(θ1−θk)]

1/2[∑K
k=1

θ1
θk
−K

]
[
∑K
k=2(θ1−θk)]

1/2 , for P (θk);

1
θ1

∑K
k=2

(
1
θk
− 1
θ1

)2

[∑K
k=2

(
1
θk
− 1
θ1

)][∑K
k=2

(
1

θ2
k

− 1

θ21

)] , for exp(θk).

Proof. See Section 3.6.7.

Although the hypothesis of Corollary 3.2.3 do not hold for binary outcomes, the constrained optimal
design as an analogous form, as the following proposition shows.

Proposition 3.2.1. Under the binary model, when θ1 > θ2 the constrained optimal design is ρ∗ in
(3.2.11), where

τ =
R−1

[∑K
k=1

(θ1−θk)
(1−θk)θk

]
− 1∑K

k=1
(1−θ1)θ1
(1−θk)θk

−K
and R =

√√√√[( K∑
k=1

θ1 − θk
(1− θ1)(1− θk)

)(
K∑
k=1

θ1 − θk
θ1θk

)]
.
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Whereas, if θ1 = · · · = θj (j = 2, . . . ,K−1), then ρ∗ = ρB when T > 1+σ1, while for T ≤ 1+σ1

every convex combination of ρ∗1, . . . ,ρ
∗
j is optimal.

Proof. See Section 3.6.8

3.3 Analytical and numerical comparisons

This section is dedicated to the performance assessment of the newly introduced optimal designs. Start-
ing with the normal model, ρ∗ and ρ̃ will be compared with the balanced allocation ρB and the design
ρM = (e1 + eK)/2 proposed by Baldi Antognini et al2 and Singh and Davidov7, which is the optimal
design for normal homoscedastic data (i.e., ρ̃ = ρM ) and it is also the target maximizing the mini-
mum power for both restricted and unrestricted likelihood ratio tests under the simple order restriction
θ1 ≥ . . . ≥ θK . Whereas for binary and exponential responses, we compare our proposals with ρB and
the design ρH proposed by Tymofyeyev et al9 and Zhu and Hu11, that maximizes the power under the
constraint of a minimum prefixed threshold of allocation to each treatment.

In what follows, both inferential and ethical criteria will be assessed. For every design ρ, besides the
statistical powerPn(ρ) = Pr

(
χ2
b(nφ(ρ)) > qb,0.05

)
(where b is the appropriate df), a first approximated

measure of efficiency is simply provided by Λ(ρ) = φ(ρ)/φ(ρ̃), namely the ratio between the NCP
induced by ρ over its optimal value (i.e., the one corresponding to the unconstrained optimal design ρ̃).
Taking into account ρM , from (3.2.1) and (3.2.2) it follows that

Λ(ρM ) =

(θ1−θK)2

2(v1+vK)

max
i,k∈{1,...,K}

(
θi−θk√
vi+
√
vk

)2 . (3.3.1)

From Theorem 3.2.1, when {1;K} is the pair of treatments maximizing the side of (3.2.2), then Λ(ρM ) ={
2[ς2

1K + (1− ς1K)2]
}−1

≥ 1/2, guaranteeing good performance even in the presence of strong het-
eroscedasticity between the two extreme treatment groups (namely when ς1K → {0; 1}). Whereas, if
{̃i, k̃} 6= {1;K}, then Λ(ρM ) tends to vanish; indeed, assuming for example the normal heteroscedastic
model with v1 = vK and vĩ = vk̃ (where, clearly, v1 > vĩ), then Λ(ρM ) → 0 as vĩ/v1 → 0 (e.g.,
by letting θ = (15, 14, 13, 10, 9)> and v = (40, 1, 35, 1, 40)>, then Λ(ρM ) = 0.056). Adopting ρB
instead, from (3.2.1) and (3.2.9)

Λ(ρB) =

(
T−1
T

)
1
K

∑K
k=1

(θ1−θk)2

vk

max
i,k∈{1,...,K}

(
θi−θk√
vi+
√
vk

)2 . (3.3.2)

For normal homoscedastic data, Λ(ρB) = 4 (θ1−θK)−2K−1
∑K

i=1(θi− θ̄)2, where θ̄ = K−1
∑K

k=1 θk.
By applying the Von Szokefalvi-Nagy inequality, Λ(ρB) ≥ 2K−1, namely ρB tends to exhibit poor
performances as the number of treatment groups grows. In this regard, Figure 3.1 displays the behaviour
of Λ(ρB) for different models with K = 3 and 5 treatments as θ2 varies. In particular, for the normal
homoscedastic (with v = 1), exponential and Poisson models we consider θ> = (11, θ2, 1) for K = 3
and θ> = (11, θ2, 2, 1.5, 1) for K = 5, where in both scenarios θ2 varies between 2 and 10; whereas for
the binary model we set θ> = (0.9, θ2, 0.1) for K = 3 and θ> = (0.9, θ2, 0.2, 0.15, 0.1) for K = 5,
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with θ2 varying between 0.2 and 0.8. For all the considered models, the performance of ρB considerably
deteriorates for K = 5, especially for binary, exponential and Poisson responses, whose efficiencies are
always lower than 61%. For normal and binary outcomes, Λ(ρB) tents to grow for values of θ2 close to
θ3, with maximum efficiency around 80%. As regards Poisson and exponential models the performances
improve as θ2 → θ1, whereas for θ2 close to θ3 the efficiency becomes even lower than 40%.
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Figure 3.1: Behaviour of Λ(ρB) forK = 3 and 5 treatments as θ2 varies. For the normal homoscedastic,
exponential and Poisson models θ> = (11, θ2, 1) and θ> = (11, θ2, 2, 1.5, 1), while for binary data
θ> = (0.9, θ2, 0.1) and θ> = (0.9, θ2, 0.2, 0.15, 0.1).

As regards ethics, in the multi-treatment context several ethical measures could be adopted, some of
them are only model-specific. In our general set-up, as a measure of ethics we take into account the total
expected outcome En(ρ) = nθ>ρ; the corresponding ethical efficiency (θ>ρ− θK)/(θ1 − θK) ∈ [0; 1]
will be provided within brackets. Since E2n(ρ) = 2En(ρ), in the following tables the ethical criterion
will be provided only for n = 100.

As previously showed, the unconstrained optimal design ρ̃ maximizes the NCP and the power as
well; therefore, it does not exists a target with better performances in terms of both ethics and power with
respect to ρ̃, simultaneously. Whereas, in some circumstances, ρ̃ dominates ρB and ρM , as discussed in
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the following proposition.

Proposition 3.3.1. Let {̃i, k̃} be the pair of treatments maximizing the RHS of (3.2.2) with ĩ < k̃. If
ς̃ik̃ ≥ (θ̄ − θk̃)/(θĩ − θk̃) then ρ̃ dominates ρB , namely En(ρ̃) ≥ En(ρB) and Pn(ρ̃) ≥ Pn(ρB),
simultaneously, for every sample size n. Analogously, if ς̃ik̃ ≥ (θ1 + θK − 2θk̃)/[2(θĩ − θk̃)], then
ρ̃ dominates ρM . Moreover, if the variance v(·) of a given statistical model is non-decreasing and
θĩ + θk̃ ≥ max{2θ̄; θ1 + θK}, then ρ̃ dominates both ρM and ρB .

Proof. The proof follows easily from (3.2.1) after some algebra, by observing that En(ρB) = nθ̄,
En(ρM ) = n(θ1 + θK)/2, while En(ρ̃) = n

[
θĩς̃ik̃ + θk̃(1− ς̃ik̃)

]
.

Starting from the case of normal responses, Tables 3.1, 3.2 and 3.3 summarize the performances
in terms of power Pn with n = 50 and 100 (within brackets the corresponding efficiency evaluated
with respect to ρ̃), and ethical criterion En (with n = 100) of the considered allocations for K = 3, 4
and 5 treatments, as θ and v vary. Whereas, Tables 3.4 and 3.5 show the results in the case of binary
and exponential outcomes, respectively, where the minimum proportion of subjects assigned to each
treatment group for ρH is set to 0.2 (K = 3, 4) and 0.15 (K = 5).

Let us first consider the results for normal response trials in Tables 3.1, 3.2 and 3.3. Clearly, the
unconstrained optimal design ρ̃ exhibits the highest power, with an ethical efficiency varying between
42.9% and 72.2%. Whereas, the constrained optimal target ρ∗ substantially shows the highest ethical
efficiency (between 51.8% and 70.2%) also guaranteeing valid performances in terms of power (for n =
100, its efficiency is always greater than 65.6%). Excluding the homoscedastic scenario, the power of
ρM is strictly related to the treatment variances: for unordered variances ρM exhibits poor performances
(showing in some cases an extremely low efficiency, equal to 39.3% for K = 4 and n = 50), while
when the variances are ordered as the treatment effects its power tends to increase. Moreover, the ethical
efficiency of ρM is always equal to 0.5 and in several scenarios ρM is dominated by ρ∗, especially when
the number of the treatment groups increases. The balanced design ρB shows the worst performances
in terms of both power and ethical gain and it is always dominated by ρ∗. The power provided by the
unconstrained optimal design ρ̃ with n = 50 observations tends to be quite similar to the one of ρB with
n = 100 subjects.

As regards binary trials in Table 3.4, the constrained optimal design ρ∗ and ρH tend to perform
quite similarly in terms of power, with an efficiency always higher than 68%, whereas ρB shows the
lowest statistical power with a maximum loss up to 44%. Taking into account the ethical criterion, that
in this case corresponds to the total expected successes, ρ∗ and ρ̃ guarantee the highest ethical efficiency
(with only one exception, where En(ρB) is slightly bigger with respect to En(ρ̃)), with an ethical gain
up to 8 and 12 successes with respect to ρH and ρB , respectively. Similar considerations still hold for
exponential responses reported in Table 3.5, where the minimum power efficiency becomes 73% for ρ∗,
67% for ρH and 58% for the balanced allocation. The ethical gain (i.e., the additional total expected
survival time in this context) induced by ρ∗ with respect to ρH ranges from 36 to 90 (corresponding
to a gain in efficiency between 5% − 18%) and it is even more evident for ρB (the additional expected
survival is up to 250, with an ethical gain up to 33% in terms of efficiency). The unconstrained optimal
design ρ̃ exhibits the highest power and, at the same time, the greatest ethical gain, and therefore it
dominates all the other designs. Similarly to the case of normal responses, the power induced by ρ̃
with n = 50 observations tends to be quite similar to those of ρB and ρH with n = 100 subjects. In
general, for all the considered models, both ρ̃ and ρ∗ present high values of ethical efficiency. Moreover,
for normal homoscedastic, binary and exponential responses, it is evident that ρB is dominated by ρ∗
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and also by ρ̃ (with the exception of the second last scenario of Table 3.4). As further comparisons
(omitted here for brevity) showed, the results for Poisson outcomes are substantially the same of those
of the exponential model. The case of exponential responses with censoring tends to be similar to that
of Normal heteroscedastic data with variances ordered as the treatment effects, and it is strongly affected
by the chosen censoring scheme.

Table 3.1: Power Pn and total expected outcomes En (efficiencies within brackets) for normal responses
with K = 3 treatments, as θ and v vary.

θ = (1.5, 1.1, 1)> ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 1, 1)>
ρ∗ = (.494, .253, .253)> .283 (.667) .519 (.736) 127 (.544)
ρ̃ = ρM .424 (1) .705 (1) 125 (.500)
ρB .257 (.606) .475 (.674) 120 (.400)

v = (1, 2, 6)>

ρ∗ = (.5, .5, 0)> .211 (.977) .372 (.976) 130 (.600)
ρ̃ = (.414, .586, 0)> .216 (1) .381 (1) 127 (.531)
ρM .157 (.727) .267 (.701) 125 (.500)
ρB .153 (.708) .269 (.706) 120 (.400)

v = (6, 2, 1)>

ρ∗ = (.668, .166, .166)> .121 (.688) .200 (.656) 135 (.702)
ρ̃ = (.71, 0, .29)> .176 (1) .305 (1) 136 (.710)
ρM .157 (.892) .267 (.875) 125 (.500)
ρB .098 (.557) .151 (.495) 120 (.400)

v = (2, 1, 6)>
ρ∗ = ρ̃ = (.586, .414, 0)> .216 (1) .381 (1) 133 (.669)
ρM .143 (.662) .240 (.630) 125 (.500)
ρB .135 (.625) .230 (.604) 120 (.400)
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Table 3.2: Power Pn and total expected outcomes En (efficiencies within brackets) for normal responses
with K = 4 treatments, as θ and v vary.

θ = (2, 1.8, 1.1, 1)> ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 1, 1, 1)>
ρ∗ = (.37, .21, .21, .21)> .747 (.793) .971 (.972) 156 (.560)
ρ̃ = ρM .942 (1) .999 (1) 150 (.500)
ρB .729 (.774) .965 (.966) 148 (.475)

v = (1, 1.5, 2, 7)>

ρ∗ = (1/3, 1/3, 1/3, 0)> .467 (.622) .778 (.810) 163 (.633)
ρ̃ = (.414, 0, .586, 0)> .751 (1) .961 (1) 147 (.473)
ρM .424 (.565) .705 (.734) 150 (.500)
ρB .386 (.514) .692 (.720) 148 (.475)

v = (7, 2, 1.5, 1)>

ρ∗ = (.309, .309, .191, .191)> .364 (.561) .662 (.726) 158 (.575)
ρ̃ = (0, .586, 0, .414)> .649 (1) .912 (1) 147 (.469)
ρM .424 (.653) .705 (.773) 150 (.500)
ρB .347 (.535) .637 (.698) 148 (.475)

v = (12, 1.5, 9, 1)>
ρ∗ = (.275, .275, .225, .225)> .340 (.472) .627 (.661) 152 (.518)
ρ̃ = (0, .55, 0, .45)> .720 (1) .949 (1) 144 (.440)
ρM .284 (.393) .501 (.528) 150 (.500)
ρB .337 (.468) .622 (.655) 148 (.475)

Table 3.3: Power Pn and total expected outcomes En (efficiencies within brackets) for normal responses
with K = 5 treatments, as θ and v vary.

θ = (3, 2.7, 2, 1.2, 1)> ρ P50(ρ) P100(ρ) E100(ρ)

v = (1, 1, 1, 1, 1)>
ρ∗ = (.36, .16, .16, .16, .16)> .999 (.999) 1 (1) 218 (.592)
ρ̃ = ρM 1 (1) 1 (1) 200 (.500)
ρB .998 (.998) 1 (1) 198 (.490)

v = (1, 1.5, 2, 3, 15)>

ρ∗ = (.277, .241, .241, .241, 0)> .843 (.846) .992 (.992) 225 (.626)
ρ̃ = (.366, 0, 0, .634, 0)> .997 (1) 1 (1) 186 (.429)
ρM .705 (.707) .942 (.942) 200 (.500)
ρB .765 (.767) .978 (.978) 198 (.490)

v = (12, 3, 2, 1.5, 1)>

ρ∗ = (.287, .287, .142, .142, .142)> .794 (.800) .985 (.985) 223 (.616)
ρ̃ = (0, .634, 0, 0, .366)> .993 (1) 1 (1) 208 (.539)
ρM .792 (.798) .975 (.975) 200 (.500)
ρB .762 (.767) .978 (.978) 198 (.490)

v = (5, 3, 10, 1, 15)>

ρ∗ = (.4, .2, .2, .2, 0)> .836 (.857) .991 (.991) 238 (.690)
ρ̃ = (.691, 0, 0, .309, 0)> .976 (1) 1 (1) 244 (.722)
ρM .609 (.624) .885 (.885) 200 (.500)
ρB .696 (.713) .957 (.957) 198 (.490)
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Table 3.4: Power Pn and total expected outcomes En (efficiencies within brackets) for binary responses
with K = 3, 4 and 5 treatments, as θ varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(.4, .1, .05)>

ρ∗ = (.658, .171, .171)> .827 (.882) .987 (.988) 29 (.682)
ρ̃ = (.692, 0, .308)> .938 (1) .999 (1) 29 (.692)
ρH = (.593, .2, .207)> .821 (.875) .986 (.987) 27 (.624)
ρB .663 (.707) .932 (.933) 18 (.381)

(.6, .4, .25)>

ρ∗ = (.480, .260, .260)> .516 (.675) .827 (.855) 46 (.591)
ρ̃ = (.531, 0, .469)> .765 (1) .967 (1) 44 (.531)
ρH = (.432, .2, .368)> .566 (.74) .869 (.899) 43 (.518)
ρB .485 (.634) .796 (.823) 42 (.476)

(.4, .3, .1, .05)>

ρ∗ = (.562, .146, .146, .146)> .725 (.773) .964 (.965) 29 (.688)
ρ̃ = (.692, 0, 0, .308)> .938 (1) .999 (1) 29 (.692)
ρH = (.4, .2, .2, .2)> .693 (.739) .952 (.953) 25 (.571)
ρB .611 (.651) .910 (.911) 21 (.464)

(.5, .2, .15, .1)>

ρ∗ = (.583, .139, .139, .139)> .729 (.774) .965 (.966) 35 (.635)
ρ̃ = (.625, 0, 0, .375)> .942 (1) .999 (1) 35 (.625)
ρH = (.4, .2, .2, .2)> .670 (.711) .942 (.943) 29 (.475)
ρB .525 (.557) .846 (.847) 24 (.344)

(.8, .7, .6, .5, .1)>

ρ∗ = (.316, .171, .171, .171, .171)> .992 (.992) 1 (1) 58 (.683)
ρ̃ = (.571, 0, 0, 0, .429)> 1 (1) 1 (1) 50 (.571)
ρH = (.246, .15, .15, .15, .304)> .998 (.998) 1 (1) 50 (.567)
ρB .990 (.990) 1 (1) 54 (.629)

(.55, .4, .3, .1, .05)>

ρ∗ = (.544, .114, .114, .114, .114)> .924 (.925) .999 (.999) 40 (.692)
ρ̃ = (.695, 0, 0, 0, .305)> .999 (1) 1 (1) 40 (.695)
ρH = (.378, .15, .15, .15, .172)> .909 (.910) .998 (.998) 34 (.573)
ρB .817 (.818) .989 (.989) 28 (.460)
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Table 3.5: Power Pn and total expected outcomes En (efficiencies within brackets) for exponential
responses with K = 3, 4 and 5 treatments, as θ varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(4, 2, 1)>

ρ∗ = (.722, .139, .139)> .950 (.961) .999 (.999) 331 (.769)
ρ̃ = (.8, 0, .2)> .989 (1) 1 (1) 340 (.800)
ρH = (.6, .2, .2)> .941 (.951) .999 (.999) 300 (.667)
ρB .856 (.866) .992 (.992) 233 (.444)

(10, 7, 3)>

ρ∗ = (.634, .183, .183)> .902 (.932) .997 (.997) 817 (.739)
ρ̃ = (.769, 0, .231)> .968 (1) 1 (1) 838 (.769)
ρH = (.574, .2, .226)> .902 (.932) .997 (.997) 782 (.688)
ρB .849 (.877) .991 (.991) 667 (.524)

(11, 9, 5, 3)>

ρ∗ = (.625, .125, .125, .125)> .875 (.892) .995 (.995) 899(.749)
ρ̃ = (.786, 0, 0, .214)> .981 (1) 1 (1) 929 (.786)
ρH = (.4, .2, .2, .2)> .843 (.859) .992 (.992) 780 (.600)
ρB .789 (.804) .982 (.982) 700 (.500)

(14, 10, 7, 5)>

ρ∗ = (.619, .127, .127, .127)> .672 (.732) .943 (.946) 1145 (.717)
ρ̃ = (.737, 0, 0, .263)> .918 (1) .997 (1) 1163 (.737)
ρH = (.4, .2, .2, .2)> .619 (.674) .915 (.918) 1000 (.556)
ρB .534 (.582) .854 (.857) 900 (.444)

(7, 5, 4, 3, 2)>

ρ∗ = (.624, .094, .094, .094, .094)> .759 (.778) .977 (.977) 569 (.737)
ρ̃ = (.778, 0, 0, 0, .222)> .975 (1) 1 (1) 589 (.778)
ρH = (.378, .15, .15, .15, .172)> .713 (.731) .963 (.963) 479 (.558)
ρB .603 (.618) .911 (.911) 420 (.440)

(14, 13, 10, 5, 4)>

ρ∗ = (.58, .105, .105, .105, .105)> .825 (.846) .990 (.990) 1148 (747)
ρ̃ = (.778, 0, 0, 0, .222)> .975 (1) 1 (1) 1178 (.778)
ρH = (.4, .15, .15, .15, .15)> .804 (.825) .987 (.987) 1040 (.640)
ρB .741 (.760) .972 (.972) 920 (.520)

3.4 Implementation via response-adaptive randomization and discussion

The unconstrained optimal design ρ̃ in Theorem 3.2.1 and the constrained one ρ∗ in Theorem 3.2.2
depend on the unknown model parameters and therefore they are a-priori unknown (i.e., locally optimal).
The dependence on the model parameters acts in terms of both i) the a-priori unknown treatment ordering
and ii) the functional form of the optimal design itself, which is often a degenerate allocation with no
assignments to some treatment groups.

Instead of other alternative approaches suggested in the literature, which are intended to mediate
the design criterion onto the entire parameter space to obtain good overall performances (such as, e.g.,
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Bayesian or maxi-min approaches), in this paper we consider response-adaptive randomization as the
natural solution to this local optimality problem. Under this framework, the exact optimal designs are
sequentially estimated step-by-step: on the basis of earlier responses and past assignments, the unknown
parameters are estimated along with the treatment ordering (which could change as the trial progresses)
and thus, the next assignment is randomly forced to progressively approach the optimal target (for in-
stance, by applying the Doubly Adaptive Biased Coin Design of Hu and Zhang5).

Even if response-adaptive randomization methodology seems a natural choice in order to implement
the optimal proposed allocations, we wish to stress that the optimal designs ρ̃ and ρ∗ cannot be targeted
directly, due to the fact that i) their functional forms are locally discontinuous around the subset of ΘK

under which the treatment ordering changes (namely, where θi tends to coincide with one or more θks)
and ii) in several scenarios these optimal designs lay on the boundary. To overcome these drawbacks,
that prevent the applicability of standard response-adaptive randomization methodology, a smoothing
transformation (e.g., via a Gaussian kernel) can be applied to obtain a continuous and non-degenerate
version of these targets (see, e.g., Tymofyeyev et al9). In particular, for the mono-parametric exponential
family we take into account the convolution of ρ̃ = ρ̃(θ) = (ρ̃1(θ), . . . , ρ̃K(θ))> (or, analogously, ρ∗),
with a K-dim Gaussian kernel

G(θ) = (2πσ2)−K/2 exp

(
−θ

2
1 + · · ·+ θ2

K

2σ2

)
,

(σ2 > 0 controls the degree of smoothing), namely we define the smoothed version

ρ̃S(θ) = (ρ̃S1 (θ), . . . , ρ̃SK(θ))>

of ρ̃, by letting

ρ̃Sk (θ) = (ρ̃k ∗G)(θ) =

∫
ΘK

ρ̃k(x)G(θ − x)dx, k = 1, . . . ,K (3.4.1)

(which could be naturally extended to the case of heteroscedastic normal model where ρ̃ = ρ̃(θ;v) :
ΘK ×R+K → [0; 1]).

This smoothing transformation essentially impacts on the points of discontinuity of ρ̃ and on its
boundary, so that the smoothed optimal design ρ̃S obey the classical regularity conditions of continu-
ity, non-degeneracy and differentiability (see, e.g., Baldi Antognini and Giovagnoli1 or Hu and Rosen-
berger4), that allows for the standard asymptotic inference for response-adaptive randomization proce-
dures (therefore, all the asymptotics in Section 3.2.1 are still valid). For instance, taking into account
binary trials with K = 3 treatments, Figure 3.2 illustrates the behaviour of the first component of ρ̃ and
the one of its smoothed version ρ̃S , with θ = (θ1, θ2, 0.15)> as θ1 and θ2 vary in [0; 1] (where now the
treatment ordering is free to change on the basis of the values of θ1 and θ2).

In order to show how the performances of ρ̃ and ρ̃S (as well as those of ρ∗ and ρ∗S) are quite similar,
Table 3.6 presents the statistical power Pn and total expected outcomes En under the same scenarios of
Table 3.4 with K = 3 treatments.
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Figure 3.2: Comparison of ρ̃1(θ) and ρ̃S1 (θ) as θ = (θ1, θ2, 0.15)> vary.

Table 3.6: Power Pn and total expected outcomes En (efficiencies within brackets) for binary responses
with K = 3 treatments, as θ varies.

θ ρ P50(ρ) P100(ρ) E100(ρ)

(.4, .1, .05)>

ρ∗ = (.658, .171, .171)> .827 (.882) .987 (.988) 29 (.682)
ρ∗S = (.660, .170, .170)> .827 (.882) .987 (.988) 29 (.684)
ρ̃ = (.692, 0, .308)> .938 (1) .999 (1) 29 (.692)
ρ̃S = (.742, .031, .227)> .872 (.930) .994 (.995) 31 (.747)

(.6, .4, .25)>

ρ∗ = (.480, .260, .260)> .516 (.675) .827 (.855) 46 (.589)
ρ∗S = (.476, .262, .262)> .516 (.675) .827 (.855) 46 (.591)
ρ̃ = (.531, 0, .469)> .765 (1) .967 (1) 44 (.531)
ρ̃S = (.549, .041, .409)> .645 (.843) .923 (.954) 45 (.567)

3.5 Conclusions

This paper discusses optimal designs for hypothesis testing in the presence of heterogeneous experimen-
tal groups, also encompassing the general one-way ANOVA with heteroscedastic errors. In particular,
we derive the allocation maximizing the NCP of the classical Wald test of homogeneity about the treat-
ment contrasts; this optimal design is a generalized Neyman allocation involving only two treatments,
not necessarily the best and the worst ones. Moreover, to account for the ordering among treatments, we
derive the optimal design maximizing the NCP of the homogeneity test, subject to an ethical constraint
reflecting the efficacy of the competing treatments. Due to the dependence on the unknown model param-
eters, these allocations are locally optimal and therefore a-priori unknown. Moreover, these designs are
degenerate allocations with possible local discontinuities. To avoid these drawbacks, a smoothing trans-
formation via Gaussian kernel implemented via response-adaptive randomization has been proposed.
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The suggested convolution avoids i) degeneracies by assigning a non-null mass on each treatment and
ii) potential discontinuities. Thus, these smoothed optimal designs could be approached via standard
response-adaptive randomization procedures that, by estimating at each step the unknown parameters as
well as the treatment ordering, change sequentially the probabilities of treatment assignments in order to
converge to the desired target.

As showed in Section 3.3, the balanced allocation is strongly inappropriate under heteroscedasticity.
Moreover, any deviation from the assumption of homoscedasticity could also affect the inferential per-
formances of ρM , which tents to exhibit very low statistical power, especially in the case of unordered
variances. In such scenarios, the new unconstrained optimal design ρ̃S , combined with response-adaptive
randomization methodology, provides a remarkable gain in terms of power with respect to all the other
designs, guaranteeing also high ethical standards. Nevertheless, whenever the ethical dimension plays a
crucial role, ρ∗S could be preferable since, although it places more emphasis on the ethical aspects, it
still guarantees good performances in terms of statistical power, also with respect to ρH .

3.6 Proofs

3.6.1 Proof of Lemma 3.2.1

From (3.2.1), φ(ρ) =
(∑K

k=1 ρkv
−1
k

)
Vπ(θ) = a>ρ where, for every i = 1, . . . ,K,

∂Vπ(θ)

∂ρi
=

(
vi

K∑
k=1

ρk
vk

)−1

[(θi − θ̄π)2 − Vπ(θ)]

and therefore
∂φ(ρ)

∂ρi
=
Vπ(θ)

vi
− Vπ(θ)− (θi − θ̄π)2

vi
= ai.

Furthermore,

∂2φ(ρ)

∂ρi∂ρj
= −2

(
K∑
k=1

ρk
vk

)−1
(θi − θ̄π)

vi

(θj − θ̄π)

vj
,

so the Hessian matrix

H(φ) = −2

(
K∑
k=1

ρk
vk

)−1


(θ1−θ̄π)

v1
...

(θK−θ̄π)
vK

 · [ (θ1−θ̄π)
v1

· · · (θK−θ̄π)
vK

]

is negative semi-definite, since it has K − 1 null eigenvalues and one eigenvalue (that coincides with the
Laplacian)

tr (H(φ)) = ∇2φ = −2

(
K∑
k=1

ρk
vk

)−1 K∑
k=1

ak
vk

< 0,

provided that A>θ 6= 0K−1.
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3.6.2 Proof of Theorem 3.2.1

Firstly, we will show that the unconstrained optimal design ρ̃ maximising the NCP of Wald test is of the
form of (3.2.2). Let ρ(l) denote a generic target with l components different from 0, then ρ(1) corresponds
to one of the standard basis ek (k = 1, . . . ,K) and clearly φ(ρ(1)) = 0, attaining the minimum of the
NCP. Taking now into account ρ(2) =

∑
k∈{i,j} ekρk, where ρj = 1− ρi ∈ (0; 1), from (3.2.1) we have

φ
(
ρ(2)

)
=

 ∑
k∈{i,j}

ρk
vk

−1

(θi − θj)2

{
ρi
vi

1− ρi
vj

}
,

and

φ
(
ρ(2)

)
≤ max

i,j∈{1,2,...,K}
(θi − θj)2

 max
ρi∈[0,1]

 ∑
k∈{i,j}

ρk
vk

−1

ρi
vi

1− ρi
vj

 . (3.6.1)

First, observe that

max
ρi∈[0,1]

 ∑
k∈{i,j}

ρk
vk

−1

ρi(1− ρi)
vivj

= max
ρi∈[0,1]

{
vi
ρi

+
vj

1− ρi

}−1

= min
ρi∈[0,1]

vi
ρi

+
vj

1− ρi
,

which is clearly minimized by the Neyman allocation ρ̃i = ςij . Thus, from (3.6.1),

φ(ρ̃) = max
i,j∈{1,2,...,K}

(θi − θj)2

{
ςij(1− ςij)

ςij(vj − vi) + vi

}
= max

i,j∈{1,2,...,K}

(
θj − θi√
vi +

√
vj

)2

,

so that if the pair of treatments {̃i, k̃} maximising the RHS of the previous equation is unique, then
ρ̃ = ρ̃ĩk̃ = eĩς̃ik̃ + ek̃ςk̃ĩ. When the pairs {̃i, k̃} and {̃i′, k̃′} satisfy (3.2.3), then both ρ̃ĩk̃ and ρ̃ĩ′k̃′ are
optimal designs, namely

φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′) = max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

. (3.6.2)

Moreover, every mixture of ρ̃ĩk̃ and ρ̃ĩ′k̃′ is still optimal, since for every ω ∈ [0; 1]

φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
≥ ωφ(ρ̃ĩk̃) + (1− ω)φ(ρ̃ĩ′k̃′) = φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′),

due to the concavity of φ(·) (see Lemma 3.2.1), but from (3.6.2), φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′) ≥ φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
.

Thus, φ
(
ωρ̃ĩk̃ + (1− ω)ρ̃ĩ′k̃′

)
= φ(ρ̃ĩk̃) = φ(ρ̃ĩ′k̃′).

In order to deal with other scenarios, namely φ(ρ(l)) with l > 2, assume wlog i < j < t. For the
case ρ(3) =

∑
k∈{i,j,t} ekρk, with ρt = 1− ρi − ρj , note that∇φ(ρ(3)) can be expressed as

∂φ(ρ(3))

∂ρk
=

(θk − θ̄π)2

vk
− (θt − θ̄π)2

vt
= ak − at, k = i, j.

If ∃ k s.t. ak 6= at, then ak > at implies that φ(ρ(3)) is increasing in ρk, namely the NCP is maximised
for ρ̃t = 0, and conversely, ak < at implies that φ(ρ(3)) is decreasing in ρk that is, it is maximised for
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ρ̃k = 0, so that in both cases φ(ρ(3)) ≤ φ(ρ̃). If instead ∇φ(ρ(3)) = 0K , namely ai = aj = at, from
ai = at we get θ̄π = (

√
vtθi +

√
viθt)/(

√
vt +

√
vi) and, from (3.2.1),

φ(ρ(3)) = at = v−1
t

(
θt −

√
vtθi +

√
viθt√

vt +
√
vi

)2

=

(
θi − θt√
vt +

√
vi

)2

≤ φ(ρ̃).

By applying the same reasoning, it follows that φ(ρ(l)) ≤ φ(ρ̃) for l = 4, . . . ,K. Indeed, taking into
account φ(ρ(K)), if ∇φ(ρ(K)) = 0K then a1 = . . . = aK ; from a1 = aK we get θ̄π = (

√
vKθ1 +√

v1θK)/(
√
vK +

√
v1), so that

φ(ρ̃(K)) =

(
θ1 − θK√
v1 +

√
vK

)2

≤ φ(ρ̃);

while if∇φ(ρ(K)) 6= 0K , then φ(ρ(K)) could be maximised by some ρ(K−1) and, recursively, it follows
that φ(ρ(K)) ≤ φ(ρ̃), which concludes the proof.

3.6.3 Proof of Corollary 3.2.1

Since θĩ = θĩ′ and vĩ = vĩ′ , the pair {̃i, k̃} maximises the RHS of (3.2.2) if and only if {̃i′, k̃} maximises
the RHS of (3.2.2). Therefore, from Theorem 3.2.1, both ρ̃ĩk̃ and ρ̃ĩ′k̃ are optimal designs as well as
every mixture of them, where clearly ς̃ik̃ = ς̃i′k̃.

The case of two clusters of treatments follows easily from the previous result by noticing that

max
i,k∈{1,...,K}

(
θi − θk√
vi +

√
vk

)2

=

(
θ1 − θK√
v1 +

√
vK

)2

,

namely the pair {1,K} surely maximises the RHS of (3.2.2).

3.6.4 Proof of Corollary 3.2.2

Letting i < k, then θi ≥ θk and therefore the RHS of (3.2.2) becomes

max
i<k

(
θi − θk√
vi +

√
vk

)2

=

(
max
i<k

θi − θk√
vi +

√
vk

)2

. (3.6.3)

For binary trials, by letting

θi − θk√
vi +

√
vk

=
θi − θk√

θi(1− θi) +
√
θk(1− θk)

= F (θi, θk), (3.6.4)

then F (·) attains its minimum when θi = θk; moreover, F (θi, θk) is increasing in θi ∈ (θk; θ1], since

∂F (θi, θk)

∂θi
=
θi(1− θk) + θk(1− θi) + 2

√
θiθk(1− θi)(1− θk)

2
√

(1− θi)θi
(√

(1− θi)θi +
√

(1− θk)θk
)2 > 0,

and decreasing in θk ∈ [θK ; θi), because

∂F (θi, θk)

∂θk
=
−θi(1− θk)− θk(1− θi)− 2

√
θiθk(1− θi)(1− θk)

2
√

(1− θk)θk
(√

(1− θi)θi +
√

(1− θk)θk
)2 < 0.



70 Paper B

Thus,

max
i<k

(
θi − θk√

θi(1− θi) +
√
θk(1− θk)

)
=

θ1 − θK√
θ1(1− θ1) +

√
θK(1− θK)

,

namely, the optimal design is ρ̃1K with ς1K =
√
θ1(1− θ1)/(

√
θ1(1− θ1) +

√
θK(1− θK)) and

φ(ρ̃1K) =
{

(θ1 − θK)/(
√
θ1(1− θ1) +

√
θK(1− θK))

}2
. Taking into account Poisson outcomes,

max
i<k

(
θi − θk√
θi +

√
θk

)
= max

i<k

(√
θi −

√
θk

)
=
√
θ1 −

√
θK

and therefore ρ̃1K is the optimal design with ς1K =
√
θ1/(
√
θ1 +

√
θK) and

φ(ρ̃1K) =
{

(θ1 − θK)/(
√
θ1 +

√
θK)

}2. For exponential responses,

max
i<k

(
θi − θk
θi + θk

)
=
θ1 − θK
θ1 + θK

= max
x>1

(
x− 1

x+ 1

)
,

where x = θi/θk ∈ [1; θ1/θK ]; since the RHS is increasing in x, the optimal design is ρ̃1K with
ς1K = θ1/(θ1 + θK) and φ(ρ̃1K) = {(θ1 − θK)/(θ1 + θK)}2. For normal homoscedastic outcomes,
from (3.6.3),

max
i<k

(
θi − θk
2
√
v

)2

=
(θ1 − θK)2

4v

is attained at the optimal design ρ̃1K with ς1K = 1/2. In the presence of clusters of best(worst) treat-
ments, ς1K (ςK1) should be spanned over the corresponding group of treatments.

3.6.5 Proof of Lemma 3.2.2

From now on let ϑi = θ1 − θi for i = 1, . . . ,K, then 0 = ϑ1 ≤ . . . ≤ ϑK , with at least one strict
inequality holds. For every i = 1, . . . ,K − 1, σj ≥ βj ; indeed,(

K∑
i=1

ϑi
vi

)(
j∑
i=1

1

vi

)
≥
(

j∑
i=1

ϑi
vi

)(
K∑
i=1

1

vi

)
⇐⇒ K∑

i=j+1

ϑi
vi

( j∑
i=1

1

vi

)
≥
(

j∑
i=1

ϑi
vi

) K∑
i=j+1

1

vi


and therefore, by rearranging the terms in the summations,

σj − βj =

j∑
k=1

1

vk


K∑

i=j+1

ϑi − ϑj
vi

 ≥ 0,

since ϑi ≥ ϑj for every i > j. Moreover, note that σj = βj if and only if ϑj = . . . = ϑK . Analogously,
βj ≥ γj , since

βj − γj =

j∑
k=1

ϑk
vk


K∑

i=j+1

ϑi(ϑi − ϑj)
vi

 ≥ 0,
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and the equality holds if i) 0 = ϑ1 = . . . = ϑj or ii) ϑj = . . . = ϑK . Case i) corresponds to
β1 = . . . = βj = γ1 = . . . = γj = 0, while under ii) σj = βj = γj . If γj = 1, then βj = γj if and
only if 0 = ϑ1 = . . . = ϑK ; indeed, under ii), σj = βj = γj = 1, that implies (K − j)∑j

i=1 v
−1
i =

j
∑K

i=j+1 v
−1
i and

(K − j)
j∑
i=1

ϑi
vi

= jϑj

K∑
i=j+1

1

vi
= ϑj(K − j)

j∑
i=1

1

vi
,

namely
∑j

i=1(ϑi − ϑj)/vi = 0, i.e. 0 = ϑ1 = . . . = ϑj , which, combined with ii), corresponds to
ϑ1 = . . . = ϑK = 0 (i.e., θ1 = . . . = θK).

Furthermore, from (3.2.5), due to the Cauchy-Schwarz inequality

T =

[
K∑
k=1

(
v
−1/2
k

)2
][

K∑
k=1

(
ϑkv

−1/2
k

)2
][

K∑
k=1

ϑkv
−1
k

]−2

≥ 1,

where the equality holds if and only if ϑ1 = . . . = ϑK = 0.

3.6.6 Proof of Theorem 3.2.2

To avoid a cumbersome notation, we let ϑ̄π =
∑K

k=1 ϑkπk and ϑ̄πB
= (

∑K
k=1 ϑkv

−1
k )/(

∑K
k=1 v

−1
k )

(namely assuming πB = π(ρB)). Recalling that φ(ρ) = a>ρ, where clearly ai = v−1
i (θi − θ̄π)2 =

v−1
i (ϑi − ϑ̄π)2. Moreover, from now on we let āk = k−1

∑k
i=1 ai for k = 1, . . . ,K − 1, while ā =

K−1
∑K

i=1 ai.
The constrained maximisation problem of Theorem 3.2.2 can be address via Lagrange multipliers,

where L(ρ, λ1, . . . , λK) = φ(ρ)−∑K−1
i=1 λi(ρi+1 − ρi)− λK

(∑K
i=1 ρi − 1

)
.

Setting ∂L(ρ, λ1, . . . , λK)/∂ρi = 0 for i = 1, . . . ,K, then
a1 + λ1 = λK

ai − λi−1 + λi = λK , i = 2, . . . ,K − 1,

aK − λK−1 = λK

namely, by summing all the equations, λK = ā > 0 (since ϑK > 0) and λi = i(ā − āi) for
i = 1, . . . ,K − 1.

Case 1: λi = 0 and λj > 0 for every j 6= i. Under this scenario, the corresponding target is ρ∗i =

ξ
∑i

k=1 ek + τ
∑K

k=i+1 ek, where τ ∈ (0,K−1] and ξ = [1 − τ(K − i)]i−1 ≥ τ , since 1>Kρ
∗
i = 1.

Under ρ∗i ,

ϑ̄π = ϑ̄πB
·
{
τK + (1− τK)βi
τK + (1− τK)σi

}
, (3.6.5)

where [τK + (1 − τK)βi]/[τK + (1 − τK)σi] ∈ (βi/σi, 1]. Therefore, ρ∗i is optimal iff ā = āi and
ā > āj for every j 6= i. Condition ā = āi can be restated as

ϑ̄2
π

(
1

K

K∑
k=1

1

vk

)
[1− σi]− 2ϑ̄π

(
1

K

K∑
k=1

ϑk
vk

)
[1− βi] +

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1− γi] = 0.
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Clearly, if σi = 1 then ϑ̄π = ϑ̄πB
{T (1− γi)/[2(1− βi)]}. If σi 6= 1 instead, this is a quadratic function

with respect to ϑ̄π and the corresponding roots are ϑ̄π = ϑ̄πB
·A±i , whereA±i = [1−βi±

√
Ri]/(1−σi)

andRi = (1−βi)2−T (1−σi)(1−γi). Thus, by (3.6.5),A±i = [τK+(1−τK)βi]/[τK+(1−τK)σi] ∈
(βi/σi, 1]. However, A+

i is not an admissible solution since (unless the degenerate case θ1 = . . . = θK ,
which is clearly excluded):

• if σi < 1, A+
i ≤ 1 ⇐⇒ √

Ri ≤ βi − σi < 0;

• if σi > 1, A+
i > βi/σi ⇐⇒ σi

√
Ri < βi − σi < 0.

Taking into account A−i , when γi 6= 1 it can be rewritten as A−i = T (1−γi)/[1−βi+
√
Ri] (which also

encompasses the case σi = 1), and therefore the definition of Ai in (3.2.6) follows immediately. Now,
Ai ∈ (βi/σi, 1] when P1a holds. Indeed,

• when γi < 1, Ai ≤ 1 ⇐⇒ T (1− γi) ≤ 1 + σi − 2βi, which also guarantees that Ri ≥ 0 (since
(1−βi)2 ≥ T (1−σi)(1−γi) when σi ≥ 1, while for σi < 1 then (1−βi)2/(1−σi) ≥ 1+σi−2βi).
In addition, Ai > βi/σi when T (1 − γi) > βi(2σi − βi − βiσi)/σ

2
i (which also implies that

T (1− γi) > (1− βi)βi/σi, since βi(1− βi)/σi < βi(2σi − βi − βiσi)/σ2
i );

• when γi > 1, Ai > βi/σi ⇐⇒ T (1− γi) > βi(2σi − βi − βiσi)/σ2
i , also ensuring that Ri ≥ 0

(since (1 − βi)
2/(1 − σi) ≤ βi(2σi − βi − βiσi)/σ

2
i ). Moreover Ai ≤ 1 ⇐⇒ 1 − βi ≤

T (1− γi) ≤ 1 + σi − 2βi (where T (1− γi) ≥ 1− βi is trivially satisfied when Ai > βi/σi);

• if γi = 1, condition P1a reduces to 2σi − βi − βiσi < 0 ≤ 1 + σi − 2βi.

Condition ā > āj for every j 6= i corresponds to P1b; indeed, by combining

ϑ̄2
π

(
1

K

K∑
k=1

1

vk

)
[1− σj ]− 2ϑ̄π

(
1

K

K∑
k=1

ϑk
vk

)
[1− βj ] +

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1− γj ] > 0

(j = 1, . . . ,K − 1, j 6= i) with ϑ̄π = ϑ̄πB
·Ai, then(∑K

k=1 ϑkv
−1
k

)2 [
A2
i (1− σj)− 2Ai(1− βj)

]
∑K

k=1 v
−1
k

+

(
K∑
k=1

ϑ2
k

vk

)
(1− γj) > 0,

namely T−1
(∑K

k=1 ϑ
2
kv
−1
k

) [
A2
i (1− σj)− 2Ai(1− βj) + T (1− γj)

]
> 0, i.e., fj(Ai) > 0, where

fj(z) = z2(1 − σj) − 2z(1 − βj) + T (1 − γj). Thus, if there exists a treatment i ∈ {1, . . . ,K − 1}
s.t. P1 holds, then ρ∗i is optimal with τ = (σiAi − βi)/{K[1− βi −Ai(1− σi)]}. Moreover under ρ∗i ,
since ā = āi,

φ(ρ∗i ) = a>ρ∗i = iā[1− τ(K − i)]i−1 + τ ā(K − i) = ā

and therefore (3.2.8) follows directly.

Case 2: λi = λj = 0 and λk > 0 for every k 6= {i, j}. Assuming (wlog) 1 ≤ i < j ≤ K − 1, the
corresponding target has the form

ρ∗ =

(
1− (j − i)η − (K − j)ν

i

) i∑
k=1

ek + η

j∑
k=i+1

ek + ν

K∑
k=j+1

ek, (3.6.6)
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where η ≥ ν ∈ (0,K−1] and j(η − ν) ≤ 1 − Kν ≤ j(η − ν) + i(1 − η). Under this scenario,
ā = āi = āj and ā > āk for k 6= {i, j}. Thus, if P1 holds for both i and j, then Ai = Aj (namely,
ϑ̄π = ϑ̄πB

· Ai = ϑ̄πB
· Aj) and P1b should be satisfied for every k 6= {i, j}. Indeed, if Ai 6= Aj ,

from P1b it follows that fj(Ai) > 0 but, at the same time, fi(Aj) > 0, which is impossible since
fj(Ai) > 0 ⇐⇒ fi(Aj) < 0. Adopting ρ∗ in (3.6.6), since ā = āi = āj ,

φ(ρ∗) = a>ρ∗ =

(
1− (j − i)η − (K − j)ν

i

) i∑
k=1

ak + η

j∑
k=i+1

ak + ν
K∑

k=j+1

ak

=

(
1− (j − i)η − (K − j)ν

i

)
iā+ ηā(j − i) + νā(K − j) = ā,

so that, combined with (3.2.8), φ(ρ∗) = φ(ρ∗i ) = φ(ρ∗j ). Moreover, every mixture of ρ∗i and ρ∗j is
optimal since, due to the concavity of φ(·),

φ(ρ∗i ) = φ(ρ∗j ) ≥ φ
(
ωρ∗i + (1− ω)ρ∗j

)
≥ ωφ(ρ∗i ) + (1− ω)φ(ρ∗j ) = φ(ρ∗i ) = φ(ρ∗j ).

Case 3: λi > 0 for every i = 1, . . . ,K − 1. Under this setting, ρ∗ = ρB and ϑ̄π = ϑ̄πB
. Balance is

optimal provided that ā > āi for i = 1, . . . ,K − 1, i.e.

ϑ̄2
πB

(
1

K

K∑
k=1

1

vk

)
[1− σi]− 2ϑ̄πB

(
1

K

K∑
k=1

ϑk
vk

)
[1− βi] +

(
1

K

K∑
k=1

ϑ2
k

vk

)
[1− γi] > 0,

namely fi(1) > 0 for every i = 1, . . . ,K − 1 (condition P2) and

φ(ρB) = ā =
1

K

[
ϑ̄2
πB

K∑
k=1

1

vk
− 2ϑ̄πB

K∑
k=1

ϑk
vk

+
K∑
k=1

ϑ2
k

vk

]
=

(
T − 1

TK

) K∑
k=1

ϑ2
k

vk
.

Case 4: in all the other scenarios, namely when P2 does not hold and @i satisfying P1, then the La-
grangian does not admit critical points, so that only boundary solutions could be optimal. Due to the
constraints ρ∗1 ≥ . . . ≥ ρ∗K , then ρ∗i = 0 implies that ρ∗j = 0 for every j > i; moreover, ρ∗2 = 0 should
be excluded since it corresponds to the minimum of the NCP. Starting from the case with ρ∗K = 0 and

using the same notation of Appendix 3.6.2, notice that φ
(
ρ(K−1)> ; 0

)
= φ

(
ρ(K−1)

)
; thus, if P1 or

P2 are satisfied, then ċ = 1 and therefore φ
(
ρ(K−1)

)
≤ φ

(
ρ∗[K−1]

)
; otherwise ρ∗K−1 = ρ∗K = 0 and,

iteratively, the same reasoning should be applied at most for ċ = K − 2, for which results of Remark
3.2.4 hold.

3.6.7 Proof of Corollary 3.2.3

If v(θ) is non-decreasing in θ, then {v−1
k ; k = 1, . . . ,K}, {ϑkv−1

k ; k = 1, . . . ,K} and {ϑ2
kv
−1
k ; k =

1, . . . ,K} are non decreasing in k and therefore {(σk, βk, γk); k = 1, . . . ,K−1} is still non-decreasing
with 1 ≥ σk ≥ βk ≥ γk ≥ 0 for every k = 1, . . . ,K − 1. Under condition (3.2.10),

• T > 1 + σ1 implies that P2 holds, since (1 + σ1)(1− γi) > 1 + σi − 2βi for i = 2, . . . ,K − 1;
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• while if T ≤ 1 + σ1, then A1 ∈ (0; 1] and P1 is satisfied, since fi(A1) > 0 for every i =
2, . . . ,K − 1; indeed, it corresponds to

T [(1− σi)− (1− γi)(1− σ1)] + 2(βi − γi)
[
1 +

√
1− T (1− σ1)

]
> 0, (3.6.7)

which trivially holds if 1− σi ≥ (1− γi)(1− σ1), while for 1− σi < (1− γi)(1− σ1) the LHS
in (3.6.7) is monotonically decreasing in T and (3.6.7) is satisfied for T = 1 + σ1.

For the normal homoscedastic model the proof is straightforward, since σi = 1 for i = 1, . . . ,K − 1
and condition (3.2.10) is trivially satisfied because βi ≥ γi for i = 2, . . . ,K − 1. Under Poisson data,
let ψk = θ1/θk for k = 1, . . . ,K (where 1 = ψ1 ≤ . . . ≤ ψK) and ψ̄ = K−1

∑K
i=1 ψi (while

ψ̄k = k−1
∑k

i=1 ψi). Thus, K−1
∑K

k=1 v
−1
k = ψ̄/θ1 and K−1

∑K
k=1 ϑkv

−1
k = ψ̄ − 1, so that (3.2.10)

becomes
1− γj
ψ̄

≥ ψ̄j

ψ̄
+ γj − 2

(
ψ̄j − 1

ψ̄ − 1

)
,

namely

(ψ̄j − 1)

[
2

ψ̄ − 1
− 1

ψ̄

]
≥
(
ψ̄ + 1

ψ̄

)
γj ⇐⇒

ψ̄j − 1

ψ̄ − 1
= βj ≥ γj .

For exponential data, by letting ψ̄2 = K−1
∑K

i=1 ψ
2
i and ψ̄2

k = k−1
∑k

i=1 ψ
2
i , then K−1

∑K
k=1 v

−1
k =

ψ̄2/θ2
1 and K−1

∑K
k=1 ϑkv

−1
k = (ψ̄2 − ψ̄)/θ1, while K−1

∑K
k=1 ϑ

2
kv
−1
k = ψ̄2 − 2ψ̄ + 1. Hence, after

some algebra, (3.2.10) becomes

ψ̄2
k − 1 ≥ ψ̄2

k − 2ψ̄k + 1

ψ̄2 − 2ψ̄ + 1
(ψ̄2 − 1) ⇐⇒ ψ̄k − 1

ψ̄ − 1
≥ ψ̄2

k − 1

ψ̄2 − 1

and, by rearranging the terms in the summation, we obtain

(K − k)

[
k∑
i=1

ψi(ψi − 1)

]
−

k∑
h=1

K∑
i=k+1

ψhψi(ψh − ψi) ≥ k
K∑

i=k+1

ψi(ψi − 1) ⇐⇒

k∑
h=1

K∑
i=k+1

ψh(ψi − 1)(ψi − ψh + 1) ≥
k∑

h=1

K∑
i=k+1

ψi(ψi − 1) ⇐⇒

k∑
h=1

K∑
i=k+1

(ψi − 1)(ψh − 1)(ψi − ψh) ≥ 0,

which is satisfied since ψi ≥ 1 for every i = 1, . . . ,K and ψi ≥ ψh (since h < i).

3.6.8 Proof of Proposition 3.2.1

For binary trials, ∃ ! ĩ ∈ {1, . . . ,K} s.t. a1 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK , namely {ai, i = 1, . . . ,K}
is decreasing for k ≤ ĩ and increasing for k > ĩ. Indeed, by equating ai = ai+1 we get

ϑ̄2
π(vi+1 − vi)− 2ϑ̄π(ϑivi+1 − ϑi+1vi) + ϑ2

i vi+1 − ϑ2
i+1vi = 0,
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where clearly if vi = vi+1, then ϑ̄π = (ϑi +ϑi+1)/2, while if vi 6= vi+1 this is a quadratic function with
respect to ϑ̄π whose corresponding roots are ϑ̄π = Q±i , withQ±i = [ϑi

√
vi+1±ϑi+1

√
vi]/[
√
vi+1±

√
vi].

However, since 0 = ϑ1 < ϑ̄π < ϑK ≤ 1, then Q−i is not a feasible solution; indeed, if vi+1 > vi, then
Q−i < 0, while if vi+1 < vi then Q−i > 1. Thus, the only feasible solution is Q+

i = ςi+1,iϑi +
ςi,i+1ϑi+1 ∈ [ϑi;ϑi+1] (which also encompasses the case vi = vi+1) and

ai ≥ ai+1 ⇐⇒ (ϑ̄π ≥ Q+
i ) ∪ (ϑi = ϑi+1). (3.6.8)

Since the sequence {Q+
i , i = 1, . . . ,K − 1} is increasing in i, combined with (3.6.8) it guarantees

that ∃ ! ĩ ∈ {1, . . . ,K}, such that a1 ≥ · · · ≥ aĩ ≤ aĩ+1 ≤ · · · ≤ aK . Moreover, if ā ≥ a1, then
ā > āK−1 (i.e., ā < aK), since (K − 1)ā+ aK >

∑K−1
k=1 ak + aK is always satisfied due to the fact that

ā < maxi=1,...,K ai.

Case 1: λ1 = 0 and λi > 0 for i = 2, . . . ,K − 1. Under this setting the optimal target is ρ∗1 =
[1− (K − 1)τ ]e1 + τ

∑K
k=2 ek, where τ follows easily from Theorem 3.2.2 after simple algebra. Con-

dition ā = a1, namely A1 ∈ (0, 1], holds iff T ≤ 1 + σ1. In this case also P1b is satisfied, i.e. ā > āi
for i = 2, . . . ,K − 1, since ā > āK−1 due to the behaviour of {ai, i = 1, . . . ,K}.

Case 2 λ1 = · · · = λj = 0 (with j = 2, . . . ,K − 2) and λi > 0 for i > j. Under this setting ā = āi for
i = 1, . . . , j and ā > āi for i = j + 1, . . . ,K − 1, then θ1 = · · · = θj (which implies A1 = · · · = Aj)
and P1a holds for i = 1, . . . , j iff T ≤ 1 + σ1. Following the same reasoning of Case 1, P1b for
i = j + 1, . . . ,K − 1 also holds, so that ρ∗1,ρ

∗
2, . . . ,ρ

∗
j are optimal designs. Moreover, due to the con-

cavity of φ(·), every convex combination of ρ∗1,ρ
∗
2, . . . ,ρ

∗
j is still optimal.

Case 3: λi > 0 for every i = 1, . . . ,K − 1. Under this scenario ρ∗ = ρB and when T > 1 + σ1 then
ā > a1, which also guarantees ā > āi ∀i = 2, . . . ,K − 1 (namely P2 holds), due to the behaviour of
{ai, i = 1, . . . ,K}.

Every other scenario is impossible since:

• λ1 > 0 and at least one λi = 0 with i ∈ {2, . . . ,K − 1}, namely ā > a1 and ā = āi where at least
ai > ā, clearly implies that ā < ai < ai+1. However, if λi+1 > 0, then ā = āi > āi+1 ⇐⇒ ā >
ai+1, while if λi+1 = 0, then ā = āi = āi+1 ⇐⇒ ā = ai+1;

• λ1 = 0 and at least one λi > 0 and λi+1 = 0 with i ∈ {2, . . . ,K − 2}, namely ā = a1 and
ā = āi+1, so that a2 < ā < ai+1 < ai+2, but if λi+2 = 0, then ā = ai+2, while if λi+2 > 0, then
ā > ai+2.
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Paper C

Design of experiments and manufacturing design space for multi-step
processes
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Abstract

Most industrial processes are composed of multiple subsequent steps. In this paper we provide a statisti-
cal approach to design experiments and to define the manufacturing design space of multi-step processes
by taking into account the complex system of interactions among steps. We consider each intermediate
outcome as an additional input factor in the next step and we plan experiments following a particular
sequential structure. To encompass the potential deviations from the target levels of such input factors,
designs are selected according to the D-optimality in average criterion and, in order to assess their pre-
diction capabilities, a suitable extension of the fraction of design space technique has been proposed.
The manufacturing design space of the process is then defined by combining the interconnected manu-
facturing design spaces of the process steps and by deriving the linear combination of the process inputs
that ensures the required quality standard for the final outcome. Appealing properties of this approach
are also shown by the application to a three steps biochemical process of expression and purification of
a recombinant protein in which ten input factors are included in the design.
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4.1 Introduction

A multi-step process is a system composed of multiple subsequent stages: the quality of the final product
is the result of the interactions among the steps. More specifically, the quality of the product at one
stage is not only affected by the operations performed at that stage, but also by those of previous stages.1

Dealing with multi-step processes is common in many industrial fields, but their complex structure still
presents significant challenges for researchers.

In particular in pharmaceutical industry, the introduction of the Quality by Design (QbD)2 paradigm
has increased the demand of systematic and science-based approaches to support pharmaceutical devel-
opment and manufacturing activities. QbD principles have been developed to guarantee high level of
product and process understanding and, hence, high level of quality for patients.3,4 The QbD implemen-
tation includes the identification of the Critical Quality Attributes (CQAs) of pharmaceutical products,
defined as those attributes which impact the clinical performance. Then, to ensure product quality, the
manufacturing process should be designed to obtain these attributes consistently at the desired values.
The multidimensional combination and interaction of inputs and process parameters such that the fi-
nal CQAs meet the desired ranges is defined as the manufacturing design space*, which is one of the
fundamental concept in the QbD paradigm.2

Clearly, the establishment of the manufacturing design space in a multi-step context should take
into account that i) the quality of the final product is the result of the combination of operations and re-
sources employed in the subsequent steps, which are, in turn, controlled by multiple input factors/process
parameters and ii) input factors of different steps interact to determine the intermediate and the final out-
come/CQA. Such structure and the lack of first principle models pose technical issues in the design,
analysis and optimization of multi-step processes.

Usually, given the complexity of the problem, the process is investigated one step at-a-time.5 This
strategy fails to detect potentially critical interactions between steps and requires a remarkable amount of
experimental resources. On the other hand, by approaching the multi-step process as a big single-stage
with traditional experimental designs would involve a large study, with potentially around 10 or more
interacting factors, usually not affordable in practice (for biochemical processes the number of factors
typically investigated in a single experiment is below 10). Indeed, a full description and understanding of
the system should explore all the potential interactions between all the input factors of the process, requir-
ing a high experimental effort. Therefore a suitable strategy to design experimental studies for multi-step
processes is fundamental for scientists, especially in pharmaceutical industry in which the compliance
with regulatory guidelines is often matched with the need to speed-up the development process.

Literature on multi-step processes has mainly addressed process robustness, control and optimization
and discussion of case studies.6–8 To the best of our knowledge, research on design of experiment in a
multi-stage framework has been focused on split-plot designs and its variants (see the review of Yuangyai
and Lin9). Multi-stage experimentation can be performed in a split-plot fashion, but the complexity ramp
up as the number of steps increases.5,10 In general, the proposals are not flexible in terms of number of
steps involved, number of factors, number of levels for each factor and type of experimental design
used.9

In this paper, we introduce an efficient approach to design an experimental study for a multi-step

*Note that in the ICH guideline Q8 on pharmaceutical development 2 this CQAs-consistent production space is named
design space. However, this terminology may be ambiguous in the context of this manuscript since the term design space is
commonly used in the design of experiment literature to refer to the set of all the possible design points of the experiment.
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process. Motivated by QbD principles, the final objective of the design strategy is the determination
of the manufacturing design space of the whole process. The procedure consists in designing a set of
experiments to fit an empirical model for the final outcome. We present a new framework in which the
output of each step is included as an input factor in the subsequent step and experiments are planned
following a particular sequential structure. The setting of the additional input factor is subject to error
since it can be set only by changing the input factors of the previous step, according to a model. Then,
to fit a tentative model for each step, the D-optimal design in average11,12 has been adopted as a design
criterion. Since the error in setting input factors affects the prediction properties of the design, we propose
an extension of the fraction of design space technique, which includes this effect. Once the model for
the final outcome has been estimated, starting from the quality requirements on the final product, the
multi-step manufacturing design space is derived by combining the interconnected manufacturing design
spaces of the steps. As a result, a set of operating ranges for all the directly controlled input factors of
the process is obtained. The application of the procedure is particularly relevant for - but not limited to
- biochemical processes within pharmaceutical industry, for which we report an illustrative case-study
example.

The paper is organized as follows: in Section 4.2 we formalize the structure of multi-step processes
and we introduce the notation and in Section 4.3 we present the sequential strategy to design experiments.
In Section 4.4 we report the method to define the multi-step manufacturing design space, while in Section
4.5, the complete procedure is implemented for a three step process of expression and purification of a
recombinant protein. In Section 4.6 we conclude with a discussion and future developments.

4.2 Multi-step processes and notation

Let us consider a process made of V steps, S1, . . . ,SV , and let us denote with x(i) = (x
(i)
1 , x

(i)
2 , . . . )′ the

set of controllable input factors of Si, for i = 1, . . . , V , and with y(V ) the output of the process (Figure
4.1). The main concern of multi-step systems is that the behaviour of the final outcome depends both
on the effect of process inputs and on the interactions among steps, namely y(V ) depends on x(i),∀i =
1, . . . , V and their interactions.
In such complex systems, mechanistic models relating inputs and outputs are not generally available so
that researchers have to rely on Design of Experiment (DoE) techniques.13 Hence, empirical models are
devoted to the identification of the manufacturing design space, which then consists in learning how to
set x(1), . . . , x(V ) in such a way that y(V ) has the desired characteristics (e.g. quality, safety).

On the one hand, if the process is intended as a big single stage (Figure 4.1), the behaviour of y(V )

can be typically described by a regression model y(V ) = f(x(1), . . . , x(V );β) + εV where f(·;β) is the
model response, β is the unknown model parameters vector and εV is a random error term. Designing
an experiment to fit such a complex model would require, in general, a high number of runs, due to the
high number of parameters to estimate. Even if few steps are involved in the process, the planning of
the experiment with traditional DoE techniques13 is hardly affordable in practice. Indeed, let us consider
an experimental scenario with V = 3, in which the experimenter would like to study three input factors
per step. Assuming f(·,β) linear in β involving main, quadratic and two factor interactions effects,
the number of parameters to be estimated in the model for y(3) would be 54 (plus the intercept). On
the other hand, designing experiments by not taking into account the interactions among steps (e.g. by
changing input factors one-step-at-a-time and observing the final outcome) would require prohibitive
experimental resources giving only partial knowledge of the process. These drawbacks call for an ad hoc
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design strategy to effectively plan experiments in a multi-step context.

S1 S2
. . . SV−1 SV

x(1) x(2) x(V−1) x(V )

y(V )

Figure 4.1: Multi-step process with V steps.

Let us assume that the output of each intermediate step can be observed, so that a multi-step process
can be represented as in Figure 4.2, where y(i) is the outcome of Si for i = 1, . . . , V . In contrast to the
setting of Figure 4.1, we consider the structure of the process as made of multiple components. From
now on, we assume that the experimenter is interested in a single characteristic (i.e. a single CQA in the
context of pharmaceutical development) of each intermediate material. This assumption is relevant for
the development to our proposal (for a thorough discussion see Section 4.6): only one output is carried
out as an input in the next step.

S1 S2
. . . SV−1 SV

x(1) x(2) x(V−1) x(V )

y(1) y(2) y(V−2) y(V−1)

y(V )

Figure 4.2: Multi-step process with V steps: new modelling.

Within this setting, the first step and so y(1), depends on x(1) while each y(i) for i = 2, . . . , V is affected
by the input factors proper of that step, x(i), but also by the outcome of the previous one, y(i−1). We then
introduce a mathematical formalization of a multi-step process in which each step is characterized by a
model,

y(1) = f1(x(1);β(1)) + ε(1),

...

y(i) = fi(x(i), y(i−1);β(i)) + ε(i),

...

y(V ) = fV (x(V ), y(V−1);β(V )) + ε(V ),

(4.2.1)

where for the i-th step, fi(·) is the response model, x(i) is the vector of input factors, β(i) is the vector
of the unknown model parameters and ε(i) is a random error. We assume fi(·) linear in the parameters
so that the i-th equation of (4.2.1) can be restated as y(i) = z>i β

(i) + ε(i), where z>i is the vector (of
size pi) whose components are the term included in the model fi(·). For instance, if the i-th step has
two input factors and fi(·) is a full quadratic model (without intercept) then x(i) = (x

(i)
1 , x

(i)
2 ) and z>i =

(x
(i)
1 , x

(i)
2 , y(i−1), x

(i)
1 ·x

(i)
2 , x

(i)
1 ·y(i−1), x

(i)
2 ·y(i−1), [x

(i)
1 ]2, [x

(i)
2 ]2, [y(i−1)]2) with pi = 9. In addition, by
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letting y(i) be the vector of the ni observations from step i, then y(i) = Ziβ(i)+ε(i) where Zi is the design
matrix expanded to the fi(·) model form (i.e. it has size ni×pi). For ε(i) = (ε

(i)
1 , . . . , ε

(i)
u , . . . , ε

(i)
ni )
> we

assume that ε(i)u has zero mean and variance σ2
i ,∀u = 1, . . . , ni (homoschedasticity) and that the {ε(i)u }

are uncorrelated random variables. Finally, since we deal with situations in which the real experimental
conditions may fluctuates around those specified in the design, i.e the actual design matrix could be
different to the the planned design matrix, we denote with Z̃i the observed design matrix expanded to the
form of fi(·).

4.3 Design of experiments for multi-step processes

In this section we present the design strategy to plan the experiments in multi-step processes. In general,
the model for the final outcome is used to draw conclusions on the end-process material and so to derive
the manufacturing design space. Following the set-up in (4.2.1), to fit an empirical model for y(V ) we
have to estimate V models. Thus, we need to generate V experimental plans: the procedure consists of
a sequence of V phases where, in the generic phase i, the objective is to fit a model for the outcome of
Si. On this purpose, phase i consists of (a) the design of the experiment for Si (b) the implementation of
the experiments to observe the y(i)s and finally (c) the analysis of the results for fit a model for y(i). So
in phase i (i.e. phase 1,..., phase i− 1 have already been run), the experimental design for Si is derived
according to a suitable optimality criterion. Such experimental design provides target levels for x(i) and
y(i−1). However, since y(i−1) is the output of Si−1, its target levels cannot be set directly as for x(i). The
desired target values can be reached only after running the previous steps, S1, S2,...,Si−1, under proper
settings of x(1), . . . ,x(i−1). In particular, y(i−1) can be controlled only through the inputs of Si−1 and
the model estimates f̂i−1(·) (estimator of fi−1(·)) computed in phase i − 1, but due to the prediction
error intrinsic in each model, y(i−1) cannot be set precisely to the desired levels. More specifically,
while all the input factors x(i) in step i are subjected to a negligible experimental error, y(i−1) is also
subjected to the error of the model for Si−1. Therefore, due to the multi-step structure of the process,
each experimental plan involves one factor whose levels are set with error: the experiments should be
designed by taking into account the potential deviations from the target levels that may occur due to this
error.

To the best of our knowledge, the first author interested in the effect of error in setting factor levels
was Box14 and this topic has been more recently addressed by Pronzato11 and Donev12 in the context
of optimal designs. However, robustness to error in setting factor levels of optimal designs has not been
much addressed in the literature.15

In order to clarify the experimental strategy proposed, Example 4.3.1 and Figure 4.3 illustrate the
multi-step procedure in the case of three steps.

Example 4.3.1. The multi-step experimental strategy is illustrated in Figure 4.3 in the case of a three-
step process: the procedure consists of three phases. In phase 1 the experiments are performed on S1

to fit a model for y(1). In phase 2 the experiments are performed on S1 and S2 to fit a model for y(2).
However, note the difference between the experiments on S1 in phase 1 and in phase 2. In phase 1, the
experiments on S1 are performed under some settings of x(1) that are optimal to fit a model for y(1). In
phase 2, the experiments on S1 are run once again but under different set-ups of x(1), that are the ones
ensuring y(1) close to the target levels optimal to fit a model for y(2). The same reasoning holds for phase
3.
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S1

S1

S1

S2

S2

S2

S3

S3

S3

phase 1

phase 2

phase 3

x(1) x(2) x(3)

x(1) x(2) x(3)

x(1) x(2) x(3)

y(1)

y(1)

y(1)

y(2)

y(2)

y(2)

y(3)

y(3)

y(3)

Figure 4.3: Multi-step experimental strategy for a three-step process.

Section 4.3.1 is focused on how to design the experiment for Si at phase i and the complete and
detailed procedure to implement the proposed experimental strategy from phase 1 up to phase V is
reported in Section 4.3.2.

4.3.1 Design of experiment for step i in phase i

Let us consider that phase 1, phase 2, ..., phase i − 1 have already been run, i.e. f̂1(·), . . . , f̂i−1(·) are
available. For instance, phase i − 1 is devoted to make experiments to fit a model for y(i−1), thus the
experiments have been carried out from S1 up to Si−1 and the experimental conditions (values of x(i−1)

and y(i−2)) that generated the observed y(i−1)s are known so that Z̃i−1 is available and used to estimate
the parameters β̂(i−1) via least squares.

We are now in phase i. First, we wish to design an experiment to fit an empirical model for y(i)

(phase i (a)) Typically, input factors are set to target levels according to a given experimental plan. The
plan is generated following optimality criteria, which are generally based on convex functions of the
information matrix of the design16 (e.g. the well-known D-optimality requires the maximization of its
determinant or, equivalently, the minimization of the determinant of the inverse information matrix17).

However, for the i-th step,

(i) the levels of x(i) are directly controllable and so adjustable to the target values required by the
experimental plan,

(ii) the levels of y(i−1) can be controlled by running Si−1 and by changing x(i−1) and y(i−2) according
to the model f̂i−1(·).

In particular, the levels of y(i−1) are set through f̂i−1(x(i−1), y(i−2); β̂(i−1)) = z̃>i−1β̂
(i−1). If following

a design criterion τu is the target level for y(i−1) in the u-th experimental run and tu is the design point
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such that f̂i−1(tu) = τu, then the point estimator f̂i−1(tu) = t>u β̂
(i−1) is unbiased with variance

η2
u = σ2

i−1(1 + t>u (Z̃>i−1Z̃i−1)−1tu), (4.3.1)

which can be estimated by replacing σ2
i−1 with the sample variance σ̂2

i−1 (note that the choice of tu may

not be unique, see Remark 4.3.1). Then, experimental data in the u-th run will be generated by Y (i−1)
u =

τu + eu rather than by τu, where eu is the error in setting y(i−1) in the u-th observation. By assuming eu
normally distributed with zero mean and variance η2

u (and also E[eu·ej ] = 0 for u 6= j), the level of y(i−1)

becomes a random variable i.e. Y (i−1)
u ∼ N(τu, η

2
u). Thus, the planned Zi is composed of deterministic

elements, associated to the input factors x(i), and random elements associated to Y (i−1), i.e. the generic
row of Zi is z>i = (x

(i)
1 , x

(i)
2 , . . . , Y (i−1), x

(i)
1 · x

(i)
2 , . . . , x

(i)
1 · Y (i−1), . . . , [x

(i)
1 ]2, . . . , [Y (i−1)]2, . . . ).

Remark 4.3.1. Consider the target level τu for y(i−1) in the u-th experimental run. There may be many
possible choices of the design points tu that satisfies f̂i−1(tu) = τu. From a statistical perspective,
the choice of tu can lead to different η2

u i.e. to different magnitudes of the prediction variance. A
natural choice is then to take the tu for which the corresponding η2

u is the lowest. The selection of the
most appropriate tu could be also driven by practical considerations like cost reasoning or operative
purposes.

Remark 4.3.2. Note that in phase i (a), the planned Zi has random components due to the still un-
observed outcomes of Si−1. Since we work under the assumption that intermediate outcomes can be
measured, when the experiment on Si−1 in phase i (b) takes place, the realizations of Y (i−1) can be
observed. Thus, the experimental conditions that generate y(i) are not random: Z̃i is the matrix Zi
conditional on the realizations of the Y (i−1)s, and Z̃i is not random (see also Donev12). Therefore least
squares estimates of β(i) can can be obtained in phase i (c) by β̂(i) = (Z̃>i Z̃i)−1Z̃>i y(i).

In phase i (a) the design and so the choice of the target levels for both input factors set directly and
with error of Si should be made according to some optimality considerations. In the presence of error in
setting the levels of some input factors, the average D-optimal criterion has been proposed.11,12 Average
D-optimal design is based on minimizing the expected value of the determinant of the random inverse
information matrix, i.e.

min E[det(Z>i Zi)−1]. (4.3.2)

The distribution of det(Z>i Zi)−1 is very complex and, in general, not available in closed-form, so that
we compute E[det(Z>i Zi)−1] with Monte Carlo approximation. To implement the criterion in (4.3.2),
we have extended the Fedorov’s exchange algorithm.17 Starting from an initial design of a given size, at
each iteration the algorithm will select a point of the design to be removed and exchanged with a new
point from a candidate set. The point is chosen as the one that gives the best improvement in terms of
the criterion in (4.3.2). This procedure is iterated until no further exchanges are found to improve the
criterion more than a given small threshold (e.g. 10−10). The pseudo code is reported in the Appendix
and the R code is available upon request to the first author.

The criterion in (4.3.2) provides a design which is optimal in average. The real experimental con-
ditions recorded in Z̃i are a single realization of Zi. However, in the next section we report a suitable
extension of the fraction of design space (FDS) technique18 to evaluate the impact of input factors set
with error on the prediction capabilities of the design. In the exposition of Section 4.3.1 we refer to the
i-th step of the process in phase i.
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Prediction properties of designs with error in factor levels

One of the most used measures of the prediction properties of a response surface design are the scaled pre-
diction variance (SPV ) and the unscaled prediction variance (UPV ), which, for a given extended design
matrix Z̃i and a point z̃0 (expanded to the model space), are given by SPV (z̃0) = niz̃

>
0 (Z̃>i Z̃i)−1z̃0 and

UPV (z̃0) = SPV (z̃0)/ni respectively. Zahran et al18 introduced the fraction of design space technique
to both assess the prediction capability of a single design and make comparisons between competing de-
signs. They present a graphical method, the FDS plot, to quantify the fraction of the design space with
SPV less than or equal than any SPV values. We have extended such technique to evaluate designs in
presence of error in factor levels. Let us assume to be in phase i (a). In this case, due to the random
Zi, in any z̃0, instead of a single value we get a distribution of UPV (z̃0). As analogous to the UPV ,
which is sorted and displayed in the FDS plot, we consider QPV1−α, defined, for each design point, as
the 1 − α quantile of UPV (z̃0). Hence, for a given fraction of the design space γ, the corresponding
QPV1−α value denotes that the 1 − α% of the possible designs occurrence have the γ% of the design
space with UPV at or below that value (a typical value used in experiments is γ% = 80%).

For numerical comparisons we consider the half-width of the confidence interval for the predicted
mean (divided by the expected variability on the tentative model σ2

i ), computed with respect to the 1−α
quantile of the UPV distribution. In particular, by letting dγ = qγ(UPV ) · t0.975, ni−pi , where qγ is the
γ-quantile of the UPV and t0.975,ni−pi is the 0.975 quantile of the student-t distribution with ni − pi
degrees of freedom, each dγ value indicates that the γ% of the design space is precise enough to predict
the mean within ±σ̂idγ . To accommodate the error in factor levels, following similar reasoning, we
define

dγ,α = qγ(
√
QPV1−α) · t1−0.05/2, ni−pi ,

whose value denotes that the 1 − α% of the realizations of the designs have the γ% of the design space
precise enough to predict the mean within ±σ̂idγ,α.

Notice that the usefulness of QPV1−α and dγ,α is not limited to multi-step processes. Also in the
case of a single-step process, in which for some reason one or more input factors are set with error, these
tools may be adopted to evaluate the prediction capabilities of the experimental designs.

4.3.2 Experimental strategy for multi-step processes

In this section we report the complete procedure that starting from S1 provides a model for SV . Ac-
cording to our proposal, the experiments are performed following a particular sequential structure. The
experimental strategy is articulated in a sequence of phases in which the same operations are substantially
repeated by adding each time one more step as follows (see also Table 4.1).

phase 1 (a) Design the experiment for step 1. The experimental plan can be derived in this case accord-
ing to a classical designs (i.e. a design that does not consider input factors set with error, like
D-optimal design, central composite design).

(b) Perform the experiment on step 1. Perform the n1 runs on S1.

(c) Analyse the results from step 1. Estimate the parameters β(1) of the response model f1(·)
and the variance of the observations σ2

1 .

phase 2 (a) Design the experiment for step 2. Use informations from phase 1 (c) to find the D-
optimal design in average for step 2 as follows. Fix a range [y

(1)
L , y

(1)
U ] of values to explore
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in input for S2, choose target levels within this interval (e.g. low, mid and high level) and
compute the corresponding variance of the error in setting y(1) to the desired levels (e.g.
η2
low, η

2
mid, η

2
high). Implement D-optimality in average to find the optimal design for S2 (with

n2 runs); compute Z2.

(b) Perform the experiments on step 1 and step 2. Perform the n2 runs on S1 and S2. The
input factors levels of S1 are set to obtain the outputs of S1 close to the target levels computed
as optimal for S2. At the end of S1 record the realizations of Y (1)

u , ∀u = 1, . . . , n2 (which
are different from those obtained at the end of the phase 1), so that the real experimental
conditions (i.e. observed design matrix) that generate the y(2) are known; compute Z̃2.

(c) Analyse the results from step 2. Estimate the parameters β(2) of the response model f2(·)
and the variance of the observations σ2

2 .

...
...

phase i (a) Design the experiment for step i. Use informations from phase i − 1 (c) and implement
D-optimality in average to find the optimal design for Si (with ni runs); compute Zi.

(b) Perform the experiments on step 1, step 2, . . . step i. Perform ni runs on S1, S2, . . . ,
Si. For step Si−1 factors levels are set to obtain the output of Si−1 close to the target levels
computed as optimal for Si and factors’ levels for Si−2, . . . ,S1 are then set accordingly. At
the end of Si−1 record the realizations of Y (i−1)

u , ∀u = 1, . . . , ni (which are different from
those obtained at the end of phase i−1) so that the real experimental conditions (i.e. observed
design matrix) that generate the y(i) are known; compute Z̃i.

(c) Analyse the results from step i. Estimate the parameters β(i) of the response model fi(·)
and the variance of the observations σ2

i .

...
...

phase V (a) Design the experiment for step V. Use informations from phase V − 1 (c) and implement
D-optimality in average to find the optimal design for SV (with nV runs); compute ZV .

(b) Perform the experiments on step 1, step 2, . . . , step V . Perform nV runs on all the
process steps and proceed similarly to phase i (b); compute Z̃V .

(c) Analyse the results from step V . Estimate the parameters β(V ) of the response model fV (·)
and the variance of the observations σ2

V .

The complete procedure requires n1 +n2 + · · ·+nV runs where the n1 runs are performed only on step
1 (phase 1), the n2 runs are performed on step 1 and step 2 (phase 2) and so on. At the end of phase V
we obtain V fitted models describing each step of the process. An example for a case study is reported
in Section 4.5 for V = 3.

In the next example we show the potential advantages of our proposal in terms of required experi-
mental effort.

Example 4.3.2. In the case of a three-step process with three input factors per step and a full tentative
quadratic model with intercept for y(3), we report in Table 4.2 the number of parameters to be esti-
mated in the case the experimenter considers the process as a single-stage (single-stage DoE) and in
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the proposed multi-step approach (multi-step DoE). We compared the two procedures as the number of
controllable input factors per stage (F ) increases.

Clearly a larger number of parameters to estimate requires a higher number of runs. However, note that
the single-stage and the multi-step procedures cannot be directly compared in terms of the number of
runs. This number depends on the design criterion adopted and on the required prediction properties of
the experimental design. The main advantage of our set-up is related to the number of steps involved in
each experiment: according to the single-stage DoE, each of the planned runs involve all the process’
steps whereas adopting our proposal the number of runs carried out from the first up to the last step is
limited, inducing, in general, a gain in terms of experimental resources. This example also highlights
how the saving of experimental resources brought by the multi-step DoE increases as the number of
controllable input factors per stage increases.

Table 4.1: Strategy of experimentation for V -step processes.

Ph. Experiment Input How is set Design criterion Output For next step
1 n1 runs on S1 x(1) directly Classic DoE observe y(1), Z̃1 , [y(1)L , y(1)

U ]

compute f̂1(·) η2u

2 n2 runs on S1 x(2) directly Ave D-opt observe y(2), Z̃2; [y(2)L , y(2)
U ]

and S2 y(1) by changing x(1) (Z2) compute f̂2(·) η2u
through f̂1(·)

...
...

...
...

...
...

...

i ni runs on x(i) directly Ave D-opt observe y(i), Z̃i; [y(i)L , y(i)
U ]

S1, . . . ,Si y(i−1) by changing x(i−1) and (Zi) compute f̂i(·) η2u
y(i−2) through f̂i−1(·)

...
...

...
...

...
...

...

V nV runs on x(V ) directly Ave D-opt observe y(V ), Z̃V ; [y(V )
L , y(V )

U ]

S1, . . . ,SV y(V−1) by changing x(V−1) and (ZV ) compute f̂V (·) η2u
y(V−2) through f̂V−1(·)

Table 4.2: Number of parameters to be estimated: single-stage DoE vs. multi-step DoE (S2 and S3

involve an additional input factor).

Controlled Inputs Number of parameters
S1 S2 S3 single-stage DoE multi-step DoE
2 2 2 28 26
3 3 3 55 40
4 4 4 91 57
F F F (9F 2 + 9F + 2)/2 (3F 2 + 13F + 14)/2



Part II 91

4.4 Manufacturing design space definition for multi-step processes

Once the procedure of Section 4.3.2 has been performed, V fitted models, one for each outcome, are
available. These models are used to define a set of interconnected acceptable ranges expressed in terms
of the directly controlled input factors of the process. We will refer to multi-step manufacturing design
space (denoted by DS) to intend the manufacturing design space of the entire process and to individual
manufacturing design space as this space for a single step (denoted by DSi for Si).

Starting from the last step, let us assume that the quality target for the final outcome of the process
requires y(V ) ∈ R. Then, from f̂V−1(·), the corresponding multidimensional combination of x(V ) and
y(V−1) such that y(V ) ∈ R is derived. This region is usually restricted by a confidence/prediction interval
on the fitted response, giving an acceptable (more robust) smaller region for x(V ) and y(V−1). Then, the
determined range for y(V−1) becomes the quality target used to derive the individual manufacturing
design space for SV−1, so that DSV−1 is defined from f̂V−1(·) and is expressed in terms of x(V−1) and
y(V−2).
The same reasoning is iterated until the manufacturing design space for y(1), which will be expressed
in terms of x(1), is derived. The combination of the acceptable ranges of the directly controllable input
factors gives the multi-step manufacturing design space

DS = {x(1), x(2), . . . , x(V ) such that y(V ) ∈ R}.

A similar procedure has been adopted in the work of Eon-Duval et al19 but the authors do not address
two fundamental issue. First, they do not formally provide a procedure to model a multi-step process
and second they do not take into account the multi-step structure of the process in the designing of
experiments.

Remark 4.4.1. Two potential presentations of the manufacturing design space are reported in the guide-
lines.2 i) It can be defined by a non-linear combination of inputs’ ranges that makes y(V ) ∈ R. In this
case, the manufacturing design space is explained by mathematical equations describing relationships
between inputs that lead to successful outputs. While this approach allows the maximum operative range
to achieve the required quality standard, it makes the manufacturing design space be a complex set.
Otherwise ii) the manufacturing design space can be defined as a smaller region, based on a linear com-
bination of input factors. Even if this approach is more limiting, it is often preferred in the applications
due to operational simplicity. For this reason, in this paper we adopt definition in ii). In principle the
experimenter could select any sub-region based on a linear combination of inputs; often this choice is
driven by scientific and practical considerations. For example in Figure 4.8, the manufacturing design
space as in i) is the yellow region whereas the manufacturing design space as in ii) is the red-delimited
rectangle.

4.5 Case study: Manufacturing design space for a three step biochemical process

In this section we implement our proposal to an illustrative case-study. We considered a biochemical pro-
cess commonly used in pharmaceutical industry to produce and purify recombinant proteins expressed
by E. Coli. The process consists of three separate steps (Figure 4.4):

• Fermentation, where the E. Coli culture is grown and the recombinant protein is expressed in the
bacterial cells;
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• Capture separation, which is the first purification step where the target recombinant protein is
captured in the column and a first portion of impurities is removed (DNA fragments, HCP, endo-
toxin etc);

• Hydrophobic separation, which is the last purification step, where the hydrophobic interactions
are used to separate our target recombinant proteins from other residual proteins.

For the Fermentation step, four input factors were identified as potentially critical process parameters
and included in the study: trace element concentration in the fermentation media (TE), optical density
of induction (ODind), pH of the fermentation media (pH), which is maintained fixed during the whole
fermentation and the duration of the expression phase (DE), i.e. the time between the induction point
and the end of fermentation. Since the protein purity from the Fermentation is expected to impact the
performance of the purification steps, the output selected to be included as input factor for the Capture
separation step is the protein purity in the capture load material (denoted by Pur1). In the Capture step,
instead, we considered three process parameters and Pur1 as input factors. The three capture process
parameters are the following: pH level of the wash (pH.W ), the molarity and the pH of the load material
(Mol.L and pH.L respectively). Also in this case, the purity of the target protein (Pur2) has been
identified as the output of the Capture to be included as input in the Hydrophobic separation. In this
latter step, three process parameters have been identified as potentially critical for the final purity: the
pH of the material loaded in the column (pH.C), the protein concentration and the conductivity of the
loaded material (dens and cond respectively). Finally, we include the purity of the incoming material
(Pur2) as additional input factor.

Figure 4.4: Three step process of expression and purification of a recombinant protein.

Other steps, like the final filtration or the centrifugation at the end of the fermentation steps were not
considered in our study, however the approach can be easily extended to include them. The aim of
the study is to determine the multi-step manufacturing design space corresponding, in this case, to the
region of input factors/process parameters which can guarantee a final purity of the target protein (Pur3)
above 88%. More specifically, in the following, the Protein purity is defined as the relative amount of
the recombinant protein of interest with respect to the total amount of all the components present in the
material, i.e. host cell proteins, fragmented recombinant protein, aggregated forms. The methods used to
determine the protein purity are: SDS-PAGE after Fermentation and Reverse Phase HPLC after Capture
separation and after Hydrophobic separation.

In Section 4.5.1 we report the design and analysis of the experiments for the three steps and in Section
4.5.2 we derive the multi-step manufacturing design space.
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4.5.1 Design and Analysis of three step process

STEP 1: Fermentation For each input factor of the Fermentation five levels were identified within the
ranges reported in Table 4.3a.

Table 4.3: Step 1: Fermentation.

(a) Input Factors of Step 1 and
ranges.

x(1) Input Range
x

(1)
1 TE [1.3, 1.7]

x
(1)
2 ODind [3.0, 7.0]

x
(1)
3 pH [6.2, 6.8]

x
(1)
4 DE [5.0, 7.0]

(b) Output of Step 1, coded level in brackets.

Output Input

Level Pur1 ODind pH DE η2
u

low 13.32 7.00 (+1.00) 6.80 (+1.00) 5.00 (−1.00) 0.712

medium 15.54 6.70 (+0.85) 6.41 (−0.30) 6.35 (+0.35) 0.682

high 17.75 4.52 (−0.24) 6.20 (−1.00) 7.00 (+1.00) 0.702

To determine the relationship between Pur1 and the four fermentation parameters, a modified face-
centred central composite design with 34 runs was defined (3 extra runs were added as confirmation
runs). From the results reported in Table 4.6, the fitted model for Pur1 (in terms of the coded unit) is

ˆPur1 = 16.32− 0.52 ·ODind − 0.44 · pH + 0.94 ·DE − 1.10 ·OD2
ind, (4.5.1)

with σ̂2
1 = 0.642 and R2 = 0.74 (predictive R2 = 0.63). We used the model in (4.5.1) to determine the

combination of ODind, pH , and DE such that Pur1 reaches its minimum value, 13.32, (for ODind =
1, pH = 1, DE = −1) and maximum, 17.75 (for ODind = −0.24, pH = −1, DE = 1). Within this
interval we selected three target levels for Pur1, low, medium and high, in which we compute η2

u, as in
(4.3.1). These informations are summarized in Table 4.3b.

STEP 2: Capture separation In order to fit a quadratic tentative model with two factor interactions
effects, for each of the four factors of this step (see Table 4.4a), we consider three levels, [−1, 0, 1]. As
far as Pur1 is concerned, it is set by changing Fermentations input factors through the model in (4.5.1).
According to the criterion in (4.3.2), we generated D-optimal designs with different number of runs (from
29 to 33), with η2

+1 = 0.3162, η2
0 = 0.3052 and η2

−1 = 0.3212. In this case we select the design with
d0.8,0.95 = 1.49 which corresponds to the design with 33 runs. In Figure 4.5 we report the corresponding
FDS plot. The black curve is related to the UPV values obtained in the ideal case of no error in setting
Pur1, while the grey curve refers QPV0.95 (Section 4.3.1). For the chosen design, the UPV value for
a fraction of the design space γ = 0.8 (grey dot) indicates that the 95% of the possible realizations
of this design have the 80% of the design space with UPV ≤ 0.49. Whereas, if ideally we could
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Table 4.4: Step 2: Capture separation.

(a) Input factors of Step 2 and ranges.

Input Range
x

(2)
1 pH.W [6.80, 7.20] set directly
x

(2)
2 Mol.L [70.00, 80.00] set directly
x

(2)
3 pH.L [6.80, 7.20] set directly
y(1) Pur1 [13.32, 17.75] set indirectly

(b) Output of Step 2, coded levels in brackets.

Output Input

Level Pur2 Mol.L Pur1 η2
u

low 72.90 80.00 (+1.00) 12.27 (−1.00) 3.302

medium 84.48 78.00 (+0.06) 15.14 (+0.05) 3.192

high 96.06 74.00 (−0.20) 18.31 (+1.00) 3.392

run the experiment by setting precisely all input factors, the 80% of the design space would have had
UPV ≤ 0.42 (black dot).

The generated design provides target levels for pH.W , Mol.L, pH.L and Pur1. In order to proceed
with the experiment, we rearrange the experimental plan in terms of the directly controllable input fac-
tors: target levels for Pur1 become target levels forODind, pH andDE. The 33 runs are independently
performed on the Fermentation and the Capture steps. Clearly, the Pur1 values achieved in the Fermen-
tations will be different from the target values due to the model error (e.g. 13.36 is just prediction given
by the model, experimental values are expected within 13.36 ± eu). From the results (reported in Table
4.7), we estimate the following model (in terms of coded unit) for the Pur2 outcome:

ˆPur2 = 87.80− 1.91 ·Mol.L+ 8.08 · Pur1− 4.91 ·Mol.L2, (4.5.2)

with σ̂2
2 = 3.12 and R2 = 0.80 (predictive R2 = 0.75). Following the same procedure of the previous

step, by using the model in (4.5.2), we derived the combination of Mol.L and Pur1 such that Pur2
reaches its minimum and maximum (see Table 4.4b). Within this range we selected three target level,
low, medium and high for Pur2 and we compute the corresponding variance of the error for a future
prediction by (4.3.1).

STEP 3: Hydrophobic separation The input factors of the Hydrophobic separation step are reported
in Table 4.5 together with the selected ranges. As regards Pur2, it can be controlled by tuning the inputs
of the Capture and Fermentation steps according to the models in (4.5.1) and (4.5.2).

Assuming a tentative model with quadratic terms and two factor interactions, we proceeded as for
step 2: we rescaled the input factors to the range [−1; 1] and consequently the variance of the error in
setting Pur2 (obtaining η2

+1 = 0.292, η2
0 = 0.272 and η2

−1 = 0.282). Among D-optimal designs in
average, with 30-33 runs, by comparing FDS plots and the expected half-width values, we selected the
experimental plan with 33 runs. For this plan, the expected half-width of the mean predicted from the
model is below 1.54 in 80% of the design space. For the same proportion of the design space the 95%
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Figure 4.5: Fraction of Design Space plot for the 33 runs design of the Capture separation step.

of the experimental plan will have UPV ≤ 0.54, whereas UPV ≤ 0.46 if the experiment would have
been run with no error (FDS plot in Figure 4.6).

The experimental plan is then rearranged in order to express the target values for Pur2 as target values
for Mol.L and Pur1. In turn, target levels for Pur1 are translated into target levels for ODind, pH and
DE. The values obtained experimentally for Pur1 and Pur2 have been measured and recorded (data
reported in Table 4.8) and have been used to fit the following model (in terms of coded units) for Pur3,

ˆPur3 = 88.81 + 0.77 ·pH.C+ 1.58 ·dens+ 4.38 ·Pur2 + 3.75 ·dens2 + 1.76 ·pH.C ·Pur2, (4.5.3)

with σ̂2
3 = 2.012 and R2 = 0.80 (predictive R2 = 0.69).

Since Pur3 is a CQA of the final outcome we now proceed to the manufacturing design space
definition. For this three-step process, three interconnected models are available, one for Pur1, one for
Pur2 and one for Pur3.

Table 4.5: Step 3: Hydrophobic Separation. Input factors and ranges.

Input Range
x(3)

1 pH.C [6.40, 7.00] set directly
x(3)

2 dens [2.00, 8.00] set directly
x(3)

3 cond [80.00, 110.00] set directly
y(2) Pur2 [92.90, 96.06] set indirectly
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Figure 4.6: Fraction of Design Space plot for the 33 runs design of the Hydrophobic separation step.

4.5.2 Multi-step manufacturing design space determination

In this study, the manufacturing design space is the region of the input factors’ space which can con-
sistently guarantee a final protein purity at or above 88% (often called specification limits in this kind
of studies). Therefore, by the model in (4.5.3) and by graphical optimization we selected the region
of pH.C, dens and Pur2 such that ˆPur3 ≥ 88%. To take into account the uncertainty on the model
predictions, this region is typically reduced following operative considerations. More specifically we
considered the region restricted by the 95% one-sided prediction interval (P.I.) on a single future obser-
vation of Pur3, as shown in Figure 4.7, but other intervals can be considered as well, like e.g. tolerance
intervals20. In Figure 4.7 the solid black curve is the model prediction such that ˆPur3 = 88%, while
the dashed black curve is the corresponding bound given by the prediction interval equal to 88% We
highlight in yellow the region of the input factors such that specification limits are satisfied. In this case,
within this region, we identified a suitable sub-region of operating conditions (see Remark 4.4.1) - the
red-bordered rectangles - so that the manufacturing design space is defined by the linear combination of
the significant input factors for the Hydrophobic step and the outcome of the Capture step as follows,

DS3 = {dens ∈ [6.87, 8.00], pH.C ∈ [6.82, 7.00]Pur2 ≥ 84.64%}.

Now, Pur2 ≥ 84.64% becomes the specification limit for the Capture step: the resulting manufacturing
design space is identified by the suitable region delimited by the one-sided 95% prediction interval on
Pur2, as shown in Figure 4.8 and it can be defined as

DS2 = {Mol.L ∈ [72.90, 75.10], Pur1 ≥ 16.02%}.

The same procedure is repeated for the Fermentation step (see Figure 4.9), whose manufacturing design
space is given by

DS1 = {OD ∈ [4.05, 5.05], pH ∈ [6.63, 7.00], DE ∈ [3.00, 6.05]}.
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The multi-step manufacturing design space is then derived by combining the individual ones of each
process step, obtaining

DS = {dens ∈ [6.87, 8.00], pH.C ∈ [6.82, 7.00],Mol ∈ [72.90, 75.10],

ODind ∈ [4.05, 5.05], pH ∈ [6.63, 7.00], DE ∈ [3.00, 6.05]}.

Figure 4.7: Manufacturing design space for the Hydrophobic separation step.

Figure 4.8: Manufacturing design space for the Capture separation step.
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Figure 4.9: Manufacturing design space for the Fermentation step.

4.6 Discussion and conclusions

In this paper we provide a statistical approach to define the manufacturing design space of a process com-
posed of multiple steps. Since the multi-step manufacturing design space does consider the interactions
among subsequent steps, it leads to a very good process understanding, it guarantees quality and safety
of products, faster and more consistent product development. In the context of pharmaceutical industry,
these aspects consistently guarantee a drug product with the desired properties leading to benefits for
patients.2 Moreover, the multi-step manufacturing design space increases both manufacturing flexibility
and process robustness, which are crucial for reducing costs and batch discarding. Indeed, in the first
place, working within the manufacturing design space is not considered as a change, whereas movements
outside would normally initiate a regulatory post approval. In the second place, it is well-known that a
manufacturing design space that spans the entire process can increase the operational flexibility.2 The
experimental effort required by the procedure, although moderate, is still affordable by scientists, mak-
ing our proposal a valid compromise between process knowledge and experimental resources. Despite
our motivating set-up is related to pharmaceutical processes, our methodology is general and it can be
considered for multi-step experimentation in various industrial fields.

In the three-steps Fermentation and Purification process considered, three experiments for three steps
are required: overall, 10 input factors were involved in the study. If we would have approached this
process as a big single-stage, the experiment would have had 10 input factors, resulting in 66 parameters
to estimate (in the case of a full-quadratic model for the final outcome). In principle, the D-optimal
design with 100 runs could have also been a possible solution to design the experiment. However, by
considering the process as a big single-stage, each of the 100 runs would have involved all the three
process’ steps. According to our proposal only the last set of experiments, namely 33 runs, has to be
performed on the whole process. Therefore, the multi-step design strategy requires a limited number of
runs for the experiments carried out from the first up to the last step.

The multi-step approach relies on the assumption that the outcomes of the intermediate steps can be
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measured to derive intermediate models. The quality of these models depends on many elements and, of
course, on the features of the step itself. The impact of an input factor set with error on the intermediate
models, and so on the model for the final outcome, strongly depends on how many input factors has the
step in view of one factor set with error and on the effect (linear, quadratic, ...) that the input factor set
with error is expected to have on the outcome i.e. on the tentative model.12 Finally, the quality of an
intermediate model is also affected by the observed realization of the planned design matrix. We would
recommend a case-by-case simulation study to evaluate this impact. We would also advise to evaluate the
prediction properties of the design by taking into account the possible deviations from the target levels
that could occur in setting the input factor with error, as suggested in Section 4.3.1. This prevents an
overestimation of the prediction properties of the design.

Notice that the design strategy proposed here can be also applied to contexts in which, at the end one
step (or more) it is not possible to stop and observe the outcome. In these cases, such step can be simply
merged with the subsequent one and considered as a single-stage in the design of experiment and in the
manufacturing design space.

The design strategy presented in this paper is based on planning one experimental design for each
step including, as additional input factor, the output of the previous one. This setting requires the se-
lection of a single outcome/CQA of the previous step that the experimenter is interested to study, in
interactions with the input factors of the current one. This assumption is essential in practice: an input
- which is actually an output of the previous step, say yA - is set by running the previous step and by
adjusting its inputs to achieve the desired values for yA given in the experimental plan. In the case the
experimental design would include two set indirectly inputs - say yA and yB - as they are controlled by
changing the same inputs of the previous step, they cannot be, in general, set independently to the desired
level. Essentially, if the levels of yA are appropriately changed in the experiment, the levels of yB can
only be observed. Thus, at the end of each step, multiple CQAs can be still measured and monitored,
but the experimental plan will only be optimal for the selected one. In many industrial fields, scientific
knowledge and discussion with process’ experts should help to identify the appropriate CQA to be in-
cluded as an input for the next step. Otherwise, the two outcomes could be treated separately into two
different experiments but the procedure would employ a quite large amount of experimental resources.
Further research is surely requested on this point.

In addition, the multi-step framework provides hints for future research in many directions. We fo-
cused on processes in which the behaviour of the outcome of each step can be well approximated by
linear models in the parameters and we consider only the interactions among subsequent steps. This
framework encompasses several practical situations, however, the procedure could be appropriately ex-
tended, with increasing complexity, to relax these assumptions. Moreover, since first principle models
may eventually exist just for one of the steps that makes up the process, one of the main direction for
future studies is the extension of our proposal to accommodate both mechanistic and empirical models.
As regards the design criterion, in our framework it should take into account that one input factors is not
set directly. As a starting point we adopted the average D-optimality proposed in the literature but this
problem offers insights for further research to derive alternatives design criteria suitable for our set-up.
Future developments will be also dedicated to the optimization of the total number of experimental runs
to be performed on each step of the process.
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4.7 Appendix

4.7.1 Algorithm: D-optimal design in average

In exchange algorithms, starting from an initial design, each design point is considered for exchange with
each of the point of a candidate list. The selected pair of points to exchange is the one which gives the
best improvement in terms of the chosen design criterion (in this case is the pair which most decreases
the expected determinant). This procedure is iterated until no further improvement in the criterion can
be obtained by a pairwise exchange.21 The algorithm finds local optimum so the procedure is usually
repeated for multiple initial designs.

Notation:
design points: z̃i for i = 1, . . . , n
candidate points: z̃j for i = 1, . . . , N
δ(z̃i) = z̃>i (Z̃>Z̃)−1z̃i
δ2(z̃i, z̃j) = z>i (Z̃>Z̃)−1z̃j
∆ij = δ(z̃j)− δ(z̃i)− δ(z̃i)δ(z̃j) + δ2(z̃i, z̃j)
Dij = [det(Z̃>Z̃) + (1 + ∆ij)]

−1, namely the change in det(Z̃>Z̃)−1 which would be obtained by
switching z̃i with z̃j
t: small threshold (e.g. 10−10)
nsim: number of Monte Carlo simulations1. To select nsim we run a series of preliminary simulation
studies in which we check the distributions of Dij and their expectations for increasing nsim. In our
case study example nsim=1000 (as also in Donev12) was enough to provide reasonable stable results.
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generate a (random) start design with n points
while −(Dnew −Dold) ≤ t {

for 1, . . . , nsim {
generate a realization∗ of Zold→ Z̃old
generate a realization∗ of the N candidate points
compute Dold = det(Z̃>oldZ̃old)−1

for i in 1, . . . , n {
for j in 1, . . . , N {

compute ∆ij

compute Dij

} }
}
compute E[Dij ]
select i and j minimizing E[Dij ] (if more than one best exchange, select one

randomly)
exchange zi with zj so that Zold −→ Znew
update the determinant Dnew = det(Z>newZnew)−1

}

∗a random draw from normal distribution (with zero mean and variance in (4.3.1)) is added to each target level of
the input factor set with error in the main effect column of Zold; quadratic and two factor interactions effects are
then computed accordingly.
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4.7.2 Experimental Data

Table 4.6: Experimental results from the
Fermentation step.

run Pur1 TE ODind pH DE

1 16.20 1.00 -1.00 1.00 1.00
2 15.80 0.00 0.00 0.00 0.00
3 16.10 1.00 1.00 -1.00 1.00
4 16.80 0.00 0.00 0.00 0.00
5 14.80 1.00 -1.00 -1.00 -1.00
6 17.50 0.00 0.00 0.00 0.00
7 15.10 -0.50 -0.50 -0.67 -0.50
8 16.60 -1.00 -1.00 -1.00 1.00
9 12.55 1.00 1.00 1.00 -1.00

10 15.45 -1.00 1.00 1.00 1.00
11 13.10 -1.00 1.00 -1.00 -1.00
12 14.50 -1.00 -1.00 1.00 -1.00
13 16.10 -1.00 -1.00 -1.00 -1.00
14 16.70 0.00 0.00 0.00 0.00
15 15.00 1.00 1.00 1.00 1.00
16 15.30 1.00 1.00 1.00 1.00
17 16.03 0.50 0.50 0.67 0.50
18 16.70 0.00 0.00 0.00 0.00
19 17.80 1.00 -1.00 -1.00 1.00
20 15.30 1.00 1.00 -1.00 -1.00
21 13.70 -1.00 1.00 1.00 -1.00
22 15.40 -1.00 -1.00 1.00 1.00
23 14.90 1.00 -1.00 1.00 -1.00
24 17.20 -1.00 0.00 0.00 0.00
25 15.00 0.00 0.00 1.00 0.00
26 16.00 0.00 0.00 -1.00 0.00
27 16.50 0.00 0.00 0.00 0.00
28 16.10 0.00 0.00 0.00 0.00
29 17.60 0.00 0.00 0.00 1.00
30 16.20 -0.50 0.50 -1.00 0.50
31 16.50 1.00 0.00 0.00 0.00
32 14.90 0.00 1.00 0.00 0.00
33 14.80 0.00 0.00 0.00 -1.00
34 15.70 0.00 -1.00 0.00 0.00

Table 4.7: Experimental results from the
Capture separation step.

run Pur2 pH.W Mol.L pH.L Pur1

1 74.86 -1.00 1.00 1.00 -0.35
2 89.50 -1.00 1.00 1.00 0.67
3 80.65 -1.00 0.00 -1.00 -0.86
4 90.51 1.00 0.00 -1.00 0.61
5 87.95 0.00 0.00 1.00 -0.13
6 96.20 0.00 -1.00 -1.00 0.87
7 80.42 1.00 -1.00 -1.00 -0.60
8 91.94 1.00 -1.00 0.00 0.62
9 89.72 -1.00 -1.00 -1.00 0.88

10 77.44 0.00 1.00 -1.00 -0.11
11 79.59 1.00 -1.00 1.00 -0.11
12 90.10 -1.00 -1.00 0.00 0.80
13 91.95 -1.00 1.00 -1.00 0.64
14 95.41 0.00 0.00 0.00 0.64
15 75.04 1.00 1.00 1.00 0.09
16 85.45 1.00 0.00 0.00 -0.79
17 85.11 -1.00 -1.00 1.00 -0.05
18 80.47 0.00 -1.00 1.00 -1.00
19 75.30 1.00 1.00 -1.00 -0.52
20 78.76 1.00 0.00 1.00 -0.81
21 88.63 1.00 1.00 1.00 0.66
22 82.42 1.00 -1.00 -1.00 -0.07
23 90.66 1.00 -1.00 1.00 0.93
24 88.27 1.00 1.00 -1.00 0.93
25 78.79 -1.00 1.00 1.00 -0.89
26 81.14 -1.00 1.00 0.00 -0.14
27 77.55 0.00 -1.00 0.00 -0.93
28 89.40 -1.00 0.00 1.00 0.54
29 80.41 -1.00 1.00 -1.00 -0.18
30 82.22 -1.00 -1.00 1.00 -0.46
31 91.46 0.00 -1.00 1.00 1.00
32 70.64 1.00 1.00 1.00 -0.77
33 79.55 -1.00 -1.00 -1.00 -0.61
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Table 4.8: Experimental results from the Hydrophobic separation step.

run Pur3 pH.C cond dens Pur2

1 86.10 -1.00 1.00 -1.00 -0.80
2 91.23 1.00 1.00 1.00 -0.60
3 91.18 -1.00 -1.00 0.00 0.60
4 89.47 1.00 1.00 -1.00 -0.30
5 97.89 0.00 -1.00 1.00 0.70
6 91.98 -1.00 -1.00 1.00 -0.90
7 96.63 1.00 -1.00 -1.00 0.70
8 93.02 -1.00 -1.00 -1.00 1.00
9 98.47 1.00 1.00 1.00 0.40

10 91.18 0.00 1.00 1.00 -0.70
11 95.68 1.00 -1.00 -1.00 0.70
12 90.43 -1.00 1.00 1.00 -0.10
13 90.08 -1.00 -1.00 -1.00 -0.40
14 90.64 -1.00 0.00 -1.00 0.10
15 88.61 0.00 1.00 0.00 0.70
16 95.72 -1.00 1.00 -1.00 1.00
17 97.11 0.00 -1.00 1.00 0.50
18 86.20 0.00 0.00 0.00 -1.00
19 96.68 -1.00 1.00 1.00 0.30
20 85.62 1.00 1.00 -1.00 -0.90
21 85.80 -1.00 1.00 0.00 -0.60
22 84.39 1.00 0.00 0.00 -0.40
23 90.25 0.00 -1.00 -1.00 0.00
24 100.65 1.00 -1.00 1.00 0.40
25 90.95 -1.00 0.00 1.00 -0.90
26 88.49 -1.00 -1.00 0.00 -0.20
27 97.38 1.00 0.00 1.00 0.60
28 91.58 -1.00 0.00 1.00 0.90
29 95.61 1.00 1.00 0.00 0.60
30 90.14 1.00 -1.00 -1.00 -0.70
31 89.79 1.00 -1.00 1.00 -0.60
32 92.57 1.00 1.00 -1.00 0.60
33 91.64 -1.00 1.00 -1.00 0.70
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