
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI

E TECNOLOGIE DELL’INFORMAZIONE

CICLO XXXIII
SETTORE CONCORSUALE 09/F2

SETTORE SCIENTIFICO DISCIPLINARE ING-INF/03

PROGRAMMABILITY AND MANAGEMENT
OF SOFTWARE-DEFINED

NETWORK INFRASTRUCTURES

Presentata da Supervisore

GIANLUCA DAVOLI Prof. WALTER CERRONI

Coordinatore Dottorato

Prof.ssa ALESSANDRA COSTANZO

ESAME FINALE ANNO 2021



One Ring thing to rule them all,

one Ring thing to find them,

one Ring thing to bring them all

and in the darkness network bind them.



Contents

Abstract i

1 Introduction 1

1.1 The evolution of traditional networks . . . . . . . . . . 1

1.2 The software revolution . . . . . . . . . . . . . . . . . . 2

1.2.1 Software-defined Networking . . . . . . . . . . . 4

1.2.2 Network Function Virtualization . . . . . . . . . 6

1.2.3 Cloud computing . . . . . . . . . . . . . . . . . 7

1.2.4 Service Function Chaining . . . . . . . . . . . . 8

1.2.5 Intent-based Networking . . . . . . . . . . . . . 10

1.3 Motivation and contributions . . . . . . . . . . . . . . 12

2 Service Function Chaining over SDN Domains 16

2.1 SFC over IoT and Cloud domains . . . . . . . . . . . . 17

2.1.1 Reference network architecture . . . . . . . . . 17

2.1.2 Intent-based northbound interface . . . . . . . . 20

2.1.3 OpenFlow and Cloud domains . . . . . . . . . . 23

2.1.4 Experimental validation . . . . . . . . . . . . . 29

2.1.5 Performance evaluation . . . . . . . . . . . . . . 30

2.1.6 Remarks . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Latency-aware SFC over SDN infrastructures . . . . . . 33

2.2.1 Reference architecture and testbed . . . . . . . 33

2.2.2 Experimental results . . . . . . . . . . . . . . . 36

2.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . 38

3 Service Function Chaining over non-SDN Domains 39

3.1 Towards a SFC-aware control plane . . . . . . . . . . . 39

Contents 1



Contents

3.1.1 Service Function Chaining architecture . . . . . 40

3.1.2 OpenFlow-based NSH control plane . . . . . . . 43

3.1.3 Experimental validation . . . . . . . . . . . . . 45

3.1.4 Remarks . . . . . . . . . . . . . . . . . . . . . . 49

3.2 SFC over IoT, Cloud, Fog and non-SDN tranport domains 50

3.2.1 Remarks . . . . . . . . . . . . . . . . . . . . . . 56

4 Resource monitoring in SDN/NFV environments 58

4.1 Monitoring challenges and system architecture . . . . . 58

4.2 Prototype implementation . . . . . . . . . . . . . . . . 61

4.2.1 Testbed based on container technology . . . . . 64

4.3 Experimental validation . . . . . . . . . . . . . . . . . 65

4.3.1 Combined network and resource monitoring . . 66

4.3.2 Monitoring-based traffic steering . . . . . . . . . 67

4.3.3 Impact of sFlow parameters . . . . . . . . . . . 70

4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Augmenting software-defined infrastructures 80

5.1 Fate sharing and out-of-channel communication . . . . 80

5.2 Sonifying the network . . . . . . . . . . . . . . . . . . . 82

5.3 Sonification architecture overview . . . . . . . . . . . . 84

5.4 Management object model and sonification workflow . 86

5.5 Protocol design . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Connection setup . . . . . . . . . . . . . . . . . 88

5.5.2 Physical technology adaptation . . . . . . . . . 90

5.5.3 Close . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Sonification of network management applications . . . 91

5.6.1 TraceSound . . . . . . . . . . . . . . . . . . . . 91

5.6.2 Heavy-Hitter Detection . . . . . . . . . . . . . . 92

5.6.3 DDoS Monitoring . . . . . . . . . . . . . . . . . 92

5.6.4 Callbacks for network management application

programmability . . . . . . . . . . . . . . . . . 93

5.7 Testbed and implementation . . . . . . . . . . . . . . . 93

5.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Limitations and open questions . . . . . . . . . . . . . 96

Contents 2



Contents

5.10 Haptic networking . . . . . . . . . . . . . . . . . . . . 98

5.11 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Flexible service provisioning in Fog scenarios 101

6.1 Motivation and challenges . . . . . . . . . . . . . . . . 102

6.2 Fog computing system architecture . . . . . . . . . . . 103

6.3 A use case . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Testbed implementation . . . . . . . . . . . . . . . . . 108

6.5 Proof-of-concept evaluation . . . . . . . . . . . . . . . 110

6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion 112

Acronyms 114

Bibliography 116

Publications 125

Acknowledgements 128

Contents 3



Abstract

In a landscape where software-based solutions are evermore central in

the design, development and deployment of innovative solutions for

communication networks, new challenges arise, related to how to best

exploit the new solutions made available by technological advance-

ments.

The objective of this Thesis is to consolidate and improve some re-

cent solutions for programmability, management, monitoring and pro-

visioning in software-based infrastructures, as well as to propose new

solutions for service deployment, management and monitoring over

softwarized domains, along with working implementations, validating

each point with punctual experimental validations and performance

evaluations.

The treatise starts by introducing the key concepts the research

work is based upon, then the main research activities performed dur-

ing the three years of PhD studies are presented. These include a

high-level interface for network programmability over heterogeneous

softwarized domains, an implementation of a protocol for service func-

tion chaining over non-programmable networks for multi-domain or-

chestration, a modular system for unified monitoring of softwarized

infrastructures, a protocol for the employment of unused channels to

augment the capabilities of the softwarized infrastructure, and a XaaS-

aware orchestrator designed to operate over Fog computing scenarios.

i



Chapter 1

Introduction

Software is the centerpiece of modern communication networks, the

common thread binding network components together, the leader of

innovation in network infrastructures. Advancements in software-

based solutions and virtualization technologies have been revolutioniz-

ing the telco scene, allowing infrastructures to meet increasingly strin-

gent requirements imposed by the great demands of modern applica-

tions and services.

1.1 The evolution of traditional networks

Over the past decades, networks have experienced significant changes

in the way services were required of them, due to the development of

numerous new applications, also causing a growing demand of ubiq-

uitous connectivity for devices. Different applications have different

needs in terms of throughput, delay, jitter, and loss, among other

things, all of which can be classified as Quality of Service (QoS) pa-

rameters. Satisfactory performance is only a side of the requirements

network services need to meet, with other crucial aspects being secu-

rity, adaptability, reconfigurability, and so on. Generally, deploying

a service in modern networks is a complicated task. Over the years,

this complication has been decomposed into smaller problems, each

one being easier to tackle. This gave way to the development of a

variety of specialized network functions, traditionally implemented on

1



Chapter 1. Introduction

closed, proprietary and expensive hardware, that became known as

middle-boxes, and met exploding popularity. As early as 2012, the

number of middle-boxes deployed over commercial networks was com-

parable to the number of routers [B1]. This required a sizeable in-

vestment from network tenants, both on the devices themselves, and

on management and maintenance work needed to keep this valuable

equipment operational and tuned. Operating these devices needed

specialized personnel with experience in the usage of hardware from

the specific manufacturer of the equipment. Moreover, making devices

from different vendors interoperate could prove to be a burdensome

task, encouraging tenants to buy all of their network supplies from

the same manufacturer. Last, but not least, updating a device often

meant purchasing new specialized hardware from the same vendor.

These factors lead to the so-called vendor lock-in effect, causing on

the broader scale the phenomenon known as network ossification. In

other words, the deployment of new features in the network started

to be discouraged by economic and technical reasons alike, in contrast

with the ever-growing need for continuous renovation and accommo-

dation of new functionalities.

1.2 The software revolution

The inspiration for the the software revolution in the telco world came

from the evolution observed decades before in the computing realm,

where vertically integrated, closed, proprietary hardware was replaced

over time by general purpose hardware offering open programming in-

terfaces, able to run a plethora of modular applications that defined

the behavior of the device. In a similar fashion, one can decouple the

network mechanisms and functionalities from the hardware realizing

them, obtaining, on the one hand, non-specialized hardware that is

relatively cheap and reconfigurable, as opposed to the specialized one,

and on the other hand, software applications and building blocks that

can be combined and modified at will to achieve any desired behavior.

These software bits are the driving forces behind the paradigm shifts

1.2. The software revolution 2



Chapter 1. Introduction

towards Software Defined Networking (SDN) and Network Function

Virtualization (NFV) that have been revolutionizing communication

networks. Employing software solutions running on general purpose

hardware leads to a significant reduction both in deployment and op-

erational costs for tenants, as well as an unprecedented level of adapt-

ability to changing requirements.

In performing this decoupling, the separate roles of different ab-

stract planes is highlighted. In this context, a plane is a classification

of network components by the responsibility they have. One of the

most widespread classifications is the partitioning of network entities

into control, management and data plane components. In short, the

decision power resides in the management plane, while the control

plane is in charge of the coordination among devices, and the data

plane is where the actions on user data are performed. These func-

tionalities coexisted in traditional network equipment. To put this in

real world terms, in a traditional router, the management plane in-

cludes the processes taking care of the interaction among routers in a

network via shared protocols, and taking routing decisions based on

the common knowledge, while control plane processes have to trans-

late those decisions into forwarding actions, and communicate them to

data plane processes, which are in charge of performing them on the

data packets the device receives. By softwarizing the network com-

ponents, the mutual independence of these planes is accentuated, and

each can run as a software entity either on the same device or in a sep-

arate location, fully benefiting from the modularity of the approach.

The control and management planes are sometimes considered as a

single entity, in scenarios where the difference is not critical to the

performed application or functionality.

The following sections give an overview over fundamental concepts

the rest of the contents of this Thesis relies on, starting from the

cardinal paradigms and going through enabling technologies and ab-

stractions that make modern networks more efficient, resilient, and

adaptive.

1.2. The software revolution 3



Chapter 1. Introduction

Traditional

networks

Software-defined 

networks

Control

and data

plane

Data

plane

Control

plane

Figure 1.1: Comparison between the traditional and the software-

defined network architectures.

1.2.1 Software-defined Networking

In traditional networks, traffic forwarding decisions are taken in a

distributed way, thus delegating decision power to packet forwarding

devices. These devices make use of standardized protocols to com-

municate and converge on a common knowledge of the network and

related forwarding plans, then perform the proper packet forwarding

accordingly. In doing so, these devices are acting both on the con-

trol/management plane and in the data plane. On the other hand, in

the SDN architecture, all decision-making processes are executed in a

logically centralized entity, known as the SDN controller. Network de-

vices only need to be able to forward packets based on the instructions

received from the SDN controller, on a logically (and, usually, also

physically) separated interface. This way, separation (i.e., decoupling)

of the control/management plane and the data plane is achieved. The

traditional and SDN approaches to networking are compared in Fig-

ure 1.1.

The SDN controller, as shown in Figure1.2 exposes two interfaces:

– the Northbound Interface (NBI), which provides APIs to appli-

cation developers as well as a level of abstraction to hide lower

level details, e.g., how the forwarding devices are programmed,

from the applications;

1.2. The software revolution 4



Chapter 1. Introduction

Application plane

Control plane

Data plane

SDN Controller

Application 1
Application 2

Application 3

 Northbound interface 

 Southbound interface 

Figure 1.2: Basic SDN architecture.

– the Southbound Interface (SBI), which handles the interaction

between controller and data plane devices.

Both interfaces are open to the implementation of protocols that

best suit the needs of the applications and/or of the forwarding de-

vices. There is a plethora of solutions for the implementation of both

NBI and SBI communications. However, one protocol, OpenFlow [B2],

has risen as the de-facto standard for SBI-related interactions. This

protocol provides an abstraction of the forwarding behavior of under-

lying data plane devices, characterizing it by means of the so-called

flow table. Entries to this table are in the form of match-action rules,

each associated with a counter for statistics gathering. This way,

the traffic can be partitioned into flows, with each flow being defined

by features such as source/destination MAC/IP address, network or

transport protocol type, transport-layer source/destination port, and

so on. Each data plane device will act on the traffic based on the flow

classification given by the SDN controller before traffic starts (proac-

tive approach) or while traffic is flowing, sending every unrecognized

packet to the SDN controller for classification (reactive approach).

Summarizing, the SDN approach introduces a great simplification

1.2. The software revolution 5



Chapter 1. Introduction

Figure 1.3: Comparison between the traditional and the NFV ap-

proaches.

in network management and network policy enforcement, reducing the

obstacles to the development of new network protocols and applica-

tions. These improvements are brought about by the abstractions

provided by the SDN controller to network applications, allowing for

the underlying infrastructure to be perceived as an abstracted entity

that can be programmed in a flexible and dynamic way.

1.2.2 Network Function Virtualization

In traditional networks, specialized hardware devices (i.e., the middle-

boxes mentioned in Section 1.1) are deployed along the path that pack-

ets traverse to get from their source to their intended destination.

These devices often consist of specialized and proprietary solutions,

which require vendor-specific configuration and management actions.

Leveraging the advancements in virtualization technologies, as well

as the availability of increasingly powerful general purpose comput-

1.2. The software revolution 6



Chapter 1. Introduction

ing hardware, in the NFV approach network functions are deployed

as software components over non-specialized servers, decoupling the

functionality of the component from the hardware that implements it.

This allows network functionalities to achieve hardware independence,

leading to a facilitated and scalable deployment of network functions.

The traditional and NFV approaches are compared in Figure 1.3.

Summing up, the NFV approach facilitates flexible and efficient

provisioning of network functions, reducing equipment costs and power

consumption, and reducing time-to-market by allowing software and

hardware to evolve independently.

1.2.3 Cloud computing

The Cloud computing paradigm has established itself during the past

decade, reaching outstanding levels of pervasiveness. The Cloud offers

on-demand provisioning of computing resources, real-time processing

of data, and a increasingly growing number of other services offered

over the Internet. The larger the coverage of a cloud service provider,

the more likely it is for these services to be deployed in the network

over geographical-scale domains, including large data centers as well

as relatively tiny edge servers. In this multitude of devices and require-

ment for different services, the SDN and NFV paradigms can fuel the

growth of cloud infrastructures, and in turn be fueled by it. The fea-

tures offered by these paradigms are perfectly suited for the need of

the Cloud. For example, NFV is ideal for the support of hardware

resource sharing among multiple concurrent software instances inside

of the same physical machine while providing the required mutual iso-

lation, while SDN can greatly facilitate the complex traffic steering

required to perform compositions of services across multiple domains.

Services in the Cloud computing domain are offered according to

a number of models, one of the most popular ones being Everything-

as-a-Service (XaaS), whose principal incarnations are Infrastructure-,

Platform-, and Software-as-a-Service (IaaS, PaaS, and SaaS, respec-

tively). The objective of these sub-models is to offer an increasing level

of abstraction, in order to best suit the needs of the user. Following

1.2. The software revolution 7



Chapter 1. Introduction

the same rationale, a growing variety of resources is being offered in a

“aaS” format.

Although the Cloud is designed for efficiency and ubiquity, some-

times responsiveness is not its strong suit, especially in meeting the

latency requirements of innovative network services. Fog computing

was designed to face this issue.

Fog computing

In scenarios where latency is critical, such as those depicted by the

evolution towards new generation networks, Cloud computing may not

be responsive enough, due to the possibly remote location of servers

(from the perspective of the user). Therefore, the Cloud could benefit

from resource relocation, along with computation offloading, allowing

for service deployment with reduced latency and improved scalabil-

ity. This is precisely what Fog computing targets: it helps in bringing

services closer to the end user, reducing both service time and load

on the Cloud infrastructure. The Fog acts as intermediate layer be-

tween users and the Cloud, focusing on the needs of microservices

and modular applications, offering replicas of Cloud services, or serv-

ing Fog-specific applications. Similarly to its larger counterpart, Fog

computing can adopt the XaaS model to help flexibly allocating and

managing resources and provide for different needs of the end users.

The inherently dynamic nature of the Fog poses an additional set

of provisioning and management challenges, that need to be handled

properly.

1.2.4 Service Function Chaining

SDN and NFV are mutually independent, as either one can be im-

plemented in network deployments without the other being applied.

However, their combination can bring convenient advantages to net-

work tenants, both in operational and economical terms. Therefore,

a continuous effort towards the definition and refinement of reference

SDN-NFV architectures has to be performed, directed at making the

paradigms cooperate to have the network perform complex tasks and

1.2. The software revolution 8



Chapter 1. Introduction

Figure 1.4: An example of a Service Function Chain.

provide consistent distributed services. The latter is one of the main

goals of SDN-NFV architectures, and to that end, the heterogeneity of

the infrastructures, the high dynamicity of services and the geograph-

ical distribution of network functions pose demanding challenges in

terms of resource control/management capabilities, adaptive usage of

multi-technology resources, and fulfillment of end-to-end latency re-

quirements considering the impact of both processing and network

delays [B3, B4]. A depiction of a SFC obtained by joints SDN-NFV

efforts is shown in Figure 1.4.

One of the most remarkable offsprings of the cooperation of the

SDN and NFV approaches is the redefinition of the way services are

deployed over a network. The expression Service Function Chaining

(SFC) is generally used to describe the deployment of composite ser-

vices that are obtained from a concatenation, i.e., as a chain, of one

or more basic services. Consequently, a Service Function Chain is the

series of service functions that a packet or flow must traverse. By de-

ploying (virtual) network functions over the network according to the

NFV paradigm, and making use of SDN principles to steer the traffic

through them, services can be deployed in the network in an evermore

1.2. The software revolution 9



Chapter 1. Introduction

profitable and adaptable way [B5].

SFC makes use of a service-specific overlay that creates the re-

quired service topology. Therefore SFC inherently defines a Service

Plane, that is an intermediate plane between Application and Con-

trol Planes. The Service Plane includes all the processes that allow

the infrastructure to provide services to users and maintains state on

those services, relying on Control and Management Plane functions to

suitably program the Data Plane.

1.2.5 Intent-based Networking

Even in the general reference architecture for management and or-

chestration proposed in [B6], the NBI of the SDN controller is one

of the most critical interfaces, due to the amount of responsibilities

it administers. Although a standard NBI definition is continuously

under discussion, a commonly accepted approach is to adopt a so-

called intent-based interface, which allows declaring service outcomes

and high-level operational goals rather than specifying detailed net-

working mechanisms. In other words, according to the Intent-based

Networking (IBN) paradigm, the consumer of a service only need to

specify what it wants the service to perform (i.e., the intent), leaving

the decision on how to do it completely up to the service provider. The

service request should only include information relevant and intrinsi-

cally known to the consumer, without any references to the infrastruc-

ture of the provider, its operational methodologies, or its constraints.

The policies of the consumer (i.e., why to perform the service) and

those of the provider (i.e., how to perform the service) should be com-

pletely independent of each other. The information contained in the

service request should either be naturally comprehensible to the ser-

vice provider, or it should become so through a form of lookup the

provider can perform, and it may include modifiers that add con-

straints or details to the desired service. The provider should notify

the user on any issue with the request, be it related to the service itself

or any of the specific modifiers.

In general, the IBN paradigm can be considered as a new method-

1.2. The software revolution 10



Chapter 1. Introduction

ology to achieve declarative network programmability, as opposed to a

rather imperative approach typically offered by the APIs of previously-

existing NFV orchestrators and SDN controllers. A discussion held a

few years ago among key players brought to a first common defini-

tion of an intent-based interface [B7]. Meanwhile, as part of their

efforts to foster the vision of SDN as a network operating system pro-

viding generalized network control plane APIs, the Open Networking

Foundation (ONF) made a first step toward the standardization of an

intent-based northbound interface [B8]. Their approach is based on

the consumer-provider paradigm described above. The intent-based

interface concept further evolved into the idea of a whole IBN system,

defined as a life-cycle management software for networking infrastruc-

tures [B9]. More recently, new standardization activities were initi-

ated toward a better understanding of IBN systems. In particular, in

the framework of the Internet Research Task Force (IRTF), the Net-

work Management Research Group (NMRG) is currently working on

two Internet drafts. One is focused on defining the intent concept,

clarifying the related characteristics and functionality, and discussing

the main differences with policy-based network management and ser-

vice models [B10]. The other draft discusses different ways to classify

the concept of intent considering the multiple stakeholders involved,

and proposes a related taxonomy [B11]. Several other initiatives for

the definition and implementation of IBN systems are currently being

developed at different levels, in terms of both academic research and

industrial product innovation. Also, a number of open-source software

projects focusing on the intent approach were started. As a flexible

and promising technology, IBN can play a key role in several appli-

cation scenarios that span over the vast outreach of communication

networks.

1.2. The software revolution 11



Chapter 1. Introduction

1.3 Motivation and contributions

The paradigms and technologies described in the previous sections

pave the way for massive improvements, but also inevitably introduce

new issues and open questions that needs to be addressed. They can

mostly be categorized into four areas, each represented by a theme:

– programmability , i.e., how to program the behavior of the

network using well-defined interfaces;

– management , i.e., how to define policies that the infrastruc-

ture is able enforce in an automated way;

– monitoring , i.e., how to gather information on the utilization

of the infrastructure;

– provisioning , i.e., how to allocate the resources of the infras-

tructure to users.

These themes are often mutually integrated, and addressed simul-

taneously in the literature.

To begin with, the deployment of SFC over heterogeneous domains

poses both programmability and management questions. The 5G ini-

tiative encouraged the softwarization of modern network infrastruc-

tures such as sensor networks [B12, B13], IoT domains [B14, B15],

inter-data center transport networks [B16] and flexible wide area net-

work interconnections [B18, B17]. In this scenario, features such as

independence from the underlying forwarding technology and latency

awareness play a key role. The problems of SFC orchestration [B19]

and physical resource allocation [B20] have been addressed, as well

as trade-offs between performance and cost [B21]. On top of that,

a comprehensive architecture including the mentioned domains and

a standard OpenFlow-based SDN infrastructure is required in order

to achieve complete interoperability among these heterogeneous com-

ponents. Such architecture is the focus of Section 2.1 in Chapter 2,

whereas Section 2.2 presents experimental validation results related

to a latency-aware SFC deployment system over real-world hardware

compliant with 5G directives. Additionally, in Chapter 3, Section 3.1

introduces a transport-independent solution to multi-domain SFC de-

ployment, while Section 3.2 presents an architecture supporting het-

1.3. Motivation and contributions 12



Chapter 1. Introduction

erogeneous forwarding technologies, while still maintaining end-to-end

SFC deployment capabilities.

In complex scenarios such as those of next-generation networks,

monitoring solutions that are able to cope with the new mechanisms

are needed in order to ensure proper verification of network config-

uration and performance. Some works in the literature propose ap-

proaching SDN and NFV entities separately [B22, B23, B24], partly

due to the challenges of integrating both worlds in a single monitoring

solution [B25]. In order to exploit the join potential of SDN, NFV

and Cloud, a monitoring solution should be aware of the different

paradigms, independent of the technology, and easy to deploy and

maintain. A possible design and implementation of such a solution is

presented in Chapter 4.

Concurrently, the management, as well as the monitoring plane,

should be protected from data and control plane failures, in order

to avoid chain effects and overall disruptive consequences [B26, B27].

However, these entities are typically intertwined, to the point that of-

ten their mutual dependence is taken for granted [B28]. Making them

independent requires expensive enhancements [B29] or yields solutions

that are limited to specific applications [B30, B32, B33, B31, B34].

Based on the work of [B35], a general-purpose sonification protocol is

proposed in Chapter 5, to facilitate management and monitoring tasks

while preserving the mentioned independence among planes.

As already mentioned, latency plays a key role in next-generation

networks, and infrastructures need to keep up with increasingly strin-

gent response time requirements. Resources and services offered in the

Cloud are sometimes not responsive enough, partly due to geograph-

ical reasons. On the other hand, Cloud infrastructures pioneered ser-

vice models that offer unprecedented flexibility, allowing almost any-

thing to be offered as-a-Service. A modern service provisioning system

should provide highly responsive services that can be deployed as dy-

namically as possible based on the available resources. A promising

location for such a system is the Fog layer, that promises to cut on

response time, albeit posing new orchestration challenges [B36]. A

1.3. Motivation and contributions 13



Chapter 1. Introduction

number of solutions for service orchestration in the Fog domain ex-

ist, but they are either specific to an application scenario such as the

IoT [B37] or they only implement a specific class of service [B38], and

do not include practical implementations. In Chapter 6, an original or-

chestrator system is presented, providing general-purpose architecture

and use cases, and a prototype implementation.

This Thesis intends to consolidate the state of the art and propose

improvements and solutions for the programmability, management,

monitoring, and provisioning of services in softwarized infrastructures.

Using these four themes as keys for classification, the publications pro-

duced by the efforts behind this Thesis are presented in Figure 1.5.

As previously mentioned, these themes often blend with each other,

resulting in blurred separation lines between them. However, this

can also be a positive aspect in terms of coexistence of integration of

multiple solutions in the same environment. Although, for the sake

of clarity, the boundaries were kept as defined as possible, there is

nothing against integrating, for instance, any of the SFC management

solutions with the SDN/NFV monitoring one, or the Fog provision-

ing one. The implementation of each solution was conducted in the

most modular and interoperable way possible given the specific cir-

cumstances.

1.3. Motivation and contributions 14



Chapter 1. Introduction

Intent-based management and 
orchestration of heterogeneous 

OpenFlow/IoT SDN domains
SDN, SFC, Cloud, IoT, IBN

Implementation of Service 
Function Chaining control plane

through OpenFlow
SDN, SFC

Performance
of Service Function Chaining on 
the OpenStack Cloud Platform

SDN, SFC, Cloud

A Behavior-Driven Approach to 
Intent Specification for 

Software-Defined 
Infrastructure Management

SDN, IBN, language

Improving OpenStack 
Networking: Advantages and 

Performance
of Native SDN Integration

SDN, Cloud

Demonstration of Latency-Aware 
and Self-Adaptive Service 
Chaining  in  5G/SDN/NFV  

infrastructures
SDN, SFC, Cloud,

Monitoring

Experimenting latency-aware 
and reliable service chaining in  

Next Generation Internet  
testbed facility

SDN, SFC, Cloud,
Monitoring

Intent-based Service Function 
Chaining on ETSI NFV Platforms

SDN, SFC, NFV, Cloud, IBN

Service Function Chaining  
Leveraging Segment Routing  

for  5G Network Slicing
SFC, Segment Routing,

Network Slicing

Intent-based service 
management  for heterogeneous 
software-defined infrastructure 

domains
SDN, SFC, Cloud,

IoT, IBN, Fog

Unified and Standalone
Monitoring Module

for NFV/SDN Infrastructures
SDN, NFV, Monitoring

FORCH: An Orchestrator
for Fog Computing
service deployment

Fog, XaaS, Monitoring

Necklace: An Architecture for 
Distributed and Robust Service  

Function Chains with 
Guarantees
NFV, SFC

A Network Management Protocol 
for Sonification

of Software-Defined 
Infrastructures

SDN, Monitoring, 
out-of-channel

Exploring
Vibration-Defined Networking

SDN, Monitoring, 
out-of-channel

Programmability

M
an

ag
em

en
t

Monitoring

Pr
ov

is
io

ni
ng

[P9] [P4]

[P8][P5]

[P14]
[P2]

[P1][P10][P3]

[P6]

[P7][P13]

[P12]

[P11]

[P15]

Figure 1.5: Publications arranged by theme; those presented in this

thesis are encircled in solid lines, while other complementary works

are encircled in dashed lines.

1.3. Motivation and contributions 15



Chapter 2

Service Function Chaining

over SDN Domains

End-to-end services provided to customers are typically delivered across

different network administrative and/or technological domains. There-

fore, guaranteeing certain levels of service has always been a challeng-

ing task in multi-domain environments. This is even more complex in

case of services spanning multiple SDN/NFV domains, because of the

more advanced control features provided by these new paradigms [B39,

B40, B41]. A very critical aspect to achieve unified management and

orchestration of end-to-end services across multiple domains is the

definition of an open, vendor-agnostic, and inter-operable northbound

interface (NBI), through which applications are allowed to control the

underlying heterogeneous NFV and SDN infrastructures and take ad-

vantage of dynamic service chaining. A commonly accepted approach

is to make use of an intent-based, such as the one introduced in Sec-

tion 1.2.5, which allows to declare high-level service policies rather

than specify detailed networking mechanisms.

This chapter presents an intent-based NBI for end-to-end service

management and orchestration across multiple technological domains,

considering two use cases. Section 2.1 describes an Internet of Things

(IoT) infrastructure deployment and the corresponding cloud-based

data collection, processing, and publishing services with QoS differen-

tiation, with relevant experimental validation and performance evalua-

16



Chapter 2. Service Function Chaining over SDN Domains

tion, whose results have been published in [P1, P10]. The IoT scenario

is meant to be considered as a use case for an architecture that could be

applied to different use cases as well, such as that of a software-defined

wireless sensor network, without loss of generality. Then, Section 2.2

presents a system for dynamic service chaining orchestration on top of

geographically distributed Edge/NFV clouds interconnected through

SDN, with results published in [P6, P7]. Although these contributions

address different needs and parameters, they are united by the com-

mon objective of realizing end-to-end service function chaining across

heterogeneous SDN domains.

2.1 SFC over IoT and Cloud domains

In line with the multiple software-defined infrastructure scenarios fore-

seen by the 5G initiative, the considered IoT domain is inspired by

existing work aimed at extending the SDN concepts to wireless sensor

networks (WSNs) [B12, B13], and providing convincing motivations

for the extension of the SDN paradigm to IoT domains in general.

In [B14] and [B15], a solution for separating the data and the control

plane of an IoT network is proposed, in order to virtualize the IoT do-

main, allowing the IoT controller to program the network with the aim

of guarantee a specific QoS requested by the consumer. Here, these

works are extended by integrating the framework with an OpenFlow-

based SDN infrastructure. The proposed architecture is validated via

experimental results obtained from a heterogeneous testbed consisting

of IoT, OpenFlow and Cloud domains.

2.1.1 Reference network architecture

The considered reference multi-domain SDN/NFV architecture is shown

in Figure 2.1. Although the approach to intent-based orchestration

could be generalized to any SDN/NFV technology domain, the refer-

ence architecture is specialized for the use case considered here, where

data collected from sensor and actuator devices of a software-defined

IoT domain are dispatched across a wired SDN infrastructure to reach

2.1. SFC over IoT and Cloud domains 17



Chapter 2. Service Function Chaining over SDN Domains

IoT SDN 
Controller

SDN 
Controller

VNF

VNF

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

IoT VIM
SDN/Cloud VIM

Cloud
ControllerDB

GW1

IoT Coord1

GWN

IoT CoordN

IoT 
Network 1

IoT 
Network N

…

IoT SDN Domain

SDN Domain Cloud Domain

VIM Intent-based NBI
(Vnfm-Vi, Or-Vi)

Network/Cloud Controller NBI
(Nf-Vi)

Technology-specific SBI

Figure 2.1: Reference multi-domain SDN/NFV architecture, special-

ized for the use case of IoT data collection and related cloud-based

consumption.

a set of suitable consumers, implemented by means of virtual network

functions (VNFs) and deployed within a Cloud computing domain.

Considering the purpose of the study and the nature of the orchestra-

tion features it intends to cover, the reference architecture is inspired

by the ETSI NFV specifications, with particular reference to the Man-

agement and Orchestration (MANO) framework [B6], although the

presented approach considers an end-to-end service perspective. The

rationale behind this choice is that, on the one hand, the proposed ar-

chitecture has the advantage to be consistent with the most relevant

NFV standard initiative to date; on the other hand, the architecture

itself can be seamlessly extended to include any further SDN/NFV

domain and technology as part of the underlying virtualized infras-

tructure.

Each SDN/NFV domain in Figure 2.1 consists of a technology-

specific infrastructure, including:

– data plane components, such as IoT nodes and gateways, SDN

2.1. SFC over IoT and Cloud domains 18



Chapter 2. Service Function Chaining over SDN Domains

switches, virtual machines running in Cloud computing nodes,

physical and virtual interconnecting links; these components

provide the network, compute, and storage resources to be or-

chestrated;

– control plane components, such as SDN and Cloud controllers

with related data stores and interfaces; these components are re-

sponsible for proper VNF deployment and traffic steering across

VNFs and domains;

– management plane components, such as Virtualized Infrastruc-

ture Managers (VIMs) specialized for managing resources in the

IoT-based SDN infrastructure, the wired SDN infrastructure,

and the Cloud infrastructure; based on the available implemen-

tations, some of these components could be in charge of multiple

domains, as in the case of the SDN/Cloud VIM in Figure 2.1.

The overarching VNF Manager (VNFM) and NFV Orchestrator

(NFVO) components are responsible for programming the underly-

ing VIMs and infrastructure controllers in order to implement and

maintain the required service chains in a consistent and effective way,

for both intra- and inter-domain scenarios. While technology- and

domain-specific northbound and southbound interfaces are used in-

side each domain to efficiently control and manage the relevant com-

ponents, the design of the overarching VNFM and NFVO should be

as technology-agnostic as possible, so that a service chain to be de-

ployed can be specified by a customer using a high-level, intent-based

description of the service itself. This would also allow the proposed

architecture to be more general and capable of being extended to dif-

ferent SDN technologies and domains.

In order to achieve such generality in the high-level management

and orchestration components, the idea is that the act of decoupling

service abstractions from the underlying technology-specific resources

should be performed mainly by the VIMs. Therefore, the NBI offered

by the VIMs should be defined as an open and abstracted interface, in-

dependent of the specific technology used in the underlying domains,

extend the concept of interactions based on intents. This approach

2.1. SFC over IoT and Cloud domains 19



Chapter 2. Service Function Chaining over SDN Domains

could also allow different administrative domains to expose only ser-

vice abstractions without disclosing sensitive details related to the

underlying infrastructures.

2.1.2 Intent-based northbound interface

As anticipated in Section 1.2.5, the definition of an open, vendor-

agnostic, and inter-operable interface can foster improved and stan-

dardized procedures for customer service specification to the underly-

ing multi-domain NFV and SDN platforms. In particular, the power-

ful abstraction level offered by an intent-based NBI allows to specify

policies by taking advantage of formalisms that are close to the cus-

tomer’s natural language - as better investigated in [P4]. Therefore,

in the reference architecture it is assumed that some kind of intent-

based interface is offered to the customer by the overarching VNFM

and NFVO components.When a given service request is received, the

high-level management and orchestration functions must convert that

request into a set of suitable service chains and pass them to the rel-

evant VIMs in charge of the underlying infrastructures and domains

involved in the service composition. Then each VIM must coordinate

the respective controllers in order to:

– verify availability and location in the Cloud infrastructure of the

VNFs required to compose the specified service, instantiating

new ones if needed;

– program traffic steering rules in the network infrastructure to

deploy a suitable network forwarding path.

The NBI exposed by the VIMs should allow an abstracted yet flexi-

ble definition of the service chain, without knowledge of the technology-

specific details such as devices, ports, addresses, etc. This means that

a request sent to the VIMs should specify not only the sequence, but

also the nature of the different VNFs to be traversed, which is strictly

related to the service component they implement, as well as other

peculiar characteristics of the service itself, such as quality of service

(QoS) metrics and thresholds. In particular, the NBI should allow an

abstracted representation of the QoS features for the requested service

2.1. SFC over IoT and Cloud domains 20



Chapter 2. Service Function Chaining over SDN Domains

and the topological characteristics of each VNF to be applied in the

service chain.

A possible definition of the VIM NBI is presented here, considering

the listed service and function abstractions.

– A QoS feature is defined in qualitative terms relevant to the

specified service, e.g. guaranteed bit rate or limited delay.

– A QoS threshold can be specified for the metric of interest, e.g.

a minimum bit rate or a maximum delay value.

– A VNF can be terminating or forwarding a given traffic flow.

For instance, a deep packet inspection (DPI) function usually

terminates a mirrored copy of a given flow, whereas a network

address translator (NAT) forwards incoming flows.

– A forwarding VNF can be port-symmetric or port-asymmetric,

depending on whether or not it can be traversed by a given

traffic flow regardless of which port is used as input or output.

For instance, a NAT is port-asymmetric, because it must receive

inbound and outbound traffic from a port connected to a public

and private network, respectively. A basic IP routing function

can be considered port-symmetric, as it forwards packets based

on the destination address.

– A VNF can be path-symmetric or path-asymmetric, depending

on whether or not it must be traversed by a given flow in both

upstream and downstream directions. For instance, an intrusion

detection system (IDS) is typically path-symmetric, because it

needs to analyze packets in both directions of a given flow. A

traffic shaper can be considered path-asymmetric if it must limit

only outbound traffic.

In order to implement the aforementioned abstractions, a service

function chaining template is defined, adopting the well-known JSON

format. This template should be coupled with other deployment tem-

plates defined by the ETSI MANO specifications in order to complete

service provisioning. However, in this work the focus is only on the ser-

vice function chaining aspects of the NBI. A service chain is therefore

defined as

2.1. SFC over IoT and Cloud domains 21



Chapter 2. Service Function Chaining over SDN Domains

{

"src": "node_value",

"dst": "node_value",

"qos": "qos_type",

"qos -thr": "qos_value",

"vnfList ": [vnf],

"dupList ": [dup]

}

where: src and dst represent the endpoint nodes of the service chain,

either global or limited to a given VIM domain; node value is a text

string that contains a high-level unique identifier of a node known to

both orchestrator and VIMs, e.g. by means of some form of mapping

mechanism as defined in [B42]; qos represents the QoS feature to

be provided with the service chain; qos type is a text string that

contains a high-level unique identifier of a QoS metric known to both

orchestrator and VIM; qos-thr represents the QoS threshold to be

applied to the specified metric; qos value is the actual value assigned

to the threshold; vnfList is the ordered list of VNFs to be traversed

according to the specified service; dupList is the list of VNFs towards

which the traffic flow must be duplicated.

Each VNF is described in terms of its topological abstractions with

the following template:

vnf ::= {

"name": "node_value",

"terminal ": "bool_value",

"port_sym ": "bool_value",

"path_sym ": "bool_value"

} | ε

where bool value is a text string representing either a Boolean or a

null value, and the ε symbol indicates the possibility that vnf is an

empty element. Considering that some network functions (e.g., DPI,

IDS) require traffic flows to be mirrored, the (possibly empty) list of

VNFs towards which the traffic flow must be duplicated is specified

with the following template:

2.1. SFC over IoT and Cloud domains 22



Chapter 2. Service Function Chaining over SDN Domains

dup ::= {"name": "node_value "} | ε

The NBI offered by VIMs can be implemented through the mech-

anisms of a REST API, and should provide the following methods:

– define a new service chain;

– update an existing service chain;

– delete an existing service chain.

These actions are essentially in line with the operations foreseen

by the ETSI MANO specifications, with reference to the interface be-

tween NFVO and VIM. It is worth highlighting that the NBI descrip-

tion given above is indeed based on the concept of intent. QoS metric,

VNFs and service chains are specified in a high-level, policy-oriented

format without any knowledge of the technology-specific details. A

non-intent-based description of a service chain, e.g. using the Open-

Flow expressiveness to steer traffic flows and compose the network

forwarding path, would require the customer to specify multiple flow

rules in each forwarding device for each traffic direction, involving

technology-dependent details such as IP and MAC addresses, device

identifiers and port numbers. The NBI defined above is used to specify

an IoT data gathering service crossing two different SDN domains and

an NFV chain, as per the architecture in Figure 2.1. For the use case

considered here, the high-level QoS features offered by the SDN/NFV

platform include “delay sensitive” and “loss sensitive” services, with

the possibility to specify a threshold for the relevant metric. Although

the above intent-based NBI definition is common to all VIMs consid-

ered in this use case, the orchestrator must specify different content

for each VIM depending on the specific resources to be programmed

and the specific segment of the service chain to be deployed in each

domain.

2.1.3 OpenFlow and Cloud domains

Assume that both the wired SDN domain and the Cloud comput-

ing domain depicted in Figure 2.1 are managed by a single SDN/-

Cloud VIM. This assumption is necessary in order to only focus on

the validation of the abstractions offered by the proposed architec-

2.1. SFC over IoT and Cloud domains 23



Chapter 2. Service Function Chaining over SDN Domains

Cloud Infrastructure

Delay sensitive

Loss sensitive

Figure 2.2: Data plane topology of the OpenFlow and Cloud domains

considered for the use case.

ture without introducing impediments due to communication over

geographical domains, a point that will be thoroughly addressed in

Section 3. The data plane topology for the considered use case is

shown in Figure 2.2. An OpenFlow-based SDN infrastructure is as-

sumed to be in charge also of the connectivity within the Cloud do-

main, thus providing programmable traffic steering functionality to

VNF chains. All the switches included in the topology (s1, s2, ..., s7)

are OpenFlow-enabled devices and are governed by an SDN controller

(e.g., ONOS [B43]), whereas the computing infrastructure is managed

through a Cloud platform (e.g., OpenStack [B44]). Switch s6 is an

edge device connecting the IoT gateways in the IoT SDN domain to

the Cloud network. Router vrl is the (virtual) edge router of the

(virtual) tenant network responsible for the connectivity within the

Cloud domain of the requested IoT data collection service. Switches

s1 to s5 are either physical or virtual switches used by the tenant

network for VNF connectivity. Two VNFs are deployed in the cloud:

chk performs integrity and sanity check on the collected data for im-

2.1. SFC over IoT and Cloud domains 24



Chapter 2. Service Function Chaining over SDN Domains

proved reliability, whereas bck is used to store backup copies of the

collected data. Router vrr is the (virtual) edge router of the (possibly

different) tenant responsible for the IoT data collection, processing,

and publishing services. Switch s7 is a (virtual) switch in the latter

tenant’s network, providing layer-2 connectivity to the server ServP

where collected data are processed and published.

According to the QoS features of the use case considered here, the

connectivity service offers two different paths in the OpenFlow do-

main. One path is characterized by minimum latency, where switches

are configured with small buffers being continuously monitored by the

SDN controller for possible congestion, and such that no VNF process-

ing is performed, which could introduce additional delays. The other

path is dedicated to highly reliable traffic flows, where switches have

large buffers to reduce losses, and data are processed by chk and dupli-

cated at switch s2 in order to be stored in bck. Therefore, depending

on the QoS feature requested by the customer, the high level man-

agement and orchestration functions can specify two different service

chains. In a real-world scenario, the monitoring operated by the SDN

controller would need to be tuned according to the capability of the

infrastructure in terms of computation power and link capacity. To

this end, the mentioned buffers can be tuned until a working trade-off

between monitoring accuracy and useful granularity is reached. As-

suming that, based on the interaction between the orchestrator and

the IoT VIM, incoming data will be collected from IoT network k and

then forwarded to ServP, according to the JSON format specified in

Section 2.1.2 the intent-based request to the SDN/Cloud VIM NBI

could be

{

"src": "IoT -GW[k]",

"dst": "ServP",

"qos": "Max delay",

"qos -thr": "10 ms",

"vnfList ": "null",

"dupList ": "null"

}

2.1. SFC over IoT and Cloud domains 25



Chapter 2. Service Function Chaining over SDN Domains

for the low latency QoS feature, or

{

"src": "IoT -GW[k]",

"dst": "ServP",

"qos": "Reliability",

"qos -thr": "99%" ,

"vnfList ": [chk , bck]

"dupList ": [bck]

}

with

chk ::= {

"name": "chk",

"terminal ": "false",

"port_sym ": "true",

"path_sym ": "false"

}

and

bck ::= {

"name": "bck",

"terminal ": "true",

"port_sym ": "null",

"path_sym ": "false"

}

for the loss sensitive QoS feature. The SDN controller must implement

a data plane monitoring service to make sure that, in the former case,

the delay sensitive path guarantees the requested maximum delay of

10 ms, whereas in the latter case the VNFs inserted in the service

chain and the loss sensitive path ensure the required 99% accuracy.

The VIM for the SDN/Cloud domains was developed as an ap-

plication running on top of the ONOS platform. It is important to

remark that ONOS already provides a built-in, intent-based NBI that

can be used to program the SDN domain and deploy the required

network forwarding paths. However, in order to specify ONOS in-

tents, some knowledge of the specific data-plane technical details is

2.1. SFC over IoT and Cloud domains 26



Chapter 2. Service Function Chaining over SDN Domains

required, whereas the aim here is to expose only high-level abstrac-

tions to the orchestrator. Therefore, one of the main functions of

the VIM is to implement new, more general and abstracted intents

that can be expressed according to the NBI specification given above.

The VIM then takes advantage of the network topology features of-

fered by the SDN/Cloud controllers in order to discover VNF location

in the Cloud and relevant connectivity details, and eventually it is

able to compose native ONOS intents and build more complex net-

work forwarding paths. The VIM can be instantiated as an ONOS

service called ChainService, which provides the capability of dynami-

cally handling the VNF chains through the abstracted NBI defined in

Section 2.1.2. To achieve extensibility and modularity, the implemen-

tation of ChainService is delegated to a module called ChainManager,

which is in charge of executing all the required steps to translate the

high-level service specifications into ONOS-native intents. The input

to ChainManager can be given through either the ONOS command

line interface (CLI) or a REST API. The latter is preferable, because

it allows remote applications to use standard protocols (e.g., HTTP)

to access resources and configure services. In this implementation, the

REST API provides the following service endpoints:

POST /chaining /{ action }/{ direction}

DELETE /chaining/flush

In the former endpoint, the action variable indicates the operation

that the orchestrator intends to perform on a specified service chain

(add, update, or delete), while the direction variable (forth, back,

or both) is used in case of an update, and it defines whether the

modified chain specification refers to the existing forwarding path from

src to dst, the opposite way, or both directions. The basic operations

of this endpoint are specified in the following list.

– If the add action is given, this will result in defining a new service

chain, based on the JSON specification included in the message

body. This means that a forwarding path will be created for

traffic flowing from src to dst and another one in the opposite

direction. Note that the two paths are not necessarily symmet-

2.1. SFC over IoT and Cloud domains 27



Chapter 2. Service Function Chaining over SDN Domains

Controller

Database

Adaptation
IoT/IP GW

IoT 
Network

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

ONOS 
VIM

IoT VIM

OpenFlow 
Network

HTTP

HTTP

HTTP REST

HTTP REST

HTTP

Control/Management Plane

Data Plane

OpenFlow

Cloud (emulated)

Figure 2.3: The NFV/SDN testbed setup developed to demonstrate

multi-domain SDN/NFV management and orchestration.

ric, based on the topological abstractions defined by the NBI.

– If the update action is given, then the direction is taken into

account and the forward path, backward path, or both paths of

the specified existing service chain are changed. In fact, a user

may be interested in changing only a segment of the forwarding

path and only in one direction, to reduce the control plane la-

tency and limiting the impact that a path change can have on

the existing traffic flows.

– If the delete action is given, then both forwarding paths of

the specified existing service chain are removed. ChainService

provides also the flush operation through another endpoint, thus

offering the possibility of deleting in a single step the forwarding

paths of all the service chains previously created.

2.1. SFC over IoT and Cloud domains 28



Chapter 2. Service Function Chaining over SDN Domains

2.1.4 Experimental validation

As a demonstration of the feasibility of the proposed multi-domain

SDN/NFV management and orchestration solution, a testbed was de-

veloped, implementing the reference architecture of the cloud-based

IoT data collection service with quality differentiation illustrated in

Figure 2.1. The complete testbed setup is shown in Figure 2.3. The

customer on the top-right corner requests the service to the high-level

management and orchestration functions, specifying the desired QoS

feature. The orchestrator then forwards the request to the VIM REST

NBIs of the relevant domains using the JSON format described in the

previous sections. Each VIM performs the operations required in the

respective domain and programs the underlying controllers according

to the requested service and QoS feature. Data generated by the IoT

devices is sent by the relevant gateway via HTTP POST to the col-

lecting/processing/publishing server in the cloud, where the customer

can retrieve it (the case of loss sensitive QoS feature is shown in the

figure).

In the testbed, the OpenFlow SDN domain and the Cloud do-

main were emulated using Mininet [B45] running in a virtual machine.

The data plane topology in Figure 2.2 was built with a customized

Mininet script specifying the required OpenFlow switches, as well as

routers and VNFs as separated network namespaces. Additional vir-

tual machines were instantiated to deploy the data collection/process-

ing server and the ONOS platform components. In order to provide

the two paths with different latency, chk was configured to introduce

an additional random delay uniformly distributed between 25 and 35

ms, with 25% correlation between consecutive samples.

Regarding the IoT domain, an IoT network was setup using the Eu-

WIn platform and, in particular, the flexible topology testbed (Flex-

top) facility [B46]. The testbed is composed of a number of SDN-

enable wireless sensor devices located in boxes hung on the walls of a

corridor at the University of Bologna. The map with the correspond-

ing identifiers of nodes is shown in the bottom-right part of Figure 2.3.

Due to the technological heterogeneity of the testbed, the perfor-

2.1. SFC over IoT and Cloud domains 29



Chapter 2. Service Function Chaining over SDN Domains

mances of each domain were evaluated separately. However, the results

obtained allow to reasonably infer the characteristics of the end-to-end

service. The results concerning the SDN/Cloud domain are reported

in Section 2.1.5, while for further details on the IoT testbed and rele-

vant results, refer to [P1, P10].

2.1.5 Performance evaluation

The performance evaluation within the emulated Cloud network is re-

ferred to the case where the customer requests the service by choosing

between two traffic classes - the previously mentioned “delay sensitive”

and “loss sensitive” services - according to the QoS features offered by

the OpenFlow SDN domain. One-way latency in the emulated Cloud

network was measured by comparing timestamps of each packet cap-

tured at switches s6 and s7. The capture was performed in the server

hosting the Mininet virtual machine, so the same reference clock was

used for the sake of accuracy. The measurements were made by aver-

aging over 10,000 requests. Results are reported in Table 2.1, in terms

of average and standard deviation of the data plane one-way latency.

QoS feature Average latency St. dev.

Delay sensitive 0.3 ms 0.28 ms

Loss sensitive 31.7 ms 2.41 ms

Table 2.1: Average and standard deviation of data plane (DP) one-

way latency computed at the emulated Cloud network.

The numbers prove the correct behavior of the OpenFlow domain

with respect to the requested QoS feature: very limited delays were

measured in the delay sensitive case, whereas in the loss sensitive case

no packets were lost and bck successfully stored a copy of the entire

data set transmitted by the IoT GW.

The last evaluation focused on the the NBI response time at the

VIM implemented in ONOS, i.e., the time required by the VIM to

process a JSON service chain specification. To assess the scalability

of the NBI, an increasing number of requests (from 5 to 200) was

2.1. SFC over IoT and Cloud domains 30



Chapter 2. Service Function Chaining over SDN Domains

0 50 100 150 200
Number of Service Function Chain requests

12

13

14

15

16

17

18

19

V
IM

 N
B

I 
re

sp
o
n
se

 t
im

e
 [

m
s]

Delay sensitive

Loss sensitive

Figure 2.4: Average NBI response time and 95% confidence interval at

the SDN/Cloud VIM with increasing number of service chain requests.

This response time is only marginally susceptible to the difference of

service.

generated and sent in a batch to the VIM. Each measured response

time was obtained as an average over 20 runs with the same number

of requests. Figure 2.4 shows the average NBI response time with

95% confidence intervals. The numbers show that the VIM is very

responsive, in the order of tens of milliseconds. The setup of loss sen-

sitive service chains takes slightly longer than the delay sensitive ones

because of the relatively more complex service chain to be processed.

As previously mentioned, the VIM for the data center and Cloud

domains was developed as an application running on top of the ONOS

platform and taking advantage of its connectivity-oriented, intent-

based NBI. This means that the operations performed by the VIM

(i.e., parsing and processing a request received through its service-

oriented, intent-based NBI; connecting to the ONOS NBI; program-

ming the relevant intents) are decoupled from the ONOS-based op-

erations (i.e., installing the requested intents in its core modules and

translating them into actual OpenFlow rules to be added to the con-

2.1. SFC over IoT and Cloud domains 31



Chapter 2. Service Function Chaining over SDN Domains

trolled SDN switches). Therefore, the response time reported in Fig-

ure 2.4 does not include the time needed by ONOS to complete the

flow rule setup. Since the latter depends on the specific SDN control

technology adopted, it has been kept separate from the VIM response

time.

However, for the sake of completeness, Table 2.2 reports the time

needed by ONOS to execute the intent and flow installation for the two

QoS classes under different virtual machine resource configurations in

terms of number of CPUs. The results, obtained from the average over

100 SFC requests, show how the ONOS response time decreases when

more resources are dedicated to it, keeping the network programming

time in the order of a couple of seconds. This also proves the correct

behavior of the data center and Cloud domain control plane from

the functional point of view. A complete functional validation of the

proposed NBI and the underlying control plane was performed on a

very similar experimental environment in [B47].

No. of vCPUs Delay sensitive Loss sensitive

2 3321.4 ms 3468.9 ms

4 2071.7 ms 2984.7 ms

8 1617.9 ms 2866.6 ms

Table 2.2: Average response time of the ONOS controller to execute

the intent and flow installation in the data center SDN network.

2.1.6 Remarks

The reported validation results demonstrate that the proposed NBI

can contribute to a viable solution for effective service deployment un-

der constraints in real environments, such as the heterogeneous Open-

Flow/IoT SDN testbed employed here, extended in Section 3.2, where

more comprehensive conclusive remarks are presented, too.

2.1. SFC over IoT and Cloud domains 32



Chapter 2. Service Function Chaining over SDN Domains

2.2 Latency-aware SFC

over SDN infrastructures

This section presents experiments on a latency-aware dynamic ser-

vice chaining orchestration, performed on top of the Fed4FIRE in-

frastructure provided within the Fed4FIRE+ Horizon 2020 Project,

which offers a federation of open, accessible and high-available Next

Generation Internet (NGI) testbeds to support a wide variety of dif-

ferent research and innovation activities, including 5G-related experi-

ments [B48].

The presented orchestration system supports latency-aware and re-

liable network service chaining on end-to-end basis, including dynamic

virtual function selection and intent-based traffic steering control func-

tionalities through heterogeneous SDN control systems.

In this section, a portion of the results collected in [P6, P7] is pre-

sented, specifically the one related to the validation and performance

evaluation of the proposed system in deploying service chains that

meet predetermined latency requirements.

2.2.1 Reference architecture and testbed

The reference architecture is shown in Figure 2.5a, and the related de-

ployment of the service chaining orchestration system with the setup

on top of the Fed4FIRE+ experimentation platform is shown in Fig-

ure 2.5b.

The Chain Optimizer is a service chaining engine running an

optimization algorithm that, upon a service chain request, selects VNF

instances available from different data centers (DCs) to minimize an

estimated end-to-end latency calculated considering both VNF pro-

cessing delays and inter-DC network delays information.

The SDN WAN slice includes a SDN network topology consist-

ing of of five physical nodes running virtual SDN switches controlled by

an instance of ONOS, hosted on a dedicated node. The WAN Infras-

tructure Manager (WIM) Orchestrator implements the orchestration

logic for the WAN SDN domain slice on top of the ONOS controller,

2.2. Latency-aware SFC over SDN infrastructures 33



Chapter 2. Service Function Chaining over SDN Domains

VF VFVF

VF

VF

SDN Contr. 1 SDN Contr. 2WAN SDN 
Controller

\
Application

VIM 1 VIM 2WIM

Edge Cloud 
SDN 

Domain 1

O
rc

h.
 L

ay
er

Edge Cloud 
SDN 

Domain 2

WAN SDN 
Infrastructure

VFVF

Edge Cloud 
SDN 

Domain 3

SDN Contr. 3

VIM 3

N
FV

I

Chain Optimizer
NFVO/
VNFM

ETSI NFV MANO

(a) Reference architecture, including all management and control plane

components.

DP slice interconnection 
(VXLAN tunnel)

Orchestration msg 
(via MP network)

VIM 1 VIM 2VIM 3

Edge Cloud 
SDN Domain 

(DC-1)

Chain Optimizer

WIM

NFVO/ 
VNFM

WAN SDN

Edge Cloud 
SDN Domain 

(DC-3)

Edge Cloud 
SDN Domain 

(DC-2)

ETSI NFV MANO

Fe
d4

FI
R

E+

Service Chaining Orchestration System

(b) Testbed deployment, where multiple experiment slices are intercon-

nected at both data plane (blue solid lines) and orchestration plane (red

dashed lines) levels.

Figure 2.5: Orchestration system reference architecture and deploy-

ment on the Fed4FIRE+ platform.

2.2. Latency-aware SFC over SDN infrastructures 34



Chapter 2. Service Function Chaining over SDN Domains

exposing the programmable provision of service chain paths across the

WAN. In line with [B49], the WIM orchestrator also offers reliable ser-

vice chains by adapting (i.e., redirecting) service paths, or a segment

thereof, to recover from network congestions events detected by pe-

riodically collecting statistics from the SDN controller and deriving

up-to-date switch link throughput data. Finally, the WIM is respon-

sible for the collection of network latency information (i.e., inter-DC

delays) that are made available to the Chain Optimizer for computing

a minimum-latency service graph.

The three SDN DC slices host small Edge Cloud deployments

based on OpenStack. Each DC slice includes two or three compute

nodes, where virtual machine instances are deployed over a QEMU-

KVM hypervisor. All OpenStack nodes are connected to another phys-

ical node running an instance of OvS, representing the data plane

SDN infrastructure of the DC, which is controlled by an instance of

ONOS running locally. The same physical node hosts also the Vir-

tual Infrastructure Manager (VIM) Orchestrator, which implements

an SDN-enabled DC/Cloud domain orchestration logic providing ad-

vanced network management capabilities in Cloud computing envi-

ronments. The VIM orchestrator exposes an intent-based northbound

REST interface that allows to specify a service chain in the form of

intents. This makes it suitable to manage different DC domains in

a multi-technology environment, e.g., leveraging different SDN con-

trollers. The VIM orchestrator is also capable of dynamically ap-

plying changes to an existing service chain without having to delete

and re-deploy it from scratch. This allows to dynamically adapt ser-

vice chains to the current context of users or services (e.g., location of

users in a mobility scenario) or to varying needs of the service provider

(e.g., resource management policy), and, ultimately, to avoid or pre-

vent SLA violations. Furthermore, the REST API provided by the

VIM orchestrator allows the Chain Optimizer to collect information

about the currently deployed VNFs and their estimated processing

latency, computed based on the current workload. The established

DC slices and the WAN slice interact at the data plane level by ex-

2.2. Latency-aware SFC over SDN infrastructures 35



Chapter 2. Service Function Chaining over SDN Domains

changing packet data traffic by means of VXLAN tunnels, and at

the orchestration plane level by exchanging control messages between

Chain Optimizer, WIM and VIM orchestrators.

2.2.2 Experimental results

The correct operations of the orchestration system were validated by

generating create and delete service chain requests to the Chain

Optimizer, with different lengths and requirements in terms of band-

width and maximum latency. The Chain Optimizer handles each

request, computes a latency-optimized solution and sends the cor-

responding forwarding instructions to the relevant VIM and WIM

orchestrators through their respective northbound interfaces. Then,

each VIM/WIM interacts with the SDN controller in its domain in

order to setup the relevant flow entries.

After the switches are configured and the chain is correctly estab-

lished, data traffic is injected across the VNF instances implementing

the chain (e.g., by using iperf to generate traffic at 1 Mbit/s).

Figure 2.6 shows the sequential time diagram of the throughput

measured at the VNF instances involved in the deployment of the

following service chain sequence:

i) VNF-1 → VNF-7 → VNF-9

ii) VNF-1 → VNF-9

iii) VNF-1

At time t = 0 the three chains have already been successfully de-

ployed. According to the initial placement, instances of VNF-1 and

VNF-7 are deployed in DC-1, whereas instances of VNF-9 are deployed

in DC-2. At t = 9s traffic starts flowing through instances involved in

the first chain, i.e., VNF-1, VNF-7 and VNF-9 (throughput equal to

1 Mbit/s). When traffic is sent through the second chain, at t = 40s

a second flow is measured at VNF-1 and VNF-9 instances (through-

put equal to 2 Mbit/s). Finally, when the third chain is loaded with

traffic, throughput equal to 3 Mbit/s is measured at VNF-1 instance

at t = 70s. At the end of the experiment (t = 100s), the measured

throughput drops to zero due to the deletion of the three service chains.

2.2. Latency-aware SFC over SDN infrastructures 36



Chapter 2. Service Function Chaining over SDN Domains

 0

 1

 2

 3

 4

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t 

(M
b
it

/s
)

Time (s)

VF-1
VF-9
VF-7

Figure 2.6: Sequential time diagram of the throughput measured at

VNF instances involved in a service chain deployment sequence.

This demonstrates the correct deployment and deletion of the service

chains across the involved domains.

Table 2.3 compares the end-to-end latency obtained as the sum of

retrieved VNFs processing latency and the inter-DC latency measure-

ments, used by the Chain Optimizer to compute the service chain path

(i.e., end-to-end latency at Chain Optimizer), with the end-to-end la-

tency actually experienced by data while flowing in the established

service chains (i.e., end-to-end latency at established chains). For each

run, a sequence of 10 service chain requests is sent for every given chain

length. The actual measured values and the ones estimated by the CO

are fairly close, proving the robustness of the latency-awareness fea-

ture and of the computation process of the orchestration system, that

allows for an efficient selection of the DCs and of the VNFs instances.

2.2. Latency-aware SFC over SDN infrastructures 37



Chapter 2. Service Function Chaining over SDN Domains

Chain Length Latency at Chain Opt. [s] Latency at est. chains [s]

2 56.24 76.7

3 72.38 77.2

4 103.86 112

Table 2.3: End-to-end latency as predicted by the Chain Optimizer

vs. as measured after establishing the chains.

2.2.3 Remarks

The end-to-end orchestration system presented in this this section was

validated using a realistic and composite SDN/NFV deployment, re-

alizing latency-aware and reliable service chaining over geographically

distributed SDN-based Cloud DCs interconnected through a SDN

WAN. Possible improvements include the integration of this orches-

tration functionalities with a complete implementation of a MANO

orchestrator, as well as perform extensive evaluation in comparing

different VNF selection approaches.

2.2. Latency-aware SFC over SDN infrastructures 38



Chapter 3

Service Function Chaining

over non-SDN Domains

In this chapter, a possible implementation of SFC-aware control plane

is proposed, inspired by the concepts discussed in [B50], starting from

the discussion of architectural aspects, then moving on to the introduc-

tion of the proposed implementation, and its application to a known

scenario. In Section 3.1.1, the SFC architecture is discussed, and the

proposed implementation of a NSH-aware control plane is presented

in Section 3.1.2 and validated in Section 3.1.3. In Section 3.2 the

proposed approach is integrated in the architecture described in Sec-

tion 2.1 and the related testbed, extending it, and achieving multi-

domain orchestration of SFC over both SDN and non-SDN domains.

These contributions are linked by the common goal of making the

mentioned SFC orchestration feasible and to prove that the approach

can be applied to use cases supported by different heterogeneous tech-

nologies.

3.1 Towards a SFC-aware control plane

Several aspects of SFC are currently being investigated by the re-

search community. SFC Orchestrators designed to deploy SFCs as

well as control their activity and make adjustments are introduced

in [B19]. The problem of allocating physical resources to data plane

39



Chapter 3. SFC over non-SDN Domains

components of a SFC is addressed in [B20], while a solution for the

trade-off between optimized performances and resource cost in SFC

deployments is presented in [B21].

A very important problem in the implementation of the SFC Or-

chestrator arises when the chain spans several network domains with

non homogeneous forwarding technologies. This problem was ad-

dressed by the Internet Engineering Task Force (IETF) in [B51], where

it is suggested that the service-specific overlay can be obtained by ap-

plying packet encapsulation. One option being considered by IETF

is the Network Service Header (NSH) [B52], which intends to provide

a flexible, dynamic, and transport-independent SFC solution for the

data plane. The NSH standard focuses on data plane aspects only, and

very little has been said about a possible SFC control plane solution.

3.1.1 Service Function Chaining architecture

The SFC architecture [B51] introduces some important concepts that

are briefly mentioned in the following. The Service Function Path

(SFP) is a specification of the path to be followed by packets assigned

to a certain SFC. It is an abstraction of the sequence of nodes the

packets requiring a given service will traverse. On the other hand,

the SFC encapsulation (SFC-En) always provides SFP identification

and can optionally provide further information. It is used by the

SFC-aware functions to realize the Service Plane functionalities, but

it is not used for packet forwarding through the underlying network

topology. Carrying the SFC-encapsulated traffic is the task of the

chosen network transport protocol.

The main components of the SFC Service Plane are:

– SFC Classifiers (SFC-Cl), which classify the incoming traffic

based on predefined policies, in order for the flow to be steered

through the required set of network service functions; the main

task for the SFC-Cl is to add the SFC-En, which is then removed

by the last node in the SFP, or by a SFC-aware function that

consumes the packet;

– Service Functions (SF), which are the basic elements of a chain,

3.1. Towards a SFC-aware control plane 40



Chapter 3. SFC over non-SDN Domains

and are responsible for a specific treatment of received packets;

they can act at different levels of the protocol stack, and they can

be implemented either as virtual elements hosted by a server, or

as physical equipment with specialized hardware; a SF can be

either SFC-aware (i.e., able to act on SFC-encapsulated packets)

or SFC-unaware (i.e., it must receive only packets without SFC

encapsulation);

– Service Function Forwarders (SFF), which are responsible for

forwarding traffic to one or more connected SFs according to

information carried in the SFC-En; they can also terminate the

SFP;

– SFC Proxies (SFC-Pr), which remove and insert SFC-En on

behalf of SFC-unaware SFs, before and after their action, re-

spectively.

The reference architecture of the SFC Control Plane (SFC-CP)

described in [B50] defines the following interfaces to communicate with

Data Plane components:

– interface C1, between SFC-CP and SFC-Cl, used to manage SFC

classification rules in classifiers;

– interface C2, between SFC-CP and SFF, used for exchanging re-

quired information for SFC forwarding decision-making, collect

state information on SFPs, etc.;

– interface C3, between SFC-CP and SFC-aware SF, used, for ex-

ample, to collect output information resulting from the process-

ing of packets in the SF;

– interface C4, between SFC-CP and SFC Proxies, used to com-

municate SFC instructions and to retrieve state information.

The deployment of SFCs must take into account complex aspects

that must be handled carefully, as reported in [B53]. Such aspects in-

clude topological dependence, consistent ordering of SFs, and dynamic

SFC classification. Moreover, end-to-end SFCs are typically deployed

across multiple network administrative and/or geographical domains.

The SFC Architecture can be implemented by making use of NSH,

which defines a Service Plane protocol, specific for the creation of dy-

3.1. Towards a SFC-aware control plane 41



Chapter 3. SFC over non-SDN Domains

Figure 3.1: Structure of a NSH-encapsulated packet using VXLAN for

transport.

namic SFCs. It provides SFP identification, transport-independent

chaining, and packet-based network and service metadata. NSH is de-

signed to be easy to implement across a range of devices, both phys-

ical and virtual, including hardware platforms. The NSH header is

summarized and given context among the other fields of a packet in

Figure 3.1.

The two most important fields in the NSH header are the Service

Path Identifier (SPI) and the Service Index (SI). The SPI is a 24-

bit integer number assigned to packets by the first SFC-Cl in the

SFP, and all nodes taking part in that SFP must use the same SPI

consistently. The SI, an 8-bit integer number, is used to identify the

location within the SFP. The SI must be set by the initial SFC-Cl

either to its maximum value (i.e., 255) or to a value related to the

length of the SFP, and it must be decremented by one unit by all

SFC-aware SFs and SFC Proxies the packet traverses in the SFP.

3.1. Towards a SFC-aware control plane 42



Chapter 3. SFC over non-SDN Domains

SFC Control Plane

SF SF
WEST

C1 / C2 C2 / C4

Legend

: Ethernet          : NSH

: generic network

: OF-capable switch

C1 / C2

Service Plane entities

(1) : SFC Classifier / SFF

(2) : SFF / SFC Proxy and SFC-unaware SFs

(3) : SFC Classifier / SFF

(4) : SFC-aware SF

(1) (2) (3)

C3

(4)

(0)

EAST

SF

Figure 3.2: Reference scenario: the role of Nodes (1) to (4) is shown

in the upper left corner.

3.1.2 OpenFlow-based NSH control plane

The reference scenario for the proposed NSH control plane is shown

in Figure 3.2. It is composed of a SFC-CP entity, a pair of SFC-

Cls, an intermediate node serving as both SFF and SFC-Pr towards

SFC-unaware SFs, a SFC-aware SF, and two SFC-unaware SFs. In the

reference implementation, it is assumed that each Service Plane entity

is built around an OpenFlow-capable switch (OF-S). Then, all SFC

entities are interconnected by means of a tunneling technology (e.g.,

VXLAN) through an underlying network infrastructure, controlled by

one or multiple network operators through a generic control plane

paradigm. The network infrastructure can use either SDN or non-

SDN control, but this does not matter because the proposed SFC-CP is

separate from the network control plane. Therefore, service providers

and network providers can act as completely independent entities, each

adopting its favorite control plane approach.

Mapping a SFP to the transport network requires to define a re-

lationship between a given position in the SFP (i.e., a SPI/SI pair)

and a certain next-hop in the underlying network. While the former

3.1. Towards a SFC-aware control plane 43



Chapter 3. SFC over non-SDN Domains

information belongs to the Service Plane, the latter depends on the

network’s topology and technology, as it must point to an existing

location in the underlying network, typically expressed as an address

(e.g., IP or MAC). How to implement this mapping is not a matter

of standardization and different solutions may be adopted. The sug-

gested mapping strategy is based on a rather straightforward idea:

mapping the SFP-to-transport relationship onto the ports of the em-

ployed OF-S.

In the proposed solution, the SFP-to-transport relationship is ac-

tually mapped onto the ports of the employed OF-S. In fact, each NSH

interface, corresponding to a specific SPI/SI pair, is bridged to a port

on the node’s internal OF-S. Through the association of SPI/SI pairs

to ports on a OF-S, it is possible to have the node acting as a NSH

Service Plane component while controlling it through the OpenFlow

protocol from an SDN Controller, which takes the role of SFC Con-

trol Plane entity (SFC-Co) running applications that enforce Service

Plane policies.

It is possible to add multiple NSH interfaces to each node, bridging

them to ports of a OF-S, and program the Service Plane actions of

the node through the OpenFlow protocol. The NSH mapping tables

are therefore implemented in the form of flow tables inside the OF-S.

For example, assume port N of the OF-S is bridged to interface nshM

of the node. Instructing the switch (via a flow table action) to send

traffic out of port N will result in the node sending NSH-encapsulated

traffic out of interface nshM with the corresponding SPI/SI values.

Therefore, depending on what kind of flow rules are installed in

the internal OF-S, a SFC node can be programmed to perform differ-

ent Service Plane entity functions. With reference to Figure 3.2, the

entities are mapped to the nodes in the following way:

– Node (0) hosts the SFC-Co.

– Node (1) is responsible for adding the NSH tag to packets coming

from WEST hosts and forwarding NSH-encapsulated packets

to the first SFF in the SFP: in this role, it acts as SFC-Cl.

Additionally, this node is also responsible for removing the NSH

3.1. Towards a SFC-aware control plane 44



Chapter 3. SFC over non-SDN Domains

tag from packets assigned to a SFP which ends at Node (1),

such as packets destined to WEST hosts, thus acting as SFF.

Following this approach, the SFC classification is as expressive

as OpenFlow matching is.

– Node (2) is responsible for handling the NSH encapsulation on

behalf of SFC-unaware SFs, as well as for forwarding the NSH-

encapsulated packets to the following SF or SFF in the SFP. In

those two tasks, Node (2) acts as SFC-Pr and SFF, respectively.

– Node (3), similarly to Node 1, acts both as SFC-Cl and SFF for

the traffic exchanged with EAST hosts.

– Node (4) acts as a SFC-aware SF, as it is able to receive NSH-

encapsulated packets from the SFF and process them, before

sending them back to the SFF after updating the SI.

3.1.3 Experimental validation

Testbed setup

As a proof of concept, the proposed solution was implemented in a

testbed, based on the reference scenario illustrated in Figure 3.2. The

testbed comprises a total of five Virtual Machines (VMs) and the inter-

connecting virtual networks. The VMs are deployed on a single phys-

ical server, and virtualization is managed through libvirt/KVM. One

of them hosts an instance of the SDN Controller ONOS [B43], while

the remaining four VMs implement NSH-capable nodes. The choice

of ONOS as SDN Controller (therefore, in this testbed, as SFC-Co)

is motivated by its availability of Java and REST APIs, along with a

well-documented Command Line Interface (CLI) and Graphical User

Interface (GUI), allowing for easier monitoring of the controller’s ac-

tivities. However, this choice does not affect the generality of the

implementation. Depending on the required virtual topology, some

nodes also host virtual OpenFlow-capable switches, deployed using

Open vSwitch (OvS) bridges, or a few additional terminal hosts, ob-

tained by means of Linux network namespaces. One of the virtual

networks serves as control and management network, and connects

3.1. Towards a SFC-aware control plane 45



Chapter 3. SFC over non-SDN Domains

the SFC-Co with the NSH nodes. The remaining virtual networks

emulate the underlying network infrastructure. The open-source NSH

kernel module [B54] was installed on each NSH node. This open-

source NSH implementation allows to define logical network interfaces

capable of encapsulating Ethernet traffic into NSH data units with

specified SPI/SI values and transport technology.

Each NSH interface was assigned a SPI/SI pair, and was mapped to

a transport-level next-hop (i.e., an IP address), instructing the node to

use VXLAN as encapsulation protocol to obtain the overlay topology.

This is equivalent to adding an entry in the NSH-to-transport mapping

table specifying that all traffic addressed to the endpoint with that

SPI/SI should be encapsulated in VXLAN packets and sent to the

specified remote IP address. Similarly each NSH interface was made

aware of the inbound SPI/SI values it is meant to receive. Thus the

mapping was achieved for outgoing and incoming traffic.

The transport network infrastructure will be traversed by as many

VXLAN tunnels as the number of SPI/SI pairs defined. Each packet

sent out by the VMs over one of their NSH interfaces will be inter-

cepted by the NSH kernel module and encapsulated in a NSH/VXLAN

packet, obtaining the SPI/SI pair assigned to the NSH interface. Sim-

ilarly, when a packet is received on one of the NSH interfaces, the

kernel module will intercept it and remove the NSH/VXLAN encap-

sulation, before handling the packet to the traditional IP forwarding

module of the VM.

As previously mentioned, the NSH nodes were created employing

OvS bridges as internal OF-S, programmed by the SDN Controller/SFC-Co.

The NSH logical interfaces were attached to the OvS ports. The

WEST and EAST hosts, as well as the SFC-unaware SFs, were imple-

mented as logically isolated virtual entities by means of Linux network

namespace technology. Thus, the full set-up depicted in Figure 3.2

was obtained. A Deep Packet Inspector (DPI) and a Traffic Con-

troller/Shaper (TC) were deployed as SFC-unaware SFs, the latter

configured with two Layer-2 interfaces (inbound and outbound). The

SFC-aware SF is an Integrity Checker (IC).

3.1. Towards a SFC-aware control plane 46



Chapter 3. SFC over non-SDN Domains

(a) Logical topology with key physical components.

(b) Topology perceived by the SDN Controller/SFC-Co

Figure 3.3: Testbed topology from different perspectives.

The overall topology of the testbed is shown in Figure 3.3, where

Figure 3.3a highlights the involved VMs and transport domains, while

the topology as it is perceived by the SFC-Co is shown in Figure 3.3b.

The SFC-Co is only aware of the overlay topology, i.e., the set of

nodes and interconnections belonging to the Service Plane. Although

there are two SFs, only one of them is reported by the topology man-

ager of the SFC-Co.This is due to the fact that one of the SFs is

interconnected to the rest of the testbed with two interfaces lack-

ing an IP address, and therefore not addressable at network level,

making it impossible to find for the discovery module of the SDN

Controller/SFC-Co.

The WEST hosts represent users wishing to communicate with the

EAST hosts. Different (categories of) users must be assigned different

priorities, and the following service policies must be enforced:

– traffic coming from user WEST1 should be first checked by the

DPI and then copied in the IC;

– traffic coming from user WEST2 should be first checked by the

3.1. Towards a SFC-aware control plane 47



Chapter 3. SFC over non-SDN Domains

Figure 3.4: The considered SFCs and related SFPs on the deployed

testbed topology; SFC1 in red solid line, SFC2 in blue dashed line,

SFC3 in green dotted line.

DPI and then limited in bandwidth by TC.

Therefore, three possible SFCs are needed:

– SFC1, from any WEST user to the destination EAST user, du-

plicating the traffic towards the DPI;

– SFC2, from a high-priority WEST user to the destination EAST

user, passing through the IC;

– SFC3, from a low-priority WEST user to the destination EAST

user, passing through TC for bandwidth limitation.

To each SFC corresponds a SFP, and those related to the decribed

SFCs are depicted in Figure 3.4.

Proof-of-Concept validation

A basic orchestrator (implemented as a script emulating an orchestra-

tor’s interaction with ONOS) was deployed in the SFC-Co node, in

order to accomplishes the desired dynamic SFC behavior. The orches-

trator installs proactive flow rules in the OF-S internal to relevant SFC

entities, so as to apply chain SFC1. Then, it waits for any WEST user

to start a flow of traffic towards the destination EAST user. When the

flow starts, the orchestrator starts the DPI, and after a small time pe-

riod, it retrieves information from it. If the inspected traffic contained

data from WEST1, the script installs rules applying SFC2, otherwise,

if the traffic contained data from WEST2, the script installs rules ap-

3.1. Towards a SFC-aware control plane 48



Chapter 3. SFC over non-SDN Domains

0 10 20 30 40 50 60 70 80 90
Time [s]

0

10

20

30

40

50

60

70

80

90

100

110

120
T
h
ro

u
g
h
p
u
t 

[M
b
it

/s
]

SFC1

SFC2

SFC3

Figure 3.5: WEST-to-EAST throughput measured at the OF-S within

Node (2) while applying dynamic SFC.

plying SFC3. It should be noted that traffic flows are steered to a

different SFP without stopping them, thus achieving dynamic SFC.

The WEST-to-EAST throughput measured at the OF-S within

Node (2) while applying the different SFCs is shown in Figure 3.5. At

first, SFC1 is applied to traffic from WEST1 (from t = 8s to t = 20s),

then after inspection SFC2 is applied (from t = 21s to t = 38s). Later

on, traffic from WEST2 is subject to SFC1 (from t = 53s to t = 65s),

then after inspection SFC3 with shaping is applied (from t = 66s to

t = 84s). This outcome proves the correct implementation of dynamic

SFC in the testbed.

3.1.4 Remarks

The SFC Control Plane solution proposed in this paper is based on

the SDN paradigm. However, the SFC-Co and the SDN controller re-

main logically separated entities. In the proposed approach, assuming

SFC entities that are built around an OpenFlow-capable switch, one

can take advantage of the inherent dynamicity and programmability

of SDN also in the Service Plane, while keeping it independent of the

underlying network infrastructure. Therefore, network providers and

3.1. Towards a SFC-aware control plane 49



Chapter 3. SFC over non-SDN Domains

IoT SDN 
Controller

Data Center 
SDN Controller

VNF

VNF

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

IoT VIM Cloud VIM

Cloud
ControllerDB

GW1

IoT Coord1

GWN

IoT CoordN

IoT 
Network 1

IoT 
Network N

…

IoT SDN Domain Data Center SDN Domain Cloud Domain

Technology
specific SBI

Transport SDN Domain

Transport SDN 
Controller

NSH node

NSH tunnel

Technology
specific SBI

WAN Infrastructure
Manager

VIM Intent-based NBI
(Or-Vi)

Network/Cloud Controller NBI
(Nf-Vi)

Figure 3.6: Reference multi-domain SDN/NFV architecture. Three

different technological domains are displayed here, including an IoT

domain, a data center and Cloud domain, and a geographical transport

network domain.

service providers can adopt completely separate Control Plane solu-

tions. The results gathered are promising and encouraging, as they

prove that the proposed approach is feasible and effective.

3.2 SFC over IoT, Cloud, Fog

and non-SDN tranport domains

The implementation of the SFC-aware control plane presented up to

this point was employed in [P10] to extend the work on dynamic chain-

ing over SDN domains presented in Chapter 2, particularly the part

covered in Section 2.1. The architecture shown in Figure 3.6 is ob-

tained by including a non-SDN transport domain in between the IoT

and Cloud domains shown in Figure 2.1. The testbed reflects this

addition too.

The role of the transport domain is to provide inter-domain con-

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 50



Chapter 3. SFC over non-SDN Domains

nectivity between IoT and data center/Cloud domains across a general

geographical network, as required by the service chain to be instan-

tiated. Although the SDN concept has recently been extended to

inter-data center transport networks [B16] and to flexible wide area

network (WAN) interconnections [B18, B17], the implementation pre-

sented here is independent of the control capabilities offered by the

transport network. The rationale behind this is that an overlay ap-

proach allows to deal with heterogeneous forwarding technologies in

the transport domain.

In order to keep service provisioning operations separate from and

independent of the underlying transport infrastructure, the NSH ap-

proach is adopted, using the OpenFlow-based implementation de-

scribed in the first part of this chapter. As detailed in Sections 3.1.1,

when used in conjunction with a tunneling technology (e.g., VXLAN),

NSH can be seen as a way to implement a network overlay enabling

service function chaining on top of legacy transport networks. More-

over, an SDN-like solution for implementing the NSH control plane

enables a seamless integration of the NBI of the transport infrastruc-

ture manager with the NBI adopted in the IoT and data center/Cloud

domains, as well as the ability to dynamically adapt traffic flow for-

warding to the requirements of the SFC being deployed.

Finally, the transport domain was implemented on a legacy physi-

cal network, on top of which NSH encapsulation and VXLAN tunnel-

ing between pairs of NSH-capable nodes were enabled. The NSH end-

points serve as SFC-Cls, as introduced in Section 3.1.1. An instance

of the SDN controller Ryu [B55] implements the SDN controller re-

sponsible for steering the traffic in the transport domain. It does so

by means of NSH encapsulation and dynamic SPI/SI allocation.

In order to validate the adaptive traffic steering capabilities of the

NSH-based transport domain, three NSH endpoints were deployed as

ingress/egress nodes exchanging traffic with other domains. One end-

point was connected to the IoT domain gateway located at the Uni-

versity of Bologna premises. A second endpoint was connected to

the VMs previously mentioned, where the data center SDN domain

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 51



Chapter 3. SFC over non-SDN Domains

Controller

Database

Adaptation

IoT/IP GW

IoT 
Network

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

Cloud
VIM

IoT VIM

Data Center 
SDN Network

HTTP

HTTP

HTTP REST

HTTP

Control Plane

Data Plane

OpenFlow

Cloud (emulated)Transport
domain

NSH
Tunnel

WAN 
IM

OpenFlow

Management Plane

Figure 3.7: The NFV/SDN testbed setup developed to demonstrate

end-to-end multi-domain service management.

and the Cloud domain were emulated with Linux namespace tech-

nology. Those VMs were deployed on a physical server located in

a research-oriented computing facility in Belgium, belonging to the

same federated experimental facility (i.e., Fed4FIRE+) mentioned in

Section 2.2.

A set of experiments were run after instantiating the data collec-

tion/processing server also in a virtual machine located at the Univer-

sity of Bologna and connected to the third NSH endpoint. The latter

setup was employed to emulate the scenario where the required service

is discovered in an edge or Fog computing domain located closer to the

IoT domain with respect to the remote Cloud domain. In this case,

the edge/Fog node offering the service may not be continuously avail-

able, due to the limited and variable (e.g., due to mobility) number of

resources available in such kind of computing environments. However,

when the required resources can be found in a local edge/Fog domain,

it is preferable to take advantage of them so that a delay-sensitive

service can be delivered with a reduced data plane latency, resulting

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 52



Chapter 3. SFC over non-SDN Domains

Queried
Device

IoT
Gateway 
Network

Transport
Domain Cloud

Domain

(a) Deployment across the IoT, transport, and data center/Cloud domains.

Queried
Device

FOG
Domain

Transport
DomainIoT

Gateway 
Network

Cloud
Domain

(b) Deployment when the required resources are available in a Fog domain

located closer to the user or IoT domain.

Figure 3.8: End-to-end service deployment in different conditions, de-

pending on the availability of Fog resources.

also in a reduced traffic load in the transport network. The adap-

tive traffic steering capabilities of the NSH-based transport domain

allow to dynamically change the end-to-end service deployment from

the Cloud-based scenario to the edge/Fog-based one, as sketched in

Figure 3.8.

The validation of the transport domain focused on the data plane

latency between the NSH endpoint connected to the IoT domain and

the NSH endpoint connected to the domain where the “data con-

sumer” is located. To functionally validate the adaptive traffic steering

capabilities of the SDN control plane adopted for the NSH-based over-

lay, a delay-sensitive service was first deployed in the remote Cloud ,

then at some point it was assumed that suitable resources were dis-

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 53



Chapter 3. SFC over non-SDN Domains

0 10 20 30 40 50 60 70 80 90 100
Time [s]

0

10

20

30

40

50

60

70

80

90

100

D
a
ta

 P
la

n
e
 R

e
sp

o
n
se

 T
im

e
 /

 R
T
T
 [

m
s]

HTTP POST response time

RTT to cloud (EWMA)

RTT to fog (EWMA)

Figure 3.9: Temporal evolution of the transport data plane response

time for HTTP POST requests and corresponding measured RTT val-

ues (EWMA with weight α = 0.5). When the server in the fog domain

becomes available and traffic is steered towards it, the overall response

time improves significantly.

covered in a Fog domain located closer to the IoT domain. A fully

fledged resource discovery mechanism was not implemented, as this is

out of the scope of this validation, that resorts to ping responses to de-

tect when the VM, representing the resource located at the edge/Fog

domain, becomes active. This very simple resource discovery mecha-

nism is deemed sufficient to demonstrate the correct behavior of the

traffic steering in the NSH-based transport domain. To assess RTT,

ping-based periodic measurements between each pair of NSH end-

points (IoT-to-Cloud and IoT-to-Fog) were employed, so as to choose

the target domain offering the minimum data plane latency. In order

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 54



Chapter 3. SFC over non-SDN Domains

to stabilize the RTT measurements, the exponential weighted mov-

ing average (EWMA) of the collected RTT samples was considered,

with weight α = 0.5. In the implemented testbed, it was impossible

to accurately assess single-way latency, as the source and destination

NSH endpoints resided in different and remote physical machines, with

non-synchronized clock sources.

As a realistic estimation of the response time in the transport net-

work data plane, the time needed to complete a series of HTTP POST

requests from endpoint to endpoint was measured, taking into account

TCP session setup, HTTP POST message request, and 200 OK re-

sponse. The POST messages were generated and sent by the node

serving as NSH endpoint connected to the IoT domain, and were re-

ceived and acknowledged by the node serving as the NSH endpoint

connected to either the Cloud or the Fog domain. A total of 100

POST requests were generated, and sent at intervals of 1 second. In

Figure 3.9, the temporal evolution of the transport data plane response

time for HTTP POST requests is represented by the blue solid line,

while the network-level EWMA of the RTT is represented by the green

dashed line for the Cloud domain and by the red dotted line for the

Fog domain. At the beginning, the HTTP traffic is sent towards the

server in the Cloud domain, with a quite steady RTT moving average

of about 40 ms. From t = 0s to t = 50s, the traffic actually reaches

the Cloud domain (located in Belgium), and the fluctuations in the

measured response time are mainly caused by application-level delays.

Meanwhile, at t = 30s the periodic ping measurement detects that the

Fog node has become available, with a RTT moving average of about

10 ms, significantly lower than the RTT measured toward the Cloud .

After a resource/service discovery period, assumed to be completed at

t = 50s, the transport domain SDN controller steers the traffic com-

ing from the IoT endpoint toward the Fog domain, achieving overall

better latency performances. This validates the correct behavior of

the transport domain control plane from the functional point of view.

The difference between the RTT values and HTTP POST response

times is due to the additional overhead included in the HTTP POST

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 55



Chapter 3. SFC over non-SDN Domains

transaction, with respect to a simple echo request/reply (ping) packet

exchange.

As a final validation, the actual end-to-end service deployment time

across the multi-domain scenarios shown in Figure 3.8 was evaluated.

For this analysis, it is worth remarking that the service deployment

response time is due to the response time of the management plane,

consisting of the VIMs orchestrating the service implementation via

the NBI, the delay in the network control plane, implemented by the

SDN controllers, i.e. the IoTC/ONOS/Ryu platforms in this specific

testbed, and the data plane latency required by the data traveling the

network once the SFC is deployed.

In this case, the measurement focused on the time needed for the

user’s request containing the intent-based service specification to reach

the VIMs in the different domains, the generation of data in the IoT

domain, its transmission through the transport domain to the destina-

tion server in the Cloud/Fog domain, and the final acknowledgment.

The time needed to actually program the network control plane was

not included, as it was already presented in Table 2.2.

The measured average values, computed over 100 samples and

shown in Table 3.1, are all in the proximity of 0.5 s, and the largest

contribution to is given by the service management plane (orchestra-

tion, intent-based request set and processing, etc.), with just about

10% given by the network data plane latency. Nonetheless, the re-

duced network latency is evident when the service is “re-routed” to

the Fog domain. This is very important because, for all the data

posted after the service set-up, the network delay would be the only

component (the time needed by the management plane being needed

just at set-up) and therefore they would experience an improvement

in response time of almost 100%.

3.2.1 Remarks

The reported validation results demonstrate the feasibility of the ap-

proach and the potentials of the NBI applied in real environments

over a heterogeneous OpenFlow/IoT SDN testbed with Fog comput-

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 56



Chapter 3. SFC over non-SDN Domains

QoS feature Cloud scenario Fog scenario

Delay sensitive 532.3 ms 511.8 ms

Loss sensitive 554.0 ms 530.1 ms

Table 3.1: Average end-to-end service deployment time, for different

QoS features and Cloud or Fog domain scenarios.

ing options. The latency values measured at both data and control/-

management planes allowed to get a first insight to the performance

levels of the overall system, resulting in reasonable response times for

service setup and QoS requirement satisfaction. Scalability tests also

gave promising results. The reported use case represents a working

example of a more general approach to properly define high-level in-

terfaces and develop the related control and management components

to unify orchestration capabilities across multiple SDN/NFV domains.

As a future direction, the performance can be tested after generalizing

the proposed intent-based NBI in order to encompass different service

scenarios that may involve multiple domains, such as 5G network slic-

ing or multi-access edge computing. Anothering interesting direction

is that of the development of a mathematical formulation of the in-

tent mapping problem and an intent specification interpreter based on

natural language.

3.2. SFC over IoT, Cloud, Fog and non-SDN tranport domains 57



Chapter 4

Resource monitoring in

SDN/NFV environments

This chapter discusses typical monitoring issues in SDN/NFV infras-

tructures, and describes a module for unified resource monitoring over

them, as introduced in [P12].

4.1 Monitoring challenges and system ar-

chitecture

In infrastructures where SDN, NFV and Cloud computing cooperate,

it is of utmost importance to have an adequate monitoring solution,

able to integrate metrics from the network domain with ones regard-

ing computing features [B5]. Such monitoring system should be well

integrated with other network components, to the point where its de-

ployment should be as similar as possible to that of any other item.

A number of features of a softwarized infrastructure, including global

view over combined resources and on-demand resource provisioning,

can be leveraged to face the aforementioned requirements, moving to-

wards the design of a unified and standalone monitoring tool, such

as the one presented in [P12]. The monitoring module introduced

there is designed as a standalone VNF and it is compatible with a

generic SDN/NFV infrastructure deployed in a cloud environment.

58



Chapter 4. Resource monitoring in SDN/NFV environments

The module is separated from the existing control plane components,

this way sparing critical elements of the infrastructure from additional

workload, yet still being able to collect measurements for different as-

sets. This design enables flexible integration with various control plane

components or measurement tools, without the need for modifications

in the existing software or hardware solutions, thanks to the usage

of well-known and widely implemented protocols and interfaces only.

Moreover, the process of updating the monitoring module is transpar-

ent from the point of view of the other components.

This standalone solution could be used to provide monitoring in-

formation to a service orchestrator operating over network and com-

puting resources (e.g., [B56]) as well as to investigate the limitations

of virtualized infrastructures whose characteristics are outside of the

control of the tenant. The proposed system has been implemented,

deployed, and validated in three different scenarios, namely a pub-

lic cloud platform, a virtualized scenario built over physical machines

using container technology, and a public cloud environment, to demon-

strate the portability of the solution.

Rather than focusing on solutions for distinct monitoring of SDN

and NFV entities, such as the ones reported in [B22, B23, B24], the

challenges this work focuses on are among those pointed out in [B25].

For more related work, see [P12].

To fully benefit from the union of SDN, NFV and Cloud poten-

tialities, the monitoring module needs to be able to conduct unified

measurements over distributed heterogeneous resources, combining all

the metrics and inferring conclusions on resource usage. To accom-

plish control plane decoupling, the module should also be independent

of any controller in the infrastructure. It should be possible to con-

sider the monitoring tool as a special VNF, inheriting the same ease

of deployment and usage typical of virtualized functions, and make

use of well-known protocols to allow seamless integration with exist-

ing infrastructures. Such a tool can, among other things, assist the

processes of on-demand deployment of new VNFs as well as of dy-

namic traffic steering across the domain(s), in order to enforce a given

4.1. Monitoring challenges and system architecture 59



Chapter 4. Resource monitoring in SDN/NFV environments

VM

VM

VM

VM

VM

VM

VM

VM

VM

VIM SDN 
Controller

Monitoring 
Module

OvSOvSOvS

HS

REST API NB API
Monitoring Protocol

(e.g., sFlow)

L2 Network

SB Protocol
(e.g., OpenFlow)

NB API

HSHS

Figure 4.1: Architecture of the system, including data plane elements

(white), control plane elements (dark gray), and the monitoring mod-

ule (light gray). VIM - Virtualized Infrastructure Manager, NB -

Northbound, SB - Southbound, HS - hardware switch. Solid, dashed

and dotted lines are used to denote communication related to the mon-

itoring module, SDN controller (NB and SB), and VIM, respectively.

service policy. In the current version, the proposed solution focuses

on passive monitoring.

The architecture of the proposed unified monitoring system is shown

in Figure 4.1. The monitoring module can collect information from

various sources, including the VIM and the SDN controller, through

their APIs, as well as directly from the network infrastructure compo-

nents, using existing and widely available protocols, such as sFlow [B57].

The modular nature of the proposed monitoring system allows to count

on certain amount of redundancy, by collecting information on the

same aspects from different sources. While ensuring a level of fault

4.1. Monitoring challenges and system architecture 60



Chapter 4. Resource monitoring in SDN/NFV environments

tolerance and protection against denial-of-service attacks, this also al-

lows to tune the granularity of the monitoring data. Moreover, the

monitoring module can also be employed as a trigger for corrective ac-

tions in the monitored domain, by suggesting to the network controller

or infrastructure manager which corrective actions might be needed.

4.2 Prototype implementation

The monitoring module itself has been developed as a software appli-

cation written in Python, due to the suitability of the language for

prototyping purposes and ease of implementation of a REST API. It

was designed to collect and aggregate information gathered from mul-

tiple sources. In the prototype, the module implements data collection

from Openstack Ceilometer/Gnocchi as well as flow sampling directly

from the network devices by means of a custom implementation of an

sFlow collector. The sFlow protocol was selected among a number of

flow statistics gathering tools due to its widespread native support by

network devices, including virtual switches. While sFlow is suitable

for the purpose of this prototype, it may not be sufficient to perform

detailed real-time monitoring tasks. Thanks to the modular archi-

tecture of the monitoring system, the sFlow protocol can always be

replaced with a different data plane monitoring solution [B58].

The main parameters that can be used to tune the behavior of

the sFlow data collection are the sampling ratio and the sample

aggregation interval .

The sampling ratio N denotes that, on average, one out of N

packets handled by the node will be sent by the sFlow agent to the

sFlow collector for the purposes of statistics gathering. The higher

the value of N , the lower the communication and computational over-

head. However, by increasing N the measurements are available with

a higher delay and worse sensitivity. By default the sFlow agent only

sends the first B bytes of the sampled packet to the sFlow collector,

so as to include the packet header, along with an indication of the

total packet size. This way the sFlow protocol overhead is reduced,

4.2. Prototype implementation 61



Chapter 4. Resource monitoring in SDN/NFV environments

without impacting the statistical accuracy.

The sample aggregation interval C denotes the interval over which

individual sFlow samples are aggregated, causing that all samples re-

ceived within a time window of C seconds are combined and treated as

single measurement entry. This aggregation aims to attribute a group

of asynchronous samples to a given moment in time, thus achieving a

tunable “quantization” of the time axis. Similarly to the sampling ra-

tio, increasing the value of the sample aggregation interval C reduces

the monitoring overhead and deteriorates the monitoring capabilities

in terms of measurements sensitivity and time needed to obtain the

collected monitoring data.

A more detailed representation of the prototype monitoring mod-

ule and of the interactions between monitoring components is shown

in Figure 4.2. The sFlow agent in each OvS samples one packet out of

N for a particular flow that the OvS forwards in the data plane net-

work – a flow being defined by the source and destination of the traffic.

Sampled packets are assembled in sets comprising two to six units, and

sent to the sFlow collector in a sFlow datagram packet. The rate of

arrival of sFlow datagram packets to the sFlow collector is not steady

nor predictable, as it depends on the intensity of the data plane traffic

through the sampling ratio N . Therefore, there is no synchronization

between sFlow agent and sFlow collector. The collector aggregates

sFlow datagrams over temporal windows spanning C seconds, where

C is the aforementioned sample aggregation interval, generating one

measurement entry every C seconds, on the closing instant tn of the

current temporal window. Figure 4.2 also visualizes how N and C pa-

rameters affect the delay after which measurements are available and

sensitivity. Each measurement entry coming from the sFlow collector

is the result of the combination of the most recent sFlow sample with

the recent previous ones through an EWMA. Parallel to the sFlow data

sampling and collection, the other main component of the monitoring

module, the Ceilometer poller, periodically polls the Cloud controller

to retrieve data measured from there, and generating additional mea-

surement entries. For each flow, two metrics are collected, namely an

4.2. Prototype implementation 62



Chapter 4. Resource monitoring in SDN/NFV environments

Host

   Monitoring Module

sFlow collector

Ceilometer
poller

OpenStack

Ceilometer

Measurements 
database

Sample 
aggregation
timeline

t0 t1 = t0 + C t2 = t0 + 2C t3 = t0 + 3C

OvS

VM

VM

VM

VM

VM

VMsFlow agent

Forwarded traffic

Sampling every 
N-th packet

per flow

tn

t1 t2 t3

tn

tn
EWMA

Figure 4.2: Inside view of the prototype monitoring module with a

representation of the main mechanisms.

instantaneous data rate estimate value, and an Exponential Weighted

Moving Average (EWMA) value according to the recursive formula

en = αsn + (1− α)en−1 (4.1)

where en is the EWMA value computed when the n-th instantaneous

sample sn is received and 0 < α < 1 is a weighting coefficient. The

EWMA was introduced to smooth out measurements and make them

robust against load fluctuations. The α coefficient expresses how fast

historical measurements lose importance: the higher its value, the

4.2. Prototype implementation 63



Chapter 4. Resource monitoring in SDN/NFV environments

heavier the weight of instantaneous samples.

It is important to quantify the overhead caused by a monitoring

protocol such as sFlow, i.e., the amount of additional signaling traffic

exchanged between network nodes and the sFlow collector to perform

the monitoring operations. For each sFlow packet p received by the

collector, the relative overhead can be defined as the ratio of the size

of the sFlow packet Lsflow,p over the total amount of data to which that

packet refers. The latter quantity includes the size of sFlow packet p,

plus the full size of each sampled data packet carried by sFlow packet

p, plus the size of N − 1 data packets not being sampled for each

sampled packet in p. It is assumed that, on average, the total size of

the N − 1 non-sampled packets is N − 1 times the size of the sampled

packet; this assumption is equivalent to the assumption made by the

sFlow protocol, which considers one sample out of N as an estimation

of the monitored bit rate. Thus, the relative overhead of packet p can

be approximated as:

Osflow,p =
Lsflow,p

Lsflow,p +N
∑np

i=1 Li

(4.2)

where np is the number of samples carried by sFlow packet p and Li

is the full size of the i-th sampled packet.

The size of a generic sFlow packet is variable and depends on the

number and size of the carried samples, including meta-data associated

to each sample and carried in a sample header. Recalling that sFlow

packets are transported by UDP datagrams, in an Ethernet network:

Lsflow,p = heth + hip + hudp + hsflow +

np∑
i=1

(hsample,i +B) (4.3)

where heth is the Ethernet header size, hip is the IP header size, hudp

is the UDP header size, hsflow is the sFlow header size, hsample,i is the

i-th sample header size, and B is the sample data size.

4.2.1 Testbed based on container technology

Container technology has gained immense popularity since its intro-

duction, owing to the diverse benefits it can offer to a vast range of

4.2. Prototype implementation 64



Chapter 4. Resource monitoring in SDN/NFV environments

applications and services. Containerization enables lightweight and

scalable deployments of service functions in the network, facilitating

dynamic service provisioning and management. This makes the inclu-

sion of container technology meaningful for the thorough evaluation of

the capabilities of this monitoring module. Therefore, the prototype

was evaluated in a testbed based on container technology, managed by

using Docker [B59], which acted as VIM, handling requests for deploy-

ment of new VNFs, managing their networking and overseeing their

lifecycle.

The container-based testbed consists of four physical machines, all

equipped with 4 CPUs (Intel i5-4460 up to 3.2 GHz) and 8 GB of

RAM. All of them are connected to the same local private network,

which serves as control and management network only. Additionally,

the machines are arranged in two pairs, by connecting the first two

and the last two of them directly, and connecting the second and third

machines via a physical SDN switch (the OpenFlow-enabled HP Aruba

2920-48G switch). The first machine hosts the running instances of

the monitoring module and of the SDN controller (Ryu), as well as the

source endpoint of the generated traffic flows. The second and third

machines hosted the container management software (Docker), as well

as the virtual switches (OvS) required to complete the desired overall

logical topology. The fourth and last machine hosted the destination

endpoints of the generated traffic flows. The links between each pair of

machines had a physical capacity of 1 Gbit/s. However, some links in

the final logical topology were limited to different values for evaluation

purposes that will be addressed in the following. A depiction of the

physical testbed, along with a representation of the intended logical

topology, is given in Figure 4.3.

4.3 Experimental validation

Extensive data gathering campaigns and results analysis have been

conducted, and published in [P12]. The following sections report

only a part of them, specifically, those on traffic steering (in Sec-

4.3. Experimental validation 65



Chapter 4. Resource monitoring in SDN/NFV environments

Machine
M1

Machine
M2

Machine
M3

Machine
M4

Phys. 
SDN 

Switch

Control and management network

Point-to-point data network Point-to-point data network

(a) Physical setup.

M4

M3M2M1

OvS

SDN
Switch

OvS OvS

VNF
repl. 1

VNF
repl. 2

SRC DST

Monitor.
Module

100 Mbps
500 Mbps
1 Gbps

SDN
Controller

(b) Logical setup.

Figure 4.3: Container-based testbed topology.

tion 4.3.2), plus an overview of some results on sFlow parameters im-

pact on datarate estimation and protocol overhead (in Section 4.3.3).

4.3.1 Combined network and resource monitoring

To prove that there is a correlation between network interface and

CPU load in VNFs, and that the monitoring module is able to appre-

ciate both and correlate them, two traffic patterns were applied, and

they are presented in Figure 4.4. The first scenario employs period-

ical traffic spikes of the same intensity, resulting from TCP sessions

starting at times 5, 65, 125 seconds, lasting 30 seconds, and having

unlimited throughput (“unlimited” by the application – the limit is

a result of the saturation of link bandwidth). The second scenario

employs traffic spikes with increasing intensity, given by TCP sessions

starting at times 5, 65, 125, 185, 245, 305, 365, 425 seconds, lasting

30 seconds, and having throughput limited by the application that

generates the traffic. The limits are set to 0.1, 0.2, 0.5, 1, 2, 5, 10

Gbit/s respectively to span the most typical transmission rates, while

4.3. Experimental validation 66



Chapter 4. Resource monitoring in SDN/NFV environments

the last TCP session is again throughput-unlimited.

Figure 4.4 presents both the number of bytes received and the

CPU utilization of a selected VNF. The received bytes are measured

by aggregating values found in sFlow samples, corresponding to data

forwarded by the switch the VNF is attached to. The CPU load metric

shows the percentage of time the CPU is busy in the specific machine

running the selected VNF. As VNFs are running on separate virtual

machines with dedicated resources, “CPU” here denotes the virtual

CPU associated with a particular instance, that can be referred to as

guest CPU.

4.3.2 Monitoring-based traffic steering

The containerized testbed was employed to perform proof-of-concept

experiments on the ability of the proposed monitoring module to con-

structively interact with an SDN controller in order to support the

dynamic steering of traffic flowing in the network, aimed at optimizing

the utilization of physical and virtualized networking and computing

resources. Traffic is generated with iperf using TCP with a specific

throughput target, depending on the experiment.

Two case studies are examined. In the first one, referred to as

choose VNF, traffic steering is performed to mitigate congestion of a

particular VNF instance. This is possible thanks to the monitoring

capabilities of the proposed module in a NFV domain. The desired ac-

tion is to distribute traffic among different replicas of the same VNF,

no matter what is their location considered from the network perspec-

tive. In the second case study, referred to as choose path, the aim of

traffic steering is to avoid network congestion based on the measure-

ments performed on a network node representing an SDN domain.

Thus, it is critical to change the path of traffic to distribute the load

between different network links and no matter if traffic destination is

the same replica or not.

In both cases, the objective is to achieve the maximum overall

throughput from source to destination, while respecting service poli-

cies, such as the requirement to cross a given VNF. This is achieved

4.3. Experimental validation 67



Chapter 4. Resource monitoring in SDN/NFV environments

in the choose VNF scenario by finding the VNF replica with sufficient

computing resources even if the traffic is directed through the same

network path. On the contrary, in choose path the goal is achieved by

finding network links with sufficient resources even if the destination

node is the same. Therefore, the monitoring module is able to trigger

traffic steering based on the measurements performed in both NFV

and SDN domains.

The logical topology, shown in Figure 4.3b, aims at providing a

testbed that can be used to run experiments in both case studies.

For these runs, the monitoring module was configured with N = 10,

α = 0.4 and C = 1 s.

Case study: choose VNF

All traffic is required to cross a replica of a given VNF. Any network

function can be considered, e.g., traffic shaping, packet inspection for

an intrusion detection system, or transcoding for multimedia traffic

flows. As shown in Figure 4.4, the traffic load on the interface of the

VNF is strongly correlated to its computational load. For the purpose

of this test, the VNF does not perform any useful packet processing,

but it simply forward the packet towards the intended destination.

This simplification should be considered as a best case because any

other function requires more computing resources for each packet re-

ceived. Therefore, it is reasonable to assume that the measurements

taken at network level can also give an insight of the computational

burden on the VNF, justifying the actions taken to optimize the load.

In these experiments, a total of four iperf sessions are launched from

SRC to DST, all of them using TCP and aiming at a throughput of

30 Mbit/s. These sessions are activated sequentially at intervals of 30

seconds, and configured to last until the end of the experiment.

To begin with, a baseline experiment is run, in order to assess the

behavior of the system when no steering is applied. All the generated

traffic is crossing the same replica of the VNF. The evolution in time of

the data rate of the traffic flow from the source host to the destination

host is shown in Figure 4.5. As expected, after the fourth flow started,

4.3. Experimental validation 68



Chapter 4. Resource monitoring in SDN/NFV environments

i.e., at t = 105s in Figure 4.5a, the traffic saturates the capabilities of

the VNF instance, and the flows needed to compete for the resources,

causing the total throughput to be limited by the capacity of the

link to the VNF, i.e., 100 Mbit/s. In the second experiment, this

potential deterioration is avoided by taking advantage of the proposed

monitoring module. The traffic is initially steered through the first

replica of the VNF. The monitoring module keeps tracking of the

increase in resource utilization in the VNF, verifying that the traffic is

below a predetermined warning threshold set at 50 Mbit/s. When this

threshold was exceeded, i.e., at t = 45s in Figure 4.5b, the monitoring

module interacts with the VIM to find out the location of a second

replica. Based on that, the monitoring module instructs the SDN

controller to steer the traffic accordingly, in order for it to cross the

second replica. This way, even when the four flows are running at the

same time, they do not have to compete for the shared resources, and

the full combined throughput can be achieved.

Case study: choose Path

This case study aims at highlighting the benefits of dynamic traffic

steering over multiple paths in the network, in case switches are over-

loaded or not utilized optimally.

Similarly to the previous case, a total of four iperf sessions were

launched from SRC to DST, all of them using TCP, this time aiming at

a throughput of 200 Mbit/s. Once again, the sessions were activated

sequentially at intervals of 30 seconds and configured to last until the

end of the experiment. Initially, the traffic crossed the upper path,

with reference to the logical topology in Figure 4.3b, where the link

capacity is 500 Mbit/s.

Similarly to the case examined in the previous section, the tem-

poral evolution of the data rate of source-to-destination traffic flow is

shown in Figure 4.6. The baseline experiment, without traffic steer-

ing, shows that the links becomes saturated after the third traffic flow

starts, at t = 75s in Figure 4.6a, then the combined throughput of

flows is limited to the capacity of the link with smaller capacity, i.e.,

4.3. Experimental validation 69



Chapter 4. Resource monitoring in SDN/NFV environments

500 Mbit/s, which acts as a bottleneck. In fact, the impact of the

fourth flow, starting at t = 105s, is practically invisible. The pro-

posed monitoring module enables avoiding this service degradation.

In the second part of the experiment, the monitoring module keeps

tracking of the increase in network resource utilization, considering

the load on the ports of the switch. Again, when a predefined thresh-

old is exceeded, after the second flow starts at t = 45s in Figure 4.6b,

the monitoring module triggers traffic steering mechanisms. This time

it instructs the SDN controller to steer the traffic through the alter-

native path. The traffic is then directed through the not congested

lower path and throughput of flows was no longer limited. The over-

all throughput reached its maximum value, equal to the sum of the

throughput of the four flows.

4.3.3 Impact of sFlow parameters

First, the fundamental properties of the sFlow protocol are investi-

gated, as a function of three parameters: the sFlow sampling ratio

(N), the sample aggregation interval (C) and the α coefficient of the

EWMA. The employed traffic pattern imposes a stepwise increasing

load, by running three iperf data flows starting at times 5 s, 65 s

and 125 s, respectively, with each flow aiming at a throughput of 30

Mbit/s and lasting until the end of the experiment.

Figure 4.7a shows the accuracy of the EWMA of the sFlow samples

for different values of N , with α = 0.3 and C = 1 s, comparing it to

the generated load pattern and the instantaneous sFlow sample values

collected for N = 10. Figure 4.7b reports the same measurements for

C = 10 s. For C = 1 s, it can be seen that the EWMA shows higher

variability when N is higher, because sFlow collects less samples and

thus is more affected by temporal traffic fluctuations. Furthermore,

the higher the generated load, the wider the fluctuations, for any value

of N . Thus, the sampling ratio should be adjusted not only to the

required accuracy, but also to the absolute traffic load. Changing

the sample aggregation interval to C = 10 s reduces the number of

sFlow samples, smoothing out all curves (Figure 4.7b). The obtained

4.3. Experimental validation 70



Chapter 4. Resource monitoring in SDN/NFV environments

measurements are therefore less sensitive to load fluctuations, but at

the cost of worse responsiveness. The first general conclusion is that

any tool considered for flows statistics gathering should be adjustable

to the expected load and particular needs.

Based on the same results, it is also possible to draw conclusions

regarding the timeliness of the collected measurements, as it could be

a critical factor for some applications. It can be stated that the value

of C represents a lower-bound of the delay introduced by the module,

as results are updated once every C seconds at best. Some monitor-

ing application might not need quicker results, so this configuration,

although apparently quite “slow”, is worth consideration.

For both C = 1 s and C = 10 s, sampling every packet (N = 1)

provides accurate results until the third flow is injected in the network.

At that point, the testbed is no longer able to measure network load ac-

curately. This is caused by several reasons, one being the sub-optimal

implementation of the sFlow collector. Moreover, N = 1 is not a prac-

tical value, as it causes the monitoring traffic to double the amount

of data traffic present in the network, to some extent defeating the

purpose of monitoring. Lastly, the testbed has some computational

limits as it is run in a virtualized infrastructure. Therefore, the case

for N = 1 is presented only for the sake of completeness, as well as to

prove that sFlow is not a good choice if the objective is to carefully

analyse each packet.

Evaluation of sFlow protocol overhead

The sFlow sampling ratio N affects the accuracy, as described in Sec-

tion 4.3.3, and the overhead of the sFlow-based measurement process,

as computed in eq. (4.2). Network nodes and collector exchange sam-

ples of packets from the overall traffic, plus the sFlow protocol header

and the sample headers, as reported in eq. (4.3).

An additional parameter, namely the size B of the packet sample

to be included in the sFlow packet, directly affects the overhead. The

required sample size depends on the elaborations that must be carried

out on the sampled data, but for the purpose of this performance

4.3. Experimental validation 71



Chapter 4. Resource monitoring in SDN/NFV environments

N Measured relative overhead Estimated relative overhead

1 15.07% 13.74%

2 8.17% 7.37%

5 3.50% 3.09%

10 1.83% 1.57%

20 0.98% 0.79%

50 0.46% 0.32%

100 0.28% 0.16%

Table 4.1: Measured and estimated relative overhead introduced by

the sFlow protocol using different values of sampling ratio N .

evaluation, B is set to 128 bytes. Also, the presented results were

collected with sample aggregation interval C = 1 s. It must also be

noted that changing the α parameter does not impact the overhead of

the sFlow protocol, as α affects only how samples are processed in the

collector and does not change the amount of data that network nodes

send to the collector. Therefore, the overhead results are presented as

a function of the sFlow sampling ratio N .

The employed traffic pattern includes a single iperf session with

1 Mbit/s throughput ran for 60 seconds between two different virtual

machines. Figure 4.8 presents the total absolute amount of sFlow

signaling traffic being exchanged between network nodes and the sFlow

collector. The results show how the sFlow protocol signalling decreases

with the sampling ratio N .

Table 4.1 reports the relative overhead as a percentage of the total

traffic exchanged, for different values of N . The measured relative

overhead was obtained by capturing the traffic at the output of a vir-

tual switch and reporting the percentage of sFlow traffic over the total

traffic captured. The estimated relative overhead was instead obtained

by applying eq. (4.2) and considering the parameters related to the

iperf session, that sent packets of Li = 1432 bytes, ∀i = 1, . . . , np.

The small throughput chosen for this test allows to proficiently use

any value of N , including N = 1, without overloading the system.

For every sampled data packet, the first B = 128 bytes were sent to

the sFlow collector. This implementation fo the module makes use

4.3. Experimental validation 72



Chapter 4. Resource monitoring in SDN/NFV environments

of sFlow version 5, which adds to each data sample some metadata

that amounts to a sample header of hsample,i = 88 bytes. Therefore,

each sample carried by the sFlow packet adds a total of 216 bytes to

the packet size. Considering an sFlow packet carrying np = 6 samples

and adding the standard protocol header sizes (i.e. heth = 14 bytes,

hip = 20 bytes, hudp = 8 bytes, and hsflow = 28 bytes), then the size

of the sFlow packet is Lsflow,p = 1366 bytes. Considering eq. (4.2), it

follows that Osflow,p = 13.72% for np = 6. While more than 90% of the

captured sFlow packets carried 6 samples, the rest included from 1 to 5

samples. The estimated relative overhead reported in Table 4.1 shows

the weighted average of Osflow,p for np = 1, . . . , 6. Conclusively, the

approximate formula (4.2) comes very close but underestimates the

actual relative overhead. The reason lies in the fact that the captured

traffic included also some packets due to background traffic and whose

size was smaller than 1432 bytes, thus increasing the actual overhead.

However, the formula capture quite well the behavior of the overhead

as a function of the sampling ratio, with an approximation error of

1.33% in the worst case (i.e, for N = 1). Thus, the expected overhead

can easily be estimated, considering the trade-off against accuracy,

and properly configure the monitoring tool making it suitable to the

requirements of a given SDN/NFV infrastructure. Applicability and

usefulness of the proposed formula are further increased by the fact

that it can be adjusted to any other data plane monitoring solutions,

making it possible to theoretically estimate the monitoring overhead.

4.4 Remarks

Based on the experimental validation and collected results, the pro-

posed module can be easily integrated with a variety of controllers as

well as tools aimed at collecting metrics specific to particular assets.

This approach does not impose a significant load on existing control

plane components, due to the full independence of it, and the possi-

bility of deploying the module in the form of a VNF. Although the

specific case of sFlow as a network monitoring protocol was analyzed

4.4. Remarks 73



Chapter 4. Resource monitoring in SDN/NFV environments

in detail, the findings can be generalized to other specific technical

solutions. The modular architecture provides significant advantages,

and some limitations of the selected tools can be overcome by proper

configuration or by replacing one of the loosely coupled components

of the architecture. Future improvements include the deployment of

selected virtual network functions, and employment of the proposed

monitoring module to feed optimization algorithms aimed at improv-

ing infrastructure utilization and avoiding congestion, as well as the

extension of the monitoring module to support orchestration of active

measurements in software-based infrastructures.

4.4. Remarks 74



Chapter 4. Resource monitoring in SDN/NFV environments

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  20  40  60  80  100  120  140  160  180
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120
 L

o
ad

 [
G

b
it

/s
] 

 C
P

U
 u

ti
liz

at
io

n
 [

%
] 

 Time [s] 

(a) VNF subject to traffic spikes of the same intensity.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  40  80  120 160 200 240 280 320 360 400 440 480
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 L
o

ad
 [

G
b

it
/s

] 

 C
P

U
 u

ti
liz

at
io

n
 [

%
] 

 Time [s] 

(b) VNF subject to traffic spikes of increasing intensity.

Figure 4.4: Amount of bytes received (line) and percentage of time

the CPU is busy (bars) for a selected VNF. In both cases, there is a

clear relationship between network and compute load.

4.4. Remarks 75



Chapter 4. Resource monitoring in SDN/NFV environments

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0  15  30  45  60  75  90  105  120  135  150

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Total
VNF replica 1

(a) Load of VNFs without traffic steering.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0  15  30  45  60  75  90  105  120  135  150

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Total
VNF replica 1
VNF replica 2
Threshold

(b) Load of VNFs with traffic steering.

Figure 4.5: Case study: choose VNF. Load of VNFs based on the

monitoring in NFV domain. Additional VNF replicas allow reaching

a higher overall throughput.

4.4. Remarks 76



Chapter 4. Resource monitoring in SDN/NFV environments

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  15  30  45  60  75  90  105  120  135  150

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Total
Network Path 1

(a) Load of switch interfaces without traffic steering.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  15  30  45  60  75  90  105  120  135  150

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Total
Network Path 1
Network Path 2
Thresh.

(b) Load of switch interfaces with traffic steering.

Figure 4.6: Case study: choose Path. Load of switch interfaces based

on the monitoring in SDN domain. Additional paths allow reaching a

higher overall throughput.

4.4. Remarks 77



Chapter 4. Resource monitoring in SDN/NFV environments

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Gen. load
sFlow samples
EWMA N=1
EWMA N=5
EWMA N=10
EWMA N=20

(a) Accuracy with C = 1 s.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160  180  200

 L
o

ad
 [

M
b

it
/s

] 

 Time [s] 

Gen. load
sFlow samples
EWMA N=1
EWMA N=5
EWMA N=10
EWMA N=20

(b) Accuracy with C = 10 s.

Figure 4.7: Accuracy of the sFlow EWMA under different sampling

ratio values N , with α = 0.3 and varying C, compared to the instan-

taneous sFlow samples and the generated load pattern.

4.4. Remarks 78



Chapter 4. Resource monitoring in SDN/NFV environments

 0

 2

 4

 6

 8

 10

 12

 14

1 2 5 10 20 50 100

 s
F

lo
w

 s
ig

n
al

lin
g

 t
ra

ff
ic

 [
M

b
it

s]
 

 Sampling Ratio N 

Figure 4.8: Total absolute amount of sFlow signalling traffic during a

1 Mbit/s data transmission lasting for 60 seconds. Increasing the sam-

pling ratio decreases measurement accuracy but also decreases over-

head.

4.4. Remarks 79



Chapter 5

Augmenting

software-defined

infrastructures

This chapter revolves around the idea that software-based infrastruc-

ture could benefit from using currently unemployed techniques to aug-

ment their capabilities, achieving mutual independence among differ-

ent planes, as well as gaining access to a set of functionalities that are

inherently specific to such techniques. The ideas and results presented

here have been published in [P11].

5.1 Fate sharing

and out-of-channel communication

When the Internet was originally designed, the fate-sharing princi-

ple was used in support to the end-to-end argument for maintain-

ing robustness to network failures: keeping the connection state at

the endpoint hosts makes failures always recoverable, unless at least

one the hosts themselves fails, thus sharing the fate with the lost

connection [B26]. Of course, disruptive events that make the net-

work completely partitioned cannot be recovered either, unless the

partitioning is intermittent and suitable delay/disruption tolerant ap-

80



Chapter 5. Augmenting software-defined infrastructures

proaches are adopted, which seemingly do not break the fate-sharing

principle [B27]. Fate sharing between data and control planes is also

a fundamental principle of IP networks based on legacy distributed

routing protocols: as long as two routers are able to exchange hello

packets or other routing messages, reachability in the data plane is

also guaranteed, or at least is assumed [B28].

However, with the advent of network paradigms such as Gener-

alized Multi-Protocol Label Switching (GMPLS) and the previously

mentioned Software-Defined Networking (SDN), which advocate the

separation between control and data planes, fate sharing is considered

as something to be avoided, as data plane operations should not be af-

fected by reachability in the control plane, and vice versa. This is even

more important considering the recent trends in network data plane

programmability, where also the management plane requires frequent

interactions and should not share the same fate as the data plane.

This problem is typically addressed by means of out-of-band man-

agement approaches, with network devices being equipped with addi-

tional ports to be connected to separate control/management plane

networks. However, such a separation is usually applied at a logical

level, e.g. using separate service queues and/or VLANs on the same

physical network infrastructure. Thus fate sharing persists between

the physical medium used by data plane traffic and control/manage-

ment traffic. Failures in data plane equipment could then prevent

also management traffic from reaching the exact network regions at

fault, making it impossible to perform key management tasks, such as

diagnostics and recovery.

A possible way to overcome the fate sharing problem at the phys-

ical level is to adopt physically separate channels for exchanging net-

work management/control traffic [B60], thus shifting from out-of-band

to out-of-channel control/management. In order to avoid cost and

complexity of duplicated equipment and wiring, different untethered

physical media could also be taken into account, where the term “un-

tethered” is used here as a broader meaning than “wireless”. Such

untethered media include any wireless connection using the electro-

5.1. Fate sharing and out-of-channel communication 81



Chapter 5. Augmenting software-defined infrastructures

magnetic spectrum, which can still require expensive infrastructure

enhancements [B29], or even the acoustic spectrum, which was re-

cently proved as a feasible and cost-effective means of performing out-

of-channel control/management tasks [B35].

Using physically separate channels to control and manage Software-

Defined Infrastructures (SDIs) requires some form of coordination be-

tween the entities involved in the operations. In particular, a suitable

protocol is needed to determine which physical channel — and possi-

bly which sub-channel, if any — must be used to execute some given

tasks. Referring to the fascinating case of adopting the acoustic spec-

trum, there is the need of a management protocol to establish which

sounds correspond to which events or actions, or, in other words, the

need to define a protocol for the sonification of SDI management. In

this context, sonification means translating relationships in data or

information into sound [B61].

5.2 Sonifying the network

The definition of the sonification protocol is carried out with the fol-

lowing question in mind: what are the insights that sonified data can

offer in network management?

The most common sonification technique is based on the principle

of raising the pitch when a higher level of the quantity under obser-

vation is detected [B61]. In this protocol design, the classical notion

of sonification is extended and acoustics is considered only as a pos-

sible variant, allowing DevOps, network managers and researchers to

potentially use different wireless spectra to communicate with out-

of-channel signals, enabling network management policy programma-

bility by using combinations of sound waves as well as combinations

of other signals outside the acoustic spectrum. These combinations

can be used also simultaneously in order to scale. As a use case, and

to demonstrate the practicality of providing out-of-channel signals to

solve the fate-sharing problem, the protocol to sonify a set of network

management tasks.

5.2. Sonifying the network 82



Chapter 5. Augmenting software-defined infrastructures

The problem of obtaining an out-of-channel, non-fate-sharing con-

trol and management system has been addressed in the literature.

In [B29], a low-latency facility network is proposed, which makes use

of low-cost, 60GHz beamforming radio that provides communication

paths decoupled from the wired network. Sounds have been used to

transfer information in [B30, B32, B33, B31, B34]. Sound can be used

to transfer data [B33] but with very limited data rate [B30]. Similarly

to [B35], the focus of the work presented here is on the control and

management planes.

Specifically, this work focuses on the design of Music Management

Protocol (MMP), a wireless-signal-based network management proto-

col aimed at setting up an out-of-channel signaling mechanism with

similar goals as those of ICMP and SNMP. The involvement of “Mu-

sic” in the name comes from the idea of actuating said signals in the

audio band. However, the protocol is expected to be able to operate

over a number of different wireless channels, spacing from the afore-

mentioned acoustic band to a selection of radio channels (e.g., ISM

bands), and potentially exploiting wireless signals in other spectra as

well (e.g., the visible spectrum). To demonstrate the potential of the

protocol, three sonified network management applications were im-

plemented: TraceSound (to recall a sonified version of traceroute),

a Heavy-Hitter Detection application, and a Distributed Denial-of-

Service attack monitoring application. A proof-of-concept prototype

was implemented employing Scapy [B62], and its functionalities were

tested on a virtual network testbed, as well as using real network

equipment attached to microphones and speakers. The tests show

that all these applications can be successfully recognized, even when

their corresponding sounds are played together. Moreover, despite the

small scale of the current testbed, which is limited to campus or en-

terprise networks, the initial tests show that sonification can be an

effective technique for vertical out-of-channel management.

5.3. Sonification architecture overview 83



Chapter 5. Augmenting software-defined infrastructures

SDN Controller
MMP REST API

MMP Player

MMP Conductor

SDI

Apps

Signal Assignment

MMP Player DB

Signal Interpretation

SDI API

data plane 
switch

MMP Player

Apps

MMP Player

Apps

Figure 5.1: Architecture overview: The SDN controller is optional and

used only to react to state variations detected by the Conductor.

5.3 Sonification architecture overview

The set of fundamental mechanisms necessary to control (or offload the

control of) an infrastructure with out-of-channel signals or sonification

are presented in this section. Figure 5.1 gives an overview of how MMP

augments an SDI with out-of-channel vertical network management

capabilities over multiple spectrum slots. The goal is to clarify what

are the mechanisms (invariances) for sonification, explaining who does

what, while giving some examples of possible implementations and

policies.

There are two entities acting in the proposed architecture: MMP

Conductor(s) and MMP Player(s). Similarly to the choice of the name

of the protocol, these names were chosen having in mind the imple-

mentation in the audio spectrum, thus the names borrowed from the

music lexicon. Despite this, the sonification can be ported to other

spectrum, including ones inaudible by humans.

5.3. Sonification architecture overview 84



Chapter 5. Augmenting software-defined infrastructures

The main (logically centralized) brain of the architecture lays with

the (MMP) Conductor. This component is equipped with a receiver

set in the alternative physical channel (in case of sonification, one or

several microphones), as well as with a logical connection with the

SDI to apply any required actions. The Conductor may, for example,

merely invoke iptables commands, or can be connected to an SDN

controller to perform complex network programmability tasks.

The Conductor has two main components: signal assignment and

signal interpretation. The signal assignment component keeps track of

the n-to-n mapping between applications (or management tasks) and

frequency set. The signal interpretation component functionalities

concern the sound detection; this component also implements the ac-

tions that are optionally pushed to the managed SDI via the SDI API

Component shown in Figure 5.1. Finally, the Player DB component is

a logically centralized database that stores the signal assignment map-

ping and other states. This piece acts as a Management Information

Base.

In order to augment network devices with sonification or other

out-of-channel wireless capabilities, a (software or hardware) compo-

nent needs to be installed on them. In the reference architecture,

this component is called (MMP) Player. Each Player must be first

configured by the Conductor in terms of physical channel to be used,

relevant signals on that channel, and their meaning. Then, when some

of the configured conditions are met, the Player needs to encode the

corresponding signals and transmit them to the Conductor on the

configured physical channel. This way the Conductor is alerted of the

specific events/conditions happening on the device and can optionally

interact with the SDI accordingly.

In the prototype implementation, a REST API was used to send

commands from the Conductor to an SDN controller. Examples of

states that can be transferred include network load condition, or path

traversed by a specific flow, which can help the SDN controller to op-

timize the decision tasks on how to properly steer data traffic. For

instance, when the SDI is implemented as an OpenFlow-based net-

5.3. Sonification architecture overview 85



Chapter 5. Augmenting software-defined infrastructures

work infrastructure, the device enhanced with an Player can be an

OpenFlow-enabled switch or an OvS virtual switch [B63]. In that

case, the sonification logic may be implemented as a set of OpenFlow

rules to be installed/changed/removed based on application that has

a speaker attached to the switch via a single-board device such as an

Arduino [B64] or a Raspberry Pi [B65].

5.4 Management object model

and sonification workflow

The network management literature [B67, B68, B66] reports that, his-

torically, a management object model is composed by three elements:

i) a set of objects, whose attribute inform the management entities

about what states need to be managed;

ii) an interface (for example an API) to allow object attributes

change locally

iii) a management protocol, to change the object attributes remotely.

Object attributes are material for standardization documents, no de-

tails on that are reported here; also, the presented API architecture

design is fairly simple, as just a simple REST API is employed. In

this implementation, the communication between the Conductor(s)

and the SDN controller happens via a REST interface, obtainable ei-

ther as a customization of the SDN controller’s pre-existent REST

interface (as in the case of Ryu [B55] or ONOS [B43]), or by deploy-

ing a simple REST server as an application of the SDN controller.

The details of this protocol design can be used in future contributions

attempting to sonify other network management applications or to

implement other sonification techniques.

The following is an overview of the main tasks involved in exchang-

ing sonified data for network management and its workflow, i.e., the

interactions among all managed entities.

The main task of the proposed protocol is to exchange management

object states; an example of those states are (application or network)

configuration items that are exchanged with the managed entities de-

5.4. Management object model and sonification workflow 86



Chapter 5. Augmenting software-defined infrastructures

ployed in the physically separate management plane, or Music Pro-

tocol (MP) plane. The configuration happens via a packet-switched

network, but when the entities are configured, they will exchange in-

formation in the form of wireless signals. Conductor(s) and Player(s)

act in the MP plane. In a common application, every Player is con-

nected to a switch, and monitors a sample of the traffic passing by

it. In the presented SDN-based implementation, this is achieved by

mirroring a sample of the traffic transiting on data plane ports to-

wards the ports to which the Player is connected. The Players are

configured to execute a set of applications, that instruct the switches

on how to react to specific observed traffic conditions, or to hardware

(failure) events. Every Conductor is in charge of assigning alphabets

signal to Players. It then receives and interprets signals from them,

and communicates with the “primary” control plane entity (e.g., the

SDN controller). The information collected by the Conductor from

the Players is then used to provide the SDN controller observations

that can help gain quicker insights and determine what are the best

(network or security) policies to deploy, based on the current network

status.

But are the Conductor and the SDN controller both necessary?

The architecture of the Conductor presented in Section 5.3 is agnostic

from the SDI infrastructure and hence from the presence of an SDN

controller. Therefore, in general, Conductor and SDN Controller are

not always simultaneously needed, but in the current implementation

both are employed. The idea is not to make us of sonification as a

replacement for an SDN controller, but merely as a helper, to augment

or offload part of its functionality with an out-of-channel management

plane. Also, as a remark, out-of-channel is different from out-of-band.

5.5 Protocol design

Since the goal of the protocol is to establish a common ground for

(untethered) communication among Conductors and Players, the pro-

tocol design needs multiple phases, all described in the following sub-

5.5. Protocol design 87



Chapter 5. Augmenting software-defined infrastructures

Type code Type ID Type description

10 PLHELLO Setup - Player Hello

11 CNHELLO Setup - Conductor Hello

12 CHSUGG Setup - Player Channel Suggestion

13 SIGNASS Setup - Conductor Signal Assignment

14 ACKSIGN Setup - Player Signal ACK

20 PHYCH Physical Technology Change

21 ACKPHY Physical Technology Change ACK

30 END Close

31 ACKEND Close ACK

Table 5.1: MMP packet types

0 7 8 15

Version Session

Type Length

value

Figure 5.2: Generic MMP packet format

sections. Table 5.1 shows the set of possible message types that Con-

ductors and Players may exchange. Each MMP message is based on

some common fields (such as version of the protocol and session ID)

followed by a message-specific structure in the type-length-value for-

mat, as shown in Figure 5.2.

5.5.1 Connection setup

The objective of the setup phase is to initialize the communication

between a Player and a Conductor, agree on one or more physical

technologies to use (for example acoustic and Bluetooth), and assign

signals to the Player. Every Player maps signals to applications in

the same order as they are specified by the Conductor (first signal

assigned to first application, second signal assigned to second appli-

cation, and so on). This, of course, is an easily editable assignment

5.5. Protocol design 88



Chapter 5. Augmenting software-defined infrastructures

0 7 8 15

Version Session

10 Length

Phy=PP1 more Phy

(a)
0 7 8 15

Version Session

11 Length

Phy=PC

(b)
0 7 8 15

Version Session

12 Length

Phy=PC Channel=CP

(c)
0 7 8 15 16 23 24 31

Version Session 13 Length

Phy=PC Channel=CC Alphabet length

Symbol S1 frequency Symbol S1 duration

more symbols

(d)
0 7 8 15

Version Session

14 Length

(e)

Figure 5.3: Setup phase packets: (a) PLHELLO, (b) CNHELLO, (c)

CHSUGG, (d) SIGNASS, (e) ACKSIGN

5.5. Protocol design 89



Chapter 5. Augmenting software-defined infrastructures

policy. The design of the setup phase was inspired by the Dynamic

Host Configuration Protocol (DHCP) messages. Instead of acquiring

a new IP address, the “hosts” (in this case the Players) acquire a new

frequency set to operate on for the duration of the sonified application.

The Player initiates the communication (Fig. 5.3a) by notifying

the Conductor of its presence while also informing the latter on the

version of the protocol and the physical channel technologies it sup-

ports (PP1, ..., PPn). This is a discovery phase. The Conductor then

generates a session ID for the Player, used as an identifier for the

duration of the session (from setup to close). The unique session ID

is present in every packet exchanged between the Conductor and the

specific Player, so it could act as a sort of address field for filtering.

The Conductor then responds to the Player (Fig. 5.3b) with a mes-

sage informing the Player on the session ID, the agreed version of the

protocol and the chosen physical layer PC . The Player acknowledges

the physical layer type choice by replying back to the Conductor with

such a choice in a packet (Fig. 5.3c), specifying a channel proposal

CP to use. This proposal is based on sensing of the environment. A

specific sub-channel might be more crowded, given its proximity with

other devices using similar bands. The Conductor confirms the chosen

channel CC , that might differ from the initial suggestion CP by the

Player while also sending the list of signals the specific Player must use

and their time duration (Fig. 5.3d). Finally, the Player acknowledges

the reception of the “alphabet” to the Conductor with a message of

type ACKSIG (Fig. 5.3e).

5.5.2 Physical technology adaptation

This phase of the protocol is designed to allow an Conductor to modify

the physical access technique of an already registered Player without

having to go through a new setup phase. The Conductor sends the

Player a message with the indication of a specific physical technology

P . The Player acknowledges it by replying with a message of type

ACKPHY. The order in the communication is kept with the addition

of a sequence number, so as to avoid confusion in understanding what

5.5. Protocol design 90



Chapter 5. Augmenting software-defined infrastructures

is the most updated physical technology to use.

5.5.3 Close

This phase of the protocol is designed for deallocation. With this

phase, the Conductor relieves a Player of its sonification duty, in-

structing it to free the signals assigned to it. To do so, the Conductor

sends the Player a message of type END, specifying the mapping to

destroy: for example, free up channel CE from physical layer PE. This

implementation also supports multiple deallocation with a single mes-

sage by specifying a predefined code. The Player acknowledges the

close command with a message of type ACKEND.

5.6 Sonification of network management

applications

This section describes a few examples of network management appli-

cations that were implemented on the SDN-based sonification testbed.

5.6.1 TraceSound

The implementation of TraceSound was based on the concept and use

of the known Linux command traceroute. Tracesound enables (not

formal) network state verification, debugging and entitlement. With

TraceSound, a Player emits a signal when an ICMP Echo Request

(i.e., ping) traverses its monitored switch. TraceSound can be used

to verify which switches are traversed by which traffic flow, or which

flow is departing from a specific source and is routed to a specific des-

tination. To obtain this information, usually an expensive log analysis

is required a posteriori, or some state tracking is necessary [B69]. By

starting a ping session between endpoints in the data plane, the Con-

ductor receives TraceSound signals and can trace which switch was

or was not responsible for routing a specific flow. A specific sound

can be mapped to every Player allowing a path reconstruction of the

sequence of switches traversed by the ping even for network debugging

5.6. Sonification of network management applications 91



Chapter 5. Augmenting software-defined infrastructures

purposes. This application is easily extensible to react on the transit

of packets different than the ICMP Echo Request, such as BGP route

advertising or headers belonging to unsafe SSL/TLS versions.

It is well known that OpenFlow flow tables are unsafe with re-

spect to managing conflicting rules [B70, B71]. A network manager

(system) may need to be informed on the percentage of traffic that

traverses a specific set of devices, or rather that does not traverse

another subset of devices. With complex network configurations in-

volving large amount of SDN-enforced steering policies, a new steering

rule might interfere with an existing one, causing the older policy to

not be properly enforced. The TraceSound application can be used to

verify an actual path before and after the injection of a new rule: the

sequence of switches traversed between two customizable endpoints

can play different sounds if an accidental rule change has impacted

the route. Furthermore, a switch may be configured to play alarming

sounds when it is called to forward a packet without being entitled to

do so, given some internal BGP policies in place.

5.6.2 Heavy-Hitter Detection

Heavy-hitters (sometimes they are referred to as elephant flows) are

flows that carry a large quantity of data, defined by a threshold usually

related to a fraction of utilized link capacity over a fixed period of time.

Identifying them is crucial to network management applications such

as load balancing. As a use case, an MMP application called Heavy-

Hitter Detection (HHD) was developed, to help identifying heavy-

hitters. Players emit a signal when they observes a high amount of

traffic (determined by a threshold, set as a parameter) going through

the monitored switch, so as to make the Conductor aware that the

switch may require priority to manage all the traffic.

5.6.3 DDoS Monitoring

An important task in network security is the identification of poten-

tial Distributed Denial-of-Service (DDoS) attacks. To this aim, it

5.6. Sonification of network management applications 92



Chapter 5. Augmenting software-defined infrastructures

could be useful to identify hosts that contact a large number of other

hosts in a suspiciously short time-frame. A host that contacts at

least k unique destinations over a given interval of time is called a

k-superspreader [B72]. This feature was implemented in DDoS Moni-

toring (DDoSM) by tracking flows that have the same source but dif-

ferent destinations, and making a Player emit a (sound) signal when

it observes the transit of more than k such flows over its monitored

switch.

5.6.4 Callbacks for network management

application programmability

In any software engineering context, callbacks are programming tools

used to detect and respond to the occurrence of a given hardware or

software event. Such callbacks could represent link failures, connection

requests from a new host, connectivity between a host and a switch,

or a switch reboot. With MMP, Players can be configured to emit

signals when they observe such events. However, this requires Players

to have a deeper point of view on the switches than the one allowed

by simply monitoring the traffic traversing them. This abstraction

is not implemented in the Proof-of-Concept prototype, but left for a

future work, including the implementation of specific and customized

sonification events. For example, a open question is how to imple-

ment support for sound-based, out-of-channel SNMP traps [B73]; a

Player could emits a signal if it observes a specific event mapped to

an SNMP signal: coldStart, warmStart, linkDown, linkUp, authFailure

or egpNeighborLoss.

5.7 Testbed and implementation

The protocol and use case applications were tested on both a real

network testbed and a virtual network testbed. The local virtual net-

work testbed is composed by a number of data plane hosts, intercon-

nected by a mesh network of switches, each connected to a Player.

5.7. Testbed and implementation 93



Chapter 5. Augmenting software-defined infrastructures

MMP Conductor

P0

P4

P5

S1

SDN controller

P3

P1

P2

P6

S2

S3

S4

S5

D1

D2

D3

D4

D5

Figure 5.4: SDN-based virtual network testbed. Every switch is con-

nected to both an Conductor and and SDN controller, managing the

network over two separate independent channels.

Every Player is, in turn, connected to a Conductor via a separate

dedicated network. A representation of the testbed is shown in Fig-

ure 5.4. Each host and MP plane entity is emulated by a Linux net-

work namespace [B74], while virtual switches are deployments of OvS

instances [B63], and are managed by the Ryu SDN controller [B55].

Every virtual switch is configured to mirror all traffic traversing it to

the MP plane port attached to the Player. In this testbed, by design,

data plane hosts are unaware of MP plane components. All protocol

packets are implemented with the Python Scapy library [B62]. This

testbed enables the testing of each phases of the protocol and, to a

certain extent, the scalability of the approach. It is crucial to note

that sonification is not envisioned for large scale datacenters, but that

it can be used within a smaller-scale enterprise networks as well as in a

single point-of-presence, for example in a region of a campus network.

The real network testbed is instead composed by Raspberry Pis [B65]

and inexpensive speakers and microphones. The real testbed was used

5.7. Testbed and implementation 94



Chapter 5. Augmenting software-defined infrastructures

to assess the feasibility of sound signaling. Specifically, an audio track

was generated in the virtual testbed, then played using a speaker, so

as to verify that sounds emitted by Players would be correctly recog-

nizable by the Conductor.

5.8 Evaluation

Signal Application Player P0

S1 TraceSound 400 Hz 1000 ms

S2 Heavy-Hitter Detection 500 Hz 1000 ms

S3 DDoS Monitoring 600 Hz 1000 ms

Table 5.2: Signal-to-application mapping

This section presents the proof-of-concept evaluation results ob-

tained by deploying the protocol on the testbed described in Sec-

tion 5.7. The sound traces are obtained by recording the acoustic sig-

nals from the virtual network testbed. The traces are then processed

on the physical network testbed, so as to verify the correct interpreta-

tion of signals in real settings. Every Player is running three applica-

tions, namely, TraceSound (TS), Heavy-Hitter Detection (HHD), and

DDoS monitoring (DDOSM).

In this evaluation scenario, every Player requires an assignment of

three signals. Table 5.2 shows the assignment of signals to applica-

tions. The first signal assigned to every Player is associated to Trace-

Sound, the second to the Heavy-Hitter Detection application and the

third to the DDoS monitoring. Table 5.2 also reports the actual values

of frequency and duration of the three signals assigned to Player P0

(identifiable on the top-left corner of the network of switches in Fig-

ure 5.4). Note how frequency and duration are the two characterising

policies of a sound signal. Together with amplitude, such policies can

be tuned for network management sonification programmability.

In general, when multiple applications are executed on a number of

Players simultaneously, signals overlap in an asynchronous way. Fig-

5.8. Evaluation 95



Chapter 5. Augmenting software-defined infrastructures

ure 5.5a shows the magnitude of the frequency components found in

the generated audio trace, while Figure 5.5b shows a mel-scaled spec-

trogram of the signals emitted by the Player in the virtual testbed

when a variety of events occur. The Conductor is aware of the list

of signals that every Player is currently using and of the signal-to-

application mappings. The Conductor hence is able to determine

the source and meaning of every signal upon reception. Note in Fig-

ure 5.5b the two almost-simultaneous groups of three signals (around

time t = 1.5s and t = 6s). These are caused by two running Trace-

Sound sessions. Those signals are emitted by the three Players whose

switches are traversed by the traffic between the two endpoints of the

ICMP traffic. Among them, the signal emitted by Player P0 is rec-

ognizable at frequency f = 400Hz. The signal starting at t = 3s

instead is caused by the detection of a potential elephant flow in one

of the switches (Heavy-Hitter Detection application or HHD). The sig-

nal that follows, starting at t = 3s, is generated upon the detection of

a large number of different traffic sources in another switch.

Note how the system also recognized, starting at time t = 4.5s, the

HHD signal coming from Player P0, at frequency f = 500Hz. Finally,

starting at around t = 7.5s, there is the DDoS monitoring signal of P0.

Table 5.3 gives an overall view of all detected signals in the frequency

domain, captured using the Fast Fourier Transform (FFT).

5.9 Limitations and open questions

While the presented object model and protocol design can be gener-

alized to the policy programmability of many wireless physical layer

parameters, the implemented testbed and experiments have been lim-

ited to sonification. It is well-known that the acoustic spectrum has

limited capabilities: first, sound speed is fairly slow compared to other

media; second, even at a small-medium scale, interference appears to

be harder to manage with respect to other signals, given the inability

to modulate and protect the signal-to-noise ratio. Surely acoustics

can be restricted solely to the last hop of a communication, but that

5.9. Limitations and open questions 96



Chapter 5. Augmenting software-defined infrastructures

Time [ms] Frequency [Hz] Player Signal Application

1034 400 P0 S1 TS

1040 1300 P3 S1 TS

1042 2200 P6 S1 TS

3021 1600 P3 S2 HHD

3529 2400 P6 S3 DDOSM

4754 500 P0 S2 HHD

5694 400 P0 S1 TS

5650 700 P1 S1 TS

5653 1000 P2 S1 TS

7394 600 P0 S3 DDOSM

Table 5.3: Signals detected during the evaluation, as shown in Fig-

ure 5.5.

does not necessarily solve the fate-sharing problem. In summary, it

is arguable that the acoustic spectrum in isolation can be considered

a viable and scalable form of network management signaling only for

a very specific applications that do generate low-amount of control

traffic. Moreover, sound can be used very specifically on fairly small

networks or applications even across multiple hosts.

There are also sound insecurity limitations. Acoustics has the same

drawbacks as any other wireless signal. Messages sent out-of-channel

could perhaps be considered as conveyed through a (secure because)

hidden channel, assuming that attackers are unable to tamper or listen

to such signals. One could also also envision the possibility of using

sound as two-factor authentication system: a “proof-of-sound” could

be requested to MMP-enabled processes.

An additional research open question is how to use this protocol

for intent specification of a networked system. An intent, as described

in Section 1.2.5, is a high-level specification that allows to declare

service policies rather than a specific network mechanism. Typically,

an intent is perceived as a form of specification that a user or a user-

level application can formulate. Sounds or other out-of-channel means

5.9. Limitations and open questions 97



Chapter 5. Augmenting software-defined infrastructures

of expressing the intents in a more natural way can be explored. For

example, a higher-hierarchy entity could specify an intent by means

of a sound, and the underlying structure, knowing the mapping, can

carry out the required actions so as to apply that intent. In the other

logical direction, a device may emit a sound meaning “this switch

is overloaded”, and the network controller can view that sound as

inverse function of an intent declaration, expressing the need to have

the traffic re-steered to relieve that particular switch.

Another interesting case study is that of vibrations, that can be

employed as a form of out-of-channel signal, opening up to a set of

interesting possibilities, some of which are introduced in the following

section.

5.10 Haptic networking

Vibrations and haptic technologies are being explored in end-user

(wearable) devices, and Tactile Internet is being used merely as a

metaphor. However, with rare exceptions and for smaller scoped

projects, vibration has been largely untouched as networking com-

munication media.

A growing movement has brought focus to the need for making

computer science education accessible to all individuals, particularly

to those of the blind and visually impaired communities. With many

graphical and visual issues within networking, these individuals are

often left behind. The protocol presented in this Chapter, and most

importantly the philosophy behind it, can be extended to vibrations,

providing a flexible medium with potential to enable new applications,

both in the direction of of out-of-channel augmentation of networking

infrastructures, similar to those described in Section 5.6, and towards

new ways of teaching networking to visually impaired individuals.

Touch is an important component of learning, particularly to those

who heavily rely on touch as a primary communication channelFrom

hands-on learning experiences to the use of force feedback devices

in virtual learning, there are many instances where touch has demon-

5.10. Haptic networking 98



Chapter 5. Augmenting software-defined infrastructures

strated its use in learning abstract concepts [B75]. Quorum, an evidence-

oriented programming language, specifically has an “auditory” track

that enables individuals with VI to program [B76]. The association of

network events to tactile feedbacks provides an avenue by which net-

working principles, which often employ visualizations, may be taught

in a multi-sensory way — catering to individuals with different learn-

ing styles or disabilities. To this aim, a low-cost starting point for

physical layer programmability, built with common materials, is intro-

duced in [P15]. The work lays the foundation for “Vibration-Defined

Networking”, and suggests potential uses of this (elsewhere explored)

technology for physical layer security, to increase network resiliency

and for inclusive educational purposes. To assess the practicality of the

approach, an architecture for vibration programmability is designed

and evaluated, sharing the experience obtained building several hard-

ware testbeds. Different mechanical components to handle vibrations

are analyzed. The work exposes some limitations, but also interesting

potential research directions.

5.11 Remarks

The proposed network management protocol enables programmabil-

ity of out-of-channel management applications, with the original goal

of making Software-Defined Infrastructures more resilient, then ex-

tended to other uses case to demonstrate the practicality of the ap-

proach. This first implementation used the acoustics spectrum, a fairly

unexplored physical layer to be used as non-fate-sharing control and

management planes. Some insight on the use of vibrations are given.

Several applications can be recognized by managed nodes running

this architecture, recognizing signals from all of them, showing how

out-of-channel signals can be used for example for network verification

and debugging.

5.11. Remarks 99



Chapter 5. Augmenting software-defined infrastructures

0 500 1000 1500 2000 2500
Frequency [Hz]

0.0

0.5

1.0

1.5

2.0

2.5

M
ag

ni
tu

de
1e7

(a) Frequency components represented with Fast Fourier Transform (FFT).

0 1.5 3 4.5 6 7.5 9
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

(b) Evolution of signals in time.

Figure 5.5: Sounds generated by multiple applications.

5.11. Remarks 100



Chapter 6

Flexible service provisioning

in Fog scenarios

As anticipated in Section 1.2.3, sometimes the Cloud is not able to of-

fer the responsiveness required by new generation applications. Here

is where the Fog comes into play. With Fog Computing, services

are brought closer to the user, making it possible to achieve reduced

service response times, and also offloading the Cloud infrastructure.

This, however, comes at the price of increased complexity in the de-

ployment, management and monitoring mechanisms that support the

provisioning of this services, even more so when trying to preserve

the XaaS model for service provisioning offered by the Cloud. This is

why an orchestrator is required, and one such system, designed and

developed from scratch, is presented in the following.

FORCH (Fog ORCHestrator) was designed to help dynamically

allocating and managing resources in order to provide for different

needs of the end users. It aims at facilitating Fog XaaS discover avail-

able Fog nodes, track offered resources and services, monitor utiliza-

tion, listen to service requests from user, allocate services to node,

mediate between end users and the Fog infrastructure. The FORCH

architecture is composed of a number of software modules, each of-

fering its API, enabling the flexible deployment of different services

implemented through any of the XaaS models, benefiting both the

infrastructure and the end users. The design, development, imple-

101



Chapter 6. Flexible service provisioning in Fog scenarios

mentation and validation of FORCH is still being carried out, with

descriptions of the current components and relevant experimental val-

idation published in [P13] and reported in the remainder of this chap-

ter.

6.1 Motivation and challenges

Dynamicity is inherently a fundamental characteristic of the Fog phi-

losophy. The amount of resources available to a Fog network varies

in relation to the quantity and the capacity of the Fog nodes that are

available at a given moment, and can therefore be allocated to end

users to provide the service they request. Moreover, the capabilities

and the amount of resources offered by a Fog node are not known a

priori, i.e., before the node itself connects to the Fog infrastructure,

as Fog nodes are meant to offer their resources to the infrastructure

at non-predetermined moments in time. In order to handle such a

dynamic and heterogeneous set of Fog Computing resources, a suit-

able orchestration component is needed [B37, B36]. Such orchestrator

should be able to discover how many and which Fog nodes are avail-

able, keep track of the resources they offer and their utilization, listen

to service requests from the end users and decide which node must be

allocated to them, if feasible, then proceed to instructing both the end

user and the infrastructure on said allocation, allowing the end user

to access to the allocated resources and obtain the requested service.

Borrowing from the XaaS Cloud Computing service model classifi-

cation introduced in Section 1.2.3, the analysis focuses on the general

situation where a Fog Computing service can be categorized in differ-

ent classes suitable to satisfy different end user needs, with different

levels of flexibility. In the Software-as-a-Service (SaaS) case, end users

typically require a predetermined application to ingest some data, per-

form computations or evaluations on it, and return a result. In the

Platform-as-a-Service (PaaS) case, instead, end users want to be able

to develop their own applications on a given software platform. Fi-

nally, in the Infrastructure-as-a-Service (IaaS) case, end users need to

6.1. Motivation and challenges 102



Chapter 6. Flexible service provisioning in Fog scenarios

have a portion of computing and network resources allocated to them,

and a concerted way of installing their own platform and software on

it. It is therefore evident the need for a Fog Computing architecture

that is aware of these different service models along with their related

peculiarities and challenges in terms of resource allocation, usage and

monitoring.

6.2 Fog computing system architecture

FORCH is a modular orchestration system for Fog Computing infras-

tructures, aware of the different service models, and able to act as

a resource management layer placed between the end user and the

infrastructure itself. Such architecture has not yet been proposed in

the literature. In fact, for example, in [B38] a framework integrat-

ing different IoT-enabled systems and the Fog/Cloud infrastructure is

proposed, with a focus on important aspects such as security, but said

framework only implements the PaaS class of service, without address-

ing the SaaS and IaaS scenarios. Also, in [B37] a Fog orchestration

scheme is proposed specifically for IoT scenarios, whereas in [B36] the

main Fog orchestration challenges and possible solutions are discussed.

However, these works do not include testbed implementations and do

not address different service models for enabling a multi-purpose ap-

plication scenario, i.e., not necessarily limited to the IoT.

Figure 6.1 shows the architecture of the Fog system, highlighting

its logical components. The supervising entity is the titular orches-

trator, FORCH. It coordinates the activities in the Fog system, inter-

acting with the users by providing them information on the available

services offered by the Fog infrastructure, and receiving their requests

for new service allocations. FORCH also interacts with the Fog nodes

to manage services deployed on them, as well as with repositories in

the Cloud, to gather information on the available platforms and soft-

ware tools. FORCH has multiple components, each developed as an

independent module:

– User Access (UA): the point of contact for users to interact

6.2. Fog computing system architecture 103



Chapter 6. Flexible service provisioning in Fog scenarios

Fog node
R/S monitor

IaaS

Fog 
GW

FORCH

User Access
Res/Serv database

Res/Serv monitoring

Broker IaaS management

Docker

Kubernetes

Unikernel

Fog node
R/S monitor

SaaS
Fog node

R/S monitor

PaaS
Repo

User

Service
Allocation

Service
Use

Identity Service

Figure 6.1: Reference architecture.

with the FORCH;

– Broker (BR): serves as mediator between the user and the re-

source management modules of the FORCH, by routing user re-

quests to the appropriate component of the FORCH, and routing

their responses back to the user, facilitating the allocation and

management of services in the Fog system;

– Resource and Service Database (RD): stores information on

the resources of the Fog system and their current state, in terms

of availability, residual capacity, and current services deployed

on them;

– Resource and Service Monitoring (RM): provides the database

with information on the Fog nodes by acting as collector for the

monitoring data sent over from the agent modules in the Fog

nodes;

– IaaS Management (IM): manages resources allocation and ser-

vice deployment on IaaS Fog nodes, taking advantage of multiple

lightweight virtualization technologies (e.g., containers, Uniker-

nels) and interacting with different related image repositories

6.2. Fog computing system architecture 104



Chapter 6. Flexible service provisioning in Fog scenarios

and management/orchestration platforms (e.g., Docker, Eclipse

fog05).

The end user, connected through a Fog Gateway (FG), is only

allowed to interact with the UA module through its REST API, which

exposes endpoints for functionalities that the user is allowed to access

directly. Most functionalities of the FORCH, each of them exposing a

REST endpoint on the relevant software module, are for internal use

only, although they are triggered by the requests of the user.

Fog nodes, regardless of their capabilities, host a module acting as

an agent of the RM collector module of the FORCH. Through this

agent module, the RM can acquire information regarding the services

the Fog node can offer along with its residual resources, and monitor

its activities once a service is deployed on it. As a particular subset of

Fog nodes, IaaS nodes are able to interact directly with the software

and platform repository of choice in order to download the software

or image needed to provide the service that FORCH wants to deploy

on them.

Based on the classification of the different services the Fog infras-

tructure can provide, three types of entities are distinguished among

those FORCH can allocate Fog nodes to: Applications (APPs) in the

SaaS case, Software Development Platforms (SDPs) in the PaaS

case, and Fog Virtualization Engines (FVEs) in the IaaS case. All

of them being software entities, they address mutually distinct sets of

end user needs with different levels of flexibility. APPs take values as

input and return results based on those input values (e.g., a block of a

computationally-intensive series of operations), or listen for incoming

requests and serve them (e.g., a Web-based application). Diversely,

SDPs are meant to accept blocks of code written in a predetermined

language and/or using specific development libraries, execute them,

and return the output to the end user. (e.g., Remote Java or Python

Interpreters). Lastly, FVEs allow a Fog node to host virtualized ap-

pliances so that the end user can deploy its own virtualized system

and have it perform the task it needs with maximum flexibility.

6.2. Fog computing system architecture 105



Chapter 6. Flexible service provisioning in Fog scenarios

User -> O-UA

O-UA -> O-RD (GET /appcat)

O-UA <- O-RD

User <- O-UA

Figure 6.2: Sequence diagram for GET /apps.

6.3 A use case

The term service represents either an APP, a SDP of a FVE, regardless

of the technology the infrastructure is able to offer that service to the

user. At the end of each successful service allocation, the user is given

a symbolic and unique identifier of the node the requested service has

been allocated on, along with a service port where the allocated service

is listening. The service can be accessed through an predefined inter-

face, specific for the service and known to the user. The interaction

between the user and the service happens through the Fog Gateway,

which is in charge of the translation of the symbolic node identifier

to a valid locator (e.g., an IPv4 address), making the user oblivious

of the network details inside the Fog infrastructure. Furthermore, the

FG is in charge of coordinating the authentication of the user to the

system, as well as of the encryption of the communication. In the

remainder of this section, the use case of a user requesting an APP is

considered and described.

Before requesting access to an application, the user can retrieve

the APP catalog, i.e., the list of applications the Fog infrastructure

is able to offer, with a call to the method GET /apps, represented

in Figure 6.2. The catalog summarizes the registered applications,

which does not necessarily mean those APPs are already deployed in

the infrastructure at the time of the retrieval of the catalog. Every

application is identified by an app id associated to it.

The user can then request access to a specific APP, by means of

the method POST /app/<app_id>, where the identifier app id corre-

sponding to the desired APP is the one found in the APP catalog.

The request triggers the sequence of calls represented in Figure 6.3,

6.3. A use case 106



Chapter 6. Flexible service provisioning in Fog scenarios

where the acronyms used start either with O- or N-, representing the

(Fog) Orchestrator and (Fog) Node respectively.

– the user makes the request to the O-UA;

– the O-UA forwards the request to the O-BR;

– the O-BR gathers information on the current availability of Fog

nodes and deployed applications in the Fog infrastructure, by

contacting the O-RD, which has been interfacing with the moni-

toring agent module and the service allocation module of each of

the active Fog nodes, gathering information periodically on their

status; this allows the O-BR to check whether the requested

APP is already implemented on a SaaS Fog node, resulting in

two possible scenarios:

– if the application is provided by at least one SaaS node,

the O-BR proceeds by comparing the resource utilization

of each of those nodes, and discards those whose resource

usage is higher than a predetermined threshold, which can

be imposed on CPU, RAM, disk, network utilization, or a

combination thereof; if no node remains, the O-BR will try

to allocate this APP on a IaaS node; inveserly, if there is at

least one available SaaS nodes, the O-BR then picks one on

the basis of a heuristic, which in the most simple case gives

priority to the least utilized node; finally, it responds to the

O-UA with details on the chosen node, so that the user is

able to find it; in this case, this concludes the procedure

(OBR_APP_AVLB_S, 200);

– in case the application is not yet available on any SaaS

node, or if all candidate SaaS nodes are fully utilized al-

ready, the O-BR goes through the list of nodes again, look-

ing for IaaS ones; the O-BR compares the resource utiliza-

tion of each node and picks one if possible, similarly to the

previous case; if no IaaS node is able to host this applica-

tion, the procedure fails, and the O-BR communicates it to

the user through the O-UA (OBR_APP_NAVL, 503); on the

contrary, if a IaaS node has been picked, the O-BR proceeds

6.3. A use case 107



Chapter 6. Flexible service provisioning in Fog scenarios

in the allocation;

– the O-BR retrieves the list of available FVE images from the O-

IM, and checks which of them implements the requested APP;

the O-IM has, in turn, retrieved the image list from the reposi-

tory of the FVE of choice;

– the O-BR triggers the allocation of the requested APP on the

chosen IaaS node by means of the selected image, through the

O-IM;

– the O-IM forwards the request to the N-IM component of the

chosen Fog node; if, for any reason, the Fog node results un-

reachable, the procedure concludes by a back propagation of an

error message, so that the user can retry in a different moment

(OIM_FND_NAVL, 500);

– if the image is not already present on the IaaS node, the N-IM

handles its download (pull) from the repo;

– the N-IM launches a container on the IaaS node base on the im-

age, and back propagates the details on the allocated container

to the O-BR, which, in turn, will propagate them to the O-UA

and finally to the user, successfully concluding the procedure

(OBR_APP_ALLC_I, 201).

An analogous procedure is devised for the provisioning of SDPs

and FVEs.

6.4 Testbed implementation

The structure of the testbed is logically coherent with the architec-

ture of FORCH depicted in Figure 6.1. A VM with 2 cores and 4

GB of RAM hosts all the FORCH software components, which were

developed as separate Python3 programs meant to be run indepen-

dently and communicating with each other via REST APIs. A num-

ber of Fog nodes are deployed on different hardware platforms. Two

nodes are emulated by two separate VMs, each with 1 core and 2

GB of RAM. Two additional nodes are implemented by an Intel NUC

MiniPC equipped with a 4-core 8th-gen Intel i7 processor and 16 GB

6.4. Testbed implementation 108



Chapter 6. Flexible service provisioning in Fog scenarios

User -> O-UA

O-UA -> O-BR

O-BR -> O-RD (GET /nodes)

O-BR <- O-RD

O-BR -> O-RD (GET /apps)

O-BR <- O-RD

O-BR --------> O-IM

O-BR <-------- O-IM

O-BR --------> O-IM

O-IM -> N-IM

N-IM -> repo

N-IM <- repo

O-IM <- N-IM

O-BR <-------- O-IM

O-UA <- O-BR

User <- O-UA

Figure 6.3: Sequence diagram for POST /app/<app id>.

of RAM, and a RaspberryPi Single Board Computer, model 3B+,

equipped with a 4-core ARMv7l processor and 1 GB of RAM, respec-

tively.

The role of monitoring system is played by Zabbix [B77], a software

suite providing monitoring of resources and functionality of a generic

system, and coming in the form of a set of agent modules and a collec-

tor module. The collector and the agent modules run as background

daemons, the former acting as the RM module of the FORCH, the

latter being replicated in each of the Fog nodes. Once the monitor-

ing modules are appropriately configured, they remain available and

reachable at need through their REST APIs. Docker [B59] was chosen

as FVE of choice—although it is not the only possibility—due to its

ease of configuration, compatibility over different systems and large

availability of APIs.

6.5. Proof-of-concept evaluation 109



Chapter 6. Flexible service provisioning in Fog scenarios

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Time [min]

0

20

40

60

80

100

120
CP

U 
ut

iliz
at

io
n 

[%
]

NUC1
VM1
VM2
RP1

Figure 6.4: CPU utilization of Fog nodes during a sequence of alloca-

tion requests. FORCH tries to load all available nodes, always giving

precedence to the most suitable available one, and leveraging the flex-

ibility of the XaaS model to deploy services on platforms/engines that

support them, this way achieving the highest resource occupation pos-

sible.

6.5 Proof-of-concept evaluation

As a PoC evaluation, FORCH is put in a situation where a sequence of

requests and allocations saturates all the resources of all the available

Fog nodes, forcing the orchestrator to reject subsequent requests.

Figure 6.4 shows the CPU utilization of the four Fog nodes con-

nected to the testbed Fog infrastructure, reporting how the system

behaves in the situation where a sequence of homogeneous requests

and allocations increasingly saturates the computation resources of

the available Fog nodes. For the sake of simplicity, during this ex-

perimental validation session the Broker module always selects the

Fog nodes in sequence, ordered by their monitoring ID, therefore the

resource of each node are expected to saturate before the next node

is picked for deploying a service on it. The reported evaluation was

conducted by having a “user” (actually a bash script) to request an

6.5. Proof-of-concept evaluation 110



Chapter 6. Flexible service provisioning in Fog scenarios

independent allocation of an application which consumes a tunable

amount of resource [B78]. A new request is made every minute. A

Fog node is considered fully occupied when its CPU utilization exceeds

90% of its computing power. As shown in the figure, the first node

- which happens to be the most powerful one - receives consecutive

allocations that make its CPU utilization rise steadily until saturat-

ing. At that point, the next node starts receiving allocations until its

CPU utilization saturates. Then, a similar process happens for the

other two Fog nodes, until all of them have a fully-busy CPU and can

no longer accepts new service allocation, at which point the user is

denied any further allocation. With specific reference to the figure,

instances of the requested service are allocated to the NUC1 node as

long as its CPUs are not fully loaded (at t = 8 min), then the other

nodes are selected for the service requests that follow, until the whole

infrastructure is fully utilized (at t = 17 min). In case no additional

service request is received, the nodes start to free the resources when

each service is completed (from t = 18 min to t = 21 min ). This

example is intended only as a basic PoC, as FORCH is predisposed to

handle heterogeneous service requests, monitoring a variety of usage

metrics.

6.6 Remarks

The Fog orchestrator presented in this chapter is still under develop-

ment, in fact [P13] only sets the foundation for the development of

FORCH by introducing the idea and including a preliminary demon-

stration of its functionalities. More use cases are being investigated

and will soon be the object of another publication. This work is

expected to yield a modular system that is open to successive inte-

grations and improvements, towards the development of a complete

system for service deployment and orchestration in dynamic Fog sce-

narios.

6.6. Remarks 111



Chapter 7

Conclusion

This Thesis has presented the outcomes of research efforts that investi-

gate a variety of aspects and features of software-based infrastructure.

Some of them consolidate recent novel results, while others propose

new solutions and lay the groundwork for valuable advancements in

the state of the art. Each chapter has described different solutions,

yet remaining consistent with the main topic of the Thesis, and drawn

relevant specific conclusions. All four of the main themes delineated

in Section 1.3 have been covered, by validating and enhancing existing

solutions and proposing new ones, as well as advancing the state of

the art with substantial contributions, which have already been men-

tioned throughout the treatise. The works discussed in the previous

chapters have represented the main focus of my research activities,

and my contribution to each of them represented the majority of the

effort to produce them. Concurrently, I took part in a number of other

research efforts, contributing in various capacities. All of these publi-

cations are showcased in Figure 1.5, distributed by relevance to each

of the main themes of the Thesis. To sum up once more and conclude,

the following is a summary of the works I was involved in during the

course of my PhD studies, each introduced by a brief comment on its

main topic and associated to the resulting publication(s):

– an intent-based NBI for dynamic SFC over SDN and non-SDN

domains alike is validated and applied to interesting real-world

scenarios in [P1, P6, P7];

112



Chapter 7. Conclusion

– the implementation of a SFC-aware control plane using Open-

Flow is presented in [P2] and applied to a composite scenario

in [P10];

– a behavior-driven approach to intent-based infrastructure man-

agement is presented in [P4];

– an intent-based approach to service specification on an ETSI

NFV environment is proposed in [P8];

– the implementation of SFC through Segment Routing support-

ing 5G network slicing is evaluated in [P9];

– the performances of SDN and SFC integration in the OpenStack

platform are evaluated in [P5, P3];

– an innovative protocol for network management using out-of-

channel signalling is presented in [P11, P15];

– the design and implementation of a unified and standalone moni-

toring module for SDN/NFV infrastructures is presented in [P12];

– an architecture for distributed SFC with guarantees is presented

in [P14];

– a service orchestrator for Fog scenarios is introduced in [P13].

113



Acronyms

CLI Command Line Interface.

DC Data Center.

DPI Deep Packet Inspection/Inspector.

IBN Intent-based Networking.

IC Integrity Check(er).

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IoT Internet of Things.

MANO Management and Orchestration.

MMP Music Management Protocol.

NAT Network Address Translation/Translator.

NBI North-Bound Interface.

NFV Network Function Virtualization.

NFVO Network Function Virtualization Orchestrator.

NSH Network Service Header.

QoS Quality of Service.

Acronyms 114



Acronyms

SDN Software-Defined Network(ing).

SF Service Function.

SFC Service Function Chain(ing).

TC Traffic Controller/Shaper.

VIM Virtualized Infrastructure Manager.

VNF Virtual Network Function.

VNFM Virtual Network Function Manager.

WAN Wide Area Network.

WIM WAN Infrastructure Manager.

XaaS Everything-as-a-Service.

Acronyms 115



Bibliography

[B1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,

and V. Sekar. “Making middleboxes someone else’s problem:

network processing as a cloud service”. In: ACM SIGCOMM

Computer Communication Review 42.4 (2012), pp. 13–24.

[B2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner. “OpenFlow:

Enabling Innovation in Campus Networks”. In: SIGCOMM

CCR 38.2 (Mar. 2008), pp. 69–74. url: http://doi.acm.

org/10.1145/1355734.1355746.

[B3] S. Zhang, X. Xu, Y. Wu, and L. Lu. “5G: Towards energy-

efficient, low-latency and high-reliable communications net-

works”. In: 2014 IEEE International Conference on Commu-

nication Systems. Nov. 2014, pp. 197–201.

[B4] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai.

“A Survey on Low Latency Towards 5G: RAN, Core Network

and Caching Solutions”. In: IEEE Communications Surveys

Tutorials (2018), pp. 1–1.

[B5] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. No-

centini, and A. Manzalini. “SDN for dynamic NFV deploy-

ment”. In: IEEE Communications Magazine 54.10 (Oct. 2016),

pp. 89–95.

[B6] Network Functions Virtualisation (NFV); Management and

Orchestration. The European Telecommunications Standards

Institute (ETSI). Dec. 2014. url: http://www.etsi.org/

technologies-clusters/technologies/nfv.

Bibliography 116

http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv


Bibliography

[B7] D. Lenrow. Intent: Don’t tell me what to do! (tell me what you

want). 2015. url: https://www.sdxcentral.com/articles/

contributed/network-intent-summit-perspective-david-

lenrow/2015/02/.

[B8] C. Janz, N. Davis, D. Hood, M. Lemay, D. Lenrow, L. Fengkai,

F. Schneider, J. Strassner, and A. Veitch. “Intent NBI – def-

inition and principles”. In: Open Networking Foundation 2

(2015).

[B9] A. Lerner. Intent-based networking. Gartner Blog Network. 2017.

url: https://blogs.gartner.com/andrew-lerner/2017/

02/07/intent-based-networking/.

[B10] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura. “Intent-

Based Networking-Concepts and Overview”. In: Internet En-

gineering Task Force, Internet-Draft (2019).

[B11] C. Li, Y. Cheng, J. Strassner, O. Havel, W. Liu, P. Martinez-

Julia, J. Nobre, and D. Lopez. “Intent Classification”. In: In-

ternet Engineering Task Force, Internet-Draft (2019).

[B12] T. Luo, H. P. Tan, and T. Q. S. Quek. “Sensor OpenFlow: En-

abling Software-Defined Wireless Sensor Networks”. In: IEEE

Communications Letters 16.11 (2012), pp. 1896–1899.

[B13] D. Zeng, T. Miyazaki, S. Guo, T. Tsukahara, J. Kitamichi, and

T. Hayashi. “Evolution of Software-Defined Sensor Networks”.

In: Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE

Ninth International Conference on. 2013, pp. 410–413.

[B14] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. “SDN-

WISE: Design, prototyping and experimentation of a stateful

SDN solution for WIreless SEnsor networks”. In: 2015 IEEE

Conference on Computer Communications (INFOCOM). 2015,

pp. 513–521.

[B15] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrig-

nani, S. Mijovic, G. Morabito, and R. Verdone. “Testing Pro-

tocols for the Internet of Things on the EuWIn Platform”. In:

IEEE Internet of Things Journal 3.1 (2016), pp. 124–133.

Bibliography 117

https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/
https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/
https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/
https://blogs.gartner.com/andrew-lerner/2017/02/07/intent-based-networking/
https://blogs.gartner.com/andrew-lerner/2017/02/07/intent-based-networking/


Bibliography

[B16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

S. Stuart, and A. Vahdat. “B4: Experience with a Globally-

deployed Software Defined WAN”. In: SIGCOMM Comput.

Commun. Rev. 43.4 (2013), pp. 3–14.

[B17] R. Jain and R. Khondoker. “Security Analysis of SDN WAN

Applications–B4 and IWAN”. In: SDN and NFV Security. Ed.

by R. Khondoker. Vol. 30. Lecture Notes in Networks and Sys-

tems. Cham, Switzerland: Springer, 2018, pp. 111–127.

[B18] What is Software-Defined WAN (or SD-WAN or SDWAN)?

url: https://www.sdxcentral.com/sd-wan/definitions/

software-defined-sdn-wan/.

[B19] A. M. Medhat, G. A. Carella, M. Pauls, M. Monachesi, M.

Corici, and T. Magedanz. “Resilient orchestration of Service

Functions Chains in a NFV environment”. In: 2016 IEEE Con-

ference on Network Function Virtualization and Software De-

fined Networks (NFV-SDN). 2016, pp. 7–12.

[B20] M. T. Beck, J. F. Botero, and K. Samelin. “Resilient alloca-

tion of Service Function Chains”. In: 2016 IEEE Conference

on Network Function Virtualization and Software Defined Net-

works (NFV-SDN). 2016, pp. 128–133.

[B21] T. Soenen, S. Sahhaf, W. Tavernier, P. Sköldström, D. Colle,

and M. Pickavet. “A model to select the right infrastructure

abstraction for Service Function Chaining”. In: 2016 IEEE

Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). 2016, pp. 233–239.

[B22] D. Zhou, Z. Yan, Y. Fu, and Z. Yao. “A Survey on Network

Data Collection”. In: Journal of Network and Computer Ap-

plications 116 (2018), pp. 9–23.

[B23] P. Tsai, C. Tsai, C. Hsu, and C. Yang. “Network Monitoring

in Software-Defined Networking: A Review”. In: IEEE Systems

Journal 12.4 (Dec. 2018), pp. 3958–3969.

Bibliography 118

https://www.sdxcentral.com/sd-wan/definitions/software-defined-sdn-wan/
https://www.sdxcentral.com/sd-wan/definitions/software-defined-sdn-wan/


Bibliography

[B24] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang. “A Compre-

hensive Survey of Network Function Virtualization”. In: Com-

puter Networks 133 (2018), pp. 212–262.

[B25] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes. “Integrated

NFV/SDN Architectures: A Systematic Literature Review”.

In: ACM Comput. Surv. 51.6 (Feb. 2019), 114:1–114:39.

[B26] D. Clark. “The Design Philosophy of the DARPA Internet Pro-

tocols”. In: Proc. ACM SIGCOMM. Stanford, California, USA,

1988, pp. 106–114.

[B27] K. Fall. “A Delay-tolerant Network Architecture for Challenged

Internets”. In: Proc. ACM SIGCOMM. Karlsruhe, Germany,

2003, pp. 27–34.

[B28] I. Pepelnjak. Fate Sharing in IP Networks. url: https://

blog.ipspace.net/2014/08/fate-sharing-in-ip-networks.

html.

[B29] Y. Zhu, X. Zhou, Z. Zhang, L. Zhou, A. Vahdat, B. Y. Zhao,

and H. Zheng. “Cutting the Cord: A Robust Wireless Facilities

Network for Data Centers”. In: Proc. ACM MobiCom. 2014,

pp. 581–592.

[B30] M. Hanspach and M. Goetz. “On Covert Acoustical Mesh

Networks in Air”. In: Journal of Communications 8.11 (Nov.

2013), pp. 758–767.

[B31] R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and

R. Venkatesan. “Dhwani: Secure Peer-to-peer Acoustic NFC”.

In: Proc. ACM SIGCOMM. 2013, pp. 63–74.

[B32] R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D. Rinehart.

“Sensing-enabled Channels for Hard-to-detect Command and

Control of Mobile Devices”. In: Proc. ACM ASIA CCS. 2013,

pp. 469–480.

[B33] A. Madhavapeddy, R. Sharp, D. Scott, and A. Tse. “Audio

networking: the forgotten wireless technology”. In: IEEE Per-

vasive Computing 4.3 (July 2005), pp. 55–60.

Bibliography 119

https://blog.ipspace.net/2014/08/fate-sharing-in-ip-networks.html
https://blog.ipspace.net/2014/08/fate-sharing-in-ip-networks.html
https://blog.ipspace.net/2014/08/fate-sharing-in-ip-networks.html


Bibliography

[B34] M. Sharif-Yazd, M. Khosravi, and M. K. Moghimi. “A Sur-

vey on Underwater Acoustic Sensor Networks: Perspectives on

Protocol Design for Signaling, MAC and Routing”. In: Journal

of Computer and Communications 5.5 (Mar. 2017), pp. 12–23.

[B35] M. Hogan and F. Esposito. “Music-Defined Networking”. In:

Proc. ACM HotNets. 2018, pp. 155–161.

[B36] Y. Jiang, Z. Huang, and D. H. K. Tsang. “Challenges and So-

lutions in Fog Computing Orchestration”. In: 32.3 (May 2018),

pp. 122–129.

[B37] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovat-

sos. “Fog Orchestration for Internet of Things Services”. In:

21.2 (Mar. 2017), pp. 16–24.

[B38] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya. “FogBus: A Blockchain-

based Lightweight Framework for Edge and Fog Computing”.

In: Journal of Systems and Software 154 (2019), pp. 22–36.

[B39] R. V. Rosa, M. A. S. Santos, and C. E. Rothenberg. “MD2-

NFV: The case for multi-domain distributed network functions

virtualization”. In: 2015 International Conference and Work-

shops on Networked Systems (NetSys). 2015, pp. 1–5.

[B40] K. Phemius, M. Bouet, and J. Leguay. “DISCO: Distributed

multi-domain SDN controllers”. In: 2014 IEEE Network Op-

erations and Management Symposium (NOMS). 2014, pp. 1–

4.

[B41] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf,

W. Tavernier, and F. Risso. “Multi-Domain Service Orches-

tration Over Networks and Clouds: A Unified Approach”. In:

2015 ACM SIGCOMM Conference. London, United Kingdom,

2015, pp. 377–378.

[B42] Intent NBI - Definition and Principles. The Open Networking

Foundation (ONF). 2016. url: https://www.opennetworking.

org/sdn-resources/technical-library.

Bibliography 120

https://www.opennetworking.org/sdn-resources/technical-library
https://www.opennetworking.org/sdn-resources/technical-library


Bibliography

[B43] ONOS: Open Network Operating System. url: https://www.

opennetworking.org/onos/.

[B44] OpenStack: Open Source Cloud Computing Software. url: https:

//www.openstack.org/.

[B45] Mininet: An Instant Virtual Network on your Laptop. url:

http://mininet.org.

[B46] M. D. Abrignani, C. Buratti, D. Dardari, N. El Rachkidy, A.

Guitton, F. Martelli, A. Stajkic, and R. Verdone. “The EuWIn

testbed for 802.15. 4/Zigbee networks: From the simulation

to the real world”. In: ISWCS 2013; The Tenth International

Symposium on Wireless Communication Systems. VDE. 2013,

pp. 1–5.

[B47] F. Callegati, W. Cerroni, C. Contoli, and F. Foresta. “Per-

formance of Intent-based Virtualized Network Infrastructure

Management”. In: Proceedings of IEEE ICC 2017, Paris, France.

2017.

[B48] Fed4Fire. url: https://www.fed4fire.eu/.

[B49] Y. Boucadair et al. Service Function Chaining Service, Sub-

scriber and Host Identification Use Cases and Metadata. draft-

sarikaya-sfc-hostid-serviceheader-04.txt. IETF Secretariat, 2017.

[B50] M. Boucadair. Service Function Chaining (SFC) Control Plane

Components. Internet-Draft draft-ietf-sfc-control-plane-08. Work

in Progress. Internet Engineering Task Force, 2016. url: https:

//datatracker.ietf.org/doc/html/draft- ietf- sfc-

control-plane-08.

[B51] J. M. Halpern and C. Pignataro. Service Function Chaining

(SFC) Architecture. RFC 7665. 2015. url: https://rfc-

editor.org/rfc/rfc7665.txt.

[B52] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header

(NSH). RFC 8300. 2018. url: https://rfc-editor.org/

rfc/rfc8300.txt.

Bibliography 121

https://www.opennetworking.org/onos/
https://www.opennetworking.org/onos/
https://www.openstack.org/
https://www.openstack.org/
http://mininet.org
https://www.fed4fire.eu/
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc8300.txt
https://rfc-editor.org/rfc/rfc8300.txt


Bibliography

[B53] T. Nadeau and P. Quinn. Problem Statement for Service Func-

tion Chaining. RFC 7498. 2015. url: https://rfc-editor.

org/rfc/rfc7498.txt.

[B54] Network Service Header Linux kernel module implementation.

url: https://github.com/upa/nshkmod.

[B55] Ryu SDN Framework. 2020. url: https://ryu-sdn.org/.

[B56] M.-T. Thai, Y.-D. Lin, P.-C. Lin, and Y.-C. Lai. “Towards

Load-Balanced Service Chaining by Hash-based Traffic Steer-

ing on Softswitches”. In: Journal of Network and Computer

Applications 109 (2018), pp. 1–10. url: http://www.sciencedirect.

com/science/article/pii/S1084804518300699.

[B57] sFlow. url: https://sflow.org/.

[B58] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,

S. Azodolmolky, and S. Uhlig. “Software-defined networking:

A comprehensive survey”. In: Proceedings of the IEEE 103.1

(2014), pp. 14–76.

[B59] Docker. url: https://www.docker.com/.

[B60] L. Chen, J. Xia, B. Yi, and K. Chen. “PowerMan: An Out-of-

Band Management Network for Datacenters Using Power Line

Communication”. In: Proc. USENIX NSDI. 2018, pp. 561–578.

[B61] T. Hermann, A. Hunt, and J. G. Neuhoff. The Sonification

Handbook. Logos Publishing House, Berlin, Germany, 2011.

[B62] Scapy: Packet crafting for Python2 and Python3. url: https:

//scapy.net.

[B63] Open vSwitch. url: https://www.openvswitch.org.

[B64] Arduino. url: https://www.arduino.cc/.

[B65] Raspberry Pi. url: https://www.raspberrypi.org/.

[B66] F. Esposito. “A Policy-based Architecture for Virtual Net-

work Embedding”. PhD thesis. Computer Science Department,

Boston University, 2013.

Bibliography 122

https://rfc-editor.org/rfc/rfc7498.txt
https://rfc-editor.org/rfc/rfc7498.txt
https://github.com/upa/nshkmod
https://ryu-sdn.org/
http://www.sciencedirect.com/science/article/pii/S1084804518300699
http://www.sciencedirect.com/science/article/pii/S1084804518300699
https://sflow.org/
https://www.docker.com/
https://scapy.net
https://scapy.net
https://www.openvswitch.org
https://www.arduino.cc/
https://www.raspberrypi.org/


Bibliography

[B67] A. Clemm. Network Management Fundamentals. Cisco Press,

2006.

[B68] J. Day. Patterns in Network Architecture: A Return to Funda-

mentals. Prentice Hall, 2008.

[B69] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N.

Spring, and B. Bhattacharjee. “Alibi Routing”. In: Proc. ACM

SIGCOMM. 2015, pp. 611–624.

[B70] S. Mirzaei, S. Bahargam, R. Skowyra, A. J. Kfoury, and A.

Bestavros. “Using Alloy to Formally Model and Reason About

an OpenFlow Network Switch”. In: CoRR abs/1604.00060 (2016).

url: http://arxiv.org/abs/1604.00060.

[B71] S. Ghorbani and B. Godfrey. “Towards Correct Network Vir-

tualization”. In: Proc. ACM HotSDN. 2014, pp. 109–114.

[B72] Liu X. et al. “MOZART: Temporal Coordination of Measure-

ment”. In: Proc. ACM SOSR. 2016, 13:1–13:12.

[B73] J. D. Case, M. Fedor, M. L. Schoffstall, and J. R. Davin. Sim-

ple Network Management Protocol (SNMP). STD. IETF, May

1990.

[B74] Linux Network Namespaces. url: http://man7.org/linux/

man-pages/man8/ip-netns.8.html.

[B75] J. L. Gorlewicz, J. L. Tennison, H. P. Palani, and N. A. Giu-

dice. “The Graphical Access Challenge for People with Visual

Impairments: Positions and Pathways Forward”. In: Interac-

tive Multimedia [Working Title] (2019), pp. 1–17.

[B76] The Quorum Programming Language. 2017. url: https://

quorumlanguage.com/ (visited on 06/26/2019).

[B77] Zabbix - Enterprise-class Open-source Distributed Monitoring

Solution. url: https://www.zabbix.com/.

[B78] Stress man page. url: https://linux.die.net/man/1/

stress.

Bibliography 123

http://arxiv.org/abs/1604.00060
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html
https://quorumlanguage.com/
https://quorumlanguage.com/
https://www.zabbix.com/
https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress


Bibliography

[B79] A. Mahmud and R. Rahmani. “Exploitation of OpenFlow in

wireless sensor networks”. In: Computer Science and Network

Technology (ICCSNT), 2011 International Conference on. Vol. 1.

2011.

[B80] T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, S.

Guo, T. Tsukahara, and T. Hayashi. “A software defined wire-

less sensor network”. In: Computing, Networking and Commu-

nications (ICNC), 2014 International Conference on. 2014.

[B81] Network Functions Virtualisation (NFV); Architectural Frame-

work. The European Telecommunications Standards Institute

(ETSI). 2013. url: http://www.etsi.org/technologies-

clusters/technologies/nfv.

[B82] P. Quinn and U. Elzur. Network Service Header. Internet-Draft

draft-ietf-sfc-nsh-12. Work in Progress. Internet Engineering

Task Force, 2017. 37 pp. url: https://datatracker.ietf.

org/doc/html/draft-ietf-sfc-nsh-12.

[B83] F. Esposito, J. Wang, C. Contoli, G. Davoli, W. Cerroni, and

F. Callegati. “A Behavior-Driven Approach to Intent Specifi-

cation for Software-Defined Infrastructure Management”. In:

Proc. IEEE NFV-SDN. 2018.

[B84] P. Mell and T. Grance. The NIST Definition of Cloud Com-

puting. SP 800-145. The National Institute of Standards and

Technology, Sept. 2011. url: https://doi.org/10.6028/

NIST.SP.800-145.

[B85] A. Maleki, M. Hossain, J.-P. Georges, E. Rondeau, and T. Di-

voux. “An SDN Perspective to Mitigate the Energy Consump-

tion of Core Networks–GÉANT2”. In: International SEEDS

Conference. 2017, pp. 233–244.

[B86] O. N. Foundation. “Software-Defined Networking: The New

Norm for Networks”. In: (Apr. 2012).

Bibliography 124

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-12
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-12
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145


Publications

[P1] W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli, F.

Foresta, F. Callegati, and R. Verdone. “Intent-based manage-

ment and orchestration of heterogeneous OpenFlow/IoT SDN

domains”. In: 2017 IEEE Conference on Network Softwariza-

tion (NetSoft). July 2017.

[P2] G. Davoli, W. Cerroni, C. Contoli, F. Foresta, and F. Cal-

legati. “Implementation of Service Function Chaining control

plane through OpenFlow”. In: 2017 IEEE Conference on Net-

work Function Virtualization and Software Defined Networks

(NFV-SDN). Nov. 2017.

[P3] D. Borsatti, G. Davoli, W. Cerroni, C. Contoli, and F. Calle-

gati. “Performance of Service Function Chaining on the Open-

Stack Cloud Platform”. In: 2018 14th International Conference

on Network and Service Management (CNSM). 2018.

[P4] F. Esposito, J. Wang, C. Contoli, G. Davoli, W. Cerroni, and

F. Callegati. “A Behavior-Driven Approach to Intent Specifi-

cation for Software-Defined Infrastructure Management”. In:

2018 IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN). 2018.

[P5] F. Foresta, W. Cerroni, L. Foschini, G. Davoli, C. Contoli, A.

Corradi, and F. Callegati. “Improving OpenStack Network-

ing: Advantages and Performance of Native SDN Integration”.

In: 2018 IEEE International Conference on Communications

(ICC). 2018.

Publications 125



Publications

[P6] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Mar-

tini, F. Paganelli, W. Cerroni, P. Cappanera, and P. Castoldi.

“Demonstration of Latency-Aware and Self-Adaptive Service

Chaining in 5G/SDN/NFV infrastructures”. In: 2018 IEEE

Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). 2018.

[P7] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Mar-

tini, F. Paganelli, W. Cerroni, P. Cappanera, and P. Cas-

toldi. “Experimenting latency-aware and reliable service chain-

ing in Next Generation Internet testbed facility”. In: 2018

IEEE Conference on Network Function Virtualization and Soft-

ware Defined Networks (NFV-SDN). 2018.

[P8] D. Borsatti, W. Cerroni, G. Davoli, and F. Callegati. “Intent-

based Service Function Chaining on ETSI NFV Platforms”. In:

2019 10th International Conference on Networks of the Future

(NoF). 2019.

[P9] D. Borsatti, G. Davoli, W. Cerroni, and F. Callegati. “Ser-

vice Function Chaining Leveraging Segment Routing for 5G

Network Slicing”. In: 2019 15th International Conference on

Network and Service Management (CNSM). 2019.

[P10] G. Davoli, W. Cerroni, S. Tomovic, C. Buratti, C. Contoli,

and F. Callegati. “Intent-based service management for het-

erogeneous software-defined infrastructure domains”. In: Inter-

national Journal of Network Management 29.1 (2019). e2051

nem.2051.

[P11] G. Davoli, F. Esposito, and W. Cerroni. “A Network Manage-

ment Protocol for Sonification of Software-Defined Infrastruc-

tures”. In: 2019 IEEE Conference on Network Function Vir-

tualization and Software Defined Networks (NFV-SDN). 2019.

[P12] P. Borylo, G. Davoli, M. Rzepka, A. Lason, and W. Cerroni.

“Unified and standalone monitoring module for NFV/SDN in-

frastructures”. In: Journal of Network and Computer Applica-

tions (2020).

Publications 126



Publications

[P13] G. Davoli, D. Borsatti, D. Tarchi, and W. Cerroni. “FORCH:

An Orchestrator for Fog Computing service deployment”. In:

2020 IFIP Networking Conference. 2020.

[P14] F. Esposito, M. Mushtaq, M. Berno, G. Davoli, D. Borsatti,

W. Cerroni, and M. Rossi. “Necklace: An Architecture for Dis-

tributed and Robust Service Function Chains with Guaran-

tees”. In: IEEE Transactions on Network and Service Man-

agement (2020).

[P15] J. Pasquesi, F. Esposito, G. Davoli, and J. Gorlewicz. “Ex-

ploring Vibration-Defined Networking”. In: 2020 IEEE Inter-

national Symposium on Local and Metropolitan Area Networks

(LANMAN). 2020.

Publications 127



Acknowledgments

My deepest gratitude goes to Prof. Cerroni, whom I had the privilege

to be able to call just Walter since before starting my PhD journey

– and what a remarkable journey it has been. Over the course of

these past three years I have learnt a lot, I have changed a lot, I have

grown up a lot. Walter has been able to provide guidance for all of

that. First of all, he has always respected me and never hesitated

going far beyond his duties as supervisor to help me sort out a variety

of matters, including personal ones. As a supervisor, he has proven

to be an excellent mentor – a leader, never a boss – teaching me

fundamental technical notions and methods as well as appreciation

for the philosophy behind them. Last but equally important, he is the

living proof that a righteous, decent, compassionate person can still

reach a prestigious position without compromising his values, and by

being loved by everyone they have worked with. If everyone had a

Walter in their lives, the world would be a better place. I am truly

proud of having been his PhD student. I am truly proud of him, and

always will be.

I wish to thank my family, who has always been by my side and

never failed in making me feel loved. Mamma Terry, babbo Gianni,

nonno Marcello, zia Lalla: grazie mille, vi voglio tantissimo bene.

I would like to thank each and every person that has done some-

thing, in any capacity, to support me with care, wisdom, respect and

trust over these years – but I’m a lucky man to count on both hands

the ones I love, so I cannot possibly hope to mention them all here.

You know who you are. Thank you. I love you all.

Casalecchio di Reno, Bologna - 15 February 2021


	Abstract
	Introduction
	The evolution of traditional networks
	The software revolution
	Software-defined Networking
	Network Function Virtualization
	Cloud computing
	Service Function Chaining
	Intent-based Networking

	Motivation and contributions

	Service Function Chaining over SDN Domains
	SFC over IoT and Cloud domains
	Reference network architecture
	Intent-based northbound interface
	OpenFlow and Cloud domains
	Experimental validation
	Performance evaluation
	Remarks

	Latency-aware SFC over SDN infrastructures
	Reference architecture and testbed
	Experimental results
	Remarks


	Service Function Chaining over non-SDN Domains
	Towards a SFC-aware control plane
	Service Function Chaining architecture
	OpenFlow-based NSH control plane
	Experimental validation
	Remarks

	SFC over IoT, Cloud, Fog and non-SDN tranport domains
	Remarks


	Resource monitoring in SDN/NFV environments
	Monitoring challenges and system architecture
	Prototype implementation
	Testbed based on container technology

	Experimental validation
	Combined network and resource monitoring
	Monitoring-based traffic steering
	Impact of sFlow parameters

	Remarks

	Augmenting software-defined infrastructures
	Fate sharing and out-of-channel communication
	Sonifying the network
	Sonification architecture overview
	Management object model and sonification workflow
	Protocol design
	Connection setup
	Physical technology adaptation
	Close

	Sonification of network management applications
	TraceSound
	Heavy-Hitter Detection
	DDoS Monitoring
	Callbacks for network management application programmability

	Testbed and implementation
	Evaluation
	Limitations and open questions
	Haptic networking
	Remarks

	Flexible service provisioning in Fog scenarios
	Motivation and challenges
	Fog computing system architecture
	A use case
	Testbed implementation
	Proof-of-concept evaluation
	Remarks

	Conclusion
	Acronyms
	Bibliography
	Publications
	Acknowledgements

