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Abstract

The contribution of this thesis consists in proving that score driven models

possess a novel, intuitive, high dimensional and global optimality criterion,

called Conditional Expected Variation optimality that formalizes the following

words from Creal et al. (2013): “ The use of the score is intuitive. It defines

a steepest ascent direction for improving the model’s local fit in terms of the

likelihood or density at time t given the current position of the parameter.

This provides the natural direction for updating the parameter” .

Indeed, the fact that the score defines a steepest ascent direction is crucial

in deriving the results and for the proposed optimality criterion to hold. To

prove the aforementioned property, a point of contact between the economet-

ric literature and the time varying optimization literature will be established.

As a matter of fact, the Conditional Expected Variation optimality can be

naturally viewed as a generalization of the monotonicity property of the gra-

dient descent scheme. A number of implications on the specification of score

driven models are analyzed and discussed, even in the case of model misspec-

ification.

Key words and phrases: Time varying parameters; Score functions;

Gradient descent.
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Chapter 1

Introduction

Data recorded sequentially over time are typically observed in a plethora of natural and

man made phenomena. Examples vary from the amount of millimeters of rain experi-

enced in a certain location to the returns of a financial index. The main assumption

behind time series analysis is that past observations of the data contain information

about future observations, thus one can utilize past observations to make predictions

about the future. To do this, one usually requires a mathematical model. The setting is

different than the one of independently and identically distributed (IID) observations,

that typically occur in experiments which take place under the same overall conditions.

When the data exhibit some dependence we can no longer use the same tools as in the

IID case.

Several statistical models have been developed for data that are not indipendent, the

most well know being an autoregressive model. The first applications of an autore-

gressive model date back to Yule (1927) and Slutsky (1927). Walker (1931) will later

acknowledged Yule’s paper as being an important extension of his ideas on periodicity.

Since then a standard procedure for specification, estimation, diagnostic checking and

forecasting has been developed by Box et al. (2015) for all the models belonging to the

auto-regressive integrated moving average class (ARIMA). ARIMA models have thus

enjoyed a great deal of popularity thanks to their simple specification, their fleshed out

mathematical theory and the iterative procedure derived by Box et al. (2015). However

a limitation they posses is that they only take into account possible linear dependencies

in the data, leaving out non-linear relations. In some applications this limitation can

be restrictive, so that extensions to larger classes of statistical models, with appropriate

properties to handle non-linear relations, turn out to be needed.

In a parametric setting one way to introduce non-linearities is by allowing time variation

in some features of the probability distribution that models the data. A simple way to

achieve time variation of a parametric probability distribution is by allowing the param-
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eters that characterize the distribution itself to vary through time. This thesis focuses

on a class of non-linear models and, in particular, on time-varying parameter models.

A valuable point of strenght of time-varying parameter models is an ever-growing body

of evidence that the linear regression assumption of fixed parameters often appears in-

valid even when the datapoints seem indipendent from one another. Indeed, structural

changes, specification errors, proxy variables and aggregation are all sources of parame-

ter variation; see Sarris (1973), Belsley (1973), Belsley and Kuti (1973) and Cooley and

Prescott (1976).

In Cox et al. (1981) a categorization of time varying parameter models was given by di-

viding them into two classes: observation driven models and parameter driven models.

The former are models where the updating equation is a function of the observations,

the latter are models where the dynamic equation is governed by idiosyncratic innova-

tions. For a discussion on strengths and weaknesses of these two classes of models see

Koopman et al. (2016). In this thesis we will almost exclusively deal with observation

driven models.

In the financial literature, observation driven models have increasingly risen to promi-

nence after Engle, in an effort to explain the observed heteroskedasticity in the variance

of financial time series, introduced the observation driven autoregressive conditional het-

eroskedasticity (ARCH) model Engle (1982). The latter was later generalized by Boller-

slev (1986) to the, ubiquitously used, generalized ARCH (GARCH) specification. The

GARCH model or, as referred to by Lee and Hansen (1994b), “the workhorse of the in-

dustry” has been extensively studied. The asymptotic properties of the quasi maximum

likelihood estimator for a GARCH(1,1) have been derived in Lee and Hansen (1994b),

the consistency and asymptotic normality for a covariance stationary GARCH(1,1)

have been proven in Lumsdaine (1996a), for the general case of a GARCH(p,q), where

p, q ∈ N. Consistency and asymptotic normality of the parameter estimators have been

studied in a number of works Berkes et al. (2003), Francq and Zakoian (2004), Alzghool

(2017), and the mathematical and statistical properties have been covered in multiple

surveys and books, see Bera and Higgins, Shephard (1996), Francq and Zakoian (2010).

Despite the great popularity of the GARCH model in applied settings when predict-

ing financial volatility, some shortcomings have been discussed in Nelson (1991), Zivot

(2009). Notably, the first order GARCH model does not account for three stylized facts

such as the asymmetric distribution of financial returns, the fact that persistence of

conditional volatility tends to increase with the sampling frequency and the negative

correlation between volatility of current returns and future ones.

Hence, a rapid multiplication of new model specifications that aimed to adress these

shortcomings occured. Three of the most prominent extensions are the exponential
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GARCH (EGARCH) by Nelson (1991), that aims to capture the negative correlation

between volatility of current returns and future ones, the nonlinear asymmetric GARCH

(NAGARCH) Engle and Ng (1993) and the Glosten et al. (1993) model (GJR), that both

allow for negative returns to increase future volatility by a larger amount than positive

returns of the same magnitude. A review is given in Degiannakis and Xekalaki (2004),

see also Francq and Zakoian (2010).

Recently, a new class of observation driven models was introduced through the indepen-

dent work of Harvey (2013) and Creal et al. (2013) with the aim to provide a unified

framework. This class of models was formerly known as the Generalized Autoregressive

Score (GAS) or Dynamic Conditional Score (DCS) class; now it’s commonly referred to

as the class of score driven models. The key feature of score driven models is that the

dynamic of the time varying parameter is driven by a martingale difference sequence

proportional to the score of the conditional likelihood with respect to the parameter of

interest.

Although GAS models have been empirically validated multiple times as for example

in Creal et al. (2013), Harvey (2013), Harvey and Luati (2014b), Blazsek and Villa-

toro (2015), Fonseca and Cribari-Neto (2018), Ayala and Blazsek (2018), Catania et al.

(2018), Gorgi et al. (2019), Babii et al. (2019) (a repository for score driven papers

is available at http://www.gasmodel.com/gaspapers ) some questions are still open,

partly due to the fact that the class of models has been developed relatively recently,

partly because some issues related to the use of the score have not been fully developed.

Specifically, the role of the score as a driving force in the updating equation has not

completely been uncovered. In addition, there are currently no theoretically motivated

prescriptions on the proportionality coefficient that multiplies the score in the dynamic

equation.

In the direction of the first question, regarding the use of the derivative of the loglikeli-

hood in the dynamic equation, a novel property related to the use of the score was given

in Blasques et al. (2015), Blasques et al. (2018) where it was proven that (under a sign

condition) first order GAS models satisfy, locally, an information-theoretic optimality

criterion based on the Kullback Leibler (KL) variation. The setting used in Blasques

et al. (2015) provides an original framework for deriving further results on observation

driven models that we will adopt for our analysis.

As a matter of fact, the use of the score as a driving force in the updating equation for

the time varying parameter is very intuitive: in the words of Creal et al. (2013) “The

use of the score for updating the parameter is intuitive. It defines a steepest ascent

direction for improving the model’s local fit in terms of the likelihood or density at time

t given the current position of the parameter. This provides the natural direction for

http://www.gasmodel.com/gaspapers
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updating the parameter.”. However, the same intuition does not find formal evidence in

the current literature.

This thesis formalizes this intuition and proves that indeed the score is a natural choice

as a driving force of the updating equation in the context of the time varying optimiza-

tion theory. More precisely we consider a time varying optimization problem, where the

sequence of objective functions is given by the model log-likelihoods at each time, and

resort to the stochastic gradient descent literature to solve it. In doing so we prove,

under some assumptions on the model density, that each iteration of a specific score

driven model moves closer, in Euclidean distance and conditional expectation, to the

(pseudo)-true time varying parameter. We will refer to this property, that is a natural

consequence of the monotonicity of the updates of a gradient descent scheme, as to the

optimal conditional expected variation (CEV).

Unlike Blasques et al. (2015), where the optimality criterion is based on the Kullback

Leibler divergence between the model density and the true density, the conditional ex-

pected variation regards Euclidean distances in the parameter space. In addition, condi-

tional expected variation optimality holds on the whole parameter space, and is trivially

extended to the case in which the time varying parameter is multi dimensional. Initially

the assumptions on the model density, used to derive the original results the thesis has

to offer, are quite restrictive. Taking this fact into account, we then provide a series of

extensions to a more general setting. The choice of the scaling function present in the

score driven model specification will be crucial for the extensions to hold.

The use of the score in the dynamic equation will be essential to obtain the results.

Most of the derivations of the theorems will proceed from the theory of optimization in

conjunction with the framework developed in Blasques et all Blasques et al. (2015).

In summary, there are three main contributions of the thesis:

� The specification of a time varying optimization problem formalizes the fact that

the score is a natural choice as a driving mechanism for the dynamic equation.

� We give explicit conditions, that can be checked in an applied setting, for score

driven models to achieve the aforementioned CEV property.

� We obtain constraints on the scaling function, present in the score driven speci-

fication given in Creal et al. (2013), and retroactively formally motivate some of

the choices made in the literature when defining this function.

The thesis is structured as follows: First, an introduction to the theory behind gradient

descent is provided in chapter 2, to make the framework, that leads to the proof of CEV

optimality, clear. The standard case of a static objective function is considered under

the assumptions of strong convexity and Lipschitz continuous gradient, which allow one
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to obtain simple proofs of the convergence of the gradient descent algorithm. Secondly,

the static case is generalized in two different directions. On one hand the stochastic case,

where the well known results on almost sure convergence and convergence in expectation

are proved. On the other hand, to the case of a time varying objective function that

changes minima at each time t, here some of the more modern literature is displayed.

Prediction-correction methods will be introduced along with the complexity given by

the time dependency of the objective function. Finally some original convergence re-

sults, regarding the the time varying objective function, are proven by imposing a novel

assumption on the dynamics of the minima through time. We present the optimization

literature as separate from the econometric theory surrounding score driven models, the

point of contact will be made explicit in section 4.2.

In chapter 3 observation driven models will be presented with a focus on the class of

score driven models. The full specification of score driven models is given in its entirety.

Some of the more notorious examples of score driven specifications are presented; among

which the Beta-t-EGARCH model. Here the arbitrariness of the function St character-

izing the score driven model specification will be highlighted since it will be later object

of analysis. Then the latest results on consistency and asymptotic normality of the

maximum likelihood estimators of the parameters are provided. We conclude with an

introduction to the concept of model invertibility and explain its importance in relation

to maximum likelihood estimators.

Chapter 4 reviews the current literature on optimality properties of score driven models.

Definitions of key concepts like realized Kullback-Leibler optimality and Newton-score

update are stated and the main theorem of Blasques et al. (2015) is proved and dis-

cussed.

In section 4.2, that contains most of the original contributions of the thesis, we define op-

timality in conditional expected variation (CEV) 4.2.1 and prove that the Newton-GAS

update is, in fact, CEV optimal. The conditional expected variation property, although

inspired by the previous literature on optimality of score driven models, will have the

novel characteristics of being global, intuitive and applicable to the high dimensional

case.

To prove CEV optimality of the Newton-GAS update we define a time varying stochastic

optimization problem thus providing a novel point of contact between the optimization

literature and the econometric one. The assumptions used to prove CEV optimality are

then gradually relaxed, through a series of propositions, until they encompass some of

the more popular choices of model density. Subsequently, we will give some extensions

of CEV optimality, under novel assumptions on the data generating process. Here we

will depart from the Newton-score update and prove propositions where a larger class
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of score driven model specifications are utilized. Moreover a connection between CEV

optimality and the invertibility property will be spelled out.

Finally conclusions will be drawn and the possibilities of new models based on the de-

veloped theoretical framework will be touched upon.

Propositions without citation are to be considered original work as far as the author

knows.



Chapter 2

Gradient Descent

The optimization technique known as gradient descent was first introduced by Louis

Augustin Cauchy (1847). It is a first-order iterative optimization algorithm for finding

the local minimum of differentiable functions. This procedure, that aims to minimize

the differentiable objective function f , by iteratively moving in its direction of steepest

descent, can be described as follows. Given a starting point x0, the gradient descent

algorithm updates the subsequent values x1, x2, . . . according to the recursive equation

xt+1 = xt − α∇f(xt) (2.1)

where α ∈ R is a hyper-parameter (called the learning rate) and ∇f(xt) is the gradient

of f calculated at the point xt.

The resulting algorithm implied by Cauchy’s work started to gain major applied im-

portance with the advent of electronic calculators. Later the algorithm was thoroughly

studied and generalized in a number of different ways, Nesterov (2014) and Qian (1999).

A comparative analysis of various extensions in terms of convergence speed and accuracy

can be found in Dogo et al. (2018).

The reason why, in the twenty-first century, gradient descent has become one of the most

popular algorithms to perform optimization is that, in applied problems, functions are

often high dimensional and complex (Koch et al. (1999), Bates et al. (1996), Krizhevsky

et al. (2012)) so finding a solution analitically is out of the question. Gradient descent

offers a simple scheme that requires only the gradient of the objective function to be im-

plemented. In particular, machine learning theory has benefitted greatly from gradient

descent as training deep neural networks requires the minimization of a high dimensional

and complex objective cost function Amari (1993).

In the following section, some preliminary results on convergence of the gradient descent

algorithm will be proven. The subsequent notation will be used:

� Given a generic matrix A we define ||A|| = max||x||=1 ||Ax||.

13
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� Given A,B symmetric matrices, A ≥ B means that the matrix A − B is positive

semi-definite.

2.1 Main assumptions

The theoretical framework that deals with gradient descent has been developed and

popularized throughout the 20th century and can be presented through two main as-

sumptions on the objective function: strong convexity and a Lipschitz continous gradi-

ent. Although we choose to work with these two assumptions on the objective function

f , as in Bottou et al. (2016) and Polyak (1987), these hypotheses are not strictly re-

quired for the proper functioning of the gradient descent algorithm. Multiple papers on

optimization methods have made a great deal of effort in weakening these assumptions.

Nonetheless the theory is cleaner to present when they hold. The motivation to weaken

the assumptions stems from the objective functions utilized in applied settings, one for

all, the ones resulting from deep neural networks. In these cases the loss function on

which to perform gradient descent is, usually, neither convex nor does it have a Lipschitz

continuous gradient, nonetheless these cases are of the utmost importance if one wishes

to train a neural network without getting stuck in local minima.

In this thesis we will weaken the standard assumptions only when necessary. Since

keeping the theory as simple as possible will be of pedagogical value for explaining the

subsequent connection with score driven models.

Assumption 2.0.1. Lipschitz Continuity of the Gradient

Let the objective function f : Rd → R be continuously differentiable with

gradient function ∇f : Rd → Rd×d that is Lipschitz continuous of constant L > 0, i.e.

||∇f(x)−∇f(y)|| ≤ L||x− y|| ∀x, y ∈ Rd.

Assumption 2.0.2. Strong Convexity

Let the objective function f : Rd → R be continuously differentiable and strongly convex,

i.e. there exists a constant ` > 0 such that

f(x) ≥ f(y) +∇f(y)(x− y) +
1

2
`||x− y||2 ∀(x, y) ∈ Rd × Rd.

Note that strong convexity implies the objective function f has a unique minimum at
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x∗. Comparing the definition of strong convexity with the first order convexity condition

for a differentiable function f , i.e.,

f(x) ≥ f(y) +∇f(y)(x− y)

we immediately recognize that strong convexity implies convexity and strict convexity.

In the following we give a sequence of standard propositions that will acquaintance the

reader with the optimization theory. Based on these results we will prove convergence

of the gradient descent scheme and the subsequent extensions of the theory that will

be used when dealing with observation driven models. All proofs of this chapter are

deferred to the appendix A .

2.1 Preliminaries

All the statements in this section are well known, in general here we will follow Polyak

(1987) with some small deviations.

First, we give a lemma that shows that Lipschitz continuity of the gradient and strong

convexity are deeply related to one another.

Lemma 2.1.1. Polyak (1987)

A convex function f : Rd → R satisfies assumption 2.0.1 if and only if

f(x) ≤ f(y) +∇f(y)(x− y) +
1

2
L||x− y||2 ∀x, y ∈ Rd.

Comparing this inequality with the one in 2.0.2 we notice the symmetry between as-

sumptions 2.0.1 and 2.0.2. Indeed these definitions are dual of one another: a function

is strongly convex with respect to some norm if and only if its Fenchel conjugate function

is Lipschitz with respect to its dual norm, see Kakade and Shalev-Shwartz (2009) for

details.

The next lemma will be very convenient for checking when a doubly differentiable func-

tion obeys both assumption 2.0.1 and 2.0.2.

Lemma 2.1.2. Polyak (1987)

A twice differentiable function f : Rd → R satisfies assumptions 2.0.1 and 2.0.2 if and

only if

Id×d` ≤ ∇2f(x) ≤ Id×dL ∀x ∈ Rd

where ` > 0,L > 0 and Id×d is the identity matrix of dimension d.
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Thus a twice differentiable real valued function is Lipschitz continuous and strongly

convex if and only if its second derivative is bounded by positive quantities both from

above and from below. In our setting we have that assumption 2.0.1 implies the right

hand side inequality ∇2f(x) ≤ Id×dL for all x. Instead, the strong convexity assumption

2.0.2 is equivalent to assuming that ∇2f(x) ≥ Id×d` for all x.

The bounds on the Hessian make us hopeful in thinking we might be able to recover a

surrogate of the mean value theorem for the gradient function, indeed this is possible.

Lemma 2.1.3. Polyak (1987)

Let f : Rd → R satisfy both assumption 2.0.1 and 2.0.2, then

∇f(x)−∇f(y) = A(x− y) ∀x, y ∈ Rd

where Id×d` ≤ A ≤ Id×dL.

This result is not as trivial as it may appear since the gradient is a vector valued function

for which no exact analog of the mean value theorem can be formulated, indeed to prove

it the fundamental theorem of calculus will be used.

The next simple lemma will be used when proving convergence of the stochastic gradient

descent scheme

Lemma 2.1.4. Polyak (1987)

Let a function f : Rd → R satisfy assumption 2.0.2 then

∇f(x)(x− x∗) ≥ `||x− x∗||2.

Another relevant result is the Polyak-Lojasiewicz (PL) inequality that is implied by

assumption 2.0.2

Proposition 2.1.5. Polyak-Lojasiewicz Polyak (1987)

Let f : Rd → R be under assumption 2.0.2 then

1

2`
||∇f(x)||2 ≥ f(x)− f(x∗) ≥ `

2
||x− x∗||2 ∀x ∈ Rd. (2.2)

The left hand side inequality (reffered to as the PL inequality) states that the gradient

of a strongly convex function grows more than quadratically as we move away from the

optimal function value. If one were to take the inequality 2.2 as a simple condition on
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the objective function, it would be sufficient to show a global linear convergence rate for

gradient descent Karimi et al. (2016).

There is an analog of the Polyak-Lojasiewicz inequality in the case of a Lipschitz con-

tinuous gradient

Lemma 2.1.6. Polyak (1987)

Let f : Rd → R satisfy assumption 2.0.1 and let it have a global minimum at x∗. Then

1

2L
||∇f(x)||2 ≤ f(x)− f(x∗) ≤ L

2
||x− x∗||2 ∀x ∈ Rd.

Sometimes we will also consider functions with Lipschitz continuous gradient that are

only convex and not strongly convex; for these functions the co-coercivity of the gradient

will be used to prove convergence of the gradient descent scheme

Lemma 2.1.7. Co-coercivity Polyak (1987)

Let f : Rd → R be convex and satisfy assumption 2.0.1 then

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
||∇f(x)−∇f(y)|| ∀x, y ∈ Rd.

We now turn to analyze the asymptotic properties of the gradient descent scheme 2.1.

2.2 Convergence of Gradient Descent

In this section we show convergence of the gradient descent scheme and highlight the

rate of convergence to the minimum. Which is a well known basic result. We always

assume the first step of gradient descent is from an arbitrary point x0 ∈ Rd.

Proposition 2.2.1. Polyak (1987)

Let f : Rd → R be twice differentiable and satisfy assumption 2.0.1 and 2.0.2. Then, by

running k times the gradient descent update xt+1 = xt − α∇f(xt) with 0 < α ≤ 2/L,

one obtains

||xk − x∗|| ≤ qk||x0 − x∗||, q = max{|1− α`|, |1− αL|} < 1.

The convergence rate of qk is optimal Polyak (1987). Simply put gradient descent

converges, for functions under assumptions 2.0.1 and 2.0.2, regardless the dimension of

the space in which the objective function lies and from a computational standpoint it

requires only the calculation of the gradient. The next non-standard lemma will be of

importance when dealing with objective functions that are not Lipschitz continuous or

strongly convex as will be the case in chapter 3.1.
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Lemma 2.2.2.

Let f : Rd → R be twice continuously differentiable with minimum at x∗.

Let g : C2(Rd) → C2(Rd) be such that Id×d` ≤ ∇(g(∇f))(x) ≤ Id×dL, for all x, where

0 < ` ≤ L, and such that g(∇f)(x∗) = 0 then running k times the gradient descent

update xt+1 = xt − αg(∇f)(xt) for α ≤ 2/L we obtain

||xk − x∗|| ≤ qk||x0 − x∗||, q = max{|1− α`|, |1− αL|} < 1.

This simple yet powerful lemma states the obvious: if our objective function f is not

Lipschitz in the first derivative, one can use the gradient of a function that is indeed

Lipschitz continuous to perform gradient descent successfully, provided that they share

the same minimum point x∗. The way the lemma is formulated shows the adjustment

one ought to make to the gradient descent update of the original objective function f

so that convergence is ensured. It is possible to think of the use of g as a way to replace

the original objective function f with
∫ x

0
g(∇f)(y) dy, to then perform gradient descent

on.

A special case of this lemma is given by choosing the function g as g(∇f)(x) :=

S(x)∇f(x) for some scaling function S(x), where Id×d` ≤ ∇(S(x)∇f(x)) ≤ Id×dL,

when the objective function f is strictly convex (but not Lipschitz continuous) and thus

has a unique critical point. Then the second condition, namely S(x∗)∇f(x∗) = 0, is

trivially verified without even the knowledge of x∗. Notice that there is no chance of

adding an unwanted minimum x∗1 if S(x∗1) = 0 since the imposed bounds guarantee that

the function
∫ x

0
S(y)∇f(y) dy will be strongly convex and thus have a unique minimum

point (in this special case we are also assuming that limx→x∗ S(x) does not go to infinity

faster than ∇f(x) → 0). The special case g(∇f)(x) := S(x)∇f(x) will clarify the role

of the scaling function St present in the score driven model specification, in particular

it will also give conditions on St, as will be seen in section 4.2.1.

Example:

Suppose we want to find the minimum point of the function f(x) = x4. Directly utilizing

gradient descent would most likely fail (depending on the starting point) since f does

not have Lipschitz second derivative. Denote with s the quadratic function s : x → x2

Choose g(f) = f/s then g(f ′)(0) = 0 and g′(f ′)(x) = 4 so the conditions of lemma

2.2.2 are satisfied and running the iteration xt+1 = xt − αg(∇f)(xt) will indeed give

convergence to the minimum.

In this example it is easy to see that we are just performing gradient descent on the

function x→ 2x2 that shares a minimum at zero with the original objective function f .
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The kind of workaround adopted in lemma 2.2.2 has not got much traction in the re-

cent machine learning literature on gradient descent since the properties of the objective

function f are unknown or intractable and the gradient is hardly ever amendable to

a modification of this type. On the contrary, in the optimization problem discussed in

section 4.2, the objective functions will be chosen by the statistician, making them easily

subject to this expedient.

2.3 Stochastic Gradient Descent

Stochastic gradient descent can be viewed as a generalization of the gradient descent

algorithm where the gradient is replaced by a random estimate of it. It was first in-

troduced by Robbins and Monro in 1951 and called stochastic approximation method

Robbins and Monro (1951). As in the deterministic case, it aims to minimize an ob-

jective function f and can be summarized by a single recursive equation starting at an

arbitrary point x0 ∈ Rd

xt+1 = xt − αtg(Xt, xt) (2.3)

where {Xt}t∈N is a sequence of random variables taking values in Rn, g : Rn+d → Rd,

and the equation E[g(Xt, xt)|X t−1] = ∇f(xt) is satisfies for all t. The hyperparam-

eter αt ∈ R will now be assumed as time varying and the piece of notation X t−1 =

{Xt−1, Xt−2, . . . , X1} has been used. The reason for adding the time dependence to the

hyperparameter will be clear when discussing convergence issues, while the choice of the

random estimate of the gradient g(Xt, xt) is in line with the machine learning optimiza-

tion literature Bottou et al. (2018), Nguyen et al. (2018), Johnson and Zhang (2013a)

and will be relevant when dealing with score driven models in section 4.2. Notice also

how now xt is unconditionally a random variable as opposed to the previous case where

it was a number.

In practical applications it might be the case that one can only recover an estimate

of the gradient of the function she wishes to minimize, but, more often than not, the

gradient is purposefully made stochastic. The best example of this practice is given

in the machine learning literature where a sample of the data is selected at random to

compute the gradient of the cost function at each step of the scheme. This can reduce

the computational cost significantly, since it allows one to compute the stochastic gradi-

ent with even a single observation (something that is not possible for the deterministic

gradient that includes all observations) without hindering the convergence properties

of the algorithm, see Bottou et al. (2018) for a comparison between the deterministic

gradient descent and the stochastic one in the machine learning setting. Also, due to the
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randomness present in the update, stochastic gradient descent has a better chance than

its deterministic counterpart to not get stuck in local minima, Kleinberg et al. (2018).

These facts made stochastic gradient descent the de facto standard for optimizing cost

functions of high dimensional machine learning models Du (2019). As its deterministic

counterpart, stochastic gradient descent has inspired a number of other optimization

algorithms, see Kingma and Ba (2014), Qian (1999), Johnson and Zhang (2013a) just

to name a few. Here we will focus only on the original.

2.3.1 Convergence of stochastic gradient descent

Unalike in the deterministic gradient descent case, to prove convergence of stochastic

gradient descent it is necessary to determine in first instance which type of stochastic

convergence to consider; given the random nature of the updates. Notice also that, due

to the randomness in the updates at each step of the scheme, there is no guarantee that

one will get closer to the minimum at every step. In this section, we will obtain both

convergence in mean square and almost sure convergence.

In both cases the convergence of the stochastic gradient descent scheme is usually proved

when the objective function is strongly convex and has Lipschitz continuous gradient, i.e.,

f satisfies assumptions 2.0.1 and 2.0.2, with an additional assumption on the variance of

the stochastic gradient. Often this takes the form of a uniform boundedness condition on

the unconditional joint expectation of the unbiased estimator of the gradient g(Xt, xt), i.

e., E[‖g(Xt, xt)‖2] ≤ c for all t ( the expectation notation without subscripts will always

indicates that the expectation is with respect to the joint probability distribution of

X1, X2, . . . , Xt ). Unfortunately, this assumption has been found to possibly contradict

the strong convexity one, as explained in Nguyen et al. (2018). Thus new assumptions

have been proposed in the literature. We will use the following

Assumption 2.3.1. Nguyen et al. (2018)

Let E[‖g(Xt, xt)‖2] ≤M0(f(xt)− f(x∗)) +M for all t, where M0,M > 0.

This assumption can be derived by requiring that g(Xt, xt) be Lipschitz for every real-

ization Xt(ω), i.e, there exists a constant L1 > 0 such that

‖g(Xt(ω), x)− g(Xt(ω), y)‖ ≤ L1‖x− y‖

for all x, y ∈ Rd and all t. Indeed assumption 3 is derived as a lemma in Nguyen et al.

(2018), see also Johnson and Zhang (2013a). Moreover, with the strong convexity of the

objective function f , assumption 2.3.1 implies that E[‖g(Xt, xt)‖2] ≤M1‖∇f(xt)‖2+M ,

where M1 > 0, through an application of proposition 2.1.5. This inequality has been



2.3 Stochastic Gradient Descent 21

used as an assumption in Bottou et al. (2018) and Bertsekas and Tsitsiklis (1996).

As in the deterministic case these assumptions on the boundedness of the second moment

of the estimate of the gradient are standard but not necessary for convergence. An active

area of the optimization research is dedicated to weakening them, see for example Lei

et al. (2019).

Proposition 2.3.2. Gower et al. (2019)

Let f : Rd → R be continuously differentiable and satisfy assumptions 2.0.1 and 2.0.2.

Let assumption 2.3.1 hold on the estimates of the gradient. Then by choosing αt = c/t

where c is a constant such that 0 < c < min{2/M0, 1/`}, we have that

E[||xt+1 − x∗||2] ≤ v

t+ 1

where v = max{||x1 − x∗||2, c2M/(`c− 1)}.

As opposed to its deterministic counterpart, stochastic gradient descent requires an

adaptive step-size αk to obtain convergence in expectation to the minimum x∗. This is

due to the variance of the estimate of the gradient. If the variance were to decrease to

zero, then a fixed step-size could be enough to recover convergence. Alternatively with a

fixed step-size it is possible to prove convergence to a neighborhood of the minimum, see

Bottou et al. (2018). Recently, modifications to the stochastic gradient descent scheme

that decrease the variance of the estimates of the gradient have been proposed, these

are called variance reduction methods, see Johnson and Zhang (2013b) and Reddi et al.

(2015).

The stochastic nature of the algorithm naturally leads to also consider almost sure

convergence, additional technicalities are required. To prove the almost sure convergence

we will use a specific case of the quasimartingale convergence theorem, following Bottou

(1999).

Proposition 2.3.3. Métivier (2011)

Let {Zt}t∈N be a real valued positive stochastic process defined on the probability space

(Ω,F ,P) and adapted to a filtration {Ft}t∈N. Let∑
t≥1

E[1Ft(Zt+1 − Zt)] <∞

where 1 is the indicator function and Ft := {E[Zt+1 − Zt|Ft] > 0}. Then

Zt
a.s.−−→ Z∞ ≥ 0

where Z∞ is an integrable random variable.
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The proof will not be given since it would require some mathematical machinery outside

the scope of this thesis, but can be found in Métivier (2011) as a special case of theorem

9.4 taking into consideration proposition 9.5. With this result we are able to prove

the almost sure convergence of stochastic gradient descent in the strongly convex and

Lipschitz continuous objective gradient case

Proposition 2.3.4. Gladyshev (1965) , Bottou (1999)

Let f : Rd be continuously differentiable and satisfy assumptions 2.0.1 and 2.0.2. Let

assumption 2.3.1 hold on the estimates of the gradient {Xt}t∈N. Then choosing {αt}t∈N
such that

∑∞
i=1 αi =∞,

∑∞
i=1 α

2
i <∞ we have that

xt
a.s.−−→ x∗

The lengthy well known proof is given in the appendix and uses ideas both from Glady-

shev (1965) and Bottou (1999).

2.4 Gradient Descent with a Time Varying Objec-

tive Function

A possible generalization of the mathematical problem of optimizing an objective func-

tion is that of considering an objective function that also varies through time {ft}t∈Z
(this case is also called the non-stationary case, we avoid this terminology since it clashes

with the econometric one). We also notice that although we call this the “time varying

case” t can theoretically represent any other variable of interest.

For the minimum of a particular objective function ft, belonging to the sequence, we

will use the notation

x∗t := arg min
x∈Rd

ft(x) (2.4)

Since we do not have a single minimum anymore we need to reformulate our object of

study: our goal is now to track the solution of 2.4 for each time t which corresponds

to finding the solution trajectory. A way to do this would be to solve 2.4 for each

time t. However, solving 2.4 for each sampling time t is not a viable option in most

application domains, even for moderate-size problems as already discussed in the case

of a static objective function. The requisite computation time for solving each instance

of the problem is often times excessive for it to be practical, see Bittanti and Cuzzola

(2001). It is also challenging to reasonably bound the time each problem instance will

take to be solved, see Boyd and Vandenberghe (2004). Essentially the same problems
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that leads one to utilize an iterative algorithm like gradient descent as in the single

objective function case are still relevant. Thus there is a scientific literature on iterative

algorithms that produce a sequence {xt}t∈Z, from an arbitrary starting point x0 ∈ Rd,

that converges to the solution trajectory. Our focus will be on these methods and in

particular we will analyze the scheme subsumed by the equation

xt+1 = xt − α∇ft(xt) (2.5)

that is a simple modification of gradient descent where the gradient of the objective

function at time t is utilized at the t+ 1-th step of the algorithm.

Gradient descent with a time varying objective function has been studied in multiple

papers, see Simonetto et al. (2016), Popkov (2005), Simonetto and Dall’Anese (2017)

as examples. The subsequent analysis does not have the objective of being exhaustive

rather we develop the necessary machinery that will be used when discussing score driven

models.

At first glance one could require that the sequence {xt}t∈Z, computed by the algorithm

of choice, will be such that

lim
t→∞
|ft(xt)− ft(x∗t )| = 0

that is a sequence of points xt that eventually get closer and closer to minimizing the

corresponding function ft through time. Of course a sequence, that satisfies such a

condition, might be too hard to be discovered by an iterative scheme, especially if

variations between the functions of the sequence {ft}t∈N are unknown or unpredictable.

Thus assumptions on how the minimum changes in time or how the objective functions

change in time will be required.

In general, without having access to the whole sequence, the best we can expect to find

is that, under some condition on the sequence of objective functions, we can generate a

sequence {xt}t∈N that tracks the time dependent minimum within a neighborhood. The

next proposition will be illustrative of this fact. Before we state a lemma on recursive

sequences that will be of use to break down proofs in a more agreeable manner

Lemma 2.4.1. Polyak (1987)

Let {ut}t∈N be a real valued sequence such that

ut+1 ≤ q0ut + q1ut−1 + · · ·+ qput−p + ε, ε > 0

for all t, where p ∈ N and q1, . . . , qp ∈ R are such that the roots r0, r1, . . . , rp of the

associated characteristic equation

rp+1 − q0r
p − q1r

p−1 − · · · − qp = 0
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lie inside the unit circle. Then for fixed k ∈ N

uk ≤
ε

1− q0 − q1 − · · · − qp
+

(
max

n∈{0,...,p}
{rn}

)k
a

where a ∈ R.

This lemma shows that a recursive inequality assumption on the sequence {ut}t∈N is

enough to show that it converges geometrically into the region

{u ∈ R|u < ε/(1− q0 − q1 − · · · − qp)|}

with ratio maxn∈{0,...,p}{rn}. We will use this lemma in the next proposition

Proposition 2.4.2. Polyak (1987)

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumptions 2.0.1 and 2.0.2.

Suppose also that ||x∗t −x∗t+1||2 ≤ a. Then iteratively running the (time varying) gradient

descent update xt+1 = xt − α∇ft(xt) with α ≤ 2/L one obtains that

lim sup
t→∞

||xt − x∗t ||2 ≤
a

1− q
, q = max{|1− α`|, |1− αL|} < 1.

This proposition shows how, subject to the assumption that the the minimum can only

vary a certain amount, performing (time varying) gradient descent with a fixed step-size

is indeed a sensible strategy to obtain an approximation that gets closer and closer to

the minimum through time, albeit only in a neighborhood. Note how in this case we

needed to use the lim sup since the sequence could oscillate in the neighborhood forever.

Thus, by naively applying gradient descent with a time varying gradient, one manages

to obtain convergence in a neighborhood of the time varying minimum, if the distances

between adjacent time varying minima are uniformly bounded.

It is possible to weaken the assumption on the bounds of the increase in the minima

||x∗t − x∗t+1|| to obtain a similar proposition

Proposition 2.4.3. Popkov (2005)

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumptions 2.0.1 and 2.0.2. Suppose also that ||∇ft+1(x) − ∇ft(x)|| ≤ h for all t,

where h > 0. Then iteratively running the (time varying) gradient descent update xt+1 =

xt − α∇ft(xt) with α ≤ 2/L one obtains that

lim sup
t→∞

||xt − x∗t ||2 ≤
h

`(1− q)
, q = max{|1− α`|, |1− αL|} < 1.
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The assumption ||∇ft+1(x)−∇ft(x)|| ≤ h in fact implies, for a strongly convex, function

that ||x∗t − x∗t+1|| will be uniformly bounded.

2.4.1 A Prediction Correction Algorithms

Up until now we have considered a modification of the gradient descent scheme by using

the gradient of the objective function at time t 2.4. This kind of algorithm falls under

the class of running algorithms (or correction only/catching up) because it does not

attempt to predict where the next optimizer will be but it bases its update only on the

gradient at time t.

Instead of utilizing a running algorithm, like the naive modification of gradient descent

2.4, there are other options to tackle the time varying case that result in more sophis-

ticated algorithms. Specifically, there exist algorithms that attempt to infer how the

sequence of optimizers are changing in time and only then do they apply a corrective

step. Schemes that follow this principle are called prediction-correction algorithms. One

of the most recently theorized ones is the Approximate Gradient Tracking (AGT) Simon-

etto et al. (2016). We present it here since just how score driven models were inspired

by schemes involving second order expansions of the log observation density Creal et al.

(2013) we will later argue that other observation driven models may retain desirable

properties by taking inspiration from sophisticated optimization algorithms.

Approximate Gradient Tracking

Require: initial variable x0, Initial objective function ft0(x), no. of correction steps τ .

for k = 0, 1, 2, . . . do

xk+1|k = xk − h [∇xxftk(xk)]
−1 ∇̃xtftk(xk) (2.6)

Acquire the updated function ftk+1
(x).

Initialize the sequence of corrected variables x̂0
k+1 = xk+1|k

for q = 0 : τ − 1 . . . do

x̂q+1
k+1 = x̂qk+1 − α∇xftk+1

(x̂qk+1) (2.7)

end for

Set the corrected variable xk+1 = x̂τk+1

end for

The AGT is a prediction-correction scheme: first there is a prediction step given by 2.6
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then a correction step given by 2.7. The aim of the prediction step is to keep the gradi-

ent approximately constant while the optimization problem is changing in time. A brief

explanation on how the prediction step is recovered may be given as so: the evolution

of the gradient viewed as a function of both t and x is approximately given by

∇xft+δt(x+ δx) ≈ ∇xft(x) +∇xxft(x)δx +∇txft(x)δt

Then by imposing the equality ∇xft+δt(x+ δx) = ∇xft(x) we are left with

δx
δt

=
∇txft(x)

∇xxft(x)

that is tantamount to the continuous dynamical system

ẋ =
∇txft(x)

∇xxft(x)
. (2.8)

This motivates the discrete version

xk+1|k = xk − h [∇xxftk(xk)]
−1∇xtftk(xk) (2.9)

where h := tk − tk−1 and in the prediction step, 2.6, ∇xtftk(xk) is approximated by

∇̃xtftk(xk) :=
1

h

(
∇xtftk(xk)−∇xtftk−1

(xk)
)

(2.10)

since in applied setting we rarely have access to the variation of the objective function

over time. Thus the prediction step given by the variable xk+1|k approximately maintains

the direction and the magnitude of the gradient at the previous time, i.e., ∇xft+1(xk+1|k))

should be close to ∇xft(xk) .

On the other hand, the correction step 2.7 is based on the gradient descent method to

correct the predicted decision variable xk+1|k. This procedure modifies the predicted

variable xk+1|k towards the optimal argument of the objective function at time tk+1,

α > 0 is the step-size. Notice that the correction step, given by gradient descent,

requires the updated objective function ftk+1
(x).

To prove convergence of the AGT scheme, some technical conditions are required.

Assumption 2.4.4.

The function ft(x) is twice differentiable and `-strongly convex in x ∈ Rn and uniformly

in t, that is

`I ≤ ∇xxft(x), ∀x ∈ Rn, t.

This assumption does not only guarantee an unique minimum for each objective function,
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but also ensures that the hessian of the objective function ft(x) is invertible.

This is analogous to Assumption 2.0.1 in the time varying objective function case; as

a matter of fact it is the same as imposing Assumption 2.0.1 for all t, if the objective

function is twice differentiable.

Assumption 2.4.5.

the function ft(x) has bounded second and third order derivatives with respect to x ∈ Rn

and t, i.e.,

||∇xxft(x)|| ≤ L, ||∇txft(x)|| ≤ C0, ||∇xxxft(x)|| ≤ C1,

||∇xtxft(x)|| ≤ C2, ||∇ttxft(x)|| ≤ C3

This assumption ensures three facts: the Lipschitz continuity of the gradient at each

time t, that the third derivative ∇xxxft(x) is bounded above (this is typically required

when dealing with the convergence of a Newton type algorithm) and the boundedness

of the time variations of both the gradient and the Hessian.

To start the convergence analysis it will be appropriate to give a definition and a pre-

liminary lemma

Definition 2.4.6.

The approximation error of the first-order forward Euler integral in 2.9 with respect to

the dynamics in 2.8 is given by

∆k := xk+1|k − x(tk+1)

where x(tk+1) is the exact prediction obtained by integrating the continuous dynamics in

2.8 from the initial condition xk and xk+1|k is that of 2.9 with the correct mixed gradients.

An upper bound for ||∆k|| will be central in proving convergence of the algorithm since

it will constrain the error coming from the prediction step.

Lemma 2.4.7. Simonetto et al. (2016)

Under assumptions 2.4.4, 2.4.5, the norm of the approximation error ||∆k|| is bounded

from above by

||∆k|| ≤
h2

2

[
C2

0C1

`3
+

2C0C2

`2
+
C3

`

]
= O(h2)

We have that the norm of the approximation error ||∆k|| is bounded above by a constant

that is of the order of O(h2).

Now we may prove that AGT converges exponentially to a neighborhood of the true

value at time k.
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Proposition 2.4.8. Simonetto et al. (2016)

Let assumptions 2.4.4 and 2.4.5 hold and define the constants

ρ := max{|1− α`|, |1− αL|}, σ := 1 + h(C0C1/`
2 + C2/`),

Γ := h2/2
[
C2

0C1/`
3 + 2C0C2/`

2 + 2C3/`
]
.

Then by choosing the step-size 0 < α < 2/L, which implies ρ < 1, we have that, for any

sampling period h, iteratively running AGT results in

||xk+1 − x∗(tk+1)|| ≤ ρτ(k+1)||xk − x∗(tk)||+ ρτ
[
h

2C0

`
+ Γ

] [
1− ρτ(k+1)

1− ρτ

]
,

and if we choose the sampling period h such that ρτσ < 1 then we obtain the bound

||xk − x∗(tk)|| ≤ (ρτσ)k||x0 − x∗(t0)||+ ρτΓ

[
1− (ρτσ)k

1− ρτσ

]
.

Thus the AGT prediction-correction method can always attain an error bound of the

order of O(h2) if the sampling period is small enough. Moreover, in Simonetto et al.

(2016), a series of numerical experiments are made which show that it is indeed possible

to obtain bounds on the neighborhood of convergence of the order of O(h4) in a majority

of cases.

Having viewed the AGT it is tempting to imagine a different prediction step that, instead

of trying to keep the evolution of the gradient constant, attempts to keep the value of

the function ft(x) constant through time. In fact an approximation of the dynamics

through time of the type

ft+δt(x+ δx) ≈ ft(x) +∇xft(x)δx +∇tft(x)δt

results in an approximation step given by

xk+1|k = xk − h [∇xftk(xk)]
−1∇tftk(xk).

But, while in the case of a strongly convex function with Lipschitz continuous gradient,

we know that the second derivative is bounded both from above and below 0 < I` ≤
∇xxftk(xk) ≤ IL, the first derivative ∇xftk(xk) is generally unbounded and can even be

equal to zero. In addition imposing bounds on the first derivative is quite restrictive in

that it excludes even a quadratic objective function from the analysis.
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2.4.2 The Dynamical System Assumption

An original assumption that will be explored in this thesis is concerned with the evolution

of the sequence of minima through time, that is, what if one knew that the sequence of

minima was given by a dynamical system

x∗t+1 = φ(x∗t )

where φ : Rd → Rd is a known function, on which we will impose regularity conditions.

The problem then becomes: with this ulterior assumption can we recover an optimization

scheme that converges to the time varying minimum. Note how the problem has not

been trivialized; because even knowing the exact evolution of the minimum one does not

know the starting value x∗1 of the dynamical system. Thus the entire sequence of time

varying minima can’t be recovered a priori, a situation that resembles the invertibility

problem in econometric models (we can imagine the dynamical system as a model and

the scheme as a filter, this parallel will be discussed more in chapter 4).

Although we choose to analyze this problem with an eye to applications in the theory

of econometric model building, the problem itself, i.e., finding a scheme that converges

given the dynamics of the minima x∗t+1 but without the starting value is an interesting

mathematical investigation of its own. This section will be dedicated to exploring time

varying gradient descent in this setting.

First we will restrict ourselves to the one dimensional case with simple dynamical systems

of the kind

x∗t+1 = ω + θx∗t (2.11)

where ω ∈ R, θ ∈ R+ and x∗t ∈ R for all t.

Given that we know how the minimum varies in time we expect to be able to modify

the optimization scheme in a way that takes advantage of this extra information. In

particular, a natural modification of gradient descent in this setting is

xt+1 = ω + θxt + α∇ft+1(ω + θxt) (2.12)

where α ∈ R is the step hyper-parameter.

In this way at each step of the algorithm we update xt+1 in the direction of the time

varying minima by applying the same dynamics, the minima possesses, to xt; resulting

in ω+θxt. Then we direct it closer to the minimum x∗t+1, by utilizing the direction given

to us by the gradient at that point ∇ft+1(ω + θxt).

In an applied setting one may wish to track x∗t+1 given the gradient at the previous time

∇ft only. This restriction appears in prediction problems where we posses knowledge

only up to the previous time. Thus we will also be interested in the scheme

xt+1 = ω + θxt + α∇ft(xt) (2.13)
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where we compute the gradient at the previous time with respect to xt+1 (that tells us

the direction in which we have to go to reach x∗t ). Given the simple dynamics of x∗t+1

we will see that this is enough to achieve convergence.

For the scheme given by 2.12 we achieve the following result

Proposition 2.4.9.

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumptions 2.0.1 and 2.0.2 and let x∗t evolve according to equation 2.11 where θ <

(` + L)/(L− `). Then choosing (θ − 1)/θ` < α < (θ + 1)/θL the scheme given by 2.12

will be such that

|xt+1 − x∗t+1| ≤ q|xt − x∗t |

where 0 < q < 1.

We see that, to obtain convergence some bounds must be imposed on θ, as expected,

since x∗t+1 distances itself from previous values more than linearly, while the correction

provided by the gradient is linear in nature. This statement in particular allows θ,

depending on ` and L, to be greater than one and thus the sequence {x∗t+1}t∈N to not

converge. This is a most interesting case since if {x∗t+1}t∈N were convergent regardless of

its starting value x∗0 then recovering a scheme such that |xt+1 − x∗t+1| were to converge

would be trivial.

Surprisingly, an analogous statement can be made for the scheme in 2.13.

Proposition 2.4.10.

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumptions 2.0.1 and 2.0.2 and let x∗t evolve according to equation 2.11 where θ <

(`+L)/(L− `). Then choosing (θ− 1)/` < α < (θ+ 1)/L the scheme given by 2.13 will

be such that

|xt+1 − x∗t+1| ≤ q|xt − x∗t |

where 0 < q < 1.

This fact tells us that what matters in the end in order to achieve convergence is the

direction given to us by the gradient. In fact the direction of the gradient will always

point towards the minimum at time t + 1, thanks to the simple dynamics of x∗t+1, that

imply that whichever side xt lies on, with respect to x∗t , so will θxt + ω, with respect to

x∗t+1.
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Now, with an eye to our original dynamical system assumption, we analyze the more

general setting when x∗t+1 evolves according to a dynamical system of the kind

x∗t+1 = φ(x∗t ) (2.14)

where φ : R → R is a differentiable function and x∗t ∈ R. With this recurrent equation

for x∗t+1 we will choose, following the intuition of the simpler cases discussed before, the

gradient scheme as

xt+1 = φ(xt) +∇ft(xt) (2.15)

or, as before,

xt+1 = φ(xt) +∇ft+1(φ(xt)) (2.16)

if the gradient at time t+ 1 is assumed known at time t. Although, in the remainder of

this section we will only analyze the scheme given by 2.15, reason being that analogous

proofs following the exact same ideas can be given for the scheme in 2.16.

Given the results in 2.4.9 and 2.4.10 we know that we must impose some conditions on

φ if we want to obtain convergence of the scheme 2.15. Based on some strong conditions

on the derivative of φ we are able to obtain a convergence result.

Proposition 2.4.11.

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumption 2.0.1 and 2.0.2, let x∗t evolve according to equation 2.14 and assume that

c − ε < φ′(x) < c + ε for all x ∈ R where 0 < ε < 1 and c < (` + L)(−ε + 1)/(L − `).

Then choosing (c + ε− 1)/` < α < (c− ε + 1)/L the scheme given by 2.15 will be such

that

|xt+1 − x∗t+1| ≤ q|xt − x∗t |

where 0 < q < 1.

In particular notice that the bounds imposed on the derivative of φ make the function φ

itself Lipschitz, allowing us to bound the distance between two outputs of the function

with the inputs as utilized in the proof.

Finally we wish to tackle the problem when the recursive equation 2.14 is multidimen-

sional, that is when

x∗t+1 = φ(x∗t ) (2.17)

where φ : Rd → Rd is a differentiable function and x∗t ∈ Rd.

To generalize the same arguments as before to the d-th dimension we will need the

gradient of φ to be symmetric, an ulterior restrictive assumption.
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Proposition 2.4.12.

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumption 2.0.1 and 2.0.2, let x∗t evolve according to equation 2.17 and assume that

∇φ(x) is symmetric and such that I(c − ε) < ∇φ(x) < I(c + ε) for all x ∈ R where

0 < ε < 1 and c < (`+L)(−ε+1)/(L−`). Then choosing (c+ε−1)/` < α < (c−ε+1)/L

the scheme given by 2.15 will be such that

‖xt+1 − x∗t+1‖ ≤ q‖xt − x∗t‖

where 0 < q < 1.

To achieve this result a bound on the eigenvalues of the sum of two Hermitian matrices,

knowing the eigenvalues of both summands, was needed. As elementary as this problem

may seem to state the complete resolution was only given in 2001 by Knutson and Tao

(2001). Interestingly, the corresponding problem with generic matrices is still unsolved.

Notice also that the matrix inequality is not well defined when a matrix is non symmetric.

Of course there exist other gradient based schemes that could work better in this setting,

in particular schemes that converge faster to the minimum like Nestervo’s accelerated

gradient descent Nesterov (1983) or Polyak’s momentum Polyak (1987). The results in

this section are nothing but a first dip in the theory and are meant as not much more

than examples.

Before ending this section we consider a final case: assume the sequence of minima obeys

the dynamic equation

x∗t+1 = ω + θ1x
∗
t + θ2x

∗
t−1 + · · ·+ θp+1x

∗
t−p (2.18)

with coefficients ω, θ1, . . . , θp+1 ∈ R and we take x∗t ∈ R. Then we can easily obtain

convergence of the scheme given by

xt+1 = ω + θ1xt − α1∇ft(xt) + θ2xt−1 − α2∇ft−1(xt−1) + · · ·+ θp+1xt−p − αp∇ft−p(xt−p)
(2.19)

assuming that the recurrent sequence in 2.18 has all roots of its associated characteristic

equation inside the unit circle. In fact we state the following result

Proposition 2.4.13.

Let every element ft : Rd → R of the sequence {ft}t∈N be twice differentiable and satisfy

assumptions 2.0.1 and 2.0.2, let x∗t evolve according to equation 2.18 that has all roots

of its characteristic equation inside the unit circle. Then there exist α1, . . . , αp such that

the scheme given by 2.19 converges, i.e.,

‖xt+1 − x∗t+1‖ → 0.
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Although in this proposition we only state that the αi exist for small values of p specific

bounds where the αi must lie in can be found analytically, and for large values of p they

can be found numerically. The assumption on the roots of the characteristic equation of

2.18 implies that the sequence of the x∗t converges to zero. A case that is not particularly

interesting, but the way the proof is formulated clearly shows that the assumption can

be weakened on a case by case basis. In general we can obtain convergence of schemes

of the form 2.19 under the assumption that equation 2.18 does not have all roots of the

associated characteristic equation inside the unit circle.

2.4.3 Adding a Stochastic Element to the Time Varying Ob-

jective Functions

In this section we briefly consider a further generalization of the time varying opti-

mization problem that consists in considering a sequence {ft(x, εt)}t∈N of time varying

objective functions that also depend on a random variable εt at each time t. Because

of the random component we will be interested in the expected update given by the

gradient descent. Supposing that the time varying minimum evolves according to some

discrete stochastic process, it is possible to obtain propositions like the following

Proposition 2.4.14.

Let every ft : Rd → R of the sequence {ft(x, εt)}t∈N satisfy assumptions 2.0.1 and 2.0.2

and assume the sequence of minima {x∗t}t∈N evolves according to a stationary AR(1)

process, i. e. x∗t+1 = ω + βx∗t + εt, where ω ∈ R, −1 < β < 1 and εt is a IID

white noise process with zero mean and constant variance σ2
εt. Then iteratively running

k times the (time varying) gradient descent update xt+1 = ω + βxt − α∇ft(xt), with

(−1 + β)/` ≤ α ≤ (1 + β)/L, one obtains that

lim
t→∞

Eεt [||x∗t+1 − xt+1||] ≤
ε

1− q
, q = max{|β − α`|, |β − αL|} < 1

where ε = Eεt [||εt||].

Here we notice that, even if the points where the sequence of objective functions reach

the minima vary in a stochastic fashion, we can still adjust the gradient descent update

to obtain a scheme that in expectation lies within a neighborhood of the time varying

minimum for large t. Moreover one can give explicit bounds for this expected neighbor-

hood. As before we could obtain a more general result for non stationary auto-regressive
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processes following a similar proof as in section 2.4.2. In general all results of the previ-

ous section can be extended to this simple stochastic setting.

The next proposition deals with a very specific sequence of objective functions

Proposition 2.4.15.

Let f0 : Rn → R satisfy assumption 2.0.1 and 2.0.2.

Construct the sequence {ft}t∈N given by ft+1(x) = ft(x+ εt) where εt is white noise and

has variance σ2
t < M for all t where M ∈ R.

Then running the iteration xt+1 = xt−α∇ft+1(xt), from an initial starting point x0, for

k times, with a fixed step size α ≤ 1/L, we obtain that

lim
t→∞

E[ft(xt)− ft(x∗t )] ≤
M

`α
. (1.1)

This result tells us that for a sequence of objective functions, that is shifted in space like

a random walk, the time varying gradient descent scheme converges in expectation to a

neighborhood of the true value.



Chapter 3

Observation Driven Models

Since the categorization given by Cox et al. (1981) observation driven models have mul-

tiplied profusely and are increasingly being adopted to model time varying parameters.

These models are widely applied in various fields ranging from economics, see Pindyck

and Rubinfeld (1998), environmental study, see Bhaskaran et al. (2013), epidemiology

and public health study, see Zeger (1988), Ferland et al. (2006) and finance where the

celebrated GARCH model is an industry standard for the modeling of volatility Boller-

slev (1986).

For observation driven models the filtering (or dynamic) equation is specified as a func-

tion of past observations as well as contemporaneous and lagged exogenous variables.

Thus, although the parameters are stochastic, they are perfectly predictable given past

information. With an observation driven specification the likelihood is readily available,

hence the parameter estimation is relatively simple, and prediction is straightforward.

There are many definitions of observation driven models in the literature with varying

degree of associated technicalities. We will broadly follow the definition given in Douc

et al. (2013) that highlights the conditional nature of the model specification. To intro-

duce the models we utilize the notation xl:m := {xl, . . . , xm} .

A stochastic process {Yt}t∈Z valued in a measurable space of choice (Y,Y) is said to be

an observation driven model of order (p, q) (ODM(p,q)) if there exists a process {λ̃t}t∈Z
taking values in a measurable space (Λ̃, Λ̃) such that for all t ∈ Z

Yt|Ft−1 ∼ p̃(yt|λ̃t,θ),

λ̃t+1 = φ(λ̃t−p+1:t, Yt−q+1:t,θ), (3.1)

where p̃(·|λ̃t,θ) is a parametric conditional density, Ft := σ(Yl; l ≤ t; l ∈ Z), θ ∈ Θ ⊆ Rd

is a vector of static unknown parameters and φ is a measurable function, also called the

updating function, linking the new λ̃t+1 to the current and past observations. Specifi-

cally it is assumed that λ̃t is a measurable function of Y t−1 := {Yt−1, Yt−2, . . . , Y1, . . . }

35
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and θ, for some initial value λ̄1 := (λ̄11, λ̄12, . . . , λ̄1p) where each element belongs to Λ̃.

The allure of observation driven models is that their likelihoods can be computed ex-

actly, with computational complexity of the same order as the number of observations,

making maximum likelihood estimation the privileged approach for statistical inference.

The reason for the tilde above the probability density p̃ and the time varying parameter

λ̃t is that we will often consider the misspecified case, that is when the time series {Yt}t∈Z
actually has probability density p(yt|λt) different from p̃(yt|λ̃t). Moreover even the case

in which the recursive equation the time varying parameter follows 3.1 does not include

the true functions that governs the evolution of the time varying parameter λt will be

briefly considered.

For general observation driven models consistency and asymptotic normality of the

model parameters θ have been proven, even in the case of model misspecification, for a

wide range of observation driven models as can be seen in Douc et al. (2013).

3.1 Score Driven Models

Score driven models are a subset of observation driven models, they have been intro-

duced in the econometric literature in 2008 through the independent works of Creal

et al. (2013) and Harvey and Chakravarty (2008).

The principal feature of these models is that the dynamics of the time varying parameter

are driven by the score of the conditional distribution of the observations. Score-driven

models are typically appreciated for the fact that they flexibly adapt themselves to the

distribution of the innovations. Thus, choosing the distribution of the innovations as

heavy tailed, one can easily produce models that have robustness properties. Moreover

the analytic theory behind the maximum likelihood estimation of the parameters is quite

developed, thanks to the form of observation driven models that allows to write down

the likelihood function of the observations in a straightforward manner.

Several applications of score driven models have been carried out; Harvey and Luati

(2014a) study the robustness of location type models, Creal et al. (2013) introduce a

mixed measurement dynamic factor models, Bernardi and Bernardi (2018) expand the

theory defining a two-sided skew and shape dynamic conditional score model, Blasques

et al. (2016b) and Catania et al. (2018) apply the general theory to spatial models.

3.1.1 The Model Specification

A stochastic process {Yt}t∈Z, with associated filtration Ft := σ(Yl; l ≤ t; l ∈ Z), valued

in R is said to be a score driven model of order (p, q) if there exists a process {λ̃t}t∈N
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taking values in Λ̃ ⊆ Rn such that for all t ∈ Z

Yt|Ft−1 ∼ p̃(yt|λ̃t,θ)

λ̃t+1 = γ +

q∑
i=0

αiSt−ist−i +

p∑
i=0

βiλ̃t−i (3.2)

st =
∂ log p̃(Yt|λ̃t, θ)

∂λ̃t

for some initial λ̄1 ∈ Λ ⊂ Rn, where p, q ∈ N, p̃(yt|λ̃t,θ) is a parametric conditional

density , θ ∈ Θ ⊆ Rd is the vector of static parameters, and St := S(λ̃t,θ) is a positive

measurable scaling function that possibly depends on the filtered time-varying parameter

λ̃t and the static parameter θ.

Notice that for probability densities that have a measurable score function

λ̃→ ∂ log p̃(Yt|λ̃, θ)/∂λ̃

it is immediate to see that score driven models are a subset of observation driven models.

The role of the score st in the updating equation for λ̃t+1 has been a subject of interest

in the literature. As illustrated in Creal et al. (2013), the score points in the steepest

ascent direction for improving the model’s local fit in terms of the likelihood at time t

given the previous position of the parameter λ̃t. We will formalize this intuition through

the CEV property defined in section 4.2.

A more theoretically grounded motivation for the role of the score is given in Blasques

et al. (2015), we will discuss it in detail in section 4.2 and build on its intuition to

recover ulterior properties that score driven models posses, these will comprise most of

the original results this thesis has to offer.

The selection of the scaling function St is also discussed in Creal et al. (2013) and will

be object of our analysis. If chosen as the inverse of the information matrix

St := EYt|Y t−1 [sts
T
t ]−1 = −EYt

[
∂2 log p̃(Yt|λ̃t; θ)

∂λ̃t∂λ̃Tt

]
it allow one to obtain observation driven models such as the autoregressive conditional

duration, Engle and Russell (1998), the autoregressive conditional intensity, Russell

(2000), and the GARCH, Bollerslev (1986). Instead, when chosen as the identity matrix

St := I, depending on the choice of distribution p̃ it is possible to recover models such

as the autoregressive conditional multinomial model, Russell and Engle (2005), and

the Beta-t-EGARCH model, Harvey and Chakravarty (2008). Thus the score driven

specification is certainly wide and encompassing, capturing a great number of observation

driven models already present in the literature.
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We will argue that the scaling function St is not only useful in rendering the class of

models more rich in number, but an accurate selection will guarantee desirable properties

for the resulting score driven model.

3.1.2 The Beta-t-EGARCH Model and a Special Case

A special element of the class of score driven models is the generalized autoregressive

conditional heteroskedasticity (1,1) (GARCH(1,1)) model that is usually specified by

the equations

Yt = Utσ̃t

σ̃2
t+1 = ω + αY 2

t + βσ̃2
t (3.3)

where (ω, α, β) := θ ∈ Θ ⊆ R3 are the parameters and {Ut}t∈N is a sequence of inde-

pendent random variables with probability density p̃t that is Gaussian with zero mean

and unitary variance.

The model is easily recovered in the score driven framework by noticing that

∂ log p̃(Yt|σ̃t; θ)
∂σ̃t

=
Y 2
t

2σ̃4
t

− 1

2σ̃2
t

thus choosing the positive scaling function St(σ̃t, θ) = σ̃4
t one recovers the GARCH(1,1)

specification since

σ̃2
t+1 = ω + αStst + βσ̃2

t = ω +
α

2
Y 2
t + σ̃2

t (β −
α

2
)

The primary use of the GARCH has been to capture the dynamics of volatility in

financial markets, especially the volatility of financial returns. One of the purported

shortcomings of the GARCH models is that, although financial returns are assumed

distributed as a Gaussian, it is a stylized fact that financial returns have heavier tails,

Bradley and Taqqu (2003). Besides, the GARCH model does not account for the leverage

effect found in time series of financial returns (a stylized fact first noted by Black (1976))

that is, the model does not account for an asymmetric response in volatility to positive

and negative shocks. Moreover, the GARCH model reacts excessively to one off spikes

in returns as explained in Harvey (2013), in this sense the model lacks robustness.

It must be also said that despite the model in-adherence to some stylized facts it remains

a standard in the financial industry and is able to, sometimes, outperform more complex

models in comparative analysis Hansen and Lunde (2005b).

Although the GARCH model technically belongs to the class of score driven models
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it was specified before the score driven class was defined. A specification that takes

full advantage of the flexibility of the score driven framework is the BETA-t-EGARCH

model Harvey and Chakravarty (2008)

Yt = Ut exp(σ̃2
t )

σ̃2
t = ω + α

(ν + 1)Y 2
t

ν exp(2σ̃2
t ) + Y 2

t

− α + βσ̃2
t−1

where {Ut}t∈N is a sequence of independent random variables that have a generalized

student-t probability density p̃t with zero mean, unitary location and ν degrees of free-

dom while γ, α, β ∈ R are the unknown parameters. This model belongs to the score

driven class since
∂ log p̃(Yt|σ̃t; θ)

∂σ̃t
=

(v + 1)Y 2
t

v exp(2σ̃2
t ) + Y 2

t

− 1

where p̃(·|σ̃t; θ) is the probability density function of Zt exp(σ̃2
t ). We explicitly notice

that here the scaling function St := 1 plays no role.

The BETA-t-EGARCH model addresses some of the theoretical shortcomings of the

GARCH model; it reacts less to one off spikes in returns, Harvey (2013), and it models

Yt with the t-student distribution that, depending on the degrees of freedom, is heavy

tailed.

The framework that we will develop in section 4.2 will shed light on how St ought to

be chosen to specify a model with additional properties as the choices made in the case

of the GARCH and the BETA-t-EGARCH may appear ad hoc; made to recover the

specification one desires. Instead, if the model is to posses ulterior desirable properties,

the choice of the scaling function will be of importance in the model specification.

3.2 Maximum Likelihood Estimation and Invertibil-

ity

Although this thesis does not regard maximum likelihood estimation of parameters of

score driven models, when introducing a statistical model it is best to also discuss if there

exist valid methods to estimate the parameters of said model; otherwise the model risks

lacking in practical usefulness. Besides, briefly presenting the most modern theory on

maximum likelihood estimation regarding score driven models will introduce naturally

the concept of model invertibility that will be object of a conjecture in 4.2.3.

As already stated, one of the main appeals of observation driven models is that, given
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a sequence of observations yt := {yt, yt−1, . . . , y1}, one can easily write down the log-

likelihood function of the model as

log p̃(yt|y0, . . . , y−p+1, λ̃0, . . . , λ̃−q+1,θ) =
t∑
i=1

log p̃(yi|y0, . . . , y−p+1, λ̃0, . . . , λ̃−q+1,θ)

(3.4)

where the starting values y0, . . . , y−p+1, λ̃0, . . . , λ̃−q+1 have to be chosen to initialize the

sequence given by 3.2. It is thus natural to estimate the vector of model parameters θ

through the method of maximum likelihood, i.e., to determine the value of θ̂ as

θ̂ = arg max
θ∈Θ

{ t∑
i=1

log p̃(yi|y0, . . . , y−p+1, λ̃0, . . . , λ̃−q+1,θ)

}
.

Historically, observation driven models have been sometimes introduced before proving

the consistency and asymptotic normality of the maximum likelihood estimators of the

parameters of said models, this was, for example, the case of the ARCH and GARCH

models that were only tested empirically in their respective first papers Engle (1982),

Bollerslev (1986). Only later proofs for consistency and asymptotic normality of the

parameters of specific ARCH and GARCH models started to appear. First for the

GARCH(1,1) case Lee and Hansen (1994a), Lumsdaine (1996b), and then for higher

order observation driven models Strauman and Mikosch (2006).

However, consistency and asymptotic normality of the parameters, both in the correctly

specified and misspecified case, are of tantamount importance to verify that the param-

eter estimates are meaningful. Although an asymptotic theory that governs all possible

score driven specifications does not exist yet there are multiple results for large classes of

them. We categorize these results in two sets: results based on Strauman and Mikosch

(2006), and result based on lemma 1 of Jensen and Rahbek (2004). Strauman and

Mikosch (2006) provide a general theory for handling estimation of non linear observa-

tion driven models assuming some restrictions on the parameter regions, crucially the

asymptotic result they derive do not depend on the starting value λ̃0, that is needed to

write down the likelihood. This is attained by establishing the invertibility of the obser-

vation driven model under consideration, a concept we will soon define and discuss.

Lemma 1 in Jensen and Rahbek (2004) gives general conditions under which consistency

and asymptotic normality hold, assuming that the true value of the unobserved time-

varying parameter at time zero λ̃0 is known. An assumption that is hardly ever true in

applications.

Because invertibility will be connected to the ideas presented in section 4.2.2, in this

thesis we will briefly present the state of the art theory based on Straumann and Mikosh,
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for an in depth exposition of the theory based on lemma 1 of Jensen and Rhabek one

can check chapter 2 of Harvey (2013).

3.2.1 Maximum Likelihood for Score Driven Models

Due to the relative recent introduction of the score driven framework most of the asymp-

totic theory for score driven models, based on the ideas of Strauman and Mikosch (2006),

can be found in three papers Blasques et al. (2016a), Blasques et al. (2014a), Blasques

et al. (2014b).

Here we will briefly summarize only the most encompassing and recent results found in

Blasques et al. (2014b), where the asymptotic theory of the maximum likelihood esti-

mators of certain score-driven models is established. Guided by, but not limited to, first

order models of the form

Yt = λ̃t + Ut, Ut ∼ p̃U(ut|ξ) (3.5)

λ̃t+1 = ω + αst + βλ̃t, st :=
∂ log p̃U(Yt − λ̃t|ξ)

∂λ̃t

where Yt takes values in a measurable space (Y,Y), λ̃t takes values in a measurable

space (Λ̃, Λ̃), {Ut}t∈Z is a sequence of random variables defined on a probability space

{U,U , P̃} with probability density p̃U(ut, ξ) for all t. The probability density p̃U(ut, ξ)

depends on an unknown static parameter vector ξ that for expository convenience is

assumed to belong to a subset Ξ ⊆ R but can be chosen to belong to a set of arbitrary

dimension and the results would still follow. The static parameter vector θ in this set-

ting is thus θ := (ω, α, β, ξ) ∈ Θ ⊆ R4.

The general framework used to state the propositions is the following: consider a stochas-

tic process {Yt}t∈N given by

Yt = g(λ̃t(θ, λ̄1), Ut), Ut ∼ p̃(ut|ξ)

where g : Λ̃×U → Y is a link function that is strictly increasing in its second argument,

λ̃t(θ, λ̄1) is the time varying parameter which belongs to Λ̃ that is assumed to be a

convex set in R, {Ut}t∈N is an exogenous i.i.d. sequence of random variables for every

parameter vector ξ ∈ Ξ ⊆ R.

The time varying parameter updating scheme is given by

λ̃t+1(θ, λ̄1) = ω + αs(λ̃t(θ, λ̄1), Yt, ξ) + βλ̃t(θ, λ̄1)

for t > 1, and initialized at λ̃1(θ, λ̄1) = λ̄1 for a non-random λ̄1 ∈ Λ̃. The function

s : Λ̃ × Y × Ξ → Λ̃ is the scaled score of the conditional density of Yt given λ̃t. When
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there will be no possibility of confusion we will suppress the dependence of λ̃t(θ, λ̄1) on

its arguments and write λ̃t instead. We also define p̃Y (yt|λ̃t, ξ) as the conditional density

of Yt given λ̃t

p̃Y (yt|λ̃t, ξ) = p̃U(ḡ(λ̃t, Yt)|ξ)

(
∂ḡ(λ̃t, Yt)

∂Yt

)

where ḡt := ḡ(λ̃t, Yt) := g−1(λ̃t, Yt) is the inverse of g(λ̃t, Ut) with respect to Ut.

The scaled score is thus given by s(λ̃t, Yt, ξ) = St(λ̃t, Yt)st(λ̃t, Yt, ξ) where

st(λ̃t, Yt, ξ) =

[
∂p̄t

∂λ̃t
+
∂ log ḡ′t
∂λ̃t

]
with p̄t := p̄(λ̃t, Yt, ξ) = log p̃U(ḡ(λ̃t, Yt)|ξ), ḡ′t = ∂ḡ(λ̃t, Yt)/∂Yt and St : Λ̃ × Ξ → Λ̃ is

the positive scaling function.

Given a sequence of observations {yi}Ti=1 The average log-likelihood function LT for a

time series of the type in 3.5 is found in closed form as

L̃T (θ, λ̄1) :=
1

T

T∑
t=1

(
log p̃U(ḡ(λ̃t, yt)|ξ) + log ∂ḡ(λ̃t, yt)/∂yt

)
and the maximum likelihood estimator θ̂T (λ̄1) is given by

θ̂T (λ̄1) := arg max
θ∈Θ
L̃T (θ, λ̄1)

where we have explicitly remarked the dependence on the initial condition λ̄1. In the

case of correct model specification, that is when the assumed probability distribution p̃

is equal to the true distribution p that governs the stochastic process {Yt}t∈Z, we will

drop the tilde, i.e., LT will denote the log likelihood of the correctly specified model.

To derive the maximum likelihood properties Blasques et al. (2014b) analyze the stochas-

tic behavior of the filtered time-varying parameter over different θ ∈ Θ. The upcoming

proposition is the main argument used in establishing the exponentially fast almost sure

convergence of the score-driven filtered sequence λ̃t(θ, λ̄1) uniformly over the parameter

space Θ. To state the proposition concisely, we define ṡYt(λ̃, ξ) := ∂s(λ̃, Yt, ξ)/∂λ̃ and

ρ̄kt (θ) := sup
λ̃∈Λ̃

|β + αṡYt(λ̃, ξ)|k

Proposition 3.2.1. Blasques et al. (2014b)

Let Θ ⊆ R4 be compact, s ∈ C(1,0,0)(Λ̃ × Y × Ξ) and let {Yt}t∈Z be a stationary and
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ergodic stochastic process. Assume there exist λ̄1 ∈ Λ̃ such that

(i) E

[
log sup

λ̃∈Λ̃

|s(λ̄1, Yt, ξ)|

]+

<∞

(ii) E

[
log sup

θ∈Θ
ρ̄1

1(θ)

]
< 0

where x+ := max(0, x).

Then uniformly on Θ the sequence {λ̃t(θ, λ̄1)}t∈N converges exponentially almost surely

to a unique stationary and ergodic sequence {λ̃t(θ)}t∈N as t→∞, i.e.,

ct‖λ̃t(θ, λ̄1)− λ̃t(θ)‖ a.s.→ 0

for some c > 1.

This result is crucial in the proof of uniform convergence of the estimators through the

application of the ergodic theorem of Rao for sequences in separable Banach space Rao

(1962). This allow one to obtain consistency and asymptotic normality under weaker

differentiability conditions like the ones found in Strauman and Mikosch (2006).

We now state the simplified assumptions to obtain consistency

Assumption 3.2.2.

Let (Θ,B(Θ)) be a measurable space with Θ compact.

Assumption 3.2.3.

Let s ∈ C(2,0,2)(Λ̃× Y× Ξ).

Assumption 3.2.4.

There exists Θ∗ ∈ R4, mλ̃ > 0 and δ > 0 such that for any λ̄1 ∈ Λ̃

(i) ||s(λ̄1, Yt, ·)||Θ
∗

mλ̃+δ <∞

(ii) sup
(λ̃,y,θ)∈Λ̃×Y×Θ∗

|β + α∂s(λ̃, y, ξ)/∂λ̃| < 1

where ||s(λ̄1, Yt, ·)||Θ
∗

mλ̃+δ :=
(
E[supθ∈Θ∗ |s(λ̄1, Yt,θ)|mλ̃+δ]

)1/(mλ̃+δ)
.
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Assumptions 3.2.2 is a standard assumptions in the maximum likelihood literature where

the parameter space is usually required to be compact. Assumption 3.2.3 guarantees a

well behaved function s, eliminating the possibility for degenerate cases, while assump-

tion 3.2.4 ensures the convergence of the sequence {λ̃t(θ, λ̄1)}t∈N to a stationary and

ergodic one.

For the next assumption it will be convenient to define a piece of notation: for any differ-

entiable function f that depends on λ̃t and any other variable of interest let nf , n
ξ
f and

nξλ̃f denote respectively the number of bounded moments of f , the number of bounded

moments of the derivative of f with respect to ξ and the number of bounded moments

of the cross derivative with respect to ξ, λ̃. In the same way define n̄f , n̄
ξ
f and n̄ξλ̃f to be

respectively the number of bounded moments of the random variable supλ̃ |f(λ̃, ξ)|, the

the number of bounded moments of the random variable supλ̃ |∂f(λ̃, ξ)/∂ξ| and the the

number of bounded moments of the random variable supλ̃ |∂2f(λ̃, ξ)/∂ξ∂λ̃t|.

Assumption 3.2.5.

nl = min{nlog ḡ′ , np̄} ≥ 1 and n̄st > 0 for all t.

This assumptions ensures the log-likelihood has bounded moments, an other standard

assumption in the realm of asymptotic statistics.

The next proposition establishes the strong consistency of θ̂T (λ̄1) under possible model

misspecification.

Proposition 3.2.6. Blasques et al. (2014b)

Let {Yt}t∈Z be a stationary and ergodic sequence. Furthermore, let E[|Yt|nY ] < ∞ for

some nY ≥ 0 and let assumptions 3.2.2, 3.2.3, 3.2.4 ,3.2.5 hold. Finally let θ0 ∈ Θ be

the unique maximizer of the limit log-likelihood L̃∞(·) on the parameter space Θ ⊆ Θ∗.

Then the maximum likelihood estimator θ̂T (λ̄1) converges almost surely to θ0 as T →∞
for any λ̄1.

This proposition establishes the strong consistency of the maximum likelihood estima-

tor in a possibly misspecified model setting. In particular, consistency of the maximum

likelihood estimator is obtained with respect to a pseudo-true parameter that is assumed

to be the unique maximum of the limit log-likelihood L̃∞(θ). This pseudo-true param-

eter θ0 minimizes the Kullback Leibler divergence between the probability measure of

{Yt}t∈Z and the measure implied by the model, i. e., if the true conditional probability
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distribution of Yt given yt−1 is p(yt|yt−1) then

θ0 = arg min
θ∈Θ

{
E

[
log

p(yt|yt−1)

p̃Y (yt|λ̃t(θ, λ̄1), ξ)

]}
.

Convergence to the pseudo true parameter is the best we can achieve under model

misspecification, see White (1982), or Monfort (1996) for a presentation that takes into

account dependence in the observations.

3.2.2 Asymptotic normality

As for the case of consistency Blasques et all Blasques et al. (2014b) tackle the problem

of asymptotic normality in the misspecified setting. To do this they will make use of

the concept of near epoch dependence popularized in Gallant (1987) and Gallant and

White (1988) that can be traced back atleast to Ibragimov (1962).

Definition 3.2.7.

A sequence of integrable random variables {Xt}t∈Z on a probability space (Ω,F ,P) is

called Lp near epoch dependent of size q0 ∈ R on the stochastic process {Zt}n∈Z in

(Ω,F ,P) with approximation constants {di}i∈N, {vi}i∈N , if

||Xi − E[Xi|F i+mi−m ]||p ≤ divm

where vm = O(m−q) for q > q0 and F i+mi−m := σ(Zi−m, . . . , Zi+m) is the sigma algebra

generated by Zi−m, . . . , Zi+m.

Near epoch dependence is needed since in the case of misspecified models the score of

the maximum likelihood needn’t be a martingale difference sequence as is usually the

case where no model misspecification is present. As a result, stricter conditions are

required on the sequence of observations {Yt}t∈Z to obtain a central limit theorem that

allows for some temporal dependence in the ML score. The more canonical strongly

mixing condition does not guarantee to be strong enough of a condition since infinite

distribute lag functions of strongly mixing processes are not necessarily strongly mixing,

so just assuming the sequence of observations {Yt}t∈Z as being strongly mixing would

not allows the asymptotic results on strongly mixing processes to be valid for all score

driven models.

Definition 3.2.8.

Let {Xt}t∈N be a stochastic process on a probability space (Ω,F ,P). Then, the strong

mixing coefficient is given by

α(k) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F t1, B ∈ F∞t+k, t ∈ N},
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where F la is the σ-field generated by Ya, . . . , Yl and {Xt}t∈N is called strongly mixing of

size −δ if α(k) = O(kβ) where β < −δ.

Thus in the proof of the asymptotic normality result a convergence theorem for near

epoch dependent processes due to Davidson (1992) will be used.

To obtain the result regarding asymptotic normality we define, for convenience, the

following quantities utilizing the notation defined in the previous section

n∗ := min{nst , n̄λ̃tst , n̄
ξ
st , n̄

λ̃tλ̃t
st , n̄λ̃tξst , n̄

ξξ
st }

nl′ := min

{
nξp̄,

nstnλ̃tθ
nst + nλ̃tθ

}
nl′′ := min

{
nξξp̄ ,

nstnλ̃tθθ
nst + nλ̃tθθ

,
nξstnλ̃tθ

nξst + nλ̃tθ
,

nλ̃tstnλ̃tθ

2nλ̃tst + nλ̃tθ

}
We will need other assumption to obtain asymptotic normality with possible model

misspecification, one on the moments and one to ensure that the score evaluated at the

maximum likelihood estimator will be near epoch dependent.

Assumption 3.2.9.

There exists a set Θ∗∗ ⊆ R4 such that n∗ > 0, nl′′ ≥ 1 and nl′ ≥ 2 + δ for some δ > 0 and

for all t.

Having nl′ > 2 + δ facilitates the application of a central limit theorem to the score.

Similarly, nl′′ ≥ 1 allows us to use a uniform law of large numbers for the Hessian.

Finally, the condition n∗ > 0 is designed to ensure that the e.a.s. convergence of the

filter λ̃t(θ, λ̄1) to its stationary limit is appropriately reflected in the convergence of both

the score and the Hessian.

Assumption 3.2.10.

∂p̄t/∂λ̃t and ∂ log ḡ′t/∂λ̃t are uniformly bounded random variables and ∂p̄t/∂ξ is almost

surely Lipschitz continuous in (Yt, λ̃t).

Assumption 3.2.9 imposes sufficient conditions for the score of the maximum likelihood

to be Lipschitz continuous on Yt as well as on λ̃t. This is designed to guarantee that the

score of the maximum likelihood inherits the near epoch dependence property that will

be assumed on the sequence of observations {yt}t∈Z.

Now we are ready to state the result on asymptotic normality in the case of model

misspecification
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Proposition 3.2.11. Blasques et al. (2014b)

Let {Yt}t∈Z be stationary, ergodic and near epoch dependent of size −1 on a strongly

mixing process of size −δ/(1 − δ) for some δ > 2. Let E[|Yt|nY ] < ∞ for some nY ≥ 0

and let assumptions 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.9 and 3.2.10 be satisfied. Furthermore

let θ0 ∈ int(Θ) be the unique maximum of the log likelihood at the limit L̃∞(θ) on Θ,

where Θ ⊆ Θ∗ ∩Θ∗∗.

Then for every λ̄1 ∈ Λ̃ the maximum likelihood estimator θ̂T (λ̄1) satisfies

√
T (θ̂T (λ̄1)− θ0)

d−→ N(0, I−1(θ0)J (θ0)I−1(θ0)) as T →∞

where I(θ0) := E[L̃′′t (θ0)] is the Fisher information matrix, L̃t(θ0) denotes the log-

likelihood contribution of the t-th observation evaluated at θ0, and

J (θ0) := lim
T→∞

T−1E

(
T∑
t=1

L̃′t(θ0)

)(
T∑
t=1

L̃′t(θ0)>

)

When the model is correctly specified, the ML score can be shown to be a martingale

difference sequence at the true parameter value. This allows to simplify the assumptions

considerably and avoid the use of near epoch dependence.

3.2.3 Invertibility

Invertibility is an important property for an econometric time varying parameter model

to possess if one wishes to use the model in an applied setting, here we give the definition

due to Strauman and Mikosch (2006).

Definition 3.2.12. Strauman and Mikosch (2006)

Given a θ ∈ Θ we say that a correctly specified observation driven model 3.1 is invertible

if

||λ̃t − λt||
P−→ 0

for any λ̄1 ∈ Λ̃.

Invertibility tells us that, given a vector of parameters, no matter the starting value

λ̄1 from which we choose to initialize the model we will converge to the the true time

varying parameter. Of course of great relevance is the case when the vector of fixed

parameters are the true ones θ0, then, given an arbitrary large sample from the process

{yt}Tt=1, the arbitrary choice of the model initialization will have negligible impact on



3.2 Maximum Likelihood Estimation and Invertibility 48

the goodness of the model. There exist in fact cases where knowing the true parame-

ter vector θ0, even under correct model specification, does not guarantee the true time

varying parameter will be tracked by the model if not initialized properly, see Sorokin

(2011), where some GARCH-type models are shown to admit a stationary solution but

lack invertibility. This problem has also been discussed in Wintenberger (2013).

Another important reason for requiring model invertibility is that the the log-likelihood

function L̃T (θ, λ̄1) depends on the initial condition λ̄1 thus in turn the maximum like-

lihood estimator θ̂T (λ̄1) may also depend on λ̄1. This poses a problem for establishing

consistency and asymptotic normality since there is no guarantee that asymptotically

this dependency will vanish, thus an unwanted degree of arbitrariness given by the

choice of λ̄1 may be present even with arbitrarily large sample sizes. For this issue it

is not enough that the model be invertible at the true parameter value θ0 since the

log-likelihood function is maximized over the entire set Θ, thus another invertibility

definition was introduced in the modern literature by Wintenberger (2013)

Definition 3.2.13. Wintenberger (2013)

A correctly specified observation driven model 3.1 is continuously invertible on a compact

set Θ if

sup
θ∈Θ
||λ̃t − λt||

P−→ 0

for any λ̄1 ∈ Λ̃.

Continuous invertibility allows the asymptotics of the maximum likelihood estimator

to be independent from the initial condition λ̄1 allowing for the possibility of proving

consistency and asymptotic normality. Indeed in Blasques et al. (2014b) model continu-

ous invertibility is assumed through conditions (i) and (ii) of theorem 3.2.1, a theorem

that is one of the main building blocks to demonstrate their results on consistency and

asymptotic normality.

In the case the model is not correctly specified, that is when the assumed probability

density p̃ is not equal to the true density p of the stochastic process {Yt}t∈Z a more

realistic notion of invertibility is needed, since if we misspecified the model it will be

unlikely we will manage to converge to the true time varying parameter just as when

the data has no dependence structure, see White (1982).

In the case of time varying parameter models there are two types of misspecification:

one coming from erroneously specifying the distribution p̃t as not equal to the one of Yt,

the other coming from choosing the dynamics of {λ̃t}t∈Z in a way that does not cover

the evolution of the true time varying parameter λt through time. It is well known that
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in the case of model misspecification the maximum likelihood estimator is a natural

estimator for the vector of parameters that minimize the Kullback Leibler (KL) diver-

gence between the true probability density and the model density, Akaike (1998). Thus

calling λ∗t the time varying parameter that minimizes the KL divergence between the

true density pt(yt|λt) at time t (the true density could even be non parametric) and the

model density p̃t(yt|λ̃t) (notice that we do not take into account the specified dynamics

of λ̃t but only the shape of the distribution, so λ∗t does not depend on θ) we give the

following definition

Definition 3.2.14.

Given a θ ∈ Θ we say that an observation driven model 3.1 is invertible if

||λ̃t − λ∗t ||
P−→ 0

for any λ̄1 ∈ Λ̃.

Section 4.2.3 will give indications that score driven models posses properties that may

imply this definition of invertibility thanks to the score present in the dynamic equation.



Chapter 4

Optimality of Score Driven Models

The use of the score in the updating equation of observation driven models has lead to

the specification of models that perform well in an applied setting. Due to the relatively

recent specification of the class of score driven models, the entire set of mathematical

properties, that derive from the use of the derivative of the log-likelihood in the dynamic

equation, has not yet been completely uncovered. The following section presents the cur-

rent literature on the argument and subsequently derives novel mathematical properties

for a (prototypical) class of score driven models. Indeed, understanding in which cases

score driven models are well suited to model a time series with a dependence structure

is valuable information for practitioners that have to choose the type of model on the

basis of the available data.

All proofs in this chapter can be found in appendix B

4.1 A Review of the Current Literature

Recently, Blasques et al. (2015), proved an information theoretical criterion for a specific

score driven updating equation of the first order, in the one dimensional case.

In the paper, a general family of observation driven models is considered under the

framework of model misspecification. Formally, it is assumed that the data follows a

real valued discrete time stochastic process {Yt}t∈N, the data generating process (DGP),

that takes values in Y ⊆ R and has probability density p(yt|λt) at time t, where λt ∈ R
for all t. Having observed a given sequence of T observations {yt}Tt=1 from the DGP the

authors consider a generic first order observation driven model

Yt ∼ p̃(yt|λ̃t,θ),

λ̃t+1 = φ(λ̃t, yt,θ) (4.1)

50
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where p̃(·|λ̃t,θ) is a parametric density, λ̃t ∈ Λ̃ ⊂ R is a filtered value of the true

λt that may depend on the observations up to time t, θ ∈ Θ ⊆ Rd is a vector of

static unknown parameters, and φ is an updating function linking the one step ahead

time varying parameter λ̃t+1 to the current observation yt and the current filtered time-

varying parameter λ̃t. To simplify the notation, when there is no possibility of confusion,

pt will be used to indicate p(y|λt) and p̃t or p̃(y|λ̃t) to mean p̃(y|λ̃t, θ)).
The assumption of possible model misspecification, i.e., p(yt|λt) is not necessarily equal

to p̃(yt|λ̃t,θ), keeps the analysis as realistic and general as possible. The choice of the

updating function φ is usually made so that the model approximates λt better and better

as more realizations of the process are observed.

It is then argued that an ideal property for any observation driven model to have is that

the sequence of values {λ̃t} they generate obey an optimal information theoretic update,

i.e., the update from λ̃t to λ̃t+1 decreases the Kullback-Leibler (KL) divergence between

the true conditional density p(·|λt) and the model postulated density p̃(·|λ̃t; θ). The KL

distance under consideration is given by

DKL(pt, p̃t) =

∫
A

p(y|λt) ln
p(y|λt)
p̃(y|λ̃t; θ)

dy

where A ⊂ R is the subset of the real line over which the divergence is evaluated.

In particular, given a starting point for the filtered parameter λ̃t and the true density

p(·, λ̃t) the authors analyze the conditions under which a new observation yt, drawn

from the true conditional density of the DGP p(·, λt), produces an update from λ̃t to

λ̃t+1 such that the new conditional density p̃(·|λ̃t+1) provides a better approximation to

p(·|λt) than p̃(·|λ̃t).
There remains a caveat: in an applied setting it is mathematically implausible that

p̃(·|λ̃t+1) approximates p(·|λt+1) better than p̃(·|λ̃t) approximates p(·|λt). The problem

is that λ̃t+1 is updated using information from the density of the DGP at the previous

time p(·|λt) and therefore, without imposing any restriction on the true sequence of

conditional densities, it is impossible to say if the updating scheme approximates the

one step ahead density of the DGP p(·|λt+1). For this reason the optimality criterion is

computed with respect to p̃(·|λ̃t+1) and the true density at the previous time p(·|λt).

Definition 4.1.1. Blasques et al. (2015)

The Realized Kullback Leibler (RKL) variation of a parameter update from λ̃t ∈ Λ̃ ⊆ R

to λ̃t+1 ∈ Λ̃ ⊆ R is given by

∆t|t = DKL(pt, p̃t+1)−DKL(pt, p̃t)

=

∫
A

p(y|λt)(ln p̃(y|λ̃t; θ)− ln p̃(y|λ̃t+1; θ))dy
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Where A ⊆ R is the subset of the real line over which the divergence is evaluated. For a

given pt, a parameter update will be said to be RKL optimal if and only if ∆t|t < 0

Thus, if the RKL variation is negative, then p̃(·|λ̃t+1) approximates p(·|λt) better than

p̃(·|λ̃t).
The authors in their main proposition show that only particular first order observation

driven models will be RKL optimal, specifically ones that utilize the score in the updating

equation for λ̃t. They are defined as follows.

Definition 4.1.2. Newton-score update Blasques et al. (2015)

A Newton-score update model is defined as

Yt ∼ p̃(yt|λ̃t,θ),

λ̃t+1 = φ(λ̃t, yt,θ) := λ̃t + αSts̃t, (4.2)

s̃t := s̃t(λ̃t, yt,θ) := ∂ log p̃(yt|λ,θ)/∂λ|λ=λ̃t

where St := S(λ̃t,θ) is a positive scaling function that possibly depends on the filtered

time varying parameter λ̃t and the static parameter θ.

As one can notice, the Newton-score update is a score driven model with a simple

dynamic equation for the time varying parameter that depends only on a single static

parameter: α.

The conditions that are assumed for the main proposition of Blasques et al. (2015) to

hold are regularity conditions on the support of the true conditional p(yt|λt), the score

of the postulated model s̃t should be non zero, and a crucial sign condition on both α

and St.

Assumption 4.1.3.

p(yt|λ) > 0 ∀ (yt, λ) ∈ R× Λ and s̃t(λ̃t, yt,θ) 6= 0 for every (λ̃t,θ) ∈ Λ̃× Θ and almost

every yt ∈ R for all t.

Assumption 4.1.4. α > 0 and S(λ̃t,θ) > 0 ∀ (λ̃t,θ) ∈ Λ̃×Θ and all t.

The first statement in 4.1.3 excludes those values of the time-varying parameter that

result in a distribution for Yt that is degenerate while the second statement in 4.1.3
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excludes the possibility of the time-varying parameter being non-identified at certain

update steps. Condition 4.1.4 instead imposes two sign conditions on α and S(λ̃t,θ)

to ensure the information contained in the score is not “distorted”, technically, as will

be made clear in section 4.2, since the score indicates the direction of steepest ascent

towards the log-likelihood maximum one needs to ensure that the sign of the score is

retained in the model specification.

Proposition 4.1.5. Blasques et al. (2015)

Under Condition 4.1.3 and 4.1.4 every Newton-score update is locally RKL optimal for

any true density pt. Where the word locally signifies that ∃ δy, δλ > 0 such that ∆t|t < 0

for all sets of the form

Λδλ(λ̃t) := {λ̃ ∈ Λ̃ : |λ̃− λ̃t| < δλ}
Yδy(yt) := {y ∈ Y : |y − yt| < δy}

The proof is given in appendix B.

An issue with the result, as reformulated in Blasques et al. (2018), lies in the local

nature of the derivations. Indeed, locally, the KL divergence can be negative. The

KL divergence is necessarily positive only if evaluated over the entire support of the

probability densities. In turn this leads to a breakdown in the significance of ∆t|t since

imposing that

DKL(pt, p̃t+1)−DKL(pt, p̃t) < 0

locally does not guarantee that we are approximating pt better with p̃t+1 than p̃t.

Hence, a sufficient condition for the local KL divergence to be positive is that the set

Yδy defined as a neighborhood of yt, must be such that the true conditional density pt
dominates the filtered density p̃t, i.e., pt(y) > p̃t(y) for all y ∈ Yδy . The revision given in

Blasques et al. (2018) proceeds to state that “in general, given the local nature of the

Yδy , the majority of the realizations yt will deliver a set Yδy that satisfies the additional

condition.”

Recently there have been other attempts at proving why score driven models are optimal

among observation driven models: an extensive Monte Carlo study was performed in

Blasques et al. (2017) where the RKL divergence of the GARCH model, the fat-tailed

t-GARCH model of Bollerslev (1987) , the t-GAS model of Creal et al. (2011) and the

log-GAS model introduced by Harvey (2013) was computed. Score driven models were

found to perform well, in this finite sample setting, especially when the data used was

fat-tailed. In Blasques et al. (2019) score driven models were compared to other well-

known nonlinear dynamic models such as the threshold model Tong and Lim (2009) and
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smooth transition auto-regressive model Chan and Tong (1986) and found to perform

well.

4.2 A Novel Optimality Criterion

In this section, motivated by the framework developed in Blasques et al. (2015), we prove

that score driven models possess an intuitive, global and high-dimensional property.

The setting will be the one of full generality discussed up until now, with the difference

that we focus on the sequence of pseudo-true parameters {λ∗t}t∈Z, i.e., the sequence of

values that maximize the sequence of expected pseudo-true likelihoods

λ∗t = arg max
λ̃

EYt [log p̃(Yt|λ̃, θ)]

since these are the values that minimize the Kullback Leiber divergence between the

true probability density of the DGP and the model density at each time t, as discussed

in the seminal papers by Akaike (1998) and White (1982). We also remark, to avoid

confusion, that we will now consider score driven models as stochastic processes rather

than as realizations of stochastic processes, i.e., we utilize definition 3.2 instead of 4.1.

The tuple formed by the expectation of the pseudo-true likelihood viewed as a function of

the time varying parameter of interest ft(λ̃) and the sequence of pseudo-true parameters,

i.e. ,

ft(λ̃) : λ̃→ EYt [log p̃(Yt|λ̃, θ)], {λ∗t}t∈Z
will be the main building blocks of our analysis.

Prompted by the framework discussed in section 4.1 we focus on the improvement that

the score driven updating step produces in terms of distance from the pseudo-true time

varying parameter λ∗t . The novelty here is that, rather than looking at a notion of dis-

tance between probability distributions, as was previously given by the KL divergence,

we will focus on the Euclidean distance between the two pseudo-true time varying pa-

rameters λ∗t , λ
∗
t+1 and the model parameter λ̃t at each time t. As was the case in Blasques

et al. (2015), it is not mathematically feasible to always decrease the distance to the

pseudo-true parameter λ∗t+1 with an observation yt that comes from the true density

at the previous time p(yt|λt) unless we introduce assumptions on the evolution through

time of the pseudo-true time varying parameter. Imposing conditions on the evolution

of the pseudo-true time varying parameter will be discussed in section 4.2.2, where some

results are given in this direction.

Specifically, given an initial value for the model parameter λ̃t, we prove, under some con-

ditions, that the new observation yt, drawn from p(yt|λt), produces an update from λ̃t to

λ̃t−1 that always decreases the Euclidean distance from the pseudo-true parameter λ∗t in
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conditional expectation. The decrease, the expectation, of the Euclidean distance will

be proved by solving, through techniques belonging to the stochastic gradient descent

theory, the aforementioned time varying optimization problem specified by the sequence

of model expected log-likelihoods. We then give a definition for such a property that

formalizes the fact already noted by Creal et al. (2013) that the score points in the

“steepest ascent direction for improving the model’s local fit in terms of the likelihood

or density at time t”. Indeed the properties is a natural consequence of the monotonicity

in expectation of the stochastic gradient descent algorithm 2.3 at each time step t. The

conditional expected variation optimality property thus mirrors the notion of KL opti-

mality on the parameter space instead of on the space of distributions. We also explicitly

remark that the expectation notation EYt|Y t−1 [·] indicates the conditional expectation of

Yt with respect to all previous random variables Yt−1, Yt−2, . . . .

Definition 4.2.1. Conditional Expected Variation Optimality

The conditional expected variation (CEV) of a parameter update from λ̃t ∈ Λ̃ ⊆ R to

λ̃t+1 ∈ Λ̃ ⊆ R at time t is given by

∆Et|t−1
=
∥∥∥λ∗t − EYt|Y t−1

[
λ̃t+1

]∥∥∥− ∥∥∥λ∗t − λ̃t∥∥∥
a parameter update will be said to be CEV optimal if and only if ∆Et|t−1 < 0

Besides simplifying the analysis and making it more intuitive the reason for this change

of distance from the space of distributions to the parameter space comes mainly from

the fact that, even in the case of correct model specification, if we get closer to the true

time varying parameter it does not imply that we get closer to the true distribution in

KL divergence. That is,
∥∥∥λt − λ̃t+1

∥∥∥ ≤ ∥∥∥λt − λ̃t∥∥∥ does not imply

DKL(pt(yt|λ̃t+1), pt(yt|λt)) ≤ DKL(pt(yt|λ̃t), pt(yt|λt))

And the dynamic equation 3.2 aims to predict the time varying parameter not the time

varying distribution. Because of this fact, and the local nature of the RKL variation, it

is hard to establish a clear relationship between the two optimality concepts.

If CEV optimality holds for all t then it is also closely related to the desirable invertibility

property 3.2.14 since then the model time varying parameter gets closer (in expectation)

at each step to the pseudo-true time varying parameter no matter what initial value is

given to start the recursion. We discuss this more thoroughly in section 4.2.3.

As before to simplify the notation we will use unambiguously the symbols p̃(yt|λ̃t) or p̃t
to represent p̃(yt|λ̃, θ) and pt to represent pt(yt|λt).
We also take for granted the following standard assumption that holds true for most

model probability densities p̃(yt|λ̃t)
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Assumption 4.2.2.

The gradient with respect to the parameter of interest λ̃ can be exchanged with respect to

the conditional expectation of the stochastic process at any time t, i.e.

∇EYt|Y t−1 [− log p̃(Yt|λ̃, θ)] = EYt|Y t−1

[
−∇ log p̃(Yt|λ̃, θ)

]
∀t.

With this assumption it is immediately possible to state the conditional expected varia-

tion optimality for a Newton-score update model 4.2, that mirrors the result in Blasques

et al. (2015). The proof will be given in the respective appendix as all the others to

come and checking the assumptions on the sequence {ft(λ̃)}t∈Z in an applied setting will

be discussed in section 4.2.1.

Proposition 4.2.3. CEV Optimality

Let assumptions 2.0.1,2.0.2 and 4.2.2 hold for every function of the sequence {ft(λ̃)}t∈Z.

Then every Newton-score update 4.2 with 0 < Stα < 2/L ∀λ̃t is CEV optimal for any

true density pt, i. e.,

∆Et|t−1
< 0 ∀t

This results is chiefly theoretical since in most practical applications the sequence {ft(λ̃)}t∈Z
is not known (because the expectation is taken with respect to the true distribution that

is usually unknown) so the conditions appear hard to check. Nonetheless, for the purpose

of this thesis, the proposition holds great pedagogical value since it reveals the connec-

tion to optimization theory and will be introductory to the ideas behind the extensions

in the next sections.

As in the proof of proposition 4.1.5 the crucial step is to recover the square of the score

that gives a crucial sign information used throughout the derivations. While, in contrast

to proposition 4.1.5, the proof outline comes directly from the usual machinery of opti-

mization theory, as can be seen the standard inequalities are used, there is no need for a

local argument and the results hold globally. The reason one needs the extra condition

Stα < 2/L in addition to Stα > 0 come exactly from the global nature of the result

(generalizations of this result will impose greater conditions on St highlighting its role

as can bee seen in section 4.2.1). Intuitively the reason why the Lipschitz assumption is

not needed in proposition 4.1.5 is that one can always find a small enough neighborhood

at any point such that a continuous function in that neighborhood will have Lipschitz

continuous gradient. Moreover, as can be seen in the proof of the result, one could

actually show convergence in expectation of the model time varying parameter λ̃t to a

neighborhood of the pseudo-true time varying parameter λ∗t at a fixed time t if it were
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possible to have infinite extractions of the random variable Yt. The implication of this

point of contact between the optimization theory and the econometric theory regarding

score driven models will be the centerpiece of this thesis.

Thus it will be instrumental, to understand the intuition behind proposition 4.2.3 and

the other upcoming propositions, to recast the problem of predicting the time varying

parameter as a time varying optimization problem. On one hand, in the econometric

literature, when modeling a time series with a time varying parameter we proceed as

follows: Having observed a given sequence of T observations {yt}Tt=1 we choose a model,

with the objective of tracking the time varying parameter as closely as possible, that

we believe could fit the data well. Then we estimate the parameters and can perform

various diagnostics for model correctness. The goal is for the modeled time varying

parameter λ̃t to be as close as possible to λ∗t .

On the other hand, under some assumptions on the probability density, λ∗t is exactly

the maximum of the function

ft(λ) : λ→ −E[log p(Yt|λ)]

this results in a sequence of maxima {λ∗t}t∈Z each one associated with the corresponding

objective function ft(λ) and the problem of tracking this sequence of maxima is addressed

by the time varying optimization theory. In this sense time varying optimization of the

sequence of expected model log likelihoods and observation driven modelling of a time

varying parameter share the same objective. This thesis argues that score driven models

are a point of contact between the econometric theory and the time varying optimization

theory. Having already anticipated how the two theories, in the time varying parameter

case, share the same goals, we will prove in following sections some extensions of the

result of CEV optimality that will require weaker assumptions. To do so we will utilize

techniques (as in proposition 4.2.3) that are characteristic of the optimization framework.

4.2.1 Conditional Expected Variation Optimality in Practice

In this section we analyze CEV optimality of score driven models and generalize it

further rendering it obtainable in applied settings.

First we wish to find an analog of proposition 4.2.3 that has assumptions that can be

checked in practice, where we don’t know the true distribution.

Again our main assumptions will be based on the sequence of objective functions (to

emphasize the connection with the optimization literature we will use the optimization

framework nomenclature and call the sequence of functions to be minimized the sequence

of objective functions) that is, as already anticipated, the sequence of expected log
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likelihoods

{ft(λ̃)}t∈N := {−EYt|Y t−1 [log p̃(Yt|λ̃,θ)]}t∈Z
where one can recognize log p̃(Yt|λ̃,θ) as the pseudo log-likelihood function of Yt. Notice

that the conditional Expectation is used because, for score driven models, λ̃ is a function

of past random variables, i. e., λ̃ := λ̃(Y t−1) but often we will want to treat it like a

constant. While the reason we utilize a minus sign in the sequence of objective functions

is to abide with the convention of the optimization literature to talk about minimization

rather than maximization, of course the problems are equivalent.

In this context the minimum of the objective function ft(λ̃) is the pseudo-true time

varying parameter λ∗t that minimizes the KL divergence between the true density pt and

the model one p̃t. This, as already stated, was highlighted by Akaike (1998), and cited

by White (1982). A simple way to see this is given by the equality

EYt|Y t−1 [log p̃(Yt|λ̃,θ)] = EYt|Y t−1 [log p(Yt|λt)]− EYt|Y t−1

[
log

p(Yt|λt)
p̃(Yt|λ̃,θ)

]
the term EYt|Y t−1 [log p(Yt|λt)] does not depend on λ̃ so to minimize ft(λ̃) one needs to

minimize the KL divergence between the true density and the model one.

So the corresponding sequence of points where the sequence of objective functions as-

sumes a minimum is nothing else than the sequence of pseudo-true parameter values

{λ∗t}t∈N that we wish to track as closely as possible. Specifically we would like each

function of the sequence {ft(λ̃)}t∈Z to be under assumptions 2.0.1 and 2.0.2 stated in

chapter 2. Alas in applications we don’t usually know this sequence because the expec-

tation is with respect to the true density of Yt which we generally have no access to. So

our new assumptions must involve only the model density p̃(yt|λ̃,θ) and the choice of

St in the updating equation 4.2.

Assumption 4.2.4.

Let the model density be twice differentiable p̃(yt|λ̃,θ) with respect to λ̃ and have unique

global maximum λ∗t . Also let

∇Sts̃t := −∇
(
St(λ̃,θ)∇ log p̃(yt|λ̃,θ)

)
≤ LI

for all λ̃ ∈ Λ̃, yt ∈ R and all t, where L ∈ R+.

Assumption 4.2.5.

Let the model density be twice differentiable p̃(yt|λ̃,θ) with respect to λ̃ and have unique

global maximum λ∗t . Also let

0 < `I ≤ ∇Sts̃t
for all λ̃ ∈ Λ̃, yt ∈ R and all t, where ` ∈ R+.
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With these conditions on the model density p̃(yt|λ̃,θ) and on St(λ̃t,θ) we will prove

proposition 4.2.7 that utilizes lemma 2.2.2 as inspiration in the stochastic time varying

gradient descent setting. As in lemma 2.2.2 one can make assumptions 4.2.4 and 4.2.5

hold by choosing accurately St so as to modify the score of the model density at each

time t making it a Lipschitz continuous gradient of a strongly convex function. But the

sequence of objective functions that we wish to optimize involves also the expectation

with respect to the unknown density pt, the next lemma tells us that this is not a

problem.

Lemma 4.2.6.

Let assumptions 4.2.2, 4.2.4, 4.2.5 hold. Then

0 < `I ≤ −∇EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] ≤ IL

for all t and λ∗t will uniquely satisfy EYt [St(λ
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)] = 0 .

Although there is no mention of the true density pt in neither of the two conditions

4.2.4, 4.2.5 we have still managed to bound the gradient of the conditional expectation

of St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ).

Lemma 4.2.6 tells us that EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] behaves like a Lipschitz con-

tinuous gradient of a strictly convex function that has minimum in λ∗t mirroring lemma

2.2.2 that required the same inequalities as assumptions in the deterministic case. No-

tice also that one does not need to know λ∗t but merely that it exists, this is often an

implicit assumption used when finding estimators through maximum likelihood; that the

log-likelihood does indeed posses a maximum. Moreover the existence and uniqueness of

λ∗t is a direct implication of the strong convexity of the sequence of model densities for

all yt ∈ R since this implies the strong convexity on the sequence of objective functions,

i.e., assumption 4.2.5 and assumption 4.2.2 imply that the value that would minimize

the expected value of the negative log-likelihood at time t would be the uniquely deter-

mined pseudo-true parameter value λ∗t .

Now we can give another proposition that is mostly just a restatement of proposition

4.2.3.

Proposition 4.2.7.

Let assumptions 4.2.4, 4.2.5 and 4.2.2 hold then if 0 < α < 2/L the Newton-score update

4.2 is CEV optimal for any true density pt, i. e.,

∆Et|t−1
< 0 ∀t
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Thus for the optimality property stated in definition 4.2.1 to hold one has to choose the

model density p̃t and St accurately. Usually this means that the sequence of objective

functions ft(λ̃) are convex and have a unique minima but they lack a Lipschitz continu-

ous gradient. In such a case, choosing St so that assumptions 4.2.4 and 4.2.5 hold, one

still manages to obtain CEV optimality as will be seen in the upcoming examples.

This is the first time, to the authors knowledge, that a prescription for St is made based

on a theoretical result and not a rule of thumb. Since assumption 4.2.4 and 4.2.5 can

be checked comfortably in an applied setting (the model distribution is a choice of the

statistician) and there is essentially no dependence on the true density that is usually

unknown (only assumption 4.2.2 is required that is a standard assumption) this propo-

sition, as opposed to proposition 4.2.3, holds a more practical value.

The curious reader could wonder how restrictive are assumptions 4.2.4 and 4.2.5 and

if they allows for variety of selections when choosing the model density, besides they

require the inequality to hold uniformly in yt ∈ R and λ̃t ∈ Λ̃, a feat that does not

seem easy. In practice the choice of the time varying parameter of interest, of the model

density, of St and even of the link function often used in observation driven models allow

these conditions to hold in a plethora of cases. Here we give some examples for which

the conditions hold

Example 4.2.8.

Let the model density p̃t be chosen as Gaussian for all t and let the parameter of interest

be the mean µ̃ then

∇ log p̃t(yt|µ̃, σ2) =
∂

∂µ̃

(
log

1√
2πσ2

− (yt − µ̃)2

2σ2

)
= (yt − µ̃)/σ2

So simply choosing St(µ̃, σ
2) = 1 we recover assumptions 4.2.4 and 4.2.5 given that

−∇
(
St(µ̃, σ

2)∇ log p̃t(yt|µ̃, σ2)
)

= 1/σ2

As usual the likelihood for the mean of a Gaussian distribution behaves very nicely and

allow us to not bring into play St(µ̃, σ
2).

Example 4.2.9.

Let the model density p̃t be chosen as Gaussian for all t and let the parameter of interest

be the variance σ̃2 then

∇ log p̃t(yt|σ̃2, µ) =
∂

∂σ̃2

(
log

1√
2πσ̃2

− (yt − µ)2

2σ̃2

)
= − 1

2σ̃2
+

(yt − µ)2

2σ̃4
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Choosing St(σ̃
2, µ) = σ̃4 we recover assumptions 4.2.4 and 4.2.5 given that

−∇
(
St(σ̃

2, µ)∇ log p̃t(yt|σ̃2, µ)
)

=
1

2

The natural choice of St(σ̃
2, µ) in this setting is analogous to the choice of the inverse of

the information matrix a proposal that was already given in the literature Creal et al.

(2013) as a rule of thumb, this will be discussed more deeply in section 4.2.2 .

Example 4.2.10.

Let the model density p̃t be chosen as exponential for all t and let the parameter of

interest be the scale parameter β̃, i.e.,

p̃t(yt|β̃, µ) =
1

β̃
exp(−yt/β̃), β̃ > 0

then

∇ log p̃t(yt|β̃, µ) = − 1

β̃
+
yt

β̃2

Choosing St(β̃) = β̃2 we recover assumptions 4.2.4 and 4.2.5 given that

−∇
(
St(β̃)∇ log p̃t(yt|β̃, µ)

)
= 1

One can check that if we had chosen as our time varying parameter λ̃ (the one usually

used to parametrize the exponential)

p̃t(yt|λ̃, µ) = λ̃ exp(−ytλ̃), λ̃ > 0

it would have been impossible to recover assumptions 4.2.4 and 4.2.5 given that

∇ log p̃t(yt|λ̃, µ) =
1

λ̃
− yt

and this gradient is not amendable to corrections through the choice of St.

As we can see to satisfy assumptions 4.2.4 and 4.2.5 up until now we have essentially

used two tools: one is the appropriate choice of the time varying parameter the other is

the choice of the function St(λ̃,θ).

However it might not always be possible to recover a Lipschitz continuous gradient of a

strongly convex function but strict convexity will often be achievable as the next exam-

ples will showcase.
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Example 4.2.11.

Let the model density p̃t be chosen as generalized student-t and let the parameter of

interest be the scale σ̃ > 0 i.e.,

p̃t(yt|σ̃, µ, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ̃

(
1 +

1

ν

(
yt − µ
σ̃

)2
)− ν+1

2

Then

∇ log p̃t(yt|σ̃, µ, ν) = − 1

σ̃
+ (ν + 1)

(
(yt − µ)2

νσ̃3

/
1 +

1

ν

(
yt − µ
σ̃

)2
)

choosing St(σ̃) = σ̃ yields

−∇ (St(σ̃)∇ log p̃t(yt|σ̃, µ, ν)) =
(ν + 1)(yt − µ)22νσ̃

(νσ̃2 + (yt − µ)2)2

that is strictly positive for all σ̃, yt and is also jointly bounded above for all σ̃, yt, this

can be seen by taking the limits as σ̃, yt →∞. Thus we have

0 < −∇ (St(σ̃)∇ log p̃t(yt|σ̃, µ, ν)) < L

we have recovered a Lipschitz continuous gradient of a strictly convex function, propo-

sition 4.2.13 will address the issue of having only strict convexity.

The next example will show that the use of a link function when defining the model

density can also aide in making assumptions 4.2.4, 4.2.5 hold.

Example 4.2.12.

Let the model density p̃t be chosen as generalized student-t and let the parameter of

interest be the scale σ̃ > 0 but now utilize an exponential link function to define the

model as follows

Yt = exp(σ̃t)Xt

where every Xt is independently distributed as a standard t-student distribution with

ν degrees of freedom (this is the case of the Beta-t-EGARCH Harvey and Chakravarty

(2008)), then the model density would be

p̃t(yt|σ̃, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνexp(σ̃)

(
1 +

1

ν

(
yt

exp(σ̃)

)2
)− ν+1

2
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with score given by

∇ log p̃t(yt|σ̃, µ, ν) =
(ν + 1)y2

t

ν exp(2σ̃) + y2
t

− 1

that has second derivative

−∇2 log p̃t(yt|σ̃, µ, ν) =
(ν + 1)y2

t ν2 exp(2σ̃)

(ν exp(2σ̃) + y2
t )

2

and by inspection it is easy to see that

0 < −∇2 log p̃t(yt|σ̃, µ, ν) < L

for all yt and all σ̃ and where L ∈ R+, notice that even here we achieve only strict

convexity, the next proposition will address this issue. Notice that also in this case the

choice of St := 1 is in line with the standard practice when defining a Beta-t-EGARCH

model Harvey and Chakravarty (2008), section 4.2.2 will elaborate more on this.

Since the t student is often used as a model of choice, especially in financial applications

where returns exhibit heavy tails and heteroskedasticity, we wish to extend the theory

developed up until now to include even strictly convex objective functions. The following

proposition is motivated by this goal.

Proposition 4.2.13.

let assumption 4.2.4, 4.2.2 hold and let

0 < −∇
(
St(λ̃,θ)∇ log p̃(yt|λ̃,θ)

)
for all λ̃ ∈ Λ̃, yt ∈ R and all t. Then if 0 < α < 2/L every Newton-score update is CEV

optimal for any true density pt, i. e.,

∆Et|t−1
< 0 ∀t

Consequently even weaker assumptions than 4.2.5 can lead to CEV optimality. This

should not surprise us given that the literature on optimization has found convergence

properties for the gradient descent scheme outside the simplifying assumptions of strong

convexity and a Lipschitz continuous gradient.

The next section aims to generalize the result obtained on CEV optimality to a more

general class of score driven models without restricting ourselves only to the Newton-

score model 4.2 defined in Blasques et al. (2015).
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4.2.2 Adjusted Conditional Expected Variation Optimality

Given that, in practice, observation driven models are often used for prediction, a priority

is to investigate under which conditions an update of a score driven model from an

arbitrary starting value λ̃t moves closer, in expectation, to the pseudo-true parameter at

the next time λ∗t+1, that is, mirroring the CEV definition, what are the conditions under

which ‖λ∗t+1−EYt|Y t−1

[
λ̃t+1

]
‖ < ‖λ∗t − λ̃t‖. This case was not tackled in Blasques et al.

(2015) since it would have required conditions on the evolution of {λ∗t}t∈N, in this section

we will impose some behavior on the sequence of true parameter values to approach this

issue.

Paralleling the assumption in section 2.4.2 but adding a stochastic component we choose

the evolution of λ∗t as that of a stationary AR(1)

Assumption 4.2.14.

Let {λ∗t}t∈N be a stationary autoregressive process of order 1, i. e.,

λ∗t+1 = ω + βλ∗t + εt

where ω ∈ R, β ∈ (−1, 1) and {εt}t∈N is a mean zero white noise process.

The assumption that the pseudo-true time varying parameter follows an autoregressive

process is not new in the literature, the linear Gaussian model and the HAR model

by Corsi (2009) are two popular examples (although the HAR model is an AR(22)).

Moreover, in the case of correct specification, any DGP {Yt}t∈N that evolves according

to the following, commonly used, class of parameter driven models would fall under

assumption 4.2.14

Yt = λ∗t + wt ∀t ∈ N
λ∗t+1 = βλ∗t + εt ∀t ∈ N

where |β| < 1 and the usual assumptions on the sequence of random variables {wt}t∈Z, {εt}t∈Z
hold, namely that

∀t1 6= t2 : εt1 ⊥ εt2 , wt1 ⊥ wt2∀t1, t2 : εt1 ⊥ wt2 , ∀t : E[ε2t ] = Q,E[w2
t ] = R

where the notation X ⊥ Y signifies that X and Y are independent random variables and

Q,R are assumed to be positive real numbers. The same is true for stochastic volatility

models of the type

Yt = λ∗twt ∀t ∈ N
λ∗t+1 = βλ∗t + εt ∀t ∈ N
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where |β| < 1 and the above assumptions on the sequence of random variables {wt}t∈Z, {εt}t∈Z
hold. Observe that, in both models, wt and εt are not necessarily assumed to be normally

distributed.

Given the novel auto-regressive assumption 4.2.14 on the behavior of the pseudo-true

time varying parameter λ∗t , we formally define the new property we shall investigate

Definition 4.2.15.

The adjusted conditional expected variation (ACEV) of a parameter update from λ̃t ∈
Λ̃ ⊆ R to λ̃t+1 ∈ Λ̃ ⊆ R at time t is given by

∆adj
Et|t−1

=
∥∥∥Eεt [λ∗t+1]− EYt|Y t−1

[
λ̃t+1

]∥∥∥− ∥∥∥λ∗t − λ̃t∥∥∥
a parameter update will be said to be ACEV optimal if and only if ∆adj

Et
< 0

This definition closely resembles the one in 4.2.1 the biggest difference being that we find

another expected value with respect to the random variable εt that is needed to control

the stochastic behavior of the pseudo-true parameter, since we assume it evolves accord-

ing to equation 4.2.14. If the variance of εt was zero then we could drop the expectation

with respect to εt altogether, the definition would reduce to the one in 4.2.1 except we

have concordance in the times at which the distances between the model time vary-

ing parameter and the pseudo true time varying parameter are evaluated. This makes

ACEV a more interesting property for predictive purposes than CEV. The following

proposition will show that under the same assumptions of section 4.2.1 this property is

achieved by specific score driven models of order one, as opposed to before where we

proved CEV optimality only for the Newton-score update.

Proposition 4.2.16.

Let assumptions 4.2.4, 4.2.5, 4.2.2, 4.2.14 hold. Then, if 0 < α < (1 + β)/L, every

update of the first order score driven model given by

λ̃t+1 = ω + βλ̃t − αSt(λ̃,θ)s̃(λ̃t, yt,θ) (4.3)

is ACEV optimal for any true density pt, i. e.,

∆adj
Et|t−1

< 0 ∀t

The proof of this proposition utilizes the same techniques of the optimization theory pre-

sented in chapter 2, in particular it can be viewed as the stochastic analogue to 2.4.10
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in section 2.4.2.

For how theoretically pleasing this proposition might be, in practice, there still remains

a glaring flaw: in almost all applied cases we don’t know the parameters ω, β that gov-

ern the DGP so directly specifying the score driven model as in 4.3 is infeasible. One

could think about obtaining estimators for the parameters ω, β under the autoregressive

assumption 4.2.14 and substituting them in the score driven specification, essentially

utilizing score driven models as one step ahead predictors for parameter driven models.

There is already some evidence in the literature supporting this view, see Harvey (2013)

where score driven models are cast as filters of unobserved component models and Flem-

ing and Kirby (2003) where the GARCH(1,1) is seen as a filter for a simple stochastic

volatility model, we leave this avenue for further study.

Alternatively one can view score driven models as observations driven models that may

posses an extra beneficial property (depending on the estimation of the parameters ω, β)

even in the case of model misspecification.

As in proposition 4.2.7 St must be chosen appropriately for assumptions 4.2.4, 4.2.5 to

hold, this diverges from the current literature on score driven models where St is usually

chosen ad-hoc or following some heuristic guideline. Thus proposition 4.2.7 and propo-

sition 4.2.16 mark the first time, to the authors knowledge, that specific conditions are

required on the form of the function St for the model specification to meet an optimal-

ity property. The next corollary shows how the famous GARCH(1,1) specification is

recovered in this framework

Corollary 4.2.17.

Let p̃t(·|σ̃2
t , θ)) be chosen as the mean zero, Gaussian density for all t and assume the

pseudo-true time varying parameter of interest {(σ∗t )2}t∈N evolves according to assump-

tion 4.2.14 then the score driven model

σ̃2
t+1 = ω + βσ̃2

t − αStst (4.4)

with 0 < α < (1 + β)/L and St := σ̃4
t (the inverse of the information matrix) has ACEV

optimal updates for all t, i.e.,

∆adj
Et|t−1

< 0 ∀t

The model in 4.4 has the GARCH(1,1) form since

σ̃2
t+1 = ω + βσ̃2

t − αStst = ω + (β + α)σ̃2
t − αX2

t

The ARCH case could also be recovered in the case that α := −β.

As in lemma 2.2.2 we need to modify the gradient descent update to recover assumptions
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4.2.4 and 4.2.5 on the sequence of objective functions. This is done through the scaling

function St, thus St must be chosen as to make the gradients of the sequence of objec-

tive functions Lipschitz without changing their minimizer. As explained in example 4.2.9

the natural choice is the inverse of the information matrix. Thus corollary 4.2.17 shows

that the choice of St as the inverse of the information matrix occurs naturally, when

requiring ACEV optimality, if the assumption on the distribution of the observations is

Gaussianity. We thus recover a novel motivation for the choice of St as the inverse of

the information matrix, that had already been proposed in the literature Creal et al.

(2013), Harvey (2013). To get the point across, we may imagine an econometrician that

wishes to utilize score driven models to model heteroskedasticity through time without

knowledge of the GARCH specification, if he wanted to achieve ACEV optimality he

would choose St as to satisfy assumptions 4.2.4, 4.2.5 and the natural choice would then

happen to be the inverse of the information matrix, that would then result in a GARCH

specification. Thus, in this paradigm, the choice of St is not made ad-hoc in order to

recover the GARCH specification but it directly follows from the conditions needed to

achieve ACEV optimality. Of course it is already well known that the GARCH specifi-

cation achieves very good results in practice Hansen and Lunde (2005a), consequently

the conditions imposed on St through assumptions 4.2.4 and 4.2.4 are of greater impor-

tance, from an applied perspective, when the distribution of the observations is assumed

non Gaussian. Then novel individual specifications of score driven models that achieve

ACEV optimality may be found.

As exemplified in 4.2.11 and 4.2.12 sometimes, through the choice of St, one only man-

ages to achieve

0 < −∇
(
St(λ̃,θ)∇ log p̃(yt|λ̃,θ)

)
∀λ̃ ∈ Λ̃,∀yt ∈ R,∀t ∈ N (4.5)

As was the case for proposition 4.2.7 we can state an analogous proposition to 4.2.16 in

this increasingly general case

Proposition 4.2.18.

Let assumptions 4.2.4, 4.2.2, 4.2.14 and equation 4.5 hold then, if 0 < α < (1 + β)/L,

every update of the first order score driven model given by

λ̃t+1 = ω + βλ̃t − αSt(λ̃,θ)s̃(λ̃t, yt,θ) (4.6)

is ACEV optimal for any true density pt, i. e.,

∆adj
Et|t−1

< 0 ∀t

The next corollary shows how the Beta-t-EGARCH model introduced by Harvey Harvey

and Chakravarty (2008) is ACEV optimal if the model parameters are chosen correctly.
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Corollary 4.2.19.

Let p̃t(·|σ̃t,θ)) be chosen as a generalized t-student utilizing an exponential link function

for the scale, i.e.,

p̃t(yt|σ̃t, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνexp(σ̃t)

(
1 +

1

ν

(
yt

exp(σ̃t)

)2
)− ν+1

2

, θ := ν (4.7)

and assume the pseudo-true time varying parameter of interest {(σ∗t )}t∈N evolves accord-

ing to assumption 4.2.14 then the score driven model

σ̃t+1 = ω + βσ̃t − αStst (4.8)

with 0 < α < (1 + β)/L and St := 1 has ACEV optimal updates for all t, i.e.,

∆adj
Et|t−1

< 0 ∀t

Under the density assumption 4.7 the score of the generalized t student is

st =
(v + 1)Y 2

t

v exp(2σ̃t) + Y 2
t

− 1

thus equation 4.8 defines a Beta-t-EGARCH(1,1) model

σ̃t+1 = ω + βσ̃t − αStst = ω + βσ̃t − α
(

(v + 1)Y 2
t

v exp(2σ̃t) + Y 2
t

− 1

)
Again we remark that the natural choice of St to satisfy assumptions 4.2.4, 4.2.5 was

the identity (notice that in this case the inverse of the information matrix would not

have satisfied assumptions 4.2.4 and 4.2.5) so the corollary provides a novel motivation,

analogously to the GARCH case, for the choice of St = 1 in the specification of the

Beta-t-EGARCH(1,1), this is already the standard rule of thumb in the literature Har-

vey (2013), Harvey and Chakravarty (2008), Creal et al. (2013).

4.2.3 The Invertibility Conjecture

Let assumption 4.2.14 hold with zero variance of the error term εt and assume a model

of interest is ACEV optimal, i.e., we have that

‖λ∗t+1 − EYt|Y t−1 [λ̃t+1]‖ < ‖λ∗t − λ̃t‖
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ACEV optimality in this case tells us that at every step t the model predicted parameter

λ̃t+1 gets closer than the previous one λ̃t to the time varying pseudo-true parameter value.

One could then expect that

‖λ̃t − λ∗t‖
P−→ 0

This would mean that an ACEV optimal model is invertible, to prove this kind of result

we conjecture that it is possible to adjust the proofs 2.3.2, 2.3.4 utilized to prove con-

vergence of the stochastic gradient descent scheme in a time varying objective function

setting, we leave this avenue for further research.

Notice thought that in this setting we are making an assumption on the behavior of λ∗t
through time, this is unlike the canonical situation that has been analyzed when proving

invertibility of observation driven models Strauman and Mikosch (2006), Wintenberger

(2013), Blasques et al. (2016a) where no assumption on the behavior of λ∗t is made.



Chapter 5

Concluding Thoughts on Score

Driven Models and Further

Research

The use of the derivative of the log-likelihood with respect to the parameter of interest

in the updating equation of observation driven models has found success in applications.

On the other hand, the theoretical implications of the use of the score in the dynamic

equation are yet to be completely uncovered. In this thesis we have analyzed the updat-

ing equation of the score driven class of models and derived a global, high dimensional

property arising by the use of score in the updating equation.

To formalize CEV and ACEV optimality we established a connection with the opti-

mization literature. In fact, choosing a model to track a time varying parameter and

selecting a time varying stochastic optimization scheme to optimize the sequence of ex-

pected log-likelihoods are two problems, that under the appropriate conditions, have a

related goal.

To conclude the thesis, some remarks including further avenues of research can be spelled

out.

1. The time varying optimization problem defined on the sequence of one observation

log-likelihoods is a generalization of maximum likelihood theory, where a fixed pa-

rameter is being estimated, to the case where the parameter to be estimated varies

through time.

2. CEV optimality leads to naturally interpret score driven models as filters for the

time varying parameter of interest, that we can assume to evolve according to

an unknown data generating process. Conversely ACEV optimality characterizes

70
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score driven models as one step ahead predictors by assuming that the quantities

that govern the evolution of the true time varying parameter are known. In this

sense, score driven models appear to act naturally as filters or predictors for state

space models.

3. ACEV optimality also shows how score driven models may be interpreted as a

prediction correction scheme, like the one analyzed in section 2.4.1. The auto-

regressive component being the predictive step that approximates the evolution of

the time varying maxima. While the score component is pushing the dynamics in

the direction of steepest ascent.

λ̃t+1 = γ +

q∑
i=0

βiλ̃t−i︸ ︷︷ ︸
prediction

+

p∑
i=0

αiSt−i
∂ log p̃(Yt−i|λ̃t−i; θ)

∂λ̃t−i︸ ︷︷ ︸
correction

4. A further avenue of research to be investigated when using the Newton-score up-

date 4.2, since it’s CEV optimal for every t, is to perform multiple updates in the

same time frame, i. e., for a fixed t one could execute τ ∈ N Newton-score updates

(gradient descent updates)

λ̃th+1
= λ̃th + αSt(λ̃th ,θ)st(Yt, λ̃th ,θ)

where τ is defined on the basis of a stopping rule. This procedure would be anal-

ogous to what is canonically done in the optimization literature, then one could

set λ̃tτ+1
:= λ̃t+1. Generalizing, in this way, the Newton-score update. The same

reasoning could then be extended to any arbitraty CEV optimal model.

5. A further avenue of research spurred by the optimization theory connection is that

different observation driven models could be inspired by optimization schemes and

retain desirable properties, just as CEV optimality is retained as a consequence

of the monotonicity of the gradient descent updates. For example the following

specification given in the 1-dimensional setting mirrors Newton’s method

λ̃t+1 = γ +

p∑
i=0

αiSt−i
∂ log p̃(Yt−i|λ̃t−i, θ)

∂λ̃t−i

∂2

∂ log p̃(Yt−i|λ̃t−i, θ)
+

q∑
i=0

βiλ̃t−i

Interestingly, it is well known that Newtons method converges faster than gradient

descent, with the caveat of needing the second derivative of the objective function,
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and the scheme has been already generalize to the time varying parameter set-

ting Simonetto et al. (2016), so an observation driven model for a time varying

parameter based on Newtons method could have beneficial theoretical properties.

All these points are left for further research and discussion.



Appendix A

Most proofs in this appendix are standard, when non-standard or original proofs will be

given we will explicitly remark it.

Proof of lemma 2.1.1

We assume first that f is Lipschitz, through an application of the fundamental theorem

of calculus we have

f(y) = f(x) +

∫ 1

0

∂f(x− t(−y + x))

∂t
dt

= f(x) +

∫ 1

0

∇f(x− t(y − x))(y − x) dt

= f(x) +∇f(x)(y − x) +

∫ 1

0

(∇f(x− t(y − x))−∇f(x))(y − x) dt

≤ f(x) +∇f(x)(y − x) +

∫ 1

0

‖∇f(x− t(y − x))−∇f(x)‖‖y − x‖ dt

≤ f(x) +∇f(x)(y − x) +

∫ 1

0

‖y − x‖tL‖y − x‖ dt

≤ f(x) +∇f(x)(y − x) +
L

2
‖x− y‖2

where the Lipschitz assumption was used in the second to last inequality. Notice that

for this direction the convexity was not needed.

Now for the converse, define a function φ(y) := f(y) − y∇f(x) that is convex since its

an affine function of f(y). Notice that this function achieves a global minimum at x

since ∇φ(x) = ∇f(x)−∇f(x) = 0 in addition

φ(y) ≤ φ(z) +∇φ(z)(y − z) +
L

2
‖y − z‖2 (A.1)

since

f(y)− y∇f(x) ≤ f(z)− z∇f(x) + (∇f(z)−∇f(x))(y − z) +
L

2
‖y − z‖2

73
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follows by assumption. Since x is a global minimum we have that

φ(x) ≤ φ

(
y − 1

L
∇φ(y)

)
≤

φ(y) +∇φ(y)

(
y − 1

L
− y
)
∇φ(y) +

1

2L
‖∇φ(y)‖2 = φ(y)− 1

2L
‖∇φ(y)‖2

where we have used equation A.1 in the second inequality, substituting the definition of

φ we obtain

f(y) ≥ f(x) +∇f(x)(y − x) +
1

2L
‖∇f(x)−∇f(y)‖

summing this inequality with the same inequality with x and y reversed we obtain

1

L
‖∇f(x)−∇f(y)‖2 ≤ (∇f(x)−∇f(y))(x− y)

and by applying Cauchy Schwarz we have

1

L
‖∇f(x)−∇f(y)‖2 ≤ (∇f(x)−∇f(y))(x− y) ≤ ‖∇f(x)−∇f(y)‖‖x− y‖

that gives us the Lipschitz condition.

Proof of lemma 2.1.2

We prove only the bound equivalent to strong convexity since the argument for the

bound given by a Lipschitz continuous gradient is analogous given the symmetry in the

equivalent definition given by lemma 2.1.1. We notice that the condition

f(x) ≥ f(y) +∇f(y)(x− y) +
`

2
||x− y||2 ∀x, y

is equivalent to the function g(x) := f(x)− `
2
‖x‖2 being convex since

g(x)− g(y) ≥ ∇g(y)(x− y) ⇐⇒

f(x)− `

2
‖x‖2 − f(y) +

`

2
‖y‖2 ≥ (∇f(y)− `y)(x− y) ⇐⇒

f(x) ≥ f(y) +∇f(y)(x− y) +
`

2
||x− y||2

now define h(y) := g(y)−∇g(x)(y−x) this is another convex function since it’s an affine

mapping of the convex function g, in addition

∇h(y) = ∇g(y)−∇g(x), ∇2h(y) = ∇2g(y)

In particular∇h(x) = 0 thus x is a global minimum of h, from the necessary conditions of

minimum points this implies that ∇2h(x) is positive semi-definite but ∇2h(x) = ∇2g(x)



75

so even ∇2g(x) is positive semi-definite and this implies that ∇2f − `Id×d ≥ 0 .

Now we have to show the converse, i. e., if ∇2f(x) ≥ `Id×d then f is strongly convex,

through an application of Taylor’s theorem we have

f(x) = f(y) +∇f(y)(x− y) +
1

2
(x− y)∇2f(y + t(x− y)(x− y)± 1

2
(x− y)Id×d`(x− y)

for some 0 ≤ t ≤ 1. Since (∇2f(y + t(x− y)− Id×d`) is positive semi-definite we obtain

the bound

f(x) ≥ f(y) +∇f(y)(x− y) +
`

2
‖x− y‖2

this ends the proof.

Proof of lemma 2.1.3

Through an application of the fundamental theorem of calculus

∇f(x) = ∇f(y) +

∫ 1

0

∂∇f(y − t(x− y))

∂t
dt

= ∇f(y) +

∫ 1

0

∇2f(y − t(x− y))T (x− y) dt

= ∇f(y) + A(x− y)

where A =
∫ 1

0
∇2f(y − t(x − y))T dt is Id×d` ≤ A ≤ Id×dL from the bounds on the

Hessian function.

Proof of lemma 2.1.4

From the strong convexity we have

f(x∗)− f(x) ≥ ∇f(x)(x∗ − x) +
`

2
||x∗ − x||2

f(x)− f(x∗) ≥ ∇f(x∗)(x− x∗) +
`

2
||x∗ − x||2

summing both inequalities gives

(∇f(x)−∇f(x∗))(x− x∗) = ∇f(x)(x− x∗) ≥ `||x− x∗||.

Proof of lemma 2.1.5

For the left hand side inequality we minimize both sides of the inequality in 2.0.2 with

respect to x yielding

f(x∗) ≥ f(x)− 1

2`
(∇f(x))2
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that re-arranged gives the PL inequality.

For the right hand side we notice that substituting the minima y = x∗ in assumption

2.0.2 immediately implies that

f(x) ≥ f(x∗) + `(x− x∗)2/2

since ∇f(x∗) = 0.

Proof of lemma 2.1.6

As in the previous proof of lemma 2.1.5: the right had side inequality follows immedi-

ately choosing y = x∗ in the inequality in 2.0.1.

The left had side inequality follows by minimizing both sides of the inequality in 2.0.1

with respect too x

min
x
f(x) ≤ min

x

(
f(y) +∇f(y)(y − x) +

1

2L
||y − x||2

)
=⇒

f(x∗) ≤ f(x)− 1

2L
||∇f(x)||2

Proof of lemma 2.1.7

the proof follows the same argument as lemma 2.1.1, define two convex functions

fx(z) := f(z)−∇f(x)T z, fy(z) := f(z)−∇f(y)T z

these functions are convex because

fx(αz1 + βz2) := f(αz1 + βz2)−∇f(x)T (αz1 + βz2) ≤
f(αz1) + f(βz2)−∇f(x)Tαz1 −∇f(x)Tβz2 = fx(αz1) + fx(βz2)

for any α, β ∈ R+ such that α + β = 1. Furthermore it is immediate that the two

functions have Lyschitz continuous gradient, so

f(y)− f(x)−∇f(x)T (x− y) = fx(y)− fx(x) ≥
1

2L
||∇fx(y)||2 =

1

2L
||∇f(y)−∇f(x)||2

similarly we can find

f(x)− f(y)−∇f(y)T (y − x) ≥ 1

2L
||∇f(y)−∇f(x)||2

summing these last two inequalities we obtain the result.
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Proof of proposition 2.2.1

Utilizing lemma 2.1.3 and choosing y = x∗, x = xk one obtains

∇f(xk) = ∇f(x∗) + Ak(xk − x∗) = Ak(xk − x∗).

Recalling that the gradient descent update is xk+1 = xk − α∇f(xk), we have

||xk+1 − x∗||2 = ||xk − α∇f(xk)− x∗||2 = ||(Id×d − αAk)(xk − x∗)||2 ≤
||Id×d − αAk||||xk − x∗||2.

For every symmetric matrix A it is true that ||I − A|| = max{|1 − λ1|, |1 − λn|} where

λ1, λn are respectively the smallest and largest eigenvalues of A. Hence ||xk+1 − x∗||2 ≤
q||xk − x∗||2, q = max{|1 − λ1|, |1 − λn|}. Since 0 < α < 2/L and 0 < ` < L then

|1− α`| < 1, |1− αL| < 1 so q < 1.

Minimizing q over α we obtain q = max{|1− α`|, |1− αL|} < 1.

Proof of lemma 2.2.2

This is an original modification of 2.2.1.

As in the proof of lemma 2.1.3

g(∇f)(x) = g(∇f)(y) +

∫ 1

0

∂g(∇f)(y − t(x− y))

∂t
dt

= g(∇f)(y) +

∫ 1

0

∇(g(∇f)(y − t(x− y)))T (x− y) dt

= g(∇f)(y) + A(x− y)

where A :=
∫ 1

0
∇(g(∇f)(y − t(x − y)))T dt is such that Id×d` ≤ A ≤ Id×dL from the

hypothesis.

The rest of the proof mirrors the previous proof of proposition 2.2.1 since

||xk+1 − x∗||2 = ||xk − αg(∇f)(xk) + αg(∇f)(x∗)− x∗||2 = ||(Id×d − αAk)(xk − x∗)||2 ≤
||Id×d − αAk||||xk − x∗||2

where we have used that αg(∇f)(x∗) = 0.

Proof of proposition 2.3.2

Take the squared norm of the difference from the t + 1 step in the scheme and the

minimum x∗

||xt+1 − x∗||2 = ||xt − αtg(Xt, xt)− x∗||2 =

||xt − x∗||2 − 2αtg(Xt, xt)(xt − x∗) + α2
t ||g(Xt, xt)||2.
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Taking conditional expectations produces

EXt|Xt−1 [||xt − x∗||2]− 2αt∇f(xt)(xt − x∗) + α2
tEXt|Xt−1 [||g(Xt, xt)||2] (A.2)

from the strong convexity assumption 2.0.2 we obtain the bound

−∇f(xt)(xt − x∗) ≤ f(x∗)− f(xt)−
`

2
‖x∗ − xt‖2

utilizing this bound in A.2 we recover

EXt|Xt−1 [||xt+1 − x∗||2] ≤ (1− αt`)||xt − x∗||2 − 2αt(f(xt)− f(x∗)) + α2
tEXt|Xt−1 [||g(Xt, xt)||2]

taking total expectations and substituting in assumption 2.3.1 we have

E[||xt+1 − x∗||2] ≤ (1− αt`)E[||xt − x∗||2] + αt(αtM0 − 2)E[(f(xt)− f(x∗))] + α2
tM

≤ (1− αt`)E[||xt − x∗||2] + α2
tM

where the last inequality follows since αt ≤ 2/M0 for all t by assumption. Now proceeding

by induction we have for the base case that E[||x1 − x∗||2] = ||x1 − x∗||2 ≤ v by the

definition of v and the fact that the initial point x1 ∈ Rd is deterministic. Assuming

that E[||xt − x∗||2] ≤ v/t we prove the inductive case

E[||xt+1 − x∗||2] ≤
(

1− c`

t

)
E[||xt − x∗||2] +

c2

t2
M

≤
(

1− c`

t

)
v

t
+
c2

t2
M

since c < 1/` and we have used the inductive assumption. Then(
1− c`

t

)
v

t
+
c2

t2
M =

(
t− 1

t2

)
v −

(
c`− 1

t2

)
v +

c2

t2
M ≤

(
t− 1

t2

)
v

where the last inequality follows from the fact that v ≥ c2M/(c`−1). Now noticing that

t2 ≥ (t+ 1)(t− 1) we obtain that

E[||xt+1 − x∗||2] ≤
(
t− 1

t2

)
v ≤ v

t+ 1

this concludes the proof.

Proof of proposition 2.3.4

Define ht := ||xt+1 − x∗||2, we have

ht+1 − ht = α2
t‖g(Xt, xt)‖2 − 2αt(xt − x∗)g(Xt, xt) (A.3)
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taking conditional expectations

EXt|Xt−1 [ht+1 − ht] = α2
tEXt|Xt−1 [‖g(Xt, xt)‖2]− 2αt(xt − x∗)∇f(xt) ≤

α2
t (M +M1||∇f(xt)||2)− 2αt(xt − x∗)∇f(xt) (A.4)

where assumption 2.3.1 has been used. Applying lemma 2.1.4 and lemma 2.1.6 to A.4

we obtain

EXt|Xt−1 [ht+1 − (1 + α2
tM1L

2)ht] ≤ α2
tM − 2αt`||xt − x∗||2 ≤ α2

tM (A.5)

at this point we notice that E[ht] is bounded, a fact that we will use later, indeed by

taking total expectations and recursively substituting we have

E[ht+1] ≤ E[ht](1 + α2
tM1L

2) + α2
tM ≤

E[h1]
t∏
i=1

(1 + α2
iM1L

2) +
t−1∑
i=1

α2
iM

t∏
j=i+1

(1 + α2
jM1L

2) + α2
tM

and this quantity converges since E[h1] = h1 is a constant (we start the algorithm at a

chosen point),
∏t

i=1(1 + α2
iM1L

2) converges given that

log

(
t∏
i=1

(1 + α2
iM1L

2)

)
=

t∑
i=1

log(1 + α2
iM1L

2) ≤
t∑
i=1

α2
iM1L

2 (A.6)

and
∑t

i=1 α
2
iM1L

2 converges by assumption, thus also
∑t−1

i=1 α
2
iM

∏t
j=i+1(1 + α2

jM1L
2)

converges as
∏t

j=i+1(1 + α2
jM1L

2) is bounded and the last term α2
tM trivially goes to

zero. Now define

ut :=
t−1∏
i=1

1

1 + α2
iM1L2

, h′t = utht

notice that ut converges to a strictly positive quantity since following a similar argument

as before

log(ut) = −
t−1∑
i=1

log(1 + α2
iM1L

2) ≥ −
t−1∑
i=1

α2
iM1L

2

and the right hand side converges since
∑∞

i=1 αi < ∞ implying that ut converges to a

strictly positive quantity u∞ > 0. Multiplying both sides of A.5 by ut we obtain

EXt|Xt−1 [h′t+1 − h′t] ≤ α2
tutM

from which we have that

E[1Ft(h
′
t+1 − h′t)] = E[1FtEXt|Xt−1 [h′t+1 − h′t]] ≤ α2

tutM
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where Ft := {ω ∈ Ω|EXt|Xt−1 [h′t+1 − h′t] > 0}. So

∞∑
i=1

E[1Fi(h
′
i+1 − h′t)] ≤

∞∑
i=1

α2
iuiM <∞

again by the fact that
∑∞

i=1 αi < ∞ and ut → u∞, thus theorem 2.3.3 implies h′t
converges almost surely. From this ht also converges almost surely since ut → u∞ > 0

(here the positiveness is important).

At this point we just need to show that ht converges to zero, to do this we apply

conditional expectation plus assumption 2.3.1 and subsequently total expectations to

equation A.3 obtaining

E[ht+1] ≤ E[ht] + α2
tE[ht]M1L

2 − 2αtE[(xt − x∗)∇f(xt)] + α2
tM

that through recursive substitution becomes

E[ht+1] ≤ E[h1] +
t∑
i=1

α2
iE[hi]M1L

2 − 2
t∑
i=1

αiE[(xi − x∗)∇f(xi)] +
t∑
i=1

α2
iM

the boundedness of E[ht] proven at equation A.6 gives us convergence of the series∑t
i=1 α

2
iE[hi]M1L

2 while
∑t

i=1 α
2
iM converges by assumption this implies that

∞∑
i=1

αiE[(xi − x∗)∇f(xi)] <∞

and by the assumption that
∑∞

i=1 αi =∞ it must be true that E[(xi− x∗)∇f(xi)]→ 0,

it is well known in probability theory that we can extract from a sequence convergent

in mean a subsequence xit converging almost surely, so (xit − x∗)∇f(xit)→ 0 but

(xit − x∗)∇f(xit) ≥ `hit ≥ 0

this shows that hit → 0 thus ht → 0 almost surely concluding the proof.

Proof of lemma 2.4.1

Without loss of generality we can consider the case where

ut+1 ≤ q0ut + q1ut−1 + · · ·+ qput−p

since setting u∗ = ε/(1− q0 − q1 − · · · − qp) one obtains that

(ut+1 − u∗) ≤ q0(ut − u∗) + q1(ut−1 − u∗) + · · ·+ qp(ut−p − u∗)
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It is well known in the recurrent sequence literature that a sequence {ut}t∈N is a solution

to the recurrence relation

ut+1 = q0ut + q1ut−1 + · · ·+ qput−p

if and only if

ut+1 = a0r
t+1
0 + a1r

t+1
1 + · · ·+ apr

t+1
p

where a0, a1, . . . , ap are real numbers and r0, r1, . . . , rp are roots of the characteristic

equation

rp+1 − q0r
p − q1r

p−1 − · · · − qp = 0

thus

ut+1 ≤ a0r
t+1
0 + a1r

t+1
1 + · · ·+ apr

t+1
p

and the right hand side goes to zero as t goes to infinity since all the roots are assumed

by hypothesis inside the unit circle.

Proof of proposition 2.4.2

As in the proof of proposition 2.2.1 we recover that

||xt+1 − x∗t || = ||xt − α∇ft(xt)− x∗t || ≤ q||xt − x∗t ||

this yields

||xt+1 − x∗t+1|| ≤ ||xt+1 − x∗t ||+ ||x∗t − x∗t+1|| ≤ q||xt − x∗t ||+ a

utilizing lemma 2.4.1 setting ut := ||xt − x∗t || we obtain the result.

Proof of proposition 2.4.3

As in the proof of proposition 2.4.2 we easily recover

||xt+1 − x∗t || = ||xt − α∇ft(xt)− x∗t || ≤ q||xt − x∗t ||

and we have

||xt+1 − x∗t+1|| ≤ ||xt+1 − x∗t ||+ ||x∗t − x∗t+1|| ≤ q||xt − x∗t ||+ ||x∗t − x∗t+1|| (A.7)

from lemma 2.1.5 we know that ||∇ft(xt)|| ≥ `‖xt − x∗t‖ from which we have that

‖∇ft+1(x∗t+1)−∇ft(x∗t+1)‖ ≥ `‖x∗t+1 − x∗t‖

since ∇ft+1(x∗t+1) = 0. Consequently from equation A.7 we have

||xt+1 − x∗t+1|| ≤ q||xt − x∗t ||+
1

`
‖∇ft+1(x∗t+1)−∇ft(x∗t+1)‖ = q||xt − x∗t ||+

h

`
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now through lemma 2.4.1 we have the result.

Proof of lemma 2.4.7

Let us begin by analyzing the forward method Euler method applied to a general vector-

valued dynamical system

ẋ = F (x(t), t) (A.8)

if we apply the forward Euler method starting at a certain point x(tk) we obtain

xk|k+1 = x(tk) + hF (x(tk), tk) (A.9)

on the other hand, we can write x(tk+1) through a Taylor expansion as

x(tk+1) = x(tk) + hF (x(tk), tk) +
h2

2

d

dt
F (x(t), t)|t=s (A.10)

for a certain time s ∈ [tk, tk+1] since F (x(tk), tk) is the first derivative of x(tk).

Subtracting the equality A.9 from A.10 and taking the norm implies that

||xk|k+1 − x(tk+1)|| = ||∆k|| =
∣∣∣∣∣∣∣∣h2

2

d

dt
F (x(t), t)|t=s

∣∣∣∣∣∣∣∣
From the chain rule for multivariate functions we know that

d

dt
F (x(t), t) = ∇tF (x, t) +∇xF (x, t)ẋ = ∇tF (x, t) +∇xF (x, t)F (x(t), t)

where in the last equality we have used equation A.8.

An application of the triangle inequality yields∣∣∣∣∣∣∣∣ ddtF (x(t), t)

∣∣∣∣∣∣∣∣ ≤ ||∇tF (x, t)||+ ||∇xF (x, t)F (x(t), t)|| (A.11)

our goal will be to upper bound the right hand side, to do this we recall that our specific

continuous dynamical system in A.8 is given by

F (x(t), t) = − [∇xxft(x)]−1∇txft(x)

applying the chain rule to the partial derivative with respect to time results in

∇tF (x, t) = −∇t

[
[∇xxft(x)]−1∇txft(x)

]
=

[∇xxft(x)]−1∇ttxft(x)− [∇xxft(x)]−2∇txxft(x)∇txft(x)
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taking norms and the triangle inequality

||∇tF (x, t)|| ≤ || [∇xxft(x)]−1∇ttxft(x)||+ || [∇xxft(x)]−2∇txxft(x)∇txft(x)||

now utilizing both the bounds present in assumptions 2.4.4 and 2.4.5 we are left with

||∇tF (x, t)|| ≤ C0C2

`2
+
C3

`
(A.12)

applying the same line of reasoning to the second component of the right-hand side of

A.11 yields

||∇xF (x, t)F (x(t), t)|| = ||([∇xxft(x)]−1∇xtxft(x)− [∇xxft(x)]−2∇xxxft(x)∇txft(x))F (x(t), t)|| =
|| − [∇xxft(x)]−2∇txft(x)∇xtxft(x) + [∇xxft(x)]−3∇xxxft(x) [∇txft(x)]2 || ≤
C0C2

`2
+
C2

0C1

`3
(A.13)

where in the last equality we have again used assumptions 2.4.4 and 2.4.5. At this point

the result holds by combining the upper bounds of A.12 and A.13.

Proof of proposition 2.4.8

For the sake of simplicity define

∇xxf := ∇xxftk(xk), ∇txf := ∇txftk(xk),

∇xxf
∗ := ∇xxftk(x

∗(tk)), ∇xxf
∗ := ∇txftk(x

∗(tk))

where x∗(tk) is the minimum of the function ftk .

Let’s begin by evaluating the error term coming from the approximate time derivative

in 2.10. In particular consider the Taylor expansion of the gradient ∇xftk−1
(xk) with

Lagrange remainder.

∇xftk−1
(xk) = ∇xftk(xk)− h∇txftk(xk) +

h2

2
∇ttxfs(xk)

where s ∈ [tk−1, tk]. Rearranging we see that the partial mixed gradient can be written

as

∇txftk(xk) =
∇xftk(xk)−∇xftk−1

(xk)

h
+
h

2
∇ttxfs(xk)

from the definition of approximate partial mixed gradient this becomes

∇txftk(xk)− ∇̃txftk(xk) =
h

2
∇ttxfs(xk)
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we know from assumption 2.4.5 that ∇ttxfs(xk) is bounded above by C3 therefore

||∇txftk(xk)− ∇̃txftk(xk)|| ≤
hC3

2
(A.14)

we have thus successfully bounded the error term of the approximate time derivative

2.10.

Then adding and subtracting the exact prediction direction h [∇xxf ]−1∇txf from the

definition of xk+1|k in 2.6 we have

xk+1|k = xk − h [∇xxf ]−1∇txf + h [∇xxf ]−1
(
∇txf − ∇̃txf

)
at this point we subtract

x∗k+1|k + x∗(tk+1) = x∗(tk)− h [∇xxf
∗]−1∇txf

∗ + x∗(tk+1)

that is the definition of xk+1|k knowing ∇txf
∗ to which we have added on both sides

x∗(tk+1), the asterisk notation x∗k+1|k indicates that we start from the minimum x∗(tk).

Computing the subtraction we obtain

xk+1|k − x∗(tk+1) = xk − x∗(tk)+

h
(
[∇xxf ]−1∇txf − [∇xxf

∗]−1∇txf
∗)+ h [∇xxf ]−1

(
∇txf − ∇̃txf

)
+ x∗k+1|k − x∗(tk+1)

considering the norm and utilizing the triangle inequality leads to

||xk+1|k − x∗(tk+1)|| ≤ ||xk − x∗(tk)||+
h|| [∇xxf ]−1∇txf − [∇xxf

∗]−1∇txf
∗||+ h|| [∇xxf ]−1 (∇txf − ∇̃txf)||+ ||∆∗k|| (A.15)

where ∆∗k = x∗k+1|k−x∗(tk+1). We can upper bound the error norm ||∆∗k|| through lemma

2.4.7 also from A.14 and assumption 2.4.5 we can bound the third term

|| [∇xxf ]−1 (∇txf − ∇̃txf)|| ≤ C3h

2`

now we turn our attention to the final term || [∇xxf ]−1∇txf − [∇xxf
∗]−1∇txf

∗||. First

we add and subtract [∇xxf
∗]−1∇txf then we use the triangle inequality to obtain

|| [∇xxf ]−1∇txf − [∇xxf
∗]−1∇txf

∗|| ≤
|| [∇xxf ]−1∇txf − [∇xxf

∗]−1∇txf ||+ || [∇xxf
∗]−1∇txf − [∇xxf

∗]−1∇txf
∗|| ≤

C0|| [∇xxf ]−1 − [∇xxf
∗]−1 ||+ 1

`
||∇txf −∇txf

∗||
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where in the last inequality we have used both assumption 2.4.4 and 2.4.5.

We now further bound the first term of the right-hand side. To do that, we use the

non-singularity of the Hessian to write

|| [∇xxf ]−1 − [∇xxf
∗]−1 || = || [∇xxf

∗]−1 (∇xxf −∇xxf
∗) [∇xxf ]−1 ||

then we use again the strong convexity constant ` of assumption 2.4.4 to recover

|| [∇xxf
∗]−1 (∇xxf −∇xxf

∗) [∇xxf ]−1 || ≤ 1

`2
||(∇xxf −∇xxf

∗)|| (A.16)

now we apply the mean value theorem with x̃ as a point on the line between xk and

x∗(tk) to obtain

||(∇xxf −∇xxf
∗)|| ≤ ||∇xxxftk(x̃)|| ||xk − x∗(tk)|| ≤ C1||xk − x∗(tk)|| (A.17)

Applying the same argument for the mixed second-order term implies

||(∇txf −∇txf
∗)|| ≤ C2||xk − x∗(tk)|| (A.18)

Substituting A.17 and A.18 back into A.16 yields

|| [∇xxf ]−1∇xtf − [∇xxf
∗]−1∇xtf

∗|| ≤
(
C0C1

`2
+
C2

`

)
||xk − x∗(tk)||

We have thus bounded all three terms of inequality A.15, substituting the three bounds

in A.15 we remain with

||xk+1|k − x∗(tk+1)|| ≤ σ||xk − x∗(tk)||+
h2

2

[
C2

0C1

`3
+

2C0C2

`2
+

2C3

`

]
(A.19)

where σ := 1 + h(C0C1/`
2 + C2/`) as defined in the statement of the theorem.

For the correction step 2.7 we may use the standard property of gradient descent for

strongly convex functions with Lipschitz gradients. In particular, the Euclidean error

norm of the gradient descent method converges as

||x̂s+1
k+1 − x

∗(tk+1)|| ≤ ρ||x̂sk+1 − x∗(tk+1)||

this is just proposition 2.2.1. Recalling that the sequence x̂sk+1 is initialized by the

predicted variable xk+1|k and the corrected variable xk+1 is equal to x̂τk+1 we can write

||xk+1 − x∗(tk+1)|| ≤ ρτ ||xk+1|k − x∗(tk+1)|| (A.20)

we are now ready to consider the combined error bound achieved by the prediction

correction scheme. By plugging the correction error of A.20 into the prediction error of

A.19 we obtain

||xk+1 − x∗(tk+1)|| ≤ ρτσ||xk − x∗(tk)||+ ρτΓ (A.21)
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where Γ := h2/2 [C2
0C1/`

3 + 2C0C2/`
2 + 2C3/`].

Notice that the relation A.21 between ||xk+1 − x∗(tk+1)|| and ||xk − x∗(tk)|| holds true

even between ||xk − x∗(tk)|| and ||xk−1 − x∗(tk−1)||, i.e.,

||xk − x∗(tk)|| ≤ ρτσ||xk−1 − x∗(tk−1)||+ ρτΓ (A.22)

So recursively applying the equation A.22 backwards in time to the initial time sample

x0 results in

||xk − x∗(tk)|| ≤ (ρτσ)k||x0 − x∗(t0)||+ ρτΓ
k−1∑
i=0

(ρτσ)i

if the time interval h is such that ρτσ < 1 this leads to

||xk − x∗(tk)|| ≤ (ρτσ)k||x0 − x∗(t0)||+ ρτΓ

[
1− (ρτσ)k

1− ρτσ

]
this is the second statement of proposition 2.4.8.

To establish the other statement we can upper bound the term || [∇xxf ]−1∇xtf −
[∇xxf

∗]−1∇xtf
∗|| in a worst case scenario utilizing the bound given in assumption 2.4.5

to obtain

|| [∇xxf ]−1∇xtf − [∇xxf
∗]−1∇xtf

∗|| ≤ 2C0

`

substituting this bound into A.15 instead of the previously used bound yields

||xk+1|k − x∗(tk+1)|| ≤ ||xk − x∗(tk)||+ h
2C0

`
+ Γ

from the relation in A.20 this becomes

||xk+1 − x∗(tk+1)|| ≤ ρτ ||xk − x∗(tk)||+ ρτ
[
h

2C0

`
+ Γ

]
recursively iterating this equation backwards in time and using the standard formula of

the geometric series we obtain the first statement of proposition 2.4.8

||xk+1 − x∗(tk+1)|| ≤ ρτ(k+1)||xk − x∗(tk)||+ ρτ
[
h

2C0

`
+ Γ

] [
1− ρτ(k+1)

1− ρτ

]

Proof of proposition 2.4.9

Starting from distance between xt+1 and x∗t+1.∣∣xt+1 − x∗t+1

∣∣ = |θxt + ω − α∇ft+1(ω + θxt)− θx∗t − ω| =
|θ(xt − x∗t )− α(∇ft+1(ω + θxt)−∇ft+1(x∗t+1))| =
|θ(xt − x∗t )− αAt+1(ω + θxt − x∗t+1)| ≤ |θ − αθAt+1| |xt − x∗t |
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where we have used the notation At+1 to denote the matrix (in this case a scalar) re-

sulting from the t+ 1-th application of lemma 2.1.3. So we only need to guarantee that

|θ − αθAt+1| < 1. For this to be true we impose (θ − 1)/θ` < α < (θ + 1)/θL using the

fact that ` ≤ At ≤  L for all t by assumption. The bound θ < (`+L)/(L− `) guarantees

that such an α exists.

Proof of proposition 2.4.10

Starting from distance between xt+1 and x∗t+1.∣∣xt+1 − x∗t+1

∣∣ = |θxt + ω − α∇ft(xt)− θx∗t − ω| =
|θ(xt − x∗t )− α(∇ft(xt)−∇ft(x∗t ))| ≤ |θ − αAt| |xt − x∗t |

where we have used the notation At to denote the matrix (in this case a scalar) re-

sulting from the t-th application of lemma 2.1.3. So we only need to guarantee that

|θ − αAt| < 1. For this to be true we impose (θ − 1)/` < α < (θ + 1)/L as in the

proof of proposition 2.4.9 having that ` ≤ At ≤  L for all t by assumption. The bound

θ < (`+ L)/(L− `) guarantees that such an α exists.

All the following proofs are original.

Proof of proposition 2.4.11

Starting from the distance between xt+1 and x∗t+1 and utilizing the mean value theorem

we have

|xt+1 − x∗t+1| = |φ(xt)− α∇ft(xt)− φ(x∗t )| =
|φ′(x̄)(xt − x∗t )− α(∇ft(xt)−∇ft(x∗t ))| ≤ |φ′(x̄)− αAt| |xt − x∗t |

where x̄ is between xt and x∗t and At is the same as in proposition 2.4.10 and 2.4.9.

So we only need to guarantee that |φ′(x̄)− αAt| < 1, from the bounds on φ′ we need

(c+ ε− 1)/` < α < (c− ε+ 1)/L, the assumption c− ε < φ′(x̄) < c+ ε combined with

0 < ε < 1 and 0 < c < ((L+ `)(−ε+ 1))/(L− `) ensures that such an α exists.

Proof of proposition 2.4.12

Take

‖xt+1 − x∗t+1‖ = ‖φ(xt)− α∇ft(xt)− φ(x∗t )‖ =

‖B(xt − x∗t )− α(∇ft(xt)−∇ft(x∗t ))‖ ≤ ‖B − αAt‖‖xt − x∗t‖

where we have called B the symmetric d × d matrix given by an application of lemma

2.1.3 to φ and At is as in propositions 2.4.9 and 2.4.10. For every sum of Hermitian
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matrices A,B it is true that the eigenvalues λi(A), λi(B), that we assume ordered from

smallest to largest, obey the inequality

λi(A+B) ≤ λi(A) + λi(B)

and since c − ε ≤ λi(B) ≤ c + ε and ` ≤ λi(A) ≤ L for all i choosing (c + ε − 1)/` <

α < (c − ε + 1)/L as before, along with the conditions 0 < ε < 1 and 0 < c <

((L+`)(−ε+1))/(L−`) that guarantee that such an α exists, will lead to ‖B−αAt‖ < 1

that concludes the proof.

Proof of proposition 2.4.12

Take

(
xt+1 − x∗t+1

)
=

p+1∑
i=1

θi(xt+1−i − x∗t+1−i)−
p+1∑
i=1

αi∇f(xt+1−i) =

p+1∑
i=1

(θi − αiAi)(xt+1−i − x∗t+1−i)

So we have obtained a recurrent sequence of the form

ut+1 = q0ut + q1ut−1 + · · ·+ qput−p

where ut =
(
xt+1 − x∗t+1

)
and qi = (θi − αiAi). Choosing the αi to make this recurrent

sequence have all roots of its associated characteristic polynomial inside the unit circle

will guarantee convergence. Notice that the αi exist since there is a continuous function

that links roots of a polynomial to its coefficients, and the coefficients θi are those of a

recurrent sequence for which the characteristic equation has roots inside the unit circle.

Appropriate bounds on the α can be found for specific values of p

Proof of proposition 2.4.13

As in proposition 2.2.1

||xk+1 − x∗k+1|| = ||ω + βxk − α∇fk(xk)− (ω + βx∗k + εt)|| ≤
‖Iβ − αAk‖||xk − x∗k||+ ||εt||

and we have that

‖Iβ − αAk‖ < 1 ⇐⇒ −1 + β

`
< α <

1 + β

L

as in proposition 2.4.10. So taking the expectation with respect to εt we can apply

lemma 2.4.1 to reach the conclusion.
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Proof of proposition 2.4.15

The sequence {ft}t∈N is just a sequence of random translations of the function f0, so we

immediately recover that for any t the function ft is under assumption 2.0.1 and 2.0.2.

Performing a quadratic Taylor expansion of ft(xt+1 + εt) around xt and using the fact

that ∇ft is Lipschitz ∀t we obtain

ft+1(xt+1) = ft(xt+1 + εt) ≤

ft(xt) +∇ft(xt)T (xt+1 + εt − xt) +
1

2
∇2ft(xt)||xt+1 + εt − xt||22

≤ ft(xt) +∇ft(xt)T (xt+1 + εt − xt) +
1

2
L||xt+1 − xt||22 + ||εt||22

taking expectations with respect to εt on both sides

Eεt [ft+1(xt+1)− ft(xt)] ≤ ∇ft(xt)T (xt+1 − xt) +
1

2
L||xt+1 − xt||22 + σ2

t

now we substitute in xt+1 = xt − α∇ft+1(xt), the gradient descent update, to find

Eεt [ft+1(xt+1)− ft(xt)] ≤ −(α− 1

2
Lα2)||∇ft(xt)||22 +M

where we have used that σ2
t < M . By lemma 2.1.5 we have that

2`(ft(xt)− f ∗) ≤ ||∇ft(xt)||22 (A.23)

where we are using the notation f ∗ := ft(x
∗) we also notice that the minimum f ∗ of

ft does not depend on t since translations of a function don’t change the value of the

minimum.

Utilizing inequality A.23 and the assumption α < 1/L that implies α(1/2− Lα/2) ≤ 0

we have that

Eεt [ft+1(xt+1)− ft(xt)] ≤ −(α− 1

2
Lα2)||∇ft(xt)||22 +M ≤

− 1

2
α||∇ft(xt)||22 +M ≤ −`α(ft(xt)− f ∗) +M

subtracting f ∗ from both sides and rearranging gives

Eεt [ft+1(xt+1)− f ∗] ≤ (1− `α)(ft(xt)− f ∗) +M

and taking expectations with respect to the joint distribution of all εt−1, εt−2, . . . , ε1
yields

E[ft+1(xt+1)− f ∗] ≤ (1− `α)E[ft(xt)− f ∗] +M
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where the notation on the expected value is left free to avoid cluttering. Subtracting the

constant M/`α from both sides one obtains

E[ft+1(xt+1)− f ∗]− M

`α
≤ (1− `α)

(
E[ft(xt)− f ∗]−

M

`α

)
this is a contraction inequality since α` ≤ `/L ≤ 1. So we can recursively apply it and

the result will follow.



Appendix B

All proofs in this appendix aside from the first one are original.

Proof of proposition 4.1.5

By repeated application of the mean value theorem to p̃(y|λ̃t+1,θ) and s̃t(λ̃t+1, yt,θ)

and using the form of the Newton-score update 4.2, we manage to obtain locally real-

ized Kullback-Leibler optimality by starting from the definition∫
Yδy (yt)

p(y|λt) log
p̃(y|λ̃t,θ)

(y|λ̃t+1,θ)
dy =

−
∫
Yδy (yt)

p(y|λt) log
∂p̃(y|λ̃∗t+1,θ)

∂λ̃
(λ̃t+1 − λ̃t)dy =

−
∫
Yδy (yt)

p(y|λt)s̃t(λ̃∗t+1, yt,θ)αSt(λ̃t,θ)s̃t(λ̃t, yt,θ)dy =

−
∫
Yδy (yt)

p(y|λt)αSt(λ̃t,θ)
(
s̃t(λ̃t, yt,θ)

)2

dy (B.1)

−
∫
Yδy (yt)

p(y|λt)αSt(λ̃t,θ)s̃t(λ̃t, yt,θ)
∂s̃t(λ̃

∗∗
t , y

∗∗
t ,θ)

∂y
(yt − y)dy

−
∫
Yδy (yt)

p(y|λt)αSt(λ̃t,θ)s̃t(λ̃t, yt,θ)
∂s̃t(λ̃

∗∗
t , y

∗∗
t ,θ)

∂λ̃
(λ̃∗t+1 − λ̃t)dy :=

−
∫
Yδy (yt)

p(y|λt)αSt(λ̃t,θ)
(
s̃t(λ̃t, yt,θ)

)2

dy + a(δλ, δy) + b(δλ, δy) < 0 (B.2)

where λ̃∗t+1 is a point between λ̃t+1 and λ̃t, λ̃
∗∗
t+1 is a point between λ̃∗t+1 and λ̃t, y

∗∗
t is a

point between yt and y, and a(δλ, δy), b(δλ, δy) in B.2 are equal to the second and third

remainders terms of B.1, respectively. From assumption 4.1.3 and 4.1.4 we obtain that

αSt(λ̃t,θ)
(
s̃t(λ̃t, yt,θ)

)2

> 0 almost surely, so for every λ̃t and pt there exists γ < 0
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such that

−
∫
Yδy (yt)

p(y|λt)αSt(λ̃t,θ)
(
s̃t(λ̃t, yt,θ)

)2

dy ≤ γ < 0

The desired result now follows upon noting that the second and third terms in B.1

can be made arbitrarily small compared to the first term, due to the differentiability of

the score and the compactness of Yδy(yt). Notice also that a(δλ, δy), b(δλ, δy) go to zero

quicker than the first term in equation B.1 since both their domain of integration and

the function to integrate go to zero.

Proof of proposition 4.2.3

From the square of the norm we have

‖EYt|Y t−1 [λ̃t+1]− λ∗t‖2 = ‖λ̃t − αSt∇ft(λ̃t)− λ∗t‖2 =

‖λ̃t − λ∗t‖2 − 2αSt∇ft(λ̃t)(λ̃t − λ∗t ) + α2S2
t ‖∇ft(λ̃t)‖2.

where we have used assumption 4.2.2 in the first equality.

Since assumptions 2.0.1, 2.0.2 are satisfied we can use lemma 2.1.7 (the co-coercivity of

the convex objective function ft(λ̃t)) to obtain

‖λ̃t − λ∗t‖2 − 2αSt∇ft(λ̃t)(λ̃t − λ∗t ) + α2S2
t ‖∇ft(λ̃t)‖2 ≤

‖λ̃t − λ∗t‖2 − αSt
(

2

L
− αSt

)
‖∇ft(λ̃t)‖2.

Thus, from the assumption that 0 < Stα < 2/L, the result follows.

Proof of lemma 4.2.6

From assumption 4.2.2

∇EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] =

∫
R
pt(yt|λt)∇

(
St(λ̃t,θ)∇ log p̃(yt|λ̃t,θ)

)
dyt

Notice that the conditioning allows us to treat λ̃t like a constant since it only depends

on the previous random variables Y t−1. Then, since assumption 4.2.4 holds uniformly

over all yt, we have that

−
∫
R
pt(yt|λt)∇

(
St(λ̃t,θ)∇ log p̃(yt|λ̃t,θ)

)
dyt ≤

∫
R
pt(yt|λt)IL dyt = LI.
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Utilizing assumption 4.2.5, the same argument holds true for the inequality regarding `.

The fact that the critical point λ∗t remains the only minimum individuated by the roots

of the equality

EYt|Y t−1 [St(λ
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)] = St(λ

∗
t ,θ)EYt|Y t−1 [∇ log p̃(Yt|λ∗t ,θ)] = 0

follows from the previous two inequalities, that identify it as the unique maximum of a

strongly convex function.

Proof of proposition 4.2.7

As in lemma 2.2.2 we know that EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] is a Lipschitz con-

tinuous gradient of a strongly convex function that shares the same minimum λ∗t of

ft(λ̃). Moreover from the fundamental theorem of calculus we can write

EYt|Y t−1 [St(λ
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)]− EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] =∫ 1

0

∂EYt|Y t−1 [St(λ̃t + τ(λ∗t − λ̃t),θ)∇ log p̃(Yt|λ̃t + τ(λ∗t − λ̃t,θ)]

∂τ
dτ =∫ 1

0

∇EYt|Y t−1 [St(λ̃t + τ(λ∗t − λ̃t),θ)∇ log p̃(Yt|λ̃t + τ(λ∗t − λ̃t,θ)](λ∗t − λ̃t)dτ

from which we obtain that

EYt|Y t−1 [St(λ̃
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)] = EYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] + At(λ

∗
t − λ̃t)

where

At :=

∫ 1

0

∇EYt|Y t−1 [St(λ̃t + τ(λ∗t − λ̃t),θ)∇ log p̃(Yt|λ̃t + τ(λ∗t − λ̃t,θ)]dτ

by assumption we thus have In×n` ≤ At ≤ In×nL. Notice how we needed the conditioning

because knowing Y t−1 the model time varying parameter λ̃t behaves like a constant inside

the conditional expectation. Following the proof idea of proposition 2.2.1 we have

||EYt|Y t−1 [λ̃t+1]− λ∗t || = ||λ̃t + αEYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]− λ∗t || =
||λ̃t + αEYt|Y t−1 [St(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]− αEYt|Y t−1 [St(λ

∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)]− λ∗t || ≤

||(λ̃t − λ∗t )(I − αAt)|| ≤ ||(I − αAt)|| ||(λ̃t − λ∗t )||

where we have used lemma 4.2.6 to add EYt|Y t−1 [St(λ
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)] = 0. For

every symmetric matrix At we have ||I − At|| ≤ max{|1 − αξ1|, |1 − αξn|} where ξ1, ξn
are respectively the smallest and the largest eigenvalues of At. Hence ||λ̃t+1 − λ∗t || ≤
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q||λ̃t − λ∗t || where q = max{|1 − α`|, |1 − αL|}. Since 0 < α < 2/L, 0 < ` ≤ L then

|1− α`| < 1, |1− αL| < 1 that means q < 1.

Proof of proposition 4.2.13

We have

||EYt|Y t−1 [λ̃t+1]− λ∗t ||2 = ||E[λ̃t]− αEYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]− λ∗t ||2

and we know that EYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] behaves like the gradient of a strictly

convex function with Lipschitz continuous derivative by the same argument of lemma

4.2.6 (here we use assumption 4.2.2 and 4.2.4). Thus all conditions to apply lemma 2.1.7

are met so we use the co-coercivity of convex functions to deduce that

||λ̃t − αEYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]− λ∗t ||2 = ||λ̃t − λ∗t ||2−
2α(λ̃t − λ∗t )TEYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)] + α2||EYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]||2 <

||λ̃t − λ∗t ||2 − α
(

2

L
− α

)
||EYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]||2

so from the fact that α < 2
L

we obtain

||EYt|Y t−1 [λ̃t+1]− λ∗t || ≤ ||λ̃t − λ∗t ||.

Proof of proposition 4.2.16

As in proposition 2.2.1

‖EYt|Y t−1 [λ̃t+1]− Eεt [λ∗t+1]‖ = ‖ω + βλ̃t − αEYt|Y t−1 [S(λ̃t,θ)∇ log p̃(Yt|λ̃t,θ)]− ω − βλ∗t‖ =

‖(Iβ − αAt)(λ̃t − λ∗t )‖ ≤ ‖Iβ − αAt‖‖λ̃t − λ∗t‖

where we have used 4.2.6 to add EYt|Y t−1 [St(λ
∗
t ,θ)∇ log p̃(Yt|λ∗t ,θ)] = 0 and the same

argument as in proposition 4.2.7 is followed (the assumption are used here).

Then for every symmetric matrix At we have ||Iβ − At|| ≤ max{|β − αξ1|, |β − αξn|}
where ξ1, ξn are respectively the smallest and the largest eigenvalues of At. Hence

||λ̃t+1−λ∗t || ≤ q||λ̃t−λ∗t || where q = max{|β−α`|, |β−αL|} and Since 0 < α < (β+1)/L

then |β − α`| < 1, |β − αL| < 1 that in turn means q < 1.
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Proof of corollary 4.2.17

We only need to show that assumptions 4.2.4 , 4.2.5 , 4.2.2 hold and then we can apply

proposition 4.2.16 to reach the conclusion. Assumption 4.2.2 holds since

yt log p̃t(yt|σ̃2, µ) = − yt
2σ̃2

+
yt(yt − µ)2

2σ̃4

is continuous in both variables yt and σ̃2 so an application of the Leibniz integral rule

allows the interchange of integral and derivative.

While assumptions 4.2.4 and 4.2.5 hold for the same reasons as in example 4.2.9 .

Proof of proposition 4.2.19

The exact same argument of proposition 4.2.16 applies noticing that q will still be smaller

than one.

Proof of corollary 4.2.19

We only need to show that assumptions 4.2.4, 4.2.2 and equation 4.5 hold and then we

can apply proposition 4.2.18 to reach the conclusion. Assumption 4.2.2 holds since

yt log p̃t(yt|σ̃, µ) = yt log

(
Γ(ν+1

2
)

Γ(ν
2
)
√
πνexp(σ̃)

)
− ν + 1

2
log

(
1 +

1

ν

(
yt

exp(σ̃)

)2
)

is continuous in both variables yt and σ̃ so an application of the Leibniz integral rule

allows the interchange of integral and derivative.

While assumptions 4.2.4 and 4.2.5 hold for the same reasons as in example 4.2.12.
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