Peptide-based low molecular weight gelators for the preparation of self-assembled materials

Giuri, Demetra (2021) Peptide-based low molecular weight gelators for the preparation of self-assembled materials, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9612.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (10MB)

Abstract

Low molecular weight gelators (LMWGs) based on pseudo-peptides are here studied for the preparation of supramolecular materials. These compounds can self-assemble through non-covalent interactions such as hydrogen bonds and π-π stacking, forming fibres and gels. A wide variety of materials can be prepared starting from these building blocks, which can be tuned and functionalised depending on the application. In this work, derivatives of the three aromatic amino acids L-Phenylalanine, L-Tyrosine and L-DOPA (3,4-dihydroxiphenylalanine) were synthesised and tested as gelators for water or organic solvents. First, the optimal gelating conditions were studied for each compound, varying concentration, solvent and trigger. Then the materials were characterised in terms of mechanical properties and morphology. Water remediation from dye pollution was the first focus of this work. Organogels were studied as absorbent of dyes from contaminated water. Hydrogels functionalised with TiO2 nanoparticles and graphene platelets were proposed as efficient materials for the photo-degradation of dyes. An efficient method for the incorporation of graphene inside hydrogels using the gelator itself as dispersant was proposed. In these materials a high storage modulus coexists with good self-healing and biocompatibility. The incorporation of a mineral phase inside the gel matrix was then investigated, leading to the preparation of composite organic/inorganic materials. In a first study, the growth of calcium carbonate crystals was achieved inside the hydrogel, which preserved its structure after crystal formation. Then the self-assembled fibres made of LMWGs were used for the first time instead of the polymeric ones as reinforcement inside calcium phosphate cements (CPCs) for bone regeneration. Gel-to-crystal transitions occurring with time in a metastable gel were also examined. The formation of organic crystals in gels can be achieved in multicomponent systems, in which a second gelator constitutes the independent gel network. Finally, some compounds unable to gelate were tested as underwater adhesives.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Giuri, Demetra
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
gelator, pseudo-peptides, supramolecular gel, fibres, cristallisation, composites
URN:NBN
DOI
10.48676/unibo/amsdottorato/9612
Data di discussione
16 Marzo 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^