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Abstract

In this thesis, the coupling of mathematical geometry and its discretization (mesh) is

performed using a method that fills the gap between simulation and design. Differ-

ent modelling strategies are studied, tested and developed to bridge commercial CAD

with a new methodology able to perform more accurate simulations without loosing

the connection with the geometrical features. The aim of the thesis is to enhance the

capabilities of Finite Element Methods (FEM) with the properties of Non-Uniform Ra-

dial Basis Functions (NURBS) inherited from CAD models in the design phase leading

to a perfect representation of the model’s boundary. The parametric space definition

of the basis functions is borrowed from standard IGA (Isogeometric Analysis) and the

possibility of process CAD models without the need for trivariate NURBS from NE-

FEM (NURBS Enhanced Finite Element Method). This particular combination yields

to a bilinear Lagrangian basis and a new mapping between Cartesian and Parametric

spaces for quadrilaterals. Using this new formulation it is possible to track the changes

of the geometry and reduce the simulation’s error up to 25-50% because of the perfect

shape representation when compared to an equivalent FEM system. IGA theory was

fundamental to implement, in a standard FEM analysis, all the information that already

exists in a complex geometry such as curves and surfaces. The non complete usage of

IGA avoids the difficult applicability of the method for mechanical components usually

represented by complex shapes. The problems presented are defined in a 2D space and

solved using Matlab tool. NURBS are the key point to perform parametric morphing and

simple optimizations while FEM remains the best way to perform simulations. This new

method prevents to remodel B-Rep (Boundary Representation) parts after some simple

modification due to the analysis and improves the geometry accuracy of the discretiza-
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tion. In order to guarantee an high flexibility, the geometrical file is directly imported

from commercial software and processed by the method. Accuracy, convergence and

seamless integration with commercial CAD packages are demonstrated applied to prob-

lems of arbitrary 2D geometry. The main problems treated are thermal analysis and

solid mechanics where the better results are achieved.
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Chapter 1

Introduction

This work is motivated by the increasing desire to integrate CAD geometries and meshes.

Historically, the two types of geometry used in design and numerical simulation have

always been separated. Numerical methods were born on discretization while mathemat-

ical models tried to represent the exact shape of a geometry without loosing the details

of the original model. In particular, the second solution had to guarantee the same level

in orthogonal projection historically done by hand in technical drawing and all the fea-

tures related to it (geometrical tolerances, couplings, etc.). If the FEM looked at the

discretization of a domain and therefore the decomposition of the problem into pieces,

conversely it was impossible to represent curves as polygons and much less surfaces. This

work was created to bring these two technologies closer together and ensure that there

is not a unidirectionality in the design process from a geometric point of view, proving

that it can also be done backward in a semi-automatic way. To do this, particular finite

elements are used not to lose the connection with the mathematical geometry initially

defined. Because of that, two advantages are possible:

� Exact geometry representation in the discretization;

� Maintain the connection with the original shape to guarantee backward modifica-

tions.

The possibility of create complex geometries impossible to think few decades ago, led
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to the instinctive desire of simulate these models since it was no longer necessary to

build a discretization by hand. Moreover, complex phenomena, such as combined or

time dependent analysis (thermo-structural, fluid-structural, etc.), have become more

and more investigated, increasing the interest in geometric accuracy and therefore in the

transition between mathematical models and discretization. Even today it is difficult

to automatically regenerate a solid three-dimensional model following the modifications

applied in the meshed geometry. This is fundamentally true due to the loss of information

that occurs in the conversion from one model to another. Specifically: a solid model

is a set of rules and mathematical functions with limits defined throughout a reference

domain; a meshed geometry is instead, a representation of points in space linked together

by rules that define the edges, faces and volume of the elements. Therefore, in the first

case the fundamental elements of the description are parametric functions continuous in

space, in the second case it is sufficient to have a finite number of coordinates according to

the type of problem analysed. It is almost impossible to track a sequence of points using

parameters once the mesh is done. This problem results in the inability of automatically

regenerate a parametric model from a statically defined mesh. While it is easy to draw

points on a mathematically defined domain, it is not as easy to extrapolate that domain

from a series of points. It is possible to hypothesize the original rules, but it is impossible

to guarantee the correctness of the original shape. It is important to underline that it

is not only difficult to recognize modifications applied to the original structure, but

it would also be very complex to even recognize the original structure after the first

discretization. Once the rules and all the parameters are lost, geometry becomes a static

object in which it is difficult to recognize even simple figures such as circles or planes.

This is why direct modelling works only on B-Reps and not on meshed geometries. This

thesis arises from the desire to solve the problem of the modification and reconstruction of

shapes related to mechanical components. The main idea is based on the fact that maybe

the information that allows the transition between geometric model and discretization

are not irretrievably lost and wasted. In the following, a method is explained in detail

that acts as a bridge between simulations and geometry, improving both models. In

particular, the geometrical information of the boundaries will not be lost because they

prove to be essential both from the numerical and geometrical approaches. In particular,
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the NEFEM [1] methodology is readapted for quadrangular elements in order to extend

the applicability of the method to all possible meshes.

1.1 Historical Prespective

As described in detail in [2, 3], the finite element method (FEM) was born because of

the works in the structural field concerning airplanes. The first elements revealed in

the engineering field were isoparametric linear elements [4] with straight edges because

of their simplicity. Nevertheless, it was immediately clear that curves would have be-

came a necessary part into the geometrical description to improve consistency with the

real shape of the object studied. In fact, the isoparametric elements suffer from the

refinement problem since to follow the correct shape of the geometry, an increase of

the element’s number in the mesh is mandatory. Introducing elements that could have

curved sides solved the problem of the excessive number of elements which, at the dawn

of the FEM, was a not negligible problem due to the low resources of old computers. The

basic idea of these first isoparametric elements, however, was very simple and efficient.

Polynomial functions were used both to represent the solution in the physical domain

and to approximate the geometry, for this reason the isoparametric name was chosen

to describe them. The method turned out to be very solid and easy to implement and

in the 1970s it became very popular in solid mechanics applications [5, 6, 7, 8, 9]. In

particular,the techniques presented in [10, 11, 12] represent the starting point for the con-

struction of FEM elements that approximate the edges exactly. Following these studies,

triangular elements with curved edges were introduced modifying the reference mapping

for isoparametric elements. In [8] an example of the above result is illustrated. The

impossibility of implementing what came out from the studies into practical application

for 3D examples has led to consider these methods as pure mathematical theories with-

out a practical meaning. However, the higher request for complex geometries and curves

in the automotive sector led to the first formulation of a new mapping [6] that became

the starting point for a whole new range of complex elements called transfinite elements

[7]. By mixing a standard mapping of a reference quadrilateral and a subdomain with

the contour composed of parametric curves through special functions, it became possible
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create elements with curved edges at the same time very flexible and efficient. If the

geometrical problem was solved, the approximation of the solution remained uncovered

and was approached according to the principles of the well-known p-FEM [13, 14]. The

main idea was to describe the shape with large curved element and capture the solution

using higher degree polynomial. These elements have also been applied to computa-

tional fluid dynamics problems through the finite volume method (FVM) [15]. In this

context it should be noted how in [16] the authors use ultra-coarse meshes and high order

approximations and highlight the need to represent a boundary in more detail than ac-

cording to the isoparametric procedure for large meshes. The C0 continuity of the curved

boundary between elements has been shown to have an important impact on some pa-

rameters such as the pressure coefficient on an airfoil. In [17] a mapping is proposed

that allows to use Bézier- type curves to represent the boundary. As far as the theory of

linear elasticity is concerned, it is noted in [18] how a better geometric accuracy leads to

better results while some applications of solid mechanics are presented in [19]. Here, B-

Spline is used for the geometric representation in contact problems. A major limitation

of the finite element method arises from the fact that it developed separately from CAD

(Computer Aided Design). If FE with curved elements had their great development in

the 70s and 80s, just later became possible the idea of integrate both of them. In par-

ticular, researchers interested in topological optimization and therefore shape problems

achieved great advantage from the fusion of the two methods. It is impossible not to

consider the exact shape given by the CAD in an optimization analysis since a priori

the discretization means including geometric errors that could invalidate the topological

analysis itself. In [20] a first application of transfinite elements with NURBS mapping

is shown in which the use of polynomial functions remains the base for the solution’s

approximation . Subsequently, to maintain an isoparametric approach , researchers re-

turned to the representation of boundaries through B-Spline. Because of that, a series

of possibilities provided by NURBS were lost again such as the perfect representation

of conics. In the 90’s other authors have been interested in the NURBS problem as in

[21] and [22]. The increasingly pressing for accurately representation of geometry led,

in the late 90s, to the creation of a new family of FE-like techniques based entirely on

CAD . These methods, called isogeometric , used the same CAD representation methods
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as basis for numerical analyses. In this way the geometric domain is no longer confined

only to the edge of the structure, but affects the entire shape. This fact brings great

advantages from the mathematical point of view, but many limitations for the practical

applications. Only in the 2000s isogeometric techniques started to use NURBS such as

[49, 51]. Finally in [49] a general framework for this type of analysis was proposed. In

particular, this approach [23] focuses on the possibility of using NURBS as a basis for

both the approximation and the construction of geometries.

1.2 Type of Geometries in Mechanical Applications

From the second half of the 20th century to the present days, three main type of ge-

ometries have been developed: CSG, B-Rep and Mesh. Each of them has a specific

application in a certain field of engineering. In particular, geometrical discretization are

mainly used to simulate physical phenomena such as solid mechanics, fluid mechanics,

electromagnetism or light simulations (render). B-Rep representations are generally used

as a bridge between CSG and meshes because they represent empty volumes defined by

mathematically exact boundaries. B-Rep represents the skin of the CSG model (both

curves and surfaces). Typically these types of representations can be read and written

by almost all software and will be the basis for this thesis. Finally CSG geometries

represents the main tool in shape design for industrial applications. Using this design

tool it is possible to represent complex components with extreme precision and maintain

the flexibility due to parametrization. It is therefore possible to set rules to the drawing

which can automatically modify all the surrounding quotes.
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1.2.1 Solid Modelling and CSG

Figure 1.1: CSG geometry.

CSG definition :


x1 ≤ x ≤ x2

y1 ≤ y ≤ y2

z1 ≤ z ≤ z2

Constructive Solid Geometry (CSG) is a way to represent geometry that combines a

set of simple Boolean operations already included in the representation itself. A 3D

model is defined using a tree of feature (also known as model tree) that is applied step

by step in the geometry generation process. Some nodes of this tree represent Boolean

operations and some other translation, rotation, or scaling. Since the operations that

appears on the model tree are usually non commutative, it is important that the model

tree is ordered. However, because of the latter, the CSG modelling is not unidirectional

because different combination of Boolean operation can lead to the same result. In

almost all implementations, primitives are defined by simple 3D shapes such as cubes,

sphere, cylinders, etc. ensuring that all the operation with these solids generates valid

solutions. In other systems, primitives include half-spaces, which themselves are not
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bounded solids. For example, a cube can be defined as the intersection of six half-

spaces (the six faces of the cube), or a finite cylinder as an infinite cylinder that is closed

between two planar half-spaces (top and bottom). Using half-spaces introduces a validity

problem, since not all combinations produce solids. Half-spaces are useful, however, for

operations such as slice an object by a plane, which might otherwise be performed using

the face of another solid object. Without half-spaces, extra overhead is introduced, since

the regularized Boolean set operations must be performed with the full object doing the

slicing, even if only a single slicing face is of interest. Again, CSG does not provide a

unique representation. This can be particularly confusing in a system that lets the user

manipulate the leaf objects with tweaking operators. Applying the same operation to

two objects that are initially the same can yield to two different results. Nevertheless,

the ability to edit models by deleting, adding, replacing, and modifying subtrees, coupled

with the relatively compact form in which models are stored, have made CSG one of the

dominant solid modelling representations.

1.2.2 B-Rep

Figure 1.2: B-Rep geometry.

Boundary representation (also known as B-Rep) describe an object in terms of its surface

boundaries: vertices, edges, and faces. Some B-Rep are restricted to planar, polygonal

boundaries, and may even require faces to be convex polygons or triangles. Determining

what constitutes a face can be particularly difficult if curved surfaces are allowed, as
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shown inFigure 1.2. Curved faces are often approximated with polygons. Alternatively,

they can also be represented as surface patches if the algorithms that process the repre-

sentation can treat the resulting intersection curves, which will, in general, be of higher

order than the original surfaces. B-reps have the ability to represent shapes with high

accuracy loosing the information related to the model tree. Due to this loss, B-Rep

became a universal geometry readable by almost any CAD software or pre-processors

for numerical application. This is very important because the standard ”.brep”, ”.step”

and ”.iges” can be used as starting point for numerical applications but they are still

mathematically defined. Moreover, B-Reps are not solid NURBS, but they represent the

skin of the CSG model meaning that 3D curves and surfaces are the most difficult item

represented using this methodology. This is very important because it is one of the key

points to exclude IGA as a tool for mechanical modelling and optimization.

1.2.3 Mesh

Figure 1.3: Example of 3D Mesh.

A mesh is a regulated set of points (called nodes) distributed in space. Each node is

composed by n coordinates where n identifies the number of problem’s dimension. If

n = 1 a one-dimensional structure is described by the problem, if n = 2 two-dimensional

and if n = 3 three-dimensional. There are therefore one-dimensional, two-dimensional or

three-dimensional meshes. In the first case the mesh defines a segment delimited by the
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joining of two nodes through a straight line. The result is nothing more than a broken

line as long as the number of nodes in the mesh. Generally this representation is useful

for the analysis of simple structure such as beam or truss (Figure 1.4).

Figure 1.4: Example of 1D mesh.

The second case, is much more interesting both from a graphical and an engineering

point of view. Here is defined the concept of a face as a flat surface between several

points. The most used type of two-dimensional mesh is the triangular mesh since it is

the simplest one and because it can represent all possible shapes. It consists in the union

of many triangles along their edges and nodes in order to represent surfaces that can

exists in 2D or 3D environment. It is important to underline that the space respect to

which the meshes are defined does not identify the dimensionality of the problem. For

example, a segment (one-dimensional mesh) represented in 3D space remains defined as

one-dimensional mesh. Consequently, a flat triangle in space remains a two-dimensional

mesh. In particular, 2D meshes can be built using triangular shaped elements, but also

quadrangular shaped elements. The latter types are not always interesting for graphical

applications, but they are much more useful in engineering and simulation fields such as

computational analysis of mechanical models Figure 1.5.
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Figure 1.5: Example of 2D mesh.

The natural extension of these two plane figures in 3D space are tetrahedral and

hexahedral meshes. They are used in numerical methods such as finite element method

to study complex three-dimensional phenomena. Precisely for these last applications,

so-called ”structured” meshes are preferred, which implies the majority of quadrangles

or hexahedra (depending on the type of problem) in the overall structure of the geometric

model. The additional feature of three-dimensional meshes is that they embody not only

the definition of nodes, edges and faces, but also volumes Figure 1.3.

The base of all these structures are two matrices:

� Coordinate vector (Table 1.1);

� Connectivity matrix (Table 1.2).

The first one is an ordered set of coordinates (usually in x, y, z) that defines the position

in space of each node that are identified through an ID number: The second one is the

so called connectivity matrix that is a set of ordered nodes defining the element. These

nodes aren’t not random and depend on the normal direction of the element itself.

10



Table 1.1: Coordinate matrix defining the position of mesh’s node in space

Node ID X Y Z
1 0 0 0
2 1 0.5 0
3 2 1 0
4 1.7 2.5 0
5 0.7 1.5 0
6 0 1 0
...

...
...

...

Table 1.2: Connectivity matrix defining each element of the mesh

Element ID n1 n2 n3 n4

1 1 2 5 6
2 2 3 4 5
...

...
...

...
...

Figure 1.6: Mesh generated by the matrices defined in Table 1.1 and Table 1.2

Summary: one-dimensional meshes are defined by nodes connected with edges; two-

dimensional meshes are defined by nodes, edges and faces which are defined as the flat
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part between the edges; three-dimensional meshes are defined by nodes, edges, faces and

volumes delimited by a series of faces closed together bounding a volume. It is important

to underline that for any of the three types of mesh, the fundamental element entity is the

node through which it is possible to describe all the other structures and all the physical

entities. In meshes, unlike solid modelling, each element has a mathematical definition

according to functions that are usually polynomial. These functions live only within

the element itself and not in the geometry as a whole. Using standard discretization

methods, it is impossible to represent geometries in their exact form due to curved lines

or surfaces with one or more geometrical curvature that not always can be represented

as a polynomial.

1.3 From CAD to FEA

1.3.1 Conventional process

The product design process involves several steps. As shown in Figure 1.7 these phases

can be divided in:

� Concept;

� Design;

� Idealization;

� Discretization;

� Analysis.

Moving from one phase to another is not immediate and has a cost in terms of time.

The most time spending step is the conversion between design and idealization. The

transition from concept to design and idealization to discretization have an equal time

spending effort however, the design phase is not considered as a real conversion phase

since the component does not exist in digital terms. This means that an automatic time

reduction is possible only for the phases where digital files are involved. In detail
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Figure 1.7: Phases of design process and time costs from [23].

1. Concept: In the conceptual phase, the designer designs the mechanical object

from scratch focusing mainly on functionality. In this phase hand-made sketches

are used. Although this phase is very important for all the components that are

going to be built, it is essential for some specific applications like car design in

which the correct style lines define the signature of the designer and the identity

of the car.

2. Design: During the design phase, great use is made of three-dimensional mod-

elling software. In this phase the geometry of the component is reproduced in a

mathematical form. Holes, fillets, chamfers and so on must be considered. It is

due to this phase that solid modellers, which rely on CSG technologies, are born.

Through this step it is possible to guarantee an high accuracy of the geometry that

remains identical to the real shape. With this type of geometry it is possible to

recreate 2D draw which for many years have been the basis of classical mechanical

design. To fulfil all these tasks it is essential that the geometry is as precise as

possible without the possibility of ambiguity in order to process the geometry with

the designed characteristics. This phase is very important and it is independent

from numerical simulation. Once again it is important to underline that the sim-

ulation phase and design phase are different so the relative geometries are based

on different conceptual structures. Because of that, it is still difficult to find the

meeting point between design and analysis.

3. Idealization: At this stage it is necessary to prepare the model for analysis. While

it may seem one of the simplest stages in the process, it is actually one of the most
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important and longest in term of time. In this phase, all unnecessary elements must

be removed to prepare the geometry for the simulation. For example, in the case

of a structural analysis, small holes, fillets and small chamfers should be removed.

Although hardware power resources are ever increasing and allow to process huge

amounts of data, the good practice of reducing the geometry to the essential is

still extreme important in order to reduce stress concentrations due to numerical

inaccuracy or perform complex analysis such as time dependent or multiphase

problems. Because the idealization phase is a transition phase, the preferred file

format is the B-Rep. Boundary representation maintains all the characteristics

necessary to perform this phase and in particular is used as a bridge structure

between various CAD systems and numerical pre-processors. For this reason, in

the analysis described in the thesis it was decided to keep this type of representation

as the starting and ending point for automatic modifications.

4. Discretization: In this phase the mesh is finally generated. The outcome geome-

try is completely disconnected from the one built in the design phase and above all,

the process it is not reversible. A change at this level involves a manual change at

the top level. Although one could design directly in the discretization form avoiding

all the previous steps, this is not how mechanical component are designed. Differ-

ent applications such as render gives the ability to draw the geometry avoiding the

parametric phase because it would only result in a waste of time and resources. In

general, for the design of an engineering product this is not the standard procedure.

Nevertheless, the discretization phase is essential because it is nowadays common

to perform computational analysis before setting the product on the market.

5. Analysis: Finally there is the analysis phase in which numerical calculation strikes.

Results are obtained from these analysis and used to modify the geometry to im-

prove the studied properties of the structure. Today there are methods that allow

the interactive or automatic modification of discretization [24], but it is still very

difficult to track the changes back to the design phase. Human intervention is still

required for this purpose, but the manual retrieve of the informations produced

during the analysis lead to a massive waste of time and resources.
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1.3.2 Proposed process

Conventional approaches tends to separate meshes to mathematical geometry. The

methodology shown in Figure 1.7 is always unidirectional especially for a free designer

that don’t want to rely on specific software. This is a major bottleneck because there

are many possible solutions to difficult physical phenomena and it is still complex to find

a unidirectional approach. Nowadays the software-houses are buying different tools to

fill this gap. It would be then possible to make a link between design steps in a way

that the user is unable to see the integration phases. This process is usually obscure and

constraints the user to chose a specific software-house and perform all the operations

inside the same platform. Rediscover the potential of .iges files is the way to build a

non constraint method that can both communicate backward with the geometry and it

is simple for implementation in standard FEM software. NEFEM tries to extrapolate

all FEM benefits adding enriched boundary elements that can be easily connected to

standard FEM elements. Because of the latter, the thesis proposes a method that links

the geometry to the discretization in order to collapse the waste of time due to the man-

ual recovery of the shape. As explained below, the combination of mesh and geometry

in a single mixed element opens the possibility of drastically shorten the discretization

times and at the very least eliminate the idealization phase. In fact, the idealization

phase is necessary because the discretization is, by definition, far from designed part,

therefore an intermediate shape is needed to allows a smooth transition between the

two representations. Being able to directly connect the mathematical structure of the

designed geometry with the elements of the mesh would lead to the elimination of this

step improving the efficiency of the design path. To do that, all the geometries reported

in this thesis were build in Ls-PrePost as .iges and processed in a first Matlab routine

that reads the information from the file extrapolating NURBS boundary. A classical

discretization phase is then performed and an enrichment is carried on. Merging the

classical definition of elements with the NURBS informations bring to an hybrid con-

nectivity matrix (explained in the following chapters) that maintains the original FEM

structure and incorporates the NURBS definitions. Because of the latter, is now possible

to create a map R2 → R2 from NURBS parent space to the Cartesian space maintain-
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ing the exact geometrical description of the original shape. The starting point of the

algorithm is the .iges file and not the CSG model since .step and .iges are the most

common files for geometry exchange and are flexible for all platforms. The methodology

presented wants to be independent from a specific software-house path and propose a

flexible implementation for all possible 3D modeller. Figure 1.8 shows the Pre-Process,

Solver and Post-Process steps to implement NURBS in standard FEM meshes. The

solver stages will be discuss better in Figure 2.7-2.8. The use of Matlab derived from the

capability of the program of reading and writing 2D NURBS due to its NURBS toolbox.

Moreover Matlab is the perfect platform to test research applications since it implements

many built-in libraries that makes a numerical approach easier than a conventional pro-

gramming language such as Fortran90, C or C++. The aim of the thesis is to prove the

benefits of a non-isoparametric element made with NURBS edges in term of geometry

description and not to program a FEM toolbox.
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Figure 1.8: Geometry process to enrich standard FEM with NURBS features.
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Chapter 2

Background

2.1 B-Spline curves

2.1.1 Main Definitions and Properties

Talking about curves and surfaces in geometric modelling, it is important to mention

the two most used definition of implicit equation and parametric function. An implicit

representation of a curve lying in the x − y plane has the form f(x, y) = 0. The latter

equation describes the relationship between two coordinates x and y that build up the

curve. An example of this kind of structure is the equation of the circle defined as follow:

f(x, y) = x2 + y2 − 1 = 0

In order to have a parametric equation it is important that the coordinates of a point

on the curve are themselves explicit functions of an independent parameter.

C(u) = (x(u), y(u)) a ≤ u ≤ b (2.1)

This way, C(u) is a vector-valued function of the independent variable u. The interval

a ≤ u ≤ b can be arbitrary, but is a common practice to normalize it to [0 1]. Going

back to the circle example, it is now possible to describe the curve in the first quadrant
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as: x(u) = cos(u)

y(u) = sin(u)

0 ≤ u ≤ π
2

This description is fundamental for all the B-Spline or NURBS curves and essential in

the description of the method in Chapter 3.

Following the same steps, it is possible do define a surface that has an implicit equation

in the form of f(x, y, z) = 0. Considering a sphere as example (x2 + y2 + z2− 1 = 0), the

parametric representation is given by the equation: S(u, v) = (x(u, v), y(u, v), z(u, v))

where: 
x(u, v) = sin(u)cos(v)

y(u, v) = sin(u)sin(v)

z(u, v) = cos(u)

0 ≤ u ≤ π,

0 ≤ v ≤ 2π

In order to understand NURBS curves, it is important to define it’s fundamentals. The

origin of NURBS theory is placed in the B-Spline curve definition since a NURBS curve

is an extension of the same theory. The original idea of the B-Spline can be founded in

the works of Gordon and Riesenfeld [25, 26].

In general, a pth-degree B-Spline is defined by:

C(u) =
n∑
i=0

Ni,p(u)Pi a ≤ u ≤ b (2.2)

where the Pi are the control points, and the Ni,p(u) are the pth-degree B-Spline basis

functions defined as:

Ni,0(u) =

 1 if ui ≤ u ≤ ui+1

0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

u1+p+1 − ui+1Ni+1,p−1(u)

(2.3)
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Note that:

� Ni,0(u) is a step function, equal to zero everywhere expect on the half-open interval

u ∈ [ui, ui+1];

� For p > 0, Ni,p(u) is a linear combination of two (p − 1)-degree basis function

Figure 2.2

� Computation of a set of basis functions requires the specification of a knot vector,

U , and the degree, p;

� Equation 2.3 can yield the quotient 0
0
; we define this quotient to be zero;

� The Ni,p(u) are piecewise polynomials, defined on the entire real line; generally

only the interval [u0, um] is of interest;

� The half-open interval [ui, ui+1) is called the ith knot span; it can have zero length,

since knots need not be distinct;

� The computation of the pth-degree functions generates a truncated triangular table

N0,0

N0,1

N1,0 N0,2

N1,1 N0,3

N2,0 N1,2

N2,1 N1,3

N3,0 N2,2
...

N3,1
...

N4,0
...

...

The basis functions are defined on the nonperiodic (and uniform) knot vector

[U = a, . . . , a, up+1, . . . , um−p+1, b, . . . , b]
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with m + 1 knots. In order to normalize this vector, a = 0 and b = 1. The resulting

polygon formed by all the Pi is called control polygon.

Three steps are required to compute a point on a B-Spline curve at a fixed u value:

1. find the knot span in which u lies

2. compute the nonzero basis functions

3. multiply the values of the nonzero basis functions with the corresponding control

points.

After that, we can describe each point on the curve in a parametric form using the param-

eter u. Moreover a list of important properties il presented in the following. Considering

a curve defined by 2.1:

� If n = p and U = 0, . . . , 0, 1, . . . , 1 then C(u) is a Bézier curve [27]

� C(u) is a piecewise polynomial curve; the degree p, the number of control points

n+1 and the number of knots m+1 are related by

m = n+ p+ 1

� Endpoint interpolation: C(0) = P0 and C(1) = Pn

� Strong convex hull propriety: the curve is contained in the convex hull of its control

polygon

� The control polygon represents a piecewise linear approximation of the curve; the

approximation is improved by knot insertion or degree elevation. In general, the

lower the degree, the closer a B-Spline curve follows its control polygon.

� The continuity and differentiability of C(u) follow from that of the Ni,p(u) (since

C(u) is just linear combination of the Ni,p(u)). Thus, C(u) is infinitely differen-

tiable in the interior of knot intervals, and it is at least p − k times continuously

differentiable at a knot of multiplicity k. This property is very important since the

curve definition will be implemented in the numerical method.
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2.2 NURBS

Combining the concept of the previews section, it is possible to generalise the curve to

all possible shapes to obtain the Non Uniform Rational B-Spline. The earliest works

on this topic are [28, 29].

2.2.1 Definition and Properties of 1D NURBS curve

Main Equation

A pth-degree NURBS curve is defined by:

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

a ≤ u ≤ b (2.4)

Figure 2.1: 1D NURBS curve.

where the Pi are the control points (forming the control polygon), wi are the weights,

and the Ni,p(u) are the pth-degree B-Spline basis functions defined in 2.3. To have a

mathematical representation similar to the B-Spline, assuming a = 0 and b = 1 to
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normalize the knot vector, and wi > 0 for all i, it is possible to set the following values:

Ri,p(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

(2.5)

It is now possible to rewrite 2.4 using the definition of 2.5 in the form:

C(u) =
n∑
i=0

Ri,p(u)Pi (2.6)

where Ri,p(u) are the rational basis function. Figure 2.2 shows an example of basis

functions for p = 2 referred to Figure 2.1. They are piecewise rational functions on

u ∈ [0, 1]. Equation 2.5 leads to a list of important properties:

� Nonnegativity: Ri,p(u) ≥ 0 for all i, p and u ∈ [0, 1];

� Partition of unity:
∑n

i=0Ri,p(u) = 1 for all u ∈ [0, 1];

� R0,p(0) = Rn,p(1) = 1;

� For p > 0, all Ri,p(u) attain exactly one maximum on the interval u ∈ [0, 1];

� All derivatives of Ri,p(u) exist in the interior of a knot span, where it is a rational

function with nonzero denominator;

� If wi = 1 for all i, then Ri,p(u) = Ni,p(u) for all i.

Derivatives of NURBS curve

Derivatives of NURBS curves is an important topic for the purpose of this thesis because

computing the Jacobian of an element means calculate the derivatives of the mapping.

This mapping involves the definition of the NURBS curve hence it will be important to

perform the correct derivative of the NURBS itself. The main problem that arises is

the difficulty in computing derivatives of rational function that involves denominators to

high powers.

Let:

C(u) =
w(u)C(u)

w(u)
=
A(u)

w(u)
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N0(3)

N0(4)

N1(2)

N1(3)

N1(4)

N2(1)

N2(2)

N2(3)

N2(4)

Figure 2.2: Example of Basis Function.
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where A(u) is the vector-valued function whose coordinates are the first three coordinates

of Cw(u) based on the weighted control points Pw
i = (wixi, wiyi, wi, zi, wi). Then:

C ′(u) =
w(u)A′(u)− w′(u)A(u)

w(u)2

=
w(u)A′(u)− w′(u)w(u)C(u)

w(u)2
=
A′(u)− w′(u)C(u)

w(u)

(2.7)

while to obtain higher order derivatives one should compute the differentiation of A(u)

using Leibnitz’ rule:

A(w)(u) = (w(u)C(u))k =
k∑
i=0

k
i

w(i)(u)C(k−i)(u)

= w(u)C(k)(u) +
k∑
i=1

k
i

w(i)(u)C(k−i)(u)

(2.8)

from which we obtain:

C(k)(u) =

A(k) −
∑k

i=1

k
i

w(i)(u)C(k−i)(u)

w(u)
(2.9)

Equation 2.9 gives the kth derivative of C(u) in terms of the kth derivative of A(u), and

the first through (k − 1)th derivatives of C(u) and w(u).

2.2.2 Definition and Properties of 2D NURBS Surfaces

A NURBS surface of degree p in the u direction and degree q in the v direction is a

bivariate vector-valued piecewise rational function of the form:

S(u, v) =

∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0 Ni,p(u)Nj,q(v)wi,j

0 ≤ u, v ≤ 1 (2.10)

In this case, instead of having a control points polygon we have a control points net

defined by the Pi,j while the wi,j represent the weights. Ni,p(u) and Nj,q(v) are the
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nonrational B-Spline basis functions defined on the knot vectors:

U = 0, · · · , 0, up+1, · · · , ur−p−1, 1, · · · , 1

V = 0, · · · , 0, vq+1, · · · , us−q−1, 1, · · · , 1

where r = n + p + 1 and s = m + q + 1 Using the same strategy for the curves, it is

possible to introduce the piecewise rational basis function:

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

i=0

∑m
j=0 Nk,p(u)Nl,q(v)wk,l

The surface equation 2.10 can be written as:

S(u, v) =
n∑
i=0

n∑
j=0

Ri,j(u, v)Pi,j (2.11)

Some example of NURBS surfaces can be found in Figure 2.3a-2.3b. These surfaces are

built evaluating Eq 2.11 in Wolfram Mathematica in order to underline the continuity of

the shapes both for a 2D and a 3D environment. This result is important to underline

how IGA representation implemented in FEM applications can enhance the boundary

definition of the latter improving the results.
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(a) 2D NURBS Surface on plane.

(b) 2D NURBS Surface in
a three dimensional environ-
ment.

Figure 2.3: Examples of 2D NURBS surfaces in 2D and 3D environment.

2.2.3 Example of 3D NURBS Volumes

Using the same procedure of 2D surfaces it is possible to build a three-dimensional shape.

A NURBS volume of degree p in the u direction, degree q in v direction and degree l in

w direction is a trivariate vector-valued piecewise rational function of the form:

V (u, v, w) =

∑n
i=0

∑m
j=0

∑t
k=0 Ni,p(u)Nj,qNk,l(w)wi,j,kPi,j,k∑n

i=0

∑m
j=0Ni,p(u)Nj,q(v)Nk,l(w)wi,j,k

0 ≤ u, v, w ≤ 1 (2.12)

In this case the control points are defined in the three-dimensional space by Pi,j,k while

the wi,j,k represent the weights. Ni,j,k(u), Ni,j,k(v) and Ni,j,k(w) are the nonrational

B-Spline basis functions defined on the knot vectors:

U = 0, · · · , 0, up+1, · · · , ur−p−1, 1, · · · , 1

V = 0, · · · , 0, vq+1, · · · , us−q−1, 1, · · · , 1

W = 0, · · · , 0, wl+1, · · · , ut−l−1, 1, · · · , 1
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Applying the same methodology of the previews section it is possible to formulate the

volume 3D NURBS in a simpler way:

V (u, v, w) =
n∑
i=0

m∑
j=0

t∑
k=0

Ri,j,k(u, v, w)Pi,j,k (2.13)

Figure 2.4a shows a possible shape made using Equation 2.13.

(a) Pipe made with 3D NURBS Volume.
(b) Cylinder made with
3D NURBS Volume.

The main issue of this representation is that a solid shape is a trivariate vector-valued

piecewise rational function. Because of that, the geometry is described by a dot product

of three vectors. This representation is both powerful in a mathematical way for the

Isogeometric Analysis, but it is also a weakness in the implementation with standard

.iges files. This is one of the main reasons why the NEFEM solution is chosen compared

to the elegant IGA.

2.3 IGA - Isogeometric Analysis

In Isogeometric Analysis the key concept is to use NURBS as basis both for the analysis

and geometry. This assumption makes possible a isoparametric approach that is quite

common in classical finite element analysis. The main difference with FEA is that Finite
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Figure 2.5: IGA scheme.

Elements has some mathematical basis function used to approximate the unknown of the

solution field and also to approximate the geometry while IGA doesn’t approximate the

geometry. It is important to remark that geometry is something that today is usually

drawn in parametric or mathematical environment. As described in Section 1, nowa-

days the design path is build upon mathematical shape representation and after that,

a simplification of the geometry lead to the final mesh. Because of that approximating

the geometry with the basis function of FEA element is a waste of information and ac-

curacy. In this sense IGA is the first method that reverse the arrow between CAD and

analysis since the basis function used for the geometry are then used to approximate the
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solution in the numerical method. This is a very important achievement in reverting

the design path because it makes possible to maintain the shape information also during

the simulation. Figure 2.5 shows the scheme behind IGA underlying the decomposition

of the spaces in a parametric and parent domain based on the standard definition of

knot vectors derived form NURBS representation. Moreover, the parametric space of a

patch represents the entire real geometry in R3 space. It is important to underline that

the latter reference system is defined over an entire patch of an IGA shape. Because of

that, the parametric representation is not directly linked to a single finite element, but

it shows all the elements on a patch as seen in Figure 2.6. This particular feature of IGA

imposes the representation of the entire geometry with a single patch making almost im-

possible to implement a CAD model in the solver without a strong Pre-Process step that

recompute the geometry. Moreover, the continuity between patches is reduced respect

to the continuity inside the patch itself. Despite IGA can bring together geometry and

Figure 2.6: IGA patch.

simulation, it lacks on several points:

� It is unable to represent single element in parametric space;
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� It is not always simple to have a single patch that represent the entire geometry;

� Between one patch and another the continuity is reduced compared to the interior

of the patch. This lead to a drop in continuity also inside the geometry since

commercial tools usually export .iges file as many patches;

� Commercial software don’t export NURBS Volumes. In order to use the IGA

method, a pre-processing tool is needed to rebuild the geometry with the right

rules;

� Boundary conditions are more difficult to apply since they must be set on the

control points that don’t represent the real geometrical border of the shape;

� Because of the rational basis functions, an high number of Gauss point is required

to integrate the domain;

� IGA is difficult to couple with commercial software since the method is completely

different respect to normal FEM. Because of that it is impossible to arrange an

existing FEM code to the new methodology implying higher costs and times.

If it is true that a massive effort was made to combine geometry and analysis with IGA,

it is also true that all the cons discourage the user in choosing the method. IGA is a

powerful tool, but it represents a completely new environment that is difficult to integrate

in a standard pipeline of commercial software.

2.4 Why Quadrangle NEFEM

Since it was first formulated by Hughes et al [30], the integration of IGA with CAD

remains to a large extent theoretical; the scientific community however is actively looking

for a reliable solution connecting CAD and analysis. This thesis contributes toward that

cause and begins by reviewing the literature on B- and V-reps.
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2.4.1 Boundary and volume representations

Several authors report that the gap between CAD and analysis exists because their

development followed different paths [31, 32, 33, 34] . The CAD technology consolidated

in the 1990s when computing power was extremely limited. As processing units improved,

CAD moved from two-dimensional (2D) to three-dimensional (3D) representations but

always relying on B-reps to model solids — and still does today. CAD tools prefer B-reps

to V-reps because they offer better computational performance and are mathematically

easier to handle. For example, to draw a hollow shape, B-reps naturally extrude a

profile, whereas V-reps would need to add trimming or subdivision techniques. The idea

of using V-rep for CAD models is however the most natural approach to integrating IGA

in engineering practise [23, 35].

To equip CAD with V-rep, recent works have studied feasibility and accuracy [36,

37, 38, 39]. This has posed major challenges in representing complex geometries. The

main difficulty is to retain orthogonal basis after (local) refinement. Locally refined

B-splines [34] have recently been proved to give satisfactory results for 2D problems.

This technology however seems to imply a major disruption to the CAD systems, and

so do other methods using script-base approaches [40, 41]. In either cases, the workflow

appears cumbersome as it departs significantly from modern engineering practise.

Approaches offering legacy with modern CAD–analysis workflows exists and they

aim to reconstruct V-reps out of B-reps. The main argument supporting this approach

is that by harnessing the mature and robust B-reps, there would be no need to reinvent

CAD technology and standards. However, in practise generating a V-rep out of a B-rep

for arbitrary shapes, even in 2D, is non-trivial as involving optimisation techniques and

quadrilateral meshing [42]. For 3D models the complexity is remarkably higher [43] and

the resulting mesh does not produce high-quality grids that in-service FEA tools. Tools

which do produce high-quality meshes tend to apply a heavy Bezier extraction [44, 45, 46],

but the resulting elements do not have the large support acclaimed by IGA [30] with

severe consequences on the basis functions. Techniques that avoid Bezier extraction

showed that even primitive shapes appears to require advanced algorithms [47] or apply

to thin structures only [48]. On this front a recent work [49] claimed a major leap forward
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has been achieved for shapes that are, however, mappable to a unit cube only. A recent

publication [50] proposed a promising technique to form a bijective parametrization of

solid domain.

Overall, reconstructing a V-rep out of B-rep is an approach that shows three evident

shortfalls:

1. From a mathematical standpoint is a difficult, and possibly ill-posed, problem as

it consists of mapping a (non-convex) boundary into a volume.

2. Even if such mapping exists, the resulting volume representation should also meet

the high-standard of mesh whose refinement converges with the rate proper of the

shape function.

3. The bespoke V-rep used for analysis is not the same mathematical construct gen-

erated from CAD, leaving little hope for a seamless integration between modern

CAD and analysis tools.

The reader may refer to the extensive review published by Perduta et al. on the inte-

gration challenges of classic IGA with in-service CAD systems [33].

An hybrid approach with better CAD–analysis integration is the NURBS enhanced fi-

nite element method (NEFEM) [51]. This combines B-reps from CAD for curved bound-

aries with standard FEM meshes as V-rep. The fact that NEFEM uses B-reps and

V-reps of different nature (respectively NURBS and polynomials) is the key enabling

CAD–analysis integration because it reflects the de-facto representations used in mod-

ern engineering practise. NEFEM formulation is however restricted to triangular and

tetrahedral elements [51, 52]. The lack of quadrilateral and hexameral formulations is

a limit to the space of available shape functions, hence a limit to the accuracy of the

method [53]. To the best of the authors’ knowledge, the literature fails at filling this gap.

2.4.2 NEFEM

The method due to Sevilla et al. [51] improves the solution of electromagnetic [52] and su-

personic flow problems [54]; recently, it has also been expanded to Discontinuous Galerkin
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formulation [55]. NEFEM outperforms FEM because it represents curved boundaries ex-

actly as CAD does. This is achieved by computing the shape functions in Cartesian space,

which is where the image of NURBS surfaces reside. The increase in computational cost

of the elements on the boundary is somewhat negligible, while the accuracy is higher and

in line with what is expected from an isogeometric formulation. More importantly, since

NEFEM uses the B-rep from CAD, it offers good legacy with in-service CAD systems.

As originally formulated however, NEFEM does not allow for solid element formula-

tions other than triangles (2D) and tetrahedrons (3D). This limitation follows from the

definition of shape functions. As already mentioned, these are computed and integrated

in Cartesian space [51]. Unlike the isoparametric FEM formulation, in which quads and

hexahedral exists because their shape functions are defined in a parent domain [53], NE-

FEM cannot enforce orthogonality in the basis of solid element other than triangles (2D)

and tetrahedrons (3D). Let us demonstrate this fact with the following example.

Consider the unit square (2D) and a known polynomial function:

φ = a1 + a2x+ a3y + a4xy (2.14)

Using classic interpolation theory, let us compute the coefficients ai of a bilinear basis

at the four vertices of a quadrilateral elements. Since φ is known, its value φi at the

i-th vertex of the square is also known. The coordinates of the vertex are xi and yi. A

solution exists if the following system admits solution for the unknowns ai:
...

1 xi yi xiyi
...




...

ai
...

 =


...

φi
...

 (2.15)

The rank of the matrix in Eq. (2.15) is maximal because the vertices of the unit square

are affinely independent, but this is not necessarily the case of an arbitrary distortion

of it. Indeed, a quadrilateral whose coordinates xi and yi are affinely dependent, will

yield to an ill conditioned system. This proves that the bilinear shape functions of

an arbitrary quad NEFEM elements may not be able to interpolate φ, posing a major
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constrain on the accuracy and applicability of the method itself. NEFEM suffer the

same problem of standard quadrangle FEM element and the solution is founded in the

parametric definition of the element. The main difference is that this space is defined in

the NURBS domain for NEFEM while is the parent space for FEM and will be described

in the following section. Because of the similarity with FEM, NEFEM makes possible an

higher accuracy of the analysis coupled with a perfect shape representation. Moreover,

the integration with a standard code result simpler compared with IGA. Figure 2.7 shows

the standard FEM flowchart where the geometry converted into mesh and imported in

the solver. Note that every time the geometry is converted, the relative CAD model is

wasted because the approximation is no longer linked to the mathematical model. To

modify the CAD geometry with the results of the simulation one should open the CSG

model and update the geometry manually. Figure 2.8 shows instead the flowchart of

NEFEM method that presents many points of interest:

1. The geometry is imported as it is because both mesh and NURBS are necessaries

for the methodology;

2. An higher loop over element groups1 is added to implement NEFEM element beside

classic FEM elements;

3. The definition of the global stiffness matrix K and force vector F is unique between

FEM and NEFEM, the differences are in the definition of element matrix and

local load that, however, maintain the same structure of classical FEM (expect for

the calculation of basis function and Jacobian matrix) easing the integration with

classical codes respect to IGA.

4. At the end of the loop, the geometry is automatically update in the mathematical

form due to the not wasted information related to the original shape.

1an element group is a structure that contains all the information needed to process that specific
element. In particular it can contain the connectivity definition, the number of Gauss Points used, etc..
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Figure 2.7: Standard FEM flowchart.

36



Figure 2.8: NEFEM flowchart.
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Chapter 3

Methodology

This section introduces a new quadrilateral, isogeometric element based on the original

NEFEM formulation. The novelty will allow to overcome the limitations outlined in

Section 2.4.2 by: (i) presenting a new mapping to compute and integrate bilinear shape

functions for NEFEM, and (ii) describing the resulting Jacobian matrix (iii) devising a

pre-processing algorithm to create isogeometric models from FEM meshes (V-rep) and

arbitrary CAD models (B-rep).

3.1 A new element formulation

The proposed method departs from classic weak form at Eq. (B.2) and each integral is

split into two parts: one defined with FEM elements, and another defined with NEFEM

elements.

Ω = ΩFEM ∪ ΩNEFEM

ΓD = ΓFEMD ∪ ΓNEFEMD

ΓN = ΓFEMN ∪ ΓNEFEMN

FEM and NEFEM domains are visually represented in Figure 3.1 where a classical white

FEM representation is shown coupled with the green NEFEM one. It is possible to see
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ΓfemD
Figure 3.1: Generic 2D discrete domain combining FEM and NEFEM elements.

that the boundary impositions can be applied for both cases clearly showing the better

result on NEFEM due to the geometrical accuracy. Introducing FEM and NEFEM

domains in a mathematical form results in:(∫
ΩFEM

∇u · ∇v +

∫
ΩNEFEM

∇u · ∇v
)

=(∫
ΩFEM

fv +

∫
ΩNEFEM

fv

)
+

(∫
ΓFEM
N

g1v +

∫
ΓNEFEM
N

g1v

) (3.1)

ignoring c for simplicity, and moving to the discrete form:

∑
j∈Ind

∫
Ω

∇ϕj · ∇ϕi︸ ︷︷ ︸
Kij

uj =

∫
Ω

fϕi +

∫
ΓN

g1ϕi︸ ︷︷ ︸
Fi

−
∑
j∈Dir

∫
Ω

∇ϕj · ∇ϕi︸ ︷︷ ︸
Kij

g0(pj)
(3.2)
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∑
j∈Ind


∫

ΩFEM

∇ϕj · ∇ϕi︸ ︷︷ ︸
KFEM

ij

+

∫
ΩNEFEM

∇ϕj · ∇ϕi︸ ︷︷ ︸
KNEFEM

ij

uj =


∫

ΩFEM

fϕi +

∫
ΓFEM
N

g1ϕi︸ ︷︷ ︸
FFEM
i

+

∫
ΩNEFEM

fϕi +

∫
ΓNEFEM
N

g1ϕi︸ ︷︷ ︸
FNEFEM
i

−

∑
j∈Dir


∫

ΩFEM

∇ϕj · ∇ϕi︸ ︷︷ ︸
KFEM

ij

+

∫
ΩNEFEM

∇ϕj · ∇ϕi︸ ︷︷ ︸
KNEFEM

ij

 g0(pj)

(3.3)

or

(
KFEM +KNEFEM

)︸ ︷︷ ︸
K

·u =
(
F FEM + FNEFEM

)︸ ︷︷ ︸
F

(3.4)

Equation 3.4 can be summarized in the classical form

K · u = F

The difference between FEM and NEFEM lies in the mapping functions of the ele-

ment to change reference system, so the functions that approximate the physical domain

remains the same (u =
∑

j ujϕj and v = ϕj). This is important to guarantee the cou-

pling between FEM and NEFEM. As the FEM space do not require special treatment,

we shall focus only on the NEFEM element group.

There are three spaces to be considered:

1. Cartesian space Rn, with variables x = x1, . . . , xn. In this space a body Ω has

boundary Γ.

2. Reference space Rn, with variables ξ = ξ1, . . . , ξn. In this space a body Ωref has
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boundary G.

3. Parametric space if for NURBS space Rn, with variables λ = λ1, . . . , λn. In this

space a body Ωref has boundary Λ.

The goal is to construct a map between the Cartesian space and either reference or

parametric spaces in order to be able of evaluating the integral in Equation 3.1 both for

FEM and NEFEM elements. The mapping is an injective and continuously differentiable

function1.

3.1.1 Mapping

Two mappings connect the three spaces listed above, these are: ψ̄ and ψ̂ which are all

depicted in Figure 3.2. A general mapping ψ : R2 → R2 is used to transform from a

space into another. For example, the first mapping ψ̄ transforms from the reference to

Cartesian space. In R2 applications this writes as follows:x1

x2

 = ψ̄

ξ1

ξ2

 =

f1(ξ)

f2(ξ)

 (3.5)

The fundamental difference between FEM and NEFEM is the formulation of the

mapping in Eq. (3.5). FEM leverages on classical shape function interpolation to define

ψ̄. Instead, for NEFEM the mapping is enriched by geometrical information coming

from the NURBS curves and surfaces. It is this contribute that allows our new NEFEM

formulation to seamlessly connect with CAD.

The NEFEM mapping is a function that goes from Parametric to Physical space and

for 2D application became:

x1

x2

 = ψ̂

(λ, θ)

(λ, θ)

 =

f1(λ, θ)

f2(λ, θ)

 = (3.6)

1Affine and bijective may be even better, but for quadrilateral elements there are no affine maps due
to the bilinear term.

41



ψ̄

Ωe

x

Ωref

ξ
ψ̂

Ωpar

λ

Figure 3.2: Mappings of a single element Ωe defined in the Cartesian space.

A1C1x + A2C2x + A3C3x + A4C4x −
∑4

i=1 Nipix

A1C1y + A2C2y + A3C3y + A4C4y −
∑4

i=1Nipiy

 (3.7)

Where:

� Ai(λ) for i = 1, 3 and Ai(θ) for i = 2, 4 are 1D linear shape functions defined on

the [λ1, λ2] and [θ1, θ2].

� Cix(λ) and Ciy(θ) are the coordinates of the image of the i-th edge

� Ni This is a 2D bilinear shape function of a classic finite element and it is associated

to the corner pi.

� pix and piy are the coordinates of the element’s i-th corner (pi) .

In general, the functions defining mappings for FEM and NEFEM are defined as
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follows:

f(x) =

{
for NEFEM f(λ) =

∑
j∈I Aj(λ)Cj(λ)−

∑
j∈K Nj(λ)pj (3.8a)

for FEM f(ξ) =
∑dof

j=1Nj(ξ)xij (3.8b)

Where: I is the set of ordered curves (surfaces) defining the frontier of Ωe, K is the set

of four (eight) corners of the element Ωe in R2 (R3), and pj ∈ Rn is the coordinate of the

j -th corner. It should be noted that Eq. (3.8a) comprises two contributes: the first one

gives the correct shape to the element, the second is a bilinear map that defines size.

NEFEM uses the mapping ψ̂ and Eq. (3.8a) to translate from parametric to Cartesian

space, whilst FEM uses the mapping ψ̄ and Eq. (3.8b) to translate from reference to

Cartesian space. Because Ωpar is a bilinear map, at least an element with two curved

edge can be represented. A pre process operation on knot vectors should be done to draw

an element with four curved edge. In particular, to take into account of the NURBS, the

connectivity matrix that represents the elements in the program is modified shown in

Table 3.1. The first ID is the element ID defining the number of the element considered;

Table 3.1: Modified Connectivity matrix for NEFEM method

ID n1 n2 n3 n4 c1 · · · cn λ11 λ12 · · · λn1 λn2
...

...
...

...
...

...
...

...
...

...
...

...
...

n1, · · · , n4 are the IDs of the nodes (four in this specific applications); c1, · · · , cn are the

curve on which the edge stands and all λi,j are the j − th λ (1 or 2) for the i− th curve

(1, · · · , n). As example, for the geometry in Figure 3.4, the original FEM connectivity

(Table 3.2)

become the one shown in Table 3.3. It is important to notice that there are just

12 elements because the other 4 are still FEM elements and have a FEM connectivity

description. The more are the number of elements, the more the connectivity matrix for

NEFEM elements became small in raw compared to the FEM one. This is also shown

later in Figure 3.7.
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Table 3.2: Example of connectivity matrix for FEM geometry

ID n1 n2 n3 n4

1 1 2 7 6
2 2 3 8 7
3 3 4 9 8
4 4 5 10 9
5 6 7 12 11
6 7 8 13 12
7 8 9 14 13
8 9 10 15 14
9 11 12 17 16
10 12 13 18 17
11 13 14 19 18
12 14 15 20 19
13 16 17 22 21
14 17 18 23 22
15 18 19 24 23
16 19 20 25 24

Table 3.3: Example of connectivity matrix for NEFEM geometry

ID n1 n2 n3 n4 c1 c2 c3 c4

1 1.0000 2.0000 7.0000 6.0000 4.0000 0 0 3.0000 · · ·
2 2.0000 3.0000 8.0000 7.0000 4.0000 0 0 0 · · ·
3 3.0000 4.0000 9.0000 8.0000 4.0000 0 0 0 · · ·
4 4.0000 5.0000 10.0000 9.0000 4.0000 1.0000 0 0 · · ·
5 6.0000 7.0000 12.0000 11.0000 0 0 0 3.0000 · · ·
6 9.0000 10.0000 15.0000 14.0000 0 1.0000 0 0 · · ·
7 11.0000 12.0000 17.0000 16.0000 0 0 0 3.0000 · · ·
8 14.0000 15.0000 20.0000 19.0000 0 1.0000 0 0 · · ·
9 16.0000 17.0000 22.0000 21.0000 0 0 2.0000 3.0000 · · ·
10 17.0000 18.0000 23.0000 22.0000 0 0 2.0000 0 · · ·
11 18.0000 19.0000 24.0000 23.0000 0 0 2.0000 0 · · ·
12 19.0000 20.0000 25.0000 24.0000 0 1.0000 2.0000 0 · · ·
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λ11 λ12 λ21 λ22 λ31 λ32 λ41 λ42

· · · 1.0000 0.7401 0 0 0 0 0.2500 0
· · · 0.7401 0.5000 0 0 0 0 0 0
· · · 0.5000 0.2599 0 0 0 0 0 0
· · · 0.2599 0 0 0.2500 0 0 0 0
· · · 0 0 0 0 0 0 0.5000 0.2500
· · · 0 0 0.2500 0.5000 0 0 0 0
· · · 0 0 0 0 0 0 0.7500 0.5000
· · · 0 0 0.5000 0.7500 0 0 0 0
· · · 0 0 0 0 0.7401 1.0000 1.0000 0.7500
· · · 0 0 0 0 0.5000 0.7401 0 0
· · · 0 0 0 0 0.2599 0.5000 0 0
· · · 0 0 0.7500 1.0000 0 0.2599 0 0

3.1.2 Jacobian

Different mapping domains leads to different shape functions. The i-th shape function of

an element is denoted by Ni(x), its domain is RN . These shape functions are Lagrange

polynomials for FEM and NEFEM. The only difference being their domain: the former

use Ωref : [−1, 1]× [−1, 1], the latter Ωpar : [λ11, λ12]× [λ21, λ22].

The newly present formulation departs from first NEFEM publication [51] as the

shape functions are not defined in the Cartesian space. The need for this change is rooted

in space spanned by the polynomial basis which is larger for quadrilateral (hexameral)

elements than for triangular (tetrahedral). This can be seen by looking at Pascal’s tri-

angle. The reason driving a new element formulation is that the presence of such term

yields to a system of equation linearly depend when it comes to recompute shape func-

tions for each element. This uncertainty leads to a non univocal solution on a arbitrary

oriented edge between two element in Cartesian space. The lack of compatibility force

the use of a parametric domain in which the element is always represented as a square

(in FEM formulation) or a rectangle (in NEFEM formulation).

By defining the NEFEM shape functions in the parametric domain the computation

becomes cheaper whilst the high accuracy is retained.

The mapping described in section 3.1.1 yields to a Jacobian matrix:
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Jψ̄ =
∂fi
∂ξj

=

∂f1∂ξ1

∂f1
∂ξ2

∂f2
∂ξ1

∂f2
∂ξ2

 (3.9)

Jacobian matrix is used to:

1. Change the reference system from parametric to Cartesian.

Determinant of Jacobian matrix define the change of integration domain.

dΩx = det(Jψ̂)dΩλ

2. Define the derivative of shape function in Cartesian space.

Jacobian matrix connects parametric and Cartesian shape functions as follow:∂Ni

∂λ1

∂Ni

∂λ2

 =

 ∂f1
∂λ1

∂f2
∂λ1

∂f1
∂λ2

∂f2
∂λ2

∂Ni

∂f1

∂Ni

∂f2


or

∇λNi = JT
ψ̂
∇xNi (3.10)

Solving Eq. (3.10) for ∇xNi leads to

∇xNi = (JT
ψ̂

)−1∇λNi (3.11)

Linear elastic Bx,y matrix is assembled using derivative of shape function defined

in Eq. (3.11)

Bx,y =


∂N1

∂x1
0 ∂N2

∂x1
0 ∂N3

∂x1
0 ∂N4

∂x1
0

0 ∂N1

∂x2
0 ∂N2

∂x2
0 ∂N3

∂x2
0 ∂N4

∂x2

∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1

∂N3

∂x2

∂N3

∂x1

∂N4

∂x2

∂N4

∂x1


3.1.3 Area - Quadrature

The definition of the shape’s area is important to determinate if the new method is more

accurate that the original FEM approach and whether the number of Gauss points is
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well defined for the functions that will be integrated. It is important to remember that

NURBS functions are rational functions and not polynomial. This dissimilarity leads to

the problem of determinate the right number of Gauss point to integrate correctly the

function since there isn’t a priori defined quadrature that guarantee the exact integration

of it. If for standard finite elements it is possible to determine through the Pascal

triangle’s role the exact number of Gauss points to integrate the chosen polynomial [56],

in NEFEM a test must be done to check the effectiveness of the integration. The formula

for the computation of the element’s area is:

Anumeric =

∫
Ω

det(J)dΩ

where Ω is the domain of the element and J is the Jacobian matrix defined in 3.9 For

FEM the integral is computed in the parametric space

∫ 1

−1

∫ 1

−1

det(J(ξ1,ξ2))dξ1dξ2

for NEFEM in the parent space

∫
λ1

∫
λ2

det(J(λ1,λ2))dλ1dλ2

while the exact area (Aexact = (R−r)2π
4

), it is possible to evaluate the absolute error as

follow:

ErrArea = |Aexact − Anumeric|

Figure 3.3 shows the fast convergence to the exact area value for NEFEM geometry

while the error in FEM approximation is constant since the exact integration of the

polynomial is already performed using 4 Gauss points. In particular for a Gauss point

quadrature higher then 4x4 the machine error is reached for NEFEM and the 4x4 case

is always at least 6 order below the FEM approximation. Due to these results, it is

possible to maintain the same gauss point quadrature for FEM and NEFEM to lower

the computational efforts and improve the geometrical accuracy.

Figure 3.4 shows the Gauss Points quadrature tested for NEFEM elements. The
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Figure 3.3: Area error between FEM and NEFEM meshes with 16-64-256-1024 elements.

FEM elements have been integrated with 4 Gauss points since there is no meaning in

using more of them.
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Figure 3.4: Gauss points quadrature for FEM elements in black and for NEFEM elements
in blue
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3.2 Quadrangle NEFEM

3.2.1 Integragion

In NEFEM, the CAD geometry is passed onto the solver, as illustrated in Figure 3.5. The

Figure 3.5: CAD integration workflow for FEM, NEFEM and IGA.

upper flowchart shows the unidirectionality of classic FEM approaches in converting CAD

models to numerical models. CAD geometry is then meshed in a Pre-Processor loosing

almost all the mathematical informations to reach the final stage. The last flowchart

underlines the high flexibility of IGA where the Pre-Processor is embedded in the entire

meshing process and it isn’t separated from CAD or analysis. Unfortunately, as described

above, this high flexibility is difficult to exploit especially in mechanical analysis because

is not always simple to represent a CAD geometry as a single 3D trivariate NURBS

patch. Finally the middle flowchart shows the NEFEM compromise that impose a soft

Pre-Process phase and lets the simulation be connected with the original CAD shape

since no informations are lost during the meshing steps. The ideal integration would
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enable to create a bridge for a good communication of geometrical information between

CAD and Analysis.

The element stiffness matrix Ke is generally defined as

Ke =

∫
x1

∫
x2

BTDB dx1dx2

where B is the matrix of shape functions’ derivatives and D is the constitutive matrix.

The solution requires the integration of the differential of the shape functions, so the

integral is evaluated numerically.

A quadrature in the reference space RN is defined by nip integration points with

coordinates x̂i ∈ RN for i = 1, ..., nip. To each integration point is associated a weight

ŵi ∈ R.

3.2.2 Implementation

Algorithm 1 shows the steps on which the methodology is divided and implemented.

Starting from the input file, generated from CAD, the software processes the NEFEM

elements and compute the stiffness matrices in order to solve the linear system Ku = b.

Finally the output is written and the geometry updated.

Algorithm 1 Standard simulation engine pseudo-code

1: Read input file
2: Allocate memory
3: for All elements do
4: for All integration points do
5: Evaluate basis functions
6: Sum contribute to Ke

7: Assemble Ke into K.

8: Solve Ku = b
9: Write output and geometry update

FEM procedure

1. Get the quadrature (i.e. integration points x̂i and associated weights ŵi).
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2. Evaluate N(x̂i), dN(x̂i) or d2N(x̂i) as requested.

3. Compute Jacobian J

Then assemble matrix B, and finally Ke.

NEFEM procedure

1. Get the extrema for integration

2. Get type of edge

3. Compute integration points mapped in RN .

4. Check in RN that the quadrature is valid

5. Map integration points with ψ̄; xij = ψ̄(λi, θj).

6. Compute ‖J(λi, θj)‖ which is the Jacobian used to integrate the shape functions,

and their derivatives, in RN .

7. Compute Bij = B(xij)

8. Assemble Ke = te
∑n

i=1

∑m
j=1 BjiDBij‖J(λi, θj)‖wiŵj.

Then assemble matrix B, and finally Ke.

Remark: As a consequence of the different functions in Eqs. (3.8a) and (3.8b), which

respectively define the mappings for NEFEM and FEM, the Jacobian matrix of the two

method is substantially different for high-order polynomial shape functions.

3.2.3 Geometrical considerations

NEFEM is a powerful tool because can couple analysis and geometry. Generating quad-

rangle elements with NURBS edges leads to smooth structured meshes. Using the quarter

of tube as reference geometry, it would be possible to generate the correct shape also

with one element. Figure 3.6 shows the astonishing differences in geometrical shape for
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a standard FEM discretization and a novel quadrangle NEFEM discretization for small

number of elements. Triangular NEFEM couldn’t be able to represent the proposed case

using only one element and it would lacks in structure. Despite the results of the pre-

sented example would be similar, a structured mesh should always be preferred compared

an unstructured one.

(a) 1-element FEM (b) 4-elements FEM (c) 16-elements FEM

(d) 1-element NEFEM (e) 4-elements NEFEM (f) 16-elements mixed

Figure 3.6: Comparison between FEM and NEFEM meshes for 1-4-16 elements. Fig-
ure 3.6f shows a combination of FEM end NEFEM elements because curves exists only
on shape’s boundaries

This fact is important to drastically reduce the number of elements in complex shape

for easy analysis such as static analysis and in complex simulation such as impact analysis

maintaining the correctness of the shape. Lowering the number of elements and better

represent the geometry lead to improved results. In particular there are three main

feature from NEFEM approximation:

1. Geometry correctness;

2. Decreasing influence due to boundary elements;

53



Figure 3.7: NEFEM element’s percentage compared to total number of elements

3. Shape recovery.

The first statement is shown in Figure 3.6. Figure 3.7 shows how the influence of NE-

FEM element decreases increasing the total number of element. This is important be-

cause it underlines that the NEFEM method is applied just over the boundary lowering

the computational effort in complex shapes analysis. Because the shape function must

be calculated for each NEFEM element in a different domain, one could say that the

computational effort for the computer is higher, but limiting the space where this is nec-

essary leads to a positive compromise between shape representation and computational

resources needed. Finally, Figure 3.8 shows the possibility of track geometrical changes

after a guessed deformation. How is it possible to perfectly match with the same NURBS

the nodes moved due to deformation?

54



Figure 3.8: NEFEM elements before and after a guessed deformation

1. Best match: this method involves an optimization algorithms to search the best

fit for the NURBS that we have to match the new geometry. This can be not

accurate, but is the easy way and makes possible to automatically reproduce the

modification in the .iges file without any changes. The parameters of the NURBS

that exists both in the .iges file (where they come from) and in the NEFEM

analysis, are modified through the optimization tool based on a Newton’s method

and updated in the .iges file.

2. Perfect match: this second method involves an important feature of the NURBS.

These curves can be enriched through knot insertion or degree elevation maintain-

ing the exact same shape. This feature is important because it helps the optimiza-

tion tool to match the shape better always starting from the original NURBS that

can be updated with the new parameters in the .iges file.

Both those two approaches (Figure 3.9) are not possible in a standard FEM since there

is no link between nodes and geometry so the solver actually don’t know which nodes

are related to which curve or surface. Moreover, this procedure is free from commercial

constraints since the new methodology can read and write transversal .iges files evading

the limits imposed by software houses. It is important to remark the importance of
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Figure 3.9: Matching of the NURBS geometry using the same curve (green) and an
enriched one (blue)

quadrangle elements since the geometry presented above would be more complex to

be represented with triangles and impossible to be represented with just one triangle

element. Quadrangle meshes are more stable both from the analytical point of view

and geometrical approach. Moreover, this kind of discretization is flexible for different

geometries and the NEFEM elements can be turned on and off where the NURBS edge

exist. Figures 3.10 show another application of 2D NEFEM elements. First of all,

the circular edge delimiting the hole in Figure 3.10a is closed and the elements follow

automatically the path. Secondly, Figures 3.10b-3.10c show that it is not necessaries that

all the perimeter is bouded by NEFEM elements. In this example are defined five NURBS

of which just one is an actual curve. All the other four line are defined as NURBS with

p = 1 meaning that they collapse to straight lines. This is important because through

lines or curves inside the geometry it is possible to define the border where NEFEM

element can or cannot exist. Thinking about a possible composite application, this

feature became very interesting and useful.
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(a) Full plate (b) Quarter of plate

(c) Quarter of plate

Figure 3.10: Application of NEFEM methodology to Kirsch geometry: (a) shows the full
plate mesh, (b) shows a quarter of plate with one NEFEM edge and (c) shows a quarter
of palate with more than one NEFEM edge
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Chapter 4

Applications and Results

The numerical methods considered in this section are assessed using the criteria listed

below:

1. CAD integration: This is qualitative assessment on the feasibility of isogeometric

models. It is worth recalling models represent boundaries exactly as in CAD does.

2. Error: This is a measure of the accuracy of a numerical method. Given a reference

solution u?, the error of a numerical solution uh is measured in the `2−norm as

follows:

‖e‖`2(Ω) =

[∫
Ω

(
u? − uh

)2
dΩ

] 1
2

(4.1)

The error will be measured to assess convergence as the shortest edge length hmin

of the smallest element of a mesh is reduced — basically a measure of how quickly

a numerical method tends to the reference solution as the mesh is refined.

3. Degrees of freedom: Number of unknowns in the linear system.

Equipped with these metrics, the results will offer a comparison between numerical

methods; that is, a consideration of the error obtained from methods with equivalent

number of degrees of freedom and the same order of basis function. Unfair comparisons

which do not meet this criterion, shall not be presented. The chosen of Energy error as

comparison criteria is driven by the possibility to compare two scalar results (FEM and

NEFEM) with analytical result. Authors believe that a good validation of a new FEM
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methodology should always pass through a comparison with a well known analytical

solution. The temperature field of the thermal case is defined a priori over the geometry

and the boundary condition are extrapolated from this assumption. The displacement

field of the linear elastic case is compared with the well known pipe theory for axial

symmetric problems. The analytical energy is then calculated from these two solution

fields and linked to FEM and NEFEM simulation through the error estimation. This

is the only way to see a meaning convergence and guarantee the correctness of the

methodology. Figure 4.1 shows Matlab implementation from .iges geometry to final

results for the main test case studied in the following section where error will be compute

and discuss for different mesh refinements.
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Figure 4.1: Flowchart of Matlab implementation for geometry building and solution. (a)
is the geometry created using Ls-PrePost or the preferred CAD and it is a .iges ; (b)
shows the NURBS extrapolated from the geometry; (c) is the standard mesh performed
using known techniques; (d) shows the overlap of NURBS and mesh that generates the
NEFEM element represented as green elements in (e); (f-g) are the results of the linear
elastic and thermal analysis.
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4.1 Heat Transfer

This first test evaluates the convergence of the new element by solving a heat transfer

problem. The unknown is the scalar temperature field u. Non-homogeneous, natural

and essential boundary conditions are included along with body forces from the outset.

The physics of a steady-state heat transfer problem is modelled by Laplace equation.

Its solution u is sought to be such that:

−u,ii = f in Ω

u = g0 on ΓD

u,i ni = g1 on ΓN

(4.2)

Under the assumption that u, g1, g2 and f are all sufficiently smooth, the strong form

in Eq. (4.2) can be easily written in weak form following a procedure similar to the one

presented in Sec 3.1.3.

The geometry of this test is the membrane Ω illustrated in Figure 4.2 along with

three NEFEM meshes. The boundary Γ is formed of only four NURBS curves: two

straight and two curved as seen in Figure 4.2a. These define ΓD and ΓN , respectively.

All meshes include FEM (dark grey) and NEFEM (light green) elements, the latter

match the geometry described by the four NURBS curves. The mesh in Figure 4.2b is

build with the procedure presented in Section 3.1 and it has 16 quadrilateral elements;

these elements may be split to build finer meshes with 64 and 256 and 1024 elements

(see Figures 4.2c , 4.2d and 4.2e).

The boundary conditions and body forces, respectively g0, g1 and f , are defined

without ambiguity to meet the following reference solution:

u? = x cos y + y sinx (4.3)

The temperature fields computed with FEM and NEFEM are illustrated in Figure 4.3.

The main difference, remarkable for coarse meshes, is the solution about the boundaries

that is piecewise linear for FEM, but perfectly circular for NEFEM. Overall, from the
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(a) (b) (c)

(d) (e)

Figure 4.2: The geometry of the circular membrane problem is a quarter of a circle (a)
and Meshes for the 2D circular membrane benchmark: (b) 16 elements, (c) 64 elements,
(d) 256 elements and (d) 1024 elements. The outer elements are highlighted in green.
The geometry is defined by four NURBS curves distinguished by different colours with
their control points.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Meshes for the 2D circular membrane benchmark: (a-b-c-d) show FEM
results and (e-f-g-h) show the relative NEFEM results both for 16-64-256-1024 elements.

pairwise comparison it appears that the FEM and NEFEM solutions are not dissimilar,

however a closer look at the values of the error ‖e‖`2(Ω) proves that this is not the case.

The errors of FEM and NEFEM solutions are reported in Figure 4.4. These are

measured with Eqs. (4.1) and (4.3). The results illustrate that both methods converge,

however the offset between the curves shows that NEFEM produces smaller error and is

therefore more accurate than FEM.

NEFEM is on average 25% more accurate than FEM for this particular test. The

values in Table 4.1 show that its error is slightly lower for large values of characteristic

length hmin (i.e. coarse meshes). It should be emphasided that the number of degrees of

freedom is the same for FEM and NEFEM
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Figure 4.4: Error in L-2 norm of energy obtained for the 2D circular membrane problem
and % error difference.

Table 4.1: Heat transfer problem results: error ‖e‖`2(Ω) values obtained with FEM,
NEFEM and their relative difference (%).

hmin dof
Error

FEM NEFEM Difference

0.750 16 4.47 3.55 20.5 %
0.375 81 1.21 9.05 e−1 25.1 %
0.190 289 3.11 e−1 2.25 e−1 27.9 %
0.095 1089 7.83 e−2 5.62 e−2 28.2 %
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4.2 Linear Elastic Analysis

The second test presented herein applies NEFEM to linear elasticity. The unknown is

the displacement field u detailed in Eq. (4.4), with the assumption that g1, f and g2

are constants and that u is sufficiently smooth. Alike the heat transfer problem, this

test employs the circular membrane domain Ω and the meshes previously illustrated in

Figure 4.2.

σij,j + fi = 0 in Ω

ui = g1 on ΓD

σij nj = g2 on ΓN

(4.4)

The boundary conditions impose a symmetric displacement with respect to the hypre-

planes x = 0 and y = 0; furthermore, a normal pressure p0 is imposed on ΓN . There are

no body forces applied and the reference solution, adapted from [57, 58], is expressed in

the radial coordinate r:

u(r)? = C1 r +
C2

r
(4.5)

C1 =
ν − 1

ν E

per
2
e − pir2

i

r2
e − r2

i

, C2 =
ν + 1

ν E
(pe − pi)

r2
er

2
i

r2
e − r2

i

where Poisson’s module ν = 0.3, Young’s module E = 1Mpa, the pressure applied on

the curve boundaries are pi = 1.5Mpa and pe = 0.5Mpa and ri re are respectively the

internal and external radii.

The displacement fields computed with FEM and NEFEM are depicted in Figure 4.7.

A detailed visualization of the displacement along the radius is shown in Figure 4.5-4.6.

This Figure shows the quality of NEFEM approximation compared to a standard FEM.

Both converges to the exact result, but NEFEM, for larger elements, tend to always

present at least one point attached to the exact solution. In particular for 4 radial

elements the nodes of the NEFEM mesh are very close to the exact solution while FEM

result still underestimate the analytical solution. Note that Equation 4.5 is a rational

equation leading to the impossibility of an exact nodal solution through a bivariate FEM

approach. This result is important because it enforces the thesis that larger elements can
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(a) 2 radial elements FEM (b) 4 radial elements FEM

(c) 2 radial elements NEFEM (d) 4 radial elements NEFEM

Figure 4.5: Analysis of the radial solution for FEM and NEFEM (2-4 radial elements)
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(a) 8 radial elements FEM (b) 16 radial elements FEM

(c) 8 radial elements NEFEM (d) 16 radial elements NEFEM

Figure 4.6: Analysis of the radial solution for FEM and NEFEM (8-16 radial elements)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Meshes for the 2D circular membrane benchmark in linear elastic application:
(a-b-c-d) show FEM results and (e-f-g-h) show the relative NEFEM results both for 16-
64-256-1024 elements.

be more accurate due to geometrical accuracy maintaining the same linear basis function.

Similarly to the heat transfer problem, the solutions differ about the boundaries and only

marginally within the domain, and yet this small difference is far from negligible in the

error norm error ‖e‖`2(Ω).

The error from FEM and NEFEM solutions are reported in Figure 4.8. The methods

converge with an equal rate with hmin, but NEFEM produces a smaller error and is

therefore more accurate than FEM. This result is in line with what found in Section 4.1.

NEFEM is on average 40% more accurate than FEM for this particular test. It

should be highlighted that the number of degrees of freedom and the order of the basis

functions is the same for both methods, and therefore the comparison is fair. The

values in Table 4.2 show that its relative accuracy is slightly higher for large values of

characteristic length hmin (i.e. coarse meshes).
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Figure 4.8: Error in L-2 norm of displacement obtained for the 2D circular membrane
problem and % error difference.

Table 4.2: Linear elasticSummary of error ‖e‖`2(Ω) values obtained with FEM, NEFEM
and their relative difference (%).

hmin dof
Error

FEM NEFEM Difference

0.750 50 8.64 e−2 4.56 e−2 47.2 %
0.375 182 1.54 e−2 8.56 e−3 44.3 %
0.190 578 2.71 e−3 1.59 e−3 41.1 %
0.095 2178 4.75 e−4 2.99 e−4 37.2 %
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4.3 CAD Integration on complex shapes

Let us now evaluate the ability of the new method to deal with arbitrarily complex CAD

geometries. As mentioned in Sections 2.4 and 3, classic IGA is limited to relatively

simple shapes and this section presents results showing how NEFEM overcomes such

limitation.

The first example considers the CAD model of a blade root, commonly found on

turbine engines [59]. This is imported, pre-processed and analysed following the steps

outlined in Section 3, namely: a commercial CAD system generates the IGES and mesh

files, which are then automatically processed to create the NEFEM elements for the

analysis.

The blade root displacement solution and its mesh are shown in Figure 4.9. This

includes NURBS featuring curvature radii very different in size. However, as shown in

Figure 4.9, all elements adjacent to the curves have been automatically enhanced (i.e.

replaced by NEFEM elements), thus demonstrating the ability of the pre-processing

algorithm to produce an isogeometric model out of a complex CAD geometry.

A further result is on the convergence of the IGA blade root example. A set of

representative boundary conditions is defined for this purpose: homogenous displacement

on the lower part of the geometry and an upward force applied the teeth of the disks to

account for centrifugal forces of the turbine blades. When compared to a second-order

FEM approximation (reference solution), NEFEM reduces the error by 12, 8% over its

FEM counterpart. It should be noted that the lack of an analytical solution imposes the

use of a numerical reference solution.

Another analysis is conducted on the driven wheel of a Maltese cross (or Geneva drive)

mechanism. The challenge in creating an isogeometric model on this particular geometry

is due to the NURBS curve defining the inner circular hole. This curve represents

a closed shape and therefore its extrema control points coincide. However, as shown

in Figure 4.10, all elements adjacent to the curves have been automatically enhanced

(i.e. replaced by NEFEM elements), thus demonstrating the ability of the pre-processing

algorithm to produce an isogeometric model out of a complex CAD geometry with closed
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Figure 4.9: Displacement solution for Blade Root 2D and mesh representation (NEFEM
elements - green - with edges on NURBS coupled with standard FEM elements - white
-)

inner shapes.

Figure 4.10 also includes the outcome of the stress analysis which provides further

insight on the convergence of the method. Figure 4.11 shows another complex shaper

where NEFEM elements are at the right edges.

The representative boundary conditions employed for this analysis are such that the

inner circle is fixed and a rotational load is applied on all the straight edges of the four

inserts. As before, when compared to a second-order FEM approximation (reference

solution) NEFEM reduces the error by 20, 0% over its FEM counterpart.

Finally, Table 4.3 collects the results for these two examples and the circular mem-

brane. For all cases there is a clear correlation between the ratio of NEFEM elements

and error reduction, that is, NEFEM always achieves higher accuracy. For the reasons

already discussed, a difference in the error reduction should not surprise. NEFEM results

more accurate for problems that are mostly influenced by either: (i) curved boundaries,

or (ii) complex boundary conditions.
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Figure 4.10: Von Mises solution for Maltese cross 2D and mesh representation (NEFEM
elements - green - with edges on NURBS coupled with standard FEM elements - white
-)

Table 4.3: Summary of all linear elastic problems presented

Number of elements
Error reduction

FEM NEFEM Ratio

Circular membrane (finest) 900 124 7.6:1 37.2 %
Blade root 7897 606 13:1 12.8 %

Maltese cross 3846 542 7:1 20.0 %
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Figure 4.11: NEFEM elements (green) on a complex 2D gear geometry

4.4 Discussion

This section aims to shed further light on the advantages and limitations of the newly

presented isogeometric element.

The advantages offered by quadrilateral NEFEM may summarised as follows:

1. Higher accuracy than FEM. This is demonstrated by the fair comparison in Sec-

tions 4.1 and 4.2 and inline with the literature [51].

2. Deeper integration with CAD and wider applicability than classic IGA. The new

algorithm was proven to be robust for arbitrarily complex CAD geometries and

unstructured meshes.

The first advantage is essentially rooted in the numerical integration scheme. Not only

NEFEM represents boundaries exactly as CAD does, but it is also better at imposing

non-Diriclet boundary conditions and loads. These are indeed linked by the very same

numerical integration scheme which, for NEFEM elements, uses more quadrature points
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than FEM. The consequence is an increase in accuracy. Furthermore, unlike Cartesian

FEM and for previous NEFEM formulations [60], defining quadrature points is a trivial

matter since the integration happens in the parametric space over a unit square. The

second advantage represents a leap forward in the isogeometric technology. By utilising

in-service CAD and meshing tools the new element formulation delivers, for the first time,

a first-order NURBS-based isogeometric basis function — the formulation of Huges et

al [30] is bounded to higher-order only. Basically, NEFEM expands the applicability of

IGA and offers a pragmatic solution to link CAD with analysis.

There are also limitations associated to the new NEFEM element formulation. First

and foremost, mesh generation remains a time-consuming requirement. To the authors’

best knowledge, there is no practical solution to this problem and NEFEM is compatible

with all mesh generation algorithm published to date. Furthermore, there is a cost

associated to the quadrature points added by NEFEM. On average, this increases the

computing time for less than 10% of the elements and the increase scales linearly with

number of quadrature points added. This is arguably an acceptable compromise for the

demonstrated gain in accuracy.
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Chapter 5

Conclusion

Because of the ever increasing demand of geometrical and mesh integration, it is impor-

tant to perform a transversal analysis that tries to build a mesh morphing method with

the ability of bringing back the solution from the analysis to the model. This is a tough

process since the loosing of information between mathematical models and meshes is still

today a fundamental step to bring geometries to simulation. All commercial pipelines

integrate a CAD, a pre-processor, a mesher, a solver and a post processor and they

mimic the design process explained in Section 1.3. Because of that, it was important to

rewrite from sketches a ”FEM” architecture able to read in input a standard file gener-

ated with a CAD tool and write in output on the same file. Using this approach it was

possible to integrate the information provided by the CAD rather then waste them. The

resulting methodology proved to be better both for the numerical calculations and for

the geometry. In particular the geometry maintains a parametric form meaning that it

can be morphed and recovered after an analysis. Because of the latter, in the thesis was

presented a new methodology in order to couple the geometrical problem with numerical

applications. In particular, it was underlined how the geometrical aspect of a mechanical

component is important both for parametric modification and for numerical application

revealing interesting results. Connecting the geometrical behaviour of a shape with the

discretization makes possible the morphing of the latter in order to regenerate the me-

chanical component under analysis. A 2D application was performed in order to prove

the correctness of the new formulation and to implement NEFEM solution in thermal
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analysis and linear elasticity. The latter application was driven by the interesting in

investigate the mechanical aspects of the problem and due to the low degree of approxi-

mation for solution’s field. It is known that commercial codes usually perform structural

analysis with a polynomial degree of 1 or 2 introducing high errors in the geometrical

representation. Quadrangle NEFEM is a solution in between IGA and standard FEM

that extends the classical approaches and borrows important features (such as NURBS

descriptions) from Isogeometric Analysis. The main ability of this methodology is the

higher level of integration with standard CAD formats (.step,.iges) and with FEM solvers

since the majority of the elements are still defined as normal FEM elements. The ability

of being a bidirectional bridge between these two kind of representation, makes NE-

FEM a flexible and powerful tool to delete the idealization phase in the design process

reducing times and costs. The thesis presents a comparison between these two design

tools underlying pros and cons and showing how NEFEM could be implemented for fu-

ture works. The development of analytical and geometrical software is ever increasing

because of higher computational performances driven by the technological era we are

living in, but the study of geometries is still active and of interest. Reach the perfect

connection between mathematical shapes and meshes is still a challenge that must be

solved in order to reduce errors in shape discretization and fully recover geometries after

a simulation. Many applications in complex fields are possible such as contact, impact or

fluid-structure interaction leaving, once again, the researchers with more questions than

answers.
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Appendix A

Strong Form

In this appendix an elliptic partial differential equation of second order will be considered

as example. In particular the following problem is written in the strong form:
−∇2u+ cu = f , in Ω

u = g0 , in ΓD

∂nu = g1 , on ΓN

(A.1)

Fig A.1 shows the reference 2D domain of the problem. About this formulation it is

possible to say that:

1. The unknown is a function u defined on the domain Ω

Ω

ΓN

ΓD

Figure A.1: 2D domain and boundary definition.
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2. c is a non-negative constant value. Usually it is considered for values c = 1 reducing

the equation to the Poisson’s equation, or c = 1 defining the more general second

order elliptic partial differential equation.

3. f is a given function on Ω and represents the source term that is applied to the

entire domain (surface or volume). In particular it can represent a thermal source

in heat transfer application or the body force in linear elastic applications

4. g0 and g1 are two functions applied to two different parts of the body. g0 is a

continuous function whereas g1 can be discontinuous.

5. ∂n defines the exterior normal derivative

∂nu = ∇u · n

where n is the normal vector on points of Γ pointing always outwards

This representation of the problem is clear but not always useful. If the geometry is

complex, then the solution of this boundary problem is not reachable using this formu-

lation. The answer to the problem can be found in the Weak Formulation that makes

finite elements method possible.
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Appendix B

Weak Form

The starting point to derive the Weak formulation of Equation A.1 is the Green’s theo-

rem. It states that ∫
Ω

(∇2u)v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu)v

This result is written for a 2D domain, but it is true also for 3D geometries. In the latter

case the integrals are volume integrals and boundary integrals are surface integrals.

Exploding the integral on the boundary Γ in the sum of two integrals on our boundary

(ΓD , ΓN). ∫
Ω

(∇2u)v +

∫
Ω

∇u · ∇v =

∫
ΓD

(∂nu)v +

∫
ΓN

(∂nu)v (B.1)

Because of the strong form we have that ∇2u = f − cu in Ω and that ∂nu = g1 on ΓN .

Substituting everything in Equation B.1 leads to

∫
Ω

∇u · ∇v + c

∫
Ω

uv =

∫
Ω

fv +

∫
ΓN

g1v +

∫
ΓD

(∂nu)v

Not knowing the value of (∂nu) on ΓD it is possible to impose v to the value v = 0 over

ΓD. This is an homogenous imposition, but still not the imposition of Dirichlet boundary

conditions. Due to this assumption the equation become

∫
Ω

∇u · ∇v + c

∫
Ω

uv =

∫
Ω

fv +

∫
ΓN

g1v (B.2)
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It is possible to notice that:

1. no Dirichlet imposition are made till now

2. f and g1 are the data and coefficients of the equation

3. the left-hand expression is a bilinear form of u and v since u and v are linear and

the right-hand expression is linear in v

Without defining the existing spaces of functions u and v, the problem of Equation A.1

can be written in it’s weak form:
find u such that

u = g0|ΓD∫
Ω
∇u · ∇v + c

∫
Ω
uv =

∫
Ω
fv +

∫
ΓN
g1v for v = 0|ΓD

(B.3)

The Dirichlet’s condition is imposed outside the formulation while the Neumann’s condi-

tion in embedded in the weak form. The first one is called ”essential boundary condition”

and the second one ”natural boundary condition”. v is called ”test function”. It tests

the equation that solves the problem for u. The idea is to have an average function

over the domain instead of searching for exact solutions point by point. It is important

underline that v is a virtual variable since it isn’t an unknown of the problem. v is useful

to write down the formulation.

To understand where u and v belongs some spaces must be defined. The first one is

the space of square-integrable functions

L2(Ω) =

{
f : Ω→ R

∣∣∣∣ ∫
Ω

|f |2 < inf

}

The second space is one of the wide family of Sobolev spaces:

H1(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂u∂x1

,
∂u

∂x2

}
∈ L2(Ω)

ant the related norm

||u||u,Ω =

(∫
Ω

|∇u|2 +

∫
Ω

|u|2
)1/2
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A particular subset of this space will be of interest for our purpose

H1
ΓD

(Ω) = {v ∈ H1(Ω)|v = 0, on ΓD}

Note that H1
ΓD

(Ω) is a subspace of H1(Ω), that is, linear combination of elements of

H1
ΓD

(Ω) belong to the same space. Thanks to these definition it is now possible to

express the problem in it’s final form:
find u ∈ H1(Ω) such that

u = g0|ΓD∫
Ω
∇u · ∇v + c

∫
Ω
uv =

∫
Ω
fv +

∫
ΓN
g1v ∀v ∈ H1

ΓD
(Ω)

(B.4)
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Appendix C

Finite Element Method

Let introduce the discrete domain in Fig C.1. It is now possible to describe a function

that is linear on each element. The space of such function is

Vh = {uh ∈ C(Ω̄)

∣∣∣∣uh|K ∈ P1, ∀K ∈ Th}

If a set of vertices of the polygon is fixed, there exists a unique uh ∈ Vh with those value

on the vertices. This particular vertices are called nodes. It is now possible to build a

Ωe

ΓN

ΓD

Figure C.1: 2D discrete domain.
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set of basis functions ϕi ∈ Vh that has these values on the nodes

ϕi(pj) = δi,j =

 1, j = i,

0, j 6= i.

Take uh ∈ Vh it is simple to see that

uh =
N∑
j=1

uh(pj)ϕj

and in particular

uh =
N∑
j=1

ujϕj

With this knowledge it is possible to rewrite Equation B.4 for the discrete domain (with

linear elements) defining the discrete version of the weak formulation


find uh ∈ Vh(Ω) such that

uh(p) = g0(p)∫
Ω
∇uh · ∇vh + c

∫
Ω
uhvh =

∫
Ω
fvh +

∫
ΓN
g1vh ∀vh ∈ V ΓD

h

(C.1)

Notice that

� The solution is searched in the subdomain Vh and not over the whole Sobolev space

leading to a finite number of unknowns;

� The Dirichlet nodes have fixed values depending on the Dirichlet conditions;

� Reducing the space of the test function to V ΓD
h leads to a finite number of linear

equations that can be solved in practical applications.

Specifying the number of Dirichlet nodes j, the problem can be rewrite
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
find uh ∈ Vh(Ω) such that

uh(pj) = g0(pj), ∀j ∈ Dir,∫
Ω
∇uh · ∇vh + c

∫
Ω
uhvh =

∫
Ω
fvh +

∫
ΓN
g1vh ∀vh ∈ V ΓD

h

(C.2)

Moreover, the discrete equations

∫
Ω

∇uh · ∇vh + c

∫
Ω

uhvh =

∫
Ω

fvh +

∫
ΓN

g1vh ∀vh ∈ V ΓD
h

are equivalent to a set of equations

∫
Ω

∇uh · ∇ϕi + c

∫
Ω

uhϕi =

∫
Ω

fϕi +

∫
ΓN

g1ϕi ∀i ∈ Ind

where it is enough to take uh = ϕi ∈ V ΓD
h . Because of that, the problem is now


find uh ∈ Vh(Ω) such that

uh(pj) = g0(pj), ∀j ∈ Dir,∫
Ω
∇uh · ∇ϕi + c

∫
Ω
uhϕi =

∫
Ω
fϕi +

∫
ΓN
g1ϕi ∀i ∈ Ind

(C.3)

Finally, it is possible to insert the linear system through the definition of uh using

the nodal basis functions

uh =
∑
j∈Ind

ujϕj +
∑
j∈Dir

ujϕj

Substituting the discrete Dirichlet boundary conditions

uh =
∑
j∈Ind

ujϕj +
∑
j∈Dir

g0(pj)ϕj

and putting everything in C.3 the final result appear

∑
j∈Ind

(∫
Ω

∇ϕj · ∇ϕi + c

∫
Ω

ϕjϕi

)
uj =

∫
Ω

fϕi +

∫
ΓN

g1ϕi

−
∑
j∈Dir

(∫
Ω

∇ϕj · ∇ϕi + c

∫
Ω

ϕjϕi

)
g0(pj)

(C.4)
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This is a linear system with as many equations as unknown. For an in-deep knowledge

see [61].
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