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“Unless you believe that the mind is separable from the brain both conceptually and
empirically – dualism in a strong form – you cannot hope to reproduce the mental by
writing and running programs since programs must be independent of brains or any
other particular forms of instantiation. If mental operations consist in computational
operations on formal symbols, then it follows that they have no interesting connection
with the brain; the only connection would be that the brain just happens to be one of the
indefinitely many types of machines capable of instantiating the program.”

Searle, John. R. (1980) Minds, brains, and programs.
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Abstract
DOTTORATO DI RICERCA IN

ingegneria elettronica, telecomunicazioni e tecnologie dell’informazione

by Tommaso Polonelli

This dissertation aims to explore Internet of Things (IoT) sensor nodes in various appli-
cation scenarios with different design requirements. The research provides a comprehen-
sive exploration of all the IoT layers composing an advanced device, from transducers
to on-board processing, through low power hardware schemes and wireless protocols
for wide area networks. Nowadays, spreading and massive utilization of wireless sensor
nodes pushes research and industries to overcome the main limitations of such con-
strained devices, aiming to make them easily deployable at a lower cost. Significant
challenges involve the battery lifetime that directly affects the device operativity and
the wireless communication bandwidth. Factors that commonly contrast the system
scalability and the energy per bit, as well as the maximum coverage. This thesis aims
to serve as a reference and guideline document for future IoT projects, where results
are structured following a conventional development pipeline. They usually consider
communication standards and sensing as project requirements and low power operation
as a necessity. A detailed overview of five leading IoT wireless protocols, together with
custom solutions to overcome the throughput limitations and decrease the power con-
sumption, are some of the topic discussed. Low power hardware engineering in multiple
applications is also introduced, especially focusing on improving the trade-off between
energy, functionality, and on-board processing capabilities. To enhance these features
and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost
transducer for structural health monitoring is presented. Lastly, the high-performance
computing at the extreme edge of the IoT framework is addressed, with special atten-
tion to image processing algorithms running on state of the art RISC-V architecture. As
a specific deployment scenario, an OpenCV-based stack, together with a convolutional
neural network, is assessed on the octa-core PULP SoC.
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Chapter 1

Introduction

The evolution of the Internet-of-Things (IoT) brings new classes of applications
and improvements in the efficiency of existing industrial and daily life support services.
Application-specific requirements, as well as sensing and connectivity ability of devices,
have introduced new challenges for IoT developers. With the progressing expansion
of information technology, the IoT has evolved to play an essential role in our daily
lives, often more than we perceive. Indeed, wearable sensors for healthcare, smart cities,
smart transportation, and logistics are already manufactured on a large-scale [1]. Inter-
connected sensors/things can collect and exchange different information amongst them-
selves through advanced network infrastructure connected by millions of IoT nodes [1]. A
diversity of IoT employments can provide more accurate and more fine-grained services
for final users or other machines working at a logic upper layer. For this purpose, more
and more sensors and smart devices are being deployed, which will generate massive
data, terabytes per seconds, demanding further computational processing and enhanc-
ing knowledge for both service providers and users [2]. This work aims to provide a
detailed overview of IoT technologies required from an embedded design perspective
and specific properties associated with IoT sensors in embedded systems’ landscape. It
investigates essential technologies for the development of IoT systems, edge computing,
low-power transducers, and in-field performance biased by low-power constraints.

Recent and ongoing advances in wireless communication, ultra-low power proces-
sors, sensors and actuators, smart power management, energy harvesting, and cloud/fog
computing have enabled the emergence of IoT [3]. While new Wireless Sensor Net-
work (WSN) protocols enable low-cost communication and wide-area coverage, ultra-
low-power system-on-chips (SoC) support portable embedded devices. On the other
side, cloud and fog computing offer HPC resources and services to the local or global
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servers, providing additional resources and user-friendly graphical interfaces for large-
scale handling of data [4]. IoT is generally characterized by wireless connectivity, the
principal difference from conventional embedded devices. In a broader sense and vision,
the Internet of Things is a global infrastructure of heterogeneous, networked embedded
devices and objects [1]. Edge devices’ communication ability lets sensors and smart
things interact and cooperate with other machines and users [2–5]. IoT infrastructure
covers several application domains that include wireless sensor networks [6], machine-
to-machine (M2M), Mobile Computing (MC), real-time health monitoring [7], as well
as wearables [8], agriculture [9], maintenance [10], and structural health monitoring
(SHM). There have been many reseaincreasedrch efforts on IoT from the perspective of
networking, power consumption [6], data access (security and privacy) [11]; however, it
has gained growing attention from the perspective of low-power computing, also known
as edge computing [1].

In conventional IoT frameworks, all data must be uploaded to centralized servers,
and after computation, a result may be sent back to the sources. This process could
create significant pressure on crowded networks, specifically in data transmission costs
in bandwidth and energy. Moreover, the performance of the system will worsen with
increasing data size. For IoT applications that are time-sensitive, this effect is evidenced
when very short response times are non-negotiable, for example, in smart transporta-
tion [12], autonomous driving [13] in which conventional cloud computing-based service
cannot satisfy QoS requirements. Since the computation process is executed on the
cloud, and massive data transmissions occupy the limited bandwidth and network re-
sources, then the result will be significant latency in the network, which is unacceptable
for time-sensitive services, such as mobility automation where a millisecond response
must be guaranteed. This is a severe problem for IoT, as these applications will have an
impact on safety and emergency response and it will heavily affect the system scalability
in non-time-sensitive applications. Furthermore, most IoT devices have limited power.
To extend their lifetime, it is necessary to balance power consumption by scheduling on-
board computation and remote transmission, which is typically the most power-hungry
part of an IoT device [14]. Besides, processing data in computation nodes with the short-
est distance to the user will reduce transmission time, and so, the response delay [15].
In a cloud computing-based service, the data transmission speed will be affected by
network traffic, increasing power consumption costs. Thus, scheduling and processing
allocation is a critical issue that must be considered [15].

Nowadays, researchers and industries are pushing in the direction to exceed tradi-
tional computation based on stationary workstations [16]. Indeed, the IoT is rapidly
merging into daily life, envisioning that most electronic devices, such as smartphones,
vehicles, and any other embedded devices, will be connected with remote data centers,
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exchanging ever more information [1]. Economic studies report the IoT market as one
of the most burgeoning sectors that will impact US interests in 2025 [17]. Likewise, the
number of interconnected devices exceeded the world’s human population in 2012, when
the number of IoT devices reached 9 billion [16].

The IoT structure is mainly composed of three different communication models:
M2M, machine to cloud and machine to gateway. The former allows devices to directly
connect and exchange information among each other, without any intermediate assis-
tance. This topology type often requires complex protocols and interfaces, making it
challenging to work with low-power constraints. In [18], the authors show that one of
the most used mesh protocol for IoT (ZigBee [19]) needs at least 5× more energy than
LoRaWAN [20]. In this field, the new IETF IPv6 over the TSCH mode (6TiSCH) has
standardized a set of protocols to enable low power mesh industrial-grade networks [21];
however, today there are not practical comparisons among ZigBee and other mesh sys-
tems, so it is not considered in this dissertation. Machine to cloud is one of the most
used methods, but it requires the support of computer network protocols, such as WiFi,
Ethernet, and TCP/IP layers, which are not suitable for ultra-low-power devices with
a targeted lifespan of years. The latter, machine to gateway, suits the most stringent
energy restrictions; indeed, it assumes the presence of a gateway, which acts as an inter-
mediate bridge between a lightweight communication protocol and the cloud throught
an internet connection. It is clear that, for low-power IoT applications, the star network
topology provides the lowest cost per bit in wireless remote communication. Besides
others, such as mesh and tree typology that provide dedicated low energy stacks, the
star architecture can be specifically optimised for point-to-point connection by relying
on a gateway with high capabilities, which can support communication lacks from the
IoT device. For example, LoRaWAN [20] employs sophisticated gateways to support
extremely simple sensor node, which are not even able to avoid channel conflicts with
other devices.

Typically, the IoT network features three types of components [1]: sensors/devices,
gateways/local network, and a remote server/cloud, representing the data source/ac-
tuators, communication networks, and data processing, respectively. Similarly, edge
computing structure can be split into three sub-blocks [1]: front-end, near-end, and
far-end. Sensor nodes are the key component of the IoT framework, and they produce
the majority of measurement data in the networks, and, in some cases, they also man-
age actuators. These devices usually provide diverse types of data from various kinds
of transducers, from temperature to CMOS cameras. In addition, they are often bat-
tery supplied and deployed in remote and extreme environments. These end devices
are deployed at the front-end of the edge computing structure, hence providing more
interaction and better responsiveness for the end-users applying the edge computing
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paradigm [22], which is a distributed computing structure that brings computation and
data storage closer to the location where it is needed or collected, to improve response
times and save bandwidth. Indeed, via the on-board computing capacity provided by
the plethora of SoCs, edge computing can provide real-time services for some applica-
tions or, more frequently, decrease the upload operations to the cloud [1]. Nevertheless,
most requirements cannot be performed at the front-end environment due to the lim-
ited computational capacity. Thus, in these cases, the end devices need to forward the
resource to the server.

Since the gateway can also have numerous features, such as hundreds-MHz CPU,
data caching, and a reliable power supply, in edge computing most of the data com-
putation and storage will be migrated to this near-end machine [23]. In doing so, the
whole application can achieve much better performance on data computing and scala-
bility, with a small increase in the gateway cost. Via backhaul networks, cloud servers
will receive the data directly from sensors or through gateways [22, 23]. For most IoT
applications, the cloud servers are programmed to accomplish the whole data processing
tasks; then, they must have a significant capacity for computation and storage to satisfy
different requirements. As the cloud servers are the third layer farther away from the
front-end, the transmission latency cannot be considered as negligible. Nonetheless, the
cloud servers in the far-end environment can provide more computing power and more
data storage. For example, they can provide massive parallel data processing, data
mining, data management, and machine learning [22, 23].

The development of a robust, low-power, low-cost, and highly scalable WSN is still an
open challenge. Designing and implementing highly energy-efficient IoT sensors requires
a multi-level approach to balance the limitations imposed by applications and technology
specifications.

1.1 Thesis outline and contribution

Aiming at an even more connected world, the following sections expose the IoT
framework analyzing and designing the most recent trends and technologies, providing
an overview of main open challenges and limitations. This thesis, structured as a devel-
opment and design guideline, illustrates the five primary blocks that compose a standard
IoT node: transducers, power management, edge computing, and low power wide area
network protocols and schemes.

The diversity of IoT applications and technologies makes it difficult to present a com-
prehensive general statement for IoT requirements in hardware and software. Therefore,
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Figure 1.1: Thesis outline

the IoT embedded designer faces questions whose answers are challenging as the solu-
tions can be contradictory, e.g., which wireless communication technology i) covers the
required range, ii) provides the required data rate, iii) is still (ultra) low-power and
meets the energy constraints? What trade-offs to make between i) hardware functional-
ities and energy consumption, ii) on-board processing and computation offloading, etc.?
How to handle the uncertainty and unpredictability of IoT systems?

Fig. 1.1 presents the thesis structure, focusing on the technical part. It is sorted
following the planning and design of a new IoT application, in which the wireless con-
nectivity is often a project parameter; hence affecting sensors and components selection.
Depending on project objectives, the processing part might be left out if a raw data
transmission is preferable. Other than Chapter 1, which introduces this thesis, the IoT
framework is described in Chapter 2. An analysis of the most common wireless proto-
cols is presented in Chapter 3. Chapter 5 shows a design of a custom transducer and a
comprehensive IoT sensor node project. Chapter 6 proposes an example of low-power
hardware design for general purpose sensors, providing an energy model to estimate the
average battery lifetime depending on specific uses cases. As already mentioned, the edge
computing paradigm is evolving and is increasingly necessary; hence Chapter 7 shows
two use cases in which a complex application, such as image processing and successive
feature extraction, can run on a constrained and low-power MCU. Finally, Chapter 8
concludes the thesis.
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Chapter 2

Sensor nodes for IoT

An IoT sensor comprises many functional blocks to enable various services, such as
sensing (On-board - Fig. 2.1), identification, actuation (Off-board - Fig. 2.1), commu-
nication, and management (Power Unit and memory - Fig. 2.1). It can exchange data
with other connected devices and remote servers, or perform some tasks locally. An
IoT device usually supports several interfaces for communications to other things, both
wired and wireless. These include interfaces for internal sensors, interfaces for Internet
connectivity or LPWAN, high-speed memory and storage, and audio/video drivers. IoT
devices can also be of varied shapes and dimensions, such as smartwatches, wearable sen-
sors, automobiles, and industrial machines. The communication block (RF - Fig. 2.1)
manages the connection among devices and remote servers. IoT communication proto-
cols generally work using a physical link layer, MAC (Media Access Control) layer, and
application layer. Moreover, this block has to be flexible to support various functions
such as services for data transfer, device control, data publishing, data analytics, and
device discovery. The management block (Processing - Fig. 2.1) usually takes care of the
protocol stack, sensor acquisition, and low-power states. At the same time, it provides
functions such as authentication, authorization, privacy, message integrity, content in-
tegrity, and data security. Finally, the application layer is the most important, as it acts
as an interface that controls and monitors various aspects of the IoT framework.

2.1 Low-power wireless devices for IoT

A wireless sensor network consists of mostly tiny, low-cost, resource-constrained,
and low power sensor nodes organized to work cooperatively [34]. Fig. 2.1 shows the
main parts of a sensor node.

8
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Figure 2.1: Top-level overview of a generic IoT sensor node

Several multi-functional devices continuously work without any interruption in a
specified area for specified tasks. As part of the fundamental system feature, the power
manager controls and manages the operation states and power down states of the main
sub-blocks, e.g., the MCU, volatile and non-volatile memories, and the RF transceiver.
Its primary goal is to reduce the average energy consumption in both active and sleep
modes. It is mainly composed of energy sources, such as batteries, supercapacitors, en-
ergy harvesters, and low-power low-leakage non-linear voltage converters, which supply
stable and low-noise voltage for analog and digital parts. Moreover, due to tiny and
constrained power sources, the power unit must support current spikes often generated
during RF transmissions. Dynamic Power Management (DPM) is referred to software,
hardware algorithms/techniques which control the energy and performance trade-off of
a low power system, hence achieving longer battery lifetime [35]. The power dissipation
of the sensor node can be modeled using static and dynamic methods; both of them are
useful to describe a particular system state. Leakage current flow in ultra-low power
components can be modeled at design time by using static techniques, whereas the dy-
namic power is the result of digital switching components or RF spikes that must be
modeled using dynamic methods and in-field measurements.

In Fig. 2.1, the processing block includes an SoC and its external components. This
block is usually defined as the core of the systems and manages all the sensors and the
radio interface. Depending on the board’s complexity, it could require external com-
ponents such as RAM, crystals, and an RTC. Almost every sensor node on the market
includes an on-boards sensor directly on the main PCB; this method drastically reduces
the overall production cost and decreases the object volume. The most widespread ICs
are accelerometers, gyroscopes, microphones, and CMOS cameras.

The RF subsystem is responsible for the wireless communications of the sensor node.
The transceiver has mainly four operational states which are Receive, Transmit, Idle,
and Sleep. Radio Frequency (RF), Backscattering, Infrared, and acoustic waves can
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Figure 2.2: General stages of a sensor node for IoT

be chosen in transceiver technology as a wireless media. Among these options, RF is
widely preferred for WSNs. In this topic, a plethora of standards are competing in the
industrial and healthcare market, a subject further discussed in section 2.3.

IoT general operation stages include data acquisition, data processing, data storage,
and data transmission. The first and last stages exist on every application, while the
processing and storage are dependent on the project specifications. Fig. 2.2 summarises
the workflow of a typical device. Low power ICs with MEMS technology can generally
reduce the energy consumption of data acquisition. On-chip gyroscopes, accelerometers,
microphones, and biosensors are the most commonly used in general applications. How-
ever, to collect minimum data as possible, an energy-efficient sensing method exploits
the input spatial data and temporal characteristics while maintaining the required signal
quality [2]. Reducing the amount of input data is fundamental to decrease the energy
for processing, storage, and transmission. One of the primary purposes of on-board
processing is to reduce the amount of data transmitted remotely, extracting features di-
rectly on the network edge, or packing the raw data using lossless and lossy compression
algorithms. For example, compressed sensing technique reconstructs the original signal
from much far less samples than Nyquist theory exploiting the sparseness property of
IoT data at the cost of accuracy loss[36].

2.1.1 Power Unit and Energy Harvesting

When running on batteries, the sensor nodes’ limited lifetime is one of the main
challenges in implementing WSNs [37]. In many IoT applications, sensor nodes are
deployed in places where access may be impossible for human operators, making it dif-
ficult to change the batteries of the nodes regularly. Hence once a sensor node drains
its battery, that node can be considered out of service. Over the years, researchers have
focused on designing energy-saving techniques to minimize sensor nodes’ energy con-
sumption at the physical, communication, and routing layers [38]. However, even with
these precautions, once the battery energy is exhausted, the sensor node can no longer
participate in the network operations [37]. To address the finite supply time challenge,
new WSN platforms support the harvesting of energy from the immediate surroundings.
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These devices can capture small amounts of energy from heat, vibration, light, sound,
or movement within the background [39]. By recharging the battery and developing
energy harvesting aware algorithms that support the energy-neutral operation, WSNs
could theoretically have an infinite lifetime. Several researchers have explored technolo-
gies to harvest energy from common natural sources, such as the sun, water flow, and
wind. In contrast, others have explored human-made energy sources, such as human
walking, magnetic fields, high-frequency vibrations, and RF fields [40].

Recent advances in this technology, and the commercialization of devices that sup-
port energy harvesting, have driven to a new class of WSNs, referred to as Energy-
Harvesting WSNs (EH-WSNs) [41]. The ability of EH-WSNs to power sensor nodes
through ambient energy sources has led to a shift in the design requirements and goals
of these networks, as network lifetime is, ideally, no longer an issue. Instead, the goal
in EH-WSNs is to support energy-neutral operation, so that the EH-WSN can operate
continuously using the harvested energy. In particular, rather than reducing node en-
ergy consumption to extend network lifetime, in EH-WSNs, it is essential to re-consider
the impact of performance metrics such as energy-efficiency, fairness, scalability, and
latency in the presence of energy flow into the network. Similarly, physical, MAC, and
routing protocols need to be re-designed to optimize the frequency at which the energy
is used, rather than simply minimizing the total energy expenditure. There are multiple

Table 2.1: Energy-Harvesting Sources and their Corresponding Power Densities

Energy Source Types Energy Harvesting Method Power Density

Radiant
Solar Solar cells (indoor) 10µW/cm2

Solar cells (outdoors) 15mW/cm2

RF Electromagnetic 0.1µW/cm2

Electromagnetic 0.01µW/cm2

Mechanical
Wind flow Electromagnetic 16µW/cm3

Acoustic noise Piezoelectric 960nW/cm3

Motion Piezoelectric 330µW/cm3

Thermal Body heat Thermoelectric 40µW/cm3

[37, 41, 42]

sources of natural and human-made energy that can be harvested by the sensor node,
where each of them provides a different power density, as shown in Table 2.1.

2.1.2 Sensors and Transducers

One of the most crucial parts of an IoT device is the sensor block [43]. Indeed,
transducers convert environmental phenomena like light, humidity, heat, and sound into
electrical signals. In recent years, the rapid development in multiple sensing technologies
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has eased how electronics perceive external conditions. In the following, a list of the most
common sensors on the market is presented. Proposing an exhaustive overview of all
the transducers and sensors present on the market goes beyond this work’s scope. Every
day, a new technology or IC is presented, and others become obsolete.

• Micro-Electro-Mechanical Systems (MEMS) such as accelerometers, gyroscopes,
acoustic sensors, magnetometers, chemical sensors, pressure sensors, and piezo-
electric sensors. They are widely used in medical and fitness devices, industrial
machinery, wearable devices, navigation, fall detection, or SHM of machinery or
buildings [44]. Moreover, MEMS microphones are widely used for security and
surveillance, as well as for smart cities [44].

• Piezoelectric transducers such as shock, vibration, and pressure.

• CMOS-based sensors include cameras, humidity, temperature, chemical composi-
tion sensors, and all the capacitive proximity sensors. Besides standard imaging
sensors, IR are emerging in IoT demand to measure the objects’ temperature dif-
ferences, useful for security applications to detect intruders, or get thermal images.

• Light, LED-based sensors such as proximity and ambient light transducers.

• Location sensors base their technology on GPS and ToF measurements, such as
ultrasonic transducers and the UWB ranging protocol. Industry and smart trans-
portation use this sensor for tracking and localizing the objects.

• Biosignals contain qualitative and quantitative information about the human body’s
state, which has been exploited in the past to improve the diagnosis and treatment
of health disorders. The body can provide a variety of signal sources that include,
for instance, electrocardiogram (ECG), electrooculogram (EOG), and galvanic skin
response (GSR).

• Chemical Sensors are mainly used to measure air quality and biosignals (e.g., CO,
NO2, SH2, and CO2) in healthcare applications, environment monitoring, or smart
factories [45].

These advancements, deeply discussed in [45–51], are the key to the widespread use
of IoT platforms in daily life. Each transducer or sensor listed above generates a variable
quantity of data, spanning between few bytes per day (temperature) to GB per day (HD
CMOS camera). Then, Table 2.2 plots the typical data generation rate of different sen-
sors according to the reported application scenarios. The required wireless bandwidth
is annotated, as well as the estimation of the needed processing time to perform the



Sensor nodes for IoT 13

typical actions on the captured data. As noted, the selection of the sensor(s) is fun-
damental to keep computational requirements and energy consumption under control.
Indeed, most of the hardware requirements and limitations come from the sensor itself.
A high-resolution CMOS camera cannot be managed by a tiny 8-bit MCU and 1 KB
of RAM. Hence the sensor choice is one of the most crucial aspects designing new IoT
solutions. In [52, 53], a low resolution (QVGA) grey-scale camera compensates the con-
strained resources of the MCU and the battery. Moreover, the device’s price is strongly
influenced by the transducer, contributing up to 60% [52] of the final cost. For this
reason, the growing demand for low-cost and low-power sensors has resulted in a broad
use of IoT technology. As a contribution of technological research, Section 5.1 presents
and evaluates an innovative transducer optimized to enhance the sensitivity/cost ratio.

Table 2.2: Data range generation and number of processing cycles by different sensors
in typical IoT application

2.1.2.1 Himax HM01B0

Results presented in this work make use of a specific and ultra-low power QVGA
CMOS image sensor worth introducing. The HM01B01 from Himax Imaging [54] is an
ultra-low-power sensor that enables the integration of an always on camera for computer
vision and edge computing such as gestures, intelligent ambient light, proximity sensing,
tracking, and object identification. It consumes a very low power of < 2 mW at QVGA
30 fps. These features make this camera the perfect pair for IoT low-power sensor nodes.
The HM01B0 has a 320× 320 pixel resolution and supports a 320× 240 window mode,

1https://www.himax.com.tw/products/cmos-image-sensor/image-sensors/hm01b0/
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which can be read out at a maximum frame rate of 60 fps, and a 2 × 2 monochrome
binning mode with a maximum frame rate of 120 fps [54]. The video data is transferred
over a configurable 1 bit, 4 bit, or 8 bit interface. The sensor integrates a black level
calibration circuit, automatic exposure and gain control loop, self-oscillator, and motion
detection circuit.

2.1.2.2 LVDT

The Linear Variable Differential Transformer (LVDT) transducer accurately mea-
sures the movement between the spring-loaded sliding armature and the exterior body.
These rugged and self-contained units are ideal for recording structural members’ dis-
placements due to dynamic loads and temperature variations.

Although technologies like global positioning system (GPS) help determine global
changes in position, LVDTs and linear potentiometers help in traditional displacement
measurements. Usually, these are deployed between two locations or at the boundary
of the structure for measuring relative displacements. An LVDT sensor can determine
the movement in one direction between two points. LVDT is quite common to measure
displacement. Often, LVDTs are used to verify new displacement monitoring systems’
accuracy and prove to be very accurate compared to these other methods [26]. To
determine the structure long-term degradation, crack opening displacements can be
measured directly using LVDT because of its long-term stability [26].

This sensor is used in Section 5.5.3 as a reference for a custom made transducer.

2.2 Processing Unit

Miniaturization of electronic devices allows for a paradigm shift from external data
analysis and classification to on-board processing. Hence, the computational unit plays
a growing role in modern IoT and edge computing. Nevertheless, porting applications,
for both cloud and server, to low-cost embedded systems are not trivial tasks as the final
system requires both computational power (real-time constraints) and energy efficiency
(battery life). With this goal, this work focuses on commercially available platforms such
as the ARM Cortex-Mx, which provides a compatible power budget while delivering the
required computational capability. A step forward has been achieved later through
GAP8, a Parallel Ultra-Low Power (PULP) architecture from Greenwaves. This section
introduces the general characteristics of both architectures.
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2.2.1 ARM Cortex-M4 SoC

The ARM Cortex-M4 is a 32-bit RISC microcontroller that includes DSP instruc-
tions and a floating-point unit, making it suitable for edge computing at low energy
consumption. Several IoT systems have adopted this architecture [27, 55–57], to allow
for online processing.

Throughout this work, STMicroelectronics STM32F4 and STM32L4 series have been
used extensively. The processor is based on Harvard architecture with three-pipeline
stage and branch speculation, implementing 32-bit RISC ISA. It also includes the entire
16-bit Thumbr− 1 and 16/32-bit Thumbr− 2 instruction sets. It includes an FPU for
fast floating-point operations and it is equipped with more than 128 kB of SRAM and
1 MB of non-volatile flash memory. The STM32F4 series features a power density of
238 µW/MHz, offering up to 210 DMIPS and 566 CoreMark at 168 MHz on general-
purpose applications; whereas, STM32L4 is more suitable for low-power applications,
with a power density of 129 µW/MHz but lowering the computational performances,
with 100 DMIPS at 80 MHz.

Their rich set of peripheral (SPI, I2C, UART, PDM, ADCs) allows flexibility to
communicate with external devices and transducers such as specialized sensors for each
targeted application. It features non-maskable interrupts (NMI) and up to 240 physical
interrupts, with different priority levels (from 8 to 256). It also offers several power
modes, allowing to reduce the overall power consumption of the system.

Moreover, it features a JTAG and Serial-Wire Debug (SWD) ports with up to eight
breakpoints and four watchpoints. The processor also includes Memory Protection Unit
(MPU) for the eight memory sub-regions, preventing access to privileged application
data.

2.2.2 PULP platform

PULP platform is an open-source project created by the University of Bologna and
ETH Zurich. PULP is a many-core platform (OpenRISC or RISC-V ISA) able to operate
over a broad range of voltages and frequencies, which provide energy efficiency for both
low and computationally heavy applications.

Several versions of the PULP architecture have been developed, and they differ on
the chip technology (CMOS, FD-SOI implemented on 65, 40, or 28 nm), the number of
processing units, and the memory size. In the following, GAP8 is introduced as it has
been included in the systems and applications presented in this work.
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Figure 2.3: GAP8 Layout from Greenwaves Technologies2

2.2.2.1 GAP-8

GAP-8 is a multi-core processor derived from the PULP open-source computing
platform [58], fabricated in TSMC 55 nm LP CMOS technology. It leverages the RISC-
V ISA’s flexibility and openness to integrate a state-of-the-art microcontroller, several
peripherals, associated with a powerful programmable parallel processing engine for
flexible multi-sensor (image, audio, inertial) data analysis and fusion, which includes a
dedicated convolutional engine for deep neural network inference. GAP-8 can deliver up
to 10 GMAC/s for CNN inference (90 MHz, 1.0 V) within a worst-case power envelope
of 75 mW [58]. Fig. 2.3 provides a schematic view of the GAP-8 SoC architecture,
including voltage and frequency domains, the Fabric Controller (FC), and the Cluster
(CL). Table 2.3 shows the main features and CMOS technology. The Fabric Controller
is an MCU based on an RISC-V architecture extended for energy-efficient digital signal
processing enhanced with an instruction cache and a fast access data memory. The FC
manages a full set of peripherals (i.e., QSPI, I2C, I2S, CAM), enabling parallel capture
of images, sounds and vibrations, and a 4-channel PWM interface for motor control, for
applications such as machine learning and data processing on edge. High-speed data
transfers between the peripherals are managed by a low-power DMA to minimize the
number of interactions and the workload. The L2 memory (512 kB) is available on
the SoC, which stores the primary boot-code and peripheral data. GAP-8’s memory
hierarchy is organized as a multi-layer structure. Every single core in the chip can
access all memory locations with progressively increased access latency for L2 memory
or external DDR memory (L3). To overcome the latency of L3 and L2 memory, the
cluster contains a dedicated multi-channel DMA capable of 1D and 2D mass memory

2https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
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transfers. The cluster is used when applications running on the fabric controller offload
highly computation-intensive kernels. It contains 8 RISC-V cores identical to those used
in the FC, allowing the SoC to run the same binary code on either the fabric controller
or the cluster. The CL is served by a shared L1 data memory supported by a highly
optimized interconnect between the cores’ load/store units and the memory banks. The
shared L1 can serve all requests in parallel with a single-cycle access latency and a < 10%
average contention rate. Fast event management and synchronization are supported by
a dedicated hardware block, enabling fine-grained parallelism and high energy efficiency.
This block also controls the top-level clock gating of every single core in the cluster.
Hence a core waiting for an event is instantly brought into a fully clock gated state,
zeroing its dynamic power consumption.

Table 2.3: Mr.Wolf SoC features.

Technology CMOS 55 nm LP
Chip Area 10 mm2

Memory Transistors 576 kB
Equivalent Gates (NAND2) 2 Mgates
Voltage Range 0.8 V – 1.2 V
Frequency Range 32 kHz – 250 MHz
Sleep Power (State Retentive) 30 µW
SoC Power Density @ 1.2V 156 µW/MHz
Cluster Power Density @ 0.8V 300 µW/MHz

2.3 Wireless communication standards

Communication protocols establish the backbone of IoT systems and enable con-
nectivity and coupling to distributed applications. Their primary purpose is to allow
devices to exchange data over the network defining exchange formats, encoding, ad-
dressing schemes, and network routing from source to destination [5]. Other functions
include sequence control, flow control, and retransmission of lost packets. Fig. 2.4 com-
pares different wireless communication technologies concerning coverage and data rate,
while Table 2.4 shows some characteristics which are needed to be considered in the
design process of IoT devices.

Table 2.4: Wireless communication standards for IoT

Bluetooth BLE ZigBee WiFi LPWAN UWB Cellular
LTE NB-IoT

Range indoor 1 - 10 m 1 - 10 m 20 m 20 m 10 km 20 m 5 km 10 kmoutdoor 1 - 100 m 1 - 20 m 1500 m 100 m ~ 100 m
Bit rate [Mbps] 1 - 3 1 0.25 100 0.05 6 75 - 300 0.2

Throughput [Mbps] 1.5 0.3 0.15 50 0.05 5.8 NA
Carrier Freq. [GHz] 2.4 2.4 2.4 2.5/5 sub-GHz 4/6 2.1 0.8-1.9/2
Network topology star star/mesh mesh star star/p2p star/p2p NA
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Figure 2.4: Wireless communication standards for IoT

Table 2.5: Common protocols grouped by IoT application domains

Application domains
Healthcare Smart Cities Smart Building Automotive Industry

LPWAN
M2M

Protocols

Bluetooth very high low high medium low high
BLE very high low medium very low low high

ZigBee medium high very high very low high medium
WiFi low high medium medium low high

LPWAN low very high high high high very high
UWB medium very high medium very low high low
LTE low very high low high medium low

NB-IoT very high very high medium high high low

Most of the connectivity requirements depend on design and customer constraints.
For example, by increasing/decreasing the RF power, the transmission range can be
further increased/decreased, also affecting the current consumption. Each of these pro-
tocols has its advantages and disadvantages [1]. For instance, WiFi, BLE, and ZigBee
may suffer interference due to the coexistence of the same frequency band (i.e., 2.4
GHz) in a crowded environment. A high packet loss probability can lead to a severe
drop in data rate, which consequently may increase the energy consumption of low-
power devices. Hybrid transmission schemes could be the best-fitted solutions for IoT
applications. The evolution of multi-protocol integrated transceivers has opened a room
for more efficient wireless communication. For example, BLE does not fit continuous
data streaming applications, but it is highly efficient for sending small, discrete data
chunks. On the other hand, Bluetooth 2.0 and WiFi offer higher throughput and effi-
ciency for data streaming with higher data rate demands. Hence, with a multi-protocol
transceiver, the control units can enable the best technology for the application require-
ments, keeping unused peripherals in deep sleep mode. To provide a better overview
of the trade-off between different wireless communication technologies, Table 2.5 shows
the suitability of each application domain.

2https://www.ti.com/wireless-connectivity/multi-protocol/overview.html
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2.3.1 WiFi

The WiFi (IEEE 802.11) is a collection of Wireless Local Area Network (WLAN)
communication standards. For example, 802.11b and 802.11g operate in the 2.4 GHz
band, 802.11a and 802.11ac operate in the 5 GHz band, 802.11n operates in the 2.4/5
GHz bands, and the newest 802.11ad explores the 60 GHz band. These standards
provide wide baud rate settings, from 1 Mbps to 6.75 Gbps. In Europe, the IEEE
802.11 supports communication range between 20 m (indoor) to 100 m (outdoor).

2.3.2 WPAN

IEEE 802.15.4 standard regulates the lower network layers of commercial and custom
wireless personal area network (WPAN). It focuses on low-speed, low-cost, ubiquitous
communication between devices. The emphasis is on the transmission of nearby devices
with little to no underlying infrastructure. The IEEE 802.15.4 PHY and MAC layers
are used by many IoT protocols, such as ZigBee and WirelessHART. This standard fea-
tures real-time reservation of Guaranteed Time Slots (GTS), collision avoidance through
CSMA/CA, and integrated support for encrypted communications. Most commercial
transceivers also include power management functions such as link quality and RSSI.
The standard natively supports time-sensitive applications operating in pure CSMA/CA
or TDMA access modes.

2.3.3 LTE - mobile communication

Worldwide there are different generations of mobile communication standards such
as second-generation (2G), third-generation (3G), and fourth-generation (4G-including
LTE). Moreover, the newest generation (5G) is starting to be used in Europe, and
several specific IoT protocols have been designed to support low-power and long range
communications. Today, LTE-M and NB-IoT are available for final users. Data rates
for these standards range from 9.6 kbps (2G) to 100 Mbps (4G).

2.3.4 Bluetooth

Bluetooth is based on the IEEE 802.15.1 standard. It is a worldwide low power,
low-cost wireless communication technology suitable for data transmission between mo-
bile devices over a short-range (8–20 m). It defines a personal area network (PAN)
communication operating in the 2.4 GHz band. The data rate spans from 1 Mbps to 24
Mbps. The latest version, BLE 5.0, is the ultra low power version of this standard.
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2.3.5 UWB

UWB is relatively recent, and nowadays there is greater adoption of this technology.
It features two essential attributes – the prospect of very high data rate communications
and the ability to allow very accurate ToF (time of flight) measurements. The very high
data rate, 6 Mbps, is supported by several companies under the IEEE 802.15.3a standard.
The ability of UWB to provide very accurate location estimation through the precise
measurement of ToF has been exploited by a few companies using proprietary systems.
The IEEE 802.15.4 (2015) incorporates the UWB PHY into a WPAN standard, allowing,
for the first time, an accurate location estimation together with energy-efficient, high
data rate communications.

2.3.6 ZigBee

ZigBee (IEEE 802.15.4) defines WPAN specifications with simple devices typically
operating in the personal operating space (POS) of 10 m. ZigBee multi-hop, self-
organized, encrypted, and reliable mesh networking with at low power consumption,
enabling long battery lifetime. The standard defines two different device types: a full-
function (FFD) and a reduced-function device (RFD). The full-function device can op-
erate in three modes: a PAN coordinator, a coordinator, or a device. An RFD is
specifically designed for extremely simple applications, such as a light switch or a tem-
perature sensor. They may not send large amounts of data; consequently, the RFD can
be realized using minimal resources and memory capacity.

2.3.7 6TiSCH

The Internet Engineering Task Force (IETF) standardizes protocols to cover the in-
creasing demand for IP-enabled IoT devices. The IETF IPv6 works over the Time Slot-
ted Channel Hopping (TSCH) mode of the IEEE802.15.4-2015 standard, which supports
multi-hop topologies with the IPv6 routing protocol for low power and lossy networks.
Moreover, it defines the control plane to match link-layer resources to the routing and
application needs. A secure and lightweight join process combines link-layer security
features with a joining procedure using the Constrained Application Protocol (CoAP).
The tutorial in [21] provides an overview of the 6TSCH suite, including sublayers and a
list of the existing open-source and commercial implementations.
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2.3.8 Near-Field-Communication

Near-Field-Communication (NFC) is a set of short range (typically requiring a sep-
aration of 10 cm or less) communication protocols between two electronic devices. It
offers a low-speed connection which can actively generates an RF field that can power
a passive target. This enables the creation of very simple and low cost devices, such
as unpowered flexible stickes or cards. NFC operates at 13.56 MHz supporting bitrates
from 106 kbps to 424 kbps. Its standards cover data exchange formats and communica-
tions protocols, and are mainly based on ISO/IEC 14443, ISO/IEC 18092, and FeliCa.
The NFC is mainly designed for passive devices, which goes beyond the scope of this
disseration, so it is not further discussed.

2.4 Edge computing

Edge computing defines a distributed computing paradigm that keeps computation
and storage closer to the source data location to decrease the latency and save band-
width [59]. The origins of edge computing lie in content delivery networks, created in
the late 1990s, to serve web and multimedia content from edge servers deployed close
to users. Nowadays, these networks evolved to host applications and application com-
ponents at the edge sensors, resulting in the first commercial edge services that hosted
applications such as shopping carts, dealer locators, real-time data aggregators, and so-
cial healthcare monitoring. State of the art edge computing significantly extends the
above mentioned approach through virtualization, making it easier to deploy and run a
broader range of applications on the edge servers [59].

The increase of IoT devices at the edge of the network produces a massive amount
of data to be sent and computed at data centers, pushing the network bandwidth to
the limit [60]. Despite the improvements in network protocols, data centers struggle
to guarantee acceptable throughput and response time, which is a critical requirement
for many applications. On the other hand, devices at the edge continuously consume
data from the cloud, forcing companies to build content delivery networks in order to
decentralize storage and service provisioning, leveraging physical proximity to the end-
user. Similarly, edge computing aims to move the computation away from remote data
centers towards the edge of the network, by exploiting mobile phones or low-power
smart objects to perform tasks and provide services on behalf of the cloud. It is possible
to provide storage, service delivery, content caching, and IoT management by moving
intelligence to the edge, resulting in better transfer rates and response times. At the
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same time, distributing the logic in low power and computationally constrained devices
introduces new issues and challenges [60].

The distributed nature of edge computing introduces a transformation in security
schemes used in standard cloud computing. Edge nodes may also be resource-constrained
devices, limiting the applicability of complex security methods. Hence a shift from a
centralized, top-down infrastructure to a decentralized trust model is advisable. On the
other hand, by keeping information at the edge, it is possible to move the ownership of
data from service providers to end-users, enhancing the whole system’s data privacy.

Scalability in a distributed network faces different challenges, such as the heterogene-
ity of the devices, performance and energy constraints, the highly dynamic deployment
condition, and, lastly, the reliability of the connections, compared to the more robust
infrastructure of data centers. Moreover, security requirements might introduce addi-
tional latency in the communication between nodes, which may slow down the scaling
process.

Smart management of the IoT network is crucial in order to maintain a high quality
of service. If a single node goes down, end-users should still access a service without
interruptions. Moreover, edge computing systems need to provide automatic actions to
recover from a failure and, eventually, alerting the operator about the error. To this aim,
each device needs to maintain the entire distributed network topology, so that detection
of errors and recovery becomes easily applicable.

Thanks to the proximity of the analytical resources to the end-users, sophisticated
analytical tools, and Artificial Intelligence (AI) tools can run on the system’s edge.
This placement at the edge helps to increase operational efficiency and offers many
advantages to the final application while reducing the average power consumption by
decreasing non-strictly necessary transmissions [27, 28, 57, 61]

We observe an unprecedented boom in AI, particularly deep learning (DL), which
has made a remarkable progress in various areas such as autonomous driving, surveil-
lance, computer vision, and health care [62]. To this goal, AI has been broadened from a
centralized fashion (i.e., cloud-based) to low power devices in a distributed fashion (i.e.,
edge-based), opening a new era called edge AI, with dramatic advancements such as sub-
stantially changing everyday technology, social behavior, and people’s lifestyles. From
the definition, edge AI is an extension of edge computing that predominantly focuses
on running AI algorithms on low power and constrained devices [62]. It refers to a set
of connected machines and systems for sensing, caching, processing, and analysis that
have proximity to where data is collected [62]. Its main purposes are to (i) improve the
data collection efficiency and computing scalability, (ii) reduce the data processing and



Sensor nodes for IoT 23

transmission latency, (iii) protect user privacy, and (iv) increase information security.
Edge AI further enables a wide variety of new promising applications. For example, bil-
lions of mobile users are exploiting various smartphone applications such as translation
services, food and social life event proposals, and health monitoring services. Another
appealing application is the Internet of Things, such as smart home, smart industry,
smart city, and the internet of vehicles.

Edge computing is bringing radical changes by enabling decentralized computing
capability as close as possible to the data’s origin. By leveraging edge computing, the
edge AI offers the following advantages. For example, achieving ultra-low latency for
time-sensitive tasks with reduced transmission energy cost and bandwidth requirement.
With devices generating more data than ever, the cost of bandwidth for large-scale
data transmission to the cloud adds up, and often even harder to be sustained. With
edge AI, most data processing and computing can be done at the edge, mainly saving
the data transmission time and energy from the edge to the cloud. Reduced latency is
especially crucial to time-sensitive tasks such as real-time decision making, retailing, and
industrial control. As AI has been rapidly advancing, it has been largely constrained by
the scalability problem, i.e., the complexity of the AI algorithm design and training grows
exponentially with the amount of collected data. Hence, a collaborative machine learning
framework without centralized training data is more than ever appropriate. Federated
learning enables devices to collaboratively memorize a shared prediction model while
keeping all the training data on-board, decoupling the ability to do machine learning
from the need to store and process the data in a remote server.

In conjunction with the immense benefits and opportunities, edge AI brings signifi-
cant challenges with its device constraints and privacy and security concerns. Besides,
the rapid advancement of edge AI will drive future trends with corresponding challenges.
To empower edge AI, such challenges must be addressed. One of the biggest challenges
for edge AI development and deployment are high-performance requirements under strict
device constraints. For example, many applications need high accuracy and low latency,
such as surveillance and self-driving, requiring real-time performance (e.g., no less than
30 frames per second) and high precision. Similarly, for real-time trading, retailing, and
media processing, low latency deployment is essential. On the other hand, most edge
devices have strict constraints such as available device resources (computing capability),
memory capacity, and power budget (battery endurance). Therefore, developing and
deploying edge applications with satisfying performance within strict constraints is a
challenge that requires novel design methodologies. These methodologies are classified
into the following categories:
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1. Software development: The development of high-quality ML algorithms, neural
network models, to be deployed to edge devices.

2. Hardware deployment: The optimization techniques for efficient implementa-
tions of software algorithms on the edge devices, aiming at the high quality of
service (QoS) such as low latency, high throughput and low power and energy.

3. Software/hardware co-design: Co-design methodologies simultaneously de-
velop algorithms and their hardware implementations, to improve the solution
quality for both software and hardware designs.

4. Scalable benchmarking for models, software, and hardware: Comprehen-
sive benchmarking and profiling provide informative guidance for higher quality
software and hardware designs.

5. Design automation and design space exploration: Given the large scale
and heterogeneous design spaces, design automation is indispensable for improving
design optimality with high efficiency.

2.4.1 Approximate computing

It is essential to improve the energy efficiency for edge AI emerging workloads to
keep pace with the growth of data that need to be processed. Such algorithms usually
feature an intrinsic error-resilience property [63]. They process noisy and redundant data
from a plethora of heterogeneous input sources, such as various types of digital sensors
(approximate inputs). Moreover, the approximation is enhanced by using algorithms
that are frequently stochastic (e.g., iterative algorithms). Furthermore, these applica-
tions usually do not require to compute unique or golden numerical results ("acceptable"
instead of precise outputs). For example, in multimedia processing, due to humans’
limited perceptual capability, occasional errors such as dropping a particular frame or a
small image quality loss rarely affect a user’s satisfaction. On the other hand, it is fre-
quently energy-efficient to guarantee fault-free calculations as AI technology advances to
deep neural networks. This is because nano-meters circuits are increasingly sensitive to
parameter variations and faults at an advanced technology node with low supply voltage
and ever-increasing integration density [63]. Conventional fault-free computing requires
guard-bands and redundancies at various levels, causing significant energy and com-
plexity overhead. Motivated by the above challenges, one promising solution, known
as approximate computing, has attracted significant traction from both industry and
academia. By relaxing the numerical equivalence between the specification and imple-
mentation of error-tolerant applications, approximate computing deliberately introduces
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"acceptable errors" into the computing process and promises significant energy-efficiency
gains [63].

2.4.2 Quantized neural networks

Modern Deep Neural Networks (DNN) usually run on servers, personal computers,
or smartphones. Even in the most constrained scenario, their execution can count on
GB of RAM and high-end processing capability available under a few watts’ power en-
velope. Conversely, deploying DNNs on an IoT end-node has to deliver comparable
performance while dealing with limited computational capabilities, strict constraints in
memory (a few MB off-chip, and typically 1MB on-chip at most), and the maximum
energy deliverable by the battery. The deployment of algorithms on the IoT demands
aggressive software, hardware, and processing co-optimization to exploit these systems’
scarce resources [64]. In particular, RAM’s limited availability constitutes a fundamental
limitation to the maximum performance of an embedded DNN compute system [65]. Re-
cently improvements such as quantized DNN inference [66] aim at reaching a DNN’s full
precision accuracy and reduce memory footprint while using exclusively 8-bit (or smaller)
integer data. On the hardware side, ISA extensions and accelerators [67, 68] have been
introduced to speed up the computation, lessen the impact of memory constraints, and
minimize energy consumption. Nowadays, 8-bit networks are now supported by most of
the NN frameworks, such as TensorFlow and PyTorch.

In a Quantized Neural Network (QNN), all tensors t (e.g., inputs x, outputs y,
weights w) are real-value discretized (they assume only a countable set of values), and are
represented in a specific range [αt, βt). On MCUs, it is possible to map these quantized
tensors into purely integer variables, namely integer images of the discretized tensor. A
detailed description and mathematical background on QNNs is provided in [69], further
details and results in this thesis take for granted a basic knowledge of quantized neural
networks.

2.4.3 Neural network pruning

Pruning is a technique in deep learning that aims in developing smaller and more
efficient neural networks. It is a model optimization technique that involves eliminat-
ing unnecessary values in weight tensor. The result is a compressed neural network
that runs faster, reducing the computational cost involved in inference. This is crucial
when deploying DNN to memory constrained edge devices. Multiple works have been
presented in the past years, such as [70, 71].



Chapter 3

Wireless protocols for IoT

This Chapter presents one of the most crucial topics in IoT: wireless sensor network
technologies, such as modulations, MAC methodologies, and routing mechanisms. More-
over, the text specifically studies and assesses power consumption, presented as Energy
Per Bit (EPB) and/or energy per packet (EPP). The following description and results
span between the common IoT standards, such as WiFi, LoRa, LoRaWAN, Bluetooth,
BLE, and NB-IoT, also providing a detailed overview of emerging or custom technolo-
gies: UWB, ATWR, E-LoRaWAN, S-LoRaWAN, Wake Up Radio (WUR).

In addition to a standalone description, technology comparison is presented, high-
lighting the main differences in terms of throughput and energy consumption. Design
guidelines are also proposed to help engineers to select the most appropriate protocol
for each targeted application, even providing an open-source platform that can support
many standards. Indeed, it supports WiFi, LoRaWAN, and BLE with parallel and
independent execution.

3.1 LoRa and LoRaWAN: Introduction

In past years, academia and industry have dedicated significant effort to develop low-
power wide-area networks as a new category of wireless communication standards [72,
73]. Among commercial protocols, LoRaWAN, together with the LoRa modulation
developed by Semtech, are gaining popularity [14, 74–81]. The public availability of
the specifications [82] combined with low-cost certified transceivers [83] and the fact
that a LoRaWAN operates in the unlicensed radio spectrum, meaning that anybody
can use the radio protocol without having to pay million dollar fees for transmission
rights, motivates the global attention on this communication standard. LoRa offers a

26
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link range up to 10 km with a single gateway, which is capable of supporting thousands
of different devices; moreover, a unique feature of LoRa is the ability of the gateway
to demodulate multiple transmissions simultaneously, with different data rates, on the
same channel and time. LoRaWAN specification describes three classes of operations:
low-power bi-directional end-devices (Class A), scheduled downlink transmissions (Class
B), and Class C designed for always-on bi-directional actuators. This section focuses
the attention on the most common used Class A.

Despite the initial popularity, multiple issues remain open about the scalability and
the maximum traffic supported in massive LoRaWAN installations. Many LPWAN
protocols promise to manage thousands of devices, but the impact of the LoRaWAN
parameters on large-scale networks, with packet time that may be > 1 s, is still not well
explored. Indeed, in [84, 85], and [86] the scalability of LoRaWAN is studied, and the
results in [84] show that only 120 nodes can be managed with a packet transmission every
22 minutes with static configurations. The performance improves growing up to 1600
with dynamic configurations that minimize the time of air. In [76], the authors show an
impressive reduction of channel capacity, up to 2×, when the message acknowledgments
are required. However, these features are not enough for future IoT deployments [76].
While many existing works have studied LoRaWAN networks’ scalability, most of them
do not consider the impact of downstream traffic in channel throughput, interference, and
issues related to real deployments, such as clock drift and delays produced by restricted
computational resources of gateways and servers.

This Section aims at providing an analysis of the channel throughput of the Lo-
RaWAN protocol, and at investigating the issues associated with scalability. The results
can provide relevant guidelines for large-scale deployments and physical configurations.
A specific network simulator offers information about LoRaWAN Class A with vary-
ing number of devices and packet time of air. This work studied the actual payload
throughput related to the protocol overhead, which decreases with a factor of 2.22×
(in the worst case) compared to Pure-ALOHA (P-ALOHA). After that, a solution to
improve network performance is proposed; it is based on Slotted-ALOHA (S-ALOHA).
Moreover, a reliable synchronization algorithm was designed, optimized for low-power
devices, with an accuracy of 5.37 ms and a success rate of over 99% (Table 3.1). The
reference time is used to keep aligned all the end nodes in the network, allowing deploy-
ment of Slotted LoRaWAN on a upper layer. In-field simulations and tests performed
with 24 end nodes show a throughput improvement of 2×, and 5.8× in crowded condi-
tions. Final results show that the low-power capabilities of Class A are preserved, and
the Slotted LoRaWAN can be implemented on existing commercial products.
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The number of IoT devices is expected to rise at an annual rate of 32% and mar-
ket forecasts expect 21 B devices by the end of this decade [73]. Some of the newest
applications need to cover huge buildings or entire cities at a very low cost and energy
use. These challenging requirements are hard to reach using traditional methods and in-
frastructures such as WPAN or cellular [72]. Large-scale IoT deployments are becoming
a reality, as networks are being installed for urban monitoring applications [73], smart
cities [87], and intelligent transportation systems [88]. Several radio standards, such
as LoRa, Sigfox, IEEE 802.15.4 NB-IoT, and BLE 5.0, are currently competing in the
arena of Device-to-Device (D2D) low-power, long-distance communication [89].

Many communication technologies aimed at low power have been proposed. It is
possible, as discussed in [76], to split them into two categories: low power local area
networks, such as Bluetooth Low Energy, IEEE 802.15.4, which are usually employed in
short-range personal area networks; and low power wide area networks, with a coverage
greater than 1000 m. This second category includes Sigfox, LoRaWAN, and DASH7
as major players. Sigfox is a commercial standard which permits remote devices to
connect to an access point through Ultra Narrow Band modulation. It is a proprietary
technology, thus full specifications are difficult to obtain, so it is tricky to carry out a
comprehensive comparison with other protocols. Each end-device can send 140 messages
per day, with a payload size of 12 octets, at a data rate of up to 100 bps. Each Sigfox
access point can handle up to a million end-devices, with a coverage area of 30–50 km in
rural areas and 3–10 km in urban areas [90]. The limit on payload and number of packets
makes Sigfox networks hardly usable in application scenarios where communication is
not very sporadic: LoRaWAN is less prescriptive and more flexible.

DASH7 [91] is a full Open Systems Interconnection (OSI) stack that operates in
unlicensed ISM bands: 433 MHz, 868 MHz, and 915 MHz. It originates from the ISO
18000-7 standard. DASH7 provides communication in the range of 2 km with low latency
mobility support, and multi-year battery life. A secure AES 128-bit key encryption is
supported with a data rate up to 167 Kbps. However, DASH7 needs more energy per
bit than other protocols like LoRaWAN, and for applications that do not require low
latency uplink or synchronization, LoRaWAN would be preferred. Moreover, during fast
motion, DASH7 is not as reliable as other LPWAN solutions.

In LoRaWAN architecture [20], sensor nodes communicate with the gateway, which
serves as a bridge between the nodes and a network server. Three types of functional
classes are defined for end-devices: A, B, and C. Currently, several papers analyze
LoRa performance [74–76]. In these works, LoRa deployments are compared in terms
of network throughput and power consumption. In [79] the coverage of LoRa is studied
and in [84], the authors analyze the LoRa network capacity and propose LoRa-Blink to
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(a) Slot width definition in S-ALOHA.

(b) Example of free, collided and successful slot.

Figure 3.1

support multi-hop communications. In [92], Casalas and Mir present an analytical model
that characterizes the current consumption, lifetime and energy cost in LoRaWAN Class
A. The proposed model allows quantifying the impact of physical and MAC layers and
bit error rate and collisions on energy performance.

As in the [20] Class A ISO/IEC ISM regulations, the end nodes and gateways can
transmit "at will" without any carrier sensing. Thus LoRaWAN’s MAC works similar
to ALOHA [93]. The ALOHA access mechanism can cause substantial inefficiency in
LoRaWAN networks, as highlighted by the simulation study reported in [94], which
confirmed that increasing the number of gateways cannot eliminate fast saturation, but
in some cases can improve the global performance. Indeed, generating packets following
the Poisson law and apply uniform distribution of the payload lengths between one and
51 bytes, as simulated in [76], the maximum theoretical channel capacity usage is 18%,
which is comparable with the Pure-ALOHA (P-ALOHA) throughput, configured with a
link load of 0.48. In this scenario several packets could be lost; indeed, at the maximum
channel load, around 60% of the transmitted packets are dropped because of collisions.
To verify the correct reception of each packet, an acknowledgment (ACK) method could
be applied. Still, it requires two successive transmissions to be successful, the payload
in uplink and ACK in downlink, thus increasing the collision probability with other
messages. S-ALOHA protocol is used in local wireless communications [95] since the
’70s. The channel time is divided into slots (Fig. 3.1), which have fixed-length T and are
composed of two parts: the transmission time (Tr) and the tolerance interval (Tb), as
presented in Fig. 3.1(a). Every end-node must transmit a packet only at the beginning
of a slot. If two or more end nodes send their packet within the same fixed-length period,
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a collision occurs; otherwise, no overlap is generated, and the data are correctly sent
(Fig. 3.1(b)). If not a single terminal accesses in one slot, it will be free, and no device
will start the transmission in the middle of the time-slot. In S-ALOHA, the maximum
theoretical channel throughput is 37%.

3.1.1 LoRa physical layer and LoRaWAN

LoRa is a chirp spread spectrum modulation, in which the frequency increases or
decreases with time. It is originally developed for radar applications; indeed, the spread
spectrum modulation has a constant amplitude and uses the whole bandwidth, in a
linear or non-linear way, from one end to another end, in a defined time. The maximum
frequency delta allowed between the receiver (gateway) and transmitters (end nodes) can
reach 20% of the bandwidth without impacting decoding performance [76]. This feature
is useful to design cheap devices with low-quality crystals, such as commercial products
with 80 ppm/◦C. A LoRa typical transceiver, such as the SX1276 [76], provides a link
budget up to 168 dB with a sensitivity of -148 dBm at the receiver side. Moreover, since
the symbol period is larger than a typical noise spike, interferences are easily filtered
through error correction codes. Code Rate (CR), Bandwidth (BW), and Spreading
Factor (SF) affect the LoRa modulation; indeed, a single LoRa symbol is composed of
two SF chirps, with a frequency range that covers the entire band. The chirp symbol
rate is directly dependent on the bandwidth, which generates different consequences as
specified in [76]: (i) increasing the SF, the chirp frequency span is divided by two; (ii) the
period of each symbol is multiplied by two; (iii) since more than one bits are transmitted
in a symbol, the bit rate is not decremented with a ratio of two; (iv) the bit rate at
given SF is proportional to the bandwidth, doubling the bandwidth will double the
transmission rate. Over LoRa modulation, forward error correction is used to enhance
communication reliability. This method is implemented using four different coding rate
(CR) approaches, denoted CR1 to CR4. In addiction, a drift correction mechanism is
applied to increase robustness to frequency variation over the LoRa message’s timescale.
Eq. 3.1 gives an estimation of the equivalent bit rate (EBR), while the duration of
uplink and downlink transmissions depends on LoRa’s parameters1 such as SF, BW,
CR that can be expressed as the sum of the time needed to transmit the preamble and
the physical message (Eq. 3.2).

EBR = SF

(
BW

2SF

)
CR, (3.1)

Ttx = Tpreamble + TPHYMessage (3.2)
1The LoRa calculator is available online at http://www.rfwireless-world.com/calculators/

LoRa-Data-Rate-Calculator.html; LoRaWAN stack is available online at https://www.st.com/en/
wireless-connectivity/lorawan-technology.html

http://www.rfwireless-world.com/calculators/LoRa-Data-Rate-Calculator.html
http://www.rfwireless-world.com/calculators/LoRa-Data-Rate-Calculator.html
https://www.st.com/en/wireless-connectivity/lorawan-technology.html
https://www.st.com/en/wireless-connectivity/lorawan-technology.html
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Figure 3.2: Overview of LoRaWAN channels.

Equations 3.3 and 3.4 represent how these two terms have been calculated, where
Npreamble is the number of preamble symbols and NPHY indicates the number of symbols
transmitted in the physical message. They can be determined as shown in Eq. 3.6. Tsym
(Eq. 3.5) is the duration (in seconds) of a symbol and depends on SF and BW.

Tpreamble = Tsym (Npreamble + 4.25) , (3.3)

TPHYMessage = Tsym ·NPHY , (3.4)

Tsym = 2SF
BW

, (3.5)

NPHY = 8 +max

[
ceil

[
28 + 8 · PL+ 16 · CRC − 4 · SF

4(SF − 2 ·DE)

]
· (CR+ 4), 0

]
. (3.6)

In Eq. 3.6, PL (Payload Length) denotes the number of bytes in the physical payload,
CRC indicates the presence (value 1) or not (value 0) of the CRC field in the physical
message and DE indicates if the clock drift mechanism of the crystal reference oscillator
is used (value 1 for SF12 and SF11, 0 for others). The transmission data rate can be
obtained as shown in Eq. 3.7:

DR = SF · BW2SF ·
4

CR+ 4 . (3.7)

The radio channels used in LoRa depend on the country rules. In this work, all
the tests are performed in Italy, Europe, where the ISM (Industrial Scientific Medical)
band is at 863-870 MHz. LoRaWAN provides 9 different channels. Channels from 0 to
9 provide a bandwidth of 125 kHz and must support data rates between 0.3 kbps to
5 kbps; furthermore, channel ten is allocated for FSK modulation with a bandwidth of
250 kHz. Fig. 3.2 presents the frequency characterization of each LoRaWAN channel. A
relevant feature of LoRa modulation is that different SFs are orthogonal, this means that
a LoRaWAN gateway can receive a multiple transmission on different SFs simultaneously
and can apply this methodology for each channel. Due to local rules imposed by ISO/IEC
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Figure 3.3: Uplink and Downlink methodology in Class A, B, and C.

ISM regulations, wireless sensor devices working on ALOHA MAC access cannot occupy
more than 1% of the channel time. It is essential to underline that, as long as each
limitation is respected, each end device can transmit on different channels and in different
sub-bands to increase its overall throughput [80].

Class A is focused on the end node side; indeed, all transmissions are scheduled by
the end node, whereas the server can transmit only in one of two receive windows opened
after the previous uplink transmission, as presented in Fig. 3.3. Therefore, any packet
that the application level needs to transmit must wait until the next scheduled receive
windows. In the MAC layer, the typical packet is composed by a preamble, a physical
header, a variable payload length, and error detection bytes (CRC). The CRC is present
only in the uplink message; thus, the downlink data is mainly used for ACKs. LoRaWAN
defines different strategies for the downlink channel and DR selection in RX1 and RX2
windows; in this Section, LoRaWAN is configured to use the same DR and channel for
uplink and downlink transmissions; moreover, RX2 window is disabled to evaluate the
network performances in static conditions. Indeed, with the RX2 enabled, the downlink
period could change up to 200%. The minimum time width for RX1 and RX2 must
guarantee at least the time required to effectively detect a downlink preamble [20], and
in case it is detected, the transceiver must remain active until the reception of all data.

3.2 LoRaWAN MAC Model

Class A is designed for battery-powered devices targetting a very long expected
lifetime. It supports bi-directional communications, but downlink transmissions are
constrained by two synchronous short intervals after each uplink to the gateway. Class



Wireless protocols for IoT 33

B and Class C are designed for end nodes with no critical energy constraints; thus, they
allow for more receiving slots at specific scheduled times, and synchronized beacons are
sent from the gateway. This section focuses on an S-ALOHA scheme for LoRaWAN
battery-powered sensor nodes.

Defining S as the average number of packets generated per transmission time; the
traffic source λ consists of a large number of users who collectively form an independent
Poisson source with an aggregate mean generation rate of X packets/s, the packet time
width is supposedly fixed with a period of T seconds (Eq. 3.8). Moreover, each user gen-
erates packets infrequently and each of those packets can be successfully transmitted in
a slot smaller than the average time between successive packets [96]. S is also expressed
as the channel throughput rate. Each user delays the transmission of a previously col-
lided packet by some random time, chosen, for example, uniformly between 0 and Tmax.
Therefore, the traffic injected into the channel consists not only of new packets but also
of previously collided packets: this increases the mean traffic generated, usually denoted
with G (Eq. 3.9).

S = λT, (3.8)

G ≥ S, (3.9)

G(n) = λ(n)T (3.10)

S = G(n) · Psucc = λ(n)T · e−λ(n)2T (3.11)

In P-ALOHA, a single broadcast is successfully performed if the channel remains free
during the time period 2T (vulnerability period). The probability that there are no
transmissions in the 2T period is Psuc [96]. The total channel traffic could be expressed
as presented in Eq. 3.10. With these hypotheses, it is possible to obtain a maximum
channel throughput of 18%.

This model approximates LoRaWAN Class A in the unacknowledged configuration,
when there is an uplink transmission without ACKs from gateway(s). To model the
single channel throughput in the half-duplex mode, this section presents a statistical
model based on the network simulator, statistical analysis, and measurements from a
real LoRaWAN testbed.

As shown in Fig.3.3, in LoRaWAN Class A there is a one-second delay between
transmission and RX1 windows; this period could be used by other end nodes to trans-
fer data, but the probability of successful communication in the RX Delay 1 is very low
since LoRa modulation generates a remarkable packet’s time of air. With an SF122, a
BW 125 kHz, CR4, and 25 bytes of payload, the overall time of air is 1253 ms; with
these settings, the corresponding ACK time width is 530 ms. With the proposed param-

2It is the equivalent term of SF = 12, or CR = 4
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Figure 3.4: Vulnerability period in LoRaWAN with ACK. (a) T is greater than RX1
Delay, a collision must occur; (b) vulnerability period needed to perform a successful
link between an end device and the gateway.

eters, a transmission within the RX1 Delay is not allowed, as shown in Fig. 3.4, and the
probability of collision is equal to one. In this study, the overall channel occupation time
for each transmission is composed by the time of air of both uplink (T ) and downlink
(Tack) windows plus the RX1 Delay. Considering T the channel time used to transfer
the payload, it is possible to define 2.22 · T the total channel time used for each sen-
sor, considering the LoRaWAN overhead; this value is equal to TLoRaWAN . Therefore,
the ratio between the injected traffic and transmission successfully performed can be
expressed as presented in Eq. 3.12, where the vulnerability period scales up from 2T to
2 · (2.22 · T ).

S = G(n) · Psucc = λ(n)T · e−λ(n)·2·(2.22·T ) (3.12)

The effective LoRaWAN throughput decreases drastically concerning the standard P-
ALOHA, reaching a maximum of 8% at G equal to 0.25. This outcome shows that the
LoRaWAN throughput (for each channel) is inadequate when half-duplex communica-
tion is required. To confirm this conclusion, a simulator was developed in MATLAB to
evaluate the channel collision rate with different time-of-air configurations. In detail,
the simulator generates traffic using a variable number of nodes, and each one works
following a Poisson uniform distribution. When a simulation starts, the number of nodes
grows from one and stops as soon as the desired (G) is achieved. The maximum is 1000,
and each element tries to access the channel with a variable duty cycle and a maxi-
mum of 40 attempts. The simulator checks every millisecond if two end devices try to
communicate simultaneously, with an overall simulation time of two hours. Fig. 3.5(a)
shows the S(G) for unconfirmed and confirmed LoRaWAN single-channel link; indeed,
in Fig. 3.5(b) and Fig. 3.5(c) the results of two different simulations are presented. In
Fig. 3.5(b) the packet time is greater than the RX1 Delay, in Fig. 3.5(c) the time of
air is � 1 second, so the probability for a successfull transmission is not equal to zero,
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and the network performance slightly increases. Fig. 3.5(b) and Fig. 3.5(c) confirm that
the proposed model is valid, pointing out that the effective channel throughput in Lo-
RaWAN is tightly constrained. In S-ALOHA, all the components of a LoRaWAN link
can be fitted into a single slot (Fig. 3.1(a)), uplink and downlink windows as well as the
RX1 Delay, keeping the throughput of the proposed Slotted LoRaWAN (S-LoRaWAN)
equal to standard S-ALOHA. As expressed for the P-ALOHA, considering T the channel
time used to transfer the payload, it is possible to define 2.22 ·T the total slot time used,
also considering the LoRaWAN overhead. Following these considerations, the maximum
channel throughput in S-ALOHA is 16%, doubled with respect to the classic half-duplex
LoRaWAN.

(a) Unconfirmed and confirmed LoRaWAN single channel throughput.

(b) Confirmed LoRaWAN throughput and col-
lision rate for one channel acquired by MAT-
LAB simulation. SF12, BW 125 KHz, CR4
Maximum throughput is 8%.

(c) Confirmed LoRaWAN throughput and colli-
sion rate for one channel acquired by MATLAB
simulation. SF6, BW 125 KHz, CR4 Maximum
throughput is 11%.

Figure 3.5: Unconfirmed and confirmed LoRaWAN single channel throughput
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Figure 3.6: Synchronization procedure.

3.3 Real Time Clock Synchronization over
LoRaWAN stack

Clock synchronization across devices is fundamental to define the slots used by S-
ALOHA. This section makes use of a lightweight synchronization methodology, presented
in [97] and successfully tested on an STM32L4 MCU. To generate a time reference for
the S-ALOHA, where the slots must be kept aligned in all the devices, the MCU uses a
real-time clock (RTC) with an inexpensive external crystal at 32.768 kHz, characterized
by a thermal variability between 20 to 80 ppm/◦C. Since this component drifts signif-
icantly with temperature, the MCU needs to re-synchronize its clock frequently. The
synchronization scheme is piggybacked on the predefined answer (ACK) of a Class A
RX1 window, opened with a maximum error of ±20 µs delay [97]. Common events for
both devices are used as a shared reference for the synchronization algorithm. In a typi-
cal half-duplex connection, the node and the gateway must know when to open the RX1
window after a successful uplink. A timestamp at the end of such transmission is saved
on both devices to open the RX1 window simultaneously; thus, this event (Fig. 3.6) is
used as a reference for the clock synchronization procedure [97]. The synchronization
algorithm is based on a clock reference distribution system: basically, at the end of every
complete uplink transmission, each node updates its real-time clock. The implemented
algorithm works as follows:

1. gateway and node save a timestamp of the moment when the uplink transmission
has ended;
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2. the node receives, in the first available RX window, then the timestamp is piggy-
backed in the acknowledgment message;

3. due to the non-negligible flight times and the RX window delay, the node must con-
sider the offset between the timestamp when the uplink transmission has ended
(TX timestamp) and when it receives the acknowledgment message (RX times-
tamp). The node calculates the difference between these two timestamps and
adds it to the reference received by the gateway;

4. the code updates its real-time clock with the new timestamp; in this way both
devices are synchronized.

The developed framework needs to automatically update the end node RTC to
provide a sufficient alignment with respect the reference clock. Moreover, the whole
protocol must be compliant with LoRaWAN specification without adding a significant
overhead on the system. The proposed approach uses the uplink packet and the RX
window already scheduled after 1 second. Indeed, the timestamp saved on the gateway,
received at the very end of the uplink transmission, can be sent back with the ACK packet
in the first reception window. Hence the end node has the time reference needed for clock
synchronization. The overall overhead is very low, only 8 bytes of timestamp, with good
scalability and configurability [97]. In many applications the overhead is negligible; for
example when multiple transmissions per day are needed, the synchronization procedure
comes for free adding the gateway timestamp at some downlink packet. In systems where
the end node is meant to send few packets every day, some additional synchronization
phases can be needed to ensure a sufficient clocks alignment. Maximum tolerable clock
drift depends on three factors: (i) maximum uplink time of air; (ii) daily duty cycle of
each end node; (iii) maximum throughput required for the specific application.

On the end node side, the goal of the synchronization firmware is to update the
local clock using the timestamp received from the gateway. This process requires two
steps: the offset calculation and the sub-seconds management. Since the ACK in re-
sponse to the uplink takes a variable delay, the offset calculation is needed to update
the received timestamp. The offset calculation procedure consists in measuring the time
delta between the response packet and the initial instant when the transmission on the
end node ends; this tag coincides also with the packet reception on the gateway, which
is the moment where the gateway "marks" the message with the timestamp included in
the RX1. The electromagnetic propagation speed is considered as a negligible factor
respect to the times involved.

A total of 30 synchronization tests were conducted with 2, 3, and 4 nodes: the
results are shown in Table 3.1, where the time difference in milliseconds is expressed
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taking as reference the end node N0. This evaluation aims to verify the synchronization
performance in a network composed of many devices. Indeed, they are programmed to
send a request every 15 seconds, which is comparable with 320 end nodes generating
a request-rate of 80 minutes each. From Table 3.1, it is possible to notice how the

Table 3.1: Results of the measurements carried out to verify the RTC synchronization
between multiple end nodes connected to a single gateway.

Number of Min. synch. Max. synch. Avg. synch. Delta Avg.
end nodes error [ms] error [ms] error [ms] error [ms]

2 0.072 8.296 3.310 -
3 0.120 33.260 4.705 +42
4 0.243 37.080 5.370 +62

increase of devices significantly reduces the overall accuracy. This is probably due to
the management of processes at the gateway operating system. Since the software
working on mLinux3 controls the timestamps, the operation priority on the gateway
is not well known. Consequently, the final accuracy associated with the received packet
cannot be under one millisecond. Achieved results show that the mean error among
all the devices is 5.37 ms, with a maximum of 37.08 ms; such uncertainty must be
considered in S-ALOHA deployment to avoid transmission overlaps between adjacent
slots. To decrease the error, some LoRaWAN gateways embed a GPS module, used by
the physical layer to exactly associate the time reference at the end of the packet frame,
but, since this feature is not mandatory, Slotted LoRaWAN works without this support.
Fig. 3.7(a) presents the plots of synchronization deviation among end nodes, from two
to four, where are indicated the median, and the 25th and 75th percentiles. Fig. 3.7(a)
shows that, as the number of transmitter increases, the mean and the width of the
interquartile gap (blue box) rises, which is a dispersion index providing an evaluation
of how far the synchronization uncertainly moves away from a central value, such as
standard deviation. As a result of the increase in the number of devices, the number
of "off-average" synchronizations, indicated in the plot with red crosses, also increases.
Fig. 3.7(b) represents the maximum synchronization uncertainty between nodes since
last clock alignment and provides essential information to calculate the Tb period and
the RTC refresh rate, which are dependent on application and transmission period. For
example, in the worst case, when the end node integrates an 80 ppm crystal, an error of
200 ms is generated every 40 minutes.

3http://www.multitech.net/developer/software/

http://www.multitech.net/developer/software/
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(a) Median, 25th, and 75th of synchronization error between 2-4 end nodes.

(b) Typical crystal drift over time.

Figure 3.7

3.4 S-ALOHA implementation over LoRaWAN

Once implemented, at the application level, a lightweight and accurate synchroniza-
tion system that guarantees acceptable uncertainties of milliseconds order, it is necessary
to introduce specific functions for the transmission management on top of the LoRaWAN
MAC level. The application layer schedules the uplink transmission only at the begin-
ning of each slot, starting a transfer request only when the internal RTC triggers the
event. For calculating the time Tr, it is necessary to consider that LoRaWAN supports
different types of configurations depending on the bandwidth, spreading factor, coding
rate, and, above all, depending on the payload length of the packet sent. The configura-
tion used in the following chapter is made up of these parameters: SF=8, BW=125 kHz,
Preamble=8 bytes, CR=1, and Payload=200 bytes. This is a standard setting in WSN,
providing an optimal trade-off between coverage and bitrate. Following [97], we can es-
timate the uplink time of air, equal to 553.47 ms. It means that considering the 8 bytes
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added into ACK needed for the synchronization, the lower bound of the slot duration is
1.615 seconds (Tr), which is equal to TLoRaWAN portrayed in Fig. 3.4. The packet size is
considerable and close to the maximum allowed of 255 bytes, maintaining an acceptable
ratio between the transfer time (Tr) and the overhead time (Tb). The minimal slot du-
ration has been calculated considering that the response in the first window RX1 occurs
with the same transmission parameters of the end node. Moreover, the transmission of
the ACK message cannot collide with other communications being completely included
within the time of a slot. The calculation of the Tb time, the tolerance interval, considers
the average alignment error generated by the synchronization algorithm and the clock
drift introduced by the quartz oscillator. Considering a crystal with a frequency devia-
tion of 80 ppm/◦C (worst case), a phase shift of 200 ms is generated every 40 minutes,
a considerable and not negligible value in the case of devices transmit a few times in
a day. For calculating Tb, a base-time of 5.4 ms is considered given by the maximum
alignment shift reached during the synchronization tests. Considering the clock drift,
the time margin is approximately 400 ms. It aims to have an interval of at least 80
minutes between one synchronization and another. Lastly, a Tb of about 385 ms has
been chosen, then a slot time T with a total duration of 2 seconds, with a Tb / Tr ratio
equal to 25%.

In addition to the slot time definition, to implement the S-ALOHA protocol and
make evaluations about the performances and improvements introduced, it was decided
to force the nodes transmission on a single channel (channel 6). This is to avoid the
random selection of the transmission channel, which would involve the evaluation of the
performance on several channels, which goes beyond the scope of this study.

The S-ALOHA protocol must confirm the receipt. In case of packet loss, the end
node needs to schedule retransmission in a successive random slot (random backoff). The
backoff algorithm works above the LoRaWAN application layer, which calculates the
wait time before retransmitting as a multiple of the single slot time. A random natural
number is calculated within the interval that can be set by the user [0, NSLOTS]. The
randomness in choosing the slot to perform the retransmission is a fundamental feature
to avoid devices entering pathological repeated interference corner cases. S-LoRaWAN
works on the application layer following a mechanism detailed in the block diagram
presented in Fig. 3.8, using two timers and the LoRa transmission libraries. The S-
ALOHA state machine has five states: (i) Init: in this state, timers used during firmware
execution are initialized. There are three timers: TxLoraSlotted for the calculation of
the time to wait to transmit in the first available slot; TimerBackOff for the choice
of a random slot for retransmission, and TimerAck at the expiration of which packet
ACK receipt is checked. Following the initializations, the S-LoRaWAN switches into
the Wait state, in which a transmission request is expected. In this state, the MCU
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Figure 3.8: Block diagram of the S-LoRaWAN decision states.

is in sleep. (ii) Wait: TimeToSend variable is periodically checked; when it assumes
logical value true, a new packet is sent. The state transition between Wait and Send
occurs triggering the TxLoraSlotted timer in correspondence of the first time slot in
which a transmission is allowed (as foreseen by the Slotted Aloha protocol). (iii) Send:
in this state, the transmission request is executed, which is responsible for sending the
data and calling the PrepareTxFrame and SendFrame functions. The first deals with
preparing the payload, and the latter executes the physical communication with the
LoRa transceiver. After that, the system automatically transits to the WaitForAck
state. (iv) WaitForAck: the system stays in this state until the timer TimerAck is
triggered or the acknowledgment is received. If the ACK is detected, the system returns
to the Wait state until the next transmission request; otherwise, the system switches
to the Rand state where the backoff algorithm is executed. (v) Rand: as a result of a
non-acknowledgment event, the MCU programs the transmission in a randomly selected
slot. The TimerBackOff is programmed and the device remains in the Rand state until
it expires. When it expires, the system automatically transits to the Send state, where
the message is retransmitted.

3.5 S-ALOHA evaluation in a real deployment

3.5.1 The end device

The end node used in this evaluation is based on a custom board developed for
multiple purposes. It embeds an STMicroelectronics STM32L476, the LoRa RFM95W
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(a) Hardware block diagram. (b) Picture of the custom board.

Figure 3.9: The end device hardware

transceiver, an energy harvester sub-circuit (BQ25570) that manages the power supply
and a temperature and humidity sensor (SHT21). Lastly, an expansion connector enables
the board to be connected with several analogs and digital external sensors. The current
in sleep mode is 4 μA at 3 V with the RTC enabled; the STM32L476 uses 8.25 mA in
RUN mode @ 48 MHz. The RFM95W power consumption in TX and RX is respectively
76 (@ 10 dBm) and 11.5 mA. The LoRaWAN firmware comes from I-CUBE-LRWAN
libraries package from STMicroelectronics, configured to support S-LoRaWAN. With the
MCU programmed to send a packet every 30 seconds, the battery (1000 mAh) lifespan
is seven months. Fig. 3.9 presents a picture of the board and the related block diagram.

3.5.2 The gateway

The selected LoRaWAN gateway is a MultiConnect Conduit device. It is a config-
urable gateway for industrial IoT applications. LTE, 3G, and 2G, plus Ethernet, are
available to deploy network connections and data management. The LoRaWAN radio
module embeds the Semtech SX1301 and two SX1257, which demodulate the packets
received simultaneously on all channels and SFs. In this deployment, the gateway is
connected through Ethernet in LAN with the server, and the application software runs
on top of Node-Red4.

3.5.3 The evaluation environment

The custom sensor node was tested in different deployments and applications. The
results presented in this study are acquired placing the network indoors, allowing an easy
setup and configuration management for all the tests given in the following chapters.
The S-LoRaWAN was tested in CINECA (Fig. 3.10), the Tier0 supercomputing center

4Conduit AEP: LoRa Communication and Node-RED, Available online (2019):
http://www.multitech.net/developer/software/lora/conduit-aep-lora-communication/
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Figure 3.10: Sensor node deployment in CINECA. (a) hallway positioning, (b) the
sensor node is under the data center floor, (c) CINECA data center map.

for scientific research in Italy, where the end-nodes were used to monitor in a distributed
fashion the temperature evolution of the computer air conditioners to improve the cooling
efficiency. In this application scenario, [97] demonstrates a packet collision reduction of
3.4× in comparison with a standard LoRaWAN network with 20 end-nodes. Moreover,
the S-ALOHA was included in a structural monitoring application composed by a custom
sensor board designed to measure the crack width, see Section 5.1. This application
requires hundreds of sensors, which generate thousands of bytes per day. This traffic can
overcrowd a standard LoRaWAN network; indeed, the S-ALOHA enables the possibility
to double the throughput increasing the overall number of sensors.

3.5.4 S-ALOHA evaluation

To hold a performance analysis of the S-ALOHA and to compare with the standard
LoRaWAN, a detailed log of each device status is collected in a database, which is
managed by the LoRaWAN server. Two packet-send and packet-loss counters were
inserted in the state machine, indicating the total number of packets that each node
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sent and those lost. The packet-send counter is incremented every time the MCU is
sending. On the other hand, to check whether the acknowledgment has been received,
a logical value is set to true. Moreover, the gateway detects each channel access time,
measuring the effective RTC synchronization of each end node. The payload contains
the log information, allowing to read in real-time the statistics of each node.

Tests have been carried out to assess whether the introduction of the S-ALOHA
leads to an improvement in the network overall performance. The LoRaWAN protocol
is similar in terms of channel access and transmission algorithm to the P-ALOHA. Still,
it is necessary to consider that the statistical analysis of the P-ALOHA does not consider
the channel occupation for acknowledgment messages. The transmission of the ACK by
the gateway in the same channel can, in fact, collide with the other frames that have
been transmitted by other devices.

Three tests for the S-ALOHA protocol were carried out in three different network
traffic conditions to evaluate the performance gap between the theory, statistical models,
and real deployments. The key variables of these tests are the number of devices and
the transmission period of the messages. Indeed, other parameters, such as SF and
payload size, are kept constant. In all tests, confirmed messages are implemented, and
the S-ALOHA protocol, with a back-off algorithm, is implemented in all the devices.
Table 3.2 and Fig. 3.11 show the comparison between the protocol performances in
terms of traffic offered and disposed of by the network. These values are normalized, so
the results are independent of the experiment duration, expressing the overall usage in
percentage value. The total number of packets sent in the time unit (packet/second) was

Table 3.2: Summary of the results obtained from the tests with Slotted LoRaWAN.

Test 1 Test 2 Test 3
Test duration [s] 10273 6977 3524
Packets sent 2708 3285 2894
N of end nodes 10 18 24
TX period [s] 15 15 13
TX success rate [%] 69 55 43
Traffic generated (G) 0.264 0.471 0.773
Channel throughput (S) 0.184 0.275 0.332

considered for the channel traffic calculation (G); this means that, on average, values
greater than G = 1 denote that multiple nodes transmit simultaneously in the same
slots. The overall throughput from the channel is therefore given by G for the average
percentage of packages successfully disposed of, as described in Eq. 3.13 and 3.14. The
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Figure 3.11: Slotted LoRaWAN results.

packet time is calculated considering the TLoRaWAN .

G = Packetsent
Ttest

, (3.13)

S = G · Psuccess (3.14)

Values reported in Table 3.2 and Fig. 3.11 confirm a correct implementation of the S-
ALOHA over a LoRaWAN protocol; indeed, the maximum theoretical throughput is
doubled, with a trend similar to S-ALOHA.

3.5.5 Synchronization analysis in Test 3

An in-depth analysis of the synchronization among end nodes is presented here. Test
3 of Table 3.2 is used as the reference; indeed, the high generated traffic and the high
packet collision rate on the channel stresses the synchronization procedure. The error
is calculated between t0 (Fig. 3.1(a)) and the packet time of arrival measured by the
gateway. With the Tb proposed in Test 3, the overall number of failed slots for all 24
nodes is five, reaching a success rate of 99.6%. In this case, an overlap happens among
adjacent slots because the tolerance interval is exceeded. As presented in Fig. 3.12(a), in
points (1) and (2), two consecutive slot overlaps are shown. Both are generated from the
same device. This issue comes from a reboot; indeed, when a firmware error is detected,
the MCU is restarted and the internal RTC needs to be configured again. Therefore,
the overall synchronization failures are three. The previous trials are executed with
a tolerance interval (Tb) calculated to fulfill the RTC drift in the worst case. The S-
LoRaWAN throughput is evaluated in this condition to compare both protocols in a
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(a) Synchronization error in ms respect to the beginning of each slot.
The maximum error allowed is 400 ms, which is exceeded 5 times. Two
overflows are generated from end node reboot due to firmware issues.

(b) Number of slots overlapped as a function of tolerance interval
length.

Figure 3.12

typical low power application. However, in Test 3 the Tb could be decreased ensuring a
slot success rate over 90%; Fig. 3.12(b) and Table 3.3 show the relationship between Tb
and the number of errors. For example, with a Tb of 100 ms, the error rate is practically
the same as Test 3, and with 50 ms, the error rate is still acceptable. The tolerance
interval length affects the channel throughput; indeed, reducing Tb decreases the time
overhead and allows more slots in a unit time.

Table 3.3: Success rate compared to Tb.

Tb [ms] 50 100 150 200 250 300
N slot errors 328 27 20 6 5 5
Success rate [%] 74 97 98 99 99 99
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3.6 Comparison between LoRaWAN and Slotted LoRaWAN

This Section presents a comparison between the standard LoRaWAN and the S-
LoRaWAN. The same parameters of the radio configurations and the traffic injected
are used for both protocols. In this test, the channel traffic and the corresponding
throughput are calculated considering only the payload time (T ) as traffic generated, the
following conditions applied in Eq. 3.12. Moreover, the tolerance interval (Tb) inserted
into the slot time is considered into the protocol overhead. The channel throughput
in Table 3.4 describes the effective payload transmitted on the channel; this allows a
more accurate comparison without considering the protocol overhead. Referring to the

Table 3.4: Performance comparison between S-LoRaWAN and LoRaWAN.

Slotted LoRaWAN LoRaWAN
Test duration [s] 3524 9596
Packets sent 2894 6817
N of end nodes 24 24
TX period [s] 13 13
TX success rate [%] 33 7
Traffic generated (G) 0.455 0.393
Channel throughput (S) 0.150 0.026

traffic analysis, Table 3.4 shows the comparison between the S-LoRaWAN performed
with the S-ALOHA MAC (Fig. 3.13 point 1) and the LoRaWAN standard protocol
(Fig. 3.13 point 2). Interestingly, the generated traffic resulting from the two protocols
is slightly different; this is partly due to the statistical evolution of transmissions; in fact,
in the case of the standard LoRaWAN, a frame overlapping is much more probable, with
consequent recourse to the backoff algorithm and an average reduction in the number
of packets transmitted. In Table 3.4, the measured throughput of S-LoRaWAN and
standard LoRaWAN is respectively 15% and 2.6%, finally, with an improvement of
5.8×. This result is higher than the theoretical 2× between S-ALOHA and P-ALOHA;
indeed, it has to be considered that the maximum throughput is not placed at the same
G (Fig. 3.13), and with the parameters used in this test, the P-ALOHA channel is
heavily crowded with a TX success rate of 7%.
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Figure 3.13: Comparison between LoRaWAN and Slotted LoRaWAN. Point [1] refers
to S-LoRaWAN and [2] is the standard LoRaWAN throughput.
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3.7 NB-IoT: introduction

Following the rapid IoT market expansion, LPWAN has become one of the faster-
growing areas in IoT. Low Power Wireless Area Network (LPWAN) is the common term
to identify the wireless technologies that enable wide-area communication at low cost
and low power consumption. The LPWAN typical application scenario needs to transmit
a few bytes with a long-range. Many LPWAN technologies are emerging in licensed and
unlicensed markets, such as LoRa, LTE-M, SigFox, and Narrow-Band Internet of Things
(NB-IoT). Among them, LoRa and NB-IoT are the two leading technologies [98, 99].

On the cellular networks side, the 3rd Generation Partnership Project (3GPP) has
developed the Narrow-Band Internet of Things concept as part of Release 13 [99]. To
improve energy efficiency, NB-IoT combines the benefits of the 4G mobile network,
namely the global coverage and the long-range, with the energy efficiency typical of
LPWANs. Moreover, NB-IoT is intended to provide more reliable indoor coverage for
a massive quantity of low-throughput devices [100], serving the high-value IoT market
share that pays for high quality of service and very low latency [101, 102]. In contrast,
LoRaWAN is targeted to lower-cost devices, with occasional communication needs, very
long-range (high coverage), and extended battery lifetime requirements. Today, both
NB-IoT and LoRaWAN offer low power consumption and long-range connectivity with
the primary aim of being employed as a wireless solution for IoT.

This Section main objective is an experimental evaluation with in-field measure-
ments of NB-IoT vs. LoRaWAN for IoT applications. The comparison between the two
protocols is performed in terms of power consumption, energy per bit, battery lifetime,
and deployment cost. A wireless sensor network designed for Structural Health Moni-
toring (SHM) was employed to achieve a realistic comparison. SHM allows evaluating
the above mentioned challenges that are considered the primary obstacles for LPWAN
deployments [101, 103].

In the long-range communication domain, the most popular protocols are Sigfox,
LoRaWAN, and NB-IoT [101, 103, 104]. Sigfox allows remote transfer between devices
and an access point through ultra-narrow band modulation, applying stringent uplink
and payload size constraints. Sigfox is very similar to LoRaWAN in terms of power con-
sumption and range [105]. However, it is not included in this paper as it is a proprietary
protocol, it is less used in IIoT due to its limited payload size (12 B) [104], and for the
transmission restriction of 140 B/day and 4 bytes/day for uplink and downlink respec-
tively [103]. The LoRaWAN open standard enables large scale deployments through
LoRa, a chirp spread spectrum modulation, with a communication range up to 15 km
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at low power operation. Many scientific works, such as Section 3.1, describe and model
the energy performance for LoRaWAN [76] and the related scalability issues [106].

The NB-IoT [99] is a variant of LTE (4G Long Term Evolution) developed to ful-
fill the IoT requirements in civil and industrial applications: coverage extension, long
battery lifetime, backward compatibility, and user equipment cost reduction are com-
mon objectives [107]. The energy performance of NB-IoT is dependent on a multitude
of parameters related to the country settings and network operator requirements that
can drastically change the end-device average power consumption. In [108] the authors
show the NB-IoT independence between the transport block size and power consump-
tion. They vary the payload size between 50 and 100 bits, and the measured power
consumption is 716 mW on average. The energy used to join the network is 11.1 J with
a connection time of 36 s. In the following experiments, the same independence is con-
firmed compared with the LoRaWAN protocol. Low power and lifetime are crucial for
wireless end-devices and sensor nodes in IoT and other applications [101, 109]. In [101],
a LoRaWAN comparison analyzes several factors, such as QoS, latency, network cover-
age, cost and, scalability, based on the data declared by the developers, but without an
actual practical test. They compare both protocols in various use cases, to ensure that
LPWAN technologies can provide efficient connectivity solutions across critical and mas-
sive IoT deployment, determining their feasibility for specific applications. This study
extends and complements this comparison, also providing in-field experimental measure-
ments of the two protocols. Technical differences between NB-IoT and LoRaWAN are
summarized in multiple scenarios, such as smart farming [110], manufacturing automa-
tion [111], smart building, and logistics [112]. These studies show that both protocols
can coexist in the IoT market: LoRaWAN will serve as the low-cost and very long-range
deployments, with infrequent transmissions and heavy constraints in battery life. In
contrast, applications requiring low latency and high quality of service, in addition to
an international coverage [113], will make use of NB-IoT. The outcomes about NB-IoT,
in [108] and [101] show 13 years of operability with one transmission (TX) per day and
250 days if a packet is sent every hour in power save mode. These numbers decrease
drastically, to 126 and 88 days, respectively, if the extended discontinuous reception
is enabled. Finally, [101] concludes that NB-IoT power profile currently leaves open
questions on the battery life in real deployments.

The following sections present accurate in-field experimental measurements of Lo-
RaWAN and NB-IoT at the same conditions, allowing a direct in-field comparison.
Moreover, this study gives insights on the motivations behind the main similarities and
differences, rooted in the architecture of the underlying communication protocols, and
it details the key aspects.
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3.8 NB-IoT: technology overview

3.8.1 NB-IoT

NB-IoT, also known as LTE Cat-NB1(NB2), is a novel protocol standardized by
3GPP [99]. It belongs to Low Power Wide Area (LPWA) technologies that could work
virtually anywhere when infrastructure is present. NB-IoT can operate in three different
modes: in-band inside the occupied bandwidth of a wideband LTE, stand-alone as a
dedicated carrier, and within the guard-band of an existing carrier [107]. In the second
mode, NB-IoT can occupy one GSM channel (200 kHz) while for in-band and guard-band
deployment, it will use one Physical Resource Block of LTE (180 kHz). NB-IoT uses
the orthogonal FDMA in the downlink and single-carrier FDMA (frequency division
multiple access) in the uplink and applies the QPSK (quadrature phase-shift keying
modulation) [107]. Each message can reach 1600 bytes of payload. The maximum
data transmission rate is limited to 20 kbps for uplink and 200 kbps for downlink.
As discussed in [114], NB-IoT is designed for long-life devices and targets a battery
life of more than 10 years when transmitting 200 bytes per day. To achieve these
performances, NB-IoT uses the LTE energy-saving mechanisms, extending the timers
period to minimize energy consumption. Extended Discontinuous Reception (eDRX)
and Power Saving Mode (PSM) are the two energy-saving features. In case of devices
that rarely uplink and a low need to receive messages, eDRX5 feature can significantly
decrease the power consumption, shown in Figure 3.14. There are two different settings
according to the state of the devices: Connected-eDRX or Idle-eDRX. When a device
is connected and there is no traffic, it alternates active listening and sleep periods.
This behavior is maintained for the Inactivity Timer duration (Fig. 3.14). Otherwise,
when a device is idle, the network or the base station cannot request new transmissions.
Still, the downlink channel is tracked at Paging Window (PW) events to keep network
synchronization and discover if downlink data is pending. The time between two PW is
equivalent to an Idle-eDRX cycle (Fig. 3.14).

The PSM is the deep sleep state, shown in Figure 3.14 and defined in 3GPP Rel.12.
It allows a reduction of the current consumption, maximizing the amount of time that
a device can remain in an extremely low power mode during periods of inactivity. After
a wake-up, where data transmission generally occurs, it moves to the idle state, where
reception windows allow downlink communication from the base station. The reception
phase lasts according to the network policies agreed during the registration process.
Following, upon expiry of the timer T3324, the device switches in PSM. In this state, any
receiving communication is disabled, but the device remains registered on the network,

5For detailed information on eDRX see [115].
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Figure 3.14: Extended Discontinuous Reception: the periodicity value of the reception
windows can reach 10.24 s in Connected and 2.91 hours in Idle state, respectively. Power
Saving Mode: device remains registered with the network, and it is not necessary to
re-attach or re-establish the connection. The maximum duration of the PSM mode is
310 hours.

and re-joining is unnecessary when it switches back to transmit. The timer T3412, set
by the device following the network policies, is responsible for managing the PSM mode,
enabling the periodic Tracking Area Update (TAU) procedure. The device can disable
the PSM at any time if it needs to send a message.

3.8.2 Platform setup

In this Section, a low-power wireless sensor (Section 6.1) developed to measure the
cracks in reinforced concrete structures is used as a reference platform to compare NB-
IoT and LoRaWAN protocols [26]. This sensor has been designed to guarantee a high
sensitivity, up to 5 µm, combined with an extended battery lifetime, which must be at
least ten years measuring and sending data ten times per day. A wireless sensor node
critical aspects are the radio budget link, power management, and analog front-end. The
sensor node embeds an STM32F373 microcontroller, an analog front end, and two radio
modules: LoRa and NB-IoT are operated in a mutually exclusive fashion. The MCU
handles the analog and digital parts through the integrated Sigma-Delta ADC converter
and the serial peripheral interface. A power supply circuit manages a Li-MnO2 lithium
battery (4.2 V - 1000 mAh) with 80% efficiency. The SX1276 from Semtech [116] controls
the Lora Physical layer and packet buffering. This component achieves a sensitivity of
-148 dBm with output power up to 20 dBm, enabling a 168 dB maximum link budget.
The NB-IoT transceiver is the SARA-N211 from U-Blox. It is provided in the small
LGA form factor (16.0 x 26.0 mm, 96-pin). The module offers data communication over
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an extended operating temperature with low power consumption, 3 µA in deep-sleep,
and 220 mA in transmission at 23 dBm. With a receive sensitivity of -135 dBm, it
offers a 158 dBm of link budget. Finally, the M41T82 from ST Microelectronics, an
ultra-low-power real-time clock, wakes up the sensor node only at the scheduled time,
requiring only 365 nA @ 3 V.

The sensor node draws an average of 23 mA @ 3 V per second in the active mode,
used to sample, filter and encrypt the acquired data; requiring an energy of 70 mJ
(Esensor). Afterward, the MCU determines which communication protocol will be used
depending on the user and application request. Reducing the wireless communication
energy is very valuable for low power devices. Indeed, it is well known that the radio
transceiver is one of the components with the highest power consumption, as shown
in [117]. For each sample, the MCU generates 12 bytes of data, which can be stacked in
one buffer or sent immediately to the application server.

3.9 Experimental results

This section presents the experimental evaluation of the SX1276 and SARA-N211
modules in the above-mentioned section 3.8.2. It mainly focuses on the sensor energy
performance with multiple payload sizes and coverage conditions to determine the bat-
tery lifetime. The sensor node periodically transmits an uplink message, including a
single sample or multiple acquisitions queued in one packet.

3.9.1 LoRaWAN end-device analysis

To realistically define the energy profile, a model based on measurements from a
real LoRaWAN testbed and previous works [26, 30, 94, 109] was developed. A periodic
behavior for each transmission is assumed as a pre-requisite, with a fixed time interval.
Therefore the power consumption during one period is studied, including the packet
generation, the cryptography, the uplink transmission, the RX1 Delay, and, finally, the
downlink window used to receive the acknowledge (ACK). Each datarate used in this
evaluation, from 0 to 5, generates several configurations that impact the LoRa modula-
tion. For example, the Equivalent Bit Rates (EBR) of DR06 and DR5 are respectively
292 and 5469 bps (Table 3.6); moreover, the transmission time can fluctuate between
225 ms to 4 s with 100 bytes of payload. Such variability impacts the communication
range and the power consumption; therefore, smart management of these parameters is
crucial to keep the node powered as long as possible. In Table 3.5, the LoRaWAN time

6It is the equivalent term of DR = 0, SF = 12, or CR = 4
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Table 3.5: LoRaWAN Packet time on air

DR SF BW
[kHz]

EBR
[bps]

Trx

[ms]
Ttx10
[ms]

Ttx50
[ms]

Ttx100
[ms]

0 12 125 293 598.02 1318.91 2629.63 4268.03
2 10 125 977 149.50 370.69 780.29 1312.77
5 7 125 5469 18.69 66.82 148.74 251.14

on-air regarding the payload size (10-50-100 bytes) is presented. Since LoRaWAN needs
to transmit the node MAC to identify the packet on the server-side, the transmission
time also considers 13 bytes of overhead. The preamble (Npre) and Coding Rate (CR)
symbols are 8 and 4/5, respectively, plus the CRC (Cyclic Redundancy Check) that is
disabled. Finally, the bandwidth is configured at a value of 125 kHz. Under ISO/IEC
ISM European guidance, LoRaWAN restricts the packet size with a maximum of 51
bytes for DR0 and DR1, and up to 242 for DR5; moreover, considering the protocol
overhead, the payload size is limited to 38 and 229 bytes, respectively with DR0 and
DR5. In [94], a study on LoRa SFs assignment is presented. Authors show that under-
estimating the SF may increase the packet error rate (PER) due to low SNR, and an
overestimate can significantly decrease the battery lifetime. Applying a PER strategy,
where each sensor node assigns the lowest SF for which the PER falls below a fixed
threshold, with a 0.01 PER lower limit [94], the SFs are allocated about 43% SF12, 20%
SF11, 12% SF10, 8% SF9, 6% SF8, and 11% SF77. The maximum packet size of 51
bytes for all the configurations is considered in this work since most sensor nodes are in
the high SF zone, a value that defines the limit of the maximum number of samples per
packet, corresponding to three crack measurements. In [97] and [76], the authors show
the correlation between packet loss and network traffic: they indicate a performance
drop of around 10% for architectures with 1000 nodes, 36% for 5000, 59% for 10000.
Also, [30] shows the effect of saturating the available airtime with one gateway and
many nodes. With the proposed SF assignment, the PER increases significantly when
the number of devices exceeds 5000. They simulate an upstream scenario with a data
period of 6000 s and 21 B of payload. A recent study [30] evaluates the packet loss under
challenging environments, such as indoor industrial establishments and a data center fa-
cility. In these conditions, the packets received with the wrong CRC vary between 0.5%
and 6%. Hence in this SHM testbed, the PER is not negligible and must be taken into
account to estimate the average energy consumption.

Table 3.6 presents the measured payload Energy Per Bit (EPB) with different DRs
and sizes, considering the power used in TX, in RX and the energy used by the MCU to
encrypt and decrypt the data: EPB1 refers to 1 sample (12 B), EPB2 contains 2 (24 B)
and EPB3 3 (36 B). The last three columns present the overall Energy Per Packet (EPP)

7It is the equivalent term of SF = 7, or SF = 6
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for a LoRaWAN transmission with different DRs and queue lengths: Packet 1 includes
only one crack measurement (12 bytes of payload) whereas Packet 3 is composed of
three. Moreover, Table 3.6 shows that the DR0 uses 22× more energy in comparison
with DR5. As expected, the EPB does not scale linearly with the payload due to the

Table 3.6: LoRaWAN EPB & EPP

DR SF EBR
[bps]

EPB 1
[mJ]

EBP 2
[mJ]

EPB 3
[mJ]

Packet 1
[mJ]

Packet 2
[mJ]

Packet 3
[mJ]

DR0 12 293 6.69 5.31 4.00 641.28 1017.60 1152.01
DR2 10 977 1.68 1.30 1.01 161.28 249.59 290.88
DR5 7 5469 0.30 0.23 0.16 28.32 43.2 46.08

high ratio between preamble and payload size. For example, with 12 bytes and DR5,
the preamble length is 35% of the overall time of air, and with 36 bytes, it is only 24%.
This result confirms that buffering the samples in one placket increases the transmission
efficiency.

To carefully model the sensor node behavior, the energy consumption for the first
connection and authentication with the LoRaWAN server is measured; this procedure
exchanges the cryptography keys and establishes a secure connection between devices.
The values measured for DR0, 2 and 5 are respectively 581.29 mJ, 172.25 mJ, and
62.03 mJ. EPP in Table 3.6, and the equivalent TPacket in Eq. 3.15, take into account
the uplink packet (Ttx - Eq. 3.16) formed by the payload (PL), preamble and 13 bytes
of LoRaWAN overhead, the waiting period (Trx1) between the uplink and downlink
windows and lastly, the receive period used to detect the ACK (Trxw).

TPacket = Ttx + Trx1 + Trxw, (3.15)

Ttx = 2SF
BW

· (Npre + 4.25 +NPHY ). (3.16)

Ttx expresses the time in seconds required to transmit both the preamble and the pay-
load; the latter is composed of the number of symbols calculated in Eq. 3.6.

3.9.2 NB-IoT end-device analysis

This section focuses on the NB-IoT energy performance of the sensor node in the
same deployment conditions as the previous subsection. As it is not trivial to estimate
the energy consumption of the transmission due to the multitude of NB-IoT parameters,
such as the eDRX and PSM timers, the transmission power and the number of repetitions
requested by the network, a model based on measurements from a real NB-IoT testbed,
and previous works [101, 108] is combined to precisely derive the NB-IoT energy profile.
The SHM sensor node is tested by varying the payload and the RSSI that influences the
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module power consumption. Precisely, we define the -80 dBm average RSSI as Good
(G), -110 dBm average RSSI as Medium (M) and finally, -130 dBm average RSSI as
Bad (B). Table 3.7 shows the measurements of energy per packet and Tactive with 10,
50, 100 and 400 bytes of payload, depending on the 3 defined coverage levels. Column
Emean results from 50 successive measurements with the same RSSI condition to model
the average energy performance for each of the 12 presented tests. To estimate the
battery lifetime, the RSSI could be considered one of the most relevant factors. Indeed,
the absence of correlations between energy and payload size (Table 3.7 - N bytes) can
be appreciated dividing the values in Table 3.7 for coverage conditions. Indeed, among
(a) and (d) the Tactive and Emean differences are 2% and 10% sending 40× more bytes.
Similar behaviour can be detected in B coverage, between tests (i) and (n), where the
Tactive ranges between 37.2 s in (m) and 46.6 s in (i); the Emean is included in a 25% of
variability.

These measurements have been carried out with the Swisscom network provider,
which releases the default 3 minutes period for T3324, whereas the T3412 can be set
up to 310 hours, avoiding TAU signaling between successive uplinks. The T3324 energy
consumption must be added for each transmission because the SARA-N211 module is
awake in listening mode. The overall value for 3 minutes timer is 844 mJ, equal for
each coverage condition. The maximum energy measured in G condition (test (a)) is

Table 3.7: NB-IoT Energy Characterization

ID C N
bytes

Tact.

[s]
Imax
[mA]

Emean

[mJ]
Emax

[mJ]
Emin

[mJ]
RSSI
[dBm]

a G 10 11.9 138 2063 3007 517 -83
b G 50 11.9 146 1858 3111 486 -81
c G 100 12.0 135 1856 3240 499 -75
d G 400 12.2 138 2067 3232 550 -75
e M 10 13.7 245 2677 4549 1847 -112
f M 50 12.8 232 2453 4078 1890 -109
g M 100 12.6 219 2379 4150 1903 -110
h M 400 12.8 225 2386 3786 1972 -107
i B 10 46.6 151 9047 17072 5453 -130
l B 50 41.1 175 7641 16298 5579 -136
m B 100 37.2 169 6818 13264 5200 -135
n B 400 40.5 185 7552 17845 5745 -134

6× higher compared to minimum, and the (n) test maximum energy is 37× the test (b).
Analyzing Table 3.7 and Fig. 3.15, a significant increase of the variance in B than M
and G coverage is detected. These results reveal the high power consumption variability,
which is not under direct user control. Indeed, each network provider manages differently
the network parameters, such as the number of repetitions, the transmission power,
TAU, and eDRX timers. For future designs, Table 3.7 - Imax is a useful tool for power
management calculations. The good coverage group, in green, has an average RSSI
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Figure 3.15: NB-IoT characterization with median, 25th and 75th percentiles. Good
(G) in green with an average RSSI of -80dBm, Medium (M) in orange with an average
RSSI of -110dBm and, Red (R) with an average RSSI of -130 dBm.

of -80 dBm; this generates a mean Tactive of 12 s; with these parameters, the average
energy for each packet is 1982 mJ. In the M group, the Tactive slightly increases, with
a mean of 13 s, but the resulting energy 2474 mJ grows of about 25% in comparison
with good coverage; indeed, the maximum current is 100 mA higher. This behavior
means that the NB-IoT cell increases the output power before raising the number of
retransmissions. In analogy with LoRa, the NB-IoT’s Tactive is highly correlated with the
communication latency that for the latter reaches up to 46 s in worst cases (Table 3.7).
Tests (i),(l),(m),(n) are close to the maximum sensitivity of the module, the resulting
energy, and Tactive grow heavily: the average time is 41 s with a maximum of 17845 mJ
and, a medium of 7765 mJ.

Figure 3.15 presents the statistical analysis of the energy, Imax and Tactive features
showing the median, 25th, and 75th percentiles of all the data acquired (600 samples).
The energy grows with respect to the received RSSI decrease, which results from the
Tactive and Imax combination depending on the coverage strength and the network re-
quest. Indeed, the NB-IoT protocol raises TX output power before increasing the num-
ber of retransmissions and the correlated Tactive. The packet time difference between
G and M is negligible, but B Tactive is at least 3× compared to G. Furthermore, in
M the output power correlated with the Imax is 2× and 1.3× compared with G and B
respectively, but the Tactive is still comparable with B.
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Table 3.8: NB-IoT EPB

C EPB 1
[mJ]

EPB 2
[mJ]

EPB 3
[mJ]

EPB 8
[mJ]

EPB 33
[mJ]

G 29.4 14.8 9.8 3.6 0.9
M 34.5 17.2 11.5 4.2 1.0
B 89.6 44.9 29.9 11.2 2.7

The energy used for the first connection and authentication with the NB-IoT cell is
checked; this procedure subscribes the sensor node on the network. The values measured
for G, M, and B are respectively 15843, 17182, and 19124 mJ with an average connection
time of 80 s. NB-IoT enables a packet length up to 1600 bytes [118], but the used module
(with firmware version: 0.6.57, A07) is limited. Consequently, the queue is restricted to
33 samples, each consisting of 12 bytes. In Table 3.8, the payload EPB with different
coverages and sizes is presented: EPB 1: 12 bytes of payload (1 sensor sample); EPB 2:
24 bytes of payload (2 sensor samples); EPB 3: 36 bytes of payload (3 sensor samples);
EPB 8: 96 bytes of payload (8 sensor samples); EPB 33: 396 bytes of payload (33 sensor
samples). The EPB in Table 3.8 includes the uplink energy used in T3324 and Tactive:
it suggests that the EPB decreases increasing the queue size, as also confirmed in the
recent work [108].

Compared to LoRaWAN, sending one sample per packet with NB-IoT reduces bat-
tery life, as presented in the following subsection. Moreover, results suggest that Tactive is
strictly associated with the coverage condition and does not depend on payload length,
i.e., the average RSSI. The NB-IoT protocol increases the number of retransmissions
from 32 to 2048 when the RSSI is low, a setting not managed by the end device. More-
over, the power consumption is independent from the uplink and downlink data rate,
which is mainly affected by the number of rentransmissions [108]. In static working
conditions, the energy consumption among packets varies with respect to network pa-
rameters: the output power, the number of retransmissions, and the Tactive can be
modified between successive uplinks and are not under the direct control of the mod-
ule. To prove the NB-IoT inefficiency for sporadic and tiny transfers, Fig. 3.16 presents
differences between single and multiple packets in a single connection. Taking as a ref-
erence the Test (d), the Tactive and the Emean are evaluated sending one (Pkt1) to ten
(Pkt10) successive packets with 400 bytes of payload in G coverage.

In contrast to LoRaWAN, the energy does not grow linearly with the number of
uplinks in a single connection (Figure 3.14 - DATA), but it only increases by 11%,
sending 10 times more bytes. In the Pkt10 condition, the EPB is about 0.1 mJ, 9x less
than the EPB 33 presented in Table 3.8. However, a buffer of 330 samples could generate
an excessive latency for many applications; hence, in this study, the EPB is compared



Wireless protocols for IoT 59

Figure 3.16: Differences between single and multiple packet transmissions in a single
connection.

considering only one transfer for each connection and commonly used in a deployment
where sporadic transmissions are required.

E∗mean(C) = Emean(C) · (1 +Npkt · 0.01). (3.17)

Finally, the expected E∗mean generated in a single connection where multiple packets are
transferred, is presented in Eq. 3.17. The C variable points at the coverage condition
energy in Table 3.7 - Emean and Npkt is the number of packets transmitted together.

3.9.3 Battery life and comparisons

This subsection focuses on estimating the battery life in the SHM application sce-
nario based on the above-presented power measurements. One of the most challenging
features is to achieve a lifetime of 10 years. In this evaluation, pre-requisites impose
that each node is equipped with a 1000 mAh lithium battery @ 3 V, a widely used type
of battery for SHM nodes [26]. Thus, each sensor sampling energy consumption is con-
strained, and its usage is regulated by the energy per packet and the queue length. For
the estimation, it is considered the energy used for the initial connections (Econnection)
calculated in previous sections with 10 samples per day (Ntx) to fulfill the plots in Fig-
ure 3.17. In particular, based on previous considerations, the average packet loss changes
considerably depending on every single deployment, varying between 0% to 60% due to
crowded radio channels or noisy electromagnetic environments. Hence it is misleading
to provide a single result for each configuration. The packet loss probability for energy
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estimation in the LoraWAN case study is included and the Figure 3.17 takes into con-
sideration the effective communication variability, providing a lower and upper bound
between 0-60% (PPktLoss). A conservative parameter considers the integer bar to esti-
mate the average sensor lifetime span depending on the queue and DR configurations.
Eq. 3.18 and Eq. 3.19 show the formulas used to calculate the data in Figure 3.17 for
LoRaWAN and NB-IoT. TLoRa and TNB−IoT provide the times in days, ESLEEP is the
sleep energy calculated with a 365 nA current. Lastly, C and Q select the coverage and
queue configurations from Table 3.6 and Table 3.8.TLoRa = (DCDCeff ·Ebatt)−Econnection(C)

[ELoRa+Esensor]·Ntx
Q +ESLEEP

· 86400 s

ELoRa =
(

12 ·Q · 8 · EPB(C,Q) · 1
1−PP ktLoss

) (3.18)

TNB−IoT = (DCDCeff · Ebatt)− Econnection(C)
[E∗mean(C) + Esensor] · Ntx

Q + ESLEEP
· 86400 s. (3.19)

The resulting lifetime is less than 10 years with Packets 1-8 for both protocols in
DR0/Bad coverage (Figure 3.17), but it is interesting to notice that with Packets 1-3
LoRaWAN reaches this threshold in DR2 and DR5. NB-IoT allows this duration only
with Packet 33, in all coverage conditions; on the other side, LoRaWAN reaches the
target from DR2 without queuing. If the application requires a transmission for each
sample, the expected lifetime is respectively 4.5 months and 3.5 years for NB-IoT and
LoRaWAN in the worst case. As shown in Figure 3.17, with equal coverage, NB-IoT
EPB is one order of magnitude higher than that measured with LoRaWAN. The Lo-
RaWAN EPB decreases more if coverage improves compared to buffering techniques, as
opposed to NB-IoT, where the decrease is similar. Finally, the only cases where EPB is
advantageous for NB-IoT is when the coverage is at least DR2/M and the message sent
contains 33 samples (Packet 33).

3.9.4 Quality of service, cost and coverage

Wireless communication energy consumption is one of the principal issues in IoT
applications. Nevertheless, many factors should be considered, including the QoS, the
cost, and the coverage. This section highlights that LoRaWAN works on unlicensed ISM
channels with an asynchronous protocol. In crowded channels and industrial environ-
ments, packet loss cannot be considered a negligible factor, given that it can decrease
the expected battery lifetime up to 37%. On the other hand, NB-IoT offers an opti-
mal QoS, with reliable data delivery, working on licensed spectrum, and an LTE-based
synchronous protocol. However, its communication latency is not optimal. Indeed, the
maximum LoRaWAN packet time, which corresponds to the transfer delay, is 2630 ms
with DR0. It is ≈ 17× lower than the NB-IoT’s Tactive in B coverage (Table 3.7 - i).
Different parameters must be examined for the implementation costs. A generic NB-IoT
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Figure 3.17: Expected battery lifetime and EPB with LoRaWAN and NB-IoT.
End-device coverage is divided into: DR0/Bad with an average RSSI of -130 dBm,
DR2/Medium with an average RSSI of -110 dBm and DR5/Good with an average
RSSI of -80 dBm.

module can exceed 20e compared to 3-5e of a LoRa transceiver [101]. Moreover, it is
important to consider the cost related to traffic generated by each device (500 MB of
traffic are priced today at 10e). This amount of data are more than enough for the entire
sensor life in a typical monitoring application. On the other hand, a LoRaWAN network
must have at least one access point (300e/gateway) and the server (1000e/base sta-
tion). In the SHM application, the system generates 120 bytes daily, allowing more than
100 years of hypothetical operation with a single subscription. In summary, Eq. 3.20
quantifies the deployment cost of the two technologies.{

CostNB−IoT = (Costmodule + CostSIM ) ·N
CostLoRa = Costmodule ·N + CostGateway + CostServer

(3.20)

Whenever the number (N) of sensor nodes is a few tens, the NB-IoT is more affordable
due to the high installation cost of LoRaWAN gateway and server, as shown by Eq. 3.20,
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enabling quicker time to market (TTM) in regions where the LoRaWAN is not deployed
yet. On the other hand, LoRaWAN is today more affordable for large-scale deployments
due to NB-IoT module higher cost. When the TTM is a concern, NB-IoT has an
advantage because of network operators’ plug-and-play service. Moreover, for national
scale coverage applications, for example, in the monitoring of transportable goods to
determine the pallet locations on highways or railroads, NB-IoT will be the only solution
due to the infrastructure already provided by the network operators. To cover limited
or remote areas where network operators do not offer adequate coverage, LoRaWAN
devices with dedicated support can instead be more efficient.
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3.10 A multi-protocol system for configurable data stream-
ing: introduction

Wearable and portable healthcare devices are among the most rapidly growing in
the IoT marketplace and have gained momentum in digital health and biomedical ap-
plications [119]. Monitoring, tracking, and classifying the vital human signs is a key
megatrend for consumer electronics to improve the health condition and wellness of
users and their families [120]. Portable healthcare devices are today battery powered
and the energy autonomy, together with a small and comfortable form factor, are the
most critical design constraints as they can be worn on the body, arms, and legs/feet.

Synergistic hardware-software design approaches are needed when designing these
highly constrained devices, which are usually focused at the node level, with smart
power management techniques. These approaches are based on hardware and feature
management, such as the use of low-power radios, custom ultra-low-power components,
or reducing the energy consumption of the primary and most frequent tasks.

One of the most power-consuming tasks is to transfer the data acquired by the node
either to cloud servers or to personal gateways (e.g., a mobile phone) for low-latency
feedback [121]. Therefore, wireless communication is an essential feature. It is often
the bottleneck both for the data connectivity and for the entire system power budget,
considering that applications might need to report continuous data. At the same time,
users usually move worldwide, indoor and outdoor.

This Section tackles the joint challenge of communication energy minimization and
maximization of the communication flexibility under several different connectivity sce-
narios. Hence a multi-protocol communication system is designed for IoT devices to
span the trade-off between datarate and power consumption. The following Section
proposes the implementation of a single board with the capability to switch seamlessly
between WiFi, Bluetooth, and LoRaWAN. Simultaneously, the IoT application can dy-
namically select the wireless standard that consumes less energy for the amount of data
to transmit, even when constrained by latency requirements.

Furthermore, with a special focus on wide-area connectivity, the newest low-power
wide-area network protocols, such as 5G NB-IoT and LoRaWAN, are designed for multi-
kilometers coverage area; this feature might be not enough for users living in urban or
rural areas. Thus, a multi-hop uplink range extension is designed on the top of the
LoRaWAN standard that permits to extend the coverage range to tens of km. Lastly,
the power budget of the multi-protocol solution is extensively assessed, characterizing
the best communication trade-off in several scenarios, typical of wearable and healthcare
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applications (i.e., bursty, continuous streaming, sporadic alarms, or periodic reporting
without latency constraints) in terms of data amount and distance from the application
gateway.

In recent years, wireless monitoring medical devices have been used in the daily life
of more and more people. Some of these devices are in the form of accessories such
as armbands, glasses, and smart watches. The advancements from earliest WSNs in
healthcare [122] have made the health signal monitoring a reality. Indeed, many wireless
body-area networks (WBANS) have been proposed that cover real-time and short-range
medical information collected from different sensors with low power consumption [123],
and wake-up solutions for ultra-low power and very long battery lifetime devices [121].
Several commercial products [124] highlight that Bluetooth (BT) connection is the most
commonly used for short-range and low data rate transfers. In this field, BT is used
to exchange raw data between sensor nodes and a central node unit (personal gateway)
that stores and processes the information, becoming the industrial standard for WBAN
bio-sensors. In the IoT for industrial markets, the focus has been primarily on long-range
connectivity. The most promising protocol stacks in this area are SigFox, LoRaWAN,
and the emerging standard NB-IoT. Even though their noise robustness, the key limi-
tations of long-range WSN are the power consumption and the low data rate. Hence
they are used to transmit only essential information. On the other hand, even if wireless
personal area networks support data streaming, only high throughput protocols, such as
WiFi, are useful to stream high-bandwidth data at lower energy per bit at short range.

Data obtained by sensors is not useful unless something can be done with it; there-
fore, the collected measurements must be forwarded to a database where relevant parties,
such as automated services or human operators, can extract features.

Few commercial products support multi-protocol operation, and most of them are
in the IEEE 802.15.4 and 802.11b/g/n field, supporting mainly WiFi and Bluetooth
2.0. The CC1352 [125], from Texas Instruments (TI), is a multi-band wireless MCU.
It enables sub-GHz modulations, such as FSK and 2-GFSK, and 802.15.4 protocols at
2.4GHz. Whereas the CC1352 supports dual-band operations, the CC2652 [126] can run
multiple protocols in the same band; for example, it supports the coexistence of WiFi and
BLE 4.0. However, they are low-power and low-cost devices with limited features and
performance, with a maximum bit rate of 2 Mbps, often not enough to support multi-
channel bio-medical sensors as [127]. The WL1835MOD [128], from Texas Instruments
(TI), offers high throughput transmission along with WiFi and Bluetooth coexistence.
It is a 2.4-GHz module with a single multiplexed antenna solution. Unfortunately, TI
provides drivers only for high-level operating systems such as Linux and Android. Hence
this product is not usable for low power and compact embedded devices with bare-metal
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firmware. Moreover, all the previous devices do not support long-range communication
and cannot enable continuous monitoring in an outdoor environment.

Closest to the proposed approach, the LoPy4 [129] is a quadruple bearer MicroPy-
thon board (LoRa, Sigfox, WiFi, and Bluetooth) IoT applications. It embeds an Xtensa
dual-core 32–bit LX6 microprocessor, with up to 600 DMIPS, which manages all the
stacks and the host interface. The LoPy4 can run all the protocols in parallel with-
out any issues and limitations; the main differences with the proposed multi-protocol
system come from the throughput and the power consumption. Indeed, the measured
LoPy4’s WiFi EPB (Energy Per Bit) is 80 nJ 2× higher compared to Multiradio (i.e.,
multi-protocol system), with a maximum bitrate of 9.1 Mbps (with UDP). The BLE
and LoRaWAN (DR0) need an EPB equal to 3.7 µJ and 24.3 mJ, 5 and 2.7× worse
than Multiradio solution.

There are few open challenges in remote health monitoring [119]. Some of these
are the security risk related to transporting large amounts of sensitive data, the sensors
reliability to ensure that they are monitoring accurately, and the possible disconnection
from the central server if the patient runs out the maximum communication range or if
the battery is discharged. Moreover, it features an extended version of LoRaWAN, which
supports multi-hop communications. Indeed, cities and mountain areas may have dark
spots where the sensor cannot reach the healthcare server. The extended LoRaWAN
solution outperforms other methods such as [130], which is a LoRaWAN compliant multi-
hop uplink extension. In fact, it implements a lightweight multi-hop version with the
capability of both downlink and uplink transmission, not supported in [130].

3.11 Extended LoRaWAN (E-LoRaWAN)

The system aims to allow the out-of-range node to reach a specific healthcare server
through a multi-hop connection, exploiting a LoRaWAN node already connected to the
network as a LoRa repeater, located in the middle between the gateway and the out-
of-range node. The LoRaWAN coverage reaches more than kilometers in some cases;
nevertheless, it could not be enough for some applications where end-devices move to
areas too far away from the nearest gateway, becoming totally disconnected from the
network. The LoRaWAN standard does not offer any solution in these conditions, forcing
it to deploy a new gateway. To overcome this limitation, a dual-hop range extension
protocol is developed as an add-on to increase the network coverage with a cheap and
straightforward solution. This work suggests a specific communication system to achieve
such a goal. As described in Fig. 3.18, the mechanism starts when the out-of-range node
performs the Join Request for the first time; concurrently the associated timer starts.
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Figure 3.18: Extended LoRaWAN (E-LoRaWAN) timing diagram with multi-hop

After the timeout, if nothing is received, it is assumed the failure of the connection
attempt. Then, the node transmits a specific multi-hop join request, named Discovery,
for the nearest LoRa repeater, which will answer by sending another packet, called
Assignment, communicating the success of the assignment process. At the end of this
part, the repeater will open a new reception window. It can receive packets from out-
range-nodes and, eventually, forward their data to the gateway to reach the desired
destination. To achieve this operation, the repeater must switch the protocol, taking 24
milliseconds (T2) using the standard LoRaWAN, which affects T3, T4, and T5 intervals.
Furthermore, the acknowledgment mechanism is implemented to guarantee a specific
level of reliability. Therefore, after acknowledgment reception, the repeater changes
protocol again to inform the node about this operation success, taking 20 milliseconds
(T6). At the out-of-range node side, the window for acknowledgment reception is opened
after data transmission. This period is equal to 6 seconds (TEXT in Fig. 3.18) using the
same parameters for both operations, i.e., DR0, LoRa modulation, SF12 and BW equal
to 125 kHz, which influence T1 and T7.

The maximum number of nodes that a single repeater can support is highly de-
pendent on the application and the single repeater radio configuration. Indeed, due to
ISO/IEC ISM regulations, wireless devices working on ALOHA MAC cannot occupy
more than 1% of the channel time. Since the time of air depends on the DR, the
maximum number of daily packets changes significantly. Assuming a payload length of
six bytes, as tested in our deployment, the maximum number of transmissions is 1043,
2880, and 27871, respectively for DR0, DR2, and DR5. But with 50 bytes of payload, the
maximum number decreases to 432, 1440, and 8640. As in-depth studied in [24, 25], the
packet collision rate (PCR) can reach 60% decreasing drastically the maximum number
of transmissions and the number of devices supported by each repeater. TEXT varies
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between 3 to 6 seconds, depending on the repeater and out-of-range node DR selection.
It can be easily calculated taking into consideration the timing diagram in Fig. 3.18.
To find the maximum number of supported devices per repeater the developer needs to
maximize the N (number of out-of-range devices) for given Eq. 3.21

((N + 1) ·NTX) · 1
PCR < MaxTX

((N + 1) · TEXT ) · 1
PCR < DAY TIME

NT X

(3.21)

where NTX is the number of UL per day required by the application, MaxTX is the
maximum number of transmission per day depending on DR selection, as expressed
above. Finally, DAY TIME is the number of seconds per day. For example, in the
worst case with DR0 and 50 B of payload, the TEXT is 6 seconds. If we suppose an
average NTX of 24, the maximum nodes supported by each repeater is 9. Whereas with
DR5, the TEXT is 3.6 seconds and the number of nodes increases to 215.

To measure the average Packet Reception Rate (PRR) of each node and to validate
the Eq. 3.21, two tests have been made using one E-LoRaWAN repeater for both of
them. With DR0 and a scheduled transmission every 20 seconds the repeater supports
only two out-of-range nodes, and the ISO/IEC ISM regulation is quickly overtaken.
Results show that by increasing the total number of devices to be served, the average
PRR decreases. In the first experiment, the PRR is equal to 93% with two nodes, while
with four nodes, it is 44.9%.

3.12 Multi-protocol transceiver

3.12.1 MultiRadio

MultiRadio is a multi-protocol wireless IoT transceiver developed at the University
of Bologna in 2019. It supports high-speed WiFi 802.11b/g/n, Bluetooth 4.1 Low Energy
and the LoRaWAN end node, enabling high throughput and long-range communications.
The on-module MCU manages all the stacks, providing an easy-to-use wireless interface
as well as fast deployment. The module integrates the STM32F411 MCU from STMi-
croelectronics, the Cypress CYW4343W, the Semtech SX1276, the power management
ICs, and a chip antenna resulting in a small form factor design. It could be interoper-
able with various vendors’ 802.11b/g/n access points in a wireless LAN with seamless
roaming capabilities and advanced security. The module provides SPI ports to interface
with a host controller. Fig. 3.19 shows the block diagram, whereas Fig. 3.20 presents
a picture of the MultiRadio shield for NUCLEO boards. Both hardware and software
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Figure 3.19: MultiRadio transceiver block diagram

projects are open source and available on GitHub8 9. All the conclusions and values re-
ported in this Section are the results of experimental measurements. The MultiRadio’s
firmware runs on Cypress WICED (Wireless Internet Connectivity for Embedded De-
vices) [131], an embedded platform for ARM MCU allowing complex IoT applications.
WICED is a comprehensive environment supporting WiFi, Bluetooth Classic (BT), and
Bluetooth Low Energy (BLE) through the ThreadX RTOS. In a parallel task, the MCU
runs the LoRaWAN stack for the SX1276 transceiver, enabling long-range communica-
tions. This open-source library [132] supports LoRaWAN 1.0.x, 1.1.x, and 1.2.0 versions,
and it has been modified for our E-LoRaWAN with multi-hop transmissions. The Cy-
press CYW4343W is a highly integrated SoC that needs few external components. It is
engineered for smart-phones, wearable devices, tablets, and a wide range of low-power
portable devices. The chip includes a WLAN IEEE 802.11b/g/n radio, Bluetooth 4.1
support, and an FM receiver. Also, it integrates a power amplifier, a low-noise amplifier,
and an internal transmit/receive RF switch, further reducing printed circuit board area
and the overall solution cost. The CYW4343W host interface supports SDIO digital
bus, providing a data transfer rate of up to 200 Mbps. Moreover, an independent HCI
UART is provided for the Bluetooth host interface to reduce the power consumption
when the WiFi is powered off. The WiFi interface has an RX sensitivity up to -92 dBm
and maximum output power of 22 dBm. In this condition, the power consumption is
between 0.1-1 W depending on bitrate and transmission power. On the other side, the
Bluetooth interface has an RX sensitivity of -90 dBm. The average power consumption
in slave mode is 95 mW, whereas in low energy mode, it decreases to 844 µW with
a beacon every 10 s. Finally, the SX1276 features the LoRa long range modem that

8https://github.com/GreenWaves-Technologies/GAPuino_BSP/tree/master/multi_radio
9https://github.com/tommasopolonelli/MultiRadio
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Figure 3.20: MultiRadio shield

provides ultra-long range communication and high interference immunity through the
patented spread spectrum modulation developed by Semtech. Due to the high sensitiv-
ity of -148 dBm and the RF output of 20 dBm, this transceiver enables a communication
range over 10 km in line-of-sight.

The MultiRadio module provides a high-speed (48 MHz) host interface through SPI
bus and four control GPIOs. Digital communication is full-duplex; this means that the
MultiRadio can receive and transmit in parallel over three wireless protocols. TheBUSY
pin signals that the module is not ready to receive further commands; the READY pin
indicates the presence of a newly received packet and can be used as a wake-up signal
for the host, in case of sporadic transmissions. Lastly, PWR_EN and RESET manage
the deep-sleep and the reset.

3.12.2 Power consumption profiling

MultiRadio covers a wide area of industrial, biomedical, and consumer applications.
Every deployment has different constraints and requirements due to the available energy,
the number of bytes generated, the communication range, and the product cost. Because
there is no single optimal solution, the wireless protocol can be selected depending on
the scenario. Therefore, the MultiRadio can adjust the wireless protocol, but can even
help identify the most suitable implementation during prototyping.

In deep-sleep mode, the MultiRadio consumes just 1.65 µW , enabling low power
operation with battery-powered devices. The WiFi stack provides two working modes:
high-throughput (WHT) and low-power (WLP). The WHT enables a maximum bitrate
of 30 Mbps with an average streaming speed of 22 Mbps. That is plenty for high-
sampling rate signals, such as images or biomedical multi-channel probes. The WHT
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Figure 3.21: Power consumption profile in WLP mode. After a single UL, the Mul-
tiRadio keeps the link with the router in low-power mode. Sporadic pings check the
connection status.

supports full-duplex data transport and keeps the MultiRadio always connected with the
WLAN router. This modality draws 1 W from the power source. When the downlink
bandwidth is not a stringent requirement, the WLP can drastically reduce the energy
used. However, the bitrate is lowered to 9.1 Mbps in UDP and 4.8 Mbps in TCP/IP.
After an initial connection that requires 104 mJ, the average power consumption is
3.79 mW. Indeed, in this mode, the CYW4343W enables the radio only on transmission,
and in the remaining time, it is in sleep. With this mode, reception is feasible only after
an uplink, and periodic pings must be sent to the WLAN router to keep the connection
open. Fig. 3.21 shows the WLP power profile after a single transmission.

The BT stack supports both Bluetooth 2.0 and BLE 4.1. When the device is disas-
sociated, the measured average power consumption is 363 µW , otherwise, it can reach
29 mW and 79 mW, respectively with BLE and BT 2.0. With these configurations,
the maximum bitrate is 40 kbps (BLE) and 200 kbps (BT). BLE is used to send data
over short distances, with a maximum range of 30 m, 20 m less than BT. This wire-
less technology has become an alternative for WiFi, especially in IoT devices. Indeed,
BLE is more suitable for transmitting small amounts of data, like sensor readings of
temperature, alarms, commands, etc. However, BLE is not optimal for sending continu-
ous low-latency and high bandwidth data streams to a server (such as those needed for
neural monitoring and feedback applications [127]); thus, if low-latency high-bandwidth
data streaming is required, WiFi mode should be used. For example, the beacon energy
is lower than WiFi (in WLP mode), sending a 100 bytes packet 6 times per second,
an equivalent data rate of 4800 bps. Increasing the payload size to 1 kB decreases the
number of packets per second that the BLE can send to be energetically convenient,
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Figure 3.22: Energy consumption comparison between BT in RFCOMM and WiFi,
transferring the same amount of data

Table 3.9: LoRaWAN and E-LoRaWAN energy per packet and EBR

DR SF BW
[kHz]

EBR
[bps]

ETX50
[mJ]

EXT 12 125 147 2300
DR0 12 125 293 1152
DR2 10 125 977 290
DR5 7 125 5469 46

Table 3.10: Energy per bit (EPB) and equivalent bit rate (EBR)

WiFi
(UDP)

BT
(RFCOM)

LoRa
DR5

LoRa
DR2

LoRa
DR0

LoRa
EXT

EBR 29.6Mbps 200kbps 5.46kbps 977bps 293bps 147bps
EPB 30nJ 730nJ 280µJ 2.22mJ 8.87mJ 16.9mJ

which is 0.6 packets/seconds. Over this average bitrate, the WLP is more appropriate.

We tested our MultiRadio transmitting the same amount of data with BT in the RF-
COMM profile and WiFi to verify the energy and the latency. The result is presented in
Fig. 3.22. In 150 s of streaming, the BT’s energy is 11.8 J whereas the WiFi uses 1.33 J
(if already connected), which increases to 1.88 J considering the connection.

Concerning long-range connectivity, LoRaWAN power consumption varies widely
with radio settings, such as the SF and the bandwidth, which affect the EBR. In Lo-
RaWAN, the EBR ranges between 292 and 5469 bps. The overall energy for each uplink
communication depends on the output power, the air-time (inverse of EBR), and the
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Figure 3.23: Energy per bit (EPB) and equivalent bit rate (EBR) varying the distance
between the node and the gateway

receive windows open after RX1 and RX2 Delay. Table 3.9 presents the power consump-
tion during one uplink, which includes the effective radio transmission, the RX1 Delay,
and, finally, the receive window used to acquire the acknowledge (ACK). The payload
size is 50 bytes, the maximum allowed for DR0, the CR, and the preamble symbols are
respectively 1/4 and 8; finally, the CRC is disabled. In contrast with the limited range of
WiFi and BT (tens to hundreds of meters, in ideal conditions), the LoRaWAN can reach
10 km of range, but the EPB increases significantly, and the EBR decreases. With the
E-LoRaWAN, the energy consumption increases enormously, reaching 2.3 J per packet,
but, on the other hand, it allows a range of more than 20 km. Table 3.10 and Fig. 3.23
show the EPB with respect to the distance between the gateway and the sensor node
varying protocols and the radio configurations.
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3.13 UWB: introduction

In recent years, UWB (Ultra-Wide-Band) technology has drawn relevant interest in
the IoT community [133]. The development of UWB has led to a new era of short-range,
high throughput wireless transmissions. Among various potential purposes, one of the
most promising is in IoT [134–136], which needs both high-precision ranging capabilities
and robust communications. Numerous research works in the literature indicate that
UWB is one of the enabling technologies for wireless sensor networks [137–142]. In partic-
ular, impulse-radio-based UWB modulation has many inherent properties that are well
suited to IoT applications. Indeed, it has potentially low complexity and low cost, with
noise-like signal properties that create little interference to other systems. Moreover, it
is resistant to severe multipath and jamming and has optimal time-domain resolution
allowing for precise ToF estimation. Disparate UWB applications include locating of
objects and environments, video surveillance, in-vehicle sensing, intrusion detection, out-
door sports tracking, monitoring of roads, bridges, and other civil infrastructure [143].
There have also been many reported systems to demonstrate the feasibility of UWB de-
ployments for IoT applications, including radio modules and UWB SoCs and precision
locating methods [144]. Several UWB-based sensor concepts have been designed both in
the industrial and military domains, with particular importance on systems based on the
IEEE 802.15.4a standard [145]. It provides predefined yet flexible PHY and MAC layers
suitable for a wide variety of applications. Furthermore, it could operate concurrently
with the ZigBee standard, a dominant technology in IoT systems.

In 2004, the IEEE established a standardization group, the IEEE 802.15.4a, with
the mandate to design a new PHY layer for applications such as IoT and sensor net-
works. The 802.15.4a standard aims to provide an improved communications capacity
to the 802.15.4-2006. It also grants ranging support to enable geolocation applications.
One option of this standard is based on UWB techniques, namely, TH-IR. The IEEE
first developed application scenarios, from which the requirements for the capabilities
of the physical layer and channel models were deduced. In March 2005, a baseline pro-
posal [146] was approved, and in the subsequent months, several subgroups developed
the specifications of the modulation/coding schemes, concurrent channel access, ranging
waveforms, and the MAC layer. On March 22, 2007, P802.15.4a was approved by the
IEEE-SA Standards Board and was published in June 2007 [145].

Rapid developments in the area of intelligent autonomous vehicles over the past
decade have seen their use extend to new fields, often in combination with other tech-
nologies to serve more complex purposes [147]. An emergent hot topic is to use UAVs
to perform localization of nodes in WSNs [148], with further application to tracking
first responders [149]. Knowing the precise location of a node, the UAV can fly to it
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for charging and data acquisition purposes [150, 151]. While data collection using a
wireless interface poses an interesting challenge [152], autonomous navigation to within
a few centimetres for the purposes of highly efficient inductive power transfer between
a UAV and a device has not yet been practically achieved.

UWB is a promising technology for localization because it can perform distance
measurements with accuracy down to 8 cm [153, 154]. However, its main disadvantage
is its relatively high current consumption, i.e., up to 200 mA in the receive mode [155].
Indeed, many of the off-the-shelf UWB products are mains-powered or have extremely
limited battery lifetimes, for example, in [156] and [157], where the battery lasts for
only tens of minutes. On one hand, developing a localization system that can accurately
estimate fixed node position can enable UAVs to move to unexplored areas where they
may need to find their way to distributed wireless sensors. This mechanism can bring
the drone relatively close to a sensor node to efficiently receive information, and with
power transfer in mind, to recharge it [151]. Previous work also demonstrated the
flexibility of UWB to achieve energy efficiency in an embedded system without losing
accuracy [153]. This Section focuses on using UWB with hardware-enabled asynchronous
communication to achieve energy-efficient wireless sensor operation in combination with
UAVs. In particular, the UAV uses distance estimation using UWB with asynchronous
mechanisms that allow the node to enable the radio transceiver only when the drone is
close to it. This asynchronous duty-cycled UWB approach is under-explored; however,
it is clear that the energy performance achievable may still be relatively poor due to the
high current draw in the listening mode. Thus, a passive WURs can play an important
role in developing an energy-efficient localization system that incorporates UWB to
deliver centimeter accuracy.

3.14 WUR

In a typical sensor node, the radio transceiver is the most power-hungry component;
therefore, the communication energy efficiency heavily impacts the average working time
of these battery supplied devices. In previous works, such as [158], it has been demon-
strated that aggressive duty cycling, turning the radio off and on periodically, signifi-
cantly improves the lifetime of the network [159]. However, the duty cycling mechanism
still has two side effects: the listening power consumption is not totally removed. In-
deed, the transceiver needs to check the medium periodically with an intrinsic trade-off
between latency and power consumption. In fact, the more the radio is powered off,
the more energy is saved, but the latency will be higher. For this reason, asynchronous
communication, which overcomes the latency/power trade-off, is considered one of the
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Figure 3.24: Wake Up Radio: the receiver schematic in which is highlighted the
envelope demodulator, the high-frequency low-pass filter, the comparator and the MCU
used to decode the address.

most efficient mechanisms for battery supplied sensor nodes [160]. In fact, with a WUR
receiver, it is possible to decrease the idle-listening energy and achieve low latency com-
munication, an essential factor in low-power devices. In this Section, a brief introduction
of both receiver and transmitter is presented.

3.14.0.1 Receiver

Figure 3.24 shows the block diagram architecture of the WUR circuit, which can be
used in conjunction with general sensor boards.

The receiver can decode only the OOK modulation, the simplest form of digital
amplitude modulation in which each bit is represented as the presence or absence of a
carrier wave. The WUR receiver architecture comprises four main blocks: the 868 MHz
matching network, the fully passive envelope detector, the comparator, and a µW MCU
used to decode the address (Figure 3.24). The matching network provides maximum
power transfer between the antenna and the envelope detector by providing a stable
impedance match with a return loss of -40 dB. It consists of an LC pi matching filter,
whose component values are dimensioned based on the transmission carrier, the Euro-
pean ISM (Industrial, Scientific, and Medical frequency band) 868 MHz, and bandwidth
100 kHz.

The second block is the passive demodulator, which aims to recover the radio sig-
nal. Because WUR uses OOK modulation, the circuit consists of a passive envelope
detector that discards the carrier frequency and its phase, only detecting the ampli-
tude. The receiver makes use of a single-stage half-wave rectifier with series diodes,
the BAT15 − 04W RF Schottky diode pair from Infineon Technologies, which are op-
timized for frequencies up to 12 GHz. They offer a sensitivity of −56 dBm with the
double diode schematic [161]. Once the signal is rectified, the digital bits of the received
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wake-up address, which follows an 8-bit preamble, are reconstructed by using an ultra-
low-power comparator. To be robust at the input power changes, an adaptive threshold
mechanism (Figure 3.24) is used, which keeps the comparator negative input at half of
the input signal level. This enforces a limitation on the address compositions, where
sequences longer than three ones or three zeros are forbidden. With this approach, the
WUR uses the energy from the received signal for generating the threshold, thus re-
ducing the static power consumption of the circuit rather than using a voltage divider.
The TLV3701CDBVT is a comparator from Texas Instruments, which features a very
low voltage offset of 250 µV and current consumption of 560 nA at 3.3 V. This com-
ponent exploits the entire working range of the BAT15-04W diode. Aiming to keep as
low as possible the power consumption, the WUR embeds an 8-bit microcontroller, the
PIC12LF1552 from Microchip, which is selected for its ultra-low current consumption
(20 nA in sleep mode), fast wake-up time (approximately 130 µs at 8 MHz), and an
operating current of 30 µA/MHz, which is 30% lower than the STM32WB55RG. When
the PIC12LF1552 detects a valid address, it wakes up the STM32WB55RG through an
interrupt pin (Fig. 3.24), which enables the DW1000 and the ATWR ranging protocol.

The average power consumption of the WUR receiver is 2 µW, which reaches 82 µW
during the address decoding. Hence, for each reception, the WUR needs 6 µJ considering
a processing time of 24 ms (tbeacon).

3.14.0.2 Transmitter

The WUR transmitter aims to wake up the sensor node with as low latency as pos-
sible. It is, moreover, part of the drone payload and so must be lightweight. It includes
a simple 8-bit MCU, the PIC16LF1824T39 from Microchip that has been chosen for its
current consumption in active mode, only 96 µA at 3 V and, 16.5 mA in transmission
mode at 10 dBm. The usage of the WUR transmitter is straightforward. Once powered
up, the PIC16LF1824T39 continuously streams the wake-up packet with the destination
address every 30 ms (Pbeacon). The output power is 14 dBm. The transmission is done
using 1 kbps data rate and a beacon containing a 16-bit address with 8-bit preamble.

Considering the transmitter output power and receiver sensitivity, the communi-
cation link budget is 70 dB. To evaluate the effective functionality of the WUR in
the proposed framework, the path loss with both free space and multi-path model is
calculated, taking into account a worst-case scenario with a -5 dB gain antenna. In
Figure 3.25, simulations show the maximum coverage for each propagation model. In
particular, Est. Flath Earth Loss (Figure 3.25) shows that the signal power goes below
the WUR sensitivity after 10 m, while the free space model reaches this value over 40 m.
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Figure 3.25: Wake Up Radio: path loss calculation with free space and multi-path
model. TX: 14 dBm, RX sensitivity: -56 dBm, Antenna Gain: -5 dB, Connector loss:
-1 dB

3.15 Ultra-Wide band

3.15.1 Decawave DW1000

The Decawave DW1000 [162] is a low power radio transceiver compliant with IEEE
802.15.4-2011 standard. It is a System on Chip (SoC) embedding a wideband radio
front-end. It contains a receiver, a transmitter, and a digital back-end. A serial digital
bus interfaces the SoC to the host processor. The radio transceiver supports six bands
between 3.5 GHz and 6.5 GHz with two selectable data rates: 100 kbps and 6.8 Mbps.

The ultra-narrow electromagnetic impulse has a time width of 2 ns at a carrier
of 3.9936 GHz, where the IEEE 802.15.4-2011 standard [155] gives the setting. The
time width is proportional to the bandwidth (BW), which is 499.2 MHz. Hence, the
internal clock is referenced to this frequency, providing a down-scaled 63.8976 GHz with
a period of 15.65 ps. Due to the carrier-based impulse, the DW1000 physical layer
can only generate +1 or -1 impulses with a bandwidth of 499.2 MHz at the selected
carrier frequency. By grouping unique patterns of impulses, the link-layer obtains two
main properties: periodic autocorrelation in coherent and non-coherent receivers, and
low cross-correlation between colliding codes in the channel. The preamble symbols are
drawn from a ternary alphabet -1, 0, +1 and have two different lengths, Preamble3 and
Preamble2 that are respectively 1024 and 128 chips. The subscript number denotes the
operating mode of the DW1000, which is always considered as 3 from this point (see
the Decawave user manual for more details [162]). Inserting zero-valued chips between
the elements, the ternary code is then spread. This spreading yield has a nominal pulse
repetition (PRF) of 64 MHz, where each symbol has a period of 1 µs. During the
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Figure 3.26: DW1000 power spectrum in mode 3; the horizontal line highlights WUR
receiver sensitivity.

frame data parts, information bits are signaled by a modulation scheme defined as burst
position modulation (BPM).

The DW1000 payload consists of symbols, where every single symbol carries two in-
formation bits [162]. Following, a symbol rate of 110 kbps is considered, denoted Tsym.
It is composed of four slots of equal length, two burst slots detached by two guard inter-
vals, used to prevent intersymbol interference. Each burst slot is subsequently split into
eight sub-slots. The transmitter sends the burst in one of these, with a pseudo-random
hop-position selection, providing multi-user interference rejection. It is relatively easy
to understand that the majority of the channel time is empty during the transmission
of a UWB packet, with a consequent reduction of the average transmission power that,
in any case, is limited by the IEEE 802.15.4-2011 regulation [155]. In Fig. 3.26, the
DW1000 power spectrum is plotted, where it should be noted that the maximum peak
is around -35 dBm with an equivalent power spectral density of -110.8 dBm/Hz. This
value is measured at the DW1000 power amplifier output, and thus it is higher than the
radiated signal power from the antenna. Taking into consideration the ratio between
the DW1000 output power and the WUR sensitivity, it is clear that making a WUR
that uses the UWB radio-signal drastically reduces the communication range. Indeed,
the budget link is only 21 dB. Due to the carrier high frequency and the reduced budget
link, the communication range is only 10 cm. It is clear that this solution cannot be
effectively deployed in most of the application scenarios, where an 868 MHz carrier is
needed to augment the coverage.
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3.16 Summary

This section has shown the most common and essential protocols used in IoT, propos-
ing innovative and state of the art solutions to outperform and push the actual technol-
ogy limitations. Moreover, the text studies explicitly and assess the power consumption,
presented as Energy Per Bit (EPB) and/or energy per packet (EPP) in comparison with
the coverage and the throughput (EBR). The presented results span between the com-
mon IoT standards such as WiFi, LoRa, LoRaWAN, Bluetooth, BLE, and NB-IoT also
providing a detailed overview of emerging or custom technologies: UWB, ATWR, E-
LoRaWAN, S-LoRaWAN, and Wake Up Radio (WUR).

Section 3.1 presents an analysis of the LoRaWAN protocol focused on channel
throughput and issues associated with its scalability, one of the major concerns for this
standard. Moreover, a reliable synchronization method is described and implemented,
which is used to develop an S-LoRaWAN protocol suitable for low-cost and low-power
IoT devices. This approach gives a theoretical 2× network throughput improvement.
Still, in high traffic set-up, the measured gain is up to 5.8× with a demonstrated re-
duction of packet collisions of 26% in a real-life deployment with 24 nodes operating
for hours. The overall overhead of the proposed S-LoRaWAN is only 8 bytes in the
downlink packet, with little consequence in power consumption, which is a fundamental
factor for battery operated devices. Finally, S-LoRaWAN does not require any change
to the LoRaWAN software stack and can be deployed on top of unmodified LoRaWAN
firmware.

Section 3.7 introduces the new NB-IoT and compares it with LoRaWAN for indus-
trial application scenarios that require the transfer of a few bytes per day. The evalua-
tion is based on experimental results obtained in-field, expecting a sensor node for crack
measurements in civil structures [26]. Comparing both technologies shows experimental
results in different coverage conditions, intending to assess the energy consumption, the
estimated battery lifetime, and the packet loss. It shows that LoRaWAN outperforms
NB-IoT in terms of energy consumption. In an application where buffering is not al-
lowed, the LoRaWAN protocol increases the battery life up to 10× against NB-IoT: for
Packet 3 scenario (36 Bytes payload), DR2 / M Coverage, NB-IoT EPB is 10× higher
compared to LoRaWAN. However, NB-IoT is adequate for applications where informa-
tion can be buffered on the node because each transmission energy is almost independent
of the payload size. For example, in Packet 33 scenario (396 Bytes payload), DR2 / M
Coverage, if high delivery latency is tolerable, NB-IoT EPB is 11× lower compared to
LoRaWAN, due to the larger number of messages sent by LoRaWAN. Moreover, Sec-
tion 3.7 verifies that Tactive in the NB-IoT is heavily dependent on network coverage, as
it grows up to 3× times passing from a "Good" (average RSSI of -80dBm) coverage to
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Table 3.11: Final comparison between IoT protocols

Protocol EBR EPB Range
LoRa EXT 147 bps 16.9 mJ 20 km
LoRa DR0 293 bps 8.87 mJ 10 km
NB-IoT Bad - 2.7 mJ 10 km
LoRa DR2 977 bps 2.22 mJ 5 km
NB-IoT Medium - 1.0 mJ 1 km
LoRa DR5 5.46 kbps 280 µJ 1 km
NB-IoT Good - 0.9 mJ 100 m
UWB Mode 3 100 kbps 2.1 µJ 100 m
WiFi (UDP) 29.6 Mbps 30 nJ 20 m
UWB Mode 2 6 Mbps 44 nJ 20 m
Bluetooth 200 kbps 730 nJ 10 m

a "Bad" one (average RSSI of -130dBm). On the other hand, NB-IoT offers the highest
QoS, which guarantees data delivery. This feature makes it a potential replacement to
LoRaWAN in all the applications where the energy constraint is not an issue or when
communication reliability is a crucial factor and good NB-IoT coverage is available.

Section 3.10 proposes a multi-protocol solution that aims to cover all the wireless
transmission requirements for healthcare and IoT applications supporting WBAN net-
works and high-coverage through LoRaWAN. These low data rate protocols pair with a
high throughput 22 Mbps WiFi connection, which allows the transfer of real-time raw
data, such as images or multi-channel bio-signals. Moreover, Section 3.10 proposes E-
LoRaWAN, a multi-hop solution that extends the LoRaWAN coverage for uplink and
downlink, allowing continuous monitoring even in challenging environments or where it
is not economically viable to deploy and maintain gateways. It studied the E-LoRaWAN
limitation in terms of the maximum packet per day and the maximum number of out-
of-range nodes per repeater, providing a simple way to deploy a custom IoT network.
Compared to commercial products, the presented MultiRadio offers a diverse set of pro-
tocols satisfying all the possible requirements; with a 22 Mbps WiFi at 30 nJ per bit
and the EPB equal to 730 nJ for the BT, the power consumption is reduced respectively
by 2× and 5×. Moreover, E-LoRaWAN uses 2.7× less EPB on equal terms, allowing
multi-hop communication that extends the network coverage area of 2×.

As conclusion of Chapter 3, Table 3.11 shows the performances of each aforemen-
tioned IoT protocols highlighting differences in terms of EBR, EPB and coverage. Pro-
posed values are measured in real applications and realistic environments, such as con-
sumer and industrial buildings other than in line of sight. The selection of the perfect
technology for each specific application is challenging and is still an open issue in the IoT
world. Indeed, it is not straightforward covering all the requirements, which are often
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asking for contradictory and inconsistent features, such as ultra-low power consumption
and operativity in kilometers-range.



Chapter 4

Real-time distance estimation and
data transfer

4.1 Two-way ranging

An asymmetric double-sided two-way ranging scheme [144] is implemented by De-
cawave SDK to determine the distance between two DW1000 [163]. Using physical and
mathematical techniques to implement a clock with ps precision, the DW1000 can de-
termine the radio Time of Flight (ToF). Assuming radio electromagnetic speed as the
same as the light speed c, it is possible to use Eq. 4.1 to calculate the distance between
two objects.

d = c · ToF (4.1)

In support of specific deployment scenarios, the two-way ranging benefits from being
used in stand-alone mode without requiring complex infrastructure or fixed anchors
[163]. The ATWR (Asymmetric double-sided Two-Way Ranging) is asymmetric because
it needs two transmissions and one reception, and does not require equal and fixed reply
times from each node. Its protocol is composed of three messages: Poll, Response,
and Final. The maximum error is in the picosecond scale, even with low-cost 20 ppm
frequency drift crystals, i.e., the worst-case specification [162], providing a theoretical
error of approximately 2.2 mm. Each ATWR exchange consists of the UAV sending the
Poll message, receiving the Response message, and then transmitting the Final message.
The protocol sequence and the ToF formula are in Fig. 4.1 and Eq. 4.2

ToF = t1t4 − t2t3
t1 + t2 + t3 + t4

. (4.2)

Since t2 and t3 have a fixed and defined value, 800 µs with an error of ±15.65 ps, from
t1 and t4 the microrontroller calculates the round trip time, which is two times the line
of sight.

82
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Figure 4.1: Asymmetric double-sided two-way ranging method. Sequences of packets
for ToF estimation are shown.

4.2 ATWR Ranging Performance

The ATWR was tested under both static and dynamic conditions to verify the sys-
tem accuracy and reliability. Stationary evaluations verified the distance estimation
accuracy and the UWB minimum working range. The latter mainly depends on clock
resolution and drift, affecting the ToF calculation [162]. On the other hand, the maxi-
mum ranging distance depends on the modulation settings, environment, and multi-path
fading. Fig. 4.2 shows 21 different tests in Mode(2) and Mode(3) (Table 6.1) at 5 fixed
distances: 10 cm, 20 cm, 90 cm, 3 m, and 5 m. The average and the standard deviation
of the measured distance are generated from statistical analysis of over 75,000 points
collected in a controlled environment. The ratio between the reference and measured
distances is plotted in Fig. 4.2, where the central mark indicates the median, and the
bottom and top edges of the boxes show the 25th and 75th percentiles. The whiskers
continue to the most extreme data points not considered outliers, plotted using the o
symbol. Fig. 4.2 shows that the UWB is not reliable in 10 cm and 20 cm range. Indeed,
the measurement span reaches up to 100% and the error ratio in Mode(2) and Mode(3)
is between 20% and 80%. UWB becomes reliable at the threshold of 30 cm. Although
the variance is still high, the absolute error is 33 mm, corresponding to a bias of 11%.
Between 50 cm and 5 m, the global performance improves significantly, and at 50 cm
features an average bias of 5% and variance below 20%.

Twenty in-field evaluations were performed with a maximum speed of 60 km/h
in addition to static analyses. The UWB behavior at varying speeds, compared with
the results in Fig. 4.2, was examined studying 100,000 collected data points, where
non-negligible packet loss due to fading and environmental noise was observed. The
experienced data loss, observed with an average of 21% and a maximum of 80%, affects
the ToF estimation and can cause abrupt changes and vertical edges/spikes, generating
unpredictable behavior in the distance estimation. A non-linear digital filter technique,
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Figure 4.2: ATWR ranging performance in fixed positions. The graph shows the
measurement variance of each test and the ratio between the reference and measured
distance. The left part of the graph refers to the left scale, but the remaining refers to
the right scale.

the 1D-median-filter, is applied to compensate the ToF estimation. As shown in Fig. 4.2,
the median-filter with 21 entries (N) reduces the variance of a factor of three. Despite
improvements in accuracy and noise reduction, this filter adds a time delay of [int(N/2)+
1] that must be considered while executing the position estimation algorithm. Moreover,
it was noticed that the median-filter biases the 30 cm test, adding an error of 5%.

4.3 UWB: real payload throughout during data transfer

During in-field experiments, the payload throughput was extensively assessed in both
Mode(2) and Mode(3), reaching an average value of 5.988 Mbps using a packet size of
1 kB. The test was performed in an open space with one-meter distance between two
DW1000s devices, an environment with low electromagnetic noise. With a packet loss
below 10% and a negligible protocol overhead (2 bytes), the achieved throughput reaches
the DW1000 bitrate. During the data transfer, the equivalent energy per bit (EPB) is
44 nJ and 2.1 µJ respectively for Mode(2) and Mode(3). Hence, the 110 kbps setting
reaches a broader coverage but requires more energy per bit, increasing the transmission
cost.
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Figure 4.3: DW1000 low power listen procedure. The DW1000 generates an interrupt
if a preamble sequence is detected in RX1 or RX2.

4.4 ATWR optimisation for energy efficiency

Concerning all DW1000 operation modes, the receiver mode is the most power hun-
gry. In Mode(2) and Mode(3) it requires respectively 122 mA (I2,rx) and 81 mA (I3,rx)
(with an external DC/DC converter), almost doubling the transmission current: 69 mA
(I2,tx) and 50 mA (I3,tx). On the other hand, the sensor board needs to listen to in-
coming drone radio signals; thus, it must continuously monitor the ether. For battery
supplied devices it is clear that a constant current of Ip,rx is not sustainable, where the
average current should be lower than 9 mA to achieve one month of operation.

An unique low-power listening (LPL) feature of the DW1000 [162] is evaluated in this
Section; it aims to increase the battery lifetime at the cost of a duty-cycled operation,
where the latency is not considered a priority. In low-power listening, the DW1000 wakes
up periodically for a short time from the SLEEP state. The DW1000 automatically
returns to SLEEP if no preamble is detected, following a procedure described in Fig 4.3.
Once a preamble is marked, the MCU receives an interrupt and configures the DW1000
in continuous listening mode, enabling the ATWR ranging. However, the transmitter
has to send sufficient data to wake up the sensor node, ensuring a non-null probability
to hit the short receive window, Fig. 4.3 RX1 and RX2. Essentially, the transmitter
has to stream for a time >= 1 window time width. In practice, this is done by sending
the same beacon repeatedly. The DW1000 also includes the ability to do a two-phase
listening to increase the probability of hitting a preamble and to decrease the wake-up
latency. The two-phase listening is composed of two reception windows (Fig. 4.3 RX1
and RX2), spaced out by a short sleep period, which is defined as SNOOZE time in
Fig. 4.3. It is set to ensure that if the first listen hits a message, missing the preamble,
then the next window will see it. The SNOOZE time can be configured as the Blink
period, 33 ms, assuming that the ATWR procedure is executed at 30 Hz. Consequently,
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a time width >= 33 ms must be used for RX1 and RX2. An empirical value of 50 ms
is selected in this evaluation to increase the detection probability in real scenarios.

To calculate the duty cycle supported in the application scenario, the maximum wake
up latency should be established. During this time, at least one couple of RX1/RX2
must be opened. However, a maximum packet loss (PL) of 80% is noticed from the
in-filed test of the UWB, a detrimental factor that must be considered programming the
wake-up sequence. Using the packet loss probability, it is useful to calculate the average
number of transmissions (Eq. 4.3) required to receive a wake-up packet.

NBlink =
∞∑
i=0

PLi = 1
1− PL, (4.3)

Furthermore, considering the effective NBlink that must be performed in a real de-
ployment, the low power listening period Φ is calculated as shown in Eq. 4.4 and the
corresponding sleep time in Eq. 4.5, where tinit is equal to 3 ms.

Φ = d̂

|v| ceil
(
NBlink

2
) , (4.4)

tsleep = Φ− tRX1 − tRX2 − tinit − tSNOOZE . (4.5)

For example, with a tsleep of 1.63 s, considering Φ equal to 1.75 s, the corresponding DC
is 7%. Alternatively, Φ and tsleep can be 15 s and 14.86 s with a DC of 1%, aiming to
decrease the average power consumption.

4.5 ATWR and WUR: an asynchronous approach

This section presents a fusion approach between ATWR and WUR technology. The
resulting radio protocol is straightforward: the sensor node is in deep-sleep mode with all
the peripherals powered off. The only active component is the WUR receiver, reference
in Fig. 4.4 labeled as node in shutdown. Approaching the targeted destination, the drone
needs to send wake up beacons (Fig. 4.4 WUR TX) using the PIC16LF1824T39 in the
868 MHz band. These packets are streamed starting from the maximum UWB range,
100 m, which aims to enable the ATWR. Immediately after, the DW1000 on the drone
sends the Blink message (Fig. 4.4) to check if the equivalent component on the sensor
side is ready. The Blink message has a duration of 15 ms. Once the WUR beacon is
received, the WUR module enables the MCU, which configures the UWB transceiver
in a period equal to tinit (Fig. 4.4). At the next Blink transmission, the sensor node
will correctly start the ATWR ranging protocol (Fig. 4.4). Considering the path loss
calculation shown in Fig. 3.25, the WUR beacon should be received on average between
10 m and 40 m.
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Figure 4.4: Asynchronous ranging protocol. UWB and WUR fusion for low power
and low latency distance estimation.

Figure 4.5: Top plot: Measured current consumption of the DW1000 low power
listening mechanism. Bottom plot: Average current consumption with the SLEEP
time.

4.6 UWB: Experimental Evaluation

To test the UWB low power listening capabilities, the DW1000 is programmed with
settings described in Section 4.4 at 1% DC. Considering the configuration in Mode(3),
an average power consumption of 4 mW is expected, which includes only the DW1000.
In Fig. 4.5 is plotted the current consumption of the low power listening mechanism (see
Fig. 4.3). As expected, the receive window time, RX1 and RX2, is 50 ms, and the sleep
time is 14.86 s, as well as the peak current, which is 120 mA. These values reflect the
analytical results described in Section 4.4. The average power in low power listening
mode is equal to 4 mW with the 1% duty cycle setting. Instead, the SNOOZE time is
only 6.7 ms, i.e., 5 times less than the configured value. This nonconformity does not
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compromise the functionality of the system as well as the average power consumption,
but it decreases the probability to hit the second receive window since the transmitting
Blink period is not aligned with the SNOOZE time. However, this issue can be resolved
by optimizing the DW1000 driver library, which casts the SNOOZE time at a maximum
value of 7 ms. Finally, the average power consumption of the ATWR, resulting in a
continuous 400 mW, heavily affects the overall battery life. Indeed, for instance, a 1 Hz
sensor reading needs just 70 µW.

4.6.1 WUR: in-field test

A quantitative analysis of the performance of the WUR receiver was performed in
terms of range and sensitivity. The WUR transmitter was configured to continuously
send a 16-bit OOK address every 30 ms at the power of 14 dBm. The WUR receiver,
which is placed on the ground, was programmed so that it lights an LED whenever a
message is detected. In this range evaluation experiment, the transmitter firstly moves
far outside of the WUR range. It starts approaching the sensor node point (therefore
the WUR receiver location) from four different directions, as presented in Fig. 4.6. The
WUR range was analyzed by observing the TX-WUR reported distance when the WUR
led turns on. Both receiver and transmitter are equipped with a −2.3 dBi SMA antenna.
This procedure was repeated 40 times, measuring a maximum communication distance of
15 meters. This result is consistent with Fig. 3.25 in which it estimates a communication
range between 10 m to 17 m using Earth Loss models (Fig. 3.25). Due to the moving
parts and the reflected waves generated in real environments, the packet loss cannot be
considered negligible; hence it was measured at varying planar distance by setting the
flight altitude at 2 m. Between 0 to 10 meters, the wake-up probability is above 90%
with static objects and above 80% during the flight (Fig. 4.6). Beyond the 10 meters
threshold, the link quality decreases. At 10 meters, the packet loss is 80%, which further
increases to 90% at 12 m.

These results fully support the asynchronous ranging protocol (Fig. 4.4), providing
high reliability within 10 m range.

The same transmitter was used to perform a sensitivity evaluation, connecting it to
the WUR receiver through an adjustable RF attenuator. The transmit power was 0 dB.
A logic analyzer was connected to the wake-up pin of the WUR. This pin gives a 1 ms
pulse when the correct wake-up message is detected. Increasing the attenuation, results
show that below -45 dB more than 10% of the messages are lost.

The measured current consumption of the WUR module is 716 nA at 3.3 V.
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Figure 4.6: WUR packet delivery ration varying the distance and the angle of arrival.
The drone is placed 2 m above ground.

4.6.2 LPL and WUR: in-field comparison

In the worst case, in terms of power consumption, the LPL setup can be woken up
at the first receive window (Fig. 4.3 - RX1). This possibility is not negligible; indeed,
considering NBlink equal to 5, the first window probability is 20%. In the proposed
evaluation, the sensor node needs 28.8 J for the LPL implementation without the WUR
asynchronous wake-up.

In Fig. 4.7, the power consumption profile of the sensor board is plotted. The
initial current spike highlights the WUR receiver operation, which does not correctly
decode the beacon at the first attempt. After 30 ms, a new beacon is received and
successfully decoded. Hence, the WUR circuit wakes up the MCU, which, after an
initial configuration time, starts the ATWR ranging protocol. With this approach, the
energy to support the ATWR is halved, enabling the expensive UWB protocol only
when it is really needed. On average, using the same period, the measured energy is
11 J, 2.6× less than the LPL approach.
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4.7 Summary

This Chapter presents a new open platform to enable efficient localization for wire-
less data and power transfer between UAVs and static wireless sensor devices. It exper-
imentally verifies the effective throughput of the DW1000 in Mode(2), which reaches
a continuous speed of 6 Mbps. Moreover, it examines both low power listening UWB
and wake-up radio approaches, providing models and measurements to estimate power
consumption in non-ranging states and during the approach phase. This section effec-
tively demonstrates both solutions with accurate in field-test comparisons, achieving an
average energy reduction of 62% using the WUR approach, which deviates to ∼50% in
challenging windy conditions. In these conditions, the WUR performance fully supports
the precision localization, with a packet delivery ratio above 80% within 10 m range
and a maximum latency of 30 ms. In proposed experiments, the maximum coverage is
achieved between 2 m and 5 m altitude, at which the UAV should move during wake-up
triggering to maximize the system reliability. The raw data from the field experiments
reported in this section is publicly available on GitHub. They demonstrate the effec-
tiveness of the framework, fusing the benefits of asynchronous WUR and UWB distance
measurement. Finally, concerning the sensor node sleep current, it shows that the WUR
solution reduces the average power up to 2000× and 14000× with respect to 1% and 7%
in LPL mode. The operational lifetime of the sensor is thus significantly extended.

Figure 4.7: Power consumption profile of the sensor node. In this specific case, the
first received WUR beacon was corrupted, and the receiver discarded the wake up
sequence.



Chapter 5

Sensors for IoT: from scratch to a
plug and play product

After introducing IoT features and limitations and a comprehensive study of the
most used wireless protocols, this dissertation explores the design of a transducer. Sens-
ing is a core block of IoT devices, and it is often the key component to realise an
industrial or user system. Hence this subject is tackled not only describing and evalu-
ating commercial off the shelf sensors, but providing a complete development pipeline,
from scratch to a plug and play product, of a magnetoelectric transducer. The following
chapters present an innovative and cost-effective sensor that measures and tracks cracks
in concrete and other construction materials, proposing the structural health monitoring
as application scenario. The final device (Section 6.1) combines a microprocessor with
LoRaWAN wireless communication (Section 3.1) and a solar energy harvesting, allowing
long-term remote monitoring with easy plug and play installation.

5.1 SHM: Introduction and use case

Structural health monitoring systems are becoming increasingly widespread and are,
in some cases, mandated by law. There are more than 1 million bridges in Italy, and most
of them were built between the 1950s and 1970s. Unfortunately, today, there are a limited
number of inspectors available to control their status, and, in the last ten years, numerous
victims were caused by bridges collapsed in busy roads. A similar situation happens for
public buildings, where accurate and periodic monitoring of health conditions is lacking.
Traditional inspections are subject to human error, and their interpretation relies on
the inspectors judgment. Moreover, the evolution in buildings construction through
the design and realization of increasingly complex structures with new materials and
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techniques requires tracking the structural integrity over many years [164]. A major
factor limiting such diffusion is the lack of low-cost, low-power sensor nodes that can
be deployed on a large number in hard-to-reach areas while providing high-quality and
precise measurements.

The new concept of Autonomous Structural Health Monitoring (ASHM) is based on
methodologies that do not require expensive instrumentation to provide the necessary
information with the required accuracy. Some methods need accurate measurements
done by experts and repeated regularly after a medium-long time interval. For exam-
ple, the work in [165] uses lasers scanners to construct a 3D model of the buildings,
that is later compared with a baseline to detect actual alterations of the environment
under measurement. Continuous monitoring and frequent building evaluations allow for
dynamic analysis of specific civil structures such as bridges or skyscrapers, [165, 166].
Being wired, these solutions still present a high cost due to the installation and use of
piezoelectric sensors. Usually, in all these cases, the structure response analysis is cal-
culated through automatic tools that run directly in remote servers or in a cloud, which
retrieve data directly from a database. The SHM output is determined by processing
the data acquired from the buildings when they are stressed by external mechanical ex-
citations, such as vehicle traffic, hearth quakes, weather phenomena or wind, big loads,
or by the use of mechanical shakers. Low-cost vibration ASHM devices and structural
crack sensors are still a challenge, only a few examples are present in literature, and they
are still in the first prototyping stage [167]. In [166], Addabbo and Fort present a new
ASHM method for crack width measurement, which is based on a permanent magnet
and a hall-effect sensor mounted in a 3D printing holder. Their paper shows a low-cost
solution characterized by a considerable sensitivity (> 10 µm), low power consumption,
and some low-complexity electronics. Efficient energy harvesting techniques, combined
with hardware that looks explicitly for ultra-low-power sensing, allow developing sys-
tems that can operate virtually forever [168]. Besides, wireless sensor networks are a
promising technology for ASHM applications. Indeed, recent works have deployed sim-
ilar autonomous solutions in different environments. However, the sensor cost is still so
high in these works, and the wireless communication range is not enough for plug and
play applications where the sensor could be anywhere.

New techniques for continuous and autonomous structural health monitoring are
necessary to assist human inspectors with periodic data and improve the building as-
sessment. The SHM process involves observing a structure over its life using one or
more sensing elements, which are used for extracting relevant features. Traditional de-
ployments for structural health monitoring are expensive (> 1 ke), as high accuracy
and sensitivity are required to the sensor and need to be guaranteed up to 10 years
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without manual calibration [26]. The cost of such apparatus often limits civil engi-
neers and building companies, and they can only deploy a limited number of sensors in
few positions. Unfortunately, to fully understand the dynamic movements and building
stability, information coming from several spatial locations is needed [167]. Moreover,
most of the products on the market are designed for short-term measurement campaigns
where operators are supposed to monitor the measurement process.

The following chapters present an innovative and cost-effective transducer that mea-
sures and tracks cracks in concrete and other construction materials. The final device,
presented in Section 6.1, combines a microprocessor with LoRaWAN wireless commu-
nication and solar energy harvester, allowing long-term remote monitoring with easy
plug and play installation. Experimental results demonstrate that it can achieve about
1 µm accuracy , with stable measurements across a −15−65◦C temperature range. The
instrument is based on two permanents magnets and a hall-effect sensor, characterized
by a very competitive sensitivity at a lower price. Moreover, combining effective power
management with a high-efficiency solar energy harvester (Section 6.1), it can guarantee
more than 10 years of operational life, with 10 measurements per day. Finally, to assess
measurement precision and reliability, an in-depth study of low-cost plastic materials
for the sensor enclosure was performed verifying the performance over a wide range of
operating temperatures, without the need for exotic and expensive materials.

5.2 Crackmeter design

The sensor presented in this paper is a low-cost displacement transducer based on
permanent magnets facing each other with opposite polarity, a specific configuration de-
veloped in conjunction with STMicroelectronics, Sacertis S.r.l.1, and Rosa Micro S.r.l.2

The magnets (FE-S-20-03) are commercial cylindrical ferrite 20 × 3 mm, and a mag-
netisation of 0.40-0.41 T or 4000-4100 G. They offer excellent temperature stability of
the magnetic field, in the range −60 to 250◦C, allowing the operation in different envi-
ronments without changing their characteristics over the entire sensor life. Thanks to
the geometric configuration of the two magnets, the combined magnetic flux B is highly
linear with distance. The graph in Fig. 5.1 shows that in the range ±5 mm, the curve
can be approximated to a linear response with a coefficient of determination R2 = 0.999;
this result allows the use of a commercial and inexpensive Hall sensor guaranteeing a
high output sensitivity response. The magnetic flux of two facing permanent magnets
follows the physical behavior described in Eq. 5.1, Eq. 5.2, and Eq. 5.3, where D is the

1http://www.sacertis.com
2https://www.rosagroup.com
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Figure 5.1: Combined magnetic flux B between two magnets.

cylinder thickness, R is its radius and z is the distance from the magnet. Lastly, Br is
a measurement for the magnetic induction or magnetic flux density.

Bleft(z) = Br
2

(
(D + z)√

R2 + (D + z)2)
− z√

R2 + z2

)
, (5.1)

Bright(z) = Br
2

(
(D + z)√

R2 + (D + z)2)
− z√

R2 + z2

)
. (5.2)

B(z) = Bleft(z)−Bright(z). (5.3)

The Allegro A1319 linear Hall-effect sensor IC has been designed specifically to meet
high accuracy and low power requirements. This stable-temperature device is available in
both surface-mount and through-hole packages. The accuracy of the device is enhanced
via end-of-line optimization. Each device features non-volatile memory to optimize the
device sensitivity and the quiescent voltage output for a given application or circuit.
This ratiometric Hall-effect sensor ICs provide a voltage output that is proportional to
the applied magnetic field. The quiescent voltage output is adjusted around 50% of
the supply voltage. The A1319 BiCMOS monolithic circuit integrates a Hall element,
temperature-compensating circuitry to reduce the Hall element intrinsic sensitivity drift,
a high-gain small-signal amplifier a clamped low-impedance output stage, and a dynamic
offset cancellation technique. In Table 5.1, some fundamentals parameters of the Allegro
sensor are outlined.

The two cylindrical ferrite magnets are distant 15 mm providing a theoretical mea-
surement range of 12 mm. The last two millimeters on both sides cannot be used due
to B non-linear behavior, which would affect the transducer sensitivity; see Fig. 5.1 as
a reference. The Allegro A1319 is held by a non-ferromagnetic material between two
magnets, which in this design is a plastic support. Support 1, in Fig. 5.2 is connected
on the left side of the crack, it contains the electronic circuit and the Hall effect sensor.
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Table 5.1: Allegro A1319 measured performance.

Parameter Value
Sensitivity 5 mV/G
DC Output Resistance < 1 Ω
Quiescent voltage output 1.65 V
Spectral noise density (0 - 100 Hz) 15 µV/

√
Hz

PSRR (0 - 1 kHz) 5
PSRR (1 kHz - 100 kHz) > 1000

Figure 5.2: Magnets displacements and the corresponding holder position with
respect to the crack.

Support 2, indeed, holds the magnets and is connected on the right side of the crack. It
does not include active components and is used as a reference point for Support 1. Hence
the transducer here presented measures the distance between Support 1 and Support 2,
which, in turn, are fastened to the concrete structure among crack strips. Both sides are
free to move in three-dimensional space, but the distance estimation is performed only
on the X-axis. For these reasons, movements in another direction should not change the
transducer output, avoiding to degrade its performance.

Before making the first prototype, a complete assessment of the aforementioned
transducer was performed to check the sensor sensibility from temperature and ageing
and tilting variations. All the simulations in Section 5.2.1 have been published by
courtesy of STMicroelectronics.

5.2.1 Crackmeter system validation

The following simulation results consider magnets with a diameter of 20 mm and
thickness of 3 mm, while the fixed face-to-face distance is 15 mm. The Hall effect sensor is
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considered as a dot with zero spatial dimension. These tests aim to show the transducer
behavior on the measurement axes (X) varying all the possible parameters, such as other
axes (i.e., Y and Z), tilting between magnet face and the Hall sensor, and the magnet
ageing or corruption due to external events. The reference point for all the axes is at
the center of the magnet circumference and at the middle of the magnet distance, i.e.
at 7.5 mm from each face. Compared with the real deployment, simulation axes are
flipped, and the corresponding measure line belongs at the Z line. All the simulations
span between ±3 mm from the origin and between 0◦ to 10◦ for tilting.

5.2.1.1 System validation along X

The simulation results in Fig. 5.3(a) propose the measurement linearity and errors
along the sensitivity axes of the Allegro A1319 (Z). To evaluate the dependency from
X and Y, a trial of eight positions shows the sensor behavior varying only X position
or both axes. When the lateral misalignment is zero, the plotted error displays the
sensor non-linearity deviation in ideal conditions, which reaches a maximum of 5 µm at
±2.5 mm. In the worst conditions, the maximum error is 26 µm and 37 µm varying X
or X and Y, respectively. In both states, the maximum is reached at the highest lateral
misalignment of 3 mm. Lastly, shrinking the measurement range between ±1 mm the
linearity error is < 1 µm.

Left plots of Fig. 5.3(a) show the full magnetic field span, which does not saturate
the measurement range of the Allegro A1319 in the range ±200 G.

5.2.1.2 System validation along X and Y

The simulation results in Fig. 5.3(b) propose the measurement linearity and errors
along the sensitivity axes X, which is orthogonal to the Allegro A1319 measurement
direction. Fig. 5.3(b) shows that, for future developments, using a two-dimension Hall
sensor can enable a two-dimensional crackmeter; indeed, the magnetic field behavior
along X is similar to Z. At the lateral misalignment equal to zero, the non-linearity
deviation in ideal conditions reaches a maximum of 5 µm at ±2.5 mm. In the worst
conditions, the maximum error is 26 µm and 47 µm varying respectively Y or Z. In both
states, the peak is reached at the highest lateral misalignment of 3 mm.

Next sections and the final deployment focus on one measurement direction along
Z (for simulations) and X (for in-field tests). However, it is possible to exploit these
results for future investigations or new commercial products.
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5.2.1.3 System validation tilting magnets with respect to Z

The simulation results in Fig. 5.4(a) present the measurement error along the sen-
sitivity axes of the Allegro A1319 (Z) varying the magnets angle (α) with the latter. A
trial of six angles, between 0◦ and 10◦ shows the sensor behavior changing α. When the
angle is zero, the plotted error complies with the sensor non-linearity deviation detected
in Fig. 5.3(a). The tilting generates the most destructive effects on the crackmeter,
reaching a maximum error of 140 µm @ 3 mm. However, the error increases linearly
with the distance from the origin containing the amplitude below 40 µm in ±1 mm

range. So, it is clear that aiming to reach a micro-meter sensitivity, the sensor enclo-
sure should avoid as much as possible an angular misalignment between magnets and
the A1319. Compared to lateral misalignment, which could be compensated using or-
thogonal lines of sense, it is difficult to overcome technical difficulties when tilting axes;
indeed, it will affect all the sensing direction, making it hard to balance the inserted
error.

5.2.1.4 System validation sweeping magnet parameters

To validate the sensor behavior during its entire lifetime, Fig. 5.4(b) shows some of
the possible effects coming from aging and degradation, such as a variation on magnet
height and radius due to corrosion and Br decrease. Sweep simulations on height and
radius consider a 1% variation, reaching a maximum error of 80 µm, while a 1% alteration
on Br generates up to 35 µm variability. These results highlight the importance of a
robust enclosure covering and protecting the magnets to avoid mechanical variations
due to external events, such as hits, cracks, and dirties. Lastly, in Fig. 5.4(b), Br varies
only on one magnet, while, in a real deployment, this parameter should degrade equally
on both objects since they are subjected to the same environmental conditions.
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(a) Simulation results of the magnetic field along Z, right plots show the normalised errors varying Y and X.

(b) Simulation results of the magnetic field along X, right plots shows the normalised errors varying Z and X.

Figure 5.3
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(a) Simulation results of the magnetic field error along Z tilting the magnet with respect to the sensitivity
axes of the Hall effect sensor.

(b) Simulation results of the magnetic field error sweeping the magnet height, remanence, and radius.

Figure 5.4
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5.3 Crackmeter enclosure

Magnets and the Allegro A1319 must be kept in the right position, and also, the
transducer needs to be solid with the wall and the crack under control. Hence a robust
support is required, which must hold the components and, at the same time, shift along
X, Y, Z axes following the crack movements.

The sensor plastic case is designed to minimize size with an appropriate mechanical
rigidity to avoid undermining the overall output sensitivity. Performances must be sta-
ble in temperature and for the entire life of the system, that can be > 10 years. Several
plastics have been considered, and the best compromise between cost and performance
has been found in polycarbonate (PC as per DIN7728). Polycarbonate is a thermoplas-
tic polymer obtained from carbonic acid. The selected PC is GF30, a polycarbonate
loaded with 30% glass fibers, showing greater strength, rigidity, creep resistance, and
dimensional stability than unreinforced PC. In addition to good resistance to fatigue,
these properties make the glass-filled polycarbonate a suitable material to be used to
encapsulate devices that remain exposed for a long time to high static loads and high
temperatures. Moreover, its thermal expansion is in the lower level of the corresponding
categories (5 10−5K−1), and surface resistivity is 1014 Ω. Unfortunately, PC cannot be
3D printed, a significant drawback in building and evaluating the prototype. A new
plastic composite is adopted for prototypes, Acrylonitrile Butadiene Styrene (ABS) to
solve this problem. It is a polymer derived from styrene polymerized together with acry-
lonitrile in the presence of polybutadiene, and therefore can be defined as a terpolymer.
ABS finds application in rapid prototyping machines that use production techniques such
as FDM (Fused Deposition Modelling). Because of much lower mechanical properties
than the PC, ABS can be used in environments where the temperature is between 0 and
40◦C, more than enough for the scope of a prototype, which is limited to demonstrate
a new method and new hardware for SHM.

Rosa Micro S.r.l developed a custom mechanical design following the project re-
quirements. All the components and the electronic PC must be hidden into the support,
aiming to protect them from external environmental conditions and aging. Considering
that these devices need to work in harsh backgrounds for years, complete protection
from water, humidity, sunbeams, and shocks is mandatory. Following the design con-
cept in Fig. 5.2, the mechanic was designed considering two pieces, the magnets holder
(Support 2 ) and the electronic support (Support 1 ). The resulting drawing is presented
in Fig. 5.5, where supports are connected by a flexible plastic blade placed in the middle
of the crack. The holes are at 29 mm from the center and are respectively 58 mm far
away from each other. The electronic holder, which is colored in blue, is a waterproof
IP67 enclosure holding the Allegro A1319 and its electronics, plus the analog to digital
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Figure 5.5: Mechanical design of the enclosure. Courtesy of Rosa Micro S.r.l.

converter. Thanks to the plastic blade, the object is easily transportable and installable
since it comes in a single piece. However, in response to an applied force, it can perform
multi-dimensional movements. The left part of the blue plastic box is stiff, and it is
directly leaning to the magnet support, which is rigid and tightly connected with the
wall. On the contrary, the right part of the blue plastic box, hidden under the white
plastic holes (holes for fixing the A1319) is flexible, allowing an angular movement with-
out affecting the tilting angle between magnets and the Hall effect sensor. This feature
is specifically designed to support the issue reported in Section 5.2.1.3, avoiding sensor
measurement degradation on tilting movements.

5.4 ADC conversion

Analog to digital conversion, besides requiring a high enough accuracy (i.e., ENOB),
needs to minimize measurement dependence on temperature, aging, and noise. To this
end, a ratiometric differential approach is implemented in the analog front-end. The
schematic uses only a voltage reference (namely REF2033 from Texas Instruments) and
a differential sigma-delta ADC embedded on the STM32F373 to minimize the number
of components on the board. The circuit is independent of the power supply and stable
in temperature with an error of 5 ppm/◦C or 8 µV/◦C. The analog to digital conversion
is managed by an SDADC, which features a 16-bit resolution and 9 differential analog
channels with selectable gains. The conversion speed reaches up to 16.6 ksps for each
SDADC when converting multiple channels and up to 50 ksps per SDADC if only one
channel conversion is used. The REF2033 is used to power the Allegro A1319 and as a
reference voltage for the positive input of the SDADC; the ground is used as a negative
reference. Hence, it is straightforward to calculate the SDADC theoretical sensitivity in
terms of µV/LSB. To this end, Eq. 5.4 and Table 5.2 show the STM32F373-SDADC
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performances.
LSB = Vref

216 − 1 = 50.355 µV. (5.4)

The sensor assembly is suitable for measuring cracks in the range of 10 mm (±5 mm),
while the Allegro A1319 sensitivity is 14 µm/G. Hence the theoretical sensitivity is
0.138 µm/LSB, which degrades to 1.6 µm/LSB using the effective ENOB. It is clear
that a de-noising procedure must be applied to increase the average sensor performance.

The Allegro A1319 output is calibrated after each power-up, and it is proportional
to the supply. Moreover, a static calibration is guaranteed, the low PSRR improves the
stability performance under low-frequency dynamic operation, and the spectral noise
density (Table 5.2) is below the LSB amplitude (Eq. 5.4). So, this component cannot be
considered the primary source of the measurement error. The reference voltage provides
an output accuracy of ±0.05% combined with the ratiometric design that makes the
sensor output independent from the reference voltage, as shown if Eq. 5.5 and Eq. 5.6.

A1319out = (Vref+ · α) where α = G

mV
∈ [0, 1], (5.5)
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)
. (5.6)

To evaluate analog to digital converter performances, the positive input was connected
to an ultra-low noise fixed reference (5 µV pp). The output samples can be represented as
a Gaussian probability density function (PDF) with a mean of −13.8 LSB and variance
of 3.3 LSB, generated by a fixed offset and noise signal. The result shows that the ADC
errors could be suppressed easily by employing algorithms that need low computational
resources, for example the average of the collected data. After verifying the PDF of the
freewheel sampling, a series of 12,500 values were evaluated, decreasing the variance to
0.1 LSB, which corresponds to an ENOB equal to 15, increasing the ADC accuracy up
to 5.7 times. However, these results are valid only in a controlled environment where
the temperature is stable; hence a behavioral study on temperature sweep must be
performed to characterize the ADC in all possible conditions. As the crackmeter is a

Table 5.2: STM32F373-SDADC characteristics

Parameter Value
CLK Frequency 6 MHz
Offset (after calibration) 100 µV
Offset drift 10 µV/◦C
Gain ±2.7%
Integral linearity error 14 LSB
Differential linearity error 1.8 LSB
SNR 92 dB
ENOB 12.5
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Figure 5.6: SDADC output in raw (left) and compensated (right) mode.

device that has to be exposed to the same environmental condition as regular buildings,
its measurement must be insensitive to temperature variations. The most crucial factor
affecting thermal stability is the offset error, which is about 10 µV/◦C for the selected
SDADC.

As shown in Fig. 5.6, sweeping the temperature span between −20◦C to 60◦C the
LSB variation reaches up to ±6 LSB, which is equal to an error of ±0.8 µm. The right
plot in Fig. 5.6 makes a comprehensive view of a temperature compensation benefit;
indeed, the variation is below ±0.5 LSB between −20◦C to 40◦C, and reaches 2.5 LSB
above 50◦C.

This section aims to describe the optimal implementation and the more straightfor-
ward way to reach the best performance from the SDADC integrated into the STM32F373.
The proposed design respects the project specifications in terms of measurement pre-
cision and environmental insensitivity. Moreover, ratiometric architecture should be
reliable in long-term life. The analysis demonstrates that, in the static condition, the
electronic part of the crackmeter guarantees a sensitivity of ±0.138 µm at 25◦C and
±0.276 µm between −20◦C and −60◦C. The magnetic field variability between magnets
is 14 µm/G, and the A1319 sensitivity is 5 mV/G. This means that an LSB corresponds
to 0.138 µm. However, taking into account the integral linearity error, that is not com-
pensated, the sensitivity reported above is valid only around 4000 LSB (552 µm) from
the initial calibration value. Outside this confidence range, the maximum error is up to
14 LSB (1.932 µm).

The power consumption of each component was measured, and an aggressive power-
saving strategy was implemented. In run mode, with the SDADC working, the MCU
at 48 MHz is 29 mA, and the external analog components, together with the Allegro
A1319, drain 10 mA. Hence, for a single measurement 129 mJ is required. When it is
in sleep, the circuit needs only 1 µW .
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Lastly, it is essential to highlight that these results are extracted in a laboratory with
a fixed voltage reference and do not include the A1319 sensor and the plastic enclosure.

5.5 Experimental results

The proposed transducer was tested by specific and stressful assessments to validate
the crackmeter behavior under challenging environments and to compare the simulations
with real performance. Static checks are performed using a micromanipulator with
< 1µm resolution, but a thermal chamber was used to simulate harsh and variable
working conditions. In the end, an in field evaluation was performed in a civil engineering
lab, comparing the crackmeter performances with other commercial products.

5.5.1 Linearity and repeatability

The transducer must be linear in its full scale and measurements need to be repeat-
able. A series of points were collected to verify the static performance of the crackmeter
sweeping the readings between 0 and 3 mm along X, reference at Fig. 5.2. The stud-
ied parameters are: linearity in ±50 µm range at 1 µm step (Fig. 5.7(a)), linearity
in ±500 µm range at 10 µm step (Fig. 5.7(b)), output normalised error varying Y
(Fig. 5.7(c)), and repeatability (Fig. 5.7(d)). Results are presented in Fig. 5.7(c) and
Table 5.3, where they are compared with simulation results. Linearity deviation is below
one micrometer in the ±50 µm range, while it can reach five micrometers expanding the
range. In any case, the MSE (Mean Square Error) is around 1.74 µm, 2× more than
what is expected from simulation results; however, the full-scale error varies only of
6%�. The output dependence from Y heavily affects the measurements. In this case, the
measured MSE reflects the simulations, which are respectively 29 µm and 26 µm. In
1D crackmeter, this error is not compensated since the orthogonal misalignment check
is absent. However, the proposed transducer is a low-cost displacement for long-term
deployments and is not designed to be an absolute measuring instrument, but it needs to
evaluate the crack variations during his life. As shown in Fig. 5.7(c), the MSE is always
positive, so a variation along Y will be read as a crack enlargement, a non-destructive
behavior for SHM applications. In any case, the 1D crackmeter cannot be considered
an instrument along Y axis since, for 3 mm variation, the output detects only 40 µm

(Fig. 5.7(c)). For what concerning the repeatability (Table 5.3), the sensor reaches a
maximum of 1.63 µm error and an MSE of 0.60 µm, providing a solid basis to confirm
the sensor sensitivity.
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(a) Measured crackmeter linearity in ±50 µm range at 1 µm step.

(b) Measured crackmeter linearity in ±500 µm range at 10 µm step.

(c) Measured output normalised error varying Y, where Y in0, 1, 2, 3.

(d) Measured crackmeter repeatability along X, Y and Z euqal to 0.

Figure 5.7: Linearity and repeatability
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Table 5.3: Measured crackmeter performance in comparison with simulation results.

LSB Gauss µm Error %
[G] (full scale)

Linearity 50
Max. 6.4 0.06 0.83 0.010
MSE 2.4 0.02 0.31 0.004
Sim - - 0.2 0.004

Linearity 500
Max. 38.7 0.39 5.03 0.059
MSE 13.4 0.13 1.74 0.020
Sim - - 0.8 0.014

Var. Y
Max. 376 3.79 48.88 0.815
MSE 225 2.27 29.28 0.488
Sim - - 26 0.45

Repeatability
Max. 12.5 0.13 1.63 0.027
MSE 4.6 0.05 0.60 0.01
Sim - - - -

∗ MSE: Mean Square Error.

5.5.2 Sensibility vs temperature

The plastic support is fixed to a ceramic material, with only 0.37 µm/◦C of thermal
expansion, used as a reference substrate. All the components, included electronics and
the enclosure, were measured in a thermal chamber where multiple weather conditions
were simulated. The first tests were executed to verify the hysteresis error with signif-
icant temperature variation ranges, between -15 to 65◦C, the maximum range of the
thermal chamber. Indeed, these types of issues are difficult to compensate because of
unpredictable changes. The primary hysteresis error sources are: (1) Allegro A1319;
(2) Non-reversible variations of magnetic field; (3) Non-reversible thermal expansion of
PLA box.

The first test was performed by fixing magnets and the Hall sensor directly to ceramic
support (without any plastic box or support). The goal was to verify the hysteresis
component due to the non-reversible variation of the magnetic field. In full temperature
range between -15 to 65◦C the sensor behavior is excellent (±5 µm), while in the 7−45◦C
range, the hysteresis component is virtually absent, only ±2 µm.

After that, an evaluation of the overall device with the ABS case was performed.
In this case, results show hysteresis, which degrades measurement performances. In the
(-10 - 65◦C) range, an error of ±20 µm is added. In the temperature range of 7− 45◦C
the hysteresis error is contained (±5 µm), and the crackmeter features are guaranteed
(Fig. 5.8). As previously introduced in section 5.3, the full sensitivity of the device cannot
be achieved with the ABS support, which still allows obtaining a very low-cost device.
The right plot exhibited in Fig. 5.8 was acquired using polycarbonate support. The
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Figure 5.8: Thermal chamber temperature sweep used to asses the crackmeter
temperature dependence.

goal was to verify the hysteresis component derived from the non-reversible variation
of polycarbonate. In temperature range between -10 to 65◦C the sensor behavior is
positively improved compared to ABS support, passing from an error of ±20 µm to
±5 µm. In contrast, in the 7 − 45◦C range the hysteresis component is reduced, only
±3 µm. It’s possible to observe a peculiar effect when the first derivative of temperature
changes; we notice small spikes on the distance measurement, around 5 µm, which
introduce a nonlinear error. However, due to the short time window in which it manifests
itself, the effect can be considered neglectable since it is reversible.

Applying for linear temperature compensation, the crackmeter output response in
long term application, considering Table 5.3 and Fig. 5.8, achieves a sensitivity of ±5 µm
or ±30 µm considering millimeter movements along Y in the measurement range of 6 mm
and within -20 to 60◦C.

5.5.3 In-field test and comparison

The crackmeter was assessed in a controlled environment, a civil engineering concrete
testing lab. A concrete block with a 50 cm crack was used as a reference structure to
compare the crackmeter, an LVDT sensor (Linear Variable Differential Transformer),
and the Huggemberg transducer. All the sensors where placed above the crack, as
referenced in Fig. 5.9. By applying a force at the concrete block, the crack enlarges,
then the output responses are plotted in Fig. 5.9. All the sensors featured the same
measurements, and the output curves were overlapped with an MSE error below 5 µm.
However, in Fig. 5.9, the responses are not overlapped due to the opening angle of the
crack, which was enlarged more on the top, in correspondence with the LVDT sensor,
and less on the bottom, where the Huggenberg transducer is placed.
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Figure 5.9: Crackmeter assessment and comparison with two commercial products.
Courtesy of STMicroelectronics.

5.6 Summary

This Section presented the study and the implementation of a low cost, low power,
high precision, magnetoelectric transducer for ASHM applications. In comparison with
commercial products, it shows a cost reduction, compared to [167, 169] and [170], or
a sensitivity improvement of 10x [166]. The developed prototype can operate under a
wide temperature range and can be readily turned into a plug and play product to be
used in several SHM contexts. The proposed methodology can be implemented in any
topic, not only in SHM. For example, biomedical applications face increasingly complex
requirements for human health monitoring, where monitoring vital parameters is a key
factor. Hence more and more new bio-transducers are necessary. The Crackmeter is
today a commercial product, integrated in an ultra-low power sensor node presented in
Section 6.1.



Chapter 6

Low power hardware design for
IoT

Remote monitoring and sensing under challenging environmental conditions contin-
ues to present problems to prospective practitioners. Lack of infrastructures over which
to transmit data and difficulty with the maintenance of battery supplied devices are chief
among these problems. Emerging 5G networks, like NB-IoT in Section 3.7, are likely to
continue to suffer from connectivity problems in remote areas or in sparsely populated re-
gions where investments are economically unattractive. For this reason, long-range ISM
communication protocols are needed, as LoRaWAN that can be deployed everywhere
for only the cost of a gateway (Section 3.5.2). Similarly, energy harvesting technologies
and advances in low power wireless sensing systems enhance IoT devices durability and
reliability, thus reducing the maintenance cost. However, they have yet to deliver on
the promise of energy-neutral long-term operation at large scale [168]. This Chapter
follows the thesis structure by providing an overview of low power hardware design for
IoT sensor nodes. It mainly focuses on such applications that demand stringent working
requirements, battery life, coverage, and long term deployments.

Section 6.1 presents an innovative and cost-effective wireless sensor node that tracks
cracks in concrete and other construction materials through the transducer described in
Chapter 5. The final device exploits LoRaWAN wireless communication and solar energy
harvesting, allowing long-term remote monitoring with easy plug and play installation.
Experimental results demonstrate that it can achieve about 1 µm accuracy and an
expected lifetime of more than 10 years, with stable measurements across a −15− 65◦C
temperature range. Moreover, combining effective power management with a high-
efficiency solar energy harvester, it can guarantee more than 10 years of operational life,
with 10 measurements per day.

109
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Section 6.2 presents a low-power wireless sensor platform designed to integrate with
UAVs to support challenging remote monitoring in hazardous and extreme environments
with the total absence of infrastructures. Instead of classical IoT frameworks such as
Fig. 2.1, where wired or wireless protocols transfer the data, this network is meant to
be physically linked by UAVs, which connect the platform to the cloud. The focus is
on low power hardware design, with software developed for two application scenarios in
addition to localization and data transfer with robots or autonomous devices. An in-field
assessment evaluates the platform capabilities regarding battery lifetime, showing that
30 days of operation between charges is achievable. It is shown that the energy model
is valid around 5%, supports adverse weather conditions and provides sufficient energy.

6.1 The low-cost Crackmeter with LoRaWAN communi-
cation and energy harvesting capability

This Section presents a cost-effective wireless sensor developed to measure the cracks
on multiple buildings, such as private buildings, dams, bridges, or skyscrapers. The
transducer is based on the previously described two magnet transducer, characterized
by very competitive sensitivity and low-cost components, while the LoRaWAN protocol
supports wireless communication. Moreover, by combining efficient power management
with a solar energy harvester, the device can reach more than 10 years of operational
life, with 10 measurements per day.

The Crackmeter is based on the STM32F373 from STMicroelectronics, which man-
ages the analog to digital conversion and the application layer. Whereas the HopeRF
RFM961 controls the packet buffering and the LoRa Physical layer. The transceiver
provides high interference immunity and ultra-long range spread spectrum communica-
tion while minimizing current consumption. Using the LoRa modulation, it can achieve
a sensitivity of over -148 dBm combined with the integrated +20 dBm power amplifier,
making it optimal for range or robustness applications. The supercapacitor (S-Cap)
is run by an L6924D and an SPV1040, capturing power from an external solar panel
and ensuring that the S-Cap is not overcharged. The SPV1040 device is specifically
designed to efficiently extract power generated from various high output impedance DC
and AC without collapsing those sources, generating an average power from µW to mW
photovoltaic panels or thermoelectric generators. To keep the current drawn from the
battery as low as possible, a smart power management circuit switches between a non-
rechargeable battery and the S-Cap. This circuit is usually powered off and is waken
up only through synchronous events, like an alarm, and asynchronous interrupts, like

1https://www.hoperf.com/
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Figure 6.1: Left: Crackmeter block schematic. Right: power consumption of the
LoRaWAN uplink.

an external request. A high-efficiency DC/DC converter (TPS61200) generates correct
voltages for both analog and digital parts. The TPS61200 provides a low noise power
supply from a wide input voltage range, 0.3 to 5.5 V, and an output current of 600 mA.
The efficiency at low load is preserved by an automatic power save mode. To save
the calibration and the initial configuration, including the LoRaWAN network key, the
Crackmeter uses the M24SR64, a dynamic NFC/RFID tag that can be accessed either
from the I2C and the RF interface. The M24SR64 controls the interface selection: the
RF frontend is based on the ISO/IEC 14443 Type A standard. Moreover, it is com-
patible with the NFC Forum Type 4 Tag specifications and supports all corresponding
commands. A useful open-drain GPO works as a configurable output signal, which is
used to trigger the smart power management system by asynchronous events. The GPO
pad is enabled when an RF or an I2C session is open; otherwise, it is high impedance.
This functionality allows an asynchronous wake-up, used for maintenance or inspections.
Finally, an external ultra-low-power real-time clock (M41T82) can wake up the sensor
node synchronously, allocating pre-programmed alarms. The M41T82 uses a 32.768 kHz
oscillator and includes a watchdog timer, non-volatile time-of-day clock/calendar, two
programmable alarms, 8-bit up-counter, and square wave outputs. The eight clock ad-
dress locations include the century, year, month, date, day, hour, minute, second, and
tenths/hundredths of a second in BCD format. In battery mode, it absorbs only 365 nA
@ 3 V, 1 µW . An aggressive power-saving strategy was implemented to design an
ultra-low power consumption device, and the power consumption of each component
was measured. The deep sleep current is 365 nA @ 3 V using the M41T83, which is the
only component always powered by the battery. The circuit in sleep mode would use
3.59 µA with the STM32F373 always connected, 10x for the solution adopted. In run
mode, with the SDADC enabled, the MCU @ 48 MHz is about 29 mA, and the exter-
nal analog components, together with the NFC SoC, drain 10 mA. Simultaneously, the
RFM96 adds 76 mA in TX (10 dBm output power) to the overall current consumption.
The daily energy used is estimated by a precise transient measurement; Fig. 6.1 presents
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Figure 6.2: The Crackmeter, final version for mass production.

the LoRaWAN power consumption link, where there is a packet transmission followed
by one receive window. Moreover, the MCU has to encode the payload, during the data
generation, in base64 on top of an AES 128-bit encryption. In the receive window, the
MCU confirms the communication link and updates the internal state. Following results
in Fig. 6.1, a single supply from a non-rechargeable battery is not enough to guarantee a
life over 10 years due to the high current in run mode. The dual-energy source adopted
in hardware reduces the battery load, using solar energy to increase the lifespan. The
L6924D manages the S-Cap (2 F) in three different manners: (i) Pre-charge: when the
S-Cap is empty, the charging current is about 10% of the maximum to decrease the
energy lost in heat, and consequently, increase the efficiency; (ii) Charge: maximum
current charge, approximatively 500 mA; (iii) End of charge: The voltage reached the
maximum allowed. Using a small solar panel (14 cm2) exposed to direct sunlight of
about 32000 lux it is possible to charge the supercapacitor with an average constant
current of about 35 mA. With these conditions, the total recharge time is about 234
seconds.

Lastly, in Fig. 6.2, the final version of the crackmeter is displayed, which is ready
for mass production and plug-and-play deployment.
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6.2 Low power wireless sensor platform for integration
with UAVs

This Section presents a low-power wireless sensor platform designed to integrate
with UAVs, aiming to support challenging remote monitoring in hazardous and extreme
environments with the total absence of infrastructures. Instead of classical IoT frame-
works such as Fig. 2.1, where wired or wireless protocols transfer the data, this design
is meant to be physically linked by UAVs, which connect the platform to the cloud, see
Fig. 6.3. The focus is on low power hardware design and software support for smart sup-
ply management in conjunction with localization (Section 4.1). An in-field assessment
of the platform capabilities regarding battery lifetime is provided, showing that 30 days
of operation between charges is achievable. Section 6.4.3 shows that the energy model
is valid around 5% and supports adverse weather conditions providing sufficient energy,
even where an issue occurs. As interoperability and flexibility are at the core of scientific
research, the whole project is released as a fully open-source project on GitHub2.

Recent advances integrating unmanned aerial vehicle (UAV), or drone, platforms
with in situ battery supplied sensors can enable long-lasting monitoring systems in re-
mote and extreme environments [171], where the former is responsible for both data
collection and energy replenishment of the latter. Under such conditions, it is assumed
that the UAV may be supported from a recharging station with an internet connection
to service a sensing field that may span many square kilometers. This poses several
relatively novel challenges, including the design of appropriate communication and lo-
calization mechanisms. Indeed, remote sensing devices may be tasked with collecting a
variety of heterogeneous data sets to be retrieved by an UAV at periodic intervals while
at the same time recharging the battery or a super-capacitor.

In this scenario, communication protocols should also contribute to precise local-
ization in support of wireless charging, in addition to low power operation and high
throughput [152, 172], where, for example, a sub-meter accuracy is required for induc-
tive wireless power transfer (WPT). Although common transceivers implementing the
aforementioned wireless technologies offer a measure of received signal strength indi-
cators (RSSI) that can be used for ranging. However, it is well understood that this
measure is insufficiently accurate or granular for the purposes of the proposed scenario,
where a sub-meter localization is mandatory [173].

The application specifications required in this section are twofold, precision support
for UAVs and fast bi-directional data transfer, enabling WPT for remotely deployed
devices. Qin et al. provides a pratical basis to develop efficient wireless power transfer

2https://github.com/tommasopolonelli/SynthSense-WSN-UAV
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Figure 6.3: Top-level overview of a IoT sensor node supporting UAVs.

mechanisms using a combination of GPS, Bluetooth and WPT to find the optimal
landing position from which to transmit power, proposing the first concept of a three-
stage localization mechanism in [152]. Due to the adopted RSSI method for the state
estimation, they suffer from a high packet loss, in reality relying only on the GNSS [152].

Surprisingly, there are no off-the-shelf wireless sensor devices that incorporate a
UWB wireless interface. Therefore, it was necessary to design a first-of-its-kind hard-
ware and software platform, provided open source3 to the community, that is flexible
to meet the needs of a variety of application scenarios and to enable UAV-sensor data
collection and power transfer. The objective was to leverage the advantages of exist-
ing communication standards with low network maintenance costs in combination with
emerging UWB technology, offering further advantages in innovative and challenging
WSN deployments, handling lower per-bit energy, and high precision in ranging perfor-
mance. Moreover, the platform combines elements of the relative localization system
based on the UWB’ ToF (Time of Flight) evaluation [174] with results from [175, 176],
which describe a high efficiency (70%) inductive power transfer system (IPT), to create
a system capable of 150 W instantaneous WPT (Wireless Power Transfer). Structural
health monitoring or other event detecting applications need more than hundreds of
Hz, whereas soil moisture monitoring or corrosion detection employment, for example,
may require only a few readings per day. Therefore, the platform has been designed to
provide the capabilities of collecting, processing, storing, and transmitting sampled data
from a variety of sensors. Thus, this board is meant to facilitate a variety of sensing
tasks with many different sampling frequencies, in conjunction with a throughput that
must be sufficient to deliver the data to the UAV within the charging period.

3https://github.com/tommasopolonelli/SynthSense-WSN-UAV
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Figure 6.4: Complete receiver side hardware. The coil used for wireless power transfer
(blue), sensor board (green, bottom left) and battery management circuits (DC/DC and
AC/DC; black boxes) are shown. The UWB antenna is directly connected to the sensor
board.

Figure 6.5: Sensor board schematic. The power connector splits the power electronics
and sensor boards.

6.3 Hardware

6.3.1 Technical specification

The hardware platform comprises two PCBs, the sensor board and power electronics
board (PEB), respectively; shown in Fig. 6.4. The two boards are connected via a 16-
pin JST connector, shown schematically in Fig. 6.5 and pictured in Fig. 6.4. The power
electronics board deals with tasks related to the power supply, including generating
reliable and stable 3.3 V and 5 V DC voltage from two Panasonic 18650 batteries,
managing fast-charging and the wireless power transfer system that supports up to
150 W.
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The PEB manages the wireless power delivered by the charger [175, 176]. These pa-
pers include operating principle and performance characterization. Under the proposed
scenario, the WPT system consists of two coils; a receiving coil incorporated into the
PEB and a transmitting coil connected to the UAV. The magnetic field is generated by
driving the transmitting coil with an alternating current, which induces a voltage across
the PEB and is coupled with the receiver coil. The transmitting and receiving coils have
different sizes and are separated by variable distance and different misalignment degrees.
The coefficient k describes the coupling between the two coils, which is variable in time
and distance during the UAV approach:

k = M√
LpLs

. (6.1)

the mutual inductance is defined as M , which decreases when increasing the distance
between two coils, i.e., the distance between the drone and sensor node, while Ls and Lp
are respectively defined as self-inductances of the receiving and transmitting coils. The
accurate expression of M is described in [177] together with its numerical calculation.
Monitoring the receiver inductive voltage is helpful to align both coils correctly; indeed,
a higher value of k (up to a maximum of 1) indicates that a large portion of the magnetic
field generated by the TX coil is coupled into the sensor node coil. Hence the sensor
board has a dedicated analog channel connected to the receiver coil, as shown in Fig. 6.5.
Consequently, the UAV makes use of a look-up table that correlates distance with the
measured voltage to estimate the coil-to-coil misalignment, similar to [178]. This method
needs an initial calibration but enables a real-time reliable distance estimation. As the
details of the PEB are available in [175] and [176], the remainder of this section focuses on
the sensing and wireless aspects of the sensor node, which facilitates precise localization
to ensure high-efficiency coupling, high data throughput, and energy-efficient operation.

6.3.2 Sensor Node

The proposed design features many complementary sensors, internal and external,
and a multi-protocol radio front-end, to support various sensor-fusion and UAV appli-
cations. All the components are fitted into a 70 x 70 mm PCB, combined with the
external 30 x 40 mm UWB antenna. The sensor node needs only low-cost off-the-shelf
components, a prerequisite for open source projects. Moreover, it is specifically designed
to be a general-purpose and versatile device, in conjunction with unique optimization
to be used in combination with drones. However, it can be easily deployed in other
application scenarios, such as Industrial Internet of Things and smart agriculture.

The sensor node supports UWB, compliant with IEEE 802.15.4-2011, for 2-way
ranging and data transfer at a rate up to 6.8 Mbps in addition to Bluetooth 5.0. An
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integrated STM32WB55RGV (STM32 hereafter) from STMicroelectronics manages all
the stacks and sensors. This MCU has the advantage of low power consumption, as
well as excellent peripherals support. The ARM Cortex-M4 is used for the main pro-
cessing tasks, while the ARM Cortex-M0 is the radio communication protocols engine.
A VFQFPN-68 packaging was chosen for ease of soldering and GPIO expansion capa-
bilities. To decrease the power consumption in sleep and deep-sleep states, the circuit
implements four voltage supply domains. The STM32 enables or disables each domain
depending on application requirements and operating modes. A TPS27081A manages
the switching, supporting a maximum continuous current of 3 A. The board integrates
one temperature (TMP117) and one humidity (HDC2080) sensors that provide high
accuracy measurements, respectively 0.2◦C and ±2%, with meagre power consumption,
1.65 µW on average. A digital pressure sensor from Bosch (BMP280) with an aver-
age current consumption of 2.7 µA at 3.3 V (at 1 Hz sampling rate) is included. To
expand application support, the board integrates two high-frequency sensors, a 3D iner-
tial IC (LSM6DSOX) and a digital magnetometer (IIS2MDC) from STMicroelectronics.
The LSM6DSOX is a system-in-package device featuring event-detection hardware that
enables efficient motion tracking and contextual awareness, implementing automatic
recognition of free-fall events, click and double-click sensing, activity or inactivity detec-
tion and pedometer functions. The combined current of IIS2MDC and LSM6DSOX is
600 µA at 3.3 V. The sensors mentioned above are in INT_VDD voltage domain4 and
use a shared I2C bus at 400 kHz. In addition to the onboard ICs, the device can incor-
porate external analog and digital sensors through a 16-pin connector (Ext Sensors in
Fig. 6.5), for example, a pH sensor (SEN01169), dissolved oxygen sensor (SEN0237-A),
and a 5M pixel CMOS camera (MT9P401) with serial SPI interface.

In addition to the aforementioned environmental sensors, the sensor board enables
audio recording. A digital microphone (IMP34DT05) from STMicroelectronics com-
bined with an ultra-low-power wake-up audio (WUA) sub-circuit (capable of waking
up the MCU on triggering events when the environment sound is above a predeter-
mined threshold) are included. Exploiting the wake-up method, the MCU can store
only relevant information and remain in sleep mode during "inactivity" periods. The
IMP34DT05 has an acoustic overload point of 122 dB SPL with a 64 dB signal-to-noise
(SNR) ratio and a sensitivity of -26 dB FS at 94 dB SPL, 1 kHz. It is well-known that
sound management is a challenging requirement in low power devices. Indeed, it needs
continuous and high-frequency sampling that drains a non-negligible amount of current
from the energy buffer. The MCU and non-volatile memory must continuously work
to elaborate, compress, and store the microphone data stream. On the other hand, a

4https://github.com/tommasopolonelli/SynthSense-WSN-UAV/blob/master/SensorNode/HW/
Schematics/SensorNode.pdf

https://github.com/tommasopolonelli/SynthSense-WSN-UAV/blob/master/SensorNode/HW/Schematics/SensorNode.pdf
https://github.com/tommasopolonelli/SynthSense-WSN-UAV/blob/master/SensorNode/HW/Schematics/SensorNode.pdf
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duty-cycled approach is not feasible since it is likely to generate low-quality records or
miss events entirely. The MP23ABS1 is a compact, low-power analog microphone built
with a capacitive sensing element, and it is the main WUA component together with
a micro-watt comparator (LTC6259). It has an acoustic overload point of 130 dB SPL
with a typical 64 dB signal-to-noise ratio. Its sensitivity is -38 dBV at 94 dB SPL, 1 kHz.
The amplitude of the analog output signal depends on acoustic pressure. The relation-
ship between sensitivity (So) and gain (Gmicro) at 1 kHz is given in the MP23AB02B
datasheet and is calculated using Eq. 6.2, where So is measured in dBV/Pa and Gmicro in
V/Pa. In terms of scale, 20 µPa is the minimum ‘hearing’ level, while talking produces
an acoustic pressure around 20 mPa.

Gmicro = 10
So
20 (6.2)

Assuming free field conditions, if we double the source distance, the acoustic pressure is
halved if the source is considered a point like a speaker; or

√
2 if the source is considered

to be a line such as a road.

The maximum gain setting Gmax is calculated using Eq. 6.3 by considering the
maximum sensitivity of the microphone So_max, the maximum output root-mean-square
amplitude needed after the amplification stage Vrms_max, and the maximum acoustic
pressure Pmax to be detected. In this design, Pmax is equal to 94 dB SPL or 1 Pa. Since
the power supply voltage is 3.3 V in the audio power domain, Vp_max must be less than
1.65 V. 

Vrms_max = 1V

Vp_max = Vrms_max ·
√

2 = 1.4142

Gmax = Vrms_max

10
So_max

20 ·Pmax

= 112

(6.3)

Considering a 10 kHz waveform with 3 Vpp amplitude, the amplifier minimum slew rate
must be 0.19 V/µs. The LTC6259 is a dual operational amplifier with low noise, low
power, low supply voltage, and rail-to-rail inputs and outputs. It is unity-gain stable
with or without capacitive loads. It has a gain-bandwidth product of 1.3 MHz and
0.24 V/µs slew rate while drawing 20 µA per amplifier. With a 1.3 MHz GBP and BW
of 10 kHz, the maximum gain is 130, which is greater than Gmax. The raw signal is
amplified by Gmax and filtered with a first-order 10 kHz RC passive filter. Finally, a
comparator detects if the audio level is above the threshold, which is set to 60 dB SPL
in our experiments. The WUA requires only 160 µA at 3.3 V, drastically reducing the
average power consumption of the audio recording and the size of non-volatile memory
required (more details in Table 6.2). The WUA performances are shown in Fig. 6.6,
where the WUA output and the digital microphone are compared to measure the circuit
false negatives, which are negligible above 70 dB SPL.
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Figure 6.6: WUA operations compared with the digital microphone. Red dots mean
the wake up trigger for the STM32, which instantly records the audio. In this graph,
up to 80% of the recording energy is saved due to the WUA capabilities.

The MCU internal flash is mainly used to store the firmware, and it is not sufficient
for data-intensive continuous sampling storage, for example, audio recording at 16 ksps.
Thus, an external flash (MT25QL256ABA) of 256 MB is used to store sensor data.

A detailed power consumption analysis and its corresponding model are presented
in the following section.

6.4 Energy model

Energy consumption and data accumulation profiles for the sensor node are modeled
in this Section to assist in scheduling operations for data collection and power trans-
fer. The sensors, coupled with their working principles, and given different application
scenarios, result in a wide variation in average energy consumption. Aggressively duty-
cycled sensors consume negligible energy compared with other sensor node components,
such as temperature and humidity, commonly sampled at sub-Hz frequency. On the
contrary, sensors with high sampling frequencies draw more power and result in inten-
sive data generation that contributes to the complexity of the working pattern. Hence
this section proposes a hierarchical method, which considers both perspectives of energy
and data. Data collection and wireless power transfer could be scheduled accordingly.
The sensor node energy model comprises three subsections. RF energy modeling deals
with energy consumption only happens within the RF core, such as transmitting and
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receiving a packet. CPU energy modeling deals with the CPU energy consumption.
Sensors modeling considers the energy profile of all sensors on board.

6.4.1 System CPU energy modelling

The system CPU features three operation modes: active, idle, and standby. The
active mode consumes the most current, where all functionalities are enabled, while the
standby state utilizes the least, but no operation is allowed. In idle, the core stops,
but peripherals and ADC are still active. Table 6.1 denotes the IMCU

m current, where m
represents a working modem ∈ {active, idle, stop}. In addiction to IMCU

m , the transition
current among modes is denoted as IMCU

t . The energy absorbed during MCU operation
can thus be written:

EMCU =
∑
m

VsI
MCU
m TMCU

m +
∑
t

VsI
MCU
t tMCU

t NMCU
t + VsI

MCU
BLE TMCU

BLE . (6.4)

where TMCU
m is the sum of operation time of a mode. The fixed transition time between

modes is denoted by tMCU
t . NMCU

t is the number of transitions carried out during a
period. Vs is the supply voltage. IBLE and TMCU

BLE take into account the BLE transceiver
and its dedicated ARM Cortex-M0.

6.4.2 UWB subsystem energy modelling

A probabilistic approach to modeling a device incoming and outgoing information
flow can be shifted to a deterministic effort. It can be expected that the radio channel
is silent for a long time, becoming busy only on UAV arrival and synchronization. The
UWB RF transceiver then shifts its modes between active and sleep. Transmitting and
receiving currents are denoted Ip,tx and Ip,rx respectively, where the subscript p indicates
the radio configuration. The transition current from tx to rx, or rx to tx is defined as
Iswh.

It is assumed the data volume to be sent to the UAV for a specific sensor is PAYtot
in bytes, where PAYmax is the maximum number of bytes per transmission. Given a
data rate rp, where p represents a specificMode(p) data rate, such as r2 in Table 6.1, the
time consumed for transmission is simply the division of the two. The acknowledgement
time tack, ranging beaconing time trangp , and tx-rx switching time tswh are configuration
dependent (cf. subscript p). It is assumed that Nack acknowledgments are received
during data transmission only if As is equal to 1, otherwise null. The RF transmission
energy consumption can then be modelled as in Eq. 6.7, where ERanging in Eq. 6.5 and
EData in Eq. 6.6 are respectively the overall energy used for the two-way ranging protocol
and the sensor node data transfer. In Eq. 6.5, a duty-cycled listen mode designed to
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Table 6.1: STM32 and DW1000 details

Symbol Description Value

Vs sensor board voltage supply 3.3 V
IMCU
active STM32 run current 7.59 mA
IMCU
idle STM32 idle current 4.15 mA
IMCU
stop STM32 stop current 2.45 µA
IMCU
t STM32 transition current stop→ run 7.59 mA
tMCU
t STM32 transition time stop→ run 5.71 µs
IMCU
BLE STM32 BLE current advertising 30 µA

(Tx = 0 dBm; Period 1 s; 31 B)
Mode(p) DW1000 Op. Mode p ∈ N, p ∈ [2, 3]
Iswh DW1000 transition current 4 mA
Isleep DW1000 sleep current 1 µA
tswh DW1000 transition time 500 µs
tack DW1000 acknowledgement window 50 ms
BW DW1000 bandwidth 499.2 MHz
I2,rx DW1000 mode 2 receive current 244 mA
I2,tx DW1000 mode 2 transmission current 69 mA
EPB2 DW1000 mode 2 EPB 44 nJ
r2 DW1000 mode 2 datarate 6.8 Mbps
PRF2 DW1000 mode 2 pulse repetition frequencies 16
Preamble2 DW1000 mode 2 preamble size 128
Code2 DW1000 mode 2 preamble code 3
CH2 DW1000 mode 2 frequency 3993.6 MHz
I3,rx DW1000 mode 3 receive current 191 mA
I3,tx DW1000 mode 3 transmission current 50 mA
EPB3 DW1000 mode 3 EPB 2.1µJ
r3 DW1000 mode 3 datarate 110 kbps
PRF3 DW1000 mode 3 pulse repetition frequencies 64
Preamble3 DW1000 mode 3 preamble size 1024
Code3 DW1000 mode 3 preamble code 9
CH3 DW1000 mode 3 frequency 4492.8 MHz
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Table 6.2: Sensors energy modelling

ID Sensor Model Max Op. Frequency Tactive EPS

a Light OPT3007 10 Hz 1.9 ms 56 µJ
Temperature TMP117 1 Hz
Humidity HDC2080 1 Hz
Pressure BMP280 1 Hz

b Accelerometer LSM6DSOX 9 kHz 7.0 ms 265 µJ
Magnetometer IIS2MDC 100 Hz

c Microphone IMP34DT05 2.4 MHz cont
26 mJ

(16 ksps)
d Microphone MP23ABS1 20 kHz cont 99 µJ (1 s)
e Coil Voltage STM32 - ADC 10 kHz cont 1 mJ (1 s)

reduce the average power consumption is considered, the DC variable spans between 1%
to 7% for the application scenario, and tDC indicates the on time.

ERanging = VsIp,rxt
rang
p + VsIp,rxt

DCDC, (6.5)

EData = 8 · PAYtotEPBp +Asceil

(
PAYtot
PAYmax

)
·
(
VsIswht

swh
p + VsIp,rxtp,ack

)
, (6.6)

Erf = EData + ERanging, (6.7)

trangp = d′

v
− κ

d′
ln

(
0.01
d′

)
. (6.8)

Eq. 6.5 considers the ranging settings used by the UAV by approaching the sensor node.
However, as it is dependent on vehicle speed and update rate, both of which vary in
real-time due to weather conditions and drone control algorithm. In Eq. 6.8 an ideal
case scenario with exponential deceleration between κ and the sensor node is modeled,
considering hitting the first receive windows at d′ distance. trangp is defined as the time
required for the vehicle to reach the sensor from the initial starting point.

6.4.3 Sensors Energy Modelling

This section provides the energy consumption model of the internal sensors, ex-
pressed as energy per sample (EPS), a value that is independent of the acquisition
frequency. Low-frequency sensors, such as light, temperature, humidity, and pressure,
are considered as a single block, which needs 56 µJ and 1.9 ms to collect the measured
environmental conditions; see Table 6.2. Inertial measurements are from LSM6DSOX
and IIS2MDC, which need 7 ms and 265 µJ to obtain 9-axis, see Table 6.2 for further
details.
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The audio sub-block energy consumption is given as EPS, defining one sample as
one second of operation, yielding ∼16k samples. DCA is defined as the expected audio
duty cycle, which is application dependent. It describes the percentage of operation in
which the sound level is above the WUA threshold. Eq. 6.9 shows the sensor energy
profile, excluding the external sensors that may be connected to the device and the WPT
coil voltage (Table 6.2 - e). In Eq. 6.9, Nx

s is the number of samples per application
reference period.

ESensors = EPSaNa + EPSbN b + EPScDCA + EPSd(1−DCA). (6.9)

Finally, the storage energy is modeled by the sum of the time required to erase a
sector and the time required to write the data. The speed is assumed to be ba, where
a ∈ {read,write, erase}. Table 6.3 shows the equivalent EPB with a standard page-size
(256 bytes). As expected, the erase power consumption heavily increases the average
EPB, hence it is more convenient to clear the whole memory while the sensor node is
powered by the mains or is under charging by WPT.

Table 6.3: Flash energy modelling

Device Model Operation ba EPB

Ext. Flash MT25QL256ABA write+ erase 80 kB/s 673 nJ
Ext. Flash MT25QL256ABA write 2 MB/s 1.61 nJ

6.5 Experimental results

Together with the hardware project and the source code, two application examples
are provided5. To validate the energy model, battery lifetime estimation of the APP16

is presented, which consists of sampling and storing the internal sensor ID a and b (Ta-
ble 6.2 and Table 6.3) at fixed frequency, 1 Hz and 12 Hz respectively. In this application,
the sensor node expects to be recharged at programmed intervals, to restore the battery
level and to collect the measured data. The DW1000 DC is 1%, and the autonomous
vehicle approaching speed v is programmed at 2 m/s. Uplink acknowledgements are
disabled, hence As is null. The STM32 does not apply any algorithm on the collected
data, so it returns in stop mode between each sample. Lastly, the audio recording is
turned off while the WUA is always active. Lastly, trangp , correspondent to ATWR time

5https://github.com/tommasopolonelli/SynthSense-WSN-UAV
6https://github.com/tommasopolonelli/SynthSense-WSN-UAV/tree/master/SensorNode/SW/

APP1_IntSensor

https://github.com/tommasopolonelli/SynthSense-WSN-UAV
https://github.com/tommasopolonelli/SynthSense-WSN-UAV/tree/master/SensorNode/SW/APP1_IntSensor
https://github.com/tommasopolonelli/SynthSense-WSN-UAV/tree/master/SensorNode/SW/APP1_IntSensor
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Figure 6.7: APP1 current profile during: sensor sampling, DC listening, and ATWR
mode.

in Eq. 6.8, is equal to 26 s. Using these configurations, the average energy calculated
by Eq. 6.10 is 79 J for one hour of operation, tDC equal to 3600 s. In one hour, sensor
board collects more than 5 MB, using (EMCU +ESensors) approximately 9.7 J, whereas
the DW1000 in duty cycle mode needs 22.2 J.

Etot = EMCU + Erf + ESensors (6.10)

Days = EBattery
Etot

. (6.11)

With the proposed application settings, the estimated battery lifetime using Eq. 6.11 is
approximately equal to one month.

The proposed model was verified assessing the sensor node behaviour in laboratory
(static and controlled conditions) and in real environments. The measured average
current consumption regarding the internal sensors acquisition is 0.84 mA, equivalent
to 9.98 J, while the DW1000 needs 1.95 mA for 1% DC listening, which corresponds
to 23.2 J. Compared with the presented model, averaging on one hour of operation,
these values differs by 3% and 4% respectively. These values are reflected in Fig. 6.7,
where the logarithmic plot of the current profile shows all sensor node functionalities.
Continuous sampling generates the 10 mA spikes, while the 190 mA spike comes from
the DC listening of the DW1000. Finally, after a correct reception of a Blink message
from the UAV, the ATWR is enabled, alternating transmission (lower current) and
reception (higher current). Data transfer is not shown in Fig. 6.7, but is equal to a
constant transmission current of Mode(3). Fig. 6.8 presents a drone landing example,
showing that it can land only 38 s after the first Blink message was received by the sensor
node (point zero in ATWR and WPT Distance). Fig. 6.8 shows the same test from two
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Figure 6.8: Experimental results from in-field tests of the hardware platform. Left:
drone path in the presence of lateral wind, where ATWR defines the colorbar. Right:
Estimated point-to-point distance using ATWR. Bottom: The drone correctly lands
using the UWB support (not to scale).

perspectives; on the right, distance estimation using both ATWR and WPT is presented,
while on the left is plotted the planar route using the GPS and ATWR, which define
the colorbar. These values are acquired using the drone inertial module and its internal
storage (Fig. 6.5). In this specific deployment, the environment was characterized by
a strong lateral wind. Its speed reached up to 5 m/s. In this case, ERanging becomes
24 J while the estimation is 45 J. In this application scenario, overestimating the landing
energy cannot be considered an error. Indeed, in a real environment, the UAV needs to
change direction many times to correct the effects of the wind lateral force, consequently
extending the approach time. Due to environmental wind instability, it is recommended
to keep an energy buffer if the drone needs more time to land correctly. Indeed, if the
battery is completely discharged, the drone will be unable to land close to the IPT
coil, since the UWB will be unreachable. This effect is further increased during the
final meters of the approach, where the speed is reduced and the propellers rotate more
slowly, making it stronger challenging to combat the wind.

Finally, a landing precision of 25 cm was achieved even with a strong lateral wind.
A reliable estimation of the battery lifetime, in conjunction with the memory use, is
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a fundamental factor for the entire system. Indeed, the drone must visit each sensor
within a maximum period given by Eq. 6.10 and Eq. 6.11.

6.6 Summary

This Chapter presented two low-power wireless sensor platforms designed with par-
ticular applicability in hazardous and extreme environments, where infrastructure com-
munications may not exist, and devices maintenance is difficult for human operators.
The SHM sensor node makes use of the LoRaWAN protocol, studied and enhanced in
Chapter 3, and the custom transducer presented in Chapter 5. Experimental results
demonstrate that it achieves micro-meter accuracy and a lifetime of more than 10 years,
with stable measurements across a −15− 65◦C range. Moreover, it can guarantee more
than 10 years of operational life in harsh environments, with 10 measurements per day
and a wireless coverage above 10 km. The UAV platform features localization systems
that exploit ATWR to improve position estimation to sub-meter precision, using a single
reference point. The focus is on hardware design, with software developed for two appli-
cation scenarios in addition to the landing system. Modeling and in-field assessments of
the platform capabilities regarding battery lifetime are provided, showing that 30 days
of operation between charges is achievable for a sample application. It is shown that the
energy model is valid around an error of 5%, supports adverse weather conditions and
provides sufficient energy even where a drone needs to adjust the landing path multiple
times. This provides a framework supporting scheduling the UAV visits, which must
occur before the energy buffer is depleted.



Chapter 7

Edge computing

The increase of IoT devices at the edge of the network produces a massive amount
of data to be sent, computed and stored, pushing network bandwidth requirements to
the limit [60]. Despite the improvements in network protocols, data centers struggle to
guarantee acceptable throughput and response time, which is a critical requirement for
many applications. On the other hand, devices at the edge continuously consume data
from the cloud, forcing companies to build content delivery networks to decentralize
storage and service provisioning, leveraging physical proximity to the end-user. This
dissertation tackles one of the most critical task, collection and streaming of images or
video. In the following sections, two case studies show image processing on the edge
using a low-power RISC-V MCU. The first introduce the topic of JPEG compression
to decrease the bandwidth and the power consumption. The latter makes use of an
entire image processing pipeline to extract relevant features directly on the edge, using
quantized neural networks and edge-optimized algorithms.

7.1 An Energy Optimized JPEG Encoder for Parallel Ultra-
Low-Power Processing-Platforms

The energy autonomy and the lifetime of battery-operated sensors are primary con-
cerns in industrial, healthcare, and IoT applications, in particular when a high amount
of data needs to be sent wirelessly. In this scenario, Wireless Camera Sensors are usu-
ally left in the environment to acquire and transmit visual data [179, 180]. From a
system-level viewpoint, the energy consumption is dominated by the radio subsystem
and is proportional to the number of bytes to transfer [27, 29, 181]. Concerning WCSs,
on-board real-time image compression is the appropriate solution to decrease the system

127
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energy [51, 182]. In fact, bringing the intelligence close to the sensor enables the reduc-
tion of transmission cost thanks to the compression of the data dimensionality [183].

Executing computationally heavy tasks, such as an image compression pipeline,
without assuming a dedicated hardware acceleration engine (which may not be available
or affordable for cost reasons) typically requires adequate computing capabilities and
a large memory footprint. However, because of the available energy supply resources
(i.e., small batteries or inefficient energy harvesters), [184] WCS usually includes low-
power MCUs (e.g., ARM Cortex-M or RISC-V PULP), which presents limited resources
that can prevent executing data filtering tasks under real-time constraints [185]. To
address this challenge, this Section proposes an optimized image compression algorithm
tailored for a RISC-V multi-core processor, that allows to shrink the image size and the
data to transmit. An optimized JPEG (Joint Photographic Experts Group) encoder is
presented, which is based on Fast-DCT (FDCT) image compression algorithm, with an
adaptive trade-off between energy consumption and image distortion. The solution is tai-
lored for parallel fixed-point computing hardware and exploits DSP-oriented instructions
included in the RISC-V extended ISA (Instruction Set Architecture) of PULP. When
compared with a JPEG implementation on ARM Cortex-M4, this solution achieves a
frame rate of 22 fps and it is 8× more energy-efficient, if running on the GAP8 processor,
an eight cores embodiment of the PULP architecture. The algorithm is released as an
open source project on GitHub1.

Several hardware accelerators are available as standalone chips or add-on-IP blocks
for system-on-chip integration [186]. However, the extra cost (in silicon area and/or bill
of materials) for a hardware JPEG encoder may not be affordable in many application
scenarios that require software JPEG compression. Since the 1990, FDCT algorithms
for image compression have been intensively studied in the literature [187] to reduce the
number of CPU instructions needed to operate on a standard block, an 8 × 8 matrix
of pixels. Indeed, the image compression function based on the 2-D 8-point DCT is
prevalent, which is typically the most computationally intensive. Among the various fast
DCT algorithm proposed, the following four are the most common. The first fast DCT,
proposed by Chen [183], has an excellent regular structure, but it requires as many as 16
multiplications for each 8-point block. Hou [188] proposed a recursive algorithm, with
12 multiplications and 29 additions. Although the number of operations is the same as
other fast algorithms, it has the advantage of the smaller number of variables necessary
for the execution. The function proposed by Loffler [189] involves 11 multiplications and
29 additions. Additionally, the authors proposed a parallel solution that simultaneously
executes three multiplications. Finally, the algorithm proposed by Arai [190] features a
simplification of the DCT processing. It requires only 5 multiplications and 29 additions.

1https://github.com/GreenWaves-Technologies/gap_sdk/tree/master/applications/jpeg_encoder
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Moreover, it can be easily implemented with fixed-point operations, speeding up the
code execution in the absence of a Floating Point Unit (FPU). The aforementioned
works make clear that using an optimized DCT algorithm heavily decreases the number
of operations required by the JPEG encoder and that a parallelized execution can be
applied.

This work is based on Noritsuna, a JPEG encoder optimized for Cortex-M4 [191].
This implementation supports floating-point operation at low memory impact, but it
is not tailored for real-time compression since it is based on a non-fast DCT algorithm
(Table 7.1 – Cycles 1). To overcome this issue, the DCT algorithm is replaced with the
Arai [190] FDCT implementation. However, the Noritsuna’s algorithm implementation
applies to individual 8 × 8 image blocks, hence demanding low L1 memory footprint
and favoring a block-wise parallelization scheme for multi-core implementation. After
an in-depth study, the application described in [192] was selected as a comparison for
this work; indeed, it needs only 10 Mcycles (220 ms @ 48 MHz) to compress a QVGA
grayscale frame, about 8 Kcycles/block, one of the best performance with a low-power
ARM Cortex-M4. Similarly to the solution here described, this implementation exploits
fast DCT, but it is optimized on Cortex-M4 architecture featuring an L1 scratchpad
memory of 80 kB (with QVGA resolution), greater than the GAP8 cluster memory.
Among other solutions, the authors in [187] describe an optimized firmware that needs
22-26 Mcycles to compress a 752 × 480 pixel in RGB format (≈9 Kcycles/block),
whereas the paper in [182] requires 300 kcycles to process a single 8 × 8 block, with an
average execution time of 9.207 ms on a Texas Instruments MSP430. The deployment
in [182] uses up to 29 mJ to encode a single 128 × 128 picture.

7.2 JPEG algorithm: implementation and optimization

The original version of the firmware [191] is composed of the following steps: (i)
generation of the header file; (ii) image decomposition into 8 × 8 pixel blocks, and if
the overall dimensions are not multiple integers of 8, the missing blocks are padded with
values calculated from the average value on the edges, then the level shifting is executed;
(iii) application of the DCT to every block, followed by the quantization, and zigzag
operations; (iv) Huffman; (v) writing back the compressed data into the L2 memory.

Since the GAP8 architecture is not equipped with an FPU, all the operations are
implemented with a fixed-point representation. For this data type, it is needed to select
in advance the number of bits dedicated to the integer and the fractional parts, and,
depending on this choice, the JPEG encoder can achieve higher precision (increasing the
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number of fractional bits) or a broader dynamic range. An empirical evaluation indi-
viduates the best trade-off by selecting 15 bits for the fractional part and 16 bits for the
integer part (16Q15). To quantitatively evaluate the differences between both represen-
tations, this work adopts as mean metrics the Peak Signal to Noise Ratio (PSNR) and
the Mean Squared Error (MSE) since they are widely used in the scientific community
as evaluation indexes in the field of image processing [193]. The 16Q15 representa-
tion covers the dynamical range required by the algorithm and increases the PSNR of
0.3%, and the MSE is practically unchanged concerning the floating-point original code.
Table 7.1 – Cycles1 reports the GAP8 performance metric to run the JPEG implemen-
tation on a QVGA image (324 x 240). This initial version requires more than 130 M
cycles, at 50 MHz, the frame conversion time is approximately 2.5 s. The latency break-
down individuates the DCT routine as the most demanding part from a computational
point of view, as expected from the description of the firmware in [191]. Following the
formula given in [191], we need 3,136 additions and 8,192 multiplications, meaning a
considerable load on processors, especially RISC, where multiplications require greater
use of resources. The optimization usually focuses on reducing the number of arith-
metic operations to be performed during the DCT. Like most of the fast algorithms, the
one proposed by Arai, Agui, and Nakajima [190] exploits the separability of the two-
dimensional DCT and reduces it to the calculation of a one-dimensional DCT on eight
elements for all the rows and subsequently for the columns. This algorithm is considered
the fastest: it requires 29 additions and 5 multiplications for the DCT 1D and 464 ad-
ditions and 144 multiplications for the 2D DCT on the 8 x 8 block. The JPEG encoder
performance with AAN (Arai Arui Nakajama) DCT is presented in Table 7.1 - Cycles2.
With this change, the major performance improvement was achieved, dropping the total
number of cycles by 89%, mainly due to the relative reduction by 98% in the execution
of the DCT. On the other hand, since the AAN algorithm approximates a standard
DCT, it impacts the quality of the output image, increasing the MSE of about 86%.
However, as shown in Figure 7.1, the image quality difference perceived from a human
eye is negligible despite the MSE and PSNR indexes drop; hence the AAN DCT can
be considered a suitable replacement in our JPEG encoder. The first (Cycles1) imple-
mentation (Noritsuna [191]), written following the theoretical definition of the 2D DCT,
presents a complexity O(n4); the AAN instead reduced the complexity to O(n · log2(n))
motivating the notable latency reduction. A third optimization step for sequential ex-
ecution is performed using the hardware features available on GAP8 SoC, such as the
DSP-oriented extended-ISA instructions (built-in) and the single cycles access memory
(L1). The built-in functions are extensions of the RISC-V instruction set, developed
to speed up some computationally heavy operations. Among the most commonly used,
the algorithm exploits the Multiply Accumulate (MAC) instructions, which multiply
two variables and accumulate the partial sums, and the FIXED_MUL, which multiplies
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Figure 7.1: Image quality comparison between FAST-DCT (AAN) and DCT algo-
rithms.

two fixed-point variables in one single cycle. The final number of cycles required for
an in-line execution is presented in Table 7.1 – Cycles3. To run the JPEG encoder on
the GAP8 cluster, the algorithm steps are executed using the available 8 RISC-V cores.
The initial section of the JPEG file header can be performed only once at the beginning
of the program since it is fixed (Figure 7.2 – (a) – Header Writing). The rest of the
workload is distributed among the cluster by letting any core operate on different image
8 × 8 blocks (Figure 7.2 – (a) – Multi-core functions). Indeed, during the compression
of the pictures, it is sufficient writing to the output file (L2) the bytes containing only
the information concerning the actual image starting from the byte following the last of
the header (Figure 7.2 – (a) – Footer writing). The image blocks reading function can
be easily performed in parallel, similarly to level shifting, discrete transform of cosines,
zigzag reordering, and quantization tasks. Instead, the Huffman task operates on data
produced by previous steps. Hence it is executed as a sequential task on a single core.
In addition to this, the Huffman encoding does not have a predefined number of bits

Table 7.1: Number of cycles required to execute the JPEG algorithm on different
implementations.

Functions Cycles1 Cycles2 Cycles3 Parallel
DCT + Zig-Zag (8 × 8 block) 107,500 1,947 1,873 1,611
Quantization (8 × 8 block) 2,539 2,539 2,220 2,368
Huffman (8 × 8 block) 984 984 984 802
Total (all image) 130,147,237 13,072,581 6,092,954 2,307,672
MSE 53 100 100 100
PSNR [dB] 31 29 29 29
Speedup - 10 21 56
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Figure 7.2: (a) JPEG sub-functions, the multi-core algorithms can be parallelized.
Instead, the mono-core function must be executed sequentially; (b) Energy per frame
and maximum fps compared to the cluster frequency and voltage.

needed to encode a symbol, but the output is of variable length. For this reason, it was
considered necessary to separate this last step from parallel execution by executing it
sequentially from a single cluster core. With the parallel execution of the firmware, the
algorithm reaches 2,307,672 cycles (Table 7.1 – Parallel) and conversion time of about
45 ms @ 50 MHz, which corresponds to 22 frames per second. The speedup reached with
a parallel execution is 2.64 with eight cores because the Huffman is executed sequentially.

7.2.1 Estimation of the system energy

In the case of multi-core execution, the highest energy efficiency is achieved at 1 V
at the maximum frequency of 100 MHz (Figure 7.2 – (b)). At this operating point, the
GAP8 compresses a frame with 0.495 mJ, while at 50 MHz the energy consumption
results to be 0.532 mJ. With a supply voltage of 1.2 V, we can reach 200 MHz, com-
pressing around 86 images per second, but the energy required for compression reaches
0.7 mJ per frame.

The performance metrics are analyzed with respect to a low-power MCU device, such
as STM32L476G from STMicroelectronics, running the JPEG implementation of [191].
The reference MCU is an ultra-low-power platform based on a 32-bit ARM Cortex-
M4 core capable of operating at a frequency up to 80 MHz. The STM32L476G, in
RUN mode @ 48 MHz, consumes 18.29 mW. The obtained number of cycles is equal to
10,528,330 with a single QVGA image conversion. Hence the compression latency and
the energy consumption are 0.22 s and 4.011 mJ per frame. In the same scenario, the
proposed JPEG implementation, in conjunction with GAP8, reaches an execution time
≈ 5× faster than an STM32L476, with an average energy consumption 8× lower.
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One of the most power-consuming tasks in WCS applications is to transfer the
images acquired by the camera either to cloud servers or to personal gateways (e.g., a
mobile phone) for low-latency feedback [182]. Consequently, wireless communication is
an essential feature, although it is often the bottleneck both for the throughput and
for the power budget of the entire system, considering that applications might need to
stream images and videos continuously. In previous papers [25, 97], the joint challenge of
communication energy minimization and maximization of the communication flexibility
under several different connectivity scenarios was studied. The article [27] shows that
to stream raw images, the Wi-Fi requires an average of 30 nJ/bit. In this chapter, the
QVGA sensor generates an 80 kB/frame that a 20 fps produces up to 12.8 Mbps data,
which needs 384 mJ to send 20 frames. On the other hand, using the described JPEG
encoder, the compressed image uses only 3.8 kB, generating 608 kbps. The GAP8 needs
9.9 mJ, but the Wi-Fi energy decreases to 18 mJ with overall consumption of 27.9 mJ,
which is an improvement of 14× in energy efficiency.
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7.3 Ultra-low energy consumption pest detection for smart
agriculture

In the last years, ICT techniques that can optimize the harvest of fruit and vegeta-
bles have gained momentum. In particular, over-population and the rise of the climate
crisis necessitates smart technologies capable of minimizing the waste of resources and
protecting the cultivations [194]. For example, biological invasions could have severe
global consequences if not handled correctly, including ecological destruction and eco-
nomic losses. Thus, if not tackled promptly, crop losses and pest control can be extremely
expensive [195].

This Section presents a method to detect and identify dangerous insects in the field,
to trigger an alarm to the farmer, and to minimize the damage caused by pests in
the orchard. Currently, the technologies deployed in precision agriculture allow only to
send raw images to the farmer to decide if and how to counteract [194]. The proposed
system innovation combines sophisticated low energy sensors for the acquisition step, an
efficient algorithm for the on-sensor analysis based on machine learning, with long-range
communication. The system is designed for minimum power consumption; thus, it can
also be energy autonomous thanks to a small-size energy harvesting circuit.

Adding intelligence to the nodes and shifting the decision of anomalies near the
sensor permits faster decisions and actions that are the key to damage reduction. More-
over, the low cost of the platform, its non-intrusive size, and ultra-low power design
permit the high scalability of this solution in vast orchards. The model developed in
this project belongs to the newest generation of agricultural sensing and automation
devices, monitoring and sending real-time messages.

The system consists of a trap that looks like a little hive as shown in Fig. 7.3, where
a pheromone bait and a glue layer capture the attracted insects even at an early stage
when their density in the filed is low. The farmer usually takes periodic inspections of the
traps or mount a wireless camera that sends the captured pictures wirelessly for remote
evaluation. This process is expensive and time consuming for the farmer. The proposed
work detects the parasite presence thanks to a machine learning approach that triggers
notifications and their position to the farmer, only when threats are recognized. The
smart camera consists of an ultra-low-power smart camera with on-situ reconfigurable
AI-capabilities. A multi-core architecture named PULP, implemented on a chip called
GAP8 (see Section 2.2.2.1) realized for IoT-inspired applications, is used to process the
images. One of the most power-consuming tasks in smart sensors for agriculture is trans-
ferring data and images acquired by the camera over long distances [28, 29]. Wireless
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Figure 7.3: Prototype of the IoT neural network Codling Moth smart trap.

Figure 7.4: Smart camera device used in the application.

communication is an essential feature, but it is usually the bottleneck for data through-
put and the power budget. This Section tackles the challenges by (i) minimizing the
output data using a neural network-based detection algorithm, and (ii) we maximized
the communication flexibility using an unlicensed wireless long-range protocol such as
LoRaWAN. The smart camera board designed for the project is shown in Fig. 7.4.

7.4 Data analysis

The dataset generation started with a small set of row pictures, as shown in Fig. 7.5
(approximately 300). The dataset is divided into two classes: codling moth (Fig. 7.6
left) and general insects (Fig. 7.6 right). The smart camera makes use of a gray-scale
QVGA CMOS sensor (Himax HM01B0) with a resolution of 244 x 324 pixels. Hence
it needs 79 kB of RAM to be stored (L2 in GAP8). To decrease the neural network
complexity and the average power consumption, each image is pre-processed by a stack
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Figure 7.5: Left: processed image, white insects was not presented in previous frames.
Right: raw picture.

Figure 7.6: Cropped Codling Moth (left). Cropped general insect (right) and their
respective data analysis results.

of morphological operators, determining if the acquired image contains new elements of
interest.

First of all, an histogram equalization filter is applied to decrease the brightness
difference between successive frames. It is usually implemented in C++ code [196]
and needs floating-point operations. The optimized imported version running on GAP8
requires only 37 cycles-per-pixel (cpp) working on a fixed-point framework. On the
original QVGA image the overall number of clocks is 2.9 M.

Afterward, a background subtraction algorithm is used to detect changes in image
sequences and to highlight the information provided by the Himax. Background sub-
traction is often utilized for detecting moving objects from static cameras, but in our
case, it serves to identify new trapped insects. In this work, the OpenCV MOG function
is calibrated on the insect dataset, which is part of the Gaussian Mixture Model (GMM)
foreground detection [197]. In-field results show that a history (α) of two images and
the mixture depth (κ) of five are the best trade-off between complexity and accuracy in
our specific application; therefore, these settings are used for the algorithm on GAP8.

The memory impact of the GMM is not negligible. It needs enough space to store the
foreground history, which is two QVGA images and its associated statistical parameters.
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In fact, each pixel must include all the representative parameters of a Gaussian, i.e.,
weight, mean, and variance, as floating-point variables. The size of the aforementioned
structure, nominated as Gauss, is calculated as Eq. 7.1.

GMMfloat = Gausssize · 244 · 324 · α · κ = 9.5 MB. (7.1)

A lightweight version of the standard OpenCV MOG function for GAP8 is implemented
by developing the firmware using only fixed-point math. The code execution is performed
using a 32-bit depth, with Q16.16 number format, while theGauss structure is considered
as an 8-bit variable with different fractional settings. Weights and mean are represented
respectively as Q1.7 and Q8.0 while the variance is in Q6.2 format. With this method,
the GMM requires only GMMfixed = 1.2 MB , 5× less than GMMfloat and 392 cpp
executed on the GAP8 FC. Compared with the standard OpenCV MOG function [197],
the output degradation is below 1%; the error is mainly composed of isolated pixels not
recognized as part of the background. The execution of GMM is the most power-hungry,
requiring 60% of the overall energy. This algorithm is sequentially running on the FC
and will be further parallelized in future works.

The next step consists of a cascade of morphological operators to remove the noise
after the GMM and cut the non-interesting objects, those too big or too small to be a
general insect. Two iterations of Closing (morph close [197]) and one Opening (morph
open [197]) operators make the processed image ready for the last processing task. They
need an average of 27.5 cpp.

The last task consists of a connected component (CCL) function crop and saves
(in L3) only the sub-parts (if any) of the original images that are interesting for the
application, producing images of 40x40 pixels. This last layer of the stack requires
2.8 cpp.

Table 7.2 summarizes the execution time and workload for the whole stack, which
requires 40.5 M Cycles and 2.8 mJ. Moreover, Fig. 7.7 displays the image acquisition
pipeline described above.

Table 7.2: Data Analysis Stack

Step M Cycles Time [ms] Energy [mJ]
Hist. Eq. 2.9 58 0.20
GMM 30.9 618 2.10
Closing 4.3 86 0.29
Opening 2.2 44 0.15
CCL 0.2 4 0.01
Total 40.5 810 2.8
Time calculated considering the FC running at 50 MHz
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Figure 7.7: Image acquisition pipeline.

7.4.1 NEMO

In a Quantized Neural Network (QNN), all tensors t (e.g., inputs x, outputs y, and
weights w) are real-valued, but they can assume only a countable set of values (fake
discretization) and are determined only in a specific range [αt; βt). It is possible to map
these discretized variables into purely integer ones, which are images of the discretized
tensor. The following section assumes to start from a QNN already discretized using
linear, uniform per-layer quantization: the N-bit integer image t̂ of tensor t is linked
to its quantized counterpart through a bijective mapping, as shown in Eq. 7.2, where
εt = (βt − αt)/(2N − 1).

t = αt + εt · t̂. (7.2)

The εt value describes the quantum, the smallest number represented in the quantized
tensor.

Each QNN is normally composed of a sequence of three operators: Linear/Convolu-
tional, Batch-Normalization and Quantization/ Activation. Without loss of generality2,
it is possible to consider for all the inputs that αx = αy = 0. Using Eq 7.2, all variables
are mapped in the integer domain. Hence it is mathematically valid to re-map linear
(LN) and Batch-Normalization (BN) operators.

LIN : ϕ =
∑
n

Wm,n ·Xn ⇔ ϕ̂ =
∑
n

Wm,n̂ ·Xn̂, (7.3)

BN : ϕ′ = k · ϕ+ λ⇔ ϕ̂′ = k̂ · ϕ̂+ λ̂. (7.4)

The dot operation in Eq 7.3 shrinks the quantum used to present ϕ̂, which is described
by εϕ = εw · εx. Hence, the integer output represents the LN (ϕ̂) with augmented

2If the original activation is a ReLU, then the QNN automatically satisfies this condition; otherwise,
it can be transformed to satisfy it.
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precision (standard of 32 b on GAP8) with respect to its input. Then, ϕ̂ is re-quantized
when the accumulation ends. A similar conversion is applied to BN and its output (ϕ̂′).

The final operator provides a non-linear activation (essential in any neural network)
and collapses the accumulator into a lower precision variable.

ACT : ŷ = m · ϕ̂′ � d; m =
[
εϕ′ · 2d
εy

]
. (7.5)

In Eq 7.5, d is an integer that guarantees a sufficient representation of εϕ/εy, it is
experimentally chosen during the quantization process. Finally, by the use of 7.2, it is
possible to execute a QNN on a constrained device, such as GAP8, using only integer
operators. NEMO (NEural Minimization for pytOrch) usually targets networks using
8-bit quantization for both ŵ and x̂ ŷ, while ϕ̂, ϕ̂′, k̂, λ̂, m, and d variables are usually
32-bit bit-width.

7.4.2 DORY

The deployment of DNNs on IoT end-nodes at the extreme edge is still a critical
technology challenge to support pervasive deep learning applications. Low power and
low-cost MCUs have limited on-chip memory to reduce area overheads and increase en-
ergy efficiency, requiring explicit memory transfers between internal and external data
cheches. Running complex DNNs on these constrained devices requires smart topology-
dependent tiling and double-buffering because the DNN does not fit into the internal
RAM. DORY (Deployment Oriented to memoRY) is an automatic tool to deploy DNNs
on low-cost MCUs with typically less than 1 MB of on-chip RAM. It maximizes internal
cache memory utilization under the constraints imposed by each DNN layer. Then,
it automatically generates ANSI C code, managing DMA transfers and algorithms.
Furthermore, DORY augments the computing formulation with heuristics promoting
performance-effective tile sizes, aiming to maximize speed and decrease the memory
footprint. DORY was designed and tested GreenWaves Technologies GAP83, described
in Section 2.2.2.1. On GAP8 [198], DORY achieves up to 2.5× better MAC/cycle than
the GreenWaves proprietary software solution and 18.1× better than the state-of-the-
art result on an STM32F746. By using DORY, GAP8 can perform end-to-end inference
of a 1.0-MobileNet network consuming 63 pJ/MAC on average, 15.4× better than an
STM32F746.

3GAP8: https://greenwaves-technologies.com/
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7.5 Neural network

To correctly analyze an image of 40 × 40 pixels, a machine learning approach is
used. A Convolutional Neural network has been specifically trained for this application,
named Smart Agriculture Neural Network (SANN), see Fig 7.7.

The SANN topology was inspired by CIFAR10 networks [199] and was reduced in
size and complexity to minimize the bare image processing time using NEMO4 and
DORY5 [198]. The SANN is composed of four successive convolutional layers and four
fully-connected layers, in combination with batch normalization and ReLu activation
functions.

It is trained on the small available dataset featuring a 97% training accuracy and 93%
validation accuracy. These results are also confirmed after the quantization procedure
(NEMO), where the weights and coefficients are represented in a fixed-point 8-bit format.
Tests on GAP8 assess the computational complexity to 2.9 MCycles, considering the
execution on the 8-cores cluster. The equivalent energy reaches 0.66 mJ; hence the overall
energy consumption amounted to 3.5 mJ. Finally, if a parasite is detected, GAP8 encodes
the original image in a JPEG format [61] to decrease the data size, and successively,
send it remotely through LoRaWAN. By comparison, the average energy per bit of
LoRaWAN is 2.2 mJ [200], which is equivalent to the whole data analysis in Section 7.4.
In this application, the edge-computing paradigm can save energy up to five orders of
magnitude.

7.6 Summary

In previous sections, an optimized JPEG encoder based on the FDCT and a mJ-
class smart camera with an embedded tiny machine learning are presented, which are
parallel executed on GAP8, a multi-core RISC-V SoC. These two case studies are the
perfect example of edge computing, in which the data is compressed, extracting the
most relevant features, directly on the sensor node. Moreover, energy projections and in-
field test demonstrate the effective performance improvements of a low-power platform,
increasing the battery lifetime and decreasing the network traffic.

In Section 7.1, the encoder can reach up to 86 fps @ 200 MHz, but at 100 MHz the
MCU requires only 0.495 mJ to compress a frame, reaching the best trade-off between the
compression rate (46 fps) and the energy consumption. When compared with a JPEG

4NEMO: https://github.com/pulp-platform/nemo
5DORY: https://github.com/pulp-platform/dory
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implementation on ARM Cortex-M4 (48 MHz), this solution (@ 50 MHz) achieves a
frame rate 4.8× higher and requires 8 times less energy to encode a single image. Instead,
if compared to Noritsuna [191], this solution features 56× lower number of clock cycles.
Lastly, the JPEG encoder was exploited in a real deployment, a QVGA sensor with a
Wi-Fi module. In this application, the encoder can reduce the system energy up to 14×
at 20 fps with respect to stream raw images through a WiFi connection.

Lastly, Section 7.3 presents amJ-class smart camera with an embedded tiny machine
learning model trained for precision agriculture services. The camera identifies the pests
of apple in the orchards and triggers an alarm to the farmer. The extremely low power
consumption permits the smart-trap to operate without any maintenance for years, using
a LPWAN to promptly transmit reports to several kilometers. An optimized OpenCV
based framework was specifically developed to archieve this challenging result.



Chapter 8

Conclusions

8.1 Thesis contributions and achievements

Aiming at an even more connected and burgeoning world, this thesis spans the IoT
framework analyzing the most recent trends and technologies, providing an overview
of main open challenges and limitations. Structured as a development and innovation
guideline, the sequence of discussed arguments illustrates the five principal blocks form-
ing a standard sensor node: transducers, power management, edge computing, and low
power wide area network protocols. Nowadays, IoT has reached an unprecedented spread
level and utilization in almost any industrial and healthcare application. Moreover, it is
opening new scenarios to improve general wellness; indeed, automation and continuous
monitoring processes decrease the working time and hazardous situations, such as the
massive contribution provided from SHM installations, which can drastically reduce the
number of collapsed buildings and workplace accidents. However, the increasing diffu-
sion of IoT is generating unexampled technical and social challenges that must be solved
every day, since they are continuously changing following the user and market requests.

The conventional trend is the deployment of battery supplied sensor nodes and actu-
ators, directly or indirectly connected to the central node, a cloud, or a server [1, 3]. This
generates an implicit requirement about the battery lifetime and the internal process-
ing and remote communication energy. Researchers and developers bypass the limited
energy resource by applying a power reduction mechanism through careful hardware
planning. However, reducing the average apparatus current is often insufficient to com-
ply with the most stringent requirements demanding > 10 years of fully functional
operativity. Hence other methods are taking place to enhance the device longevity, such
as applying energy harvesting techniques, decreasing the wireless transmission energy by

142
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reducing the energy per bit. Moreover, it is possible to trim the number of remote trans-
missions through the edge-computing and, on the other side, designing novel low-power
low-cost sensors. While conventional battery power is the most apparent solution for IoT
applications, it is not always economical. Also, there is concern about the cost of new
long-life batteries and the person-hours required to maintain them. Even rechargeable
batteries, which need to be replaced periodically, have a non-negligible negative impact
on the environment. As the IoT market becomes more environmentally conscious, this
has become a serious concern. Finally, access to continuous power from the power grid
is not always achievable. Whether it is the nature of the deployment, or the cost of
connecting devices to a grid, accessing constant power is a recurring challenge for many
IoT systems. In addition to employing energy-harvesting techniques that capture en-
ergy from the surrounding environment, IoT device designers can use protocols that save
power. Three standards of low-power-consumption procedures are power-saving mode
(PSM), Extended Discontinuous Reception (eDRX), and wake-up signals. Most cellular
and LPWAN technologies turn off their module when the cellular network connection
is not required, but reconnecting to the network requires power and time. The Power
Saving Mode (PSM), on the other hand, exploits network connection timers to reduce
IoT power consumption. Finally, wake-up radio allows IoT platforms to remain asleep
and not periodically check the ether for incoming signals, which is especially useful for
devices that do not need to communicate for long periods.

In Chapter 2, an overview of the IoT framework and the structure of a typical
sensor node is proposed. It aims to provide basic knowledge to read and understand all
the topics and design choices presented during the following discussion. Considerations
and technology scouting about the state of the art technology show that i) achieving
more than 10 years of operation for a device is still a challenge from a hardware point
of view, ii) sensors and transducer are fundamental to provide accurate measurements
at the lowest power consumption, and that they often heavily impact the final price,
iii) wireless protocols must be optimized to reduce the communication redundancy, the
latency and to support many thousands of devices in crowded communication channels,
also keeping the energy per bit as low as possible, iv) edge computing is essential to
decrease the communication latency and consumption, opening even new application
scenarios.

In Chapter 3, six wireless protocols are investigated, analyzed, and measured in
controlled environments and real deployments. For this thesis, a selection of the most
promising and commercially used standards converges to LoRa, NB-IoT, UWB, WUR,
WiFi, Bluetooth. Since selecting the best communication protocol for every applica-
tion is still an open issue, Chapter 3 aims to provide a detailed overview of the real
throughput and power consumption, which are often essential to justify a specific design
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choice. Moreover, a dedicated optimisation work concern i) LoRaWAN lightweight time
synchronisation for heterogeneous networks, ii) Slotted-Aloha MAC working on top of
the LoRaWAN framework, a plug-and-play solutions suitable for commercial products,
iii) NB-IoT power classification and estimation under variable operations conditions, iv)
a detailed comparison between LoRaWAN and NB-IoT for industrial and SHM appli-
cations, v) Extended LoRaWAN, a custom communication protocol designed to double
the coverage of a standard LoRa node, vi) UWB description, specifically focused on
Decawave DW1000.

Chapter 4 presents a specific assessment about the UWB together with IoT and
autonomous drones. This niche but challenging topic aims to overcome connectivity
limitation in scarcely populated areas and harsh environments. Main subjects are i)
optimization of the UWB ranging protocol for high-precision distance estimation be-
tween moving objects and UAVs, supporting in parallel high-speed data transfer, ii)
decreasing and assessing the UWB power consumption by the use of duty cycle and
WUR mechanisms.

In Chapter 5, the design of a new low cost and low power transducer is addressed.
To overcome the stringent limitations in one of the harshest applications, SHM, it was
needed to design a specific transducer capable of 1 µm precision at < 5e cost. The final
device, named Crackmeter was i) tested, ii) characterized varying temperature and
simulating aging, iii) assembled with a custom plastic enclosure made of polycarbonate,
iv) put together with a low power electronics to make a fully functional IoT sensor node.
Finally, the Crackmeter is today a commercial product sold by Sacertis s.r.l.1

In Chapter 6, two design examples are presented, showing how to increase the battery
lifetime by applying hardware-specific optimizations. Considering the use of a sensor
fusion approach, in which multiple sensors are working at a different frequency and for
numerous purposes, the following observations are valid i) split the power supply line
into multiples clusters, controlled by the MCU, ii) avoid, when and where it is possible,
the use of passive pull-up/pull-down, iii) ultra-low power and asynchronous wake-ups
are always preferable than polling or duty-cycled approaches, iv) firmware control is
fundamental to keep the MCU is the lowest power consumption state.

In Chapter 7, the paradigm of edge computing is exploited in two different scenarios,
an image encoder (JPEG) and a fully working framework to recognize dangerous insects
in agricultural environments. Since the deployment of complex algorithms at the extreme
edge of the IoT structure is still an unsolved challenge, the design was based on a PULP
platform, the state of the art technology for the high computational task at a lower
energy cost. This chapter shows that i) a complex algorithm such as morphological

1http://www.sacertis.com/
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operators and neural networks can be deployed in a constrained and low power device, ii)
the edge computing can decrease the energy consumption up to five orders of magnitude
compared to streaming all the data directly to the cloud, iii) despite limited resources
and approximating algebra, the accuracy of the embedded-algorithms is comparable
with server responses.
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