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Abstract

The inherent stochastic character of most of the physical quantities involved
in engineering models has led to an always increasing interest for probabilistic
analysis.

Many approaches to stochastic analysis have been proposed. However, it
is widely acknowledged that the only universal method available to solve ac-
curately any kind of stochastic mechanics problem is Monte Carlo Simulation.
One of the key parts in the implementation of this technique is the accurate and
efficient generation of samples of the random processes and fields involved in the
problem at hand. In the present thesis an original method for the simulation
of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields
is proposed. The algorithm has proved to be very accurate in matching both
the target spectrum and the marginal probability. The computational efficiency
and robustness are very good too, even when dealing with strongly non-Gaussian
distributions. What is more, the resulting samples posses all the relevant, well-
defined and desired properties of “translation fields”, including crossing rates
and distributions of extremes.

The topic of the second part of the thesis lies in the field of non-destructive
parametric structural identification. Its objective is to evaluate the mechanical
characteristics of constituent bars in existing truss structures, using static loads
and strain measurements. In the cases of missing data and of damages that
interest only a small portion of the bar, Genetic Algorithm have proved to be
an effective tool to solve the problem.
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Chapter 1

Introduction
Human beings have long been

both fascinated and appalled by randomness.
-Jeffrey S. Rosenthal-

Sommario. La maggior parte delle grandezze fisiche utilizzate nei
modelli ingegneristici ha un carattere intrinsecamente aleatorio e ciò
ha determinato un interesse sempre crescente verso l’analisi proba-
bilistica. Per la stessa ragione, tutte le leggi ed i regolamenti tecnici
di più recente concezione propongono approcci probabilistici (a diver-
si livelli). La ricerca scientifica si spinge anche oltre, suggerendo il
“performance-based design” e il “reliability-oriented design”, entrambi
basati su considerazioni probabilistiche.

In letteratura si possono trovare diversi approcci all’analisi stocasti-
ca, ma è largamente condivisa l’idea che la Simulazione alla Monte
Carlo sia l’unico metodo veramente universale per la soluzione di
problemi di meccanica stocastica. Tale tecnica può essere scomposta
in quattro fasi principali: la caratterizzazione probabilistica dei dati,
la generazione di campioni casuali, la soluzione di un problema deter-
ministico per ogni campione generato e l’analisi statistica dei risulta-
ti. La parte cruciale della procedura è la generazione di campioni che
rispecchino, con la massima accuratezza possibile, le caratteristiche
probabilistiche della grandezze che devono rappresentare.

1
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2 1. Introduction

La distribuzione più usata per descrivere le grandezze fisiche è sicu-
ramente quella Gaussiana. Tuttavia, questa scelta viene spesso fatta
per semplicità, più che per effettiva aderenza alla realtà. Infatti, è
ben noto che molte variabili sono meglio rappresentate da distribu-
zioni differenti (talvolta di molto) dalla Normale. Per tale motivo
sono stati sviluppati numerosi metodi per la generazioni di campioni
casuali con caratteristiche non-Gaussiane.

Gli studi riportati nella parte principale della tesi (Part I) si inseri-
scono in questo contesto. In particolare, viene proposta una tecnica
originale per la simulazione di campi aleatori omogenei, multidi-
mensionali, multivariati e fortemente non-Gaussiani. Il Capitolo 2
presenta l’analisi critica di una classe di algoritmi con alcune carat-
teristiche comuni. L’individuazione e la completa comprensione dei
limiti delle altre metodologie hanno portato allo sviluppo della proce-
dura proposta nel Capitolo 3, basata su un approccio “trials and er-
rors” per l’individuazione del cosiddetto “underlying Gaussian field”,
secondo la teoria del “translation field”. I Capitoli 4 e 5 riportano,
rispettivamente, le estensioni di tale tecnica ai casi multidimensio-
nale e multivariato. Entrambe le estensioni espandono l’applicabilità
del metodo e, in particolare, la seconda consente per la prima vol-
ta l’identificazione dell’“underlying Gaussian coherence”. Il Capitolo
6 tratta, invece, risultati analitici ottenuti riguardo la simulazione
di campi multivariati Gaussiani: la dimostrazione generalizzata di
ergodicità e l’espressione in forma chiusa della matrice di densità
spettrale dei campioni casuali generati per mezzo dello “Spectral Re-
presentation Method” con “Frequency Double Indexing”. Il Capitolo
7 raccoglie alcune applicazioni all’ingegneria civile (in particolare
alla geomeccanica stocastica e all’affidabilità strutturale) dei metodi
presentati e conclude la prima parte.

Il secondo argomento trattato (Part II) è l’identificazione strutturale.
Viene presentata una tecnica non distruttiva per la stima della rigi-
dezza di aste in strutture reticolari, usando carichi statici e misure
di deformazione. In questo caso, il modello utilizzato è puramen-
te deterministico e l’approccio probabilistico risiede nello strumento
numerico di ottimizzazione che viene usato. Infatti, nel Capitolo 8
viene illustrato un metodo per l’identificazione di reticolari spaziali
iperstatiche sotto le ipotesi che tutte le dilatazioni siano note e che
le caratteristiche meccaniche dell’asta siano uniformi. Quando la
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3

prima ipotesi non è verificata, l’algoritmo non può essere utilizzato;
quando non lo è la seconda, l’algoritmo dà risultati sbagliati. Per su-
perare tali limitazioni, nel Capitolo 9 viene suggerito l’impiego degli
Algoritmi Genetici, che sono un metodo di ricerca operativa euri-
stica, non deterministica, che si basa su concetti ispirati alla teoria
dell’evoluzione biologica, quali la mutazione casuale, la ricombina-
zione genetica, la sopravvivenza del più adatto. Gli esempi numerici
confermano il potenziale della metodologia proposta.

Le considerazioni conclusive su entrambe le parti e alcuni cenni a
possibili sviluppi futuri sono affidate al Capitolo 10.

Infine, nell’Appendice A sono brevemente riportati i concetti di base
della teoria dei campi aleatori che vengono richiamati all’interno
della tesi.

Sintetizzando, si può dire che nella prima parte della tesi il caso è
presentato come una componente intrinseca del mondo che ci cir-
conda, della quale dobbiamo imparare a tenere conto e con la quale
dobbiamo confrontarci. Nella seconda parte, viene mostrato che il
caso può anche essere considerato una risorsa preziosa.

The inherent stochastic character of most of the physical quantities involved
in engineering models has led to an always increasing interest for probabilistic
analysis. For the same reason, also the codes, all over the world, account for
probabilistic (at different levels) approaches. The scientific and technical re-
search goes even further, studying and proposing the “reliability-oriented” and
“performance-based” designs, that are both characterized by a probabilistic per-
spective.

In the literature, many approaches to stochastic analysis have been proposed
(see, for instance, the surveys by Schueller, 1997; Matthies et al., 1997; Ghanem
and Spanos, 2003). However, it is widely acknowledged that the only universal
method available to solve accurately any kind of stochastic mechanics problem
is Monte Carlo Simulation (see, for instance, the survey paper by Hurtado and
Barbat, 1998).

The well-known Monte Carlo Simulation can be broken down into four
macro-steps: probabilistic characterization of the input quantities, input sam-
ples generation, deterministic analysis for each input sample, statistical analysis
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4 1. Introduction

of results. The key part in the implementation of this technique is the accurate
and efficient generation of samples of the random processes and fields involved
in the problem at hand. In the field of civil engineering, these random quantities
can be both excitations (e.g. wind, ground motion, waves) and system character-
istics (e.g. material properties, geometry, cracks, texture). To obtain accurate
solutions to such problems, it is important that the generated sample functions
of these processes and fields match the prescribed probabilistic characteristics
as closely as possible.

The most commonly used probability distribution to model these stochastic
processes and fields is certainly the Gaussian. This choice is made mostly for
convenience rather than for mathematical or physical reasons. For example,
various material properties are bounded for physical reasons (e.g. the elastic
modulus, the yield stress, the density, and several other properties cannot be-
come negative), while excitations like wind pressure fluctuations and ocean wave
heights are known to exhibit strong non-Gaussian characteristics. For these
reasons, several methodologies have been proposed for simulating non-Gaussian
stochastic processes and fields according to a prescribed Spectral Density Func-
tion and a prescribed marginal Probability Distribution Function. A few rep-
resentative methodologies belonging to this framework are mentioned here in
chronological order: Yamazaki and Shinozuka (1988); Grigoriu (1995, 1998);
Gurley et al. (1997); Popescu et al. (1998); Gurley and Kareem (1998); Deo-
datis and Micaletti (2001); Puig et al. (2002); Sakamoto and Ghanem (2002a,b);
Graham et al. (2003); Cope et al. (2005); Shi et al. (2007); Li et al. (2007).

Along this line, in the main part of the thesis, Part I, an original methodol-
ogy for the simulation of homogeneous, multi-dimensional, multi-variate, strong-
ly non-Gaussian random fields is proposed. In particular, Chapter 2 presents
the critical review of a class of simulation algorithms of which the newly pro-
posed ones can be considered as the latest development. The analysis of the
limits and of the drawbacks of the previous methods has led to the develop-
ment of the one-dimensional, uni-variate version of the algorithm proposed in
Chapter 3. It is based on a “trials and errors” approach to identify the “un-
derlying Gaussian spectrum”, according to the classic “translation field” theory.
Chapter 4 treats the extension of the same ideas to the multi-dimensional case
and Chapter 5 presents the generalization to the multi-variate case. To this last
purpose, the proposed code identifies the “underlying Gaussian cross-spectra” or
the “underlying Gaussian coherences”. An in-depth examination of the “Spectral
Representation Method” with “Frequency Double Indexing” for the simulation
of multi-variate Gaussian fields is presented in Chapter 6. The results are a



i
i

“phd5” — 2008/3/30 — 23:56 — page 5 — #21 i
i

i
i

i
i

5

closed form expression of the cross-spectral density matrix of the samples pro-
duced by this technique and a generalized proof of ergodicity. Chapter 7 collects
some possible applications to civil engineering of the proposed techniques (in
particular, a study involving stochastic geomechanics and a reliability analysis
of a suspension bridge) and concludes this part.

Part II deals with a procedure for the static identification of truss struc-
tures, using strain measurements. In this case, the model that has been used
is purely deterministic. However, the probabilistic approach resides in the nu-
merical tool that is used to perform the analysis. In fact, the identification
procedure that is presented in Chapter 8 is able to identify three-dimensional
redundant truss structures under the hypotheses that all the strains are known
and that the characteristics of the bars are uniform along its length. On the
contrary, when the value of one strain is missing or when the damage is con-
centrated only in a portion of the bar, the algorithm fails. To overcome these
issues, in Chapter 9 the use of Genetic Algorithm is suggested. These are a
heuristic search procedure for the solution of optimization problems that uses
techniques inspired by evolutionary biology such as offspring generation, inher-
itance, mutation, selection, crossover and recombination, all these wisely mixed
with randomness, as in the real life. In this way, also local damages can be
identified.

In Chapter 10 some concluding remarks on both the parts are collected.
Finally, in Appendix A, the basic concepts of random field theory that are

used in the thesis are briefly recalled.
In a few words, in the first part of the thesis, randomness is pre-

sented as an inherent component of our world, we necessarily have to
deal with. In the second part, it is shown that randomness can also
be considered as a useful resource.
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Simulation of
Random Fields
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Chapter 2

Critical Review of
Previous Research Work

Random numbers should not be generated
with a method chosen at random.

-Donald E. Knuth-

Sommario. I metodi di simulazione originali proposti nella presente
tesi sono basati sullo “Spectral Representation Method” e sulla teoria
del “translation field”. Per questo motivo, essi possono venire con-
siderati l’ultimo sviluppo di una classe di algoritmi che condividono
le stesse idee di base.

In questo Capitolo, i precedenti algoritmi che possono essere ri-
condotti alla classe in questione, vengono brevemente descritti ed
analizzati criticamente.

Il metodo capostipite, proposto da Yamazaki e Shinozuka (1988), ha
noti problemi nella simulazione di campi fortemente non-Gaussiani.
Le correzioni suggerite da Deodatis e Micaletti (2001) consentono di
ottenere un’accuratezza decisamente migliore, ma fanno perdere ai
campioni generati la caratteristica di “translation field” e tutte le pro-
prietà conseguenti. L’algoritmo di Shi e Deodatis (2004) raggiunge
un buon livello di accuratezza e genera campioni con la caratteristica

9
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10 2. Critical Review of Previous Research Work

di “translation field”, ma anch’esso non è esente da alcuni problemi
di carattere teorico e numerico.

2.1 Introductory Remarks

The original simulation algorithms that are proposed in this thesis are all based
on the Spectral Representation Method (Shinozuka and Jan, 1972) and on the
translation field theory (Grigoriu, 1984, 1995). For this reason, they can be
considered the latest developments of a class of techniques for the simulation of
non-Gaussian fields that share these same foundations.

In the present Chapter, the Spectral Representation Method (SRM) and
the algorithms belonging to the aforementioned class are briefly described and
critically reviewed1.

The issues enlightened by this analysis have led to the development of the
algorithm presented in Chapter 3.

2.2 Spectral Representation Method for Gaus-
sian Fields

The Spectral Representation Method for the simulation of Gaussian stochastic
processes and fields has been introduced by Shinozuka and Jan (1972). Many
further developments have been proposed over the years, which are reviewed
and summarized in a series of papers by Shinozuka and Deodatis (Shinozuka
and Deodatis, 1991, 1996; Deodatis, 1996), to which the reader is referred also
for a complete bibliography. The SRM is the base of all the algorithms that will
be presented in this part of the thesis.

The purpose of the method is to produce sample fields g(x) with a given
target Spectral Density Function Sgg(κ). The basic formulation generates ho-
mogeneous Gaussian ergodic fields.

There are two alternative SRM-based algorithms in the literature (e.g. Shi-
nozuka and Deodatis, 1991; Grigoriu, 1993). The one that will be used in this

1The critical review and scientific results reported in this Chapter have already been pre-
sented by Bocchini and Deodatis (2008).
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thesis simulates the Gaussian stochastic field g(x) by the following series as
N →∞:

g(x) = 2
N−1∑
n=0

√
Sgg(κn) ∆κ cos(κnx + φn) (2.1)

where

∆κ =
κu

N
(2.2)

κn = n ∆κ, n = 0, 1, ..., N − 1 (2.3)

and κu is the upper cutoff wave number, beyond which the SDF Sgg(κ) can
be assumed to be zero for mathematical or physical reasons. The φn’s are
independent random phase angles, uniformly distributed in the interval [0, 2π].

Since the simulated stochastic field g(x) is a superposition of cosines, it is
periodic, and it can be proved (Shinozuka and Deodatis, 1991) that the period
is

L =
2π

∆κ
(2.4)

The Gaussianity of the samples relies on the Central Limit Theorem, therefore
the generated sample functions are Gaussian only asymptotically, as N tends
to infinity.

However, the samples can be assumed to be Gaussian if N is greater than
approximately 100 (Shinozuka and Deodatis, 1991). Generated sample functions
also have a strong ergodic property in the mean and autocorrelation when the
length of the sample is a multiple of the period L or tends to infinity (Shinozuka
and Deodatis, 1991; Grigoriu, 1993). Actually, this property requires also the
hypothesis

Sgg(κ = 0) = 0 (2.5)

but by means of the Frequency Shifting Theorem, this constraint can be avoided
(Zerva, 1992). In this case, the period of the simulated field is doubled. The
Gaussianity of the random field implies that mean and autocorrelation func-
tion are sufficient to fully describe the field. The mean and autocorrelation
ergodicity ensure that these two properties can be estimated by means of a
single sample. Therefore, a single sample g(x) produced by the SRM is suffi-
cient to fully reconstruct the theoretical random field. It is worth noting that
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12 2. Critical Review of Previous Research Work

this ergodic property is lost when the Gaussian sample function is mapped to a
non-Gaussian one according to the classic translation field transformation.

In order to improve the computational efficiency of the SRM, the Fast Fourier
Transform (FFT) can be proficiently employed, as suggested by Yang (1972,
1973). To this purpose, Eq. (2.1) can be rewritten as

g(xm) = <

{
2

M−1∑
n=0

√
Sgg(κn) ∆κ exp (iφn) exp (iκn xm)

}
(2.6)

where

xm = m ∆x, m = 0, 1, ...,M − 1 (2.7)

<{·} represents the real part of the argument in brackets, M is the number of
intervals in the space domain and ∆x is a function of ∆κ through the relation-
ship

∆x∆κ =
2π

M
(2.8)

The number of intervals M must satisfy the relationship

M ≥ 2N (2.9)

and the length of the resultant sample is always one period. Since, as already
mentioned, Sgg(κn) is considered negligible for κn larger than κu (i.e. for every
n larger than N), the value of Sgg(κn) is set equal to zero for every n in the
interval [N ;M − 1]. The implementation of the FFT can dramatically reduce
the computational cost of the simulation and becomes almost necessary in the
case of two- and three-dimensional fields.

Several procedures have been developed to produce a non-Gaussian field
starting from a Gaussian one. The following ones are the most significant for
the purposes of this thesis.

2.3 Spectral Representation Method for
Non-Gaussian Fields

2.3.1 Yamazaki and Shinozuka (1988)

Yamazaki and Shinozuka (1988) proposed an SRM-based iterative methodol-
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ogy to simulate a non-Gaussian stochastic field f(x) according to a target non-
Gaussian SDF, ST

ff (κ), and a target non-Gaussian marginal CDF, Ff , with zero
mean and variance σ2

f compatible with that of the target SDF. Their method-
ology is based on Grigoriu’s translation field theory (Grigoriu, 1984, 1995).

At the first iterative step, the unknown SDF of the underlying Gaussian field
g(x), Sgg(κ), is set equal to ST

ff (κ). Then, a Gaussian sample function g(x) is
generated by means of the SRM. The classic translation field transformation
(Grigoriu, 1984, 1995) is then used to map the homogeneous Gaussian sample
into a homogeneous non-Gaussian one with the prescribed marginal PDF:

f(x) = F−1
f {Fg [g(x)]} (2.10)

where F−1
f is the inverse target non-Gaussian Cumulative Distribution Function

(CDF) and Fg is the Gaussian CDF with zero mean and variance σ2
g equal to σ2

f .
Although sample function f(x) reflects the prescribed non-Gaussian marginal
CDF, Ff , its SDF is not matching, in general, the prescribed SDF, ST

ff (κ),
because of the nonlinearity of the transformation in Eq. (2.10).

The basic idea of the Yamazaki and Shinozuka algorithm is to update it-
eratively the SDF of the underlying Gaussian field until the SDF of the non-
Gaussian sample function converges to the target. This is expressed as:

S(j+1)
gg (κ) =

S
(j)
gg (κ)

S
(j)
ff (κ)

ST
ff (κ) (2.11)

where S
(j+1)
gg (κ) and S

(j)
gg (κ) denote the SDF’s of the underlying Gaussian field

at the (j + 1)th and jth iterations, respectively, and S
(j)
ff (κ) is the SDF of the

non-Gaussian sample function at the jth iteration computed from:

S
(j)
ff (κ) =

1
2πL

∣∣∣∣∣∣
L∫

0

f (j)(x) exp(−iκx) dx

∣∣∣∣∣∣
2

(2.12)

Over the years since its introduction in 1988, it has become clear that the
Yamazaki and Shinozuka algorithm cannot match accurately the prescribed non-
Gaussian marginal CDF when it deviates significantly from the Gaussian. Deo-
datis and Micaletti (2001) have identified and explained in detail the theoretical
reasons for this problem that are briefly summarized here.
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14 2. Critical Review of Previous Research Work

The first reason is that the underlying “Gaussian” field diverges from Gaus-
sianity as the iterations proceed. This is due to the fact that the updating
formula in Eq. (2.11) makes the SDF Sgg(κ) of the underlying Gaussian field a
function of all the φn’s in Eq. (2.1) –since S

(j)
ff (κ) is a function of all the φn’s

as can be seen from Eq. (2.12)–. Once Sgg(κ) becomes a function of all the
φn’s, each term in the summation in Eq. (2.1) becomes a function of all the
φn’s too, and the condition of independence, necessary for the validity of the
Central Limit Theorem, is not valid anymore. This, in turn, affects the map-
ping in Eq. (2.10) which assumes that sample function g(x) is Gaussian, while
it is not. Consequently, f(x) will not reflect the target marginal distribution.
A secondary side-effect is that g(x) is not perfectly homogeneous and therefore
f(x) will not be homogeneous either. However, this deviation from homogeneity
is usually negligible.

The second reason of the low accuracy of the method is the “incompatibil-
ity” between the target SDF and the target marginal distribution of the non-
Gaussian stochastic field. Yamazaki and Shinozuka (1988) assumed that ST

ff (κ)
and Ff can be prescribed arbitrarily, except for the obvious condition on the
compatibility of their variance

σ2
f =

∞∫
−∞

ST
ff (κ) dκ (2.13)

In contrast, Grigoriu (1995) has demonstrated that if f(x) is a translation field
(as is the case with the Yamazaki and Shinozuka algorithm), its autocorrelation
function Rff (ξ) and its marginal CDF are strictly linked through the relation-
ship:

Rff (ξ) =

∞∫
−∞

∞∫
−∞

F−1
f {Fg [g(x′)]} · F−1

f {Fg [g(x′′ + ξ)]} ·

·Pgg [g(x′), g(x′′ + ξ)] dx′ dx′′

(2.14)

where ξ denotes the separation distance and Pgg is the Gaussian joint Proba-
bility Density Function (PDF):

Pgg [g(x), g(x + ξ)] =

=
1

2πσ2
g

√
1− ρ2(ξ)

· exp
{
−g2(x) + g2(x + ξ)− 2ρ(ξ)g(x)g(x + ξ)

2σ2
g [1− ρ2(ξ)]

}
(2.15)
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2.3 SRM for Non-Gaussian Fields 15

with ρ(ξ) being the correlation coefficient given, in the case of zero-mean homo-
geneous fields, by:

ρ(ξ) =
Rgg(ξ)

σ2
g

(2.16)

Equation (2.14) works always in a forward fashion. This means that prescribing
arbitrarily an underlying Gaussian field (through its autocorrelation function or
SDF) and a marginal CDF for the non-Gaussian field, it is always possible to
determine the autocorrelation function Rff (ξ) of the non-Gaussian field (and
this autocorrelation function will be non-negative-definite). The inverse is not
always possible. This means that it is not always possible to determine an
underlying Gaussian field by arbitrarily prescribing an SDF and a marginal
CDF for the non-Gaussian field. If it is not possible to determine an underlying
Gaussian field, then the ST

ff (κ) and Ff are said to be “incompatible”.

2.3.2 Deodatis and Micaletti (2001)

Deodatis and Micaletti (2001) proposed some modifications to the Yamazaki and
Shinozuka (1988) methodology in order to overcome the problems mentioned in
the previous Section.

First, Deodatis and Micaletti (2001) suggested a “compatibility check” to
determine whether ST

ff (κ) and Ff are compatible or not. The procedure consists
in a discrete numeric inversion of Equation (2.14) in order to reconstruct Rgg(ξ)
given Rff (ξ). The first type of incompatibility arises if in certain points (i.e. for
certain values of ξ) there is no way to find a value of Rgg that satisfies Eq. (2.14).
In this case, the suggestion is to change either ST

ff (κ) or Ff or both. The second
type of incompatibility arises if it is possible to fully determine Rgg(ξ) but it
is not an admissible autocorrelation function because it is not non-negative-
definite. This can be easily determined computing Sgg(κ) by means of the
Wiener-Khintchine Theorem in Eq. (A.32), then the non-negative-definiteness
of Rgg(ξ) is equivalent to the condition

Sgg(κ) ≥ 0 ∀κ (2.17)

If in certain points Sgg(κ) is negative, it will be possible to slightly modify the
value of the underlying SDF in those points, setting it equal to zero. It is worth
to notice that both in the case of the first type of incompatibility and in this
latter case of incompatibility, this approach requires to modify (at least in some
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16 2. Critical Review of Previous Research Work

points) the target. Although the modifications to ST
ff (κ) are generally slight

(especially when Ff is not very far from the Gaussian), the technique is rather
arbitrary and non-unique. In this thesis, it will be shown that it is not necessary
to go through such “spectral preconditioning”.

The second modification to the Yamazaki and Shinozuka methodology ad-
dresses the problem of divergence of the underlying field from the Gaussian.
Deodatis and Micaletti (2001) suggested to explicitly account for this diver-
gence by computing (numerically) the empirical CDF of g(x) and using it in the
mapping as follows:

f(x) = F−1
f

{
F̂g [g(x)]

}
(2.18)

where F̂g is the (generally non-Gaussian) CDF of the sample g(x) computed by
means of a numerical technique (e.g. cumulative histogram or kernel smoothing,
Bowman and Azzalini, 1997). In this way, the mapping scheme remains of the
same form as that in Eq. (2.10), but now an underlying non-Gaussian field is
mapped into the prescribed non-Gaussian field.

Since strongly non-Gaussian marginal distributions can slow down the con-
vergence of Eq. (2.11), Deodatis and Micaletti suggested to use an exponent β
to improve the convergence characteristics:

S(j+1)
gg (κ) = S(j)

gg (κ)

[
ST

ff (κ)

S
(j)
ff (κ)

]β

(2.19)

The value of β = 0.3 is proposed (Deodatis and Micaletti, 2001) for optimum
convergence (refer also to Popescu et al., 1997, 1998).

Finally, Deodatis and Micaletti suggested to discretize the wave number
domain at the midpoints of the intervals shown in Eq. (2.1), using the frequency
shifting technique proposed by Zerva (1992). This allows to take into account
also fields with Spectral Density Functions greater than zero at κ = 0, still
conserving the homogeneity, and improves convergence significantly, but doubles
the period of the sample function from that in Eq. (2.4).

L =
4π

∆κ
(2.20)

The Frequency Shifting requires also a different estimation of the Spectral Den-
sity Function, that is explained in details in Sec. 3.2.6.
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2.3 SRM for Non-Gaussian Fields 17

Overall, the Deodatis and Micaletti algorithm dramatically improves the
convergence of the CDF of the generated samples to the prescribed target non-
Gaussian CDF, especially so for distributions that are strongly non-Gaussian.
However, it also has a drawback. As the mapping in Eq. (2.18) is made from
a non-Gaussian field g(x) to another non-Gaussian field f(x), the resulting
stochastic field f(x) is not a translation field. Consequently, all the relevant,
well-defined and desired properties of translation fields are lost, including cross-
ing rates and distributions of extremes.

2.3.3 Shi and Deodatis (2004)

Shi and Deodatis (Shi and Deodatis, 2004; Shi et al., 2005; Shi, 2006) have
developed a methodology with similar accuracy to the Deodatis and Micaletti
algorithm presented in the previous Section, but without the drawback of gen-
erating non-Gaussian fields that are not translation ones according to Grigoriu’s
classic definition (Grigoriu, 1984, 1995). The basic idea is to eliminate the un-
wanted correlations among the terms in Eq. (2.1) by replacing the updating
formula in Eq. (2.19) with an optimization procedure.

At a typical step of the Shi and Deodatis algorithm, two wave numbers
are randomly selected, and the corresponding values of the underlying Gaus-
sian SDF, Sgg(κ), are modified by small random amounts. Then the value of
Sgg(κ) at another (third) randomly selected wave number is modified in such a
way that the variance of g(x) remains constant. In this way, an updated SDF,
S

(j+1)
gg (κ), is defined for the next iterative step (j+1) avoiding the use of S

(j)
ff (κ)

from the previous step (j), and thus eliminating any –at least obvious– corre-
lations among the terms in the summation in Eq. (2.1). Therefore, by virtue
of the Central Limit Theorem, the generated field g(j+1)(x) remains Gaussian
and consequently it is possible to use again Eq. (2.10) for the mapping (actually
F (j+1)

g is not strictly assumed to be perfectly Gaussian, but instead it is com-
puted numerically). As a result, the non-Gaussian field f (j+1)(x) is a legitimate
translation field.

The following definition for the error ε between S
(j+1)
ff (κ) and ST

ff (κ) is
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18 2. Critical Review of Previous Research Work

adopted as convergence criterion:

ε = 100

√√√√√√√√
N−1∑
n=0

[
S

(j+1)
ff (κn)− ST

ff (κn)
]2

N−1∑
n=0

[
ST

ff (κn)
]2 (2.21)

where the period L is given by Equation (2.20) because of the Frequency Shift-
ing. If the error at iteration (j + 1) is found to be less than the error at the
previous iteration (j), then the iteration is accepted. Otherwise, the iteration
is rejected, and a new one is performed. The iterative scheme ends when no
further reduction in ε is possible. Since the methodology is based on random
perturbations at every iterative step, Shi and Deodatis suggested to repeat the
whole procedure several (100) times to determine the SDF of the underlying
Gaussian field by ensemble averaging.

The Shi and Deodatis algorithm provides high accuracy in matching both
the target SDF and the target marginal distribution. Moreover, the ensemble-
averaged SDF of the underlying Gaussian field can be stored and used for the
direct and extremely efficient generation of non-Gaussian sample functions with-
out any iterations. Finally, it is emphasized that the generated sample functions
have all the properties of translation fields. However, this algorithm has a num-
ber of limitations and problems that are described in the following.

The first one is shared with the Yamazaki and Shinozuka and Deodatis and
Micaletti algorithms. All three methodologies use essentially Eq. (2.12) to es-
timate the SDF of a generated sample function of the non-Gaussian stochastic
field. Equation (2.12) provides an accurate estimate of the SDF when the field
has ergodicity characteristics in correlation similar to the ones of samples gen-
erated by the Spectral Representation Method (Shinozuka and Deodatis, 1991).
However, the non-Gaussian field f(x) does not have such ergodicity character-
istics (it is not ergodic in correlation). This means that Eq. (2.12) provides
only an approximation of the actual SDF. The Yamazaki and Shinozuka and
Deodatis and Micaletti algorithms use the estimated S

(j)
ff (κ) to update the SDF

of the underlying Gaussian field through Eqs. (2.11) and (2.19). Consequently,
a poor approximation of S

(j)
ff (κ) could be responsible for problems in the con-

vergence and in the accuracy of these two algorithms. In contrast, the Shi and
Deodatis algorithm uses the estimated S

(j)
ff (κ) only to determine whether an

iteration step should be kept or rejected. Consequently, a poor approximation
of S

(j)
ff (κ) might not affect the convergence and the accuracy of this algorithm
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2.3 SRM for Non-Gaussian Fields 19

that much. However, it should be mentioned that the estimation of the SDF of
f(x) using a single sample function –Eq. (2.12)– is often very scattered. There-
fore, the error ε in Eq. (2.21) is not really a measure of the convergence to the
target, but essentially a measure of the scattering of S

(j)
ff (κ). For this reason,

the convergence is very slow, and the Shi and Deodatis algorithm tends to con-
verge to underlying Gaussian fields that generate low scattering, rather than to
the underlying Gaussian field that provides the best matching of the target.

Another problem with the Shi and Deodatis algorithm is the constraint it
imposes on the value of the variance of the underlying Gaussian field. The
classic definition of “translation field” requires the underlying Gaussian field to
be standardized (zero mean and unit variance). However, it has been shown
(Grigoriu, 1984) that the same results (in particular the mean crossing rate)
can be obtained even if the underlying Gaussian field has variance different
from unity. Therefore, the constraint on the variance of g(x) is unnecessary.
Furthermore, it limits the available domain for Sgg(κ) that ensures the best
convergence to the target. The removal of this constraint allows to search for
better solutions, without any drawback.

Finally, the choice to modify three randomly selected points of the underly-
ing Gaussian SDF causes a number of problems. First, it introduces punctual
discontinuities (type 2 discontinuities) in Sgg(κ) that are unnatural and almost
always absent from the final solution. Moreover, it can bias the result and slow
down convergence. For example, consider the case where the first two points to
be modified lie in the region where the SDF reaches its highest values, while the
third point is in the right tail of the SDF. If the first two values are increased by
a certain amount, then the third value must decrease a lot and most probably
become negative, something that is not allowable. If, on the other hand, the
first two values are decreased by a certain amount, then the third value must
increase a lot leading to an unnatural spike in the right tail of the SDF that is
not going to be part of an optimal solution. Several other examples can be found
demonstrating that random punctual modifications are not the best choice to
update the SDF of the underlying Gaussian field.

The simulation methodology proposed in Chapter 3 addresses all of the
aforementioned problems.
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Chapter 3

Simulation of
One-Dimensional,
Uni-Variate,
Strongly Non-Gaussian
Random Fields

Anyone who considers arithmetical methods
of producing random digits is, of course,

in a state of sin.
-John von Neumann-

Sommario. Nel presente Capitolo viene presentato un metodo ori-
ginale per la generazione di campi aleatori omogenei, monodimen-
sionali, monovariati (1D-1V) e fortemente non-Gaussiani.

Lo “Spectral Representation Method” genera campioni Gaussiani che
poi possono venire portati alla distribuzione di probabilità desidera-
ta, per mezzo di una funzione biunivoca detta “mapping”. Tuttavia,

21
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sorge il problema che la forte non linearità del mapping causa la
distorsione della densità di potenza spettrale del campione.

L’idea di base è l’utilizzo di una procedura “trials and errors” per l’i-
dentificazione del cosiddetto campo Gaussiano “underlying” che dopo
la distorsione dovuta al mapping avrà esattamente le caratteristiche
di probabilità marginale e densità di potenza spettrale desiderate.

La descrizione della tecnica al Paragrafo 3.2 è molto dettagliata,
perché essa è anche la base delle metodologie proposte nei Capitoli
seguenti.

Il Paragrafo 3.3 riporta quattro esempi numerici che mostrano come
il metodo proposto dia risultati globalmente migliori dei propri pre-
decessori e sia in grado di generare campioni le cui caratteristiche
non-Gaussiane raggiungono livelli estremi.

Alcune considerazioni sulla buona efficienza computazionale conclu-
dono il Capitolo.

3.1 Introductory Remarks

An original algorithm for the simulation of homogeneous, one-dimensional, uni-
variate (1D-1V), strongly non-Gaussian random fields is presented in this Chap-
ter1.

The description of the procedure (Sec. 3.2) is very detailed because this is
the base for all the simulation techniques proposed in this thesis.

In Sec. 3.3 a benchmark numerical application is used to compare the accu-
racy of the proposed algorithm to the accuracy of the other techniques belonging
to the same class. Three more examples involving strongly non-Gaussian dis-
tributions are presented, to investigate the capabilities and the limits of the
method.

Some concluding remarks and some considerations on the computational
efficiency of the code conclude the Chapter.

1The scientific results reported in this Chapter have already been presented by Bocchini
and Deodatis (2008).
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3.2 Proposed Simulation Methodology

Given the target Spectral Density Function ST
ff (κ) and the target marginal

Cumulative Distribution Function Ff of the non-Gaussian stochastic field f(x),
the proposed methodology finds an underlying Gaussian SDF Sgg(κ) that can
be used to generate non-Gaussian sample functions that reflect the prescribed
targets (ST

ff (κ) and Ff ).
The flow chart of the algorithm is presented in Fig. 3.1. It is based on an

iterative procedure whose general scheme is similar to that of the Shi and Deo-
datis algorithm (see Sec. 2.3.3). The various steps of the proposed methodology
are described in detail in the following (the numbers indicated inside the boxes
in Fig. 3.1 correspond to the numbering of the subparagraphs that follow).

3.2.1 Compute the Starting Gaussian SDF Sgg(κ)

In order to improve the computational efficiency of the algorithm, the starting
values of Sgg(κ) are not assumed to be equal to those of ST

ff (κ) (as was the
practice with the Deodatis and Micaletti and Shi and Deodatis algorithms).
Instead, they are computed using a technique which is quite similar to the basic
methodology shown in Fig. 3.1, but with a much faster iterative scheme2. The
accuracy of this technique is rather low, but it can quickly provide a rough
estimation of the underlying Gaussian SDF. This can be very helpful in cases
where Ff differs significantly from the Gaussian and consequently Sgg(κ) is
expected to be quite different from ST

ff (κ).

2The starting Sgg(κ) is computed using an algorithm whose flow chart is very similar to
that in Fig. 3.1. The only difference occurs in the T iterations of steps 3–6, that are substituted
by the following procedure.

Using the Wiener-Khintchine transform, the autocorrelation function Rgg(ξ) of the current
underlying Gaussian field can be easily computed. The correlation coefficient ρgg(ξ) is then
obtained by simply renormalizing Rgg(ξ) so that Rgg(0) = 1:

ρgg(ξ) =
Rgg(ξ)

σ2
g

(3.1)

Once ρgg(ξ) is known, it is easy to obtain Rff (ξ) by means of Eq. (2.14). However,
Eq. (2.14) involves a double integration that can be computationally slow. To address this
issue, the double integration has been substituted by a lookup table that dramatically reduces
the computational effort. The side effect of this is that the accuracy is somehow reduced, but
it is still very good for initialization purposes.

Then, using again the Wiener-Khintchine transform, Sff (κ) is computed from Rff (ξ).
Since this procedure is not depending on a particular choice of random variables, it is sufficient
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Figure 3.1: Flow chart of the proposed simulation algorithm.
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3.2.2 Save Sgg(κ)

The methodology in Fig. 3.1 is an iterative one with potential random modi-
fications to the SDF of the underlying Gaussian field at every step. Using an
acceptance criterion that will be described later, the modifications at a spe-
cific step can be accepted or rejected. For this reason, Sgg(κ) is saved at each
iteration so that it can be retrieved in case the iteration is rejected.

3.2.3 Generate a Sample Function ĝ(x) Using SRM

The Spectral Representation Method (described in Sec. 2.2) is used to generate
a sample function of the underlying Gaussian field ĝ(x). The discretization of
the SDF in the wave number domain is done at the following points:

κ =
(

n +
1
2

)
∆κ n = 0, 1, ..., N − 1 (3.2)

where ∆κ is defined in Eq. (2.2). The “hat” in ĝ(x) denotes that the sample
is generated using the frequency shifting theorem as proposed by Zerva (1992)
to account for the discretization in Eq. (3.2). It has been shown (Zerva, 1992)
that this formulation relaxes the restrictive assumption that the SDF has to
be zero at the origin for the generated samples to be ergodic. Moreover, it
leads to a significantly faster convergence of the probabilistic characteristics of
the underlying Gaussian field to the corresponding targets (Grigoriu, 1995).
A side-effect is that the resulting doubling of the period requires a different
and somehow more complex computation of a sample’s SDF, as explained in

to do it just once, and not T times. After this, the algorithm proceeds exactly as the one
presented in Section 3.2.

This procedure is very fast. It allows to get a quick rough estimate of Sgg(κ) that is used
to start the main algorithm.
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Sec. 3.2.6. Consequently, the FFT implementation of the SRM is expressed as:

ĝ(xm) =

= <

{
2

M−1∑
n=0

√
Sgg

(
n∆κ +

∆κ

2

)
∆κ exp (iφn) exp

[
i
(

n∆κ +
∆κ

2

)
xm

]}
=

= <

{
2
M−1∑
n=0

√
Sgg

(
n∆κ +

∆κ

2

)
∆κ exp (iφn) exp (in∆κ xm) exp

(
i
∆κ

2
xm

)}
=

= <


FFT+

[
2

√
Sgg

(
n∆κ +

∆κ

2

)
∆κ exp (iφn)

]
︸ ︷︷ ︸

period 2π
∆κ

exp
(

i
∆κ

2
xm

)
︸ ︷︷ ︸
period 2π

∆κ/2= 4π
∆κ


(3.3)

where

xm = m ∆x, m = 0, 1, ...,M − 1 (3.4)

<{·} denotes the real part, FFT+ [·] denotes the Fast Fourier Transform with
positive exponent, M is the number of intervals in the space / wave number
domain, and ∆x and ∆κ are related through:

∆x∆κ =
2π

M
(3.5)

Equation (3.3) indicates that the period of the generated sample function is
L = 4π

∆κ , which is double the period of the classic SRM algorithm in Eq. (2.1)
without frequency shifting. The L = 4π

∆κ period has 2M points. The first
set of M points is determined from Eq. (3.3). The second set of M points is
determined from:

ĝ(xm+M ) = −ĝ(xm) m = 0, 1, . . . ,M − 1 (3.6)

that is consistent with Eq. (3.3).
It is worth noting that as the variance of g(x) is not constrained, g(x) will

be Gaussian, but not standardized Gaussian.
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3.2.4 Compute the Variance of ĝ(x)

The mean of ĝ(x) is always zero because of the way it is generated (using SRM
and considering one period). Its variance σ2

ĝ can be estimated either from the
generated sample function or from the SDF Sgg(κ). Consequently, the Gaussian
Cumulative Distribution Function of ĝ(x) is fully known:

Fg [ĝ] =

ĝ∫
−∞

1√
2πσ̂g

exp
[
− u2

2σ̂2
g

]
du (3.7)

3.2.5 Map ĝ(x) into f̂(x)

The classic translation field memoryless transformation (Grigoriu, 1984, 1995)
is used to map the underlying Gaussian sample function to a non-Gaussian one
having the prescribed marginal CDF, Ff :

f̂(x) = F−1
f {Fg [ĝ(x)]} (3.8)

For some distributions (e.g. the lognormal, Grigoriu, 1995), the inverse of Ff is
available in closed form. Otherwise, a numerical inversion is used.

It should be noted that although ĝ(x) is not a standard Gaussian, f̂(x) still
possesses all the properties of translation fields, as indicated by Grigoriu (1984).
Another interesting point is that although f̂(x) conserves the ergodicity in the
mean property of ĝ(x), it does not conserve its ergodicity in autocorrelation
property.

3.2.6 Compute Sff (κ)

The Spectral Density Function of f̂(x) can not be estimated by means of the
formula in Eq. (2.12) because a different discretization has been used in the
wave number domain –the one shown in Eq. (3.2)–. In order to estimate the
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SDF at the shifted wave numbers of Eq. (3.2), the following expression is used:

Sff

(
n∆κ +

∆κ

2

)
=

1
2πL

∣∣∣∣∣∣
L∫

0

f̂(x) exp
[
−i
(

n∆κ +
∆κ

2

)
x

]
dx

∣∣∣∣∣∣
2

=

=
1

2πL

∣∣∣∣∣∣
L∫

0

f̂(x) exp (−i n∆κ x) exp
(
−i

∆κ

2
x

)
dx

∣∣∣∣∣∣
2

(3.9)

or taking advantage of the Fast Fourier Transform:

Sff

(
n∆κ +

∆κ

2

)
=

1
2πL

∣∣∣∣FFT−
[
f̂(xm) exp

(
−i

∆κ

2
xm

)]
∆x

∣∣∣∣2 =

=
1

2∆κM2

∣∣∣∣∣∣∣∣∣∣
FFT−

 f̂(xm)︸ ︷︷ ︸
period 4π

∆κ

exp
(
−i

∆κ

2
xm

)
︸ ︷︷ ︸

period 4π
∆κ


∣∣∣∣∣∣∣∣∣∣

2

(3.10)

where

xm = m∆x with m = 0, 1, ..., 2M − 1 (3.11)

and FFT− [·] denotes the Fast Fourier Transform with negative exponent.
The FFT in Eq. (3.10) indicates that the resulting SDF will be provided in

the wave number domain over a length equivalent to 4π
∆κ in the space domain.

However, meaningful information about the SDF in the wave number domain
exists only over a length equivalent to 2π

∆κ in the space domain. It should
be taken into account here that the property in Eq. (3.6) is lost for the non-
Gaussian field. Consequently, the non-Gaussian sample function f̂(x) is not a
sample function whose period has been artificially doubled from 2π

∆κ to 4π
∆κ –as

was the case with ĝ(x)–, but a sample function consisting of two essentially
uncorrelated sub-samples, each one of length 2π

∆κ .
Equation (3.10) is therefore applied twice, the first time to the first half of

the sample, and the second time to the second half. Then the two resulting
SDF’s are averaged. This is expressed in the following Equations, where the
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multiplying factors have been doubled because the periods are one half of L:

S′ff

(
n∆κ +

∆κ

2

)
=

1
∆κM2

∣∣∣∣FFT−
[
f̂(xm) exp

(
−i

∆κ

2
xm

)]∣∣∣∣2
with m = 0, 1, ...,M − 1

(3.12)

S′′ff

(
n∆κ +

∆κ

2

)
=

1
∆κM2

∣∣∣∣FFT−
[
f̂(xm) exp

(
−i

∆κ

2
xm

)]∣∣∣∣2
with m = M,M + 1, ..., 2M − 1

(3.13)

Sff

(
n∆κ +

∆κ

2

)
=

S′ff

(
n∆κ + ∆κ

2

)
+ S′′ff

(
n∆κ + ∆κ

2

)
2

(3.14)

The SDF in Eq. (3.14) is only an approximation of the exact SDF of the
non-Gaussian field, as f̂(x) is not ergodic in autocorrelation.

3.2.7 Compute the Average SDF, S̄ff (κ)

For an accurate estimation of the spectral density function of the non-Gaussian
field, it is necessary to average the empirical SDF’s of many sample functions
–each computed using Eq. (3.14)–. For this reason, the steps described in
Secs. 3.2.3–3.2.6 are repeated T times, and then the average SDF is computed
from:

S̄ff (κ) =
1
T

T∑
t=1

S
(t)
ff (κ) (3.15)

An extensive numerical investigation has revealed that a value of T = 60 is
usually sufficient to get a very good and smooth approximation of S̄ff (κ), as
represented in Fig. 3.2.
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3.2.8 Compute the Error ε Between the Target and Com-
puted SDF

The error between the target SDF of the non-Gaussian field and the computed
SDF at a specific iteration is measured by means of the following expression:

ε = 100

√√√√√√√√
N−1∑
n=0

[
S̄ff (κn)− ST

ff (κn)
]2

N−1∑
n=0

[
ST

ff (κn)
]2 (3.16)

Since S̄ff (κ) is usually smooth from the ensemble averaging, Eq. (3.16) gives
an accurate estimate of the difference between the target and the computed
SDF’s. Figure 3.2 shows that if only a single S

(t)
ff (κ) were used instead –as done

by the Shi and Deodatis algorithm, according to Eq. (2.21)–, the value of ε

would be governed more by the scattering of S
(t)
ff (κ), than by the real difference

between the shapes of the target and the computed SDF’s. In contrast, using
S̄ff (κ) to estimate the error, reflects better the true difference between the
shapes of the two SDF’s and results in an overall faster convergence of the
iterative scheme (although T samples have to be generated at every iteration).

3.2.9 Accept Iteration and Save Sgg(κ)

If the error computed through Eq. (3.16) is smaller than that computed in the
last accepted iteration, then the current iteration is accepted. For the same
reason as explained in Section 3.2.2, the current Gaussian SDF Sgg(κ) is saved.

Then, a check is performed to determine whether convergence is met or
not. The criterion for reaching convergence is for the value of ε to be reduced
by less than 0.01% during the last 20 accepted iterations (“Plateau reached”).
The values 20 and 0.01% have been determined after an extensive numerical
investigation. If the convergence criterion is satisfied, the iterative scheme ends.
Otherwise, the iterations continue and a random perturbation is applied to
Sgg(κ), as explained in Section 3.2.11.
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Figure 3.2: Comparison between the SDF estimated using one sample function
f̂(x) and the SDF estimated using 60 sample functions f̂(x).
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3.2.10 Reject Iteration and Restore the Saved Sgg(κ)

If the error computed through Eq. (3.16) is greater than that computed in the
last accepted iteration, then the current iteration is rejected. This means that
the random perturbation previously applied to Sgg(κ) has led to a non-Gaussian
SDF that it further away from the target. Therefore, the saved Sgg(κ) of the
last accepted iteration is restored.

Furthermore, a convergence check is performed at this point. The algorithm
keeps track of whether all of the last 4N iterations have been rejected (“Maxi-
mum improvement reached”). The meaning of the value 4N will become clear in
Section 3.2.11. If all of the last 4N iterations have been rejected, the iterative
scheme ends. Otherwise, the iterations go on and a random perturbation is
applied to Sgg(κ), as explained in the next Section.

3.2.11 Apply Random Perturbation to Sgg(κ)

As mentioned earlier, if the convergence checks are not satisfied, the iterations
continue and a random perturbation is applied to the current Sgg(κ). Specifi-
cally, the following perturbation ∆S is added to the underlying Gaussian spec-
trum:

∆S = A exp
[
− (κ− κ0)2

40

]
(3.17)

where κ0 is a point selected randomly in the interval [0, κu], and A is equal to
±Sgg(κ0)

10 with its sign randomly selected.
This perturbation ∆S obviously dies down quickly to the left and to the

right of κ0. Consequently, only N
16 points of Sgg(κ) are modified according to

Eq. (3.17) (beyond these N
16 points the modifications are negligible and therefore

disregarded). If κ0 is too close to 0 or κu, then the perturbation involves less
than N

16 points. Different functional forms and extensions of the perturbation
scheme have been tried. The one selected –Eq. (3.17)– provided the best con-
vergence characteristics. Figure 3.3 displays a representative example of this
random perturbation.

In an average sense, every 4N iterations, each point of Sgg(κ) should be
chosen twice as κ0 with a positive sign for ∆S, and twice as κ0 with a negative
sign for ∆S. Since the number of iterations is finite and limited, it appears
reasonable to assume only that every 4N iterations, each region of Sgg(κ) has
gone through an iteration with a positive sign for ∆S and an iteration with a



i
i

“phd5” — 2008/3/30 — 23:56 — page 33 — #49 i
i

i
i

i
i

3.2 Proposed Simulation Methodology 33

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

S
gg

(κ
) b

ef
or

e 
pe

rtu
rb

at
io

n

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

R
an

do
m

 p
er

tu
rb

at
io

n

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

κ

S
gg

(κ
) a

fte
r p

er
tu

rb
at

io
n

Figure 3.3: Representative example of random perturbation of Sgg(κ).
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negative sign for ∆S. Consequently, if 4N consecutive iterations are rejected, it
is considered unlikely that further improvements in the convergence are possible
and the iterative scheme ends (see Section 3.2.10).

A significant advantage of this perturbation scheme is that it is not inducing
sharp discontinuities in Sgg(κ). This translates into faster convergence. It
should be noticed that this perturbation scheme changes the area underneath
the Sgg(κ). Consequently, the variance of the underlying Gaussian field g(x) is
not constant. As already mentioned, this allows to search for the most suitable
Sgg(κ) from a larger range of admissible SDF’s, and, in general, leads to a better
overall solution.

After a random perturbation is implemented and a new Sgg(κ) is determined,
the iterative scheme continues with the simulation of ĝ(x) as described in Section
3.2.3.

3.2.12 Compute the Average S̄gg(κ)

The resulting SDF Sgg(κ) after completing the steps in Secs. 3.2.3–3.2.11 (called
a “run”) is not unique. A slightly different Sgg(κ) will be obtained from a
different run. Consequently, a total of V runs are performed and an average
SDF of the underlying Gaussian field is estimated as:

S̄gg(κ) =
1
V

V∑
v=1

S(v)
gg (κ) (3.18)

A numerical investigation has suggested that a value of V = 10 is sufficient
for an accurate estimation of S̄gg(κ). However, to ensure even higher accuracy,
a value of V = 50 is used throughout the “Numerical Examples” Section that
follows.

Once the ensemble-averaged SDF of the underlying Gaussian field S̄gg(κ)
is available, the generation of sample functions of the non-Gaussian random
field f(x) is straightforward and extremely efficient computationally. In fact,
only the steps described in Secs. 3.2.3 and 3.2.5 are necessary and no iterations
are involved. The generated non-Gaussian random fields will perfectly match
the target distribution Ff , they will have a SDF very close to the target (in
ensemble-average sense) ST

ff (κ), and they will also possess all the properties of
translation fields according to Grigoriu’s theory (Grigoriu, 1984, 1995).
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Figure 3.4: Four probability density functions compared with the Standard
Gaussian.

3.3 Numerical Examples

Four numerical examples are provided involving four different marginal distri-
butions for the non-Gaussian field: (1) a Lognormal distribution is used to
compare the proposed method with those described in Sec. 2.3, (2 & 3) a Uni-
form distribution and a U-shaped Beta distribution are used to demonstrate
the capabilities of the methodology when dealing with strongly non-Gaussian
distributions, (4) an L-shaped Beta distribution with coefficient of skewness 4
and coefficient of kurtosis 25 is used to explore the limits of applicability of the
method. The probability density functions of all four distributions are plotted
in Fig. 3.4.
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For all examples, the target spectral density function is selected as:

ST
ff (κ) =

125
4

σ2
fκ2 exp (−5 |κ|) (3.19)

with σ2
f = 1. The cutoff wave number is set equal to κu = 6.28 rad/sec, the

number of intervals in the wave number domain is N = 256, and the number of
intervals used for the Fast Fourier Transform is M = 210 = 1024. The random
phase angles φ are generated by means of the Mersenne Twister (Matsumoto
and Kurita, 1992; Matsumoto and Nishimura, 1998).

3.3.1 Comparison with the Algorithms Presented in
Sec. 2.3

Results for the three previously developed methods presented in Sec. 2.3 are
available in the literature (Deodatis and Micaletti, 2001; Shi, 2006) for the
Lognormal distribution with the following PDF:

P(x) =
1√

2πσN x̄
exp

[
− (ln x̄− µN )2

2σ2
N

]
(3.20)

where:

σ2
N = ln

(
1 +

σ

µ̄2

)
; µN = ln µ̄− σ2

N

2
; x̄ = x− µ̄ (3.21)

The choice of the following values for parameters µ̄ and σ:

µ̄ = 1.8 ; σ2 = 1 (3.22)

leads to the following moments for the Lognormal distribution:

mean: µ = 0 ; variance: σ2 = 1 ; skewness: γ = 1.838 ; kurtosis = 9.553

This distribution is defined over the interval [−1.8,∞]. Figure 3.4 and the
skewness and kurtosis coefficients give an idea of the strong deviation of this
distribution from the Gaussian.

For comparison purposes, 100 sample functions are generated using each
one of the four methodologies. Their ensemble-averaged SDF’s and PDF’s are
plotted in Figs. 3.5 and 3.6 respectively.
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Figure 3.5: Lognormal distribution: non-Gaussian ensemble-averaged spectral
density functions compared with the corresponding target (E denotes the error).
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Figure 3.6: Lognormal distribution: non-Gaussian ensemble-averaged probabil-
ity density functions compared with the corresponding target.



i
i

“phd5” — 2008/3/30 — 23:56 — page 39 — #55 i
i

i
i

i
i

3.3 Numerical Examples 39

It is generally acknowledged that the spectral density function of a non-
Gaussian translation field cannot be equal to zero at zero wave number (even
when the SDF of the underlying Gaussian field is zero at zero wave number,
refer to Eq. (2.14) and see for example Grigoriu, 1995, Par. 3.1). The target
SDF of the non-Gaussian field in this work is selected to be equal to zero at zero
wave number –see Eq. (3.19)–, an a priori known incompatibility (Deodatis and
Micaletti, 2001). For this reason, all errors reported in Fig. 3.5 disregard the
first four points in the wave number domain. However, these first four points
are considered in the error calculations during the iterative schemes of all four
methodologies.

The following conclusions are drawn by studying Figs. 3.5 and 3.6. The
Yamazaki and Shinozuka algorithm has shown convergence problems in the past
when dealing with this Lognormal distribution. To enhance its performance, the
updating formula proposed by Deodatis and Micaletti –see Eq. (2.19)– is used
to obtain the results shown in this paper. However, as can be seen in Fig. 3.6,
it is still unsuccessful in matching the target PDF. The Deodatis and Micaletti
algorithm shows exceptional accuracy in matching both the target SDF and
PDF. However, it is not producing sample functions that have the properties of
translation fields. In contrast, the sample functions generated by the Shi and
Deodatis algorithm are translation fields. They match the target PDF with
great accuracy. The match of the target SDF is good, but not as good as that
of the PDF. The methodology proposed in this paper matches almost perfectly
the target PDF, but loses some accuracy in the matching of the SDF. However,
as can be seen in Fig. 3.5, the error in the SDF is reduced to one half the
corresponding error obtained by the Shi and Deodatis algorithm. It should be
mentioned that the samples generated by the proposed methodology possess all
the properties of translation fields.

Since the last two methodologies have similar characteristics, a further com-
parison is conducted. Both methods are aiming to determine an underlying
Gaussian field that provides the best match of the non-Gaussian targets. For
this purpose, the two Sgg(κ)’s resulting from the two methods have been plugged
into the “double integration formula” reported in Eq. (2.14). This way, the com-
parison is not affected by the (random) choice of φ angles. The two resulting
non-Gaussian SDF’s are plotted in Fig. 3.7 where it can be seen that the match-
ing of the proposed algorithm is essentially perfect (except for the region close
to κ = 0 where the non-Gaussian spectrum can not be zero).
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Figure 3.7: Lognormal distribution: computed non-Gaussian spectral density
functions compared with the corresponding target. The computed SDF’s have
been determined using the double integration formula (E denotes the error).
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3.3.2 Other Strongly Non-Gaussian Distributions

The proposed algorithm has been tested with two more strongly non-Gaussian
marginal distributions: the Uniform and the U-shaped Beta.

The Uniform distribution used has PDF given by:

P(x) =
{

1
b−a a ≤ x ≤ b

0 otherwise (3.23)

with parameters:

a = −
√

3 ; b =
√

3 (3.24)

resulting in the following moments:

mean: µ = 0 ; variance: σ2 = 1 ; skewness: γ = 0 ; kurtosis = 1.8 (3.25)

Results concerning the matching of the SDF and the PDF are presented in
Figs. 3.8 and 3.9, respectively. Both matchings are highly accurate. For reasons
already mentioned, the computed SDF in Fig. 3.8 is obtained through the double
integration formula in Eq. (2.14).

The U-shaped Beta distribution used has PDF given by:

P(x) =
Γ(C + D)

Γ(C)Γ(D)(B −A)C+D−1
(x−A)C−1(B−x)D−1 ; A < x < B (3.26)

with parameters:

A = −1.1 ; B = 1.7 ; C = 0.341785714 ; D = 0.528214286 (3.27)

resulting in the following moments:

mean: µ = 0 ; variance: σ2 = 1 ; skewness: γ = 0.418 ; kurtosis = 1.644
(3.28)

The distribution is defined over the interval [−1.1, 1.7]. Results concerning
the matching of the SDF and the PDF are presented in Figs. 3.10 and 3.11,
respectively. Both matchings are again highly accurate. For reasons already
mentioned, the computed SDF in Fig. 3.10 is obtained through the double in-
tegration formula in Eq. (2.14).
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Figure 3.8: Uniform distribution: non-Gaussian spectral density function com-
pared with the corresponding target. The computed SDF has been determined
using the double integration formula (E denotes the error).
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Figure 3.9: Ensemble-averaged Uniform probability density function compared
with the corresponding target.
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Figure 3.10: U-shaped Beta distribution: non-Gaussian spectral density func-
tion compared with the corresponding target. The computed SDF has been
determined using the double integration formula (E denotes the error).
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Figure 3.11: Ensemble-averaged U-shaped Beta probability density function
compared with the corresponding target.
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3.3.3 Limits of Applicability of the Proposed Methodol-
ogy

To investigate the limits of applicability of the proposed algorithm, a Beta
distribution with coefficient of skewness 4 and coefficient of Kurtosis 25 has
been considered (always with zero mean and unit variance). In order to obtain
these moments, the parameters of the Beta distribution –refer to Eq. (3.26)–
have been set equal to:

A = −0.457 ; B = 28.43 ; C = 0.1895 ; D = 11.795 (3.29)

The distribution (known as an L-shaped Beta) is defined over the interval
[−0.457, 28.43]. Results concerning the matching of the SDF and the PDF are
presented in Figs. 3.12 and 3.13, respectively. There are obvious problems in
matching the SDF. This distribution could be therefore considered outside the
limit of applicability of the methodology. However, even in this extreme case,
the matching of the SDF is still respectable. For reasons already mentioned, the
computed SDF in Fig. 3.12 is obtained through the double integration formula
in Eq. (2.14).

3.4 Concluding Remarks and Computational Ef-
ficiency

The proposed methodology is the latest development in a class of simulation
algorithms for non-Gaussian fields that started in 1988 with the Yamazaki and
Shinozuka algorithm, and continued with the Deodatis and Micaletti algorithm
in 2001, and the Shi and Deodatis algorithm in 2004 (all described earlier in
this paper). The algorithm proposed in this paper introduces three main mod-
ifications to the algorithm by Shi and Deodatis.

The first modification is that the non-Gaussian field is not assumed to be
ergodic (and indeed it is not). Therefore, its SDF is estimated at each iteration
using a set of T sample functions. The main objective of this modification is
to establish an error that constitutes a true measure of the convergence of the
computed SDF to the prescribed target.

The second modification is the removal of the constraint on the variance of
the underlying Gaussian field. This way the algorithm searches for the best
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Figure 3.12: L-shaped Beta distribution: non-Gaussian spectral density func-
tion compared with the corresponding target. The computed SDF has been
determined using the double integration formula (E denotes the error).
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Figure 3.13: Ensemble-averaged L-shaped Beta probability density function
compared with the corresponding target.
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possible underlying Gaussian field over a wider range of possible solutions, and
consequently it can determine in general a better solution.

The third modification involves the updating mechanism of the underlying
Gaussian field. The proposed algorithm performs this updating over a pre-
scribed wave number domain with an exponentially decaying pattern from the
center of the domain, thus preserving the smoothness of the SDF. A smooth
SDF is more realistic than one with sharp discontinuities (as was the case in the
Shi and Deodatis algorithm), and this leads to faster convergence.

Other minor modifications are also introduced. For example, an initialization
step is proposed to reduce the computational time and the Gaussian to non-
Gaussian mapping is fully analytical if possible.

The numerical examples considered demonstrate that the proposed method-
ology is capable of simulating strongly non-Gaussian fields with high accuracy
in matching both the target SDF and marginal PDF. Moreover, the generated
sample functions possess all the properties of classic translation fields.

The issue of compatibility between the target non-Gaussian SDF and CDF
seems to be less important than what was thought in the past. This is due
to the fact that the proposed algorithm is capable of determining a compatible
non-Gaussian SDF (computed by double integration) that is very close to the
(arbitrarily chosen) target SDF. This is possible for the majority of marginal
distributions with reasonably large deviations from the Gaussian. However,
this capability is partially lost when the deviations from the Gaussian become
extreme (as was shown in the example involving the L-shaped Beta distribution).

Finally, a few notes about the computational efficiency of the proposed al-
gorithm when compared to the Shi and Deodatis one. The comparison is made
for the time required to estimate the underlying Gaussian SDF S̄gg(κ) (this is
the part that consumes the vast majority of the computational effort for both
methodologies). It has been determined that the proposed methodology re-
quires one-half to one-third the computational effort of the Shi and Deodatis
algorithm. Furthermore, the S̄gg(κ) established by the proposed algorithm has
approximately one-half the error of the corresponding S̄gg(κ) determined by
the Shi and Deodatis method. As a general conclusion, the proposed method-
ology reduces the computational cost, while at the same time it increases the
accuracy.
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Chapter 4

Simulation of
Multi-Dimensional,
Uni-Variate,
Strongly Non-Gaussian
Random Fields

Nature permits us to calculate only probabilities,
yet science has not collapsed

-Richard P. Feynman-

Sommario. Le grandezze fisiche che appaiono nei modelli ingegne-
ristici devono talvolta essere definite su domini a più dimensioni.
Ad esempio, l’analisi del comportamento meccanico di un suolo o di
una lastra devono essere condotte in un dominio almeno bidimensio-
nale. Di conseguenza, i campi aleatori che modellano tali grandezze
devono essere definiti nel piano o nello spazio.

Per tale motivo, in questo Capitolo viene presentata l’estensione al

51
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52 4. Simulation of nD-1V Strongly Non-Gaussian Random Fields

caso multidimensionale (nD-1V) della tecnica introdotta al Capitolo
3.

Tale generalizzazione non ha presentato particolari difficoltà anali-
tiche, ma ha richiesto la completa riscrittura del codice numerico.
Infatti la struttura dati precedentemente utilizzata per il caso mono-
dimensionale non è parsa adeguata e sufficientemente versatile per
problemi di ordine superiore. Inoltre il cospicuo aumento dell’onere
computazionale ha richiesto un’ottimizzazione del codice molto più
spinta, per poter tenere contenuti i tempi di calcolo.

Un esempio numerico che mostra l’efficacia del metodo ed alcune
considerazioni conclusive completano il Capitolo.

4.1 Introductory Remarks

When a random field is used to simulate a physical quantity, it can happen that
the domain of definition has more than one dimension. For instance, a problem
involving the mechanical properties of the soil is necessarily modelled at least
in a two-dimensional space, and sometimes in 3D.

For this reason, over the years many authors have proposed techniques for
the simulation of multi-dimensional random fields. From the rich bibliography
available, a few representative examples are mentioned here: Shinozuka (1974),
Zerva (1992), Shinozuka and Deodatis (1996), Puig et al. (2002), Sakamoto and
Ghanem (2002a,b), Graham et al. (2003).

In this Chapter, the methodology presented in Chapter 3 is extended to the
multi-dimensional, uni-variate (nD-1V), non-Gaussian, homogeneous random
fields. Note that the case of random waves (e.g. Shinozuka et al., 1989) is not
considered, the n-dimension are all in the space domain.

A numerical example is then presented to show the accuracy of the method.
Some final remarks on the computational issues involved in the problem conclude
the Chapter.
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4.2 Proposed Simulation Methodology

4.2.1 Theoretical Aspects

From a theoretical point of view, there are no differences between the procedure
presented in this Chapter and the one treated in Chapter 3 (refer to the flow
chart in Fig. 3.1). Therefore, the algorithm will not be presented here in details.
Only some remarks on the main equations will be made.

The frequency shifting technique (Zerva, 1992) has been employed together
with the standard multi-dimensional Spectral Representation Method (Shinozuka
and Deodatis, 1996). For a two-dimensional random field, the governing equa-
tion is:

ĝ(r ∆x1, s ∆x2) =

=
√

2R

[
e

i πr
M1 e

i πs
M2

{
M1−1∑
p=0

M2−1∑
q=0

[√
2Sgg(κp, κq)∆κ1∆κ2e

i φ(1)
pq

]
e

i 2πrp
M1 e

i 2πsq
M2

}]
·

·
√

2R

[
e

i πr
M1 e

−i πs
M2

{
M1−1∑
p=0

M2−1∑
q=0

[√
2Sgg(κp,−κq)∆κ1∆κ2e

i φ(2)
pq

]
e

i 2πrp
M1 e−

i 2πsq
M2

}]
(4.1)

where
∆x1 =

2π

M1∆κ1
, ∆x2 =

2π

M2∆κ2
(4.2)

∆κ1 =
κu1

N1
, ∆κ2 =

κu2

N2
(4.3)

κp =
(

p +
1
2

)
∆κ1, κq =

(
q +

1
2

)
∆κ2 (4.4)

r = 0, 1, ...,M1 − 1, s = 0, 1, ...,M2 − 1 (4.5)

p = 0, 1, ..., N1 − 1, q = 0, 1, ..., N2 − 1 (4.6)

and φ
(1)
pq , φ

(2)
pq are two sets of independent random phase angles. The meaning of

the other variables is a straightforward extension of the meaning of the variables
of Chapter 3. The discrete notation has been adopted here to stress that the
numerical implementation takes advantage of the FFT technique also in n-
dimensions.
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The random perturbation in Eq. (3.17) is replaced by:

∆S = A exp
[
− (κ1 − κ01)2

40
− (κ2 − κ02)2

40

]
(4.7)

For the three-dimensional case the equations are similar but more complex.
Note also that the case of quadrant fields (see Sec. A.9) has been chosen for

the sake of simplicity.

4.2.2 Computational Aspects

A detailed analysis of the numerical implementation of the code is not in the
focus of this thesis. However, it should be noticed that while from a theoretical
point of view no new concepts have been introduced with respect to the one-
dimensional case, from a numerical point of view the code has been completely
rewritten. This has been necessary for the following two reasons.

First of all, the computational effort grows enormously when increasing the
number of dimensions. Therefore an optimization of the code has been necessary,
to keep the computational time sufficiently moderate. To reach this goal, a
large use of heavily optimized subroutines has been adopted, the loops have
been substituted by vector functions (e.g. Kronecker product, matrix product)
in any possible case and the multi-dimensional FFT has been employed (the
summation of cosines would have a prohibitive cost in the two-dimensional case).
In particular the FFTW code (Frigo and Johnson, 2005) is used for an optimized
tuning of the FFT procedure with respect to the specific hardware architecture.

The second reason is that the data-structure adopted for the one-dimensional
case is not suitable and flexible enough. In particular, the choice of “structures”
rather than multidimensional matrices has been taken. In fact, different dis-
cretizations in the various physical dimensions (demanded by many practical
applications1) require that the variables relative to the various physical dimen-
sions have different “lengths”. This can be accomplished either by using a more
complex and very flexible data-structure or by wasting an enormous amount of
allocated memory. Unfortunately, the required memory is another issue of the
multi-dimensional case, so it was definitely not possible to waste it.

1For instance, in soil mechanics, the variability along the vertical dimension is usually
much higher than that in the horizontal dimensions. Therefore the vertical and horizontal
discretizations are usually very different.
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The final code has shown good performance in managing multi-dimensional
problems both in terms of computational cost and in term of allocated memory.

4.3 Numerical Example

Consider a two-dimensional field with target SDF given by:

ST
ff (κ1, κ2) = σ2 b1b2

4π
exp

[
−
(

b1κ1

2

)2

−
(

b2κ2

2

)2
]

(4.8)

where both parameters b1 and b2 (that are proportional to the correlation dis-
tance) have been set equal to 1 and σ is the standard deviation of the field. The
wave number domain has been discretized according to the following definition
of the parameters:

N1 = 128; M1 = 28 = 256; κu1 = 1.6π
rad

m
(4.9)

N2 = 256; M2 = 29 = 512; κu2 = 1.6π
rad

m
(4.10)

The marginal distribution is the same Lognormal used for the benchmark
test of Sec. 3.3.1:

P(x) =
1√

2πσN x̄
exp

[
− (ln x̄− µN )2

2σ2
N

]
(4.11)

where:

σ2
N = ln

(
1 +

σ

µ̄2

)
; µN = ln µ̄− σ2

N

2
; x̄ = x− µ̄ (4.12)

The choice of the following values for parameters µ̄ and σ:

µ̄ = 1.8 ; σ2 = 1 (4.13)

leads to the following moments for the Lognormal distribution:

mean: µ = 0 ; variance: σ2 = 1 ; skewness: γ = 1.838 ; kurtosis = 9.553

This distribution is defined over the interval [−1.8,∞].
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Figure 4.1: Two-dimensional underlying Gaussian spectrum.
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Figure 4.2: Contour plot of the “empirical” SDF estimated using 20 sample
functions compared to the target SDF. The lines represent equipotential curves
at the levels 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, starting from the origin.
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Figure 4.3: Marginal PDF estimated using 20 sample functions compared to the
target Lognormal.

The code has identified the SDF represented in Fig. 4.1 as underlying Gaus-
sian Spectrum. Fig. 4.2 compares the target spectral density ST

ff (κ) with the
ensemble averaged SDF of 20 generated samples. This representation has been
chosen to make the visual comparison possible. It can be noticed that the two
sets of equipotential curves are almost superimposing and, therefore, the result
is good (the square error is 3.5%). The matching of the prescribed marginal
density is practically perfect, as Fig. 4.3 shows.

On a normal workstation2, this result can be obtained in about one hour of
computation.

2“Normal workstation” is referring, for instance, to a dual core 2.0GHz processor with 2Gb
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4.4 Concluding Remarks and Computational Ef-
ficiency

The approach presented in Chapter 3 can be applied also to multi-dimensional
random fields.

In this case, the main issue is the computational cost and the data storage.
However, the rapidly increasing amount of commonly available computational
power and storage capability, as well as the highly optimized code have made the
algorithm suitable also for a common workstation. Moreover, in the framework
of the Monte Carlo Simulation, the most time expensive task is certainly the
solution of the deterministic problems, and the time required by the generation
of random fields is usually negligible with respect to that.

The numerical application shows that in two-dimensions the generation of
strongly non-Gaussian fields with the proposed approach is very accurate too.

of RAM.
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Chapter 5

Simulation of
One-Dimensional,
Multi-Variate,
Strongly Non-Gaussian
Random Fields

Randomness is originality,
and originality is art.

-Anonymous-

Sommario. Molto spesso i modelli ingegneristici coinvolgono gran-
dezze aleatorie in qualche misura correlate. Ad esempio, lo sono la
resistenza a trazione e l’allungamento ultimo di un cavo, così come
le varie caratteristiche meccaniche di un suolo.

In altri casi può essere conveniente sostituire un campo ad n di-
mensioni con un insieme di campi correlati ad (n − 1) dimensioni.
Ciò viene fatto solitamente nella modellazione delle fluttuazioni del-
la velocità del vento. Queste dovrebbero essere descritte da un’onda

61
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62 5. Simulation of 1D-mV Strongly Non-Gaussian Random Fields

stocastica (cioè da un campo nel dominio del spazio e del tempo),
ma vengono di solito rappresentate da una serie di processi aleatori
correlati, relativi ciascuno ad un particolare punto dello spazio.

In entrambi i casi esposti, è richiesta la simulazione di campi aleatori
multivariati (1D-mV), in generale non-Gaussiani.

Per tale motivo, in questo Capitolo viene presentata una metodolo-
gia che svolge tale compito sfruttando le stesse idee di base di quella
illustrata al Capitolo 3. In particolare, per i termini non diagona-
li della matrice di densità spettrale viene identificata la cosiddetta
“underlying Gaussian coherence”, o direttamente la densità spettrale
congiunta.

Gli esempi numerici mostrano le capacità del metodo, che vengono
riassunte e commentate nel Paragrafo conclusivo.

5.1 Introductory Remarks

The physical quantities involved in the Monte Carlo Simulation of problems
in mechanics are very often described by a number of correlated variables, for
instance the ultimate strength and ultimate elongation of a cable wire are cor-
related, the various mechanical properties of a soil are correlated. Other times,
it is very useful to substitute an n-dimensional random field (or wave, mean-
ing that one dimension is in the time domain, and the others are in the space
domain) by a set of correlated (n− 1)-dimensional fields/processes/waves. For
instance, the wind speed is a random wave that is usually modeled as a set of
random processes, each of them relative to a particular point (e.g. see Gioffre
et al., 2000). In both of these cases, a multi-variate (in general non-Gaussian)
random field generator is required.

Many authors have proposed methodologies for the simulation of Gaussian
vector fields and processes. Among these, some of the most considerable have
been done by Li and Kareem (1993), Deodatis (1996), Di Paola and Gullo (2001).
Other papers consider also the case of non-Gaussian multi-variate fields, some
of which are here reported in chronological order: Popescu et al. (1997), Gurley
and Kareem (1998), Popescu et al. (1998), Gioffre et al. (2000), Puig et al.
(2002), Gioffre and Gusella (2002), Chen and Deodatis (2004).

This Chapter presents an extension of the same basic ideas of the technique
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described in Chapter 3 to the simulation of homogeneous, one-dimensional,
multi-variate (1D-mV) strongly non-Gaussian random fields.

In the numerical examples only the special case in which the cross-terms of
the Cross-Spectral Density Matrix (CSDM) can be expressed as:

ST
rs(κ) = γT

rs(κ)
√

ST
rr(κ) ST

ss(κ) (5.1)

0 ≤ γT
rs(κ) ≤ 1 (5.2)

where γrs denotes the “coherence” function between the variables r and s is
considered, for the sake of clearness of the presentation. However, the code is
perfectly able to consider also the most general case of (complex) cross-spectra
not described by Eq. (5.1).

The algorithm identifies an “underlying Gaussian coherence” or an “under-
lying Gaussian cross-spectrum” so that the resulting non-Gaussian vector (i.e.
multi-variate) field has the prescribed properties.

The original contributions of the method proposed in this Chapter include
high accuracy and high efficiency, especially when a very large number of samples
is required (i.e. every application of the Monte Carlo Simulation).

In Sec 5.2, only random fields will be considered for simplicity. The extension
to random processes is trivial, one example is presented in Sec. 6.7.3.

5.2 Proposed Simulation Methodology

In order to produce multi-variate random fields, the following macro-procedures
are performed:

1. identification of the underlying Gaussian Spectral Density Function for
every component (Chapter 3);

2. identification of the underlying Gaussian coherences or cross-spectra (Sec. 5.3);

3. production of the underlying Gaussian samples (Deodatis, 1996);

4. mapping of the underlying Gaussian samples to the prescribed marginal
distributions (Grigoriu, 1984).
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The first task is accomplished through the procedure presented in Chapter 3.
The present Chapter focuses on the second step. As for the other two steps,
there are a number of methodologies available in the literature. In the following
paragraphs, the two that are employed are briefly described.

5.2.1 Simulation of Gaussian Vector Fields

Deodatis (1996) has proposed the algorithm that is adopted to perform the third
step.

Given a certain target cross-correlation matrix RT (ξ):

RT (ξ) =


RT

11(ξ) RT
12(ξ) · · · RT

1m(ξ)
RT

21(ξ) RT
22(ξ) · · · RT

2m(ξ)
...

...
. . .

...
RT

m1(ξ) RT
m2(ξ) · · · RT

mm(ξ)

 (5.3)

or the equivalent CSDM ST (κ):

ST (κ) =


ST

11(κ) ST
12(κ) · · · ST

1m(κ)
ST

21(κ) ST
22(κ) · · · ST

2m(κ)
...

...
. . .

...
ST

m1(κ) ST
m2(κ) · · · ST

mm(κ)

 (5.4)

the algorithm produces Gaussian samples gc(x) of the m components. The
formula that is used is an extension of the “Spectral Representation” (Shinozuka
and Jan, 1972):

gc(x) = 2
c∑

n=1

N∑
l=1

|Hcn(κnl)|
√

∆κ cos[κnlx− θcn(κnl) + φnl];

c = 1, 2, . . . ,m

(5.5)

where the elements Hcn(κ) of the matrix H(κ) are defined so that

ST (κ) = H(κ)H∗T (κ) (5.6)

and can be obtained, for instance, by means of a Cholesky decomposition; the
phase angles θcn(κ) are defined as

θcn(κ) = tan−1

{
=[Hcn(κ)]
<[Hcn(κ)]

}
, −π

2
≤ θ ≤ π

2
(5.7)
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and the quantities φnl are sequences of independent random phase angles uni-
formly distributed over the interval [0, 2π]. Equation (5.5) shows that the “fre-
quency double-indexing” technique (Shinozuka et al., 1989) has been adopted
for the wave number:

κnl = l ∆κ− m− n

m
∆κ; n = 1, 2, . . . , c; l = 1, 2, . . . , N ; ∆κ =

κu

N
(5.8)

where κu is the cutoff wave number beyond which the SDF is considered negli-
gible and N is the number of intervals in the wave number domain.

The samples produced in this way are asymptotically Gaussian as N → ∞
because of the central limit theorem and ergodic in the autocorrelation (see
Chapter 6). Moreover, it is possible to take advantage of the Fast Fourier Trans-
form to dramatically reduce the computational cost of the generation (Deodatis,
1996).

5.2.2 Mapping to a Non-Gaussian Vector Field

The memoryless transformation proposed by Grigoriu (1984, 1995, 1998) and
already used in Chapter 3 to map a Gaussian field g(x) into a non-Gaussian
one f(x) with a prescribed distribution can be proficiently employed also for
the multi-variate case, using the marginal distribution of each component. The
mapping formula is repeated here for completeness:

fc(x) = F−1
fc
{Fgc

[gc(x)]} (5.9)

where F−1
fc

is the inverse target marginal non-Gaussian Cumulative Distribution
Function (CDF) of component c and Fgc

is the Gaussian CDF with zero mean
and variance σ2

gc
equal to σ2

fc
. In particular, when the Gaussian field is a

standard Gaussian, the resulting field is called “translation field”. However,
Grigoriu (1984, 1995, 1998) proved a set of very interesting properties (e.g.
crossing rates and distributions of extremes) valid both for proper translation
fields and for the general case of fields obtained through the mapping of non-
standard Gaussian fields. Therefore, since the properties are the same, in the
remainder of the Chapter, “translation field” will refer to any field obtained by
means of the mapping in Eq. (5.9).
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5.3 Identification of the Underlying Gaussian
Cross-Spectral Density Matrix

Given the m-by-m target Cross-Spectral Density Matrix ST
f (κ) and the m target

marginal Cumulative Distribution Functions Ffc
of the non-Gaussian m-variate

stochastic field, the proposed methodology finds the underlying Gaussian CSDM
Sg(κ) that can be used to generate sets of non-Gaussian sample functions that
reflect the prescribed targets1.

This technique is able to identify either the underlying coherences γg
rs(κ) or

directly the underlying cross-spectra Sg
rs(κ). If the γg

rs(κ)’s are estimated, the
computation of the underlying cross-spectra is straightforward, by using

Sg
rs(κ) = γg

rs(κ)
√

Sg
rr(κ) Sg

ss(κ) (5.12)

It is well known that the estimation of coherences either from empirical
data (samples) or from a numerical description of the CSDM (in contrast with
an analytical description of it) is not trivial. In fact, even in the latter case,
the very low values of the tales of the spectra determine numerical problems
in the inversion of Eq. (5.12). For this reason, in order to obtain both γg

rs(κ)
1As in the one-dimensional, uni-variate case, also here some compatibility issues can arise

if the target distributions and cross-spectra are defined arbitrarily (Gioffre et al., 2000).
Considering two components named “1” and “2”, the first condition is an extension of the

one in Eq. (2.14). The cross-correlation of the non-Gaussian field is given by

Rf1f2 (ξ) =

∞Z

−∞

∞Z

−∞

F−1
f1

�
Fg1

�
g1(x′)

�	
· F−1

f2

�
Fg2

�
g2(x′′ + ξ)

�	
·

·Pg1g2

�
g1(x′), g2(x′′ + ξ)

�
dx′ dx′′

(5.10)

where Pg1g2 is the Gaussian joint PDF and the mean values of the non-Gaussian components
have been assumed to be zero for the sake of simplicity. As in the uni-variate case, the
underlying Gaussian field identified by the proposed algorithm automatically satisfies this
condition.

The second condition is that ��Rf1f2 (ξ)
�� ≤ |Rg1g2 (ξ)| (5.11)

that is intuitive, because the non-linear mapping process tends to reduce the correlation
between components. In Sec. 5.4 this will be confirmed by numerical examples.

The third condition is that the correlations are non-negative definite, and this is obtained
requiring that the spectra are non-negative.

The fourth condition is that the covariance matrix is non-negative definite, and this is
obtained requiring that the CSDM is non-negative definite.
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and Sg
rs(κ), the identification of the underlying coherence is preferable, and in

the remainder of this Chapter this procedure will be presented, with only some
remarks on the steps in which the direct computation of Sg

rs(κ) requires different
considerations.

It is worth noting that even if the underlying Gaussian coherences are used
–and therefore the underlying Gaussian cross-spectra have the form defined in
Eq. (5.12)–, no assumptions are required on the non-Gaussian target.

The algorithm is based on an iterative scheme and its flow chart is pre-
sented in Fig. 5.1. The various steps of the proposed methodology are described
in detail in the following (the numbers indicated inside the boxes in Fig. 5.1
correspond to the numbering of the subparagraphs that follow).

5.3.1 Compute the Underlying Gaussian Auto-SDF’s

To compute the Gaussian autospectra

Sg
cc(κ), c = 1, 2, . . . ,m (5.13)

the procedure described in Chapter 3 is applied to each component of the vec-
tor field. In fact, it is assumed that the diagonal elements of the underlying
Gaussian CSDM can be analyzed independently. Actually, the multi-variate
Spectral Representation Method (that is used for the production step) couples
the elements of the CSDM. However, the numerical investigations confirm that
the coupling effect is negligible to the purposes of the identification of the un-
derlying CSDM and therefore the assumption is reasonable in this phase and
determines a considerable saving of computational time.

The discretization used to compute the underlying Gaussian Spectra (“fre-
quency shifting” technique) is different from the one required by the present
method (“frequency double-indexing” technique). Therefore, an interpolation is
required. In the performed numerical applications, the spline interpolation has
proved to be effective.

5.3.2 Select a Couple of Indexes r and s

Consistently with the previous assumption of independence, also the off-diagonal
terms of the CSDM are analyzed separately. The matrix is symmetric, so there
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17 

Compute the CSDF of fr (x) and fs (x)  10 ^ ^ 
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Figure 5.1: Flow chart of the proposed algorithm.
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are
m(m− 1)

2
(5.14)

different off-diagonal terms, where m is the number of components of the field.
Therefore m(m−1)

2 underlying coherences (or cross-spectra) have to be separately
computed. To accomplish this task, the algorithm performs the following steps
for every couple of indexes r and s, with

r = 2, 3, . . . ,m

s = 1, 2, . . . , r − 1
(5.15)

5.3.3 Compute the Starting Gaussian Coherence

As already said, the procedure adopts an iterative scheme, so a starting value for
the underlying Gaussian coherence γg

rs is required. If the non-Gaussian target
CSDM has been defined by means of coherences (“target coherences”, γT

rs), the
starting coherence is set equal to the corresponding target:

γg
rs(κ) = γT

rs (5.16)

If the non-Gaussian target CSDM has been defined in closed form, then again
it is possible to set the starting coherence equal to the target one, inverting
Eq. (5.1),

γg
rs(κ) = γT

rs(κ) =
ST

rs(κ)√
ST

rr(κ)ST
ss(κ)

(5.17)

If the non-Gaussian target CSDM is available only in digital form, then it is
preferable to avoid the use of Eq. (5.17) because of the already mentioned nu-
merical problems. Thus, in this case the starting value of the coherence is
defined as the average value of its admissible domain:

γrs(κ) =
lb(κ) + ub(κ)

2
(5.18)

where lb(κ) and ub(κ) are the lower and upper bounds of the admissible domain,
defined, for instance, by Eqs. (5.26) and (5.27), respectively.

If the option to look directly for the underlying cross-spectra has been chosen,
then the starting value is set equal to the target:

Sg
rs(κ) = ST

rs (5.19)
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The domain of the wave number κ is [0, κu] where the “cutoff” wave number
κu is the value beyond which the spectra are negligible. This domain is divided
into N intervals of length

∆κ =
κu

N
(5.20)

Then, according to the frequency double-indexing technique, every interval is
divided into m sub-intervals.

The target SDF’s are defined at the discrete wave numbers

κj = j∆κ, j = 0, 1, . . . , N − 1 (5.21)

while the underlying Gaussian coherences (and spectra), that have to be used for
the productions by means of the spectral representation with frequency double-
indexing, are defined at

κk = k
∆κ

m
, k = 1, 2, . . . ,m N (5.22)

To ensure the Gaussianity of the produced samples, N has to be greater than ap-
proximately 100 (Shinozuka and Deodatis, 1991). In the numerical applications,
N has been set equal to 256.

Equation (5.1) shows that the value of the coherence affects the value of
the cross-spectral density functions only when the involved autospectra are sig-
nificantly different from zero. Therefore, only the region where the product
Sg

rr(κ) Sg
ss(κ) is greater than the 5% of its maximum value is considered. In

the rest of the wave number domain, the value of the Gaussian cross-spectrum
Sg

rs(κ) is almost zero, independently of the value of γrs(κ). Thus, the iterative
optimization procedure will focus only on the “significant zone”.

The coherences are defined (and physically meaningful) in the interval [0, 1].
This condition determines a domain of admissible solutions for γg

rs(κ) –or for
Sg

rs(κ)–. Moreover, as already mentioned, the multi-variate Spectral Represen-
tation, makes use of the Cholesky decomposition (see Sec. 5.2.1). Therefore,
the underlying Gaussian CSDM has to be always positive definite. This implies
a further restriction to the domain of admissible solutions. When few compo-
nents are involved, closed form expressions for the upper and lower bounds of
the domain can be computed. For instance, when m = 2 it is trivial to prove
that the CSDM is always positive definite when 0 < γg

rs(κ) < 1. So the lower



i
i

“phd5” — 2008/3/30 — 23:56 — page 71 — #87 i
i

i
i

i
i

5.3 Underlying Gaussian CSDM 71

and upper bounds are:

lb(κ) = sm
ub(κ) = 1− sm

(5.23)

where sm is a very small “safety margin”, used to avoid numerical problems.
In the numerical applications, sm has been set equal to 10−4. When m =
3, using Sylvester’s criterion, the bounds in Eq. (5.23) for γg

12(κ) guarantee
the positiveness of the 2 × 2 principal minor. The positiveness of the 3 × 3
determinant is given by:

Sg
11 Sg

22 Sg
33 + 2 Sg

23 Sg
13 Sg

12 − Sg
11 (Sg

23)
2 − Sg

22 (Sg
13)

2 − Sg
33 (Sg

12)
2 > 0 (5.24)

that dividing by Sg
11 Sg

22 Sg
33 gives

1 + 2 γg
23 γg

13 γg
12 − (γg

23)
2 − (γg

13)
2 − (γg

12)
2 > 0 (5.25)

Equation (5.25) can be used to find the bounds either for γg
13(κ) or for γg

23(κ).
The choice should depend on the order that has been chosen for the analysis of
the coherences. Indeed, it is better to leave the larger possible range of variation
to the firstly computed coherences. For instance, if we consider the components
in the order 12, 13, 23, the bounds for γg

13(κ) are set again using the always
valid Eq. (5.23), and from Eq. (5.25) the bounds for γg

23(κ) are set as

lb(κ) = γg
12 γg

13 −
√

[1− (γg
12)2] [1− (γg

13)2] (5.26)

ub(κ) = γg
12 γg

13 +
√

[1− (γg
12)2] [1− (γg

13)2] (5.27)

For a large number of components, it is suggested to use only the “basic” bounds
in Eq. (5.23) and check the positive definiteness all along the iterative procedure,
as will be explained in Sec. 5.3.152.

Similar considerations apply in the case of direct computation of Sg
rs(κ).

2It should be noticed that the positive definiteness of the CSDM is a numerical and an-
alytical issue, but it reflects also a physical meaning. Eq. (5.25) can be seen as a limit to
the variability of one of the coherences, when the other two are fixed. If, for instance, the
coherence between components 1 and 2 is high, then γ13(κ) and γ23(κ) have to be very similar.
This is perfectly intuitive and reasonable. Therefore, the condition of positive definiteness is
not an annoying analytical problem that restricts the domain of possible solutions (thus, in
general, determining worse solutions) but a useful tool to test the consistency of our model.
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5.3.4 Compact the CSDM to a 2-by-2

Considering again the influence of the other components to be negligible, in order
to save computational time, the underlying Gaussian CSDM that is considered
in the steps 4–15 is not an m × m matrix, instead it is condensed to a 2 × 2
matrix Sg

rs(κ), with only the elements corresponding to the components r and
s:

Sg
rs(κ) =

[
Sg

rr(κ) Sg
rs(κ)

Sg
rs(κ) Sg

ss(κ)

]
(5.28)

In this way, only one off-diagonal term Sg
rs(κ) (so only one coherence) is involved.

Some benchmarks performed using the whole CSDM all along the procedure
(without the condensation) shown that the influence of the other components
is truly negligible for the purposes of the identification of the underlying coher-
ences.

5.3.5 Save γrs(κ)

The methodology in Fig. 5.1 is an iterative one with potential random modi-
fications to the coherence (or to the cross-spectrum) at every step. Using an
acceptance criterion that will be described later, the modifications at a spe-
cific step can be accepted or rejected. For this reason, γrs(κ) is saved at each
iteration so that it can be retrieved in case the iteration is rejected.

5.3.6 Compute H(κk)

To produce Gaussian samples, the multi-variate Spectral Representation Method
(mV-SRM) described in Sec. 5.2.1 is applied. To take advantage of the FFT
transform (Deodatis, 1996), the following function is defined

t
(i)
cd (p ∆x) = FFT+

l

[
2Hcd

(
l∆κ +

d

m
∆κ

)√
∆κ · exp

(
iφ(i)

dl

)]
;

c = 1, 2, . . . ,m; d = 1, 2, . . . , c;
p = 0, 1, . . . ,M − 1; l = 0, 1, . . . ,M − 1;

∆x =
2π

M ∆κ

(5.29)
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where FFT+
l [·] denotes the FFT with M points and positive exponent over the

index l of the function in brackets. The superscript (i) stands for the fact that
a specific set of random phase angles φ(i) determines a specific function t

(i)
cd

The terms Hcd can be computed once for every iteration (steps 6–15) using
Cholesky’s decomposition. The decomposition of the Gaussian CSDM Sg

rs(κ) is
defined as

Hcc =

√√√√Sg
cc −

c−1∑
e=1

H2
ce

Hcd =
1

Hdd

(
Sg

cd −
d−1∑
e=1

HceHde

)
, for c > d

(5.30)

where the dependence on the wave number has been omitted for the sake of
simplicity. If the algorithm is searching the underlying coherence, it can take
advantage of Eq. (5.12). Substituting Eq. (5.12) into Eq. (5.30) we obtain the
matrix H(κ) written as a function of the autospectra and of the coherences:

Hcc =

√√√√Sg
cc −

c−1∑
e=1

H2
ce

Hcd =
1

Hdd

(√
Sg

ccS
g
ddγcd −

d−1∑
e=1

HceHde

)
, for c > d

(5.31)

and in particular

H(κ) =
( √

Sg
rr 0

γG
rs

√
Sg

ss

√
1− (γg

rs)2
√

Sg
ss

)
(5.32)

If the algorithm computes directly the underlying cross-spectra, a traditional
Cholesky decomposition is performed instead.
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5.3.7 Generate Sample Functions ĝr(x) and ĝs(x)

The production of Gaussian samples goes through the definition of the functions
t
(i)
cd in Eq. (5.29) and here reported:

t
(i)
cd (p ∆x) = FFT+

l

[
2Hcd

(
l∆κ +

d

m
∆κ

)√
∆κ · exp

(
iφ(i)

dl

)]
;

c = 1, 2, . . . ,m; d = 1, 2, . . . , c;
p = 0, 1, . . . ,M − 1; l = 0, 1, . . . ,M − 1;

∆x =
2π

M ∆κ

(5.33)

Then, m copies of t
(i)
cd are concatenated to generate h

(i)
cd :

h
(i)
cd (q∆x) = t

(i)
cd (mod(q, M)∆x); q = 0, 1, ...,mM − 1 (5.34)

where mod(q, M) denotes the remainder of division of q by M and M is the
number of points used for the FFT. Note that in order to avoid aliasing, M has to
be at least M = 2N . In the numerical applications we have set M = 210 = 1024.

Because of the frequency shifting (for the theory, refer also to Sec. 3.2.6) h
(i)
ij

has to be multiplied by a shifting factor:

ĥ
(i)
cd (q∆x) = <

[
h

(i)
cd (q∆x) · exp

(
i
d

m
∆κ x

)]
(5.35)

where < [·] denotes the real part.
Finally, the various components ĝc(q∆x) are obtained as sums of the func-

tions ĥ
(i)
cd (q∆x):

ĝc(q∆x) =
c∑

d=1

ĥcd(q∆x); q = 0, 1, ...,mM − 1 (5.36)

In particular, one sample each for the components r and s are generated.
It is worth noticing that the period of the samples (i.e. the length of ĝc) as

expressed by Eq. (5.36) is L = mM ∆x = m 2π
∆κ that is m times the period of

the classic SRM without frequency double-indexing (Shinozuka and Deodatis,
1991; Deodatis, 1996).
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5.3.8 Compute the Variance of ĝr(x) and ĝs(x)

The mean of the generic ĝc(x) is always zero because of the way it is generated
(using mV-SRM and considering one period). Its variance σĝc is not constrained,
so ĝc(x) is Gaussian, but not standardized Gaussian.

The variance can be estimated numerically either from the generated sam-
ple function or from the SDF Sg

cc(κ). Consequently, the Gaussian Cumulative
Distribution Function of ĝc(x) is fully known:

Fĝc
=

ĝc∫
−∞

1√
2πσ̂g

exp
[
− u2

2σ̂2
gc

]
du (5.37)

In particular, Fĝr and Fĝs are computed.

5.3.9 Map ĝr(x) and ĝs(x) into f̂r(x) and f̂s(x)

The classic translation field memoryless transformation (Grigoriu, 1984, 1995)
is used to map the underlying Gaussian sample functions of both components
r and s to non-Gaussian ones having the prescribed marginal CDF’s Ff , as
explained in Sec. 5.2.2:

f̂r(x) = F−1

f̂r
{Fĝr} (5.38)

f̂s(x) = F−1

f̂s
{Fĝs} (5.39)

For some distributions –e.g. the lognormal (Grigoriu, 1995)–, the inverse of Ff

is available in closed form. Otherwise, a numerical inversion is used.
It should be noted that although ĝc(x) are not standard Gaussian, f̂c(x) still

possess all the properties of translation fields (Grigoriu, 1984). Another inter-
esting point is that although f̂c(x) conserve the ergodicity in the mean property
of ĝc(x), they do not conserve their ergodicity in autocorrelation property.

5.3.10 Compute the Cross-Spectrum of f̂r(x) and f̂s(x)

The Cross-Spectral Density Function (CSDF) of the samples f̂r(x) and f̂s(x)
can be computed using the formula (Bendat and Piersol, 1986, p. 130):

Sf
rs =

1
2π(mL)

FFT−[f̂r]∗∆x FFT−[f̂s]∆x (5.40)
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where FFT− [·] denotes the FFT with negative exponent and the asterisk de-
notes the complex conjugate. The second half of the fourier transform is the
mirror image of the first one, therefore only the first (meaningful) mN values are
considered. Moreover, the resulting values of Sf

rs are given at intervals of width
∆κ
m , while the target cross-spectrum Sf

rs is defined at intervals ∆κ. Therefore,
to make the two functions comparable, the power belonging to m intervals of
width ∆κ

m has to be summed up:

Sf
rs(j∆κ) =

m−1∑
c=0

Sf
rs

(
mj + c

∆κ

m

)
j = 0, 1, ..., N − 1

(5.41)

5.3.11 Compute the Average Cross-Spectrum, S̄f
rs(κ)

As already mentioned, the translation field does not possess the ergodic prop-
erties of the Gaussian one. Therefore, for an accurate estimation of the spectral
density function of the non-Gaussian field, it is necessary to average the empiri-
cal cross-spectra of many sample functions. For this reason, the steps described
in Secs. 5.3.7–5.3.10 are repeated T times, and then the average cross-spectrum
is computed from:

S̄f
rs(κ) =

1
T

T∑
t=1

Sf (t)
rs (κ) (5.42)

An extensive numerical investigation has revealed that a value of T = 100 is
usually sufficient to get a very good and smooth approximation of S̄f

rs(κ).

5.3.12 Compute the Error ε Between the Target and Com-
puted Cross-Spectrum

The variable adopted as convergence criterion of the computed S̄f
rs(κ) to the

target cross-spectrum of the non-Gaussian field is defined as:

ε = 100

√√√√√√√√
N−1∑
j=0

∣∣∣S̄f
rs(κj)− ST

rs(κj)
∣∣∣2

N−1∑
j=0

|ST
rs(κj)|2

(5.43)
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where the modulus operator is used because in practice the empirical cross-
spectra obtained by Eq. (5.40) have always an imaginary part. In the cases
in which the target cross-spectrum is real valued, the imaginary part of S̄f

rs

should be identically zero. Minimizing the error function, the code tends to
minimize the imaginary part of the resulting non-Gaussian cross-spectra3. In
the cases in which the target cross-spectrum is complex, the code –thanks to
the definition of the error function in Eq. (5.43)– tends to make the real part
of the resulting non-Gaussian cross-spectrum match the real part of the target
and the imaginary part of the resulting non-Gaussian cross-spectrum match the
imaginary part of the target.

Similarly to what has already been observed in Sec. 3.2.8, the smoothness
of S̄f

rs(κ) determined by Eq. (5.42) guarantees a true measure of the distance
between the two functions and therefore a fast convergence of the algorithm.

5.3.13 Accept Iteration and Save γg
rs(κ)

If the error computed through Eq. (5.43) is smaller than that computed in the
last accepted iteration, then the current iteration is accepted. For the same
reason as explained in Sec. 5.3.5, the current Gaussian coherence (or cross-
spectrum) is saved.

Then, a check is performed to determine whether convergence is met or
not. The criterion for reaching convergence is for the value of ε to be reduced
by less than 0.01% during the last 20 accepted iterations (“Plateau reached”).
The values 20 and 0.01% have been determined after an extensive numerical
investigation. If the convergence criterion is satisfied, the iterative scheme ends.
Otherwise, the iterations continue and a random perturbation is applied to
γg

rs(κ) (or directly to the underlying Gaussian cross-spectrum), as explained in
Sec. 5.3.15.

3Because of the non-ergodicity of the produced samples, even if the theoretical cross-
spectrum is real, the average of a finite number of Sf

rs has always a small imaginary part, that
tends to zero when the number of samples tends to infinity. The empirical cross-spectra of
100 samples (with real valued target CSDM) usually has an imaginary part that is negligible
with respect to the real part.
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5.3.14 Reject Iteration and Restore the Saved γg
rs(κ)

If the error computed through Eq. (5.43) is greater than that computed in the
last accepted iteration, then the current iteration is rejected. This means that
the random perturbation previously applied to γg

rs(κ) has led to a non-Gaussian
cross-spectrum that it further away from the target. Therefore, the saved γg

rs(κ)
of the last accepted iteration is restored.

Furthermore, a convergence check is performed at this point. The algorithm
keeps track of whether all of the last 4N iterations have been rejected (“Maxi-
mum improvement reached”). The meaning of the value 4N is the same as in
the uni-variate case (see Sec. 3.2.11). If all of the last 4N iterations have been
rejected, the iterative scheme ends. Otherwise, the iterations go on and a ran-
dom perturbation is applied to γg

rs(κ) (or directly to the underlying Gaussian
cross-spectrum), as explained in the next Section.

5.3.15 Apply Random Perturbation to γg
rs(κ)

As mentioned earlier, if the convergence checks are not satisfied, the iterations
continue and a random perturbation is applied to the current γg

rs(κ). Specif-
ically, the following perturbation ∆S is added to the underlying Gaussian co-
herence:

∆S = A exp
[
− (κ− κ0)2

40

]
(5.44)

where κ0 is a point selected randomly in the interval [0, κu], and A is equal to
±γg

rs(κ0)
20 with its sign randomly selected (see also Fig. 3.3).
This perturbation ∆S obviously dies down quickly to the left and to the

right of κ0. Consequently, only N
16 points of γg

rs are modified according to
Eq. (5.44) (beyond these N

16 points the modifications are negligible and therefore
disregarded). If κ0 is too close to 0 or κu, then the perturbation involves less
than N

16 points.
A significant advantage of this perturbation scheme is that it is not induc-

ing sharp discontinuities in γg
rs(κ), with all the consequent advantages already

mentioned in Sec. 3.2.11.
At this point, it is necessary to make sure that the random perturbation

keeps the complete (m×m) underlying Gaussian CSDM positive definite4. If a
closed form is available for the bounds –e.g. Eqs. (5.26) and (5.27)– this task is
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accomplished setting:

γg
rs(κ) = max[γg

rs(κ), lb(κ)]
γg

rs(κ) = min[γg
rs(κ),ub(κ)]

}
∀κ (5.45)

Otherwise, if only the “generic” bounds in Eq. (5.23) are available, then a differ-
ent technique is adopted. First of all, Eq. (5.45) is used to impose the generic
bounds. Then, the determinant of the m × m underlying Gaussian CSDM is
computed. Note that according to Sylvester’s theorem, if we start with a pos-
itive definite matrix and we change only one element (and its symmetric one),
the positive definiteness of the new matrix is guaranteed by the positiveness of
the new global determinant5. Thus, if the determinant is negative, the random
perturbation is discarded and a new one is performed.

A very similar procedure is applied in the case of direct determination of
Sg

rs(κ).
After a random perturbation is implemented and a new γg

rs or Sg
rs is de-

termined, the iterative scheme continues with the decomposition of Sg
rs(κ) as

described in Section 5.3.6.

5.3.16 Compute the Average γ̄g
rs(κ)

The resulting underlying Gaussian coherence (or cross-spectrum) after com-
pleting the steps in Secs. 5.3.6–5.3.15 (called a “run”) is not unique. A slightly
different γg

rs(κ) will be obtained from a different run. Consequently, a total of
V runs are performed and an average coherence is estimated as:

γ̄g
rs(κ) =

1
V

V∑
v=1

γg (v)
rs (κ) (5.46)

4As mentioned in Sec. 5.3.3, if the number of components is 2, no bounds are necessary,
except the “generic bounds” in Eq. (5.23). If the number of components is 3, for the first
two coherences no bounds are required, while for the thirdly computed one, the bounds in
Eqs. (5.26) and (5.27) have to be used. As the number of components increases, the conditions
on the lastly computed coherences are stricter.

5In fact, we can permute rows and columns (“even permutation”) so that the element that
is going to be modified is in the bottom row of the permuted matrix (and its symmetric
is in the last column). The evenly permuted matrix is obviously still positive definite (the
eigenvalues are invariant to even permutations). Therefore all the principal minors of the
permuted matrix have positive determinant. If we change a term that is in the bottom row
and its symmetric in the last column, only the global determinant is affected. If the global
determinant is positive, then the permuted and perturbed matrix is certainly positive definite
and therefore, an inverse permutation gives a perturbed positive definite matrix.



i
i

“phd5” — 2008/3/30 — 23:56 — page 80 — #96 i
i

i
i

i
i

80 5. Simulation of 1D-mV Strongly Non-Gaussian Random Fields

A numerical investigation has suggested that a value of V = 5 is sufficient
for an accurate estimation of γ̄g

rs(κ).

5.3.17 Compute the Complete Underlying Gaussian CSDM

When all the m(m−1)
2 coherences have been computed using the procedure de-

scribed above, it is possible to assemble the complete underlying Cross-Spectral
Density Matrix, using Eq. (5.12). If the underlying cross-spectra have been com-
puted directly, it is sufficient to collect them, together with the autospectra, into
the CSDM.

Once the CSDM of the underlying Gaussian field is available, the generation
of sample functions of the non-Gaussian random field is straightforward and ex-
tremely efficient computationally. In fact, only one decomposition (Sec. 5.3.6)
and the steps described in Sections 5.3.7, and 5.3.9 are necessary and no iter-
ations are involved. The generated non-Gaussian random fields will perfectly
match the target distribution Ff , they will have a CSDM very close to the tar-
get (in ensemble-average sense), and they will also possess all the characteristics
of translation fields according to Grigoriu’s theory (Grigoriu, 1984, 1995).

5.4 Numerical Examples

Two numerical examples are provided to show the capabilities of the proposed
method. In both cases, the estimation of the underlying coherences and the
direct computation of the cross-spectra have been performed and have given
very similar results. Therefore, in the remainder of this Chapter, only the
results obtained with the underlying coherences will be presented, since they
are considered more interesting.

5.4.1 Kaimal-Davenport Cross-Spectral Density Matrix

The first example involves the simulation of wind velocity fluctuations. In par-
ticular, the longitudinal velocity fluctuations at two points along a vertical line
are considered a two-variate stationary stochastic process (in this case the do-
main is time6).

6Even if the algorithm has been presented for the simulation of random fields in the space
domain, in this case it is better be consistent with the physical meaning of the application.
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The model proposed by Kaimal et al. (1972) is chosen for the SDF’s at
different heights:

ST (z, ω) = A
1
2

200
2π

u2
∗

z

U(z)
1[

1 + 50
ωz

2πU(z)

]5/3
(5.47)

where z is the heights in meters, ω is the frequency in rad
s , u∗ is the shear

velocity of the flow in m
s and U(z) is the mean wind speed at height z in m

s . A
is a scale factor that reduces the variance of the process (i.e. the integral of the
SDF) to 1 and can be computed as

A =
1

6u2
∗

(5.48)

This is done because usually the benchmark test for a simulation algorithm is
performed using distributions with zero mean and unit variance.

Simiu and Scanlan (1986), for instance, suggest to assume that at z1 = 35m,
the mean wind speed is

U(z1 = 35m) = 45
m

s
(5.49)

and the roughness z0 is
z0 = 0.001266 m (5.50)

The so called “logarithmic law” of fluid dynamics

U(z) =
1
k

u∗ ln
z

z0
(5.51)

k = 0.4 (von Karman’s constant) (5.52)

gives:

u∗ =
kU(z)

ln
z

z0

=
0.4 · 45

ln
35

0.001266

= 1.76
m

s
(5.53)

At the second height z2 = 40m, the mean wind speed is given by Eq. (5.51):

U(z2 = 40m) =
1
k

u∗ ln
z2

z0
=

1
0.4

1.76 ln
40

0.001266
= 45.6

m

s
(5.54)

Therefore, the usual notation for random fields is substituted by the common notation for
stochastic processes in this paragraph. In particular, the time t takes the place of the space x
and the frequency ω takes the place of the wave number κ.
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Plugging the numerical values into Eq. (5.47) the two autospectra are computed
as:

ST
11(ω) =

2.06
(1 + 6.19ω)5/3

(5.55)

ST
22(ω) =

2.33
(1 + 21.8ω)5/3

(5.56)

The target coherence function between the wind velocity fluctuations at the
two heights z1 and z2 has the form proposed by Davenport (1968) and widely
used in wind engineering:

γ(∆z, ω) = exp

− ω

2π

Cz ∆z

U(z1) + U(z2)
2

 (5.57)

where ∆z = |z1 − z2| and Cz is a constant usually set equal to 10 for structural
design purposes (Kristensen and Jensen, 1979; Simiu and Scanlan, 1986). In
this particular example, the coherence is

γ12(ω) = exp(−0.157ω) (5.58)

and the target cross-spectrum can be computed by means of Eq. (5.1).
The marginal distributions are assumed to be Lognormal, as usually assumed

for wind velocity fluctuations (e.g. Gioffre et al., 2000):

P(x) =
1√

2πσN x̄
exp

[
− (ln x̄− µN )2

2σ2
N

]
(5.59)

where:

σ2
N = ln

(
1 +

σ

µ̄2

)
; µN = ln µ̄− σ2

N

2
; x̄ = x− µ̄ (5.60)

For the first component (z1 = 35m), the parameters µ̄1 and σ1 have been
set as follows:

µ̄1 = 1.8 ; σ1 = 1 (5.61)

and therefore the moments of the distribution are:

mean: µ1 = 0 ; variance: σ2
1 = 1 ; skewness: γ1 = 1.838 ; kurtosis1 = 9.553
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For the second component, the parameters µ̄2 and σ2
2 are:

µ̄2 = 2.3 ; σ2 = 1 (5.62)

and therefore the moments of the Lognormal distribution are:

mean: µ2 = 0 ; variance: σ2
2 = 1 ; skewness: γ2 = 1.3865 ; kurtosis2 = 6.6024

The cutoff frequency and the other parameters of the algorithm have been
set as follows:

N = 256; M = 210 = 1024; ωu = 4
rad

s
(5.63)

The results of the simulation procedure are presented in Figs. 5.2–5.4. In
particular, Fig. 5.2 compares the target non-Gaussian coherence defined by
Eq. (5.58) to the underlying Gaussian coherence computed by the proposed
algorithm. The code has computed that the significant zone (see Sec. 5.3.3)
is the interval [0, 0.22] therefore only the first part has been modified. In gen-
eral, the non-linear mapping causes a reduction of the coherence between the
non-Gaussian samples with respect to that between the original Gaussian ones
(especially if the mapping functions for the various components are different).
Therefore, the global trend is that the underlying Gaussian coherence has to
be larger than the desired target. In this example it is extremely clear, that in
order to match the target, the underlying coherence tends to become as large
as possible, reaching the upper bound.

Figure 5.3 shows the matching between the Cross-Spectral Density Matrix
obtained by ensemble averaging over 100 generated samples and the target non-
Gaussian CSDM. It is immediately obvious that the match is almost perfect.
Not only the autospectra perfectly match the strongly non-Gaussian targets,
but also the cross-spectra practically coincide.

Also the marginal probabilities of the two components match their targets,
as shown in Fig. 5.4.

5.4.2 Artificially Correlated Spectrum

The second numerical example involves the simulation of a tri-variate vector
field. In this case the SDF’s are defined as in Sec. 3.3 by:

ST
cc(κ) =

125
4

σ2
cκ2 exp (−5 |κ|) , c = 1, 2, 3 (5.64)
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Target non-Gaussian coherence

Figure 5.2: Wind velocity fluctuation simulation. The underlying Gaussian
coherence computed by the algorithm is compared to the target non-Gaussian
coherence defined by Eq. (5.58). Only the “significant zone” of the coherence is
affected by the modifications.
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Figure 5.3: Wind velocity fluctuation simulation. The “empirical” spectral den-
sity functions and the cross-spectral density obtained by ensemble averaging
over 100 generated samples match the target non-Gaussian functions almost
perfectly. The graphs are sorted as the elements of the CSDM. Only the lower
part is plotted, because the upper part is symmetric. The negligible imaginary
part present in the empirical cross-spectrum because of the non-ergodicity of
the produced samples has been disregarded.
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Figure 5.4: Wind velocity fluctuation simulation. Both the PDF computed by
ensemble averaging of 100 generated samples match the respective Lognormal
targets.
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The coherences have been defined artificially with an almost constant plateau
in the interval [0, κu/3] using the linear equation:

γcd = −0.02 γ0
cd κ + γ0

cd; c, d = 1, 2, 3; d > c (5.65)

where the parameter γ0
cd has been set as follows:

γ0
12 = γ12(κ = 0) = 0.8 (5.66)

γ0
13 = γ13(κ = 0) = 1.0 (5.67)

γ0
23 = γ23(κ = 0) = 0.6 (5.68)

At κ = κu/3 the coherences drop down to zero with a sinusoidal function over
the interval [κu/3, 7κu/12]7. For κ > 7κu/12 all the coherences are identically
equal to zero. The three target coherences are collected in Fig. 5.5. Also in this
case the target cross-spectra can be computed by means of Eq. (5.1). It should
be noted that in both numerical examples, the cross-spectra have been defined
by means of coherence functions, but this is not required by the algorithm.
The code does not use the target coherences, only the target cross-spectra are
required.

The first and the third components have the strongly non-Gaussian Lognor-
mal distribution considered in Sec. 3.3.1:

P(x) =
1√

2πσN x̄
exp

[
− (ln x̄− µN )2

2σ2
N

]
(5.69)

where:

σ2
N = ln

(
1 +

σ

µ̄2

)
; µN = ln µ̄− σ2

N

2
; x̄ = x− µ̄ (5.70)

with parameters set as follows:

µ̄1 = µ̄3 = 1.8 ; σ1 = σ3 = 1 (5.71)

consequently, the moments of the first and third marginal distributions are:

mean: µ1 = µ3 = 0 ; variance: σ2
1 = σ2

3 = 1;
skewness: γ1 = γ3 = 1.838 ; kurtosis1 = kurtosis3 = 9.553

7The sinusoidal joint has the extension of κu/4
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Figure 5.5: Artificially Correlated Spectrum. The underlying Gaussian coher-
ences computed by the algorithm are compared to the target non-Gaussian
coherences.
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The second component has the Uniform marginal distribution considered in
Sec. 3.3.2:

P(x) =
{

1
b−a a ≤ x ≤ b

0 otherwise (5.72)

with parameters:

a = −
√

3 ; b =
√

3 (5.73)

resulting in the following moments:

mean: µ2 = 0 ; variance: σ2
2 = 1 ; skewness: γ2 = 0 ; kurtosis2 = 1.8 (5.74)

The number of intervals, the number of points used for the FFT and the
cutoff wave number are:

N = 256; M = 210 = 1024; κu = 4
rad

m
(5.75)

The three coherences are plotted in Fig. 5.5. The underlying Gaussian coher-
ences between components 1-2 and 1-3 are very close to the target non-Gaussian
coherences. On the contrary, γg

23 is considerably different from the target within
the significant zone. Again, it is clear that, for component 2-3, the underlying
Gaussian coherence tends to be larger than the target non-Gaussian because
the non-linear mapping reduces the coherence.

A hundred samples have been generated using the underlying Gaussian
CSDM computed by the proposed algorithm. Figs. 5.6 and 5.7 demonstrate
that both the CSDM obtained by ensemble averaging and the marginal PDF’s
of the samples exhibit a good matching of the respective targets.

5.5 Concluding Remarks and Computational Ef-
ficiency

The “trial and error” iterative approach used for the underlying Gaussian au-
tospectra has been applied also to the establishment of the underlying coher-
ences or cross-spectra. In this way, an original technique for simulation of vector
fields with strongly non-Gaussian marginal distributions is provided.

The numerical examples have shown the high accuracy of the proposed al-
gorithm.
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Figure 5.6: Artificially Correlated Spectrum. The “empirical” spectral density
functions and the cross-spectral densities obtained by ensemble averaging over
100 generated samples match the target non-Gaussian functions almost per-
fectly. The graphs are sorted as the elements of the CSDM. Only the lower
part is plotted, because the upper part is symmetric. The negligible imaginary
part present in the empirical cross-spectra because of the non-ergodicity of the
produced samples has been disregarded.
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Figure 5.7: Artificially Correlated Spectrum. All three PDF’s computed by
ensemble averaging of 100 generated samples match the respective non-Gaussian
targets.
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The code presents similar characteristics to the uni-variate version. In par-
ticular, the identification of the underlying CSDM is the most computationally
expensive task. After it is completed, the generation procedure is extremely
fast.

The last consideration suggests to build a data-base of results on the under-
lying CSDM that can be used to reduce the computational time. For instance,
the three underlying autospectra used in the second numerical example were
already known from the analyses presented in Sec. 3.3. Even when the desired
targets are not exactly equal to those of a previous analysis, still if they are sim-
ilar, the already known underlying Gaussian spectrum or coherence can be used
as starting guess of the iterative procedure, thus saving a considerable amount
of computational time.

Finally, it is worth mentioning that the discretization used for the estimation
of the underlying field, does not necessarily has to be the same used for the
samples generation. A lower resolution in the wave number domain is sufficient
for the identification of γij(κ) or Sij(κ) (so reducing the CPU time in the most
expensive phase). Then by means of a numerical interpolation, it can assume
the resolution required in the production phase.

In the future, a comparison between the proposed algorithm and other tech-
niques for the generation of strongly non-Gaussian vector fields will be per-
formed.
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Chapter 6

Simulation of
Multi-Variate,
Gaussian, Ergodic
Random Fields

How dare we speak of the laws of chance?
Is not chance the antithesis of all law?

-Bertrand Russell-

Sommario. Per mezzo di un’opportuna versione dello “Spectral Re-
presentation Method” è possibile generare campioni aleatori Gaus-
siani multivariati. Affinché tali campioni siano anche ergodici, è
necessario l’impiego di una tecnica chiamata “Frequency Double In-
dexing”. Essa comporta che i valori numerici degli spettri da ripro-
durre siano forniti ai numeri d’onda “principali” ed anche a nume-
ri d’onda “secondari”, il cui numero cresce con le componenti del
campo.
In questo Capitolo viene dimostrato che lo spettro dei campioni ge-
nerati è una media pesata dei valori dello spettro obiettivo ai numeri
d’onda primari e secondari. L’espressione analitica in forma chiusa

93
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94 6. Simulation of Multi-Variate, Gaussian, Ergodic Random Fields

che viene ricavata può anche essere considerata l’estensione al caso
discreto della dimostrazione di ergodicità fornita da Deodatis (1996)
per il caso continuo. Nella pratica comune, infatti, i campioni vengo-
no sempre generati per mezzo di elaboratori elettronici che sfruttano
descrizioni discrete delle variabili e funzioni di calcolo numerico (co-
me ad esempio la Fast Fourier Transform). Inoltre, la descrizione
in forma chiusa dell’effettiva densità di potenza spettrale dei cam-
pioni può permettere di regolare lo spettro impostato come obiettivo
in modo da ottenere esattamente lo spettro risultante desiderato.

6.1 Introductory Remarks

Deodatis (1996) proposed the extension of the Spectral Representation Method
(SRM) that generates multivariate samples and that have been described in
Sec. 5.2.1. In the same paper, the author proved that the generated samples
are ergodic if the Frequency Double Indexing (FDI) technique is employed.
However, this proof is valid when ∆κ tends to zero. On the contrary, these
simulations are always performed by a digital computer, so the spectra are
defined at discrete frequencies and ∆κ is always finite. The original contribution
of this Chapter is the proof that even in this case, the samples are ergodic,
meaning that they all have exactly the same Cross-Spectral Density Matrix
(CSDM) and that therefore the CSDM can be computed by space averaging
rather than ensemble averaging.

The basic hypothesis that is made is that the decomposition used for the
CSDM is the Cholesky’s one. An interesting particular case that will be in-
vestigated is the one in which the cross-spectra S0

ij(κ) can be described by the
coherence function γij(κ) already defined as

S0
ij(κ) =

√
S0

ii(κ)S0
jj(κ) γij(κ) (6.1)

0 ≤ γij(κ) ≤ 1 (6.2)

In the most general case as well as in the particular case described by
Eq. (6.1), a closed form expression of the CSDM of the generated samples can
be computed a priori as a “weighted” average of the values of the autospectra
at the various “primary” wave numbers (at intervals ∆κ) and “secondary” wave
numbers (at intervals ∆κ

m ) introduced by the FDI technique.
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6.2 Decomposition of the Target CSDM

As suggested by Deodatis (1996), the CSDM is decomposed using the Cholesky
method (see Sec. 5.3.5). The terms of H are defined as

Hcc =

√√√√Scc −
c−1∑
e=1

H2
ce

Hcd =
1

Hdd

(
Scd −

d−1∑
e=1

HceHde

)
, for c > d

(6.3)

where in Eq. (6.3), as well as in the reminder of this Section, the dependence
on the wave number κ of all the variables has been omitted for the sake of
simplicity.

Substituting Eq. (6.1) into Eq. (6.3), we obtain the matrix H(κ) written as
a function of the autospectra and of the coherences:

Hcc =

√√√√Scc −
c−1∑
e=1

H2
ce

Hcd =
1

Hdd

(√
SccSddγcd −

d−1∑
e=1

HceHde

)
, for c > d

(6.4)

Now, let us define the quantities wcd(κ) as

wcd(κ) :=
Hcd(κ)√
Scc(κ)

⇒ Hcd(κ) = wcd(κ)
√

Scc(κ) (6.5)

In this way, the diagonal terms of H(κ) can be written as

Hcc =

√√√√Scc −
c−1∑
e=1

w2
ceScc =

√
Scc

√√√√1−
c−1∑
e=1

w2
ce

(6.6)

so, by definition, wcc is

wcc =

√√√√1−
c−1∑
e=1

w2
ce

(6.7)
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and wcd is given by

wcd : =
Hcd√
Scc

=

=
1√
Scc

1
Hdd

(√
SccSddγcd −

d−1∑
e=1

HceHde

)
=

=
1√
Scc

1

√
Sdd

√
1−

d−1∑
e=1

w2
de

(√
SccSddγcd −

d−1∑
e=1

wce

√
Scc wde

√
Sdd

)
=

=
1√
Scc

1

√
Sdd

√
1−

d−1∑
e=1

w2
de

√
SccSdd

(
γcd −

d−1∑
e=1

wcewde

)
=

=
1√

1−
d−1∑
e=1

w2
de

(
γcd −

d−1∑
e=1

wcewde

)
, for c > d

(6.8)

The recursive Eqs. (6.7) and (6.8) show that the variables w(κ) are functions
only of the coherences γ(κ). So, in general,

Hcd(κ) = wcd (γ(κ))
√

Scc(κ) (6.9)

In this way, the Cholesky decomposition of S(κ) can be quickly computed
knowing only the underlying Gaussian autospectra and the coherences. For the
special case of m = 3 we obtain

w(κ) =


1 0 0

γ12

√
1− γ2

12 0

γ13
γ23 − γ12γ13√

1− γ2
12

√
1− γ2

13 −
(γ23 − γ12γ13)2

1− γ2
12

 (6.10)
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H(κ) =


√

S11 0 0
γ12

√
S22

√
1− γ2

12

√
S22 0

γ13

√
S33

γ23 − γ12γ13√
1− γ2

12

√
S33

√
1− γ2

13 −
(γ23 − γ12γ13)2

1− γ2
12

√
S33


(6.11)

It will be shown in the following Sections that the wij ’s can be used as
weights to determine the CSDM of the generated samples.

6.3 Generation of ĝc

Always referring to the same article (Deodatis, 1996), for the generation of the
samples, the adopted procedure is the one already summarized in Sec. 5.3.7 and
here reported.

The following functions are defined:

t
(i)
cd (p ∆x) = FFT+

l

[
2Hcd

(
l∆κ +

d

m
∆κ

)√
∆κ · exp

(
iφ(i)

dl

)]
;

c = 1, 2, . . . ,m; d = 1, 2, . . . , c;
p = 0, 1, . . . ,M − 1; l = 0, 1, . . . ,M − 1;

∆x =
M

2π ∆κ

(6.12)

where FFT+
l [·] denotes the FFT with M points and positive exponent over the

index l of the function in brackets. The superscript (i) stands for the fact that
a specific set of random phase angles φ(i) determines a specific function t

(i)
cd and

m is the number of components.

Then, m copies of t
(i)
cd are concatenated to generate h

(i)
cd :

h
(i)
cd (q∆x) = t

(i)
cd (mod(q, M)∆x); q = 0, 1, ...,mM − 1 (6.13)

where mod(q, M) denotes the remainder of division of q by M .
Because of the frequency shifting (for the theory, refer also to Sec. 3.2.6),

h
(i)
ij has to be multiplied by a shifting factor:

ĥ
(i)
cd (q∆x) = <

[
h

(i)
cd (q∆x) · exp

(
i
d

m
∆κ x

)]
(6.14)
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where < [·] denotes the real part.
Finally, the various components ĝc(q∆x) are obtained as sums of the func-

tions ĥ
(i)
cd (q∆x):

ĝc(q∆x) =
c∑

d=1

ĥcd(q∆x) (6.15)

6.4 Spectrum of ĥcd

The analogy between Eqs. (6.12)–(6.14) and the SRM with frequency shifting
–recall Eq. (3.3)– is evident, therefore the spectrum of ĥcd is very closely related
to

H2
cd

(
l∆κ +

d

m
∆κ

)
l = 0, 1, ..., N − 1 (6.16)

Actually, because of the frequency shifting, when the empirical spectrum is com-
puted, the results will be relative to intervals ∆κ

m in the wave number domain.
So, at the frequencies l∆κ+ d

m∆κ the spectrum is a delta function of magnitude

m ·H2
cd

(
l∆κ +

d

m
∆κ

)
(6.17)

while at the other frequencies it is zero. In this way the variance (area under-
neath the spectrum) is conserved:

m ·H2
cd

(
l∆κ +

d

m
∆κ

)
· ∆κ

m
= H2

cd

(
l∆κ +

d

m
∆κ

)
·∆κ (6.18)

6.5 Computation of the CSDM

The Cross-Spectral Density Function (CSDF) of the samples ĝr(x) and ĝs(x)
can be computed at the discrete frequencies κ̄ using the formula (Bendat and
Piersol, 1986, p. 130):

Sg
rs (κ̄) =

1
2π(mL)

FFT−[ĝr]∗∆x FFT−[ĝs]∆x;

κ̄ = 0,
1
m

∆κ,
2
m

∆κ, . . . , (N − 1)∆κ +
(m− 1)

m
∆κ

(6.19)
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where FFT− [·] denotes the FFT with negative exponent and the asterisk de-
notes the complex conjugate. When the FFT is performed, the result has as
many points as the input function ĝ(x); however only the first half of the result-
ing points is meaningful, the second half is only its mirror image, due to the as-
sumption of periodicity. For this reason, κ̄ goes up only to (N−1)∆κ+ (m−1)

m ∆κ

instead of (M − 1)∆κ + (m−1)
m ∆κ, assuming that M = 2N .

Substituting Eq. (6.15) into Eq. (6.19) and taking advantage of the linearity
of the FFT operator, we get

Sg
rs (κ̄) =

∆x2

2πmL
FFT−

[
r∑

c=1

ĥrc

]∗
FFT−

[
s∑

d=1

ĥsd

]
=

=
∆x2

2πmL

r∑
c=1

FFT−
[
ĥrc

]∗ s∑
d=1

FFT−
[
ĥsd

] (6.20)

Now, we know from Sec. 6.4 that the autospectrum of ĥcd is

Sĥcd
(κ̄) =

1
2π(mL)

∣∣∣FFT−
[
ĥcd

]
∆x
∣∣∣2 =

=

 m ·H2
cd

(
l∆κ +

d

m
∆κ

)
for κ̄ =

(
l +

d

m

)
∆κ

0 everywhere else

l = 0, 1, 2, . . . , N − 1

(6.21)

that gives∣∣∣FFT−
[
ĥcd

]∣∣∣ =


m

∆x

√
2πL Hcd

(
l∆κ +

d

m
∆κ

)
at κ̄ =

(
l +

d

m

)
∆κ

0 everywhere else
(6.22)

Note that S0 and H are real, according to Eqs. (6.1) and (6.11).

The complex function FFT−
[
ĥcd

]
can be expressed as

FFT−
[
ĥcd

]
=
∣∣∣FFT−

[
ĥij

]∣∣∣ · exp(iθcd) =

=


m

∆x

√
2πT Hcd

(
l∆κ +

d

m
∆κ

)
· exp(iθcd) at κ̄ =

(
l +

d

m

)
∆κ

0 everywhere else
(6.23)
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where

θcd = arctan

[
=(FFT−ĥcd)

<(FFT−ĥcd)

]
(6.24)

Now, considering again Eq. (6.20) and Eq. (6.23), we can observe that
the product of sums gives terms different from zero only when both functions
FFT−

[
ĥrc

]∗
and FFT−

[
ĥsd

]
have moduli different from zero, that means when

κ̄ =
(
l +

c

m

)
∆κ =

(
l +

d

m

)
∆κ. For this reason it is possible to consider just

the terms with c = d and, therefore get rid of the sums:

Sg
rs (κ̄) =



0 for κ̄ = 0

mHrc

(
l∆κ + c

m∆κ
)
·

·Hsc

(
l∆κ + c

m∆κ
)
· for κ̄ =

(
l +

c

m

)
∆κ

· exp[i(θsc − θrc)]

(6.25)

Moreover, the phase θcd is governed only by the set of random phase angles
φd, therefore it is not a function of the first index1. In particular θsc = θrc.
For this reason, Eq. (6.25) reduces to:

Sg
rs (κ̄) =

=

{
0 for κ̄ = 0
mHrc

(
l∆κ + c

m∆κ
)
Hsc

(
l∆κ + c

m∆κ
)

for κ̄ =
(
l +

c

m

)
∆κ

l = 0, 1, . . . , N − 1; c = 1, 2, . . . ,m

(6.26)

Equation (6.26) is a closed form expression of the results that can be obtained
computing the empirical spectrum from a single sample using FFT.

1Note that in Eq. (6.12) and, thus, in Eqs. (6.13) and (6.14) only the set of random phase
angles φ

(i)
d is involved, while φ

(i)
c is not.
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Now, recalling the results of Sec. 6.2, Eq. (6.26) can also be expressed as:

Sg
rs (κ̄) =

=


0 for κ̄ = 0

mwrc

(
l∆κ + c

m∆κ
)
·
√

S0
rr

(
l∆κ + c

m∆κ
)
·

·wsc

(
l∆κ + c

m∆κ
)
·
√

S0
ss

(
l∆κ + c

m∆κ
)

for κ̄ =
(
l +

c

m

)
∆κ

l = 0, 1, . . . , N − 1; c = 1, 2, . . . ,m

(6.27)

And for the special case of the diagonal terms:

Sg
rr (κ̄) =

=

{
0 for κ̄ = 0
mw2

rc

(
l∆κ + c

m∆κ
)
· S0

rr

(
l∆κ + c

m∆κ
)

for κ̄ =
(
l +

c

m

)
∆κ

l = 0, 1, . . . , N − 1; c = 1, 2, . . . ,m

(6.28)

Equations (6.26)–(6.28) compute the spectrum of the samples as it is nat-
urally given by their digital representation, that means at intervals of ∆κ

m . If
we want to measure the spectral density over intervals of width ∆κ, the most
reasonable way is to average the results at m sub-frequencies (i.e. sum up the
areas underneath the SDF). Thus, Eqs. (6.26)–(6.28) become, respectively

Sg
rs (κ̃) =



m−1∑
c=1

Hrc

(
l∆κ + c

m∆κ
)
Hsc

(
l∆κ + c

m∆κ
)

for κ̃ = 0

Hrc (l∆κ) Hsc (l∆κ) +

+
m−1∑
c=1

Hrc

(
l∆κ + c

m∆κ
)
Hsc

(
l∆κ + c

m∆κ
)

for κ̃ = l∆κ 6= 0

l = 0, 1, . . . , N − 1
(6.29)
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Sg
rs (κ̃) =

=



m−1∑
c=1

wrc

(
l∆κ + c

m∆κ
)
·
√

S0
rr

(
l∆κ + c

m∆κ
)
·

·wsc

(
l∆κ + c

m∆κ
)
·
√

S0
ss

(
l∆κ + c

m∆κ
)

for κ̃ = 0

wrc (l∆κ) ·
√

S0
rr (l∆κ) · wsc (l∆κ) ·

√
S0

ss (l∆κ)+

+
m−1∑
c=1

wrc

(
l∆κ + c

m∆κ
)
·
√

S0
rr

(
l∆κ + c

m∆κ
)
· for κ̃ = l∆κ 6= 0

·wsc

(
l∆κ + c

m∆κ
)
·
√

S0
ss

(
l∆κ + c

m∆κ
)

l = 0, 1, . . . , N − 1
(6.30)

Sg
rr (κ̃) =

=



m−1∑
c=1

w2
rc

(
l∆κ + c

m∆κ
)
· S0

rr

(
l∆κ + c

m∆κ
)

for κ̃ = 0

w2
rc (l∆κ) · S0

rr (l∆κ)+

+
m−1∑
c=1

w2
rc

(
l∆κ + c

m∆κ
)
· S0

rr

(
l∆κ + c

m∆κ
)

for κ̃ = l∆κ 6= 0

l = 0, 1, . . . , N − 1
(6.31)

This last equation clearly shows that the quantities w defined in Sec. 6.2 can be
interpreted as square roots of the weights that have to be applied to the values
of the target autospectra at the primary and secondary discretization points to
compute the actual spectra of the produced samples.

6.6 Consistency with the Proof of Ergodicity by
Deodatis (1996)

Deodatis (1996) proved that the samples produced by this algorithm are ergodic
and that they all have the same correlations and CSDM that are equal to the
targets. That proof is valid for ∆κ that goes to zero, as the author clearly
stated. The results of the previous Section are perfectly consistent with this.
In fact, when ∆κ → 0, all the secondary discretization points tend to coincide
(collapse) and the values of the spectra at those points have to be averaged (or,
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that is equivalent, the areas have to be summed). Therefore, Eq. (6.26) reduces
to

Sg
rs(κ) =

 0 κ = 0

m

mP

c=1
Hrc(κ)Hsc(κ)

m otherwise

=

 0 κ = 0
m∑

c=1
Hrc (κ) Hsc (κ) otherwise

(6.32)

Considering the definitions of matrix product and of Cholesky decomposition,
we obtain

Sg(κ) =
{

0 κ = 0
H(κ)HT (κ) otherwise

=
{

0 κ = 0
S0(κ) otherwise

(6.33)

That is equivalent to what Deodatis (1996) proved considering the correlations.
From this point of view, Eq. (6.26) or (6.29) can be considered a gener-

alization of the proof of ergodicity, valid also for finite ∆κ. In fact it proves
that all the produced samples have the same spectrum and, therefore, it can be
computed from one single sample, by space averaging, rather then by ensemble
averaging of an infinite number of samples. For periodic functions, this is an
alternative definition of the ergodic property.
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6.7 Numerical Examples

6.7.1 Triangular Spectrum

Assume that we want to produce one sample with the following characteristics:

N = 2 (6.34)
κu = 6 (6.35)

∆κ =
κu

N
= 3 (6.36)

M = 2N = 4 (6.37)
m = 3 (6.38)

S0
rr(κ) =

{
κ, 0 ≤ κ ≤ κu

2
κu − κ, κu

2 < κ ≤ κu
∀r ∈ [1,m] (6.39)

γ0
rs(κ) = 0.4 ∀r ∈ [2,m]; s ∈ [1, r − 1] (6.40)

Obviously N is too low to get Gaussianity, but ergodicity is guaranteed anyway.

The theoretical spectrum in Fig. 6.1 can not be directly used as input, its
values computed at the following primary and secondary frequencies are required
by the code:

κn = n
∆κ

m
, n = 1, 2, . . . ,mN (6.41)

so that the spectrum represented in Fig. 6.2 is the one actually used as input of
the code.

The produced samples have mM = 12 discrete points. The empirical SDF’s
computed using the samples have 12 points as well. However, only the first
half of the points (κ = 0, 1, . . . , 5) is meaningful, the second half is artificially
introduced by the FFT because of the assumption of periodicity and is just a
mirror image of the first half. For instance, S22 and S33 are reported in Figs. 6.3
and 6.4, respectively.

It is evident that the empirical spectra does not match the target. This
could be attributed to the fact that the “resolution” we can count on is not ∆κ

m
but ∆κ. However, even averaging (if we consider the values) or summing (if
we consider the areas) the results in intervals of width ∆κ, still the resulting
spectra does not match the target (see Tab. 6.1 and Figs. 6.5–6.6).
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κ 

S0 

κu 
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κu 

Figure 6.1: Theoretical target triangular spectrum. It is the same for every
component.
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Figure 6.2: The values given to the code as target are S0 ∆κ
m = [1, 2, 3, 2, 1, 0]′.
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Figure 6.3: Triangular spectrum, empirical autospectrum of the second compo-
nent.
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Figure 6.4: Triangular spectrum, empirical autospectrum of the third compo-
nent.
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κ Target S22 S33

1 ∪ 2 ∪ 3 1+2+3=6 0.48+5.04+0=5.52 0.48+0.41+6.94=7.83
4 ∪ 5 ∪ 6 2+1+0=3 0.96+2.52+0=3.48 0.96+0.21+0=1.17

Table 6.1: Triangular spectrum. The empirical spectra do not match the target
neither in an average sense.

The values of the empirical spectra can be computed a priori by means of
Eqs. (6.27) and (6.28).

In Sec. 6.6, we saw that when ∆κ tends to zero, the CSDM of the samples
tends to the target. In fact, increasing the number of intervals N , that is
reducing ∆κ, the CSDM computed with resolution ∆κ becomes closer to the
target, as Fig. 6.8 shows. On the contrary, no matter how small ∆κ is, if we
compute the CSDM with a resolution of ∆κ

m , we see that it is scattered, because
the contributions at the various secondary frequencies have different weights
(see Fig. 6.7). Figures 6.7 and 6.8 clearly show that the fairest way to compute
the CSDM is to consider intervals of width ∆κ, so this is what will be done in
the remainder of the Chapter.

The difference between the spectra of the produced samples and the target
remains finite even increasing N , as the blow-up in Fig. 6.8 shows. Figures 6.9–
6.11 represent the difference between the empirical spectrum and the target for
the triangular SDF. As already said, the difference is due to the fact that each
single point of the actual spectra of the samples is a combination of the values of
the target spectrum at m points over the interval ∆κ. Therefore, this difference
increases with the difference between the values of the target spectra over one
interval of width ∆κ. We can conclude that the difference is larger when ∆κ
is larger and when the derivative of the target autospectrum is larger. In fact,
for a linear (triangular) spectrum, the difference assumes constant values, while
the next numerical example will show that for a parabolic target spectrum, the
difference is a linear function.
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Figure 6.5: Triangular spectrum, cross-spectral density matrix. The “Empirical
SDF” has been computed applying Eq. (6.19) to one produced sample; the
“Closed form expression” represents the results of Eq. (6.26) or Eqs. (6.27)–
(6.28); the “Target spectrum” is the input given to the simulation algorithm.
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Figure 6.6: Triangular spectrum, cross-spectral density matrix. Data are com-
puted as in Fig. 6.5, but at intervals of width ∆κ, rather then ∆κ

m . Each value
in this plot is the sum of m values in Fig. 6.5. It is clear that also with this
“resolution”, the closed form expression perfectly describes the spectrum of the
produced samples but it is different from the target one.
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Figure 6.7: Triangular spectrum, cross-spectral density matrix. Data are com-
puted as in Fig. 6.5. N has been set equal to 256, therefore ∆κ

m = 6
3·256

∼= 0.0078.
Measuring the CSDM at intervals of ∆κ

m , the empirical CSDM is always scat-
tered, as long as ∆κ is finite.
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Figure 6.8: Triangular spectrum, cross-spectral density matrix. Data are com-
puted as in Fig. 6.6. N has been set equal to 256, therefore ∆κ = 6

256
∼= 0.0234.

The empirical CSDM is much closer to the target than the one in Fig. 6.6.
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Figure 6.9: Triangular spectrum, difference between the “empirical spectrum”
computed as in Fig. 6.6 and the target. N has been set equal to 2.
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Figure 6.10: Triangular spectrum, difference between the “empirical spectrum”
computed as in Fig. 6.6 and the target. N has been set equal to 256. The
absolute value of the difference is constant, because the derivatives of the SDF’s
are constant.
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Figure 6.11: Triangular spectrum, difference between the “empirical spectrum”
computed as in Fig. 6.6 and the target for different values of N . The absolute
value of the difference is constant, as shown by Figs. 6.9–6.10 and it decreases
as N increases (i.e. as ∆κ decreases).
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6.7.2 Parabolic Spectrum

Consider now the following parabolic target spectrum:

N = 2 (6.42)
κu = 6 (6.43)

∆κ =
κu

N
= 3 (6.44)

M = 2N = 4 (6.45)
m = 3 (6.46)

S0
rr(κ) = 2κ− 2

κ2

κu
∀r ∈ [1,m] (6.47)

γ0
rs(κ) = 0.4 ∀r ∈ [2,m]; s ∈ [1, r − 1] (6.48)

Figures 6.12 and 6.13 represent the actual CSDM of the produced samples
for N = 2 and N = 64, respectively. In this case (see Figs. 6.14–6.15) the
difference between the target and the empirical spectrum is linear because the
derivatives of the SDF’s are linear.
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Figure 6.12: Parabolic spectrum, cross-spectral density matrix. The “Empirical
SDF” has been computed applying Eq. (6.19) to one produced sample; the
“Closed form expression” represents the results of Eq. (6.26) or Eqs. (6.27)–
(6.28); the “Target spectrum” is the input given to the simulation algorithm.
The values are computed at intervals of width ∆κ and N is equal to 2.
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Figure 6.13: Parabolic spectrum, cross-spectral density matrix. The “Empirical
SDF” has been computed applying Eq. (6.19) to one produced sample; the
“Closed form expression” represents the results of Eq. (6.26) or Eqs. (6.27)–
(6.28); the “Target spectrum” is the input given to the simulation algorithm.
The values are computed at intervals of width ∆κ and N is equal to 64.
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Figure 6.14: Parabolic spectrum, difference between the “empirical spectrum”
computed as in Fig. 6.12 and the target. N has been set equal to 2. Note that
in this case the difference appears a constant function because only 2 values are
available. Its nature of linear function is clearly represented in Fig. 6.15.
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Figure 6.15: Parabolic spectrum, difference between the “empirical spectrum”
computed as in Fig. 6.6 and the target. N has been set equal to 64. The
difference is a linear function, because the derivatives of the SDF’s are linear.
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Figure 6.16: Kaimal spectrum, cross-spectral density matrix. The “Empirical
SDF” has been computed applying Eq. (6.19) to one produced sample; the
“Closed form expression” represents the results of Eq. (6.26) or Eqs. (6.27)–
(6.28); the “Target spectrum” is the input given to the simulation algorithm.
The values are computed at intervals of width ∆κ and N is equal to 2048.

6.7.3 Kaimal Spectrum

Finally, consider the same Kaimal spectrum with Davenport coherence used by
Deodatis (1996). With the number of intervals used in that paper N = 2048,
the difference between the target and the empirical spectrum is very small but
not zero (Fig. 6.16).

Also in this case the closed form Eq. (6.26) –or Eqs. (6.27)–(6.28)– describes
perfectly the resulting CSDM.
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6.8 Concluding Remarks

When the Spectral Representation Method is used together with the Frequency
Double Indexing technique to produce multi-variate ergodic Gaussian samples,
the Cross-Spectral Density Matrix of the results do not match exactly the tar-
get. The difference in generally small, and can be easily reduced increasing the
number of intervals N (i.e. reducing their width ∆κ).

A closed form expression that allows to compute a priori the actual CSDM
of the produced samples has been provided. This can be also considered a
generalization of the proof of ergodicity, that in this way is valid also for finite
∆κ.

A possible development could be the inversion (analytical or numerical) of
the closed form Eq. (6.26) to compute the CSDM that has to be given as input
to the algorithm to obtain exactly the desired empirical CSDM.
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Chapter 7

Applications to Civil
Engineering

When a rule is extremely complex,
that which conforms to it passes for random.

-Gottfried Leibniz-

Sommario. Nei Capitoli precedenti sono stati mostrati diversi esem-
pi numerici, ma nessuna applicazione diretta all’ingegneria civile.
In questo Capitolo vengono invece presentate due applicazioni sulle
quali si sta già lavorando ed altri possibili campi d’impiego futuri.

La prima applicazione riguarda la geomeccanica stocastica. Le pro-
prietà meccaniche dei suoli, infatti, sono caratterizzate da coefficienti
di variazione enormi, se confrontati con le proprietà degli altri mate-
riali per l’ingegneria civile. La variabilità, quindi, è tale da causare
comportamenti che spesso divergono non solo negli aspetti quanti-
tativi, ma anche in quelli qualitativi da ciò che viene descritto dai
modelli deterministici. Per tale motivo, il comportamento reale può
essere colto solo da un’analisi probabilistica basata sulla simulazio-
ne. Numerosi studi hanno investigato problemi di questo tipo che
sfociano nel raggiungimento di uno stato limite da parte del suolo.
Meno attenzione, invece, è stata rivolta all’effetto che tale variabilità

123
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dei suoli può indurre sulle costruzioni, attraverso i cedimenti diffe-
renziali. La prima applicazione concreta dei metodi presentati nei
Capitoli precedenti è, quindi, lo studio di questo tipo di problemi.

Il secondo settore di utilizzo è l’affidabilità strutturale. In particolare,
sono disponibili dati sullo stato di conservazione dei cavi principali
del ponte di Williamsburg a New York alla fine degli anni Ottanta.
Si vuole ora utilizzare tali dati insieme ad un modello di corrosione
per simulare lo stato di conservazione attuale e programmare gli in-
terventi di manutenzione. Anche in questo contesto, lo studio può
essere condotto solo con un approccio probabilistico e, in partico-
lare, si vuole fare uso delle tecniche di simulazione presentate in
precedenza.

Altre possibili applicazioni vengono ipotizzate nel Paragrafo conclu-
sivo.

7.1 Introductory Remarks

In the previous Chapters, some numerical examples have been presented. How-
ever, none of them is directly related to a specific practical application. In this
Chapter some relevant civil engineering problems in which the proposed tech-
niques have already been applied or could be applied in the future are briefly
introduced.

The first is an application to stochastic geomechanics, aimed to the investi-
gation of the possible effects on the structures of soil random variability. The
second application involves the reliability assessment of suspended bridges. In
both these case, a preliminary part is completed and now the generation of
samples for the simulation should start. Finally, some new ideas and interests
in different fields will be presented.

7.2 Stochastic Geomechanics

The coefficients of variation of soil properties are extremely larger than those
relative to the other structural engineering materials. In fact, in this case there
are series of uncertainties arising from several sources: statistical errors (be-
cause of the usually small sample sizes), measurement errors, uncertainties in
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transforming the index soil properties obtained from soil tests into desired me-
chanical properties and, most of all, the inherent random heterogeneity (also
referred to as “spatial variability”).

For this reason, in the last decades a series of papers appeared in the lit-
erature analyzing the effects of the random soil variability on the failure due
to insufficient bearing capacity (e.g. Griffiths and Fenton, 2001; Fenton and
Griffiths, 2003; Popescu, Deodatis and Nobahar, 2005), slope instability (e.g.
Griffiths and Fenton, 2004) and soil liquefaction (e.g. Ohtomo and Shinozuka,
1990; Popescu et al., 1997; Fenton and Vanmarcke, 1998; Koutsourelakis et al.,
2002; Popescu, Prevost and Deodatis, 2005). The most widely used approach
for this kind of problems is Monte Carlo Simulation. In fact, the strong non-
linearity of the deterministic model and the very large coefficients of variation
make any other possible probabilistic technique very inaccurate. All the studies
concluded that considering the inherent variability of soil properties the attain-
ment of a limit state is extremely more probable than in the case of a uniform
soil deposit with the same mean properties.

All the aforementioned papers analyze the soil crisis. Other authors have
studied the settlements caused by the inherent heterogeneity (e.g. Paice et al.,
1996; Fenton and Griffiths, 2002). Usually the structure is modeled as a rigid
body, and even in the cases in which the foundation is a flexible strip, the effects
on the structure are not analyzed. Actually, the random variability of the soil
properties causes differential settlements that induce stresses in the structures.
Therefore, significantly before the soil crisis, the soil heterogeneity can cause
the attainment of a limit state in the structure. These kind of problems require
expertise in many fields (geomechanics, structural engineering, probability, com-
putational mechanics) and, to the author’s knowledge, have not been studied
thoroughly yet.

The main goal that has required the development of the methods presented
in the previous Chapters is exactly the analysis of the effects on the structures
of the soil variability. In fact, empirical data show that the mechanical soil
properties have to be modeled as non-Gaussian, multi-variate, multi-dimensional
random fields.

The deterministic analyses will be performed using the non-linear finite el-
ement code Dynaflow (Prevost, 2002). Since the software does not ship with a
post-processing graphical interface1, a companion user interface has been writ-
ten to the purposes of this study (see Figs. 7.1–7.4).

1The output of Dynaflow is compatible with some third party post-processors, but only
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Figure 7.1: Graphical post-processor for Dynaflow. Meshes of the plane frame
and of the soil.
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Figure 7.2: Graphical post-processor for Dynaflow. Nominal stresses in the soil
at the first step of the non-linear analysis.
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Figure 7.3: Graphical post-processor for Dynaflow. Bending moments in the
frame at the first step of the non-linear analysis.
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Figure 7.4: Graphical post-processor for Dynaflow. Time history of the dis-
placement of a specific node in the soil.
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At the moment, the algorithms for the simulation of the mechanical param-
eters are complete, the mechanical model and the statistical description of the
soil properties will be provided by Prof. Radu Popescu (Memorial University
of Newfoundland - Princeton University) and the software for the deterministic
analyses with its companion post-processor is available. Hopefully, the Monte
Carlo Simulation will start soon.

7.3 Cable-Bridges Reliability

In the late eighties, the commissioners of transportation of the city and state
of New York asked to the Civil Engineering and Engineering Mechanics depart-
ment of Columbia University to coordinate a study aimed to the assessment of
the structural reliability of the Williamsburg bridge over the East river (Stein-
man et al., 1988). Over the years the data collected in that occasion have
continued to be studied (Matteo et al., 1994; Shi et al., 2007) and are still used
for research purposes. Today, the interest focuses on corrosion, and an origi-
nal corrosion model, based on theoretical considerations, data available in the
literature and new experimental results, have been developed by researchers at
Columbia University2.

Within this framework, the techniques presented in the previous Chapters
are used for the testing and the improvement of the available models. In partic-
ular, in the previous works only data regarding the strength of the sample wires
have been used, even if also data on the ultimate elongation were available. A
first analysis consists in the use of both the sets of data to improve the knowl-
edge about the wire condition. An estimation of the autocorrelations and of
the cross-correlation (and therefore of the cross-spectral density matrix) along
the length in consecutive wire segments and a fitting of marginal distributions
for both the variables have been performed. These results will be used for the
simulation of random fields representing the characteristics of the wires, aimed
to the estimation of the overall strength of the principal cables of the bridge.
Taking the minimum value of the strength of a wire over the selected clamping
length3 and adding the strength for each wire, the total cable strength can be

one of them is fully supported. For this reason a more versatile (and free of charge) user
interface appeared useful.

2The results have not been published yet. The study is done by Mr. Efe Karanci, Prof.
Raimondo Betti and Prof. George Deodatis.
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Figure 7.5: The Williamsburg Bridge, between Manhattan and Brooklyn, New
York City.
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estimated. Then the corrosion model will be applied to estimate the amount
of area loss by the wires and thus to compute how much strength of the cable is
lost due to that amount. The updated cable strength can be used to estimate
the structural reliability and to plan the maintenance.

The use of the random fields simulation, together with the corrosion model,
allows to assess (in a probabilistic sense) the future conditions of the main cables
of a suspension bridge.

7.4 Other Possible Applications

The scientific and technical interest in the analysis and recovery of masonry
buildings is increasing. Lately, a procedure for the stochastic characterization
of masonry has been proposed by Falsone and Lombardo (2007). Starting from a
picture (or a series of pictures) of a wall, the code is able to estimate correlation
and distribution of that particular texture. This innovative procedure can pro-
duce as output the data that are required by the simulation algorithms as input.
Therefore, even if only a small portion of wall is visually accessible, it is possible
to reconstruct, in a probabilistic sense, the whole masonry structure. Thus, a
Monte Carlo Simulation can be performed to evaluate the structural behavior.
Further investigations about the applicability of the proposed techniques in this
field will be carried out.

Mechanical and, in particular, aerospace engineering are the fields in which
reliability theory is more applied. In the industrial design of an aircraft a huge
amount of resources are involved and it is particularly important that the final
result is as flawless as possible. For this reason, different kinds of probabilistic
analyses are performed during the design process. Monte Carlo Simulation
is widely acknowledged as the only truly universal stochastic approach and is
used as benchmark for the other techniques. In the case of major projects
(as certainly aircrafts are) also the issue of required computational power can

3In a suspension bridge cable, the wrapping of the wires as well as the cable bands cause a
clamping effect and therefore induce strong compaction forces inside the cable. These forces
generate friction among the cable’s parallel wires. For this reason, at the fracture location, the
load previously carried by a broken wire is transmitted to the surrounding intact wires that
gradually transmit the load back to the broken cable, as it recovers its load-carrying capacity
away from the fracture location. Thanks to this mechanism, a broken wire can gradually
regain its load-carrying capacity over some distance along the length of the cable. This is the
reason why the strength of an individual wire is considered over a limited length (“clamping
length”), and not over the entire length of the cable (Steinman et al., 1988).
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be easily addressed and overcome, using clusters for parallel computing4. A
joint research program between the DISTART department of the University
of Bologna and an important aerospace company is going to start. In this
framework, the application of the techniques presented in the previous Chapters
will be proposed. In fact, they appear particularly suitable for this field. First
of all, the sample generation is extremely efficient and it is not necessary to
repeat the underlying Gaussian field identification every time the aircraft design
changes. Moreover, also the codes presented in Chapters 3–5 have been written
for parallel computing, so, in case of need, it is possible to take advantage of
all the computational power provided by a high performance computing facility.
Finally, the versatility of the proposed methods (strongly non-Gaussian, multi-
dimensional, multi-variate) makes them suitable for many problems that can
arise during the design procedure.

Besides the aforementioned ones, the Monte Carlo Simulation (and therefore
the generation of random fields) is applicable to an extremely wide range of
practical application.

4Note that the parallel implementation of the Monte Carlo Simulation is straightforward
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Chapter 8

Identification of
Truss Structures

In theory, there is no difference between theory and practice.
But, in practice, there is.

-Jan L. A. van de Snepscheut-

Sommario. L’identificazione strutturale è un processo attraverso il
quale si determinano a posteriori le caratteristiche di una struttura
realizzata (“metodi parametrici”) o la funzione di trasferimento del
sistema-struttura (“metodi non parametrici”). Per mezzo dei metodi
di identificazione, quindi, si possono ricavare utili informazioni, ad
esempio, su edifici storici per i quali non si hanno progetti, sullo
stato di strutture (anche meccaniche) dopo un certo periodo di uti-
lizzo, sulla presenza, posizione ed entità di eventuali danneggiamenti
in alcuni elementi.
Poiché operano su strutture effettivamente realizzate, i metodi di
identificazione più interessanti ed utilizzati sono quelli “non distrut-
tivi”. Tali metodi, infatti, consentono di ricavare le informazioni
necessarie senza bisogno di portare né la struttura, né una parte di
essa ad uno stato limite.
In letteratura si possono trovare numerosi metodi per l’identificazio-
ne di ogni tipologia strutturale. In questo Capitolo viene presentato

137
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un metodo di identificazione non distruttivo per valutare la rigidezza
delle aste di una struttura reticolare. Nel caso in cui la struttura
presenti aste danneggiate, queste vengono localizzate e viene stimata
la rigidezza residua. Si è scelto di utilizzare prove di caricamento
statico e misure di dilatazioni per rendere le prove in situ semplici e
poco costose. L’algoritmo suggerito opera su strutture piane oppure
tridimensionali, isostatiche e iperstatiche.

Liu e Chian (1997) hanno proposto un metodo per l’identificazione
parametrica di strutture reticolari basato sull’impiego di sollecitazio-
ni statiche e misure di deformazione. Tali scelte vanno nella direzio-
ne di semplificare al massimo le prove in situ e di ridurre il numero
di variabili coinvolte nel problema. Infatti, le prove dinamiche coin-
volgono anche la matrice delle masse e i parametri di smorzamento
e, quindi, aumentano il numero di parametri da stimare rendendo
così più complesso il problema. Le risposte statiche, inoltre, riescono
a dare maggiori informazioni sulla localizzazione nella determinazio-
ne del danno rispetto all’utilizzo di forme modali che, al contrario,
sono più adatte a ricavare informazioni globali sulla struttura.

La misura della risposta strutturale in termini di spostamenti nodali
consente una trattazione analitica più semplice. Tuttavia, la misura
di spostamenti implica sempre la definizione di un sistema di rife-
rimento assoluto che è spesso un’operazione difficile ed onerosa. La
misura delle dilatazioni per mezzo di estensimetri, invece, è molto
economica e, se si contengono le numerose possibili fonti di piccoli
errori, può dare risultati più precisi delle misure di spostamenti.

Il presente approccio generalizza quello proposto da Liu e Chian,
applicabile a strutture e sottostrutture piane e staticamente determi-
nate. Innanzitutto, vengono considerate anche le reticolari tridimen-
sionali. Inoltre, per la soluzione di strutture vincolate esternamente
in maniera iperstatica, viene proposto un algoritmo iterativo che pre-
senta ottimi livelli di convergenza in tutte le applicazioni empiriche,
a prescindere dalla precisione delle ipotesi iniziali sulle rigidezze degli
elementi strutturali.

Viene, infine, presentata l’applicazione del metodo proposto all’iden-
tificazione di sottostrutture.
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8.1 Introductory Remarks

The present Chapter introduces a method that belongs to the framework of
the non-destructive parametric identification1. Its objective is to evaluate the
mechanical characteristics of the bars that constitute existent truss structures.
Many different procedures have been proposed in the literature (see, for example,
the survey by Liu and Han, 2003). Most of them use dynamic experimental data
(e.g. Hearn and Testa, 1991; Salawu, 1997) because, in general, it is easier to
obtain them.

However, for certain types of structures, as truss structures, static data
can be obtained even more easily than dynamic ones. Nevertheless, only a few
papers deal with structural identification through static tests. Some of the most
representative have been written by Sanayei and Onipede (1991); Banan et al.
(1994a,b); Sanayei and Saletnik (1996a,b); Hjelmstad and Shin (1997); Di Paola
and Bilello (2004). Liu and Chian (1997) presented a method that belongs to
this class. Its declared principal goal is to use simple and low-cost tests. For
this reason static loads and strain measurements are adopted.

Static loads can be easily applied by means of suspended masses and (in case)
pulleys. Moreover, Jenkins et al. (1997) enlightened that the static structural
response show significantly higher sensitivity to local damage than natural fre-
quencies in many cases. In fact, the latter are well suited to describe the overall
behavior of a structure, rather than local properties. In addition to this, dy-
namic analysis involves also the mass matrix and the damping parameters, while
the static analysis does not, so treating a lower number of uncertainties. Finally,
static data can be acquired and managed easily, while dynamic time histories
require a more expensive acquisition and a higher computational effort.

The axial strains of truss elements can be easily obtained by means of strain
gauges at low cost. Strain measurements have several sources of small errors
(as, for example, temperature effects, electronic noise and wrong balancing of
the Wheatstone bridge), but they can be managed and controlled, so that static
strain can be measured with a higher precision than displacement, thus this
approach is preferable (Sanayei and Saletnik, 1996a,b). However, the usual
compatible Finite Element Methods (FEMs) use displacements as configuration
variables. For this reason, an alternative formulation of the equilibrium equation
that takes into account the strains is presented.

1Part of the scientific results reported in this Chapter have already been presented by Viola
and Bocchini (2007).
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In the case of large structures, the measurement of the strain in every bar
is considered neither realistic nor, often, interesting. For this reason, in many
cases, a substructure identification procedure is preferable. In fact, it allows
to take into account only the relevant parts of the structure, or the substruc-
tures where damages are supposed to be. Moreover, in this way more complex
structures can be analyzed splitting them into many parts.

The procedure presented by Liu and Chian (1997), is applicable to externally
statically determinate plane structures. The method proposed in this Chapter
and the following one generalizes the above mentioned. In fact, first of all
it takes into account also three-dimensional structures, and in this way some
peculiarities of the approach can be more easily enlightened. Then, a modified
iterative algorithm is introduced in order to be applicable to structures with
redundant external constrains.

In Chapter 9 two more extensions will be proposed.

8.2 Proposed Methodology

8.2.1 Three-Dimensional Externally Statically Determi-
nate Structures

The equilibrium equation of a bar in a three-dimensional space in the Finite
Element Analysis (FEA) is

keηe = Ne (8.1)

where ke, ηe and Ne are, respectively, the stiffness matrix, the displacement
vector and the force vector of the eth element in local coordinates, as represented
in Fig. 8.1. In Eq. (8.1) the measured quantities (strains) does not appear; the
cinematic behavior is described by the displacements. For this reason, Liu and
Chian (1997) proposed a new formulation that is here presented in a revised
version and extended to three-dimensional truss structures.

The stiffness matrix is computed using the standard Finite Element Method
(FEM) and results as follows:

EeAe

le

[
1 −1
−1 1

] [
ηe1

ηe2

]
=
[

Ne1

Ne2

]
(8.2)

being Ee, Ae and le the Young’s modulus, the cross-sectional area and the length
of the eth bar, respectively. The product EeAe is the objective of the estimation
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Figure 8.1: Bar in a three-dimensional reference system: vectors.
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Figure 8.2: Bar in a three-dimensional reference system: angles.

procedure and, in the remainder, it is represented by αe and called “element
stiffness”. In order to express the equilibrium equation in global coordinates, a
three-dimensional rotation matrix Re is used

αe

le
RT

e

[
1 −1
−1 1

]
ηe = RT

e Ne (8.3)

where

Re =
[

cos θex cos θey cos θez 0 0 0
0 0 0 cos θex cos θey cos θez

]
(8.4)

with θex, θey and θez measured as reported in Fig. 8.2. In global coordinates,
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the force vector is expressed by Fe = RT
e Ne, thus

αe

le
RT

e

[
1 −1
−1 1

]
ηe = Fe (8.5)

Each row of the connectivity matrix Le (n×6) is related to a degree of freedom
(DOF) of the global truss structure (n DOF’s) and each column represents one
DOF of the eth element (6 DOFs in a three-dimensional space). The correspon-
dence between local and global DOFs is represented by “ones” in the intersection
of the rows and of the columns belonging to homologous DOF’s. For example,
if the DOF’s of the eth element correspond to the DOF’s 1,2,3,7,8 and 9 of a
structure, Le results in:

Le =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0



(8.6)

The connectivity matrix and the assembly procedure allow to take into account
the m elements of the overall structure:

αe

le
LeRT

e

[
1 −1
−1 1

]
ηe = LeFe (8.7)

m∑
e=1

αe

le
LeRT

e

[
1 −1
−1 1

]
ηe = F (8.8)

being F =
∑m

e=1 LeFe the complete vector of loads applied to the structure
(external loads and constrains reactions).

In order to put in evidence the measured strains, the equilibrium Eq. (8.8)
is restated as

m∑
e=1

αe

le
LeRT

e

[
−1
1

] [
−1 1

]
ηe = F (8.9)
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m∑
e=1

αe

le
LeRT

e

[
−1
1

] [
−1 1

] [ ηe1

ηe2

]
= F (8.10)

m∑
e=1

αe

le
LeRT

e

[
−1
1

]
(−ηe1 + ηe2) = F (8.11)

m∑
e=1

αeLeRT
e

[
−1
1

]
ηe2 − ηe1

le
= F (8.12)

In Eq. (8.12) it is easy to recognize ηe2−ηe1
le

= εe, the axial dilatation of the eth

bar:
m∑

e=1

αeLeRT
e

[
−1
1

]
εe = F (8.13)

Equation (8.13) shows the explicit relationship between the unknowns of the
analysis αe, the measured quantities εe and the external loads F.

The geometrical data of the problem are condensed in the vector Ie:

Ie = LeRT
e

[
−1
1

]
= Le


cos θex 0
cos θey 0
cos θez 0

0 cos θex

0 cos θey

0 cos θez


[
−1
1

]
= Le


− cos θex

− cos θey

− cos θez

cos θex

cos θey

cos θez


(8.14)

and the equilibrium equation is rewritten as
m∑

e=1

αeεeIe = F (8.15)

The vector S of the unknown stiffnesses and the matrix P are defined as

S =
[

α1 α2 · · · αm

]T
P =

[
ε1I1 ε2I2 · · · εmIm

] (8.16)

This way, the sum expressed in Eq. (8.15) can be replaced by the matrix product

PS = F (8.17)

where P(εe) is a function of the measured strains, S(αe) is a function of the
unknown stiffnesses and F collects external loads.
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In this way, the identification problem has been reduced to the optimiza-
tion of Eq. (8.17). The least square method is adopted as solution technique,
therefore, the “error function” to minimize is:

E =
K∑

k=1

|PkS− Fk|2 (8.18)

where K is the number of loading tests, and the subscript k identifies the kth

loading test. It is worth noticing that the formulation in Eq. (8.18) does not
require to solve the equilibrium equation. Moreover, it can be proved that the
solution of the minimization problem is unique. In fact, the stationarity of the
error is given by

dE

dS
=

K∑
k=1

d

dS

(
ST PT

k PkS− ST PT
k Fk − FT

k PkS + FT
k Fk

)
=

=
K∑

k=1

d

dS

(
ST PT

k PkS− 2ST PT
k Fk + FT

k Fk

)
=

=
K∑

k=1

2PT
k PkS− 2PT

k Fk = 0

(8.19)

therefore
K∑

k=1

2PT
k PkS =

K∑
k=1

2PT
k Fk (8.20)

K∑
k=1

PT
k PkS =

K∑
k=1

PT
k Fk (8.21)

HS = R (8.22)

where matrix H and vector R are defined as

H =
K∑

k=1

PT
k Pk; R =

K∑
k=1

PT
k Fk (8.23)

If H is non-singular, then Eq. (8.22) can be directly solved for the vector of the
unknowns S.
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To verify that the point of stationary corresponds to a minimum, it can be
observed that the function in Eq. (8.18) is a sum of quadratic terms, thus it is
a convex quadratic function. Otherwise, the Hessian matrix can be computed:

d2E

dS2
=

d

dS
dE

dS
=

=
K∑

k=1

d

dS
2PT

k PkS− 2PT
k Fk =

=
K∑

k=1

2PT
k Pk = 2H

(8.24)

Therefore, the Hessian matrix has the same sign of the constant matrix H. This
matrix is positive semidefinite, in fact

xT Hx =
K∑

k=1

xT PT
k Pkx =

K∑
k=1

|Pkx|2 ≥ 0 ∀x (8.25)

Moreover Eq. (8.25) shows that the Hessian is positive definite if H is non-
singular. From these considerations, it appears evident that the rank of matrix
H is of utmost importance. First of all, it guarantees a unique solution. More-
over, this kind of problems are solved using quadratic programming (see, for
example, Shapiro, 1979; Strang, 1986) or polynomial regression methods (Wang
et al., 2005). In quadratic programming it is proved (and intuitive) that if the
Hessian of the objective function is positive definite, then the solution is a global
minimum. A deeper analysis of this topic will be presented in Sec. 8.4.1.

8.2.2 Externally redundant structures

The solution of the problem consists in the minimization of Eq. (8.17) or, that
is the same, in the solution of the system in Eq. (8.22). In the first case, the
right-hand vector is F and in the latter it is a function of F, in fact R = R(F).
Therefore, a condition for the direct solution of the problem is to know all the el-
ements of vector F. Actually, F collects all the loads applied to the structure. In
the case of small displacements (according to the use of a non-destructive tech-
nique) the superimposition principle is applicable. Thus, the measured strains
depend only on the loads applied for the test. However, the constrains reactions
are still unknown. In the case of externally statically determinate structures,
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reactions can be computed using only the equilibrium equations. On the con-
trary, in the case of externally redundant structures, a set of strain-compatibility
equations is required. However, the element stiffnesses are still unknown (they
are the object of the identification procedure), therefore compatibility equations
can not be solved.

The bottom line is that in the case of externally redundant structures some
elements of vector F are unknown. To overcome this issue, a procedure based
on the iterative scheme represented in Fig. 8.3 is proposed.

The inputs of the algorithm are the geometrical description of the structure,
the constraints, the applied loads and a starting value for the stiffnesses. It
should be noticed that a rough estimation, obtained by multiplying the approx-
imate cross sectional area by the average Young modulus of the material is more
than sufficient, as it will be shown in Sec. 8.4. Moreover, the code requires the
data on the strains.

Then the algorithm computes the constraint reactions through a FEA, using
the assumed stiffnesses. Since the stiffnesses are not the real ones, also the value
of the reactions will not be accurate.

The vector of external forces F can now be updated using the reactions. In
this way, the identification procedure can estimate a new set of stiffnesses (as in
Sec. 8.2.1) that, in general, is different from the one used for the computation
of the external reactions.

The algorithm proceeds updating alternately stiffnesses and constrain reac-
tions until convergence is met.

8.3 Substructure Identification

In the case of large structures, the measurement of every strain is usually nei-
ther possible, nor interesting. In fact, the structure can be damaged only in a
small portion. Otherwise, the tester might prefer to divide the whole structure
into many parts, owing to reduce the number of contemporary measurements.
Therefore, in both these cases, a substructure identification procedure is more
suitable.

First of all “internal” and “external” elements must be recognized. Internal
bars are the ones where strain gauges are applied and internal nodes are the
ones that connects only internal bars. External bars are the ones without strain
indicators and external nodes are the ones that belong to at least one external
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INPUT DATA: 
Geometry of the structure 
Supposed stiffness 
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Are 
measurements 
available? 

Collection of empirical 
data 

Numerical simulation 
of loads 

INPUT DATA: 
Strain measurements 

INPUT DATA: 
Exat stifnesses to be 

simulated 

Strains 

Computation of constrain 
reactions by means of 
available stiffnesses 

Constrain reactions 
(so the vector F collects only 

known terms) 

Identification of stiffnesses as 
in the statically determined 

case 

Updated stiffnesses 
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Does convergence sati-
sfies the tollerance? 

Updated stiffnesses are 
assumed as solution of the 

problem 
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Element stiffnesses 

 

Updated stiffnesses are 
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Figure 8.3: Flow chart of the proposed iterative procedure.
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bar.
Then, Eq. (8.18) can be restated referring to internal (denoted by the su-

perscript “i”) elements

Ei =
K∑

k=1

∣∣Pii
k Si − Fi

k

∣∣2 (8.26)

where Ei is the new error function, Pii
k is defined as in Eq. (8.16), but considering

only internal nodes and bars, Si are the stiffnesses of internal bars, Fi
k are the

external forces (loads and constrain reactions) applied to internal nodes.
From here onward, the procedure continues as explained in Secs. 8.2.1 or

8.2.2, depending on the external constraints.
Some further remarks are necessary. First, this technique is not able, in any

case, to identify the stiffness of an element whose nodes are both external. In
this case, in fact, the column of Pii

k corresponding to that element is composed
by zeros, because the rows of the matrix L corresponding to the internal nodes
are full of zeros. This can be seen also considering that this element is in-
volved in none of the equations that computes the residual forces in the internal
nodes. Therefore Ei is independent on the stiffness of such an element, thus its
minimization gives no information at all on this element.

Secondly, it should be noticed that in the case of externally redundant struc-
tures, the FEA requires to know the stiffness of all the elements of the structure,
not only of the internal elements. Therefore, to use this approach, an approxi-
mate value for the stiffness of external bars is required. If a main structure is
analyzed dividing it into substructures, the identification procedure has to be
repeated alternately on the different substructures, until convergence is met.

Third, obviously, in every load condition, at least one external force (includ-
ing loads and reactions) has to be applied to one internal node. Otherwise, only
the trivial solution can be obtained for the vector S relative to that load test.

Finally, it is worth noticing that in the case of substructure identification,
the equilibrium is imposed only in the internal nodes. So, each load condition
allows to write only a few equilibrium equations, in a few nodes. However, this
problem can be easily avoided studying convex substructures. In fact, in this
way the number of internal nodes is maximum, for a fixed number of internal
elements.
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8.4 Numerical Examples and Remarks

Three numerical simulations of applications to real structures of the proposed
methodology are presented in this Section. Each of them is also used to enlighten
a particular aspect of the technique.

8.4.1 Minimum number of load conditions

As already mentioned in Section 8.2.1, loading tests must be designed owing
to obtain a non-singular H matrix. Sanayei and Onipede (1991) analyzed the
minimum number of independent measurements for a method similar to the one
here presented. They also stated it as a function of the number of loads and
measurements. Liu and Chian (1997) studied the rank of H in order to obtain
a more complete information on the more effective and convenient set of loads.

H is a square matrix, its rank depend on the rank of Pk and in the case of
only one load condition it is

rank(H) = rank(PT
1 P1) = rank(P1) ≤ (m− ni) (8.27)

being m the number of bars and ni the degree of internal redundancy. The rank
of H can be increased adding loads conditions and it can be proved that (Liu
and Chian, 1997):

rank(H) = rank


P1

P2

...
PK

 (8.28)

Therefore, adding load conditions, the rank can become full. However, the most
restrictive requirement on the load conditions is that every bar has to reach a
“sufficient” stress level, as will be shown by the following numerical example.

The structure represented in Fig. 8.4 is a plane truss, with redundant ex-
ternal constrains. All the bars have the same characteristics, elastic modulus
E = 7 · 109N/m2, cross sectional area A = 10cm2, therefore, original stiffness
α = 70MN . Bars number 5 and 9 are supposed to be damaged, with residual
stiffness reduced to 7MN . Each node has two translational degrees of freedom,
so the degrees of freedom of the structure are twelve. Four degrees are con-
strained, so the actual degrees of freedom are eight. The number of internal
redundant bars is two (ni = 2), while the total number of elements is eleven
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Figure 8.4: Externally redundant plane truss structure.
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Bar Load condition
No. 1 2
1 25.9 24.3
2 -116.6 24.4
3 -38.4 -33.3
4 158.3 -143.3
5 305.8 -419.7
6 26.3 19.0
7 -0.5 -4.1
8 -4.5 -101.4
9 16.0 71.9
10 1.9 -71.1
11 -1.0 -5.5

Table 8.1: Axial strains (10−6) simulated for the redundant plane truss in
Fig. 8.4.

(m = 11). Recalling Eq. (8.27), it can be concluded that the maximum rank of
Pk is nine, but the unknowns (and therefore the rows of H) are eleven. There-
fore, at least two load conditions are required to obtain a full rank Hessian.

The firs load condition is a horizontal force of modulus 10kN applied to the
node number 2, the second is a horizontal force of modulus 10kN applied to the
node number 5. Tests are conducted by means of a numerical simulation. A
random noise with a uniform probability distribution of amplitude 0.1kN has
been superimposed to the applied forces, owing to simulate uncertainties in the
application of the forces. The response of the structure has been simulated by
using a Finite Element Analysis (FEA). Then, a second random noise with a
uniform probability distribution of amplitude 10−6 has been superimposed to
resultant strains with the aim of simulating the actual accuracy of the strain
gauges. The results obtained are reported in Table 8.1. Finally, the obtained
strains have been used as input data for the statical identification for externally
redundant trusses, as explained in Sec. 8.2.2. As already mentioned, the first-
step supposed stiffness required by the iterative algorithm presented in Fig. 8.3
may also have a low accuracy. For example, it can be estimated by means
of an approximated cross sectional area and of the supposed original elastic
modulus. In this case, α0 = 60MN has been assumed as first-step stiffness for
each bar. Notice that it is an inaccurate value for the undamaged bars, and a
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Bar Stiffness EA
No. MN
1 69.72
2 69.91
3 69.38
4 70.82
5 6.77
6 69.03
7 71.59
8 72.35
9 6.15
10 67.58
11 58.56

Table 8.2: Stiffnesses estimated for the redundant plane truss in Fig. 8.4.

completely wrong assessment for bars 5 and 9. The results of the identification
are reported in Table 8.2 and in Fig. 8.5. The method gives good results both
for the intact bars and for the damaged ones. In fact, it estimates the correct
original stiffness (70MN), even if the first-step stiffness was incorrect. Moreover,
it identifies the two damaged bars and evaluates the residual stiffness (7MN)
with good accuracy. The presented results has a precision comparable with the
one obtained by Liu and Chian (1997), but it is worth noticing that in this case
the improved procedure is applied to an externally redundant structure.

The estimated value of the stiffness of bar 11 is not accurate. This is due
to the fact that bar 11 is significantly loaded in neither of the two considered
load tests. This is an example of the fact that the condition on the strain level
is usually more restrictive than the analytical condition on the rank of H. In
Sec. 8.5.2 a better estimation of the same structure is presented.

8.4.2 Non-unique solutions

Consider a truss similar to the one previously described, but with different
constrains, as represented in Fig. 8.6. In this case nodes 1 and 5 can not move
horizontally, therefore the strains of the bars 5 and 10 are correlated by the
relationship

ε5 + ε10 = 0 (8.29)
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Figure 8.5: Stiffnesses estimated for the redundant plane truss in Fig. 8.4, com-
pared to the starting values of the iterative procedure and to the real values.
The accuracy is good for all the bars except bar 11, for which other load tests
are required (see Sec. 8.5.2 and Fig. 8.12).
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Figure 8.6: Externally redundant plane truss structure.
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Figure 8.7: Three-dimensional redundant truss structure. The displacements in
the x direction are restrained at nodes 1 and 5; the displacements in the y direc-
tion are restrained at nodes 1 and 4; the vertical displacements are restrained
at nodes 1, 4, 5, 8 and 10.

It means that the two measurements are linearly dependent, thus actually there
is a lack of information. It is not possible to distribute the correct stiffness
between bars 5 and 10. This example belongs to the well known fields of the
“non-unique solution” of inverse problems.

The coefficients of variation related to bars 5 and 10 are 90.7% and 97.6%
respectively. This means that any result on the stiffnesses of bars 5 and 10 is
meaningless. However, the coefficient of variation of the sum α5 + α10 is 1.5%,
almost the same as for other bars. The mean of α5 + α10 is 77.4MN that is
a very good estimation of the real value (7 + 70 = 77MN). Thus, in cases
like this one, the proposed procedure is not able to identify the correct stiffness
of each bar, but it still gives a good description of the overall behavior and
characteristics.

8.4.3 Three-Dimensional Trusses

The algorithm has been applied also to the three-dimensional redundant truss
structure represented in Fig. 8.7. The eight longitudinal bars have a product
EeAe = 500MN , while the braces have EeAe = 260MN . Bars 6–7, 9–10, 3–11
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Figure 8.8: Stiffnesses estimated for the redundant three-dimensional truss in
Fig. 8.7, compared to the starting values of the iterative procedure and to the
real values. The accuracy is good for all the bars.

and 1–6 are damaged and their stiffnesses have been reduced by 5%, 20%, 5%
and 70%, respectively.

Vertical test loads have been applied to nodes 2, 9 and 11; horizontal loads
in the x direction have been applied to nodes 4, 8 and 11; horizontal loads in
the y direction have been applied to nodes 2, 3, 5, 8 and 9. All the forces have
a modulus of 100kN . A random noise, uniformly distributed in the interval
[−1kN, 1kN ], has been applied to the loads and another one, uniformly dis-
tributed in the interval [−10−6, 10−6], has been superimposed to the resulting
strains.

The starting value for the stiffnesses have been computed multiplying the
real EeAe by a random factor uniformly distributed in the interval [0.5, 1.5].

The results are reported in Table 8.3 and in Fig. 8.8, while in Fig. 8.9 the
reduction of the error along the iterations is shown.
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Bar Bar Starting Real Estimated
number nodes stiffness stiffness stiffness

MN MN MN
1 1–2 657.3618 500 493.0925
2 2–3 702.896 500 497.724
3 3–4 313.4934 500 496.6511
4 5–6 706.6879 500 498.1389
5 6–7 566.1796 475 472.8125
6 7–8 298.7702 500 498.6634
7 9–10 389.2491 400 397.6299
8 10–11 523.4408 500 502.1229
9 1–9 378.9518 260 261.3789
10 9–2 380.871 260 253.9057
11 2–10 170.9794 260 260.0137
12 10–3 382.3541 260 261.2851
13 3–11 378.8634 247 246.7285
14 11–4 256.1977 260 258.1524
15 5–9 338.0729 260 259.9985
16 9–6 166.8904 260 261.8802
17 6–10 239.6579 260 256.348
18 10–7 368.0912 260 261.0997
19 7–11 335.9739 260 259.3641
20 11–8 379.468 260 258.6365
21 5–1 300.4926 260 261.8636
22 1–6 139.285 78 78.3059
23 6–2 350.7736 260 255.7666
24 2–7 372.8382 260 260.9403
25 7–3 306.4711 260 260.0612
26 3–8 327.0124 260 257.7487
27 8–4 323.2144 260 260.4722

Table 8.3: Stiffnesses estimated for the redundant three-dimensional truss in
Fig. 8.7.
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Figure 8.9: Convergence of the iterative procedure. Each line represents the
evolution of the relative error between the estimated stiffnesses and the real
values. Even if the starting values are completely wrong the estimates rapidly
converges to the real values.
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The results are really good. The real stiffnesses of all the bars have been
correctly identified. Both for the strongly damaged elements (6–7 and 3–11 )
and for the weekly damaged ones (9–10 and 1–6) the accuracy is very high.

8.5 Error Analysis

In order to obtain information on the reliability of the method, on the influence
of the measurement precision and on the importance of the number of load
conditions, an error analysis has been performed.

The perturbation method (see, for example, Matthies et al., 1997) can be
applied in the case of statically determinate structures. In fact, in this case the
solution is given by Eq. (8.17). A closed form expression of the estimation error
as a function of the measurement errors is provided in Sec. 8.5.1 and can be
used to estimate the necessary load conditions.

On the contrary the procedure for externally redundant structures presented
in Sec. 8.2.2 involves also an iterative loop that impedes the use of perturbation
techniques. In this case, the error of the identification method is estimated by
Monte Carlo simulation (see, for example, the survey paper by Hurtado and
Barbat, 1998). A practical application is presented in Sec: 8.5.2.

8.5.1 Perturbation Technique, for Statically Determinate
Structures

The random uncertainties of the problem affects strains and loads and are nu-
merically simulated by random noises. From here onward, the “hat” is used for
the measured quantities:

εk
e = ε̂k

e + γk
e (8.30)

fk
i = f̂k

i + ϕk
i (8.31)

where γ and ϕ are the random measurement errors associated to loads and
strains respectively, the index e runs over the m elements, the index i runs over
the n degrees of freedom of the structure and the index k runs over the K load
conditions. Owing to use the perturbation technique, the random variables are
collected in one random vector r:

γ =
[

γ1
1 γ1

2 · · · γ1
m γ2

1 γ2
2 · · · γK

m

]T (8.32)
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ϕ =
[

ϕ1
1 ϕ1

2 · · · ϕ1
n ϕ2

1 ϕ2
2 · · · ϕK

n

]T (8.33)

r =
[

γ
ϕ

]
(8.34)

A second order MacLaurin expansion is performed on the matrices that appear
in Equation (8.22):

H(r) = H0 +
∑

i

H1
i ri +

∑
i

∑
j

H2
ijrirj (8.35)

S(r) = S0 +
∑

i

S1
i ri +

∑
i

∑
j

S2
ijrirj (8.36)

R(r) = R0 +
∑

i

R1
i ri +

∑
i

∑
j

R2
ijrirj (8.37)

being

H0 = H|0 ; H1
i =

∂H
∂ri

∣∣∣∣
0

; H2
ij =

∂2H
2∂ri∂rj

∣∣∣∣
0

(8.38)

S0 = S|0 ; S1
i =

∂S
∂ri

∣∣∣∣
0

; S2
ij =

∂2S
2∂ri∂rj

∣∣∣∣
0

(8.39)

R0 = R|0 ; R1
i =

∂R
∂ri

∣∣∣∣
0

; R2
ij =

∂2R
2∂ri∂rj

∣∣∣∣
0

(8.40)

where indexes i and j run from 1 to K(m+n). By substituting the expansions,
Eq. (8.22) is restated as:H0 +

∑
i

H1
i ri +

∑
i

∑
j

H2
ijrirj

 ·
·

S0 +
∑

i

S1
i ri +

∑
i

∑
j

S2
ijrirj

 =

=

R0 +
∑

i

R1
i ri +

∑
i

∑
j

R2
ijrirj


(8.41)
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Then the equation is simplified and terms of the same order are equated

order zero → H0S0 = R0 (8.42)
first order → H1

i S
0 + H0S1

i = R1
i (8.43)

second order → H2
ijS

0 + H1
i S

1
j + H0S2

ij = R2
ij (8.44)

If H is non-singular, from Eqs. (8.42)–(8.44) S0, S1
i and S2

ij can be computed:

S0 =
(
H0
)−1

R0 (8.45)

S1
i =

(
H0
)−1 (

R1
i −H1

i S
0
)

(8.46)

S2
ij =

(
H0
)−1 (

R2
ij −H1

i S
1
j −H2

ijS
0
)

(8.47)

Mean and covariance of S can be obtained as (Benjamin and Cornell, 1970):

E[S] = S0 +
∑

i

S1
i E[ri] +

∑
i

∑
j

S2
ijE[rirj ] + . . . (8.48)

COV[S] =
∑

i

∑
j

S1
i S

1T

j COV[ri, rj ] + . . . (8.49)

However, γ’s and ϕ’s are measurement errors, thus ri’s are expected to have
null mean value E[ri] = 0 and to be uncorrelated. Remembering that

COV[x, y] = E [(x− E[x]) (y − E(y))] = E[xy]− E[x]E[y] (8.50)

in this particular case where E[x] = E[y] = 0 the covariance matrix is

COV[x, y] = E[xy] (8.51)

Therefore, Eqs. (8.48) and (8.49) are restated as follows:

E[S] = S0 +
∑

i

S2
iiσ

2
i + . . . (8.52)

COV[S] =
∑

i

S1
i S

1T

i σ2
i + . . . (8.53)

where σ2
i is the variance of ri.
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Equation (8.53) gives a second order approximation of the covariance matrix,
but to estimate the error, an even better index is the Coefficient Of Variation
(C.O.V.)

C.O.V. =
σ(EA)
E[EA]

(8.54)

In order to use Eq. (8.54), and therefore Eqs. (8.53) and (8.52), σ2
i can be

estimated using the knowing the precision of the measurements, while S0, S1
i

and S2
ii must be restated as explicit functions of H0, H1

i , H2
ii, R0, R1

i and R2
ii.

For the sake of clarity, from here onward the index notation is used, thus (M)rc

indicates the element on the row r and the column c of the matrix M.
First of all, the basic matrix H is analyzed:

(H)st =

(
K∑

k=1

PT
k Pk

)
st

=

=
K∑

k=1

(
PT

k Pk

)
st

=

=
K∑

k=1

n∑
p=1

(PT
k )sp(Pk)pt =

=
K∑

k=1

n∑
p=1

(Pk)ps(Pk)pt =

=
K∑

k=1

n∑
p=1

εk
s(Is)p εk

t (It)p =

=
K∑

k=1

n∑
p=1

(ε̂k
s + γk

s )(Is)p (ε̂k
t + γk

t )(It)p =

=
K∑

k=1

n∑
p=1

(Is)p(It)p(ε̂k
s ε̂k

t + ε̂k
sγk

t + ε̂k
t γk

s + γk
s γk

t )

(8.55)

therefore, (
∂H
∂ϕc

d

)
st

= 0 ∀s, t, d, c (8.56)
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while (
∂H
∂γc

e

)
st

=
K∑

k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
s ε̂k

t +

+
K∑

k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
sγk

t +

+
K∑

k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
t γk

s +

+
K∑

k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

γk
s γk

t

(8.57)

The terms of Eq. (8.57) value:

K∑
k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
s ε̂k

t = 0 (8.58)

K∑
k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
sγk

t =


n∑

p=1
(Is)p(It)p ε̂c

s if e = t

0 otherwise
(8.59)

K∑
k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

ε̂k
t γk

s =


n∑

p=1
(Is)p(It)p ε̂c

t if e = s

0 otherwise
(8.60)

K∑
k=1

n∑
p=1

(Is)p(It)p
∂

∂γc
e

γk
s γk

t =



2γc
e

n∑
p=1

(Is)p(It)p if e = t = s

γc
t

n∑
p=1

(Is)p(It)p if e = s 6= t

γc
s

n∑
p=1

(Is)p(It)p if e = t 6= s

0 otherwise

(8.61)

Equation (8.57) has to be computed for r = 0, so all the terms of Eq. (8.61) are
negligible. Therefore(

∂H
∂γc

e

)
st

∣∣∣∣
0

=
n∑

p=1

(Is)p(It)p (δetε̂
c
s + δesε̂

c
t) (8.62)
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being δet and δes “Kronecker delta” functions.
Then, the same operations are performed on vector R.

(R)s =

(
K∑

k=1

PT
k Fk

)
s

=

=
K∑

k=1

(
PT

k Fk

)
s

=

=
K∑

k=1

n∑
p=1

(PT
k )sp(Fk)p =

=
K∑

k=1

n∑
p=1

(Pk)ps(Fk)p =

=
K∑

k=1

n∑
p=1

εk
s(Is)p fk

p =

=
K∑

k=1

n∑
p=1

(ε̂k
s + γk

s )(Is)p (f̂k
p + ϕk

p) =

=
K∑

k=1

n∑
p=1

(Is)p(ε̂k
s f̂k

p + ε̂k
sϕk

p + f̂k
p γk

s + γk
s ϕk

p)

(8.63)

The derivative with respect to ϕ are

(
∂R
∂ϕc

d

)
s

=
K∑

k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

ε̂k
s f̂k

p +

+
K∑

k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

ε̂k
sϕk

p+

+
K∑

k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

f̂k
p γk

s +

+
K∑

k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

γk
s ϕk

p

(8.64)



i
i

“phd5” — 2008/3/30 — 23:56 — page 166 — #182 i
i

i
i

i
i

166 8. Identification of Truss Structures

The single terms value

K∑
k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

ε̂k
s f̂k

p = 0 (8.65)

K∑
k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

ε̂k
sϕk

p = (Is)d ε̂c
s (8.66)

K∑
k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

f̂k
p γk

s = 0 (8.67)

K∑
k=1

n∑
p=1

(Is)p
∂

∂ϕc
d

γk
s ϕk

p = (Is)d γc
s (8.68)

Equation (8.64) has to be computed for r = 0, so all the terms of Eq. (8.68) are
negligible. Therefore (

∂R
∂ϕc

d

)
s

∣∣∣∣
0

= (Is)dε̂
c
s (8.69)

The derivative with respect to γ are(
∂R
∂γc

e

)
s

=
K∑

k=1

n∑
p=1

(Is)p
∂

∂γc
e

ε̂k
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+
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k=1
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(Is)p
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∂
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p γk

s +

+
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k=1

n∑
p=1

(Is)p
∂

∂γc
e

γk
s ϕk

p

(8.70)

Single terms value
K∑

k=1

n∑
p=1

(Is)p
∂

∂γc
e

ε̂k
s f̂k

p = 0 (8.71)
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K∑
k=1

n∑
p=1

(Is)p
∂

∂γc
e

ε̂k
sϕk

p = 0 (8.72)

K∑
k=1

n∑
p=1

(Is)p
∂

∂γc
e

f̂k
p γk

s =


n∑

p=1
(Is)p f̂c

p if e = s

0 otherwise
(8.73)

K∑
k=1

n∑
p=1

(Is)p
∂

∂γc
e

γk
s ϕk

p =


n∑

p=1
(Is)p ϕc

p if e = s

0 otherwise
(8.74)

Equation (8.70) has to be computed for r = 0, so all the terms of Eq. (8.74) are
negligible. Therefore (

∂R
∂γc

e

)
s

∣∣∣∣
0

=
n∑

p=1

(Is)p f̂c
pδes (8.75)

being δes a “Kronecker delta” function.
Equation (8.52) involves also S2

ii, that can be obtained inverting Eq. (8.47)

S2
ii =

(
H0
)−1 (

R2
ii −H1

i S
1
i −H2

iiS
0
)

(8.76)

Therefore, the second derivatives H2
ii and R2

ii must be computed.
The definition of H2

ii, i.e. Eq. (8.38), can be rewritten as

H2
ii =

∂2H
2∂r2

i

∣∣∣∣
0

=
∂

2∂ri

(
∂H
∂ri

)∣∣∣∣
0

(8.77)

By means of Eq. (8.56), it is trivial to obtain

∂

2∂ϕc
d

(
∂H
∂ϕc

d

)∣∣∣∣
0

=
∂

2∂ϕc
d

(0)
∣∣∣∣
0

= 0 (8.78)

For what concern the derivative with respect to γ, Eqs (8.57)–(8.61) are used.
In this case, single terms value

K∑
k=1

n∑
p=1

(Is)p(It)p
∂2

2∂γc2
e

ε̂k
s ε̂k

t = 0 (8.79)

K∑
k=1

n∑
p=1

(Is)p(It)p
∂2

2∂γc2
e

ε̂k
sγk

t = 0 (8.80)
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K∑
k=1

n∑
p=1

(Is)p(It)p
∂2

2∂γc2
e

ε̂k
t γk

s = 0 (8.81)
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(Is)p(It)p
∂2

2∂γc2
e

γk
s γk
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(Is)p(It)p if e = t = s

0 otherwise
(8.82)

Therefore (
∂2H
2∂γc2

e

)
st

∣∣∣∣
0

=
n∑

p=1

(Is)p(It)pδetδes (8.83)

Note that Eq. (8.83) does not depend on c.
The second derivatives of vector R are zeros. In fact, by means of Eqs.

(8.65)–(8.68) and (8.71)–(8.74) the following results are obtained:
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p = 0 (8.84)
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p = 0 (8.85)
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s = 0 (8.86)
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p = 0 (8.87)
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p = 0 (8.89)
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K∑
k=1

n∑
p=1

(Is)p
∂2

2∂γc2
e

γk
s ϕk

p = 0 (8.91)

Finally, all the terms involved by Eqs. (8.45)–(8.47) can be summarized as
follow as functions of the input data:

∂H
∂ϕc
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0

= 0 (8.92)(
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∂2H
2∂ϕc2

d

∣∣∣∣
0

= 0 (8.96)(
∂2H
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e

)
st

∣∣∣∣
0

=
n∑

p=1

(Is)p(It)pδetδes (8.97)

Rii = 0 (8.98)

These results can be used for a direct estimation of the coefficient of variation
of the identification procedure, as expressed in Eq. (8.54).

8.5.2 Monte Carlo Simulation, for Statically Indetermi-
nate Structures

To estimate the coefficient of variation of the estimate in the case of externally
redundant structures, the Monte Carlo Simulation is used. In this numerical ex-
ample, it has been applied to the structure represented in Fig. 8.4 and described
in Sec. 8.4.1.

Three load conditions have been added to the two already presented in
Sec. 8.4.1: a vertical force of modulus −10kN applied to the node number
6, a horizontal force of modulus 10kN applied to the node number 6 and a
vertical force of modulus −10kN applied to the node number 3. Tables 8.4
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Bar Load condition
No. 1 2 3 4 5
1 26.7 23.8 0.9 9.2 -17.4
2 -116.3 23.8 0.9 9.2 -17.4
3 -37.6 -33.6 -1.3 -13.0 24.6
4 158.7 -142.8 1.1 162.7 4.0
5 306.5 -419.0 -7.6 278.3 -28.2
6 25.4 18.7 5.2 2.8 120.3
7 -1.2 -5.0 4.2 136.5 -5.2
8 -4.0 -102.1 -3.6 -17.4 -13.4
9 17.0 71.1 -59.8 90.0 73.0
10 2.9 -70.7 2.5 12.3 9.4
11 -1.2 -5.0 -138.6 -6.3 -5.2

Table 8.4: Results for the structure represented in Fig. 8.4. Axial strains (10−6).

Bar Load condition
No. 1 2 3 4 5
1 18.6 16.6 0.7 6.4 -12.2
2 -81.4 16.6 0.7 6.4 -12.2
3 -26.3 -23.5 -0.9 -9.1 17.2
4 111.1 -99.9 0.7 113.9 2.8
5 21.5 -29.3 -0.5 19.5 -2
6 17.8 13.1 3.6 2 84.2
7 -0.8 -3.5 3 95.5 -3.6
8 -2.8 -71.4 -2.5 -12.2 -9.3
9 1.2 5 -4.2 6.3 5.1
10 2 -49.5 1.8 8.6 6.6
11 -0.8 -3.5 -97 -4.5 -3.6

Table 8.5: Results for the structure represented in Fig. 8.4. Axial stresses(
N
m2 10−4

)
.
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Number of load conditions
Bar First 2 First 3 First 4 All 5
No. E[EA] C.O.V. E[EA] C.O.V. E[EA] C.O.V. E[EA] C.O.V.

[MN ] [%] [MN ] [%] [MN ] [%] [MN ] [%]
1 69.8 5.9 69.5 5.9 69.5 4.2 69.7 2.4
2 70 1.2 70 1.2 70 0.8 70 0.8
3 70 4.7 69.7 4.7 69.7 3.3 70 1.6
4 70 1.5 70 1.6 70 0.9 70 0.7
5 7 4 7 4 7 2.3 7 1.8
6 70.6 7.3 69.6 6.5 69.5 5.3 70 0.9
7 65.3 32.7 68.6 15 70 0.8 70 0.7
8 70.4 4.4 70.2 3.9 70.2 2.3 70 1.8
9 6.5 24.1 6.9 6.9 7 4.2 7 3.5
10 69.6 4.4 69.8 3.9 69.8 2.3 70 1.7
11 66 26.8 70 0.8 70 0.8 70 0.7

Table 8.6: Results for the structure represented in Fig. 8.4. Estimated stiffnesses
and coefficients of variation.

and 8.5 collect the dilatations and axial stresses simulated by FEA. The super-
imposed noises described in Sec. 8.4.1 have been applied also to the last three
load tests. Finally, Table 8.6 shows the estimated stiffnesses and the respective
coefficients of variation. These coefficients have been computed by means of
the Monte Carlo Simulation, using 1500 samples. Fig. 8.10 shows that such a
number of samples is sufficient to meet convergence in the case of two load con-
ditions. Similar results have been obtained also for the other cases. Histograms
represented in Fig. 8.11 shows the results obtained for the C.O.V.’s. It should
be noticed that the C.O.V. decrease when the number of load conditions is in-
creased. In particular, it drops down when a load condition in which the bar
achieves a “sufficient” stress level is taken into account. For example it happens
to the bar 11 when the condition number 3 is considered.

The results presented in Table 8.6 show that the proposed iterative algo-
rithm have the same accuracy and robustness of the method proposed by Liu
and Chian (1997), but the new one is applicable also to externally redundant
structures.

Finally, Fig. 8.12 shows the stiffnesses estimated using five load tests and
in Fig. 8.13 the convergence of the iterative algorithm to the exact solution is
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Figure 8.10: Results for the structure represented in Fig. 8.4. Convergence
of the coefficients of variation versus the number of Monte Carlo Simulations.
Each line represents the C.O.V. of a bar. 1500 samples are sufficient to meet
convergence. This plot refers to the case of two load conditions, analog results
have been obtained also for the other numbers of load conditions.
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Figure 8.11: Results for the structure represented in Fig. 8.4. Coefficients of
variation obtained using different numbers of load conditions.
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Figure 8.12: Stiffnesses estimated for the redundant plane truss in Fig. 8.4 using
five load tests, compared to the starting values of the iterative procedure and
to the real values. The accuracy is good for all the bars.

shown.

8.6 Concluding Remarks

The algorithm proposed in this Chapter is able to identify the stiffness of the
elements of a three-dimensional truss structure with any kind of redundancy.
Static loads and strain measurements are used.

The loads have to be applied so that every bar reaches a significant stress
level in at least one test. If this is done properly2, the numerical applications
have shown that the code has good accuracy and low coefficients of variation
of the results. When, on the contrary, a bar never reaches a significant stress
level, the relative influence of the measurement error on the strains (modeled by
the random noises) increases, so reducing the accuracy of the information and,
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Figure 8.13: Convergence of the iterative procedure. Each line represents the
evolution of the relative error between the estimated stiffnesses and the real
values. Even if the starting values are completely wrong, the estimates rapidly
converge to the real values.



i
i

“phd5” — 2008/3/30 — 23:56 — page 176 — #192 i
i

i
i

i
i

176 8. Identification of Truss Structures

therefore, of the identification procedure.
By means of this technique, it is possible to estimate the residual stiffness of

elements subject to uniform corrosion (e.g. internal corrosion in tubular elements
that can not be seen from outside) or to any kind of damage that affects the
entire element (e.g. a global reduction of the Young modulus because of aging).
On the contrary, the code is not sensitive to sectional or localized damage. For
this reason, a new approach is proposed in Chapter 9.

2In some cases, it is not trivial satisfy the condition of sufficient loading for every bar. In
fact, the presence of weak bars that converge to the same node could avoid the transmission
of stresses to the other bars that converge to that node.

The application of the procedure to three-dimensional trusses has particularly enlightened
this problem.

There are no analytical solutions for this issue, but the absence of a “sufficient” loading is
recognized by the procedure, therefore further investigations (or new loading conditions) on
the specific area are suggested.
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Chapter 9

Local Damage Identification
with Genetic Algorithms

Evolution is a change from an indefinite, incoherent, homogeneity
to a definite, coherent, heterogeneity,

through continuous differentiations and integrations.
-Herbert Spencer-

Sommario. La tecnica di identificazione illustrata nel Capitolo pre-
cedente richiede la conoscenza delle dilatazioni di tutte le aste. In
certi casi, però, tali informazioni potrebbero non essere disponibili,
perché le aste potrebbero essere inaccessibili o le misure potrebbero
essere corrotte. Tuttavia, nel caso di strutture iperstatiche la rigidez-
za di ogni asta influenza anche lo stato tenso-deformativo del resto
della struttura. Questa considerazione sta alla base del tentativo di
ricavare informazioni anche sulle aste non strumentate, usando i
dati relativi al resto della reticolare.

Gli algoritmi genetici sono parsi lo strumento più adatto per la ri-
soluzione del problema di ottimizzazione che si pone. Essi, infatti,
simulano le rigidezze delle aste per le quali non si conoscono le dila-
tazioni ed identificano il valore più compatibile con il comportamento
globale della struttura.

177
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Il passo successivo consiste nella identificazione di danni che non
interessino l’asta per l’intera lunghezza. In questo caso, in generale,
l’estensimetro misura il valore di dilatazione della zona intatta del-
l’asta, fornendo così un valore che non è rappresentativo dello stato
deformativo globale dell’elemento. Perciò, in questo caso il dato spe-
rimentale non solo non consente l’identificazione diretta del danno,
ma risulta addirittura fuorviante. Paradossalmente, sarebbe preferi-
bile non disporre di tale misura e simulare il comportamento dell’a-
sta attraverso gli algoritmi genetici. Questa osservazione induce a
confrontare i risultati ottenuti usando tutte le misure di dilatazione,
con quelli ottenuti ignorandone una alla volta. Per le aste in cui la
rigidezza stimata usando gli algoritmi genetici (cioè ricavando in-
formazioni dal resto della reticolare) risulta sensibilmente più bassa
di quella valutata usando la dilatazione misurata, si deve concludere
che sono presenti riduzioni locali delle caratteristiche meccaniche,
che non interessano l’area su cui è stato applicato l’estensimetro.
Per entrambi i problemi (misure mancanti e danni locali) vengo-
no presentati esempi numerici che mostrano le potenzialità della
soluzione proposta.
Alcune considerazioni finali concludono il Capitolo.

9.1 Introductory Remarks

In Chapter 8 a technique for the structural identification of three-dimensional
redundant truss structures has been presented. It uses static loads and mea-
surements of the strain of every investigated bar.

However, in some cases the measurements relative to certain bars can be
missing for various reasons. For instance, the bar could be unaccessible, or the
measurement could be corrupted, or (even if it seems counterintuitive) we could
decide to ignore it.

To address this issue, there are useful numerical tools that can be applied pro-
ficiently. As in the previous Chapter, inverse problems are often solved through
the formulation of an optimization problem. However, when the closed form
expression of the objective function is not available, traditional techniques are
not suitable. In this kind of problems, optimization methods that make use only
of the values of the objective function and do not require additional information
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(such as gradients) are required. These optimization procedures are generally
known as “direct search methods”. Points are generated and tested for the sat-
isfaction of objectives and constraints through the evaluation of the objective
function. The most used class of direct search techniques are Evolutionary Al-
gorithms. They are numerical optimization procedures that find their origin in
the Darwinian theory of evolution. Genetic Algorithms (Tomassini, 1995; Abu-
Lebdeh and Benekohal, 1999) are one of the specific methodologies that belong
to this class.

Genetic Algorithms (GA), or the more general case of Evolutionary Algo-
rithms, have been widely used in many fields of engineering, including struc-
tural identification (see, among the others, Mares and Surace, 1996; Chou and
Ghaboussi, 2001; Liu and Han, 2003; Faravelli et al., 2005; Casciati, 2006; Vin-
cenzi and Savoia, 2006) and are here applied to the methodology described in
Chapter 8 to make it able to estimate the stiffnesses of bars for which a strain
measurement is not available (Sec. 9.2).

This consideration allows a further step. When a bar is not entirely damaged,
but only a portion of it presents a reduction of the stiffness (e.g. because of local
corrosion), the technique proposed in Chapter 8 can not identify the problem.
Indeed, the measurement of the strain of that bar will not be affected at all by
the presence of the local damage, unless the strain gauge is applied exactly on
the damaged area, on purpose1 or by chance. What is more, the measurement
of the strain in the intact portion leads to a wrong estimate of the overall
stiffness of the bar, that in the case of redundant structures is also necessary for
an accurate estimation of all the other stiffnesses. The paradox is that it would
be better to do not have the measurement (and therefore use GA to estimate
the stiffness of the element) rather than have a misleading value.

To overcome this problem, it is possible to apply the algorithm once using
the whole set of measurements and then m other times (where m is the number
of bars) ignoring one measurement at each time. The bars for which results are
significantly different when their strain measurement is ignored require further
investigation for local damages.

1This case is not considered here. It is assumed that there is no visual evidence of the
local damage. This can be the case of internal damages in tubular elements. Otherwise it
can represent the case of a monitored structure where the strain gauges are applied once and
the measurements are done periodically, with no further direct access to the location of the
gauge. Finally it can be the case of real time control of mechanical structures.

If, on the contrary, the local damage can be visually identified, other techniques are much
more suitable than the one proposed in this thesis.
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In conclusion, with respect to the algorithm presented in Chapter 8, this fur-
ther extension allows to deal with missing measurements and with local damages
that are not captured by the strain measure2.

9.2 Missing Measurements

In the case of a missing measurement (or several missing measurements) the
identification procedure is composed by two phases.

The first phase is the identification of the stiffnesses of the bars for which
the measurements are available. This task is accomplished using the procedure
already described in Sec. 8.3.

The second phase consists in the identification of the remaining stiffnesses
by means of Genetic Algorithms.

It should be noticed that the procedure presented in this Section has some
known issues and limits of applicability. First of all, it can be applied only to
externally statically determinate structures. In fact, the procedure in Sec. 8.3
requires an at least approximate knowledge of the stiffnesses of the “external”
bars, while in this case these quantities are the object of the analysis. Moreover,
the procedure can be applied only to structures with redundant elements. In
fact, if the truss is completely statically determinate, the strains are not depen-
dent on the relative stiffnesses. Thus, the measured strains give no information
on the “external” elements. Finally, the accuracy of the results is problem de-
pendent. When only one measurement is missing, the accuracy is high, but
when many stiffnesses have to be recovered using GA, the cases of non-unique
solutions are frequent.

9.2.1 Proposed Method

The first step of the identification procedure consists in the definition of all the
bars for which the strains have been measured as “internal” elements, according
to Sec. 8.3. Then the algorithm for the identification of substructures computes
the stiffnesses of all the internal bars.

At this point, Genetic Algorithms are applied to simulate the stiffnesses of
the bars for which the strains are not available.

2Part of the scientific results reported in this Chapter have already been presented by Viola
and Bocchini (2007).
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An exhaustive description of the characteristics and of the capabilities of
Genetic Algorithms is beyond the purposes of this thesis (refer, for instance, to
Goldberg, 1989). However, the most important settings used for the identifica-
tion procedure are summarized in the following, along with a brief description
of the technique.

GA initialize a “population” of twenty individuals, that represent the possible
solutions of the optimization problem. In this case, each individual is a vector
whose elements are potential stiffnesses α∗e of the “external” bars. The initial
population is defined by the user, but one of the most important properties of
GA is that the result is usually almost insensitive to the initial population. For
every individual, the objective function (called “fitness function”) is evaluated.

For this identification problem, four different fitness functions have been
considered. The first is defined as

Fit1 = −max
i

[
max

k
(|ε∗ik − εik|)

]
(9.1)

where εik is the strain measured on the “internal” element i during the load test
k; ε∗ik is the theoretical strain of the element i obtained by means of a structural
analysis with load condition k and stiffnesses α∗e for the external elements. This
fitness function measures the maximum difference between the measured strains
and those induced by the stiffnesses α∗e .

The second fitness function is obtained considering energies. For each load
condition k, the work of external forces and the total strain energy can be
equated:

1
2

∑
f

Ffη∗f︸ ︷︷ ︸
external work

=
1
2

∑
i

αiε
2
i li︸ ︷︷ ︸

energy internal elements

+
1
2

∑
e

(N∗
e )2le
α∗e︸ ︷︷ ︸

energy external elements

(9.2)

where f is the index of the applied loads; le and li are the length of external and
internal bars, respectively; αi is the stiffness of the internal element i (previously
identified), η∗f is the displacement of the degree of freedom to which the load
f is applied, obtained by means of a structural analysis with stiffnesses α∗e for
the external elements; N∗

e is the axial force in the external element e, computed
by the same analysis. Since the α∗e ’s are not the real stiffnesses, in general
Eq. (9.2) is not satisfied. The second fitness function is the sum of the residuals
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of Eq. (9.2):

Fit2 = −
K∑

k=1

∣∣∣∣∣∣
∑

f

Ffη∗f −
∑

i

αiε
2
i li −

∑
e

(N∗
e )2le
α∗e

∣∣∣∣∣∣
k

(9.3)

The third fitness function is a sort of quadratic norm:

Fit3 = −

√√√√∑
i

[
K∑

k=1

(ε∗ik − εik)2
]

(9.4)

where the notation is the same as Eq. (9.1).
The last fitness function is

Fit4 = −
∑

i

(
K∑

k=1

|ε∗ik − εik|

)
(9.5)

where the notation is the same as Eq. (9.1). This fitness function measures
the total difference between the measured strains and those induced by the
stiffnesses α∗e .

The first two fitness functions have shown the highest accuracy, robustness
and sensitivity for the problems of local damage identification (see Sec. 9.3),
the third is usually better for the problems of missing measurements. However,
by means of a preliminary numerical test, the user can easily understand which
one is more suitable for a particular structural problem.

When one of the proposed fitness functions has been chosen and evaluated
for every individual of the population, they are sorted from the one with the
highest fitness to the one with the lowest (“Rank fitness scaling”).

At this point, the generation of the offspring starts. The two most fitted
elements (“Elite”) are directly transferred to the offspring. Fourteen individuals
(“Crossover fraction”∼= 0.8) are generated by “scattered” crossover, that means
that they are generated by random combination of two parents. Four more
individuals are obtained by “adaptive feasible” mutation of four individuals of
the previous generation. This means that a small random perturbation is applied
to four individuals, in directions (of the space of admissible solutions) that are
adaptive with respect to the last successful or unsuccessful generation.

In this way, a new population of twenty individuals is complete and the
algorithm can iterate the evaluation of the fitness and the generation of a new
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offspring. The algorithm proceeds until a convergence criterion is satisfied. The
convergence criterion determines the end of the iterations when the weighted3

average change in the fitness function value over a limit number of generations
(“stall generations”) is less than a certain tolerance.

During the whole optimization procedure, the obvious condition that the
stiffnesses have to be positive is taken into account by using a lower bound.

The stiffnesses that maximize the fitness function are chosen as stiffnesses
of the external bars.

9.2.2 Numerical Application

The three-dimensional truss structure in Fig. 9.1 is considered for a numeri-
cal application. The three columns have a product EA = 500MN , while the
horizontal bars and the diagonal braces have EA = 260MN . Bars 5–8, 2–4
and 5–7 are damaged and their stiffnesses have been reduced by 5%, 10% and
20%, respectively. The strain values for bar 5–7 have not been used for the
identification procedure.

Vertical test loads have been applied to nodes 7, 8 and 9; a horizontal load
in the y direction has been applied to node 9. All the forces have a modulus of
100kN . A random noise, uniformly distributed in the interval [−1kN, 1kN ], has
been applied to the loads and another one uniformly distributed in the interval
[−10−6, 10−6] has been superimposed to the resulting strains.

The starting value for the stiffnesses have been computed multiplying the
real EA by a random factor uniformly distributed in the interval [0.5, 1.5].

The third fitness function in Eq. (9.4) has been used.
The results are reported in Table 9.1 and in Fig. 9.2. It can be noticed that

the resulting stiffnesses are accurate for all the bars, including those relative to
the damaged elements and the one for which the strain values were not available.

9.3 Local Damages

The basic ideas presented in Sec. 9.2 are used for the identification of local
damages. In this Section the hypothesis of constant stiffness along the bar is
removed. The “local damage” is modeled as a reduction of the stiffness in a

3The individuals with the highest ranks have a larger weight.
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Figure 9.1: Three-dimensional truss structure. The displacements in the x
direction are restrained at node 1; the displacements in the y direction are
restrained at nodes 1 and 2; the vertical displacements are restrained at nodes
1, 2, and 3.
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Bar Bar Starting Real Estimated Percentage
number nodes stiffness stiffness stiffness error

MN MN MN
1 1–4 397.6298 500 501.1966 0.2%
2 4–7 469.9104 500 495.6273 0.9%
3 2–5 729.8900 500 500.0699 0.0%
4 5–8 728.9258 475 481.9681 1.5%
5 3–6 709.9988 500 500.4787 0.1%
6 6–9 740.3070 500 499.1665 0.2%
7 4–5 363.7472 260 254.8917 2.0%
8 5–6 186.4613 260 264.5828 1.8%
9 6–4 179.5987 260 262.7818 1.1%
10 7–8 217.4499 260 258.6364 0.5%
11 8–9 325.2085 260 260.1329 0.1%
12 9–7 370.0673 260 263.6021 1.4%
13 1–5 163.6789 260 256.4323 1.4%
14 1–6 271.7900 260 264.7547 1.8%
15 2–4 194.3111 234 227.1598 2.9%
16 2–6 372.7995 260 261.5243 0.6%
17 3–4 366.4729 260 266.3674 2.4%
18 3–5 352.7563 260 259.1279 0.3%
19 4–8 186.0993 260 267.5147 2.9%
20 4–9 209.3012 260 263.2370 1.2%
21 5–7 376.8568 208 209.4818 0.7%
22 5–9 291.0418 260 266.2242 2.4%
23 6–7 247.7684 260 259.5376 0.2%
24 6–8 372.5815 260 253.9513 2.3%

Table 9.1: Stiffnesses estimated for the three-dimensional truss in Fig. 9.1.



i
i

“phd5” — 2008/3/30 — 23:56 — page 186 — #202 i
i

i
i

i
i

186 9. Local Damage Identification with Genetic Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bars

S
tif

fn
es

s

Starting value Real Estimate

S
tra

in
 n

ot
 m

ea
su

re
d

Figure 9.2: Stiffnesses estimated for the three-dimensional truss in Fig. 9.1,
compared to the starting values of the iterative procedure and to the real values.
The accuracy is good for all the bars, including the bar for which the strain
values were not available.
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portion of the bar, while the strain gauge measures the strains in the main
(intact) part of the bar4. The axial force N is constant along the length of the
bar:

N = αuεu = αdεd = αgεg (9.6)

where the subscript u denotes the quantities relative to the undamaged part,
the subscript d denotes the quantities relative to the damaged part and the
subscript g denotes the virtual equivalent (“global”) quantities relative to the
whole bar as if it had constant stiffness. The overall variation of length ∆lg of
the bar can be computed as:

∆lg = ∆lu + ∆ld

Nl

αg
=

Nlu
αu

+
Nld
αd

(9.7)

Using Eq. (9.7), the equivalent overall axial stiffness αg of the bar is given by:

αg = l
αuαd

luαd + ldαu
(9.8)

As already mentioned, in this case the values of the strains are misleading,
and a better estimation of the overall stiffness of the bar can be obtained by
means of Genetic Algorithms, as explained in Sec. 9.2.

It should be noticed that this procedure is applicable only to (internally
and/or externally) redundant structures, because for statically determinate struc-
tures the stiffness of a bar does not affect the behavior of the others.

9.3.1 Proposed Method

To identify local damages, the proposed code works as follows. Firstly the code
computes the stiffnesses of all the bars using the procedure explained in Sec. 8.2.
For the bars with local damages, the strains εu are used, therefore the results
of this identification are inaccurate, especially for the bars with local damages,
whose stiffnesses are overestimated.

The next step depends on the external constraints. If the structure is ex-
ternally statically determinate, the code performs m identification procedures

4It could also happen that the strain gauge is accidentally located in the damaged portion.
In this case, the algorithm presented in Chapter 8 identifies a damage. This case is not treated
in the present Chapter.
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(where m is the number of bars) as explained in Sec. 9.2.1, disregarding each
time the stress measurements of one bar (i.e. each time one of the m bar is
considered “external”). In this way, each one of the m sets of stiffness values
is completely independent from the strains on one bar. If the structure is ex-
ternally redundant, the procedure presented in Sec. 9.2.1 can not be used. In
this case the algorithm uses m times a modified version of the aforementioned
procedure, in which, for the “internal” bars, the stiffnesses computed in the first
analysis (the one in which all the measurements are employed) are used. There-
fore, in this case it is not true that each one of the m sets of stiffness values
is completely independent from the strains on one bar. In fact, the stiffnesses
of the internal bars are computed using all the measurements. Nevertheless,
also in this case, the value of the stiffness on a bar obtained when it is consid-
ered “external” is much less dependent on its strains than the value obtained
considering all the measurements.

At this point, it is possible to identify the bars with local damages comparing
the values of the stiffnesses obtained using all the strain measurements with the
value obtained for each bar when it has been considered “external”. If the latter
value is significantly5 lower, a local damage is present.

In the case of externally statically determinate structures, no more steps
are required. When a local damage is identified in a bar, the value of stiffness
computed by GA is assumed as overall equivalent stiffness αg.

In the case of externally redundant structures, some further operations are
necessary. The algorithm identifies the bar whose stiffness results the most
reduced when computed by GA. For this element, the stiffness computed by
GA is assumed as overall equivalent stiffness αg. Then the code corrects the
value of the strains measured on this bar replacing them with the equivalent
overall strains εg computed inverting Eq. (9.6):

εg =
αuεu

αg
(9.9)

In this way, the element with local damage is completely replaced by a virtual
equivalent element with constant stiffness along its length. Then the code,
repeats the procedure presented in this Section (called a “run”) to check if other
local damages are present. When, at the end of a run, all the differences between
the values of the stiffnesses obtained using all the strain measurements and the

5The threshold of significant difference depends on the expected accuracy of the method
and on the amount of noise (i.e. the precision of the measures). Usually, the estimation error
is lower than 5%, therefore the threshold on the percentage difference should be around 5%.
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values obtained for each bar when it is considered “external” are lower than the
accuracy of the method, it means that all the bars with local damages have been
identified and replaced by their equivalent uniform element.

9.3.2 Numerical Applications

The case of externally statically determinate structures with local damages re-
duces to the application of the procedure proposed in Sec. 9.2. Thus, no more
examples are presented.

Two numerical applications for the more interesting case of externally re-
dundant trusses are presented.

The plane truss represented in Fig 8.4 is considered again. In this case, bars
5 and 9 have stiffness reduced to 7MN , while bar 1 has a local damage modeled
as a reduction of the 50% of its stiffness over one seventh of its length (thus,
the overall equivalent stiffness is 61.25MN).The same 5 loads used in Sec. 8.5.2
are applied.

The results of the analysis are presented in Table 9.2 and Fig. 9.3. It can be
seen that after the first run of the procedure presented in Sec. 9.3.1, the stiffness
of bar 1 estimated ignoring its strains is almost 10% lower than the stiffness
evaluated considering all the measurements. Therefore, the local damage in bar
1 is identified.

Then, the algorithm replaces bar 1 (stiffness and strains) with its equiv-
alent uniform bar and a second run of the procedure presented in Sec. 9.3.1
is performed. After the second run, all the differences are lower than the 5%
threshold, so no more local damages are present.

It should be noticed that the algorithm not only identifies the bar with
local damage, but also computes the overall stiffness of that element with good
accuracy.
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Figure 9.3: Stiffnesses estimated for the truss in Fig. 8.4 with local damage.
After the first run the stiffness estimated for the first bar disregarding its strain
value is almost 10% lower than the one obtained considering the strain. After
the identification of the local damage, all the difference are less than 5%.
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Stiffness Stiffness Stiffness Stiffness
with all ignoring % with all ignoring %

Bar Bar strains 1 strain diff. strains 1 strain diff.
no. nodes 1st run 1st run 1st run 2nd run 2nd run 2nd run

MN MN MN MN
1 1–2 70,1 63,6 -9,4 62,9 60,1 -4,5
2 2–4 69,5 68,6 -1,3 69,5 68,3 -1,7
3 2–3 70,3 67,8 -3,5 70,0 68,3 -2,4
4 1–4 69,3 69,5 0,2 69,4 69,5 0,2
5 1–3 7,1 7,1 -0,2 7,1 7,1 0,5
6 3–4 69,4 68,6 -1,2 69,5 68,5 -1,4
7 4–6 69,6 71,1 2,2 69,6 70,7 1,6
8 4–5 68,7 68,0 -1,0 69,1 68,6 -0,8
9 3–6 7,1 7,0 -2,0 7,1 7,0 -1,3
10 3–5 70,8 69,3 -2,1 70,4 68,6 -2,5
11 5–6 69,9 68,4 -2,3 69,9 68,6 -1,9

Table 9.2: Stiffnesses estimated for the truss in Fig. 8.4 with local damage.



i
i

“phd5” — 2008/3/30 — 23:56 — page 192 — #208 i
i

i
i

i
i

192 9. Local Damage Identification with Genetic Algorithms

5
6

7
-

4

2

5

Geometria della struttura

3

1

Bar 1-5
Local damage

Bar 3-5
20% Damaged

Figure 9.4: Three-dimensional truss structure. The displacements in the x
direction are restrained at node 1; the displacements in the y direction are
restrained at nodes 1 and 2; the vertical displacements are restrained at nodes
1, 2, 3 and 4.

The second numerical application involves the three-dimensional redundant
truss in Fig. 9.4. The intact bars have a stiffness of 40MN . Bar 3–5 has a
stiffness uniformly reduced by 20% (resulting 32MN). Bar 1–5 has a local
damage, modeled as a stiffness of 20MN over one fifth of its length.

Only three load conditions have been applied: three orthogonal forces at
node 5.

The results of the analysis are presented in Table 9.3 and Fig. 9.5. After
the first run of the procedure presented in Sec. 9.3.1, the stiffnesses of bars 4
and 5 estimated ignoring their respective strains are significantly lower than
the stiffnesses evaluated considering all the measures. The algorithm replaces
the bar for which the results exhibits the largest difference, that is bar 5 (the
one actually damaged). After the second run, all the percentage differences are
lower than 2%, that means that no more local damages are present. In this case,
the difference on the stiffnesses of bar 4 was a collateral effect of the damage
in bar 5. However, the difference relative to bar 5 was much larger than the
difference relative to bar 4, so it was very clear in which bar was more probable
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Stiffness Stiffness Stiffness Stiffness
with all ignoring % with all ignoring %

Bar Bar strains 1 strain diff. strains 1 strain diff.
no. nodes 1st run 1st run 1st run 2nd run 2nd run 2nd run

MN MN MN MN
1 1–2 40,2 46,7 16,2 40,1 40,6 1,1
2 2–4 40,4 42,8 6,1 40,5 40,0 -1,4
3 4–3 40,2 40,9 1,8 40,4 40,4 0,1
4 3–1 40,5 36,0 -11,3 40,6 40,0 -1,4
5 5–1 40,8 33,6 -17,5 33,2 33,5 0,8
6 5–2 40,4 41,2 2,0 40,5 40,2 -0,6
7 5–3 32,1 32,4 0,9 32,1 32,1 0,1
8 5–4 39,8 46,3 16,3 40,2 39,9 -0,7
9 1–4 39,5 53,1 34,5 40,0 39,8 -0,5
10 2–3 39,9 74,1 85,5 39,7 39,3 -0,9

Table 9.3: Stiffnesses estimated for the truss in Fig. 9.4 with local damage.

to find the local damage. The results of the second run have confirmed that the
guess was correct.

9.4 Concluding Remarks

Genetic algorithms have been used to handle the problems of missing measure-
ments and local damages.

The procedure presented in Chapter 8 is well established, while the exten-
sions proposed in this Chapter are still works in progress. For instance, the best
set of parameters for GA (in particular the fitness function) is still a topic of
investigation. Moreover, the code presents a loss of accuracy when the number
of missing measurements increases. Finally, in three-dimensional trusses there
are so many possible load pathes that the algorithm can easily lose sensitivity
to some stiffnesses.

Nevertheless, the presented numerical results prove that, within the afore-
mentioned limits of applicability, the method exhibits a good accuracy and a
strong potential. In particular, the inherent capabilities of GA to avoid local
extremes, to manage multi-dimensional objective functions and, most of all, to
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Figure 9.5: Stiffnesses estimated for the truss in Fig. 9.4 with local damage.
After the first run the stiffness estimated for bar 5 disregarding its strain value
is almost 20% lower than the one obtained considering the strain. After the
identification of the local damage, all the difference are less than 2%.
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do not require gradients and closed form definitions of the objective function
are very interesting, promising and matching the characteristics required by this
particular structural identification approach.
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Chapter 10

General Conclusions
The principal means for ascertaining truth

(induction and analogy) are based on probabilities;
so that the entire system of human knowledge

is connected with the theory of probability
-Pierre Simon Laplace-

Sommario. Le tecniche di simulazione di campi aleatori omogenei,
multidimensionali e multivariati presentate nella prima parte della
tesi sono uno strumento completo e versatile che migliora ed espan-
de le possibilità di applicazione dell’analisi probabilistica in generale
e della Simulazione alla Monte Carlo in particolare. I numerosi
esempi numerici ed i confronti con le altre metodologie mostrano le
capacità degli algoritmi proposti in termini di accuratezza, robustez-
za e possibilità di simulare campi con le distribuzioni di probabilità
anche più fortemente non-Gaussiane. Il generatore di campi multi-
variati, con la sua capacità di identificare la “underlying Gaussian
coherence” è probabilmente il risultato scientificamente più interes-
sante fra quelli presentati. In questo settore, i possibili sviluppi so-
no un’estensione dell’analisi comparativa ai casi multidimensionali
e multivariati, ma, soprattutto, il completamento delle applicazioni
pratiche presentate al Capitolo 7.

La tecnica di identificazione presentata al Capitolo 8 consente di rag-

197
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giungere ottimi livelli di accuratezza nell’identificazione delle caratte-
ristiche meccaniche degli elementi che costituiscono strutture retico-
lari piane e spaziali, isostatiche ed iperstatiche. L’utilizzo congiunto
di tale tecnica con gli algoritmi genetici per risolvere i problemi di
misure mancanti e danni locali è ancora oggetto di studio. Tuttavia,
già allo stato attuale si possono ottenere ottimi risultati per i pro-
blemi meno complessi. Gli studi futuri verteranno sul raffinamento
della metodologia per renderla più robusta e quindi espanderne il
campo di applicabilità.

Lo sviluppo più interessante, però, potrebbe essere l’utilizzo congiunto
delle conoscenze, degli strumenti, delle abilità e dei risultati ottenuti
nei due settori di studio sin qui analizzati per iniziare ricerche nel
campo dell’identificazione probabilistica.

10.1 Final Remarks

In this thesis, some advancements in the field of probabilistic approaches and
tools for civil engineering problems have been presented.

The core of the thesis, Part I, deals with the simulation of random fields.
The goal reached by the research work presented in this Part is the development
of a versatile procedure for the generation of homogeneous, multi-dimensional,
multi-variate random samples with any kind of marginal probability distribu-
tion, including the most strongly non-Gaussian ones.

The presented original procedure can be considered as the latest develop-
ment of a class of Spectral-Representation-based methods. This new technique
synthesize the best characteristics of its predecessors, as a numerical comparison
has shown. The accuracy in matching both the prescribed spectral density and
marginal probability is comparable with the one of the most accurate meth-
ods. The underlying field remains Gaussian throughout the iterations of the
algorithm and, therefore, the produced samples have all the desired and useful
properties of translation fields (e.g. crossing rates and distribution of extremes).
The identification of the underlying Gaussian field is computationally expen-
sive, but it is less expensive than the procedure suggested by Shi and Deodatis
(2004), while the generation of random samples is as efficient as the one adopted
by the Shi and Deodatis method. In the framework of Monte Carlo Simulation,
the overall computational effort for the production of a large number of random
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samples with the prescribed characteristics by means of the proposed technique
is usually negligible with respect to the cost of the other phases of the simula-
tion. The compatibility between marginal distribution and spectral density is
obtained in a “natural” way, without a forced and artificial spectral precondi-
tioning that can lead to an unnatural target SDF. Moreover, the capability of
this technique to search for the best underlying Gaussian field in a wide range
of possible solutions has made the issue of compatibility appear less restrictive
than what seemed in the past years.

The robustness of the technique has allowed to experiment the generation
of samples with marginal distributions with extreme non-Gaussianity. Also in
these cases, the algorithm has exhibited good accuracy. Only in one numerical
example the matching of the prescribed SDF has been relatively poor. This can
be interpreted as the limit of applicability of the method, or as the limit of the
range in which an arbitrary choice of target SDF and PDF can be made with
no significant problems of compatibility.

The generalizations to the simulation of multi-dimensional and multi-variate
fields have widely extended the possible practical applications. Moreover, this
latter generalization has introduced the concept of “underlying Gaussian Co-
herence” and a procedure for its identification. Also in this case, the numerical
examples involving strongly non-Gaussian fields have proved the accuracy and
robustness of the proposed approach. This original contribution is probably the
most interesting scientific result presented in this thesis.

The global result of Part I is a comprehensive simulation tool for (strongly)
non-Gaussian translation fields. The usefulness of this technique depends on
the fact that very often the physical quantities involved in engineering problems
present non-Gaussian characteristics. At the moment, two practical applications
in the fields of stochastic geomechanics and bridge reliability have been set up.

Besides this, an investigation on the simulation of multi-variate Gaussian
fields has been conducted. It has been shown that the numerical technique
commonly used for the generation of vector fields by Spectral Representation
implies a slight difference between the resulting SDF and the target, whose
magnitude increases with the roughness of the discretization in the wave num-
ber domain. A closed form expression that describes the actual CSDM of the
produced samples has been provided. This, in turn, has two effects. The first
is that the proof of ergodicity of the samples that previously applied only to
the “continuous” case has been extended to the case of simulation with the use
of Fast Fourier Transform (i.e. almost any practical applications). The second
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effect is that knowing a priori the resulting spectrum, the prescribed target can
be tuned so that the samples match exactly the desired SDF.

The topics of Part II are structural identification and damage assessment. A
procedure for the identification of three-dimensional redundant truss structures
with static loads and strain measurements has been presented. The method
appears robust, effective and accurate, but requires two major hypothesis: the
stiffnesses of all the bars are measured and they are constant along the length.
Genetic Algorithms, an optimization technique based on the concepts of evolu-
tion, random combination and random mutation, are employed to remove the
two aforementioned hypothesis.

The basic idea is that the redundancy of the structure implies that the
characteristics of a bar affect also the static (stresses and strains) condition
of the other elements. Therefore, even when the information relative to a bar
is missing or is misleading (in the case of local damages) its stiffness can be
estimated using data regarding the other ones.

Several issues that arise and certain limits of applicability have been enlight-
ened. However, the numerical examples have shown that the proposed methods
have attractive capabilities and an interesting potential and, therefore, that they
are worthy of further investigations.

10.2 Future Developments

The methods proposed in Part I are already well established, therefore the most
interesting and natural development of the work in this field is their application.
Besides the two aforementioned fields, many other can be found. In fact, Monte
Carlo Simulation is suitable (and often required) for the solution of any kind of
stochastic mechanics problem.

Nevertheless, some further studies should be conducted. The first is the
realization of a code for the generation of non-Gaussian samples that are both
multi-dimensional and multi-variate. In fact, until now the two problems have
been treated using different codes, but in some cases the physical quantities are
described by vector fields in two- or three-dimensional domains. The second in-
vestigation is a comparison between the original technique for the multi-variate
case and other methodologies, especially the one presented by Chen and Deo-
datis (2004), that present some similarities. This can also be the occasion to
investigate the limits of applicability of the procedure, as it has been done for
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the uni-variate case.
As for the techniques presented in Part II, some of the possible develop-

ments have already been mentioned in Sec. 9.4 and regard the use and the
settings of Genetic Algorithms.

Moreover, the design of the experiment has to be optimized. In particu-
lar, the methods have presented a strong sensitivity to the maximum level of
stress/strain reached by every bar in the load tests. This sensitivity is increased
when GA are applied, because the input data are reduced in quantity (miss-
ing measurements) or quality (local damages). The applications presented in
Chapter 8 have shown that in problems like these, the numerical and practical
aspects are more important than the theoretical ones. In this case, in fact, the
condition to make each bar reach a sufficient stress level has proved to be much
stricter than the analytical ones. In the same way, some “practical rules” should
be found also for the cases of missing measurements and local damages.

The most interesting development, however, would be a convergence of the
topics studied in the two Parts of the thesis. In fact, today the most inter-
esting and challenging structural and damage identification problems have to
be approached in a fully probabilistic way. Ocean waves on offshore structures,
gusts on airplane wings, wind on tall buildings, pressure waves in pipe systems
are some of the random loads that can be used as test loads for identification
and control purposes. However, these loads can be known and described only in
a probabilistic sense, therefore in these applications the theories of simulation
and random fields have to be used together with the techniques that belong to
the topic of inverse problems. The skills, the tools and the knowledged acquired
studying the two fields separately can be employed in the best possible way in
problems that involve both of them.
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Appendix A

Random Fields
The theory of probabilities is basically

just common sense reduced to calculus;
it makes one appreciate with exactness

that which accurate minds feel with a sort of instinct,
often without being able to account for it.

-Pierre Simon Laplace-

Sommario. I concetti di base della teoria dei campi aleatori richia-
mati dagli algoritmi di simulazione presentati nella prima parte della
tesi vengono qui brevemente illustrati.

Si è scelto di ridurre al minimo i formalismi e prediligere un taglio
più ingegneristico ed applicativo.

A.1 Introductory Remarks

A random field is a continue or discrete function that is not defined determinis-
tically, but only through a probabilistic characterization. The formal theory of
random fields is a well-established discipline with applications in many areas of
engineering and science. In mechanics, the most common physical domains are
space, time, and spacetime. Traditionally, the phrase “random field” indicates

203
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204 A. Random Fields

a function in the n-dimensional space domain, “stochastic process” (or “random
process”) refers to an uncertainty in the time domain, while “stochastic wave”
(or “random wave”) denotes a function in the (n+1)-dimensional spacetime. In
this thesis, the case of random fields in the space domain is considered. The
extension to the case of stochastic processes is straightforward.

Many authors have written exhaustive monographs that treat the theory of
random fields. Here a brief description of the basic properties and characteristics
that are useful for the purposes of the thesis is provided. A more complete
and formal background may be found on the texts by Lin (1967); Vanmarcke
(1983); Bendat and Piersol (1986); Grigoriu (1995) and Elishakoff (1999) among
the others. Exhaustive monographs on the theory of probability in engineering
problems have been written, for instance, by Benjamin and Cornell (1970); Beck
and Arnold (1977); Ang and Tang (1984).

A.2 General Definition

A one-dimensional, uni-variate random field W (x) is an ensemble of space func-
tions that can be characterized statistically. An equivalent definition is the
following: a random field W (x) is a parametered family of random variables,
with the parameters belonging to an indexing set. Other, more mathematical,
definitions can be found in the literature.

A single “realization” or “sample function” of the random field is indicated by
Wi(x). The infinity of realizations is the random field. From this point of view,
the first definition of random field describes it as an ensemble of complete real-
izations (i fixed), on the contrary, the second definition focuses on an ensemble
of the values assumed at a certain point (x fixed) by the various realizations.

In increasing order of completeness, the probabilistic structure of a random
field is described by the following series of probability densities:



fW (x1)(w1)
fW (x1)W (x2)(w1, w2)

...
fW (x1)W (x2)...W (xn)(w1, w2, ..., wn)

...

(A.1)
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or 

f{W}(w, x)
f{W}(w1, x1;w2, x2)

...
f{W}(w1, x1;w2, x2; ...;wn, xn)

...

(A.2)

However, it is almost impossible to compute joint probabilities of order greater
than two. Anyway, if the higher-order probability densities are known, the
lower-order ones can be computed by means of a closed form formula. The first
order probability density determines the “marginal distribution” of the random
field.

Even if in theory the whole set of probability densities is required for the
description of the field, for practical applications only the first two orders are
usually considered.

A.3 Description of a Random Field

A random field can be described by moments of various order:

mean: µW (x) = E[W (x)] =

∞∫
−∞

wf{W}(w, x)dw (A.3)

where E[·] denotes the expected value,

mean square: E[W 2(x)] =

∞∫
−∞

w2f{W}(w, x) dw (A.4)

variance: V ar{W (x)} = E[{W (x)− µW (x)}2] = E[W 2(x)]− µ2
W (x) (A.5)

and the standard deviation is defined as

std: σW (x) =
√

V ar{W (x)} (A.6)

These quantities describe the probabilistic characteristics of values at a single
point. Other quantities describe the relations between the values at different
points:

autocorrelation: RWW (x1, x2) = E[W (x1)W (x2)] (A.7)
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cross-correlation: RWZ(x1, x2) = E[W (x1)Z(x2)] (A.8)

where W (x) and Z(x) are two random fields,

autocovariance: kWW (x1, x2) =E[{W (x1)− µW (x1)}{W (x2)− µW (x2)}] =
=RWW (x1, x2)− µW (x1)µW (x2)

(A.9)

cross-covariance: kWZ(x1, x2) =E[{W (x1)− µW (x1)}{Z(x2)− µZ(x2)}] =
=RWZ(x1, x2)− µW (x1)µZ(x2)

(A.10)

and finally the correlation coefficients:

ρWW (x1, x2) =
kWW (x1, x2)

σW (x1)σW (x2)
(A.11)

ρWZ(x1, x2) =
kWZ(x1, x2)

σW (x1)σZ(x2)
(A.12)

A.4 Homogeneous Random Fields

A random field is said to be “strongly homogeneous” if its complete probability
structure is independent of a shift in the parametric origin (a stochastic process
with the same property is said “strongly stationary”).



f{W}(w, x) = f{W}(w, x + α)
f{W}(w1, x1;w2, x2) = f{W}(w1, x1 + α;w2, x2 + α)

...
f{W}(w1, x1; ...;wn, xn) = f{W}(w1, x1 + α; ...;wn, xn + α)

...

(A.13)

If only the first two equations are satisfied, the field is called “weakly homoge-
neous” (“weakly stationary”).

For the special case of α = −x1

f{W}(w, x) = f{W}(w, 0) = E[W (x)] (A.14)
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f{W}(w1, x1;w2, x2) = f{W}(w1, 0;w2, x2 − x1) (A.15)

therefore the first order density is constant and the second order joint density
depends only on the lag ξ = x2 − x1

RWW (x1, x2) = RWW (x2 − x1) = RWW (ξ) (A.16)

In the thesis, since only the first two order statistical descriptors are consid-
ered, the weekly homogeneity is sufficient and is called simply “homogeneity”.

A.5 Properties of the Correlation Functions

A.5.1 General Case

Symmetry: {
RWW (x1, x2) = RWW (x2, x1)
RWZ(x1, x2) = RZW (x2, x1)

(A.17)

Non-negative definiteness:
n∑

j=1

n∑
k=1

RWW (xj , xk)h(tj)h(tk) ≥ 0 ∀h(x) (A.18)

The second property is a strict condition on the domain of admissible func-
tions that can represent an autocorrelation.

A.5.2 Homogeneous Case

Symmetry: {
RWW (ξ) = RWW (−ξ)
RWZ(ξ) = RZW (−ξ) (A.19)

Non-negative definiteness:
n∑

j=1

n∑
k=1

RWW (xj − xk)h(tj)h(tk) ≥ 0 ∀h(x) (A.20)

n∑
j=1

n∑
k=1

RWZ(xj − xk)h(tj)h(tk) ≥ 0 ∀h(x) (A.21)
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Inequalities:
|RWW (ξ)| ≤ RWW (0) (A.22)

|RWZ(ξ)| ≤
√

RWW (0)RZZ(0) (A.23)

Limits:
lim
ξ→0

RWW (ξ) = E[W (x)W (x)] = E[W 2(x)] (A.24)

lim
ξ→∞

RWW (ξ) = 0 (A.25)

except for periodic fields.

A.6 Ergodic Theorem

For random field theory to be useful, it should be possible to estimate mean and
autocorrelation from measurements.

A first possible way to determine the autocorrelation is the so called “ensem-
ble averaging”: it averages over the entire set of n sample functions.

mean value: µW (x1) = E[W (t1)] =
1
n

n∑
i=1

Wi(x1) ∀t1 (A.26)

autocorrelation: RWW (x1, x2) = E[W (t1)W (t2)] =

=
1
n

n∑
i=1

W (t1)W (t2) ∀t1, t2
(A.27)

However, usually the number of available samples is too low to consider the
average significant.

There is a class of homogeneous random fields for which it is possible to es-
timate mean and autocorrelation from one sample function. Such homogeneous
fields are called “ergodic” and the “spatial averaging1” is defined as:

〈W (x)〉 =
1
L

L∫
0

Wi(x) dx (A.28)

1Actually, the phrase “temporal averaging”, that is associated to ergodic stochastic pro-
cesses, is more common.
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〈W (x)W (x + ξ)〉 =
1

L− ξ

L−ξ∫
0

Wi(x + ξ)Wi(x) dx (A.29)

where L indicates the length of the sample function.
A homogeneous random field is “ergodic in the mean” when

E[W (x)] = 〈W (x)〉 as L →∞ (A.30)

The necessary and sufficient conditions for W (x) to be ergodic in the mean
are:

1. E[W (x)] = constant

2. E[W (x)W (x + ξ)] = function of ξ only

3. limL→∞
1
L

∫∞
0

RWW (ξ) dξ = 0

where the first two conditions imply week homogeneity and the third one is
quite commonly verified, because of Eq. (A.25). Therefore, the majority of the
homogeneous fields are ergodic in the mean.

A homogeneous random field is “ergodic in correlation” when

E[W (x)W (x + ξ)] = 〈W (x)W (x + ξ)〉 as L →∞ (A.31)

The necessary and sufficient conditions for ergodicity in correlation are:

1. E[W (x)W (x + ξ)] = function of ξ only

2. QWW (ξ, η) = E[{W (x + ξ)W (x) − RWW (ξ)}{W (x + ξ + η)W (x + η) −
RWW (ξ)}]independent of x

3. limL→∞
1
L

∫∞
0

QWW (ξ, η) dη = 0

where η is a second space lag.
Unfortunately, the statistical tests for ergodicity are very week. For the ar-

tificially generated fields (Chapters 3–5) the ergodicity can be verified analyzing
the generation procedure.
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A.7 Spectral Density Function

The Spectral Density Function (SDF), also called “power spectral density” or
“power spectrum” of a random field is defined as the Fourier transform2 of the
autocorrelation function:

SWW (κ) =
1
2π

∞∫
−∞

RWW (ξ) e−i κξ dξ (A.32)

where κ is the wave number. The inverse transformation is given by:

RWW (ξ) =

∞∫
−∞

SWW (κ) ei κξ dκ (A.33)

Eqs. (A.32) and (A.33) are known as the “Wiener-Khintchine theorem”.
It is worth to stress that RWW (ξ) and SWW (κ) are perfectly equivalent,

they bring the same information on the field and can be obtained the one from
the other through Eqs. (A.32)–(A.33).

A.7.1 Properties of the SDF

1. SWW is a real and even function of κ:

SWW (κ) = SWW (−κ) (A.34)

and therefore, the Wiener-Khintchine theorem can be rewritten as

SWW (κ) =
1
π

∞∫
0

RWW (ξ) cos κξ dξ (A.35)

RWW (ξ) = 2

∞∫
0

SWW (κ) cos κξ dκ (A.36)

2Equation (A.32) is not exactly a Fourier transform, because of the coefficients but it is
perfectly equivalent.
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2. SWW (κ) is a non-negative function:

RWW (ξ) ≥ 0 (A.37)

This property is equivalent to the property of the autocorrelation being
non-negative definite (“Bochner’s theorem”)

3. SWW (κ) describes the distribution of the mean square over the wave num-
ber domain:

RWW (0) = E[W 2(x)] =

∞∫
−∞

SWW (κ) dκ (A.38)

4. If E[W 2(x)] is finite, then SWW (κ) goes down to zero as κ → ±∞ faster
than 1

κ

A.7.2 Cross-Spectral Density Function

Similarly to the definition of the SDF, the Cross-Spectral Density Function
(CSDF) for two homogeneous fields is defined as the Fourier transform of the
cross-correlation:

SWZ(κ) =
1
2π

∞∫
−∞

RWZ(ξ) e−i κξ dξ (A.39)

The inverse transformation is given by:

RWZ(ξ) =

∞∫
−∞

SWZ(κ) ei κξ dκ (A.40)

The properties of the CSDF are described in the following.

1. SWZ(κ) is complex in general.

2. Symmetry (“Hermitian property”):

SWZ(κ) = S∗WZ(−κ) (A.41)

where the asterisk denotes the complex conjugate.

3. If E[W (x)Z(x)] is finite and E[W 2(x)], E[Z2(x)] are finite too, then
SWZ(κ) goes down to zero as κ → ±∞ faster than 1

κ
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A.7.3 Estimation of the SDF from One Sample

Assuming homogeneity and ergodicity, the space averaging is equivalent to the
ensemble averaging. This means that every single realization has all the infor-
mation3 about the entire field. Therefore, the spectral density can be computed
as:

SWW (κ) =

∣∣∣∣∣L∫
0

w(x) e−i κx dx

∣∣∣∣∣
2

2πL
(A.42)

It appears evident that Eq. (A.42) can be numerically computed by means of a
Fast Fourier Transform (FFT) of the sample.

In the same way, for two homogeneous and ergodic samples of the same
length:

SWZ(κ) =

L∫
0

w(x) ei κx dx
L∫
0

z(x) e−i κx dx

2πL
(A.43)

A.8 Gaussian Random Fields

As well as for a Gaussian random variable, the marginal probability distribution
function of a Gaussian random field is Gaussian:

f{W}(w, x) =
1√

2πσW (x)
exp

{
− [w(x)− µW (x)]2

2σ2
W (x)

}
(A.44)

Gaussian random fields W (x) posses the following properties.

1. They are fully defined by the first two moments.

2. Under linear operations, they remain Gaussian (see the following proper-
ties).

3.

Z(x∗) =

b∫
a

W (x)h(x, x∗) dx is Gaussian ∀h(x, x∗) (A.45)

3We are still considering only the first two orders statistical descriptors.
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4.
dW (x)

dx
,

d2W (x)
dx2

, ... are Gaussian (A.46)

5.
Z(x) = aW (x) + b is Gaussian (A.47)

6. If in the equation of motions the force is a Gaussian random process W (t):

m
d2Z(t)

dt2
+ c

dZ(t)
dt

+ k = W (t) (A.48)

then the displacement Z(t) is a Gaussian random process too.

7.
W 2(x),W 3(x), ... are not Gaussian (A.49)

A.9 Multi-Dimensional Random Fields

All the definition and the properties considered for one-dimensional random
fields can be easily extended to multi-dimensional random fields W (x1, x2, . . . , xn).

In particular, the Wiener-Khintchine theorem for a two-dimensional field
becomes:

SWW (κ1, κ2) =
1

(2π)2

∞∫
−∞

∞∫
−∞

RWW (ξ1, ξ2) exp [−i (κ1ξ1 + κ2ξ2)]dξ1 dξ2

(A.50)

RWW (ξ1, ξ2) =

∞∫
−∞

∞∫
−∞

SWW (κ1, κ2) exp [−i (κ1ξ1 + κ2ξ2)]dκ1 dκ2 (A.51)

Eq. (A.42), for a two-dimensional random field becomes:

SWW (κ1, κ2) =

∣∣∣∣∣L1∫
0

L2∫
0

w(x1, x2) exp (−iκ1x1,−iκ2x2) dx1 dx2

∣∣∣∣∣
2

4π2L1L2
(A.52)
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For any homogeneous two-dimensional random field the symmetry of the
autocorrelation with respect to the origin of the domain is still valid:

RWW (ξ1, ξ2) = RWW (−ξ1,−ξ2) (A.53)

For a special class of homogeneous two-dimensional random fields the following
relation is valid:

RWW (ξ1, ξ2) = RWW (ξ1,−ξ2) = RWW (−ξ1, ξ2) = RWW (−ξ1,−ξ2) (A.54)

that means that the autocorrelation is symmetric with respect to the two axes
ξ1, ξ2, therefore the information on a single quadrant is sufficient to fully de-
scribe the autocorrelation. Such fields are called “quadrant-symmetric fields”
(or “quadrant fields”).

A.10 Multi-Variate Random Fields

A “multi-variate random field”, also called “vector field” is a field that has a
number of correlated components.

The spectral characteristics of a vector field are collected in the Cross-
Spectral Density Matrix (CSDM):

S(κ) =


S11(κ) S12(κ) · · · S1n(κ)
S21(κ) S22(κ) · · · S2n(κ)

...
...

. . .
...

Sn1(κ) Sn2(κ) · · · Snn(κ)

 (A.55)

The CSDM is symmetric, the diagonal terms are autospectra and the off-
diagonal terms are cross-spectra. These are sometimes expressed by means of
the “coherence function” γij :

Sij(κ) = γij(κ)
√

Sii(κ)Sjj(κ) (A.56)

The coherence describes the degree of correlation between the components i and
j and is always in the interval [0, 1]. When γij = 1 the two components are said
to be perfectly correlated, when γij = 0 the two components are uncorrelated.
The coherence is a real function, therefore, when the coherence is used, also the
cross-spectra are real.
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