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Abstract

This thesis is focused on cosmological applications of the 4D Effective Field The-
ory (EFT) coming from type IIB string theory. We focus in particular on model
building in inflation, dark matter and dark radiation using K&hler moduli and
axion-like fields which are ubiquitous features of type IIB flux compactifications.
These fields enjoy effective approximate symmetries which can protect their poten-
tial against quantum corrections. This property makes both of them good inflaton
candidates and implies that axion-like particles from string theory tend naturally
to be very light with intriguing applications to dark radiation and dark matter. We
first consider a class of type IIB inflationary models called "Fibre Inflation" where
the inflaton is a Kéhler modulus. We provide a consistent global embedding of
these models into Calabi-Yau orientifolds with D-branes, fluxes and a chiral visible
sector. We also analyse the multi-field dynamics of this class of models, including
both Kéhler moduli and axion-like particles which give rise to isocurvature per-
turbations. We then focus on different applications of axion-like particles coming
from string theory. Depending on the value of their mass and decay constant,
together with their production mechanism, these particles can drive inflation or
can represent a non-negligible component of dark matter and dark radiation. We
provide a string embedding of a model that explains the 3.5 keV line recently de-
tected from galaxy clusters by exploting axion-photon conversion in astrophysical
magnetic fields. Finally, we analyse the mechanisms of electro-magnetic dissipa-
tion in models where the inflaton is an axion, finding a new resonant behaviour in
the gauge field production that affects the shape of the cosmological parameters.
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One of the most fascinating topics on which the research in theoretical physics
is focused today is related to the origin and evolution of the Universe. Currently,
the simplest cosmological model that fits experimental observations is the ACDM
model, according to which spacetime is described by the Friedmann-Robertson-
Walker metric, while the gravitational field is generated by dark energy, cold dark
matter (DM) and a small quantity of ordinary matter. Despite its great success, in
order to explain the observed large scale structure, the theory must be completed
by an initial period of accelerated expansion called inflation. During this phase
the space expands quasi-exponentially, and therefore it is also possible to explain
the overall homogeneity and flatness of the Universe.

Particle physics, on the other hand, is successfully described in the context
of the Standard Model (SM), augmented by neutrino masses, which is in excel-
lent agreement with experimental data. However, unfortunately, it represents only
an Effective Field Theory (EFT) whose cut-off can be pushed at most up to the
Planck scale where a full theory of quantum gravity should emerge. In addition, it
fails to address several issues like the hierarchy problem for the Higgs mass, gauge
coupling unification and the strong CP problem. Finally, it is not able to explain
the origin of DM, baryogenesis and dark energy.

Several theories have been proposed for fundamental physics beyond current un-
derstanding. Here we will focus on string theory which is at present the most
promising candidate for a consistent theory of gravity that can also incorporate
all known interactions and matter in an elegant unified framework. In this thesis,
we consider inflationary models in the context of the 4D EFT coming from type
ITB string theory. Given the high sensitivity of the inflationary dynamics to UV
physics, finding a string embedding of inflation would provide a powerful tool to
overcome many of the standard issues related to the usual EFT approach. String
theory does not only provide a consistent quantisation of gravity, but it also allows
us to derive the inflationary Lagrangian from a top-down perspective. Moreover,
working in its perturbative regime, all corrections to the inflationary potential aris-
ing form higher dimensional operators, can be in principle computed. This would
give an unprecedented theoretical control on model building. String theory con-
tains a single parameter, the string length ¢, and the structure of the 4D theory is
completely determined by the topology of the extra dimensions and the presence
of local objects as Dp-branes and Op-planes. This reduces the arbitrariness of
the 4D Lagrangian and, moreover, allows us to point out which fields appear in
the low-energy theory, equipped with symmetries that can protect their potential
against dangerous quantum corrections. We focus in particular on Kédhler moduli
that feature a non-compact symmetry, the so-called extended no-scale structure,
and axion-like particles (ALPs), that feature at tree-level a compact continuous
shift-symmetry. We will work in the context of Large Volume Scenario (LVS) com-
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pactifications that provide a hierarchy between the relevant energy scales which is
suitable for 4D descriptions of inflation.

The first part of this thesis gives an overview of the current knowledge of high

energy physics that will be relevant throughout this work. In Chapter 1 we briefly
review the state of the art of particle physics and cosmology. As already men-
tioned, the main pillars are given by the SM of particle physics and the ACDM
model of cosmology. These two theories have been tested to high precision and
have an outstanding accordance with experimental results. Nevertheless, they fea-
ture some fundamental problems that suggest evidence of new particles and force
us to search for UV extensions of these models.
In Chapter 2 we introduce high energy theories that try to solve the main problems
of the SM and the ACDM model. We begin introducing cosmic inflation that pro-
vides a working mechanism to overcome the initial condition problems of standard
Big Bang cosmology and can lead to successful large structure formation. After
that, we briefly review the main features of axions and ALPs, whose existence was
firstly theorised for explaining the CP symmetry conservation of QCD. According
to their production mechanism, their mass and their coupling to SM degrees of
freedom, these particles can also represent a significant part of both DM and dark
radiation, or can play the role of the inflaton field. Finally, we introduce some
basic concepts of string theory, focusing on type IIB, and we list the conditions
under which it is possible to get low energy 4D theories that can reproduce the
basic ingredients of SM physics, such as chiral matter, gauge theories and Yukawa
couplings. Throughout this thesis we will use a bottom-up approach, analysing 4D
string vacua equipped with sets of local sources as Dp-branes and Op-planes. This
approach is less general than starting from the full 10D theory but it may be more
efficient in trying to identify promising string vacua which can reproduce all the
features of the SM. We then conclude this chapter discussing moduli stabilisation
and inflationary models form string theory.

Moduli are scalar fields that parametrise continuous deformations of the extra-
dimensional metric that do not change the topology of the compact extra-dimen-
sional space. These fields appear as massless and testify the presence of extra
dimensions in the 4D theory. We need to find dynamical ways to develop a po-
tential for the moduli and avoid the presence of undetected fifth-forces. This goes
under the name of moduli stabilistion and is a crucial step in concrete model
building. Indeed, moduli vacuum expectation values (VEVs) set all the couplings
between different particles, including the string coupling. These fields can be ei-
ther heavy or light and their presence can affect the primordial and present history
of the Universe. Given the plethora of possible string vacua (the number of known
Calabi Yau manifolds is of order 10%) and considering that each 4D theory implies
the presence of a large number of moduli (which can be as large as O(10%)), it is
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mandatory to understand which kind of mass spectrum and couplings are typical
of these fields. During the inflationary epoch, fields that are much heavier than
the Hubble scale H can be safely integrated out. On the other hand, fields having
masses below H can drive inflation, while other fields much lighter than H can
affect the cosmological parameters through their quantum perturbations. Given
the high level of complexity of inflationary systems involving a large number of
fields and the sensitivity of inflation to UV physics, it is nearly impossible to treat
moduli stabilisation and inflation independently. This makes string cosmology a
highly non trivial research area.

The second part of this thesis contains some applications of the aforementioned
topics that I analysed during my PhD. In Chapter 3 we study the global embedding
of a class of Kéahler moduli inflation models called Fibre inflation. These are
first introduced in Sec. 2.4.1. We construct explicit examples of Fibre inflation
models which are globally embedded in type IIB orientifolds with chiral matter
on D7-branes and full closed string moduli stabilisation. We perform a consistent
choice of orientifold involution, brane setup and gauge fluxes which leads to chiral
matter and a moduli-dependent Fayet-Iliopoulos term. Using LVS we are able to
perform moduli stabilisation step by step. The inflationary potential is generated
by suitable string loop corrections in combination with higher derivative effects.
We analyse the inflationary dynamics both in the single-field approximation and
by numerically deriving the full multi-field evolution in detail. Interestingly, we
find that the Kahler cone conditions set strong constraints on the allowed inflaton
field range. In particular, we see that in some cases it is not easy to get the correct
normalisation of the power spectrum using inflaton density perturbations. This
motivates the study of other possible ways of producing the correct amplitude of
the scalar power spectrum.

We then study in Chapter 4 the role played by light fields during inflation,
focusing on ALPs. These always appear in string theory compactifications and
tend to be naturally very light. Indeed, the presence of light spectator fields
during inflation leads to the production of isocurvature perturbations that can
be converted into density perturbations through the curvaton mechanism. This
can help to circumvent the issues mentioned in Chapter 3. On the other hand,
the bosonic Lagrangian of 4D supergravity coming from dimensional reduction, is
given by a non-linear sigma model. This means that the field space is curved. The
analysis of cosmological perturbations points out that, in case of negative scalar
curvature, isocurvature pertubations may show a tachyonic mass that seems to
quickly lead the system out of the perturbative regime. We analyse general systems
composed by the inflaton and a light or heavy spectator field. We conclude that
geometrical destabilisation cannot occur in the case of heavy spectator fields. On
the other hand, systems with light spectator fields may be plagued by a tachyonic
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instability of isocurvature perturbations. After that, we focus on concrete examples
coming from string compactifications and in particular on Fibre inflation models.
We study the dynamics of both the background and the perturbations. Choosing a
wide range of initial conditions for inflation, we show that the background evolution
is stable. Despite that, the equation of motion for the isocurvature perturbations
seems to show an instability. We will however point out that this instability is
unphysical (in agreement with the fact that the background evolution is stable)
since it is just an artifact due to the use of gauge invariant variables which in our
case turn out to be ill-defined.

In Chapter 5 we give an example of axionic DM coming from type IIB string
compactifications. This work is based on the recent detection of an unexplained 3.5
keV line from galaxy clusters. A promising model which can explain the morphol-
ogy of the signal and other experimental evidences, namely its non-observation
in dwarf spheroidal galaxies, involves a 7 keV DM particle decaying into a pair
of ultra-light axions that convert into photons in the magnetic field of the clus-
ters. Given that light axions naturally emerge in 4D string vacua, we present a
microscopic realisation of this model within the framework of type IIB flux com-
pactifications, where the DM particle is an open string axion. After describing the
Calabi-Yau geometry and the brane set-up, we discuss in depth moduli stabilisa-
tion, the resulting mass spectrum and the strength of all relevant couplings.

Finally, in Chapter 6, we study some features of axion inflation models. Axion
inflation entails a coupling of the inflaton to gauge fields through the Chern-Simons
term. This results in a strong gauge field production during inflation which back-
reacts on the inflaton equation of motion. These effects have been previously
studied using analytical methods. In this Chapter, performing a full numerical
analysis, we show that this strongly non-linear system generically experiences a
resonant enhancement of the gauge field production. This gives rise to oscillatory
features in the inflaton velocity as well as in the gauge field spectrum. The gauge
fields source a strongly enhanced scalar power spectrum at small scales, exceeding
previous estimates and leading the system out of the perturbative regime. For
appropriate parameter choices, the collapse of these over-dense regions can lead to
a large population of (light) primordial black holes, with remarkable phenomeno-
logical consequences.



Chapter 1

State of the Art

1.1 Standard Model of particle physics

Over the past 4 decades the joint collaboration between theorists and experi-
mentalists brought us to a new and well posed conception of matter. Indeed, using
the tool of quantum field theory they were able to enclose three kinds of fundamen-
tal interactions in a single theory: the Standard Model (SM) of particle physics.
Except from some (non-negligible) exceptions that we will describe later on in this
Chapter, the Standard Model turned out to be in excellent accordance with all
to date experimental data for what concerns both low and high energy Physics
phenomena. The fermion field content of SM can be summarised as follows:

e leptons: electron e, muon u, 7-lepton, electron neutrino, v,, muon neutrino,
v,, T— neutrino, v;. The first three particles carry electrical charge while
the others are neutral;

e quarks: up u, down d, strange s, charme ¢, bottom b and top t quarks.

These particles transform as spinors under the Lorentz group and represent the
matter content of the theory. On the other hand we have bosons:

e gauge fields: photon, v, gluon, g, W*—bosons and Z— boson. These are
the mediators of gauge interactions and transform as vectors under gauge

group.

e Higgs boson: neutral scalar field, its vacuum expectation value gives a mass
to all massive SM particles and it participates in the Yukawa interactions.

The Standard Model gauge group is given by:

SU(3). x SU2), x U(1), (1.1)

17



18 CHAPTER 1. STATE OF THE ART

where SU(3). describes strong interactions via Quantum Chomodynamics (QCD)
while SU(2);, x U(1), describes electro-weak interactions. Matter particles are
organised into three generations (or families) of quarks and leptons:

1y family : wu, d, v, €
2nq family @ ¢, s, v, p (1.2)
3pq family : ¢, 0, v, 7.

Particles belonging to the same generation have different quantum numbers which
mean different gauge interactions, while correspondent particles in different gener-
ations, i.e. columns in (1.2), share the same quantum numbers but show different
masses and different Yukawa couplings to the Higgs boson. From the point of view
of strong interaction both left and right quarks transform under the fundamental
representation (triplets), this means that in order to describe strong interaction
we do not need to separate quarks into left and right components. The most
interesting peculiarities about strong interaction are given by color confinement
and asymptotic freedom. In order to give a hint about these two properties let us
introduce the Lagrangian of QCD

1
L =P(iy"Dy —m)p — §TT[GWGW] (1.3)
where the spinor field 1 is given by a color triplet

Qred
7/1 = Qgreen | (14)
Gblue

indeed every single quark can exist in three different color states. The covariant
derivative is
Du = 6“ + ZgS GM? (15)

where gg is the strong coupling constant and B, is a 3 x 3 dimensional matrix
in color space given by the product of the eight color gauge fields gft and the

generators ’\7 of SU(3) written in terms of the Gell-Mann matrices A*. The gluon
field-strength is given by

Ly LN .
G = §GW}‘ = (igs) '[D,, D,] = 6,G, — 0,G, + i gs [Gy, G, (1.6)
where the last term takes into account the non-abelian nature of the interaction
accounting for three- and fourth-gluon self-interactions. With the introduction of
color hypothesis the number of quarks gets multiplied by three, in particular we
should have that some proton p = uud may be given by quarks having different
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quark  antiquark

Yc ]30 Y. -[3C
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1
2
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2
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Table 1.1: Quark and antiquark color isospin and hypercharge quantum numbers.

colors. From the experimental point of view no colored hadron has ever been
observed and one can postulate that all free hadrons observed in nature should
be either colorless or white, that is the color confinement hypothesis. The direct
consequences of this statement can be summarised as follows. We can pick out two
generators of SU(3) that have color spinors as eigenstates, i.e. they are diagonal
matrices, these are A3 and Ag, then we define two new operators called color isospin,
I3., and color hypercharge Y,

, 1 0 0 , {10 0
Lo=-XAs==]0 -1 0 Y= —x=-(01 o0 (1.7)
2 0 0 0 V3T 3 \g 0 -2

The quantum numbers associated with color isospin and hypercharge are listed
in Table 1.1. This means that mesons M = ¢q and baryons B = qqq must be
described by colour-singlet combinations

1 1
= Y« s M=—
\/6|q ﬁ’y> \/g
satisfying Y. = 0 and I3, = 0. In order to see that color-singlet states are the
preferred configurations we should focus on the quark-gluon interaction term in
the Lagrangian:

B = 6| qap) a=rgb (1.8)

gSZ‘

Log = =5 607" N0 (1.9)
from which the Feynman rule for the 11)q vertex is
— i gsNagVu (1.10)

where ¢ and p are the gluon color and Lorentz index respectively, while o and /3
are the quark and antiquark color indices. Therefore the 1-gluon exchange force
between quarks in the transition o + 3 — d + 7 is proportional to

g - ) SN, (1.11)
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System Y, _(T®.TW)

(q@n —%
{q@)s +%
{qq)s+ —2
{q9)6 +%
{9991 —2
{qqq)s -1
{99910 +1
{9999)s —2

Table 1.2: Interaction energy of low-dimensional quark systems

Then we can perform a toy calculation assuming that we can trust perturbation
theory at lowest order, neglecting multiple gluon exchanges, and the effects related
to the creation of a isolated colored state. In order to estimate Eq.(1.11) we need
to evaluate the expectation value of the squared generators (T?) = 1(A?). In par-
ticular for SU(N) theories this is equivalent to average the square of any generator
over a representation, here we choose I5.. This implies that in representations with
dimension d we have [6]

(T =(N*~1) > %. (1.12)

rep.d

Then the single gluon exchange force can be estimated to be £ = g2(T™-T?)) and
we can easily extend the calculation to multi-body systems, being the interaction
given by the sum of two-body interactions:

£ = g STt . 70

i<j

{T7) - §1<T(i)2> . (1.13)

We list in Table 1.2 the results of the binding energies for few-body systems in our
toy calculation. It is easy to see that for two- and three-quark systems the color
singlet is the most attractive setup. The four quarks triplet can be interpreted as
as a baryon+quark system and there is no difference between its binding energy
and that of a single baryon: adding a quark to a baryon is not convenient and the
fourth quark can be considered as a free particle. Despite being experimentally
verified, a rigorous proof for color confinement is still lacking. Lattice QCD, albeit
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good for certain qualitative and quantitative predictions, also does not allows us
to prove something on a fundamental level. Furthermore, there is the AdS/CFT
correspondence, which allows us to describe theories which are similar to QCD in
many respects, but a description of QCD itself is not accessible at this point.

In order to understand asymptotic freedom, we write down the energy depen-
dence of the strong coupling constant ag = gg/4m:

1 1IN, — 20, 0?2
s(0) = = In (AQCD> (1.14)

where N, is the number of colors and ny is the number of active quark flavours.
We see that at high energies the theory is weakly coupled and for Q? — oo we
have ag(Q?) — 0, so we find asymptotic freedom. At small energies the theory
is strongly coupled and quarks are confined in colorless or white hadrons such
as mesons and baryons. We need to consider that if we want Eq. (1.14) to
be continuous at flavour threshold (when the number of kinematically accessible
quark flavours changes), then Agep must depend on ny: Agep = A™f. In addition
its value also depends on the selected renormalisation scheme, the canonical choice
that is usually made is the modified minimal subtraction scheme MS: Agep =

Ax}fs. For instance, if we consider the case Q = My and ny = 5 we have
ASzg ~ 210MeV (1.15)
and
as(Mz) = 0.1184 £ 0.0007. (1.16)

Asymptotic freedom comes from the non-abelian nature of SU(3), where gluons
that couple to the colour charges do carry a colour charge too so they can couple
among themselves giving rise to 3- and 4-gluon vertices.

Electroweak interactions need to be described in a more complex way. We know
that weak force, as suggested by its name, is the weakest force described in SM and
it acts on short distances. This implies that the vector bosons that mediate this
force need to be massive. In addition we know that leptons and quarks are massive
particles but, in order to preserve SU(2), x U(1) gauge invariance, no explicit
fermion mass is allowed to appear in the Lagrangian. Moreover the low-energy
experimental results on energy and angular momentum distribution in £ decays,
e.g. U~ — e D, or n — pe U, revealed that only left-handed (right-handed)
fermion (anti-fermion) chiralities contribute in weak transitions and the strength
of such interaction appears to be universal. The study of processes like 7= — e~ 7,
showed that neutrinos appear with only left-handed chirality (anti-neutrinos with
only right-handed chirality). They also found that it was possible to distinguish
neutrinos from anti-neutrinos requiring lepton number conservation (Z.p — e™n
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while v.p - e™n). These low energy information, together with the absence
of flavour-changing neutral current transitions and the requirements related to
unitarity (in order to have a proper energy behaviour), led to the construction
of electroweak theory. Leptons and quarks have to be grouped into left-handed
doublet and right-handed singlets as follows

U c t
Q1:(> ) Q2:<) ) Q3:(> ’
d I s); b I
w2, (), e-(0),
€ L H L T L
Ui = {UR, CR, tR} (117)
Di = {de SR, bR}
Ei = {6R7 HUR, TR} 1= 172737

In order to write the structure of the required Lagrangian let us focus on a single
quark family so that we can write the free Lagrangian as:

Liree = itu(x)y*0,u(z) + id(z)y*0,d(z)
= iQ1(2)v"0,Q1(z) + iUy (x)y*0, Uy (z) + i Dy (z)y"0, Dy ()

This is invariant under global G transformation in flavour space:

(1.18)

Qu(z) S Q\ () = expliyg, B} Uz Qi (x)
Us(x) < Ul () = expliye, 8} Ui () (1.19)

Di(z) % Di(x) = expliyp, 8} Dy ()

where o

Up, = exp {iT},0'} i=1,2,3 (1.20)
is a SU(2) transformation that only acts on the doublet made of left-handed
fermions, T}, = % are the generators of SU(2) and o; are the Pauli matrices.

As always in order to have a theory which is invariant under local (or gauge)
transformations («;(z), B(x)) we need to introduce a number of gauge bosons
equal to the number of the group degrees of freedom (in this case 3 bosons for
SU(2) and a boson for the hypercharge) and to convert standard fermion deriva-
tives into covariant derivatives. Denoting the general spinor element with v, we
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end up with

L= Y WD)~ (BB — ST WL ] (121)

where

D,qu = (a,u - ZngIﬁVWZL - ZQY%B,LL> Ql )

v (1.22)
DU, = (au — ZgyTlBH) Uy |

Jgw and gy are the weak and the hypercharge coupling constant respectively. The
strength tensors of the theory are given by

B/u/ = mUBV - 8VB[L
(1.23)
W = 0pulW, — 0,W, — igy|[W,, W, ]

and W, = %Wﬁ Already at this stage we can see that the theory predicts two
charged currents and two neutral currents. Indeed if we look at the interacting
piece of the Lagrangian

GV WuQr + gy By Y,y (1.24)
¥v=Q1,U1,D1

in the first term we have

! (ﬁWfi e ) (1.25)

g; i

Wi =5 W= V2 \ W =W
where W* = (W FiW?), the off diagonal terms are related to charged currents,
while the diagonal terms together with the second term of Eq. (1.24) are related
to neutral currents. It is important to notice that the previous formulas are valid
for each family of quarks and leptons. It is apparent to see that the Lagrangian
we wrote still shows a fundamental problem: the gauge boson and the fermion
fields are still massless. As already said introducing an explicit term for fermion
masses would explicitly break the electroweak gauge symmetry so a new mechanism
should be found. In order to solve these problems we need to introduce a doublet
of complex scalars that is a singlet under the group of strong interactions, doublet
under SU(2),, and carries a U(1)y charge, this is the Higgs field ¢:

() = (j(f(g)) (1.26)



24 CHAPTER 1. STATE OF THE ART

Renormalisability and gauge invariance require the gauged Lagrangian related to
the Higgs field to be

Ly = (Do) D'o— 1*¢'o + A(6'¢)*,  p?>0 A>0; (1.27)
1
DN¢ = (8“ — Z'wa‘u — Zng(f)BH) ¢, y¢ = Q¢ — T3 = 5 . (128)

We need to fix the value of the scalar hypercharge so that we have the right
coupling between A, and ¢: the photon should not couple to ¢° and ¢ needs
to have the right electric charge. The minimum of the potential gives an infinite
number of continuous possible vacuum expectation values all satisfying

12

T —
o=~

Among all the possible vacua we set

Ol = - (0) (1.30)

=2, (1.29)

>

v

and since, due to the electric charge conservation, only a neutral scalar field can
acquire a non vanishing VEV, we see that ¢° has to be interpreted as the neutral
¢ component with Q4 = 0. Once we choose a particular ground state the gauge
symmetry gets spontaneously broken

and three massless Goldstone bosons should appear. We can then fix the gauge in
order to get rid of these spurious degrees of freedom. Using unitary gauge we get:

o(z) = \/% (U N ?q(x)) : (1.32)

Expanding the double covariant derivative term in Eq. (1.27) it is easy to see that
it contains gauge boson masses

1}2

L= 2 [gu (W) + (WD) + (9.W,! = 9v Bu)*] . (1.33)
We can immediately read the mass term for W gauge bosons
1 w
§m12,VWJW“, where my = (%) : (1.34)

Moreover, assuming that A, and the Z, are related to B, and WE through a

unitary rotation , |
(57) = (56 mee) (7) .
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and looking at the combination of B, and W7 that gets a mass in Eq. (1.33), we
can conclude that the photon and the Z-boson can be expressed as

1 1
Ry (QYWE + guwBy), Z, = W(waj’ —gvB,) (1.36)
w Y w Y

A

m

and have the following masses

ma =0, mz = %\/gi + gy (1.37)

In order to understand how we can get mass terms for fermions we need to consider
that introducing the Higgs field in the theory implies that new lagrangian terms
may be allowed, we refer to these terms as the Yukawa lagrangian, £,:

L, =Y LndEm +Ye QunoD, + Y QumoU, + h.c. (1.38)

indeed it is easy to see that these terms are gauge invariant as the combination
LoR is a SU(2) singlet!. After spontaneous symmetry breaking these terms give
a mass to all fermions except for neutrinos that in SM do not have right-handed
counter-parties and so we are not allowed to write down their Yukawa interactions.

We conclude this brief introduction putting all the the pieces together and
writing the full SM lagrangian:

£SM = _%TT[GIWGMV] - %TT[VVIWWWJ] - éllB/WB/W

+i Y1, 5.QUD UV Dy,

o _ - (1.39)

10,646~ A (610~ 2)

Despite its astonishing accordance with experimental results there are many
physical issues that SM cannot explain. The main problems concern the fact
that SM does not accommodate gravitation and it can not explain the nature
of dark matter and dark radiation. Indeed there is no known way of describing
general relativity, the canonical theory of gravitation, within quantum field theory.
Furthermore, according to experimental measurements on the mass and energy
content of the universe it seems that SM is able to describe just 5% of them.

We can also find a long list of minor but fundamental observational and conceptual
problems related to SM. We list some of them below.

!Since the mass terms should be hypercharge-less we need to use 2 representation of the
Higgs field, the first one is the same as in Eq.(1.26) and has ys = 1/2, the other one is given by
¢ = €;;¢F and has ys = —1/2, they transform under SU(2) in the same way.
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The existence of neutrino oscillations implies that neutrinos are not massless,
they have very small mass differences and violate the conservation of individual
leptonic numbers.

Another problem is given by CP conservation in strong interaction. Indeed QCD
lagrangian allows for the presence of a term proportional to G w,é“”, where G =
%e“”O‘BGaﬁ is the gluon dual field strength and 6 is a parameter. This term can
contribute to physical processes through instanton effects and is CP-violating.
Despite this term is allowed in the theory and naturally comes out from the study
of QCD vacuum structure, experiments on neutron electric dipole model suggest
that CP is actually conserved in strong interaction constraining 8 < 1071 The
huge amount of fine-tuning required to match the experimental results goes under
the name of strong CP problem.

Moreover, accepting that SM can be interpreted as an effective field theory it
still shows a naturalness problem, i.e. the requirement that theories should
be able to describe physics at low energies in ways that do not invoke a sensitive
dependence on those theories’ descriptions of physics at much higher energies [7].
One of the most widely known manifestations of it is the hierarchy problem related
to the mass of the Higgs field. Indeed it turns out to be quadratically sensitive
to the effective field theory scale or to the heavy fermion masses (depending on
the regularisation scheme), thus revealing that we do not have a clear distinction
between physical phenomena belonging to different energy scales:

2

Y, A 4
miy = mj, o+ 8—; [A2 +mi +mj,In (E) + 0 (%)] (1.40)

t

where my, is the Higgs bare mass, A is the UV cutoff scale of the effective field
theory, m; and Y; are the the mass and the Yukawa coupling related to the top
quark. The scale at which SM breaks down is not known, however assuming that
it is valid at least till O(1) TeV (LHC run II), we get a mass correction to the
Higgs field that is several orders of magnitude larger than its measured value.
The reason why this happens is that in general scalar fields are not protected
against quantum corrections by any symmetry, thus they can receive arbitrarily
large quantum corrections to their masses. If we want to solve this puzzle avoiding
to introduce any symmetry property or matter content in the theory we incur into
a fine-tuning problem. Assuming that A = Mp, if we want to keep the Higgs mass
light, we need to fine-tune the 0-th order dimensionless coupling of the effective
field theory down to m7/A* ~ 1074

Furthermore, it has been seen that the running of the renormalisation group pre-
dicts that the gauge coupling constants related to SU(3)s, SU(2), and U(1)y
become approximately equal around 10'¢ GeV. However SM can not provide a
deep reason that justifies gauge coupling unification and the energy scale at
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which it takes place. In addition within SM this mechanism is not sufficiently
precise and it can be interpreted as accidental.

The last problem that we want to mention is that, also in its minimal formulation
(massless neutrinos), SM involves a lot of parameters, 10 mass parameters related
to leptons, quarks, gauge bosons and the Higgs field, 3 parameters related to the
coupling constants, 1 parameter related to the VEV of the Higgs field and 4 pa-
rameters related to the CKM matrix which describes cross-generational mixing of
weak interaction. Moreover we also need to insert by hand the required number
of families in SM. In addition since we now have good experimental evidence that
neutrinos have small but non-vanishing masses this introduces 3 more mass in-
puts and 4 parameters related to neutrino oscillations giving a total of 25 input
parameters. Despite the great accordance with data, this huge amount of arbi-
trariness stresses the effective field theory nature of SM and call for research into
UV completed models that can embed SM, giving a deeper explanation of these
parameters in terms of dynamical mechanisms which can fix their values to the
physical ones.

1.2 Standard Model of Cosmology

During the last three decades technological advances in observational cosmol-
ogy brought us to a new conception of the universe. Large galaxy surveys which
collected data from all visible galaxies confirmed that the universe is homogeneous
and isotropic on large spatial scales. This means that if we look at large spatial
regions of the universe we will see a translational and rotational invariance. In
addition it has been proved that the universe is expanding with increasing speed,
i.e. the relative distance between non-gravitationally bounded objects (different
galaxies) is increasing in time at higher and higher rate. All these experimental
results, together with the success of SM in the context of particle physics, led a
formulation of the theory of the early universe that involves SM together with
classical general relativity. In this theory the metric for an expanding universe has
the Friedmann-Robertson- Walker (FRW) form:

ds® = dt* — a®(t)yda'da’ (1.41)

where a(t) is the scale factor which takes into account the universe expansion rate
and -;; is the spatial metric. We can parametrise the spatial manifold as a unit
3-sphere, a unit 3-hyperboloid or a 3-plane with spatial curvatures k = 1, Kk = —1
and k = 0 respectively. It is important to notice that Eq. (1.41) implies that the
space is the same at each moment of time and assumes that we are in a comoving
frame, i.e. particles at rest follow a geodesic motion and can be considered as free
particles. Experimental results suggest that the metric of the universe is essentially
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flat k ~ 0 [8]. For a spatially flat universe the scale factor a(t) is dimensionless
and does not have any physical meaning since at any time it can be set equal to
any number rescaling the spatial coordinates. What is meaningful is the ratio of
the scale factor computed at different times and the parameter which shows how
the scale factor evolves in time, i.e. the Hubble parameter H:
@ : (1.42)
a(t)
Another way of parametrising the expansion of the universe is considering the
wavelength variation of a photon, that is produced at a given time ¢, in some
point of the universe (through a known process, so that we know \.), once it is
detected at time ¢ty on Earth:

H(t)

= \J1 + 2(t.)] (1.43)

where z(t) is called redshift
~1. (1.44)

Throughout this section all quantities with sub-index 0 are referred to present time.
Since the universe is expanding, ay > a(t.), we see that detection wavelength is
always smaller than emission wavelength, this is the reason why it is said that the
universe expansion induces a redshift effect. Expanding the previous equation at
linear order we obtain the Hubble law for small redshift:

v=Hyr vl (1.45)

where Hj is the present value of the Hubble parameter. Recent measurements
coming CMB observations made by the Planck satellite suggest [8]?

km

Hy = (67.36 + 0.54) (1.47)

s-Mpc

Hubble law can be interpreted as a sort of cosmological Doppler effect: redshift
is induced by the expansion of the universe which causes the radial motion of
galaxies from the Earth with velocities that increase at increasing distances. The

2There is tension between the Hubble parameter measurement coming from CMB observa-
tions, Eq. (1.47), and that one coming from low redshift objects, such as supernovae and cepheids,
that gives [9]
km

s- Mpc

Hy = (73.5 £ 0.5) (1.46)

This tension represents a problem for the standard cosmological model, as these two values should
coincide, and it might be a hint in favour of BSM physics.
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inverse of Hy gives a rough estimate of the age of the universe: t, = H;' ~
1.4 x 10% yrs.

The dynamics of the universe can be studied starting from the Finstein-Hilbert
action

M2
Spn = TPJd%«/—gR (1.48)

where g = det(g,,) is the metric determinant, R is the curvature scalar associated
to g, and M, = 2.435 x 10'® GeV is the reduced Planck mass that is related to
the universal gravitational constant through M, = 1/v/87G. From Eq. (1.48) it is
possible to derive the law of cosmological expansion, this is given by the Finstein
equations

g/JJ/ Ty,l/
R, — 2R = , 1.49
. 2 Mg ( )

where R, is the Ricci tensor and 7}, is the stress energy-tensor. If we consider
the universe as an isotropic and homogeneous fluid, with energy density p(t) and
pressure p(t), its energy momentum tensor is given by

" = (p + p)ur'u” — pg"”, (1.50)

where u” is the 4-velocity that satisfies u,u” = 1. Since we are working in a
comoving frame, the fluid is at rest, the only non vanishing component of the
4-velocity is u® = 1 and the non vanishing components of the energy momentum
tensor are

Too=p, Tij = —vp - (1.51)
The 00-component of Eq. (1.49) gives us the relation between the energy density
of the universe, the expansion rate and the spatial curvature:
p K

H? = - —
3M2 a2’

(1.52)

this is called Friedmann equation. Considering the Universe as a closed system we
have that the covariant conservation of the energy-momentum tensor, D,T"" = 0,
can be written as:

p+3H(p+p)=0. (1.53)

In order to explicitly solve the dynamical equations for an expanding universe
we need a last ingredient that does not follow from general relativity, this is the
equation of state of the matter content of the universe p = p(p). Assuming that
the equation of state can take the perfect fluid form,

p=wp, (1.54)
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w a(t) H(t) pla)
dust 0  oct?? oct oca?
radiation 1 oct!/? oct™? oca™?
vacuum —1 oceflast  Hyg (const.)  puee (const.)

Table 1.3: Behaviour of a(t) and H and p(a) in case of flat space, i.e. kK =0. We
consider the cases in which the universe is dominated by non-relativistic matter
(dust), relativistic matter (radiation) and vacuum energy. In case of vacuum en-
ergy domination we have that both H = Hys and p = p,,. are constant, they are

related by Hys = , /5575,

we can identify 3 main kinds of behaviour: non-relativistic matter is associated
with the "dust" equation p = 0, relativistic matter follows radiation equation p =
p/3 and vacuum contribution follows p = —p. If we have different kinds of matter
characterised by different equations of state that do not interact with each other,
every single component must satisfy D, T/ = 0 and Eq. (1.53) independently.
On the other hand Eq. (1.52) must contain the sum of all the energy density
contributions. We list in Table 1.3 the behaviour of a(t), H(t) and p(a) in case of
flat space, i.e. kK = 0, for the 3 main simplified scenarios of dust, relativistic and
vacuum energy content. The general solution for p = wp with w > —1 is given by:

1

2
pocm; poct™2; aoct® where o= -— > 0. (1.55)

31 +w

The acceleration of the universe is parametrised by a and is given by
docala—1)t*2, (1.56)

so we see that for w < —1/3 we have an accelerated expansion while for w > —1/3
the universe expansion decelerate.

This kind of solution is not realistic since we know that the universe contains
several forms of matter having different properties. The present energy density of
the spatially flat universe is given by the critical density today:

3 o9 5 GeV
We can express the current fraction of energy density carried by each single com-
ponent as

Po,i
Q, = —. 1.58
Pe ( )
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The main relative contribution to non-relativistic matter coming from known par-
ticles is related to baryons (g, while that one associated to relativistic matter
comes from photons (2:

Op="8 0048, Q=2 —5x107 (1.59)

Pe Pe
All the other known and stable particles give negligible contributions to matter and
radiation energy density, e.g. light neutrino contribution is negligible compared

to 2, and electron contribution gives Q. ~ Z<Qp ~ 2.5 x 107°. So we can
P

conclude that our current understanding in particle physics covers less than 5% of
the universe content.

In realistic models the other contributions to the universe energy density come
from non-relativistic dark matter ppys, dark energy pp and the spatial curvature
px- In particular this last contribution can be written as:

3K
= ———— 1.60
p RV (1.60)
but observations of CMB anisotropy imply that « is either zero or very small and
the bound on (), is
|2,] < 0.02. (1.61)

The major part of the universe is therefore composed by dark matter and dark
radiation, two unknown energy sources that represent more than 95% of the energy
content [8]:

Qp ~0.68, Qpy ~0.31. (1.62)

Despite we can not give a clear and unambiguous description of these two quan-
tities, observations tell us which kind of properties these two components need to
show.

We can safely say that dark energy behaves as vacuum energy and it is responsible
for the acceleration of the universe. Different models have been developed in order
to describe dark energy, we can group them into two main categories: if the energy
density does not depend on time we talk about cosmological constant models, while
if it does have a time dependence we call them quintessence models. This last case
would imply the existence of a new form of matter in nature, this is usually given
by a scalar field that satisfies 1¢* « V() so that py ~ —p.

On the other hand dark matter can create clusters and it is probably made out
of non-relativistic particles that can interact with ordinary particles only through
gravitational couplings. The nature of DM is not clear yet but it is a common
belief that it must be composed by particles that do not appear in SM. A com-
mon assumption is that DM is made out of matter particles that were in thermal
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equilibrium with usual matter in the early Universe. At some time these parti-
cles decouple, they get out of equilibrium and start to freely propagate through
the universe. We talk about cold dark matter if the decoupling temperature is
lower than the DM particle mass, T; < mpys, in this case DM particles decouple
being non-relativistic. If this condition is not satisfied we can have two different
possibilities: if mpy, < 1 eV the particles remain relativistic at matter-radiation
equality (T, ~ 1eV) and we call it hot dark matter, while if mpy > 1 eV DM is
non-relativistic by equality epoch it is called warm dark matter. The presence of
DM in the early universe is crucial in getting large structure formation. In order
to reproduce structure formation we need primordial density perturbations that
start growing at radiation-matter equality, giving rise to gravitationally bounded
regions. Without DM, density perturbation would start to grow too late (after
recombination) and no structure would have been formed in the universe yet. In
order for this mechanism to work we need that DM becomes non-relativistic at
early stages of the universe evolution. This is a hint in favour of cold DM, the
studies of structure with size larger than 0.1 Mpc give a lower bound on the mass
of DM particle: mpy; = 1 keV. This bound only applies if DM was in kinetic
equilibrium with usual matter at early stages of the universe.

A spatially flat cosmological model with cold dark matter and dark energy with
energy densities close to Eq. (1.62) is called ACDM model. In these models the
role of dark energy is played by the cosmological constant whose contribution py
is constant over time. Knowing how dust, radiation and vacuum energy densities
evolve in time we can relate present results with relative contributions at any given
time using Friedmann equation:

. ap\3 ap\4 ap\ 2
o 3542 [QM (EO) + Qrad (ZO) + O + Qeure (;O) ] , (1.63)
p

where €25, contains DM and SM non relativistic degrees of freedom, while .4
contains relativistic degrees of freedom.

The fact that the Universe is expanding determines that it was denser and
warmer in the past. In what follows we briefly sum up the main stages of the
universe evolution according to ACDM model:

e Photon last scattering 7;; = 0.26 €V: it is the moment after which photon
decouple from cosmic plasma and can freely propagate through the universe.
After this time the universe becomes transparent. These photons can be
observed today as the Cosmic Microwave Background (CMB), their spectrum
is the same as that one of a black body with temperature

T =2.726 + 0.001K,
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while their angular anisotropy is of order §7/T ~ 10~* — 1075, This mea-
sure tells us that the universe at photon decoupling was almost perfectly
homogeneous and isotropic.

¢ Recombination (7, ~ 0.33 €V): it determines the transition from plasma
to gas. At higher energies the binding energy was insufficient to keep elec-
trons in atoms, the matter was made of a plasma containing baryons, pho-
tons and electrons. Electrons were coupled to the cosmic plasma through
Thomson scattering e~ + pt — H + 7. At recombination the equilibrium
abundances of free protons and hydrogen atoms are equal.

e Matter-radiation equality (7). = 0.7 €V): time at which the Universe
moved from a stage where its energy content was mainly given by relativistic
particles into a stage of non-relativistic matter domination.

¢ Big Bang Nucleosynthesis - BBN (Tzpy ~ MeV): it represents the
time when neutrons got captured into nuclei. At T" > Tgpy protons and
neutrons were free in cosmic plasma while at T' < Tgpy light nuclei get
formed, e.g. hydrogen and helium.

e Neutrino decoupling (7, ~ 2 — 3 MeV): it represents the temperature
at which neutrinos decoupled from the cosmic plasma. At 1" > T, neutrinos
were in thermal equilibrium with the other particles while at T" < T, they
could freely propagate in the universe.

e QCD transition (Tpes ~ 200 MeV): at higher temperatures quarks and
gluons behaved as individual particles while at 1" < Tihcg they got confined
into colourless hadrons.

e EW transition (Try ~ 100 GeV): at higher temperatures there is no Higgs
condensate, W= and Z bosons and all the fermionic particles are massless. At
T < Trpw Higgs mechanism takes place, we have SSB of SU(2),, x U(1)y —
U(1)em and W, Z and all the fermions (except neutrinos if we just consider
SM physics) acquire a mass.

Despite the huge success in reproducing the history of the universe back to
BBN, ACDM model still suffers from some theoretical and experimental problems.
As already discussed, the most prominent one is given by the lack of an explicit
description of the nature of dark matter and dark energy. We list below other
minor but fundamental issues that need to be addressed in order to provide a
natural UV-complete model of cosmology:
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e baryon asymmetry. The present universe contains baryons and practically
no anti-baryon. The study of Big Bang nucleosynthesis and CMB gives that
the ratio between baryon and photon number density (np and n, respec-
tively) is

me =2 ~6x101°, (1.64)

Ty
The baryon number is conserved at low energies and np was of the same
order also in the early Universe. Indeed at 7" > 100 MeV, before QCD
transition, there were a lot of quarks and antiquarks in the cosmic plasma
that annihilated and were created in pairs. The number of quark-antiquark
pairs at that epoch was the same as the number of photons and the baryon

asymmetry was given by
ng —Ng ~10
~ng ~ 10", 1.65
Ng + Ng B ( )

This tiny baryon asymmetry is responsible for the abundance of baryonic
matter that we currently see in the present universe. It is extremely unlikely
that this small baryon excess was present in the Universe from the very be-
ginning and it was probably created at high energies though baryon number
non-conserving processes. There is still no unique answer to this problem
and it cannot be found a solution within the framework of SM of particle
physics.

e Cosmological constant problem. While in quantum field theory the vac-
uum energy can be ignored and subtracted from the theory through renor-
malisation techniques, in general relativity this can not be done since, as any
other kinds of energy, vacuum energy gravitates. If the universe is approxi-
mately isotropic and homogeneous the vacuum energy is the same everywhere
anytime and it represents a good candidate for dark energy. If we assume
naturalness, giving that energy density has dimensions M*, we may think
that it needs to be related to the proper energy (mass) scales of fundamental
interactions: 1 GeV for strong interactions, 10? GeV for electroweak inter-
actions and Mp ~ 10! GeV for gravitational interactions. The actual dark
energy density is given by

pa ~ 1074 GeVv* (1.66)

and is easy to see that it is several orders of magnitude below any theoretical
estimates. The value of p, is crucial for reproducing the history of the uni-
verse: different p, may lead to recollapsing universe or do not allow for large
scale structure formation. There is still not a clear answer to this problem
that can be considered as one of the most important missing milestones in
fundamental physics.
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e Initial singularity. Realistic cosmological models predict the existence of
a singularity at the initial moment of time (Big Bang), when the scale factor
vanishes while energy and pressure become infinite. This singularity is not
related to homogeneity and isotropic assumptions, it is a general property of
expanding cosmological solutions. The presence of a singularity shows that
we cannot apply classical field theory at the very beginning of the evolution.
Therefore we need a quantum theory of gravity that can be valid at energies
higher than M,. Indeed this is the only dimensionful parameter that appears
in GR, so it is quite natural to think that classical field theory should break
down at that scale.

e Horizon problem. Let us define the cosmological horizon, lg(t), as the
maximum length a photon emitted at Big Bang travels by time t:

La(t) = a(t) j At (1.67)

tp a(t)’

it gives the size of causally connected regions in the universe at time .
Since the universe expands, the actual size of Iy (t) is stretched to Iy (t)o =
lg(t)a(to)/a(t). Within Hot Big Bang theories the scale factor increases in
time as aoct® where a = 1/2,2/3 during radiation and matter domination
respectively. Tt is therefore easy to see that ly(t)o < lg(to) when t < to.
Indeed, neglecting the recent accelerated expansion and comparing the size
of the sphere of last scattering, seen via CMB, with the actual size of cos-
mological horizon at recombination, we get that the number of causally dis-
connected regions in CMB is of order

( i (to) )2 ~10°. (1.68)

Lu(tr)o

These regions have never been in causal contact before photon decoupling,
but they show an extremely high level of homogeneity and isotropy: 67/T <
107, Hot Big Bang theory can not give the reason why causally disconnected
regions should show a thermal equilibrium spectrum.

e Flatness problem. As already said, the only dimensionful parameter in
the theory in given by M, and one would naively think that at ¢, = .Mp_1 the
energy density of the universe is equally distributed among its component.
Therefore the spatial curvature should to be of order M, 2.

0,06 = el < 1. (1.69)
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Nevertheless we saw that the present value is given by Q. (to)| ~ 0.02 and
this quantity changes in time as

1

Q,{(t)ocm .

(1.70)

This means that tracing back the current value to Planck epoch we get

0 P
Oulte) ~ () B2, "0 (L.7)

The spatial curvature has to be 60 orders of magnitude smaller than the a
priori natural estimate.

CMB anisotropy. Despite CMB has a nearly black body spectrum, it
shows density fluctuations of order dp/p < 10™*, whose spectrum is close to
flat. These primordial fluctuations and their precise value are at the origin of
structure formation in universe as we currently see it. Hot Big Bang theory
does not provide a mechanism for generating these fluctuations and they
must be put in "by hand".

Coincidence problem. A coincidence that requires an explanation is that
in the present universe the different energy contributions, i.e. dark energy,
dark matter and baryons, are of the same order of magnitude. Having dif-
ferent origins, a priori they may have contributions of different orders of
magnitude. From Hot Big Bang theory it seems that fine tuned initial con-
ditions lead to a sort of equipartition of energy at late times.



Chapter 2

Beyond Standard Models

2.1 Inflation

As pointed out in the previous section, Big Bang cosmology suffers from initial
condition problems, such as horizon and flatness problems, and it is not able to
motivate the initial value of density perturbations needed to efficiently reproduce
large structure formation in the present universe. These problems are naturally
solved by Cosmological Inflation theory, this is one of most famous extensions of
ACDM models that in addition shows an outstanding accordance with current
cosmological experiments. We saw that the cosmological particle horizon is given

by
Lu(t) = a(t) L p % _aft) f lp)(t)%. 2.1)

The horizon and flatness problems arise from the fact that aH in Hot Big Bang
theory is a monotonically decreasing quantity. Inflation is able to solve these prob-
lems introducing an epoch where the comoving Hubble radius, a(t) H (t), increases,
this can happen if the scale factor increases in time faster than t and the Universe
undergoes an accelerated expansion rate. In particular it can happen that causally
disconnected patches at current time were in causal connection at earlier times.
Indeed if we call t.,4 the time when inflation ends, the present size of cosmological
horizon at t.,4 is given by

a(tend) da a
L (tend)o = G(to)J . (2.2)

oty @CH a(ty)H(t,)

where we assumed that, being a H increasing during inflation, the main part of the
integral comes from its lower bound. The ratio between this size and the current

37
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Hubble length can be larger than one:

L (tena)o apHy
(i) alt)H(5) < (23)

It is immediate to see that this relation also provides a natural solution to the flat-
ness problem of Eq. (1.71). We know that in order to have a period of accelerated
expansion we need the universe to be dominated by a kind of matter which shows
negative pressure, i.e w < —1/3, and we may ask ourselves how much time this
stage need to last to solve standard cosmological problems. Let us assume that,
after the end of inflation, the universe instantaneously reheats at t.,q and the hot
stage begins at a temperature

Toon ~ A/ My H (o) - (2.4)

In order to solve horizon and flatness problems we need Eq. (2.3) to be satisfied,
this implies
a(tend)H(tend) - a(tend)H(tend) N TO H(tend)
a(ty,)H(t,) agHy Toen Hy

We can define the number of e-foldings required between Planck time and the end
of inflation as
ten
N, =1In (a( d)> (2.6)
a(ty)

and from Eq.(2.5) we immediately find a lower bound for N,

T H (tena) H(tena)
> — ")~ N
Nepg = In ( 0) + In ( — 68 + In — ) (2.7)

We see that the second part of the previous equation is model dependent but, in
general, it requires N.,q to be larger than 70. Considering a reheating temperature
in the range T,., = 1TeV — M, the previous bound in terms of cosmic time
becomes:

(2.5)

Atppg > 1072 =105, (2.8)

Inflation predicts that within an extremely small fraction of a second the universe
grows exponentially at an accelerating rate. In realistic models the reheating
period is not instantaneous and can last many Hubble times, this relaxes the
bound to be

Nena Z 60, (2.9)

of course the precise value of the lower bound depends on the details of the model
under study.
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2.1.1 Background evolution

The simplest model of inflation relies on adding to the theory a single scalar
field that is called the inflaton. It plays the role of an order parameter that
accounts for the time evolution of the inflationary energy density. The classical
dynamics of inflation requires that the inflaton field is initially displaced from
its true vacuum and its rolling motion to the bottom of its potential causes the
exponential expansion of the universe.

The dynamics of a scalar field minimally coupled to gravity is governed by the
following action:

5= [atey=g |+ 300,000 - Vo] (2.10)

where V(¢) is the potential associated to the inflaton. The energy momentum
tensor is given by

T,uu = 6u¢6u¢ — Juv (%aa¢6a¢ + V(¢)) (211)

and the field equation of motion is

L o umaang) + VO

We assume that we are dealing with FRW metric with flat space and that we are
allowed to separate the field ¢ into a homogeneous and a non-homogeneous part,
we call them ¢q and d¢ respectively:

o(t, T) = go(t) + dop(t, T) . (2.13)

The energy momentum tensor related to ¢y take the perfect fluid form with energy
and pressure given by

—0. (2.12)

1. 1.
Poo = §¢g + V(¢0) ) Pgy = §¢(2) - V(¢0) (2'14)
that imply the following equation of state

172
gy = Do = 220~ V%) (2.15)

Pé¢o %(bg + V(¢0)

In case this field dominates the energy density of the universe and if the potential
energy is much larger than the kinetic one, we have w, < 0 and the scalar field
motion can lead to an epoch of negative pressure and accelerated expansion (if
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we < —1/3). Considering only the contributions coming from the homogeneous
field, the field equation of motion and the FRW equations become

. .2
. . p¢0 a 2 ¢0
3H Vi =0 H? = =% —=H*({1-—=]. 2.16
¢o + 3Hdpo + Vi, =0, 5 o ( 2H2> (2.16)
Having accelerated expansion requires
05 < V(o) (2.17)

so that wy ~ —1 and we have a slow-roll motion, in addition in order to have a
long lasting period of accelerated expansion we need that

6] <« [BHS, |Vy|. (2.18)

We introduce the Hubble slow roll parameters € and 7 that parametrise the validity
of slow-roll approximation:
H ng ¢ (2.19)
€= ——5 = — = —— .
H2 H2 Y 77 qu Y

these are two dimensionless parameters that satisfy the condition that, if € and 7
are much less than 1, slow-roll motion is realised and inflation takes place. Inflation
ends when ¢ ~ 1. Under slow-roll conditions the universe undergoes a phase of
exponentially fast expansion and the space-time is almost de Sitter:

Vv
a(t)oceHast H* ~ % ~ H3s (constant) . (2.20)
It is possible to rephrase slow-roll condition with equivalent parameters that are

referred to the inflaton potential, these are ey and ny:

1/V\? V.
evzﬁ(ﬁ), ny = —2. (2.21)

Under slow-roll approximation we have ey = € and 7y = 7. If slow-roll conditions
are satisfied, the number of e-foldings before inflation ends allows us to find an
implicit bound on the inflation field initial conditions, ¢;,

Din d¢

> 60. (2.22)

aend tend
Nend(¢in) =In < ) = Hdt ~ =
26\/

ain tin Pend
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2.1.2 Cosmological perturbations and CMB

The primordial density fluctuations that we can observe in the CMB have a
quantum origin and can not be described using just the homogeneous part of
the inflaton. In particular, as we have already done for the inflaton field in Eq.
(2.13), we need to divide the space-time metric into its classical part and linear
perturbations:

Guw = Guv(t) + 09, (L, T) . (2.23)
Quantum perturbations must be present in the theory and metric and inflaton

perturbations are tightly coupled to each other. An easy way to see this is to look
at the equation of motion for d¢, neglecting metric perturbations:

V25

a2

0¢ + 3HGEp —

+ V0o = 0. (2.24)

Indeed, if we focus for simplicity on far sub-horizon modes (k/aH « 1) and we
consider de Sitter expansion (constant H), we find that Eq. (2.24) is the same that
has to be satisfied by (bo- Since 6¢ and q.ﬁg satisfy the same differential equation
in time, they need to be related by a constant of proportionality which depends
on space coordinates, i.e. d¢ = —¢podt(z). Under these conditions, the split of
the inflaton field into background value and perturbations can be seen as a Taylor
expansion of

O(tZ) = ¢o(t — 6t(7), X). (2.25)
The inflaton field does not acquire the same value in any given space point at a
given time, i.e. it can not be considered as a homogeneous field, and the relation
between its physical value and the background approximation can be interpreted
as a local change of coordinates.
Metric perturbations can be decomposed according to their spin with respect to a
local rotation of the spatial coordinates on hypersurfaces of constant time, they can
be either scalar (spin 0), vector (spin 1) or tensor perturbations (spin 2). The true
symmetric, traceless and transverse degrees of freedom are £ (n—2)(n+1), where n
is the number of space dimensions, in our case n = 3. We have 2 scalar, 2 vector and
2 tensor degrees of freedom. Vector perturbations are not exited during inflation
since there is no rotational velocity in the inflationary stage, tensor perturbations
are responsible for gravitational waves production. Since we are interested in
density perturbations generation, let us focus on scalar degrees of freedom. At
linear order, scalar, vector and tensor perturbations evolve independently and we
are allowed to analyse them separately. Focusing on scalar degrees of freedom, the
most generic perturbed metric is

ds* = g, dztdz”

| o (2.26)
= —(1 — 2(1))dt2 + QCEBZd.TZdt + a2 [(1 — Q\Ij)(SU + Eij]dx’dxj s
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where E;; = (0;0; — édijVQ)E. Perturbations in the metric give rise to connection,
Riemann tensor, Ricci scalar and scalar curvature perturbations: 0I'g., dR3
0R,p and O R respectively. On the other hand the combination between metric and
inflaton perturbations lead to the perturbed stress-energy tensor. The dynamics
of the system can be studied solving the perturbed Klein-Gordon equation for the
inflaton field and the perturbed Einstein equations:

1 1 1
) [\/—_7@ (\/?gg’“’ﬁ,,qﬁ)] = V400, 0T, = Mﬁ ((5RW — 551%) . (2.27)
Before we can look at the results of perturbation theory in case on single field
inflation, we need to understand how to work with physical quantities. Perform-
ing the metric expansion we want to study small perturbations away from the
homogeneous and isotropic FRW flat space-time. The aim of perturbation theory
is to give at linear level the difference between the real physical space-time and
its unperturbed background approximation . In order to do it properly these two
quantities need to be computed at the same space-time point. On the other hand,
being general relativity a gauge theory, where gauge transformation are given by
local coordinate changes, we need to find a map that univocally identifies the same
space-time points in the two different geometries. Changing the map corresponds
to perform a gauge transformation, while choosing a map (coordinate choice) is
fixing the gauge.

Scalar perturbations in Eq. (2.26) are not gauge invariant, indeed, under a local
coordinate change as

t—1+ «a,
ol 2l + +6U; (2.28)
the spin 0 degrees of freedom transform as
®—>>d—a,
V->V¥+Ha,
(2.29)

B—B+2—a,
a

E—>FE—-p.

A change of the map implies a variation of perturbations and working in a fixed
gauge may lead to spurious gauge artifacts. It is therefore useful to construct
gauge-invariant scalars that allow us to work with only physical quantities. Among
them, we cite the comoving curvature perturbation R. It measures the spatial
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curvature of comoving hypersurfaces and in single field inflation has the following
form:
H
R=V+ —d¢. (2.30)
0
It can be proven that on super-horizon scales, this quantity does not evolve and
can be related to the dimensionless density perturbations. Therefore its primordial
value gives the seed for CMB fluctuations and large structure formation. In single
field inflation R can be safely considered as a gaussian variable, non gaussianities
are predicted to be small, and all the statistical information is encoded into the
two-point correlation function:

Q0
(RR) — J AZ(Wdlnk,  (RyRo) = 205k +F)Pe(k),  (2.31)
0
where R are the Fourier modes of R, A} = %PR is the dimensionless power

spectrum and Py is the power spectrum of R. The scale dependence of the di-
mensionless power spectrum is measured by the scalar spectral index n

dIn A2, (k)

=1
ns =Lt e

(2.32)
current measurements set ny ~ 0.96 [10], pointing out that A% is almost scale
invariant. In this context the scalar power spectrum can be approximated as

L ns—1+1 Ds In(k/ky )
) , (2.33)

where k, is a pivot scale. The scalar power spectrum amplitude, A,(k,), can be
constrained from CMB observations and it has been estimated to be A, ~ 2x107°
using the pivot scale k, = 0.05Mpc ' [10].

As already said, beside scalar perturbations, inflation excites tensor perturba-
tions, h;;, that can be expressed as

ds® = —dt* + a(t)* [0;; + hi;] da'da’. (2.34)

These are given by spin 2 degrees of freedom and are gauge invariant at linear
order. The two physical polarisations, ef‘j where A = +, x, are usually composed
by the eigenvalues of the spatial laplacian, Ae;; = —k?e;;, multiplied by a time
dependent scalar amplitude h(t)

hi = h(t)el (), (2.35)
where the two polarisations must be symmetric, transverse and traceless: e?j = 6?‘1
and e} = k'e;; = 0. Since in this setup the energy momentum tensor is diagonal,



44 CHAPTER 2. BEYOND STANDARD MODELS

the two canonically normalised tensor modes a(t)h?j satisty the equations of motion
of two independent massless scalar fields. Being hjj physical quantities, we can
then study the statistics associated to primordial tensor mode production as:

(hh) = fooo A2(k)dIink,  (hehpy = (2m)36(k + k') Py (k) , (2.36)

where P, (k) is the tensor mode power spectrum and AZ?(k) is its dimensionless
counterpart. We define the dimensionless power spectrum of tensor perturbations
AZ(k) as the sum of the contributions coming from the two polarisations: A?(k) =
2A7 (k). We can define the scale dependence of tensor power spectrum through
the tensor spectral index: n; = %ﬁfk). Using slow-roll approximation the two
power spectra in case of single field inflation turn out to be

My = L Af(/@:M%(i)Q

(27)2¢2 . (2n) (2.37)

k=aH

The difference in magnitude between scalar and tensor power spectrum can be
measured through the tensor-to-scalar ratio, r, whose experimental upper bound
is [10]

A7 (k)
- AR(R)

This parameter is extremely important since it allows to get an upper bound on

the inflationary scale, being the relation between the inflaton potential and r given
by

r <0.1. (2.38)

Yy L (L)M 106 GeV (2.39)
0.01 ' '

Despite cosmological inflation theory has not been proved yet, its accordance
with current experimental results, together with the ability of solving many of the
theoretical problems related to standard cosmology, makes it the best candidate
to extend hot big bang theory. Inflation is able to provide a natural dynamical
solution to the flatness and horizon problems, adding to the theory a single scalar
degree of freedom. Among the various achievements of this theory, the most strik-
ing hint in favour of inflation is the outstanding accordance between theoretical
predictions and CMB spectrum. The shape of the primordial spectrum is easily
reproduced by generic inflation models, the first acoustic peak appears at a scale
that is consistent with flat universe, predicted by inflation, and the anisotropy
spectrum of CMB shows peaks and troughs that can be explained only if all the
Fourier modes of perturbations can be produced in a coherent way [11]. This last
feature is the greatest success of inflation that naturally provides a mechanism for
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coherent modes production. Modes deep inside the horizon during inflation oscil-
lates with a frequency k « 27/k « aH. However, during inflation, these modes get
stretched to super-Hubble lengths, they get classical and their amplitude remains
constant. When they re-enter the horizon, after the end of inflation, they start
evolving very slowly, being R very small at horizon crossing, and only coherent
modes get excited. Since perturbations in R induce density perturbations and mat-
ter and radiation perturbations are strongly coupled in the early universe plasma,
the coherent spectrum of Fourier modes that compose CMB power spectrum can
be seen as a footprint of the primordial fluctuations in R.

All the features listed above are already valid when we consider the simplest
models, where we the inflaton is given by a single scalar field. Nevertheless, from
Eq.(2.39) we see that the inflationary dynamics takes places at energies much
higher than the scales at which SM has been tested in particles accelerators. More-
over, we know that the presence of dark matter and dark energy, together with all
the theoretical problems related to SM, tell us that we may expect the existence
of new kinds of particles that can extend SM. These observations suggest that
inflation may be described in the context of beyond SM theories, such as super-
symmetry or string theory, that usually predict the existence of a large number
of new fields and some of them can be relevant for inflation. If this is the case,
inflation may be driven by a combination of fields (multi-field inflation) or we
may have light degrees of freedom, that are overdamped during inflation, which
may leave imprints in the primordial spectrum through their quantum fluctuations
(spectator fields). These models present a richer phenomenology and are usually
characterised by isocurvature fluctuations production and a sizable amount of non-
gaussianities in density perturbations that can be constrained or even detected in
future experiments.

2.2 Axions and ALPs

As already discussed in the previous sections, SM can not be considered as a
fundamental theory since it does not give a satisfactory explanation for the values
of its underlying parameters, it is not a consistent quantum theory of gravity and
it does not provide a model for dark energy and dark matter. Given that astro-
physical observations show that dark matter represents nearly 30% of the energy
content of the universe, looking for the existence of particles beyond the Standard
Model seems to be a mandatory step.

Among the most prominent and widely-discussed candidates there are axions and
axion-like particles (ALPs) which are often predicted by beyond-SM (BSM) theo-
ries and appear in many different forms in 4D effective fields theories coming from
strings. These particles are particularly interesting since, depending on their mass
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and on the mechanism related to their production, they can play both roles of cold
dark matter (CDM) and dark radiation (DR).

2.2.1 Birth of Axions: the strong CP problem

Axion physics started in 1977 when Helen Quigg and Roberto Peccei proposed
their solution to the strong CP problem postulating the existence of a new U(1)
symmetry that leads to an extremely light and weakly interacting particle.

As already mentioned at the end of Section 1.1, quantum chromodynamics, the
non abelian theory of strong interaction, allows for the presence of a CP-violating
term in the lagrangian:

2

gs v
Lop = 2555 0 1r(GuG) (2.40)

where G is the gluonic field strength, G = %EIW@BGQ[; is its dual, gg is the strong
coupling constant and 6 is a parameter which arises from the study of the QCD
vacuum structure [12]. The above expression violates parity and time reversal but
conserves charge, therefore it violates CP symmetry.

We can only determine the value of 6 through experimental data; one of the main
probes for it is the electric dipole moment of the neutron d,,, since it arises just
from the CP-violating term (2.40). The experimental upper bound for its value is:

[dy |~ e —2 0 ~ 0107 ecm < 1072 ecm, (2.41)
mn

where m, is a light-quark mass (u or d quark), m,, is the neutron mass and e is the
electron charge; it is clear that the above relation implies # < 1071°. If one adds to
the QCD lagrangian the weak interaction contributions, Lgmass = GirM;jq;1 + h.c.
, since the mass matrix is usually complex, one has to perform a transformation to
diagonalise it and get a physical basis. As this transformation is chiral and chiral
transformations change the QCD vacuum, the net effect of this calculation is to
change the coefficient in front of the GG term as

2

2
— 9_5 0 vy L Js =
Lep =555 0tr(GuG™) = o5 (0 + Arg det M) tr(G,G"),  (242)

from which we see that the previous relation on § now becomes § < 1019,

A question arises spontaneously: why should this parameter be so small, or, sim-
ilarly, why is CP conserved in strong interactions? These two questions are the
core of what is called strong CP problem.

In 1977, Peccei and Quinn proposed a solution to this problem: they postulated



2.2. AXIONS AND ALPS 47

the existence of a global U(1)pg chiral symmetry in the Lagrangian which is spon-
taneously broken. The axion is the Nambu-Goldstone boson of the broken U(1)pg
symmetry and its transformation rule under U(1)pq is:

a(r) > a(z) + a fa, (2.43)

where f, is the axion decay constant, which represents the order parameter asso-
ciated with the breaking of U(1)pg

The SM lagrangian must therefore be augmented by the axion kinetic terms and
interactions:

L= Lsu+ 255 0tr(GuG™)
(2.44)
—30"ad,a + Lmt[a#a V] + £+ s tr(Gu G* ‘),

3272

where 9 is a generic SM field and £ is a model dependent parameter. The last
term of the above equation is needed to give chiral anomaly to the U(1)pq current
and, at the same time, it also represents an effective potential for the axion field.
The axion potential is generated by non perturbative effects of the QCD anomaly
and looks like [12]:

(@)

a

Veps ~cos(f + 7). (2.45)

Its minimum with respect to (a) gives the Peccei-Quinn solution which sets dy-
namically the physical theta angle to zero:

f(lg_
e

In fact, if we expand the axion field around its minimum we can see that its vacuum
expectation value cancels out the § term. This provides a dynamical solution to
the strong CP problem. The axion acquires a mass through instanton effects, this
is given by:

(ay =

(2.46)

a‘/:i fg aur a

As we can see, the axion mass is a parametrlcally small quantity, it also depends
on f, which shows the energy scale of the U(1)pg symmetry breakdown.

Using effective field theory techniques, the axion mass can be expressed in terms
of the pion and up and down quarks as:

mey f7r mymgy

1010 GeV) .

~ 0.6 meV x ( 7 (2.48)

m fry
¢ fo M+ my
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Looking at Eq.s (2.44) and (2.48), we see that for large decay constants the axion
appears to be a weakly interacting, parametrically light particle. Models describ-
ing this kind of particles are called invisible axion models. These models introduce
scalar fields which carry PQ charge and are SU(2) x U(1) singlets, this allows to
have U(1) symmetry breaking at high energies; decreasing the axion mass and the
coupling strength.

There are two different benchmark models: the Kim-Shifman- Vainshtein-Zakharov
(KSVZ) model and the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model.

In the first one the axion is introduced as the phase of an additional EW singlet
scalar field o with f, = (o) » 250 GeV. Since the known quarks cannot directly
couple to such a field, as this would lead to unreasonably large quark masses, a
new EW singlet heavy quark () is introduced Mg ~ f, and it couples to the new
scalar field.

The second model (DFSZ) has two Higgs doublets and an EW singlet complex
scalar ¢, which acquires a non zero vacuum expectation value at the U(1)pg sym-
metry breaking scale that must again satisfy f, = (¢) » 250 GeV. This scalar
couples only indirectly to the SM particles via its direct interaction with Higgs
doublets. DFSZ models require that all fields appearing in the theory other than
gauge bosons enjoy a Peccei-Quinn symmetry.

2.2.2 ALPs

Beyond the case of the strong CP problem, axions and axion-like particles
(ALPs) appear in many models of physics beyond the Standard Model, such as
string theory, as pseudo Nambu-Goldstone bosons associated to the breaking of
U(1) symmetries. The properties of these particles are similar to that of axions
but, in general, their mass and coupling to photons are not related, making the ex-
perimentally allowed parameter space very wide. Many extensions of the Standard
Model contain extra U(1) symmetries which are spontaneously broken. At energies
below the spontaneous symmetry breaking scale, Nambu-Goldstone bosons come
out representing the phase a of the complex scalar field ¢ charged under the U(1)
symmetry. If we call (¢ = v,/4/2 the vacuum expectation value (VEV) of the
field ¢, we obtain, expanding it around its minimum:

Ve +0o(x) o

() = —5 ¢ Vi, (2.49)

The interaction of these particles with gluons, photons and SM matter fields (e.g.
electrons) is suppressed by a large symmetry breaking scale, f,,, which must be
higher than that one of the electroweak symmetry breaking v = 246 GeV, i.e. the
Higgs VEV:
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where (4, C;, and Cj. represent the coupling to gluons, photons and electrons
respectively.

We will focus on ALPs that come from string theory and string compactification
in Section 2.3.10.

(2.50)

2.2.3 Axions and ALPs in cosmology

Axions as Cold DM Although DM has not be seen directly yet, its grav-
itational interaction with ordinary matter leaves unmistakable evidence for its
existence. Cosmologists believe that DM is mostly comprised of cold slow mov-
ing particles that do not emit electromagnetic radiation or scatter light. The
three most relevant features of particle candidates of cold DM (CDM), indirectly
deduced from observations, are their feeble interactions with SM particles, their
sufficiently non-relativistic momentum distribution during structure formation and
their stability on cosmological time-scales.

A possible realisation of all these features are Weakly Interacting Massive Par-
ticles (WIMPs). In general WIMPs are supposed to be thermally produced in
the early Universe and their large, of order TeV scale, mass ensures that by now
they are non-relativistic. Their interactions are small due to the large mass of the
mediator particles (such as W or Z bosons) and WIMP stability is ensured by the
introduction of symmetries that conserve their particle number. A well-motivated
WIMP candidate is the lightest supersymmetric particle which in most models is
a neutralino. Although it is way too early to make a final judgment, it is neverthe-
less noteworthy that LHC measurements as well as direct WIMP searches have not
given any clear indication of their existence. Because of these considerations, it
is worthwhile to consider alternative ways to realise the essential features of DM.
A possible alternative that can satisfy the observational constraints is given by
Weakly Interacting Slim (very light) Particles (WISPs). In fact, sufficient stability
of the DM particles can be achieved by combining the weakness of their interac-
tions with a sufficiently small mass. This makes axions and ALPs good light CDM
candidates. Indeed, despite them being so light, there are non-thermal means for
producing sufficiently cold DM made of light particles. Among them, one of the
most generic is the vacuum misalignment mechanism that we briefly summarise
below.

We call ¢ and Epg ~ fy the field carrying the U(1)pg symmetry and its SSB scale
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respectively. We can parametrise ¢ as follows

¢ = [(@)[e ™) = |g(a)[e o
The PQ symmetry is unbroken at early times and energies greater than Epg.
Let us focus for simplicity on the case where SSB occurs at energies higher than
the inflationary scale: Epg > Hi,r. At energy ~ Epg, U(1)pg breaks down
spontaneously, |¢| acquires a non zero vacuum expectation value and the axion
field O(x), may have any value: 6(z) is still a flat direction of the potential. Going
down to energy scales E ~ Agcp ~ 200 MeV, where Agep is the confinement scale,
QCD instantons effects generate an effective potential for the axion field. When
these effects become significant, the axion field (randomly located in % € [—m; 7))
acquires a mass, rolls towards its minimum and starts oscillating around it. The
temperature which sets the beginning of the oscillating regime T,,. is implicitly
given by m(Tps) ~ H(T,s.). For T » T, the classical field is over-damped,
0 ~ const, and the energy density of 6 contributes to the effective cosmological
constant. On the other hand, when T « T,,., the axion mass dominates over
Hubble friction and the field undergoes damped harmonic motion behaving as
non-relativistic matter: pyoca 3. For dark matter axions, oscillations must occur
during radiation domination when the axion is a sub-dominant component of the
total energy density. So we see that the oscillations of this “misaligned” classical
axion field result in coherent field oscillations corresponding to a condensate of
non-relativistic axions [13] that can contribute to the CDM content of the universe.

Axions as Dark Radiation Cold DM can be made of both stringy ALPs and
the QCD axion. For a high decay constant, 10° GeV < f, < 102GeV the QCD
axion can contribute significantly to cold DM, while ALPs can saturate the ob-
served DM content for even larger decay constants (i.e. weaker couplings to gluons
and photons). The most stringent experimental bound that these models need to
satisfy comes from isocurvature bounds related to CMB measurements. Indeed,
since these fields are present during inflation, they can develop isocurvature fluc-
tuations that have been highly constrained by Planck experiment [10]. Indeed, the
non-adiabatic fraction in the observed CMB temperature must satisfy:

Biso(ko) = [Pss|

e |Pss|* + |Prr|?
where | Prr|? and| Pss|? are the adiabatic and isocurvature power spectra computed
at a pivot scale ko = 0.002 Mpc™'. In case of a single axion that plays the role of
spectator field during inflation and has a natural value of the initial misalignment
angle, ©2; ~ O(1), this bounds translates to

4 Qg 2 O'g
~ — — 2.52
“T A, <QDM) o2 (252)

me

<25x107*  at 95%CL, (2.51)

ko
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2
where Ay is the total amount of scalar perturbations, o3 = (;—'};’) is the expec-

tation value of the axion quantum fluctuations during inflation, while Qy/Qp,
represents the relative abundance of axionic DM. It is easy to see that Eq. (2.52)
can be transformed into an upper bound for the inflationary scale of the model.

Being ALPs naturally very light, they can also represent good dark radiation
candidates. Indeed, the straightforward way of getting relativistic axions and
ALPs is given by direct decay. Focusing on string phenomenology, which will be
the main topic of this thesis, a generic prediction of string compactifications is
that reheating is driven by the late-time decay of the moduli, ®. These are scalar
fields that arise after dimensional reduction of the six extra dimensions space and
will be introduced in Sec. 2.3.3. The typical moduli decay width is:

3
My

~ SR (2.53)
P
This leads to a reheating temperature which looks like:
32
T’y ~ Treheating ~ N I'Mp ~ M;il)/z . (254)
P

However, on top of SM particles, the moduli decay produces also hidden sector
degrees of freedom such as very light ALPs which contribute to the radiation
energy density of our universe. Therefore these relativistic ALPs behave as extra
neutrino-like degrees of freedom AN, s [14] which is defined as:

7 4 \4/3
Prad = pfy + preld.o.f. = /)7 |:1 + (g) (ﬁ) (Neff,S]V[ + ANeff)] , (255)

where p, is the photon energy density while p,cq..r. denotes the energy density
of other relativistic degrees of freedom. The first two terms in the previous equa-
tion are related to SM physics, while the third one can be associated with extra
ALP dark radiation proportional to AN.s;. Recent measurements of the Hub-
ble constant H, [15] provide the following range of possible values for AN,y
ANcsp ~ 0.4 —1 at 20. This can soften the tension between H, measurements of
Eq.s (1.47) and (1.46), representing an interesting hint in favour of the existence
of ALPs.

Thanks to their weak coupling to all ordinary particles, ALPs produced by direct
decay of the moduli fields free-stream to the present days without thermalising
and would form today a Cosmic Axion Background (CAB) [16]. The CAB energy
density can be easily estimated by noticing that the ALP energy is:

me

Eam'on = )

2
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where mg is the mass of the decaying modulus ®. Using the reheating temperature
above, we find that the ratio between the energies of ALPs and CMB photons today
is:

Bagion  (Mp\Y2 7100 GeVy 1/2
e~ () (5 )

~

where we used the fact that both ALPs and photons redshift as radiation from
modulus decay till today. In order to avoid cosmological problems, the moduli
need to have masses me = 50 TeV. For moduli masses m ~ 10° GeV, we have
Eazion ~ 10% Tearp ~ 200 eV. Hence the CAB energy spectrum is expected to be
located in the soft X-ray range E ~ 0.1 —1 keV. This could have created, together
with Primakoff process in the cluster magnetic field, the soft X-ray excess above
the thermal emission of the intra-cluster medium detected from galaxy clusters as
Coma [16]. We will discuss an explicit realisation of axionic DM in string theory
in Chapter 5. There we describe how to perform a successful global embedding in
type LIB string compactifications of the model of [17] for the 3.5 keV line that has
been recently observed from galaxy clusters.

me me

Axions as Inflaton Inflationary models are very sensitive to quantum correc-
tions induced by higher dimensional operators that can spoil the flatness of the
potential. These corrections can induce O(1) contributions to the slow-roll pa-
rameters, drastically shortening the duration of inflation to few e-foldings. This
tells us that inflation is extremely sensitive to UV physics, so symmetries must
be found that are able to protect the form of the inflationary potential, forbid-
ding or suppressing the presence of such corrections. These considerations make
axion-like particles good inflation candidates: they appear in the theory equipped
with a continuous shift symmetry to all orders in perturbation theory, making
the axion potential stable against quantum corrections. An extremely important
parameter when studying axion inflation is the axion decay constant, f, that sets
the magnitude of the least irrelevant shift-symmetric coupling with all the other
fields, e.g. the dimension 5 operator that sets the coupling with gauge fields %FF.
Moreover in case of embedding in UV complete theories, f sets the cutoff scale
of the effective field field theory that should describe axion inflation: we need to
integrate out all heavy modes having masses m > f. Historically the first model
that was proposed is natural inflation, were a single axion plays the role on the
inflaton, acquiring a mass through non-perturbative corrections. This leads to the
following potential:

V(o) - A [1 + cos (?)] , (256)

where A « Mp is the dynamically-generated energy scale of non-perturbative ef-
fects and ¢ is the canonically normalised axion. In order to give rise to prolonged
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inflation and match experimental data this model requires f > 10M,. Unfor-
tunately, experimental bounds on the relation between scalar spectral index and
tensor-to-scalar ratio tend to disfavour the validity of this model[10]. Since the
birth of natural inflation, many extensions and other different models have been
proposed. We discuss some of them together with their possible embedding in type
IIB string theory in Section 2.4.2.

2.3 Type 1IB string Phenomenology

The SM and many of its extensions, such as GUT theories or supersymmetric
models like the MSSM, can be viewed as effective field theories, i.e. low-energy
limits of some more fundamental theory. For instance, SM and GUT theories
contain interactions that are not asymptotically free and lead to ultraviolet Landau
poles. All these theories present a sick UV behaviour and leave as open problems
many of the puzzles related to SM: number of families, flavour physics and others.
In particular none of these theories provides a framework where general relativity
can be reconciled with quantum field theory. On the other hand, the quantum
version of Einstein’s gravity is not renormalisable, therefore it should be seen as
an effective field theory as well. String theory represents the more promising
candidate to merge possible extensions of SM with a quantum theory of gravity
that is free of quantum divergences. Indeed string theory provides a theory of
gravity that can also describe non-abelian gauge interactions, fundamental scalars,
charged chiral fermions appearing in different families and Yukawa couplings, all
of which represent the building blocks of the SM.

One of the most revolutionary aspects of string theory is that elementary ob-
jects are not described by point-like particles but 1-dimensional strings whose
typical length is l;. Strings can be both open or closed and their dynamics is
described by a 2-dimensional surface ¥ that is called the world-sheet. An impor-
tant feature of string theory is that [ is the only free parameter in the theory,
this implies that all the other SM parameters must be dynamically determined,
drastically reducing the arbitrariness of the theory. The string scale M, = 1/I,,
which represents the typical string interaction energy, can be constrained by par-
ticle accelerator experiments: the fact that no string effect has been detected in
LHC yet sets a lower bound on M. At energy scales well below M; it is not pos-
sible to feel the 1D structure of strings and their theory becomes a quantum field
theory of point-like particles. Strings can vibrate and different string oscillations
correspond to different particles having different masses, quantum numbers and
Lorentz transformation properties. Depending on the number of exited oscillators,
each string oscillation corresponds to an infinite tower of particles having different
masses where the mass step is given by M.
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In all string theories the quantisation procedure predicts the presence of a spin-2
particle in the closed string massless spectrum. This particle interacts as a gravi-
ton and its dynamics is invariant under the re-parametrisation of the space-time
coordinates. Therefore string theory automatically incorporates a quantum ver-
sion of gravity and provides a natural cutoff [; that removes the UV divergences
which appear in the straightforward quantisation of general relativity.

The building blocks of string theory are 2-dimensional bosons and fermions,
XM(7 o) and M (7,0), that represent the bosonic and fermionic coordinates of
the string in a D-dimensional space-time, M = 0, ..., D—1. In particular XM (7, o)
represents the embedding of a 2-dimensional surface inside a D-dimensional space-
time. Each point of the world-sheet is identified by two coordinates, 7 and o,
that represent the time and the spatial extension of the string respectively. The
motion of closed strings produces world-sheets with no boundary while open string
world-sheets have boundaries. In order to point out some other features of string
theory, let us write down the Polyakov action for a bosonic string [18, 19]:

T )
SP - _5 J dQI\/?g gab(7_7 0) aa)(]u (7-7 O-) abe (T7 U) TIMN (257)
2

where T' = 1/27a’ = 27 /1% is the string tension, g, is the world-sheet metric while
Ny is the D-dimensional Minkowski metric. This action shows different symme-
tries and some of them turn out to be redundancies that must be removed from
the theory. In addition to D-dimensional Lorentz invariance, we have symmetries
related to local invariance under local world-sheet coordinate re-parametrisation
and rescaling (Weyl invariance). Since there are no graviton polarisation modes in
2-dimensions, the metric g4, turns out to be trivial. Moreover, imposing invariance
under local coordinate reparametrisation it turns out that the only physical oscil-
lation modes are those transverse to the world-sheet plane. The resulting theory
is then a 2-dimensional quantum field theory of D — 2 non-interacting massless
scalar fields on the world-sheet and the space of harmonic oscillators related to
string oscillations represents the spectrum of space-time particles in string theory.
The massless bosonic spectrum of closed and open strings contains the graviton,
Gy, an antisymmetric tensor By, the dilaton ¢ and a gauge boson A,;. The
dilaton ¢ is a scalar field whose vev is related to the string coupling constant as
gs = €2 If the dynamics allows for g, « 1 we can treat string theory perturba-
tively. Indeed, despite the 2-dimensional world-sheet is non-interacting, we have
non trivial interactions in the space-time theory and g, represents the loop counting
parameter. String scattering amplitude between asymptotic states in the pertur-
bative regime can be computed similarly to QFT theories: they are computing
using a path integral summing over all possible world-sheets (with different ge-
ometries) that interpolate between asymptotic states in the external legs. Indeed,
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since the interacting objects are 1-dimensional the usual Feynman diagrams are re-
placed by scattering surfaces: world-sheets. If the interaction involves only closed
strings, the perturbative expansion runs over surfaces showing different number
of loops (handles) while in presence of open string external states we may have
that world-sheets present boundaries. Each term in the perturbative expansion is
characterised by a number of handles and boundaries, h and n;, and is weighted
by gX where

X=2—2h—ny. (2.58)

is the genus or Euler characteristic of the world-sheet.

Knowing the massless spectrum of the bosonic string, we can extend the
Polyakov action including background profiles for the massless excitations. This
is known as 2-dimensional o-model and its action is given by:

SU = —%J d(L’2\/—g [(g“bGMN(X) + EabB]wN(X)) 5QXM 5[,XN
7 (2.59)

La'oR(g)] + LE 0E% Ay (X)2, M

where €% is the antisymmetric Levi-Civita tensor and R(g) is the scalar curvature
of the world-sheet metric. This action describes an interacting 2-dimensional field
theory where the scalar fields parametrise the non trivial curved space. Indeed
the background metric in the first term can be regarded as a superposition of a
large number of graviton string states. The second term does not depend on the
world-sheet metric, it is purely topological and tells us that the strings are charged
under the field By = $Byn dX™ A dXN. The third term corresponds to the 2-
dimensional Einstein Hilbert action for g,, and the fourth term, that applies only
to theories including open strings, sets the coupling between the string world-sheet
and the background of the massless gauge boson Aj,;. This interacting theory may
be studied perturbatively if the gradients associated background fields are small
and when all curvatures are small in string units.

Thus string theory in a general background shows two perturbative expansions:
the genus expansion, parametrised by g,, that sums over all the possible topologies
of the world-sheet connecting initial and final states and the o/ expansion, whose
expansion parameter is the curvature of the D-space-time in units of o/, that for
each world-sheet controls the appearance of higher dimensional operators related
to the space-time curvature.

One of the most important properties of string theory is that the scattering
amplitudes of the theory are unitary and finite order by order in perturbation
theory. The scattering amplitudes show a well-behaved UV regime thanks to
the natural cutoff scale M,. Indeed, since the theory is characterised by Weyl
symmetry and the vertices are delocalised, in case of large momentum transfer
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= M it is possible to exchange long string states and the UV regime can be
interpreted as the IR limit of a new diagram involving a dual channel. The tower of
massive string modes acts as a UV regulator but the properties and the number of
the massive string states depends on the number of space-time dimensions in which
strings can oscillate. Requiring that UV divergences are appropriately cutoff we
can fix the number of space-time dimensions to be equal to the critical dimension
that can be found imposing that the quantum version of Weyl symmetry is not
anomalous. For the bosonic string the critical dimension is D = 26.

In order to have fermionic degrees of freedom in the theory, we need to introduce
a generalisation of the Polyakov action that shows a 2-dimensional supersymmetry
on the world-sheet: superstring theory. This introduces a set of fermionic fields
Y™ that are superpartners of X but transforms as vectors under the space-time
Lorentz group. Moreover, we have a supersymmetric partner of g,, that is the
world-sheet gravitino ¢,. Superstring theory keeps the main properties of the
Polyakov action that we described earlier in this section. On the other hand the
field content changes: we have a 2-dimensional quantum field theory of D — 2
free massless scalar fields and fermions and the critical dimension for superstring
theory is D = 10. The action for the world-sheet fermions does not completely
determine the space-time spectrum of the theory. Since 2-dimensional observables
are quadratic in the fermion fields we can choose different fermionic boundary
conditions on the world-sheet defining different sectors:

e Ramond sector: ¥ (1,0 + 1) =¥ (r,0)

e Neveu-Schwarz sector: M(r,o+15) = =y (r,0)

M
where 1+ denote left and right movers respectively and v = (wM). The choice
+
of periodic or anti-periodic boundary conditions for fermions can be made for

left and right movers independently so there are 4 possible sectors: NS-NS, R-R,
NS-R, R-NS. The 10 dimensional EFT describing the interaction of the massless
states of the superstring contains space-time bosons coming from NS-NS and R-
R sectors and space-time fermions coming from NS-R and R-NS sectors. The
construction of a consistent closed string theory with space-time fermions requires
the sectors related to left and right movers to be glued together in a way that
preserves modular invariance of the partition function. This step is called GSO
projection and has to be done independently for NS-R and R-NS sectors. Choosing
the same GSO projection for the two sectors leads to type IIB string theory whose
low energy phenomenology will be the focus of the present work. This theory has
a chiral spectrum, it contains only closed strings and since NS-R and R-NS sectors
have the same spectrum it enjoys a world-sheet parity symmetry. The NS-NS
sector contains the dilaton ¢, the graviton Gy, and a 2D symmetric form B,y .
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The R-R sector contains 0-, 2- and 4-forms: Cp, Cyn and Cynpg. Type 1IB
string theory contains two gravitinos and two dilatinos with same chirality and
the massless spectrum features a ten-dimensional N" = (2,0) supersymmetry.

Four other consistent superstring theories are known [20, 21|: type ITA string
theory, SO(32) and Eg x Eg heterotic string theories and type I string theory. The
five superstring theories are related to each other by dualities and can be inter-
preted as different limits of the same underlying theory: M-theory [22].

At energies well below M, massive string modes cannot be exited and each
superstring theory is described by a 10-dimensional supergravity theory. Focus-
ing on the bosonic sector of type IIB string theory, the effective action can be
decomposed into NS-NS, R-R, and Chern-Simon (CS) terms

Siip = Snsns + Srr + Scs - (2.60)

The first contribution contains the space-time metric, the dilaton and the Kalb-
Ramond two form B, 20, 21]:

1 1
Snsns = 5 dX'/—Ge > (R # 1+ 40y PV P — s A H3) ., (2.61)
10

where # stands for the Hodge operator, kyy = 877/2a’? = [3/(47) represents the
10-dimensional Newton constant and the three-form H3 = dBs is the field strength

related to By. The R-R and CS contribution additionally contains, Cy, Cs and Cy
that are zero-, two- and four-forms respectively. They are given by

1 1
Skr = —7 | d°XV=G Y, SF, A+F,, (2.62)
4K, a5 D
1
SCS = —4—2 04 AN H3 7AN Fg, (263)
K10
where .
Fy=F,— Zj:p73,j>0 Hy n Cj,
. 2.64
F,=dC,_,. ( )

F, form fields are also called fluzes and the 5-form Fj additionally satisfies the
self-duality condition Fy = #19F5. This 10d supergravity action is invariant under
the following transformation for form fields

Bg i B2 + d)\l s Cp i Op + d)\p—l - H3 AN )\p_g, (265)

where )\, is a 10-dimensional k-form.
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In the following sections we try to briefly sum up how to get 4D effective field
theories from type IIB string theory. As we saw, in addition to the usual 4D space-
time RY3, string theory requires the existence of 6 extra spatial dimensions. In
order to be able to separate the extra dimensions contribution from the low energy
theory we need to require that these dimensions are compact and of very small
size. Compactification of these dimensions is the way to link the 10D EFT of the
massless string degrees of freedom with the low-energy physics of our real 4D world
below the KK scale. One of the fundamental tasks of string phenomenology is to
find a compactification whose low-energy EFT reproduces a suitable extension of
the SM [20, 23|. The space-time manifold is decomposed as R™3 x Y, where Yj is
a compact 6D manifold.

The compactification is usually demanded to yield a N = 1 supersymmetric
EFT that can describe chiral matter in 4D and the supersymmetry breaking scale
is supposed to be low with respect to the KK scale in order to solve the Higgs
hierarchy problem via low-energy supersymmetry. In addition a supersymmetric
EFT simplifies the calculations thanks, for example, to the holomorphy of the
superpotential and its non-renormalisation properties. If the 4D EFT is required
to be a N=1 supergravity theory, Ys is forced to be a ‘Calabi-Yau’ space. This
constraint put some limitations in model building but still allows for some freedom.
Indeed, since the number of Calabi-Yau manifolds is in the order of 10, it is
possible to choose among a huge number of compactification spaces. Given that
the content of particles and forces of the resulting theory are determined by the
topology of the extra dimensions, different theories arise from different choices of
Ys.

The generic properties of string compactifications are:

e Moduli fields which parametrise the size and the shape of the extra dimen-
sions and correspond to uncharged 4D scalars;

e Antisymmetric tensors of different ranks which imply the existence of axion
fields. It is also possible to turn on their fluxes in the extra dimensions giving
rise to masses for the moduli. Moreover D-branes can couple to them and
can host the SM;

e Chiral matter fields which appear as open string modes on stacks of D-branes.

In addition in order to study 4D models in the context of type IIB string com-
pactification, two general approaches have been used so far:

o Global string models: This is a top-down approach where 10D string theory
is compactified on 6D manifolds. The theory must be consistent at the global
level. Gauge and matter fields live on D7-branes wrapped around internal
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4-cycles or on D3-branes at singularities. Closed string moduli live instead
in the bulk. A crucial issue to be addressed in these constructions is moduli
stabilisation which is the process through which moduli become massive.

e Local string models: This is a bottom-up approach where one focuses on
the detailed phenomenology of D-brane constructions in order to reproduce
SM physics. The global aspects of the compactification are decoupled and
the moduli are assumed to be stabilised by some unknown bulk dynamics.
Eventually the configuration taken into account has to be embedded in a
fully consistent global model. Even if a globally consistent compactification
is more satisfactory, local configurations of D3- and D7-branes may be more
efficient in trying to identify promising string vacua which can reproduce all
the features of the SM independent of the details of the global theory.

Starting from Part II, we will mainly use the bottom-up approach, focusing on
models that can give rise to a successful inflationary dynamics. In the rest of
this section we outline the main ingredients that are needed to build realistic 4D
models starting from 10D type IIB string theory.

2.3.1 Dp-branes

Dp-branes [24] are extended solitonic objects with p spatial dimensions that

can appear in string theory and are charged under the gauge symmetries of R-R
fields:

Scs = upf Cpt1 (2.66)
Yp+1

where p,, is the electric charge of the brane and X, is the brane world-volume.
One of the most important aspects of Dp-brane is that open strings can end on
their surfaces, their ending point satisfying Dirichlet conditions in the directions
transverse to the brane surface and Neumann boundary conditions in the directions
along the brane surface. This means that string edges cannot leave the brane but
they can freely slide along the brane. These objects have p spatial dimensions and
and have to fill 4-dimensional space-time in order not to break Poincaré invariance.
Each Dp-brane comes with a U(1) gauge theory that lives on its world-volume.
Indeed the quantisation of the open strings ending on a single brane give rise to
a massless spectrum containing scalar fields parametrising the Dp-brane position,
(4, a world-volume gauge field A, with field strength F;, and their supersymmetric
partners. In order to understand the interactions between the light fields living on
the Dp-brane and the background solution of type IIB string theory, let us write
the Dirac-Born-Infeld (DBI) action:

SDBI = —gsTpJ dp+1$6_¢\/—d6t (Gab + Fab) (267)

Op+1
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where T, = [(27?)’)93(0/)(7’“)/2]_1 is the brane tension, Gy, = a(‘;if agfcf,vGMN is
the pull-back of the space-time metric onto the D-brane world-volume, F,, =
By, + 27’ Fy, is the gauge invariant field strength and By, is the pull-back of By
onto the brane world-volume. This action represents the combination between
the generalisation of Polyakov actions and Maxwell’s electromagnetism to higher
dimensional objects. On the other hand the generalisation of CS action in presence

of space-time and D-brane background fields becomes

Scs =ipy, Y, f C, Ae. (2.68)
p+1

n=0,2,4

Stable Dp-branes are BPS objects that preserve half of the space-time symmetries.
In order to preserve N=1 supersymmetry the brane tension must be equal to its
RR-charge in appropriate units so that: p, = g¢,7,. Adding the brane action
to the type IIB bulk action may not vary the form of the 4D EFT theory that
arises after KK reduction, but it always affects the definition of the 4-dimensional
chiral coordinates and therefore the shape of Kéhler potential and superpotential
[25, 26]. In type IIB string theory we can have D3- and D7-branes. The presence
of Dp-branes adds to the 4-dimensional spectrum p gauge neutral scalar moduli
¢* that parametrise the the position of the Dp-brane and possible deformations of
the extra dimension cycle wrapped by the brane. In case of D7-branes we have
other field contributions coming from the 8-dimensional world-volume gauge field
that give rise to a 4-dimensional U(1) gauge field A, and to Wilson line moduli
Qg

As previously mentioned, the discovery of Dp-branes played a crucial role in
type IIB string model building since their presence allows to have chiral matter
in the 4D spectrum coming from open strings that live on the branes. Moreover
they allow to reproduce gauge theories with chiral matter in localised areas of the
spatial dimensions, thus decoupling the gauge theory form the details of the whole
compact space. This enriches the model building landscape without providing
additional problems to the compactification procedure.

2.3.2 String compactification and Calabi-Yau manifolds

In what follow we assume for simplicity that the 10-dimensional space-time
My of superstring theory can be factorised as M, x Y5 where M, is the usual
4-dimensional space-time and Yj is the compact manifold associated to the extra
dimensions:

MlO = ./\/l4 X }/6 (269)

this is called compactification of string theory. Let us first consider possible vacuum
configurations that can lead to the description of 4D effective field theory. A
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suitable ansatz for the metric decomposition in absence of energy sources is given
by !
GundXMdX"N = n,,da"dz” + gundy"dy™ (2.71)

where ¢,,, and y™, m = 1,...6 are the metric and the coordinates on Y;. Such
a decomposition is a valid vacuum solution if and only if the 10D metric solves
the 10D Einstein equations. This requires that both M, and Y; are Ricci flat
manifolds, i.e. R, = Rp, = 0. A general class extra dimensions manifolds
that satisfies this requirement is given by Calabi-Yau manifolds that we briefly
introduce below.

For a general compactification manifold we have that the 10D Lorentz group
decomposes into

SO(1,9) — SO(1,3) x SO(6). (2.72)

In order to study stable compactifications that do not contain tachyons and show
a simple theoretical treatment we want to consider string compactifications that
preserve a non-vanishing number of supersymmetries in 4 dimensions. This con-
dition relies on the geometrical properties of Yg. Indeed, the number of conserved
supersymmetries in 4D is equivalent to the number of 6-dimensional spinors in Y,
called Killing spinors, {(y™), that satisfy:

Vy£(y™) =0 (2.73)

where Vy; = 0, + twaPT45 wAB is the spin connection and I'*# is the generator
of the spinor representation of SO(6). Indeed in type IIB string theory the 10D
space-time has a set of 32 local 10D supercharges that transform as spinors of
SO(1,9). The number of supersymmetries in 4D is equal to the number of global
supercharges of Ys: being Ys a curved space, parallel transport would transform
local supercharges under SO(6) but, if Eq. (2.73) is satisfied, parallel transport of
the spinor on a closed path does not rotate it , the spinor is covariantly constant
in Y5 and we have a global supercharge in Yj.

This condition can be rephrased in terms of the holonomy group of Y. The
group generated by all possible spinor rotations along closed paths in Yy defines the
holonomy group of Ys. The spinor decomposition induced by space-time splitting
of Eq. (2.72) is given by:

16 — (2,4) ® (2,4) (2.74)

'Tt is important to notice that in concrete models the 10D metric does not represent the
vacuum solution given in Eq. (2.71) and more general decompositions of space-time must be
taken into account, e.g.

GundX™dXN = eQA(y)ngx“dx” + e_QA(y)gmndymdy” (2.70)

where A(y) is called the warp factor and is a function of the extra dimensions coordinates. For
instance this form may arise when we consider the presence of branes or background fluxes.
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where 4 and 4 are 6D Weyl spinors transforming under SO(6) while 2 and 2 are
4D are the usual Weyl spinors transforming under SL(2,C). For general extra-
dimensions manifold the holonomy group is SO(6) and no supersymmetry is pre-
served in 4D. Therefore we will be interested in finding Yy so that its holonomy
group is a subgroup of SO(6) that induces a decomposition of 4 that contains a
singlet: a nowhere vanishing and globally well defined invariant spinor. This re-
quest is satisfied for instance by manifolds with holonomy group SU(3) < SO(6)
that preserve N’ = 1 supersymmetry in 4 dimension. In this case the chiral 10D
spinor is decomposed by space-time splitting and then by compactification into

SO(1,9) — SO(6) x SO(1,3) — SU(3) x SO(1,3)

_ _ 2.
16 - 200@1) - (32062)0LAewL2)
where 2 and 2’ represent left and right chiral spinors in 4d. Choices of Y with
smaller holonomy group lead to A/ > 1 4D supersymmetry. In type IIB, having
SU(3) holonomy group in the extra dimensions manifold leads to N = 2 supersym-
metries in 4 dimension. There is a wide class of manifold having SU(N') holonomy
group, that id called Calabi- Yau manifolds. These are N-dimensional complex
and Ké#hler manifolds with vanishing first Chern class (Ricci flat). A complex
N-dimensional manifold admits a (possibly non unique) globally defined complex
structure that is a mixed tensor I satisfying I} I? = —¢P . This tensor can be
used to define a local set of complex coordinates dz* = da’ +iIdy’ starting from 2
sets of N real coordinates, dz’ and dy’. Starting from a complex manifold we can
find a metric that shows only mixed components g;; through which we can define
the following 2-form j

J = g;dz'd?’ (2.76)

If J is a closed form dJ = 0, the manifold is Kéhler and J is called the Kéah-
ler form. Kihler manifolds are characterised by having at most U(N) holonomy
since parallel transport does not allow to mix holomorphic and anti-holomorphic
coordinates. Imposing vanishing first Chern class further reduces holonomy group
from U(N) ~ SU(N) x U(1) to SU(N). The number of Calabi-Yau (CY) mani-
fold is of order O(10°%) and each of them defines a different vacuum theory, with
different coupling constants, Yukawa couplings and energy scale hierarchy. This
makes bottom-up model building highly non trivial and the best strategy to adopt
is to find those phenomenological properties that are shared by a large number of
compactifications. In order to do this, let us start by computing the number of
degrees of freedom in a given CY three-fold. Since in Yz harmonic forms are in
one-to one correspondence with the elements of the Dolbenault cohomology group,
the number of possible choices in determining the SU(N') holonomy metric can be
easily computed. Indeed, the 3-cohomology group in a complex three-fold is given
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by
H*(Ys) = H®O(Ys) @ HV(Yg) @ H? (Yg) @ H*(Y5) (2.77)

where H®9 are cohomology groups: the set of closed (p, ¢)—forms, having p holo-
morphic and ¢ anti-holomorphic differentials, quotiented out by the number of
exact (p,q)—forms. The dimensions of H (r49) are topological invariants that are
known as Hodge numbers, h?9 = dim H®9(Y;). Their sum gives the number of
free parameters of a given SU(3) holonomy metric related to a given CY manifold.
Hodge numbers are usually arranged into the so called Hodge diamond

hoo 1
hio  hox 0 0
hao  hi1  hoa 0 A 0
hso hop  hip hos _ 1 ha 1 hi2 L. (2.78)
hsi  hoo hig 0 ha 2 0
hso  has 0 0
hs3 1

that makes it easier to detect possible symmetries in Yy through line reflections
in the diamond: complex conjugation (central vertical axis reflection), Hodge
duality (central horizontal axis reflection) and mirror symmetry (diagonal axes
reflection)|27].

From Eq. (2.78) we immediately see that the cohomology of a CY manifold is
characterised by specifying the Hodge numbers h;; and h; 5. In addition, there
is a single (3,0)—form, that we denote as Q = Q;;xdz'dz7dz*, which is nowhere
vanishing and defines the complex structure of the CY. Since there are no harmonic
1- and 5-forms we have that Q2 A J = 0. Moreover, being hss = 1 we have that
J A J A J must be proportional to Q A Q. We briefly summarise their relation
in the following lines. We already saw that SU(3) holonomy in Yy corresponds to
the existence of a 6-dimensional covariantly constant spinor in Ys. Therefore there
should be a bijection between the space of Ys metrics Gy, and spinors ¢ and the
space of possible complex structures 2 and Kéhler metrics J

This map is given by

Jij = =€ Tl Qi = T TRE, (2.80)
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where I'; are Dirac matrices. From certain properties of the Dirac matrices called
Fierz identities we discover that

J/\J/\JZ%Q/\Q. (2.81)

The topological invariants, h; ; that are needed in order to uniquely determine the
CY structure are tightly related to the field content in 4D. Indeed their value corre-
sponds to the number of 4D scalar fields that appear after dimensional reduction,
these are called moduli fields.

2.3.3 Moduli fields

As explained in the previous section, imposing SU(3) holonomy in the extra
dimensions manifold leads to Calabi-Yau manifolds. Nevertheless we saw that a
CYs are a class of manifolds characterised by two free parameters, i.e. the Hodge
numbers h;; and Ay 2, that need to be specified in order to uniquely identify the
geometry of extra dimensions. These parameters are tightly linked to the number
of continuous background metric deformations that preserve supersymmetry and
topology. These deformations can be interpreted as scalar fields in 4D and are
called moduli fields |28].

The assumption of 10D compactification of Eq. (2.69) tells us that the Fourier
transform of a 10D scalar field ¢ is given by

p(XM) Z% )k () (2.82)

where ¢F(y™) are eigenfunctions of the six-dimensional laplacian of Y, Ay, having
cigenvalues —\(¥) (eigenvalues are negative for compact manifolds). If ¢ is massless
in 10D, given that (o = Ay, + s, we have the following equation of motion for
the 4D ¢, field

(O = AW) gl () = 0. (2.83)

The eigenvalues of Ay, can be interpreted as masses of the 4D scalar fields. In
particular, we see that each massless scalar field in 4D correspond to a harmonic
form on Yg, i.e. zero mode of Ay,. Given that there is a one-to-one correspon-
dence between harmonic forms and the Dolbeault cohomology groups H®9(Yy),
we immediately see that a Calabi-Yau compactification will give rise to hy 1 + hyo
massless moduli fields in 4D. The properties and the structure of these fields can
be found analysing Yy metric deformations:

Imi = Gmia + 0Gman (2.84)
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that preserve the Ricci-flatness condition

This requirement leads to differential equations for d¢g,,. Being CYs K&hler mani-
folds, the equations for mixed and pure components, d¢,,7 and dg,,,, decouple and
can be studied separately.

e Kihler moduli from dg,,:
The conservation of Ricci-flatness gives the following constraint

which means that dg,; must be a harmonic (1,1)-form. These deformations
are closely related to deformations of the Kéhler form

J = —igady™ A dy™ (2.87)

and expanding J on a basis of hy; (1,1)-harmonic forms (ﬁ7)m7—, composing
H®D we get o
J == tZ(Dl)mﬁ Z == 1, ey h,171 (288)

where #* are called Kiahler moduli and they can be interpreted as fields that
control the size of the internal 2-cycles of Ys. Since we want the perturbed
metric to be positive definite we need to impose the following conditions:

JJ>O, JJ/\J>0, JAJIAT>0, (2.89)
0% o

Ye

for all complex curves v and surfaces o on the CY Yj. In particular we have
that the overall volume of the extra dimension manifold Yj is given by:

Vol(Yg) = if JANIAT= ltitjtkkijk. (2.90)
3! Jy, 3!
where k;j;, = SCY(Di A ﬁj A ﬁk) are called intersection numbers. The condi-
tions in Eq. (2.89) define the allowed Kéhler moduli space that is also called
Kéahler cone: ./\/lhKM. In type IIB concrete model building the moduli space
is usually complexified and J receives contributions coming from R-R sector
4-form CYy.

e Complex structure moduli from 0g,,,:
The conservation of Ricci-flatness gives the following constraint
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that implies that the allowed deformations are given by (2,0)-harmonic forms.
We cannot expand dgy,, in such a basis since hy g = hg2 = 0in a CY manifold.
On the other hand we can construct a (2,1)-form contracting 2 with the
complex structure tensor, 2, = Qijl[]é.- This allows us to construct a one-to-
one correspondence between (1,2)-forms and (2,0)-forms in the following way:
we introduce a basis for (1,2)-forms of H'(Y5), (Xa);r Where v = 1,... hy
and we decompose the metric perturbations as

( _

g = WUQ (Xa)iri ) (2.92)
where ||Q]|? = Q;;xQ7% /3! and U® are free parameters that are called complex
structure moduli. These fields parametrise the sizes of internal 3-cycles and
are related to deformations of the complex structure. We refer to the space
of complex structure moduli as M} .

At tree-level the space of moduli fields can de decomposed as
M= M x M5 (2.93)

where the sub-index is referred to the space dimensionality. As already stated,
moduli correspond to massless scalar fields in 4D and in order not to give rise to
undetected fifth forces we will need to provide them a mass. This process goes
under the name of moduli stabilisation and it is discussed in Sec. 2.3.8.

2.3.4 N =2 4D supergravity

In this section we describe the 4D effective field theory that can be obtained
starting from the A/ = 2 ten-dimensional supergravity theory in type IIB given
by Eq.s (2.60), (2.61), (2.62) , (2.63). We are going to give the results of string
compactifications on a Calabi-Yau manifold,|[18, 29, 30, 31]. As we already saw CY
compactifications preserve the number of supersymmetries so through dimensional
reduction we get a supergravity theory with N' = 2 (8 supercharges) in 4 dimen-
sions. Despite this theory is not suitable for doing 4D phenomenology since it does
not allow for the presence of chiral matter, it lays the foundation for realistic 4D
theories that we will study in the next section.

The Ricci-flatness condition of CY manifolds allows to perform a Kaluza-Klein
reduction of the 10D fields. This is done expanding each 10D field into eigenforms
on Yy and keeping only the 0 modes. In order to be sure of the validity of this step,
we need to be sure that the energy scale of physical phenomena appearing in the 4D
theory is much lower than the KK energy scale. If the compactification manifold
is isotropic the mass of KK modes is given by m, ~ nM /R = mMp/V2/3 where
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R is the typical size of the extra dimensions R = V6 and V is the CY volume in
string length. The 4D effective theory will be valid only at energies

The reduction of the 10D theory gives rise to the following spectrum in 4
dimensions®. The reduction of the metric produces the 4 dimensional metric g,,,
hi1 Kéahler moduli, hy 9 complex structure moduli and a 1-form VO that is called
the gravi-photon. From the NS-NS sector we get h;; scalar fields, the dilaton ¢
and a 4D 2-form Bs(z). Indeed, counting the number of degrees of freedom in the

dimensional reduction we get:

Components Degeneracy
B v h0,0 =1
g (2.95)
By hio+ hop =0
B hao + hoo + hig = hi
we can recast these degrees of freedom in a single 4D field as:
gb = QZS(J]) s BQ = BQ(ZE) + bZDZ 1 = 1, ey h171 (296)

where again D; represent a base of H(D(Y;). Through a similar decomposition
procedure, we get the following forms from the NS-NS sector:

Co = Co(z),
Cy=Cy(x) +(x)D;,  i=1,...,h1, (2.97)
Cy =V x) A g+ pi(x)D', a=1,... k5

where Cy, ¢ and p; are scalar fields, V* are 1-forms while C5() is a 2-form. D' is
the dual basis of D; and «, belongs to the the simplectic basis of H3(Ys), (o, 8%),
that satisfies

jaa/\ﬂbzﬁz, faaAabZ BEAB=0. (2.98)
Ys Y6 Yo

In the expression for C; we used the fact that the field strength related to Cj has to
be self-dual, this conditions removes some degrees of freedom from the spectrum.

2All the following fields and forms are defined in 4 dimensions and do not have to be confused
with the similar notation for 10 dimensional fields.
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All the fields and forms listed so far belong to the bosonic sector of multiplets of
4D N = 2 supergravity theory. The gravity multiplet contains g,, and V4 while
the double-tensor multiplet contains B,, Cy, C5 and the dilaton. In addition we
have hy ; hypermultiplets containing ¢*, b°, ¢ and p; and hy 5 vector multiplets that
include V* and U*®. Since this theory is not able to describe chiral matter in 4D,
we need to find some way to halve the number of supersymmetries thus leading
to a promising description of nature. This can be achieved through orientifold
involution that we describe in the next section.

2.3.5 N =1 4D supergravity from orientifold involution

An orientifold is a generalisation of orbifold, proposed by Sagnotti and Pradisi
in 1987 [32, 33, 34]. In case of orientifolds the non trivial elements of the orb-
ifold include the orientation reversal of the string [18]. The world-sheet parity €2,
exchanges left and right movers through

Q0o 2n—0 (2.99)

where o is the spatial coordinate on the world-sheet. Making an orientifold projec-
tion corresponds to gauging away this symmetry thus being left with unoriented
world-sheets. In the context of Calabi-Yau compactifications this mechanisms has
been generalised including the action of an isometric and holomorphic transforma-
tion that acts uniquely on Yg: the involution oy (0% = 1). In type IIB the action
of oy on the holomorphic 3-form 2 and Kéhler form is given by the pull-back of
the involution o3

oi(Q) = (-1)Q,  oi(J)=J, e=0,1. (2.100)

The orientifold involution in case of type IIB Calabi-Yau compactifications corre-
sponds to gauging away the discrete symmetry

(- Quoy, €e=0,1 (2.101)

where F7, is the left moving fermion number. The hypersurface where the involu-
tion reduces to the change of string orientation is called orientifold plane. Since
oy does not act on My = R®3) the orientifold plane can have at least dimension
3 but, in case of oy (2) = , it is possible that all 4D space-time dimensions are
left unchanged and an O9-plane can exist. Depending on the value of €, we find
two class of models: if € = 0 we have theories with O5/09-planes, if ¢ = 1 we
have theories with O3/O7-planes. In general we can consider orientifold planes
having as many dimensions as Dp-branes: this means that in what follows we
choose ¢ = 1 thus working with O3- and O7-planes. Beyond halving the number
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4D supersymmetries, orientifold involution reduces the dimensionality of moduli
space. Indeed harmonic (p,q)-forms can either be even or odd under the action of
o+. We can therefore split each cohomology class into two basis representing the
eigenstates of ¢* with different parity

H,,=H ,®H,,. (2.102)

We call h and h, , the dimensionality of H, and H, 6 respectively. These are
related through Eq (2 102) by hy, + ho = hyq. For CY manifolds we have that
hi 1= h2 , since they are related by Hodge duahty that commutes with o3, hi =
h21 because of ¥ holomorphy, hi 30 = hgs = 0 and hyy, = hyy = 1 from Eq.
(2.100) with e = 1 and h3s = hgy = 1 while h3 3 = hgy = 0 since the volume form
should be invariant under oy

The dimensional reduction with orientifold involution proceeds as in Sec. 2.3.4
but in this case the KK expansion should keep only those fields that are invariant
under the orientifold action. The parity properties of the 10-dimensional bosonic

fields under the transformation (—1)f2Q), are given by

¢GBQCQCQC4
(-~ + + + - - -

(2.103)
Q, + + - - + -
(-frQ, + + - + — +
This implies that under the involution ¢* the fields need to obey:
G By Cy Cy C
¢ 2 0 oz (2.104)

o+ + - + - +

We can then write down the bosonic invariant spectrum under orientifold involu-
tion as:

e Kihler moduli #*+: since both J and the complex structure are invariant
under the action of oy, we have that Kahler metric can be decomposed as:

J =t () D: iv=1,....hi, (2.105)

14 7
where D! is a H| basis.
e Complex structure moduli U% : since o) = — we have that only

elements of H, correspond to complex structure moduli that can be kept
in the spectrum. The metric deformation of Eq. (2.92) then becomes

5gij - ||Q||2Ua7 (_ )il?:fQ?l (2'106)
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where x,_ is a basis of H .

Cy and dilaton: since both Cy and ¢ are invariant under orientifold invo-
lution they both remain in the spectrum.

Two-forms B, C5: Since both By and C5 need to be odd under oy, their
expansions look like

By =b-(2)D;_,  Cy=c=(x)Di., i=1,... hy, (2.107)

where D;_ is a basis of Hy ;. The 4D 2-forms By(x) and Cy(z) that we found
in the N/ = 2 compactification are removed from the theory and we are left
only with scalar fields b~ (x) and ¢~ (x).

Four-form Cj: it must be even under the involution oy and it expansion
looks like

_ +
ay =1,...,hy,,

S +
iv=1,....hy,

Cy=V*(2) A g, + pi, (x)D"™*, (2.108)

where D is a basis of Hy, that is dual to D+ and o, belongs to the real
symplectic basis of H, (aq,,3%). We used the self duality condition on
F5 = dC} to remove redundant degrees of freedom.

These fields belong to 4D N = 1 supersymmetric theory and they group together in
different multiplets. Nevertheless the variables that appear in the KK reduction are
not necessarily given by the bosonic components of the supersymmetric multiplets
that represent the proper Kéahler coordinate of the moduli space. Indeed these are
given by [21, 20]:

e Axio-dilaton:

S=e?—iCy; (2.109)

e 2-form moduli:

Go=G-D;_ = (d=(z) = Sbi~(z)) Di.  i_=1,...,h,  (2.110)

e Complex structure moduli:

U=, a =1,...,h, (2.111)
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¢ Kihler moduli:?

Kiy ik

T _
T T Re(S)

L =T G-(G -G +ipi, i =1,....hi;  (2.112)

where

Kijn. = § Di, A Dj_ A Dy_ (2.113)
6

while 7;, is related to ¢;, through

1 R ki+k]~+kk+ oy
Ti+:§ Y6JAJADi+:Tj+k+:at—i+. (2114)
and the overall volume of extra dimensions V is given by
1 1
VZ? YJ/\J/\ngti+tj+tk+- (2115)
'y, !

In the models that we are going to analyse in the third part of this thesis we
will consider orientifold projections such that h;;, = 0, that means hy; = h{ ;.
In this case the 2-form scalars b~ and ¢~ are projected out and the form of
Kéhler moduli becomes:

Ti:Ti—i"L'pZ', izl,...,hll. (2116)

)

We can interpret 7;, as the volume of the divisor D;, € H,(Ys,Z) that is the

Poincaré dual to D; . while the imaginary part of the Kahler field p; is given
by the component of the R-R 4-form Cj along this cycle: p; = SD_ Cy.

The supersymmetric multiplets coming from O3/O7—orientifold compactifications
are then given by one gravity multiplet containing g,,, hi’l vector multiplets con-
taining V% and h*' + k%! 4+ 1 chiral multiplets containing T;,,, U™, G* and
S.

The N = 1 4D supergravity action can be expressed in terms of the Kahler
potential K, the holomorphic superpotential W and the holomorphic gauge kinetic
couplings f as

R -5, 1 1
S = —f5*1+KUD<I>I/\*D<I>J+§Re(fab)F"’/\*Fb+§lm(fab)F“AFb+V (2.117)

3The Kéhler coordinate T; and the fields ¢; in Eq. (2.105) are both called Kéhler moduli.
This can be a little confusing. In the rest of our work we will typically refer to Kihler moduli
talking about the fields 7; that parametrise the size of 4-cycles in the extra dimensions.
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where @ represents all complex scalars in the theory, F'* = dV* is the field strength
relatedto V%, a=1,..., hiﬁ and V = Vg4 V) is the scalar potential of the theory.
The F-term scalar potential Vx arising from N = 1 supergravity can be written
as (here we use natural units, i.e. M, = 1):

Vi = e ((GT)7GiG; —3) =X [K”D,WDJW — 3|W|2] (2.118)

where G := K +1In [WW|? is the Kéhler function, K77 is the inverse of Kiihler metric
K;7 and the covariant derivatives D;W are given by

D/W = oW + WK . (2.119)

On the other hand, the D-term scalar potential comes from the vector multiplet
contributions and looks like:

Vo= S[Re(N"DuDy.  Dy=igRe[(/"G(T)%0,  (2120)

where ¢ is the gauge coupling constant, 7, are the group generators in the same
representation as the chiral matter fields and (F£*),, is the gauge field strength.
The tree level Kéhler potential of the theory is given by:

K=—-2mV(T+T)-In(S+8)— m(—zf QU) A Q(U)) (2.121)

CcYy

where ) is the holomorphic (3, 0)—form of the CY that is a function of the complex
moduli and V is the classical Calabi-Yau volume in string length natural units
(I, = (2nv/a’) = 1) that depends only on Kihler moduli. As we can see from
equation (2.121), the Kéhler potential gets factorised denoting that moduli space
can be decomposed as:

K cs
M = /\/lhiﬁl X Mh1_,2 . (2.122)
where ME, is a Kéhler manifold containing Kahler moduli and the dilaton

hf1+1

while M}% s a the special Kéhler manifold related to complex structure moduli.
1,2

At tree level the superpotential is vanishing unless we switch on background
fluxes. Therefore, without fluxes no scalar potential is generated and moduli re-
main exactly flat directions. This would give rise to unrealistic supersymmetric
theories fulfilled with fifth forces mediators. In order to make contact with obser-
vations, we devote the next section to the study of the role played by background
fluxes in type IIB Calabi-Yau orientifold compactification in presence of O3/07-
planes.
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2.3.6 Background fluxes

If this section we allow for a background profile also for some of 10D p-forms
in addition to the metric and we will briefly summarise flux compactifications on
Calabi-Yau orientifolds [25, 35, 26, 36, 37]. We introduced fluxes for the 10D
supergravity theory coming from type IIB string theory in Eq. (2.64). These need
to satisfy the following Bianchi identities:

dHy; =0,  dF,—HsAF, ,=0. (2.123)

where, in presence of local sources like Dp-branes or Op-planes, the right hand
side of the previous equations must replaced with a delta function with support
on the sources world-volume. In order to preserve 4D Poincaré invariance, fluxes
need to be present only along the extra dimensions or they have to fill out the
4D space-time (this can be done only by p-form fluxes having p > 3 while 3-form
fluxes need to be confined in Ys). Non-vanishing fluxes can arise in presence of
local non-vanishing sources or in absence of sources if the cycle supporting them
is non-contractible. In case of non-vanishing flux the integral of the corresponding
field strength needs to satisfy Dirac quantisation conditions [38]:

1 1 .
| Hyez, —— | FezZ. 2.124
(2m)2e/ L ’ (2mval)rt L,, ’ (2420

In particular if we consider a CY manifold and we expand Hjz in a basis for
H3(Ys) = HAOHOIHMD@HRY  we can define the non trivial p-cycles that
are Poincaré dual to the basis elements and we get that the electric and magnetic
fluxes for Hj are given by:

1 A 1
(2m)2a! L Hs =ms (2m)%a/ L;k Hs = ensi, k=1,...,2hs+2
k
(2.125)

where again (ay, 3%) is the simplectic basis of H?(Ys) and (A, B*) is its dual basis
of 3-cycles. Doing the same analysis for the R-R sector F}, p-forms we get

1 A 1 .
| B=mt,, —| k= . k=1,.... 2k +2
i |, e ], P
]. A ]_ A
Fy=mb,, —J Fy = egny, I=1,...,h
271'\/& DI 2 RR (27(\/&)3 DI 4 RRI 1,1

. (2.126)
where D! and D; are non trivial 4- and 2-cycles that are Poincaré dual to D; €

HOY and DI € H®? regpectively. The contributions coming from Fy and F;
are vanishing since we do not have non-trivial 1- and 5-cycles in a CY manifold.



74 CHAPTER 2. BEYOND STANDARD MODELS
Poincaré dualities follow from

k k
Jaj:_ Bk:J&l/\B :5j7
A Bi Yo

Dx=-| D’=| DxnaD’ =0
DJ DK Ys

(2.127)

The presence of fluxes has a crucial consequence on the 10D space-time: non-
vanishing background fluxes back-react on the geometry of the compact space Yg
so that Eq. (2.71) does not represent anymore a valid decomposition of M. Im-
posing surviving 4D supersymmetries in presence of fluxes translates into milder
geometrical requirements on Yy then in the flux-less case. Having a well defined
6-dimensional spinor in case of non-vanishing fluxes implies that Ys has to be a
SU(3)-structure manifold |39, 40, 41]. This means that a connection that satisfies
Vg,, = 0and Eq. (2.73) may show a non vanishing torsion [42, 43, 44]. A Calabi-
Yau manifold is a particular SU(3)-structure manifold where this connection has a
vanishing torsion. Among the possible 4D N = 1 Minkowski vacua that are com-
patible with flux-compactifications, we focus on models where the non-vanishing
torsion on Yy connections causes a slight deviation from the CY space and the 10D
metric takes the warped compactification form

ds* = Wy datda” + 724 Wg, . dy™dy™ | (2.128)

where ¢, is a CY metric and A(y) is called the warp factor and is a function on Y.
These are called warped compactifications since they lead to warped (conformal)
CY manifolds [45, 46, 47, 48|. This class of solutions allows for R-R 5-form, R-R
3-form and NS-NS 3-form fluxes. The relevant 3-form flux is given by G5 that is

a combination of F3 and Hj R
G3 = Fy — SHy (2.129)

that needs to satisfy the imaginary self duality condition

and Géo’?’) = (. If the inverse of the warp factor can be safely neglected we can
keep on using results from CY-compactifications that we developed in the previous
sections. This is the case in the limit of large volume in the extra-dimension since

gs]\fo/2
A ~140 ( i ) (2.131)

where R is the typical radius of extra dimensions and N measures the units of flux
of G3.
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Of course any additional object introduced in the compactification can in prin-
ciple backreact on the geometry and destroy the conformal CY structure. Never-
theless it can be shown that flux sources as D3/D7-branes and O3/O7-planes
preserve the same type of supersymmetry as warped compactification models.
Therefore in what follows we will focus on warped compactifications in presence of
D3/D7-branes and O3/O7-planes and we will perform computations in the extra-
dimensions large volume regime so that we can safely neglect warping effects on
the moduli space of the conformal CY manifold.

The Bianchi identities for the 10D R-R forms F}, in absence of local source, Eq.
2.123, need to be valid on the compact manifold Y, this implies a constraint coming
from a generalisation of Gauss’s law that fixes the value of the integrated version
of Eq. (2.123). This is called Cy tadpole cancellation condition and derives from
computing the equations of motion for the R-R field C. Since the integral of dF; on
Ys vanishes, this would imply that the integral of H3 A F3 (which is positive definite
thanks to the imaginary self-duality of G3) should vanish as well. We conclude
that in absence of local sources, Cy tadpole cancellation implies vanishing fluxes.

In order to have flux compactification with non-vanishing background fluxes,
we need to add to the theory local sources that carry D3-brane charges, such
as D3/anti-D3-branes, wrapped D7-branes and O3/O7-planes. Considering the
presence of D3-branes and O3-planes, Eq. (2.123) the Bianchi identity for Fj
becomes

dF; — Hy A Fy = 2nvVa/) o, g8 = i3 Y 78 + po, Y e (2.132)
a b

where pi° represents the dimensionless localised D3 charge source while 7§ and 7§

are 6-forms Poincaré dual to the support of the D3-branes and O3-planes respec-
tively. The D3-brane and the O3-plane charge, u3 and po,, are given by

1 1
n3 = W7 Hos = H3Q3 = —5,“3 (2-133)

and we see that O3-planes, carrying negative D3 charge allow us to satisfy tadpole
cancellation in presence of non-vanishing fluxes. The schematic condition on RR-
tadpole cancellation becomes

1
ND3__ 0s +

(2m)ta’ Jy,

where Np, is the number of D3-branes and Np, is the number of O3-planes.
Other contributions to D3-brane tadpole cancellation may come from the pres-
ence of D7-branes, O7-planes and gauge fluxes on D7-branes. The generalisation
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of Eq. (2.134) is given by [19, 50, 38]:

Nosi X Fow XI'pre) FD?“
Niux + Z NDBb_Z 5 + Ngauge — Z Z =0,
D3b,D3v 03° o7 Dre D7a’
(2.135)
Nux = —, H3z A F3,
i (2m) 4a 2 f 3N ( )
2.136
Ngauge = ZYRYIND) Z J fa+
- (2n)fa pra,pra’ VED70

where Npza is the number of branes that wrap the internal divisor I'pre, I'p o =

Q(—1)frolppe = (—]_)pTHO-FDpa is the orientifold image of the divisor I'p,« wrapped
by the Dp-branes, x(I') = {c2(T") denotes the Euler characteristic of the cycle T
and F* is the gauge invariant open string field strength. The latter is given by
F* = 1*By + 2w/ F* where (*By € Hy(I'ppe) is the pull-back of NS-NS 2-form
from Y5 to the holomorphic cycle wrapped by the stack of D7-branes. The form
B, can be decomposed through orientifold involution into Bf € H (I'py) and
By € Hy (I'ppa); while By takes continuous values and appears in the Go form,
By is quantised and has to take discrete values due to the Freed-Witten anomaly
cancellation [51, 52]. We call F+ = 1* By + 2w/ F* the relevant quantised gauge
flux that appears in the consistency conditions. It is important to remark that the
gauge flux can be non-vanishing only inside the compact dimensions Yg in order
to preserve 4D Poincaré invariance.

Other constraints come from the equations of motion of C5 and Cg, these are
also called D5- and D7-brane tadpole cancellation conditions. From C5 tadpole we
get

3 (cl(b*fw) A [Dpre] + 1 (eaF) A [rW]) Awr=0 (2.137)

D7a

where {w;} € H"(Ys,Z), primes denote again the Q(—1)"7c image, [['pe] € H{,
is the Poincaré dual to the 4-cycle I'p7. and ¢, F® denotes the push-forward from
the D7-brane to the CY manifold. Finally Cs tadpole constraint look like

> Npze ([Cpre] + [Cprer]) = 8 Y [Tori] (2.138)
D7a o7,

If there there are no elements in H; (Y5), the D5-brane tadpole cancellation con-
dition is automatically satisfied and the contributions coming form the orientifold
images in Eq. (2.135), (2.136) just give a factor two. Tadpole cancellation condi-
tions are related to the quantisation conditions but they also constraint the local
sources content of the theory.
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We finally mention that, despite conserving the same kind of supersymmetry,
the presence of D7-branes modifies the geometry of the 10D space-time. in this
case, the extra-dimensions are not represented by a conformal CY anymore (i.e.
it is not Ricci-flat) and, being magnetically charged under Cj they backreact on
the axio-dilaton that acquires a non-vanishing dependence on the Ys coordinates.
This would require to study compactifications in the context of F-theory solutions.
Moreover, in order to break supersymmetry from N = 1to N = 01in a controllable
way, we will need to introduce non-vanishing G component of the 3-form flux.
In the following sections we then assume that mtroducmg a limited number of D7-
branes, considering small contributions to G ) and working in the perturbative
limit gs « 1 will lead to extra-dimensions manifolds that can be considered as small
perturbations of warped compactifications. These conditions, combined with the
requirement of a large Yy volume may allow us to keep on using the results obtained
in Sec. 2.3.5.

2.3.7 Flux-stabilisation and no-scale structure

As we saw in the previous section the presence of 3-form fluxes backreacts on
the 10D metric, changing the geometry of Y thus putting some constraints on
4D supersymmetry conservation and on model building. On the other hand, it
allows for a non-vanishing tree-level superpotential that leads to axio-dilaton and
complex structure moduli stabilisation and may spontaneously break the residual
N =1 supersymmetry. In order to show how flux-stabilisation works, let us focus
for simplicity on orientifold projections having iy ; = 0. In presence of background
fluxes, the tree level superpotential takes the Gukov-Vafa-Witten superpotential
form [53]:

Wie(S,U%) = | 917Gy (2.139)
Ys
where the complex moduli dependence is encoded in ) while the dependence on

the axio-dilaton comes from G3. Indeed, after performing orientifold involution,
we have that (G35 can be decomposed as:

Gs =m*a,_ +e, %, a =1,...,hy, (2.140)
where
me = ﬁﬁ{R S Th?\fs, €o. = €RRa. — 1S ENSa_ (2141)

and (a,_, %) is the symplectic basis of H;. In the low energy/large volume
approximation, the coeflicients érp/ng,_ and m‘;;ws that come from Eqs. (2.125),
(2.126) appear as 2h, , + 2 continuous complex flux parameters which deform the
low energy supergravity.
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In case of non vanishing fluxes we saw that the tree-level superpotential in Eq.
(2.139) does not depend on Kéhler moduli. This implies that:

Dy = Wyee K7, (2.142)

where T' is a generic Kéhler field. Thanks to the factorisation of the moduli space
of Eq. (2.122), the tree-level F-term scalar potential of Eq. (2.118) is given by

Vi = eK( 3 KO‘BDQWDBV_V) + eK<Z KK K; — 3)|W|2

aB=Uj;,S i=T"

_ K af i

—e ( Y K DQWD5W> (2.143)
a=U;,S

— (Y, KUDy, WD W+ K55 DsWI) 2 0
g k=1,..,hY?

since )
(KYK;K; —3)=0. (2.144)

The relation in Eq. (2.144) is called no-scale structure and comes from the struc-
ture of the tree-level Kéhler potential: Ky = —2In(V). Since V is a homoge-
neous function of degree 3/2 in the real part of Kéhler moduli 7;’s we have that
VAR = M2V(1;) and Kiree(ATi) = Kiree(Ti) — 3In(\) that imply Eq. (2.144).
The only Kahler moduli dependence of the scalar potential lies in the prefactor
effocV =2 and induces a runaway in the Kihler directions as can be easily seen in
the case of a single Kéhler modulus where V = (T + T)%?2,

At tree-level, the no-scale structure scalar potential of Eq. (2.143) is positive
definite and we can supersymmetrically stabilise the complex structure moduli and
the dilaton imposing that the F-terms related to those fields vanish. Since F-terms
are given by )

F1 = XK D ;W (2.145)

having a supersymmetric stabilisation for dilaton and complex structure moduli
translates to
DsW = Dy W = 0. (2.146)

This gives rise to hY? + 1 complex equations that look like

1 _
DgWitee = ————= QOAG3=0, 2.147
sWy S+5 v N G ( )
DyaWiree = zj X*ANG3=0. (2.148)
Ys
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In Eq. (2.148) we used the relation Dy«{3 = iy, where , is a basis of H"(Yg).
The equations (2.147) and (2.148) imply that Ggo’g) = 0 and Gél’z) = 0 respectively.
Therefore we conclude that in order to have a supersymmetric minimum we need
(G5 to be imaginary self-dual xG3 = iG5. The same constraint applied to Kéhler
moduli fields is given by setting Eq. (2.142) to zero. This implies Wieee = 0
that translates into G§3’°> — 0 and Gy € H*Y. Thus we can immediately deduce

that the class of models that allows for the stabilisation of the complex structure
moduli and the dilaton at a supersymmetric global minimum is given by the warped
compactifications discussed in Sec. 2.3.6.

In the following sections we assume that S and U® are stabilised by background
fluxes and can be integrated out. This is true if quantum corrections give rise to a
scalar potential that induces subleading corrections to their VEVs, in which case

we are allowed to set

WO = V[/tree|<Ua>7<S> = <J Qg X G3> (2.149)
Ys
and
Kiree = _ZIH(V) —In (3) + K ) (2150)
Js
where

g7t =(Re(9)), e = <—¢LG Q3 A Qg> : (2.151)

The presence of fluxes allows the stabilisation of complex structure moduli and
the axio-dilaton without breaking the four dimensional N = 1 supersymmetry.
Nevertheless, it does not provide a working mechanism for Kihler moduli sta-
bilisation. These remain classical flat directions due to the continuous rescaling
symmetry that is encoded in the no-scale structure condition of Eq. (2.144). This
implies that in order to develop a potential for Kihler moduli we will need to keep
all possible quantum corrections that will be introduced in the next section.

2.3.8 Kahler Moduli stabilisation

We saw that the presence of fluxes allows to stabilise complex structure moduli
and the axio-dilaton, while Ké&hler moduli are flat directions at tree-level. Nev-
ertheless, various quantum corrections can break the no-scale structure leading
to a non-vanishing potential for Kéhler moduli. In particular, Kahler potential
receives corrections at every order in perturbation theory. On the other hand, the
superpotential is protected against perturbative corrections, thanks to the non-
renormalisation theorem, and receives only non-perturbative corrections. We can
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write schematically
W =Wy +W,,, K = Kiree + K, + Ky (2.152)

where the subscripts p and np stand for perturbative and non-perturbative cor-
rections respectively, while W, and K. are the tree level contributions given in
Eqgs. (2.149),(2.151) and (2.150). As we mentioned in Sec. 2.3, the 2 parameters
involved in perturbation theory are g, and «'. g5 is related to the dilaton VEV
and controls the strength of string interactions while o/ measures how the internal
curvature of the extra dimensions is related to the string length and controls the
appearance of higher dimensional operators. Both these parameters need to be
small in order to treat the EFT perturbatively. Non-perturbative corrections are
instead related to the presence of local sources, as D3/D7-branes. These can be
due to D3-instantons or gaugino condensation on a stack of D7-branes.

All the corrections that we are going to introduce are able to develop a potential
for Kahler moduli and may break 4D supersymmetry. On the other hand, from a
10D perspective, they break the warped compactification geometry. Therefore we
need to give the reader some intuition about the fact that we can interpret these
corrections as small perturbations of the warped geometry. In the previous section
we showed that axio-dilaton and complex structure moduli can be stabilised at a
supersymmetric minimum that satisfies the warped geometry constraints that we
introduced around Eq. (2.130). The volume dependence of the tree-level F-term
potential can be read from Eq. (2.145 and is given by Vigee ~ V2. All the
corrections that we are going to study can be expanded in inverse powers of the
overall volume and they scale as ~ V¢ where ¢ > 2. Since we are going to work
in the large volume scenario, where the overall volume of extra-dimension is expo-
nentially large, we immediately understand that additional contribution leading to
Kaéahler moduli stabilisation can be interpreted as small perturbations around the
supersymmetric background that belong to the class of warped compactifications.

Non-perturbative corrections The superpotential non-perturbative correc-
tions can be generated by Euclidian D3-brane (ED3-brane) intantons wrapping
4-cycles in the extra dimensions manifold and by gaugino condensation on a stack
of D7-branes also wrapping a 4-cycle. In both cases, the form of the superpotential
looks like:

W =Wy + ) A(S, U ¢)e T (2.153)

where A; correspond to threshold effects, they are functions of the complex struc-
ture moduli, the axio-dilaton and the fields £* which parametrise the position of the
ED3/D7-brane that wrap the 4-cycle whose volume is parametrised by 7; = Re(T;).
The value of the coefficient a; depends on the physical mechanism that induces the
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correction: in case of ED3-brane instantons a; = 27, while for gaugino condensa-
tion it is given by a; = 27/N where N is the number of D7-branes in the stack.
In principle, there can be other higher instanton effects but they can be safely
ignored as long as a;7; » 1. The contribution of non-perturbative corrections to
the scalar potential is given by

Vnp ~ €K0Kéj [ajal-A,flje*aiTi*ajTj - (aiAieiaiTiwaijO
v (2.154)
+CLjAj€7ajTjW5TiKQ)] .

o/ corrections As already mentioned, o' corrections control the presence of
higher derivative terms. The leading order o’ correction descends from a 10D
curvature correction that is given by [54]

M, (@) R
10 — Pyg ;
SDJd XV G[ 5 R+3.25 6] (2.155)

where Mp,, is the 10D Planck mass, R is the 10D curvature, ¢ is the Riemann
zeta function, R is a quartic invariant constructed from the Riemann tensor and
M? = 4/a’ is the mass of the first excited level of type II superstring. The latter
represents a physical cutoff because it appears upon integrating out the massive
excitation of the string. In the 4D effective theory the leading order perturbative
correction takes the form |55]:

§

K= —21n(v+2%/2) = Ky~ 5 +O(V?),
" 957V (2.156)
(= _M
202m)°

The Euler characteristic of the CY manifold can be expressed in terms of Hodge
numbers but, in general, the presence of an O7-plane in the compactification can
affect the form of the o correction, inducing a shift in x(Ys) that gives rise to an
effective Euler characteristic [56]:

Yer(Ye) = x(Ys) + 2 | Doz A Dor A Doy (2.157)
Ys

where Doy is the 2-form that is Poincaré dual to the divisor wrapped by the O7-
plane. In presence of O7-planes, the right form of the leading order o/ correction
is given by Eq. (2.156) where we replace x(Ys) with xes(Ys). From Eq. (2.156) it
is easy to derive that o expansion can be seen as an expansion in inverse powers
of the overall volume. We can therefore conclude that it is well defined only if
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we consider large values for V. These corrections break the no-scale structure for
Kahler moduli and, at leading order, give rise to the following contribution to the
scalar potential

3EWE

492/21/3 '

Vi = (2.158)

String loop corrections These corrections come from loop effects in space-time
corresponding to higher-genus string world-sheets and can be related both to the
bulk strings and to those located on local objects as Dp-branes. These corrections
have been explicitly computed only for N' = 1 compactifications on toroidal ori-
entifolds with D5/D9- and D3/D7-branes [57, 58]. Nevertheless, it is possible to
extend those results to more general CY compactifications, finding out the string
loop corrections dependence on the dilaton and the overall volume of extra dimen-
sions [59, 60, 61, 62]|. String loop expansion is governed by the parameter g, and
shows two main types of contributions: Kaluza-Klein and winding corrections:

0K, = 0KE" + 0K (2.159)

e Kaluza-Klein corrections: these contributions come from the exchange
between D3-branes (or O3-planes) and D7-branes (or O7-planes) of closed
strings carrying KK momentum. These can be parametrised as

ht _

= CEE(U,U)
SKEK N2 A Z gl 2.160
gs 221 RQ(S)V 1 ( )

where CK¥ are unknown functions of complex structure moduli and ¢ is the

linear combination of 2-cycles volumes ¢/ that controls the distance between
D3-branes/O3-planes and D7-branes/O7-planes.

e Winding corrections: these corrections come from the exchange of closed
strings with non-vanishing winding between intersecting stacks of D7-branes
(or D7-branes and O7-planes).

w (U, 0)
7 Y
SKY ~ E A (2.161)

where C}V are unknown functions of complex structure moduli and ¢ is the
2-cycle parametrising the volume where D7-branes/OT7-planes intersect.

The contribution of these corrections to the scalar potential at 1-loop order for
a general CY is given by

We (o (CFFY w
~ — — Koy — 20K . 2.162
BERE (Z (Re(3)2 0~ 2. (2162
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2.3.9 Large Volume Scenario

The Large Volume Scenario (LVS) |63] describes a way to stabilise Kéhler mod-
uli using the interplay between non-perturbative corrections to the superpotential
and the leading order o correction to the Kéhler potential:

K =Io—2In(v+5) 2.163)
W = W() + Zz AieiaiTi .

where f = %/2 In this setup both complex structure moduli and the dilaton get
g

stabilised at tree-level as explained in Sec. 2.3.7. Peculiarities of the Large Volume
Scenario (LVS) are:

e We find a non-supersymmetric anti-de Sitter minimum of the scalar potential
at exponentially large volume.

e Non perturbative effects do not destabilise the flux-stabilised complex struc-
ture moduli and the dilaton.

e Supersymmetry is mostly broken by the F-terms of the Kadhler moduli

e The gravitino mass is exponentially suppressed with respect to Mp, allowing
to get low-energy supersymmetry in a natural way.

In addition LVS stabilisation holds if A{; > 1 and the leading order o’ correction
generates a positive contribution to the F-term scalar potential, i.e. if hy, > hf’l
so that x(Ys) < 0. In the simplest setup, the volumes of the compact space takes
the so called "swiss-cheese" form:

hi -1
V=al|n- Y N (2.164)
i=1
where TE 2 s a large 4-cycle controlling the size of the extra-dimensions, 7'Z-3/ > are

local blow-up modes while o and A; are coefficients related to the intersection
numbers of the compact space. In the simplified case of hil = 2, hy; = 0, after
complex structure and dilaton stabilisation, the leading contribution to the F-term
scalar potential is given by

8a2|As|®V/Ts —2as7s | 4WoAslasTs —ayr 3|Wo 2€
Vi ~ San e T 4 e T cos(asps) + (2.165)
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where the subscript s is referred to the single local blow-up mode whose Kéhler
field is defined as Ty = 75 + ips. The first step in the LVS procedure is given by p;
stabilisation at

as(ps)y =+ 21k, kelZ. (2.166)

after which the F-term potential becomes

V ~ 8a§|A5|2\/TiSe*2asTs _ 4|WOAS|CLSTS e*asTs + 3|WO|2§ X
3aV g 1% 43

(2.167)

Looking at the previous equation, we see that there is a particular limit in which
this scalar potential approaches zero from below:

Y — w0, as7s = In(V) (2.168)

this is called LVS limit. Imposing the previous constraint, Eq. (2.167) can be
re-written as Viyg:

8022 As]2\/In(V)  A|WoAs|In(V) | 3|Wol2€
Vivs = 3aV3A, — 0V3‘ " |4\33‘> ‘. (2.169)

where we see that that the second term overcomes both the first and the third
term. Therefore we have, at leading order, that the scalar potential approaches
zero from below:

In(V)
V3
Since it can be shown that, at smaller volumes (but large enough to allow o
perturbative expansion), the dominant term in the scalar potential might be either
the first or the third one and they can be shown to be both positive definite, we
get that the potential, approaching zero from negative values in LVS, must show
a large volume anti de-Sitter minimum. The minimum of this potential is given
by the value of the volume at which the second term starts dominating the other

two terms, we can conclude that this occurs for large values of In(V').
The proper LVS stabilisation sets the following values for the overall volume
and the small cycle VEVs:

Vivs ~ — [WoAL| (2.170)

32 o & 149 —as(rsy _ 3y/Ts|Wol (1 — 4e,) 5 171
<TS> 2( + 65) 5 e 4as|AS|V (1 _68) , ( ) 7 )

where X
& =1—~0(mWV)]) «1. (2.172)

From the previous equations we see that the LVS minimum lies at exponentially
large volume V ~ e®™ » 1 and, contrary to the KKLT setup [64], does not re-
quire any fine-tuning on the tree-level superpotential Wy ~ 1 = 100. On the other
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hand, since the value of the scalar potential in its minimum gives the value of
the cosmological constant we must find a way to uplift this negative minimum to
a de-Sitter vacuum. This can be done by switching on magnetic fluxes on D7-
branes [64], adding anti D3-branes [65, 66, 67, 68, 69, 70, 71, 72|, hidden sector
T-branes 73], non-perturbative effects at singularities [74] or non-zero F-terms of
the complex structure moduli [75]. If some of the K&hler moduli do not appear in
the superpotential, then their axionic partners, i.e. the imaginary parts of Kéhler
moduli, remain unstabilised giving no contribution to the scalar potential. This is
what happens for the imaginary part of the volume modulus p,. We can also see
that the LVS minimum must be non-supersymmetric since Vp ~ O(1/V3) at the
minimum while eX|W? ~ O(1/V?) ~ M-

In LVS models provide a natural hierarchy between energy scales that can be
parametrised by inverse powers of the overall volume; this is shown in Table 2.1.
In this setup most of the moduli receive a mass of order ms/, except for the volume
mode and its related axion p.

Reduced Planck mass ~ 10" GeV
String mass M, = Mp/V'/?
Kaluza-Klein scale My = Mp/V*3
Gravitino mass mgn = MpWo/V
Volume modulus mass | M, = MpWO/V3 2
Volume modulus axion M, ~0

Table 2.1: Relation between energy scales in Swiss-cheese LVS models.

2.3.10 Axions and ALPs from strings

The low-energy spectrum below the compactification scale generically contains
many axion-like particles which arise either as closed string axions which are the
Kaluza-Klein zero modes of 10D antisymmetric tensor fields or as the phase of
open string modes. While the number of closed string axions is related to the
topology of the internal manifold, the number of open string axions is more model
dependent since their existence relies upon the brane setup. It is essential to notice
that, although string compactification suggests plenty of candidates for axion and
axion-like weakly interacting particles, there are several known mechanisms by
which they can be removed from the low energy spectrum.
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Closed string axions

In String Theory axion like particles coming from closed string modes arise from
the integration of p-forms gauge field potentials over p-cycles of the compact space
[21]. In what follows we consider type IIB where axions arise as integration of the
NS-NS 2-form B, and R-R 2-form Cy over 2-cycles ¥1 or from integration of R-R
4-form Cy over 4-cycles ¥I. Another axion is given by R-R 0-form Cj. In order to
understand where these axionic particles come from, we define the set of harmonic
(1,1)-forms Dy, I = {1,...,h11} that comprises the Dolbeault cohomology group

H"“'(Yg) and the dual basis D; of H>?(Ys) that satisfy the following normalisation
condition:

D’ = /67, D’ = (a/)?%57 . (2.173)
>3 >4
The 4D axion-like fields arising in N/ = 2 4D supergravity from CY string com-
pactifications are:

1 1 1
by = — By C]:_,j Co; PI = 75
a Jst (

o Iy e . Cy. (2.174)
These are the scalar degrees of freedom appearing in the four-dimensional 2- and 4-
forms of Egs. (2.96), (2.97). As we saw in Sec. 2.3.5, after orientifold involution the
cohomolgy group H'! splits into a direct sum of orientifold even and orientifold
odd 2-forms cohomology. Therefore, D! decomposes into D+ (even) and Di-
(odd) respectively, where iy = 1,...,h%" i =1,...,hY" and RY' 4+ A = ML
After we determine the invariant scalar degrees of freedom, we need to rearrange
them into the bosonic components of chiral multiplets of N/ = 1 supersymmetry.
The proper coordinates of moduli are the axio-dilaton (S), the 2-form field (G*-),
Kéhler moduli (77, ) and complex structure moduli (U*~) that we defined in Egs.
(2.109 - 2.112), s(2.115). The axionic content of the N/ = 1 EFT coming from
closed string modes is then given by the fields Cy, ¢; , b; , p;,, whose number
depends on the geometrical structure of extra dimensions.

Due to topological charge quantisation, closed string axions appear in the theory
equipped with a periodicity that is equal to integer multiples of the Planck mass:

a=a+k k’EZ, a = {Co, Ci_, bi_, pz+} (2175)

and enjoy a continuous shift-symmetry. The continuous symmetry related to C)
and b;_ is broken by the presence of background fluxes or Dp-branes, while Cy and
(5 axions are stabilised through non-perturbative effects. The decay constant of
these axion fields is determined by the eigenvalues of the Kahler metric K;7. We
will focus for simplicity on C, axions, but similar arguments hold for Cy, Cy and
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Bs axions. The kinetic part of the 4D Lagrangian will contain the following terms
associated to T;

L > K;0,To"T = % (0,707 + 00" 0" p) (2.176)
where K;; = aﬁ;{ﬂ and K is the Kahler potential of the theory. Given the period-
icity of Eq. (2.175) and since in usual situations we want to interpret the axion field
as an angle, first of all we have to diagonalise the Kéhler metric and find the axion
metric eigenvalues \; and eigenvectors p;. These will have the same periodicity as
the original coordinates. After that, we define the canonically normalised axion

fields as ¢; = v/A\ip; M, (restoring proper powers of M,). The rotated Lagrangian
will look like [76]:

xhvy o1
Ekin ) Tﬁupiﬁ“pi = §6u¢i6u¢i . (2177)

The canonical axion periodicity is then given by:

M,
¢ — ¢i+2rfi  where fizki\/XQ—p (2.178)
m

and f; is the axion decay constant. The value of k; in Eq. (2.178) is determined
by considering non-perturbative corrections to the superpotential which break the
continuous 'y axion shift symmetry down to a discrete one and develop a potential
proportional to cos(a;p;) where a; = 27/N;, N; € NT. The periodicity is therefore
given by k; = N,.

As just mentioned, closed string axions that are massless at tree-level only get
a mass through non-perturbative corrections to the superpotential. Depending
on the stabilisation procedure, they can be either heavy or light. For instance,
working with Kéahler moduli, we have that if both axion and saxion are stabilised
through non-perturbative corrections to the superpotential, they will show a mass
degeneracy and their mass would be of the same order as the gravitino one ms/s.
The same happens if we stabilise the axio-dilaton using type IIB three-form fluxes
that break SUSY. On the other hand, in LVS models, we can find ways to stabilise
saxions using perturbative corrections to the Kéhler potential, thus allowing for
Mazion € Msazion ~ M3. This last case, where we can break mass degeneracy,
gives rise to a richer phenomenology and allows axion-like particles to span a wide
range of masses and decay constants. This goes under the name of string Axiverse
[76].

Open string axions

If we are dealing with Calabi-Yau manifolds which contain collapsed cycles carrying
a U(1) charge, we might work with open string axions coming from anomalous U(1)
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symmetries belonging to the gauge theory located at the singularity. Indeed, the
presence of these particles in the theory is not straightforward and requires several
constructions that we briefly list below. We will focus on an open string complex
scalar matter field C' = |C|e” which lives on a collapsed cycle, 74,. The general
form of the Kéhler potential and superpotential, which describe the theory for the
shrinked cycle near the singularity, are given by

A 2
.
K =—-2In <v + g) + Aseq% + Konatter (2.179)
h11
W =Wo+ > Aie ™" + Wiaer , (2.180)

=1

where W, atter and K a1 are related to the matter sector contributions depending
on the field C. The general form of K, in presence of a single matter field is
given by

Katter = K(T;, T;)CC (2.181)

where T; = 7; + i p; are Kdhler moduli. In order to understand the properties of
the ultra light axion candidate, o, we sum up the moduli stabilisation procedure
for sequestering scenario in LVS models, |77, 78, 79]. Since we want to have an
ALP, we need to find a Peccei-Quinn mechanism related to the breakdown of the
U(1) associated to C, such that {|C|?) # 0. This can be achieved through D-term
scalar potential stabilisation that allows us to fix a combination of the matter field
|C| and 74, given by

| C|2 oK

OTseq

(2.182)

This combination fixes the supersymmetric partner of the axion that is eaten up
in the process of anomaly cancellation. For sequestered models it is possible to
find that the closed string axion related to 7, is eaten up, while the open string
axion o can be still considered as a flat direction, i.e. it remains a good axion
candidate. The non-vanishing VEV and the mass of |C| can be found computing
soft-term corrections after super-symmetry breaking, they scale as

A 1 1

D~ pamm s e ™ Pamems (2.183)
where as = 3,4 depending on whether we are considering sequestering or super-
sequestering scenario respectively. We immediately see that working in LVS allows
us to stabilise both fields also ensuring the validity of the sequestered hypothesis,
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i.e. Tgq « 1. These axions will have decay constants which scale like

1 1 .
Jooy  TseqCy; when ag = 3;
2.184
footds i Tugors  when ap =4. (2.184)

Finally, we need a mechanism to develop a small but non negligible mass to o,
this can be achieved through hidden sector strong dynamics instanton effects. The
scale of strong dynamics in the hidden sector is

Apia = Ay e (2.185)

where, in our case, Agy = M, g72 = Re(S) and ¢ is an O(1) parameter that is
fixed by 1-loop [ function. These quantities fix ¢ mass scale to be

my = Mhial 7 (2.186)

Open string axions are more model dependent than closed string axions since
their presence relies on the possibility of having fractional D3-branes at del Pezzo
singularities. Nevertheless, allowing for decay constants at intermediate scales
O(10') GeV (much smaller that those ones predicted by closed string axions),
they are particularly interesting from the phenomenological point of view and are
the best candidates for representing QCD axion.

2.4 Inflation from string theory

Cosmic inflation represents the most promising extension of the Standard Cos-
mological Model and describes the period that precedes the standard Big Bang
cosmology. It provides a simple explanation for the homogeneity and the isotropy
observed in the universe on very large scales. Moreover, inflation can source the
temperature fluctuations observed in the Cosmic Microwave Background, as well as
the the primordial perturbations that gave rise to Large Scale Structure formation.

A key ingredient for the success of inflation is the presence of a scalar field (or
a combination of them) that undergoes a slow-roll motion for enough time, which
is attainable if its potential is sufficiently flat.

The aim of string cosmology is to provide a compactification that, after di-
mensional reduction, can lead to an effective 4D theory with a viable inflationary
dynamics and that can predict in the post-inflationary period (after reheating) the
right abundance of dark matter and dark radiation. Moreover it should be able
to reproduce the SM degrees of freedom and the standard cosmological history of
the Universe that we described in Sec. 1.2. As it can be easily guessed, this is far
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from being an easy task. Let us then give an overview of the major requirements
that such a theory needs to satisfy in order to be constructed with the current
technical and computational limitations of string theory.

The fundamental scale of string theory is the string scale M, = (o/)~'/2. At
energies £ « M, only the massless string state are exited and the theory can be
described as an effective 10D supergravity theory. If H < M, we can neglect truly
stringy effects while if H > M, inflation should be described in the full string
theory. Moreover, the compactification of the 10D space-time comes with a new
energy scale, the KK scale Mgx ~ M,/V~% that in the perturbative regime
should satisty Mgx « M. If we work at energies H « Mg the inflationary the-
ory can be described as a 4D EFT that might be supersymmetric or not depending
on the details of the compactification manifold and on the content of the theory.
We will focus on models where H « Mg so that we can use the results that were
developed in the usual EFT approach to inflation. Indeed, working with models
having H > Mgy requires to give a higher dimensional interpretation of inflation
and rethink many of the fundamental answers to the main problems related to the
standard Big Bang cosmology that have already been addressed in 4D. For this
reason we want to restrict our study to models satisfying

H « Mgg « Mg « M, (2.187)

and we will work in the Large volume scenario that satisfies this requirement, (see
Table 2.1).

In order to construct a string inflation model using a bottom-up approach
we need to provide a consistent string compactification choosing a specific extra-
dimension manifold and orientifold involution. We also need to introduce a set
of Dp-branes and Op-planes that must be consistent with background and gauge
fluxes that we turn on through each cycle. Choosing all these features in a con-
sistent way leads to a unique 4D Lagrangian whose accuracy relies only on the
current state of the art of the computations related to dimensional reduction. For
instance o and string loop corrections have been computed only to some order
and for certain geometries of the extra dimensions manifold. Nevertheless, assum-
ing that the dependence on the powers of the expansion parameters and of the
overall volume can be inferred from the known results coming from toroidal ori-
entifold T%/(Zy x Zs), we can find out those geometry that allow for a successful
inflationary dynamics.

Given the plenitude of moduli fields that arise after string compactification it
not easy to realise single field inflation in string theory. Indeed fields that have
masses comparable to or smaller than H can be classically and quantum mechan-
ically active during inflation. Therefore we should compute the full spectrum of
the 4D theory and distinguish between those fields that are heavy H « m and can
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be integrated out, fields having H ~ m that participate in driving inflation and
light spectator fields m « H that will be classically frozen during inflation but
that can affect physical observables through their quantum fluctuations, e.g. pro-
ducing isocurvature fluctuations which can be converted into density perturbations
through the curvaton mechanism. In general, any field having mass 0 < m, < %HQ
will develop quantum fluctuations during inflation. These fluctuations can carry
the field away from its minimum and store energy. When the energy density of the
universe becomes comparable to the field mass its classical part starts to oscillate
and its energy density scales as matter p, ~ T~?. After inflation and in particular
during radiation domination the energy density of the universe scales as p ~ T4
and the relative contribution coming from the field y increases p,/p ~ T. Thus
the field y may quickly dominate the energy density. Therefore moduli fields can
affect the thermal history of the universe. In particular, since moduli in general
show gravitational couplings, if they have a mass m, < 30 TeV, they decay dur-
ing of after Big Bang Nucleosynthesis spoiling the predictions coming from the
light elements abundance. This would of course be in contrast with experimen-
tal evidence. On the other hand, if moduli fields are too light their gravitational
coupling tells us that they would have not been decayed at present time and may
cause the overclosure of the universe or they would represent a fraction of dark
matter (or dark radiation if they are relativistic) that is too high compared to
the observed abundance. All these constraints go under the name of Cosmological
moduli problem (CMP) |80, 81, 82, 83].

From an effective field theory point of view, given the high sensitivity of infla-
tion to quantum corrections, a simple way to protect the flatness of the inflationary
potential against them is to assume a symmetry that forbids any dangerous op-
erator. Nevertheless using an EFT approach shows some limitations due to the
incomplete knowledge of the UV structure and in particular of quantum gravity.
It is then crucial for any effective inflationary model to be embedded in an UV
complete theory, such as string theory, where we have a complete formulation of
quantum gravity and in principle all the corrections to the inflationary potential
can be in principle explicitly computed at any order [84, 85, 86, 87, 21]. Working
with a compact space we cannot have a complete decoupling between different
sectors in the geometric regime. This means that we cannot treat moduli sta-
bilisation and the inflationary dynamics as separated problems. Integrating out
massive fields which couple to two different and geometrically separated sectors
can lead to higher-dimensional operators that are less than Planck-suppressed and
may spoil the flatness of the inflaton potential. For instance, the couplings between
spatially separated D-brane sectors will be at least gravitational (one exception is
given by sequestered scenario). This kind of problems arise each time we have a
moduli-stabilising energy that is generically of the same order as the inflationary
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energy and goes under the name of eta (n) problem [84, 85]. In A = 1 super-
gravity, Planck-suppressed corrections more often appear in Kéhler potential than
in the superpotential that receives only non-perturbative corrections due to its
holomorphicity. Indeed the main source of relevant Planck-suppressed operators
comes from o and string loop corrections. Besides, in string theory, it is possible
to justify the presence of symmetries that protect the flatness of the potential from
a top-down perspective. In particular, two common approximate symmetries that
we are going to introduce in the next sections and that have led to the construction
of inflationary models in string theory are: i) non-compact symmetries associated
to Kéhler moduli fields, the so called extendend no-scale structure [88], and ii)
compact symmetries associated to axion fields [89, 90].

In addition embedding inflation in a fundamental theory, like string theory, is
the only way to study the reheating period. This indeed requires to know what
are the relevant degrees of freedom at the inflationary epoch and what are the
couplings between the inflaton field (or fields in case of multifield inflation) and the
other light fields in the theory belonging both to hidden sectors and to the visible
sector (standard model particles). Knowing the microscopical field dependence of
such couplings (that can only be a function of the string length and of the VEVs of
heavy fields) can allow us to give a precise estimate of the different branching ratios
related to the inflaton decay into visible, dark matter and dark radiation particles.
This would potentially restrict the allowed number of string vacua that need to be
considered in order to reproduce inflation together with standard cosmology and
the SM.

In the rest of this thesis we will be dealing with large field inflation models:
these are models where the distance travelled by the inflaton during inflation is
trans-Planckian A¢ » M,. It was first pointed out by Lyth [91] that these models
are the only ones that can give rise to detectable primordial gravitational waves.
Nevertheless finding a trajectory in field space that is large in Planck units and so
flat that it is suitable for inflation is not an easy task [84, 85|. The simplest example
that describes this problem in the context of low-energy supergravity descriptions
is given by writing down all the possible corrections to the Kéhler potential

(I)(I)T i+1
j p

)

where K, is the classical Kahler potential and ¢; are either constants or functions
of other fields in the theory. Given that in large field inflation ¢ > M,, unless ¢;
turn out to be very small, the series is badly divergent, the theory is not really
described by the classical Kdhler metric and the inflationary dynamics can be
destroyed. This kind of argument was used for instance to constraint the allowed
field excursion in D3-brane inflation in a warped throat region [92]. Notice that
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small field models, despite A¢ « M,, can still be destroyed by Planck-suppressed
higher-dimensional operators. This is the famous 7n-problems whose solution in
general requires fine-tuning. An interesting setup where it seems to be natural to
look for large inflation models is the closed string sector where the field ranges
correspond to distances in the space of geometric moduli. A prominent example
is given by the decompactification direction that is an infinite direction in the
moduli space. We saw that in 4D EFT coming from string theory the tree-level
Ké&hler potential is a function of the overall volume, K = —2]\/[5 In(V), so, defining
the canonically normalised radius modulus as R = M,+/2In(V), it is easy to see
that the range of R between a fixed volume ), and the decompactification limit
YV — oo is arbitrarily large. We will see that a viable large-field inflation model
that comes from similar considerations and does not require fine-tuning is given
by fibre inflation, where the inflaton field is given by a modulus measuring the
volume of a K3 fibre.

We start the next section giving a brief review of Kédhler moduli inflation,
focusing in particular on Fibre inflation models that will be further analysed in
Chapters 3 and 4. After that, we quickly summarise axion inflation models and
their possible embedding in string theory.

2.4.1 Kahler moduli inflation

One of the first ideas related to string cosmology was that the role of the inflaton
field could be played by a modulus. One of the most characteristic features of 4D
EFT from strings is the presence of the overall volume modulus and of Kéhler
moduli in general. In addition these fields are flat at tree-level thanks to the
no-scale structure that we discussed in Sec. 2.3.7 and they can get stabilised by
quantum corrections whose form depends on the geometry and the field content
of the compactification. This means that different compactifications give rise to
different Kédhler moduli potentials that may lead to both small and large field
inflation models.

Historically the first proposal was Racetrack inflation [93]|. This model consid-
ers a KKLT-like compactification with a single Kdhler modulus 7" that represents
the inflaton. As we already mentioned, the overall volume has an arbitrary field
range that goes from fixed values to arbitrary large values corresponding to the
decompactification limit. Therefore this setup can be a breeding ground for large
field inflation. The axio-dilaton and complex structure moduli are assumed to
be stabilised by background fluxes. The only difference with standard KKLT is
that the non-perturbative corrections to the superpotential arise through gaugino
condensation in a theory with a product gauge group as SU(N) x SU(M):

W =Wy + Ae T 4+ Be T (2.189)
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where a = 2r/N and b = 27/M and Wy, A and B can are constants that depend
on the VEVs of the flux-stabilised moduli. In addition ,in order to break super-
symmetry, the model requires the presence of an anti-D3-brane in a warped throat
region that lead to a scalar potential contribution of the form

p
0Vpg = T+ TP (2.190)
where p depends on the warp factor at the location of the anti-D3-brane. For
suitable values of the parameters A, B, a, b, Wy, p the potential can develop a
saddle point that can be suitable for inflation. Different models have been created
such that the inflationary dynamics mainly takes place along the overall volume
axion Im(7") or modulus Re(T)[94, 95]|. Nevertheless, some of these models require
a consistent amount of fine tuning, others need large values of N and M that may
be difficult to construct in explicit compactifications since D7-branes, backreacting
on the the geometry of extra dimensions, may lead Yz away from conformal CY
structure. Furthermore, the validation of this model would require to perform
a full Kahler moduli stabilisation adding o' and string loop corrections to the
Kéhler potential. Given the high level of fine-tuning required to have a successful
inflationary dynamics, these terms can in fact destabilise the Kéhler modulus or
spoil the flatness of the inflationary potential.

Other interesting models of K#hler moduli inflation have been constructed in
the Large Volume Scenario. Given that o/, KK and winding corrections to the
Kahler potential scale as

sikE L SEW ~ g Ko ~ — (2.191)
gs V' gs s Hy’ SRV :
one may think that in the large volume limit KK corrections may overcome o/
corrections. Actually, it has been shown that, despite KK corrections dominate
over o/ corrections, the former cancels to a certain degree in the scalar potential,
this is known as ezxtended no-scale structure [61]. We can schematically see how
this happens studying the simplest example with a single Kédhler modulus. We
can write the Kahler potential as
§ VT
K = —-2In(V) v + v (2.192)
If we assume that the superpotential is constant W, we find that the scalar po-
tential is given by

2

W . 11
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The first zero in the previous expression is related to the standard no-scale struc-
ture, while the second one is a consequence of the extended no-scale structure.
It is easy to see that, despite the leading order corrections in Kahler potential
comes from KK modes, the higher contribution to the scalar potential is instead
given by ' corrections. In LVS Ké&hler moduli inflation this feature partially pro-
tects the flatness of the inflaton potential. Nevertheless, it is mandatory to check
whether additional contributions coming from ¢, and higher order o' corrections
may become dangerously large.

A concrete example that suffers form this problem is Blow-up inflation. This
model arise from a swiss-cheese compactification in LVS where the CY threefold
takes a so-called ‘strong Swiss-cheese’ form:

Nsmall

V=N 3 N (2.194)
=1

where 7, controls the volume of the extra dimensions and 7; are small blow-up
cycles. Complex structure moduli and the dilaton need to be stabilised by back-
ground fluxes while the total volume V as well as the volumes of the Ny rigid
blow-up divisors 7; are fixed following the LVS procedure |63, 62| where the lead-
ing order o/ corrections to the Kéhler potential [55, 56, 96] are balanced against
non-perturbative contributions to the superpotential [65]. The minimal field re-
quirement for a working model is to have at least 3 Kéhler moduli fields: the
volume cycle 7, and two blow up cycles, 75 and 74, one of which plays the role of
the inflaton

V=a (75/2 e AST;?/?) . (2.195)

The superpotential has the following form
W =Wy + Aje %o + Age®Ts . (2.196)

In order to drive inflation without affecting LVS stabilisation 7, needs to be dis-
placed by its VEV and its motion should not affect {(r,) and (7). After LVS
stabilisation 7, and 7, can be integrated out and, for large values of 7,, the effec-
tive inflationary potential becomes:

V(g) ~V, (1 . 01V5/3¢4/36_62V2/3¢4/3) (2.197)

where ¢ = 1/4)\s/ (3V)7';;/ % is the canonically normalised inflaton, while Vo ~

W2EV3, ¢; ~ €1 and ¢, ~ 1 can be considered as constant values. In order
to have an exponentially flat potential we need V*3¢*? » 1 and, being T4 a blow-
up cycle, we need 7, » 7, which means ¢ « 1. Computing string loop corrections
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to the inflaton potential we have

1 1

5‘/:05 ~ \/ﬂiﬂ ~ ¢2/3V10/3 )

(2.198)

Given that the minimum of the inflationary potential is (¢) ~ In(V)**/V'/2 the
correction to the n parameter (computed for convenience in the minimum of the
inflationary potential) looks like

n

%

gs

Vo

1
8/3)1/3
) PEVY
So we see that, despite the presence of an extended no-scale structure, leading
order string loop corrections can spoil the flatness of the potential.
The last model that we want to discuss is Fibre inflation where the role of the
inflaton is played by a large cycle. In this model quantum corrections are balanced
against each other, giving rise to an exponentially flat scalar potential.

%
In(V)?

on ~ » 1. (2.199)

(@

Fibre inflation models

Fibre inflation models are based on a class of type IIB orientifold flux com-
pactifications with D3/D7-branes and O3/O7-planes where the Calabi-Yau (CY)
threefold takes a so-called ‘weak Swiss-cheese’ form:

Nsmall
V= fap(r)— O Ar? with j =1, ..., Marge, (2.200)

i=1

where A" = Niage + Nyman and f30 is a homogeneous function of degree 3/2. In
these models, the stabilisation of the Kéhler moduli is performed in two steps.
Firstly, the total volume V as well as the volumes of the Ngy.y rigid blow-up
divisors 7; are fixed following the LVS procedure. This leaves Ny, = Narge —
1 = hb' — Ngpan — 1 flat directions which are natural inflaton candidates. These
directions can receive a potential at subleading order by g, corrections due to the
exchange of Kaluza-Klein (KK) and winding modes |58, 60, 97, 98, 61] as well as
by (o/)® Fi-terms [99, 100]. In the simplest fibre inflation models h''' = 3 and
Ngman = 1, so that Ng,; = 1 and

V= a(ny7r— AT?) | (2.201)

wherer, is the base modulus, while 74 is called fibre modulus. The latter is the
leading order flat direction which parametrises the volume of a K3 surface. The
total scalar potential schematically looks like [101, 102, 103, 104]:

V =VivsV,75) + Vas(V) 4+ Vi (V, 75, 7) (2.202)
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where Vige(V, 75, 77) = VX + V¥ + Vs « Viys(V, 7) is the inflationary potential,
V.vs is the leading order LVS potential which fixes V and 7, V¢ is an uplifting
contribution to get a dS vacuum which can originate from anti D3-branes |65,
66, 67, 68, 69, 70, 71, 72|, hidden sector T-branes [73| or non-perturbative effects
at singularities [74], while V,** V" and Vg1 are respectively KK, winding string
loops and F* terms.

In the simplest realisation of fibre inflation the inflationary potential comes
from g, string loop corrections and has the following form

W2 2 1 2
V= 5 (A% B+ OQSVTf) (2.203)
f f

where A, B and C are ~ O(1) constants that depend on complex structure moduli
VEVs. Inflation takes place when 7; is displaced far form the minimum of its po-

tential that is given by (7/) ~ g2/*V*3. Assuming that the motion of 7, does affect
the overall volume VEV, the inflationary potential for the canonically normalised
inflaton ¢ = +/31n(7;)/2 becomes

4 _ s 1
V() = Vp (1 — —e V3

R
. §e—4¢/ﬁ + 2<W§> : (2.204)

3¢
where Vy ~ V7193 and R ~ ¢ « 1. Given that reproducing the correct normali-
sation of the scalar power spectrum in fibre inflation models requires ¥V ~ O(10%),
the value of the overall volume is not exponentially large. The ratio between LVS
potential and the inflationary potential scales like ~ V/3 and it often happens that
multifield inflation calculations must be performed, including 75 and V), in order to
check the goodness of single field approximation. Nevertheless in most cases per-
forming multi-field analysis does not really affect single-field inflation predictions.

In fibre inflation models, the underlying CY threefold is a K3 fibration over a
P! base which has two decompactification limits, corresponding to either the K3
fibre or the base growing large. Thus, kinematically it is expected that the fibre
volume can traverse several Planck units. These LVS inflationary models present
a variety of distinct features that make them very promising candidates to realise
large field inflation and to discuss explicit global embeddings:

1. The de Sitter uplift is independent of the inflaton. This is contrary to a hypo-
thetical KKLT embedding [65], where the uplift would be inflaton-dependent
and, thus, large field inflation would typically destroy the KKLT minimum.

2. The back-reaction of heavy moduli is incorporated and under control, in
particular, due to the fact that moduli stabilisation is done in two steps
and the leading order potential is independent of the inflaton because of the
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extended no-scale cancellation [61]. This is in contrast with the majority of
large field models of inflation [105].

3. The possibility to achieve tensor-to-scalar ratios between r» ~ 0.01 and r ~
0.001 which can be tested by future CMB observations [106, 107].

An explicit realisation of fibre inflation not only places several constraints on the
underlying CY geometry, but also on the setup of D-branes and O-planes. We
further analyse this model in Chapter 3 where we list the sufficient requirements
to build a viable global model which also allows for a chiral visible sector. Moreover
in Chapter 4 we study the impact of the ultra-light fields that can be always found
in Fibre inflation, e.g base and fibre axions, on the cosmological observables.

2.4.2 Axion inflation

Axion-like particles appear in the 4D effective theory equipped with a con-
tinuous shift symmetry to all orders in perturbation theory. Therefore, they can
be interpreted as good inflaton candidates and their potential is stable against
quantum corrections. In string theory this symmetry can either be broken spon-
taneously, through non-perturbative effects, or explicitly, through the presence of
branes. We saw that the first attempt to find a viable model of axion inflation
was given by natural inflation, Eq. (2.56). This model requires the axion decay
constant to be f > 10M, and it has been disfavored by experiments. Nevertheless,
looking for a possible embedding of natural inflation leads to an important con-
clusion that will be valid for all the models that we will introduce later on in this
section: there is no known controlled string theory construction that allows for
f >» M, (in accordance with swampland conjecture applied to axion fields [108]).
This implies that the simplest version of natural inflation model does not find
neither a top-down justification in string theory, nor an empirical support and so
other extensions must be found.

A possible way-out is given by considering two axion fields, with decay constants
that satisfy H < fi, fo < Mp, that are coupled to linear combinations of two
confining non-abelian gauge groups:

Lo 2 Z bi_Cia F@ A F@] (2.205)

2
i=1a=1 327T

where ¢;, are dimensionless coefficients and F(® are the non-abelian field strengths.
For certain combinations of the coefficients c;,, it can happen that a linear combi-
nation of the two axion fields shows an effective trans-Planckian decay constant.
This is called azion alignment [109, 110] and allows to have trans-Planckian field
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excursions without violating the constraint on single axion decay constants. An-
other example that can be found in the literature is N-flation|[111], where a large
number of axions is equipped with the potential in Eq. (2.56) and there is no
cross-coupling between different fields. Each axion has a sub-Planckian decay con-
stant and it feels a force given by its own potential. On the other hand the Hubble
friction contains the sum of each single axion potential. This slows down the field
motion and allows to get the required amount of e-foldings with reduced field
displacements: the total field displacement A; must satisfy Ap = > A¢; > M,
but the single field excursion is A¢; ~ Ar/v/N < M,. In order to work, this
mechanism requires a number of axions of order O(10%). An explicit realisation
of N-flation in type IIB string theory can be found in [112], where the authors
use KKLT compactification and work with C axions. This model presents prob-
lems related to the renormalisation of the Planck mass that receives corrections
proportional to the number of axions through the Euler characteristic of the com-
pactification manifold. In principle, this effect can be softened if x(Xg) « AbL. Tt
is important to notice that this condition is necessary but maybe not sufficient,
since there are higher corrections in o and ¢, expansion that are still not known.
This model may need to face another problem: if supersymmetry is spontaneously
broken, saxions masses are degenerate with the axion’s ones, leading to a much
more involved inflationary dynamics. Therefore, it is mandatory to find ways to
either break supersymmetry at energies higher than the inflationary scale, or to
find perturbative ways to stabilise saxions so that mass degeneracy gets broken.
This has been achieved in [113] where however the authors found that N-flation
with perturbative Kéhler moduli stabilisation tends to be incompatible with a 4D
EFT that can be kept under control.

Axion monodromy is the last class of models that we want to mention and relies
on the fact that if we explicitly break shift-symmetry, the field space opens up and
allows for large field excursions. If the breaking can be made small, additional
corrections to the axion potential can be neglected, the trace of the axion shift
symmetry protects the structure of the potential over each fundamental domain
and inflation is driven by the leading shift-symmetry-breaking term. This effect can
be realised when a NS5-brane wraps a 2-cycle Y5 in the compact extra dimension
space. In this case, the dimensional reduction of the action for the NS5-brane
induces a potential for the C; axion that is given by:

p
V(c) = WW’ (2.206)

where [ is the size of Y5 in string units and p encodes the warp factor dependence.
In these models inflation requires to have a large field excursion and the canoni-
cally normalised inflaton shows an asymptotically linear potential. An important
problem related to this model is that the remnant of the shift symmetry is not
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sufficient to protect the flatness of the potential. Indeed, the presence of the
NS5-brane, together with the time-varying axion VEV, alters the D3-brane charge
induced on the NS5-brane. In absence of working mechanisms to cancel this in-
duced charge, the axion field gets stuck to a fixed value by Gauss’s law. One way
to overcome this problem is adding to the theory an anti-NS5-brane that wraps
Y9, but is located in a different region of the extra dimensions. Indeed, a large
D3-brane charge induced on the NS5-brane leads to a significant correction to the
warp factor that modifies the Euclidean D3-brane action and modifies the scalar
potential, spoiling the inflationary dynamics. A concrete solution, where this effect
can be made parametrically small, is to place a NS5-brane and an anti-NS5-brane
in a common warped throat [114, 115].

Despite all these models received a lot of attention in the past years and many
extensions of them have been studied, no explicit string embedding that is com-
pletely under control has been produced. The main problem related to these mod-
els is that one needs both trans-Plankian decay constant and field excursion. A
possible concrete realisation may require to soften these two requests. In Chapter
6 we study how the coupling between the axion and a U(1) gauge field can reduce
the required field excursion through electro-magnetic dissipation. Performing a
full numerical analysis we also found that the consequences of such a coupling on
the cosmological parameters leave unmistakable imprints that can be detected by
future experiments.
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Chapter 3

Fibre inflation models with chiral
matter

3.1 Introduction

Cosmic inflation is an early period of accelerated expansion of our universe
which can provide a solution to the flatness and horizon problems of standard
Big Bang cosmology. Moreover, quantum fluctuations during inflation can source
primordial perturbations that caused the formation of large scale structures and
the temperatures anisotropies observed in the cosmic microwave background.

From a microscopic point of view, inflation is expected to be driven by the
dynamics of a scalar field undergoing a slow-roll motion along a very shallow
potential that mimics a positive cosmological constant. An important feature of
inflationary models is the distance travelled by the inflaton in field space during
inflation since it is proportional to the amount of primordial gravitational waves
which get produced [91]. From an effective field theory point of view, in small
field models with a sub-Planckian inflaton excursion, dimension six operators can
easily spoil the flatness of the inflationary potential. On the other hand, quantum
corrections to large field models with a trans-Planckian field range lead to an
infinite series of unsuppressed higher-dimensional operators which seem to bring
the effective field theory approach out of control.

These dangerous operators can be argued to be absent or very suppressed
only in the presence of a symmetry whose origin can only be postulated from an
effective field theory perspective but can instead be derived from an underlying
UV complete theory. For this reason inflationary model building in string theory
has received a lot of attention [84, 85, 86, 87|. Besides the presence of additional
symmetries, string compactifications naturally provide many 4D scalars which can
play the role of the inflaton. Promising inflaton candidates are type IIB Kéhler
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moduli which parametrise the size of the extra dimensions and enjoy non-compact
rescaling symmetries inherited from the underlying no-scale structure [88].

Identifying a natural inflaton candidate with an appropriate symmetry that
protects the flatness of its potential against quantum corrections is however not
sufficient to trust inflationary model building in string compactifications. In fact,
three additional requirements to have a successful string inflationary model are
(7) full moduli stabilisation, (i7) a global embedding into consistent Calabi-Yau
orientifolds with D-branes and fluxes and (iii) the realisation of a chiral visible
sector.

The first condition is crucial to determine all the energy scales in the model
and to check the stability of the inflationary dynamics by controlling the behaviour
of the scalar directions orthogonal to the inflaton one. The second condition is
instead fundamental to guarantee the consistency of the inflation model from the
microscopic point of view by checking the cancellation of all D-brane tadpoles
and Freed-Witten anomalies and the actual generation of all the effects needed to
stabilise the moduli and to develop the inflationary potential. Finally the require-
ment of having a model which can give rise to inflation and reproduce at the same
time a chiral visible sector is crucial for two main reasons: to ensure the absence
of any dangerous interplay between chirality and moduli stabilisation which can
forbid the generation of D-terms or non-perturbative effects needed to fix the mod-
uli [116], and to determine the post-inflationary evolution of our universe starting
from the reheating process where the inflaton energy density gets converted into
the production of visible sector degrees of freedom [117, 118, 119, 120]. Other
important post-inflationary issues which can affect the predictions of important
inflationary observables like the number of efoldings N., the scalar spectral index
ns and the tensor-to-scalar ratio r are periods of matter domination due to light
moduli [121, 122, 123], the production of axionic dark radiation from moduli de-
cays |14, 124, 125, 126], non-thermal dark matter [127, 128, 129|, moduli-induced
baryogenesis [130, 131] and the interplay between the inflationary and the super-
symmetry breaking scale [132, 133, 134, 135].

A comprehensive global chiral model which satisfies all these conditions for
models where the inflaton is a local blow-up mode [136] has been recently con-
structed in [137]. The chiral visible sector lives on D3-branes at an orientifolded
singularity and full closed string moduli stabilisation in a dS vacuum is achieved
by following the LVS procedure |63, 62]. The main limitation of this model is the
emergence of an n-problem associated with the presence of large g5 corrections to
the effective action which tend to spoil the flatness of the inflationary potential if
their flux-dependent coefficients are not tuned small.

In this regard, fibre inflation models [101] look more promising. In these con-
structions, the inflaton is a fibration modulus which remains exactly massless when
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only the leading order no-scale breaking effects are included. The inflationary po-
tential is then generated only at subleading order by a combination of string loop
corrections [58, 60, 97, 98] and higher derivative terms [99, 100]. This hierarchy of
scales is guaranteed by the extended no-scale cancellation and provides a natural
solution to the n-problem [61]. This solution can also be understood from the point
of view of an effective non-compact rescaling symmetry for the Kéhler moduli [88].

Different versions of fibre inflation models have been constructed so far depend-
ing on the microscopic nature of the effects which drive the inflationary dynamics:
Kaluza-Klein and winding string loops [101], Kaluza-Klein loops and O(a/3) F*
terms [102], and winding g loops combined with higher derivative terms [103]. In
all cases the inflationary potential is plateau-like and takes a simple form with a
constant term and negative exponentials. Additional positive exponentials show
up with coefficients which are naturally very small and give rise to a rising be-
haviour at large field values. Ref. [104] provided a generalised description of fibre
inflation models showing how they can reproduce the correct spectral index ob-
served by Planck [138, 139] while the predicted value of the tensor-to-scalar ratio
is in the range 0.001 < r < 0.01. Such a large value of r is compatible with the fact
that these are large field models where the inflaton range is around 5 Planck units.
An effective supergravity description of fibre inflation models as a-attractors has
also been recently given in [140].

Despite all these successes, fibre inflation models are still lacking a complete
global embedding into chiral string compactifications. However a first step for-
ward has already been made in [141] where these inflationary models have been
successfully embedded in consistent type IIB orientifolds with moduli stabilisa-
tion but without a chiral visible sector. In order to have a viable inflationary and
moduli stabilisation mechanism, the internal Calabi-Yau manifold has to have at
least A = 3 Kihler moduli and its volume form has to feature a K3 or T* fi-
bration over a P! base and a rigid shrinkable blow-up mode [62, 142|. Starting
from concrete Calabi-Yau threefolds with these topological properties, ref. [141]
provided several different examples with an explicit choice of orientifold involution
and D3/D7 brane setups which are globally consistent and can generate correc-
tions to the 4D effective action that can fix all closed string moduli inside the
Kéhler cone and reproduce the form of the inflationary potential of fibre inflation
models. However the case with A'! = 3 is too simple to allow for non-trivial D7
worldvolume fluxes which give rise to chiral matter. In fact, non-zero gauge fluxes
induce moduli dependent Fayet-Tliopoulos terms which, in combination with soft
term contributions for U(1)-charged matter fields, would lift the leading order flat
direction, making the inflaton too heavy to drive inflation.

In this chapter we shall extend the results of [141] by considering more com-
plicated Calabi-Yau threefolds with h'' = 4 in order to build global fibre inflation
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models with a chiral visible sector. After analysing the topological conditions
on the underlying compactification manifold to allow a successful chiral global
embedding of fibre inflation models, we find that the simplest examples involve
Calabi-Yau threefolds with 3 K3 divisors and a toroidal-like volume with a diag-
onal del Pezzo divisor suitable to support non-perturbative effects to freeze the
moduli. The internal volume is therefore controlled by 3 Kéhler moduli and can
equivalently be seen as different K3 fibrations over 3 different P! bases. After
searching through the Kreuzer-Skarke list of Calabi-Yau manifolds embedded in
toric varieties [143], we find several concrete examples which admit these topolog-
ical features.

We then focus on one of them and describe several possible choices of orien-
tifold involution, D-brane setup and gauge fluxes which satisfy global consistency
conditions and generate perturbative g; and o' corrections to the 4D Kahler po-
tential and non-perturbative effects in the superpotential that are suitable to both
stabilise the moduli and reproduce the typical potential of fibre inflation models.
In particular, non-zero gauge fluxes induce chiral matter on D7-branes wrapped
around smooth combinations of the four-cycles which control the overall volume.*
Moreover, a moduli-dependent Fayet-Iliopoulos term lifts one of the Kahler mod-
uli, so that after D-term stabilisation the effective number of Kéahler moduli is
reduced to 3 and the internal volume simplifies to the standard expression of fibre
inflation models used in the examples of [141].

After computing all relevant loop and higher derivative effects in full detail,
we analyse the resulting inflationary dynamics finding an interesting result: the
Kéhler cone bounds set severe constraints on the allowed inflaton field range when
they are combined with other phenomenological requirements, like the generation
of the correct amplitude of the power spectrum by the inflaton quantum fluctua-
tions, and consistency conditions like the stability of the inflaton evolution against
possible orthogonal runaway directions, the fact that the gravitino mass remains
always smaller than any Kaluza-Klein scale in the model and finally that danger-
ous higher derivative effects do not spoil the flatness of the inflationary potential
before achieving enough efoldings of inflation.? Because of this tension, we also
perform a full multi-field numerical analysis of the inflationary evolution showing
how an early period of accelerated expansion occurs generically. On the other
hand, the inflaton quantum fluctuations can generate the right amplitude of the
density perturbations only if the microscopic parameters take appropriate values.

We believe that our results make fibre inflation models more robust since
they represent the first concrete models which are globally consistent and chi-

'We do not consider K3 fibred cases where the visible sector lives on D3 branes at singularities
since they would lead to dark radiation overproduction [144].

2These last two consistency conditions are qualitatively similar since the superspace derivative
expansion is under control if mg/, « My [145].



3.2. CHIRAL GLOBAL INFLATIONARY MODELS 107

ral. Nonetheless several issues still need to be investigated further. The most
important ones are the inclusion of an explicit uplifting mechanism to realise a dS
vacuum, a thorough derivation of the perturbative corrections to the 4D effective
action and a better determination of the Calabi-Yau Kahler cone, going beyond
its approximated expression inherited from the toric ambient space. We leave the
study of these issues for the future.

This chapter is organised as follows. In Sec. 3.2, after presenting a basic re-
view of fibre inflation models, we summarise the minimal requirements that are
needed for the construction of a fully consistent global embedding with a chiral
visible sector. In Sec. 3.3 we provide a concrete Calabi-Yau example, describing
the orientifold involution, the D-brane setup, the choice of gauge fluxes and the
resulting chiral spectrum, Fayet-Iliopoulos term and inflationary potential gener-
ated by g, and o’ effects. The inflationary evolution is analysed in full detail in
Sec. 3.4 by focusing first on the single-field approximation and by studying then
the multi-field dynamics. In Sec. 3.5 we draw our conclusions and we discuss a
few open issues. App. A.l contains additional explicit chiral global examples.

3.2 Chiral global inflationary models

Let us begin by displaying the minimal requirements for a successful chiral
global embedding of fibre inflation models. A brief review related to these models
has been given in Sec. 2.4.1.

3.2.1 Requirements for chiral global embedding

The simplest global embedding of fibre inflation models requires at least three
Kéhler moduli [141]. However, in order to incorporate also a chiral visible sector
we need at least h''' = 4 Kihler moduli. Here we will focus on obtaining chiral
matter on D7-branes wrapped around a suitable divisor with world-volume gauge
fluxes turned on. In this case D7 gauge fluxes induce a D-term potential for the
Kéhler moduli that fixes a particular combination thereof. Thus, D-term fixing
and the leading order LVS stabilisation mechanism leave just a single flat direction,
in our case a K3 fibre, which will play the role of the inflaton. In order to obtain
a viable chiral global model we require the following ingredients and consistency
conditions:

1. A Calabi-Yau with h! = 4 featuring three large cycles and a shrinkable rigid
divisor, so that the internal volume takes the form (2.200) with Ngy.n = 1.
In the explicit example described in Sec. 3.3 the volume simplifies further

to:
VZCa\/TszT:&—CbTS/Q; (3-1)
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with ¢, > 0 and ¢, > 0. Each of the 3 moduli 7, 7 and 73 controls the
volume of a K3 surface while 7, parametrises the size of a ‘diagonal’ del
Pezzo divisor [142|. D-term stabilisation will fix m3oc, while the standard
LVS procedure will freeze the overall volume V =~ ¢, /71 2 73 and the blow-
up mode 7. The leading order flat direction can be parametrised by 7 which
will drive inflation.

An orientifold involution and a D3/D7-brane setup with gauge fluxes on
the visible D7-brane stacks such that tadpole cancellation is satisfied with
enough room for bulk three-form fluxes to be turned on for complex structure
and dilaton stabilisation. The D-brane and O-plane setup must also allow
for the generation of KK- and/or winding string loop corrections which have
the correct form to generate a suitable inflationary potential.

A choice of world-volume fluxes which cancels all Freed-Witten anomalies
[51, 52] but leads, at the same time, to just a single moduli-dependent Fayet-
Hiopoulos (FI) term [146, 147] in order to leave a leading order inflationary
flat direction by lifting just one of the two flat directions leftover by the LVS
stabilisation mechanism.

There should be no chiral intersection between the visible sector and the
del Pezzo divisor supporting non-perturbative effects required for LVS mod-
uli fixing as otherwise the prefactor of the non-perturbative superpotential
would be vanishing [116]. The absence of these dangerous chiral intersections
should be guaranteed by an appropriate choice of gauge fluxes.

Moduli stabilisation and inflation have to take place inside the CY Kéhler
cone and the effective field theory should be well under control with (V) » 1
and g, « 1.

In order to trust inflationary model building within an effective field theory,
the following hierarchy of scales should be satisfied from horizon exit to the
end of inflation:

Ming < H < mgjy < MI((ZL < My < M,, (3.2)

where myys is the inflaton mass, H is the Hubble constant, ms/, is the grav-
itino mass which sets the mass scale of all the heavy moduli during inflation,
M 1(22( denote various KK scales associated with bulk modes and open string
excitations on D7-branes wrapped around four-cycles, My is the string scale
and M, is the reduced Planck mass M, = 2.4 -10'® GeV. Notice that, apart
from M,, all these energy scales are moduli dependent and so evolve during
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inflation. After stabilising V and 7, a la LVS and fixing one large modu-
lus in terms of another large direction via setting the Fl-term to zero, we
find that the ‘reduced’ moduli space of the inflationary direction is in fact a
compact interval. Therefore the field space available for inflation is kinemat-
ically finite (albeit in general trans-Planckian), a feature of the model which
has so far been overlooked. We will state the precise phenomenological and
consistency conditions for successful inflation in Sec. 3.4.

3.3 A chiral global example

In this section, we shall present all the topological and model-building details
of the global embedding of fibre inflation models into explicit chiral CY orientifolds
with hl! = 4.

3.3.1 Toric data

Let us consider the following toric data for a CY threefold whose volume takes
the form V = ¢, /71 T2 T3 — ¢ 75/2 discussed above:

T ) T3 T4 Ty Tg i xTs
4 0 0 0 1 1 0 0 2
4 0 0 1 0 0 1 0 2
4 0 1 0 0 0 0 1 2
8 1 0 0 1 0 1 1 4
dP; NdP;; NdPy; K3 NdP;; K3 K3 SD

The Hodge numbers are (h*! h'') = (98,4), the Euler number is y = —188,
while the Stanley-Reisner ideal is:

SR1 = {x124, 126, X107, T2X7, T3Te, T4T5Ts, T2X3T5Ts} -

This corresponds to the polytope ID #1206 in the CY database of Ref. [148]. A
detailed divisor analysis using cohomCalg [149, 150] shows that the divisor D is a
del Pezzo dP; while each of the divisors {Dy, Dg, D7} is a K3 surface. Moreover,
each of the divisors {Dy, D3, D5} is a ‘rigid but not del Pezzo’ surface with A =
12 which we denote as NdP;; while Dg is a ‘special deformation’ divisors with
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Hodge diamond:

1
0 0
SD = 23 160 23
0 0
1

The intersection form in the basis of smooth divisors {D;, D4, Dg, D7} can be
written as:
I;=2D,Dg Dy +2D5. (3.3)

Writing the Kéahler form in the above basis of divisors as J = t; Dy + t4, Dy +
te Dg + t7 D7 and using the intersection polynomial (3.3), the CY overall volume

becomes: ,

t
V=2t4t6t7+§1. (3.4)

The Kahler cone conditions can be derived from the following generators of the
Kahler cone:

Ki=—D1+Dy+ Ds+ D7, Ky = Dy, K3 =Dy, Ky = Dg. (3.5)

Expanding the Kéhler form as J = Zle r;I;, the Kédhler cone is defined via the
following conditions on the two-cycle moduli:

le—t1>0, T2:t1+t7>0, T3:t1+t4>0, T4:t1+t6>0.

(3.6)
Notice that this expression of the CY Kahler cone is only approximate since it
is inherited from the Kihler cone of the ambient toric variety.®> However this
procedure can either overcount some curves of the CY threefold, for example if
they do not intersect with the CY hypersurface, or miss some of them, if they
cannot be obtained as the intersection between two divisors of the ambient space
and the CY hypersurface. Hence the actual CY Kéhler cone can turn out to be
either larger or smaller. This analysis would require a deeper investigation which
is however beyond the scope of this work.* Here we just mention that this analysis

31f the same CY threefold can be realised as a hypersurface embedded in different ambient
spaces, the CY Kéhler cone is approximated as the intersection of the K&hler cones of the different
toric varieties [148].

4“We however expect that the CY Kéhler cone cannot get smaller. In fact, if this were the
case, there should exist an extra constraint from requiring the positivity of a curve of the CY
which is trivial in the ambient space. But this does not seem to be possible since each CY divisor
is inherited from a single toric divisor (i.e. we do not have a toric divisor which splits into two
CY divisors, and so where h''! of the CY is larger than h! of the ambient space). In fact, if
this trivial curve existed, it should have a dual divisors, and so h''! of the CY should be larger
than h'! of the ambient case, which is however not the case.
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has been performed in detail in [151] where the CY Kéhler cone turned out to be
larger than the approximated version.
The four-cycle moduli, which can be computed as 7; = J;,V, look like:

7‘1=t%, 7'4=2t6t7, 7'6=2t4t7, 7‘7=2t4t6, (37)
and so, using the Kéhler cone conditions (3.6), the overall volume reduces to:

1 . 1 1
V=t — = Tf 2 3/2 3/2 3/2

1 . 1
3 /:t67-6_§7—1/ :t77'7—§7'1 :\/—5\/7'47'767'7—57'1 5 (38)

which shows clearly that the CY threefold X features three K3 fibrations over
different P! bases. The second Chern class of X is given by:

CZ(X):D4D5+4D§+12D5D6+12D5D7+12D6D7, (3.9)
which results in the following values of the topological quantities II; = SX Ca A ZA)z

I, =8, Ily=I3=16, I4=24, Ils=16, Ilz=1I;=24, Ilg=128.
(3.10)
The intersection curves between two coordinate divisors are given in Tab. 3.1 while
their volumes are listed in Tab. 3.2.

D, D, D3 Dy D5 D¢ | D7 | Dg
Dy || Cs T? T? %) T? g1 | Cs
Dy || T2 | PP [P UP | T2 | PP UP | T? | @ | C
Dy || T2 | PP |PUP | T2 | PP UP | @ | T? | C

D, | T ™ || @ |T2|T| G
Ds| T2 [PLUP [P UP | g | PLUP | T2 | T2 | G
Ds |l @ | T2 g |T2| T | g|T|C
D, || & %) T |[T2| T2 |T2| @& |G
Ds || C3 Cs Cs Co Cs Co | Cy | Csi

Table 3.1: Intersection curves of two coordinate divisors. Here C, denotes a curve
with Hodge numbers h%° = 1 and h'¥ = g.

3.3.2 Orientifold involution

We focus on orientifold involutions of the form o : z; - —x; with i = 1,...,8
which feature an O7-plane on D; and O3-planes at the fixed points listed in Tab.
3.3. The effective non-trivial fixed point set in Tab. 3.3 has been obtained after
taking care of the SR ideal symmetry. Moreover, the total number of O3-planes
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Dy D, Ds D, Ds Ds D+ Dy
D, 2t -2t —21 0 -2t 0 0 —4t
Dy || =2t 2t 2ty + t4) 216 2ty + tg) 21, 0 Aty + ty + tg)
D3 —2t1 2(t1 + t4) 2t1 2t7 Q(tl + t7) 0 2t4 4(t1 + t4 + f7)
Dy 0 2t 2t 0 0 2t 2t 4(t6 + t7)
Dg 0 2ty 0 2t; 2t 0 2ty 4(t4 + t7)
D:|| o 0 2ty 2tg 2tg 24, 0 Aty + tg)
Dg || =4ty | 4(t1 + 1ty +tg) | 4(t1 +ta + t7) | 4(te + t7) | 4(t1 + t6 + t7) | 4(ta +t7) | 4(¢a + t6) | 8(t1 + 2(ts + t6 + t7))

Table 3.2: Volumes of intersection curves between two coordinate divisors.

Nos is obtained from the triple intersections restricted to the CY hypersurface,
while the effective Euler number y.g has been computed as:®

Yot = X(X) 42 L[m] A TOT] A [OT]. (3.11)

In what follows we shall focus on the orientifold involution ¢ : xg — —xg which
features just a single O7-plane located in Dg and no O3-plane.

o o7 03 Nos | X(O7) | Xest

1 — —I1 D1 {D2D3D4, D2D4D6, D2D5D6, 14 10 -184
D3D4D77 D3D5D77
DD D7, D5 Dg D7}

To —> —XT9 DQ [ D7 D1D3D5 2 38 -192
To — —T3 D3 [ D6 D1D2D5 2 38 -192
Tyg — —T4 D4 L D5 D1D2D3 2 38 -192
25 — —x5 | Dy Ds D, Dy D5 2 38 | -192
26 — —x6 | D3 L Dg D1 Dy Ds 2 38 | -192
Ty — —I7 DQ [ D7 D1D3D5 2 38 -192
Ty — —Tg Dg &) 0 208 -28

Table 3.3: Fixed point set for the involutions which are reflections of the eight
coordinates x; with ¢ =1, ..., 8.

3.3.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes
on top of the O7-plane, the string loop corrections to the scalar potential can

>The effective Euler number controls the strength of N = 1 O(a’®) corrections due to O7-
planes [56].
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involve only KK effects between this D7-stack and O3-planes or D3-branes since
winding contributions are absent due to the absence of any intersection between
D7-branes and/or O7-planes. Thus loop effects are too simple to generate a vi-
able inflationary plateau. They might even be completely absent in our case since
there are no O3-planes and the D3-tadpole cancellation condition could be satisfied
without the need to include D3-branes (i.e. just switching on appropriate back-
ground three-form fluxes). We shall therefore focus on a slightly more complicate
D7-brane setup which gives rise to winding loop effects. This can be achieved by
placing D7-branes not entirely on top of the O7-plane as follows:

8[O7] = 8([Ds]) = 16 ([Ds] + [D4] + [Ds]) - (3.12)

This brane setup involves three stacks of D7-branes wrapped around the divisors
Dy, Dy and Dg. Moreover, the condition for D3-tadpole cancellation becomes:

Naux Nos _ x(07) Na (X(Da) + x(D3))
5 Nowuge = = + S0+ I

Nps + 1 12

= 38,

showing that there is space for turning on both gauge and background three-
form fluxes for complex structure and dilaton stabilisation.® As shown in [152],
three-form fluxes stabilise also D7 position moduli and open string moduli living
at the intersection between two different stacks of D7-branes since they generate
soft supersymmetry breaking mass terms for each of these scalars. On the other
hand, there are no Wilson line moduli in our model since h'0(Dy) = (D) =
h*(Dg) = 0.

Let us point out that other orientifold involutions which could allow for D7-
branes not entirely on top of the O7-plane are x4 — —x4, x5 — —xg Or 7 — —I7.
In each of these cases, the O7-plane is located on a K3 surface. However, given
that Dy = D1+ D5, Dg = D1+ D3 and D; = D1+ Ds, from Tab. 3.1 and 3.2 we see
that the resulting D7-brane stacks are either non-intersecting (and so no winding
corrections are generated) or the volumes of the intersection curves depend just
on the ‘small’ dP; divisor (and so winding loops are inflaton-independent). This
is the reason why we chose the involution xg — —xg where the O7-plane is located
on the ‘special deformation’ divisor Dg which gives more freedom for D7-brane
model building.

6We focus on flux vacua where the dilaton is fixed in a regime where our perturbative type
IIB analysis is under control.
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3.3.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D,
D, and Dg we need to turn on worldvolume gauge fluxes of the form:

hl’l
|
EzZﬁﬂraq@JﬁaBWM,MGZaMé=Z&& (3.13)
j=1

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[51, 52].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term
in order to fix only one Kéahler modulus via D-term stabilisation. In fact, if the
number of Fl-terms is larger than one, there is no light Kdhler modulus which
can play the role of the inflaton. Moreover we wrap a D3-brane instanton on
the rigid divisor D; in order to generate a non-perturbative contribution to the
superpotential which is crucial for LVS moduli stabilisation. In order to cancel the
Freed-Witten anomaly, the D3-instanton has to support a half-integer flux, and so

the general expression of the total gauge flux on Dy becomes (with ¢;(Dy) = —Dy ):
hl’l
A O _
fl = Z flij + §D1 — LDiB with flj €. (314)
j=1

However a non-vanishing F; would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-field which can simultaneously
set Fy, = Fg = 0 (we choose to have a non-vanishing gauge flux only on D, to have
just one moduli-dependent FI-term) and F; = 0. Recalling that both D4 and Dg
are K3 surfaces which are spin divisors with ¢;(Dy) = ¢;(Dg) = 0 (since the K3 is
a CY two-fold), if we set:

B:%ﬁb (3.15)
the condition F; = F, = Fg = 0 reduces to the requirement that the following
forms are integer:

1 14
[’*D4 <§D1> and [’*DG (§D1) s (316)

since in this case the integer flux quanta f;; can always be adjusted to yield van-
ishing gauge fluxes. Taking an arbitrary integer form A € H?(Z, X) which can be
expanded as A = a;D; with a; € Z, the pullbacks in (3.16) give rise to integer
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forms if:

bs

1 -~ ~
J (—Dl) /\D4/\A€Z
¥ \2
1 -~ ~
J (_Dl) /\D6/\A€Z
¥ \2
Using the intersection polynomial (3.3) we find by = bg = 0, showing how the
choice of B-field in (3.15) can indeed allow for F; = F, = Fg = 0. The only non-
zero gauge flux is F, whose half-integer contribution can be cancelled by adding
an additional term to the B-field of the form %Dg. Given that all the intersection
numbers are even, this new term in B does not modify our previous results on the
pullbacks of the B-field on D,, D, and Dg. Moreover the pullback of the B-field

on Dy will also generate an integer flux contribution. We shall therefore consider
a non-vanishing gauge flux on the worldvolume of Dy of the form:

be

hl,l
JT"Q = Z fgjf)j with fgj S/ (317)
j=1

3.3.5 FI-term and chirality

Given that the divisor Ds is transversely invariant under the orientifold invo-
lution and it is wrapped by eight D7-branes, it supports an Sp(16) gauge group
which is broken down to U(8) = SU(8) x U(1) by a non-zero flux F, along the
diagonal U(1). This non-trivial gauge flux F, induces also a U(1)-charge ¢;» for
the i-th Ké&hler modulus of the form:

iz = J Di A Dy A Fy. (3.18)
X

Thus F3 # 0 yields (using Dy = D7 — Dy):

12 = —2f21 Qa2 = 2f26 de2 = 2f24 qr2 = 07 (319)

together with a flux-dependent correction to the gauge kinetic function which looks

like:
4
Re(fs) = oy’ = g—f = 7 — h(F2)Re(S) (3.20)
2

where:

1 . 1
h(F2) = 3 JX Dy NFonFy= 3 (forqaz + foaquo + fo6qe62) - (3.21)
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Moreover a non-vanishing gauge flux F, induces a moduli-dependent FI-term of
the form:

=

Y J DonJAFy= Z gjat; = (qr2th + quats + o2 ts) - (3.22)

For vanishing open string VEVs (mduced for example by non-tachyonic scalar
masses), a leading-order supersymmetric stabilisation requires £ = 0 which implies:

T R (3.23)

442 d42
This U(1) factor becomes massive via the Stiickelberg mechanism and develops
an O(M;) mass by eating up a linear combination of an open and a closed string
axion which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
FI-terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on Ds; and the O7-planes
or the image branes give rise to the following zero-modes in the symmetric and
antisymmetric representations of U(8):

1 “ A~ A
Iés) — _§J Dy A [OT] A F — f Dy A Dy A Fy = 2¢12 — Qa2 — Ge2,(3.24)
X X

1 R ~ ~
IQ(A) = §J Dy A [OT] A Fy — f Dy A Dy A Fa = qaz + geo, (3.25)
X X

Due to the absence of worldvolume fluxes on the D7-branes wrapped around Dy
and Dg, both of these two D7-stacks support an Sp(16) gauge group (since both
Dy and Dg are transversely invariant) which are both unbroken. Thus open strings
stretched between the D7-branes on Dy and Dy or Dg (or their image branes) give
rise to 4D chiral zero-modes in the bi-fundamental representation (8,16) of U(8)
and Sp(16) whose number is:

124=Jﬁ2AD4/\-7:2ZQ427 IQGZJE2/\1A)6/\‘F2:Q62- (3.26)
X X

We need finally to check that there are no chiral intersections between the D7s on
Dy and the instanton on D; to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured if:

]21=J EQ/\Dl/\fQZQ12:_2f21:O~ (3.27)
X

This condition can be easily satisfied by choosing fo; = 0. In turn, this choice
simplifies the D-term constraint (3.23) to:

t4 = —@ t6 = Oétﬁ (328)
442
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3.3.6 Inflationary potential

Using the D-term fixing relation (3.28), the Kéhler cone conditions (3.6) sim-
plify to t; > —t; > 0 together with t¢ > —t; > 0if @« = 1 or atg > —t; > 0 if
a < 1. Moreover the CY volume (3.4) reduces to:

3

t 1 1
V=20l + 5 =t — 57 = —— =TT 37T (3.29)

Given that this form is linear in ¢;, the effective CY volume after D-term stabili-
sation looks like a single K3 fibre 77 over a P! base t; and reduces to the typical
form used in fibre inflation models. The blow-up mode 7; and the overall volume
Y are stabilised in the LVS fashion by means of a non-perturbative correction to
W generated by an Fuclidean D3-brane instanton wrapping D;. This leaves the
fibre modulus 7 as a flat direction which receives a potential at subleading order.

Let us now focus on the inflationary potential. The winding loop corrections
can be written as (with k = g,/(87) for efe = 1):

A= (3.30)

s tﬂ ’

where ¢ are the volumes of the two-cycles where D7-branes/O7-planes intersect.
Notice that if two coordinate divisors D; and D; are wrapped by D7-branes and/or
O7-planes, the scalar potential receives t"-dependent winding loop corrections only
if their intersection curve contains non-contractible 1-cycles, i.e. if h'°(D; N D;) #
0. In our case, we have an O7-plane located on Dg and three stacks of D7-branes
wrapping Dy, D4 and Dg. Using Tab. 3.1 and 3.2, we see all D7s intersect with
each other and with the O7 and that winding corrections can arise from any of
these intersections. Thus we end up with:

5 ==o 5 [ (- am) =S )] o

where (setting t, = atg, C3y = —|CY'| < 0 and C})' = —|C}'| < 0):

-1

Cy = V20 (Cfv + %) Culrr) = LG [ (1 _ V20 <Tl>> ,

(a+1)V 2 (a+1) T
(3.32)

—1 -1
e 1 A2 cy o7
Cw(m) = Y (1 + —%T + DR 1+ CREYE . (3.33)

and:
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Due to the absence of O3-planes (we also assume that the D3-tadpoles are can-
celled without including any spacetime-filling D3-branes) and the fact that all D7s
intersect with each other and with the O7-plane, there are no 1-loop corrections
due to the exchange of closed strings carrying KK momentum.”

On the other hand, higher derivative o/® F* corrections to the scalar potential
can be written as [99]:®

)\W4 hll
3/2 i

Vit = — H i, (3.34)

where \ is an unknown combinatorial factor which is expected to be of order 1073
[99, 100] and the topological quantities II; are given in (3.10). After imposing the
D-term condition (3.28), the F* contributions can be rewritten as (ignoring the
t1-dependent term):

AW (Oé—i-l) A/ T 1
Vs = —24K> 0 +—. 3.35
d RETERY l V2a V & (3:35)

Therefore the total inflationary potential becomes:

W Ay Ay By By
V=V¥4+V, = 3.36
s + Vpe = V3 (7_7 \/7T7 + v + v , ( )

where (with A = —|\| < 0):

2
= 1
Ay = § ek Ay = Cy — Cw(17) DBy (at1)

_ —_ OV _ O
- s = m Al B2 |03 | CW(T7).

3.4 Inflationary dynamics

In this section we shall analyse the inflationary dynamics by studying first the
single-field approximation and then by focusing on the full multi-field evolution.

"Strictly speaking, there might be 1-loop corrections associated with the exchange of KK
modes between the Euclidean D3-instanton on D; and the D7-branes which do not intersect D;.
However, we expect such corrections to be exponentially suppressed and, thus, not relevant for
the analysis.

8This expression displays merely the leading order O(V~*) terms which are corrected at
subleading order in inverse volume by additional corrections as discussed in [103]. Furthermore,
additional higher-derivative corrections mediated by the auxiliary fields sitting in the supergravity
multiplet might emerge at order O(V=5) [103, 153].
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3.4.1 Single-field evolution

In order to realise single-field slow-roll inflation where the potential for the
inflaton 7, features a plateau-type region [101, 103|, the overall volume has to
be approximately constant during the whole inflationary dynamics. Therefore,
in order to get enough efoldings before reaching the dangerous limit where the
base of the fibration ¢; becomes smaller than the string scale, we need to focus on
the region in field space where the inflaton minimum is of order {r;) « V3. For
gs < 0(0.1), [A] ~ O(1072) and natural O(1) values of the coefficients of the string
loop effects, in the vicinity of the minimum the terms in (3.36) proportional to B,
and Bj are therefore both negligible with respect to the terms proportional to A
and As. Numerical estimates show that we need values of order (17) ~ O(1) and
V ~ O(10%) which, in turn, imply Wy ~ O(100) in order to match the observed
amplitude of the density perturbations.

The scalar potential (3.36) written in terms of the canonically normalised in-
flaton shifted from its minimum ¢ = (¢) + &, where 77 = (77> e® with k = 2/+/3,
becomes:

A2W02 —kd _ké ko 7
V=rk—9 (Cx+ce ™ -2 +Rie2 +Rye?), 3.37
VB\/@ ( ds 1 2 ) ( )
where: ;
= A~ o),

7 (cw - éw(ﬁ)) V9T

while for {r;) ~ O(1) « V*/3:

(o + 1)e (r)™? (leg1= Cutm)) ¢y )

Rl = «1 and RQ = — 1.
(CW — Cy (7_7)) 4

V2o %

Notice that in (3.37) we added a constant Cys = 1 — ¢ — Ry — Re to obtain
a Minkowski (or slightly dS) vacuum. Given that no O3-planes are present in
our model, the usual uplift mechanism where an anti D3-brane is located in a
resolved conifold region of the extra dimensions would require additional effort
to implement. We leave the explicit embedding of the source of uplift to future
research.

The two negative exponentials in (3.37) compete to give a minimum at {(77) ~
O(1) while the two positive exponentials cause a steepening behaviour at large g5
Thus we need to make sure that both Ry « 1 and Ry « 1 to prevent the two
positive exponentials from destroying the inflationary plateau before achieving
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enough efoldings of inflation.? The condition R « 1 could be satisfied for ¢ « 1,
for example for Wy ~ O(1) and {(77) » 1, in which case the minimum could be
obtained by balancing the two terms in the coefficient A;. However, as we shall see
below, if {77) » 1, the K&hler cone bounds restrict the allowed field space so much
that it becomes impossible to realise enough efoldings of inflation. Hence we shall
focus the region where R; « 1 and Ry « 1 are satisfied by (r7) ~ O(1) « V¥3
(and possibly by allowing some tuning of the complex structure moduli-dependent
coeflicients of the loop corrections or by considering |A| « 1).

Turning now to the explicit numerical examples, let us formulate the necessary
conditions that have to be satisfied in order to have a viable model:

1. Stringy effects can be neglected if each four-cycle in string frame has a volume
larger than the string scale: Voli/4 » va'. Given that string and Einstein
frame volumes are related as Vol, = ¢;Volg = gs7pls with ¢, = 27/, we
end up with the condition:

1
=K1 Vi. 3.38
eri gs(2m)t 7 ! ( )
2. The whole inflationary dynamics should take place inside the Kéhler cone.
This implies in particular that:

v

20(m) < m< if ax>=1,
AGY,
2
Yy a<1 (3.39)

a<7'1> < 7'7<\/®

Notice that these conditions guarantee the absence of any singularity in the
inflationary potential (3.37) which could originate from the shrinking of a
two-cycle to zero size. Rewriting these conditions in terms of the canonically
normalised inflaton field, we end up with:

\/g 2(Jé<7'1> A \/3 %
—In < o< —In| ———
2 (1) 2 {roA/{m)
ig1r1(2<T1>> < q§<i§ln L
2 alTr) 2 SAPRVAGY
In order to be able to describe within a consistent EF'T’, not just inflation but
also the post-inflationary evolution of our model, ¢ should reach its minimum

before hitting the lower bounds in (3.40). Moreover the inflaton should drive
enough efoldings of inflation before hitting the upper bounds in (3.40).

az=1,

if < 1.(3.40)

91f this is the case, these steepening terms could then be responsible for an interesting power
loss at large angular scales [154].
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3. Horizon exit at gfg = ngS* should yield the required number of efoldings:

1 1 V:end
5T+ —In(r Vi) — =1 , 41
N, 57+4ln(7’ Vi) Sn(Trh) (3.41)

where the reheating temperature 7, can be estimated in terms of the inflaton
mass at the minimum m 5 as:

Trh:<ﬂg* )\/m_mmMF (3.42)

4. Horizon exit at $ = (/5* should reproduce the observed amplitude of the
density perturbations:
V3
V2

*

~26-107". (3.43)

5. The o' expansion of the potential can be trusted only if:

§

—— « 1. (3.44)
293/2V

€ =

6. The effective field theory is under control if throughout all the inflationary
dynamics:

Ming < H < mapp < MUY < M, < M, Vi =bulk,2,4,6, (3.45)

v
eKPW, = \/E%Mp is the gravitino mass which sets the mass scale of
all complex structure moduli, the dilaton and the Kéahler modulus 7} =

T+ iSDl Cy and M}@( = \Fv\/f.l/“ M, are the different KK scales in the model

associated with bulk KK modes for TSﬁ =) and KK replicas of open string
modes living on D7-branes wrapped around Dy, D4 and Dg. The bulk KK

/
scale should be below the string scale M, = g;\;ﬁ M, while we do not need

to impose V14 < M,@( since no energy can be extracted from the vacuum
during an adiabatic inflationary expansion where H « M 1(2<

where my,¢ is the inflaton mass, H =~ is the Hubble scale, ms, =

7. Besides the two ultra-light axions associated with the base and the fibre
which develop just negligible isocurvature fluctuations during inflation if they
do not contribute significantly to dark matter, only the volume mode has a
mass below mgz/,. In order to trust our single field approximation, we need
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therefore to check that the mass of the volume mode my does not become
smaller than the Hubble scale H. This condition boils down to:

H Ve
—_ ~ <1 (346)

6 =
my 3‘/0/ ~ ’

where V, is the leading O(a) contribution to the scalar potential and reads
[55]:

3V
49323

Va/ZK

If 6 ~ 1, the inflationary energy density can either destabilise the volume
direction or cause a significant shift of the volume minimum. Hence the
inflationary dynamics can effectively become a multi-field evolution. How-
ever, as analysed in [101], the motion might still remain mainly along the
77 direction, and so the predictions for the inflationary observables could be
basically unaltered apart from the fact that the number of allowed efoldings
slightly increases. Notice also that in LVS models the CY Euler number
together with the string coupling fixes the minimum of the blow-up mode 7
as: {(11) = (3¢/2)%3 g;1. This value is important to evaluate the Kihler cone
conditions in (3.40).

We shall now focus on single-field slow-roll inflation where:

N 2 "
e(¢) = % (%) « 1 and n(¢) = VV «1.

Notice that the condition 1 « 1 guarantees that the inflaton is lighter than H
during inflation. In order to illustrate the main features of our inflationary model,
we shall now consider two different choices of the underlying parameters charac-
terised by different values of the coefficients ¢ and A which control the strength
of the O(a’®) corrections to the effective action at O(F?) and O(F*). According
to [56], N =1 O(a'®) corrections due to O7-planes cause a shift of the CY Euler
number x(X) to xes(X) defined in (3.11) and given in Tab. 3.3. From (3.47) this
modification would give £ = 0.067. Moreover the coefficient A of higher derivative
O(a'?) effects has been estimated to be negative and of order 1073 [99, 100]. Hence
the first set of parameters will be characterised by ¢ = 0.067 and A = —0.001.
However both of these corrections still lack a full supersymmetric analysis, and so
in the second case we shall focus on a situation where the CY Euler number is
not modified, and so & = 0.456, and the size of the coefficient A\ is much smaller:
Al <1076,
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Case 1: £ =0.067 and |\ = 0.001

Let us now provide an explicit numerical example set to demonstrate the fea-
tures of our inflationary model:

a =1, OV =0y=15, |Cy]=0.013, [O}]=18, OF =Cy = -5,
gs = 0114, v=10", {(rn)=191, Wy=80, |\ =0.001, (3.48)

with x(X) = xe(X) = —28 in (3.47) which gives ¢ = 0.067. Notice that the
tuning of the steepening term here is mild since the difference between the largest
and the smallest winding coefficient is between one and two orders of magnitude.
The form of the inflationary potential is plotted in Fig. 3.1 and it is characterised
by:
2.x107™" f
15x107" —

1x101

5.x1 12 [

T e P

Figure 3.1: Plot of the inflationary potential for the example set (3.48). The red
vertical lines correspond to the walls of the Kahler cone while the dashed vertical
lines denote horizon exit and the end of inflation where € = 1.

o (17) = 4.002 leading to €., = 0.0014. Moreover 2{r;) ~ 3.8, and so the
distance of the minimum from the lower bound of the Kéhler cone is A1, ~
0.178 which is still larger than the string scale since, using (3.38), we have
that:

w=————>~0.03. 3.49
cam gs(2m)* Ay ( )

e The Kihler cone bounds (3.40) in terms of the canonically normalised infla-
ton become gbmm ~—004 <0< gbmax ~ 6.49. Inﬂatlon ends at gb Cbend ~
0.96 where €(dena) = 1 and Vipq ~ (7-10% GeV) Horizon exit takes place
at gb = ¢* ~ 6.24 where r = 16e = 0.009, ny = 1 + 2n, — 6e, = 0.983,
Vi ~ (1-10"GeV)* and the amplitude normalisation (3.43) is satisfied.
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Notice that such a largish value of the scalar spectral index is in perfect
agreement with Planck data in the presence of dark radiation since, using
AN = 0.39 as a prior, [139] gives as best fit ny = 0.983 £ 0.006. This prior
is fully justified in string models like ours where reheating is driven by the
decay of the lightest modulus which naturally tends to produce extra axionic
contributions to dark radiation [14, 124, 125, 126].

Horizon exit occurs well inside the Kéhler cone since from (3.39) we have:

%
<Tl

= 7 -7 ~1827.06.

7= () & 5404.82 < 7 = ~ 7231.87

5

The mass of the inflaton around the minimum is mj ~ 4.25- 10 GeV which
from (3.42) implies a reheating temperature Tp;, ~ 1.8 - 101° GeV.

The number of efoldings computed as:
N VA
N, = — do, (3.50)

¢end

gives N, = 52 as required by the estimate (3.41). The maximum number of
efoldings between ¢enq and @payx is N ~ 60.

The o' expansion is under control even if in our inflationary model the infla-
ton travels over a trans-Planckian distance of order A¢ = ¢y — ¢eng = 5.28
since we have e ~ 10~

The mass of the volume mode is of order the Hubble scale during inflation
since 6 ~ 1.6. Hence the inflationary energy density could either cause
a significant shift of the original LVS minimum or destabilise the volume
direction. A definite answer to this question would require a more careful
multi-field analysis. As mentioned above, a similar situation has been studied
in |101], where the authors found that for § ~ 1 the minimum for the volume
mode gets a large shift but the inflationary evolution still remains mostly
single-field since my,; « my, ~ H. However if § ~ 1, the inflationary potential
generated by string loops and o/ F* terms is of the same order as the a3
F? contribution, and so one also should carefully check if additional higher
derivative corrections can be safely neglected.

The effective field theory approximation is valid during the whole inflationary
evolution since H ~ 2-10%GeV < mgp ~ 1-10°GeV < MW ~ 9.
102 GeV < M, ~ 2.5 - 10'° GeV.
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Figure 3.2: Comparison between the different KK masses, m3/, and the inflationary

energy density V4 from horizon exit to the end of inflation. Note that Ml(fl)( =
M I(f,)( which is why only one of them is displayed here.

We display the evolution of the different KK masses as compared to the grav-
itino mass and the inflationary scale M,y = V' in Fig. 3.2. Notice, in particular,
that at the end of inflation the inflationary scale is of order MPuk and, above all,
mildly exceeds the KK scale M [({411 by a factor of roughly 1.3. As we stressed above,
during an adiabatic expansion no energy can be extracted from the vacuum, and so
our EFT is still valid even if some KK scales become smaller than V/* since they
are all always larger than mgs, which is, in turn, larger than H. However, since all
the inflationary energy density could instead be converted into particle production
at reheating, one should make sure that there is enough Hubble friction between
the end of inflation and reheating to bring the inflaton energy density below the
relevant KK scale. This effect can be estimated by noticing that from:

p0) = 5F H V(@) =BEPMS & dp(0) = -3HFP.  (351)

we can obtain the following relation between the energy density at the end of
inflation and at reheating:

. rh da .
Prh = Pend — 3<¢2> J ; = Pend — 3th<¢2>, (352)
end

where <¢2> is the time average between the end of inflation and reheating and
N = In(aun/aeng) is the number of efoldings of the reheating epoch. At the end
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of inflation when € = 1 we have:

L 2712 3 @\*
S =HME S paa = Ve = 10 (MKK> . (3.53)
On the other hand at reheating V(¢m) ~ 0, and s0 py > ¢% /2. If we then write
the time-average kinetic energy as {(¢*) = ¢% /r ~ 2p,/z with x > 0, we end up
with the following bound:

10 4 4
zi'rh
Using the fact that:
1 HZ  M? 1 g
Ny~ -In| 221} -1 ) ~16, 3.55
=i () -5 () w9

the bound (3.54) becomes = < %th ~ 10. Our model should satisfy this bound

since we expect dend to approach ¢, relatively quickly due to the steepness of
the potential near the end of inflation. However a definite answer would require
a detailed study of the post-inflationary epoch which is beyond the scope of this
work.°

Let us also mention that, due to the absence of KK corrections, this scenario
represents a chiral global embedding of the o/-inflation models discussed in [103].
Moreover, no KK scale becomes smaller than the gravitino mass even if r ~ 0.01
and AngS ~ 5 in Planck units. In fact, if we focus for example on the KK scale M;(fl){
associated with the K3 fibre (similar considerations apply to the KK scale M §<6[)<

associated with the base), we have:

m—?’(g = oy €22% ~ (.03 29 (3.56)
MKK
with:
Wo (s )1/4 M3/ 1
—al— (2= ~ (.03 d = —. 3.57
“=N o (27r M, N (3.57)

If we set ¢ = ¢ + dne ~ 7.44, the ratio in (3.56) becomes mg/g/MI(f})( ~ (.26, and
so the KK scale M 1@( is always larger than the gravitino mass throughout all the

4
10Let us also point out that, even if p,, = (M 1(;2) , our model is not necessarily ruled out

but we would just need to describe reheating within a 6D EFT where the base of the fibration
is much larger than the characteristic size of the fibre. It would also be interesting to find brane
setups where this problem is automatically absent since there is no D7-brane wrapped around
the base.
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inflationary dynamics. Notice that this result seems to be in slight disagreement
with the swampland conjecture of [155, 156] where the underlying parameters «;
and oo were generically assumed to be of order unity.

As explained above, given that in this case  ~ 1.6, the inflationary dynamics
can be fully trusted only after determining the proper multi-field evolution. Due
to the difficulty to perform a full numerical analysis, in the next section we shall
instead still focus on a single-field case where § ~ 0.05 since £ is larger, and so the
volume mode mass is larger, while || is smaller, and so F** steepening terms can be
easily neglected throughout the whole inflationary dynamics. The full three-field
evolution for both of these cases will then be presented in Sec. 3.4.2.

Case 2: £ =0.456 and |\ =107

According the discussion above, we shall now focus on the following different
choice of the underlying parameters:

a =1, CV=0Cy=0034, [CY|=10"°, |Cy]=0.068,
¥ = OF =—-0.024, g,=025, V=4500, {(r)=23.10,
Wy = 150, |[A=10"", (3.58)

with x(X) = xes(X) = —188 in (3.47) which gives £ = 0.456. A larger value of
the coefficient £ is helpful to increase the control on the single-field approximation
since, as can be seen from (3.47), the leading O(a’®) contribution to the scalar
potential is proportional to £&. The form of the inflationary potential is plotted in
Fig. 3.3 and it is characterised by:
v

3.x10"3§

2.5x1o-*3;

2.x10-*3f—

15x1973 |-

P S S S S S S S RO MR R
2 4 6 8 10 ¢

Figure 3.3: Plot of the inflationary potential for the example set (3.58). The red
vertical lines correspond to the walls of the Kéhler cone while the dashed vertical
lines denote horizon exit and the end of inflation where € = 1.



128

CHAPTER 3. STRING INFLATIONARY MODELS

o (17) ~ 6.41 leading to €., >~ 0.0004 and {(¢) ~ 1.61. Moreover 2(7y) =~ 6.2,

and so the minimum is located close to the walls of the Kahler cone but at
a distance A7; ~ 0.21 which is still larger than the string scale since, using
(3.38), we have that:

1
. =———~0.01. 3.59
cam gs(2m)* ATy ( )

The Kéhler cone bounds (3.40) in terms of the canonically normalised infla-
ton become gbmm ~ —0.028 < quS < ggmax ~ 5.19. Inﬂation ends at qg = q@end ~
0.93 where €(dena) = 1 and Vipq = (4.4 - 10% GeV) Horizon exit takes place
at gb = q§* ~ 5.10 where r = 16e = 0.0014, n, = 1 + 21, — 6e, = 0.963,
V, = (6.2-10 GeV)" and the amplitude normalisation (3.43) is satisfied.
Notice that horizon exit occurs far away from the upper bound of the Kéhler
cone since from (3.39) we have:

7 = () & 2325 79 < 7ex — Y~ osmass

(11)

= T — 7~ 228.76.

The mass of the inflaton around the minimum is mg ~ 1.85-10'3 GeV which
from (3.42) implies a reheating temperature Ty, ~ 5 16 - 10° GeV.

The number of efoldings computed as:

¢A7* V R
N, = ~dp, (3.60)
(Z)cnd VI

gives N, = 51 as required by the estimate (3.41). The maximum number of
efoldings between gbend and gbmax is NJ' ~ 57.5.

The o expansion is under control even if in our inflationary model the infla-
ton travels over a trans-Planckian distance of order Agb qu* gbend =4.17
since we have €, ~ 0.0004.

The single-field approximation is under control since § >~ 0.05.
The effective field theory approximation is valid during the whole inflationary

evolution since H ~ 7- 102 GeV < mygpn ~ 8- 10" GeV < MPuk ~ 1.6 -
106 GeV < M, ~ 4.5 - 10 GeV.
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Figure 3.4: Comparison between the different KK masses, the gravitino mass ms/,
and the inflationary energy V4 from horizon exit to the end of inflation. Note
that M, }((41)( =M I(ff)( which is why only one of them is displayed here.

We display the evolution of the different KK masses as compared to the grav-
itino mass and the inflationary energy density M,y = V% in Fig. 3.4. Notice that,
contrary to case 1 where r = 0.01, all KK scales remain above M;,s throughout
all the inflationary dynamics. The reason is that in this scale the tensor-to-scalar
ratio, and so also the inflationary scale, is smaller since » = 0.001. Moreover,
as stressed above, no energy can be extracted from the vacuum during an adia-
batic expansion, and so the consistency condition to be imposed during inflation

is H « M}JQ{ which is clearly satisfied since H = % (%) < M;,¢s. Moreover,

no KK scale becomes smaller than the gravitino mass mg, ~ 8- 10" GeV. If we
focus for example on the KK scale M I(f,)( associated with the K3 fibre (similar con-

siderations apply to the KK scale M}((G,)g associated with the base of the fibration),
we have:

m%ﬁ = ay €2 ~ 0.126 ¢%2% (3.61)
MKK
with:
Wo (9s )1/4 Mm3/2 1
—al— ([ —= ~0.126 d = —. 3.62
“ 2m <27T M, a @2 2v/3 ( )

If we set ¢ = ¢ + gz@he ~ 6.71, the ratio in (3.61) becomes mg/z/Mg){ ~ (.87,
and so the KK scale M ,(f})( is always larger than the gravitino mass throughout
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all the inflationary dynamics. This result seems to be more in agreement with
the swampland conjecture of [155, 156] than the one of case 1 since r is smaller,
r ~ 0.001, and the field range is slightly reduced, A(/g ~ 4. Moreover larger values
of ¢ would bring the effective field theory approach out of control.

Even if this example satisfies all consistency and phenomenological constraints
and the single-field inflationary analysis is under control, in Sec. 3.4.2 we shall
perform a more precise multifield analysis where the motion along the orthogonal
directions enlarges the field space as well as the allowed number of efoldings.

3.4.2 Multi-field evolution

The following five consistency conditions require generically a multi-field study
of the inflationary evolution (which might however still be mainly along a single
direction in field space):

1. The whole inflationary dynamics takes place well inside the Kéhler cone
described by the conditions in (3.39);

2. The quantum fluctuations of the inflaton produce a correct amplitude of the
density perturbations at horizon exit;

3. The directions orthogonal to the inflaton are not destabilised by the infla-
tionary dynamics. This is guaranteed if inflation occurs in field space along
a through which can however bend;

4. Throughout all the inflationary dynamics, no Kaluza-Klein scale becomes
smaller than the gravitino mass;

5. The steepening of the inflationary potential due to F* corrections is negli-
gible, so that enough efoldings can be obtained before destroying slow roll
inflation.

If V ~ 10* and Wy ~ O(1), the last four conditions can be easily satisfied but
the Kéhler cone conditions (3.39) for such a small value of the volume would
give an upper bound on the inflaton direction which would not allow to generate
enough efoldings. In order to enlarge the inflaton field space, the value of the
volume has therefore to be larger, of order V ~ 10%. In the large volume regime
where we can trust the 4D EFT, the inflationary potential then becomes more
suppressed, and so the COBE normalisation condition (2) above can be satisfied
only if Wy ~ O(100). However, given that the gravitino mass is proportional to W,
for such a large value of the flux-generated superpotential, it is hard to satisfty
the fourth condition above keeping mg;; below all KK scales during the whole
inflationary evolution. Moreover, it becomes harder to suppress higher derivative
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corrections (condition (5) above) unless their numerical coefficient A turns out to
be extremely small: |A\| < 107%. This is the example of case 2 above of Sec. 3.4.1.

Another option for ¥V ~ 10* could be to keep Wy ~ O(1), so that the grav-
itino mass can remain small and the F'* terms are still negligible, and to tune the
background fluxes to increase the complex structure-dependent coefficients of the
winding loop corrections. This would however make the inflaton-dependent poten-
tial of the same order of magnitude of the leading order o’ correction. Hence the
mass of the volume mode becomes of order the Hubble scale during inflation. This
is the example of case 1 of Sec. 3.4.1 where § ~ 1.6. This situation could either
cause a considerable shift of the original LVS minimum or even a destabilisation,
and so in this case one should perform a careful multi-field analysis to check that
the condition (3) above is indeed satisfied.'!

In what follows we shall therefore focus on the multifield case with V ~ 104,
Wy ~ O(100) and |A] < 107%. We shall also present an example with W, ~ O(1)
and |A] ~ 107 which satisfies all conditions above except for condition (2) since
the amplitude of the density perturbations turns out to be too small. The correct
value could be generated by the quantum fluctuations of the two light bulk axions
which could play the role of curvaton fields [66, 67, 68, 69, 70, 71, 72]. This study
is however beyond the scope of this chapter, and so we leave it for future work.

We analyse now the full three-field cosmological evolution involving the Kah-
ler moduli 77, V and 7. Their dynamics is governed by the following evolution
equations for non-canonically normalised fields:

&+ BHY + T ok + g1 2L —
{ o o (3.63)

= (3) =3 (30009 + V)

where the ¢;’s represent the scalar fields 77, V and 7, a is the scale factor and
F?k are the target space Christoffel symbols using the metric g;; for the set of real

scalars ¢’ such that aqﬁza% or®10,* = 1 g;;0,0 0"

For numerical purposes it is more convenient to express the cosmological evo-
lution of the fields as a function of the number of efoldings N rather than time. In
fact, by using a(t) = eV and 4 = H-L we can directly obtain 77(N), V(N) and
71(NN) without having to solve for the scale factor. The equations of motion turn

1A similar situation arises in Kihler moduli inflation where however a detailed multifield anal-
ysis shows that the minimum of the volume mode is shifted during inflation without developing
a runaway direction [137, 157].
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out to be (with ’ denoting a derivative with respect to N):

Vv Vr Vir ua
Té’ = — (»Ckin + 3) (Té + T7V7 + 27’7277 + 27’77'1 Vl) —+ 7_—77 (364)
+T77'{ i T
V \yn 2ym/)’
V2V, Vv Vv 1%
" = —(Lyn +3 T = db —, (3.65
1% (k+)(v+2v+r7vv+ﬁvv)+v (3.65)
v V. Vo
" = —(Liin+3) (r{ + TIV% + 271y "/7 +4V/11 T )
+ i2_|_7—1vl T_{_T_é _|_7_17_§ 3_7_4_@7—{ ,
47’1 % 1 T7 27’7 2’7’7 )%
where the kinetic Lagrangian reads:
JoR (N . SRV I W (3.66)
2 ) ZE VU S 2V 4V\/m1

and the full inflationary potential V' is given by the sum of the standard LVS
potential, the g, loops and F" terms given in (3.36) and an uplifting contribution
proportional to d,, which could come from an anti D3-brane at the tip of a warped
throat:

— 2 2Vl _ynr . WOTl N BC W02
Vo msAm S e A T e
WO2 Al AQ Blﬁ 327'7 (Sup
w (RS 6o

|A| = 107 and correct amplitude of the density perturbations
Setting o = 1 and performing the following choice of the underlying parameters:
CENX)
2(2m)3
CYV = Cy =005 |Cy]=10"" |C)]=01 C¥=C =-005 A=-107F,

A, = 6-10° y=-188 = (=-— 0.456 Wy =50 g,=0.25
the total potential (3.67) admits a Minkowski global minimum at:
(V) =2600.625, () =6.503  (r)=3.179 for Oy = 595981074,

Notice that this minimum is inside the Ké#hler cone since (17) > 2{my) = 6.358,
which respects the lower bound in (3.39). At this level of approximation, the



3.4. INFLATIONARY DYNAMICS 133

closed string axions associated to V and 7; are flat directions. They receive a
tiny potential from highly suppressed non-perturbative effects, and so they remain
very light. Being so light, they do not affect the inflationary dynamics but would
acquire isocurvature fluctuations of order H during inflation. If they do not play
the role of dark matter, their final contribution to the amplitude of the isocurvature
perturbations is negligible. On the other hand, if they are heavy enough to decay,
their isocurvature fluctuations get converted into standard density perturbations,
and so these bulk axions could behave as curvaton fields [66, 67, 68, 69, 70, 71, 72|.

Let us now shift 77 away from its minimum at the initial condition 7 (N =
0) = {7y + 2030 and recompute the new minimum for the other two directions
V)(17) and {1y )(77). These values would set the initial conditions for these fields,
ensuring that the inflationary dynamics takes place along a stable trough in field
space:

V(0) = (W)(17(0)) = 3671.432,  7(0) = 2036.503, 71(0) = {1 )(77(0)) = 3.227.

Notice that these initial conditions are again inside the K&hler cone since 77(0) <
YO _ 2043.7, which satisfies the upper bound in (3.39). We shall also focus on

\/7‘1(0)

vanishing initial velocities for all scalar fields: V'(0) = 75(0) = 77(0) = 0.

Considering this set of initial conditions, we solved the system of equations of
motion (3.65) finding the cosmological evolution of each scalar field as a function
of the number of efoldings N. Inflation occurs in the region in field space where
the generalised e-parameter:

1
ALyin V2

is much smaller than unity. As can be seen from Fig. 3.5, ¢ « 1 during the first
57 efoldings and then quickly increases and reaches e = 1 at N = 57.93 where
inflation ends.

Using the variable N to parametrise the cosmological evolution of the scalar
fields and denoting by N, the physical number of efoldings of inflation, N, = 52,
as estimated in Sec. 3.4.1, at N, = 5.93. This is the point of horizon exit in
field space where €(N,) = 1.456 - 10~* which yields a tensor-to-scalar ratio r =
16€(N,) = 0.0023. The amplitude of the scalar power spectrum is:

NiAs 1(; Z‘Z((]]\Z *)) ~1.035-10°7, (3.69)

e(N) = VoV + Vo mh+ Vo), (3.68)

reproducing the reference COBE value /Peogr =~ 2 - 107° with a good accuracy.
Moreover the scalar spectral index is given by:

= 0.9701 , (3.70)

d
nS(N*) =1+ W lIlP(N) N,
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Figure 3.5: Evolution of the e-parameter as a function of the number of efoldings
N for (left) the entire inflationary dynamics and (right) for the last efolding.

in good agreement with Planck data [138, 139)].

Fig. 3.6, 3.7 and 3.8 show the cosmological evolution of the three scalar fields
77, V and 11 during the whole inflationary dynamics and their final settling into
the global minimum after a few oscillations. Fig. 3.9 shows instead the path of the
inflationary trajectory in the (77,V)-plane (on the left) and in the (77,7 )-plane
(on the right). Clearly, as expected from the single-field analysis of Sec. 3.4.1, the
inflaton travels mainly along the 77-direction.

Finally Fig. 3.10 presents a plot with the cosmological evolution of all KK mass
scales, the inflationary scale M,; = V14 and the gravitino mass mg/; from horizon
exit to the final settling into the global minimum. The fact that M;,; remains

always below all the KK scales, ensures that the Hubble scale during inflation H =
M (A
remains always smaller than M ;(2( Vi. This guarantees that the 4D effective field
theory is under control. In particular, M ;((2}){, M I(f})( and the inflationary scale evolve
from MZ)L(N,) ~ 1.1:10 GeV, M) (N,) =~ 2.1.10'® GeV and Miye(N,) ~ 5.3-10%
GeV at horizon exit to M (N = 60) ~ 6.2 - 1016 GeV, M (N = 60) ~ 1.3 - 10'6
GeV and M (N = 60) ~ 9.3 - 10 GeV around the final minimum. On the other
hand the other scales remain approximately constant during the whole inflationary

evolution around: H ~ 5-10"2 GeV < mgp ~ 410 GeV < MPulk ~ 2.10'° GeV.

) < My is also always below each KK scale. The gravitino mass also

|A| = 107% and negligible amplitude of the density perturbations

We shall now relax the condition of generating the correct amplitude of the
density perturbations from the inflaton quantum fluctuations. As explained above,
the right COBE value of the amplitude of the power spectrum could instead be
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Figure 3.6: Evolution of 77 as a function of the number of efoldings N for (left)
the entire inflationary dynamics and (right) for the last 2 efoldings. The dashed
red line represents the position of the final global minimum.

reproduced in a non-standard way by a curvaton-like mechanism involving the
quantum fluctuations of the two light bulk axions [66, 67, 68, 69, 70, 71, 72].
In this case we can focus on V ~ 5-10% Wy ~ O(1), A ~ 1073 and relatively
small values of the coefficients of the winding loop corrections which generate the
plateau, so that all the remaining four conditions listed at the beginning of Sec.
3.4.2 are fully satisfied.

We shall set o = 1 and perform the following choice of the underlying param-
eters:

(NX)
2(2m)3
OF = OV =005 CV=-10"" OF=-01 C¥=C"=-005 \=—0.001,

A, = 1-10" y=-188 = (=-— 0455 Wy=1 g¢g,=0.25

which yield a global Minkowski minimum inside the Kéhler cone at:
(V) = 3220.899, {T7) = 6.403 (1) =3.179 for &, = 1.76588-10"".

The initial conditions for the inflationary evolution are again derived in the same
way: the fibre modulus 77 is shifted away from its minimum at (N = 0) =

{T7) + 2450 and the other two directions {(V)(77) and {7y )(77) are set at the new
minimum:

V(0) = (W)(77(0)) = 4436.094, 7,(0) = 2456.403, 71(0) = (7 )(7+(0)) = 3.228..

Notice that these initial conditions are inside the Kihler cone since 77(0) <

YO _ 9468.95, which satisfies the upper bound in (3.39). Focusing again on

\/7‘1(0)
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Figure 3.7: Evolution of V as a function of the number of efoldings N for (left)
the entire inflationary dynamics and (right) for the last 6 efoldings. The dashed
red line represents the position of the final global minimum.

vanishing initial velocities for all scalar fields, i.e. V'(0) = 74(0) = 7(0) = 0,
we worked out the cosmological evolution of each scalar field as a function of N
by solving the system of equations of motion (3.65). Looking for a slow-roll re-
gion in field space where the generalised e-parameter (3.68) is much smaller than
unity, we found that ¢ « 1 during the first 69 efoldings and then quickly increases
and reaches € = 1 at N = 69.15 where inflation ends. The point of horizon exit
corresponding to a physical number of efoldings of inflation N, = 52 is localised
at N, = 17.15 where €¢(N,) = 1.36 - 10~*. The main cosmological observables at
horizon exit take the following values:

d
ne(N,) = 14 — InP(N) —0.9676, = 16¢(N,) = 0.0022,
dN N=Ny
1 [2V(N,) s
P(N,) = =164-10"".
(V) 107\ 3e(N,)

The scalar spectral index ns and the tensor-to-scalar ratio r are in good agreement
with Planck data [138, 139] while the amplitude of the scalar power spectrum, as
expected, is much smaller than the reference COBE value v/Peops =~ 2 - 107°. As
can be seen from Fig. 3.11, in this case the low-energy 4D effective field theory
is fully under control since throughout all the inflationary evolution all KK scales
are much higher than both the gravitino mass and the inflationary scale (and so
also the Hubble scale).

In particular, M ,@(, M I((GIZ and the inflationary scale evolve from M I(f})((N*) ~

9.8-10% GeV, M (N,) ~ 1.8-10' GeV and Miy¢(N,) ~ 6.5-10™ GeV at horizon
exit to MG (N = 70) ~ 55106 GeV, ME(N = 70) ~ 1.2 - 10! GeV and
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— N

Figure 3.8: Evolution of 71 as a function of the number of efoldings N for (left)
the entire inflationary dynamics and (right) for the last 6 efoldings. The dashed
red line represents the position of the final global minimum.

Mt (N = 70) ~ 1.4 - 10" GeV around the final minimum. On the other hand the
other scales remain approximately constant during the whole inflationary evolution
around: H ~ 810" GeV < mgp ~ 6- 10 GeV < MPulk ~ 2. 10'% GeV.

3.5 Conclusions

The study of large field inflationary models is particularly interesting from both
a phenomenological and a theoretical point of view. In fact, from one side the next
generation of CMB observations will be able to test values of the tensor-to-scalar
ratio in the window 0.001 < r < 0.01, while on the other hand trans-Planckian
inflaton excursions need a symmetry mechanism to trust the effective field theory
approach.

Natural inflaton candidates from type IIB string compactifications are Kahler
moduli which enjoy non-compact shift-symmetries [88]. In particular, fibre infla-
tion models provide promising plateau-like potentials which seem to fit Planck
data rather well and lead to the prediction of observable tensor modes [101, 102,
103, 104]. These inflationary models are built within LVS moduli stabilisation
scenarios and can be globally embedded in K3-fibred Calabi-Yau manifolds [141].

In this chapter we extended previous work by constructing the first explicit
realisations of fibre inflation models in concrete type IIB Calabi-Yau orientifolds
with consistent brane setups, full closed string moduli fixing and chiral matter on
D7-branes. The underlying compactification manifold features h'' = 4 Kéhler
moduli which after D-term stabilisation get effectively reduced to the standard 3
moduli of fibre inflation models.
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Figure 3.9: Plot of the whole inflationary evolution in the (77,V)-plane (on the
left) and in the (77, 71)-plane (on the right). Notice that the scales are different on
the two axes since the inflaton travels mainly along the 7-direction.
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Figure 3.10: Evolution of all KK masses (with Mf(fl)( = M,((QI)(), the inflationary scale
Mye = V4 and the gravitino mass mgz/; in GeV units from horizon exit to the
final settling into the global minimum.

We found that the inflationary dynamics is strongly constrained by the Kahler
cone conditions which never allow for enough efoldings of inflation if the internal
volume is of order V ~ 10%. For larger values of the Calabi-Yau volume of order
VY ~ 10%, the Kéhler cone becomes large enough for the inflaton to drive N, ~ 52
efoldings, as required by an estimate of the post-inflationary evolution. However
such a large value of V tends to suppress the amplitude of the density perturbations
below the reference COBE value. This can be avoided by considering large values
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Figure 3.11: Evolution of all KK masses (with M,(f) = MI({Z;), the inflationary scale
My = VY4 and the gravitino mass mss in GeV units from horizon exit to the
final settling into the global minimum.

of either the coefficients of the winding loops which generate the plateau, or the
flux superpotential W,. Let us stress that in the string landscape this choice is
guaranteed to be possible by the fact that both of these microscopic parameters
are flux-dependent.

However, as shown in Sec. 3.4.1, large values of the coefficients of the winding
gs corrections make the Hubble scale during inflation of the same order of magni-
tude of the mass of the volume mode. This could either cause a large shift of the
original LVS minimum or even a problem for the stability of the inflationary direc-
tion against orthogonal runaway directions. A definite answer to this issue hence
requires a proper multi-field analysis even if the two-field study of [101] revealed
that the inflationary motion is still mostly single-field.

On the other hand, if the flux superpotential is of order Wy ~ 100, the gravitino
mass can become too close to some KK scale in the model, destroying the 4D
effective field theory. Moreover, F* terms are proportional to |A[W;. Thus if Wy
is large, these higher derivative effects can spoil the flatness of the inflationary
potential before achieving enough efoldings of inflation if |A| is not small enough.
Hence in Sec. 3.4.1 we presented a model with W, ~ 100 and a very small value
of |A| of order || = 107" which makes the F* terms harmless. The gravitino
mass also turns out to be slightly smaller than any KK scale throughout the whole
inflationary dynamics.

Due to the fact that in the single-field case not all our approximations are fully
under control, in Sec. 3.4.2 we performed a complete numerical analysis of the
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3-field cosmological evolution. For Wy ~ 100 and || = 107%, the multi-field anal-
ysis of Sec. 3.4.2 revealed that the accuracy of our approximations improves. In
particular, the allowed number of efoldings of inflation increases due to the extra
motion along the volume and blow-up directions. Hence inflation can successfully
work also for smaller values of V which cause a smaller Kéhler cone for the fibre
modulus. This, in turn, requires smaller values of W, to match the COBE normal-
isation of the density perturbations, which enlarges the hierarchy between ms
and the KK scales in the model.

We point out however that some of the underlying parameters are not flux-
dependent, and so are not tunable in the string landscape. Two examples of this
kind of parameters are the effective Euler number y.¢ which controls the strength
of O(a'?) corrections due to O7-planes [56] and the combinatorial factor A which is
the coefficient of O(a’®) higher derivatives [99]. Both of these microscopic param-
eters have not been computed in full detail yet, even if A\ has been estimated to be
of order 1072 [100]. Hence in Sec. 3.4.2 we also presented a case with |[A\| = 0.001
where it is hard to obtain enough efoldings inside the Kéahler cone and generate, at
the same time, the correct amplitude of the density perturbations in a framework
where all the approximations are fully under control. Hence we chose the flux
superpotential so that the contribution of the inflaton quantum fluctuations to the
scalar power spectrum is negligible. In this case a viable inflationary phenomenol-
ogy can therefore be achieved only in the presence of a non-standard mechanism
for the generation of the density perturbations. A promising case could be the
curvaton scenario where the initial isocurvature fluctuations could be produced by
the quantum oscillations of the two light bulk closed string axions [158, 159, 160].
We study the impact of these ultra-light degrees of freedom on the inflationary
parameters in Chapter 4. Indeed, the presence of light spectator fields in a curved
field space may cause an uncontrolled growth of primordial perturbations that may
quickly lead the system out of the perturbative regime.

Besides a complete computation of the exact value of both y.g and A, and the
detailed derivation of a curvaton-like mechanism, there are several other important
open issues for future work. A crucial one is that our chiral global models still lack
an explicit implementation of a mechanism responsible for the realisation of a dS
vacuum. Moreover, the study of the post-inflationary cosmological evolution of our
universe is of primary importance in order to discriminate among different models
that feature the same inflationary predictions of fibre inflation models. A first step
forward towards understanding (p-)reheating has been taken in [161, 162]. A full
understanding of this mechanism requires further investigation of the underlying
microscopic dynamics.

Finally we stress that a better determination of the actual Calabi-Yau Kéhler
cone would be needed in order to find the actual moduli space volume. In this work
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we just used an approximation inherited from the Mori cone of the ambient toric
variety. Giving an answer to this question was the starting point of [163] where
the authors investigate the space of flat directions of IIB Calabi-Yau orientifold
models after partial moduli stabilization in an LVS vacuum. They looked at the
list of Kreuzer-Skarke CY LVS-geometries showing diagonal del Pezzo divisors and
scanned over all possible h'! = 3, 4. They found that CYs showing a K3 fibration
generically allow for trans-Planckian field excursions.
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Chapter 4

Geometrical destabilisation issues in
String inflation?

4.1 Introduction

Many inflationary scenarios beyond the SM feature non-linear sigma models
characterised by multiple scalar fields and a curved field manifold. In particular,
these arise naturally within the framework of supergravity, string compactifications
and models with non-minimal coupling. In a multi-field set-up, there are several
spectator fields which can be either heavy, i.e. my » H, or light, i.e. m; <« H.

It has recently been claimed that when the field manifold is negatively curved,
the effective mass of the isocurvature modes receives negative contributions which
can potentially induce a geometrical instability by making them tachyonic [164].
In this case the effective mass-squared of the isocurvature fluctuations receives
additional contributions from the Christoffel symbols and the Ricci scalar which
can cause their exponential growth [164]. In principle this problem may be related
to both heavy and light fields that are orthogonal to the inflationary trajectory.
This effect could induce a geometrical destabilisation of the inflationary trajectory
since the growth of the isocurvature perturbations quickly brings the system in
the non-perturbative regime *.

The low-energy limit of string compactifications is a 4D supergravity theory
which is generically characterised by non-canonical kinetic terms so it may suffer
from geometrical stabilisation problems. Indeed, a typical feature of 4D string
models is the presence, at tree-level, of a plethora of massless fields, called moduli.
Typically these fields acquire mass via supersymmetry breaking effects like non-

! This behaviour is to be distinguished from that of the recently proposed ™ultra-light isocur-
vature scenario” [165, 166] where the isocurvature modes are effectively massless (and constant
on superhorizon scales) and act as a source of curvature perturbations.
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vanishing background fluxes at semi-classical level, string loops or o' corrections at
perturbative level and higher-derivative contributions to the low-energy effective
action.

Some of these moduli are however periodic axion-like fields which enjoy a shift
symmetry that is exact at perturbative level [167, 168]. Hence they become massive
only via tiny non-perturbative effects which tend to make them naturally very light,
i.e. exponentially lighter than the gravitino mass which sets the mass scale of all
the other non-axionic moduli [169, 76]. Being ultra-light, these axions are perfect
candidates for dark radiation [14, 124| and quintessence fields [170, 171, 172, 173],
and even for cold dark matter via the misalignment mechanism [174]. Another
cosmological application of axion-like particles is to act as curvaton fields [175, 176].
In fact, during inflation, these ultra-light fields are expected to be much lighter
than the Hubble scale. Hence they acquire isocurvature fluctuations which can
be converted into standard adiabatic perturbations when the axions decay. If
instead the axions are so light that they are still stable, one has to make sure that
they do not contribute significantly to dark matter otherwise the amplitude of the
isocurvature fluctuations would tend to be larger that the one detected in CMB
observations [139]. Examples of such ultra-light axions are given by Cj closed
string axions related to large cycles (e.g. volume cycle) in the extra dimensions.
Indeed, although they can get a mass through non-perturbative corrections to the
superpotential, their contribution will be exponentially suppressed giving rise to
sub-eV to nearly massless particles. These fields are always present in the effective
field theory and their existence only relies on the topological properties of the
Calabi-Yau manifold. Axionic isocurvature fluctuations are guaranteed to remain
in the perturbative regime only when the field space is flat. On the other hand,
when the fields live on a curved manifold we will see that an interesting dynamics
can develop.

This chapter is organised as follows. In Sec.4.2 we briefly review the potential
geometrical destabilisation of inflation. After that we show in Sec. 4.3 that, despite
what has been claimed by other authors, heavy modes are stable when the system
evolves along the attractor background trajectory, in agreement with previous
results found in models with non-minimal coupling [177, 178]. In Sec. 4.4 we
present our main result which is the new observation that a potential geometrical
instability arises instead generically for ultra-light fields, i.e. m; — 0, when the
background trajectory is geodesic. The occurrence of such instability is model
dependent and a full understanding of the inflationary dynamics may require to
go beyond perturbation theory. Being interested in string inflation model building,
we come to the conclusion that, due to the generic presence of ultra-light axions
and a curved field space, string inflationary models might be plagued by geometric
destabilisation problems.
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For this reason we then focus on concrete examples writing down the equations
of motion for 2-field systems where we have a diagonal but non-canonical mass
matrix. We first analyse a toy-model with two fields, ¢; and ¢,, where ¢, is a
quintessence-like field whose potential is simply a negative exponential while ¢4 is
massless, Sec. 4.5. We show that, despite the presence of a negatively curved field
space, this system does not feature any geometrical destabilisation due to a non-
zero turning rate of the underlying bending trajectory, which induces a positive
contribution to the mass-squared of the isocurvature fluctuations.

In Sec. 4.6 we then focus on a type IIB inflationary model, Fibre Inflation (FI)
[101, 104], which is characterised by the presence of two ultra-light axions and a
curved field manifold. This model is particularly promising since it is based on an
effective rescaling shift symmetry [88] and it allows for the construction of globally
consistent Calabi-Yau models with inflation and chirality [141, 2| and the study
of reheating [179]. Depending on which effects generate the inflationary potential
(1-loop open string corrections [58, 60, 61| or higher derivative o' effects [99, 100]),
slightly different FI models can arise [101, 102, 103]. However all of them feature
a qualitatively similar shape of the inflationary potential characterised by a trans-
Planckian plateau which resembles Starobinsky inflation [180] and supergravity
a-attractors [181, 140]. The inflaton field range is around 5 in Planck units with
larger values bounded by the size of the Kéhler cone [163]; we saw this constraint
arising in Chapter 3. In these models primordial gravity waves are at the edge of
detectability since the tensor-to-scalar ratio turns out to be of order 0.005 < r <
0.01.

We first analyse FI models in the limit where the two ultra-light axions are
exactly massless and show that the quantum fluctuations of one of these entropic
modes always experiences an exponential growth. We then try to avoid this geo-
metrical destabilisation by turning on a non-zero axionic mass via non-perturbative
effects. However we find that, in order to obtain a positive mass-squared of the
isocurvature modes, these non-perturbative effects have to be of the same order
of magnitude of the loop and higher derivative corrections which generate the in-
flationary potential. The inflationary model therefore changes completely since it
becomes intrinsically multi-field. Hence, its dynamics should be re-analysed and
the predictions for the cosmological observables should be re-derived. We therefore
may be tempted to conclude that, if one requires a typical FI dynamics at leading
order, there is no way to avoid a tachyonic instability for one of the two ultra-light
axions.

Nevertheless at this point we need to face a paradoxical state of affairs. As
previously mentioned, the tachyonic instability appears also in case of massless
axion, that shows vanishing on-shell energy density. This happens despite the fact
that the background trajectory is essentially single field and stable. This result is
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somehow puzzling from a physical point of view and has prompted us to investigate
this issue further.

In the last part of this chapter we show that the growth of isocurvature pertur-
bations is triggered by the ill-defined coordinate system identified by the tangent
and normal projectors into the inflationary trajectory. We then summarise the
various definitions of entropy perturbations that are currently used in the liter-
ature, trying to understand which definition should be used in order to match
the experimental result coming from isocurvature bounds. We find that the right
quantity to compute is given by the standard definition of relative entropy between
two scalar fluids. In the FI system these are identified by the energy density and
pressure related to the inflaton field and the massless axion. The full computation
of the relative entropy of the system shows that is it finite and vanishing during
inflation, suggesting that FI models are presently viable both in what concerns
curvature and entropy perturbations.

4.2 Geometrical destabilisation

The Lagrangian of a generic non-linear sigma model is:

£/\/1g] = %J (6:) 000" 05 — V(¢4 , (4.1)

where 7;;(¢;) denotes the field space metric. In such multi-field models the back-
ground trajectory defines a projection for the gauge invariant perturbations into a
tangent component, the curvature perturbations, and an orthogonal component,
the isocurvature perturbations. The inflationary dynamics of these models has
been intensively studied over the last two decades and it has been shown to be sig-
nificantly richer than that of single-field models while still being compatible with
observational constraints.

The phenomenon of geometrical destabilisation follows directly from the mass
matrix of gauge invariant scalar perturbations:

Q' =66 + %, (4.2)

where ¢'(t,z) = ¢'(t) + d¢'(t, ) and 1(t, ) denotes the scalar perturbation to the
metric tensor. Let us therefore briefly review how the mass matrix arises in the
context of multi-field models of inflation.

In the 2-field models we will be dealing with, it is convenient to project the
gauge invariant perturbations Q° onto normal QN N;Q" and parallel QT = T;Q"
components with respect to the background trajectory. N® and T¢ have unitary
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2-norm with respect to the field space metric, 7;;, so they satisfy the following
relations:

N'N’v;; =1, TN’y =0, Ty =1. (4.3)
From the second order action for the perturbations one finds the following equation
of motion [182]:2

D2Q? DQ'  k? : ;o
pYe +3H P +¥Q + M0 =0. (4.4)
The covariant derivatives are defined as:
DQZ an

and the connections follow from the field space metric «;;. The mass matrix in the
field basis reads:

M'; = V k:l]¢k¢l 132 < ¢ ¢z> . (4.6)
It is convenient to study the perturbations in the {7, N} basis, where one finds an
equation of motion of similar form to (4.4) with the covariant derivatives defined
in terms of the spin connection (see e.g. [183, 184] for more details). Focusing on
the equation of motion for a single orthogonal perturbation, Q% , one finds that
the mass term takes the form:

m? ¢ =V,ny +eRH? + 30 H”, (4.7)
where the projection of the covariant derivative is given by:
Vinn = (Vig = T5V) N'N7. (4.8)

In (4.7) the first two terms depend both on the geometry of the field space and on
the scalar potential, while 1, is related to the inverse of the radius of curvature of
the inflationary trajectory in field space and parametrises its non-geodesicity:

N’ . -
n. = ‘; with Do = A/ Vij @' P . (4.9)
o

The second term in (4.7) depends on the curvature of the 2-dimensional field space
R, and is the focus of this work. If negative and sufficiently large it can trigger
an instability for the isocurvature perturbations by turning their mass-squared
negative [185, 164|. Before delving into the stability analysis of specific models,
let us see under which conditions the geometrical instability may arise.

2In our notation i, j, ... denote field space directions while capital indices refer to the T and
N orthonormal basis.
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4.3 Geometrical stability for heavy fields

The destabilisation originally considered in [164] concerned heavy spectator
fields during inflation. These are degrees of freedom with a super-Hubble mass,
that naively would not play a role in the low energy dynamics. Given that for
heavy fields N'N7V;; » H? and during inflation € « 1, this can happen only if
|R| » 1. Ref. [164] considered a simple model where a heavy field is coupled to
the inflaton kinetic terms via a higher-order operator suppressed by M:

1 1 1
S = 3 (5 2+ G = Vie - g, ()
with my, » H and f,,/f > 0 for a certain range of M, the mass parameter setting
the scale of the field space curvature. In this case |R| ~ 4/M?, and so M « 1 can
generate a large negative contribution to m? . Indeed, while the zero mode of
the heavy field sits at its minimum y = x = 0, causing 1, = 0, the mass-squared
of the isocurvature perturbations:

mi g = Vi — 2% eH”, (4.11)
becomes negative due to the curvature term dominating m? ¢ . This could trigger
an instability characterised by a super-horizon growth of the isocurvature pertur-
bations which signals a breakdown of perturbation theory and a potential prema-
ture end of inflation [164]. Let us point out that negatively curved field manifolds
arise naturally both in supergravity and in multifield models with non-minimal
couplings [186]. In fact, the simple Kihler potential K = —3In(T + T) for the
complex volume modulus 7" gives R = —8/3. However the reference scale of su-
pergravity is the Planck mass, and so M ~ 1. This implies that during inflation
generically ¢|R|H? « H?, resulting in an absence of any geometric instability.

In what follows we shall however show that, even if |R| » 1, m%; is negative
only if it is computed on a repulsive trajectory, while the isocurvature modes
are stable if the system evolves along the attractor trajectory. Thus the physical
interpretation of m2; < 0 is not that quantum fluctuations grow beyond the regime
of validity of perturbation theory but that the classical field trajectory is unstable
under perturbations of the initial conditions.

To analyse the model we focus on the case where:

1 0
Yij = ( 0 F2(en) ) and V =V(py)+ V(pa). (4.12)

Notice that we made this choice following [164] since it allows to have simple
analytic formulae, but a geometrical instability can arise also for more generic
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cases with non-diagonal metric and non-sum-separable potential. It can be shown
that the corresponding curvature scalar can be negative since it takes the form:

R— 2/l (4.13)

f

The equations of motion from (4.1) and (4.12) for ¢; = ¢;(t) in an expanding
Universe with 4/|g| = a® read:

= a? (fflg'bg . Vl) F—— L (4.14)
where the conjugate momenta are:
™ = a3q.§1 g = angQ.bg . (415)

The background dynamics of the system is determined by (4.14), (4.15) and the

Friedmann equation:
1/1 . -.
H? = 3 (5%3»(;5@(;53 + V) ) (4.16)

4.3.1 Canonical heavy field

We first consider the case where the heavy field has canonical kinetic terms,
and so identify ¢; with the heavy scalar and ¢, with the inflaton. We see from
(4.14) that the equation for ¢; admits a slow-roll solution with [187]:

Fhés~Wi, (4.17)

which implies that 7 is an approximately conserved quantity. Given that during
inflation acce’®, (4.15) then gives ¢; — 0. In this solution the heavy field does
not sit at the minimum of its potential but it is displaced from it by the inflaton’s
kinetic energy. Hence the motion is non-geodesic since:

v i
no=—- =—fﬁ2, (4.18)
H [ s
leading to an isocurvature mass:
mag = Vir + (37ﬁ — 2e¢ %) H?. (4.19)

Using (4.17), we can further simplify m2; and show that on this generic solution
it is strictly positive:

2
m2g = 8¢ (%) H?, (4.20)
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even if the Ricci scalar is negative. This signals that the background trajectory is
stable, regardless of the functional form of the kinetic coupling f2(¢,).

Notice however that, in particular cases where V; = 0 and ff; = 0 have a
common root, (4.17) could also be exactly satisfied with the heavy field sitting at
the bottom of its potential. In this case 7, = 0, and so the effective mass (4.19)
reduces to:

2 fll 2
meg = Vi1 — 2¢ TH : (4.21)
If 0 < f « f11 (or f11 « f < 0), this effective mass can become negative in regimes
where the field space curvature contribution dominates [185, 164].

However we will now show that this unusual behaviour is merely a consequence
of doing cosmological perturbation theory on a repulsive background trajectory
since the trivial solution is unstable under perturbations of the initial conditions:

$1 =1+, (4.22)

where ¢, is the solution to fflq.bg =V} =0 and ¢ is a small homogeneous pertur-
bation. One can then study the stability of the solution ¢ = ¢; by expanding
(4.14) to linear order in 0 (we neglect perturbations in ¢, as we are interested in
getting a qualitative picture of the behaviour of the system) and solving for the
time evolution of the perturbation. From (4.14) one finds:

g, +a’ (Vl - ff1¢§)

e (5 +3HG + /ﬁé) : (4.23)
é1
where the mass parameter p is defined as:

12 =Vilg, — (L + ffu)ls, 03 - (4.24)

By definition of ¢;, the Lh.s. of (4.23) vanishes, and so the perturbation to the
background trajectory d obeys:

0+ 3Hb+ 126 =0. (4.25)
Evaluating (4.24) on the trivial solution fflq% =V = 0 with n, =0, we find:
W2 = i, (4.26)

indicating that the super-horizon growth of the isocurvature perturbations for
m?¢ < 0 is just an artifact of doing perturbation theory on an unstable background
with y?2 < 0. This is not a surprise since d can be seen as a long wavelength
isocurvature perturbation. This means that the trivial solution is not an attractor



4.3. GEOMETRICAL STABILITY FOR HEAVY FIELDS 151

for the inflationary dynamics, and so the system will reach it only if the initial
conditions are finely tuned such that at ¢ = 0:

$1=0¢1 and ¢ =6 =0. (4.27)

However, from a multi-field point of view, the evolution of the system will proceed
initially along the steepest directions of the potential without leading to the initial
conditions (4.27). Hence, in general, the system will evolve along the generic
solution (4.17) which gives p = 0, indicating that perturbations get exponentially
damped and this non-trivial background is indeed an attractor of the inflationary
dynamics.

We illustrate this point in Figs. 4.1 and 4.2 which show the dynamics for the
minimal geometry of [164]:

2 ¢
filo) =1+2-5, (4.28)

supplemented by a double quadratic potential:

1 1
V= §m§¢§ + §m§¢§. (4.29)

Given the analytic arguments presented above, the qualitative features of this two-
field system do not depend on this particular choice. In fact, similar results can
be found with different potentials like that of [164]. In this minimal geometry:

4M* 4
1

where in the last step we took ¢1/M « 1. By tuning the mass scale M small,
one can enhance the effects of the field space curvature and trigger the instability
as formulated in [164]. For numerical purposes we have chosen {mq,mq, M} =
{1,10,0.05}. In Fig. 4.1 we show the evolution of m?%; for the trivial background
where it is always negative, and upon addition of a small perturbation that triggers
the transition between the trivial solution ffi¢3 = Vi = 0 and the attractor of
(4.17) where m?; > 0. Notice that these results are consistent with what has been
previously found in models with non-minimal coupling [177, 178|.

To highlight the effects of perturbations to the initial conditions (4.27), we plot
in Fig. 4.2 (a subspace of) the phase space of the non-linear sigma model. It is
clear that even very small perturbations of (4.27) take the trajectory away from
the trivial solution and into the inflationary attractor, confirming the analytical
result of (4.26).
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Figure 4.1: Effective mass for the isocurvature modes on the trivial background
(dashed) and upon transition from this solution to the attractor (4.17) by addition
of perturbations to the heavy field § = {107°, 10715, 10725}.

4.3.2 Canonical inflaton

We now identify the canonical field ¢; with the inflaton and study if an insta-
bility can arise. The equation for the heavy field ¢ in (4.14) is solved by Vo ~ 0
which from (4.15) implies that m, = 0 is approximately constant with ¢ — 0 if

f does not increase exponentially during inflation. The momentum s becomes
exactly constant for:

Va=¢p =0, (4.31)

implying that on this trivial solution we have T = (£1,0) and N = (0, f~1). Notice
that this solution does not constrain f;, unlike in the case analysed in Sec. 4.3.1.
One can then show that (4.31) yields 7, = 0 and an effective mass of the form:

V f f

2 22 1 11 2

Meg = — + V] — 2—€H". 4.32
ff f2 vl r ( )

Using the slow-roll approximation, the contribution to this effective mass coming
from the field space Christoffel symbols can be rewritten as:

f1 _ ﬁ _ lenf
Vi S3HT O = 3P

(4.33)

where N = Ina denotes the number of e-foldings. Defining g(IV) = d;?vf one can
integrate to find:

FIN) = foelo s (4.34)
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0.00

Figure 4.2: Phase space projection of the non-linear sigma model. The trivial
trajectory is shown in grey. The repulsive nature of this background trajectory
is evident since small perturbations of the initial conditions (4.27) take the back-
ground towards the attractor solution (4.17).

The isocurvature effective mass (4.32) can then be rewritten in terms of the func-
tion g(N) as:

2
Mg ‘/22 2 dg
_ — 3 — N 4.35
which shows that an instability would be present if:
Vo
1« 2 < g, (4.36)

The sign of g(N) is crucial for determining the behaviour of the system. For g > 0,
f grows during inflation and m?; < 0 coincides with the mass of ¢, becoming
sub-Hubble, in contradiction with our assumption that ¢, is a heavy field which
corresponds to the first inequality in (4.36). In this case one should not talk about
an instability since the system becomes effectively a two-field model which would
require a different analysis. Conversely, if g < 0, the contribution to m?; coming
from the mass of ¢, increases and prevents the instability from ever taking hold.
Thus we conclude that the case with a canonical inflaton does not feature any
geometrical instability.
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4.4 An instability for ultra-light fields?

In Sec. 4.3 we have shown that heavy fields with my, » H do not suffer
from any geometrical destabilisation when the effective mass of the isocurvature
perturbations is computed on the attractor background solution. In this section,
we shall however point out that the case of wultra-light fields with m; — 0 is
potentially dangerous since isocurvature fluctuations can become tachyonic when
the background trajectory is geodesic. We shall again study separately the two
cases where the canonical field is either the ultra-light mode or the inflaton.

4.4.1 Canonical ultra-light field

If the ultra-light field is ¢1, V' = V(¢2) and so V; = 0. In this case, as can be
seen from (4.14), 7 is not a conserved quantity and (4.15) shows that there is a

non-zero turning rate of the background trajectory since ¢; # 0. This results in
tangent and normal unit vectors with generic non-zero components:

Tes(bod) M= (1hd). (4.37)

leading to a non-zero 1, of the form:

bV
=2 —. (4.38)
Hf|¢|
Hence the isocurvature mass (4.19) reduces to:
2 2
Meg 2 fu (fl) fu 2
—= =37 —2e——~2||= ] == | +0(), 4.39

where in the last step we have used the slow-roll approximation. Clearly the
sign of m?; depends on the particular functional dependence of f(¢;). A generic
supergravity case is f = f €1 which gives m2; ~ 0 for p = 1 and any value of k.
This limiting case has been studied in [188, 165] which showed that the isocurvature
power spectrum remains constant on super-horizon scales and acts as a continuous
source of curvature perturbations due to a non-zero coupling induced by 7, # 0.
Different values of p and k can lead to a positive or negative mZs, showing that
a geometrical instability can potentially arise. Notice that, in contrast with the
findings of Sec. 4.3.1, this case features a genuine instability which is not simply
a signal of the repulsive character of the background trajectory since (4.39) has

been computed for m; = a3ff1<b§ that is the attractor of the dynamical system.
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4.4.2 Canonical inflaton

We now study the case where the inflaton is ¢; while the ultra-light field is ¢
with V5 = 0. From (4.14) we see that my is exactly constant, and so in slow-roll
(4.15) gives:

: o (TON o
t) ~ 0) | =—= 4.40
balt) = da(0) (£ o (1.40)
which shows that ég(t) = 0 if the initial condition is gz'Sg(O) = 0. In this case the
trajectory is exactly geodesic with ; = 0 and the isocurvature mass (4.35) reduces
to:
2
Mg 2 d.g
= -39 — - —. 4.41
e 9—9 +ge— - (4.41)
This signals the generic appearance of a geometrical instability which could be
avoided only for —3 < ¢g < 0. Notice that, using (4.33), (4.41) in the slow-roll

approximation can also be rewritten as:
Mg LN (bl Ju

showing that the sign of the inflaton velocity is crucial to determine the presence
of an instability. We stress again that this would be a genuine instability since we
are considering a trajectory which is a dynamical attractor.

An interesting string model where such a situation might arise is Fibre Inflation
[101] where the role of ¢9 is played by the supersymmetric axionic partner of the
inflaton and in Kdahler moduli Inflation [136] where the role of ¢, is played by the
axion related to the volume modulus. We study the first case in more detail in
Sec. 4.6.

If the initial velocity of the ultra-light field is different from zero but f does
not decrease exponentially during inflation, (4.40) shows that ¢, relaxes to zero
exponentially quickly, and so the previous analysis still holds. Ref. [189] however
considered the case with V = Vye ™% and f = fye % = fye "N where f
can decrease exponentially with the number of e-foldings if A1k > 0. In this case
¢o can no longer be neglected and the system does not evolve along a geodesic
trajectory. Hence m2g receives a positive contribution proportional to:

. 2
[ SV 1

which can prevent the instability. Notice that, when d)g(()) # 0, the system can be
studied by integrating out ¢, and rewriting the first equation in (4.14) as:

™ =—a’ Vg1, (4.44)
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with a time-dependent effective potential, extending the definition given in [189]
to curved (time varying) backgrounds:

(4.45)

We extensively study this toy model in Sec. 4.5 where we classify all the possible
behaviors of the system, depending on the values of k; and k,.

In what follows we will focus on concrete examples where a canonical inflaton
field ¢, is kinetically coupled to an ultra-light field ¢o. The reason for this specific
choice comes from the fact that this is the most common situation that can be
found in concrete string inflation models. In particular we will consider cases
where the ultra-light field is an axion and we assume that the field space metric
can be written as in Eq. (4.12). This class of metrics occurs often in the closed
string moduli sector, where the function f might depend explicitly on the inflaton
¢, while the dependence on the other heavy moduli ¢, is given in terms of their
vacuum expectation values: f = f(¢1,{¢y)). In the remaining part of this section
we explicitly compute the main quantities that will be used in the analysis of
specific examples starting from Sec. 4.5. The 2-field system is described by:

{ (51+3Hf/.51—ff1f/.5%+‘/1=0 (4.46)

¢2+3H¢2+2 1¢2¢1+ % =

T° = <¢1> Ne— L <_fq%2> . (4.47)
¢0 O2 ¢o \ S ¢

The turning rate of the trajectory reduces to:

and:

n = 5 (F0Ve = f8a04) (4.48)

2H3

where we used ¢2 = 2eH2. This implies:

2 Ve
mi e = % (f¢2) %1+3¢—%

i (V— _hYe, 3V1V2>

foorr o r
+ ¢} (% %1+3V;2> —q’%%. (4.49)
0
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Defining the fraction of kinetic energy carried by ¢, and ¢, as a; = ¢ Land ap = £ 5;2

respectively, the entropic mass-squared can be written as:

s Vie  hiVa Vi
77”L2L,eﬂC = Oég <V11 + 3¢—12> — 20009 (% J;l f2 13 f1¢22>
0 0

Vor iy, o V2 ) o fn
+ 24y +3 — R (4.50)
( R R T
If ¢o is ultra-light, i.e. V5 ~ 0, (4.50) reduces to:
v? fi fu
2 _ 9 2N a? 2
M e = O <V11 +3 (;33) Vi dh (4.51)

In what follows we shall be interested in models where the curvature is constant
and negative:
fi1

R =—|R| = -2 i = constant, (4.52)

which implies:
A —Xo . |R|
flo) =A; e+ A e with A= 5 (4.53)

In the two special cases with respectively Ay = 0 or A_ = 0, the equations of
motion become: . i )

¢1+ 3Hpy FAAZ e 192 + V) =0 (454)

Gy + 3H o + Aoy = 0 '

while the effective mass-squared for the isocurvature perturbation simplifies to:
2 272 2 o 3V
my g = —ANogtAaVi+op | —-+Vi ). (4.55)

In the single-field approximation where ¢; drives inflation while the background
value of ¢ is essentially frozen, i.e. ay < ay =~ 1, Eq. (4.55) can be approximated
as:

m? g =\ (J_rv1 . wg) . (4.56)
The requirement of having a positive mass-squared for the isocurvature perturba-

tion then reduces to |Vi| > A¢2 with V; > 0 for A_ = 0 and V; < 0 for A, = 0.
0

Using ¢2 = 2¢H?, and the single-field slow-roll approximations H2 ~ V /3 and
2¢ ~ (V1/V)?, we can easily see that for ¢ « 1 and A\ ~ O(1):

12
% ~ %@ <1. (4.57)
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Hence the positivity of the effective mass-squared of the isocurvature perturbation
is determined just by the sign of V; which is the term associated with the metric
connection in Eq. (4.8). Interestingly, the Fibre Inflation models which we will
discuss in Sec. 4.6.1 feature two ultra-light axions, one with A, = 0 and the other
with A~ = 0. Hence one of them has necessarily to be geometrically unstable.

Since in this context the geometrical destabilisation phenomenon is by defini-
tion model dependent, we devote the next two sections to the analysis of specific
examples. We first look into a simple quintessence-like potential before turning to
the string inspired case of Fibre Inflation.

4.5 Stability of quintessence-like potentials

4.5.1 Equations of motion

Exponential potentials can provide the energy density for driving the observed
late time accelerated expansion of the universe. Furthermore their simplicity ren-
ders them interesting for our purposes as it allows for exact analytic results. Let
us therefore focus on the following toy-model involving a quintessence-like field ¢,
and a massless field ¢, with non-canonical kinetic terms. The metric has the same
form as (4.12) with f = foe™"?1 while the scalar potential reads:

V= Vye o, (4.58)

From (4.51) we see that the effective mass-squared of the isocurvature perturba-
tions is:

3V .
mieﬁ = ]{jg Vv <Oé§l€2 <1 + §> + Oé%]ﬁ) — k:fqb(z) . (459)

0
The equations of motion are:

b1+ 8H: + ki (fda) —haV =0
bo + <3H ~ 2k1q§1) by =0

which, after trading cosmic time for the number of efoldings N = In a, can also be
rewritten as (the prime superscript denotes derivatives with respect to N):

&+ (3 —€) (&) — ko) + k1 (fh)” =0
b+ (3—e—2k1¢))¢h =0

The ¢9 equation can be integrated exactly yielding an explicit expression for the
velocity of the ultra-light field:

(4.60)

(4.61)

@ (N) = C673N+2k1¢1(N)+Séve(N) dN (4.62)

Y
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where C' = ¢4,(0) e=2191(0) Gince the kinetic terms of the massless field ¢, are
non-canonical, it is more appropriate to consider the quantity:

(f6) (N) = foC e Nty B a (4.63)

which enters into the inflationary e parameter:
1 1 2
=0+ () (164

Let us now study the behaviour of the system using both an analytical and a
computational approach. In the attractor regime where ¢} ~ (f¢’2)' ~ 0, the
equations of motion take the form:

{ (3 —€) (¢} — ko) + ki (fh)? = 0

(3= e~ k) (Fo) = 0 (4.65)

The system admits two different solutions depending on whether ¢, is frozen or
not.

3.0

0 fg'+0
200 fg, =0

0.0

Figure 4.3: Velocity of the massless isocurvature mode in the (ky, ko) parameter
space.

4.5.2 Case I: Non-zero turning rate

3ka
(2k1+k2)

iy (4.66)
(foh)" = o2 (B2 —1) '

This case is characterised by a rolling massless field with f¢), # 0, € =
and:
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For k; > 0, the conditions € < 1, k¢ > 0 and (f¢5)? = 0 can be satisfied only

for:
ko = A/k? +6— k. (4.67)

It is easy to realise that under this condition the effective mass-squared of the
isocurvature mode remains always non-negative:
mi g 6k (k3 + 2kiko — 6)
H? 2k1 + ko

The absence of geometrical destabilisation is due to the fact that the trajectory
deviates from a simple geodesic since:

>0. (4.68)

3—0) Vi ok mig
= [( > )V(fcb/g)] — TR H’Q #0. (4.69)
Notice that in the limiting case where ky = —k; + 4/k? + 6, the system evolves
towards the attractor solution where f¢, = 0, as = 0, ay = 1, mieﬁ = 0 and
1. = 0. However, we checked that the convergence to this point is extremely slow
and the turning rate of the trajectory remains non-negligible for a large number
of e-foldings.

4.5.3 Case II: Geodesic motion
In this case f¢h, = 0, € = k2/2 and the asymptotic state reached by the system

1=k

ky < AJK2+6— k. (4.71)

Fig. 4.3 shows the behaviour of the velocity of the massless field ¢, for different
values of the parameters k; and k5. In this case the system evolves along a geodesic
with 1, = 0 and the sign of the effective mass-squared of the entropic perturbation
depends on the sign of ks since:

is:

under the requirement:

mi,eff _ k1Ko
H? 2

(6 — 2kiks — k3) . (4.72)

k.

~~ -

>0

Hence m3 4 = 0 for ky > 0, while m3 4 < 0 for k; < 0. Notice that in

this case geometrical destabilisation can be avoided for k; > 0 due to the positive

contribution coming from the metric connection. These results are completely
independent on the initial conditions.
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| 40

Figure 4.4: Evolution of oy = d1/do and ap = foo/dy (with o2 + a2 = 1) for
different initial values of € = ¢2/(2H?). We set ky = S(1/k? + 6 — k1) with 8 = 0.8
(left), B =1 (centre), § = 1.2 (right) and k; = 1.

4.5.4 Numerical analysis

In order to strengthen our analytical results, we also performed a numerical
analysis using several parameter sets. We considered different values of the initial
kinetic energy €;(0) = {0,0.5,1,2,3}® and for each of these values we analysed 20
different types of initial conditions for the field velocities:

{ $1(0)] ) = A/2€i(0) cos (47)
(£5) (0)] sry = +/2€i(0) sin (47)

The dynamics of the system is independent on both the initial field values and
the normalisation of the scalar potential and the kinetic function. Hence we set,
without loss of generality, ¢1(0) = ¢2(0) = 0 and V = fy = 1. We studied the 3
interesting cases with ky = S(1/k} +6 — k) and 8 = 0.8,1,1.2 for k; = 1. Our
numerical results are shown in Figs. 4.4-4.6 and are in perfect agreement with
our analytical analysis. In Fig. 4.4 we can clearly see that for 5 < 1 the system
converges to a single-field behaviour with n; = 0, while for 5 > 1 the turning rate
of the trajectory is non-zero and the asymptotic behaviour of the system depends
on the initial condition for the velocity of the massless field ¢,.

Notice that the trajectories which move away from the unit circle a? + a3 = 1
correspond to cases with special initial conditions, ¢} (0) with the same sign as V}

=0,...,19. (4.73)

3These values of € describe initial conditions ranging from slow-roll (¢ « 1) to kinetic domi-
nation (e = 3). For kinetic domination we actually chose € = 2.99 in order to avoid a singularity
in the equations of motion stemming from the use of N as the time variable.
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1

40

— =0
€=0.5
e=1

— €=2

— €=2.99

0 | 0
2

. f 5
. ffzpz'aw 0 ‘ ffcbz dn 0 [fé'dN
. & 10
8

Figure 4.5: Evolution of the physical fields {¢1(N), {3 f(¢1(N))gh(N)dN} for dif-
ferent values of the initial kinetic energy (setting k& = 1 in the initial conditions
(4.73) for the field velocities) and 5 = 0.8 (left), 5 =1 (centre), 5 = 1.2 (right).

and ¢5(0) = 0, where ¢, initially climbs up the potential and then it slows down
until it stops and changes its direction. At this point ¢} = ¢, = 0, and so the
coordinates o and « are ill-defined. As soon as ¢; changes its direction, ¢} # 0,
and so the system jumps to the opposite point in the unit circle.

Fig. 4.6 presents the evolution of mi o and 7., showing that the numerical
solutions correctly approach our analytic results for 3 different cases. Notice that
in the limiting case with 5 = 1 all curves tend asymptotically to mieﬁ =n =0,
while in case I with 8 = 1.2, only the blue curve corresponding to w = 0 features
a negative mass-squared due to the initial condition (f¢})(0) = 0. This is the
only case which could be plagued by a geometric destabilisation problem but it
corresponds to a very non-generic choice of initial conditions as argued in [3|. As
soon as (f¢h) (0) or w slightly deviates from zero, Fig. 4.6 clearly shows that the
mass-squared becomes positive due to a non-vanishing 7, .

4.6 Geometrical destabilisation in Fibre Inflation

4.6.1 Ultra-light axions in Fibre inflation

The simplest version of Fibre Inflation involves 3 type IIB Kéahler moduli 7; =
T; +i60;, i = 1,2,3 where the 7’s control volumes of 4-cycles while the 6’s are
periodic axion-like fields which enjoy a perturbative shift symmetry. The Kéhler
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Case I (8 =1.2)
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Figure 4.6: Evolution of m? .;/H? (left) and 7, (right) for ¢(0) = 2 and different
initial field velocities identified by wy = kn/10 with £ = {0,1,4,14,18}. The 3
different cases correspond to 5 = {0.8,1,1.2}.

potential reads:

K =-2In <V + i/2> + K, , (4.74)
275
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where V = « (ﬁTg — )\37;’/2) is the Calabi-Yau volume, the O(1) constant ¢

controls the leading order o contribution [55], while K, denotes 1-loop open
string corrections [58, 60, 61]. The superpotential is instead given by a tree-level
constant Wy and non-perturbative effects from gaugino condensation on D7-branes
or ED3-instantons [190]:

W =Wy + Aze™®75. (4.75)

If g, loops are neglected, the Kéhler potential (4.74) and the superpotential (4.75)
generate a scalar potential of the LVS form [63, 62

SCL%A% T3672a37-3 4G3A3T3WOCOS(CL383) —a3Ts 3§W02

Ve =
LVS 30\ V2 492/2]/3 )

(4.76)

which leads to the existence of AdS vacua at exponentially large volume (in string
units) where V, 73 and 03 are stabilised at:

¢ 2/3 4

N 3WOOZ)\3 as{Ts)
W) = L e

It is easy to see that the scalar potential (4.76) features three flat directions
corresponding to 7 and the two axions #; and 5. The inclusion of subleading g
or o corrections to the Kahler potential can lift 7; but not 6; and 6, which are
protected by a perturbative shift symmetry. In the presence of sources of positive
vacuum energy which can allow for dS vacua (see for example [65, 74, 73, 75]),
the potential for 7 can be flat enough to drive inflation. 7; plays the role of the
inflaton since, when it is shifted away from its minimum, it is naturally much
lighter then the Hubble scale during inflation H whose value is set by the mass of
71 close to the minimum, H? ~ W2/V%/3 (see [101] for more details).

On the other hand, the other five spectator fields are isocurvature modes which
are expected to stay around their minima during inflation. Three of them, V), 3
and 63, are heavy fields with a mass larger than H, while 6, and 60, are ultra-
light fields since they can develop a non-zero mass only via tiny non-perturbative
corrections to the superpotential (4.75). In order to study the possibility of having
geometrical destabilisation of any of these entropic directions, we need to focus on
the field space metric which looks like:

K
~ OT,0T;

in 0, T,0"T; = % (8,7:0"7; + 8,0,00;) . (4.78)

The field space is curved, and so the kinetic terms can be diagonalised exactly only
locally. However, in LVS models, we can use the exponentially large overall volume
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V as an excellent expansion parameter to obtain leading order results. Thus if we
transform the real parts of the Kéhler moduli as [160]:

= €%¢>1+\/§¢2+%¢§ ’ V= oV 302 7
4.79)
3\ sz ap (
Eh <4a>\3) 6\/;@%/ ’
the kinetic Lagrangian (4.78) for the real parts simplifies to:
£(¢) _ 1 oM § 2 1&\ oM
kin — 5 p@10" 1 | 1+ 4¢3 Ty 1 P20" P2 (4.80)

b g (1226 + 2ot} + 2260
Notice that this expression is diagonal at leading order since (4.79) implies ¢35 ~
O(V™!) « 1, while subleading corrections induce a kinetic coupling between the
heavy field ¢3 and the canonically normalised inflaton ¢;. However we shall show
below that this field is heavy enough to prevent any geometrical destabilisation.
Moreover, we point out that in the kinetic Lagrangian (4.78) there is no mixing
between real and imaginary parts of the Kéhler moduli. The kinetic terms for the
axions read:
1 a7l a’r
‘61(31)1 = 4_7_125M9151L01 + 2]}2;\/‘%5“915“62 + W;@,ﬂgé‘wg
2
%ﬁaﬁlaﬂeg - %ﬁaﬁzaﬂeg
3@/\3 "

+ SVﬁaﬁgﬁ 05, (4.81)
where 71, V and 73 are given by (4.79). The kinetic Lagrangian (4.81) clearly shows
that the two ultra-light axions ¢, and 65 are kinetically coupled to the canonically
normalised inflaton ¢,. It is therefore crucial to analyse the contribution to the
isocurvature power spectrum of each of these two entropic modes. We shall find
below that the effective mass-squared of one of these two ultra-light axions is
negative during inflation while the other always remains positive. This result
justifies the fact that we will study the dynamics of the system by focusing just
on the 2-field subspace spanned by the inflaton ¢; and the unstable isocurvature
direction, as summarised in Sec. 4.2.

We shall find that which of the two axions is unstable depends on the par-
ticular realisation of Fibre Inflation. Thus we conclude this section by providing
a brief description of two ways to generate the inflationary potential which are
qualitatively similar but quantitatively slightly different:
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e Right-left inflation

Kaluza-Klein and winding 1-loop open string corrections to K [58, 60, 61]
generate a potential for the inflaton shifted from its minimum, i.e. ¢; =

{¢1) + ¢, of the form [101]:

4¢q

V=1 (3 —de evﬁ) , (4.82)

where we included an uplifting term to achieve a dS vacuum after the end
of inflation and we neglected additional subleading loop effects which would
lift the flatness of the inflationary plateau at very large field values. Notice
that this is a case of right-left inflation where 451 evolves from positive and
large field values to smaller ones towards the end of inflation. Hence V; >0
during inflation.

e Left-right inflation

The inflationary potential can receive non-negligible contributions not just
from string loops but also from higher derivative o/ effects which at the level
of the 4-dimensional effective field theory appear as F'* terms [99, 100]. When
these effects are combined with Kaluza-Klein string loops, the inflationary
potential looks like [102]:

V=1, (1 . eﬁ‘z’l)Q , (4.83)

where again we included an uplifting term and we ignored subdominant
contributions which would spoil the inflationary plateau for gz@l negative and
very large in absolute value. Contrary to the previous case, this is therefore
a realisation of left-right inflation where V; < 0 during inflation.

4.6.2 Stability of heavy fields

The leading order potential (4.76) depends just on the three fields ¢o, ¢3 and 63,
which therefore turn out to be heavier that the inflaton ¢;. We shall now consider
the 2-field subspaces spanned by ¢; and each of these heavy fields separately, and
show that all of them are heavy enough to ensure the absence of any geometrical
destabilisation. The field space metric and the Ricci scalar of these 2-dimensional
subspaces are listed in Tab. 4.1.

The simpler cases to analyse involve ¢9 and 63 since the metric is diagonal
at this level of approximation (perturbative and non-perturbative corrections to
the Kéhler potential will definitely induce subdominant non-diagonal entries), and
so the scalar curvature is vanishing. Moreover, we expect the heavy fields to sit
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63 ¢2 ¢3
.y <1 + 392 3(33 ) (1 + 392 0) 1+ 3¢2 3Y3 43
0wk 0o 1 NP0F 1163 + 544
R 0 0 —3/2

Table 4.1: Field space metric and Ricci scalar for the 2-field subspaces spanned by
the inflaton ¢; and each of the three heavy fields.

around their minima, i.e. V,, = Vp, =~ 0, and inflation to be driven by ¢, i.e.
oy, =~ 1 while ay, =~ ap, ~ 0. Therefore the trajectory is geodesic in both cases
(denoting the 2 heavy fields collectively as ¢y,):

1 V.
n.=—- (de)lﬂ — a¢hV¢1) ~ (. (484)

The effective mass-squared (4.7) therefore reduces simply to:

Voo, W5 W¢ w2
mg, o = f323 ~ V—g » MY, o = Viopy = V—g > H? ~ VIOO/?) . (4.85)

Similar considerations apply to the subspace spanned by ¢; and ¢3 since the field
space is flat at leading order. However subleading corrections proportional to
3 ~ O(V~1) « 1, induce non-vanishing Christoffel symbols and Ricei scalar:

94/3 1 3 1 3
1 _ TV 2 _ota2 2 4 1 _ 9
P¢3¢3 -3 o3 (1 2¢3 + 16¢3) @) (V) , R 5" (4.86)

The effective mass-squared of the heavy field ¢3 for Vy, ~ ay, =~ 0 and oy, >~ 1,
which imply 7, ~ 0, reduces to:

) 3
Tnég,eﬂC = V¢3¢3 - Fi3¢3v¢l - §EH2 . (487)

This quantity is clearly positive regardless of the shape of the inflationary potential
since:

(4.88)

o1 WEy/e
Viggs = —o » { bags " O1 T VIS

V2 3 2 WZ2e
§EH - V18/3

We have therefore shown that, as expected, all heavy fields remain stable during
Fibre Inflation.
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81 92
1 0 1 0
i 0 A% e Vi 0 A% evi?
R —8/3 93

Table 4.2: Field space metric and Ricci scalar for the 2-field subspaces spanned by
the inflaton ¢; and each of the two ultra-light axions.

4.6.3 Potential destabilisation of ultra-light axions

In this section we analyse the behaviour of the two ultra-light axionic modes
0, and 6,. The metric of the 2-dimensional field spaces spanned by the inflaton
¢1 and either 6; or 6, takes the same form as (4.12) if we neglect subdominant
¢s-dependent corrections. Notice that the kinetic function f(¢1) becomes ¢;-
dependent after (4.79) is used to express 71 in terms of the canonically normalised
fields ¢o and ¢3 which are fixed at their minima. Given that f(¢;) is a particular
case of the more general form (4.53), the scalar curvature is constant and negative.
These geometrical quantities are summarised in Tab. 4.2 where the quantities A,
and A_ depend on the background values of the heavy fields.

In the case where 0; and 5 are exactly massless, we find that one of them is
always unstable. In order to solve this potential issue, we investigate the possibility
of stopping the exponential growth of the corresponding isocurvature perturbations
by turning on a tiny but non-zero mass for this entropic mode. Let us therefore
study these two different cases separately.

Massless case

The analysis of the possible geometrical destabilisation of ¢, and 6 can be
borrowed from Sec. 4.4.2 where we already discussed the case where the spectator
fields are massless and ¢; drives inflation in a single-field approximation. Using
the result (4.56) under the condition (4.57) we therefore conclude that one of
the two axions is always stable while the perturbations of the other experience a
geometrical instability. In particular, it is the sign of V5, that determines which
of the two axions is unstable. For V; > 0, as in the case of right-left inflation,
f, is unstable while 5 is stable. On the contrary, for V3, <0, as in the case of
left-right inflation, 6; is stable while 5 becomes unstable.

These results have been obtained analytically in the single-field approximation
where oy, ~ 1 and ap, ~ 0 with ¢ = 1,2. However they hold more generically as
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we will show now via a more general semi-analytic study and a detailed numerical
analysis. )
As pointed out above, the metric has the same form as (4.12) with f = fye=f1%1,
where fy = A_e ™0 and k; = 2/4/3 for 6, while fo = A, e "¢ and &k, =
—1/4/3 for ;. The equations of motion which govern the evolution of the system
are very similar to the ones studied in Sec. 4.5.1 for the case of a quintessence-like
potential. We shall therefore use the same results, translating them for the case of
Fibre Inflation. In particular, the second equation in (4.61) does not depend on the
inflationary potential, and so it applies exactly also to our case after identifying
¢ with either 6; or 0. Its solution is given by (4.63) which in our case becomes:

(f0) (N) = (f6) (0) e XV, ¥i=1,2, (4.89)

where for € « 1 the exponent \(NV) can be approximated as:

AN) = 3N = I (61(N) = 61(0)) - (4.90)

The functional dependence of the inflaton ¢; on the number of e-foldings N de-
pends on the particular form of the inflationary potential. Let us therefore consider
separately the case of right-left [101] and left-right inflation [102].

e Right-left inflation

For right-left inflation the scalar potential is given by (4.82) which in the
inflationary plateau region can be very well approximated as:

; 1
Vath(3-aet) . with k= L (4.91)

The number of e-foldings /N in the single-field slow-roll approximation is
given by:

. $1(0) R
N(é) =f Y i,

S (4.92)
— Z (e’”‘;’l(o) — ebéﬁ) —V3 (§Z§1(0) - le) ~

This expression cannot be inverted exactly but we can still express the in-
flaton at leading order as [179]:

BN~ 6,0) > (1 - e’fm) , (4.9

where ¢ (0) corresponds to the value of the inflaton at CMB horizon exit. Tt
is easy to see that 50 — 60 e-foldings of inflation correspond to ¢;(0) ~ O(6).
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Substituting this result into the solution for the velocity of the ultra-light
axions (4.89), we find that the exponent (4.90) scales with the number of
e-foldings as:

k AN 2
AMN)=3N—in(1———¢ka®]) (4.94)
ko 9
This quantity is always positive for both k = 2/v/3 and k; = —1/4/3,

implying that, regardless of the initial conditions, the velocity of the ultra-
light axions goes very quickly to zero, and so the system relaxes rapidly to
the simple case studied above with n; = 0, ag, =~ 1 and ap, ~ 0 with i = 1, 2.

e Left-right inflation

In the case of left-right inflation, the number of e-foldings derived from the
inflationary potential (4.83) in the slow-roll approximation is given by:

. 1 [ ) .
N@) =g | (e 1) ddy
2k2 J4,(0) (4.95)

IR knd L4, -4
_ (e k201(0) _ o ’“2‘151(0)) — k_2(¢1 — ¢1(0)) .

2k3
Again, even if it is not possible to invert this expression exactly, we can still
obtain the following leading order approximation for the inflaton field:

BN) = du(0) = o (1= B 0] (4.90)

where ¢;(0) < 0 since inflation proceeds from left to right starting from
inflaton values which are negative and large in absolute value. If the re-
sult (4.96) is substituted into the expression (4.90) for the exponent of the
solution (4.89) for the velocity of the isocurvature modes, we find:

k ON
AMN) = 3N + /?1 In (1 - ek2¢1<0>) : (4.97)

2

It is easy to realise that this quantity is again always positive for both k; =
2/+/3 and k; = —1/4/3. Hence also in this case, regardless of the initial
conditions, the system approaches very rapidly a geodesic trajectory with

nL=0.

We have checked these conclusions by performing a full numerical solution of
the equations of motion governing the evolution of the system for both right-left
and left-right inflation. We present now the numerical results just for right-left
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inflation since they are qualitatively very similar in the case of left-right inflation.
Without loss of generality we considered fo = Vo = 1, ¢,(0) = 5.8 and 6,(0) = 0 for
1 =1,2. Fig. 4.7 shows clearly that for different values of the initial kinetic energy
and for several exponents of the kinetic function, k; = {—5,—-2,—1,0,1,2,5}, the
system always evolves towards a single-field behaviour.

7Y o ) a

Figure 4.7: Evolution of the system for several values of k; and different initial
kinetic energies, €(0) = 1 (left), €(0) = 2 (centre), €¢(0) = 2.99 (right).

Fig. 4.8 presents instead the trajectory of the physical fields ¢;(N) and
Sév(fég)(N)dN for different values of ky. Finally Fig. 4.9 shows that any value of
kq leads to a geodesic motion with n; = 0 but the effective mass-squared of the
isocurvature perturbations can remain positive only for k; < 0, implying that 6,
(with k; = 2/4/3) is unstable, while 6, (with k; = —1/4/3) does not experience
any geometrical destabilisation. Notice that the situation is reversed in the case
of left-right inflation.

Massive case

In Sec. 4.6.3 we have shown that in Fibre Inflation models, when the axions
are considered as exactly massless, one of them always experiences geometrical
destabilisation. However in a full quantum model, these entropic modes are ex-
pected to receive a tiny but non-zero mass from non-perturbative corrections to
the superpotential (4.75) which break their perturbative shift symmetry. Let us
investigate now if these non-perturbative effects can be large enough to avoid any
geometrical destabilisation problem and, at the same time, small enough to prevent
any modification of the inflationary dynamics.

As we have seen in the analysis of the massless case, the single-field approxi-
mation with ay, ~ 1 and ag, ~ 0 with ¢ = 1,2 provides a very good description of
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—— k=5 [(fe)dN
k=-2 |
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Figure 4.8: Trajectories of the physical fields ¢;(N) and Sév f(p1(N)OUN)AN for
different values of k1 and €(0) = 1, ¢,(0) = v/2 cos (w), (f0!) (0) = v/2 sin (w) with
w = 7r/5. The dashed line represents the single-field analytical approximation
with zero initial velocity.

nv
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Figure 4.9: 7, (left) and m? /H* (right) as a function of the number of e-

foldings for different values of ki, setting again €(0) = 1, ¢ (0) = v/2 cos (w) and
(f0!) (0) = v/2 sin (w) with w = 77/5.

the more general dynamics of the system. Hence the equation to analyse is (4.50)
which after identifying ¢o with 6; and setting oy, ~ 1 and oy, ~ 0 for 7 = 1,2,
takes the form:

‘/9.0, fA ‘/92 . fA )
mi = | 2 oy 43 ) oo 4.98
0;,eff < f2 f 1} ¢(2)f2 ¢O f ( )

If we write the kinetic function as in (4.53) and we recall the slow-roll condition
(4.57), the effective mass-squared (4.98) for the dangerous entropic modes simpli-

fies to:
1 Voo 9 V7
1— e 4.99
[ Af%/ze( v o T2ev2) | (4.99)

2 ~ ~
My, eff = —A ‘V 1
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where we have used the slow-roll approximations ¢2 = 2eH2 ~ 2¢V /3 and /2¢ ~
Va| /v

The potential for the entropic directions is generated by 7T;-dependent non-
perturbative corrections to the superpotential (4.75):

W =Wy + Age T 4 A, e7Ti i=1,2, (4.100)
which induce a non-zero potential for the ultra-light axions 6; of the form:

SO 1,2, (4.101)

V(6;) = A; cos(a0;), with A, = 52 7

Hence we obtain:

1Y

\/921_ = a? A?sin?(a;0;) and V.o, = —a2 A\ cos(ab;) . (4.102)

The effective mass-squared of the isocurvature perturbations (4.99) can therefore
be rewritten as:

a? 962
[1 — /\fz—i/i (2—6 Sin2(ai9i) — (5008(%90)] s (4103)

where 0 is the ratio between the size of the axion potential and the inflationary
potential:

2 ~ ~
My, eff = —A ‘V 1

A
Vi(¢1)
Let us point out that, once 7; with ¢ = 1,2 is written in terms of canonically

normalised fields using (4.79), the axion potential (4.101) clearly depends on the
inflaton ¢, since:

4]

(4.104)

. 4(IZAZW()<TZ>

A= AP e s0) - with A© 5

Vi=1,2, (4.105)
where:

91(d1) = —2kaipy + ar(m) ¢zt , 92(01) = kot + as(m) e~ked, (4.106)

Notice that for the case of right-left inflation, the dangerous axionic mode is 6,
and during inflation qgl evolves from positive large values to smaller one. On the
other hand, in left-right inflation, we need to focus on 65 and at the beginning of
inflation qﬁl is negative and large in absolute value. Thus in both cases, the axion
potential experiences a double exponential suppression, being larger close to the
end of inflation and extremely suppressed in the region around CMB horizon exit.
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The fact that the axion potential is qisl—dependent implies that we cannot make
the mass of 6; as large as we would like by tuning the underlying parameters
A; and q; since at a certain point the potential (4.101) will become of the same
order of magnitude of the inflationary potential. This will induce O(1) corrections
to the inflationary dynamics which would destroy Fibre Inflation as we know it.
Hence for consistency we need to impose § « 1, which implies that the two terms
proportional to ¢ in (4.103) are subdominant.

aq

10 20 30 40

aQ

-1.0

Figure 4.10: The plot on the left hand side shows the evolution of the 2-field system
of right-left inflation for different initial velocities, ¢;(0) = 5.8, a16;(0) = 1, initial
kinetic energy €(0) = 0.1, Ay = Wy =1, a1 = 27, {(11) = 5.43, Vy = 3.5 x 10~ and
YV = 1.8 x 103. The plot on the right hand side exhibits instead the behaviour of
the effective mass-squared of 0; for ¢/,(0) = v/2 cos (w) and (f6}) (0) = v/2 sin (w)
with w = 7r/5.

Let us stress that, even if § « 1, one of these two terms might actually be
the dominant contribution since f « 1 and € « 1, but this can occur only locally
around a particular region in field space. In fact, as can be seen from (4.106), A;
has a double exponential suppression, and so small deviations of the inflaton qZA>1
would immediately suppress these positive contributions to mgheﬂ. We conclude
that, even in the presence of non-vanishing scalar potential contributions, the
isocurvature fluctuations associated to one of the two ultra-light axions in Fibre
Inflation experience an exponential growth, regardless of the particular microscopic
realisation of the inflationary model.

We checked the validity of these analytic results by performing a full numerical
solution of the evolution of the system in the presence of non-perturbative cor-
rections of the form (4.100). The results for right-left inflation are shown in Fig.
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4.10-4.11. In particular, Fig. 4.10 shows that the system quickly converges towards
a geodesic trajectory and that the effective mass-squared of 6, is initially positive
due to an appropriate choice of initial conditions but then rapidly settles down to
negative values. On the other hand, in Fig. 4.11 we see that natural choices of the
underlying parameters can keep the axion potential always subleading with respect
to the inflationary potential. In this way, the inflationary dynamics is guaranteed
to reproduce the one of Fibre Inflation but one of the axionic modes experiences
a potential geometrical destabilisation. We finally point out that we obtained nu-
merical results also for left-right inflation and they turn out to be qualitatively
very similar.

V(¢1)

1.410-10

—— Right-left FI
Ar=1a1=2m

Ar=1a1=11
5. x4~ 1 1

A1:1;a¢=2?"
— A1=10%a; =271

S S S S
2 4 6 8 0P

-5.x1¢~1

Figure 4.11: Comparison between the standard single-field and the 2-field version
of right-left inflation for different values of the parameters A; and a;. Notice that
the axionic potential is subleading with respect to the inflationary potential until
the end of inflation only for A; = 1 and a; = 27.

The growth of isocurvature perturbations does not seem to be avoidable in
these models, also considering small mass terms for axion fields. In the next
section we point out that the coordinate system identified by the normal and
tangent directions shows an anomalous behavior that may be the cause of the
uncontrolled growth of isocurvature perturbations.

4.6.4 A growing projector

In this section we briefly analyse the time evolution of tangent and normal
vectors in case of a massless axion kinetically coupled to the inflaton as in the right-
left inflation case of section 4.6.3. The relation between the covariant derivatives
of the two projectors are

DT* DN*

— _Hp, N© — Hn,T" 4107
dt LA dt L (4.107)
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Given the single field behaviour of the background system described in the previous
section, we saw that on-shell n; = 0. The single components of T and N¢ are

defined as
Qg a1
T = 041,—} , Na:{—(lfg,—}, (4.108)
{5 f
where, again, a; = ¢>2+f2x2 and ap = \/%W parametrise the fraction of kinetic
energy carried by the fields. The results obtained in Sec. 4.6.3 showed that these
two quantities quickly relax to a; — 1 and ay — 0 (see Fig. 4.7), implying that

T* — {—1,0} and N* — {0,—1/f}. Knowing that Hn, = —042%, we can easily
find the time derivative of the projector components to be:

ar fo 1 |Z
d_;:Cé(f—g%—d;—i)—’O’

T,
dt

dN; _ fo i Vo
= g (7@50—%) — 0,

dN : Vo f :
d—f=f¢¢0—@§ﬁ—’f¢¢o<0.

= 041042% -0,
(4.109)

From the previous equations, we see that the tangent vector seems to be well de-
fined, i.e. its coordinates relax to constant values with vanishing time derivatives.
On the other hand, despite the system tends to a single-field behaviour, the second
component of the normal projector keeps on varying during inflation. Since N,
starts from negative values and % is negative and decreases during inflation, we
see that N, evolves towards more and more negative values at increasing rate. The
time evolution of the single components is depicted in Figure 4.12. The continu-
ous growth of Ny during inflation is due to the normalisation prescription of the
projectors and reveals that the coordinate system is probably ill-defined.

In the next section we discuss whether and how growing isocurvature modes can
affect the predictions on cosmological parameters and how experimental bounds on
isocurvature perturbations can constraint inflationary models. We start by briefly

reviewing how entropy perturbations can be computed during inflation.

4.6.5 Entropy perturbations during inflation

In this section we clarify the relations between the various definitions of entropy
that can be found in the literature, in an effort to understand how the entropy
generated during inflation is then transferred to the primordial plasma in the
radiation phase.
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Figure 4.12: Evolution of T, and N, components during inflation in the system
described in Sec. 4.6.3. We refer in particular to the right-left inflation case in Eq.
(4.91) where the two-field system is composed by the inflaton field ¢ and the 6,

massless axion with kinetic coupling f = e=2/V3¢,

For a generic fluid P = P(p,S), i.e. the pressure is a function of the energy
density p and the entropy S. Pressure perturbations can therefore be decomposed
into an adiabatic and a non-adiabatic part, according to

5P=5—P‘ 5p—|—6—P
opls

59 (4.110)

P

08

The adiabatic pressure perturbation is 6 P,g = c2dp, where c? is the speed of sound

defined as ¢ = %. The non-adiabatic pressure perturbations, denoted 0P, .4 are

formally given by 0 P,,.q = %55 and are in practice computed via 0 P,,q = 0P—0P,,.
The total entropy can be defined in terms of the non-adiabatic pressure per-
turbations 0 P,q.q as

H H
S = 6P = —= (0P —c0p) . 4.111
D d D ( P) ( )

If the Universe is composed by multiple fluids, labelled by «, one can define the
intrinsic entropy perturbation Sj,; . as

Sintia = % (6P, — c26pa) (4.112)

such that the total intrinsic entropy of a system with multiple components is

Sint = Z Sint,a- (4113)

Note that S;,; = 0 for fluids having equation of state P, = P,(p,). One can also
define the relative entropy as

Spet = S — Sins - (4.114)
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Noting that 6P = ] P, and that 6p = >, 0p, and making use of Eqgs. (4.111),
(4.112) and (4.113) one may write [191]

H ) .
Shrel ZP—pZCi(PMPa — padps) =
“15 (4.115)
=— — Do) ci—c2Sa,
6pP;p Ps( ,8) B

where in the last line we introduced the standard definition of entropy perturbation
between two fluids

Sap=Co— (s =—3H (5& — %> ; (4.116)
Pa Pp
as is commonly found in the context of hot big bang cosmology, and we have
defined the speed of sound of each fluid as ¢ = g—z. Note that, since the curvature
perturbation on uniform p, hypersurfaces, (, = —¢Y — H %
quantity (see Appendix B.1), S,s is automatically gauge invariant, even in the
presence of energy transfer between the fluids [192, 191].
During inflation, when scalar fields dominate the energy content of the Uni-
verse, one may write the entropies of the system in terms of ¢,,d¢, and their
derivatives. In case of multi-field inflation in a curved field manifold we have that

Eq. (4.111) reads

, 1s a gauge invariant

B H
3H@ ¢, + 262V,

5 Prad . (4.117)

where 0 P,,q is given by

a | Vagd®ppe” Ao
OPrad = —2Vado® + Lo — LB 50"+
(4.118)

+30°090,Gagdd” + Vado” |

and we used the spatially flat gauge. Further details and extended computations
can be found in App. B. For two minimally coupled scalars with canonical kinetic
terms and sum-separable potentials one can show that [193]

2 Vnoigo

= - N2 g (4.119)
302 3Hy + 2Vir

rel

where we have defined ¢y = 1/¢? + ¢2, the projection of the scalar potential
along the direction of the background trajectory Vy = TV, and orthogonal to it
Vn = N?V,. It can be readily shown that

d [d¢r2
=a*— [ == 4.12
s = 'y (22 (4.120)

a3
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where we have used the notation of [194] and defined the quantity

that in [193] is called generalised entropy and is gauge invariant by construction.
In the context of inflationary physics, entropy perturbations are often charac-
terised in terms of the quantity

8s = N, (4.122)

often called isocurvature direction/perturbation, which can be directly related to
the total entropy on super-horizon scales [193]

“9H /
S~ Voo

: - (4.123)
®3 3Hog + 2Vr
and to the generalised entropy between the two scalar fields as
55 — 192 S - (4.124)

0

Finding and solving the evolution equation for ds not only gives us an intuitive
picture of the entropy perturbations but is also a more robust manner of numer-
ically computing entropy perturbations than subtracting from the total pressure
perturbation its adiabatic component [193, 195]|. For these reasons it has become
the preferred way of describing entropy perturbations during inflation. The rela-
tions between the different definitions of entropy perturbations are summed up in
Figure 4.13. We stress in particular which of them can be only used in case of flat
field space without kinetic coupling.

4.6.6 Entropy perturbations after inflation

After inflation and the subsequent reheating phase, the Universe is expected
to enter a radiation dominated phase, where radiation, baryons, dark matter and
neutrinos make up the primordial plasma. Neglecting velocity isocurvature pertur-
bations, the presence of entropy at this stage leads to a difference in the number
density perturbations, ‘Z‘—a, between the various species. Hence, we can have non-
vanishing relative entrop?es Sy coM; Syus Sybaryons-

One crucial question to ask at this point is which definition of entropy should
be used to transfer the entropy mode from the scalar field system, used to describe

inflation, to the primordial plasma, that consists of fluids only. We note that in
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Figure 4.13: Summary of the various definitions of entropy and of the relations
between them. The relations contained within the dashed rectangle hold only for
what we call minimal scalar models: scalar fields with sum separable potentials
and canonical kinetic terms.
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previous works [196, 197, 198] the definition of entropy in Eq. (4.116) has been
used. We will argue in the next sections that the use of Eq. (4.116) can lead in
specific models to an instability in the entropy perturbations that is not physical
but is due to a ill-definition of the curvature ¢ in those models. Interestingly, it
turns out that using one or the other variable does not lead to equivalent results:
in some cases the difference in the resulting isocurvature power spectrum that is
constrained by Planck is of several orders of magnitude [199]. Tt is then necessary
to understand what is the proper variable to be used when matching the inflation-
ary perturbations onto the perturbations in the primordial radiation dominated
universe.

Let us try to be more explicit and review how the constraints can be enforced
on a simple two-fields inflationary model following [200]. The study of cosmo-
logical perturbations generated during inflation boils down to the study of CMB
anisotropies that can be characterized by their power spectra

(2m)*(k + a) Pry(k) = <I(k)I(a)), (4.125)

where [, J denote the curvature ¢ = > (, and/or any isocurvature mode S. The

constraints can be formulated in terms of the primordial isocurvature fraction®

__ Pss(k)
Fee(k) + Psg(k)

Biso(k) (4.127)

where S refers to the post-inflationary isocurvature perturbations, i.e. any of
Sy cpM; Syvs Sybaryons. I general this quantity is not scale invariant, so that the
Planck constraints are placed at three different reference scales. Given our illus-
trative purposes though, we adopt the assumption of [200] and take the spectral
index for all the spectra to be zero, so that the primordial isocurvature fraction
turns out to be scale-independent.

Of course the constraint on (i, comes indirectly: once we have the primordial
power spectra Pr; at the start of the radiation dominated era (that implies that
we have consistently transferred all the perturbations from the inflationary to
the post-inflationary eras, as described above) we need to evolve them through
the Einstein equations till the release of the CMB, and then translate them into

4We are not interested in this paper on the other parameter that is constrained by Planck
observations, namely the correlation fraction

Py

cos Ay = 7(PI[.PJ.])1/2

€ (—1,1), (4.126)

which is taken to be scale-independent in Planck analyses.
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observable quantities using the Boltzmann equations. Only then we are able to
indirectly place constraints on i, by means of the constraints on CMB.

In the context of the hot big bang model, entropy, like curvature perturba-
tions, appears as an undetermined initial condition for the radiation epoch. In the
context of inflationary cosmology, both curvature and entropy perturbations at
the onset of radiation domination are determined by the time evolution of scalars
during inflation and reheating. In order to make contact between the two phases
one must have a complete model, where the couplings of the inflationary scalars
to the various species are known and then to evolve S, or S,z up to radiation
domination.

In the next section we focus again on Fibre inflation models. Indeed, despite
the study of the reheating phase is far beyond the aim of the present work, we
can try understand whether the growth of isocurvature perturbations, that we
analysed in Sec. 4.6.3, can lead to large values of S, at the end of inflation.

4.6.7 Vanishing relative entropy from massless axions in FI

In order to provide some evidence that the geometrical instability studied in
Sec. 4.6.3 is unphysical, let us compute the relative entropy during inflation, as
given by S, for the two scalar fields system described in Sec. 4.6.3. We focus for
simplicity on the right-left inflation case where the 6; massless axion induces the
would-be geometrical instability of the system. This can be summed up as:

1 2 s s

L/\g = 5(00)" + f(x) -V, P=fre V:%<3—4e ﬁ)
where we set y = 6; to simplify notation. The energy momentum tensor during
inflation can be factorised as

™ T(1) + T(’g (4.128)
where the subscripts (1) and (2) refer to the scalars ¢ and x respectively. Due to
the kinetic coupling, the individual T(‘Z‘)” are non conserved, but instead there is
energy transfer between the fluids:

VM =Q"  and VI = —Q, (4.129)

where Q" is the energy transfer function. Despite the fact that there is some
freedom in the definition of the two fluids, it is natural to write the energy density
and pressure of the two fields as

=55+ V), pr = 31O, (1.130)
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1-

IS 59252 - Vi(9), Py = pa, (4.131)
so that the energy transfer function computed on background quantities takes the
form .

. o
o — (P1+3H£P1+P1)> _ <ff¢?X > . (4.132)
0 0
The sound speeds of the two fluids defined in Eq. (4.130), (4.131) are
2V,
Gi=l+ ——"— =1, (4.133)
3Ho — ffsX*

while the overall sound speed is given by

(4.134)

In order to compute the relative entropy between the fluids, we need to use per-
turbation theory at linear order. The following results are obtained using spatially
flat gauge. The perturbed Einstein equations and further details can be found in
App. B.2. Energy density and pressure perturbations take the form

5p1 = =D + G + Vo, (4.135)
5P = —B¢% + o — Vo, (4.136)
1
6ps = 0Py = —®f*x* + f2Xox + §>'<25¢f25¢, (4.137)

where the time lapse scalar perturbation is given by

o — % (¢&5¢ + f2>'<5x) . (4.138)

Since y is a perfect fluid, the only intrinsic pressure perturbation is related to the
field ¢

0Py = Z ((5Pa — ciaépa) =
- b i (4.139)
- (_‘W + é&b) (1—=c2) = (1+c2)Veo0.
The non-adiabatic pressure perturbation can be written as

(Spnad = §Pintr + 6Prel ) (4140)
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thus it is easy to see that we can write

0P, = Z (2, —c2) bpa. (4.141)

«

Writing down explicitly the difference between the total sound speed and that one
related to the single components (using the number of e-foldings as time variable)
we get

2 _ 2 _ 2 9 7 ~ 2.2
Gy—ci=(1—-¢l).

It is easy to see that the inflaton contribution to d P,..; is suppressed by the expo-
nentially decreasing factor fy/, that we computed in Eqs. (4.89), (4.90) and whose
behaviour was also numerically checked in Sec. 4.6.3. In addition, we can recast
the energy density perturbations as follows:

oo = 2| (36— %) 00+ 050/ | - 22 Sox

(4.143)
=12 [(3 — &) 60+ 956/ + O(Y),

b, = HAAX |5 (%5 — ) 60 + fox' — L520x |
~ O(fX').

From the previous equations we see that, during inflation, 6 P.e; ~ O(fx’) — 0

as fx' — 0.
We conclude that in this 2-field system we would expect the non-adiabatic pressure
perturbations to be just given by the inflaton contribution to ¢ P;,,. This is con-
firmed by the numerical analysis of the different components of the non-adiabatic
entropy, S, Srel, Sintr, that is shown in Figure 4.14.

We can then conclude that the presence of the ultralight axion does not seem
to affect the entropy of the system and the geometrical instability of isocurvature
perturbations should not be considered as a physical effect. As mentioned in the
previous sections, observational bounds on isocurvature perturbations are given
in terms of the relative entropies S, or S,s. Therefore the observed growth in
0s does not rule out these models. In order to check the constraints coming from
experimental observations, what one should do is to compute the relative entropy,
using Eq. (4.116) and evolve it till radiation domination era.

In this particular case however Sy, is ill-defined as the axion field has an action

NS ;(b) (0x) (4.145)

(4.144)
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Figure 4.14: Different contributions to the entropy perturbations coming from
non-adiabatic pressure in the right-left FI case described in Sec. 4.6.3. It is easy
to see that S, goes rapidly to zero and the total entropy of the system is just
given by S

from which we can read that p, = @(6)()2 vanishes on-shell. One therefore
sees that, despite the fact that S, is finite and vanishingly small, S5 is singular.
We note that the same problem arises for canonically normalised massless scalars
(which however do not suffer from a growing Js).

The fact that the growth in ds is due to a growing projector N® and that S,
is finite, allows us to argue that the instability noted in Sec. 4.6.3 is of no physical
consequence and that the underlying models are presently viable both in what
concerns curvature and entropy perturbations.

4.7 Conclusions

In this chapter we have studied the geometrical (in)stability in models of in-
flation where the field space has negative scalar curvature. These models arise
naturally in the presence of non-minimal coupling, in supergravity and in string
theory. We have shown that there is no instability for heavy non-inflationary
scalars and that the isocurvature modes are tachyonic only in a spurious, non-
attractive solution to the background dynamics. Notice that the stability of heavy
fields is in agreement with results previously found in models with non-minimal
coupling [177, 178]. Moreover, ref. [201] has recently shown that, even if the
initial conditions are tuned such that x = x = 0, the backreaction of the isocur-
vature fluctuations shuts off the instability before reaching the non-linear regime.
Instead we have shown that the instability can be present for massless spectator
fields kinetically coupled to the inflaton. The existence of large numbers of mass-
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less scalars, the moduli, is a hallmark of string compactification models. For the
phenomenological viability of such models it is imperative to generate a mass for
the moduli fields, a research area that has seen significant progress over the last
15 years and that often involves the addition of subleading corrections, both per-
turbative and non-perturbative, to the effective action. Despite the sophistication
of current constructions, one can sometimes end up with some remaining massless
fields. These are the focus of the second part of this Chapter, in particular their
role during inflation.

After gaining some intuition from analysing the simple case of exponential
quintessence-like potentials, we studied this instability in the context of Fibre In-
flation [101, 104], a type IIB string inflation model where the inflationary potential
is generated by perturbative corrections to the Kéhler potential. In this setup there
are two axionic fields that remain massless after moduli stabilisation, ¢#; and 6-,
both of which are kinetically coupled to the inflaton. We showed that one of these
fields always induces a geometrical instability. For right-left Fibre Inflation mod-
els |101], it is the fibre axion 6, that leads to unstable isocurvature perturbations,
while in left-right realisations of Fibre Inflation [102], the instability is triggered
by the base axion 6. In both cases we have tried to avoid the instability by giving
a small mass to the axions. We found that, although a potential for these fields
can be generated by non-perturbative effects, it is not possible to avoid the insta-
bility without significantly modifying the dynamics of Fibre Inflation. This would
lead to a completely different inflationary model with a truly multi-field dynamics
that should be carefully analysed, but this is far beyond the aim of the current
work. Furthermore we have numerically probed the system and have shown that
the arising of geometrical destabilisation is independent of the choice of initial
conditions.

When present, this instability should make one reconsider the validity of what-
ever inflationary model leading to it. The simplest possibility is that perturba-
tion theory remains valid throughout the evolution. In this case the growth of
the isocurvature perturbations might lead to a tension with current observational
bounds on the isocurvature fraction only if the ultra-light fields contribute con-
siderably to dark matter [138|, a possibility which we consider however unlikely
given that these fields are in practice massless. We found that the entropy per-
turbations, as defined by s, grow rapidly on superhorizon scales also considering
kinetically coupled massless scalars that have vanishing on-shell energy density.
This happens despite the fact that the background trajectory is essentially single
field and stable. This somewhat paradoxical state of affairs has prompted us to
investigate this issue further.

In the analysis of Fibre Inflation with more than one ultra-light entropic direc-
tion, in order to make use of the results in the literature concerning the effective



4.7. CONCLUSIONS 187

mass-squared of the isocurvature modes, we have reduced the field space to two
dimensions by projecting out one of the ultra-light directions at a time. Following
[202], we also numerically checked the full 3-field system but, since our results did
not qualitatively change, we decided not to insert the analysis in this work.

Moreover we showed that the coordinate system, identified by tangent and or-
thogonal perturbations, is somehow ill-defined. Indeed, one of the two components
of the normal projector N, keeps on growing during inflation, causing the growth
of the isocurvature mode Js.

Finally, we introduce the various definitions of entropy that can be found in the
literature, pointing out the relation between them and their limits of applicability.
Our aim was to understand if the growing isocurvature modes, that we found in
the previous sections, can affect the predictions on cosmological parameters. The
usual entropy definition that is used in the literature to transfer the entropy mode
from the inflationary scalar field system to the primordial plasma [196, 197, 19§]
is given in Eq. (4.116). We find that in the system under study Sis is ill-defined
as the massless axion has vanishing energy density on-shell. Nevertheless, we can
estimate the relative size of the entropy perturbations generated by non-adiabatic
pressure using the fluid approach. We showed that S,.; is finite and rapidly decays
in time. Therefore, the total entropy of the system is just given by the intrinsic
entropy of the inflaton field. This allows us to argue that the instability noted in
Sec. 4.6.3 has no physical impact and the underlying model is presently viable.
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Chapter 5

Axionic DM from String Theory:
3.55keV line

5.1 Introduction

In 4D string models, ALPs can emerge either as closed string modes aris-
ing from the dimensional reduction of 10D anti-symmetric forms or as phases of
open string modes charged under anomalous U(1) symmetries on stacks of D-
branes [167, 168, 169, 203, 76]. Some of these modes can be removed from the
low-energy spectrum by the orientifold projection which breaks N = 2 super-
symmetry down to N = 1, others can be eaten up by anomalous U(1)’s via the
Green-Schwarz mechanism for anomaly cancellation or can become as heavy as the
gravitino if the corresponding saxions are stabilised by the same non-perturbative
effects which give mass to the axions. However the axions enjoy a shift symmetry
which is broken only at non-perturbative level. Therefore when the corresponding
saxions are frozen by perturbative corrections to the effective action, the axions
remain exactly massless at this level of approximation. They then develop a mass
via non-perturbative effects which are however exponentially suppressed with re-
spect to perturbative corrections. Hence whenever perturbative contributions to
the effective scalar potential play a crucial réle for moduli stabilisation, the ax-
ions are exponentially lighter than the associated saxions [204]|. Notice that this
case is rather generic in string compactifications for two main reasons: (i) if the
background fluxes are not tuned, non-perturbative effects are naturally sublead-
ing with respect to perturbative ones; (ii) it is technically difficult to generate
non-perturbative contributions to the superpotential which depend on all moduli
(because of possible extra fermionic zero modes [190], chiral intersections with the
visible sector [116] or non-vanishing gauge fluxes due to Freed-Witten anomaly
cancellation [52]).

189
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Despite being naturally light, these particles can play both the roéle of cold DM
and dark radiation depending on their production mechanism. The oscillations
of classical misaligned axion fields produce a condensate of non-relativistic axions
[13], while axions produced from heavy moduli decay can free-stream without
thermalising and may form today a Cosmic Axion Background (CAB) [16]. In this
Chapter we focus on the possible physical explanation of the 3.55 keV line that
has been recently detected from several galaxy clusters and other astrophysical
objects. This line could not be identified with any other known spectral line from
atomic transitions in the intra-cluster medium and may be a possible sign of BSM
physics. A physical explanation that is in good accordance with experimental
results is given in [17]|, where the authors claim that the photon line is produced
by a double decay. A DM particle directly decay into extremely light ALPs that
convert into photons inside the galactic magnetic field. Indeed, thanks to the
existence of the following coupling between axions and photons:

_ a [ouy “@ m5.B
Loy = WFWF = WE-B, (5.1)
an axion can convert into a photon or viceversa through Primakoff effect in a back-
ground magnetic field (see Fig. 5.1). The axion-photon conversion probability in

Figure 5.1: Primakoff effect.

a plasma with frequency w, at leading order and in the small-angle approximation
is given by [17]:

2
1( 2 for my, < w,
Py = N2 w4 A (5.2)
P — P
1 (W) <m—a) = Paﬁfy[ma < (.Up] (m—a> for Mg > Wy

where L is the B-field coherence length and we considered a single domain of
homogeneous magnetic field. We therefore realise that in order to have a large
P,_,,, we need to have magnetic fields which are larger in size over huge domains.
Galaxy clusters meet these requirements and usually have w, ~ 107 V. Thus
ALPs with masses m, < 107!2 eV can give rise to observable signals in the X-ray
band [17].
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The main goal of this Chapter is to provide a string embedding of this model
[17] where we focus in particular on type IIB flux compactifications where moduli
stabilisation has already been studied in depth.

This Chapter is organized as follows: in Sec. 5.2 we give an overview of the
experimental observations that have been collected in recent years and in Sec. 5.3
we list the requirements on the geometry of the extra dimensions that need to
be satisfied in order to successfully reproduce the appearance of the photon line.
In Sec. 5.4 we first discuss the phenomenology of the dark matter to ALP to
photon model for the 3.5 keV line and its observational constraints, and then we
describe how these phenomenological conditions turn into precise requirements on
the Calabi-Yau geometry, the brane setup and gauge fluxes. We than point out
which of the 4D fields can successfully play the role of either the DM particle or
the ultra-light ALP, we list the form of the various interactions and we present
the resulting low-energy 4D supergravity. Sec. 5.5 provides a thorough discuss of
moduli stabilisation showing how different sources of corrections to the effective
action can fix all closed string moduli and the U(1)-charged open string modes.
In Sec. 5.6 we first derive the expressions for the canonically normalised fields
and their masses and then we use these results to work out the strength of the
DM-ALP coupling. Several technical details are relegated to App. C.

5.2 The 3.55 keV line

Recently several studies have shown the appearance of a photon line at £ ~ 3.5
keV, based on stacked X-ray data from galaxy clusters and the Andromeda galaxy
[205, 206]. The line has been detected in galaxy clusters by the X-ray observatories
XMM-Newton, Chandra and Suzaku [207, 208] and in Andromeda with XMM-
Newton [206]. The Hitomi satellite would have been able to study the 3.5 keV
line with unprecedented energy resolution. However, unfortunately Hitomi was
lost after only a few weeks in operation and the limited exposure time on the
Perseus cluster only allows to put upper bounds on the 3.5 keV line which are
consistent with the detection of the other satellites [209]. The findings of [205, 2006]
have inspired further searches in other astrophysical objects such as the galactic
center [210, 211, 206, 212|, galaxies [213], dwarfs [214, 215, 216] and other galaxy
clusters [217, 218].1 Currently, a compelling standard astrophysical explanation,
e.g. in terms of atomic lines of the (cluster) gas is lacking.? This gives rise to the
possibility that the 3.5 keV line is a signal related to dark matter (DM) physics.

A much explored model is that of dark matter decay, e.g. a sterile neutrino with
mass mpy ~ 7 keV decaying into an active neutrino and a photon [221, 222|. In

!For a summary of observations and models on the 3.5 keV line see [219].
2See however [211, 220].



192 CHAPTER 5. THE 3.55KEV LINE

this case, the photon flux from an astrophysical object is solely determined by the
lifetime of the dark matter particle and the dark matter column density. The width
of the line is due to Doppler broadening. There are several observational tensions, if
one wants to explain the (non-)observation of the 3.5 keV line in currently analysed
astrophysical objects. Most prominently, these are:

e Non-observation of the 3.5 keV line from dwarf spheroidal galaxies [214, 215,
216]. The dark matter density of these objects is rather well known and
the X-ray background is low, making dwarf spheroidals a prime target for
detecting decaying dark matter.

e Non-observation of the 3.5 keV line from spiral galaxies [213], where again the
X-ray background is low. According to the dark matter estimates of [213],
the non-observation of a 3.5 keV signal from spiral galaxies excludes a dark
matter decay origin of the 3.5 keV line very strongly at 11 0.

e The radial profile of the 3.5 keV line in the Perseus cluster peaks on shorter
scales than the dark matter profile, rather following the gas profile than the
dark matter profile [205, 212]. However, the observed profile with Suzaku is
only in mild tension with the dark matter profile [208].

These tensions, even though they could be potentially explained by uncertainties
in the dark matter distributions in these objects [219], motivate different dark
matter models than direct dark matter decay into a pair of 3.5 keV photons.

A dark matter model that is consistent with all the present (non-)observations
was given in [17]. A dark matter particle with mass mp, ~ 7 keV decays into
an almost massless (m,,, < 107! V) axion-like particle (ALP) with energy 3.5
keV which successively converts into 3.5 keV photons that are finally observed.
Compared to direct dark matter decay into photons, the observed photon flux does
not depend just on the dark matter column density, but also on the probability
for ALPs to convert into photons. This is determined by the size and coherence
scale of the magnetic field and the electron density in e.g. a galaxy cluster.

The 3.5 keV emission is stronger in astrophysical regions with relatively large
and coherent magnetic field. This is verified by the experimental fact that cool core
clusters like the Perseus cluster have stronger magnetic fields than non-cool core
clusters and also a higher 3.5 keV flux is observed from such an object. Further-
more, the fact that central regions of a cool core cluster host particularly strong
magnetic fields explains the radial morphology of the 3.5 keV flux from Perseus
as the signal comes disproportionally from the central region of the cluster. The
model has made the prediction that galaxies can only generate a non-negligible
3.5 keV photon flux if they are spiral and edge-on as for instance the Andromeda
galaxy [17]. In this case, the full length of the regions with regular magnetic field
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can be used efficiently for ALP to photon conversion. These predictions agree
with the experimental results of non-observation of the 3.5 keV signal from generic
(edge-on and face-on) spiral galaxies and dwarf galaxies [223].2

5.3 Model requirements

Given that the 4D low-energy limit of string compactifications generically leads
to several light ALPs [167, 168, 169, 203, 76|, it is natural to try to embed the
model of [17] in string theory.

String compactifications where some moduli are fixed by perturbative effects
are the perfect frameworks to derive models for the 3.5 keV line with light ALPs
which can behave as either the 7 keV decaying DM particle or as the ultra-light
ALP which converts into photons. Indeed, whenever perturbative contributions
to the effective scalar potential play a crucial role for moduli stabilisation, axions-
saxion mass degeneracy gets broken making the axions exponentially lighter than
their supersymmetric counterpart. Notice that this case is rather generic in string
compactifications for two main reasons: (i) if the background fluxes are not tuned,
non-perturbative effects are naturally subleading with respect to perturbative ones;
(1) it is technically difficult to generate non-perturbative contributions to the
superpotential which depend on all moduli (because of possible extra fermionic
zero modes [190], chiral intersections with the visible sector [116] or non-vanishing
gauge fluxes due to Freed-Witten anomaly cancellation [52]).

The main moduli stabilisation mechanism which exploits perturbative correc-
tions to the Kéhler potential is the LARGE Volume Scenario (LVS) [63, 225, 62].
We shall therefore present an LVS model with the following main features (see Fig.
5.2 for a pictorial view of our microscopic setup):

e The underlying Calabi-Yau (CY) manifold is characterised by h*' = 5 Kiihler
moduli T; = 7;+ic; where the ¢;’s are closed string axions while the 7;’s control
the volume of 5 different divisors: a large four-cycle Dy, a rigid del Pezzo
four-cycle D, which intersects with a ‘Wilson divisor’ D, (h®'(D,) = 1 and
h%2?(D,) = 0) and two non-intersecting blow-up modes D,, and D,,.

e The two blow-up modes D,, and Dy, shrink down to zero size due to D-term
stabilisation and support D3-branes at the resulting singularities. These
constructions are rather promising to build a semi-realistic visible sector
with SM-like gauge group, chiral spectrum and Yukawa couplings [226, 227|.
If D, and D,, are exchanged by the orientifold involution, the visible sector

3Despite the successful interpretation of all these observations, this model would not be able
to explain the dip around 3.5 keV in the Perseus AGN spectrum which might arise from Chandra
data [224].
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features two anomalous U(1) symmetries (this is always the case for any
del Pezzo singularity) [151, 228, 78|, while if the two blow-up modes are
separately invariant, one of them supports the visible sector and the other a
hidden sector [229, 137]. Each of the two sectors is characterised by a single
anomalous U(1) factor.

A smooth combination of D, and D, is wrapped by a stack of D7-branes
which give rise to string loop corrections to the Kéhler potential K [58, 60,
61]. Moreover, non-vanishing world-volume fluxes generate moduli-dependent
Fayet-Iliopoulos (FI) terms [146, 147]. An ED3-instanton wraps the rigid di-
visor D, and generates standard T;-dependent non-perturbative corrections
to the superpotential W. A second ED3-instanton wraps the Wilson divisor
D,. Due to the presence of Wilson line modulini, this ED3-instanton con-
tributes to the superpotential only via T)-dependent poly-instanton effects
[230, 231].

At leading order in an inverse volume expansion, the moduli are fixed su-
persymmetrically by requiring vanishing D- and F-terms. These conditions
fix the dilaton and the complex structure moduli in terms of three-form flux
quanta together with the blow-up modes 7, and 7,, in terms of charged open
string fields, and hidden matter fields on the D7-stack in terms of 7,.

Quantum corrections beyond tree-level break supersymmetry and stabilise
most of the remaining flat directions: o corrections to K [55] and single non-
perturbative corrections to W |65] fix 7, 75 and ¢,, while soft supersymmetry
breaking mass terms and g, loop corrections to K fix 7,,.

Subdominant 7),-dependent poly-instanton corrections to W stabilise the
local closed string axion ¢, while a highly suppressed T,-dependent non-
perturbative superpotential fixes the bulk closed string axion ¢,. Sequestered
soft term contributions stabilise instead the radial component of U(1)-charged
matter fields C' = |C|e!? living on the D3-brane stacks.

Both ¢, and ¢, are exponentially lighter than the gravitino, and so could play
the role of the decaying DM particle with mp,, ~ 7 keV. On the other hand
the ultra-light ALP with m,,, < 107'? €V which converts into photons is
given by the open string phase 6. Notice that if D, and D,, are identified
by the orientifold involution, there are two open string phases in the visible
sector: one behaves as the standard QCD axion, which is however heavier
than 107'? €V, and the other is the ultra-light ALP 6. If instead D,, and
D,, are separately invariant under the involution, 6 is an open string axion
belonging to a hidden sector.
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e The coupling of the closed string axions ¢, and ¢, to the open string ALP 6 is
induced by kinetic mixing due to non-perturbative corrections to the Kéahler
potential. However we shall show that the scale of the induced DM-ALP
coupling can be compatible with observations only if the DM candidate is
the local closed string axion c,,.

e If the ultra-light ALP 6 belongs to the hidden sector, its coupling to ordinary
photons can be induced by U(1) kinetic mixing which gets naturally gener-
ated by one-loop effects [232]. Interestingly, the strength of the resulting
interaction can easily satisfy the observational constraints if the open string
sector on the D3-brane stack is both unsequestered and fully sequestered
from the sources of supersymmetry breaking in the bulk.

e The branching ratio for the direct axion DM decay into ordinary photons
is negligible by construction since it is induced by kinetic mixing between
Abelian gauge boson on the D7-stack and ordinary photons on the D3-stack
which gives rise to an interaction controlled by a scale which is naturally
trans-Planckian.

5.4 Phenomenology and microscopic realisation

In this section we first discuss the observational constraints of the model of
[17] for the 3.5 keV line, and we outline the main phenomenological features of our
embedding in LVS type IIB flux compactifications. We then provide the technical
details of the microscopic realisation of the DM to ALP to photon model for the
3.5 keV line. We start by illustrating the geometry of the underlying Calabi-Yau
compactification manifold. We then present the brane setup and gauge fluxes, and
we finally describe the main features of the resulting low-energy 4D effective field
theory.

5.4.1 Observational constraints

The effective Lagrangian of the dark matter to ALP to photon model for the
3.5 keV line can be described as follows:

1 a ~ 1 1
L o= = F"Fu - 4"]\7 P Fy + 50000 a1 — émimaiw
a 1
% aua/ALPauaALp + Eaua/D]wauaDjw - §m2DMCZ2DM 3 (5.3)

where a4, is an ALP with mass m,,» that converts into photons in astrophysical
magnetic fields via the coupling suppressed by M. ap,, is a pseudoscalar which is



196 CHAPTER 5. THE 3.55KEV LINE

Figure 5.2: Pictorial view of our setup: a stack of D7-branes wraps the combination
Ts + Tp, two ED3-instantons wrap respectively the rigid cycle 7, and the Wilson
divisor 7, while two stacks of D3-branes at singularities support the visible and a
hidden sector. The DM particle is the closed string axion ¢, which acquires a 7 keV
mass due to tiny poly-instanton effects and decays to the ultra-light open string
ALP 0 that gives the 3.5 keV line by converting into photons in the magnetic field
of galaxy clusters.



5.4. PHENOMENOLOGY AND MICROSCOPIC REALISATION 197

the dark matter particle with mass m,,, ~ 7 keV. It decays via the kinetic mixing
term in (5.3) with characteristic scale A. In order for ALP-photon conversion to be
efficient in galaxy cluster magnetic field environments, we require m,,, < 1072
eV which is the characteristic energy scale of the electron-photon plasma [17].
Otherwise, the ALP to photon conversion is suppressed by ~ (1072eV /m )%
Therefore a,,» is too light to be the standard QCD axion but it has instead to be
a stringy axion-like particle.
The observed photon flux at an X-ray detector is given by:

Fpyo aALP— "/OCFGDM_’GALP‘IALP PCLALP—>’Y Poum (54)
where pp,, 1s the dark matter column density and:

1 m3

r = DM (5.5)
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is the dark matter decay rate and F,,, ., is the ALP to photon conversion prob-
ability. It is given as P,,,,,,ocM ™2 and furthermore depends on the electron
density in the plasma, the energy of the ALP /photon, the coherence length and
the strength of the magnetic field. Hence, Fpy—a,, pycA2M 2. For the ALP
to photon conversion conditions in the Perseus cluster magnetic field, the observed
3.5 keV flux then implies [17]:

A-M ~7-10% GeV2. (5.6)

The scales M and A are subject to certain constraints. There is a lower bound
M = 10" GeV from observations of SN1987A [233, 234, 235], the thermal spectrum
of galaxy clusters [236] and active galactic nuclei [237, 238, 239]. This lower bound
implies an upper bound on A via (5.6). To get sufficiently stable dark matter, we
assume that the dark matter particle has a lifetime larger than the age of the
universe, i.e. A = 5-10' GeV. This implies an upper bound on M via (5.6).
To summarise, the parameters M and A have to satisfy (5.6) together with the
following phenomenological constraints:

10" GeV < M < 10% GeV, 5-102 GeV < A<S7-107 GeV.  (5.7)

Notice that ultra-light ALPs with intermediate scale couplings to photons will be
within the detection reach of helioscope experiments like IAXO [240] and poten-
tially light-shining-through-a-wall experiments like ALPS [241].

5.4.2 Phenomenological features

The phenomenological requirements for a viable explanation of the 3.5 keV line
from dark matter decay to ALPs which then convert into photons, can be trans-
lated into precise conditions on the topology and the brane setup of the microscopic
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realisation. We shall focus on type IIB flux compactifications where moduli stabil-
isation has already been studied in depth. According to (5.6) and (5.7), we shall
focus on the parameter space region where the DM to ALP coupling is around the
GUT/Planck scale, A ~ 10'°-10'® GeV, whereas the ALP to photon coupling is
intermediate: M ~ 10'1-10'3 GeV. This region is particularly interesting since an
ALP with this decay constant could also explain the diffuse soft X-ray excess from
galaxy cluster via axion-photon conversion in the cluster magnetic field [242]. This
phenomenological requirement, together with the observation that m,,, ~ 10 keV
while m,;» < 10712 eV, sets the following model building constraints:

e ALP as an open string axion at a singularity: From the microscopic
point of view, a,,» can be either a closed or an open string axion. In the
case of closed string axions, a4, could be given by the reduction of C; on
orientifold-even four-cycles or by the reduction of C'; on two-cycles duals
to orientifold-odd four-cycles. As explained in [168, 76] and reviewed in
App. C.1, since axions are the imaginary parts of moduli, T; = 7, + i¢;
(¢; is a canonically unnormalised axion), whose interaction with matter is
gravitational, they tend to be coupled to photons with Planckian strength.
However this is true only for bulk axions which have M =~ M, while the
coupling to photons of local axions, associated to blow-up modes of point-
like singularities, is controlled by the string scale: M ~ M,. M, ~ Mp/\FV
can be significantly lower than M, if the volume of the extra dimensions in
string units V is very large, and so local closed string axions could realise
M ~ M, ~ 101110 GeV.

A moduli stabilisation scheme which leads to an exponentially large V is the
LARGE Volume Scenario [63, 225, 62] whose simplest realisation requires a
Calabi-Yau volume of the form:

V=122 (5.8)

The moduli are fixed by the interplay of the leading order o correction to the
Kahler potential and non-perturbative effects supported on the rigid cycle
Ts. The decay constant of the axionic partner of 74, which we denote as c,, is
set by the string scale, M ~ My, but this mode develops a mass of order the
gravitino mass me, ~ mgj ~ M,/V. The large divisor 7, is lighter than the
gravitino due to the underlying no-scale structure of the 4D effective field
theory, m,, ~ mg/g/\/v7 but it has to be heavier than about 50 TeV in order
to avoid any cosmological moduli problem. Hence the local axion ¢, is much
heavier than 1072 eV, and so cannot play the role of a,,,. Moreover, the
bulk axion ¢, cannot be the desired ALP as well since, even if it is almost
massless, its coupling scale to photons would be too high: M ~ M,
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We are therefore forced to consider an open string axion realisation for a,; p.
Anomalous U(1) factors appear ubiquitously in both D7-branes wrapped
around four-cycles in the geometric regime and in D3-branes at singularities.
In the process of anomaly cancellation, the U(1) gauge boson becomes mas-
sive by eating up an axion [243]. As explained in [204], the combination of
axions which gets eaten up is mostly given by an open string axion for D7-
branes and by a closed string axion for D3-branes. The resulting low-energy
theory below the gauge boson mass, features a global U(1) which is an ideal
candidate for a Peccei-Quinn like symmetry. In the case of D3-branes at
singularities, the resulting D-term potential looks schematically like:

Vo= (4lCF - €) . (5.9

where we focused just on one canonically normalised charged matter field
C = |C|e'? whose phase 6 can play the role of an axion with decay constant
set by the VEV of the radial part |C|. The FI term & ~ 7,/V is controlled by
the four-cycle 7, which gets charged under the anomalous U(1) and whose
volume resolves the singularity. A leading order supersymmetric solution
fixes |C|? = &£/q, leaving a flat direction in the (|C|, 7,)-plane. This remaining
flat direction is fixed by subdominant supersymmetry breaking contributions
from background fluxes which take the form [78]:

Vi(|C)) = exmi|CF + e AICP + O(IC11), (5.10)

where ¢y and ¢z are O(1) coefficients. If we parametrise the volume depen-
dence of the soft scalar masses as mo ~ M,/V** and the trilinear A-term
as A ~ M,/V*, and we use the vanishing D-term condition to write 7, in
terms of |C| as 7, ~ |C|?V, the matter field VEV scales as:

(iYIfe; > 0 |C]=0 < 7,=0,

A M 1

(i) If s < 0O |C|:WT’:Q3 T4 ™ Yhorsar 1 -
Only in case (ii) the matter field |C| becomes tachyonic and breaks the
Peccei-Quinn symmetry, leading to a viable axion realisation. In the presence
of flavour D7-branes intersecting the D3-brane stack at the singularity, the
soft terms are unsequestered and ay = a3 = 1 [244], giving |C| ~ M,/V ~
msp and 7, ~ V7! « 1 which ensures that 7, is still in the singular regime.
If the internal volume is of order V ~ 108, the large modulus 7, is heavy
enough to avoid the cosmological moduli problem: m,, ~ 100 TeV. In turn
the gravitino mass, all soft terms and the axion decay constant f,,,, = |é’ |
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are around 10° GeV. Setting 0 = a,.p/fa,,p, the axion to photon coupling
then takes the form:

9 Qarp _ 3272 Jaarr 32m° Jaurp

L ) L PSS Vs = ~ 10”2 GeV
e d ’ 5.1)

since for D3-branes the coupling g=2 = Re(S) = ¢; ! is set by the dilaton S
which controls also the size of the string coupling that we assume to be in
the perturbative regime: g, ~ 0.1.

On the other hand, in the absence of flavour D7-branes the soft terms are
sequestered with a3 = 2 and as = 3/2 or s = 2 depending on the form
of the quantum corrections to the Kahler metric for matter fields and the
effects responsible for achieving a dS vacuum |77, 79]. Notice that possible
non-perturbative desequestering effects from couplings in the superpotential
of the form W, > Omatter e %Ts with Opatter @ gauge-invariant operator
composed of matter fields, cannot actually change the volume dependence of
either the soft scalar masses or the A-terms [245]. Thus if as = 3/2 we have
faourr = |C| =~ M,/V and 7, ~ V! « 1, while if ay = 2 the open axion decay
constant scales as f,,,, = |C| ~ M,/V? and 7, ~ V™ « 1. In both cases
without flavour D7-branes the gaugino masses scale as M, ~ 0.1 M,,/V? and
lie around the TeV scale for V ~ 107. Considering this value of the volume,
the axion-photon coupling therefore becomes:

3 3272 f,
(@) ffay = = M = 32 Jaarr
2 9s

_ 3272 fanrr
gs

~ 10°myp ~ 10 GeV,  (5.12)

~10° % ~10GeV.  (5.13)

b)Ifay = 2 M
ALP-photon coupling induced by U(1l) kinetic mixing: We have
shown above that, if the matter field |C| charged under the anomalous U(1)
develops a non-zero VEV due to a tachyonic soft scalar mass contribution,
the open string axion 6 can have an intermediate scale coupling to photons.
However 6 in general plays the role of the standard QCD axion which be-
comes much heavier than m,,, < 1072 eV due to QCD instanton effects.
Hence the simplest realisation of an ultralight ALP with the desired phe-
nomenological features to reproduce the 3.5 keV line requires the existence
of at least two open string axions. The Calabi-Yau volume (5.8) has then to

be generalised to:
V= 7_5,/2 _ 73/2 _ 32 132 (5.14)

q1 q2
where 7, and 7,4, are both collapsed to a singularity via D-term fixing and
support a stack of D3-branes. There are two possibilities to realise a viable

Qupp:
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1. The two blow-up modes 7, and 7, are exchanged by the orientifold
involution [151, 228, 78|. The resulting quiver gauge theory on the
visible sector stack of D3-branes generically features two anomalous
U(1) symmetries. This is for example always the case for del Pezzo
singularities. Hence the visible sector is characterised by the presence
of two open string axions: one behaves as the QCD axion while the
other can be an almost massless a,,, with M ~ 10"-10'? GeV as in
(5.11) or (5.12). In this case the matter field |C| which develops a VEV
of order the gravitino mass has to be a Standard Model gauge singlet
in order not to break any visible sector gauge symmetry at a high scale.

2. The two blow-up divisors 7, and 7, are invariant under the orientifold
involution [229, 137]. Therefore one D3-stack has to reproduce the
visible sector while the other represents a hidden sector. Each of the
two sectors features an anomalous U(1) which gives rise to an open
string axion with a coupling to the respective photons controlled by the
scale M. The visible sector axion plays the role of the QCD axion while
the hidden sector open string axion can behave as a,,p. Its coupling to
ordinary photons can be induced by a U(1) kinetic mixing of the form
[232, 246, 247):

1

1 X Agep ~ Aarp ~
——F VFMV__ v H —F, v Y — F, VFHV_ v /1.1/7
ED 1 w 4G,LLG +2 ,uG 4Mvis w 4MhidG#G
(5.15)

where we denoted the QCD axion as aqcp, the kinetic mixing parameter
as x and the visible sector Maxwell tensor as F},, while the hidden one
as G,. The kinetic mixing parameter is induced at one-loop level and
scales as:

N GvisGhid _ gs

1672 1672
After diagonalising the gauge kinetic terms in (5.15) via G, = G/, +
XFw, aarp acquires a coupling to ordinary photons of the form:

~ 1073, (5.16)

X

LD —

2
X Qarp ~ Mhid

F, F* M ~ » Mg - 5.17
Mg " < A (5.17)

Given that M » Mg, as.pr can be a hidden sector open string axion
only in case (5.13) where the scale of the coupling to hidden photons of

order My;q ~ 10% GeV is enhanced via U(1) kinetic mixing to M ~ 10'2
GeV for the coupling to ordinary photons.

e DM as a local closed string axion fixed by poly-instanton effects:
In order to produce a monochromatic 3.5 keV line, the DM mass has to be
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around mp,, ~ 7 keV. Such a light DM particle can be a sterile neutrino
realised as an open string mode belonging to either the visible or the hidden
sector. However we shall focus on a more model-independent realisation of
the decaying DM particle as a closed string axion. A generic feature of any
4D string model where the moduli are stabilised by perturbative effects, is the
presence of very light axions whose mass is exponentially suppressed with
respect to the gravitino mass [204]. Thus closed string axions are perfect
candidates for ultra-light DM particles. In LVS models, there are two kinds
of axions which remain light:

1. Bulk closed string axion ¢, since the corresponding supersymmetric
partner 7, is fixed by o' corrections to the Kéhler potential K. This ax-
ionic mode develops a tiny mass only via T,-dependent non-perturbative
contributions to the superpotential W: m,, ~ m,e ™ « m, ~

mg/g/\/]j.

2. Local closed string axion ¢, whose associated modulus 7, is stabilised by
gs loop corrections to K. This can happen for so-called ‘Wilson divisors’
D,, which are rigid, i.e. h*°(D,) = 0, with a Wilson line, i.e. h°(D,) =
1[231]. Under these topological conditions, an ED3-instanton wrapping
such a divisor does not lead to a standard non-perturbative contribution
to W but it generates a non-perturbative correction to another ED3-
instanton wrapping a different rigid divisor 7,. This gives rise to poly-
instanton corrections to W of the form [230]:

Whp = A, o2 (TotApe 27T0) Age ™ 21 A A, e e e (5.18)

In LVS models, the blow-up mode 7, is fixed by the dominant non-
perturbative correction in (5.18) since the leading loop contribution to
the scalar potential is vanishing due to the ‘extended no-scale’ structure
|61]. Thus the corresponding axion ¢ becomes too heavy to play the role
of ap,, since it acquires a mass of the same order of magnitude: m,, ~
Mme, ~ Mmgzp. On the other hand, the T,-dependent non-perturbative
correction in (5.18) has a double exponential suppression, and so 7, gets
frozen by perturbative g, effects [58, 60]. Given that ¢, enjoys a shift
symmetry which is broken only at non-perturbative level, this axion
receives a potential only due to tiny poly-instanton contributions to W
which make it much lighter than 7,. Hence ¢, is a natural candidate for
Apy SINCE M, ~ My, e~ /2 « m., ~ m3. Notice that the presence of
a ‘Wilson divisors’ 7, would modify the volume form (5.14) to [231]:

VZ75/2—7'83/2—(Ts+Tp)3/2—Tq31/2—7'5’2/2. (5.19)
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e DM to ALP decay induced by non-perturbative effects in K: A DM
to ALP coupling controlled by the scale A of the form shown in (5.3) can arise
from the kinetic mixing between a closed string DM axion and an open string
ALP. Given that the kinetic terms are determined by the Kahler potential, a
kinetic mixing effect can be induced by non-perturbative corrections to the
Kihler metric for matter fields which we assume to take the form:*

Kyop D By e b cos(bie;) CC, (5.20)

where ¢ = b if ap,, is a bulk closed string axion or ¢ = p if ap,, is a local
closed string axion fixed by poly-instanton effects. As we shall show in Sec.
5.6.3 after performing a proper canonical normalisation of both axion fields,
the resulting scale which controls the DM-ALP coupling is given by:

b eb,,v%
A~ (5.21)
eprp Mp

for apy =

Bp V7/6 Mp ~ Bp V7/6-K/N
where b, = 21/N, k = 7,/7, and we have approximated V ~ 75’/2 ~ ¥ s,
From (5.21) it is clear that A can be around the GUT /Planck scale only if the
DM particle is a local closed string axion stabilised by tiny poly-instanton
corrections to W which can give it a small mass of order mp,, ~ 7 keV.

5.4.3 Calabi-Yau threefold

As explained in Sec. 5.4.2, the minimal setup which can yield a viable mi-
croscopic realisation of the ap, — @, — 7 model for the 3.5 keV line of [17],
is characterised by a Calabi-Yau with h''' = 5 Kihler moduli and a volume of
the form (5.19). A concrete Calabi-Yau threefold built via toric geometry which
reproduces the volume form (5.19) for At = 4 (setting either 7, = 0 or 7, = 0)
is given by example C of [231]. We therefore assume the existence of a Calabi-Yau
threefold X with one large divisor controlling the overall volume Dy, three del
Pezzo surfaces, D;, Dy, and D, and a ‘Wilson divisor’ D,

We expand the Kahler form J in a basis of Poincaré dual two-forms as J =
tyDy — t Dy —tg Dq1 tquqQ t Dp7 where the ?;’s are two-cycle volumes and we

4Similar non-perturbative corrections to K induced by ED1-instantons wrapped around two-
cycles have been computed for type I vacua in [248] and for type IIB vacua in [249], while similar
non-perturbative effects in K from an ED3-instanton wrapped around the K3 divisor in type I
string theory, i.e. type IIB compactified on K3xT?/Z,, have been derived in [250].
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took a minus sign for the rigid divisors so that the corresponding ¢;’s are positive.
The Calabi-Yau volume then looks like:

1 1
V= ; f IANT AT = ; | Kouwty — Ksss (ts + At,) — /uff; — kqlqlqlt; — kq2q2q2t§2] ,
X

(5.22)
where the coefficients A and p are determined by the triple intersection numbers
kijik = §x Di A Dj A Dy, as:

)\ZK:ZF‘Z and uzkppp—kgsi

The volume of the curve resulting from the intersection of the del Pezzo divisor
D, with the Wilson surface D, is given by:

Vol(D, N D,) = J J A Dg A Dy = — (ksspts + kapptp) = —kasp (ts + Atp) . (5.23)

X

o2y
5tiatj

anteed to be (1,h"! — 1) (so with 1 positive and 4 negative eigenvalues) 28] if
kssp < 0 while all the other intersection numbers are positive and ¢, + A\, > 0.°
The four-cycle moduli can be computed as:

The volume of this curve is positive and the signature of the matrix is guar-

TiZ%JXJAJAﬁi, (5.24)
and so they become:
T, = %kbbb t% , Ty = %kqlqlql tgl , Ty = %qupqg th ,
T, = % (Ksss 02+ kspp t + 2kggp tity) = %k (ts + M), (5.25)
T, = % (Kppp 2 + kssp 12 + 2k tit,) = %kssp (ts + M) + %uti .

The overall volume (5.22) can therefore be rewritten in terms of the four-cycle
moduli as:

V= )\bﬁ?/2 - /\57'3/2 - )\p (Tp + sz)g/Z - /\(117_51/2 o /\QQT‘?Q/Q ’ (5'26)
where:
1 5 » 1 2 kss
'ng klm, szb,&fh’(ha Ang ; and x:_ks:s)>0.

Notice that (5.26) reproduces exactly the volume form (5.19).

This analysis includes example C of [231] where kgss = kspp = —kssp = 9 and kppp = 0.
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5.4.4 Brane set-up and fluxes

As explained in Sec. 5.4.2; a,,» can be realised as an open string axion belong-
ing either to the visible sector or to a hidden sector. In the first case the two rigid
divisors D,, and D,, are exchanged by a proper orientifold involution whereas in
the second case they are invariant. As we shall see more in detail in Sec. 5.5.1,
these two blow-up modes shrink down to zero size due to D-term stabilisation and
support a stack of D3-branes at the resulting singularity.

Full moduli stabilisation requires the presence of non-perturbative corrections
to the superpotential. We shall therefore consider an ED3-instanton wrapped
around the ‘small’ rigid divisor D, which generates a standard non-perturbative
contribution to W, together with another ED3-instanton wrapped around the
Wilson surface D, which gives rise to poly-instanton effects. In order to make 7,
heavier than the DM axion c,, we need also to include a D7-stack that generates
Tp,-dependent string loop corrections to the Kahler potential. This can be achieved
if a stack of D7-branes wraps the divisor D, (which we assume to be smooth and
connected) given by:

Dy, =mgDg+m,D,, with msm,eZ. (5.27)

In what follows we shall assume the existence of a suitable orientifold involution
and O7-planes which allow the presence of such a D7-stack in a way compatible
with D7-tadpole cancellation. The cancellation of Freed-Witten anomalies requires
to turn on half-integer world-volume fluxes on the instantons and the D7-stack of
the form [52]:

A 1 -~

Dy, FS=§DS, F, =
with f,, f, € Z. In order to guarantee a non-vanishing contribution to W, the
total flux F; = F; — ;B (with ¢;B the pull-back of the NSNS B-field on Dj) on
both instantons has to be zero: F, = F, = 0. This can be achieved if the B-field
is chosen such that:

For = fsDs+ fo Dy + D,, (5.28)

N | —
N —

1 4 1 -
B=-D;,+-D,, 5.29

2 2 p ( )
and the pull-back of D,/2 on D, and of D,/2 on D, are both integer forms since
in this case we can always turn on integer flux quanta to cancel their contribution
to the total gauge flux. This is indeed the case if, for an arbitrary integer form
w=w;D; € H¥Z,X) with w; € Z, we have that:

- 1

1 .
—J Ds A Dy Aw == (ksspws + ksppwp) € Z. (5.30)
2 ), 2

This condition can be easily satisfied if both kg, and k,, are even.



206 CHAPTER 5. THE 3.55KEV LINE

The total gauge flux on the D7-stack instead becomes:
A A 1 A 1 A ~ N
JrD7 = sts+prp+ E(ms_ 1)Ds+§(mp_1)Dp = sts+prp7

where without loss of generality, we have chosen my; = m, = 1 so that F,, is an
integer flux. The presence of this flux has several implications:

e The blow-up moduli Ty and T, get charged under the diagonal U(1) of the
D7-stack with charges:

qgi = J FD7AﬁD7ADi = fs (kssi + kspi)+fp (kspi + kppi) ) 1= S, P, (531)
X

which implies ¢, = puf, — x qs.

e The coupling constant of the gauge theory living on D,, acquires a flux-
dependent shift of the form:

9pf = Ts + 7, — W(Fpr) Re(S) (5.32)

where Re(S) = e™® = g;! is the real part of the axio-dilaton while the
flux-dependent shift reads:
fs o

1 .
h(«FD7):§J ‘FD7A*FD7ADD7:EQS+EQP‘ (533)
X

e F,. generates a moduli-dependent FI-term which looks like:

1 A 1
§D7: meJAFD?ADD?: W(QSts+thp)' (534)

e A non-vanishing gauge flux on D, might induce chiral intersections between
the D7 stack and the instantons on Dy and D,. Their net number is counted
by the moduli U(1)-charges as:

Iprgs = J For A DD? AN [)s = (s, ID?—pOly = J For A ﬁD? AN Dp =dp-
X X
(5.35)

The relations (5.35) imply that, whenever an instanton has a non-vanishing chi-
ral intersection with a stack of D-branes, the four-cycle modulus T}, wrapped by
the instanton gets charged under the diagonal U(1) on the D-brane stack. There-
fore a non-perturbative contribution to the superpotential of the form W, > e~ Tinst
would not be gauge invariant. Thus a proper combination of U(1)-charged matter
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fields ¢; has to appear in the prefactor in order to make the whole contribution
gauge invariant: Wy, o |, ¢ e 7=, If however the ¢; are visible sector matter
fields, they have to develop a vanishing VEV in order not to break any Standard
Model gauge group at high energies [116]. In our case the absence of chiral inter-
sections between the instantons on Dy and D,, and the visible sector is guaranteed
by the structure of the intersection numbers since kg,,; = 0 and k,q,; = 0 Vj for
either i =1 or ¢ = 2.

On the other hand, as can be seen from (5.35), there are chiral intersections
between the hidden D7-stack on D), and the two instantons on D, and D,. We
could kill both of these intersections by setting F,, = 0. However this choice of
the gauge flux on D, would also set to zero the FI-term in (5.34) which is instead
crucial to make 7, heavier than the DM axion ¢,. We shall therefore perform a
choice of the gauge flux F,; which sets I,;.; = ¢s = 0 but leaves I, pory = gp # 0
so that £, can develop a non-trivial dependence on 7,. This can take place if the
flux quanta f, and f; are chosen such that:

== f e ¢ =0 and q,=puf,. (5.36)

The Fl-term in (5.34) then becomes:

£, = @ tp _ foV2 10 \/Tp + 2T (5.37)
PT 4 Y 4 V ’ '

while the shift of the gauge coupling in (5.33) simplifies to h(Fp;) = § f7. Due to
non-zero chiral intersections between the D7-stack and the divisor D, the poly-
instanton contribution to the superpotential comes with a prefactor that depends
on a U(1)-charged matter field ¢. In Sec. 5.5.1 we will show that the interplay
between D-terms and string loop effects can fix ¢ at a non-zero VEV, so that
the poly-instanton correction is non-vanishing. Notice that ¢ belongs to a hidden
sector, and so it can safely develop a non-zero VEV at high energies without
violating any phenomenological requirement.

5.4.5 Low-energy 4D theory

Type IIB string theory compactified on an orientifold of the Calabi-Yau three-
fold described in Sec. 5.4.3 with the brane setup and gauge fluxes of Sec. 5.4.4
gives rise to an N = 1 4D supergravity effective field theory characterised by a
Kéhler potential K and a superpotential W of the form:

K = Kmod + Kmatter and W == VVtree + Wnp y (538)

where:
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e The moduli Kéhler potential receives perturbative o’ and g, corrections be-

yond the tree-level approximation:

Kmod = Ktree + Ka’ + Kgs ) (539)
with:
T2 72 ¢ CEE ¢t
_ q1 q2 _ _ 7 7
Ktree__2lnv+7+7’ Ka’ - = Kgs _gSZT' (540)

QE/QV ’ i
In (5.40) we neglected the tree-level Kahler potential for the dilaton S =
e~¢ —1C, and the complex structure moduli U, , a_ = 1,---,h"* and we
expanded the effective theory around the singularities obtained by collapsing
the two blow-up modes 7,, and 7, (hence the volume V in (5.40) should be
thought of as (5.26) with 7,, = 7,, = 0). Moreover, we included only the

leading order o' correction which depends on ¢ = —% [55] since in the
large volume limit higher derivative o effects yield just subdominant contri-
butions [99]. Finally in K, we considered only string loop corrections arising
from the exchange of Kaluza-Klein modes between non-intersecting stacks of
D-branes and O-planes (CF* are complex structure dependent coefficients
and t3 is the two-cycle controlling the distance between two parallel stacks
of D-branes/O-planes) while we did not introduce any g, effects coming from
the exchange of winding modes since these arise only in the presence of inter-
sections between D-branes which are however absent in our setup [61, 58, 60].

In the matter Kahler potential we focus just on the dependence on the matter
fields which will develop a non-zero VEV. These are two U(1)-charged matter
fields: ¢ = |@|e™ which belongs to the hidden D7-stack on D, and C =
|C| € which can be either a visible sector gauge singlet (if D,, and D,, are
exchanged by the orientifold involution) or a hidden sector field (if both D,
and D,, are invariant under the orientifold involution) living on a D3-brane
stack [251, 252]: B

Konatter = % + K(T;,T;) CC . (5.41)
In (5.41) we wrote down just the tree-level Kéhler metric for ¢ while we shall
consider both perturbative and non-perturbative corrections to the Kéhler
metric for C' which we assume to take the form:

f(5,U)

f((TmTi):W

+ f(pert + B; e cos(bic;) with i =b,p, (5.42)

where f(S, U) is an undetermined function of the dilaton and complex struc-
ture moduli, Ky represents perturbative corrections which do not depend
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on the axionic fields because of their shift symmetry and the last term is a
non-perturbative correction which can in principle depend on either the large
or the poly-instanton cycle. This term induces a kinetic mixing between the
open string axion # and either of the two ultra-light closed string axions ¢,
and c,. As we shall see in Sec. 5.5.1, the open string axion 1) gets eaten
up by the anomalous U(1) on the D7-stack, and so light closed string axions
cannot decay to this heavy mode. This is the reason why we did not include
any non-perturbative effect in the Kéhler metric for ¢.

e The tree-level superpotential Wiee = SX Gs A ), with © the Calabi-Yau
(3,0)-form, is generated by turning on background three-form fluxes G3 =
F3—1SHj3 and depends just on the dilaton and the U-moduli but not on the
T-moduli [38].

e The non-perturbative superpotential receives a single contribution from the
ED3-instanton wrapped around D, together with poly-instanton effects from
the ED3-instanton wrapped around the Wilson surface D, and takes the same
form as (5.18):

Wip = Age™ ™ — 21 A A, e e Tr (5.43)

The prefactors A; and A, depend on S and U-moduli. Given that T}, is
charged under the anomalous diagonal U(1) on the D7-stack, A, has to de-
pend also on the charged matter field ¢ in order to make W,,, gauge invariant.
If we make the dependence of A, on ¢ explicit by replacing A, — A,¢" with
arbitrary n, and we use the fact that ¢ and T}, behave under a U(1) trans-
formation as:

56 =igpd  and 6T, = ig—p, (5.44)
7T
the variation of Wy, under a U(1) transformation becomes:
o) :
Wip = Wip [ 0 i 2167, ) =iWop (ngy — qp) - (5.45)

Hence W is gauge invariant only if n = ¢,/q,. Notice that n > 0 since, as we
shall see in Sec. 5.5.1, a consistent D-term stabilisation can yield a non-zero
VEV for ¢ only if ¢4 and ¢, have the same sign.

5.5 Moduli stabilisation

In this section we shall show how to stabilise all closed string moduli together
with the two charged open string modes ¢ and C. The total N = 1 supergravity
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scalar potential descending from the K and W described in Sec. 5.4.5, includes
both F- and D-term contributions of the form:
_ - 9 92
V=Vt Vp=ef (K”DIWDJW - 3|W|2) + Iy + T DL, (5.46)
where the Kéhler covariant derivative is D;W = ;W + W, K, the gauge coupling

of the field theory living on the D7-stack is given by (5.32) while g;2 = Re(S) for
the quiver gauge theory on the D3-stack. The two D-term contributions look like:

oK oK
Dy, = q¢ ¢ —=— —Eprs and Dp;y =q.C _C —&ps s (5~47)

15/0) 0
where the FI-term for the D7-stack is given by (5.37) whereas the FI-term for the
D3-brane stack is:

oK .

Eps = G = % for either i = 1 or i = 2. (5.48)

In LVS models the Calabi-Yau volume is exponentially large in string units, and
so 1/V « 1 is a small parameter which can be used to control the relative strength
of different contributions to the total scalar potential (5.46). Let us analyse each
of these contributions separately.

5.5.1 Stabilisation at O(1/V?)

As can be seen from the volume scaling of the two Fl-terms (5.37) and (5.48),
the total D-term potential scales as Vp ~ M, /V* ~ M. Therefore its leading
order contribution has to be vanishing since otherwise the effective field theory
would not be under control since the scalar potential would be of order the string
scale. As we shall see in more detail below, this leading order supersymmetric
stabilisation fixes |¢| in terms of 7, = 7, + 27, and 7, in terms of |C|. The open
string axion v and the closed string axion ¢, are eaten up by the two anomalous
U(1)’s living respectively on the D7 and D3-stack. Additional O(1/V?) tree-level
contributions to the scalar potential arise from background fluxes which stabilise
the dilaton and the complex structure moduli in a supersymmetric manner at
DsWivee = Dy, Wiree = 0 [38]. At this level of approximation the Kdhler moduli
are still flat due to the no-scale cancellation. They can be lifted by subdominant
corrections to the effective action which can be studied by assuming a constant
tree-level superpotential Wy = (Wiyee) that is naturally of O(1). Summarising
the total O(1/V?) contribution to the scalar potential looks schematically like (we
show the dependence just on the scalar fields which get frozen):

Voapzy = Vo(lel, 74,) + VE*(S,U) . (5.49)
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Let us focus in particular on the dynamics of the total D-term potential which
from (5.37), (5.46) and (5.48) reads:

2
%7 ? 2 7 1233 % A Tg; \ 2
vD=9—<q o “ﬁ> 9 (g R(0.T) (O — 0. 78)

2 \""Re(S)  4m YV 2 "y
(5.50)
Supersymmetry is preserved if:
2 2 T . — )
il JIENT g RO TP =g (551

? Re(S) Ar Y v

These two relations fix one direction in the (|¢|, 7,)-plane and one direction in the
(|C1, 74;)-plane. Each of these two directions corresponds to the supersymmetric
partner of the axion which is eaten up by the relative anomalous U(1) gauge boson
in the process of anomaly cancellation. The axions which become the longitudinal
components of the massive gauge bosons are combinations of open string axions
with decay constant f,, and closed string axions with decay constant f,. The
Stiickelberg mass of the anomalous U(1)’s scales as [253]:

Moy = g° (£, + f3) (5.52)
where:

D7 case: f2 = [oF :f”'Q’u\/?p» 2:162K: L L
o dep Re(S)  4mqs V T NG AN

P
10°K 1

D3 case: 2, = R(TI)JCR= 8T gz 10K _ L 553
case fop ( ) )| | e Y <« fcl 467'(121 2V7 ( )
for:
~ _ T gy _ Yc
Tp » 2p = and Ty K 2, = = . 5.54
P P 2f, q q 2 ( )

In Sec. 5.5.2 and 5.5.3 we shall explain how to fix the remaining flat directions,
showing that the conditions in (5.54) can be satisfied dynamically. These condi-
tions imply that for the D7 case the combination of axions eaten up is mostly given
by the open string axion ¢, and so (5.51) should be read off as fixing |¢| in terms
of 7,, while for the D3 brane case the combination of axions eaten up is mostly
given by the closed string axion ¢, which means that (5.51) fixes 7,, in terms of
|C'|. Notice that from (5.54) the U(1) gauge bosons acquire a mass of order the
string scale: M1y ~ Mp/\/v ~ M,.
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5.5.2 Stabilisation at O(1/V3)

As we shall explain more in detail below, O(1/V3) effects arise from both the
leading o' and 7,-dependent g4 corrections to K in (5.40) together with the single
instanton contribution in (5.43). They give rise to a scalar potential which depends
on Ty, Cs, T, and 7, but not on the associated axions ¢, and ¢, since both T),- and
T,-dependent non-perturbative corrections to W are much more suppressed due to
the double exponential suppression of poly-instanton effects and the exponentially
large value of 7, ~ V*3. These O(1/V?) contributions alone would yield an AdS
minimum which breaks supersymmetry spontaneously [63, 225, 62]. Additional
contributions of the same order of magnitude can arise rather naturally from a
hidden D7 T-brane stack [73] or from anti-D3 branes at the tip of a warped throat
|65, 67, 70] and can be tuned to obtain a dS vacuum. The Kéhler moduli develop
non-zero F-terms and mediate supersymmetry breaking to each open string sector
via gravitational interactions. Matter fields on the D7-stack are unsequestered, and
so acquire soft masses of order mgs. After using the vanishing D-term condition
to write |¢| in terms of 7,, the resulting F-term potential for the matter fields also
scales as O(1/V?). Thus the full O(1/V?) scalar potential behaves as:

Voapsy = V& (V) + VEW, 7)) + ViE (e, ¢, V) + VRN (V. 5,) + Vip (V) . (5.55)
All these O(1/V3) contributions take the following precise form:

, 3¢ W2 . 30\ s W2
Vo _ 0 Vgs _ 14 o CKK 0

e A A v (9:6™) ViR
B 4957TA3 Ts 6—47’1’7'5 WO Ts 6727”—5

VF]?3 (7—5, Cg, V) + gsAs COS(27TCS)

3 V V2 ’
Vmatter(V 7~_) _ m2 |¢|2 _ 398 /\p WO2\/7~TP
E nP %2Re(S) 64wz, V3
where the string loop potential includes only the leading Kaluza-Klein contribution
from K, in (5.40) which is given by [61]:

(5.56)

oy = s w2 WEPK
Vir(V, %) = (87) (9:C; )zv—gmv
p

and in V2" we substituted the relation (5.51) which expresses |¢| in terms of 7,,.
Summing up the four contributions in (5.56), the total scalar potential at O(1/V?3)
has a minimum at (for 277, » 1):

1. 3\, -
cs = k+§ with k€ Z, V:87TASWO T, €57 (5.57)

/3
C)2 1 1 ~ KK\2 1
T, = —(14+¢€) ~—, T, =2, (9: C ~—,
(QAS gs( ) gs =267 Js
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for )% ~ g;3/2 » 1 and:

2\ 32 /= 5/2
€= (T':p) g T ~ g Oy ~gs <1, (5.58)

Notice that the condition 7, » z, in (5.54), which ensures that the closed string
axion ¢, is not eaten up by the anomalous U(1) on the D7-stack and so can play

the role of DM, can be easily satisfied if C7* ~ gs_3/2 » 1. We point out that the
coeflicients of the string loop corrections are complex structure moduli dependent,
and so their values can be tuned by appropriate choices of background fluxes.
Therefore for z, ~ O(1), 7, ~ Ts ~ 7, ~ g5 ' » 1. This behaviour justifies also the
scaling of the small parameter € in (5.58).

As stressed above, this minimum is AdS but can be uplifted to dS via sev-
eral different positive definite contributions. Two examples which emerge rather
naturally in type IIB flux compactifications are T-branes [73] or anti-D3 branes
[65, 67, 70].

5.5.3 Stabilisation at O(1/V3?)

Taking into account all contributions to the scalar potential up to O(1/V?),
there are still four flat directions: the charged matter field |C|, the open string
axion 6 and the two closed string axions ¢, and ¢,. We shall now show how to
stabilise the DM axion ¢, and |C| which sets the decay constant of the ALP 6
and fixes 7, from (5.51). The bulk closed string axion ¢, receives scalar potential
contributions only from T,-dependent non-perturbative corrections, and so it is
almost massless: mg, ~ my, e ™V ~ 0.

The closed string axion ¢, and the open string matter field |C]| receive a
potential respectively via poly-instanton corrections to the effective action and
soft supersymmetry breaking terms. As we shall see below, these terms scale as
O(1/V3*P) with p > 0. The only exception which leads to p = 0 is the case where
flavour D7-branes desequester the open string sector on the D3-brane at a singu-
larity. However, as shown in Sec. 5.4.2, these effects would not modify the VEV
of |C| which sets the open string axion decay constant, and so, without loss of
generality, we shall consider just the sequestered case. The resulting O(1/V3*P)
scalar potential looks schematically as (showing again just the dependence on the
fields which get stabilised at this order in the inverse volume expansion of V):

Voupsin = VE™ (¢,) + VE(IC)) - (5.59)

The leading order expression of the C-dependent soft supersymmetry breaking
terms is given by (5.10). A more complete expression in terms of the canonically
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normalised field C' = |C] e = VEC (see Sec. 5.6.1 for more details) is (the ¢;’s
are O(1) coefficients) [78]:

2
Vie(|C]) = cam?2|C)? + csAICT + esM|C|* + O(ICP) + c5;q; [1 +0 (%)] , (5.60)
where the first three terms originate from expanding the F-term potential in powers
of |C| up to fourth order, whereas the last term comes from the fact that the Toim
dependent term in (5.40) breaks the no-scale structure. Using (5.51) we can rewrite
the last term in (5.60) in terms of |C| and parameterising the soft terms in Planck
units as mo ~ V-, A~V and A ~ V% we obtain (up to fourth order in
C1):

2
k4 4cs Zg

C2 14 . _
Var |C| with ky = ca) + Pi-as

Ve(ICl) = 2 G +

C3

Yas

IC)° + . (5.61)
If the soft masses are non-tachyonic, the VEV of the matter field |C| is zero, and
so the open string axion 6 cannot play the réle of the ALP a,,, which gives the 3.5
keV line by converting into photons in astrophysical magnetic fields. On the other
hand, as explained in Sec. 5.4.2, if ¢co < 0 |C’| can develop a non-vanishing VEV.
Open string modes living on D3-branes localised at singularities are geometrically
sequestered from the sources of supersymmetry breaking in the bulk, resulting in
az =2, as = 1and ay = 3/2 or ay = 2 depending on the exact moduli dependence
of errt in (5.42) and the details of the uplifting mechanism to a dS vacuum
|77, 79]. The VEVs of |C| and 7,, from (5.51) are therefore:

3 A M, 2z,
ay = 5 case: ICl = faipr = 7’3 < To = Vq < zg , (5.62)
R M 22z,
ay = 2 case: ICl = faurp = V—;’ < Ty = Vzg L 24, (5.63)

where we have identified the open string axion ¢ with the ALP a,,, = fa,,, 0.
Notice that the ALP decay constant in (5.62) reproduces exactly the ALP coupling
to gauge bosons in (5.12) while the f,,,, in (5.63) gives the coupling in (5.13).
We stress that (5.62) and (5.63) show also how the condition 7, « 2, in (5.54)
is easily satisfied for 1/V « 1. This ensures that the blow-up mode 7,, is indeed
collapsed to a singularity. Let us remind the reader that ¢ can be either ¢ = 2 or
¢ = 3. When 7, and 7,, are identified by the orientifold involution, an open string
axion is the standard QCD axion a,cp while the other is a,,, with |O| a Standard
Model gauge singlet with a large VEV. On the other hand, when the two blow-up
modes 7, and 7, are separately invariant under the involution, C belongs to a
hidden sector and, as described in Sec. 5.4.2, its axion # has a coupling to ordinary
photons of the form (5.17) which is induced by U(1) kinetic mixing.
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The axionic partner ¢, of the Kahler modulus 7, which controls the volume of
the Wilson divisor supporting poly-instanton effects, receives the following scalar
potential contributions from the second term in (5.43) with A, — A,¢" and n =

p/ Q"

1— A
—8( 3)3\6)7T 2 COS(QWCP)\FG_ZWTS

((1 _ 513')7'5 4 %p) e—27r7's 6—27r7'p
1% 1% ’

V}’Oly(cp) = —2gS7TASAp¢>”[

+ Wy cos|[2m(cs + ¢)]

which, after using the first D-term relation in (5.51) and substituting the VEVs in
(5.57), reduces to (setting without loss of generality ¢ = |¢| with ¢ = 0):

o A
VRN (e,) = i cos(2mcy,) , (5.64)
where: o
39sAs Ay [3Xp CrN™" (3 y/Ts\ " -
A= L 4 P S 2+kK
4 ( 8\/% stA, ) 7 NAELLCE
with: - n
k=-2L>0 and p=§+/€>0. (5.65)
Ts

Therefore the DM axion ¢, is stabilised at O(1/V**P) at ¢, = 1/2 + k with k € Z
and A > 0.

5.6 Mass spectrum and couplings

In this section we shall first determine the expressions for all canonically nor-
malised fields and their mass spectrum, and then we will compute the strength of
the coupling of the light DM axion ¢, to the open string ALP 6 which is induced
by non-perturbative corrections to the matter Kéhler metric in (5.42).

5.6.1 Canonical normalisation

Similarly to the scalar potential, also the kinetic Lagrangian derived from the
Kéhler potential for the moduli given by the three terms in (5.40) and for the mat-
ter fields given by (5.41), can be organised in an expansion in 1/V « 1. Hence the
kinetic terms can be canonically normalised order by order in this inverse volume
expansion. The detailed calculation is presented in App. C.2 and here we just
quote the main results which are useful to work out the strength of the DM-ALP
coupling. The expressions for the canonically normalised fields at leading order
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look like (the moduli and the matter fields are dimensionless while canonically
normalised scalar fields have standard mass dimensions):

i ] A A
5= V2KIOl aue =010 = foust 5 = /ris 9],

_ 3 _ 3 bs 4)s . 3/4 ba; _ T4
&= \fimn, oo, fle g Ol (560)

as _ 3 9 _ dAp =3/4 ap [ 3N &
M, wym G0 M, v P M, wm @

where we did not include the axions 1 and ¢, which are eaten up by two anomalous
U(1)’s on the D7- and D3-brane stack respectively. Notice that the Kiahler modulus
T, = 7, +1icp is given by the following combinations of the canonically normalised
fields @, = ¢, +ias and ®, = ¢, +1d,:

~ o\ 4/3

3P\ 23 1 s 4/3
B 1 Y ' B ) , (5.67)
v o) E\a ) NE A,

and:

W[ AA 1/4
)= —zey = A| 2 | ol TTe G5 (5.68)
PO TS ENT UM, Vo M, ) '

5.6.2 Mass spectrum

The mass matrix around the global minimum and its eigenvalues are derived
in detail in App. C.3. Here we just show the leading order volume scaling of
the mass of all moduli and charged matter fields for gs ~ 0.1 (in order to trust
our approach based on perturbation theory) and V ~ 107. As explained in Sec.
5.4.2, this choice of the internal volume leads naturally to TeV-scale soft terms
for sequestered scenarios with D3-branes at singularities, while it guarantees the
absence of any cosmological moduli problem for unsequestered cases with flavour
D7-branes. The resulting mass spectrum looks like:
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Mey ™~ Mgy~ My ~ Mg ~ ~ giﬂlf \/7 ~ 10" GeV,

My, ~ Mg, ~ g; ]\ép InY ~ 10" GeV,
mgp ~ éq—; % ~ 10" GeV,

mz, ~ \/gjsr V\]yﬁ 10° GeV,

M, ~ \/g:; TN /3\4/@ ~10° GeV,
el ~ STy (5.69)
me, ~ g;vf‘f/zx/ﬁf»lomv for ng,

my ~ LR eV,

asLp
Me, ~ g; %3 e ™V <0,

where we focused on the sequestered case with as = 2 illustrated in Sec. 5.5.3
and Ay;q represents the scale of strong dynamics in the hidden sector which gives
mass to the open string axion 0 = a,.p/fa,,, Whose decay constant is f,,,, =
|C| ~ M,/V?. As explained in Sec. 5.4.2, this decay constant leads to a coupling to
hidden photons controlled by the scale My;q ~ 10¢ GeV that can yield a coupling to
ordinary photons via U(1) kinetic mixing given by (5.17) which can be naturally
suppressed by an effective scale of order M ~ 10'2 GeV. Notice that the DM
axion ¢, can acquire a mass from poly-instanton effects of order m., ~ 10 keV if
p=5+hK= g, which can be obtained for any O(1) value of n by appropriately
1

choosing the flux dependent underlying parameters so that k = > = 3 (9 —n).

5.6.3 DM-ALP coupling

As shown by the mass spectrum in (5.69) and by the coupling to ordinary
photons in (5.17), the open string axion 6 is a natural candidate for the ALP
mode a4, which converts into photons in the magnetic field of galaxy clusters and
generates the 3.5 keV line. However a monochromatic line requires the decay into a
pair of ALP particles of a DM particle ap,, with mass mp,, ~ 7 keV. According to
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the mass spectrum in (5.69) ap, could be either the local closed string axion
¢, or the bulk closed string mode ¢, (if Tp-dependent non-perturbative effects
do not suppress its mass too much). We shall now show that non-perturbative
corrections to the matter Kéhler metric in (5.41) can induce a coupling of the
form *BM 0,4 p0"a,.p due to kinetic mixing between the closed string axion apy,
and the open string axion a,,,. We shall also work out the value of the coupling
A, finding that it can lie around the Planck/GUT scale only if the DM particle
is the local axion ¢, (¢, would give a trans-Planckian A). Finally we will explain
how in our model a direct DM decay to photons induced by potential couplings of
the form % FrE ww is naturally suppressed by construction.
In order to compute the DM-ALP coupling, let us focus on contributions to
the kinetic Lagrangian of the form:
*K
Lyin D ———0,C0"C = K(TZ,T) ((%|C|8“|C| +|C? @96“9) . (5.70)
0CoC
If we now expand the closed string axions ¢; and the charged open string mode
= |C|€l? around the minimum as:

ci(r) = {ep+ealz),  |C[(x) =L|Ch+[C@)], ) =G +0(z), (5.71)

the kinetic terms (5.70) become:

- bio .
[<K> — B e bimi (cos(bi<ci>)§cl2 + sin(bi{c;)) bi¢ >] (9.|Clo"|C] + |C|? 0,00"0) .
(5.72)

If we now express the open string mode C' in terms of the canonically normalised
fields C' and a,,p using (5.66), (5.72) contains DM-ALP interaction terms of the
form:

if e~ <cos(bi<ci>)g &2 + sin(bi{c;)) by éz> 0pGarp0asrp, (5.73)

2<K> D) 7 I
showing that, in order to obtain a three-leg vertex which can induce a two-body
DM decay into a pair of ultra-light ALPs, the VEV of ¢; has to be such that
bi{ciy = (2k +1)5 with k € Z. Let us therefore focus on this case and consider
separately the two options with either i = b or ¢ = p:

e i =) case: Plugging in (5.73) the canonical normalisation for ¢, from (5.66),
we find a DM-ALP coupling of the form:

6K ebvims) o V3
& 0,400 4 with A= \f< )€

— M, » M, ,
A " Bbbb <Tb> Bb V4/3 >

(5.74)
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which reproduces the value of A in (5.21) for ap, = ¢. According to the
phenomenological constraints discussed in Sec. 5.4.1, ¢, cannot play the role
of the DM particle since the scale of its ALP coupling is trans-Planckian.

e | = p case: Writing b, = QW” and using the fact that the minimum for ¢, lies

at {c,y = 3 + ki with k; € Z, the condition b,(c,y = (2ky + 1)% with ky € Z
(2k1+1)
(2k;+1)'
we just need N = 2. Plugging in (5.73) the canonical normalisation for ¢,

from (5.68), the DM-ALP coupling turns out to be:

can be satisfied if % = Hence in the simplest case with k1 = ky =0

i, . VB (K e ,

L 0,a4.p0"a with A= My ~ 57—~

A narp ALP 7:;/4 prp \/V p Bp V?/ﬁfn/N
(5.75)

which reproduces the value of A in (5.21) for ap, = ¢,. This scale of the
DM-ALP coupling can easily be around the Planck/GUT scale. For example
if N =2 and the underlying parameters are chosen such that x = 7,/7, = 2,
A ~ M,/VY6 ~ 1017 GeV for V ~ 107 and B, ~ O(1). Due to the poly-
instanton nature of the non-perturbative effects supported by the Wilson
divisor D,, the prefactor B, can however be exponentially small. Comparing
T,-dependent poly-instanton corrections to the superpotential in (5.43) with
T,-dependent non-perturbative corrections to the matter Kahler metric in
(5.42), B, at the minimum could scale as B, ~ O(V"'). In this case A can
be below the Planck scale only if Kk « N.

Let us conclude this section by showing that the branching ratio for direct DM
decay into ordinary photons is negligible. Using the fact that the gauge kinetic
function for the D7-stack is given by f,, = T + T, (we neglect the flux dependent
shift) and the canonical normalisation (5.68), the closed string axion ¢, = {(c,)+ ¢,
couples to Abelian gauge bosons living on the hidden D7-stack via an interaction
term of the form:

~

S v fhid ap v fhid

——— FE PN ~ Dot 5.76
4 (<7_S> + <Tp>) hid* pv 4]\/[8 hid* pv ( )
One-loop effects generate a kinetic mixing between hidden photons on the D7-stack
and ordinary photons on the D3-stack which is controlled by the mixing parameter
X ~ 1072 given in (5.16). Thus the DM axion ¢, develops an effective coupling to
visible sector photons which from (5.17) looks like:

~ 2 ~

ap Fuv X Gp Fuv M; 5 M, 20

F, F" ~ F,F" Mpy ~ — ~ 10° —= ~ 107 GeV,
IMp, " aM, T e T W )
(5.77)

which is naturally much larger than the scale A controlling the DM coupling to
ALPs.
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5.7 Conclusions

In this Chapter we described how to perform a successful global embedding in
type IIB string compactifications of the model of [17] for the recently observed 3.5
keV line from galaxy clusters. The main feature of this model is the fact that the
monochromatic 3.5 keV line is not generated by the direct decay of a 7 keV dark
matter particle into a pair of photons but it originates from DM decay into ultra-
light ALPs which subsequently convert into photons in the cluster magnetic field.
Therefore the final signal strength does not depend just on the DM distribution
but also on the magnitude of the astrophysical magnetic field and its coherence
length which, together with the ALP to photon coupling, determine the probability
for ALPs to convert into photons. These additional features make the model of
[17] particularly interesting since it manages to explain not just the observation
of a 3.5 keV line from galaxy clusters but also the morphology of the signal (e.g.
the intensity of the line from Perseus seems to be picked at the centre where the
magnetic field is in fact more intense) and its non-observation in dwarf spheroidal
galaxies (due to the fact that their magnetic field is not very intense and has a
relatively small spatial extension). These phenomenological features seem to make
this model more promising than standard explanations where DM directly decays
into a pair of photons.

Despite this observational success, the model of [17] for the 3.5 keV line did
not have a concrete microscopic realisation. In this Chapter we filled this gap
by describing how to construct an explicit type IIB Calabi-Yau compactification
which can reproduce all the main phenomenological features of the DM to ALP
to photon model. We focused in particular on LVS models since they generically
lead to very light axions because some of the moduli are stabilised by perturbative
corrections to the effective action. The DM particle is realised as a local closed
string axion which develops a tiny mass due to poly-instanton corrections to the
superpotential. By an appropriate choice of background and gauge fluxes, the DM
mass can be around 7 keV. The ultra-light ALP is instead given by the phase of an
open string mode living on D3-branes at singularities. The ALP decay constant is
set by the radial part of this open string mode which is charged under an anomalous
U(1). Thus the radial part gets fixed in terms of a moduli-dependent FI-term. In
sequestered models with low-energy supersymmetry, the resulting decay constant
is naturally in the right ballpark to reproduce a coupling to ordinary photons via
U (1) kinetic mixing which is around the intermediate scale, in full agreement with
current observations. Notice that future helioscope experiments like IAXO might
be able to detect ultra-light ALPs with intermediate scale couplings to photons
[240]. Moreover the DM-ALP coupling is generated by kinetic mixing induced
by non-perturbative corrections to the Kahler potential. For suitable choices of
the underlying flux dependent parameters, the scale which controls the associated
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coupling can be around the GUT/Planck scale, again in good agreement with
present observational constraints.

We discussed in full depth moduli stabilisation, the mass spectrum and the
resulting strength of all relevant couplings but we just described the geometrical
and topological conditions on the underlying Calabi-Yau manifold without pre-
senting an explicit example built via toric geometry. This task is beyond the scope
of our work, and so we leave it for future work. Let us however stress that the
construction of a concrete Calabi-Yau example with all the desired features for a
successful microscopic realisation of our model for the 3.5 keV line is crucial to
have a fully trustworthy scenario. Moreover it would be very interesting to have
a more concrete computation of non-perturbative corrections to the 4D N =1
Kahler potential.

Another aspect which would deserve further investigation is the cosmological
history of our setup from inflation to the present epoch. Here we just point out that
the role of the inflaton could be played by a small blow-up mode like 7 [137, 136].
On the other hand, reheating might be due to the volume mode 7, which gets
displaced from its minimum during inflation [122] and later on decays giving rise
to a reheating temperature of order Tp, ~ 1 — 10 GeV [128]. Such a low reheating
temperature would dilute standard thermal WIMP dark matter and reproduce it
non-thermally [128]|. Given that in sequestered models with unified gaugino masses
the WIMP is generically a Higgsino-like neutralino with an under-abundant non-
thermal production in vast regions of the underlying parameter space [129, 254,
an additional DM component in the form of a very light axion like ¢, would be
needed. Finally one should make sure that tight dark radiation bounds are satisfied
since 1, could decay both to a pair of ultra-light closed string axions ¢, and to a
pair of DM axions ¢, which could behave as extra neutrino-like species [14, 126].
Notice however that the decay of 7, to open string axions 6 living on D3-branes at
singularities is negligible since it is highly suppressed by sequestering effects [14].
The DM axions ¢, are produced non-thermally at the QCD phase transition via
the standard misalignment mechanism. Given that the decay constant of the local
closed string axion ¢, is of order the string scale which from (5.69) is rather high,
ie. M, ~ 10 GeV, axion DM overproduction can be avoided only if the initial
misalignment angle is very small. This might be due to a selection effect from the
inflationary dynamics [255]. We finally stress that if inflation is driven by a blow-
up mode like 75, the Hubble scale during inflation is rather low, H ~ m,, ~ 10°
GeV, and so axion isocurvature perturbations would not be in tension with CMB
data [256].
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Chapter 6

Axion Inflation and
electro-magnetic dissipation

6.1 Introduction

Axion-like particles are among the prime candidates for particle physics im-
plementations of cosmic inflation. Protected by an approximate shift-symmetry,
these Pseudo Nambu Goldstone Bosons naturally come with a sufficiently flat
scalar potential to support slow-roll inflation and to be protected against quantum
corrections. Many concrete realizations of axion inflation in field theory have been
proposed beginning with Ref. [257], for axions in string theory see [258, 167].

Ag already seen in the previous Chapters, in the context of string theory, axion-
like particles can naturally emerge as closed and open string axions. These particles
may receive a mass through non-perturbative corrections due to world-sheet instan-
tons, gaugino condensation on space-time filling D-branes and euclidian D-branes.
Thanks to these corrections the classical continuous shift symmetry is broken to
a discrete shift symmetry, usually involving a cosine potential. It is widely known
that, in order to get a prolonged inflation with just one axion playing the réle of
the inflaton, the decay constant associated to this field should be trans-Planckian.
Examples of axions showing this feature have not been found in a controlled string
compactification. For instance, considering Cy axions, the largest decay constants
are related to large cycles that parametrise the overall volume. In such cases we
have that the eigenvalues of the Kéhler metric in Eqs. (2.176),(2.177) are given
by A; ~ 7! implying that f ~ M,/7. Having a trans-Planckian decay constant
would require 7 « 1 but such small 4-cycles volumes are not consistent with the
EFT approach since o expansion is not under control. The reason why it is not
easy to evade the condition f < M, is summed up in the weak gravity conjecture
and its applications to axion fields [108, 259]. In the case of a single axion field it
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states that fS < M, where S is the action of an instanton coupled to the axion
field. Indeed, if we want a single axion field to be the inflaton, its potential needs
to satisfy the constraints coming from COBE normalisation and the field mass can
not become arbitrarily small; since the instanton action S is related to the axion
mass, setting a bound such as Sf < M, puts severe constraints on model building.
In addition, these models need a trans-Planckian field range excursion during in-
flation that would be in contrast with the infinite distance swampland conjecture
[260]. As already mentioned in Sec. 2.4.2, a way to overcome the problem related
to the magnitude of the decay constant can be considering a system of two or
more axions, each with a sub-Planckian decay constant, where moduli stabilisa-
tion allows a combination of the fields to enjoy an effective trans-Planckian decay
constant [109, 112, 110]. However we need to mention that such models may not
be under control since they show problems related to dS entropy [261] and moduli
stabilisation [113]. The second problem related to field space distance travelled
by the inflaton can be softened through electro-magnetic dissipation, introducing
a coupling with a U(1) gauge field [262]. This coupling to (hidden-)photons and
its phenomenological consequences are precisely what we are going to investigate
in the present Chapter, focusing in particular on the quantitative analysis of the
electro-magnetic backreaction effects on the inflationary trajectory. Due to the
large amount of computational work, we restrict ourselves to a toy model given
by a single axionic inflaton showing a quadratic potential and a trans-Planckian
decay constant.

The shift-symmetry of the axion-like inflaton ® allows for a derivative coupling
to the field strength tensor F},, of a (dark) gauge sector,

Ling = —QQDFWFM (6.1)
Af

with f denoting the axion decay constant and for simplicity, we will consider
F,, to describe a hidden sector abelian gauge group, i.e. a dark photon." This
interaction triggers a tachyonic instability of the dark photon driven by the velocity
® of the inflaton, leading to an exponential production of dark photons [265, 266,
267]. The resulting non-thermal gauge field distribution backreacts on the inflaton,
dampening its motion. At the same time, the gauge fields act as a source of scalar
and tensor perturbations [268, 269, 270, 271], in addition to the standard vacuum
fluctuations amplified during cosmic inflation. These perturbations can be probed
by CMB observations [268, 272|, searches for primordial black holes [273, 274,

If the theory contains particles charged under this U(1) (as is e.g. the case for the Standard
Model hypercharge), these particles must be included in the analysis if they are sufficiently light,
as they will be produced via Schwinger production from the vacuum, thereby significantly damp-
ing the gauge field production. On the contrary, the impact of heavier particles is exponentially
suppressed and they can be safely integrated out [263, 264].
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275, 276] and gravitational wave experiments [271, 277, 278, 279], rendering axion
inflation not only a theoretically well motivated but also an experimentally testable
proposal for cosmic inflation [269].

In this work we have a closer look at the backreaction of the gauge field distribu-
tion on the inflaton equations of motion. Since this determines the evolution of the
homogeneous inflaton field, this has a crucial impact on all potential observables
of this framework and may influence the required inflationary field excursion. The
interaction (6.1) results in a friction term in the background equation of motion
for ® which is proportional to (FF. In Fourier space, this non-linear interaction
involves an integral over all relevant Fourier modes of the gauge field, leading to
a integro-differential system describing the evolution of the gauge field modes and
the homogeneous component of the inflaton.

In many previous works, this system is solved by assuming the inflaton ve-
locity to be constant in the gauge field equation of motion (see e.g. [269]), moti-
vated by the usual slow-roll approximation employed in cosmic inflation. However,
since the gauge field enhancement and hence the backreaction on the inflaton
are exponentially sensitive to this velocity, this approximation becomes invalid
in the phenomenologically interesting regime of sizable gauge field production.
Recently, several alternative approaches have been put forward. Lattice simula-
tions [280, 281, 282], focusing mainly on the preheating phase, accurately capture
the backreaction but are limited in the amount of time evolution that can be
tracked. Ref. [283] proposed a gradient expansion of the generated electric and
magnetic field. Self-consistent numerical solutions of the integro-differential sys-
tem have been obtained in Refs. [284, 285, 286]. These latter studies noted the
appearance of remarkable oscillatory features in the inflaton velocity. In this work,
we reproduce these findings and quantitatively explain the occurring resonance
phenomenon based on semi-analytical arguments. Since the enhancement of the
gauge field modes is most sensitive to the inflaton velocity around horizon crossing
whereas the backreaction is dominated by super-horizon gauge field modes, the
system responds with a time delay to a change in the inflaton velocity. This time
delay is logarithmically sensitive to the inflaton velocity. As the inflaton velocity
increases during the course of inflation the system hits its resonance frequency,
leading to strong oscillations in the amplitude of (FF) as a function of time. This
crucially impacts both the background equation of motion as well as the generation
of scalar and tensor perturbations.

The power spectrum of scalar perturbations can be obtained by solving the
linearized inhomogeneous equation of motion for the inflaton field taking into ac-
count the backreaction and source terms proportional to FF. In the pioneering
works [262, 268, 270, 273] this task has been solved in the weak and very strong
backreaction regime. Here we extend these results to arbitrary inflaton gauge field
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couplings by numerically determining the Greens function including the backre-
action term. We report two important results. Firstly, for a smoothly growing
(FF), we find that the analytical estimate in [262] significantly overestimates the
backreaction compared to our full numerical results. As a result, the actual power
spectrum is significantly enhanced compared to previous estimates. Consequently,
a large primordial black hole (PBH) abundance can be generated, leading to an
early PBH dominated phase. Requiring the transition to radiation domination to
occur before the onset of big bang nucleosynthesis imposes stringent constraints on
the parameter space. Secondly, for an oscillating <FF> as found in the numerical
solution of the background equation of motion, the scalar power spectrum features
prominent peaks which, for suitable parameters, may lead to a PBH population
peaked at logarithmically equidistant masses, accompanied by a gravitational wave
spectrum with similar features. This would be a smoking gun signature of the res-
onance phenomenon inherent to axion inflation.

This Chapter is organized as follows. In Sec. 6.2 we review the mechanism of
axion inflation. Sec. 6.3 explains the resonance inherent to this coupled system
of differential equations and provides analytical estimates for the relevant time
scales, which are further refined in appendix D.1. This is numerically confirmed
by our numerical results presented in Sec. 6.4 for two exemplary values of the axion
decay constant. Based on these results for the background evolution, we compute
the power spectrum of scalar fluctuations in Sec. 6.5 before concluding in Sec. 6.6.
Details on our numerical procedure as well as on the comparison with previous
works can be found in appendices D.2 and D.4, respectively.

6.2 Inflationary dynamics

We consider a pseudo-scalar ® coupled to the field strength tensor F},, of an

abelian gauge group through a shift-symmetric coupling (see e.g. [269] for a review),
L 1 1 1 -

—=—0,00'> - -F , F" — V¢ — —DF, F". 6.2

/—g 9 H 4 H P 4f M ( )

Here V(@) is a scalar potential explicitly breaking the shift-symmetry of ® and

Fr = emvro | /(24/—g) with €12 = 1 is the dual field strength tensor. Working

in quasi de-Sitter space we introduce the time variable

szHﬁ, (6.3)
where H = a/a denotes the (approximately constant) Hubble parameter. In the

separate Universe picture, the number of e-folds NV elapsed in a time interval [t;, t5]
between two equal-density hyper surfaces varies by 6 N between ‘separate’, locally
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homogeneous universes, accounting for the inhomogeneities in our primordial Uni-
verse [287, 288, 182, 289]. Expanding?

0P
O = Dsn_o+ =— ON =¢ + ¢ (6.4)
ON ON=0

we obtain the equation of motion for the homogeneous part

H’ % 1
" oy 30 Ve

(EBY=0, (6.5)

with ' = d/0N and {...) denoting the average over many universes, thus selecting
the globally homogeneous contribution.?

Turning to the gauge fields, the C'P-odd nature of FWF‘“’ will be most trans-
parent when expanding in Fourier-modes of the comoving vector potential in the
chiral basis,

A(r,7) = j % P |40 (. e (B)a(R)e™ + A3 (r, Byes (Ba’ (B)e ™|

(6.6)

~ ~

with the polarization tensors obeying é,(k) - k = 0, é5(k) - éy(k) = 0,4 and
ik x é,(k) = oké,(k) where k = |k|k = kk, a (a) denoting the annihilation
(creation) operators and dr = dt/a denoting conformal time. In this basis, the
equation of motion for the Fourier coefficients A, (7, l;) is obtained as
2 - . Yo

+ [k £ 2XkaH] AL (T, k) =0 with &= o > 0, (6.7
where A = sign(¢’). For a sufficiently large inflaton velocity the effective mass term
in the square brackets for the helicity mode with ¢ = —\ undergoes a tachyonic
instability, leading to an exponential enhancement. These gauge fields backreact
on the inflaton equation of motion. The physical electric and magnetic fields
entering in (6.5) are obtained as

d>A, (7, k)
dr?

E=—-—=—, B=-VxA, (6.8)

2Here we are dropping terms of O(§N?), assuming N « 1. Moreover, throughout this work,
we will neglect the spatial gradients of the inflaton field. As we will see later, due to the strong
enhancement of the scalar power spectrum in axion inflation, this is a non-trivial limitation of
our analysis. To go beyond this and include strong spatial gradients of the scalar and gauge field
into the analysis would require moving beyond the § N-formalism, e.g. along the lines of the full
quantum formalism of [290].

3Here we assume a definite sign for the initial value of ¢’. In a C'P conserving universe this
corresponds to averaging over a finite subset of Hubble patches.
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leading to

and the energy density

E? L”+ B B2 J
T &) an

where we have considered only the dominant, enhanced helicity mode. In summary,
Egs. (6.5), (6.7) and (6.9), together with the Friedmann equation

dA (T, F) Bl

dT FR AL E)f (6.10)

SH?ME: = V() + %H2(¢')2 + <#> : (6.11)

form a closed, integro-differential system of equations describing the gauge field
production induced by the motion of the inflaton, taking into account the backre-
action of these gauge fields.

6.3 Resonant gauge field production

In the limit of quasi de-Sitter space-time, 7 = —1/(aH), and for constant &,
Eq. (6.7) can be solved exactly. For the enhanced mode, this yields

. 7r£/2

A_)\(T,/{Z) ﬁ

Here Wy, (z) denotes the Whittaker function and we have imposed Bunch Davies
vacuum as an initial condition for far sub-horizon modes. Inserting this into

Egs. (6.9) and (6.10) yields

W—zf 1/2(2Z]€T) (612)

\e2é e2m¢

N 4 Tuv $ N 4
and
E2 + Bz 6271‘.5 Tuv 1 Tuv
~ H4 6 -z 8 -z 4
< 5 > 2197T2€3 [L xre T + —(235)2 L x e x]
271'5
~ 131074 (6.14)

&
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Figure 6.1: Blue dash: The square of the gauge field mode |[A_\(7,k)[2. Red
solid: The (EB) integrand k*-L|A_,(r,k)|>. Both curves are evaluated at 7 = —1,
and displayed as a function of wavenumber, such that In (%) = 0 corresponds
to a horizon sized mode. Left vertical line: wavenumber (or number of e-folds
after horizon crossing) of the maximal exponential growth of |A_,(r, k)|%. Right
vertical line: The <E§> integrand gets its dominant contribution at about AN

later. Here we have set & = 5.

with z,, ~ 2£ ensuring the cut-off of the UV divergence. The last equality is valid
for £ = 3, smaller values of £ require a more careful regularization scheme [291, 292].

We shall now provide arguments that once ¢ becomes time-dependent, a second
time scale (besides H™!) appears, characterizing a resonance phenomenon with a
frequency in e-fold time of wj® = 27/AN,. This resonance drives self-excited os-

cillations with frequency wie® appearing in (E B).

Let us start our analysis by looking again at the gauge field Fourier mode
equation of motion (6.7). Rewriting this into e-fold time

d? d?
dN = aHdr = -— =ad*H? (— + (1 - e)—) : (6.15)

dr?
we get

. . k(K .

ARy + (1 —eA (k) + — (— + 2)\5) Ai(k)=0 . (6.16)
- - aH \ a

In the remainder of this section, we will neglect all terms suppressed by the slow-

roll parameter ¢ = —H'/H « 1 . In our numerical analysis, described in Sec.

6.4, we keep all slow-roll corrections though. We see that the mode A_, becomes
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tachyonic once k/(aH) < 2§ , while it starts freezing out due to the friction
term A’ , taking over once k/(aH) < 1/(2§). We now look at the behaviour
of the mass term of the growing mode more closely. For constant &, the mass
terms takes its maximally negative value m?, = —¢&* at k/(aH) = £ since the
quadratic function of m?, = k/(aH) (k/(aH) — 2£) has zeroes at k/(aH) = 0 and
at k/(aH) = 2¢. Hence, due the behaviour of the Whittaker function governing the
gauge field modes, the major part of the growth of A_j, out of the Bunch-Davies
initial conditions happens while k/(aH) ~ &.

However, the integrand of <E§>, due to the 7-derivative and the k* prefactor,
takes its maximum contribution at approximately k/(aH) = 2/¢ (see also Ap-
pendix D.1). This implies that (EB) is dominated by modes whose ‘knowledge’
of the value of £ governing their maximum growth period originates from about

52
ANe = In% (6.17)
e-folds earlier. This is clearly visible in Fig. 6.1, where we see that the (EB) inte-
grand k*-L|A_\(7, k)|? has its peak contribution about AN after the time when

|A_\(7, k)|? has its maximum exponential growth. Note, that in Fig. 6.1 we took
7 = —1 and expressed the wavenumber k as number of e-folds after horizon cross-
ing —Ink/aH. This means that the gauge modes are still sub-horizon at the time
of maximal growth (k/aH = £ > 1), but already super-horizon when they provide
the peak contribution to the (EB) integrand (k/aH = 2/ < 1).

Using this information, we can ask a simple question — how does <E§> react
if we allow for a sudden step-like change of £ at a certain moment of time? For
explicitness, let us assume that { = §, changes to {o+A{ > § at N = Ny suddenly.
At N = N, the integral (EB) gets its dominant contribution from modes A_, (k)
with k/(aH) ~ 2/¢ which had their growth happening AN e-folds earlier. At that
time Ny — ANg we still had § = & and hence

2m&o

&

Conversely, modes A_y(k) with k/(aH) ~ 2/¢ at N = N, will grow towards their
plateau value and thus dominate <E§> only starting at time N = Ny + ANE.
These modes experience their growth for N > Ny when £ > &. Hence, they will
approach a plateau governed by & = &, + A¢ and thus

KEB)n,| ~ 2.4- 107 H* S — (6.18)

627"(50 +AE)

EB ~24-107*H*—
|< >N0+AN5| (50 +A§)4

> (EB)n,| - (6.19)
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Figure 6.2: Black solid: Numerically computed, and rescaled, response of <E§>
to the change in ¢ with significant lag ~ AN,. Black dash: Almost step function
like change of £ modeled as {(N) = &+ % (1 + tanh(ue(N — Np))) with the jump
taking place at Ny = 3 from §, = 5 with amplitude A{ = 1 and steepness e = 10
(dashed black).

The transition from the initial plateau to the final plateau happens smoothly,
yet clearly the system shows ‘lag’: It reacts to a sudden change in £ by changing to
its new (£ B) value only with a time lag of about AN¢. A numerical computation

of (EB) displayed in Fig. 6.2 clearly confirms this lag.

Assume now that instead of a sudden change, we provide £ with a periodic
time dependence {(N + 27m/wy) = &(N) with constant frequency wy in e-fold
time. Clearly, <E§> will now react with the same lag and thus oscillate with a
phase shift

Ao = QJNANg (620)

as long as this phase shift Aa < 27.* Clearly then, demanding Aa = 7 as a

necessary condition for resonance (which can only occur if (EB) couples back to
¢, this we will discuss shortly), this defines a critical frequency

R 21

We can numerically compute the full <E§> responding to a harmonic pertur-
bation of ¢ around & with frequency wy. Figure 6.3 shows this for a frequency near

4To see this from the ‘sudden approximation’ argument before, break up a periodic £(N) into
small step-wise changes.
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Figure 6.3: Left: Numerically computed, and rescaled, response of <E§> with
significant lag (solid black) for a harmonic perturbation of £ with near-critical fre-
quency wy ~ wy (dashed black). Right: For much larger frequencies the response
averages out to zero. We chose ¢ = 5 and the oscillation amplitude A& = 1.

wy, and for a frequency much larger than wy. We see clearly, that at wy ~ wj
there is strong response of (EB) with lag. Moreover, at wy ~ wi the lag corre-
sponds to a significant phase shift, while for much larger frequencies the response
averages out to zero.

Finally, we can numerically determine the lag AN, occurring as a function of &.
This is shown in Fig. 6.4 for wy = 0.2 and clearly shows (solid red line) the scaling
AN = In(€?/2) derived in Eq. (6.17). The refined estimate derived in App. D.1 is
depicted by the dashed red line. The oscillations visible at larger values of ¢ are
not captured by the estimate (6.17), which was based on determining the differ-
ence between the points of maximal growth and maximal contribution to (EB) for
any given mode at constant £. For a periodically varying £ these estimates receive
corrections, which depend in particular on the shape of the pulses in the periodic
function &.

At this point it becomes interesting to turn to our dynamically coupled system,
where the &-parameter is determined by the scalar field equation of motion

O+3HG+Vy— %<E§> =0 . (6.22)

The driving force of the scalar potential V, is balanced by the sum of the Hubble
friction (second term) and the gauge-field induced friction (contained in the last
term), while the ¢ only becomes relevant in the very last stages of inflation. In
our full numerical solution which clearly displays a resonance (see Sec. 6.4) we can
observe that the oscillating parts of the two friction terms 3H ¢ and (E B) (sourced
by the time-dependent part of £) cancel against each other at N < 60 where the
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Time lag of (EB) w.r.t. &

4.5

1.0

Figure 6.4: Data points: The lag AN, for the numerically computed response of
(EB) to a harmonic perturbation of ¢ with frequency wy = 0.2 as a function of
¢. Solid red line: our estimate ANg ~ In(£?/2) in Eq. (6.17). Dashed red line:
refined estimate derived in App. D.1.

backreaction is not yet very strong, whereas V,, which depends only on ¢ but
not on gz'S, evolves to good approximation monotonously. This is clearly visible in
Fig. 6.5 where we plot the different parts of the scalar field equation of motion
evaluated on the numerical solution for 1/f = 25, discussed in detail in Sec. 6.4.

We now parametrize ¢ as & = £ + AE(N) with the long-time average AE(N) =
+ §dANAE(N) = 0, where an over-bar denotes averaging over time while all quan-
tities are implicitly containing an average over separate universes part of the 0NV
formalism (unless this average is written explicitly as {...»). Consequently, we can
recast the time dependent part of ¢ as A& (N) and get approximately

6H2§ A¢ - %A(Eé}(Ag) ~ 0 (6.23)

where (EBY = (EB) + A(EB).
Now we use the properties of the background (EB) given in Eqs. (6.9),(6.12)
to write

(EB) = Mg (6.24)

where App > 0 is a positive definite function. Assuming the oscillating part
A(EB) will not change the sign of the total (EB), we can then define the split
of (E'B) into background and oscillatory part with a definite phase relative to the
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N

Figure 6.5: The contributions ¢” (black dash), 0,V /H?* (black solid), (3 — €)¢’
(red short dash), and (EB)Y/(fH?) (red dash-dot) to the scalar field equation of
motion for f = 1/25 and V(¢) = m?¢*/2 (see Sec. 6.4) [in units of Mp|]. We have
conveniently expressed the derivatives (/5 and gb in terms of e-fold time derivatives
@', ¢". Note that for N < 60 we find that ¢” is negligible, while the first long-wave
oscillation has ¢’ and <Fj§> of opposite phase. Note further, that for N = 60
the long-wave oscillations are superimposed by faster damped oscillations. For
these, ¢" is no longer negligible, and the phase shift at each step of the chain
¢" — ¢ — (EB) is about /2.

sign of (EB) by writing
(EBY = (EB)+ NEB) = —\(App + AAgg) . (6.25)

This allows us rewrite Eq. (6.23) as

At — L Adps(AE) =0 o Ag——12ABAY

A Ty (6.26)

Moreover, from the values of f and H we see that the factor 1/(6f%H?) rescales
AAgg to be dimensionless and to have the same magnitude as A¢.

For this rescaled AAgp, the discussion around Eq. (6.21) and the numerical
observation of the time delay in Fig. 6.3 indicate the presence of a resonance at
wy = wy. The argument for this goes as follows: At the resonance frequency the
observed time delay corresponds to a phase shift of ¢, that is, we observe

AAgp(AE(N))
6.2 H2

~ A¢ (N - wi) . (6.27)

N
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Moreover, if we assume a nearly harmonic perturbation with an approximately
constant frequency for A&, we have by definition

A¢ (N - l) ~AE (6.28)
Wy

Therefore, in plugging eq. (6.28) into eq. (6.27), and this in turn into the right-
hand side of Eq. (6.26) we find that on a harmonic perturbation the equation of
motion of & becomes consistent with an oscillator equation.

AE ~ —AE" . (6.29)

Next, we observe that for N = 60 in Fig. 6.5 there is a secondary pattern
of damped oscillations at higher frequency compared to the long-wave 'base fre-
quency’ oscillations discussed above. For this pattern the oscillating contribution
of ¢ is no longer negligible. Moreover, we observe that the phase shift at each step
of the chain ¢" — ¢/ — (EB) is about /2. This implies that for this pattern
the corresponding high-frequency (labeled by ‘h.f.") oscillating parts A¢"#) and
AA%LBf '), split off the full quantities the same way as we did for the base frequency
parts above, satisfy

, 1 J
(ALHD) +3ALMD) & 5 AR (A6 = 0 (6.30)

The observed phase relation in Fig. 6.5 then states that AA%LBJC')(A@ has a phase
shift of 7/2 to the right compared to A¢Mf) and of 7 to the right compared to
(AEM-1)Y | Hence, the figure indicates that for the high-frequency oscillations

AT~ (AAGY L (ALY ~ (AAGY (6.31)

Plugging this relation into Eq. (6.30) we get the structure of the dampened har-
monic oscillator differential equation

(AAEIN L o) (AALDY 4 (I PAAR) =0 (6.32)

While we cannot determine the frequency of these faster oscillations w7/ at
this time, we consider the fact that the equation of motion takes the dampened
oscillator form to be strong evidence supporting the existence of these secondary,
faster dampened oscillations in the coupled system.

It is due to this line of reasoning that we conclude the presence of resonance
occurring in the strong gauge-field back-reaction regime. Neglecting the reso-
nance phenomenon, £ is typically a monotonically growing function of N, while
the resonance frequency only scales logarithmically with £ and thus N. Hence, the
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sweep of £ effectively scans over possible resonance frequencies. Hence we expect
the increasing value of ¢ to eventually trigger the resonance behaviour with ap-
proximately the predicted frequency. Some of the ideas presented here have been
qualitatively previously presented in Refs. [284, 285, 286|. After formalizing these
arguments, we here succeed in quantitatively explaining the observed resonance
frequency. Strictly speaking, the arguments spelled out above form a necessary,
but not sufficient condition to ensure a resonance. However, in our numerical solu-
tions to this coupled system of differential equations (see next section) we always
see this resonance, indicating that this is indeed a generic feature.

6.4 Numerical results

We performed a full numerical analysis taking Mp/f = {20,25} and V(¢) =
m2¢?/2 with m = 6 x 10~¢ Mp, reproducing the observed amplitude of the scalar
power spectrum at CMB scales.® Our final goal is to find the solution of the
system of coupled integro-differential equations (6.5), (6.7) and (6.9). The first
step is to solve the inflaton equation of motion using the estimate of <E§> given
in Eq. (6.13), which is obtained by solving the equations of motion of the gauge
field modes, A (7, k), assuming a constant inflaton speed, Eq. (6.12). Then,
choosing an appropriate array of k-modes, we solve Eq. (6.7) for each mode and
we compute the discretized integral of equation Eq. (6.9), getting a new estimate
of the backreaction. We reach the final solution by iterating this procedure until
we reach the end of inflation with a self-consistent solution, see App. D.2 for
details. The initial conditions for the inflaton field are chosen at CMB scales in
accordance with the vacuum slow-roll solution while the A; modes satisfy Bunch-
Davies vacuum conditions; we stop the time evolution when the system reaches
the end of inflation € ~ 1.

The results of our analysis for 1/f = {20,25} are shown in Fig. 6.6 where
we compare the final solution for (EB) and pgp = <@> with the analytical
estimate of Egs. (6.13) and (6.14). We also plot the £ parameter which shows
that the oscillatory behaviour of the inflaton speed becomes more apparent in
case of strong backreaction.® We see that the numerical solution including the
backreaction oscillates around the analytical estimate, with an oscillation period

5As expected for the discussion in Sec. 6.3, the generic features of the results discussed here
are not very sensitive to the precise form of the scalar potential. In particular, we confirm similar
results using a potential linear in ¢.

6At the maxima of these oscillations, the value of ¢ exceeds the threshold ¢ ~ 4.7 bounding
the perturbative regime for approximately constant £ [293, 294]. This threshold cannot be
immediately applied to a strongly oscillating ¢ and we will comment on perturbativity constraints
in more detail in Sec. 6.5.
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Figure 6.6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical
results of pgp and (EB) (solid lines) compared to their analytical estimate (6.13),
(6.14) (dashed lines). The vertical lines refer to the end of inflation in absence
of backreaction (black line) and for the full numerical analysis (red line). The
right panels show the oscillatory behaviour of the ¢ parameter (solid black line)
compared to its analytical result coming from the solution of the inflaton equation
of motion when the gauge field backreaction is given by (6.13) (dashed red line).
For better visibility, we display only the last ~ 20 e-folds of inflation.

of AN¢ ~ 3, in accordance with our estimate in Sec. 6.3. For f = 1/25 the value
of ¢/ temporarily changes sign (at N ~ 62). The reason for this is the delay in
gauge friction term discussed in Sec. 6.3. As |¢'| drops, the gauge friction drops
and the opposite sign of ¢' (encoded by \) entails the opposite sign for the gauge
friction term as one would expect of a friction term. However, since the gauge
friction term is dominated by modes which are controlled by the value of ¢’ some
AN¢ e-folds earlier, the sign change in the gauge friction term is delayed, allowing
¢' to temporarily change sign.

Our results are in accordance with those previously found in Refs. [284, 285,
286, which reported oscillatory features in the inflaton velocity with a period of
3—>5 e-folds. All these studies are based on fully independent codes and numerical
methods, and the results observed can be nicely explained with the semi-analytical
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arguments presented in Sec. 6.3.

6.5 Scalar power spectrum and primordial black
holes

6.5.1 Scalar power spectrum sourced by gauge field config-
uration

The gauge field population does not only backreact on the dynamics of the ho-
mogeneous inflaton field but also acts as source term for the scalar inhomogeneities
sourcing the density perturbations of the Universe. In the separate universe pic-
ture, curvature fluctuations on super-horizon scales are obtained as [287, 288, 182,
289] 7

Ce = ON (L) = Ng(ts) 00(ts) - (6.33)

Here N (t,) denotes the average number of e-folds elapsed between ¢, and the end of
inflation, whereas 0 N (¢,) denotes the deviation occurring in a particular patch of
the Universe induced by super-horizon scalar fluctuations. The perturbed version
of Eq. (6.5) reads

" H' / V:¢
O—¢ + (3+ﬁ)¢ +H2
H _, , 0 (H 0 (Ve 2H" - -
+ ﬁ&b + ¢ N (ﬁ) IN + N (m) ON + fH3<EB>5N
_ 1 &<EB>6N

" ! J R
+ 60" + 356 —WEB—JCH2 -~

(6.34)

Since we are keeping only fluctuations to first order, all occurrences of H, V' and
<E§> are here understood to be evaluated in terms of the homogeneous field ¢.
On the contrary, the factor EB in the third term of the third line includes the
inhomogeneities in the gauge fields sourced by d¢. Using Eq. (6.5) to replace the
terms in the first line, dropping the slow-roll suppressed terms in the second line

"This expression relies on the assumption that AN(¢y, ¢2), the time in e-folds required for
the inflaton to move from ¢; to ¢ does not depend on any further independent parameters,
such as e.g. the inflaton velocity. For the attractor solution, this is justified even taking into
account the strong, velocity-dependent friction. In the strongly oscillatory phase towards the
end of inflation we expect corrections due to the break-down of the slow-roll approximation.
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and inserting Eq. (6.33) this simplifies to
L 1
(6.35)

N, &EB) 56— L
fH? ON - fH?

Ln[6¢(N)] = 6¢" +36¢" —

This inhomogeneous linear differential equation can be solved by the Greens
function method, see e.g. [262, 270].8
For any linear operator Ly, the Greens function satisfying

Ly G(N,N") = §(N — N'), (6.36)

can be convoluted with the source term S(N),
SG(N) — JG(N, NYS(N')AN', (6.37)

to obtain a solution of the inhomogeneous equation Ly d¢(N) = S(N). In Eq. (6.35)
we identify S(N) = dgg/(fH?). Moreover, for any given function (EBYN) we
can determine (at least numerically) the Greens function of the corresponding lin-
ear operator Ly by solving the ordinary differential equation (6.36). Since this is
a second order differential equation we need to specify two boundary conditions
which we take to be G(N, N) =0 and G'(N,N) =1.°

With this, the two-point function of scalar perturbations exiting the horizon
at e-fold N can be computed as

(2 = (IN?) = N3(66%) = N? f AN'G(N, N') de"G(N, NYS(NY) SN
(6.38)

8For a comparison with these pioneering works see App. D.4. In short, we confirm the results
found in the weak backreaction regime but disagree in the strong backreaction regime. We find
the backreaction to be weaker than previously estimated, leading to a significant enhancement
of the scalar power spectrum in this regime.

9For the retarded Green’s function G(N,N’) = 0 if N’ > N. In addition we know that
G(N, N’) must be a continuous function since LyG(N, N’) does not involve generalized func-
tions beyond d(N — N') functions and in particular it does not contain derivatives of ¢ func-
tions. Imposing continuity at equal time requires lim G(N,N’) = lim G(N,N’) = 0.

N'SN- N'SNy

On the other hand, integrating (6.36) over an infinitesimal neighbourhood of N = N’ we get
N'+e¢
J LyG(N,N")dN = 1. G being continuous, dxG must be bounded and we immediately

N'—e¢
see that if we shrink the integration domain to zero size the only term which can give a fi-

N'+e N'+e
nite contribution is lir% LyG(N,N")dN = hII(l)J 0%G(N,N")dN = onG(N',,N') —
e—>0 Jnr_e €e—0 Jn/_e

ONG(N',N') = OnG(N',,N') = 1.
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We parametrize the unequal time correlations by g(N', AN),

f; L "(S(N")S(N")) = (S(N")*)g(N', AN). (6.39)
with
/ )Y AN =0
gV, AN) = {e AN >0 (6.40)

where v = O(1) and € — 0 in the limit of vanishing unequal time correlators, i.e.
in the limit of white noise. If G(N, N”) and (S?(N’)) do not vary significantly
over the support of g(N’, AN) we can approximate'®

JdN"G(N, N")(S(N)S(N")) = G(N,N')(S*(N"))g(N', 0)
G(N, N")
=~ W@%B(N )
G(N, N')
= WU?EB(N,)a (6.41)
with 02, = (EB — (EB))? denoting the variance of EB at a given time. For a
given set of mode functions Ay (N) the variance 0% can be computed explicitly,
see e.g. App. A of [273]. The final expression for the power spectrum then reads

G(N, N)o3(N')
fPH?(N')

A2 = (6¢%) ~ Nfbfd]\f’ + {®Hvac (6.42)

where (¢? v = H/(2m¢') is the usual vacuum contribution.

The result obtained by numerically evaluating the Greens function G(N, N')
and the variance ogpg is depicted in Fig. 6.7. The power spectrum is dramatically
enhanced towards the end of inflation and inherits the resonant oscillations present
in the source term. As highlighted by the gray band, the power spectrum extends
above ( ~ 0.3, indicating the breakdown of the perturbative expansion used in

10 To verify these approximations and quantify the importance of the unequal time contribu-
tions, we numerically evaluate g(N', AN) using the mode functions Ax(N) from the numerical
computation in Sec. 6.4. See App. D.3 for details. Far away from the resonance regime, we find
this approximation to be unproblematic. As we approach the resonant regime, the unequal time
correlators become more important while at the same time of; varies more rapidly. We find
values of g(N',0.1)/y ~ 0.9 and g(N’,0.5)/v ~ 0.4, indicating that most of the support of g is
focused on a small region over which oZg varies only moderately. We conclude that the unequal
time correlators most likely lead to an O(1) correction to (6.42) in the resonance regime, slightly
smearing out the peaks and troughs.
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Figure 6.7: Scalar power spectrum for 1/f = 20 (left) and 1/f = 25 (right).
The resonantly enhanced gauge field population leads to strong enhancement of
the scalar power spectrum at small scales, with peaks reflecting the resonance
structure. The gray and red shaded areas indicate the limitations of the 0NV
formalism, see text for details.

our analysis. Moreover, for f = 1/25, the inflaton speed temporarily changes sign
(see Fig. 6.6), implying that ¢ is not monotonously increasing. Strictly speaking,
this requires to go beyond the standard 6N formalism (see footnote 7). In prac-
tice, since this only happens for a very short period of time, we expect the 0NV
formalism (with the inflaton speed regularized to some small value round N ~ 62)
to nevertheless give a good estimate. The corresponding problematic region is
highlighted in red in the right panel of Fig. 6.7. Due to these caveats, we cannot
make a prediction about the precise amplitude of the scalar power spectrum at
small scales. However, we can conclude that power spectrum reaches values of
Ag = 0.01 in the last e-folds of inflation, exceeding the threshold for primordial
black hole formation (see below).

The very large values for the scalar perturbations at small scales, indicating
an inhomogeneous field configuration with large gradient energy, may trigger a
premature end of inflation. This would relax the bounds from primordial black hole
formation and consequently the bound on the coupling 1/f (see below). However,
recent findings [295, 296, 297, 298| indicate that high-scale inflation is quite robust
against large gradient energies. How much of this stability against large gradients
remains on the ~ 2..3 Mp of field range corresponding to the last about 5 e-folds
of inflation in a quadratic potential is an open question which we leave for future
work. We hope that our findings will trigger a more detailed non-perturbative
analysis of this last stage of inflation.

Even discarding the peaks arising from the resonant enhancement, the ampli-
tude of the power spectrum in Fig. 6.7 at small scales is significantly larger than
expected from previous estimates [262, 273]. We provide a detailed comparison
and discussion in Appendix D.4. In summary, we conclude that previous ana-
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lytical analyses have overestimated the amount of backreaction in Eq. (6.35) and
have hence underestimated the amplitude of the power spectrum in the strong
backreaction regime. Consequently, the amplitude of the scalar power spectrum
we report is in particular significantly larger than found in [284], which accounted
for the oscillating inflaton velocity but used the estimate for the power spectrum
derived in [273].

6.5.2 Primordial black hole formation and phenomenology

If the scalar perturbations at a given scale exceed a critical threshold (. ~ 0.5
they collapse into a primordial black hole upon horizon re-entry [299]. The mass
of the corresponding black hole is determined by the energy contained in a Hubble
volume at the time of horizon re-entry,

-6
Mppu(N) =~ 4% (e 7N Hinr) ™ x 3 (e 7N Hing)®> Mp ~ 55 gy (1()}1—]\413) e,
inf

(6.43)
with N counting the number of e-folds from the horizon exit of the respective
fluctuation until the end of inflation, H;,r denoting the Hubble parameter at this
time, j = 2 (j = 3) for radiation (matter) domination after inflation and v ~ 0.4
parametrizes the efficiency of the gravitational collapse [300, 301].

Once formed, the PBHs can slowly decay by emitting Hawking radiation. In
particular, PBHs with Mpgy < 10 kg decay into thermal radiation before the
onset of big bang nucleosynthesis and their abundance can thus be very large [302,
303]. On the other hand, PBHs with 10'! kg < Mppy < 10' kg have a life-time
comparable with the age of the universe and their abundance is highly constrained
by the non-observation of their Hawking radiation. Heavier black holes are stable
and contribute to dark matter, their abundance is constrained by the observed
dark matter abundance as well as by direct searches, see e.g. Refs. [299, 304] for
an overview.

For a given amplitude of the scalar power spectrum, the probability of forming
PBHs depends on the statistical properties of the scalar fluctuations, since typically
PBH formation is a rare event occurring in the tail of the distribution function.
For a gaussian distribution any power spectrum generating stable black holes with
{¢* z 1072 leads to an overclosure of the universe [305]. For a positive x?*-
distribution, as expected for the sourced scalar perturbations in axion inflation,
this value is lowered to (¢*) = 1073 [273]. The amplitude of the power spectrum in
Fig. 6.7 clearly exceeds these values towards the end of inflation. Thus requiring
Mppr(N) < 10M kg to avoid these overclosure bounds restricts the enhancement
of the scalar power spectrum to the last ~ 10 e-folds, see Eq. (6.43). Here we
have set j = 3 since the expected large abundance of PBHs generated right after
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inflation will lead to an early matter dominated phase.

Consequently, the power spectrum depicted in Fig. 6.7 which is only enhanced
in the last ~ 5 (9) e-folds for f = 1/20 (1/25), is (marginally) compatible with
bounds from PBH formation. Significantly larger values of 1/f will lead to over-
production of stable PBHs, though the precise bound will depend on the details
of the last stages of inflation, see discussion below Eq. (6.42). On the contrary,
a large abundance of metastable black holes as found for 1/f < 25 entails sev-
eral interesting phenomenological consequences. Firstly, an early PBH dominated
phase, eventually releasing its energy into thermal Hawking radiation, provides a
remarkable reheating mechanism. Any radiation released during preheating or in
the inflaton decay is strongly red-shifted during the PBH dominated era, and hot
big cosmology is re-ignited once the PBHs decay. Among others, this poses inter-
esting challenges for baryogenesis. Secondly, there are three significant sources of
gravitational waves (GWs): (i) GWs sourced by the gauge field population during
inflation [271], (ii) GWs sourced (at second order) from the large scalar pertur-
bations [306, 307, 308] and (iii) GWs sourced as a component of the Hawking
radiation of the decaying PBHs 302, 309|. All of these sources result in high fre-
quency (~ MHz and beyond) GWs, beyond the scope of current experiments but
suggesting a potential target for potential future high frequency experiments. We
expect that the characteristic oscillating features of the source <E§> will also be
visible in the GW spectrum. Note that any GWs which are sub-horizon during the
PBH dominated phase will be strongly diluted, leading to an interesting interplay
between the GW and PBH spectrum. This applies in particular to GWs generated
during preheating right after inflation [282].

6.6 Conclusions

Axion inflation is generically accompanied by an explosive gauge field produc-
tion, triggered by a tachyonic instability of roughly horizon sized gauge field modes,
which is in turn sourced by the inflaton velocity. The energy budget of this gauge
field configuration is drained from the kinetic motion of the inflation, which can
be described as a backreaction of the classical gauge fields on the homogeneous
inflaton equation of motion. In this chapter we study the resulting coupled system
of differential equations numerically, pointing out several new aspects which point
to a more complex dynamics than previously anticipated.

The tachyonic instability is most effective on slightly sub-horizon scales, and
hence the amplitude of any gauge field mode is set by the value of the inflaton
velocity just before this mode crosses the horizon. On the other hand, the non-
linear backreaction term is dominated by super-horizon gauge field modes, and
hence reacts with a time lag to any change in the inflaton velocity. As the average
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speed of the inflaton increases over the course of inflation this system eventually
hits a resonance frequency, where this time-lag corresponds to a phase shift of .
This leads to oscillations with increasing amplitude and fixed frequency in e-fold
time, clearly visible in the inflaton velocity, the backreaction term and the gauge
field energy density. This drastically changes the dynamics of axion inflation in
the strong backreaction regime.

An example of an observable which is significantly impacted by this change in
the inflaton dynamics is the scalar power spectrum. At very early times, when
the scales relevant for the CMB exited the horizon, the backreaction is irrelevant
and the spectrum closely resembles the usual spectrum of vacuum fluctuations. On
smaller scales, corresponding to later stages of inflation, the scalar power spectrum
receives an additional contribution sourced by the inhomogeneous part of the gauge
field distribution, leading to an enhancement by many orders of magnitude. In this
work we re-visit the equation of motion for the scalar perturbations, reproducing
results found previously in the weak backreaction regime but finding a signifi-
cant larger amplitude for the scalar power spectrum in the strong backreaction
regime. This result holds even when working with a time-averaged backreaction,
i.e. discarding the resonance discussed above. Including the resonance leads to
additional oscillatory features in the power spectrum at small scales. However,
our results also indicate that the strong backreaction regime entails such large
scalar perturbations (invoking in particular significant spatial gradients in the in-
flaton field) that the perturbative description fails. The formation of (metastable)
primordial black holes seems unavoidable, entailing interesting phenomenological
consequences. Despite electro-magnetic dissipation reduces the required field ex-
cursion compared to axion inflation models in absence of gauge couplings, we saw
in Sec. 6.4 that the full numerical treatment does not show significant differences
in terms of initial field displacement. Nevertheless, the breakdown of perturbation
theory suggests that all predictions related to the last e-foldings should be revis-
ited. Unfortunately, any more quantitative analysis requires a non-perturbative
description of this system, which is beyond the scope of the present work.

In this context, it is interesting to note the recent progress made in simulating
the preheating phase of this model on the lattice [280, 281, 282| (see also [310]
for related work). The challenges induced by the growing separation of scales in
an expanding Universe limits the amount of e-folds which can be tracked, but
the characteristic time scale ANg ~ In(£%/2) of the resonance seems to be within
reach of such analyses. The preheating phase, and in particular its gravitational
wave production, can impose stringent bounds on the axion to photon coupling,
down to 1/f < 10 [282]. However, an early PBH dominated phase, triggered
by the drastically enhanced scalar power spectrum, would significantly dilute the
energy density in gravitational wave radiation which redshifts faster than the PBH
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component. This could re-open the parameter space of larger couplings. We leave
a more detailed study of this question to future work.

The observed resonance phenomenon will not only affect the scalar power spec-
trum but also the tensor power spectrum, since it too receives a contribution
sourced by the gauge field population. Moreover, we expect that similar resonance
phenomena can occur in other cosmological systems which feature a tachyonic
instability of gauge fields modes driven by a non-vanishing axion velocity. This in-
cludes models of baryogenesis driven by the motion of axion-like particle [291, 311]
and models of cosmological relaxation of the electroweak scale utilizing gauge field
friction [312, 313, 314, 315, 316, 317]. We leave these questions to future work.
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Chapter 7

Conclusions and Outlook

We conclude this work by providing a brief summary of the contents and the
results reported in this thesis.

In Chap. 1 we give an overview of the current knowledge of high energy physics
for what concerns both particle physics and cosmology. We briefly review the main
achievements and limitations of the Standard Model of particle physics and ACDM
model. These models fail to address several issues like the hierarchy problem for
the Higgs mass, gauge coupling unification and the strong CP problem. Moreover,
they are not able to explain the origin of DM, baryogenesis and dark energy.

In order to overcome the experimental and theoretical problems related to
the current state of the art, several theories have been proposed for fundamen-
tal physics beyond current understanding. In this work we focus in particular
on inflation and axions and their possible embedding in string theory. Inflation,
that is presented in section 2.1, provides a dynamical way to overcome the initial
condition problems of standard Big Bang cosmology, leading to successful large
structure formation. The existence of axions was firstly theorised to solve the
strong CP problem. Axions and ALPs are introduced in section 2.2, where we
explain how, depending on their production mechanism, their mass and coupling
to other particles, these fields can represent both DM and dark radiation, or can
play the role of the inflaton field. Finally, we present a brief introduction on string
theory which is at present the best candidate for a unified theory of all interactions,
which describes also gravity at the quantum level in a consistent way. In section
2.3 we focus in particular on type IIB string theory. We explain how to construct
low energy 4D theories that can reproduce the basic ingredients of SM physics,
such as chiral matter, gauge theories and Yukawa couplings. We presented an
overview of the generic tools needed for the study of string compactifications. We
showed which class of extra dimensions manifold allows us to get an A/ = 1 super-
symmetric effective field theory starting from the 10D action for massless string
states. Such 4D EFTs suffer from the presence of many massless scalar fields,

247
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named moduli, that may lead to the presence of undetected fifth-forces and other
phenomenological problems. For these reasons we review the current mechanisms
that are used to provide a potential for these fields. This goes under the name of
moduli stabilisation. In this thesis we use a bottom-up approach, analysing 4D
string vacua equipped with sets of local sources as Dp-branes and Op-planes. This
method may be more efficient in trying to identify promising string vacua which
can reproduce all the features of the SM together with inflation. We work in the
large volume scenario that allows us to work with CY manifolds also in presence
of background fluxes and induces an hierarchy between different energy scales that
is suitable for safely building a 4D EFT description of inflation.

The second part of this thesis contains the results, related to the aforementioned
topics, that I achieved during my PhD.

In Chapter 3 we construct the first explicit realisations of Fibre Inflation mod-
els in concrete type IIB Calabi-Yau orientifolds with consistent brane setups, full
closed string moduli fixing and chiral matter on D7-branes. We perform a consis-
tent choice of orientifold involution, brane setup and gauge fluxes which leads to
chiral matter and a moduli-dependent Fayet-Iliopoulos term. Using LVS we are
able to perform moduli stabilisation step by step. The underlying compactification
manifold features h''* = 4 Kihler moduli and is reduced to the standard 3 moduli
of Fibre Inflation models after D-term stabilisation. The inflationary potential is
generated by string loop corrections and higher derivative a'®F* corrections. We
found that the inflationary dynamics is strongly constrained by the Ké&hler cone
conditions which never allow for enough efoldings of inflation if we consider nat-
ural values of the internal volume (V ~ 103). For larger values of the Calabi-Yau
volume of order V ~ 10, the Kiihler cone becomes large enough and allows to have
enough e-foldings. However, such a large value of V tends to suppress the ampli-
tude of the density perturbations below the reference COBE value. The tension
between getting the right number of e-foldings and matching the right normalisa-
tion of curvature perturbations can be softened choosing background fluxes that
allow for large values of the winding loop coefficients or W,. However, some pa-
rameters as X.g, which controls the strength of O(a’®) corrections due to presence
of O7-planes, and A which is the combinatorial factor in O(a’®) higher derivative
term, are not flux dependent and have not been computed in full detail yet. A
better determination of these parameters may influence the required field range
during inflation. On the other hand, if the current estimates of y.g and A turn out
to be right, other possible ways of producing the correct amplitude of the scalar
power spectrum should be found. An interesting option may be given by the
curvaton scenario that can be realised by the presence of ultra-light closed string
axions associated to large bulk cycles that are always present in FI models. The
last open issue for future work is that, despite there are several known mechanisms
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responsible for the realisation of a dS vacuum (switching on magnetic fluxes on
D7-branes [64], adding anti D3-branes |65, 66, 67, 68, 69, 70, 71, 72|, hidden sector
T-branes [73], non-perturbative effects at singularities |74] or non-zero F-terms of
the complex structure moduli [75]), our chiral global models still lack an explicit
dS construction.

In Chapter 4 we study geometrical destabilisation [164] and its application to
some 4D EFTs coming from string theory. It has recently been claimed that when
the field manifold is negatively curved, the effective mass-squared of the isocurva-
ture modes receives negative contributions from the Christoffel symbols and the
Ricci scalar which can potentially induce a geometrical instability by making them
tachyonic [164]. In principle this problem may be related to both heavy and light
fields that are orthogonal to the inflationary trajectory. The low-energy EFTs
coming from string theory are generally characterised by non-canonical kinetic
terms and can therefore be plagued by geometrical destabilisation problems. We
first analyse generic 2-field models with negative curvature and we conclude that
there is no instability for heavy non-inflationary scalars. The background analysis
shows that the isocurvature modes may become tachyonic only for a short time
period and on spurious non-attractive solutions with extremely fine-tuned initial
conditions. On the other hand, the analysis of 2-field systems with an ultra-light
scalar shows that the tachyonic instability of isocurvature modes can arise also
along stable background trajectories and is model dependent. We then move to
the analysis of concrete examples. We first study the simple case of quintessence-
like potentials and then we moved to the analysis of Fibre Inflation models where
the inflationary potential is generated by perturbative corrections to the Kéhler
potential. In this setup there are two axionic fields that remain massless after
moduli stabilisation. These are the two bulk closed string axions which are both
kinetically coupled to the inflaton. The inflationary dynamics of these systems
shows that, despite the background trajectory is stable against a wide range of
initial conditions, one of the two massless axions develops exponentially growing
isocurvature perturbations. We try to avoid this geometrical destabilisation by
turning on a non-zero axionic mass via non-perturbative effects. However we find
that, in order to obtain a positive mass-squared of the isocurvature modes, these
non-perturbative effects have to be of the same order of magnitude of the loop
corrections which generate the inflationary potential, completely changing the in-
flationary dynamics. In the last part of this chapter, we show however that the
geometrical destabilisation of these systems is just a spurious instability. We first
uncover the origin of the growth of the isocurvature perturbations in the ill-defined
kinematic basis. After that, we point out which definition of entropy should be
used in order to check the observational bounds on isocurvature perturbations.
This comes from the definition of the relative entropy between the fluids, iden-
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tified with the inflaton and the kinetically coupled massless field. The standard
definition of entropy perturbation between two fluids cannot be applied in this
context, being the energy density of the massless axion vanishing on-shell. Nev-
ertheless we show that the relative entropy perturbation between the two scalars
is finite and vanishingly small during inflation. This allows us to argue that the
instability of Fibre Inflation systems has no physical impact and the underlying
models are presently viable. In the future it would be interesting to study which
definition of entropy should be used in these models (also considering small axion
masses) to transfer the entropy mode from the scalar field system used to describe
inflation to the primordial plasma. Indeed, this cannot be done in a canonical
way [196, 197, 198] being the curvature associated to the axion field ill-defined.
Another important goal would be to extend the fluid approach in the estimate of
entropy perturbations [191, 318] to inflationary systems with curved field space.

In Chapter 5 we study an example of axionic DM particle coming from type
IIB string compactifications. We focus on explaining the origin of the 3.5 keV
line that has been recently detected from galaxy clusters and other astrophysical
objects. In particular we describe how to perform a successful global embedding
in type IIB string compactifications of the model of [17]. In this model, the line
is generated by a double decay: a 7 keV dark matter particle decays into ultra-
light ALPs which are converted into photons in the cluster magnetic field. This
process is particularly interesting since it can explain the morphology of the signal
and other experimental evidences, namely its non-observation in dwarf spheroidal
galaxies. In this chapter we give a concrete microscopic realisation of [17], listing
the required properties for the explicit type IIB Calabi-Yau compactification. We
focus on LVS models since they generically lead to very light axions, especially
when some of the moduli are stabilised by perturbative corrections to the effective
action. The 7 keV DM particle is given by a closed string axion that receives a
mass through poly-instanton effects to the superpotential. A hidden sector, hosting
the ultra-light ALP, and the visible sector come from two non-intersecting blow-
up modes that shrink down to zero size due to D-term stabilisation and support
D3-branes at singularities. The two divisors are invariant under the orientifold
involutions and the coupling between the ALP and ordinary photons is induced
by U(1) kinetic mixing. The ultra-light ALP is related to the phase of the hidden
sector open string mode which is charged under an anomalous U(1). Tts radial part
gets fixed in terms of a moduli-dependent FI-term and represents the ALP decay
constant. In sequestered models with low-energy supersymmetry the radial part
can develop a non-vanishing VEV due to a tachyonic soft scalar mass contribution
leading to an intermediate scale coupling between photons and ALPs which is in
full agreement with current observations. The DM-ALP coupling is generated by
kinetic mixing induced by non-perturbative corrections to the Kéahler potential.
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Despite we discuss the required features needed to get a successful embedding of
[17], performing full moduli stabilisation and also computing the mass spectrum
and all relevant couplings, we do not present an explicit construction built via
toric geometry, leaving it as a future task. Another important open question for
future work would be to embed inflation in this setup, trying also to reproduce
the cosmological history of the universe to the present epoch.

In Chapter 6 we analyse electro-magnetic dissipation in axion inflation. Indeed,
these particles are naturally good inflaton candidates since they appear in the the-
ory equipped with an approximate shift symmetry that can protect the inflationary
potential against dangerous quantum corrections. We study how the coupling to
a hidden sector U(1) gauge field can affect the inflationary dynamics and if it may
lead to well recognisable imprints on the cosmological parameters. This coupling
causes a massive gauge field production, triggered by a tachyonic instability of
roughly horizon size gauge modes, that is sourced by the inflaton velocity. This
system has been widely studied in the literature using a semi-analytical approach.
It was shown that the electro-magnetic dissipation slows down the inflaton motion
and it can allow for inflation also on steep potentials |262|. Moreover, from the
phenomenological point of view, it usually causes an enhancement of scalar and
tensor perturbations at small scales that is sourced classically by inhomogeneities
in the electromagnetic field [268, 269, 270, 271|. In this work we perform a full
numerical analysis of axion inflation with a trans-Planckian decay constant and
a quadratic potential, bringing to light a new resonant behaviour that has not
been seen before. We found that the time lag between the tachyonic instability,
that is most effective on slightly sub-horizon scales where it sets the amplitude
of each gauge mode exiting the horizon, and the non-linear backreaction term,
that is dominated by superhorizon gauge modes, causes an oscillatory behaviour
in both the inflaton velocity and the gauge field production. In case of strong
backreaction regime, the system hits a resonance frequency that leads to oscilla-
tions with increasing amplitude and constant frequency. Studying the impact of
the resonant behaviour on the scalar power spectrum, we find that at early times
the backreaction is negligible and the scalar power spectrum matches the usual
vacuum fluctuations result. On the other hand, at smaller scales, the relevant
contribution to the scalar power spectrum comes from the inhomogeneous part of
the gauge field distribution. For strong backreactions, the power spectrum shows
a resonant behaviour at small scales and it grows to the point that the perturba-
tive description fails. This can have interesting phenomenological consequences,
as the production of a large amount of primordial black-holes and gravitational
waves. In order to give a quantitative description of these phenomena we should
develop a non-perturbative description of this system. This may be done in future
works, following the evolution of the system at least for few e-folding, using lattice
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simulations or full numerical GR tools. Another important goal would be to give
an embedding of this model in string theory. Since it is well known that single
axion inflation models usually require a trans-Planckian decay constant that has
not be found in controlled string compactifications, we should focus on those con-
structions where the inflaton field is given by a combination of axions that enjoy
an effective trans-Planckian decay constant [109, 112, 110].

Let me conclude by stressing that the major aim of string cosmology (and of
high energy physics in general) is to provide a class of string compactifications (or
models) that can predict a viable inflationary dynamics with the right couplings
between different sectors, so that it can successfully reproduce standard Big Bang
cosmology, and therefore the SM degrees of freedom, at low energy. This problem
could be faced in different ways, also using the EFT approach, and leads to many
different models that share some features (in order to match the experimental con-
straints coming from inflation), but rely on different constructions. Indeed, the
lack of new experimental results in high energy physics, together with the end of
LHC run 2 without supersymmetric particles detection, leaves a lot of freedom
in model building. Fortunately, new experimental constraints will come from cos-
mological observations. Indeed, the large-scale structure and the evolution of the
universe has in the last few years entered a qualitatively new phase, driven by a
host of experimental results. In particular, results from CMB studies, collected
by COBE [319], WMAP [320] and the Planck Collaboration [10, 8|, and grav-
itational wave data, collected by ground-based interferometers, e.g. LIGO and
VIRGO [321], will be combined in the next years with results coming from future
precision experiment, e.g. LISA interferometer [279] and Euclid satellite [322].
These experiments together will be able to span a wide range of redshift data,
constraining the nature of dark energy, dark matter, probing also the electroweak
scale and providing severe constraints on inflationary models [323, 324]. I therefore
think that, precisely because there are many different paths to follow, theoretical
efforts must be made in order to give experimentalists clear and precise predictions
coming from different models. As a theorist T believe that whatever effective field
theory of primordial cosmology should have a UV embedding in order to be con-
sidered complete. This is the reason why, during my PhD, I focused my research
on effective theories coming from strings.



Appendix A

Another example of global
embedding with chiral matter

A.1 Another chiral global example

A.1.1 Toric data

Let us consider the following toric data for a CY threefold with ! = 4 which
is a K3-fibration over a P! base along with a so-called ‘small’ divisor:

T i) T3 Ty Ty T T T
81 0 0 0 1 1 1 1 4
61 0 0 1 0 1 0 1 3
6 0 1 0 0 0 1 1 3
41 1 0 0 0 0 0 1 2

dP; NdP;; NdP;; dP; K3 K3 SD1 SD2

with Hodge numbers (h*!, h™') = (106,4) and Euler number y = —204. The
Stanley-Reisner ideal is:

SR = {z124, 2127, T3T5, T4T5, Tol3Ty, ToTels, T4TeTs} -

This corresponds to the CY threefold used in [325] to build global models with
chiral matter on D7-branes and K&dhler moduli stabilisation but without any in-
flationary dynamics. A detailed divisor analysis using cohomCalg [149, 150] shows
that the divisor D, is a del Pezzo dP; which we find to be shrinkable after in-
vestigating the CY volume form. Further, each of the divisors {Ds, D3} are non-
diagonal del Pezzo surfaces and {Dj, Dg} are two K3 surfaces while the divisors
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{D,, Dg} are two ‘special deformation’ divisors with Hodge diamond:

1 1
0 0 0 0
SD1= 3 38 3 and SD2 = 25 172 25
0 0 0 0
1 1

The intersection form in the basis of smooth divisors {D, D4, D5, Dg} can be
written as:

I3 =2D, D5 Ds— 2D} Ds —2D; Dg + 2D} +4D3 . (A1)

Writing the Kéahler form in the above basis of divisors as J = t; Dy + t4, Dy +
ts D5 + tg Dg and using the intersection polynomial (A.1), the CY overall volume

takes the form: ,

B2
V=2t1t5t6—t§t5—t§t6+§4+gti’. (A.2)

In order to express V in terms of four-cycle moduli, we need to know the Kéhler
cone conditions which can be determined from the following Kéhler cone genera-
tors:

Ky=Dy+Ds+Dgs, Ky=Dy—Ds+ D5+ Dg, K3=Ds5, Ky=Dgs. (A.3)

Expanding the Kéhler form J in these Kahler cone generators as J = Zle r; K;
results in the following conditions for the two-cycle moduli:

T1:t1+t4>07 T’Qz—t4>0, T3:t5—t1>0, 7”4:t6—t1>0.
(A.4)
Using the four-cycle moduli, 7; = 9V, given by:

m=20s—t)(ts—t), T=t;, T5=t(2ts—t1), T¢=1t1(2t5—1t1), (A.5)
the overall volume can be rewritten as:
Y = % (t17'1 + t575 + teTe — Tf/2> ) (A.6)
The second Chern class of the CY threefold X is instead given by:
co(X) =2D¢Dg +8 Dy Dg —2 D% — 4 Dg Dy — 12 D2, (A7)
which results in the following values of the topological quantities I1;’s:

Hl = 4, H2 = H3 == 16, H4 == 8, H5 == Hﬁ == 247 H7 == 44, Hg == 136
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The intersection curves between two coordinate divisors are given in Tab. A.l
while their volumes are listed in Tab. A.2.

Di| D Ds | D,| Ds]| Dg| D | Ds
Dl C | P! P' | g | PP | &g | T2
Dy | PP LUP | PIUP | T2 T2 | & | P | Gy
Dy | PIPLUP | PPUP | T2 | @ | T2 | P G
D, g | T2 ™ |G| @ |g|T|Cc
Ds | Pt | T2 g |glg T c | c
D | P| o ™ | g |T|g|C|
Dl og| P P! | T2 C | Cy | Cy | Cuo
Dg || T? Cs Cs Cs | Cy | Cy | Cig | Cgy

Table A.1: Intersection curves of two coordinate divisors. Here C, denotes a curve
with Hodge numbers h%? = 1 and h'" = g¢.

D, Dy D3 Dy Ds Dg Dy Dy
Dy || 4ty — 2(ts5 + t6) 2(t5 —t1) 2(tg — t1) 0 2(te —t1) | 2(ts —t1) 0 2(t5 + tg) — 4t
D, 2(ts —t1) 2, 2(t + tg) —2ty 2t 0 2(ts + ty) 2(ty + 2ty + 2t5)
Dy 2(te —t1) 2(ty + t4) 2ty —2ty 0 2ty 2(te + t4) 2(ty + 2ty + 2tg)
D, 0 —2ty —2ty 2, 0 0 —2t —4ty
Ds 2(te —t1) 2t 0 0 0 2t 2y 2(2t6 +t1)
Dy 2(ts —t1) 0 2t 0 2t 0 2t 2(2t5 +t1)
D; 0 2(ts5 + t4) 2(t + ta) —24 2 25 2ty + t5 + ) Aty + 6(ts + tg)
Dg || 2(t5 + tg) — 411 | 2(t1 + 2tg + 2t5) | 2(t1 + 24 + 2t6) | —4ty | 22t + 1) | 2(2t5 + t1) | 4ts + 6(ts + t6) | 4[t1 + 2ts + 4(ts5 + t6)]

Table A.2: Volumes of intersection curves between two coordinate divisors.

A.1.2 Orientifold involution

We focus on orientifold involutions of the form o : z; —» —x; with ¢ = 1,...,8
which feature an O7-plane on D; and O3-planes at the fixed points listed in Tab.
A.3. The effective non-trivial fixed point set in Tab. A.3 has been obtained after
taking care of the SR ideal symmetry. Moreover, the total number of O3-planes
Nos is obtained from the triple intersections restricted to the CY hypersurface,
while the effective Euler number y.g has been computed as:

et = X(X) + 2 L[O?] A [07] A [07]. (A.8)

In what follows we shall focus on the orientifold involution ¢ : z7 — —x7; which
features two non-intersecting O7-planes located in D; and D; and two O3-planes
at {D2D3D4} .
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o o7 03 Nos X(O7) | Xet
r1 — —I1 D1 [ D7 {D2D3D4} 2 54 -192
2y — —x3 | Dy | {D1DgDs, DsDyD7, DgD7Ds} | {2, 2, 6} 14 | -208
w3 —> —x3 | Dy | {D1DsDs, DyDy4D7, DsD;Ds} | {2, 2, 6} 14 | -208
Ty — —T4 D4 {D1D2D3, D1D5D6, {2, 2, 47 47 2 } 10 -200

Dy DsDs, D3DgDg, D5 Dg D7}

Ty — —Tp D5 {DngDg, D3D7D8, D2D4D8} {27 27 4} 24 -204
Tg —> —Tg D@ {DngDg, D2D7D8, D3D4D8} {2, 2, 4} 24 -204
Ty — —X7 D1 [ D7 {D2D3D4} 2 54 -192
T — —Tg Dy o 0 224 | -28

Table A.3: Fixed point set for the involutions which are reflections of the eight
coordinates x; with 2 =1, ..., 8.

A.1.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes
on top of the O7-plane, the string loop corrections to the scalar potential involve
only KK effects since winding contributions are absent due to the absence of any
intersection between D7-branes and/or O7-planes. Thus loop effects are too simple
to generate a viable inflationary plateau. We shall therefore focus on a slightly
more complicate D7-brane setup which gives rise also to winding loop effects. This
can be achieved by placing D7-branes not entirely on top of the O7-plane as follows:

8[07] = 8([D1] + [D7]) = 8 (2[D1] + [D2] + [D5]) - (A.9)

This brane setup involves three stacks of D7-branes wrapped around the divisors
Dy, Dy and Ds5. Moreover, the condition for D3-tadpole cancellation becomes:

=14,
48

Noux N 07 N, (x(D,) + y(D!,
s = N0 XOT) 5 Na0(D0) £ 2

Nog + 4 12

showing that there is space for turning on both gauge and background three-form
fluxes for complex structure and dilaton stabilisation.
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A.1.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping Dy,
Dy and D5 we need to turn on worldvolume gauge fluxes of the form:

hl,l
. 1~
.E = Z fiij + §Dz — L*DZB with fij €Z and 1= ]_, 2, 5, (AlO)
Jj=1

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[51, 52].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term
in order to fix only one Ké&hler modulus via D-term stabilisation. In fact, if the
number of Fl-terms is larger than one, there is no light Kdhler modulus which
can play the role of the inflaton. Moreover we wrap a D3-brane instanton on
the rigid divisor D, in order to generate a non-perturbative contribution to the
superpotential which is crucial for LVS moduli stabilisation. In order to cancel the
Freed-Witten anomaly, the D3-instanton has to support a half-integer flux, and so
the general expression of the total gauge flux on D, becomes:

hl"l
~ 1~
.F4 = Z f4ij + §D4 — [’*DzB with f4j eZ. (All)
j=1

However a non-vanishing F, would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-field which can simultaneously
set F1 = Fo = 0 (we choose to have a non-vanishing gauge flux only on Dj to have
just one moduli-dependent Fl-term) and F; = 0. If we set:

1. 1. 1.
B = 5D1 + §D2 + §D4, (A.12)

the condition F; = F, = F; = 0 reduces to the requirement that the following
forms are integer:

1 . 1 - 1. 1 - 1 4 1.
LEl (§D2 + §D4) LBQ (§D1 + §D4) L*D4 (§D1 + §D2> , (A.13)

since in this case the integer flux quanta f;; can always be adjusted to yield van-
ishing gauge fluxes. Taking an arbitrary integer form A € H?*(Z, X) which can be
expanded as A = a;D; with a; € Z, the pullbacks in (A.13) give rise to integer
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forms if:

by

it

1~ A A
b4 J (—D1+—D2) /\D4/\A€Z
X

If
b
N

N — N~
MU>

+

|

-

Ny
N———

>

S

>

s

m

N

D1+—l§4)/\f72/\AeZ

Using the intersection polynomial (A.1) we find by = a5 —ay € Z, by =b; —as € Z
and by = —ay € Z, showing how the choice of B-field in (A.12) can indeed allow for
Fi1 = Fo = F4 = 0. The only non-zero gauge flux is F5 which does not feature any
half-integer contribution since ¢1(D5) = 0 given that Ds is a K3 surface. Given
that all the intersection numbers are even, the pullback of the B-field on D5 does
also not generate an half-integer flux. We shall therefore consider a non-vanishing
gauge flux on the worldvolume of Dj of the form:

hl,l

F5 = Z f5jbj with f5j eZ. (A14)
j=1

A.1.5 FI-term and chirality

Given that the divisor Dy is transversely invariant under the orientifold involu-
tion and it is wrapped by four D7-branes, it supports an Sp(8) gauge group which
is broken down to U(4) = SU(4) x U(1) by a non-zero flux F; along the diagonal
U(1). This non-trivial gauge flux F5 induces also a U(1)-charge ¢;5 for the i-th
Kahler modulus of the form:

Gis = J DinDsAFs. (A.15)
X
Thus F5 # 0 yields:

q15 = 2(fs6 — f51) a5 = G55 = 0 G5 = 2 [51 (A.16)

together with a flux-dependent correction to the gauge kinetic function which looks
like:

4
Re(fs) = a;' = 9_7; = 75 — h(F5)Re(S), (A.17)
5
where: ' X
h(Fs) = B D5 ANFs ANFs= B (fs1q15 + f5665) - (A.18)
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Moreover a non-vanishing gauge flux F; induces a moduli-dependent FI-term of
the form:

hl’l
1

. 1 1
62WJXDBAJAF5:m;%’Btj:_(qmtl"i‘QGBtﬁ)' (A.19)

47y

For vanishing open string VEVs (induced for example by non-tachyonic scalar
masses), a leading-order supersymmetric stabilisation requires ¢ = 0 which implies:

t6:—qﬁt1: (1—@) thh=ot;. (AQO)
de65 f51

This U(1) factor becomes massive via the Stiickelberg mechanism and develops
an O(Mjs) mass by eating up a linear combination of an open and a closed string
axion which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
Fl-terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on D5 and the O7-planes
or the image branes give rise to the following zero-modes in the symmetric and
antisymmetric representations of U(4):

1 ~ A A
[és) - ——J Ds A [OT] A Fs —f Ds A Ds A Fs = — (915 + @) (A.21)
2 X X 2

1 . . .
I = 5] Ds A [O7] A Fs — J Ds A Ds A Fs = -1 (A.22)
X X

Due to the absence of worldvolume fluxes on the D7-branes wrapped around
D; and Dy, the gauge groups supported by these two D7-stacks are respectively
SO(16) (since Dy is an OT7-locus) and Sp(8) (since Dy is transversely invariant)
which are both unbroken. Thus open strings stretched between the D7-branes on
Ds and D; (or its image brane) give rise to chiral zero-modes in the bi-fundamental
representation (4,16) of U(4) and SO(16) whose number is:

[51:f D5Aﬁ1Af5:ql5. (A23)
X

On the other hand, the number of 4D chiral zero-modes in the bi-fundamental
representation (4,8) of U(4) and Sp(8) (corresponding to open strings stretching
between the D7s on D5 and Ds) is:

I52 = f Dg, N DQ A .F5 = (g5 - (A24)
X
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We need finally to check that there are no chiral intersections between the D7s on
Dy and the instanton on D, to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured by the fact
that:

I54=JE5Aﬁ4AF5=0. (A25)
X

A.1.6 Inflationary potential

Using the D-term fixing relation (A.20), the Kédhler cone conditions (A.4) sim-
plify to t5 > t; > —t, > 0 and a > 1. Moreover the CY volume (A.6) reduces

to:
2 2 3 t:}l 1 3/2
V=(2Oé—1)t5t1— Oé—g t1+§:tb7_f_§7—4 . (A26)

Given that this form is linear in t5, the effective CY volume after D-term stabili-
sation looks like a K3 fibre 7 over a P! base ¢, whose volumes are given by:

2
a—2
Tr=7= (o —1)# and 1, =15 — ﬁtl : (A.27)

Notice that the Kéhler cone condition ¢5 > t; can be rewritten as:
7 < oa) V3, (A.28)

where:

3
Ja—1

2/3

o(a) = (2a—1) ( ) with a > 1. (A.29)
In terms of the canonically normalised inflaton shifted from its minimum, the
condition (A.28) reads:

T = {T¢) e29V3 ~ 52/ = gg < \/7§ In (% V2/3) . (A.30)
Tf

Let us now focus on the inflationary potential. The winding loop corrections look
like (with k = g,/(87) for efe= = 1):

2
P31 a

K >
gs V3 =
where:

W
Cy = V2a—1 <C§V + %) . (A.32)
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On the other hand, the KK loop corrections read (neglecting 74-dependent terms
which yield subdominant contributions):

W2
VEK = /iggv—g > CFRCFRK; . (A.33)
i,j=1,5,6
After substituting tg¢ = at;, we obtain:

02
ZV2ZCZKKCJKKKZ] = (lt% + Cgt5 (t5 - tl) - (1 - Z) (bt% + Ct1t5 + 75t§> 3

1,

where:
B Cs o o 1
a = 01(01+C5+06)+C5 06+7 +C6 OZ—OZ"FE
a? C?
b = 040106—1—7062—1—71 c=C5(Cy + aCs),
and:

2 Ty 3/2
Z=1- ( ) .
3a—1 \g V23

Notice that the Kéhler cone conditions 7; < ¢ V*3 and o > 1 imply 0 < Z < 1.
This guarantees the absence of any singularity in the Kéahler metric. Expressing
the scalar potential in terms of the 4-cycle moduli, we end up with:

wg [z 2 I 7}
VEK — g2 20 [ 25 5 yqdqL(1-n-t- A.34
Js K/gS ZVQ TJ% 3 (20é _ 1)3/2 Vﬁ VZ ) ( )

where h = u/d with:

a 2 ¢ C? (2 a 2)

d - —_— = 2— 3 o — — — =

20=1) 3@2a-1)° (2a—1) 39
woo 2 2c (a=F) G2 (a-i)
32a -1 3 2a-1"* 3 (Qa-1)"*

If all the coefficients of the KK corrections take natural O(1) values, the term in
(A.34) proportional to h is suppressed by h « 1, and so it can be safely neglected.

On the other hand, higher derivative o® F'* corrections take the form (neglect-
ing the t4-dependent term and setting tg = aty):

2 AWy

VF4 = —4k
92/2]/4

[(60& + 1)t1 + 6t5] s (A35)
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which in terms of four-cycle moduli looks like:

VF4 = —4/412

AWE [1202 + 20— 5 %
o0—|. A.36
Py l @a—1 VT rf] (4.36)

Therefore the total inflationary potential becomes:

|/]/2 Al A2 A3 Bl AT B2 Tf
V=VWVltVEE L Vo = p—0 | = — A.37
s T Vot TVRCZ R (r]%JrVrf N VRV - (A.37)

where (with A = —|A| < 0):

2 2 2 2
9s 2 3 AW 9s 2G5
A — Z2 A = — A: = _—_—,— A.
1 7 C(5 2 - ,—gs 3 CW + 7 3 (2@ _ 1)3/2 CW ( 38)
and: 1202 + 2 5} 2d
o + 2o — g
B, = A By = 22—, A.39
YT 6(2a—1)32 7 Tz (4.39)

The potential (A.37) could support single-field slow-roll inflation driven by 7
[101, 103]. In order to get enough efoldings before hitting the walls of the Kéhler
cone given in (A.30), we need to focus on the region in field space where the inflaton
minimum is of order (7;) « V¥3. Numerical estimates show that we need values
of order {77y ~ O(1) and V ~ O(10*) which, in turn, imply Wy ~ O(100) in order
to match the observed amplitude of the density perturbations. For g, < O(0.1),
|A| ~ O(107?) and natural O(1) values of the coefficients of the string loop effects,
the terms in (A.37) proportional to By and By are both negligible with respect to
the first three terms in the vicinity of the minimum where 7; ~ O(1) « V3.

The scalar potential (A.37) written in terms of the canonically normalised
inflaton ¢ = (¢) + ¢ looks like (with k = 2/4/3):

A W2 . ) . b ,
=K <Tfl>—252 (C’ds +e R L\ ZeTh - N7 e + R Z es + Ro ek¢> ,

(A.40)
where we added a constant Cis = \oZ — A\ Z—1—R;Z— R4 to obtain a Minkowski
(or slightly dS) vacuum and:

3 |A W5 (71)*? Cw
AL = ~ 1-1 Ay = —_~ 1—-1
1 w02 Py O( 0) 2 cZ 2y O( 0),
while:
1202 Q0 — 3/2 3
R = o + 20 — 5 M (ry) «1 R2—<Tf> d «1.

6(2a —1)32 Y Sz



A.1. ANOTHER CHIRAL GLOBAL EXAMPLE 263

The three negative exponentials in (A.40) compete to give a minimum at (ry) ~
O(1) while the two positive exponentials cause a steepening behaviour at large (;%

In this section we shall not present a detailed quantitative analysis of inflation.
We however point out that, if the approximated expression (A.30) is correct, in
this case the Kahler cone bounds seem to be more constraining than in the case
discussed in the main text since the inflaton direction 7; is bounded by V?/3 instead
of V/,/7s. Thus a viable inflationary dynamics in this case would require a more
severe tuning of the underlying parameters and a better understanding of the
validity of our effective field theory approach.
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Appendix B

Cosmological perturbations in
curved field space

B.1 Note on first order gauge invariance for non
trivial scalar manifolds

The Lagrangian of a generic non-linear sigma model is:

£/+/1g] = %Gij(wk)%wi&“% —V(ew), (B.1)

Here we choose a diagonal metric in the N-dimensional field space G;;(px) =
Gi(pr)dij. Let us also arbitrarily decompose the potential V(pg) = >, VO (py).
Let us split the fields in background and fluctuation components p;(x#) = ¢;(x°) +

The background evolution in a FLRW space-time with scale factor a such that
H = a/a is given by (not using the covariant description in field space)

Gidi + 3HG¢: + Y. Gijhidh; — 5 Y1Gd+ >V =0. (B.2)
J J J

Let us define the background density and pressure components of the system
as
1 12 (4)
poi = §Gi¢@' + V¥,

1 . .
P = 5Giof -V, (B.3)

which sum up to the total quantities py = >, po; and Py = >, F;.

265
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Using the EOM (B.2) one finds

/30¢ = Z Gz ]¢]¢2 + Gz¢z¢z + Z V l)¢j
= _3HGZ¢Z2 Z Gz j¢j¢2 Z Gj Z¢2¢z + Z ( ¢Z>( )

Then one can trivially verify

po = ZPOZ = _SHG2¢22 = _SH(pO + Pg) (B5)
Moving to the density fluctuations we can write
. 1 oo . ;
opi = —OGi; + 5 DG 0200 + Gigid; + Y. V6, (B.6)
J J

Let us consider a gauge transformation, induced by a change of reference frame
at — t =zt + £*. A change in the time component gives at linear order

00 = 66 — 68’ =0 =0+ H, (B.7)
where @ and ¥ are the two metric scalar fluctuations with no derivatives in ggo

and g;;, respectively.
The change in the density fluctuations goes as follow

0pr = —0Gid} + %Z Gy 0700 + Gz¢z(5$z + Z V,§”<5d5j
= _((I)_g z¢2 Z Gz ]¢2 5¢] ¢]£0) + Gz¢z(5¢z ¢ 60 ¢150XB 8)
+)) V§i)(5¢j—¢j€0)
J

= 0p; — 50/'501' ) (B-9)

where again the EOM (B.2) have been used.
Therefore one can construct N distinct gauge invariant variables

0pi
G=-—0— g (B.10)
pOz
as well as N(]gfl) relative entropy gauge invariant perturbations
(sz 5/0 ]
=306 - ) = -3t (2 -3 (B.11)
Poi Poj
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B.2 Perturbation theory in curved field space
Let us start by considering the most generic perturbed line element
ds® = —(1 + 2®)dt* + 2aB;dtdz" + a® [(1 — 2W)8;; + Ey;] da'da’ . (B.12)
Combining metric perturbations with scalar fields perturbations
P = % + 6° (B.13)

we can compute the perturbed Einstein equations as (using natural units, i.e.
M, =1):

oG, =0T}, . (B.14)
Considering a curved field space, we list the resulting equations in the following

lines. In order to simplify the notation we will refer to background quantities ¢
simply as ¢. The (0,0) component of Eq. (B.14) gives

0 Orr B - 1
<6H5t - 2%‘“) U+ 2H 22 4 (6H2 - ¢A¢A)  — o5 Ok it
a a
A A . B 1 AR c (B15)
+V400" + ¢"Gapdop + §¢ ¢°Gapcop” =0.
From component (i,0) we get
. 1. . :
20,V + 2Ho;® + §ajEZ-j — ¢ G000 = 0. (B.16)
The spatial components (7, j) in case of ¢ # j give rise to
0;:0;,¥  0;0;® Oy 3 Okk O Ei,
- — +-Ho,— — | E;; J
a? az < o T g )t o (B.17)
Oy, 1 '
+ 2&2 —a(ﬁt—i—ZH)@”B:O,
while if + = 7 we find
60y —2— + 18HO; | U + — (0 + 2H) O B+
a a
s a TA 1 Oy B
2% L 6H, + 6H? + 122 + 3¢, | & — = LT (B.18)
a? a 2 a?

+3 (VA5¢A - &ZSAQBBGAB - QZ‘)AQ.SBGAB,CégbC) =0.
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In what follows we use the spatially flat gauge, £ = ¥ = 0, that represents the
more convenient setup for computing inflationary perturbations.

After two spatial integrations and fixing arbitrary integration functions of time
to zero, the component (i, j) with ¢ # j reduces to

®+2iB+aB =0. (B.19)

After one spatial integration, component (0,7) becomes
HO = %g'baaqﬁa. (B.20)
Finally, the component (0,0) is given by
60 (2)° + 24 B = $dad™ — dadd — 16°670,Gapdd” — Vado® (B.21)
and, making use of the previous equations, becomes:

N . . ﬁ
aZaTZB _ 1 [(¢) ¢5 _ 3H¢5 - -Gpaﬁghpgb” Vg] S — ﬁ@iaqﬁ ) (B.22)

Working in the spatially flat gauge, the Mukhanov-Sasaki variables coincide with

field perturbations:

and the Klein-Gordon equation for perturbatlons is given by

DDQ* — 82Q + 3HD,Q” + [ v BEF 4 GV,

= 5¢° (B.23)

: . . (B.24)
4 (V£ Vad?) + dad (3 ) | @° -

where D, X = 0, X* +T'1. X b(ﬁc and Vg = Vig — FfaVﬁ are referred to covariant
derivatives and R, is the Riemann tensor related to the field space. This is the

well-known gauge invariant equation for field perturbations [182].

B.2.1 Two inequivalent quantisations

We then move to the quantisation of the perturbation modes. Given that
neither the mass matrix, nor the kinetic terms of Eq. (B.24) are diagonal, we
need to find a way to perform canonical quantisation. Two different approaches
are widely spread in the literature but they do not lead to the same results. We
call them field basis method (see e.g. [195]) and kinetic basis method (see e.g.
[193]), since the main difference between these two approaches is the moment in
which perturbations are projected into normal and tangent components to the
background inflationary trajectory. Another important difference is given by the
normalisation conditions, i.e. the choice of field perturbations that should be
initialised to a BD vacuum.
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Field basis method To use this method we first need to define an independent
set of canonical creation-annihilation operators a, that satisfies

[aa(K), ast(P)] = (27)*00sd(k —p), a=1,...,N. (B.25)

The number of operators is equal to the dimensionality of the field space. After
that we expand each mode QQ® on this basis:

Qa(kv t) = Qaﬁ(k> t) dﬂ(k) )

. N . (B.26)
Q' (k,t) = Q¥P*(k, 1) d'ﬁ(k) :
The equations of motion for the new modes Q“7 are given by:
DG = S Q7 + BHD Q™ + | Ry, 097 + GVipg
: . o N~ (B.27)
(Ve + Vad®) + e (3 Sh) [ Q = 0.
Rephrasing the previous equations in terms of
v = aQ? (B.28)
we get
"
D, D™ + (k2 - a—> v+ ME =0, (B.29)
a
where 7 denotes conformal time, i.e. d7 = adt, and
Mg =a® [2H?€R%,,TPT7 + G Virg + V2e(TL VY + Vo T¥)
(B.30)

+2¢H?*(3 — €)T,T%] .

Finding the perturbation spectrum requires to set the initial conditions in Eq.(B.30).
We set BD conditions for ()*7 in the far past. This implies that we need to choose
the basis such that Q“7 are originally diagonal in the far past and the mode matrix
satisfies

d>v .
o T kv = 0. (B.31)
We can then safely set
lim v (k,7) = 5‘”—76_“". (B.32)
T——00 ’ A/ 2k

Finding a solution for field perturbations allows us to compute the power spectrum

tensor as
/{33
af _

2722

v (k, N)v**(k, N) . (B.33)
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In order to define the comoving curvature and isocurvature power spectra, we need
to define a set of tangent and normal projectors onto the background trajectory.
In a two-field system we get

1 -
T = qua, N, T*=0, N,N®=1, (B.34)

where |¢| = «/Gaﬁéaéﬁ. Since we are considering a 2-dimensional field space,
these projectors are related to the field space metric as follows

G*? = TT? + N*N”. (B.35)

The curvature perturbation on comoving hypersurfaces R and the isocurvature
perturbations S are related to the field perturbations as

H_ . H A
R == —.TaQa, 8 = — Qa . (B36)
9| [al
Then, the adiabatic curvature power spectrum Px can be found projectiong P
along the tangent vector T, as

1
Pr = 2—TQT577‘“5. (B.37)

€
On the other hand, the isocurvature power spectrum Pgs arises from the projection
of P*% along the normal direction to the inflationary background trajectory, N,,

as
1
Ps = Q_NaNBPaﬁ~ (B.38)
€

Kinetic basis method An alternative way to treat perturbations in multi-field
inflationary models is to perform from the very beginning a field rotation into an
adiabatic field, o and isocurvature fields s;. In case of a 2-field system, these are
defined as

0o =T,00%, 0s = Noo¢~ . (B.39)

The relation between the covariant derivatives of 7% and N is given by

DT DNe®
— _Hn, N°
dt LA dt

= Hn, T® (B.40)

where DX®/dt = d/dt + FgWXﬁgz'W and 7, = % Starting form Eq. (B.24) and
using the previous relations, we can easily find the equations of motion for do and
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ds. We write these equations in terms of v/ = aQ! = {v°, v*} where Q = {d0, is}
and 7 =1,2:

07+ 200% — (207 + 0+ Qost® + (g + K207 =0,

v — QCUUI — %0 = (7 + Q07 + (kQ + Qg )v* =0, (B.41)
where ' = d/dr and

Qoo = —a® H*(2 + 2¢ = 3 + &) — deny + 26" — 1),

Qs = —a?H*(2 — €) + a*(Vigs + H?*R) (B.42)

Qs = aQHQnL(?)—i-e—QnH —£1).

Again, we need to define a normal set of creation and annihilation operators such
that

[aa(k),a}(p)] = (21)*dapd(k —P), @, f =12 (B.43)

so that we can expand density and isocurvature perturbations as:

vi(k, 1) = 0"k, 7) Ga (k) (B.44)
where /¢ = {(v7)%, (v*)*}. We set the BD initial conditions as
: 01
lim o9k, 7)= —=
Jim vk, 7) = o

The power spectrum related to tangent and normal perturbations is then given by

e~ (B.45)

k?3

2722

yad o™ (k, N)o*7 (k, N). (B.46)

Given that the renormalised curvature and entropy perturbations are

Ry = Eéa Sk = 2.(58, (B.47)
[l [al

the comoving density and the isocurvature power spectra can be written as

1 1
Prk,7) = 2—€P°U(k, 7), Psk,T) = 2—67355(k, 7). (B.48)
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Different Normalisations We can easily compare the BD normalisation pro-
cedure used in the two methods. The relation between the perturbation variables
is given by

v =T + N%*, (B.49)

from which we can conclude that
[0 = v 0™ = (v7)?2 + (v¥)?,. (B.50)

Nevertheless, expanding the two basis on the same set of orthogonal creation and
annihilation operators we get:

v = TP + Ny . (B.51)

The first approach requires that

Oa . .
lim [0k, 7)) = =2 = lim [k, 7)| = lim [k, 7)| =
oo

T——00 m T——®0 T——

while the second approach implies

5 1

lim [0k, 1) = 22 - i Nk, r)| = i N2k, 7)| = — .

T_I)IEIOO|U (k, )| oY T}P@KU ) (k, 7)) T_I)IPOOKU) (k, 7)| 2k
(B.53)

The discrepancy between the different normalisation prescriptions becomes ap-
parent when the tangent and normal vector components become dynamically ill-
defined, i.e. they tend to zero or explode to infinity. This is precisely what happens
in the 2-field system that we analyse in Sec. 4.6.3. Here We focus for simplicity
on the right-left fibre inflation case where the #; massless axion induces the ge-
ometrical instability of the system. in this case the tangent and normal vector
asymptotically behave as

T° = {al,%} —{1,0}, N°= {—042,%} - {o, %} (B.54)

so that we find the following relation between perturbations in the two different

schemes .
v >, V¢ — 02, (B.55)

It is immediate to find out that the two approaches are not equivalent as

22
2] # |(09)?] = |2

- (B.56)
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Figure B.1: Power spectra behaviour of the right-left Fibre inflation model pre-
sented in Sec. 4.6.3 in case of massless #; axion. We compare the results coming
from the two methods presented in this appendix. Left plot is referred to the power
spectrum of density perturbations, right plot contains the results of the isocurva-
ture power spectrum. Orange lines are related to the field basis (fb) method
while blue lines come from the kinetic basis (T'N) method. We also numerically
checked the relation in Eq. (B.56): Ps () = f?(N;)Psry) where N; is the initial
simulation time where we set Bunch-Davies conditions.

Indeed, studying perturbations using the two methods in case of FI leads to the
results presented in Figure B.1 where we see that, while the results on Px coincide,
those ones related to Ps differ by many orders of magnitude. Indeed, despite the
evolution of the isocurvature power spectrum is very similar in the two approaches,
the different choice of initial conditions leads to very huge discrepancies in case of
"ill-defined" tangent and normal projectors.

Entropy from non-adiabatic pressure

Considering the system described by Eq. (B.1), we can write down the total
background energy and pressure as

p = 50ud" + V(0), (B.57
P = 20ud" ~ V(). (B.5%)

Computing cosmological perturbations as described in Appendix B.2 and using the
spatially flat gauge, &' = ¥ = 0, we can write down energy density and pressure
perturbations

.o coea 1. .
6p = =0T = —DPad™ + Pudd + §¢“¢ﬁagGa55¢U + V00, (B.59)
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. .o T
0P =0T = = D¢ + 900 + §gba¢ﬂé‘aGa55¢” — V00~ . (B.60)
The adiabatic sound speed, given by ¢? = E, takes the following form:
2 Voo
c —1+—V¢ (B.61)
3H ¢ ¢

and the non-adiabatic pressure, 0P q = 0P — c2dp, is given by

— a Vad a a o a
OPad = —2Vad0® + HRL | 96,07 — o0 — L6090,Gapde” — Vade® |
(B.62)
Using Eq. (B.20) and considering the number of e-foldings as time variable, the
previous equation can be written as:

5Paad = fal0,0)00° + 9a(6.0)56" (B.63)
where ' = d/dN and
fol@, @) = | =2Va + 55 (e, — 36760, Cr — 32 |
6a(0, &) = ~55 .

(B.64)

The entropy perturbation coming from non-adiabatic pressure is defined to be:
1
Snad = ﬁapnad (B65)

where the pressure time derivative of the system is given by
P' = — (3H?*Gopg" 9" + 2V3¢") . (B.66)

We can finally compute the power spectrum of non-adiabatic entropy perturbations
as 2
Psnad = 27?2(P')2 <faQaﬁ + gaQ,aﬁ> <f7Q*%B + 97@1*76> ) (B~67)
where we made use of Eq. (B.26).
Moreover, giving the following equations that link field perturbations with the
tangent and normal projectors

QY =T%o0 + N%s,
QY = %60 + 10’ + %58 + NS,
(B.68)

N =~ — g, 0T

dNe _ |V T"‘
dN N %FQVN/BTW J



B.2. PERTURBATION THEORY IN CURVED FIELD SPACE

we can write S,,,q as a function of perturbations in the kinetic basis

_ 1 \% € \% / Vnos
Snad—m[w (1+ 5 — 5) 00 + oo’ | + Jeke,

where Vp =V, T and Vy = V,N°.

275

(B.69)
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Appendix C

Detailed computations on 3.55 keV
line

C.1 Closed string axion decay constants

In type IIB string compactifications on Calabi-Yau orientifolds axion-like par-
ticles emerge in the low-energy N = 1 effective field theory from the dimensional
reduction of the Ramond-Ramond forms C), with p = 2,4. The Kaluza-Klein
decomposition under the orientifold projection of these forms is given by [35]:

Cy=c=(x)D;. and Cy = ¢;, (x) D +Q% (2) AD;, +V ¥ (2) Ay, Vi, (£) AB™

where iz = 1,...,hy', ay = 1,...,h%? D' is a basis of H>* dual to the (1,1)-forms
D;. and (@, , 37*) is a real, symplectic basis of H? = H}r’2 @ Hi’l.

As explained in Sec. 5.5.1, in our model the orientifold-odd axions ¢; , if
present, are eaten up by anomalous U(1)’s in the process of anomaly cancellation.
We shall therefore focus on the case with A"!' = 0 where the Kihler moduli take
the simple expression Tj = 7; + i¢; with i = 1,..., A" = pbL.

The coupling of orientifold-even closed string axions to F' A F' can be derived
from the Kaluza-Klein reduction of the Chern-Simons term of the D-brane ac-
tion. Moreover, the periods of the canonically unnormalised axions ¢; are integer
multiples of M, and their kinetic terms read [76]:

iy

1
Liin = Kijauciaucj = g Up 5;&;5“02’ (C-l)

where the ¢}’s are the axions which diagonalise the K&hler metric K;; and », are
its eigenvalues. A proper canonical normalisation of the kinetic terms can then be
easily obtained by defining:

1 1 1
g ﬁiaMC;aMC; = 5 ﬁuaiﬁﬂai with a; = 5 ;i C;, (02)

277
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which shows that the canonically normalised axions a; acquire periods of the form:

2 2 mM

a; = —a; + M, = a; = a; +

Vi Vi 2 "

We can then set the conventional axionic period as:

_ Vit (C.4)

At

(C.3)

a; = a; + 27Tfai with f(lz‘

where f,, is the standard axion decay constant. Closed string axions which prop-
agate in the bulk of the extra dimensions have a decay constant of order the
Kaluza-Klein scale My, ~ p/V2/3, whereas the decay constant of closed string
axions whose corresponding saxion parameterises the volume of localised blow-up

modes is controlled by the string scale M, ~ Mp/\FV:

fo = { M,/7i ~ Mk bulk axion (C5)

MP/W ~ M, local axion

Notice however that the axion coupling to the Abelian gauge bosons living on
the D-brane wrapping the four-cycle whose volume is controlled by the associated
saxion 7, is given by:

2
g;  a;

N~ 1 Qa; N~
(@) prv — v (@) ey )
3271'2 fai m (Z) 3271’2 Tifai i (1) ) (C 6)

since the gauge coupling is set by the saxion as g? = 7;. Hence combining (C.5)
with (C.6) we realise that that the coupling of bulk closed string axions to gauge
bosons is controlled by M ~ 7;f,, ~ M,, in agreement with the fact that moduli
couple to ordinary matter with gravitational strength. On the other hand the
coupling of local closed string axions to gauge bosons is set by the string scale M,
which in LVS models with exponentially large volume can be considerably smaller
than the Planck scale.

C.2 Canonical normalisation

The kinetic terms for all Kdhler moduli and the charged open string modes ¢
and C' can be derived from the total Kahler potential K = Koq + Kmatter, Where
Kioa is given by the three contributions in (5.40) and Kiagter i shown in (5.41)
and (5.42), as follows:

’K
Liin = ——— 0, X:0" X5, C.7
kn = 3o il (C.7)
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where x; denotes an arbitrary scalar field of our model. As can be seen from (5.41),
the D7 open string mode ¢ mixes only with the dilaton S, and so can be easily
written in terms of the corresponding canonically normalised field ¢ as:

¢
7 AR (C.8)

From the first term in (5.40) we also realise that cross-terms between the blow-up
mode 7, and any of the other Kéhler moduli are highly suppressed when evaluated
at the minimum for 7,, ~ 0 (more precisely, as discussed in Sec. 5.5.3, depending
on the level of sequestering of soft masses, we can have either 7,, ~ V7! « 1
or 7,, ~ V3 « 1). Hence it is straightforward to write also 7,, in terms of the
corresponding canonically normalised field ¢, as:

Pq, Tqi -
L _H for 2 = ]_72 C.9
M,y (C.9)

The remaining fields Ty, T, T, and C' mix with each other, leading to a non-trivial

Kéhler metric whose components take the following leading order expressions for
Y~ Alef’ 7> 1

\2/_/\7% _% (/\ Vs + 37)‘27\/??) _T% )‘p\/?p

3 ~ )\s 2>‘p zAp
~ :r)\p Ap
—a VT 7 7
K f(
K _ _
Kpe = @)\p »C, Kee=K

In the large volume limit, different contributions to the kinetic Lagrangian can be
organised in an expansion in 1/V « 1 as follows:

- 4/
Lign = £9W 4 £OVT 4 OV
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where, trading 7T}, for Tp =T, + 2T, we have:

3
o
ol = 172 00" Ty
o1 3 As A o o
Lol = 3V [T (0uTs0"Ts + Oucs0¥'cs) + \/—% (0uTp0"Tp + 0up0"y)
- ﬁjén()\\/ﬁ& Ts + A/ T ')

—4/ 3

Efn(lv R = 4—7_172 ﬁucba“cb .

At leading order the kinetic terms become canonical if 7, is replaced by ¢, defined

as:
n_
— —1 -1
M, 5 nT, (C.10)

whereas .cfiff’_l) becomes diagonal if the small modulus T and the Wilson modulus
T, are substituted by:

¢S . 4/\ 7'3/4 Qg . 3AS c

M, N3y '® M, \ 4V

sz 4/\ P ~3/4 C~LP 3/\77 ~

R i P _ C.11
Mp BV Tp ) Mp 4V 7»:p Cp ) ( )

and the canonical normalisation (C.10) for 7, gets modified by the inclusion of a
subleading mixing with 7, and 7, of the form:

¢” \[mrb \ﬁ— AT 4 072 (C.12)

Finally the kinetic term in nglv_m) are canonically normalised if the bulk axion
cp gets redefined as:
3
& 22 (C.13)
P 2 Ty

The U(1)-charged open string mode C' appears in the kinetic Lagrangian only at
O(|C1*V~2/3) which according to (5.62) and (5.63) can scale as either V=83 or
VY~14/3 This part of the kinetic Lagrangian looks like:

WL | 5, amg %—W'C') (C.14)

) K 2
Lian = KO <|0| o o —Te]
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and becomes diagonal by redefining:

% \/7|C| and Qarp = |é|9 = faALPe'

C.3 Mass matrix

As described in Sec. 5.5.1, the moduli stabilised at tree-level are 7, and |¢|
while the corresponding axions are eaten up by two anomalous U(1)’s. Given that
they fixed at O(1/V?), all these modes develop a mass of order the string scale:

m,

~1m
q; C

™ Mgl ~ My ~ My = 93/4\7 \f (C.15)
On the other hand, 7, 75, 7, and the closed string axion ¢, are stabilised at O(1/V?).
The masses of the corresponding canonically normalised fields derived in App. C.2
are given by the eigenvalues of the mass matrix evaluated at the minimum of the
O(1/V?) scalar potential. The leading order contributions of all the elements of
this 4 x 4 matrix read:

*vo (ﬁ)wﬂ?ﬂ%

OPp0Py, 8w 2y’

rvV_o_ (&) ﬂ Wo 2(27T7-)

agbbﬁgbs 8 \/V 1% o

2V P2V g5\ (Wo)> )
- —4 (&) (20 (9

YTy das0a, (8#) < % ) (277.)"

7 - as(y)

5@@@}7 8/ 4z,7, \ V ’

o2V o ) L) (AL (A
dby00, Oppoas 0. 0¢, Obs0as  dg,daq

The eigenvalues of this mass matrix turn out to be:

W
2 2 0 2 .2 2
m¢s mas =4 (87T) ( V > (27‘—7—5) - m3/2 (1n V) )

2 2
gs\ ™ (Wo 1 LR 9
- (=) == ~ d = 1

(87T> 2zp(v) o7, Sy md me, =0, (CL6)

2
m>
bp

where the gravitino mass is given by:

g W ?
mly, = e |WJP = (§) (7> . (C.17)
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The mass of the canonically normalised large modulus ¢, becomes non-zero once
we include subleading 1/(2775) ~ 1/InV « 1 corrections to the elements of the
mass matrix, and scales as (with ¢ an O(1) numerical coefficient):

2
m? :cATS/z(gs)WOQ Lo M
b S

* \8x/ V3 2rr, VY’

(C.18)

As explained in Sec. 5.5.3, the charged matter field |C] is fixed by soft supersym-
metry breaking contributions to the scalar potential and can acquire a mass of
order mg/g/ﬁ or mg/g/V depending on the level of sequestering. The correspond-
ing phase 0 = a,,p/fa,,, behaves as an open string ALP which develops a mass
of order:

Aba _ Ala
Jorr  |C]

where Apjq is the scale of strong dynamics effects in the hidden sector. In order
to obtain a phenomenologically viable value m,,,, < 107'? eV, we need to have
Ahid < 104 eV if faALP ~ Mz ~ 1010 GeV or Ahid < 1eVif ftlALP ~ mg/g/V ~1
TeV.

The DM axion ¢, is stabilised by tiny poly-instanton corrections at O(1/V3*?).
Using the fact that K;:Tp ~ V4 /T, and the expression (5.64) for the scalar potential
for c,, its mass can be easily estimated as:

(C.19)

Maypp ™

2
M3/

Vp

2 L VR (o) N (&) Wi

msz ~ _
a» TpTp oc? &n/ VY2p

27T, ~ InVy. (C.20)
If the volume is of order V ~ 107, this mass can be around 10 keV if p = 9/2. As
explained in Sec. 5.6.2 this value of p can be accommodated by an appropriate
choice of underlying flux parameters. Finally the axion ¢, of the large modulus
T, = 1, +1ic, can receive a potential only from highly suppressed non-perturbative
contributions to the superpotential of the form W,, > A,e > which can be
shown to lead to a mass for the axion ¢, that scales as:

2 27 y,2/3
gs M, 2/3 v
TTL2 ~ (—) VT% (& ) ~ 0. (C21)

b s



Appendix D

Extended calculations on Axion
inflation with electro-magnetic
backreaction

D.1 Phase shift

In this appendix we derive in a slightly different manner the value of the char-
acteristic time scale AN, that denotes the lag between (EB)(N) and {(N), given
in Eq. (6.17).

First, we notice that in the case of constant § we can define a self-similar
function A(N) that captures the growth of the gauge modes for any large enough
value of £. If we evaluate the enhanced gauge modes A_,(N, k) at the time N +

In 2¢ and additionally rescale their amplitude with 4 /#ﬁm (such that they
asymptote to unity) their equation of motion in e-folds reads

- - k k .
’ rt— [ ——= — . =0. D.1

Therefore, plugging in the constant £ solution for the gauge modes given in Eq.

(6.12), we find that
~ / w€ k
Ak = mw_i§71/2 (—Za—]{é_) (DQ)

is a ‘self-similar’ solution that only depends on N (and on a trivial way on k)
as long as the k/4aHE? correction can be neglected in Eq. (D.1). Numerically,
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Figure D.1: Evolution of ‘Ak‘ (N) evaluated at N, = 0 (red and purple lines) and

support of 2Zz5(N) (blue, orange and green lines) for various values of constant

£.

we find indeed that the {-dependence drops out for § = 2. See Figure D.1. The
original gauge mode Ay can then be expressed in terms of Ay as

sinh(m¢)

A&, N) = orké

€™ A (N —1n2€) . (D.3)

Similarly, using Eq. (6.9), we define a self-similar function for the integrand of
(EB)
7T€€_3N

:Z'EB(N) == ma]\[nﬁ/,i&l/g (—Qie_N_ln2§) |2, (D4)

such that the integrand of (EB) (in dInk) is given by

H*sinh(7&)e™ -~

IE-B(k7 57 N) = 647T3§46L8 IEB(N —In 25 - Nk) ) (D5)

where NV, is the time that the mode k crosses the horizon. The self-similar inte-
grand (D.4) indeed becomes independent of £, but only for £ = 4. This is because
of the additional e™3" that shifts the peak almost 3 e-foldings to sub-horizon
scales. We find that Zp.5 peaks at N ~ —1.38 ~ In(1/4) with amplitude Z ~ 0.57
and has most of its support £1.5 e-foldings around it. See Figure D.1. The inte-
grand therefore peaks approximately at the wavenumber that crosses the horizon
at Npeax = N —1n¢/2.
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Second, when ¢ is time-dependent, the gauge mode function A grows to a
plateau value, corresponding to the value reached for some constant &g, Ax(E(7); kT
1) = Ag(&etr; kT < 1). If € is slowly varying in time, we expect &g to track & adia-
batically with some time delay. Indeed, we find that a good fit is given by

Eet(Ni) = E(Ny)  with N, = N —log(&£(Ny)/a), (D.6)

where N, is implicitly defined and a =~ 1.2 — 2.0. This refines the argument given
in Sec. 6.3 that the value of £ at k/aH ~ £ determines the growth of Aj. If
we deviate from adiabatic tracking, however, the effective ¢ averages out to some
degree. This makes sense, as the growth of the gauge modes will start to feel a
range of values of £&. As we can see from Fig. 6.2, the effective £ that <E§> feels
is not exactly the value of £ evaluated at a particular instance of time, but rather
an average over a range of values. We can imagine a smoothing window of width
~ In4€? going over the dashed curve as time proceeds. Only if the smoothing
window has completely passed the jump at Ny, then <E§> will have reached its
final plateau value. Therefore, we expect that Eq. (D.6) needs to be refined if £
changes considerably over the coarse of ~ In4¢£? e-folds.

At this point we make an ansatz: the integrand of (EB) is given by
Tp.p(k, &s(Nk), N). This indeed seems to be a good approximation for slowly
varying &, see Figure D.2, where we take a = 1.45. The above considerations allow
us to find a semi-analytical estimate for AN¢. Let us focus on the harmonic

E(N) =€ + Acos(weN) . (D.7)
The first maximum of &g reflecting the maximum of € at N, = 0 will be at
0= Nmax —In((+A)/a) — Npax=In((E+A4)/a) . (D.8)

Meanwhile, the integrand of (EB)(N) peaks at N, = N — In(&.(N,)/2) and will
take the maximal value at N = ANg when Npeak = Npax, hence

Niax = ANe —In ((§+ A)/2) — AN =In((£+ A)*/2a) . (D.9)

We find that a good fit is given for a &~ 1.45 and is shown in Figure 6.4 together
with the original estimate AN = In(£?/2) that was argued for in the main text.

D.2 Details on the numerics

In order to obtain our numerical results we use an iterative procedure whose
starting point is given by the analytical estimate of the mode function A assuming
constant inflaton speed ¢'(NN), Eq. (6.12):

<
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§(N) = 5 + cos(0.1N)

10714 C

lo*p 1 —N=0
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/ 1 —N=2
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Figure D.2: Comparison of the integrand of (EB) (discrete points) with
Zrp(Ng, &ei(Nk), N) (solid lines) for an oscillating £ = 5 + cos(0.1NV) evaluated
at various times .
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Ny

- o e o8 o
<EB>(0) = 22117r2 540 2 £SO£ dl’7 (DlO)
<pEB>(0) = <E2JQFBQ >(0) = ng'ﬂz 2130 627r§’ (D.ll)

where Hj is given by the Hubble parameter in absence of any backreaction, H2 =

Vig)
37%(1)/2 ‘
first step is to find the solution of the following differential equation for a given
(EB)j-1) obtained in the previous iteration:

Denoting the j-th order iteration quantities with the subscript j, our

1
¥y + B = eo)oly + 7 (Volow) + BBy 1) =0, (D.12)
(4)
where
V(o)) + {Ppp)i1
HE,) = (3)3 ¢/(£B G- %)* H(Q =57 Pes)G-1 - (D.13)
T2

Once we get the solution of this equation, ¢;)(N), we plug the derived quantities
Hjy(N), e;y(N) and &;)(V) inside the gauge mode equations

Af e+ (=€) A 2 + o (Jm + 2€<J’>(N)) Ap+ =0. (D.14)
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Then, choosing an array of k-modes Xvith an exponential spacing, we estimate the
discretized version of {p,,)(;) and (EB)
1 M
(Pen)) = 7o Z dlnk (k§a2H(2j>|A;;|2 + K2 A7 2 - kf) (N —N,), (D.15)

(EBj) = 47T<232d1 nk; k? aN|Aff| 0(N—N,) , (D.16)

where o is the polarization which experiences the tachyonic behaviour and the third
term in Eq. (D.15) accounts for the subtraction of the Bunch-Davies contributions.
With N; = miny {2aHE — k; < 0} the Heaviside 6 function is introduced to take
into account only those modes that have already become tachyonic.

The array of k-modes is defined as &, = kmezz 18 wherep=2... M, k = ki,
is the lowest momentum taken into account and A; = {0.1,0.02}. The value we
choose for A; depends on the oscillatory behaviour of the solution: the stronger
the backreaction, the thinner the momentum grid. Given this choice, we can write
down the integration step as dk = kdlIn k. The weight related to the contribution
of a single mode to the integral is evaluated using the trapezoidal rule, i.e. dInk, =

Slog (j2:1) = A, and dinky = 3log (52) = 4, dinkas = —log( e

kar—1 2

Once we have evaluated the integrals (D.15) and (D.16) in this way we are able
to define next iteration quantities €11y, H(;41) and the new approximated equation
of motion that the inflaton field needs to satisfy. Iterating this procedure allows us
to find better approximations of the real solution of the system. We stop the calcu-
lations when there is no appreciable difference between the consecutive iterations.
We do not prove here that this procedure always converges at a reasonable rate.
But if convergence is reached (as is the case in our explicit numerical examples),
this procedure ensures a self-consistent solution of the integro-differential system
(6.5), (6.7) and (6.9).

During the algorithm we check that the contributions coming from the non-
tachyonic polarizations is completely negligible.

D.3 Estimate of non-equal time correlation func-
tion
D.3.1 Analytical estimate

Far away from the resonance region the parameter ¢ varies only slowly and we
can estimate the importance of the non-equal time contributions to Eq. (6.38) by
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looking at the result Eqs. (A3) and (A4) from [262|. These expressions are based
on parametrizing the gauge field mode functions with Whittaker functions, see
Eq. (6.12). Massaging the expressions a little bit, we get for the correlator

r - H' H" 627r(§'+§")
ds WE 0§ N'.0)6 N" 0> ~
J z e (010pp(N’,0)0p5(N", x)|0) aa” (Vo' + /")

SC(K) (D.17)

0 1
C(k) =+ quq?’ f dan/T + @2 + 2qae Ve 1+e+200)
-1

0

1 +q¢%+ 2qa

(1 ) Td¢|e+<—q> gt

Here, we define p = 2¢/(aH), 7= k/|p|, 7= |p|é. and k = 4|p|(v/F/ ++/¢")2. In this
appendix only, for notational brevity the superscripts ()’ and ()" denote the given
quantity at time N’ and N”, respectively. We now see, firstly, that the x° factor
inside C(k) and the factor 1/(1/p’ + +/p")*® multiplying C(k) cancel each other.
Secondly, we recognize that the correlator is bounded from above by its value on
far super-horizon scales kK — 0, and that the correlator depends only polynomially
on ¢’ and a” in this limit. Hence we find that the correlator at late times scales as

1 N 6—3(N’+N”) _ e—GN’e—SAN
)
a/3a//3

(D.18)
assuming N” > N’ with loss of generality. By comparison, we conclude that
the argument of g(N,AN) scales as e *". For a functional form f(AN) =
exp(—c AN) the integral

J B2 O0[5n(N,0)5n(N", 2)|0) ~

0

g(N',0) — f AN" exp(—c AN) = 1 (D.19)

, C

is of O(1) for O(1) values of ¢. Since in our case we have ¢ = 3, the inclusion of
unequal time correlations does not significantly alter our result. This can also be
confirmed by a comparison of our results with previous analysis [262, 270] which
included this unequal time correlator, see App. D.4.

D.3.2 Numerical evaluation

In the resonant regime the Whittaker functions used in App. D.3.1 are no longer
a good approximation to the full mode functions. In this region, we evaluate the
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non-equal time correlator numerically, based on the mode functions obtained in
Sec. 6.4.

In order to compute the shape of the non-equal time correlation function, we
define symmetrized version of dgp (see Eq. (6.35)), analogous to the symmetrized
(EB) introduced in Eq. (6.9) (sce also [291]),

0ps(r,2)s = (E'(1,2)B'(r,2)) , — (EB)s(7")

— (BB (r0) + Br0)E () —EBs(r), (D)

and consequently
O [0p5(r", 2)s dpp(7",0)s]510)

1
= §<0|5EB(7J7 2)s0pB(7",0)s + dpp(7",0)s0p5(7", 2)$)|0) .
(D.21)

If we consider only positive helicity modes, A = +, and we use the following short
notation

Ei = Ez(k7 T”’f7 +> i B:Z[ = Bz(k7 T”7f7 +)7 E% = Ej(k’T/7 07+) )
By = BI(k,7',0,+), B})=B(k,7,0,4), A (r,k)=A(rk)  (D.22)

we end up with

Jd3fei‘j'f<0| [0s(T",2)s0EB(7",0)s]s|0) =

N —

[ @zens (it + (BB R+

+HESE (B3 BY) + (B} By X By EY)]

1 BE gl o P2
- 2a’4a”4f(27r)3|k| ‘€+(k)'€+(—k—® X

" {@A(Tg —k = Q0. A* (7", —k — QAT ) A (7" k) +
2l e oA R AT DA oA B) ¢

—k—q> . . . .
+%A(T”, —k— QA (T, =k — q)0. A(T", k)0 A* (T, k)} (D.23)
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where in this appendix only, ' = a(7’) and a” = a(7"). Given that the positive
polarization vector can written as

beeo i (kGh-e.) —e)
\/§|i€'ér| 7

if we assume that ¢ = {0, 0, ¢}, we can see that using polar coordinates and setting
cos(#) = a, the polarization dependent factor inside Eq. (D.23) becomes

e, (k) = (D.24)

-

- . 2 2k% + dkqo + ¢*(1 + o?
(VB -en(~7— B = o)

4k? (1 +208 + g—)
N k3 + 3k%qa + o + kq*(1 + 2a?)

) P (D.25)
2% (14208 + &)
In order to have a more compact notation we also define
. IENE
Ci(k,q,0) = [e4(F) - ex (== B)| .
_ q ., ¢
Cyk,q,a) = Ci(k,q,a)r /1 + 20% + =k (D.26)

and since the gauge mode equation of motion depends just on the magnitude of
the k-vector, we can write

AN, k) = A(N, k);

= 2
AN, —k — @) = AN, k1 + 204% + %) — A(N, k,q,0). (D.27)

Rearranging Eq. D.23 and using the number e-foldings as time variable we get

1 [} 1

HHJ dk k4j dose
(4m2) ~1

{Ci(k,q,a0)Re [ONA(N' k,q,a)onA*(N", k,q, ) A(N', k)A*(N", k)]

+Cy(k, q, a)Re [ONA(N' k,q, ) A*(N" k,q,a) A(N', k) oy A*(N" k)]}
(D.28)

Jdgfei‘f'f<0| [0e8(N',2)s0p8(N",0)s]4|0) =

a/3 a//3

where in this appendix only, H' = H(N') and H" = H(N"). It is easy to see that
the final result has the desired properties: it is real and symmetric under N’ < N”
and ¥ & —17.
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As in App. D.3.1 we focus on far super-horizon scales ¢ — 0,

Ops(N')opp(N")) = (111_{1% f P T70] [0pp(N', 2)s0p5(N",0)s]4 [0)
CH'H" F dk
- a’3q/3 (27T2)
(Re [On AN, k)ow A*(N", E) AN, k) A* (N, k)] +

+Re [OnA(N', k) A*(N", k) A(N", k)an A*(N", k)] .
(D.29)

k4 %

For numerical purposes we discretize the integral as follows

" HIH// 5
<5EB( )(SEB(N )> 271'2 a3 Zdlnk k ZA& X
{Re [5NA(N/, Z)&]\[A* (N”, kZ)A( s k‘Z)A* (N”, kz)] +
+Re [ONA(N' k) A*(N", ki) AN’ ki) on A*(N" k)Y (D.30)
the discretization scheme is the same as in App. (D.2).

We can now compute a numerical estimate of the normalized non-equal time
correlation function that was introduced in Eq. (6.39),

g(N',AN) = (55(N')) ; AN (NN, (D31)

Fig. D.3 shows the integrand of g(N', AN) at five distinct times deep in the res-
onance regime. As in our analytical estimate in App. D.3.1, the integrand of
g(N', AN) drops exponentially as exp(—cAN) with ¢ = O(1). For small values of
AN the behaviour deviates from the exponential decay. Numerically performing
the integral for some representative choices of AN yields

o N' =60, AN = {1,0.5,0.1}, (N, AN)/~ = {0.19,0.46, 0.86}

o N'=061.4, AN = {1,0.5,0.1}, g(N’, AN)/v = {6.6 x 1072,0.31,0.82}
o N'=61.8, AN = {1,0.5,0.1}, g(N', AN)/v = {6.4 x 102,0.24,0.76}
o N' =62, AN = {1,0.5,0.1}, (N, AN)/v = {0.13,0.31,0.76}

o N' =622 AN = {1,0.5,0.1}, g(N', AN)/v = {0.15,0.34,0.79}

We conclude that the support of g(N’, AN) is mainly focused at small values of
AN, i.e. that unequal time correlations are mainly relevant on time scales over
which (6%(EB)) does not change too drastically. However, the contributions from
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Figure D.3: Integrand of g(NN', AN), for various values of N’ for 1/f = 25. The
top left panel corresponds to the bottom left panel of Fig. 6.6 and serves as an
orientation to identify the position of the maxima and minima. All other panels
show the integrand of g(N', AN) for local minima (N’ = 61.4), local maxima
(N' = 62) and steep regions (N’ = {60,61.8,62.2}) of (EB). The red lines give
the best fit for the exponentially decreasing tail of the distributions.
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more distant times are not fully negligible, and hence we expect O(1) corrections
to the power spectrum in the resonance regime. These will tend to slightly smooth
the maxima and minima of the power spectrum in this regime. However, since the
minima are unobservable and the maxima violate perturbativity (see discussion in
Sec. 6.5) this does not significantly impact our discussion in the main text.

D.4 Scalar power spectrum: comparison with ear-
lier work

The scalar power spectrum generated during axion inflation has been previously
estimated in Refs. [262, 268, 270, 273] based on the analytical estimate for <E§>
given in Eq. (6.13). In this appendix we briefly review these derivations and their
limitations. Of particular interest to us are Refs. [262, 270] which are based on
the Greens function method. Generalizing this approach leads to the results for
the power spectrum reported in the main text.

We start from the equation of motion for the scalar perturbations, Eq. (6.35),

N, &EB) 56— L
fH? 0N TR

56" +36¢ — (D.32)

Ref. [270] focuses on the regime of weak or mild backreaction (wb) where the
XEB)/ON term can be neglected,’

LYV0(N)] = 09" + 306 = 5 H2 S (D.33)
Following the steps in Eq. (6.35) to (6.42) of the main text yields
G?,(N,N")o%5(N")
N2 ~ NZJ N’ D.34
<(5 > Kol d f2H2( ) ) ( 3 )

with Gp(N, N') denoting the Greens function of the linear operator Lgf,“b).
Ref. [262] focuses on the opposite limit of strong backreaction. In this case,
the the backreaction term in Eq. (D.32) can be approximated as

Ny a<EB> 1 a<EB> 1 LN
FHE ON 20T o a L 212 (27T<E B >> 00 >3 fH2 spe 09
(D.35)

'We note that Eq. [270] includes the slow-roll suppressed mass term for ¢ and (working in
Fourier space) the unequal time correlations in {dgs(N)dgs(N')). However, as the very good
agreement in Fig. D.4 shows, these do not significantly change the result.
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In the first step, we have Taylor expanded <E§> in terms of £ instead of N. This
is valid if <E§> can be expressed as a function of £ only and if ¢ is strictly mono-
tonic, implying that the evolution of £ can serve as a well-defined ‘clock’ during
inflation. As long as the fluctuations are small, N, 0¢ « 1, both descriptions are
then equivalent. In the full system studied in the main text where £ becomes an
oscillating function, this procedure can not be applied. The second step relies on
the explicit form of (EB) in Eq. (6.13) with the additional assumption of H being
approximately constant. The final step uses the background equation of motion
in the strong backreaction regime where the ¢-term can be neglected.? Based on
this, Eq. (D.32) can be expressed as

T 1

fH? V,¢5¢/ = méEB» (D.36)

LSV[06(N)] = 8¢" + 36¢' —

and correspondingly

GV, N)ogp(N')
fPHA(NY)

(SN ~ N2 J dN' (D.37)
with G (N, N') denoting the Greens function of the linear operator Ls\s,b).

Fig. D.4 compares our formalism (black curve) with the approximations per-
formed in Ref. [270] (blue curves) and Ref. [262] (orange curve). In all cases,
for the purpose of the comparison with previous results, we assume in this ap-
pendix (EB) to be given by Eq. (6.13) and correspondingly 02, ~ (EB) (see
e.g. Ref. [273]). The black solid curve indicates our result based on (6.42), i.e.
including the gauge field backreaction in the d¢ equation of motion, with the gray
dashed curve displaying for reference the vacuum contribution. The dashed blue
curve (essentially coinciding with the black curve) is the result obtain based on the
linear operator (D.33) in the weak backreaction regime, the dashed orange curve
is correspondingly based on the linear operator (D.36) in the strong backreaction
regime®. The dotted blue and orange curves are the results derived in Refs. [270]
and [262] for the weak and strong backreaction regime, respectively, demonstrat-
ing our ability to reproduce these results when using the same approximations.
Finally, in the gray shaded region ¢ > 0.3, indicating that we cannot trust the
perturbative analysis underlying our computations.

The excellent agreement between our full result (black) and the weak backreac-
tion approximation (blue) indicates that the backreaction term in the §¢ equation

2In our numerical evolution of this system of 1/f = 35 we find all three terms of the background
eom to be of similar size towards the end of inflation. This approximation thus induces an O(5)
error in the Greens function, which is squared in the power spectrum and essentially accounts
for the discrepancy between the black and dashed orange curve.

3Note that the strong backreaction approximation can only be expected to be valid at large
values of &, towards the end of inflation.
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Figure D.4: Scalar power spectrum sourced by Eq. (6.13) for 1/f = 35. The
black curve is our full result, the dashed blue and orange curves implement the
weak and strong backreaction approximation of Refs. [270] and [262], respectively.
The corresponding dotted curves indicate the very good agreement with the final
expressions for the power spectrum derived in these references. In this appendix
we use the convention that inflation ends at N = 0.

of motion is essentially irrelevant for the parameters discussed here. This conclu-
sion is in contradiction to the conclusion drawn in [262, 273], which would indicate
that backreaction dominates roughly above the dotted orange horizontal line in
Fig. D.4, consequently suppressing the resulting power spectrum. We can track
this difference down to the approximations performed in Eq. (D.35), in particular
in the last step thereof. We conclude that the sourced scalar power spectrum is two
to three orders of magnitude larger than previously estimated. Nevertheless, our
procedure also entails approximations which need to be scrutinized, most notably
the omission of the gradients V® and the dropping the unequal time contribu-
tion of the dgp two-point correlator. Given the importance of this result for the
production of primordial black holes, this clearly calls for further investigation.
Finally, Ref. [273] presents a simplified derivation of the results obtained in
Refs. [262, 270]. In the strong backreaction regime this relies on the same ap-
proximations as [262], hence it is not surprising that Ref. [273] also finds a strong
suppression of the power spectrum in the strong backreaction regime.
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