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Abstract

This thesis is focused on cosmological applications of the 4D E�ective Field The-
ory (EFT) coming from type IIB string theory. We focus in particular on model
building in in�ation, dark matter and dark radiation using Kähler moduli and
axion-like �elds which are ubiquitous features of type IIB �ux compacti�cations.
These �elds enjoy e�ective approximate symmetries which can protect their poten-
tial against quantum corrections. This property makes both of them good in�aton
candidates and implies that axion-like particles from string theory tend naturally
to be very light with intriguing applications to dark radiation and dark matter. We
�rst consider a class of type IIB in�ationary models called "Fibre In�ation" where
the in�aton is a Kähler modulus. We provide a consistent global embedding of
these models into Calabi-Yau orientifolds with D-branes, �uxes and a chiral visible
sector. We also analyse the multi-�eld dynamics of this class of models, including
both Kähler moduli and axion-like particles which give rise to isocurvature per-
turbations. We then focus on di�erent applications of axion-like particles coming
from string theory. Depending on the value of their mass and decay constant,
together with their production mechanism, these particles can drive in�ation or
can represent a non-negligible component of dark matter and dark radiation. We
provide a string embedding of a model that explains the 3.5 keV line recently de-
tected from galaxy clusters by exploting axion-photon conversion in astrophysical
magnetic �elds. Finally, we analyse the mechanisms of electro-magnetic dissipa-
tion in models where the in�aton is an axion, �nding a new resonant behaviour in
the gauge �eld production that a�ects the shape of the cosmological parameters.
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One of the most fascinating topics on which the research in theoretical physics
is focused today is related to the origin and evolution of the Universe. Currently,
the simplest cosmological model that �ts experimental observations is the ΛCDM
model, according to which spacetime is described by the Friedmann-Robertson-
Walker metric, while the gravitational �eld is generated by dark energy, cold dark
matter (DM) and a small quantity of ordinary matter. Despite its great success, in
order to explain the observed large scale structure, the theory must be completed
by an initial period of accelerated expansion called in�ation. During this phase
the space expands quasi-exponentially, and therefore it is also possible to explain
the overall homogeneity and �atness of the Universe.

Particle physics, on the other hand, is successfully described in the context
of the Standard Model (SM), augmented by neutrino masses, which is in excel-
lent agreement with experimental data. However, unfortunately, it represents only
an E�ective Field Theory (EFT) whose cut-o� can be pushed at most up to the
Planck scale where a full theory of quantum gravity should emerge. In addition, it
fails to address several issues like the hierarchy problem for the Higgs mass, gauge
coupling uni�cation and the strong CP problem. Finally, it is not able to explain
the origin of DM, baryogenesis and dark energy.
Several theories have been proposed for fundamental physics beyond current un-
derstanding. Here we will focus on string theory which is at present the most
promising candidate for a consistent theory of gravity that can also incorporate
all known interactions and matter in an elegant uni�ed framework. In this thesis,
we consider in�ationary models in the context of the 4D EFT coming from type
IIB string theory. Given the high sensitivity of the in�ationary dynamics to UV
physics, �nding a string embedding of in�ation would provide a powerful tool to
overcome many of the standard issues related to the usual EFT approach. String
theory does not only provide a consistent quantisation of gravity, but it also allows
us to derive the in�ationary Lagrangian from a top-down perspective. Moreover,
working in its perturbative regime, all corrections to the in�ationary potential aris-
ing form higher dimensional operators, can be in principle computed. This would
give an unprecedented theoretical control on model building. String theory con-
tains a single parameter, the string length `s, and the structure of the 4D theory is
completely determined by the topology of the extra dimensions and the presence
of local objects as Dp-branes and Op-planes. This reduces the arbitrariness of
the 4D Lagrangian and, moreover, allows us to point out which �elds appear in
the low-energy theory, equipped with symmetries that can protect their potential
against dangerous quantum corrections. We focus in particular on Kähler moduli
that feature a non-compact symmetry, the so-called extended no-scale structure,
and axion-like particles (ALPs), that feature at tree-level a compact continuous
shift-symmetry. We will work in the context of Large Volume Scenario (LVS) com-
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pacti�cations that provide a hierarchy between the relevant energy scales which is
suitable for 4D descriptions of in�ation.

The �rst part of this thesis gives an overview of the current knowledge of high
energy physics that will be relevant throughout this work. In Chapter 1 we brie�y
review the state of the art of particle physics and cosmology. As already men-
tioned, the main pillars are given by the SM of particle physics and the ΛCDM
model of cosmology. These two theories have been tested to high precision and
have an outstanding accordance with experimental results. Nevertheless, they fea-
ture some fundamental problems that suggest evidence of new particles and force
us to search for UV extensions of these models.
In Chapter 2 we introduce high energy theories that try to solve the main problems
of the SM and the ΛCDM model. We begin introducing cosmic in�ation that pro-
vides a working mechanism to overcome the initial condition problems of standard
Big Bang cosmology and can lead to successful large structure formation. After
that, we brie�y review the main features of axions and ALPs, whose existence was
�rstly theorised for explaining the CP symmetry conservation of QCD. According
to their production mechanism, their mass and their coupling to SM degrees of
freedom, these particles can also represent a signi�cant part of both DM and dark
radiation, or can play the role of the in�aton �eld. Finally, we introduce some
basic concepts of string theory, focusing on type IIB, and we list the conditions
under which it is possible to get low energy 4D theories that can reproduce the
basic ingredients of SM physics, such as chiral matter, gauge theories and Yukawa
couplings. Throughout this thesis we will use a bottom-up approach, analysing 4D
string vacua equipped with sets of local sources as Dp-branes and Op-planes. This
approach is less general than starting from the full 10D theory but it may be more
e�cient in trying to identify promising string vacua which can reproduce all the
features of the SM. We then conclude this chapter discussing moduli stabilisation
and in�ationary models form string theory.

Moduli are scalar �elds that parametrise continuous deformations of the extra-
dimensional metric that do not change the topology of the compact extra-dimen-
sional space. These �elds appear as massless and testify the presence of extra
dimensions in the 4D theory. We need to �nd dynamical ways to develop a po-
tential for the moduli and avoid the presence of undetected �fth-forces. This goes
under the name of moduli stabilistion and is a crucial step in concrete model
building. Indeed, moduli vacuum expectation values (VEVs) set all the couplings
between di�erent particles, including the string coupling. These �elds can be ei-
ther heavy or light and their presence can a�ect the primordial and present history
of the Universe. Given the plethora of possible string vacua (the number of known
Calabi Yau manifolds is of order 106) and considering that each 4D theory implies
the presence of a large number of moduli (which can be as large as Op103q), it is
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mandatory to understand which kind of mass spectrum and couplings are typical
of these �elds. During the in�ationary epoch, �elds that are much heavier than
the Hubble scale H can be safely integrated out. On the other hand, �elds having
masses below H can drive in�ation, while other �elds much lighter than H can
a�ect the cosmological parameters through their quantum perturbations. Given
the high level of complexity of in�ationary systems involving a large number of
�elds and the sensitivity of in�ation to UV physics, it is nearly impossible to treat
moduli stabilisation and in�ation independently. This makes string cosmology a
highly non trivial research area.

The second part of this thesis contains some applications of the aforementioned
topics that I analysed during my PhD. In Chapter 3 we study the global embedding
of a class of Kähler moduli in�ation models called Fibre in�ation. These are
�rst introduced in Sec. 2.4.1. We construct explicit examples of Fibre in�ation
models which are globally embedded in type IIB orientifolds with chiral matter
on D7-branes and full closed string moduli stabilisation. We perform a consistent
choice of orientifold involution, brane setup and gauge �uxes which leads to chiral
matter and a moduli-dependent Fayet-Iliopoulos term. Using LVS we are able to
perform moduli stabilisation step by step. The in�ationary potential is generated
by suitable string loop corrections in combination with higher derivative e�ects.
We analyse the in�ationary dynamics both in the single-�eld approximation and
by numerically deriving the full multi-�eld evolution in detail. Interestingly, we
�nd that the Kähler cone conditions set strong constraints on the allowed in�aton
�eld range. In particular, we see that in some cases it is not easy to get the correct
normalisation of the power spectrum using in�aton density perturbations. This
motivates the study of other possible ways of producing the correct amplitude of
the scalar power spectrum.

We then study in Chapter 4 the role played by light �elds during in�ation,
focusing on ALPs. These always appear in string theory compacti�cations and
tend to be naturally very light. Indeed, the presence of light spectator �elds
during in�ation leads to the production of isocurvature perturbations that can
be converted into density perturbations through the curvaton mechanism. This
can help to circumvent the issues mentioned in Chapter 3. On the other hand,
the bosonic Lagrangian of 4D supergravity coming from dimensional reduction, is
given by a non-linear sigma model. This means that the �eld space is curved. The
analysis of cosmological perturbations points out that, in case of negative scalar
curvature, isocurvature pertubations may show a tachyonic mass that seems to
quickly lead the system out of the perturbative regime. We analyse general systems
composed by the in�aton and a light or heavy spectator �eld. We conclude that
geometrical destabilisation cannot occur in the case of heavy spectator �elds. On
the other hand, systems with light spectator �elds may be plagued by a tachyonic
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instability of isocurvature perturbations. After that, we focus on concrete examples
coming from string compacti�cations and in particular on Fibre in�ation models.
We study the dynamics of both the background and the perturbations. Choosing a
wide range of initial conditions for in�ation, we show that the background evolution
is stable. Despite that, the equation of motion for the isocurvature perturbations
seems to show an instability. We will however point out that this instability is
unphysical (in agreement with the fact that the background evolution is stable)
since it is just an artifact due to the use of gauge invariant variables which in our
case turn out to be ill-de�ned.

In Chapter 5 we give an example of axionic DM coming from type IIB string
compacti�cations. This work is based on the recent detection of an unexplained 3.5
keV line from galaxy clusters. A promising model which can explain the morphol-
ogy of the signal and other experimental evidences, namely its non-observation
in dwarf spheroidal galaxies, involves a 7 keV DM particle decaying into a pair
of ultra-light axions that convert into photons in the magnetic �eld of the clus-
ters. Given that light axions naturally emerge in 4D string vacua, we present a
microscopic realisation of this model within the framework of type IIB �ux com-
pacti�cations, where the DM particle is an open string axion. After describing the
Calabi-Yau geometry and the brane set-up, we discuss in depth moduli stabilisa-
tion, the resulting mass spectrum and the strength of all relevant couplings.

Finally, in Chapter 6, we study some features of axion in�ation models. Axion
in�ation entails a coupling of the in�aton to gauge �elds through the Chern-Simons
term. This results in a strong gauge �eld production during in�ation which back-
reacts on the in�aton equation of motion. These e�ects have been previously
studied using analytical methods. In this Chapter, performing a full numerical
analysis, we show that this strongly non-linear system generically experiences a
resonant enhancement of the gauge �eld production. This gives rise to oscillatory
features in the in�aton velocity as well as in the gauge �eld spectrum. The gauge
�elds source a strongly enhanced scalar power spectrum at small scales, exceeding
previous estimates and leading the system out of the perturbative regime. For
appropriate parameter choices, the collapse of these over-dense regions can lead to
a large population of (light) primordial black holes, with remarkable phenomeno-
logical consequences.



Chapter 1

State of the Art

1.1 Standard Model of particle physics

Over the past 4 decades the joint collaboration between theorists and experi-
mentalists brought us to a new and well posed conception of matter. Indeed, using
the tool of quantum �eld theory they were able to enclose three kinds of fundamen-
tal interactions in a single theory: the Standard Model (SM) of particle physics.
Except from some (non-negligible) exceptions that we will describe later on in this
Chapter, the Standard Model turned out to be in excellent accordance with all
to date experimental data for what concerns both low and high energy Physics
phenomena. The fermion �eld content of SM can be summarised as follows:

� leptons: electron e, muon µ, τ -lepton, electron neutrino, νe, muon neutrino,
νµ, τ� neutrino, ντ . The �rst three particles carry electrical charge while
the others are neutral;

� quarks: up u, down d, strange s, charme c, bottom b and top t quarks.

These particles transform as spinors under the Lorentz group and represent the
matter content of the theory. On the other hand we have bosons:

� gauge �elds: photon, γ, gluon, g, W��bosons and Z� boson. These are
the mediators of gauge interactions and transform as vectors under gauge
group.

� Higgs boson: neutral scalar �eld, its vacuum expectation value gives a mass
to all massive SM particles and it participates in the Yukawa interactions.

The Standard Model gauge group is given by:

SUp3qc � SUp2qL � Up1qy (1.1)

17
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where SUp3qc describes strong interactions via Quantum Chomodynamics (QCD)
while SUp2qL � Up1qy describes electro-weak interactions. Matter particles are
organised into three generations (or families) of quarks and leptons:

1st family : u, d, νe, e
2nd family : c, s, νµ, µ
3rd family : t, b, ντ , τ.

(1.2)

Particles belonging to the same generation have di�erent quantum numbers which
mean di�erent gauge interactions, while correspondent particles in di�erent gener-
ations, i.e. columns in (1.2), share the same quantum numbers but show di�erent
masses and di�erent Yukawa couplings to the Higgs boson. From the point of view
of strong interaction both left and right quarks transform under the fundamental
representation (triplets), this means that in order to describe strong interaction
we do not need to separate quarks into left and right components. The most
interesting peculiarities about strong interaction are given by color con�nement
and asymptotic freedom. In order to give a hint about these two properties let us
introduce the Lagrangian of QCD

L � ψ̄piγµDµ �mqψ � 1

2
TrrGµνG

µνs (1.3)

where the spinor �eld ψ is given by a color triplet

ψ �
�
� qred
qgreen
qblue

�

, (1.4)

indeed every single quark can exist in three di�erent color states. The covariant
derivative is

Dµ � Bµ � i gS Gµ , (1.5)

where gS is the strong coupling constant and Bµ is a 3 � 3 dimensional matrix
in color space given by the product of the eight color gauge �elds giµ and the

generators λi

2
of SUp3q written in terms of the Gell-Mann matrices λi. The gluon

�eld-strength is given by

Gµν � 1

2
Gi
µνλ

i � pigSq�1rDµ,Dνs � BνGµ � BµGν � i gS rGν , Gµs. (1.6)

where the last term takes into account the non-abelian nature of the interaction
accounting for three- and fourth-gluon self-interactions. With the introduction of
color hypothesis the number of quarks gets multiplied by three, in particular we
should have that some proton p � uud may be given by quarks having di�erent
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quark antiquark

Yc I3c Yc I3c

r: 1
2

1
3

�1
2

�1
3

g: �1
2

1
3

1
2

�1
2

b: 0 �2
3

0 2
3

Table 1.1: Quark and antiquark color isospin and hypercharge quantum numbers.

colors. From the experimental point of view no colored hadron has ever been
observed and one can postulate that all free hadrons observed in nature should
be either colorless or white, that is the color con�nement hypothesis. The direct
consequences of this statement can be summarised as follows. We can pick out two
generators of SUp3q that have color spinors as eigenstates, i.e. they are diagonal
matrices, these are λ3 and λ8, then we de�ne two new operators called color isospin,
I3c, and color hypercharge Yc

I3c � 1

2
λ3 � 1

2

�
�1 0 0

0 �1 0
0 0 0

�

 Yc � 1?

3
λ8 � 1

3

�
�1 0 0

0 1 0
0 0 �2

�

 (1.7)

The quantum numbers associated with color isospin and hypercharge are listed
in Table 1.1. This means that mesons M � qq̄ and baryons B � qqq must be
described by colour-singlet combinations

B � 1?
6
|qαβγy , M � 1?

3
δαβ|qαβy α � r, g, b (1.8)

satisfying Yc � 0 and I3c � 0. In order to see that color-singlet states are the
preferred con�gurations we should focus on the quark-gluon interaction term in
the Lagrangian:

Lqg � �gS
2
giµψ̄γ

µλiψ (1.9)

from which the Feynman rule for the ψ̄ψq vertex is

� i gSλ
i
αβγµ (1.10)

where i and µ are the gluon color and Lorentz index respectively, while α and β
are the quark and antiquark color indices. Therefore the 1-gluon exchange force
between quarks in the transition α � β Ñ δ � γ is proportional to

E � pgSq2
4

¸
a

λiαβλ
i
δγ. (1.11)
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System
°
i jxT piq � T pjqy

xqq̄y1 �4
3

xqq̄y8 �1
6

xqqy3� �2
3

xqqy6 �1
3

xqqqy1 �2

xqqqy8 �1
2

xqqqy10 �1

xqqqqy3 �2

Table 1.2: Interaction energy of low-dimensional quark systems

Then we can perform a toy calculation assuming that we can trust perturbation
theory at lowest order, neglecting multiple gluon exchanges, and the e�ects related
to the creation of a isolated colored state. In order to estimate Eq.(1.11) we need
to evaluate the expectation value of the squared generators xT 2y � 1

4
xλ2y. In par-

ticular for SUpNq theories this is equivalent to average the square of any generator
over a representation, here we choose I3c. This implies that in representations with
dimension d we have [6]

xT 2yd � pN2 � 1q
¸
rep.d

I2
3c

d
. (1.12)

Then the single gluon exchange force can be estimated to be E � g2
SxT p1q �T p2qy and

we can easily extend the calculation to multi-body systems, being the interaction
given by the sum of two-body interactions:

E � g2
S

¸
i j
xT piq � T pjqy � xT 2y �°

ixT piq2y
2

. (1.13)

We list in Table 1.2 the results of the binding energies for few-body systems in our
toy calculation. It is easy to see that for two- and three-quark systems the color
singlet is the most attractive setup. The four quarks triplet can be interpreted as
as a baryon+quark system and there is no di�erence between its binding energy
and that of a single baryon: adding a quark to a baryon is not convenient and the
fourth quark can be considered as a free particle. Despite being experimentally
veri�ed, a rigorous proof for color con�nement is still lacking. Lattice QCD, albeit
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good for certain qualitative and quantitative predictions, also does not allows us
to prove something on a fundamental level. Furthermore, there is the AdS/CFT
correspondence, which allows us to describe theories which are similar to QCD in
many respects, but a description of QCD itself is not accessible at this point.

In order to understand asymptotic freedom, we write down the energy depen-
dence of the strong coupling constant αS � gS{4π:

1

αSpQ2q �
11Nc � 2nf

12π
ln

�
Q2

ΛQCD



(1.14)

where Nc is the number of colors and nf is the number of active quark �avours.
We see that at high energies the theory is weakly coupled and for Q2 Ñ 8 we
have αSpQ2q Ñ 0, so we �nd asymptotic freedom. At small energies the theory
is strongly coupled and quarks are con�ned in colorless or white hadrons such
as mesons and baryons. We need to consider that if we want Eq. (1.14) to
be continuous at �avour threshold (when the number of kinematically accessible
quark �avours changes), then ΛQCD must depend on nf : ΛQCD � Λnf . In addition
its value also depends on the selected renormalisation scheme, the canonical choice
that is usually made is the modi�ed minimal subtraction scheme M̄S: ΛQCD �
Λ
nf
M̄S

. For instance, if we consider the case Q �MZ and nf � 5 we have

Λ5
M̄S � 210MeV (1.15)

and
αSpM2

Zq � 0.1184� 0.0007. (1.16)

Asymptotic freedom comes from the non-abelian nature of SUp3q, where gluons
that couple to the colour charges do carry a colour charge too so they can couple
among themselves giving rise to 3- and 4-gluon vertices.

Electroweak interactions need to be described in a more complex way. We know
that weak force, as suggested by its name, is the weakest force described in SM and
it acts on short distances. This implies that the vector bosons that mediate this
force need to be massive. In addition we know that leptons and quarks are massive
particles but, in order to preserve SUp2qL � Up1q gauge invariance, no explicit
fermion mass is allowed to appear in the Lagrangian. Moreover the low-energy
experimental results on energy and angular momentum distribution in β decays,
e.g. µ� Ñ e�ν̄eνµ or n Ñ pe�ν̄e, revealed that only left-handed (right-handed)
fermion (anti-fermion) chiralities contribute in weak transitions and the strength
of such interaction appears to be universal. The study of processes like π� Ñ e�ν̄e
showed that neutrinos appear with only left-handed chirality (anti-neutrinos with
only right-handed chirality). They also found that it was possible to distinguish
neutrinos from anti-neutrinos requiring lepton number conservation (ν̄ep Ñ e�n
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while νep Û e�n). These low energy information, together with the absence
of �avour-changing neutral current transitions and the requirements related to
unitarity (in order to have a proper energy behaviour), led to the construction
of electroweak theory. Leptons and quarks have to be grouped into left-handed
doublet and right-handed singlets as follows

Q1 �
�
u
d



L

, Q2 �
�
c
s



L

, Q3 �
�
t
b



L

,

L1 �
�
νe
e



L

, L2 �
�
νµ
µ



L

, L3 �
�
ντ
τ



L

,

Ui � tuR, cR, tRu

Di � tdR, sR, bRu

Ei � teR, µR, τRu i � 1, 2, 3;

(1.17)

In order to write the structure of the required Lagrangian let us focus on a single
quark family so that we can write the free Lagrangian as:

Lfree � iūpxqγµBµupxq � id̄pxqγµBµdpxq
� iQ̄1pxqγµBµQ1pxq � iŪ1pxqγµBµU1pxq � iD̄1pxqγµBµD1pxq

(1.18)

This is invariant under global G transformation in �avour space:

Q1pxq GÝÑ Q1
1pxq � exptiyQ1βuULQ1pxq

U1pxq GÝÑ U 1
1pxq � exptiyU1βuU1pxq

D1pxq GÝÑ D1
1pxq � exptiyD1βuD1pxq

(1.19)

where
UL � exp

 
iT iWα

i
(
, i � 1, 2, 3 (1.20)

is a SUp2q transformation that only acts on the doublet made of left-handed
fermions, T iW � σi

2
are the generators of SUp2q and σi are the Pauli matrices.

As always in order to have a theory which is invariant under local (or gauge)
transformations (αipxq, βpxq) we need to introduce a number of gauge bosons
equal to the number of the group degrees of freedom (in this case 3 bosons for
SUp2q and a boson for the hypercharge) and to convert standard fermion deriva-
tives into covariant derivatives. Denoting the general spinor element with ψ, we
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end up with

L �
¸

ψ�Q1,U1,D1

iψ̄pxqγµDµψpxq � 1

4
BµνB

µν � 1

2
TrrWµνW

µνs (1.21)

where

DµQ1 �
�
Bµ � igwT

i
WW

i
µ � igY

YQ1

2
Bµ

	
Q1 ,

DµU1 �
�
Bµ � igY

YU1

2
Bµ

	
U1 ,

(1.22)

gw and gY are the weak and the hypercharge coupling constant respectively. The
strength tensors of the theory are given by

Bµν � BmuBν � BνBµ

Wµν � BmuWν � BνWµ � igwrWµ,Wνs
(1.23)

and Wν � σi
2
W i
µ. Already at this stage we can see that the theory predicts two

charged currents and two neutral currents. Indeed if we look at the interacting
piece of the Lagrangian

gwQ̄1γ
µWµQ1 � gYBµ

¸
ψ�Q1,U1,D1

yψψ̄γ
µψ (1.24)

in the �rst term we have

Wµ � σi
2
W i
µ �

1?
2

�?
2W 3

µ W�

W�
µ �?2W 3

µ



(1.25)

where W� � pW 1
µ 	 iW 2

µq, the o� diagonal terms are related to charged currents,
while the diagonal terms together with the second term of Eq. (1.24) are related
to neutral currents. It is important to notice that the previous formulas are valid
for each family of quarks and leptons. It is apparent to see that the Lagrangian
we wrote still shows a fundamental problem: the gauge boson and the fermion
�elds are still massless. As already said introducing an explicit term for fermion
masses would explicitly break the electroweak gauge symmetry so a new mechanism
should be found. In order to solve these problems we need to introduce a doublet
of complex scalars that is a singlet under the group of strong interactions, doublet
under SUp2qL and carries a Up1qY charge, this is the Higgs �eld φ:

φpxq �
�
φ�pxq
φ0pxq .



(1.26)



24 CHAPTER 1. STATE OF THE ART

Renormalisability and gauge invariance require the gauged Lagrangian related to
the Higgs �eld to be

Lφ � pDφq:Dµφ� µ2φ:φ� λpφ:φq2 , µ2 ¡ 0 λ ¡ 0 ; (1.27)

Dµφ � pBµ � igwWµ � igY YφBµqφ , yφ � Qφ � T3 � 1

2
. (1.28)

We need to �x the value of the scalar hypercharge so that we have the right
coupling between Aµ and φ: the photon should not couple to φ0 and φ� needs
to have the right electric charge. The minimum of the potential gives an in�nite
number of continuous possible vacuum expectation values all satisfying

φ:φ � µ2

2λ
� v2 . (1.29)

Among all the possible vacua we set

x0|φpxq|0y � 1?
2

�
0
v



(1.30)

and since, due to the electric charge conservation, only a neutral scalar �eld can
acquire a non vanishing VEV, we see that φ0 has to be interpreted as the neutral
φ component with Qφ0 � 0. Once we choose a particular ground state the gauge
symmetry gets spontaneously broken

SUp2qL � Up1qY Ñ Up1qQED (1.31)

and three massless Goldstone bosons should appear. We can then �x the gauge in
order to get rid of these spurious degrees of freedom. Using unitary gauge we get:

φpxq � 1?
2

�
0

v �Hpxq


. (1.32)

Expanding the double covariant derivative term in Eq. (1.27) it is easy to see that
it contains gauge boson masses

LH � v2

8

�
g2
wppW 1

µq2 � pW 2
µq2q � pgwW 3

µ � gYBµq2
�
. (1.33)

We can immediately read the mass term for W� gauge bosons

1

2
m2
WW

:
µW

µ , where mW �
�vgw

2

	
. (1.34)

Moreover, assuming that Aµ and the Zµ are related to Bµ and W 3
µ through a

unitary rotation �
W 3
µ

Bµ



�
�

cospθwq sinpθwq
� sinpθwq cospθwq


�
Zµ
Aµ



(1.35)
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and looking at the combination of Bµ and W 3
µ that gets a mass in Eq. (1.33), we

can conclude that the photon and the Z-boson can be expressed as

Aµ � 1a
g2
w � g2

Y

pgYW 3
µ � gwBµq , Zµ � 1a

g2
w � g2

Y

pgwW 3
µ � gYBµq (1.36)

and have the following masses

mA � 0 , mZ � v

2

b
g2
w � g2

Y . (1.37)

In order to understand how we can get mass terms for fermions we need to consider
that introducing the Higgs �eld in the theory implies that new lagrangian terms
may be allowed, we refer to these terms as the Yukawa lagrangian, Ly:

Ly � Y l
mnL̄mφ̃Em � Y d

mnQ̄mφDn � Y u
mnQ̄mφ̃Un � h.c. (1.38)

indeed it is easy to see that these terms are gauge invariant as the combination
L̄φR is a SUp2q singlet1. After spontaneous symmetry breaking these terms give
a mass to all fermions except for neutrinos that in SM do not have right-handed
counter-parties and so we are not allowed to write down their Yukawa interactions.

We conclude this brief introduction putting all the the pieces together and
writing the full SM lagrangian:

LSM � �1
2
TrrGµνG

µνs � 1
2
TrrWµνW

µνs � 1
4
BµνB

µν

�i°ψ�L,E,Q,U,D ψ̄nDµγµψn

�
�
Y l
mnL̄mφ̃Em � Y d

mnQ̄mφDn � Y u
mnQ̄mφ̃Un � h.c

	
�Dµφ

:Dµφ� λ
�
φ:φ� v2

2

	2

.

(1.39)

Despite its astonishing accordance with experimental results there are many
physical issues that SM cannot explain. The main problems concern the fact
that SM does not accommodate gravitation and it can not explain the nature
of dark matter and dark radiation. Indeed there is no known way of describing
general relativity, the canonical theory of gravitation, within quantum �eld theory.
Furthermore, according to experimental measurements on the mass and energy
content of the universe it seems that SM is able to describe just 5% of them.
We can also �nd a long list of minor but fundamental observational and conceptual
problems related to SM. We list some of them below.

1Since the mass terms should be hypercharge-less we need to use 2 representation of the
Higgs �eld, the �rst one is the same as in Eq.(1.26) and has yφ � 1{2, the other one is given by
φ̄ � εijφ

�
j and has yφ � �1{2, they transform under SUp2q in the same way.



26 CHAPTER 1. STATE OF THE ART

The existence of neutrino oscillations implies that neutrinos are not massless,
they have very small mass di�erences and violate the conservation of individual
leptonic numbers.
Another problem is given by CP conservation in strong interaction. Indeed QCD
lagrangian allows for the presence of a term proportional to θGµνG̃

µν , where G̃µν �
1
2
εµναβGαβ is the gluon dual �eld strength and θ is a parameter. This term can

contribute to physical processes through instanton e�ects and is CP-violating.
Despite this term is allowed in the theory and naturally comes out from the study
of QCD vacuum structure, experiments on neutron electric dipole model suggest
that CP is actually conserved in strong interaction constraining θ   10�10. The
huge amount of �ne-tuning required to match the experimental results goes under
the name of strong CP problem.

Moreover, accepting that SM can be interpreted as an e�ective �eld theory it
still shows a naturalness problem, i.e. the requirement that theories should
be able to describe physics at low energies in ways that do not invoke a sensitive
dependence on those theories' descriptions of physics at much higher energies [7].
One of the most widely known manifestations of it is the hierarchy problem related
to the mass of the Higgs �eld. Indeed it turns out to be quadratically sensitive
to the e�ective �eld theory scale or to the heavy fermion masses (depending on
the regularisation scheme), thus revealing that we do not have a clear distinction
between physical phenomena belonging to di�erent energy scales:

m2
h � m2

h,0 �
Y 2
t

8π

�
Λ2 �m2

t �m2
h 0 ln

�
Λ

mt



�O

�
m4
t

Λ4


�
(1.40)

where mh,0 is the Higgs bare mass, Λ is the UV cuto� scale of the e�ective �eld
theory, mt and Yt are the the mass and the Yukawa coupling related to the top
quark. The scale at which SM breaks down is not known, however assuming that
it is valid at least till Op1q TeV (LHC run II), we get a mass correction to the
Higgs �eld that is several orders of magnitude larger than its measured value.
The reason why this happens is that in general scalar �elds are not protected
against quantum corrections by any symmetry, thus they can receive arbitrarily
large quantum corrections to their masses. If we want to solve this puzzle avoiding
to introduce any symmetry property or matter content in the theory we incur into
a �ne-tuning problem. Assuming that Λ �MP , if we want to keep the Higgs mass
light, we need to �ne-tune the 0-th order dimensionless coupling of the e�ective
�eld theory down to m2

φ{Λ2 � 10�34.

Furthermore, it has been seen that the running of the renormalisation group pre-
dicts that the gauge coupling constants related to SUp3qS, SUp2qL and Up1qY
become approximately equal around 1016 GeV. However SM can not provide a
deep reason that justi�es gauge coupling uni�cation and the energy scale at
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which it takes place. In addition within SM this mechanism is not su�ciently
precise and it can be interpreted as accidental.
The last problem that we want to mention is that, also in its minimal formulation
(massless neutrinos), SM involves a lot of parameters, 10 mass parameters related
to leptons, quarks, gauge bosons and the Higgs �eld, 3 parameters related to the
coupling constants, 1 parameter related to the VEV of the Higgs �eld and 4 pa-
rameters related to the CKM matrix which describes cross-generational mixing of
weak interaction. Moreover we also need to insert by hand the required number
of families in SM. In addition since we now have good experimental evidence that
neutrinos have small but non-vanishing masses this introduces 3 more mass in-
puts and 4 parameters related to neutrino oscillations giving a total of 25 input
parameters. Despite the great accordance with data, this huge amount of arbi-
trariness stresses the e�ective �eld theory nature of SM and call for research into
UV completed models that can embed SM, giving a deeper explanation of these
parameters in terms of dynamical mechanisms which can �x their values to the
physical ones.

1.2 Standard Model of Cosmology

During the last three decades technological advances in observational cosmol-
ogy brought us to a new conception of the universe. Large galaxy surveys which
collected data from all visible galaxies con�rmed that the universe is homogeneous
and isotropic on large spatial scales. This means that if we look at large spatial
regions of the universe we will see a translational and rotational invariance. In
addition it has been proved that the universe is expanding with increasing speed,
i.e. the relative distance between non-gravitationally bounded objects (di�erent
galaxies) is increasing in time at higher and higher rate. All these experimental
results, together with the success of SM in the context of particle physics, led a
formulation of the theory of the early universe that involves SM together with
classical general relativity. In this theory the metric for an expanding universe has
the Friedmann-Robertson-Walker (FRW) form:

ds2 � dt2 � a2ptqγijdxidxj , (1.41)

where aptq is the scale factor which takes into account the universe expansion rate
and γij is the spatial metric. We can parametrise the spatial manifold as a unit
3-sphere, a unit 3-hyperboloid or a 3-plane with spatial curvatures κ � 1, κ � �1
and κ � 0 respectively. It is important to notice that Eq. (1.41) implies that the
space is the same at each moment of time and assumes that we are in a comoving
frame, i.e. particles at rest follow a geodesic motion and can be considered as free
particles. Experimental results suggest that the metric of the universe is essentially
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�at κ � 0 [8]. For a spatially �at universe the scale factor aptq is dimensionless
and does not have any physical meaning since at any time it can be set equal to
any number rescaling the spatial coordinates. What is meaningful is the ratio of
the scale factor computed at di�erent times and the parameter which shows how
the scale factor evolves in time, i.e. the Hubble parameter H:

Hptq � 9aptq
aptq . (1.42)

Another way of parametrising the expansion of the universe is considering the
wavelength variation of a photon, that is produced at a given time te in some
point of the universe (through a known process, so that we know λe), once it is
detected at time t0 on Earth:

λ0 � λe
a0

apteq � λer1� zpteqs , (1.43)

where zptq is called redshift

zptq � a0

aptq � 1 . (1.44)

Throughout this section all quantities with sub-index 0 are referred to present time.
Since the universe is expanding, a0 ¡ apteq, we see that detection wavelength is
always smaller than emission wavelength, this is the reason why it is said that the
universe expansion induces a redshift e�ect. Expanding the previous equation at
linear order we obtain the Hubble law for small redshift:

v � H0 r v ! 1 (1.45)

where H0 is the present value of the Hubble parameter. Recent measurements
coming CMB observations made by the Planck satellite suggest [8]2

H0 � p67.36� 0.54q km

s �Mpc
. (1.47)

Hubble law can be interpreted as a sort of cosmological Doppler e�ect: redshift
is induced by the expansion of the universe which causes the radial motion of
galaxies from the Earth with velocities that increase at increasing distances. The

2There is tension between the Hubble parameter measurement coming from CMB observa-
tions, Eq. (1.47), and that one coming from low redshift objects, such as supernovae and cepheids,
that gives [9]

H0 � p73.5 � 0.5q
km

s �Mpc
. (1.46)

This tension represents a problem for the standard cosmological model, as these two values should
coincide, and it might be a hint in favour of BSM physics.
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inverse of H0 gives a rough estimate of the age of the universe: t0 � H�1
0 �

1.4� 1019 yrs.

The dynamics of the universe can be studied starting from the Einstein-Hilbert
action

SEH �
M2

p

2

»
d4x

?�g R (1.48)

where g � detpgµνq is the metric determinant, R is the curvature scalar associated
to gµν and Mp � 2.435 � 1018 GeV is the reduced Planck mass that is related to
the universal gravitational constant through Mp � 1{?8πG. From Eq. (1.48) it is
possible to derive the law of cosmological expansion, this is given by the Einstein
equations

Rµν � gµν
2
R � Tµν

M2
p

, (1.49)

where Rµν is the Ricci tensor and Tµν is the stress energy-tensor. If we consider
the universe as an isotropic and homogeneous �uid, with energy density ρptq and
pressure pptq, its energy momentum tensor is given by

T µν � pp� ρquµuν � p gµν , (1.50)

where uµ is the 4-velocity that satis�es uµu
ν � 1. Since we are working in a

comoving frame, the �uid is at rest, the only non vanishing component of the
4-velocity is u0 � 1 and the non vanishing components of the energy momentum
tensor are

T00 � ρ , Tij � �γijp . (1.51)

The 00-component of Eq. (1.49) gives us the relation between the energy density
of the universe, the expansion rate and the spatial curvature:

H2 � ρ

3M2
p

� κ

a2
, (1.52)

this is called Friedmann equation. Considering the Universe as a closed system we
have that the covariant conservation of the energy-momentum tensor, DµT

µν � 0,
can be written as:

9ρ� 3Hpρ� pq � 0 . (1.53)

In order to explicitly solve the dynamical equations for an expanding universe
we need a last ingredient that does not follow from general relativity, this is the
equation of state of the matter content of the universe p � ppρq. Assuming that
the equation of state can take the perfect �uid form,

p � ωρ , (1.54)
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ω aptq Hptq ρpaq
dust 0 9t2{3 9t�1 9a�3

radiation 1
3

9t1{2 9t�1 9a�4

vacuum �1 9eHdSt HdS (const.) ρvac (const.)

Table 1.3: Behaviour of aptq and H and ρpaq in case of �at space, i.e. κ � 0. We
consider the cases in which the universe is dominated by non-relativistic matter
(dust), relativistic matter (radiation) and vacuum energy. In case of vacuum en-
ergy domination we have that both H � HdS and ρ � ρvac are constant, they are

related by HdS �
b

ρvac
3M2

p
.

we can identify 3 main kinds of behaviour: non-relativistic matter is associated
with the "dust" equation p � 0, relativistic matter follows radiation equation p �
ρ{3 and vacuum contribution follows p � �ρ. If we have di�erent kinds of matter
characterised by di�erent equations of state that do not interact with each other,
every single component must satisfy DµT

µν
i � 0 and Eq. (1.53) independently.

On the other hand Eq. (1.52) must contain the sum of all the energy density
contributions. We list in Table 1.3 the behaviour of aptq, Hptq and ρpaq in case of
�at space, i.e. κ � 0, for the 3 main simpli�ed scenarios of dust, relativistic and
vacuum energy content. The general solution for p � ωρ with ω ¡ �1 is given by:

ρ9 1

a3p1�ωq ; ρ9 t�2 ; a9 tα where α � 2

3

1

1� ω
¡ 0 . (1.55)

The acceleration of the universe is parametrised by :a and is given by

:a9αpα � 1qtα�2 , (1.56)

so we see that for ω   �1{3 we have an accelerated expansion while for ω ¡ �1{3
the universe expansion decelerate.
This kind of solution is not realistic since we know that the universe contains

several forms of matter having di�erent properties. The present energy density of
the spatially �at universe is given by the critical density today:

ρc � 3

8π
H2

0 M
2
p � 0.52� 10�2 GeV

cm3
. (1.57)

We can express the current fraction of energy density carried by each single com-
ponent as

Ωi � ρ0,i

ρc
. (1.58)
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The main relative contribution to non-relativistic matter coming from known par-
ticles is related to baryons ΩB, while that one associated to relativistic matter
comes from photons Ωγ:

ΩB � ρB
ρc
� 0.048 , Ωγ � ργ

ρc
� 5� 10�5. (1.59)

All the other known and stable particles give negligible contributions to matter and
radiation energy density, e.g. light neutrino contribution is negligible compared
to Ωγ and electron contribution gives Ωe � me

mp
ΩB � 2.5 � 10�5. So we can

conclude that our current understanding in particle physics covers less than 5% of
the universe content.

In realistic models the other contributions to the universe energy density come
from non-relativistic dark matter ρDM , dark energy ρΛ and the spatial curvature
ρκ. In particular this last contribution can be written as:

ρκ � � 3κ

a2M2
p

, (1.60)

but observations of CMB anisotropy imply that κ is either zero or very small and
the bound on Ωκ is

|Ωκ|   0.02 . (1.61)

The major part of the universe is therefore composed by dark matter and dark
radiation, two unknown energy sources that represent more than 95% of the energy
content [8]:

ΩΛ � 0.68 , ΩDM � 0.31 . (1.62)

Despite we can not give a clear and unambiguous description of these two quan-
tities, observations tell us which kind of properties these two components need to
show.
We can safely say that dark energy behaves as vacuum energy and it is responsible
for the acceleration of the universe. Di�erent models have been developed in order
to describe dark energy, we can group them into two main categories: if the energy
density does not depend on time we talk about cosmological constant models, while
if it does have a time dependence we call them quintessence models. This last case
would imply the existence of a new form of matter in nature, this is usually given
by a scalar �eld that satis�es 1

2
9φ2 ! V pφq so that pφ � �ρφ.

On the other hand dark matter can create clusters and it is probably made out
of non-relativistic particles that can interact with ordinary particles only through
gravitational couplings. The nature of DM is not clear yet but it is a common
belief that it must be composed by particles that do not appear in SM. A com-
mon assumption is that DM is made out of matter particles that were in thermal



32 CHAPTER 1. STATE OF THE ART

equilibrium with usual matter in the early Universe. At some time these parti-
cles decouple, they get out of equilibrium and start to freely propagate through
the universe. We talk about cold dark matter if the decoupling temperature is
lower than the DM particle mass, Td   mDM , in this case DM particles decouple
being non-relativistic. If this condition is not satis�ed we can have two di�erent
possibilities: if mDM   1 eV the particles remain relativistic at matter-radiation
equality (Te � 1eV) and we call it hot dark matter, while if mDM ¡ 1 eV DM is
non-relativistic by equality epoch it is called warm dark matter. The presence of
DM in the early universe is crucial in getting large structure formation. In order
to reproduce structure formation we need primordial density perturbations that
start growing at radiation-matter equality, giving rise to gravitationally bounded
regions. Without DM, density perturbation would start to grow too late (after
recombination) and no structure would have been formed in the universe yet. In
order for this mechanism to work we need that DM becomes non-relativistic at
early stages of the universe evolution. This is a hint in favour of cold DM, the
studies of structure with size larger than 0.1 Mpc give a lower bound on the mass
of DM particle: mDM Á 1 keV. This bound only applies if DM was in kinetic
equilibrium with usual matter at early stages of the universe.

A spatially �at cosmological model with cold dark matter and dark energy with
energy densities close to Eq. (1.62) is called ΛCDM model. In these models the
role of dark energy is played by the cosmological constant whose contribution ρΛ

is constant over time. Knowing how dust, radiation and vacuum energy densities
evolve in time we can relate present results with relative contributions at any given
time using Friedmann equation:

H2 � ρc
3M2

p

�
ΩM

�a0

a

	3

� Ωrad

�a0

a

	4

� ΩΛ � Ωcurv

�a0

a

	2
�
, (1.63)

where ΩM contains DM and SM non relativistic degrees of freedom, while Ωrad

contains relativistic degrees of freedom.

The fact that the Universe is expanding determines that it was denser and
warmer in the past. In what follows we brie�y sum up the main stages of the
universe evolution according to ΛCDM model:

� Photon last scattering Tls � 0.26 eV: it is the moment after which photon
decouple from cosmic plasma and can freely propagate through the universe.
After this time the universe becomes transparent. These photons can be
observed today as the Cosmic Microwave Background (CMB), their spectrum
is the same as that one of a black body with temperature

T � 2.726 � 0.001K ,
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while their angular anisotropy is of order δT {T � 10�4 � 10�5. This mea-
sure tells us that the universe at photon decoupling was almost perfectly
homogeneous and isotropic.

� Recombination (Tr � 0.33 eV): it determines the transition from plasma
to gas. At higher energies the binding energy was insu�cient to keep elec-
trons in atoms, the matter was made of a plasma containing baryons, pho-
tons and electrons. Electrons were coupled to the cosmic plasma through
Thomson scattering e� � p� Ñ H � γ. At recombination the equilibrium
abundances of free protons and hydrogen atoms are equal.

� Matter-radiation equality (Tmre � 0.7 eV): time at which the Universe
moved from a stage where its energy content was mainly given by relativistic
particles into a stage of non-relativistic matter domination.

� Big Bang Nucleosynthesis - BBN (TBBN � MeV): it represents the
time when neutrons got captured into nuclei. At T ¡ TBBN protons and
neutrons were free in cosmic plasma while at T À TBBN light nuclei get
formed, e.g. hydrogen and helium.

� Neutrino decoupling (Tν � 2 � 3 MeV): it represents the temperature
at which neutrinos decoupled from the cosmic plasma. At T ¡ Tν neutrinos
were in thermal equilibrium with the other particles while at T À Tν they
could freely propagate in the universe.

� QCD transition (TQCS � 200 MeV): at higher temperatures quarks and
gluons behaved as individual particles while at T À TQCS they got con�ned
into colourless hadrons.

� EW transition (TEW � 100 GeV): at higher temperatures there is no Higgs
condensate,W� and Z bosons and all the fermionic particles are massless. At
T À TEW Higgs mechanism takes place, we have SSB of SUp2qw �Up1qY Ñ
Up1qem and W�, Z and all the fermions (except neutrinos if we just consider
SM physics) acquire a mass.

Despite the huge success in reproducing the history of the universe back to
BBN, ΛCDM model still su�ers from some theoretical and experimental problems.
As already discussed, the most prominent one is given by the lack of an explicit
description of the nature of dark matter and dark energy. We list below other
minor but fundamental issues that need to be addressed in order to provide a
natural UV-complete model of cosmology:
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� baryon asymmetry. The present universe contains baryons and practically
no anti-baryon. The study of Big Bang nucleosynthesis and CMB gives that
the ratio between baryon and photon number density (nB and nγ respec-
tively) is

ηB � nB
nγ

� 6� 10�10. (1.64)

The baryon number is conserved at low energies and ηB was of the same
order also in the early Universe. Indeed at T ¡ 100 MeV, before QCD
transition, there were a lot of quarks and antiquarks in the cosmic plasma
that annihilated and were created in pairs. The number of quark-antiquark
pairs at that epoch was the same as the number of photons and the baryon
asymmetry was given by

nq � nq̄
nq � nq̄

� ηB � 10�10 . (1.65)

This tiny baryon asymmetry is responsible for the abundance of baryonic
matter that we currently see in the present universe. It is extremely unlikely
that this small baryon excess was present in the Universe from the very be-
ginning and it was probably created at high energies though baryon number
non-conserving processes. There is still no unique answer to this problem
and it cannot be found a solution within the framework of SM of particle
physics.

� Cosmological constant problem. While in quantum �eld theory the vac-
uum energy can be ignored and subtracted from the theory through renor-
malisation techniques, in general relativity this can not be done since, as any
other kinds of energy, vacuum energy gravitates. If the universe is approxi-
mately isotropic and homogeneous the vacuum energy is the same everywhere
anytime and it represents a good candidate for dark energy. If we assume
naturalness, giving that energy density has dimensions M4, we may think
that it needs to be related to the proper energy (mass) scales of fundamental
interactions: 1 GeV for strong interactions, 102 GeV for electroweak inter-
actions and MP � 1019 GeV for gravitational interactions. The actual dark
energy density is given by

ρΛ � 10�46 GeV4 (1.66)

and is easy to see that it is several orders of magnitude below any theoretical
estimates. The value of ρΛ is crucial for reproducing the history of the uni-
verse: di�erent ρΛ may lead to recollapsing universe or do not allow for large
scale structure formation. There is still not a clear answer to this problem
that can be considered as one of the most important missing milestones in
fundamental physics.
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� Initial singularity. Realistic cosmological models predict the existence of
a singularity at the initial moment of time (Big Bang), when the scale factor
vanishes while energy and pressure become in�nite. This singularity is not
related to homogeneity and isotropic assumptions, it is a general property of
expanding cosmological solutions. The presence of a singularity shows that
we cannot apply classical �eld theory at the very beginning of the evolution.
Therefore we need a quantum theory of gravity that can be valid at energies
higher thanMp. Indeed this is the only dimensionful parameter that appears
in GR, so it is quite natural to think that classical �eld theory should break
down at that scale.

� Horizon problem. Let us de�ne the cosmological horizon, lHptq, as the
maximum length a photon emitted at Big Bang travels by time t:

lHptq � aptq
» t

tp

dt

aptq , (1.67)

,it gives the size of causally connected regions in the universe at time t.
Since the universe expands, the actual size of lHptq is stretched to lHptq0 �
lHptqapt0q{aptq. Within Hot Big Bang theories the scale factor increases in
time as a9tα where α � 1{2, 2{3 during radiation and matter domination
respectively. It is therefore easy to see that lHptq0 ! lHpt0q when t   t0.
Indeed, neglecting the recent accelerated expansion and comparing the size
of the sphere of last scattering, seen via CMB, with the actual size of cos-
mological horizon at recombination, we get that the number of causally dis-
connected regions in CMB is of order

�
lHpt0q
lHptrq0


2

� 103 . (1.68)

These regions have never been in causal contact before photon decoupling,
but they show an extremely high level of homogeneity and isotropy: δT {T À
10�4. Hot Big Bang theory can not give the reason why causally disconnected
regions should show a thermal equilibrium spectrum.

� Flatness problem. As already said, the only dimensionful parameter in
the theory in given byMp and one would naively think that at tp �M�1

p the
energy density of the universe is equally distributed among its component.
Therefore the spatial curvature should to be of order M�2

p :

|Ωκptpq| � |ρκptpq|
ρcptpq � 1 . (1.69)
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Nevertheless we saw that the present value is given by |Ωκpt0q| � 0.02 and
this quantity changes in time as

Ωκptq9 1

a2ptqH2ptq . (1.70)

This means that tracing back the current value to Planck epoch we get

Ωκptq
Ωκpt0q �

a2pt0qH2pt0q
a2ptpqH2ptpq � 10�60 . (1.71)

The spatial curvature has to be 60 orders of magnitude smaller than the a
priori natural estimate.

� CMB anisotropy. Despite CMB has a nearly black body spectrum, it
shows density �uctuations of order δρ{ρ À 10�4, whose spectrum is close to
�at. These primordial �uctuations and their precise value are at the origin of
structure formation in universe as we currently see it. Hot Big Bang theory
does not provide a mechanism for generating these �uctuations and they
must be put in "by hand".

� Coincidence problem. A coincidence that requires an explanation is that
in the present universe the di�erent energy contributions, i.e. dark energy,
dark matter and baryons, are of the same order of magnitude. Having dif-
ferent origins, a priori they may have contributions of di�erent orders of
magnitude. From Hot Big Bang theory it seems that �ne tuned initial con-
ditions lead to a sort of equipartition of energy at late times.



Chapter 2

Beyond Standard Models

2.1 In�ation

As pointed out in the previous section, Big Bang cosmology su�ers from initial
condition problems, such as horizon and �atness problems, and it is not able to
motivate the initial value of density perturbations needed to e�ciently reproduce
large structure formation in the present universe. These problems are naturally
solved by Cosmological In�ation theory, this is one of most famous extensions of
ΛCDM models that in addition shows an outstanding accordance with current
cosmological experiments. We saw that the cosmological particle horizon is given
by

lHptq � aptq
» t

tp

dt

aptq � aptq
» a

aptpq
ptq d ln a1

a1Hpa1q . (2.1)

The horizon and �atness problems arise from the fact that aH in Hot Big Bang
theory is a monotonically decreasing quantity. In�ation is able to solve these prob-
lems introducing an epoch where the comoving Hubble radius, aptqHptq, increases,
this can happen if the scale factor increases in time faster than t and the Universe
undergoes an accelerated expansion rate. In particular it can happen that causally
disconnected patches at current time were in causal connection at earlier times.
Indeed if we call tend the time when in�ation ends, the present size of cosmological
horizon at tend is given by

lHptendq0 � apt0q
» aptendq

aptpq

da

a2H
� a0

aptpqHptpq , (2.2)

where we assumed that, being aH increasing during in�ation, the main part of the
integral comes from its lower bound. The ratio between this size and the current

37
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Hubble length can be larger than one:

lHptendq0
lHpt0q � a0H0

aptpqHptpq Á 1 . (2.3)

It is immediate to see that this relation also provides a natural solution to the �at-
ness problem of Eq. (1.71). We know that in order to have a period of accelerated
expansion we need the universe to be dominated by a kind of matter which shows
negative pressure, i.e ω   �1{3, and we may ask ourselves how much time this
stage need to last to solve standard cosmological problems. Let us assume that,
after the end of in�ation, the universe instantaneously reheats at tend and the hot
stage begins at a temperature

Treh �
b
MpHptendq . (2.4)

In order to solve horizon and �atness problems we need Eq. (2.3) to be satis�ed,
this implies

aptendqHptendq
aptpqHptpq Á aptendqHptendq

a0H0

� T0

Treh

Hptendq
H0

. (2.5)

We can de�ne the number of e-foldings required between Planck time and the end
of in�ation as

Nend � ln

�
aptendq
aptpq



(2.6)

and from Eq.(2.5) we immediately �nd a lower bound for Nend:

Nend Á ln

�
T0

H0



� ln

�
Hptendq
Treh



� 68� ln

�
Hptendq
Treh



. (2.7)

We see that the second part of the previous equation is model dependent but, in
general, it requires Nend to be larger than 70. Considering a reheating temperature
in the range Treh � 1TeV � Mp the previous bound in terms of cosmic time
becomes:

∆tend ¡ 10�42 � 10�9 s . (2.8)

In�ation predicts that within an extremely small fraction of a second the universe
grows exponentially at an accelerating rate. In realistic models the reheating
period is not instantaneous and can last many Hubble times, this relaxes the
bound to be

Nend Á 60 , (2.9)

of course the precise value of the lower bound depends on the details of the model
under study.
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2.1.1 Background evolution

The simplest model of in�ation relies on adding to the theory a single scalar
�eld that is called the in�aton. It plays the role of an order parameter that
accounts for the time evolution of the in�ationary energy density. The classical
dynamics of in�ation requires that the in�aton �eld is initially displaced from
its true vacuum and its rolling motion to the bottom of its potential causes the
exponential expansion of the universe.

The dynamics of a scalar �eld minimally coupled to gravity is governed by the
following action:

S �
»
d4x

?�g
�

1

2
R � 1

2
gµνBµφBνφ� V pφq

�
(2.10)

where V pφq is the potential associated to the in�aton. The energy momentum
tensor is given by

Tµν � BµφBνφ� gµν

�
1

2
BαφBαφ� V pφq



(2.11)

and the �eld equation of motion is

1?�gBµ p
?�gBµφq � BV pφq

Bφ � 0 . (2.12)

We assume that we are dealing with FRW metric with �at space and that we are
allowed to separate the �eld φ into a homogeneous and a non-homogeneous part,
we call them φ0 and δφ respectively:

φpt, ~xq � φ0ptq � δφpt, ~xq . (2.13)

The energy momentum tensor related to φ0 take the perfect �uid form with energy
and pressure given by

ρφ0 �
1

2
9φ2
0 � V pφ0q , pφ0 �

1

2
9φ2
0 � V pφ0q (2.14)

that imply the following equation of state

ωφ0 �
pφ0

ρφ0

�
1
2
9φ2
0 � V pφ0q

1
2
9φ2
0 � V pφ0q

(2.15)

In case this �eld dominates the energy density of the universe and if the potential
energy is much larger than the kinetic one, we have ωφ   0 and the scalar �eld
motion can lead to an epoch of negative pressure and accelerated expansion (if
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ωφ   �1{3). Considering only the contributions coming from the homogeneous
�eld, the �eld equation of motion and the FRW equations become

:φ0 � 3H 9φ0 � Vφ0 � 0 , H2 � ρφ0

3
,

:a

a
� H2

�
1�

9φ0

2

2H2

�
. (2.16)

Having accelerated expansion requires

9φ2
0 ! V pφ0q (2.17)

so that ωφ � �1 and we have a slow-roll motion, in addition in order to have a
long lasting period of accelerated expansion we need that

|:φ| ! |3H 9φ| , |Vφ| . (2.18)

We introduce the Hubble slow roll parameters ε and η that parametrise the validity
of slow-roll approximation:

ε � �
9H

H2
�

9φ2

H2
, η � �

:φ

H 9φ
, (2.19)

these are two dimensionless parameters that satisfy the condition that, if ε and η
are much less than 1, slow-roll motion is realised and in�ation takes place. In�ation
ends when ε � 1. Under slow-roll conditions the universe undergoes a phase of
exponentially fast expansion and the space-time is almost de Sitter:

aptq9eHdSt , H2 � V pφq
3

� H2
dS (constant) . (2.20)

It is possible to rephrase slow-roll condition with equivalent parameters that are
referred to the in�aton potential, these are εV and ηV :

εV � 1

2

�
Vφ
V


2

, ηV � Vφφ
V

. (2.21)

Under slow-roll approximation we have εV � ε and ηV � η. If slow-roll conditions
are satis�ed, the number of e-foldings before in�ation ends allows us to �nd an
implicit bound on the in�ation �eld initial conditions, φin

Nendpφinq � ln

�
aend
ain



�
» tend

tin

Hdt �
» φin

φend

dφ?
2εV

Á 60 . (2.22)
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2.1.2 Cosmological perturbations and CMB

The primordial density �uctuations that we can observe in the CMB have a
quantum origin and can not be described using just the homogeneous part of
the in�aton. In particular, as we have already done for the in�aton �eld in Eq.
(2.13), we need to divide the space-time metric into its classical part and linear
perturbations:

gµν � ḡµνptq � δgµνpt, ~xq . (2.23)

Quantum perturbations must be present in the theory and metric and in�aton
perturbations are tightly coupled to each other. An easy way to see this is to look
at the equation of motion for δφ, neglecting metric perturbations:

:δφ� 3H 9δφ� ∇2δφ

a2
� Vφφδφ � 0 . (2.24)

Indeed, if we focus for simplicity on far sub-horizon modes (k{aH ! 1) and we
consider de Sitter expansion (constant H), we �nd that Eq. (2.24) is the same that

has to be satis�ed by 9φ0. Since δφ and 9φ0 satisfy the same di�erential equation
in time, they need to be related by a constant of proportionality which depends
on space coordinates, i.e. δφ � � 9φ0δtpxq. Under these conditions, the split of
the in�aton �eld into background value and perturbations can be seen as a Taylor
expansion of

φpt~xq � φ0pt� δtp~xq, ~xq . (2.25)

The in�aton �eld does not acquire the same value in any given space point at a
given time, i.e. it can not be considered as a homogeneous �eld, and the relation
between its physical value and the background approximation can be interpreted
as a local change of coordinates.
Metric perturbations can be decomposed according to their spin with respect to a
local rotation of the spatial coordinates on hypersurfaces of constant time, they can
be either scalar (spin 0), vector (spin 1) or tensor perturbations (spin 2). The true
symmetric, traceless and transverse degrees of freedom are 1

2
pn�2qpn�1q, where n

is the number of space dimensions, in our case n � 3. We have 2 scalar, 2 vector and
2 tensor degrees of freedom. Vector perturbations are not exited during in�ation
since there is no rotational velocity in the in�ationary stage, tensor perturbations
are responsible for gravitational waves production. Since we are interested in
density perturbations generation, let us focus on scalar degrees of freedom. At
linear order, scalar, vector and tensor perturbations evolve independently and we
are allowed to analyse them separately. Focusing on scalar degrees of freedom, the
most generic perturbed metric is

ds2 � gµνdx
µdxν

� �p1� 2Φqdt2 � 2aBidx
idt� a2rp1� 2Ψqδij � Eijsdxidxj ,

(2.26)
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where Eij � pBiBj � 1
3
δij∇2qE. Perturbations in the metric give rise to connection,

Riemann tensor, Ricci scalar and scalar curvature perturbations: δΓαβγ, δR
α
βγδ,

δRαβ and δR respectively. On the other hand the combination between metric and
in�aton perturbations lead to the perturbed stress-energy tensor. The dynamics
of the system can be studied solving the perturbed Klein-Gordon equation for the
in�aton �eld and the perturbed Einstein equations:

δ

�
1?�gBµ p

?�ggµνBνφq
�
� Vφφδφ , δTµν � 1

M2
p

�
δRµν � 1

2
δR



. (2.27)

Before we can look at the results of perturbation theory in case on single �eld
in�ation, we need to understand how to work with physical quantities. Perform-
ing the metric expansion we want to study small perturbations away from the
homogeneous and isotropic FRW �at space-time. The aim of perturbation theory
is to give at linear level the di�erence between the real physical space-time and
its unperturbed background approximation . In order to do it properly these two
quantities need to be computed at the same space-time point. On the other hand,
being general relativity a gauge theory, where gauge transformation are given by
local coordinate changes, we need to �nd a map that univocally identi�es the same
space-time points in the two di�erent geometries. Changing the map corresponds
to perform a gauge transformation, while choosing a map (coordinate choice) is
�xing the gauge.
Scalar perturbations in Eq. (2.26) are not gauge invariant, indeed, under a local
coordinate change as

tÑ t� α ,

xi Ñ xi ��δijβ,j , (2.28)

the spin 0 degrees of freedom transform as

Φ Ñ Φ� 9α ,

Ψ Ñ Ψ�Hα ,

B Ñ B � α

a
� a 9β ,

E Ñ E � β .

(2.29)

A change of the map implies a variation of perturbations and working in a �xed
gauge may lead to spurious gauge artifacts. It is therefore useful to construct
gauge-invariant scalars that allow us to work with only physical quantities. Among
them, we cite the comoving curvature perturbation R. It measures the spatial
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curvature of comoving hypersurfaces and in single �eld in�ation has the following
form:

R � Ψ� H

9φ0

δφ . (2.30)

It can be proven that on super-horizon scales, this quantity does not evolve and
can be related to the dimensionless density perturbations. Therefore its primordial
value gives the seed for CMB �uctuations and large structure formation. In single
�eld in�ation R can be safely considered as a gaussian variable, non gaussianities
are predicted to be small, and all the statistical information is encoded into the
two-point correlation function:

xRRy �
» 8

0

∆2
Rpkqd ln k, xR~kR~k1y � p2πq3δp~k � ~k1qPRpkq , (2.31)

where R~k are the Fourier modes of R, ∆2
R � k3

2π2PR is the dimensionless power
spectrum and PR is the power spectrum of R. The scale dependence of the di-
mensionless power spectrum is measured by the scalar spectral index ns

ns � 1� d ln ∆2
Rpkq

d ln k
, (2.32)

current measurements set ns � 0.96 [10], pointing out that ∆2
R is almost scale

invariant. In this context the scalar power spectrum can be approximated as

∆2
R � Aspk�q

�
k

k�


ns�1� 1
2
dns
dk

lnpk{k�q
, (2.33)

where k� is a pivot scale. The scalar power spectrum amplitude, Aspk�q, can be
constrained from CMB observations and it has been estimated to be As � 2�10�9

using the pivot scale k� � 0.05Mpc�1 [10].
As already said, beside scalar perturbations, in�ation excites tensor perturba-

tions, hij, that can be expressed as

ds2 � �dt2 � aptq2 rδij � hijs dxidxj . (2.34)

These are given by spin 2 degrees of freedom and are gauge invariant at linear
order. The two physical polarisations, eλij where λ � �,�, are usually composed
by the eigenvalues of the spatial laplacian, ∆eij � �k2eij, multiplied by a time
dependent scalar amplitude hptq

hij � hptqep�,�qij p~xq , (2.35)

where the two polarisations must be symmetric, transverse and traceless: eλij � eλji
and eλii � kieij � 0. Since in this setup the energy momentum tensor is diagonal,
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the two canonically normalised tensor modes aptqhλij satisfy the equations of motion
of two independent massless scalar �elds. Being hλij physical quantities, we can
then study the statistics associated to primordial tensor mode production as:

xhhy �
» 8

0

∆2
hpkqd ln k, xh~kh~k1y � p2πq3δp~k � ~k1qPhpkq , (2.36)

where Phpkq is the tensor mode power spectrum and ∆2
hpkq is its dimensionless

counterpart. We de�ne the dimensionless power spectrum of tensor perturbations
∆2
t pkq as the sum of the contributions coming from the two polarisations: ∆2

t pkq �
2∆2

hpkq. We can de�ne the scale dependence of tensor power spectrum through

the tensor spectral index: nt � d ln ∆2
t pkq

d ln k
. Using slow-roll approximation the two

power spectra in case of single �eld in�ation turn out to be

∆2
Rpkq �

H4

p2πq2 9φ2
0

�����
k�aH

, ∆2
t pkq �

8

M2
p

�
H

p2πq

2

�����
k�aH

. (2.37)

The di�erence in magnitude between scalar and tensor power spectrum can be
measured through the tensor-to-scalar ratio, r, whose experimental upper bound
is [10]

r � ∆2
t pkq

∆2
Rpkq

À 0.1 . (2.38)

This parameter is extremely important since it allows to get an upper bound on
the in�ationary scale, being the relation between the in�aton potential and r given
by

V 1{4 �
� r

0.01

	1{4
1016 GeV . (2.39)

Despite cosmological in�ation theory has not been proved yet, its accordance
with current experimental results, together with the ability of solving many of the
theoretical problems related to standard cosmology, makes it the best candidate
to extend hot big bang theory. In�ation is able to provide a natural dynamical
solution to the �atness and horizon problems, adding to the theory a single scalar
degree of freedom. Among the various achievements of this theory, the most strik-
ing hint in favour of in�ation is the outstanding accordance between theoretical
predictions and CMB spectrum. The shape of the primordial spectrum is easily
reproduced by generic in�ation models, the �rst acoustic peak appears at a scale
that is consistent with �at universe, predicted by in�ation, and the anisotropy
spectrum of CMB shows peaks and troughs that can be explained only if all the
Fourier modes of perturbations can be produced in a coherent way [11]. This last
feature is the greatest success of in�ation that naturally provides a mechanism for
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coherent modes production. Modes deep inside the horizon during in�ation oscil-
lates with a frequency k ! 2π{k ! aH. However, during in�ation, these modes get
stretched to super-Hubble lengths, they get classical and their amplitude remains
constant. When they re-enter the horizon, after the end of in�ation, they start
evolving very slowly, being 9R very small at horizon crossing, and only coherent
modes get excited. Since perturbations inR induce density perturbations and mat-
ter and radiation perturbations are strongly coupled in the early universe plasma,
the coherent spectrum of Fourier modes that compose CMB power spectrum can
be seen as a footprint of the primordial �uctuations in R.

All the features listed above are already valid when we consider the simplest
models, where we the in�aton is given by a single scalar �eld. Nevertheless, from
Eq.(2.39) we see that the in�ationary dynamics takes places at energies much
higher than the scales at which SM has been tested in particles accelerators. More-
over, we know that the presence of dark matter and dark energy, together with all
the theoretical problems related to SM, tell us that we may expect the existence
of new kinds of particles that can extend SM. These observations suggest that
in�ation may be described in the context of beyond SM theories, such as super-
symmetry or string theory, that usually predict the existence of a large number
of new �elds and some of them can be relevant for in�ation. If this is the case,
in�ation may be driven by a combination of �elds (multi-�eld in�ation) or we
may have light degrees of freedom, that are overdamped during in�ation, which
may leave imprints in the primordial spectrum through their quantum �uctuations
(spectator �elds). These models present a richer phenomenology and are usually
characterised by isocurvature �uctuations production and a sizable amount of non-
gaussianities in density perturbations that can be constrained or even detected in
future experiments.

2.2 Axions and ALPs

As already discussed in the previous sections, SM can not be considered as a
fundamental theory since it does not give a satisfactory explanation for the values
of its underlying parameters, it is not a consistent quantum theory of gravity and
it does not provide a model for dark energy and dark matter. Given that astro-
physical observations show that dark matter represents nearly 30% of the energy
content of the universe, looking for the existence of particles beyond the Standard
Model seems to be a mandatory step.
Among the most prominent and widely-discussed candidates there are axions and
axion-like particles (ALPs) which are often predicted by beyond-SM (BSM) theo-
ries and appear in many di�erent forms in 4D e�ective �elds theories coming from
strings. These particles are particularly interesting since, depending on their mass
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and on the mechanism related to their production, they can play both roles of cold
dark matter (CDM) and dark radiation (DR).

2.2.1 Birth of Axions: the strong CP problem

Axion physics started in 1977 when Helen Quigg and Roberto Peccei proposed
their solution to the strong CP problem postulating the existence of a new U(1)
symmetry that leads to an extremely light and weakly interacting particle.
As already mentioned at the end of Section 1.1, quantum chromodynamics, the
non abelian theory of strong interaction, allows for the presence of a CP-violating
term in the lagrangian:

LCP � g2
S

32π2
θ trpGµνG̃

µνq (2.40)

where G is the gluonic �eld strength, G̃µν � 1
2
εµναβGαβ is its dual, gS is the strong

coupling constant and θ is a parameter which arises from the study of the QCD
vacuum structure [12]. The above expression violates parity and time reversal but
conserves charge, therefore it violates CP symmetry.
We can only determine the value of θ through experimental data; one of the main
probes for it is the electric dipole moment of the neutron dn, since it arises just
from the CP-violating term (2.40). The experimental upper bound for its value is:

| dn | � e
mq

mn
2
θ � θ 10�16 ecm   10�26 ecm , (2.41)

where mq is a light-quark mass (u or d quark), mn is the neutron mass and e is the
electron charge; it is clear that the above relation implies θ   10�10. If one adds to
the QCD lagrangian the weak interaction contributions, Lqmass � q̄iRMijqjL�h.c.
, since the mass matrix is usually complex, one has to perform a transformation to
diagonalise it and get a physical basis. As this transformation is chiral and chiral
transformations change the QCD vacuum, the net e�ect of this calculation is to
change the coe�cient in front of the GG̃ term as

LCP � g2
S

32π2
θ̄ trpGµνG̃

µνq :� g2
S

32π2
pθ � Arg det Mq trpGµνG̃

µνq , (2.42)

from which we see that the previous relation on θ now becomes θ̄   10�10.
A question arises spontaneously: why should this parameter be so small, or, sim-
ilarly, why is CP conserved in strong interactions? These two questions are the
core of what is called strong CP problem.
In 1977, Peccei and Quinn proposed a solution to this problem: they postulated
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the existence of a global Up1qPQ chiral symmetry in the Lagrangian which is spon-
taneously broken. The axion is the Nambu-Goldstone boson of the broken Up1qPQ
symmetry and its transformation rule under Up1qPQ is:

apxq Ñ apxq � α fa , (2.43)

where fa is the axion decay constant, which represents the order parameter asso-
ciated with the breaking of Up1qPQ.
The SM lagrangian must therefore be augmented by the axion kinetic terms and
interactions:

L � LSM � g2
S

32π2 θ̄ trpGµνG̃
µνq

�1
2
BµaBµa� LintrBµafa ;ψs � ξ a

fa

g2
S

32π2 trpGµνG̃
µνq ,

(2.44)

where ψ is a generic SM �eld and ξ is a model dependent parameter. The last
term of the above equation is needed to give chiral anomaly to the Up1qPQ current
and, at the same time, it also represents an e�ective potential for the axion �eld.
The axion potential is generated by non perturbative e�ects of the QCD anomaly
and looks like [12]:

Veff � cospθ̄ � ξ
xay
fa
q . (2.45)

Its minimum with respect to xay gives the Peccei-Quinn solution which sets dy-
namically the physical theta angle to zero:

xay � �faθ̄
ξ
. (2.46)

In fact, if we expand the axion �eld around its minimum we can see that its vacuum
expectation value cancels out the θ̄ term. This provides a dynamical solution to
the strong CP problem. The axion acquires a mass through instanton e�ects, this
is given by:

pm2qa �
BB2Veff

Ba2

F
|xay � � ξ

fa

g2
S

32π2

B
BaxG

aµνG̃a
µνy|xay . (2.47)

As we can see, the axion mass is a parametrically small quantity, it also depends
on fa which shows the energy scale of the Up1qPQ symmetry breakdown.
Using e�ective �eld theory techniques, the axion mass can be expressed in terms
of the pion and up and down quarks as:

ma � mπfπ
fa

?
mumd

mu �md

� 0.6 meV�
�1010 GeV

fa

	
. (2.48)
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Looking at Eq.s (2.44) and (2.48), we see that for large decay constants the axion
appears to be a weakly interacting, parametrically light particle. Models describ-
ing this kind of particles are called invisible axion models. These models introduce
scalar �elds which carry PQ charge and are SUp2q � Up1q singlets, this allows to
have Up1q symmetry breaking at high energies, decreasing the axion mass and the
coupling strength.
There are two di�erent benchmark models: the Kim-Shifman-Vainshtein-Zakharov
(KSVZ) model and the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model.
In the �rst one the axion is introduced as the phase of an additional EW singlet
scalar �eld σ with fa � xσy " 250 GeV. Since the known quarks cannot directly
couple to such a �eld, as this would lead to unreasonably large quark masses, a
new EW singlet heavy quark Q is introduced MQ � fa and it couples to the new
scalar �eld.
The second model (DFSZ) has two Higgs doublets and an EW singlet complex
scalar φ, which acquires a non zero vacuum expectation value at the Up1qPQ sym-
metry breaking scale that must again satisfy fa � xφy " 250 GeV. This scalar
couples only indirectly to the SM particles via its direct interaction with Higgs
doublets. DFSZ models require that all �elds appearing in the theory other than
gauge bosons enjoy a Peccei-Quinn symmetry.

2.2.2 ALPs

Beyond the case of the strong CP problem, axions and axion-like particles
(ALPs) appear in many models of physics beyond the Standard Model, such as
string theory, as pseudo Nambu-Goldstone bosons associated to the breaking of
U(1) symmetries. The properties of these particles are similar to that of axions
but, in general, their mass and coupling to photons are not related, making the ex-
perimentally allowed parameter space very wide. Many extensions of the Standard
Model contain extra Up1q symmetries which are spontaneously broken. At energies
below the spontaneous symmetry breaking scale, Nambu-Goldstone bosons come
out representing the phase a of the complex scalar �eld φ charged under the Up1q
symmetry. If we call xφy � vσ{

?
2 the vacuum expectation value (VEV) of the

�eld φ, we obtain, expanding it around its minimum:

φpxq � vσ � σpxq
2

e
iapxq
vi . (2.49)

The interaction of these particles with gluons, photons and SM matter �elds (e.g.
electrons) is suppressed by a large symmetry breaking scale, fai , which must be
higher than that one of the electroweak symmetry breaking v � 246 GeV, i.e. the
Higgs VEV:
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L � 1

2
BµaiBµai � αs

8π

�naxions¸
i�1

Cig
ai
fai

	
Gb
µνG̃

b,µν

� α

8π

�naxions¸
i�1

Ciγ
ai
fai

	
FµνF̃

µν ��1

2

�naxions¸
i�1

Cie
Bµai
fai

	
ēγµγ5 e� . . . ,

(2.50)

where Cig, Ciγ and Cie represent the coupling to gluons, photons and electrons
respectively.

We will focus on ALPs that come from string theory and string compacti�cation
in Section 2.3.10.

2.2.3 Axions and ALPs in cosmology

Axions as Cold DM Although DM has not be seen directly yet, its grav-
itational interaction with ordinary matter leaves unmistakable evidence for its
existence. Cosmologists believe that DM is mostly comprised of cold slow mov-
ing particles that do not emit electromagnetic radiation or scatter light. The
three most relevant features of particle candidates of cold DM (CDM), indirectly
deduced from observations, are their feeble interactions with SM particles, their
su�ciently non-relativistic momentum distribution during structure formation and
their stability on cosmological time-scales.

A possible realisation of all these features are Weakly Interacting Massive Par-
ticles (WIMPs). In general WIMPs are supposed to be thermally produced in
the early Universe and their large, of order TeV scale, mass ensures that by now
they are non-relativistic. Their interactions are small due to the large mass of the
mediator particles (such as W or Z bosons) and WIMP stability is ensured by the
introduction of symmetries that conserve their particle number. A well-motivated
WIMP candidate is the lightest supersymmetric particle which in most models is
a neutralino. Although it is way too early to make a �nal judgment, it is neverthe-
less noteworthy that LHC measurements as well as direct WIMP searches have not
given any clear indication of their existence. Because of these considerations, it
is worthwhile to consider alternative ways to realise the essential features of DM.
A possible alternative that can satisfy the observational constraints is given by
Weakly Interacting Slim (very light) Particles (WISPs). In fact, su�cient stability
of the DM particles can be achieved by combining the weakness of their interac-
tions with a su�ciently small mass. This makes axions and ALPs good light CDM
candidates. Indeed, despite them being so light, there are non-thermal means for
producing su�ciently cold DM made of light particles. Among them, one of the
most generic is the vacuum misalignment mechanism that we brie�y summarise
below.
We call φ and EPQ � fθ the �eld carrying the Up1qPQ symmetry and its SSB scale
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respectively. We can parametrise φ as follows

φ � |φpxq|eiαpxq � |φpxq|eiθpxq{fθ .
The PQ symmetry is unbroken at early times and energies greater than EPQ.
Let us focus for simplicity on the case where SSB occurs at energies higher than
the in�ationary scale: EPQ ¡ Hinf . At energy � EPQ, Up1qPQ breaks down
spontaneously, |φ| acquires a non zero vacuum expectation value and the axion
�eld θpxq, may have any value: θpxq is still a �at direction of the potential. Going
down to energy scales E � ΛQCD � 200 MeV, where ΛQCD is the con�nement scale,
QCD instantons e�ects generate an e�ective potential for the axion �eld. When
these e�ects become signi�cant, the axion �eld (randomly located in θ

fθ
P r�π; πs)

acquires a mass, rolls towards its minimum and starts oscillating around it. The
temperature which sets the beginning of the oscillating regime Tosc is implicitly
given by mpToscq � HpToscq. For T " Tosc the classical �eld is over-damped,
θ � const, and the energy density of θ contributes to the e�ective cosmological
constant. On the other hand, when T ! Tosc, the axion mass dominates over
Hubble friction and the �eld undergoes damped harmonic motion behaving as
non-relativistic matter: ρθ9 a�3. For dark matter axions, oscillations must occur
during radiation domination when the axion is a sub-dominant component of the
total energy density. So we see that the oscillations of this �misaligned� classical
axion �eld result in coherent �eld oscillations corresponding to a condensate of
non-relativistic axions [13] that can contribute to the CDM content of the universe.

Axions as Dark Radiation Cold DM can be made of both stringy ALPs and
the QCD axion. For a high decay constant, 109 GeV   fa   1012 GeV the QCD
axion can contribute signi�cantly to cold DM, while ALPs can saturate the ob-
served DM content for even larger decay constants (i.e. weaker couplings to gluons
and photons). The most stringent experimental bound that these models need to
satisfy comes from isocurvature bounds related to CMB measurements. Indeed,
since these �elds are present during in�ation, they can develop isocurvature �uc-
tuations that have been highly constrained by Planck experiment [10]. Indeed, the
non-adiabatic fraction in the observed CMB temperature must satisfy:

βisopk0q � |PSS |2
|PSS |2 � |PRR|2

����
k0

  2.5� 10�2 at 95%CL , (2.51)

where |PRR|2 and|PSS |2 are the adiabatic and isocurvature power spectra computed
at a pivot scale k0 � 0.002 Mpc�1. In case of a single axion that plays the role of
spectator �eld during in�ation and has a natural value of the initial misalignment
angle, Θ2

mi � Op1q, this bounds translates to

α � 4

As

�
Ωθ

ΩDM


2
σ2
θ

Θ2
mi

, (2.52)
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where As is the total amount of scalar perturbations, σ2
θ �

�
Hinf
2πfθ

	2

is the expec-

tation value of the axion quantum �uctuations during in�ation, while Ωθ{ΩDM

represents the relative abundance of axionic DM. It is easy to see that Eq. (2.52)
can be transformed into an upper bound for the in�ationary scale of the model.

Being ALPs naturally very light, they can also represent good dark radiation
candidates. Indeed, the straightforward way of getting relativistic axions and
ALPs is given by direct decay. Focusing on string phenomenology, which will be
the main topic of this thesis, a generic prediction of string compacti�cations is
that reheating is driven by the late-time decay of the moduli, Φ. These are scalar
�elds that arise after dimensional reduction of the six extra dimensions space and
will be introduced in Sec. 2.3.3. The typical moduli decay width is:

Γ � m3
Φ

8πM2
P

. (2.53)

This leads to a reheating temperature which looks like:

Tγ � Treheating �
a

ΓMP � m
3{2
Φ

M
1{2
P

. (2.54)

However, on top of SM particles, the moduli decay produces also hidden sector
degrees of freedom such as very light ALPs which contribute to the radiation
energy density of our universe. Therefore these relativistic ALPs behave as extra
neutrino-like degrees of freedom ∆Neff [14] which is de�ned as:

ρrad � ργ � ρrel d.o.f. � ργ

�
1�

�7

8

	� 4

11

	4{3�
Neff,SM �∆Neff

	�
, (2.55)

where ργ is the photon energy density while ρrel d.o.f. denotes the energy density
of other relativistic degrees of freedom. The �rst two terms in the previous equa-
tion are related to SM physics, while the third one can be associated with extra
ALP dark radiation proportional to ∆Neff . Recent measurements of the Hub-
ble constant H0 [15] provide the following range of possible values for ∆Neff :
∆Neff � 0.4� 1 at 2σ. This can soften the tension between H0 measurements of
Eq.s (1.47) and (1.46), representing an interesting hint in favour of the existence
of ALPs.
Thanks to their weak coupling to all ordinary particles, ALPs produced by direct
decay of the moduli �elds free-stream to the present days without thermalising
and would form today a Cosmic Axion Background (CAB) [16]. The CAB energy
density can be easily estimated by noticing that the ALP energy is:

Eaxion � mΦ

2
,
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wheremΦ is the mass of the decaying modulus Φ. Using the reheating temperature
above, we �nd that the ratio between the energies of ALPs and CMB photons today
is:

Eaxion
Tγ

�
�MP

mΦ

	1{2
� 106

�106 GeV

mΦ

	1{2
,

where we used the fact that both ALPs and photons redshift as radiation from
modulus decay till today. In order to avoid cosmological problems, the moduli
need to have masses mΦ Á 50 TeV. For moduli masses m � 106 GeV, we have
Eaxion � 106 TCMB � 200 eV. Hence the CAB energy spectrum is expected to be
located in the soft X-ray range E � 0.1� 1 keV. This could have created, together
with Primako� process in the cluster magnetic �eld, the soft X-ray excess above
the thermal emission of the intra-cluster medium detected from galaxy clusters as
Coma [16]. We will discuss an explicit realisation of axionic DM in string theory
in Chapter 5. There we describe how to perform a successful global embedding in
type IIB string compacti�cations of the model of [17] for the 3.5 keV line that has
been recently observed from galaxy clusters.

Axions as In�aton In�ationary models are very sensitive to quantum correc-
tions induced by higher dimensional operators that can spoil the �atness of the
potential. These corrections can induce Op1q contributions to the slow-roll pa-
rameters, drastically shortening the duration of in�ation to few e-foldings. This
tells us that in�ation is extremely sensitive to UV physics, so symmetries must
be found that are able to protect the form of the in�ationary potential, forbid-
ding or suppressing the presence of such corrections. These considerations make
axion-like particles good in�ation candidates: they appear in the theory equipped
with a continuous shift symmetry to all orders in perturbation theory, making
the axion potential stable against quantum corrections. An extremely important
parameter when studying axion in�ation is the axion decay constant, f , that sets
the magnitude of the least irrelevant shift-symmetric coupling with all the other
�elds, e.g. the dimension 5 operator that sets the coupling with gauge �elds φ

f
FF̃ .

Moreover in case of embedding in UV complete theories, f sets the cuto� scale
of the e�ective �eld �eld theory that should describe axion in�ation: we need to
integrate out all heavy modes having masses m ¡ f . Historically the �rst model
that was proposed is natural in�ation, were a single axion plays the role on the
in�aton, acquiring a mass through non-perturbative corrections. This leads to the
following potential:

V pφq � Λ4

�
1� cos

�
φ

f


�
, (2.56)

where Λ ! MP is the dynamically-generated energy scale of non-perturbative ef-
fects and φ is the canonically normalised axion. In order to give rise to prolonged
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in�ation and match experimental data this model requires f ¡ 10Mp. Unfor-
tunately, experimental bounds on the relation between scalar spectral index and
tensor-to-scalar ratio tend to disfavour the validity of this model[10]. Since the
birth of natural in�ation, many extensions and other di�erent models have been
proposed. We discuss some of them together with their possible embedding in type
IIB string theory in Section 2.4.2.

2.3 Type IIB string Phenomenology

The SM and many of its extensions, such as GUT theories or supersymmetric
models like the MSSM, can be viewed as e�ective �eld theories, i.e. low-energy
limits of some more fundamental theory. For instance, SM and GUT theories
contain interactions that are not asymptotically free and lead to ultraviolet Landau
poles. All these theories present a sick UV behaviour and leave as open problems
many of the puzzles related to SM: number of families, �avour physics and others.
In particular none of these theories provides a framework where general relativity
can be reconciled with quantum �eld theory. On the other hand, the quantum
version of Einstein's gravity is not renormalisable, therefore it should be seen as
an e�ective �eld theory as well. String theory represents the more promising
candidate to merge possible extensions of SM with a quantum theory of gravity
that is free of quantum divergences. Indeed string theory provides a theory of
gravity that can also describe non-abelian gauge interactions, fundamental scalars,
charged chiral fermions appearing in di�erent families and Yukawa couplings, all
of which represent the building blocks of the SM.

One of the most revolutionary aspects of string theory is that elementary ob-
jects are not described by point-like particles but 1-dimensional strings whose
typical length is ls. Strings can be both open or closed and their dynamics is
described by a 2-dimensional surface Σ that is called the world-sheet. An impor-
tant feature of string theory is that ls is the only free parameter in the theory,
this implies that all the other SM parameters must be dynamically determined,
drastically reducing the arbitrariness of the theory. The string scale Ms � 1{ls,
which represents the typical string interaction energy, can be constrained by par-
ticle accelerator experiments: the fact that no string e�ect has been detected in
LHC yet sets a lower bound on Ms. At energy scales well below Ms it is not pos-
sible to feel the 1D structure of strings and their theory becomes a quantum �eld
theory of point-like particles. Strings can vibrate and di�erent string oscillations
correspond to di�erent particles having di�erent masses, quantum numbers and
Lorentz transformation properties. Depending on the number of exited oscillators,
each string oscillation corresponds to an in�nite tower of particles having di�erent
masses where the mass step is given by Ms.
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In all string theories the quantisation procedure predicts the presence of a spin-2
particle in the closed string massless spectrum. This particle interacts as a gravi-
ton and its dynamics is invariant under the re-parametrisation of the space-time
coordinates. Therefore string theory automatically incorporates a quantum ver-
sion of gravity and provides a natural cuto� ls that removes the UV divergences
which appear in the straightforward quantisation of general relativity.

The building blocks of string theory are 2-dimensional bosons and fermions,
XMpτ, σq and ψMpτ, σq, that represent the bosonic and fermionic coordinates of
the string in a D-dimensional space-time,M � 0, . . . , D�1. In particularXMpτ, σq
represents the embedding of a 2-dimensional surface inside a D-dimensional space-
time. Each point of the world-sheet is identi�ed by two coordinates, τ and σ,
that represent the time and the spatial extension of the string respectively. The
motion of closed strings produces world-sheets with no boundary while open string
world-sheets have boundaries. In order to point out some other features of string
theory, let us write down the Polyakov action for a bosonic string [18, 19]:

SP � �T
2

»
Σ

d2x
?�g gabpτ, σq BaXMpτ, σq BbXNpτ, σq ηMN (2.57)

where T � 1{2πα1 � 2π{l2s is the string tension, gab is the world-sheet metric while
ηMN is the D-dimensional Minkowski metric. This action shows di�erent symme-
tries and some of them turn out to be redundancies that must be removed from
the theory. In addition to D-dimensional Lorentz invariance, we have symmetries
related to local invariance under local world-sheet coordinate re-parametrisation
and rescaling (Weyl invariance). Since there are no graviton polarisation modes in
2-dimensions, the metric gab turns out to be trivial. Moreover, imposing invariance
under local coordinate reparametrisation it turns out that the only physical oscil-
lation modes are those transverse to the world-sheet plane. The resulting theory
is then a 2-dimensional quantum �eld theory of D � 2 non-interacting massless
scalar �elds on the world-sheet and the space of harmonic oscillators related to
string oscillations represents the spectrum of space-time particles in string theory.
The massless bosonic spectrum of closed and open strings contains the graviton,
GMN , an antisymmetric tensor BMN , the dilaton φ and a gauge boson AM . The
dilaton φ is a scalar �eld whose vev is related to the string coupling constant as
gs � exφy. If the dynamics allows for gs ! 1 we can treat string theory perturba-
tively. Indeed, despite the 2-dimensional world-sheet is non-interacting, we have
non trivial interactions in the space-time theory and gs represents the loop counting
parameter. String scattering amplitude between asymptotic states in the pertur-
bative regime can be computed similarly to QFT theories: they are computing
using a path integral summing over all possible world-sheets (with di�erent ge-
ometries) that interpolate between asymptotic states in the external legs. Indeed,
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since the interacting objects are 1-dimensional the usual Feynman diagrams are re-
placed by scattering surfaces: world-sheets. If the interaction involves only closed
strings, the perturbative expansion runs over surfaces showing di�erent number
of loops (handles) while in presence of open string external states we may have
that world-sheets present boundaries. Each term in the perturbative expansion is
characterised by a number of handles and boundaries, h and nb, and is weighted
by gχs where

χ � 2� 2h� nb . (2.58)

is the genus or Euler characteristic of the world-sheet.
Knowing the massless spectrum of the bosonic string, we can extend the

Polyakov action including background pro�les for the massless excitations. This
is known as 2-dimensional σ-model and its action is given by:

Sσ � �T
2

»
σ

dx2
?�g ��

gabGMNpXq � εabBMNpXq
� BaXM BbXN

�α1φRpgqs �
»
BΣ

dξaAMpXqBaXM
(2.59)

where εab is the antisymmetric Levi-Civita tensor and Rpgq is the scalar curvature
of the world-sheet metric. This action describes an interacting 2-dimensional �eld
theory where the scalar �elds parametrise the non trivial curved space. Indeed
the background metric in the �rst term can be regarded as a superposition of a
large number of graviton string states. The second term does not depend on the
world-sheet metric, it is purely topological and tells us that the strings are charged
under the �eld B2 � 1

2
BMN dX

M ^ dXN . The third term corresponds to the 2-
dimensional Einstein Hilbert action for gab and the fourth term, that applies only
to theories including open strings, sets the coupling between the string world-sheet
and the background of the massless gauge boson AM . This interacting theory may
be studied perturbatively if the gradients associated background �elds are small
and when all curvatures are small in string units.

Thus string theory in a general background shows two perturbative expansions:
the genus expansion, parametrised by gs, that sums over all the possible topologies
of the world-sheet connecting initial and �nal states and the α1 expansion, whose
expansion parameter is the curvature of the D-space-time in units of α1, that for
each world-sheet controls the appearance of higher dimensional operators related
to the space-time curvature.

One of the most important properties of string theory is that the scattering
amplitudes of the theory are unitary and �nite order by order in perturbation
theory. The scattering amplitudes show a well-behaved UV regime thanks to
the natural cuto� scale Ms. Indeed, since the theory is characterised by Weyl
symmetry and the vertices are delocalised, in case of large momentum transfer
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Á Ms it is possible to exchange long string states and the UV regime can be
interpreted as the IR limit of a new diagram involving a dual channel. The tower of
massive string modes acts as a UV regulator but the properties and the number of
the massive string states depends on the number of space-time dimensions in which
strings can oscillate. Requiring that UV divergences are appropriately cuto� we
can �x the number of space-time dimensions to be equal to the critical dimension
that can be found imposing that the quantum version of Weyl symmetry is not
anomalous. For the bosonic string the critical dimension is D � 26.

In order to have fermionic degrees of freedom in the theory, we need to introduce
a generalisation of the Polyakov action that shows a 2-dimensional supersymmetry
on the world-sheet: superstring theory. This introduces a set of fermionic �elds
ψM that are superpartners of XM but transforms as vectors under the space-time
Lorentz group. Moreover, we have a supersymmetric partner of gab that is the
world-sheet gravitino ψa. Superstring theory keeps the main properties of the
Polyakov action that we described earlier in this section. On the other hand the
�eld content changes: we have a 2-dimensional quantum �eld theory of D � 2
free massless scalar �elds and fermions and the critical dimension for superstring
theory is D � 10. The action for the world-sheet fermions does not completely
determine the space-time spectrum of the theory. Since 2-dimensional observables
are quadratic in the fermion �elds we can choose di�erent fermionic boundary
conditions on the world-sheet de�ning di�erent sectors:

� Ramond sector: ψM� pτ, σ � lsq � ψM� pτ, σq
� Neveu-Schwarz sector: ψM� pτ, σ � lsq � �ψM� pτ, σq

where ψ� denote left and right movers respectively and ψM �
�
ψM�
ψM�



. The choice

of periodic or anti-periodic boundary conditions for fermions can be made for
left and right movers independently so there are 4 possible sectors: NS-NS, R-R,
NS-R, R-NS. The 10 dimensional EFT describing the interaction of the massless
states of the superstring contains space-time bosons coming from NS-NS and R-
R sectors and space-time fermions coming from NS-R and R-NS sectors. The
construction of a consistent closed string theory with space-time fermions requires
the sectors related to left and right movers to be glued together in a way that
preserves modular invariance of the partition function. This step is called GSO
projection and has to be done independently for NS-R and R-NS sectors. Choosing
the same GSO projection for the two sectors leads to type IIB string theory whose
low energy phenomenology will be the focus of the present work. This theory has
a chiral spectrum, it contains only closed strings and since NS-R and R-NS sectors
have the same spectrum it enjoys a world-sheet parity symmetry. The NS-NS
sector contains the dilaton φ, the graviton GMN , and a 2D symmetric form BMN .
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The R-R sector contains 0-, 2- and 4-forms: C0, CMN and CMNPQ. Type IIB
string theory contains two gravitinos and two dilatinos with same chirality and
the massless spectrum features a ten-dimensional N � p2, 0q supersymmetry.

Four other consistent superstring theories are known [20, 21]: type IIA string
theory, SOp32q and E8�E8 heterotic string theories and type I string theory. The
�ve superstring theories are related to each other by dualities and can be inter-
preted as di�erent limits of the same underlying theory: M-theory [22].

At energies well below Ms massive string modes cannot be exited and each
superstring theory is described by a 10-dimensional supergravity theory. Focus-
ing on the bosonic sector of type IIB string theory, the e�ective action can be
decomposed into NS-NS, R-R, and Chern-Simon (CS) terms

SIIB � SNSNS � SRR � SCS . (2.60)

The �rst contribution contains the space-time metric, the dilaton and the Kalb-
Ramond two form B2 [20, 21]:

SNSNS � 1

2κ2
10

»
dX10

?
�Ge�2φ

�
R � 1� 4BMΦBMΦ� 1

2
H3 ^ �H3



, (2.61)

where � stands for the Hodge operator, κ10 � 8π7{2α12 � l8s{p4πq represents the
10-dimensional Newton constant and the three-form H3 � dB2 is the �eld strength
related to B2. The R-R and CS contribution additionally contains, C0, C2 and C4

that are zero-, two- and four-forms respectively. They are given by

SRR � � 1

4κ2
10

»
d10X

?
�G

¸
p�1,3,5

1

p!
Fp ^ �Fp , (2.62)

SCS � � 1

4κ2
10

»
C4 ^H3 ^ F3 , (2.63)

where
Fp � F̂p �

°
j�p�3,j¡0H3 ^ Cj ,

F̂p � dCp�1 .
(2.64)

Fp form �elds are also called �uxes and the 5-form F5 additionally satis�es the
self-duality condition F5 � �10F̃5. This 10d supergravity action is invariant under
the following transformation for form �elds

B2 Ñ B2 � dλ1 , Cp Ñ Cp � dλp�1 �H3 ^ λp�3 , (2.65)

where λk is a 10-dimensional k-form.
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In the following sections we try to brie�y sum up how to get 4D e�ective �eld
theories from type IIB string theory. As we saw, in addition to the usual 4D space-
time R1,3, string theory requires the existence of 6 extra spatial dimensions. In
order to be able to separate the extra dimensions contribution from the low energy
theory we need to require that these dimensions are compact and of very small
size. Compacti�cation of these dimensions is the way to link the 10D EFT of the
massless string degrees of freedom with the low-energy physics of our real 4D world
below the KK scale. One of the fundamental tasks of string phenomenology is to
�nd a compacti�cation whose low-energy EFT reproduces a suitable extension of
the SM [20, 23]. The space-time manifold is decomposed as R1,3 � Y6, where Y6 is
a compact 6D manifold.

The compacti�cation is usually demanded to yield a N � 1 supersymmetric
EFT that can describe chiral matter in 4D and the supersymmetry breaking scale
is supposed to be low with respect to the KK scale in order to solve the Higgs
hierarchy problem via low-energy supersymmetry. In addition a supersymmetric
EFT simpli�es the calculations thanks, for example, to the holomorphy of the
superpotential and its non-renormalisation properties. If the 4D EFT is required
to be a N=1 supergravity theory, Y6 is forced to be a `Calabi-Yau' space. This
constraint put some limitations in model building but still allows for some freedom.
Indeed, since the number of Calabi-Yau manifolds is in the order of 106, it is
possible to choose among a huge number of compacti�cation spaces. Given that
the content of particles and forces of the resulting theory are determined by the
topology of the extra dimensions, di�erent theories arise from di�erent choices of
Y6.

The generic properties of string compacti�cations are:

� Moduli �elds which parametrise the size and the shape of the extra dimen-
sions and correspond to uncharged 4D scalars;

� Antisymmetric tensors of di�erent ranks which imply the existence of axion
�elds. It is also possible to turn on their �uxes in the extra dimensions giving
rise to masses for the moduli. Moreover D-branes can couple to them and
can host the SM;

� Chiral matter �elds which appear as open string modes on stacks of D-branes.

In addition in order to study 4D models in the context of type IIB string com-
pacti�cation, two general approaches have been used so far:

� Global string models : This is a top-down approach where 10D string theory
is compacti�ed on 6D manifolds. The theory must be consistent at the global
level. Gauge and matter �elds live on D7-branes wrapped around internal
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4-cycles or on D3-branes at singularities. Closed string moduli live instead
in the bulk. A crucial issue to be addressed in these constructions is moduli
stabilisation which is the process through which moduli become massive.

� Local string models : This is a bottom-up approach where one focuses on
the detailed phenomenology of D-brane constructions in order to reproduce
SM physics. The global aspects of the compacti�cation are decoupled and
the moduli are assumed to be stabilised by some unknown bulk dynamics.
Eventually the con�guration taken into account has to be embedded in a
fully consistent global model. Even if a globally consistent compacti�cation
is more satisfactory, local con�gurations of D3- and D7-branes may be more
e�cient in trying to identify promising string vacua which can reproduce all
the features of the SM independent of the details of the global theory.

Starting from Part II, we will mainly use the bottom-up approach, focusing on
models that can give rise to a successful in�ationary dynamics. In the rest of
this section we outline the main ingredients that are needed to build realistic 4D
models starting from 10D type IIB string theory.

2.3.1 Dp-branes

Dp-branes [24] are extended solitonic objects with p spatial dimensions that
can appear in string theory and are charged under the gauge symmetries of R-R
�elds:

SCS � µp

»
Σp�1

Cp�1 (2.66)

where µp is the electric charge of the brane and Σp�1 is the brane world-volume.
One of the most important aspects of Dp-brane is that open strings can end on
their surfaces, their ending point satisfying Dirichlet conditions in the directions
transverse to the brane surface and Neumann boundary conditions in the directions
along the brane surface. This means that string edges cannot leave the brane but
they can freely slide along the brane. These objects have p spatial dimensions and
and have to �ll 4-dimensional space-time in order not to break Poincarè invariance.
Each Dp-brane comes with a Up1q gauge theory that lives on its world-volume.
Indeed the quantisation of the open strings ending on a single brane give rise to
a massless spectrum containing scalar �elds parametrising the Dp-brane position,
ζa, a world-volume gauge �eld Aa with �eld strength Fab and their supersymmetric
partners. In order to understand the interactions between the light �elds living on
the Dp-brane and the background solution of type IIB string theory, let us write
the Dirac-Born-Infeld (DBI) action:

SDBI � �gsTp
»
σp�1

dp�1xe�φ
a
�det pGab � Fabq (2.67)
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where Tp �
�p2πqpgspα1qpp�1q{2��1

is the brane tension, Gab � BXM

Bxa
BXN

Bxb GMN is
the pull-back of the space-time metric onto the D-brane world-volume, Fab �
Bab�2πα1Fab is the gauge invariant �eld strength and Bab is the pull-back of BMN

onto the brane world-volume. This action represents the combination between
the generalisation of Polyakov actions and Maxwell's electromagnetism to higher
dimensional objects. On the other hand the generalisation of CS action in presence
of space-time and D-brane background �elds becomes

SCS � iµp
¸

n�0,2,4

»
Σp�1

Cn ^ eF . (2.68)

Stable Dp-branes are BPS objects that preserve half of the space-time symmetries.
In order to preserve N=1 supersymmetry the brane tension must be equal to its
RR-charge in appropriate units so that: µp � gsTp. Adding the brane action
to the type IIB bulk action may not vary the form of the 4D EFT theory that
arises after KK reduction, but it always a�ects the de�nition of the 4-dimensional
chiral coordinates and therefore the shape of Kähler potential and superpotential
[25, 26]. In type IIB string theory we can have D3- and D7-branes. The presence
of Dp-branes adds to the 4-dimensional spectrum p gauge neutral scalar moduli
ζ i that parametrise the the position of the Dp-brane and possible deformations of
the extra dimension cycle wrapped by the brane. In case of D7-branes we have
other �eld contributions coming from the 8-dimensional world-volume gauge �eld
that give rise to a 4-dimensional Up1q gauge �eld Aµ and to Wilson line moduli
aα.

As previously mentioned, the discovery of Dp-branes played a crucial role in
type IIB string model building since their presence allows to have chiral matter
in the 4D spectrum coming from open strings that live on the branes. Moreover
they allow to reproduce gauge theories with chiral matter in localised areas of the
spatial dimensions, thus decoupling the gauge theory form the details of the whole
compact space. This enriches the model building landscape without providing
additional problems to the compacti�cation procedure.

2.3.2 String compacti�cation and Calabi-Yau manifolds

In what follow we assume for simplicity that the 10-dimensional space-time
M10 of superstring theory can be factorised as M4 � Y6 where M4 is the usual
4-dimensional space-time and Y6 is the compact manifold associated to the extra
dimensions:

M10 �M4 � Y6 (2.69)

this is called compacti�cation of string theory. Let us �rst consider possible vacuum
con�gurations that can lead to the description of 4D e�ective �eld theory. A
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suitable ansatz for the metric decomposition in absence of energy sources is given
by 1

GMNdX
MdXN � ηµνdx

µdxν � gmndy
ndym (2.71)

where gmn and ym, m � 1, . . . 6 are the metric and the coordinates on Y6. Such
a decomposition is a valid vacuum solution if and only if the 10D metric solves
the 10D Einstein equations. This requires that both M4 and Y6 are Ricci �at
manifolds, i.e. Rµν � Rmn � 0. A general class extra dimensions manifolds
that satis�es this requirement is given by Calabi-Yau manifolds that we brie�y
introduce below.

For a general compacti�cation manifold we have that the 10D Lorentz group
decomposes into

SOp1, 9q Ñ SOp1, 3q � SOp6q . (2.72)

In order to study stable compacti�cations that do not contain tachyons and show
a simple theoretical treatment we want to consider string compacti�cations that
preserve a non-vanishing number of supersymmetries in 4 dimensions. This con-
dition relies on the geometrical properties of Y6. Indeed, the number of conserved
supersymmetries in 4D is equivalent to the number of 6-dimensional spinors in Y6,
called Killing spinors, ξpymq, that satisfy:

∇Y6ξpymq � 0 (2.73)

where ∇Y6 � Bm� 1
4
ωABm ΓAB, ωABm is the spin connection and ΓAB is the generator

of the spinor representation of SO(6). Indeed in type IIB string theory the 10D
space-time has a set of 32 local 10D supercharges that transform as spinors of
SOp1, 9q. The number of supersymmetries in 4D is equal to the number of global
supercharges of Y6: being Y6 a curved space, parallel transport would transform
local supercharges under SOp6q but, if Eq. (2.73) is satis�ed, parallel transport of
the spinor on a closed path does not rotate it , the spinor is covariantly constant
in Y6 and we have a global supercharge in Y6.

This condition can be rephrased in terms of the holonomy group of Y6. The
group generated by all possible spinor rotations along closed paths in Y6 de�nes the
holonomy group of Y6. The spinor decomposition induced by space-time splitting
of Eq. (2.72) is given by:

16 Ñ p2,4q ` p2̄, 4̄q (2.74)

1It is important to notice that in concrete models the 10D metric does not represent the
vacuum solution given in Eq. (2.71) and more general decompositions of space-time must be
taken into account, e.g.

GMNdX
mdXN � e2Apyqgµνdx

µdxν � e�2Apyqgmndy
mdyn (2.70)

where Apyq is called the warp factor and is a function of the extra dimensions coordinates. For
instance this form may arise when we consider the presence of branes or background �uxes.
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where 4 and 4̄ are 6D Weyl spinors transforming under SO(6) while 2 and 2̄ are
4D are the usual Weyl spinors transforming under SLp2,Cq. For general extra-
dimensions manifold the holonomy group is SOp6q and no supersymmetry is pre-
served in 4D. Therefore we will be interested in �nding Y6 so that its holonomy
group is a subgroup of SOp6q that induces a decomposition of 4 that contains a
singlet: a nowhere vanishing and globally well de�ned invariant spinor. This re-
quest is satis�ed for instance by manifolds with holonomy group SUp3q � SOp6q
that preserve N � 1 supersymmetry in 4 dimension. In this case the chiral 10D
spinor is decomposed by space-time splitting and then by compacti�cation into

SOp1, 9q Ñ SOp6q � SOp1, 3q Ñ SUp3q � SOp1, 3q
16 Ñ p2,4q ` p2̄, 4̄q Ñ p3,2q ` p3̄,2111q ` p1,2q ` p1,2111q (2.75)

where 2 and 2111 represent left and right chiral spinors in 4d. Choices of Y6 with
smaller holonomy group lead to N ¡ 1 4D supersymmetry. In type IIB, having
SUp3q holonomy group in the extra dimensions manifold leads toN � 2 supersym-
metries in 4 dimension. There is a wide class of manifold having SUpNq holonomy
group, that id called Calabi-Yau manifolds. These are N-dimensional complex
and Kähler manifolds with vanishing �rst Chern class (Ricci �at). A complex
N-dimensional manifold admits a (possibly non unique) globally de�ned complex
structure that is a mixed tensor Imn satisfying InmI

p
n � �δpm. This tensor can be

used to de�ne a local set of complex coordinates dzi � dxi� iIji dyj starting from 2
sets of N real coordinates, dxi and dyi. Starting from a complex manifold we can
�nd a metric that shows only mixed components gij̄ through which we can de�ne
the following 2-form j

J � gij̄dz
idz̄j (2.76)

If J is a closed form dJ � 0, the manifold is Kähler and J is called the Käh-
ler form. Kähler manifolds are characterised by having at most UpNq holonomy
since parallel transport does not allow to mix holomorphic and anti-holomorphic
coordinates. Imposing vanishing �rst Chern class further reduces holonomy group
from UpNq � SUpNq � Up1q to SUpNq. The number of Calabi-Yau (CY) mani-
fold is of order Op106q and each of them de�nes a di�erent vacuum theory, with
di�erent coupling constants, Yukawa couplings and energy scale hierarchy. This
makes bottom-up model building highly non trivial and the best strategy to adopt
is to �nd those phenomenological properties that are shared by a large number of
compacti�cations. In order to do this, let us start by computing the number of
degrees of freedom in a given CY three-fold. Since in Y6 harmonic forms are in
one-to one correspondence with the elements of the Dolbenault cohomology group,
the number of possible choices in determining the SUpNq holonomy metric can be
easily computed. Indeed, the 3-cohomology group in a complex three-fold is given
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by

H3pY6q � Hp3,0qpY6q `Hp2,1qpY6q `Hp1,2qpY6q `Hp0,3qpY6q (2.77)

where Hpp,qq are cohomology groups: the set of closed pp, qq�forms, having p holo-
morphic and q anti-holomorphic di�erentials, quotiented out by the number of
exact pp, qq�forms. The dimensions of Hpp,qq are topological invariants that are
known as Hodge numbers, hp,q � dimHpp,qqpY6q. Their sum gives the number of
free parameters of a given SUp3q holonomy metric related to a given CY manifold.
Hodge numbers are usually arranged into the so called Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

�

1

0 0

0 h1,1 0

1 h2,1 h1,2 1 .

0 h2,2 0

0 0

1

(2.78)

that makes it easier to detect possible symmetries in Y6 through line re�ections
in the diamond: complex conjugation (central vertical axis re�ection), Hodge
duality (central horizontal axis re�ection) and mirror symmetry (diagonal axes
re�ection)[27].

From Eq. (2.78) we immediately see that the cohomology of a CY manifold is
characterised by specifying the Hodge numbers h1,1 and h1,2. In addition, there
is a single p3, 0q�form, that we denote as Ω � Ωijkdz

idzjdzk, which is nowhere
vanishing and de�nes the complex structure of the CY. Since there are no harmonic
1- and 5-forms we have that Ω ^ J � 0. Moreover, being h3,3 � 1 we have that
J ^ J ^ J must be proportional to Ω ^ Ω̄. We brie�y summarise their relation
in the following lines. We already saw that SUp3q holonomy in Y6 corresponds to
the existence of a 6-dimensional covariantly constant spinor in Y6. Therefore there
should be a bijection between the space of Y6 metrics GY6 and spinors ξ and the
space of possible complex structures Ω and Kähler metrics J

pGY6 , ξq Ø pΩ, Jq . (2.79)

This map is given by

Jij̄ � �iξ:ΓiΓj̄ξ , Ωijk � ξTΓiΓjΓkξ , (2.80)
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where Γi are Dirac matrices. From certain properties of the Dirac matrices called
Fierz identities we discover that

J ^ J ^ J � 3i

4
Ω^ Ω̄ . (2.81)

The topological invariants, hi,j that are needed in order to uniquely determine the
CY structure are tightly related to the �eld content in 4D. Indeed their value corre-
sponds to the number of 4D scalar �elds that appear after dimensional reduction,
these are called moduli �elds.

2.3.3 Moduli �elds

As explained in the previous section, imposing SUp3q holonomy in the extra
dimensions manifold leads to Calabi-Yau manifolds. Nevertheless we saw that a
CYs are a class of manifolds characterised by two free parameters, i.e. the Hodge
numbers h1,1 and h1,2, that need to be speci�ed in order to uniquely identify the
geometry of extra dimensions. These parameters are tightly linked to the number
of continuous background metric deformations that preserve supersymmetry and
topology. These deformations can be interpreted as scalar �elds in 4D and are
called moduli �elds [28].

The assumption of 10D compacti�cation of Eq. (2.69) tells us that the Fourier
transform of a 10D scalar �eld φ is given by

φpXMq �
¸
k

φk
6 pymqφk

4 pxµq (2.82)

where φk
6 pymq are eigenfunctions of the six-dimensional laplacian of Y6, ∆Y6 , having

eigenvalues �λpkq (eigenvalues are negative for compact manifolds). If φ is massless
in 10D, given that l10 � ∆Y6 �l4, we have the following equation of motion for
the 4D φ4 �eld �

l4 � λpkq
�
φk

4 pxµq � 0 . (2.83)

The eigenvalues of ∆Y6 can be interpreted as masses of the 4D scalar �elds. In
particular, we see that each massless scalar �eld in 4D correspond to a harmonic
form on Y6, i.e. zero mode of ∆Y6 . Given that there is a one-to-one correspon-
dence between harmonic forms and the Dolbeault cohomology groups Hpp,qqpY6q,
we immediately see that a Calabi-Yau compacti�cation will give rise to h1,1 � h1,2

massless moduli �elds in 4D. The properties and the structure of these �elds can
be found analysing Y6 metric deformations:

gmn̄ Ñ gmn̄ � δgmn̄ (2.84)
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that preserve the Ricci-�atness condition

Rmn̄pgmn̄ � δgmn̄q � 0 . (2.85)

This requirement leads to di�erential equations for δgmn̄. Being CYs Kähler mani-
folds, the equations for mixed and pure components, δgmn̄ and δgmn, decouple and
can be studied separately.

� Kähler moduli from δgnm̄:
The conservation of Ricci-�atness gives the following constraint

∆δgnm̄ � 0 (2.86)

which means that δgnm̄ must be a harmonic (1,1)-form. These deformations
are closely related to deformations of the Kähler form

J � �iggn̄dym ^ dym̄ (2.87)

and expanding J on a basis of h1,1 (1,1)-harmonic forms pD̂iqmn̄ composing
Hp1,1q we get

J � tipD̂iqmn̄ i � 1, . . . , h1,1 (2.88)

where ti are called Kähler moduli and they can be interpreted as �elds that
control the size of the internal 2-cycles of Y6. Since we want the perturbed
metric to be positive de�nite we need to impose the following conditions:»

γ

J ¡ 0 ,

»
σ

J ^ J ¡ 0 ,

»
Y6

J ^ J ^ J ¡ 0 , (2.89)

for all complex curves γ and surfaces σ on the CY Y6. In particular we have
that the overall volume of the extra dimension manifold Y6 is given by:

VolpY6q � 1

3!

»
Y6

J ^ J ^ J � 1

3!
titjtkkijk . (2.90)

where kijk �
³
CY
pD̂i^ D̂j ^ D̂kq are called intersection numbers. The condi-

tions in Eq. (2.89) de�ne the allowed Kähler moduli space that is also called
Kähler cone: MK

h1,1
. In type IIB concrete model building the moduli space

is usually complexi�ed and J receives contributions coming from R-R sector
4-form C4.

� Complex structure moduli from δgnm:
The conservation of Ricci-�atness gives the following constraint

∆δgnm � 0 (2.91)
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that implies that the allowed deformations are given by (2,0)-harmonic forms.
We cannot expand δgnm in such a basis since h2,0 � h0,2 � 0 in a CYmanifold.
On the other hand we can construct a (2,1)-form contracting Ω with the
complex structure tensor, Ωijk̄ � ΩijlI

l
k̄
. This allows us to construct a one-to-

one correspondence between (1,2)-forms and (2,0)-forms in the following way:
we introduce a basis for (1,2)-forms of H1,2pY6q, pχαqij̄k̄ where α � 1, . . . , h1,2

and we decompose the metric perturbations as

δgij � i

||Ω||2U
α pχ̄αqik̄l̄Ωk̄l̄

j (2.92)

where ||Ω||2 � ΩijkΩ
ijk{3! and Uα are free parameters that are called complex

structure moduli. These �elds parametrise the sizes of internal 3-cycles and
are related to deformations of the complex structure. We refer to the space
of complex structure moduli as Mcs

h1,2
.

At tree-level the space of moduli �elds can de decomposed as

M �MK
h1,1

�Mcs
h1,2

. (2.93)

where the sub-index is referred to the space dimensionality. As already stated,
moduli correspond to massless scalar �elds in 4D and in order not to give rise to
undetected �fth forces we will need to provide them a mass. This process goes
under the name of moduli stabilisation and it is discussed in Sec. 2.3.8.

2.3.4 N � 2 4D supergravity

In this section we describe the 4D e�ective �eld theory that can be obtained
starting from the N � 2 ten-dimensional supergravity theory in type IIB given
by Eq.s (2.60), (2.61), (2.62) , (2.63). We are going to give the results of string
compacti�cations on a Calabi-Yau manifold,[18, 29, 30, 31]. As we already saw CY
compacti�cations preserve the number of supersymmetries so through dimensional
reduction we get a supergravity theory with N � 2 (8 supercharges) in 4 dimen-
sions. Despite this theory is not suitable for doing 4D phenomenology since it does
not allow for the presence of chiral matter, it lays the foundation for realistic 4D
theories that we will study in the next section.

The Ricci-�atness condition of CY manifolds allows to perform a Kaluza-Klein
reduction of the 10D �elds. This is done expanding each 10D �eld into eigenforms
on Y6 and keeping only the 0 modes. In order to be sure of the validity of this step,
we need to be sure that the energy scale of physical phenomena appearing in the 4D
theory is much lower than the KK energy scale. If the compacti�cation manifold
is isotropic the mass of KK modes is given by mn � nMs{R � mMP {V2{3 where
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R is the typical size of the extra dimensions R � V1{6 and V is the CY volume in
string length. The 4D e�ective theory will be valid only at energies

E !MKK � Mp

V2{3 . (2.94)

The reduction of the 10D theory gives rise to the following spectrum in 4
dimensions2. The reduction of the metric produces the 4 dimensional metric gµν ,
h1,1 Kähler moduli, h1,2 complex structure moduli and a 1-form V 0 that is called
the gravi-photon. From the NS-NS sector we get h1,1 scalar �elds, the dilaton φ
and a 4D 2-form B2pxq. Indeed, counting the number of degrees of freedom in the
dimensional reduction we get:

Components Degeneracy

Bµν h0,0 � 1

Bµn h1,0 � h0,1 � 0

Bmn h2,0 � h0,2 � h1,1 � h1,1

(2.95)

we can recast these degrees of freedom in a single 4D �eld as:

φ � φpxq , B2 � B2pxq � biD̂i i � 1, . . . , h1,1 (2.96)

where again D̂i represent a base of Hp1,1qpY6q. Through a similar decomposition
procedure, we get the following forms from the NS-NS sector:

C0 � C0pxq ,
C2 � C2pxq � cipxqD̂i , i � 1, . . . , h1,1 ,

C4 � V apxq ^ αa � ρipxqD̃i , a � 1, . . . , h1,2

(2.97)

where C0, c
i and ρi are scalar �elds, V

a are 1-forms while C2pxq is a 2-form. ˆ̃Di is
the dual basis of D̂i and αa belongs to the the simplectic basis of H3pY6q, pαa, βaq,
that satis�es »

Y6

αa ^ βb � δba ,

»
Y6

αa ^ αb �
»
Y6

βa ^ βb � 0 . (2.98)

In the expression for C4 we used the fact that the �eld strength related to C4 has to
be self-dual, this conditions removes some degrees of freedom from the spectrum.

2All the following �elds and forms are de�ned in 4 dimensions and do not have to be confused
with the similar notation for 10 dimensional �elds.
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All the �elds and forms listed so far belong to the bosonic sector of multiplets of
4D N � 2 supergravity theory. The gravity multiplet contains gµν and V0 while
the double-tensor multiplet contains B2, C0, C2 and the dilaton. In addition we
have h1,1 hypermultiplets containing t

i, bi, ci and ρi and h1,2 vector multiplets that
include V a and Ua. Since this theory is not able to describe chiral matter in 4D,
we need to �nd some way to halve the number of supersymmetries thus leading
to a promising description of nature. This can be achieved through orientifold
involution that we describe in the next section.

2.3.5 N � 1 4D supergravity from orientifold involution

An orientifold is a generalisation of orbifold, proposed by Sagnotti and Pradisi
in 1987 [32, 33, 34]. In case of orientifolds the non trivial elements of the orb-
ifold include the orientation reversal of the string [18]. The world-sheet parity Ωp

exchanges left and right movers through

Ωp : σ Ø 2π � σ (2.99)

where σ is the spatial coordinate on the world-sheet. Making an orientifold projec-
tion corresponds to gauging away this symmetry thus being left with unoriented
world-sheets. In the context of Calabi-Yau compacti�cations this mechanisms has
been generalised including the action of an isometric and holomorphic transforma-
tion that acts uniquely on Y6: the involution σY (σ2

Y � 1). In type IIB the action
of σY on the holomorphic 3-form Ω and Kähler form is given by the pull-back of
the involution σ�Y :

σ�Y pΩq � p�1qεΩ , σ�Y pJq � J , ε � 0, 1 . (2.100)

The orientifold involution in case of type IIB Calabi-Yau compacti�cations corre-
sponds to gauging away the discrete symmetry

p�1qεFLΩpσY , ε � 0, 1 (2.101)

where FL is the left moving fermion number. The hypersurface where the involu-
tion reduces to the change of string orientation is called orientifold plane. Since
σY does not act on M4 � Rp1,3q the orientifold plane can have at least dimension
3 but, in case of σY pΩq � Ω, it is possible that all 4D space-time dimensions are
left unchanged and an O9-plane can exist. Depending on the value of ε, we �nd
two class of models: if ε � 0 we have theories with O5/O9-planes, if ε � 1 we
have theories with O3/O7-planes. In general we can consider orientifold planes
having as many dimensions as Dp-branes: this means that in what follows we
choose ε � 1 thus working with O3- and O7-planes. Beyond halving the number
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4D supersymmetries, orientifold involution reduces the dimensionality of moduli
space. Indeed harmonic (p,q)-forms can either be even or odd under the action of
σ�. We can therefore split each cohomology class into two basis representing the
eigenstates of σ� with di�erent parity

Hp,q � H�
p,q `H�

p,q, . (2.102)

We call h�p,q and h
�
p,q the dimensionality of H�

p,q and H
�
p,q respectively. These are

related through Eq.(2.102) by h�p,q � h�p,q � hp,q. For CY manifolds we have that
h�1,1 � h�2,2 since they are related by Hodge duality that commutes with σ�Y , h

�
1,2 �

h�2,1 because of σ�Y holomorphy, h�3,0 � h�0,3 � 0 and h�3,0 � h�0,3 � 1 from Eq.
(2.100) with ε � 1 and h�3,3 � h�0,0 � 1 while h�3,3 � h�0,0 � 0 since the volume form
should be invariant under σ�Y .

The dimensional reduction with orientifold involution proceeds as in Sec. 2.3.4
but in this case the KK expansion should keep only those �elds that are invariant
under the orientifold action. The parity properties of the 10-dimensional bosonic
�elds under the transformation p�1qFLΩp are given by

φ G B2 C0 C2 C4

p�1qFL � � � � � �
Ωp � � � � � �

p�1qFLΩp � � � � � �

(2.103)

This implies that under the involution σ� the �elds need to obey:

φ G B2 C0 C2 C4

σ� � � � � � �
. (2.104)

We can then write down the bosonic invariant spectrum under orientifold involu-
tion as:

� Kähler moduli ti�: since both J and the complex structure are invariant
under the action of σY , we have that Kähler metric can be decomposed as:

J � ti�pxqD̂i
i� , i� � 1, . . . , h�1,1 (2.105)

where D̂i
i� is a H�

1,1 basis.

� Complex structure moduli Uα�: since σ�Y Ω � �Ω we have that only
elements of H�

1,2 correspond to complex structure moduli that can be kept
in the spectrum. The metric deformation of Eq. (2.92) then becomes

δgij � i

||Ω||2U
α� pχ̄α�qik̄l̄Ωk̄l̄

j (2.106)



70 CHAPTER 2. BEYOND STANDARD MODELS

where χα� is a basis of H�
1,2.

� C0 and dilaton: since both C0 and φ are invariant under orientifold invo-
lution they both remain in the spectrum.

� Two-forms B2 C2: Since both B2 and C2 need to be odd under σY , their
expansions look like

B2 � bi�pxqD̂i� , C2 � ci�pxqD̂i� , i � 1, . . . , h�1,1 (2.107)

where D̂i� is a basis of H�
1,1. The 4D 2-forms B2pxq and C2pxq that we found

in the N � 2 compacti�cation are removed from the theory and we are left
only with scalar �elds bi�pxq and ci�pxq.

� Four-form C4: it must be even under the involution σY and it expansion
looks like

C4 � V a�pxq ^ αa� � ρi�pxqD̃i� ,
a� � 1, . . . , h�1,2 ,

i� � 1, . . . , h�1,1 ,
(2.108)

where D̃i� is a basis of H�
2,2 that is dual to D̃i� and αa� belongs to the real

symplectic basis of H�
3 , pαa� , βa�q. We used the self duality condition on

F5 � dC4 to remove redundant degrees of freedom.

These �elds belong to 4DN � 1 supersymmetric theory and they group together in
di�erent multiplets. Nevertheless the variables that appear in the KK reduction are
not necessarily given by the bosonic components of the supersymmetric multiplets
that represent the proper Kähler coordinate of the moduli space. Indeed these are
given by [21, 20]:

� Axio-dilaton:

S � e�φ � iC0 ; (2.109)

� 2-form moduli:

G2 � Gi�D̂i� �
�
ci�pxq � Sbi�pxq� D̂i� i� � 1, . . . , h�1,1, (2.110)

� Complex structure moduli:

Uα� , α� � 1, . . . , h�1,2 (2.111)
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� Kähler moduli:3

Ti� � τi� �
ki�j�k�
RepSq G

j�pG� Ḡqk� � iρi� i� � 1, . . . , h�1,1, (2.112)

where

ki�j�k� �
»
Y6

D̂i� ^ D̂j� ^ D̂k� (2.113)

while τi� is related to ti� through

τi� �
1

2!

»
Y6

J ^ J ^ D̂i� �
ki�kj�kk�

2!
tj�tk� �

BV
Bti� . (2.114)

and the overall volume of extra dimensions V is given by

V � 1

3!

»
Y6

J ^ J ^ J � 1

3!
ti�tj�tk� . (2.115)

In the models that we are going to analyse in the third part of this thesis we
will consider orientifold projections such that h�1,1 � 0, that means h1,1 � h�1,1.
In this case the 2-form scalars bi� and ci� are projected out and the form of
Kähler moduli becomes:

Ti � τi � iρi , i � 1, . . . , h1,1 . (2.116)

We can interpret τi� as the volume of the divisor Di� P H4pY6,Zq that is the
Poincaré dual to D̂i� while the imaginary part of the Kähler �eld ρi is given
by the component of the R-R 4-form C4 along this cycle: ρi �

³
Di
C4.

The supersymmetric multiplets coming from O3{O7�orientifold compacti�cations
are then given by one gravity multiplet containing gµν , h

2,1
� vector multiplets con-

taining V a� and h2,1
� � h1,1 � 1 chiral multiplets containing Ti� , U

α� , Gi� and
S.

The N � 1 4D supergravity action can be expressed in terms of the Kähler
potential K, the holomorphic superpotentialW and the holomorphic gauge kinetic
couplings f as

S � �
»
R

2
�1�KIJ̄DΦI^�DΦ̄j̄�1

2
RepfabqF a^�F b�1

2
ImpfabqF a^F b�V (2.117)

3The Kähler coordinate Ti and the �elds ti in Eq. (2.105) are both called Kähler moduli.
This can be a little confusing. In the rest of our work we will typically refer to Kähler moduli
talking about the �elds Ti that parametrise the size of 4-cycles in the extra dimensions.
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where Φ represents all complex scalars in the theory, F a � dV a is the �eld strength
related to V a, a � 1, . . . , h2,1

� , and V � VF�VD is the scalar potential of the theory.
The F-term scalar potential VF arising from N � 1 supergravity can be written
as (here we use natural units, i.e. Mp � 1):

VF � eG
�pG�1qij̄GiGj̄ � 3

� � eK
�
KIJ̄DIWDJ̄W̄ � 3|W |2

�
(2.118)

where G :� K� ln |W |2 is the Kähler function, KIJ̄ is the inverse of Kähler metric
KIJ̄ and the covariant derivatives DIW are given by

DIW � BIW �WBIK . (2.119)

On the other hand, the D-term scalar potential comes from the vector multiplet
contributions and looks like:

VD � 1

2
rRepfqsabDaDb , Da � igRerpf�1qsabGipTbqijφj (2.120)

where g is the gauge coupling constant, Ta are the group generators in the same
representation as the chiral matter �elds and pF aqµν is the gauge �eld strength.
The tree level Kähler potential of the theory is given by:

K � �2 lnVpT � T̄ q � lnpS � S̄q � ln
�
�i

»
CY

ΩpUq ^ Ω̄pŪq
	

(2.121)

where Ω is the holomorphic p3, 0q�form of the CY that is a function of the complex
moduli and V is the classical Calabi-Yau volume in string length natural units
(ls � p2π?α1q � 1) that depends only on Kähler moduli. As we can see from
equation (2.121), the Kähler potential gets factorised denoting that moduli space
can be decomposed as:

M �MK
h�1,1�1

�Mcs
h�1,2

. (2.122)

where MK
h�1,1�1

is a Kähler manifold containing Kähler moduli and the dilaton

while Mcs
h�1,2

is a the special Kähler manifold related to complex structure moduli.

At tree level the superpotential is vanishing unless we switch on background
�uxes. Therefore, without �uxes no scalar potential is generated and moduli re-
main exactly �at directions. This would give rise to unrealistic supersymmetric
theories ful�lled with �fth forces mediators. In order to make contact with obser-
vations, we devote the next section to the study of the role played by background
�uxes in type IIB Calabi-Yau orientifold compacti�cation in presence of O3/O7-
planes.
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2.3.6 Background �uxes

If this section we allow for a background pro�le also for some of 10D p-forms
in addition to the metric and we will brie�y summarise �ux compacti�cations on
Calabi-Yau orientifolds [25, 35, 26, 36, 37]. We introduced �uxes for the 10D
supergravity theory coming from type IIB string theory in Eq. (2.64). These need
to satisfy the following Bianchi identities:

dH3 � 0 , dFp �H3 ^ Fp�2 � 0. (2.123)

where, in presence of local sources like Dp-branes or Op-planes, the right hand
side of the previous equations must replaced with a delta function with support
on the sources world-volume. In order to preserve 4D Poincaré invariance, �uxes
need to be present only along the extra dimensions or they have to �ll out the
4D space-time (this can be done only by p-form �uxes having p ¡ 3 while 3-form
�uxes need to be con�ned in Y6). Non-vanishing �uxes can arise in presence of
local non-vanishing sources or in absence of sources if the cycle supporting them
is non-contractible. In case of non-vanishing �ux the integral of the corresponding
�eld strength needs to satisfy Dirac quantisation conditions [38]:

1

p2πq2α1
»
σ3

H3 P Z , 1

p2π?α1qp�1

»
Σp

F̂p P Z . (2.124)

In particular if we consider a CY manifold and we expand H3 in a basis for
H3pY6q � Hp3,0q`Hp0,3q`Hp1,2q`Hp2,1q, we can de�ne the non trivial p-cycles that
are Poincaré dual to the basis elements and we get that the electric and magnetic
�uxes for H3 are given by:

1

p2πq2α1
»
Ak

H3 � mk
NS ,

1

p2πq2α1
»
Bk
H3 � eNS k , k � 1, . . . , 2h1,2 � 2

(2.125)
where again pαk, βkq is the simplectic basis of H3pY6q and pAk, Bkq is its dual basis
of 3-cycles. Doing the same analysis for the R-R sector Fp p-forms we get

1

p2πq2α1
»
Ak

F̂3 � mk
RR ,

1

p2πq2α1
»
Bk
F̂3 � eRRk , k � 1, . . . , 2h1,2 � 2

1

2π
?
α1

»
D̃I

F̂2 � mI
RR ,

1

p2π?α1q3
»
DI
F̂4 � eRRI , I � 1, . . . , h1,1

(2.126)
where DI and D̃I are non trivial 4- and 2-cycles that are Poincaré dual to D̂I P
Hp1,1q and ˆ̃DI P Hp2,2q respectively. The contributions coming from F̂1 and F̂5

are vanishing since we do not have non-trivial 1- and 5-cycles in a CY manifold.
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Poincaré dualities follow from»
Ak

αj � �
»
Bj
βk �

»
Y6

αl ^ βk � δkj ,»
D̃J

D̂K � �
»
DK

ˆ̃DJ �
»
Y6

D̂K ^ ˆ̃DJ � δKJ .
(2.127)

The presence of �uxes has a crucial consequence on the 10D space-time: non-
vanishing background �uxes back-react on the geometry of the compact space Y6

so that Eq. (2.71) does not represent anymore a valid decomposition of M10. Im-
posing surviving 4D supersymmetries in presence of �uxes translates into milder
geometrical requirements on Y6 then in the �ux-less case. Having a well de�ned
6-dimensional spinor in case of non-vanishing �uxes implies that Y6 has to be a
SU(3)-structure manifold [39, 40, 41]. This means that a connection that satis�es
∇g

Y6
� 0 and Eq. (2.73) may show a non vanishing torsion [42, 43, 44]. A Calabi-

Yau manifold is a particular SU(3)-structure manifold where this connection has a
vanishing torsion. Among the possible 4D N � 1 Minkowski vacua that are com-
patible with �ux-compacti�cations, we focus on models where the non-vanishing
torsion on Y6 connections causes a slight deviation from the CY space and the 10D
metric takes the warped compacti�cation form

ds2 � e2Apyqηµνdxµdxν � e�2Apyqgmndymdyn , (2.128)

where gmn is a CY metric and Apyq is called the warp factor and is a function on Y6.
These are called warped compacti�cations since they lead to warped (conformal)
CY manifolds [45, 46, 47, 48]. This class of solutions allows for R-R 5-form, R-R
3-form and NS-NS 3-form �uxes. The relevant 3-form �ux is given by G3 that is
a combination of F3 and H3

G3 � F̂3 � SH3 (2.129)

that needs to satisfy the imaginary self duality condition

�6 G3 � iG3 (2.130)

and G
p0,3q
3 � 0. If the inverse of the warp factor can be safely neglected we can

keep on using results from CY-compacti�cations that we developed in the previous
sections. This is the case in the limit of large volume in the extra-dimension since

e2A � 1�O
�
gsNα

12

R4



(2.131)

where R is the typical radius of extra dimensions and N measures the units of �ux
of G3.
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Of course any additional object introduced in the compacti�cation can in prin-
ciple backreact on the geometry and destroy the conformal CY structure. Never-
theless it can be shown that �ux sources as D3{D7-branes and O3{O7-planes
preserve the same type of supersymmetry as warped compacti�cation models.
Therefore in what follows we will focus on warped compacti�cations in presence of
D3{D7-branes and O3{O7-planes and we will perform computations in the extra-
dimensions large volume regime so that we can safely neglect warping e�ects on
the moduli space of the conformal CY manifold.

The Bianchi identities for the 10D R-R forms Fp in absence of local source, Eq.
2.123, need to be valid on the compact manifold Y6, this implies a constraint coming
from a generalisation of Gauss's law that �xes the value of the integrated version
of Eq. (2.123). This is called C4 tadpole cancellation condition and derives from
computing the equations of motion for the R-R �eld C4. Since the integral of dF5 on
Y6 vanishes, this would imply that the integral of H3^F3 (which is positive de�nite
thanks to the imaginary self-duality of G3) should vanish as well. We conclude
that in absence of local sources, C4 tadpole cancellation implies vanishing �uxes.

In order to have �ux compacti�cation with non-vanishing background �uxes,
we need to add to the theory local sources that carry D3-brane charges, such
as D3/anti-D3-branes, wrapped D7-branes and O3/O7-planes. Considering the
presence of D3-branes and O3-planes, Eq. (2.123) the Bianchi identity for F5

becomes

dF5 �H3 ^ F3 � p2π
?
α1q4ρloc3 , ρloc3 � µ3

¸
a

π̂a6 � µO3

¸
b

ˆ̃πa6 (2.132)

where ρloc3 represents the dimensionless localised D3 charge source while π̂a6 and ˆ̃πa6
are 6-forms Poincaré dual to the support of the D3-branes and O3-planes respec-
tively. The D3-brane and the O3-plane charge, µ3 and µO3 , are given by

µ3 � 1

p2πq3α12 , µO3 � µ3Q3 � �1

2
µ3 (2.133)

and we see that O3-planes, carrying negative D3 charge allow us to satisfy tadpole
cancellation in presence of non-vanishing �uxes. The schematic condition on RR-
tadpole cancellation becomes

ND3 �
1

4
NO3 �

1

p2πq4α12

»
Y6

H3 ^ F3 � 0 (2.134)

where ND3 is the number of D3-branes and NO3 is the number of O3-planes.
Other contributions to D3-brane tadpole cancellation may come from the pres-

ence of D7-branes, O7-planes and gauge �uxes on D7-branes. The generalisation
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of Eq. (2.134) is given by [49, 50, 38]:

N�ux �
¸

D3b,D3b1
ND3b �

¸
O3i

NO3i

2
�Ngauge �

¸
O7j

χpΓO7jq
6

�
¸

D7a,D7a1

χpΓD7aq
24

� 0 ,

(2.135)

N�ux � 1

p2πq4α12

»
Y6

H3 ^ F3 ,

Ngauge � � 1

p2πq4α12

¸
D7a,D7a1

»
ΓD7a

c2pFa�q
(2.136)

where ND7a is the number of branes that wrap the internal divisor ΓD7a , ΓDpa1 �
Ωp�1qFLσΓDpa � p�1q p�1

2 σΓDpa is the orientifold image of the divisor ΓDpa wrapped
by the Dp-branes, χpΓq � ³

c2pΓq denotes the Euler characteristic of the cycle Γ
and Fa is the gauge invariant open string �eld strength. The latter is given by
Fa � ι�B2 � 2πα1F a where ι�B2 P H2pΓDpaq is the pull-back of NS-NS 2-form
from Y6 to the holomorphic cycle wrapped by the stack of D7-branes. The form
B2 can be decomposed through orientifold involution into B�

2 P H�
2 pΓDpaq and

B�
2 P H�

2 pΓDpaq; while B�
2 takes continuous values and appears in the G2 form,

B�
2 is quantised and has to take discrete values due to the Freed-Witten anomaly

cancellation [51, 52]. We call Fa� � ι�B�
2 � 2πα1F a the relevant quantised gauge

�ux that appears in the consistency conditions. It is important to remark that the
gauge �ux can be non-vanishing only inside the compact dimensions Y6 in order
to preserve 4D Poincaré invariance.

Other constraints come from the equations of motion of C5 and C8, these are
also called D5- and D7-brane tadpole cancellation conditions. From C5 tadpole we
get ¸

D7a

�
c1pι�Fa�q ^ rΓD7as � c1pι�Fa1�q ^ rΓD7a1 s

	
^ ωI � 0 (2.137)

where tωIu P H1,1pY6,Zq, primes denote again the Ωp�1qFLσ image, rΓDa7 s P H�
1,1

is the Poincaré dual to the 4-cycle ΓD7a and ι�Fa denotes the push-forward from
the D7-brane to the CY manifold. Finally C8 tadpole constraint look like¸

D7a

ND7a prΓD7as � rΓD7a1 sq � 8
¸
O7i

rΓO7is . (2.138)

If there there are no elements in H�
2 pY6q, the D5-brane tadpole cancellation con-

dition is automatically satis�ed and the contributions coming form the orientifold
images in Eq. (2.135), (2.136) just give a factor two. Tadpole cancellation condi-
tions are related to the quantisation conditions but they also constraint the local
sources content of the theory.
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We �nally mention that, despite conserving the same kind of supersymmetry,
the presence of D7-branes modi�es the geometry of the 10D space-time. in this
case, the extra-dimensions are not represented by a conformal CY anymore (i.e.
it is not Ricci-�at) and, being magnetically charged under C0 they backreact on
the axio-dilaton that acquires a non-vanishing dependence on the Y6 coordinates.
This would require to study compacti�cations in the context of F-theory solutions.
Moreover, in order to break supersymmetry from N � 1 to N � 0 in a controllable
way, we will need to introduce non-vanishing G

p0,3q
3 component of the 3-form �ux.

In the following sections we then assume that introducing a limited number of D7-
branes, considering small contributions to G

p0,3q
3 and working in the perturbative

limit gs ! 1 will lead to extra-dimensions manifolds that can be considered as small
perturbations of warped compacti�cations. These conditions, combined with the
requirement of a large Y6 volume may allow us to keep on using the results obtained
in Sec. 2.3.5.

2.3.7 Flux-stabilisation and no-scale structure

As we saw in the previous section the presence of 3-form �uxes backreacts on
the 10D metric, changing the geometry of Y6 thus putting some constraints on
4D supersymmetry conservation and on model building. On the other hand, it
allows for a non-vanishing tree-level superpotential that leads to axio-dilaton and
complex structure moduli stabilisation and may spontaneously break the residual
N � 1 supersymmetry. In order to show how �ux-stabilisation works, let us focus
for simplicity on orientifold projections having h�1,1 � 0. In presence of background
�uxes, the tree level superpotential takes the Gukov-Vafa-Witten superpotential
form [53]:

WtreepS, Uaq �
»
Y6

Ω^G3 (2.139)

where the complex moduli dependence is encoded in Ω while the dependence on
the axio-dilaton comes from G3. Indeed, after performing orientifold involution,
we have that G3 can be decomposed as:

G3 � ma�αa� � ea�β
a� , a� � 1, . . . , h�1,2 (2.140)

where

ma� � m̃
a�
RR � iS m̃

a�
NS , ea� � ẽRRa� � iS ẽNS a� (2.141)

and pαa� , βa�q is the symplectic basis of H�
3 . In the low energy/large volume

approximation, the coe�cients ẽRR{NS a� and m̃
a�
RR{NS that come from Eqs. (2.125),

(2.126) appear as 2h�1,2 � 2 continuous complex �ux parameters which deform the
low energy supergravity.
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In case of non vanishing �uxes we saw that the tree-level superpotential in Eq.
(2.139) does not depend on Kähler moduli. This implies that:

DT � WtreeKT , (2.142)

where T is a generic Kähler �eld. Thanks to the factorisation of the moduli space
of Eq. (2.122), the tree-level F-term scalar potential of Eq. (2.118) is given by

VFtree � eK
� ¸
αβ�Uj ,S

Kαβ̄DαWDβ̄W̄
	
� eK

�¸
i�T i

Kij̄KiKj̄ � 3
	
|W |2

� eK
� ¸
α�Uj ,S

Kαβ̄DαWDβ̄W̄
	

� eK
� ¸
j,k�1,...,h1,2

�

KUjŪkDUjWDŪkW̄ �KSS̄|DSW |2
	
¥ 0

(2.143)

since

pKij̄KiKj̄ � 3q � 0 . (2.144)

The relation in Eq. (2.144) is called no-scale structure and comes from the struc-
ture of the tree-level Kähler potential: Ktree � �2 lnpVq. Since V is a homoge-
neous function of degree 3{2 in the real part of Kähler moduli τi's we have that
Vpλτiq � λ3{2Vpτiq and Ktreepλτiq � Ktreepτiq � 3 lnpλq that imply Eq. (2.144).
The only Kähler moduli dependence of the scalar potential lies in the prefactor
eK9V�2 and induces a runaway in the Kähler directions as can be easily seen in
the case of a single Kähler modulus where V � pT � T̄ q3{2.

At tree-level, the no-scale structure scalar potential of Eq. (2.143) is positive
de�nite and we can supersymmetrically stabilise the complex structure moduli and
the dilaton imposing that the F-terms related to those �elds vanish. Since F-terms
are given by

F I � eK{2KIJ̄DJ̄W̄ (2.145)

having a supersymmetric stabilisation for dilaton and complex structure moduli
translates to

DSW � DUjW � 0 . (2.146)

This gives rise to h1,2
� � 1 complex equations that look like

DSWtree � � 1

S � S̄

»
Y6

Ω^ Ḡ3 � 0 , (2.147)

DUaWtree � i

»
Y6

χa ^G3 � 0 . (2.148)
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In Eq. (2.148) we used the relation DUaΩ3 � iχa where χa is a basis of H
p2,1q
� pY6q.

The equations (2.147) and (2.148) imply that G
p0,3q
3 � 0 and G

p1,2q
3 � 0 respectively.

Therefore we conclude that in order to have a supersymmetric minimum we need
G3 to be imaginary self-dual �6G3 � iG3. The same constraint applied to Kähler
moduli �elds is given by setting Eq. (2.142) to zero. This implies Wtreee � 0

that translates into G
p3,0q
3 � 0 and G3 P Hp2,1q

� . Thus we can immediately deduce
that the class of models that allows for the stabilisation of the complex structure
moduli and the dilaton at a supersymmetric global minimum is given by the warped
compacti�cations discussed in Sec. 2.3.6.

In the following sections we assume that S and Ua are stabilised by background
�uxes and can be integrated out. This is true if quantum corrections give rise to a
scalar potential that induces subleading corrections to their VEVs, in which case
we are allowed to set

W0 � Wtree|xUay ,xSy �
B»

Y6

Ω3 �G3

F
(2.149)

and

Ktree � �2 lnpVq � ln

�
2

gs



�Kcs , (2.150)

where

g�1
s � xRepSqy , e�Kcs �

B
�i

»
Y6

Ω3 ^ Ω̄3

F
. (2.151)

The presence of �uxes allows the stabilisation of complex structure moduli and
the axio-dilaton without breaking the four dimensional N � 1 supersymmetry.
Nevertheless, it does not provide a working mechanism for Kähler moduli sta-
bilisation. These remain classical �at directions due to the continuous rescaling
symmetry that is encoded in the no-scale structure condition of Eq. (2.144). This
implies that in order to develop a potential for Kähler moduli we will need to keep
all possible quantum corrections that will be introduced in the next section.

2.3.8 Kähler Moduli stabilisation

We saw that the presence of �uxes allows to stabilise complex structure moduli
and the axio-dilaton, while Kähler moduli are �at directions at tree-level. Nev-
ertheless, various quantum corrections can break the no-scale structure leading
to a non-vanishing potential for Kähler moduli. In particular, Kähler potential
receives corrections at every order in perturbation theory. On the other hand, the
superpotential is protected against perturbative corrections, thanks to the non-
renormalisation theorem, and receives only non-perturbative corrections. We can
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write schematically

W � W0 �Wnp , K � Ktree �Kp �Knp (2.152)

where the subscripts p and np stand for perturbative and non-perturbative cor-
rections respectively, while W0 and Ktree are the tree level contributions given in
Eqs. (2.149),(2.151) and (2.150). As we mentioned in Sec. 2.3, the 2 parameters
involved in perturbation theory are gs and α1. gs is related to the dilaton VEV
and controls the strength of string interactions while α1 measures how the internal
curvature of the extra dimensions is related to the string length and controls the
appearance of higher dimensional operators. Both these parameters need to be
small in order to treat the EFT perturbatively. Non-perturbative corrections are
instead related to the presence of local sources, as D3/D7-branes. These can be
due to D3-instantons or gaugino condensation on a stack of D7-branes.

All the corrections that we are going to introduce are able to develop a potential
for Kähler moduli and may break 4D supersymmetry. On the other hand, from a
10D perspective, they break the warped compacti�cation geometry. Therefore we
need to give the reader some intuition about the fact that we can interpret these
corrections as small perturbations of the warped geometry. In the previous section
we showed that axio-dilaton and complex structure moduli can be stabilised at a
supersymmetric minimum that satis�es the warped geometry constraints that we
introduced around Eq. (2.130). The volume dependence of the tree-level F-term
potential can be read from Eq. (2.145 and is given by VF tree � V�2. All the
corrections that we are going to study can be expanded in inverse powers of the
overall volume and they scale as � V�c where c ¡ 2. Since we are going to work
in the large volume scenario, where the overall volume of extra-dimension is expo-
nentially large, we immediately understand that additional contribution leading to
Kähler moduli stabilisation can be interpreted as small perturbations around the
supersymmetric background that belong to the class of warped compacti�cations.

Non-perturbative corrections The superpotential non-perturbative correc-
tions can be generated by Euclidian D3-brane (ED3-brane) intantons wrapping
4-cycles in the extra dimensions manifold and by gaugino condensation on a stack
of D7-branes also wrapping a 4-cycle. In both cases, the form of the superpotential
looks like:

W � W0 �
¸
i

AipS, Ua, ξαqe�aiTi (2.153)

where Ai correspond to threshold e�ects, they are functions of the complex struc-
ture moduli, the axio-dilaton and the �elds ξα which parametrise the position of the
ED3/D7-brane that wrap the 4-cycle whose volume is parametrised by τi � RepTiq.
The value of the coe�cient ai depends on the physical mechanism that induces the
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correction: in case of ED3-brane instantons ai � 2π, while for gaugino condensa-
tion it is given by ai � 2π{N where N is the number of D7-branes in the stack.
In principle, there can be other higher instanton e�ects but they can be safely
ignored as long as aiτi " 1. The contribution of non-perturbative corrections to
the scalar potential is given by

Vnp � eK0Kij̄
0

�
ajaiAiĀje

�aiTi�aj T̄j � �
aiAie

�aiTiW̄BT̄jK0

�ajĀje�aj T̄jWBTiK0

��
.

(2.154)

α1 corrections As already mentioned, α1 corrections control the presence of
higher derivative terms. The leading order α1 correction descends from a 10D
curvature correction that is given by [54]

S �
»
d10X

?
�G

�
M2

P10

2
R � ζp3q

3 � 25

R4

M6

�
(2.155)

where MP10 is the 10D Planck mass, R is the 10D curvature, ζ is the Riemann
zeta function, R is a quartic invariant constructed from the Riemann tensor and
M2 � 4{α1 is the mass of the �rst excited level of type II superstring. The latter
represents a physical cuto� because it appears upon integrating out the massive
excitation of the string. In the 4D e�ective theory the leading order perturbative
correction takes the form [55]:

K � �2 ln
�
V � ξ

2g
3{2
s

	
� K0 � ξ

g
3{2
s V

�OpV�2q ,

ξ � �χpY6qζp3q
2p2πq3 .

(2.156)

The Euler characteristic of the CY manifold can be expressed in terms of Hodge
numbers but, in general, the presence of an O7-plane in the compacti�cation can
a�ect the form of the α1 correction, inducing a shift in χpY6q that gives rise to an
e�ective Euler characteristic [56]:

χe�pY6q � χpY6q � 2

»
Y6

D̂O7 ^ D̂O7 ^ D̂O7 (2.157)

where D̂O7 is the 2-form that is Poincaré dual to the divisor wrapped by the O7-
plane. In presence of O7-planes, the right form of the leading order α1 correction
is given by Eq. (2.156) where we replace χpY6q with χe�pY6q. From Eq. (2.156) it
is easy to derive that α1 expansion can be seen as an expansion in inverse powers
of the overall volume. We can therefore conclude that it is well de�ned only if
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we consider large values for V . These corrections break the no-scale structure for
Kähler moduli and, at leading order, give rise to the following contribution to the
scalar potential

Vα1 � 3ξW 2
0

4g
3{2
s V3

. (2.158)

String loop corrections These corrections come from loop e�ects in space-time
corresponding to higher-genus string world-sheets and can be related both to the
bulk strings and to those located on local objects as Dp-branes. These corrections
have been explicitly computed only for N � 1 compacti�cations on toroidal ori-
entifolds with D5/D9- and D3/D7-branes [57, 58]. Nevertheless, it is possible to
extend those results to more general CY compacti�cations, �nding out the string
loop corrections dependence on the dilaton and the overall volume of extra dimen-
sions [59, 60, 61, 62]. String loop expansion is governed by the parameter gs and
shows two main types of contributions: Kaluza-Klein and winding corrections:

δKgs � δKKK
gs � δKW

gs . (2.159)

� Kaluza-Klein corrections: these contributions come from the exchange
between D3-branes (or O3-planes) and D7-branes (or O7-planes) of closed
strings carrying KK momentum. These can be parametrised as

δKKK
gs �

h�1,1¸
i�1

CKK
i pU, Ūq
RepSqV tKi , (2.160)

where CKK
i are unknown functions of complex structure moduli and tKi is the

linear combination of 2-cycles volumes tj that controls the distance between
D3-branes/O3-planes and D7-branes/O7-planes.

� Winding corrections: these corrections come from the exchange of closed
strings with non-vanishing winding between intersecting stacks of D7-branes
(or D7-branes and O7-planes).

δKW
gs �

¸
i

CW
i pU, Ūq
VtXi

(2.161)

where CW
i are unknown functions of complex structure moduli and tXi is the

2-cycle parametrising the volume where D7-branes/O7-planes intersect.

The contribution of these corrections to the scalar potential at 1-loop order for
a general CY is given by

δVgs �
W 2

0

V2

�¸
i

pCKK
i q2

pRepSqq2K0,ii � 2δKW
gs

�
. (2.162)
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2.3.9 Large Volume Scenario

The Large Volume Scenario (LVS) [63] describes a way to stabilise Kähler mod-
uli using the interplay between non-perturbative corrections to the superpotential
and the leading order α1 correction to the Kähler potential:

#
K � K0 � 2 ln

�
V � ξ̂

2

	
W � W0 �

°
iAie

�aiTi .
(2.163)

where ξ̂ � ξ

g
3{2
s

. In this setup both complex structure moduli and the dilaton get

stabilised at tree-level as explained in Sec. 2.3.7. Peculiarities of the Large Volume
Scenario (LVS) are:

� We �nd a non-supersymmetric anti-de Sitter minimum of the scalar potential
at exponentially large volume.

� Non perturbative e�ects do not destabilise the �ux-stabilised complex struc-
ture moduli and the dilaton.

� Supersymmetry is mostly broken by the F-terms of the Kähler moduli

� The gravitino mass is exponentially suppressed with respect toMP , allowing
to get low-energy supersymmetry in a natural way.

In addition LVS stabilisation holds if h�1,1 ¡ 1 and the leading order α1 correction
generates a positive contribution to the F-term scalar potential, i.e. if h�1,2 ¡ h�1,1
so that χpY6q   0. In the simplest setup, the volumes of the compact space takes
the so called "swiss-cheese" form:

V � α

�
�τ 3{2

b �
h�1,1�1¸
i�1

λiτ
3{2
i

�

 (2.164)

where τ
3{2
b is a large 4-cycle controlling the size of the extra-dimensions, τ

3{2
i are

local blow-up modes while α and λj are coe�cients related to the intersection
numbers of the compact space. In the simpli�ed case of h�1,1 � 2, h�1,1 � 0, after
complex structure and dilaton stabilisation, the leading contribution to the F-term
scalar potential is given by

VF � 8a2
s|As|2

?
τs

3αVλs e�2asτs � 4|W0As|asτs
V2 e�asτs cospasρsq � 3|W0|2ξ̂

4V3 (2.165)
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where the subscript s is referred to the single local blow-up mode whose Kähler
�eld is de�ned as Ts � τs� iρs. The �rst step in the LVS procedure is given by ρs
stabilisation at

asxρsy � π � 2πk , k P Z . (2.166)

after which the F-term potential becomes

VF � 8a2
s|As|2

?
τs

3αVλs
e�2asτs � 4|W0As|asτs

V2
e�asτs � 3|W0|2ξ̂

4V3
. (2.167)

Looking at the previous equation, we see that there is a particular limit in which
this scalar potential approaches zero from below:

V Ñ 8 , asτs � lnpVq (2.168)

this is called LVS limit. Imposing the previous constraint, Eq. (2.167) can be
re-written as VLV S:

VLV S � 8a
3{2
s |As|2

?
lnpVq

3αV3λs
� 4|W0As| lnpVq

V3 � 3|W0|2ξ̂
4V3 . (2.169)

where we see that that the second term overcomes both the �rst and the third
term. Therefore we have, at leading order, that the scalar potential approaches
zero from below:

VLV S � � lnpVq
V3

|W0As| (2.170)

Since it can be shown that, at smaller volumes (but large enough to allow α1

perturbative expansion), the dominant term in the scalar potential might be either
the �rst or the third one and they can be shown to be both positive de�nite, we
get that the potential, approaching zero from negative values in LVS, must show
a large volume anti de-Sitter minimum. The minimum of this potential is given
by the value of the volume at which the second term starts dominating the other
two terms, we can conclude that this occurs for large values of lnpV q.

The proper LVS stabilisation sets the following values for the overall volume
and the small cycle VEVs:

xτsy3{2 � ξ̂

2
p1� 2εsq , e�asxτsy � 3

?
τs|W0|

4as|As|V
p1� 4εsq
p1� εsq , (2.171)

where

εs � 1

4asτs
� OprlnpVqs�1q ! 1 . (2.172)

From the previous equations we see that the LVS minimum lies at exponentially
large volume V � easτs " 1 and, contrary to the KKLT setup [64], does not re-
quire any �ne-tuning on the tree-level superpotential W0 � 1� 100. On the other
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hand, since the value of the scalar potential in its minimum gives the value of
the cosmological constant we must �nd a way to uplift this negative minimum to
a de-Sitter vacuum. This can be done by switching on magnetic �uxes on D7-
branes [64], adding anti D3-branes [65, 66, 67, 68, 69, 70, 71, 72], hidden sector
T-branes [73], non-perturbative e�ects at singularities [74] or non-zero F-terms of
the complex structure moduli [75]. If some of the Kähler moduli do not appear in
the superpotential, then their axionic partners, i.e. the imaginary parts of Kähler
moduli, remain unstabilised giving no contribution to the scalar potential. This is
what happens for the imaginary part of the volume modulus ρb. We can also see
that the LVS minimum must be non-supersymmetric since VF � Op1{V3q at the
minimum while eK |W |2 � Op1{V2q � m2

3{2.

In LVS models provide a natural hierarchy between energy scales that can be
parametrised by inverse powers of the overall volume; this is shown in Table 2.1.
In this setup most of the moduli receive a mass of order m3{2 except for the volume
mode and its related axion ρb.

Reduced Planck mass � 1018 GeV

String mass Ms �MP {V1{2

Kaluza-Klein scale MKK �MP {V2{3

Gravitino mass m3{2 �MPW0{V
Volume modulus mass Mτb �MPW0{V3{2

Volume modulus axion Mρb � 0

Table 2.1: Relation between energy scales in Swiss-cheese LVS models.

2.3.10 Axions and ALPs from strings

The low-energy spectrum below the compacti�cation scale generically contains
many axion-like particles which arise either as closed string axions which are the
Kaluza-Klein zero modes of 10D antisymmetric tensor �elds or as the phase of
open string modes. While the number of closed string axions is related to the
topology of the internal manifold, the number of open string axions is more model
dependent since their existence relies upon the brane setup. It is essential to notice
that, although string compacti�cation suggests plenty of candidates for axion and
axion-like weakly interacting particles, there are several known mechanisms by
which they can be removed from the low energy spectrum.
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Closed string axions

In String Theory axion like particles coming from closed string modes arise from
the integration of p-forms gauge �eld potentials over p-cycles of the compact space
[21]. In what follows we consider type IIB where axions arise as integration of the
NS-NS 2-form B2 and R-R 2-form C2 over 2-cycles ΣI

2 or from integration of R-R
4-form C4 over 4-cycles ΣI

4. Another axion is given by R-R 0-form C0. In order to
understand where these axionic particles come from, we de�ne the set of harmonic
p1, 1q-forms D̂I , I � t1, . . . , h1,1u that comprises the Dolbeault cohomology group

H1,1pY6q and the dual basis ˆ̃DI of H
2,2pY6q that satisfy the following normalisation

condition: »
ΣI2

D̂J � α1δJI ;

»
ΣI4

ˆ̃DJ � pα1q2δJI . (2.173)

The 4D axion-like �elds arising in N � 2 4D supergravity from CY string com-
pacti�cations are:

bI � 1

α1

»
ΣI2

B2 ; cI � 1

α1

»
ΣI2

C2 ; ρI � 1

pα1q2
»

ΣI4

C4 . (2.174)

These are the scalar degrees of freedom appearing in the four-dimensional 2- and 4-
forms of Eqs. (2.96), (2.97). As we saw in Sec. 2.3.5, after orientifold involution the
cohomolgy group H1,1 splits into a direct sum of orientifold even and orientifold
odd 2-forms cohomology. Therefore, D̂I decomposes into D̂i� (even) and D̂i�

(odd) respectively, where i� � 1, . . . , h1,1
� , i� � 1, . . . , h1,1

� and h1,1
� � h1,1

� � h1,1.
After we determine the invariant scalar degrees of freedom, we need to rearrange
them into the bosonic components of chiral multiplets of N � 1 supersymmetry.
The proper coordinates of moduli are the axio-dilaton (S), the 2-form �eld (Gi�),
Kähler moduli (Ti�) and complex structure moduli (Uα�) that we de�ned in Eqs.
(2.109 - 2.112), s(2.115). The axionic content of the N � 1 EFT coming from
closed string modes is then given by the �elds C0, ci� , bi� , ρi� , whose number
depends on the geometrical structure of extra dimensions.
Due to topological charge quantisation, closed string axions appear in the theory
equipped with a periodicity that is equal to integer multiples of the Planck mass:

a � a� k k P Z , a � tC0, ci� , bi� , ρi�u (2.175)

and enjoy a continuous shift-symmetry. The continuous symmetry related to C0

and bi� is broken by the presence of background �uxes or Dp-branes, while C4 and
C2 axions are stabilised through non-perturbative e�ects. The decay constant of
these axion �elds is determined by the eigenvalues of the Kähler metric KIJ̄ . We
will focus for simplicity on C4 axions, but similar arguments hold for C0, C2 and
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B2 axions. The kinetic part of the 4D Lagrangian will contain the following terms
associated to Ti

L � Kij̄BµT iBµT̄ j �
gij
2

�Bµτ iBµτ j � BµρiBµρj� (2.176)

where Kij̄ � B2K
BT iBT̄ j and K is the Kähler potential of the theory. Given the period-

icity of Eq. (2.175) and since in usual situations we want to interpret the axion �eld
as an angle, �rst of all we have to diagonalise the Kähler metric and �nd the axion
metric eigenvalues λi and eigenvectors ρ̃i. These will have the same periodicity as
the original coordinates. After that, we de�ne the canonically normalised axion
�elds as φi �

?
λiρ̃iMp (restoring proper powers of Mp). The rotated Lagrangian

will look like [76]:

Lkin �
λiM

2
p

2
Bµρ̃iBµρ̃i � 1

2
BµφiBµφi . (2.177)

The canonical axion periodicity is then given by:

φi Ñ φi � 2πfi where fi � ki
a
λi
Mp

2π
(2.178)

and fi is the axion decay constant. The value of ki in Eq. (2.178) is determined
by considering non-perturbative corrections to the superpotential which break the
continuous C4 axion shift symmetry down to a discrete one and develop a potential
proportional to cospaiρiq where ai � 2π{Ni, Ni P N�. The periodicity is therefore
given by ki � Ni.

As just mentioned, closed string axions that are massless at tree-level only get
a mass through non-perturbative corrections to the superpotential. Depending
on the stabilisation procedure, they can be either heavy or light. For instance,
working with Kähler moduli, we have that if both axion and saxion are stabilised
through non-perturbative corrections to the superpotential, they will show a mass
degeneracy and their mass would be of the same order as the gravitino one m3{2.
The same happens if we stabilise the axio-dilaton using type IIB three-form �uxes
that break SUSY. On the other hand, in LVS models, we can �nd ways to stabilise
saxions using perturbative corrections to the Kähler potential, thus allowing for
maxion ! msaxion � m3{2. This last case, where we can break mass degeneracy,
gives rise to a richer phenomenology and allows axion-like particles to span a wide
range of masses and decay constants. This goes under the name of string Axiverse
[76].

Open string axions

If we are dealing with Calabi-Yau manifolds which contain collapsed cycles carrying
a Up1q charge, we might work with open string axions coming from anomalous U(1)
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symmetries belonging to the gauge theory located at the singularity. Indeed, the
presence of these particles in the theory is not straightforward and requires several
constructions that we brie�y list below. We will focus on an open string complex
scalar matter �eld C � |C|eiσ which lives on a collapsed cycle, τseq. The general
form of the Kähler potential and superpotential, which describe the theory for the
shrinked cycle near the singularity, are given by

K � �2 ln

�
V � ξ̂

2

�
� λseq

τ 2
seq

V �Kmatter , (2.179)

W � W0 �
h1,1¸
i�1

Ai e
�aiTi �Wmatter , (2.180)

whereWmatter andKmatter are related to the matter sector contributions depending
on the �eld C. The general form of Kmatter in presence of a single matter �eld is
given by

Kmatter � KpTi, T̄iqCC̄ , (2.181)

where Ti � τi � i ρi are Kähler moduli. In order to understand the properties of
the ultra light axion candidate, σ, we sum up the moduli stabilisation procedure
for sequestering scenario in LVS models, [77, 78, 79]. Since we want to have an
ALP, we need to �nd a Peccei-Quinn mechanism related to the breakdown of the
Up1q associated to C, such that x|C|2y � 0. This can be achieved through D-term
scalar potential stabilisation that allows us to �x a combination of the matter �eld
|C| and τseq given by

|Ĉ|2 � BK
Bτseq . (2.182)

This combination �xes the supersymmetric partner of the axion that is eaten up
in the process of anomaly cancellation. For sequestered models it is possible to
�nd that the closed string axion related to τseq is eaten up, while the open string
axion σ can be still considered as a �at direction, i.e. it remains a good axion
candidate. The non-vanishing VEV and the mass of |C| can be found computing
soft-term corrections after super-symmetry breaking, they scale as

x|Ĉ|y � 1

Vα2�2
; xτseqy � 1

V2α2�5
, (2.183)

where α2 � 3, 4 depending on whether we are considering sequestering or super-
sequestering scenario respectively. We immediately see that working in LVS allows
us to stabilise both �elds also ensuring the validity of the sequestered hypothesis,



2.4. INFLATION FROM STRING THEORY 89

i.e. τseq ! 1. These axions will have decay constants which scale like

fσ9 1
V τseq9 1

V when α2 � 3 ;

fσ9 1
V2 ; τseq9 1

V3 when α2 � 4 .
(2.184)

Finally, we need a mechanism to develop a small but non negligible mass to σ,
this can be achieved through hidden sector strong dynamics instanton e�ects. The
scale of strong dynamics in the hidden sector is

Λhid � ΛUV e
�c{g2

(2.185)

where, in our case, ΛUV � Mp, g
�2 � RepSq and c is an Op1q parameter that is

�xed by 1-loop β function. These quantities �x σ mass scale to be

m2
σ � Λ4

hid{f 2
σ . (2.186)

Open string axions are more model dependent than closed string axions since
their presence relies on the possibility of having fractional D3-branes at del Pezzo
singularities. Nevertheless, allowing for decay constants at intermediate scales
Op1013q GeV (much smaller that those ones predicted by closed string axions),
they are particularly interesting from the phenomenological point of view and are
the best candidates for representing QCD axion.

2.4 In�ation from string theory

Cosmic in�ation represents the most promising extension of the Standard Cos-
mological Model and describes the period that precedes the standard Big Bang
cosmology. It provides a simple explanation for the homogeneity and the isotropy
observed in the universe on very large scales. Moreover, in�ation can source the
temperature �uctuations observed in the Cosmic Microwave Background, as well as
the the primordial perturbations that gave rise to Large Scale Structure formation.

A key ingredient for the success of in�ation is the presence of a scalar �eld (or
a combination of them) that undergoes a slow-roll motion for enough time, which
is attainable if its potential is su�ciently �at.

The aim of string cosmology is to provide a compacti�cation that, after di-
mensional reduction, can lead to an e�ective 4D theory with a viable in�ationary
dynamics and that can predict in the post-in�ationary period (after reheating) the
right abundance of dark matter and dark radiation. Moreover it should be able
to reproduce the SM degrees of freedom and the standard cosmological history of
the Universe that we described in Sec. 1.2. As it can be easily guessed, this is far
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from being an easy task. Let us then give an overview of the major requirements
that such a theory needs to satisfy in order to be constructed with the current
technical and computational limitations of string theory.

The fundamental scale of string theory is the string scale Ms � pα1q�1{2. At
energies E ! Ms only the massless string state are exited and the theory can be
described as an e�ective 10D supergravity theory. If H  Ms we can neglect truly
stringy e�ects while if H ¡ Ms in�ation should be described in the full string
theory. Moreover, the compacti�cation of the 10D space-time comes with a new
energy scale, the KK scale MKK � Ms{V�1{6, that in the perturbative regime
should satisfy MKK !Ms. If we work at energies H !MKK the in�ationary the-
ory can be described as a 4D EFT that might be supersymmetric or not depending
on the details of the compacti�cation manifold and on the content of the theory.
We will focus on models where H !MKK so that we can use the results that were
developed in the usual EFT approach to in�ation. Indeed, working with models
having H ¡MKK requires to give a higher dimensional interpretation of in�ation
and rethink many of the fundamental answers to the main problems related to the
standard Big Bang cosmology that have already been addressed in 4D. For this
reason we want to restrict our study to models satisfying

H !MKK !Ms !Mp (2.187)

and we will work in the Large volume scenario that satis�es this requirement, (see
Table 2.1).

In order to construct a string in�ation model using a bottom-up approach
we need to provide a consistent string compacti�cation choosing a speci�c extra-
dimension manifold and orientifold involution. We also need to introduce a set
of Dp-branes and Op-planes that must be consistent with background and gauge
�uxes that we turn on through each cycle. Choosing all these features in a con-
sistent way leads to a unique 4D Lagrangian whose accuracy relies only on the
current state of the art of the computations related to dimensional reduction. For
instance α1 and string loop corrections have been computed only to some order
and for certain geometries of the extra dimensions manifold. Nevertheless, assum-
ing that the dependence on the powers of the expansion parameters and of the
overall volume can be inferred from the known results coming from toroidal ori-
entifold T 6{pZ2 � Z2q, we can �nd out those geometry that allow for a successful
in�ationary dynamics.

Given the plenitude of moduli �elds that arise after string compacti�cation it
not easy to realise single �eld in�ation in string theory. Indeed �elds that have
masses comparable to or smaller than H can be classically and quantum mechan-
ically active during in�ation. Therefore we should compute the full spectrum of
the 4D theory and distinguish between those �elds that are heavy H ! m and can
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be integrated out, �elds having H � m that participate in driving in�ation and
light spectator �elds m ! H that will be classically frozen during in�ation but
that can a�ect physical observables through their quantum �uctuations, e.g. pro-
ducing isocurvature �uctuations which can be converted into density perturbations
through the curvaton mechanism. In general, any �eld having mass 0   mχ   3

2
H2

will develop quantum �uctuations during in�ation. These �uctuations can carry
the �eld away from its minimum and store energy. When the energy density of the
universe becomes comparable to the �eld mass its classical part starts to oscillate
and its energy density scales as matter ρχ � T�3. After in�ation and in particular
during radiation domination the energy density of the universe scales as ρ � T�4

and the relative contribution coming from the �eld χ increases ρχ{ρ � T . Thus
the �eld χ may quickly dominate the energy density. Therefore moduli �elds can
a�ect the thermal history of the universe. In particular, since moduli in general
show gravitational couplings, if they have a mass mχ À 30 TeV, they decay dur-
ing of after Big Bang Nucleosynthesis spoiling the predictions coming from the
light elements abundance. This would of course be in contrast with experimen-
tal evidence. On the other hand, if moduli �elds are too light their gravitational
coupling tells us that they would have not been decayed at present time and may
cause the overclosure of the universe or they would represent a fraction of dark
matter (or dark radiation if they are relativistic) that is too high compared to
the observed abundance. All these constraints go under the name of Cosmological
moduli problem (CMP) [80, 81, 82, 83].

From an e�ective �eld theory point of view, given the high sensitivity of in�a-
tion to quantum corrections, a simple way to protect the �atness of the in�ationary
potential against them is to assume a symmetry that forbids any dangerous op-
erator. Nevertheless using an EFT approach shows some limitations due to the
incomplete knowledge of the UV structure and in particular of quantum gravity.
It is then crucial for any e�ective in�ationary model to be embedded in an UV
complete theory, such as string theory, where we have a complete formulation of
quantum gravity and in principle all the corrections to the in�ationary potential
can be in principle explicitly computed at any order [84, 85, 86, 87, 21]. Working
with a compact space we cannot have a complete decoupling between di�erent
sectors in the geometric regime. This means that we cannot treat moduli sta-
bilisation and the in�ationary dynamics as separated problems. Integrating out
massive �elds which couple to two di�erent and geometrically separated sectors
can lead to higher-dimensional operators that are less than Planck-suppressed and
may spoil the �atness of the in�aton potential. For instance, the couplings between
spatially separated D-brane sectors will be at least gravitational (one exception is
given by sequestered scenario). This kind of problems arise each time we have a
moduli-stabilising energy that is generically of the same order as the in�ationary
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energy and goes under the name of eta (η) problem [84, 85]. In N � 1 super-
gravity, Planck-suppressed corrections more often appear in Kähler potential than
in the superpotential that receives only non-perturbative corrections due to its
holomorphicity. Indeed the main source of relevant Planck-suppressed operators
comes from α1 and string loop corrections. Besides, in string theory, it is possible
to justify the presence of symmetries that protect the �atness of the potential from
a top-down perspective. In particular, two common approximate symmetries that
we are going to introduce in the next sections and that have led to the construction
of in�ationary models in string theory are: i) non-compact symmetries associated
to Kähler moduli �elds, the so called extendend no-scale structure [88], and ii)
compact symmetries associated to axion �elds [89, 90].

In addition embedding in�ation in a fundamental theory, like string theory, is
the only way to study the reheating period. This indeed requires to know what
are the relevant degrees of freedom at the in�ationary epoch and what are the
couplings between the in�aton �eld (or �elds in case of multi�eld in�ation) and the
other light �elds in the theory belonging both to hidden sectors and to the visible
sector (standard model particles). Knowing the microscopical �eld dependence of
such couplings (that can only be a function of the string length and of the VEVs of
heavy �elds) can allow us to give a precise estimate of the di�erent branching ratios
related to the in�aton decay into visible, dark matter and dark radiation particles.
This would potentially restrict the allowed number of string vacua that need to be
considered in order to reproduce in�ation together with standard cosmology and
the SM.

In the rest of this thesis we will be dealing with large �eld in�ation models:
these are models where the distance travelled by the in�aton during in�ation is
trans-Planckian ∆φ "Mp. It was �rst pointed out by Lyth [91] that these models
are the only ones that can give rise to detectable primordial gravitational waves.
Nevertheless �nding a trajectory in �eld space that is large in Planck units and so
�at that it is suitable for in�ation is not an easy task [84, 85]. The simplest example
that describes this problem in the context of low-energy supergravity descriptions
is given by writing down all the possible corrections to the Kähler potential

K � KclpΦ,Φ:q �M2
p

¸
i

ci

�
ΦΦ:

M2
p


i�1

(2.188)

where Kcl is the classical Kähler potential and ci are either constants or functions
of other �elds in the theory. Given that in large �eld in�ation φ ¡ Mp, unless ci
turn out to be very small, the series is badly divergent, the theory is not really
described by the classical Kähler metric and the in�ationary dynamics can be
destroyed. This kind of argument was used for instance to constraint the allowed
�eld excursion in D3-brane in�ation in a warped throat region [92]. Notice that
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small �eld models, despite ∆φ !Mp, can still be destroyed by Planck-suppressed
higher-dimensional operators. This is the famous η-problems whose solution in
general requires �ne-tuning. An interesting setup where it seems to be natural to
look for large in�ation models is the closed string sector where the �eld ranges
correspond to distances in the space of geometric moduli. A prominent example
is given by the decompacti�cation direction that is an in�nite direction in the
moduli space. We saw that in 4D EFT coming from string theory the tree-level
Kähler potential is a function of the overall volume, K � �2M2

p lnpVq, so, de�ning
the canonically normalised radius modulus as R � Mp

?
2 lnpVq, it is easy to see

that the range of R between a �xed volume V0 and the decompacti�cation limit
V Ñ 8 is arbitrarily large. We will see that a viable large-�eld in�ation model
that comes from similar considerations and does not require �ne-tuning is given
by �bre in�ation, where the in�aton �eld is given by a modulus measuring the
volume of a K3 �bre.

We start the next section giving a brief review of Kähler moduli in�ation,
focusing in particular on Fibre in�ation models that will be further analysed in
Chapters 3 and 4. After that, we quickly summarise axion in�ation models and
their possible embedding in string theory.

2.4.1 Kähler moduli in�ation

One of the �rst ideas related to string cosmology was that the role of the in�aton
�eld could be played by a modulus. One of the most characteristic features of 4D
EFT from strings is the presence of the overall volume modulus and of Kähler
moduli in general. In addition these �elds are �at at tree-level thanks to the
no-scale structure that we discussed in Sec. 2.3.7 and they can get stabilised by
quantum corrections whose form depends on the geometry and the �eld content
of the compacti�cation. This means that di�erent compacti�cations give rise to
di�erent Kähler moduli potentials that may lead to both small and large �eld
in�ation models.

Historically the �rst proposal was Racetrack in�ation [93]. This model consid-
ers a KKLT-like compacti�cation with a single Kähler modulus T that represents
the in�aton. As we already mentioned, the overall volume has an arbitrary �eld
range that goes from �xed values to arbitrary large values corresponding to the
decompacti�cation limit. Therefore this setup can be a breeding ground for large
�eld in�ation. The axio-dilaton and complex structure moduli are assumed to
be stabilised by background �uxes. The only di�erence with standard KKLT is
that the non-perturbative corrections to the superpotential arise through gaugino
condensation in a theory with a product gauge group as SUpNq � SUpMq:

W � W0 � Ae�aT �Be�bT (2.189)
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where a � 2π{N and b � 2π{M and W0, A and B can are constants that depend
on the VEVs of the �ux-stabilised moduli. In addition ,in order to break super-
symmetry, the model requires the presence of an anti-D3-brane in a warped throat
region that lead to a scalar potential contribution of the form

δVD̄3 �
ρ

pT � T̄ q2 (2.190)

where ρ depends on the warp factor at the location of the anti-D3-brane. For
suitable values of the parameters A, B, a, b, W0, ρ the potential can develop a
saddle point that can be suitable for in�ation. Di�erent models have been created
such that the in�ationary dynamics mainly takes place along the overall volume
axion ImpT q or modulus RepT q[94, 95]. Nevertheless, some of these models require
a consistent amount of �ne tuning, others need large values of N and M that may
be di�cult to construct in explicit compacti�cations since D7-branes, backreacting
on the the geometry of extra dimensions, may lead Y6 away from conformal CY
structure. Furthermore, the validation of this model would require to perform
a full Kähler moduli stabilisation adding α1 and string loop corrections to the
Kähler potential. Given the high level of �ne-tuning required to have a successful
in�ationary dynamics, these terms can in fact destabilise the Kähler modulus or
spoil the �atness of the in�ationary potential.

Other interesting models of Kähler moduli in�ation have been constructed in
the Large Volume Scenario. Given that α1, KK and winding corrections to the
Kähler potential scale as

δKKK
gs � ti

V , δKW
gs � gs

1

tiV , δKα1 � 1

V (2.191)

one may think that in the large volume limit KK corrections may overcome α1

corrections. Actually, it has been shown that, despite KK corrections dominate
over α1 corrections, the former cancels to a certain degree in the scalar potential,
this is known as extended no-scale structure [61]. We can schematically see how
this happens studying the simplest example with a single Kähler modulus. We
can write the Kähler potential as

K � �2 lnpVq � ξ̂

V �
?
τ

V . (2.192)

If we assume that the superpotential is constant W0, we �nd that the scalar po-
tential is given by

V � W 2
0

V2

�
0� ξ̂ � 0 � ?τ � 1?

τ
� 1

τ 3{2



. (2.193)
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The �rst zero in the previous expression is related to the standard no-scale struc-
ture, while the second one is a consequence of the extended no-scale structure.
It is easy to see that, despite the leading order corrections in Kähler potential
comes from KK modes, the higher contribution to the scalar potential is instead
given by α1 corrections. In LVS Kähler moduli in�ation this feature partially pro-
tects the �atness of the in�aton potential. Nevertheless, it is mandatory to check
whether additional contributions coming from gs and higher order α1 corrections
may become dangerously large.

A concrete example that su�ers form this problem is Blow-up in�ation. This
model arise from a swiss-cheese compacti�cation in LVS where the CY threefold
takes a so-called `strong Swiss-cheese' form:

V � λ
3{2
b τ

3{2
b �

Nsmall¸
i�1

λiτ
3{2
i . (2.194)

where τb controls the volume of the extra dimensions and τi are small blow-up
cycles. Complex structure moduli and the dilaton need to be stabilised by back-
ground �uxes while the total volume V as well as the volumes of the Nsmall rigid
blow-up divisors τi are �xed following the LVS procedure [63, 62] where the lead-
ing order α13 corrections to the Kähler potential [55, 56, 96] are balanced against
non-perturbative contributions to the superpotential [65]. The minimal �eld re-
quirement for a working model is to have at least 3 Kähler moduli �elds: the
volume cycle τb and two blow up cycles, τs and τφ, one of which plays the role of
the in�aton

V � α
�
τ

3{2
b � λφτ

3{2
φ � λsτ

3{2
s

	
. (2.195)

The superpotential has the following form

W � W0 � Aie
�aφTφ � Ase

�asTs . (2.196)

In order to drive in�ation without a�ecting LVS stabilisation τφ needs to be dis-
placed by its VEV and its motion should not a�ect xτby and xτsy. After LVS
stabilisation τb and τs can be integrated out and, for large values of τφ, the e�ec-
tive in�ationary potential becomes:

V pφq � V0

�
1� c1V5{3φ4{3e�c2V

2{3φ4{3
	

(2.197)

where φ � a
4λφ{p3Vqτ 4{3

φ is the canonically normalised in�aton, while V0 �
W 2

0 ξ̂V�3, c1 � ξ̂�1 and c2 � 1 can be considered as constant values. In order
to have an exponentially �at potential we need V2{3φ4{3 " 1 and, being τφ a blow-
up cycle, we need τb " τφ which means φ ! 1. Computing string loop corrections
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to the in�aton potential we have

δVgs �
1?
τφV3

� 1

φ2{3V10{3 . (2.198)

Given that the minimum of the in�ationary potential is xφy � lnpVq3{4{V1{2 the
correction to the η parameter (computed for convenience in the minimum of the
in�ationary potential) looks like

δη � δV
2
gs

V0

�����
xφy
� 1

φ8{3V1{3

����
xφy
� V

lnpVq2 " 1 . (2.199)

So we see that, despite the presence of an extended no-scale structure, leading
order string loop corrections can spoil the �atness of the potential.

The last model that we want to discuss is Fibre in�ation where the role of the
in�aton is played by a large cycle. In this model quantum corrections are balanced
against each other, giving rise to an exponentially �at scalar potential.

Fibre in�ation models

Fibre in�ation models are based on a class of type IIB orientifold �ux com-
pacti�cations with D3/D7-branes and O3/O7-planes where the Calabi-Yau (CY)
threefold takes a so-called `weak Swiss-cheese' form:

V � f3{2pτjq �
Nsmall¸
i�1

λiτ
3{2
i with j � 1, ..., Nlarge , (2.200)

where h1,1 � Nlarge � Nsmall and f3{2 is a homogeneous function of degree 3{2. In
these models, the stabilisation of the Kähler moduli is performed in two steps.
Firstly, the total volume V as well as the volumes of the Nsmall rigid blow-up
divisors τi are �xed following the LVS procedure. This leaves Nflat � Nlarge �
1 � h1,1 � Nsmall � 1 �at directions which are natural in�aton candidates. These
directions can receive a potential at subleading order by gs corrections due to the
exchange of Kaluza-Klein (KK) and winding modes [58, 60, 97, 98, 61] as well as
by pα1q3 F 4-terms [99, 100]. In the simplest �bre in�ation models h1,1 � 3 and
Nsmall � 1, so that Nflat � 1 and

V � α
�
τb
?
τf � λsτ

3{2
s

�
, (2.201)

whereτb is the base modulus, while τf is called �bre modulus. The latter is the
leading order �at direction which parametrises the volume of a K3 surface. The
total scalar potential schematically looks like [101, 102, 103, 104]:

V � VLV SpV , τsq � VdSpVq � VinfpV , τs, τf q , (2.202)
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where VinfpV , τs, τf q � V KK
gs � V W

gs � VF 4 ! VLV SpV , τiq is the in�ationary potential.
VLV S is the leading order LVS potential which �xes V and τs, VdS is an uplifting
contribution to get a dS vacuum which can originate from anti D3-branes [65,
66, 67, 68, 69, 70, 71, 72], hidden sector T-branes [73] or non-perturbative e�ects
at singularities [74], while V KK

gs , V W
gs and VF 4 are respectively KK, winding string

loops and F 4 terms.
In the simplest realisation of �bre in�ation the in�ationary potential comes

from gs string loop corrections and has the following form

Vgs �
W 2

0

V2

�
A
g2
s

τ 2
f

�B
1?
τfV

� C
g2
sτf
V

�
(2.203)

where A, B and C are � Op1q constants that depend on complex structure moduli
VEVs. In�ation takes place when τf is displaced far form the minimum of its po-

tential that is given by xτfy � g
4{3
s V2{3. Assuming that the motion of τf does a�ect

the overall volume VEV, the in�ationary potential for the canonically normalised
in�aton φ � ?

3 lnpτf q{2 becomes

V pφq � V0

�
1� 4

3
e�φ{

?
3 � 1

3
e�4φ{?3 � R

3
e2φ{?3



, (2.204)

where V0 � V�10{3 and R � g4
s ! 1. Given that reproducing the correct normali-

sation of the scalar power spectrum in �bre in�ation models requires V � Op103q,
the value of the overall volume is not exponentially large. The ratio between LVS
potential and the in�ationary potential scales like � V1{3 and it often happens that
multi�eld in�ation calculations must be performed, including τs and V , in order to
check the goodness of single �eld approximation. Nevertheless in most cases per-
forming multi-�eld analysis does not really a�ect single-�eld in�ation predictions.

In �bre in�ation models, the underlying CY threefold is a K3 �bration over a
P1 base which has two decompacti�cation limits, corresponding to either the K3
�bre or the base growing large. Thus, kinematically it is expected that the �bre
volume can traverse several Planck units. These LVS in�ationary models present
a variety of distinct features that make them very promising candidates to realise
large �eld in�ation and to discuss explicit global embeddings:

1. The de Sitter uplift is independent of the in�aton. This is contrary to a hypo-
thetical KKLT embedding [65], where the uplift would be in�aton-dependent
and, thus, large �eld in�ation would typically destroy the KKLT minimum.

2. The back-reaction of heavy moduli is incorporated and under control, in
particular, due to the fact that moduli stabilisation is done in two steps
and the leading order potential is independent of the in�aton because of the
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extended no-scale cancellation [61]. This is in contrast with the majority of
large �eld models of in�ation [105].

3. The possibility to achieve tensor-to-scalar ratios between r � 0.01 and r �
0.001 which can be tested by future CMB observations [106, 107].

An explicit realisation of �bre in�ation not only places several constraints on the
underlying CY geometry, but also on the setup of D-branes and O-planes. We
further analyse this model in Chapter 3 where we list the su�cient requirements
to build a viable global model which also allows for a chiral visible sector. Moreover
in Chapter 4 we study the impact of the ultra-light �elds that can be always found
in Fibre in�ation, e.g base and �bre axions, on the cosmological observables.

2.4.2 Axion in�ation

Axion-like particles appear in the 4D e�ective theory equipped with a con-
tinuous shift symmetry to all orders in perturbation theory. Therefore, they can
be interpreted as good in�aton candidates and their potential is stable against
quantum corrections. In string theory this symmetry can either be broken spon-
taneously, through non-perturbative e�ects, or explicitly, through the presence of
branes. We saw that the �rst attempt to �nd a viable model of axion in�ation
was given by natural in�ation, Eq. (2.56). This model requires the axion decay
constant to be f ¡ 10Mp and it has been disfavored by experiments. Nevertheless,
looking for a possible embedding of natural in�ation leads to an important con-
clusion that will be valid for all the models that we will introduce later on in this
section: there is no known controlled string theory construction that allows for
f " Mp (in accordance with swampland conjecture applied to axion �elds [108]).
This implies that the simplest version of natural in�ation model does not �nd
neither a top-down justi�cation in string theory, nor an empirical support and so
other extensions must be found.
A possible way-out is given by considering two axion �elds, with decay constants
that satisfy H   f1 , f2   MP , that are coupled to linear combinations of two
con�ning non-abelian gauge groups:

L �
2̧

i�1

2̧

a�1

φi
fi

cia
32π2

Tr
�
F paq ^ F paq� , (2.205)

where cia are dimensionless coe�cients and F paq are the non-abelian �eld strengths.
For certain combinations of the coe�cients cia, it can happen that a linear combi-
nation of the two axion �elds shows an e�ective trans-Planckian decay constant.
This is called axion alignment [109, 110] and allows to have trans-Planckian �eld
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excursions without violating the constraint on single axion decay constants. An-
other example that can be found in the literature is N-�ation[111], where a large
number of axions is equipped with the potential in Eq. (2.56) and there is no
cross-coupling between di�erent �elds. Each axion has a sub-Planckian decay con-
stant and it feels a force given by its own potential. On the other hand the Hubble
friction contains the sum of each single axion potential. This slows down the �eld
motion and allows to get the required amount of e-foldings with reduced �eld
displacements: the total �eld displacement ∆T must satisfy ∆T �

°
i ∆φi ¡ Mp

but the single �eld excursion is ∆φi � ∆T {
?
N   Mp. In order to work, this

mechanism requires a number of axions of order Op103q. An explicit realisation
of N-�ation in type IIB string theory can be found in [112], where the authors
use KKLT compacti�cation and work with C4 axions. This model presents prob-
lems related to the renormalisation of the Planck mass that receives corrections
proportional to the number of axions through the Euler characteristic of the com-
pacti�cation manifold. In principle, this e�ect can be softened if χpX6q ! h1,1. It
is important to notice that this condition is necessary but maybe not su�cient,
since there are higher corrections in α1 and gs expansion that are still not known.
This model may need to face another problem: if supersymmetry is spontaneously
broken, saxions masses are degenerate with the axion's ones, leading to a much
more involved in�ationary dynamics. Therefore, it is mandatory to �nd ways to
either break supersymmetry at energies higher than the in�ationary scale, or to
�nd perturbative ways to stabilise saxions so that mass degeneracy gets broken.
This has been achieved in [113] where however the authors found that N-�ation
with perturbative Kähler moduli stabilisation tends to be incompatible with a 4D
EFT that can be kept under control.

Axion monodromy is the last class of models that we want to mention and relies
on the fact that if we explicitly break shift-symmetry, the �eld space opens up and
allows for large �eld excursions. If the breaking can be made small, additional
corrections to the axion potential can be neglected, the trace of the axion shift
symmetry protects the structure of the potential over each fundamental domain
and in�ation is driven by the leading shift-symmetry-breaking term. This e�ect can
be realised when a NS5-brane wraps a 2-cycle Σ2 in the compact extra dimension
space. In this case, the dimensional reduction of the action for the NS5-brane
induces a potential for the C2 axion that is given by:

V pcq � ρ

p2πq6g2
sα

12

a
p2πq2l4 � g2

sc
2 , (2.206)

where l is the size of Σ2 in string units and ρ encodes the warp factor dependence.
In these models in�ation requires to have a large �eld excursion and the canoni-
cally normalised in�aton shows an asymptotically linear potential. An important
problem related to this model is that the remnant of the shift symmetry is not
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su�cient to protect the �atness of the potential. Indeed, the presence of the
NS5-brane, together with the time-varying axion VEV, alters the D3-brane charge
induced on the NS5-brane. In absence of working mechanisms to cancel this in-
duced charge, the axion �eld gets stuck to a �xed value by Gauss's law. One way
to overcome this problem is adding to the theory an anti-NS5-brane that wraps
Σ2, but is located in a di�erent region of the extra dimensions. Indeed, a large
D3-brane charge induced on the NS5-brane leads to a signi�cant correction to the
warp factor that modi�es the Euclidean D3-brane action and modi�es the scalar
potential, spoiling the in�ationary dynamics. A concrete solution, where this e�ect
can be made parametrically small, is to place a NS5-brane and an anti-NS5-brane
in a common warped throat [114, 115].

Despite all these models received a lot of attention in the past years and many
extensions of them have been studied, no explicit string embedding that is com-
pletely under control has been produced. The main problem related to these mod-
els is that one needs both trans-Plankian decay constant and �eld excursion. A
possible concrete realisation may require to soften these two requests. In Chapter
6 we study how the coupling between the axion and a Up1q gauge �eld can reduce
the required �eld excursion through electro-magnetic dissipation. Performing a
full numerical analysis we also found that the consequences of such a coupling on
the cosmological parameters leave unmistakable imprints that can be detected by
future experiments.
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Chapter 3

Fibre in�ation models with chiral

matter

3.1 Introduction

Cosmic in�ation is an early period of accelerated expansion of our universe
which can provide a solution to the �atness and horizon problems of standard
Big Bang cosmology. Moreover, quantum �uctuations during in�ation can source
primordial perturbations that caused the formation of large scale structures and
the temperatures anisotropies observed in the cosmic microwave background.

From a microscopic point of view, in�ation is expected to be driven by the
dynamics of a scalar �eld undergoing a slow-roll motion along a very shallow
potential that mimics a positive cosmological constant. An important feature of
in�ationary models is the distance travelled by the in�aton in �eld space during
in�ation since it is proportional to the amount of primordial gravitational waves
which get produced [91]. From an e�ective �eld theory point of view, in small
�eld models with a sub-Planckian in�aton excursion, dimension six operators can
easily spoil the �atness of the in�ationary potential. On the other hand, quantum
corrections to large �eld models with a trans-Planckian �eld range lead to an
in�nite series of unsuppressed higher-dimensional operators which seem to bring
the e�ective �eld theory approach out of control.

These dangerous operators can be argued to be absent or very suppressed
only in the presence of a symmetry whose origin can only be postulated from an
e�ective �eld theory perspective but can instead be derived from an underlying
UV complete theory. For this reason in�ationary model building in string theory
has received a lot of attention [84, 85, 86, 87]. Besides the presence of additional
symmetries, string compacti�cations naturally provide many 4D scalars which can
play the rôle of the in�aton. Promising in�aton candidates are type IIB Kähler

103
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moduli which parametrise the size of the extra dimensions and enjoy non-compact
rescaling symmetries inherited from the underlying no-scale structure [88].

Identifying a natural in�aton candidate with an appropriate symmetry that
protects the �atness of its potential against quantum corrections is however not
su�cient to trust in�ationary model building in string compacti�cations. In fact,
three additional requirements to have a successful string in�ationary model are
(i) full moduli stabilisation, (ii) a global embedding into consistent Calabi-Yau
orientifolds with D-branes and �uxes and (iii) the realisation of a chiral visible
sector.

The �rst condition is crucial to determine all the energy scales in the model
and to check the stability of the in�ationary dynamics by controlling the behaviour
of the scalar directions orthogonal to the in�aton one. The second condition is
instead fundamental to guarantee the consistency of the in�ation model from the
microscopic point of view by checking the cancellation of all D-brane tadpoles
and Freed-Witten anomalies and the actual generation of all the e�ects needed to
stabilise the moduli and to develop the in�ationary potential. Finally the require-
ment of having a model which can give rise to in�ation and reproduce at the same
time a chiral visible sector is crucial for two main reasons: to ensure the absence
of any dangerous interplay between chirality and moduli stabilisation which can
forbid the generation of D-terms or non-perturbative e�ects needed to �x the mod-
uli [116], and to determine the post-in�ationary evolution of our universe starting
from the reheating process where the in�aton energy density gets converted into
the production of visible sector degrees of freedom [117, 118, 119, 120]. Other
important post-in�ationary issues which can a�ect the predictions of important
in�ationary observables like the number of efoldings Ne, the scalar spectral index
ns and the tensor-to-scalar ratio r are periods of matter domination due to light
moduli [121, 122, 123], the production of axionic dark radiation from moduli de-
cays [14, 124, 125, 126], non-thermal dark matter [127, 128, 129], moduli-induced
baryogenesis [130, 131] and the interplay between the in�ationary and the super-
symmetry breaking scale [132, 133, 134, 135].

A comprehensive global chiral model which satis�es all these conditions for
models where the in�aton is a local blow-up mode [136] has been recently con-
structed in [137]. The chiral visible sector lives on D3-branes at an orientifolded
singularity and full closed string moduli stabilisation in a dS vacuum is achieved
by following the LVS procedure [63, 62]. The main limitation of this model is the
emergence of an η-problem associated with the presence of large gs corrections to
the e�ective action which tend to spoil the �atness of the in�ationary potential if
their �ux-dependent coe�cients are not tuned small.

In this regard, �bre in�ation models [101] look more promising. In these con-
structions, the in�aton is a �bration modulus which remains exactly massless when
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only the leading order no-scale breaking e�ects are included. The in�ationary po-
tential is then generated only at subleading order by a combination of string loop
corrections [58, 60, 97, 98] and higher derivative terms [99, 100]. This hierarchy of
scales is guaranteed by the extended no-scale cancellation and provides a natural
solution to the η-problem [61]. This solution can also be understood from the point
of view of an e�ective non-compact rescaling symmetry for the Kähler moduli [88].

Di�erent versions of �bre in�ation models have been constructed so far depend-
ing on the microscopic nature of the e�ects which drive the in�ationary dynamics:
Kaluza-Klein and winding string loops [101], Kaluza-Klein loops and Opα13q F 4

terms [102], and winding gs loops combined with higher derivative terms [103]. In
all cases the in�ationary potential is plateau-like and takes a simple form with a
constant term and negative exponentials. Additional positive exponentials show
up with coe�cients which are naturally very small and give rise to a rising be-
haviour at large �eld values. Ref. [104] provided a generalised description of �bre
in�ation models showing how they can reproduce the correct spectral index ob-
served by Planck [138, 139] while the predicted value of the tensor-to-scalar ratio
is in the range 0.001 À r À 0.01. Such a large value of r is compatible with the fact
that these are large �eld models where the in�aton range is around 5 Planck units.
An e�ective supergravity description of �bre in�ation models as α-attractors has
also been recently given in [140].

Despite all these successes, �bre in�ation models are still lacking a complete
global embedding into chiral string compacti�cations. However a �rst step for-
ward has already been made in [141] where these in�ationary models have been
successfully embedded in consistent type IIB orientifolds with moduli stabilisa-
tion but without a chiral visible sector. In order to have a viable in�ationary and
moduli stabilisation mechanism, the internal Calabi-Yau manifold has to have at
least h1,1 � 3 Kähler moduli and its volume form has to feature a K3 or T 4 �-
bration over a P1 base and a rigid shrinkable blow-up mode [62, 142]. Starting
from concrete Calabi-Yau threefolds with these topological properties, ref. [141]
provided several di�erent examples with an explicit choice of orientifold involution
and D3/D7 brane setups which are globally consistent and can generate correc-
tions to the 4D e�ective action that can �x all closed string moduli inside the
Kähler cone and reproduce the form of the in�ationary potential of �bre in�ation
models. However the case with h1,1 � 3 is too simple to allow for non-trivial D7
worldvolume �uxes which give rise to chiral matter. In fact, non-zero gauge �uxes
induce moduli dependent Fayet-Iliopoulos terms which, in combination with soft
term contributions for Up1q-charged matter �elds, would lift the leading order �at
direction, making the in�aton too heavy to drive in�ation.

In this chapter we shall extend the results of [141] by considering more com-
plicated Calabi-Yau threefolds with h1,1 � 4 in order to build global �bre in�ation
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models with a chiral visible sector. After analysing the topological conditions
on the underlying compacti�cation manifold to allow a successful chiral global
embedding of �bre in�ation models, we �nd that the simplest examples involve
Calabi-Yau threefolds with 3 K3 divisors and a toroidal-like volume with a diag-
onal del Pezzo divisor suitable to support non-perturbative e�ects to freeze the
moduli. The internal volume is therefore controlled by 3 Kähler moduli and can
equivalently be seen as di�erent K3 �brations over 3 di�erent P1 bases. After
searching through the Kreuzer-Skarke list of Calabi-Yau manifolds embedded in
toric varieties [143], we �nd several concrete examples which admit these topolog-
ical features.

We then focus on one of them and describe several possible choices of orien-
tifold involution, D-brane setup and gauge �uxes which satisfy global consistency
conditions and generate perturbative gs and α

1 corrections to the 4D Kähler po-
tential and non-perturbative e�ects in the superpotential that are suitable to both
stabilise the moduli and reproduce the typical potential of �bre in�ation models.
In particular, non-zero gauge �uxes induce chiral matter on D7-branes wrapped
around smooth combinations of the four-cycles which control the overall volume.1

Moreover, a moduli-dependent Fayet-Iliopoulos term lifts one of the Kähler mod-
uli, so that after D-term stabilisation the e�ective number of Kähler moduli is
reduced to 3 and the internal volume simpli�es to the standard expression of �bre
in�ation models used in the examples of [141].

After computing all relevant loop and higher derivative e�ects in full detail,
we analyse the resulting in�ationary dynamics �nding an interesting result: the
Kähler cone bounds set severe constraints on the allowed in�aton �eld range when
they are combined with other phenomenological requirements, like the generation
of the correct amplitude of the power spectrum by the in�aton quantum �uctua-
tions, and consistency conditions like the stability of the in�aton evolution against
possible orthogonal runaway directions, the fact that the gravitino mass remains
always smaller than any Kaluza-Klein scale in the model and �nally that danger-
ous higher derivative e�ects do not spoil the �atness of the in�ationary potential
before achieving enough efoldings of in�ation.2 Because of this tension, we also
perform a full multi-�eld numerical analysis of the in�ationary evolution showing
how an early period of accelerated expansion occurs generically. On the other
hand, the in�aton quantum �uctuations can generate the right amplitude of the
density perturbations only if the microscopic parameters take appropriate values.

We believe that our results make �bre in�ation models more robust since
they represent the �rst concrete models which are globally consistent and chi-

1We do not consider K3 �bred cases where the visible sector lives on D3 branes at singularities
since they would lead to dark radiation overproduction [144].

2These last two consistency conditions are qualitatively similar since the superspace derivative
expansion is under control if m3{2 !MKK [145].
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ral. Nonetheless several issues still need to be investigated further. The most
important ones are the inclusion of an explicit uplifting mechanism to realise a dS
vacuum, a thorough derivation of the perturbative corrections to the 4D e�ective
action and a better determination of the Calabi-Yau Kähler cone, going beyond
its approximated expression inherited from the toric ambient space. We leave the
study of these issues for the future.

This chapter is organised as follows. In Sec. 3.2, after presenting a basic re-
view of �bre in�ation models, we summarise the minimal requirements that are
needed for the construction of a fully consistent global embedding with a chiral
visible sector. In Sec. 3.3 we provide a concrete Calabi-Yau example, describing
the orientifold involution, the D-brane setup, the choice of gauge �uxes and the
resulting chiral spectrum, Fayet-Iliopoulos term and in�ationary potential gener-
ated by gs and α

1 e�ects. The in�ationary evolution is analysed in full detail in
Sec. 3.4 by focusing �rst on the single-�eld approximation and by studying then
the multi-�eld dynamics. In Sec. 3.5 we draw our conclusions and we discuss a
few open issues. App. A.1 contains additional explicit chiral global examples.

3.2 Chiral global in�ationary models

Let us begin by displaying the minimal requirements for a successful chiral
global embedding of �bre in�ation models. A brief review related to these models
has been given in Sec. 2.4.1.

3.2.1 Requirements for chiral global embedding

The simplest global embedding of �bre in�ation models requires at least three
Kähler moduli [141]. However, in order to incorporate also a chiral visible sector
we need at least h1,1 � 4 Kähler moduli. Here we will focus on obtaining chiral
matter on D7-branes wrapped around a suitable divisor with world-volume gauge
�uxes turned on. In this case D7 gauge �uxes induce a D-term potential for the
Kähler moduli that �xes a particular combination thereof. Thus, D-term �xing
and the leading order LVS stabilisation mechanism leave just a single �at direction,
in our case a K3 �bre, which will play the rôle of the in�aton. In order to obtain
a viable chiral global model we require the following ingredients and consistency
conditions:

1. A Calabi-Yau with h1,1 � 4 featuring three large cycles and a shrinkable rigid
divisor, so that the internal volume takes the form (2.200) with Nsmall � 1.
In the explicit example described in Sec. 3.3 the volume simpli�es further
to:

V � ca
?
τ1 τ2 τ3 � cb τ

3{2
s , (3.1)
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with ca ¡ 0 and cb ¡ 0. Each of the 3 moduli τ1, τ2 and τ3 controls the
volume of a K3 surface while τs parametrises the size of a `diagonal' del
Pezzo divisor [142]. D-term stabilisation will �x τ39τ2 while the standard
LVS procedure will freeze the overall volume V � ca

?
τ1 τ2 τ3 and the blow-

up mode τs. The leading order �at direction can be parametrised by τ1 which
will drive in�ation.

2. An orientifold involution and a D3/D7-brane setup with gauge �uxes on
the visible D7-brane stacks such that tadpole cancellation is satis�ed with
enough room for bulk three-form �uxes to be turned on for complex structure
and dilaton stabilisation. The D-brane and O-plane setup must also allow
for the generation of KK- and/or winding string loop corrections which have
the correct form to generate a suitable in�ationary potential.

3. A choice of world-volume �uxes which cancels all Freed-Witten anomalies
[51, 52] but leads, at the same time, to just a single moduli-dependent Fayet-
Iliopoulos (FI) term [146, 147] in order to leave a leading order in�ationary
�at direction by lifting just one of the two �at directions leftover by the LVS
stabilisation mechanism.

4. There should be no chiral intersection between the visible sector and the
del Pezzo divisor supporting non-perturbative e�ects required for LVS mod-
uli �xing as otherwise the prefactor of the non-perturbative superpotential
would be vanishing [116]. The absence of these dangerous chiral intersections
should be guaranteed by an appropriate choice of gauge �uxes.

5. Moduli stabilisation and in�ation have to take place inside the CY Kähler
cone and the e�ective �eld theory should be well under control with xVy " 1
and gs ! 1.

6. In order to trust in�ationary model building within an e�ective �eld theory,
the following hierarchy of scales should be satis�ed from horizon exit to the
end of in�ation:

minf   H   m3{2  M
piq
KK  Ms  Mp , (3.2)

where minf is the in�aton mass, H is the Hubble constant, m3{2 is the grav-
itino mass which sets the mass scale of all the heavy moduli during in�ation,
M

piq
KK denote various KK scales associated with bulk modes and open string

excitations on D7-branes wrapped around four-cycles, Ms is the string scale
and Mp is the reduced Planck mass Mp � 2.4 � 1018 GeV. Notice that, apart
from Mp, all these energy scales are moduli dependent and so evolve during
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in�ation. After stabilising V and τs à la LVS and �xing one large modu-
lus in terms of another large direction via setting the FI-term to zero, we
�nd that the `reduced' moduli space of the in�ationary direction is in fact a
compact interval. Therefore the �eld space available for in�ation is kinemat-
ically �nite (albeit in general trans-Planckian), a feature of the model which
has so far been overlooked. We will state the precise phenomenological and
consistency conditions for successful in�ation in Sec. 3.4.

3.3 A chiral global example

In this section, we shall present all the topological and model-building details
of the global embedding of �bre in�ation models into explicit chiral CY orientifolds
with h1,1 � 4.

3.3.1 Toric data

Let us consider the following toric data for a CY threefold whose volume takes
the form V � ca

?
τ1 τ2 τ3 � cb τ

3{2
s discussed above:

x1 x2 x3 x4 x5 x6 x7 x8

4 0 0 0 1 1 0 0 2
4 0 0 1 0 0 1 0 2
4 0 1 0 0 0 0 1 2
8 1 0 0 1 0 1 1 4

dP7 NdP11 NdP11 K3 NdP11 K3 K3 SD

The Hodge numbers are ph2,1, h1,1q � p98, 4q, the Euler number is χ � �188,
while the Stanley-Reisner ideal is:

SR1 � tx1x4, x1x6, x1x7, x2x7, x3x6, x4x5x8, x2x3x5x8u .

This corresponds to the polytope ID #1206 in the CY database of Ref. [148]. A
detailed divisor analysis using cohomCalg [149, 150] shows that the divisor D1 is a
del Pezzo dP7 while each of the divisors tD4, D6, D7u is a K3 surface. Moreover,
each of the divisors tD2, D3, D5u is a `rigid but not del Pezzo' surface with h1,1 �
12 which we denote as NdP11 while D8 is a `special deformation' divisors with
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Hodge diamond:

SD �

1
0 0

23 160 23
0 0

1

The intersection form in the basis of smooth divisors tD1, D4, D6, D7u can be
written as:

I3 � 2D4D6D7 � 2D3
1 . (3.3)

Writing the Kähler form in the above basis of divisors as J � t1D1 � t4D4 �
t6D6 � t7D7 and using the intersection polynomial (3.3), the CY overall volume
becomes:

V � 2 t4 t6 t7 � t31
3
. (3.4)

The Kähler cone conditions can be derived from the following generators of the
Kähler cone:

K1 � �D1 �D4 �D6 �D7 , K2 � D7 , K3 � D4 , K4 � D6 . (3.5)

Expanding the Kähler form as J � °4
i�1 riKi, the Kähler cone is de�ned via the

following conditions on the two-cycle moduli:

r1 � � t1 ¡ 0 , r2 � t1 � t7 ¡ 0 , r3 � t1 � t4 ¡ 0 , r4 � t1 � t6 ¡ 0 .
(3.6)

Notice that this expression of the CY Kähler cone is only approximate since it
is inherited from the Kähler cone of the ambient toric variety.3 However this
procedure can either overcount some curves of the CY threefold, for example if
they do not intersect with the CY hypersurface, or miss some of them, if they
cannot be obtained as the intersection between two divisors of the ambient space
and the CY hypersurface. Hence the actual CY Kähler cone can turn out to be
either larger or smaller. This analysis would require a deeper investigation which
is however beyond the scope of this work.4 Here we just mention that this analysis

3If the same CY threefold can be realised as a hypersurface embedded in di�erent ambient
spaces, the CY Kähler cone is approximated as the intersection of the Kähler cones of the di�erent
toric varieties [148].

4We however expect that the CY Kähler cone cannot get smaller. In fact, if this were the
case, there should exist an extra constraint from requiring the positivity of a curve of the CY
which is trivial in the ambient space. But this does not seem to be possible since each CY divisor
is inherited from a single toric divisor (i.e. we do not have a toric divisor which splits into two
CY divisors, and so where h1,1 of the CY is larger than h1,1 of the ambient space). In fact, if
this trivial curve existed, it should have a dual divisors, and so h1,1 of the CY should be larger
than h1,1 of the ambient case, which is however not the case.
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has been performed in detail in [151] where the CY Kähler cone turned out to be
larger than the approximated version.

The four-cycle moduli, which can be computed as τi � BtiV , look like:

τ1 � t21 , τ4 � 2 t6 t7 , τ6 � 2 t4 t7 , τ7 � 2 t4 t6 , (3.7)

and so, using the Kähler cone conditions (3.6), the overall volume reduces to:

V � t4τ4 � 1

3
τ

3{2
1 � t6τ6 � 1

3
τ

3{2
1 � t7τ7 � 1

3
τ

3{2
1 � 1?

2

?
τ4 τ6 τ7 � 1

3
τ

3{2
1 , (3.8)

which shows clearly that the CY threefold X features three K3 �brations over
di�erent P1 bases. The second Chern class of X is given by:

c2pXq � D4D5 � 4D2
5 � 12D5D6 � 12D5D7 � 12D6D7 , (3.9)

which results in the following values of the topological quantities Πi �
³
X
c2 ^ D̂i:

Π1 � 8 , Π2 � Π3 � 16 , Π4 � 24 , Π5 � 16 , Π6 � Π7 � 24 , Π8 � 128 .
(3.10)

The intersection curves between two coordinate divisors are given in Tab. 3.1 while
their volumes are listed in Tab. 3.2.

D1 D2 D3 D4 D5 D6 D7 D8

D1 C3 T2 T2 H T2 H H C3

D2 T2 P1 \ P1 P1 \ P1 T2 P1 \ P1 T2 H C3

D3 T2 P1 \ P1 P1 \ P1 T2 P1 \ P1 H T2 C3

D4 H T2 T2 H H T2 T2 C9

D5 T2 P1 \ P1 P1 \ P1 H P1 \ P1 T2 T2 C3

D6 H T2 H T2 T2 H T2 C9

D7 H H T2 T2 T2 T2 H C9

D8 C3 C3 C3 C9 C3 C9 C9 C81

Table 3.1: Intersection curves of two coordinate divisors. Here Cg denotes a curve
with Hodge numbers h0,0 � 1 and h1,0 � g.

3.3.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi Ñ �xi with i � 1, ..., 8
which feature an O7-plane on Di and O3-planes at the �xed points listed in Tab.
3.3. The e�ective non-trivial �xed point set in Tab. 3.3 has been obtained after
taking care of the SR ideal symmetry. Moreover, the total number of O3-planes
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D1 D2 D3 D4 D5 D6 D7 D8

D1 2 t1 �2 t1 �2 t1 0 �2 t1 0 0 �4 t1
D2 �2 t1 2 t1 2pt1 � t4q 2 t6 2pt1 � t6q 2 t4 0 4pt1 � t4 � t6q
D3 �2 t1 2pt1 � t4q 2 t1 2 t7 2pt1 � t7q 0 2 t4 4pt1 � t4 � t7q
D4 0 2 t6 2 t7 0 0 2 t7 2 t6 4pt6 � t7q
D5 �2 t1 2pt1 � t6q 4pt1 � t7q 0 2 t1 2 t7 2 t6 4pt1 � t6 � t7q
D6 0 2 t4 0 2 t7 2 t7 0 2 t4 4pt4 � t7q
D7 0 0 2 t4 2 t6 2 t6 2 t4 0 4pt4 � t6q
D8 �4 t1 4pt1 � t4 � t6q 4pt1 � t4 � t7q 4pt6 � t7q 4pt1 � t6 � t7q 4pt4 � t7q 4pt4 � t6q 8pt1 � 2pt4 � t6 � t7qq

Table 3.2: Volumes of intersection curves between two coordinate divisors.

NO3 is obtained from the triple intersections restricted to the CY hypersurface,
while the e�ective Euler number χeff has been computed as:5

χeff � χpXq � 2

»
X

rO7s ^ rO7s ^ rO7s . (3.11)

In what follows we shall focus on the orientifold involution σ : x8 Ñ �x8 which
features just a single O7-plane located in D8 and no O3-plane .

σ O7 O3 NO3 χpO7q χeff

x1 Ñ �x1 D1 tD2D3D4, D2D4D6, D2D5D6, 14 10 -184
D3D4D7, D3D5D7,
D4D6D7, D5D6D7u

x2 Ñ �x2 D2 \D7 D1D3D5 2 38 -192
x2 Ñ �x3 D3 \D6 D1D2D5 2 38 -192
x4 Ñ �x4 D4 \D5 D1D2D3 2 38 -192
x5 Ñ �x5 D4 \D5 D1D2D3 2 38 -192
x6 Ñ �x6 D3 \D6 D1D2D5 2 38 -192
x7 Ñ �x7 D2 \D7 D1D3D5 2 38 -192
x8 Ñ �x8 D8 H 0 208 -28

Table 3.3: Fixed point set for the involutions which are re�ections of the eight
coordinates xi with i � 1, ..., 8.

3.3.3 Brane setup

If the D7-tadpole cancellation condition is satis�ed by placing four D7-branes
on top of the O7-plane, the string loop corrections to the scalar potential can

5The e�ective Euler number controls the strength of N � 1 Opα13q corrections due to O7-
planes [56].
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involve only KK e�ects between this D7-stack and O3-planes or D3-branes since
winding contributions are absent due to the absence of any intersection between
D7-branes and/or O7-planes. Thus loop e�ects are too simple to generate a vi-
able in�ationary plateau. They might even be completely absent in our case since
there are no O3-planes and the D3-tadpole cancellation condition could be satis�ed
without the need to include D3-branes (i.e. just switching on appropriate back-
ground three-form �uxes). We shall therefore focus on a slightly more complicate
D7-brane setup which gives rise to winding loop e�ects. This can be achieved by
placing D7-branes not entirely on top of the O7-plane as follows:

8rO7s � 8prD8sq � 16 prD2s � rD4s � rD6sq . (3.12)

This brane setup involves three stacks of D7-branes wrapped around the divisors
D2, D4 and D6. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 � Nflux

2
�Ngauge � NO3

4
� χpO7q

12
�
¸
a

Na pχpDaq � χpD1
aqq

48
� 38 ,

showing that there is space for turning on both gauge and background three-
form �uxes for complex structure and dilaton stabilisation.6 As shown in [152],
three-form �uxes stabilise also D7 position moduli and open string moduli living
at the intersection between two di�erent stacks of D7-branes since they generate
soft supersymmetry breaking mass terms for each of these scalars. On the other
hand, there are no Wilson line moduli in our model since h1,0pD2q � h1,0pD4q �
h1,0pD6q � 0.

Let us point out that other orientifold involutions which could allow for D7-
branes not entirely on top of the O7-plane are x4 Ñ �x4, x6 Ñ �x6 or x7 Ñ �x7.
In each of these cases, the O7-plane is located on a K3 surface. However, given
that D4 � D1�D5, D6 � D1�D3 and D7 � D1�D2, from Tab. 3.1 and 3.2 we see
that the resulting D7-brane stacks are either non-intersecting (and so no winding
corrections are generated) or the volumes of the intersection curves depend just
on the `small' dP7 divisor (and so winding loops are in�aton-independent). This
is the reason why we chose the involution x8 Ñ �x8 where the O7-plane is located
on the `special deformation' divisor D8 which gives more freedom for D7-brane
model building.

6We focus on �ux vacua where the dilaton is �xed in a regime where our perturbative type
IIB analysis is under control.
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3.3.4 Gauge �uxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D2,
D4 and D6 we need to turn on worldvolume gauge �uxes of the form:

Fi �
h1,1¸
j�1

fijD̂j � 1

2
c1pDiq � ι�DiB with fij P Z and i � 2, 4, 6 , (3.13)

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[51, 52].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term
in order to �x only one Kähler modulus via D-term stabilisation. In fact, if the
number of FI-terms is larger than one, there is no light Kähler modulus which
can play the rôle of the in�aton. Moreover we wrap a D3-brane instanton on
the rigid divisor D1 in order to generate a non-perturbative contribution to the
superpotential which is crucial for LVS moduli stabilisation. In order to cancel the
Freed-Witten anomaly, the D3-instanton has to support a half-integer �ux, and so
the general expression of the total gauge �ux on D1 becomes (with c1pD1q � �D̂1):

F1 �
h1,1¸
j�1

f1jD̂j � 1

2
D̂1 � ι�DiB with f1j P Z . (3.14)

However a non-vanishing F1 would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-�eld which can simultaneously
set F4 � F6 � 0 (we choose to have a non-vanishing gauge �ux only on D2 to have
just one moduli-dependent FI-term) and F1 � 0. Recalling that both D4 and D6

are K3 surfaces which are spin divisors with c1pD4q � c1pD6q � 0 (since the K3 is
a CY two-fold), if we set:

B � 1

2
D̂1 , (3.15)

the condition F1 � F4 � F6 � 0 reduces to the requirement that the following
forms are integer:

ι�D4

�
1

2
D̂1



and ι�D6

�
1

2
D̂1



, (3.16)

since in this case the integer �ux quanta fij can always be adjusted to yield van-
ishing gauge �uxes. Taking an arbitrary integer form A P H2pZ, Xq which can be
expanded as A � ajD̂j with aj P Z, the pullbacks in (3.16) give rise to integer
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forms if:

b4 �
»
X

�
1

2
D̂1



^ D̂4 ^ A P Z

b6 �
»
X

�
1

2
D̂1



^ D̂6 ^ A P Z

Using the intersection polynomial (3.3) we �nd b4 � b6 � 0, showing how the
choice of B-�eld in (3.15) can indeed allow for F1 � F4 � F6 � 0. The only non-
zero gauge �ux is F2 whose half-integer contribution can be cancelled by adding
an additional term to the B-�eld of the form 1

2
D̂2. Given that all the intersection

numbers are even, this new term in B does not modify our previous results on the
pullbacks of the B-�eld on D1, D4 and D6. Moreover the pullback of the B-�eld
on D2 will also generate an integer �ux contribution. We shall therefore consider
a non-vanishing gauge �ux on the worldvolume of D2 of the form:

F2 �
h1,1¸
j�1

f2jD̂j with f2j P Z . (3.17)

3.3.5 FI-term and chirality

Given that the divisor D2 is transversely invariant under the orientifold invo-
lution and it is wrapped by eight D7-branes, it supports an Spp16q gauge group
which is broken down to Up8q � SUp8q � Up1q by a non-zero �ux F2 along the
diagonal Up1q. This non-trivial gauge �ux F2 induces also a Up1q-charge qi2 for
the i-th Kähler modulus of the form:

qi2 �
»
X

D̂i ^ D̂2 ^ F2 . (3.18)

Thus F2 � 0 yields (using D2 � D7 �D1):

q12 � �2f21 q42 � 2f26 q62 � 2f24 q72 � 0 , (3.19)

together with a �ux-dependent correction to the gauge kinetic function which looks
like:

Repf2q � α�1
2 � 4π

g2
2

� τ2 � hpF2qRepSq , (3.20)

where:

hpF2q � 1

2

»
X

D̂2 ^ F2 ^ F2 � 1

2
pf21q12 � f24q42 � f26q62q . (3.21)
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Moreover a non-vanishing gauge �ux F2 induces a moduli-dependent FI-term of
the form:

ξ � 1

4πV

»
X

D̂2 ^ J ^ F2 � 1

4πV
h1,1¸
j�1

qj2 tj � 1

4πV pq12 t1 � q42 t4 � q62 t6q . (3.22)

For vanishing open string VEVs (induced for example by non-tachyonic scalar
masses), a leading-order supersymmetric stabilisation requires ξ � 0 which implies:

t4 � �q12

q42

t1 � q62

q42

t6 . (3.23)

This Up1q factor becomes massive via the Stückelberg mechanism and develops
an OpMsq mass by eating up a linear combination of an open and a closed string
axion which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
FI-terms, non-trivial gauge �uxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on D2 and the O7-planes
or the image branes give rise to the following zero-modes in the symmetric and
antisymmetric representations of Up8q:

I
pSq
2 � �1

2

»
X

D̂2 ^ rO7s ^ F2 �
»
X

D̂2 ^ D̂2 ^ F2 � 2q12 � q42 � q62, ,(3.24)

I
pAq
2 � 1

2

»
X

D̂2 ^ rO7s ^ F2 �
»
X

D̂2 ^ D̂2 ^ F2 � q42 � q62, (3.25)

Due to the absence of worldvolume �uxes on the D7-branes wrapped around D4

and D6, both of these two D7-stacks support an Spp16q gauge group (since both
D4 and D6 are transversely invariant) which are both unbroken. Thus open strings
stretched between the D7-branes on D2 and D4 or D6 (or their image branes) give
rise to 4D chiral zero-modes in the bi-fundamental representation (8,16) of Up8q
and Spp16q whose number is:

I24 �
»
X

D̂2 ^ D̂4 ^ F2 � q42 , I26 �
»
X

D̂2 ^ D̂6 ^ F2 � q62 . (3.26)

We need �nally to check that there are no chiral intersections between the D7s on
D2 and the instanton onD1 to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured if:

I21 �
»
X

D̂2 ^ D̂1 ^ F2 � q12 � �2f21 � 0 . (3.27)

This condition can be easily satis�ed by choosing f21 � 0. In turn, this choice
simpli�es the D-term constraint (3.23) to:

t4 � �q62

q42

t6 � α t6 . (3.28)
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3.3.6 In�ationary potential

Using the D-term �xing relation (3.28), the Kähler cone conditions (3.6) sim-
plify to t7 ¡ �t1 ¡ 0 together with t6 ¡ �t1 ¡ 0 if α ¥ 1 or αt6 ¡ �t1 ¡ 0 if
α ¤ 1. Moreover the CY volume (3.4) reduces to:

V � 2αt7t
2
6 �

t31
3
� t7τ7 � 1

3
τ

3{2
1 � 1?

2α

?
τ7 τ6 � 1

3
τ

3{2
1 . (3.29)

Given that this form is linear in t7, the e�ective CY volume after D-term stabili-
sation looks like a single K3 �bre τ7 over a P1 base t7 and reduces to the typical
form used in �bre in�ation models. The blow-up mode τ1 and the overall volume
V are stabilised in the LVS fashion by means of a non-perturbative correction to
W generated by an Euclidean D3-brane instanton wrapping D1. This leaves the
�bre modulus τ7 as a �at direction which receives a potential at subleading order.

Let us now focus on the in�ationary potential. The winding loop corrections
can be written as (with κ � gs{p8πq for eKcs � 1):

V W

gs � �2κ
W 2

0

V3

¸
i

CW
i

tXi
, (3.30)

where tXi are the volumes of the two-cycles where D7-branes/O7-planes intersect.
Notice that if two coordinate divisors Di and Dj are wrapped by D7-branes and/or
O7-planes, the scalar potential receives tX-dependent winding loop corrections only
if their intersection curve contains non-contractible 1-cycles, i.e. if h1,0pDiXDjq �
0. In our case, we have an O7-plane located on D8 and three stacks of D7-branes
wrapping D2, D4 and D6. Using Tab. 3.1 and 3.2, we see all D7s intersect with
each other and with the O7 and that winding corrections can arise from any of
these intersections. Thus we end up with:

V W

gs � �κ W
2
0

V3

�
1?
τ7

�
CW � C̃Wpτ7q

	
� τ7

V
�
|CW

3 | � ĈWpτ7q
	�

, (3.31)

where (setting t4 � αt6, C
W
3 � �|CW

3 |   0 and CW
4 � �|CW

4 |   0):

CW �
?

2α

�
CW

1 � CW
2

α



C̃Wpτ7q � |CW

4 |
pα � 1q

c
α

2

�
1�

?
2α

pα � 1q

d
xτ1y
τ7

��1

,

(3.32)
and:

ĈWpτ7q � CW
5

2

�
1� 1?

2α

τ
3{2
7

V

��1

� CW
6

2

�
1�

c
α

2

τ
3{2
7

V

��1

. (3.33)
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Due to the absence of O3-planes (we also assume that the D3-tadpoles are can-
celled without including any spacetime-�lling D3-branes) and the fact that all D7s
intersect with each other and with the O7-plane, there are no 1-loop corrections
due to the exchange of closed strings carrying KK momentum.7

On the other hand, higher derivative α13 F 4 corrections to the scalar potential
can be written as [99]:8

VF 4 � �κ2 λW 4
0

g
3{2
s V4

h1,1¸
i�1

Πi ti , (3.34)

where λ is an unknown combinatorial factor which is expected to be of order 10�3

[99, 100] and the topological quantities Πi are given in (3.10). After imposing the
D-term condition (3.28), the F 4 contributions can be rewritten as (ignoring the
t1-dependent term):

VF 4 � �24κ2 λW 4
0

g
3{2
s V3

�pα � 1q?
2α

?
τ7

V � 1

τ7

�
. (3.35)

Therefore the total in�ationary potential becomes:

V � V W

gs � VF 4 � κ
W 2

0

V3

�
A1

τ7

� A2?
τ7

� B1
?
τ7

V � B2 τ7

V



, (3.36)

where (with λ � �|λ|   0):

A1 � 3

π

|λ|W 2
0?

gs
A2 � CW � C̃Wpτ7q B1 � pα � 1q?

2α
A1 B2 � |CW

3 | � ĈWpτ7q .

3.4 In�ationary dynamics

In this section we shall analyse the in�ationary dynamics by studying �rst the
single-�eld approximation and then by focusing on the full multi-�eld evolution.

7Strictly speaking, there might be 1-loop corrections associated with the exchange of KK
modes between the Euclidean D3-instanton on D1 and the D7-branes which do not intersect D1.
However, we expect such corrections to be exponentially suppressed and, thus, not relevant for
the analysis.

8This expression displays merely the leading order OpV�4q terms which are corrected at
subleading order in inverse volume by additional corrections as discussed in [103]. Furthermore,
additional higher-derivative corrections mediated by the auxiliary �elds sitting in the supergravity
multiplet might emerge at order OpV�5q [103, 153].
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3.4.1 Single-�eld evolution

In order to realise single-�eld slow-roll in�ation where the potential for the
in�aton τ7 features a plateau-type region [101, 103], the overall volume has to
be approximately constant during the whole in�ationary dynamics. Therefore,
in order to get enough efoldings before reaching the dangerous limit where the
base of the �bration t7 becomes smaller than the string scale, we need to focus on
the region in �eld space where the in�aton minimum is of order xτ7y ! V2{3. For
gs À Op0.1q, |λ| � Op10�3q and natural Op1q values of the coe�cients of the string
loop e�ects, in the vicinity of the minimum the terms in (3.36) proportional to B1

and B2 are therefore both negligible with respect to the terms proportional to A1

and A2. Numerical estimates show that we need values of order xτ7y � Op1q and
V � Op104q which, in turn, imply W0 � Op100q in order to match the observed
amplitude of the density perturbations.

The scalar potential (3.36) written in terms of the canonically normalised in-

�aton shifted from its minimum φ � xφy � φ̂, where τ7 � xτ7y ekφ̂ with k � 2{?3,
becomes:

V � κ
A2W

2
0

V3
axτ7y

�
CdS � c e�kφ̂ � e�

kφ̂
2 �R1 e

kφ̂
2 �R2 e

kφ̂
	
, (3.37)

where:

c � 3

π
�
CW � C̃Wpτ7q

	 |λ|W 2
0a

gsxτ7y
� Op1q ,

while for xτ7y � Op1q ! V2{3:

R1 � pα � 1qc?
2α

xτ7y3{2
V ! 1 and R2 �

�
|CW

3 | � ĈWpτ7q
	

�
CW � C̃Wpτ7q

	 xτ7y3{2
V ! 1 .

Notice that in (3.37) we added a constant CdS � 1 � c � R1 � R2 to obtain
a Minkowski (or slightly dS) vacuum. Given that no O3-planes are present in
our model, the usual uplift mechanism where an anti D3-brane is located in a
resolved conifold region of the extra dimensions would require additional e�ort
to implement. We leave the explicit embedding of the source of uplift to future
research.

The two negative exponentials in (3.37) compete to give a minimum at xτ7y �
Op1q while the two positive exponentials cause a steepening behaviour at large φ̂.
Thus we need to make sure that both R1 ! 1 and R2 ! 1 to prevent the two
positive exponentials from destroying the in�ationary plateau before achieving
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enough efoldings of in�ation.9 The condition R1 ! 1 could be satis�ed for c ! 1,
for example for W0 � Op1q and xτ7y " 1, in which case the minimum could be
obtained by balancing the two terms in the coe�cient A2. However, as we shall see
below, if xτ7y " 1, the Kähler cone bounds restrict the allowed �eld space so much
that it becomes impossible to realise enough efoldings of in�ation. Hence we shall
focus the region where R1 ! 1 and R2 ! 1 are satis�ed by xτ7y � Op1q ! V2{3

(and possibly by allowing some tuning of the complex structure moduli-dependent
coe�cients of the loop corrections or by considering |λ| ! 1).

Turning now to the explicit numerical examples, let us formulate the necessary
conditions that have to be satis�ed in order to have a viable model:

1. Stringy e�ects can be neglected if each four-cycle in string frame has a volume
larger than the string scale: Vol1{4s " ?

α1. Given that string and Einstein
frame volumes are related as Vols � gsVolE � gsτE`s with `s � 2π

?
α1, we

end up with the condition:

ετi �
1

gsp2πq4 τi ! 1 @ i . (3.38)

2. The whole in�ationary dynamics should take place inside the Kähler cone.
This implies in particular that:

2αxτ1y   τ7   Vaxτ1y
if α ¥ 1 ,

2

α
xτ1y   τ7   Vaxτ1y

if α ¤ 1 . (3.39)

Notice that these conditions guarantee the absence of any singularity in the
in�ationary potential (3.37) which could originate from the shrinking of a
two-cycle to zero size. Rewriting these conditions in terms of the canonically
normalised in�aton �eld, we end up with:

?
3

2
ln

�
2αxτ1y
xτ7y



  φ̂  

?
3

2
ln

�
V

xτ7y
axτ1y

�
if α ¥ 1 ,

?
3

2
ln

�
2xτ1y
αxτ7y



  φ̂  

?
3

2
ln

�
V

xτ7y
axτ1y

�
if α ¤ 1 .(3.40)

In order to be able to describe within a consistent EFT, not just in�ation but
also the post-in�ationary evolution of our model, φ̂ should reach its minimum
before hitting the lower bounds in (3.40). Moreover the in�aton should drive
enough efoldings of in�ation before hitting the upper bounds in (3.40).

9If this is the case, these steepening terms could then be responsible for an interesting power
loss at large angular scales [154].
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3. Horizon exit at φ̂ � φ̂� should yield the required number of efoldings:

Ne � 57� 1

4
ln pr� V�q � 1

3
ln

�
Vend

Trh



, (3.41)

where the reheating temperature Trh can be estimated in terms of the in�aton
mass at the minimum mφ̂ as:

Trh �
�

90

π2g�pTrhq

1{4 b

Γφ̂Mp � 0.1mφ̂

c
mφ̂

Mp

. (3.42)

4. Horizon exit at φ̂ � φ̂� should reproduce the observed amplitude of the
density perturbations:

V 3
�

V 12�
� 2.6 � 10�7 . (3.43)

5. The α1 expansion of the potential can be trusted only if:

εξ � ξ

2g
3{2
s V

! 1 . (3.44)

6. The e�ective �eld theory is under control if throughout all the in�ationary
dynamics:

minf   H   m3{2  M
piq
KK  Ms  Mp @i � bulk, 2, 4, 6 , (3.45)

where minf is the in�aton mass, H � V
3M2

p
is the Hubble scale, m3{2 �

eK{2W0 � ?
κ W0

V Mp is the gravitino mass which sets the mass scale of
all complex structure moduli, the dilaton and the Kähler modulus T1 �
τ1 � i

³
D1
C4 and M

piq
KK �

?
π?

V τ1{4
i

Mp are the di�erent KK scales in the model

associated with bulk KK modes for τ
3{2
bulk � V and KK replicas of open string

modes living on D7-branes wrapped around D2, D4 and D6. The bulk KK

scale should be below the string scale Ms � g
1{4
s

?
π?

V Mp while we do not need

to impose V 1{4   M
piq
KK since no energy can be extracted from the vacuum

during an adiabatic in�ationary expansion where H !M
piq
KK.

7. Besides the two ultra-light axions associated with the base and the �bre
which develop just negligible isocurvature �uctuations during in�ation if they
do not contribute signi�cantly to dark matter, only the volume mode has a
mass below m3{2. In order to trust our single �eld approximation, we need
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therefore to check that the mass of the volume mode mV does not become
smaller than the Hubble scale H. This condition boils down to:

δ � H

mV
�
c

V�
3Vα1

À 1 , (3.46)

where Vα1 is the leading Opα13q contribution to the scalar potential and reads
[55]:

Vα1 � κ
3ξW 2

0

4g
3{2
s V3

with ξ � �ζp3qχpXq
2p2πq3 . (3.47)

If δ � 1, the in�ationary energy density can either destabilise the volume
direction or cause a signi�cant shift of the volume minimum. Hence the
in�ationary dynamics can e�ectively become a multi-�eld evolution. How-
ever, as analysed in [101], the motion might still remain mainly along the
τ7 direction, and so the predictions for the in�ationary observables could be
basically unaltered apart from the fact that the number of allowed efoldings
slightly increases. Notice also that in LVS models the CY Euler number
together with the string coupling �xes the minimum of the blow-up mode τ1

as: xτ1y � p3ξ{2q2{3 g�1
s . This value is important to evaluate the Kähler cone

conditions in (3.40).

We shall now focus on single-�eld slow-roll in�ation where:

εpφ̂q � 1

2

�
V 1

V


2

! 1 and ηpφ̂q � V 2

V
! 1 .

Notice that the condition η ! 1 guarantees that the in�aton is lighter than H
during in�ation. In order to illustrate the main features of our in�ationary model,
we shall now consider two di�erent choices of the underlying parameters charac-
terised by di�erent values of the coe�cients ξ and λ which control the strength
of the Opα13q corrections to the e�ective action at OpF 2q and OpF 4q. According
to [56], N � 1 Opα13q corrections due to O7-planes cause a shift of the CY Euler
number χpXq to χeffpXq de�ned in (3.11) and given in Tab. 3.3. From (3.47) this
modi�cation would give ξ � 0.067. Moreover the coe�cient λ of higher derivative
Opα13q e�ects has been estimated to be negative and of order 10�3 [99, 100]. Hence
the �rst set of parameters will be characterised by ξ � 0.067 and λ � �0.001.
However both of these corrections still lack a full supersymmetric analysis, and so
in the second case we shall focus on a situation where the CY Euler number is
not modi�ed, and so ξ � 0.456, and the size of the coe�cient λ is much smaller:
|λ| À 10�6.
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Case 1: ξ � 0.067 and |λ| � 0.001

Let us now provide an explicit numerical example set to demonstrate the fea-
tures of our in�ationary model:

α � 1 , CW

1 � CW

2 � 15 , |CW

3 | � 0.013 , |CW

4 | � 18 , CW

5 � CW

6 � �5 ,

gs � 0.114 , V � 104 , xτ1y � 1.91 , W0 � 80 , |λ| � 0.001 , (3.48)

with χpXq � χeffpXq � �28 in (3.47) which gives ξ � 0.067. Notice that the
tuning of the steepening term here is mild since the di�erence between the largest
and the smallest winding coe�cient is between one and two orders of magnitude.
The form of the in�ationary potential is plotted in Fig. 3.1 and it is characterised
by:

Figure 3.1: Plot of the in�ationary potential for the example set (3.48). The red
vertical lines correspond to the walls of the Kähler cone while the dashed vertical
lines denote horizon exit and the end of in�ation where ε � 1.

� xτ7y � 4.002 leading to εxτ7y � 0.0014. Moreover 2xτ1y � 3.8, and so the
distance of the minimum from the lower bound of the Kähler cone is ∆τ7 �
0.178 which is still larger than the string scale since, using (3.38), we have
that:

ε∆τ7 �
1

gsp2πq4∆τ7

� 0.03 . (3.49)

� The Kähler cone bounds (3.40) in terms of the canonically normalised in�a-
ton become φ̂min � �0.04   φ̂   φ̂max � 6.49. In�ation ends at φ̂ � φ̂end �
0.96 where εpφ̂endq � 1 and Vend � p7 � 1015 GeVq4. Horizon exit takes place
at φ̂ � φ̂� � 6.24 where r � 16ε � 0.009, ns � 1 � 2η� � 6ε� � 0.983,
V� � p1 � 1016 GeVq4 and the amplitude normalisation (3.43) is satis�ed.
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Notice that such a largish value of the scalar spectral index is in perfect
agreement with Planck data in the presence of dark radiation since, using
∆Neff � 0.39 as a prior, [139] gives as best �t ns � 0.983� 0.006. This prior
is fully justi�ed in string models like ours where reheating is driven by the
decay of the lightest modulus which naturally tends to produce extra axionic
contributions to dark radiation [14, 124, 125, 126].

� Horizon exit occurs well inside the Kähler cone since from (3.39) we have:

τ�7 � eκpxφy�φ̂�q � 5404.82   τmax
7 � Vaxτ1y

� 7231.87

ñ τmax
7 � τ�7 � 1827.06 .

� The mass of the in�aton around the minimum is mφ̂ � 4.25 �1013 GeV which

from (3.42) implies a reheating temperature Trh � 1.8 � 1010 GeV.

� The number of efoldings computed as:

Ne �
» φ̂�

φ̂end

V

V 1 dφ̂ , (3.50)

gives Ne � 52 as required by the estimate (3.41). The maximum number of
efoldings between φ̂end and φ̂max is Nmax

e � 60.

� The α1 expansion is under control even if in our in�ationary model the in�a-
ton travels over a trans-Planckian distance of order ∆φ̂ � φ̂� � φ̂end � 5.28
since we have εξ � 10�4.

� The mass of the volume mode is of order the Hubble scale during in�ation
since δ � 1.6. Hence the in�ationary energy density could either cause
a signi�cant shift of the original LVS minimum or destabilise the volume
direction. A de�nite answer to this question would require a more careful
multi-�eld analysis. As mentioned above, a similar situation has been studied
in [101], where the authors found that for δ � 1 the minimum for the volume
mode gets a large shift but the in�ationary evolution still remains mostly
single-�eld sinceminf ! mV � H. However if δ � 1, the in�ationary potential
generated by string loops and α13 F 4 terms is of the same order as the α13

F 2 contribution, and so one also should carefully check if additional higher
derivative corrections can be safely neglected.

� The e�ective �eld theory approximation is valid during the whole in�ationary
evolution since H � 2 � 1013 GeV   m3{2 � 1 � 1015 GeV   Mbulk

KK � 9 �
1015 GeV  Ms � 2.5 � 1016 GeV.
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Figure 3.2: Comparison between the di�erent KK masses,m3{2 and the in�ationary
energy density V 1{4 from horizon exit to the end of in�ation. Note that M

p4q
KK �

M
p6q
KK which is why only one of them is displayed here.

We display the evolution of the di�erent KK masses as compared to the grav-
itino mass and the in�ationary scale Minf � V 1{4 in Fig. 3.2. Notice, in particular,
that at the end of in�ation the in�ationary scale is of order Mbulk

KK and, above all,

mildly exceeds the KK scaleM
p4q
KK by a factor of roughly 1.3. As we stressed above,

during an adiabatic expansion no energy can be extracted from the vacuum, and so
our EFT is still valid even if some KK scales become smaller than V 1{4 since they
are all always larger than m3{2 which is, in turn, larger than H. However, since all
the in�ationary energy density could instead be converted into particle production
at reheating, one should make sure that there is enough Hubble friction between
the end of in�ation and reheating to bring the in�aton energy density below the
relevant KK scale. This e�ect can be estimated by noticing that from:

ρpφq � 1

2
9φ2 � V pφq � 3H2M2

p ô Btρpφq � �3H 9φ2 , (3.51)

we can obtain the following relation between the energy density at the end of
in�ation and at reheating:

ρrh � ρend � 3x 9φ2y
» rh

end

da

a
� ρend � 3Nrhx 9φ2y , (3.52)

where x 9φ2y is the time average between the end of in�ation and reheating and
Nrh � lnparh{aendq is the number of efoldings of the reheating epoch. At the end



126 CHAPTER 3. STRING INFLATIONARY MODELS

of in�ation when ε � 1 we have:

1

2
9φ2 � H2M2

p ô ρend � 3

2
Vend � 10

�
M

p4q
KK

	4

. (3.53)

On the other hand at reheating V pφrhq � 0, and so ρrh � 9φ2
rh{2. If we then write

the time-average kinetic energy as x 9φ2y � 9φ2
rh{x � 2ρrh{x with x ¡ 0, we end up

with the following bound:

ρrh � 10

1� 6
x
Nrh

�
M

p4q
KK

	4

 
�
M

p4q
KK

	4

. (3.54)

Using the fact that:

Nrh � 1

3
ln

�
H2

endM
2
p

T 4
rh



� 1

3
ln

�
π2g�
90



� 16 , (3.55)

the bound (3.54) becomes x   2
3
Nrh � 10. Our model should satisfy this bound

since we expect 9φend to approach 9φrh relatively quickly due to the steepness of
the potential near the end of in�ation. However a de�nite answer would require
a detailed study of the post-in�ationary epoch which is beyond the scope of this
work.10

Let us also mention that, due to the absence of KK corrections, this scenario
represents a chiral global embedding of the α1-in�ation models discussed in [103].
Moreover, no KK scale becomes smaller than the gravitino mass even if r � 0.01
and ∆φ̂ � 5 in Planck units. In fact, if we focus for example on the KK scaleM

p2q
KK

associated with the K3 �bre (similar considerations apply to the KK scale M
p6q
KK

associated with the base), we have:

m3{2

M
p2q
KK

� α1 e
α2φ � 0.03 eα2φ , (3.56)

with:

α1 �
c
W0

2π

� gs
2π

	1{4 c
m3{2
Mp

� 0.03 and α2 � 1

2
?

3
. (3.57)

If we set φ � φ0 � φ̂he � 7.44, the ratio in (3.56) becomes m3{2{M p2q
KK � 0.26, and

so the KK scale M
p2q
KK is always larger than the gravitino mass throughout all the

10Let us also point out that, even if ρrh Á
�
M

p4q
KK

	4

, our model is not necessarily ruled out

but we would just need to describe reheating within a 6D EFT where the base of the �bration
is much larger than the characteristic size of the �bre. It would also be interesting to �nd brane
setups where this problem is automatically absent since there is no D7-brane wrapped around
the base.
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in�ationary dynamics. Notice that this result seems to be in slight disagreement
with the swampland conjecture of [155, 156] where the underlying parameters α1

and α2 were generically assumed to be of order unity.
As explained above, given that in this case δ � 1.6, the in�ationary dynamics

can be fully trusted only after determining the proper multi-�eld evolution. Due
to the di�culty to perform a full numerical analysis, in the next section we shall
instead still focus on a single-�eld case where δ � 0.05 since ξ is larger, and so the
volume mode mass is larger, while |λ| is smaller, and so F 4 steepening terms can be
easily neglected throughout the whole in�ationary dynamics. The full three-�eld
evolution for both of these cases will then be presented in Sec. 3.4.2.

Case 2: ξ � 0.456 and |λ| � 10�7

According the discussion above, we shall now focus on the following di�erent
choice of the underlying parameters:

α � 1 , CW

1 � CW

2 � 0.034 , |CW

3 | � 10�5 , |CW

4 | � 0.068 ,

CW

5 � CW

6 � �0.024 , gs � 0.25 , V � 4500 , xτ1y � 3.10 ,

W0 � 150 , |λ| � 10�7 , (3.58)

with χpXq � χeffpXq � �188 in (3.47) which gives ξ � 0.456. A larger value of
the coe�cient ξ is helpful to increase the control on the single-�eld approximation
since, as can be seen from (3.47), the leading Opα13q contribution to the scalar
potential is proportional to ξ. The form of the in�ationary potential is plotted in
Fig. 3.3 and it is characterised by:

Figure 3.3: Plot of the in�ationary potential for the example set (3.58). The red
vertical lines correspond to the walls of the Kähler cone while the dashed vertical
lines denote horizon exit and the end of in�ation where ε � 1.
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� xτ7y � 6.41 leading to εxτ7y � 0.0004 and xφy � 1.61. Moreover 2xτ1y � 6.2,
and so the minimum is located close to the walls of the Kähler cone but at
a distance ∆τ7 � 0.21 which is still larger than the string scale since, using
(3.38), we have that:

ε∆τ7 �
1

gsp2πq4∆τ7

� 0.01 . (3.59)

� The Kähler cone bounds (3.40) in terms of the canonically normalised in�a-
ton become φ̂min � �0.028   φ̂   φ̂max � 5.19. In�ation ends at φ̂ � φ̂end �
0.93 where εpφ̂endq � 1 and Vend � p4.4 � 1015 GeVq4. Horizon exit takes place
at φ̂ � φ̂� � 5.10 where r � 16ε � 0.0014, ns � 1 � 2η� � 6ε� � 0.963,
V� � p6.2 � 1015 GeVq4 and the amplitude normalisation (3.43) is satis�ed.
Notice that horizon exit occurs far away from the upper bound of the Kähler
cone since from (3.39) we have:

τ�7 � eκpxφy�φ̂�q � 2325.79   τmax
7 � Vaxτ1y

� 2554.55

ñ τmax
7 � τ�7 � 228.76 .

� The mass of the in�aton around the minimum is mφ̂ � 1.85 �1013 GeV which

from (3.42) implies a reheating temperature Trh � 5.16 � 109 GeV.

� The number of efoldings computed as:

Ne �
» φ̂�

φ̂end

V

V 1 dφ̂ , (3.60)

gives Ne � 51 as required by the estimate (3.41). The maximum number of
efoldings between φ̂end and φ̂max is Nmax

e � 57.5.

� The α1 expansion is under control even if in our in�ationary model the in�a-
ton travels over a trans-Planckian distance of order ∆φ̂ � φ̂� � φ̂end � 4.17
since we have εξ � 0.0004.

� The single-�eld approximation is under control since δ � 0.05.

� The e�ective �eld theory approximation is valid during the whole in�ationary
evolution since H � 7 � 1012 GeV   m3{2 � 8 � 1015 GeV   Mbulk

KK � 1.6 �
1016 GeV  Ms � 4.5 � 1016 GeV.
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Figure 3.4: Comparison between the di�erent KK masses, the gravitino mass m3{2
and the in�ationary energy V 1{4 from horizon exit to the end of in�ation. Note
that M

p4q
KK �M

p6q
KK which is why only one of them is displayed here.

We display the evolution of the di�erent KK masses as compared to the grav-
itino mass and the in�ationary energy densityMinf � V 1{4 in Fig. 3.4. Notice that,
contrary to case 1 where r � 0.01, all KK scales remain above Minf throughout
all the in�ationary dynamics. The reason is that in this scale the tensor-to-scalar
ratio, and so also the in�ationary scale, is smaller since r � 0.001. Moreover,
as stressed above, no energy can be extracted from the vacuum during an adia-
batic expansion, and so the consistency condition to be imposed during in�ation

is H ! M
piq
KK which is clearly satis�ed since H � Minf?

3

�
Minf

Mp

	
  Minf . Moreover,

no KK scale becomes smaller than the gravitino mass m3{2 � 8 � 1015 GeV. If we

focus for example on the KK scale M
p2q
KK associated with the K3 �bre (similar con-

siderations apply to the KK scale M
p6q
KK associated with the base of the �bration),

we have:
m3{2

M
p2q
KK

� α1 e
α2φ � 0.126 eα2φ , (3.61)

with:

α1 �
c
W0

2π

� gs
2π

	1{4 c
m3{2
Mp

� 0.126 and α2 � 1

2
?

3
. (3.62)

If we set φ � φ0 � φ̂he � 6.71, the ratio in (3.61) becomes m3{2{M p2q
KK � 0.87,

and so the KK scale M
p2q
KK is always larger than the gravitino mass throughout
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all the in�ationary dynamics. This result seems to be more in agreement with
the swampland conjecture of [155, 156] than the one of case 1 since r is smaller,
r � 0.001, and the �eld range is slightly reduced, ∆φ̂ � 4. Moreover larger values
of φ would bring the e�ective �eld theory approach out of control.

Even if this example satis�es all consistency and phenomenological constraints
and the single-�eld in�ationary analysis is under control, in Sec. 3.4.2 we shall
perform a more precise multi�eld analysis where the motion along the orthogonal
directions enlarges the �eld space as well as the allowed number of efoldings.

3.4.2 Multi-�eld evolution

The following �ve consistency conditions require generically a multi-�eld study
of the in�ationary evolution (which might however still be mainly along a single
direction in �eld space):

1. The whole in�ationary dynamics takes place well inside the Kähler cone
described by the conditions in (3.39);

2. The quantum �uctuations of the in�aton produce a correct amplitude of the
density perturbations at horizon exit;

3. The directions orthogonal to the in�aton are not destabilised by the in�a-
tionary dynamics. This is guaranteed if in�ation occurs in �eld space along
a through which can however bend;

4. Throughout all the in�ationary dynamics, no Kaluza-Klein scale becomes
smaller than the gravitino mass;

5. The steepening of the in�ationary potential due to F 4 corrections is negli-
gible, so that enough efoldings can be obtained before destroying slow roll
in�ation.

If V � 103 and W0 � Op1q, the last four conditions can be easily satis�ed but
the Kähler cone conditions (3.39) for such a small value of the volume would
give an upper bound on the in�aton direction which would not allow to generate
enough efoldings. In order to enlarge the in�aton �eld space, the value of the
volume has therefore to be larger, of order V � 104. In the large volume regime
where we can trust the 4D EFT, the in�ationary potential then becomes more
suppressed, and so the COBE normalisation condition (2) above can be satis�ed
only ifW0 � Op100q. However, given that the gravitino mass is proportional toW0,
for such a large value of the �ux-generated superpotential, it is hard to satisfty
the fourth condition above keeping m3{2 below all KK scales during the whole
in�ationary evolution. Moreover, it becomes harder to suppress higher derivative
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corrections (condition (5) above) unless their numerical coe�cient λ turns out to
be extremely small: |λ| À 10�6. This is the example of case 2 above of Sec. 3.4.1.

Another option for V � 104 could be to keep W0 � Op1q, so that the grav-
itino mass can remain small and the F 4 terms are still negligible, and to tune the
background �uxes to increase the complex structure-dependent coe�cients of the
winding loop corrections. This would however make the in�aton-dependent poten-
tial of the same order of magnitude of the leading order α1 correction. Hence the
mass of the volume mode becomes of order the Hubble scale during in�ation. This
is the example of case 1 of Sec. 3.4.1 where δ � 1.6. This situation could either
cause a considerable shift of the original LVS minimum or even a destabilisation,
and so in this case one should perform a careful multi-�eld analysis to check that
the condition (3) above is indeed satis�ed.11

In what follows we shall therefore focus on the multi�eld case with V � 104,
W0 � Op100q and |λ| À 10�6. We shall also present an example with W0 � Op1q
and |λ| � 10�3 which satis�es all conditions above except for condition (2) since
the amplitude of the density perturbations turns out to be too small. The correct
value could be generated by the quantum �uctuations of the two light bulk axions
which could play the rôle of curvaton �elds [66, 67, 68, 69, 70, 71, 72]. This study
is however beyond the scope of this chapter, and so we leave it for future work.

We analyse now the full three-�eld cosmological evolution involving the Käh-
ler moduli τ7, V and τ1. Their dynamics is governed by the following evolution
equations for non-canonically normalised �elds:

#
:φi � 3H 9φi � Γijk

9φj 9φk � gij BVBφj � 0,

H2 � �
9a
a

�2 � 1
3

�
1
2
gij 9φ

i 9φj � V
	
,

(3.63)

where the φi's represent the scalar �elds τ7, V and τ1, a is the scale factor and
Γijk are the target space Christo�el symbols using the metric gij for the set of real

scalars φi such that B2K
BΦIBΦ�J BµΦIBµΦ�J � 1

2
gijBµφiBµφj.

For numerical purposes it is more convenient to express the cosmological evo-
lution of the �elds as a function of the number of efoldings N rather than time. In
fact, by using aptq � eN and d

dt
� H d

dN
, we can directly obtain τ7pNq, VpNq and

τ1pNq without having to solve for the scale factor. The equations of motion turn

11A similar situation arises in Kähler moduli in�ation where however a detailed multi�eld anal-
ysis shows that the minimum of the volume mode is shifted during in�ation without developing
a runaway direction [137, 157].
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out to be (with 1 denoting a derivative with respect to N):

τ 27 � �pLkin � 3q
�
τ 17 � τ7V

V,V
V
� 2τ 2

7

V,τ7
V

� 2τ7τ1
V,τ1
V



� τ 127

τ7

(3.64)

�τ7τ
1
1

V

�
τ 11?
τ1

� τ 17
2
?
τ7



,

V2 � �pLkin � 3q
�
V 1 � 3V2

2

V,V
V
� τ7V

V,τ7
V

� τ1V
V,τ1
V



� V 12

V , (3.65)

τ 21 � �pLkin � 3q
�
τ 11 � τ1V

V,V
V
� 2τ7τ1

V,τ7
V

� 4V?τ1
V,τ1
V




� τ 1 21

4τ1

� τ1V 1

V

�
τ 11
τ1

� τ 17
τ7



� τ1τ

1
7

2τ7

�
3τ 17
2τ7

�
?
τ1

V τ 11



,

where the kinetic Lagrangian reads:

Lkin � 1

2

�
�V 1 2

V2
� V 1τ 17

Vτ7

� 3τ 1 27

4τ 2
7

�
?
τ1τ

1
7τ

1
1

2Vτ7

� τ 1 21

4V?τ1



, (3.66)

and the full in�ationary potential V is given by the sum of the standard LVS
potential, the gs loops and F

4 terms given in (3.36) and an uplifting contribution
proportional to δup which could come from an anti D3-brane at the tip of a warped
throat:
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|λ| � 10�6 and correct amplitude of the density perturbations

Setting α � 1 and performing the following choice of the underlying parameters:

As � 6 � 105 χ � �188 ñ ζ � �ζp3qχpXq
2p2πq3 � 0.456 W0 � 50 gs � 0.25

CW

1 � CW

2 � 0.05 |CW

3 | � 10�4 |CW

4 | � 0.1 CW

5 � CW

6 � �0.05 λ � �10�6 ,

the total potential (3.67) admits a Minkowski global minimum at:

xVy � 2690.625 , xτ7y � 6.503 xτ1y � 3.179 for δup � 5.9598 � 10�4 .

Notice that this minimum is inside the Kähler cone since xτ7y ¡ 2xτ1y � 6.358,
which respects the lower bound in (3.39). At this level of approximation, the
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closed string axions associated to V and τ7 are �at directions. They receive a
tiny potential from highly suppressed non-perturbative e�ects, and so they remain
very light. Being so light, they do not a�ect the in�ationary dynamics but would
acquire isocurvature �uctuations of order H during in�ation. If they do not play
the rôle of dark matter, their �nal contribution to the amplitude of the isocurvature
perturbations is negligible. On the other hand, if they are heavy enough to decay,
their isocurvature �uctuations get converted into standard density perturbations,
and so these bulk axions could behave as curvaton �elds [66, 67, 68, 69, 70, 71, 72].

Let us now shift τ7 away from its minimum at the initial condition τ7pN �
0q � xτ7y � 2030 and recompute the new minimum for the other two directions
xVypτ7q and xτ1ypτ7q. These values would set the initial conditions for these �elds,
ensuring that the in�ationary dynamics takes place along a stable trough in �eld
space:

Vp0q � xVypτ7p0qq � 3671.432 , τ7p0q � 2036.503 , τ1p0q � xτ1ypτ7p0qq � 3.227 .

Notice that these initial conditions are again inside the Kähler cone since τ7p0q  
Vp0q?
τ1p0q

� 2043.7, which satis�es the upper bound in (3.39). We shall also focus on

vanishing initial velocities for all scalar �elds: V 1p0q � τ 17p0q � τ 11p0q � 0.
Considering this set of initial conditions, we solved the system of equations of

motion (3.65) �nding the cosmological evolution of each scalar �eld as a function
of the number of efoldings N . In�ation occurs in the region in �eld space where
the generalised ε-parameter:

εpNq � � 1

4LkinV 2
pV,V V 1 � V,τ7 τ

1
7 � V,τ1 τ

1
1q2 , (3.68)

is much smaller than unity. As can be seen from Fig. 3.5, ε ! 1 during the �rst
57 efoldings and then quickly increases and reaches ε � 1 at N � 57.93 where
in�ation ends.

Using the variable N to parametrise the cosmological evolution of the scalar
�elds and denoting by Ne the physical number of efoldings of in�ation, Ne � 52,
as estimated in Sec. 3.4.1, at N� � 5.93. This is the point of horizon exit in
�eld space where εpN�q � 1.456 � 10�4 which yields a tensor-to-scalar ratio r �
16εpN�q � 0.0023. The amplitude of the scalar power spectrum is:

a
P pN�q � 1

10π

d
2V pN�q
3 εpN�q � 1.035 � 10�5 , (3.69)

reproducing the reference COBE value
?
PCOBE � 2 � 10�5 with a good accuracy.

Moreover the scalar spectral index is given by:

nspN�q � 1� d

dN
lnP pNq

����
N�N�

� 0.9701 , (3.70)
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Figure 3.5: Evolution of the ε-parameter as a function of the number of efoldings
N for (left) the entire in�ationary dynamics and (right) for the last efolding.

in good agreement with Planck data [138, 139].

Fig. 3.6, 3.7 and 3.8 show the cosmological evolution of the three scalar �elds
τ7, V and τ1 during the whole in�ationary dynamics and their �nal settling into
the global minimum after a few oscillations. Fig. 3.9 shows instead the path of the
in�ationary trajectory in the pτ7,Vq-plane (on the left) and in the pτ7, τ1q-plane
(on the right). Clearly, as expected from the single-�eld analysis of Sec. 3.4.1, the
in�aton travels mainly along the τ7-direction.

Finally Fig. 3.10 presents a plot with the cosmological evolution of all KK mass
scales, the in�ationary scaleMinf � V 1{4 and the gravitino mass m3{2 from horizon
exit to the �nal settling into the global minimum. The fact that Minf remains
always below all the KK scales, ensures that the Hubble scale during in�ation H �
Minf?

3

�
Minf

Mp

	
  Minf is also always below each KK scale. The gravitino mass also

remains always smaller than M
piq
KK @i. This guarantees that the 4D e�ective �eld

theory is under control. In particular, M
p2q
KK, M

p6q
KK and the in�ationary scale evolve

fromM
p2q
KKpN�q � 1.1�1016 GeV,M

p6q
KKpN�q � 2.1�1016 GeV andMinfpN�q � 5.3�1015

GeV at horizon exit to M
p2q
KKpN � 60q � 6.2 � 1016 GeV, M

p6q
KKpN � 60q � 1.3 � 1016

GeV and MinfpN � 60q � 9.3 � 1014 GeV around the �nal minimum. On the other
hand the other scales remain approximately constant during the whole in�ationary
evolution around: H � 5 � 1012 GeV   m3{2 � 4 � 1015 GeV  Mbulk

KK � 2 � 1016 GeV.

|λ| � 10�3 and negligible amplitude of the density perturbations

We shall now relax the condition of generating the correct amplitude of the
density perturbations from the in�aton quantum �uctuations. As explained above,
the right COBE value of the amplitude of the power spectrum could instead be
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Figure 3.6: Evolution of τ7 as a function of the number of efoldings N for (left)
the entire in�ationary dynamics and (right) for the last 2 efoldings. The dashed
red line represents the position of the �nal global minimum.

reproduced in a non-standard way by a curvaton-like mechanism involving the
quantum �uctuations of the two light bulk axions [66, 67, 68, 69, 70, 71, 72].
In this case we can focus on V � 5 � 103, W0 � Op1q, λ � 10�3 and relatively
small values of the coe�cients of the winding loop corrections which generate the
plateau, so that all the remaining four conditions listed at the beginning of Sec.
3.4.2 are fully satis�ed.

We shall set α � 1 and perform the following choice of the underlying param-
eters:

As � 1 � 104 χ � �188 ñ ζ � �ζp3qχpXq
2p2πq3 � 0.455 W0 � 1 gs � 0.25

CW

1 � CW

2 � 0.05 CW

3 � �10�4 CW

4 � �0.1 CW

5 � CW

6 � �0.05 λ � �0.001 ,

which yield a global Minkowski minimum inside the Kähler cone at:

xVy � 3220.899 , xτ7y � 6.403 xτ1y � 3.179 for δup � 1.76588 � 10�7 .

The initial conditions for the in�ationary evolution are again derived in the same
way: the �bre modulus τ7 is shifted away from its minimum at τ7pN � 0q �
xτ7y � 2450 and the other two directions xVypτ7q and xτ1ypτ7q are set at the new
minimum:

Vp0q � xVypτ7p0qq � 4436.094 , τ7p0q � 2456.403 , τ1p0q � xτ1ypτ7p0qq � 3.228 .

Notice that these initial conditions are inside the Kähler cone since τ7p0q  
Vp0q?
τ1p0q

� 2468.95, which satis�es the upper bound in (3.39). Focusing again on
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Figure 3.7: Evolution of V as a function of the number of efoldings N for (left)
the entire in�ationary dynamics and (right) for the last 6 efoldings. The dashed
red line represents the position of the �nal global minimum.

vanishing initial velocities for all scalar �elds, i.e. V 1p0q � τ 17p0q � τ 11p0q � 0,
we worked out the cosmological evolution of each scalar �eld as a function of N
by solving the system of equations of motion (3.65). Looking for a slow-roll re-
gion in �eld space where the generalised ε-parameter (3.68) is much smaller than
unity, we found that ε ! 1 during the �rst 69 efoldings and then quickly increases
and reaches ε � 1 at N � 69.15 where in�ation ends. The point of horizon exit
corresponding to a physical number of efoldings of in�ation Ne � 52 is localised
at N� � 17.15 where εpN�q � 1.36 � 10�4. The main cosmological observables at
horizon exit take the following values:

nspN�q � 1� d

dN
lnP pNq

����
N�N�

� 0.9676 , r � 16εpN�q � 0.0022 ,

a
P pN�q � 1

10π

d
2V pN�q
3 εpN�q � 1.64 � 10�7 .

The scalar spectral index ns and the tensor-to-scalar ratio r are in good agreement
with Planck data [138, 139] while the amplitude of the scalar power spectrum, as
expected, is much smaller than the reference COBE value

?
PCOBE � 2 � 10�5. As

can be seen from Fig. 3.11, in this case the low-energy 4D e�ective �eld theory
is fully under control since throughout all the in�ationary evolution all KK scales
are much higher than both the gravitino mass and the in�ationary scale (and so
also the Hubble scale).

In particular, M
p2q
KK, M

p6q
KK and the in�ationary scale evolve from M

p2q
KKpN�q �

9.8 �1015 GeV, M
p6q
KKpN�q � 1.8 �1016 GeV and MinfpN�q � 6.5 �1014 GeV at horizon

exit to M
p2q
KKpN � 70q � 5.5 � 1016 GeV, M

p6q
KKpN � 70q � 1.2 � 1016 GeV and
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Figure 3.8: Evolution of τ1 as a function of the number of efoldings N for (left)
the entire in�ationary dynamics and (right) for the last 6 efoldings. The dashed
red line represents the position of the �nal global minimum.

MinfpN � 70q � 1.4 � 1014 GeV around the �nal minimum. On the other hand the
other scales remain approximately constant during the whole in�ationary evolution
around: H � 8 � 1011 GeV   m3{2 � 6 � 1013 GeV  Mbulk

KK � 2 � 1016 GeV.

3.5 Conclusions

The study of large �eld in�ationary models is particularly interesting from both
a phenomenological and a theoretical point of view. In fact, from one side the next
generation of CMB observations will be able to test values of the tensor-to-scalar
ratio in the window 0.001 À r À 0.01, while on the other hand trans-Planckian
in�aton excursions need a symmetry mechanism to trust the e�ective �eld theory
approach.

Natural in�aton candidates from type IIB string compacti�cations are Kähler
moduli which enjoy non-compact shift-symmetries [88]. In particular, �bre in�a-
tion models provide promising plateau-like potentials which seem to �t Planck
data rather well and lead to the prediction of observable tensor modes [101, 102,
103, 104]. These in�ationary models are built within LVS moduli stabilisation
scenarios and can be globally embedded in K3-�bred Calabi-Yau manifolds [141].

In this chapter we extended previous work by constructing the �rst explicit
realisations of �bre in�ation models in concrete type IIB Calabi-Yau orientifolds
with consistent brane setups, full closed string moduli �xing and chiral matter on
D7-branes. The underlying compacti�cation manifold features h1,1 � 4 Kähler
moduli which after D-term stabilisation get e�ectively reduced to the standard 3
moduli of �bre in�ation models.
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Figure 3.9: Plot of the whole in�ationary evolution in the pτ7,Vq-plane (on the
left) and in the pτ7, τ1q-plane (on the right). Notice that the scales are di�erent on
the two axes since the in�aton travels mainly along the τ7-direction.

Figure 3.10: Evolution of all KK masses (withM
p4q
KK �M

p2q
KK), the in�ationary scale

Minf � V 1{4 and the gravitino mass m3{2 in GeV units from horizon exit to the
�nal settling into the global minimum.

We found that the in�ationary dynamics is strongly constrained by the Kähler
cone conditions which never allow for enough efoldings of in�ation if the internal
volume is of order V � 103. For larger values of the Calabi-Yau volume of order
V � 104, the Kähler cone becomes large enough for the in�aton to drive Ne � 52
efoldings, as required by an estimate of the post-in�ationary evolution. However
such a large value of V tends to suppress the amplitude of the density perturbations
below the reference COBE value. This can be avoided by considering large values
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Figure 3.11: Evolution of all KK masses (withM
p4q
KK �M

p2q
KK), the in�ationary scale

Minf � V 1{4 and the gravitino mass m3{2 in GeV units from horizon exit to the
�nal settling into the global minimum.

of either the coe�cients of the winding loops which generate the plateau, or the
�ux superpotential W0. Let us stress that in the string landscape this choice is
guaranteed to be possible by the fact that both of these microscopic parameters
are �ux-dependent.

However, as shown in Sec. 3.4.1, large values of the coe�cients of the winding
gs corrections make the Hubble scale during in�ation of the same order of magni-
tude of the mass of the volume mode. This could either cause a large shift of the
original LVS minimum or even a problem for the stability of the in�ationary direc-
tion against orthogonal runaway directions. A de�nite answer to this issue hence
requires a proper multi-�eld analysis even if the two-�eld study of [101] revealed
that the in�ationary motion is still mostly single-�eld.

On the other hand, if the �ux superpotential is of orderW0 � 100, the gravitino
mass can become too close to some KK scale in the model, destroying the 4D
e�ective �eld theory. Moreover, F 4 terms are proportional to |λ|W 4

0 . Thus if W0

is large, these higher derivative e�ects can spoil the �atness of the in�ationary
potential before achieving enough efoldings of in�ation if |λ| is not small enough.
Hence in Sec. 3.4.1 we presented a model with W0 � 100 and a very small value
of |λ| of order |λ| � 10�7 which makes the F 4 terms harmless. The gravitino
mass also turns out to be slightly smaller than any KK scale throughout the whole
in�ationary dynamics.

Due to the fact that in the single-�eld case not all our approximations are fully
under control, in Sec. 3.4.2 we performed a complete numerical analysis of the
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3-�eld cosmological evolution. For W0 � 100 and |λ| � 10�6, the multi-�eld anal-
ysis of Sec. 3.4.2 revealed that the accuracy of our approximations improves. In
particular, the allowed number of efoldings of in�ation increases due to the extra
motion along the volume and blow-up directions. Hence in�ation can successfully
work also for smaller values of V which cause a smaller Kähler cone for the �bre
modulus. This, in turn, requires smaller values ofW0 to match the COBE normal-
isation of the density perturbations, which enlarges the hierarchy between m3{2
and the KK scales in the model.

We point out however that some of the underlying parameters are not �ux-
dependent, and so are not tunable in the string landscape. Two examples of this
kind of parameters are the e�ective Euler number χeff which controls the strength
of Opα13q corrections due to O7-planes [56] and the combinatorial factor λ which is
the coe�cient of Opα13q higher derivatives [99]. Both of these microscopic param-
eters have not been computed in full detail yet, even if λ has been estimated to be
of order 10�3 [100]. Hence in Sec. 3.4.2 we also presented a case with |λ| � 0.001
where it is hard to obtain enough efoldings inside the Kähler cone and generate, at
the same time, the correct amplitude of the density perturbations in a framework
where all the approximations are fully under control. Hence we chose the �ux
superpotential so that the contribution of the in�aton quantum �uctuations to the
scalar power spectrum is negligible. In this case a viable in�ationary phenomenol-
ogy can therefore be achieved only in the presence of a non-standard mechanism
for the generation of the density perturbations. A promising case could be the
curvaton scenario where the initial isocurvature �uctuations could be produced by
the quantum oscillations of the two light bulk closed string axions [158, 159, 160].
We study the impact of these ultra-light degrees of freedom on the in�ationary
parameters in Chapter 4. Indeed, the presence of light spectator �elds in a curved
�eld space may cause an uncontrolled growth of primordial perturbations that may
quickly lead the system out of the perturbative regime.

Besides a complete computation of the exact value of both χeff and λ, and the
detailed derivation of a curvaton-like mechanism, there are several other important
open issues for future work. A crucial one is that our chiral global models still lack
an explicit implementation of a mechanism responsible for the realisation of a dS
vacuum. Moreover, the study of the post-in�ationary cosmological evolution of our
universe is of primary importance in order to discriminate among di�erent models
that feature the same in�ationary predictions of �bre in�ation models. A �rst step
forward towards understanding (p-)reheating has been taken in [161, 162]. A full
understanding of this mechanism requires further investigation of the underlying
microscopic dynamics.

Finally we stress that a better determination of the actual Calabi-Yau Kähler
cone would be needed in order to �nd the actual moduli space volume. In this work
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we just used an approximation inherited from the Mori cone of the ambient toric
variety. Giving an answer to this question was the starting point of [163] where
the authors investigate the space of �at directions of IIB Calabi-Yau orientifold
models after partial moduli stabilization in an LVS vacuum. They looked at the
list of Kreuzer-Skarke CY LVS-geometries showing diagonal del Pezzo divisors and
scanned over all possible h1,1 � 3, 4. They found that CYs showing a K3 �bration
generically allow for trans-Planckian �eld excursions.
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Chapter 4

Geometrical destabilisation issues in

String in�ation?

4.1 Introduction

Many in�ationary scenarios beyond the SM feature non-linear sigma models
characterised by multiple scalar �elds and a curved �eld manifold. In particular,
these arise naturally within the framework of supergravity, string compacti�cations
and models with non-minimal coupling. In a multi-�eld set-up, there are several
spectator �elds which can be either heavy, i.e. mh " H, or light, i.e. ml ! H.

It has recently been claimed that when the �eld manifold is negatively curved,
the e�ective mass of the isocurvature modes receives negative contributions which
can potentially induce a geometrical instability by making them tachyonic [164].
In this case the e�ective mass-squared of the isocurvature �uctuations receives
additional contributions from the Christo�el symbols and the Ricci scalar which
can cause their exponential growth [164]. In principle this problem may be related
to both heavy and light �elds that are orthogonal to the in�ationary trajectory.
This e�ect could induce a geometrical destabilisation of the in�ationary trajectory
since the growth of the isocurvature perturbations quickly brings the system in
the non-perturbative regime 1.

The low-energy limit of string compacti�cations is a 4D supergravity theory
which is generically characterised by non-canonical kinetic terms so it may su�er
from geometrical stabilisation problems. Indeed, a typical feature of 4D string
models is the presence, at tree-level, of a plethora of massless �elds, called moduli.
Typically these �elds acquire mass via supersymmetry breaking e�ects like non-

1This behaviour is to be distinguished from that of the recently proposed �ultra-light isocur-
vature scenario� [165, 166] where the isocurvature modes are e�ectively massless (and constant
on superhorizon scales) and act as a source of curvature perturbations.

143
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vanishing background �uxes at semi-classical level, string loops or α1 corrections at
perturbative level and higher-derivative contributions to the low-energy e�ective
action.

Some of these moduli are however periodic axion-like �elds which enjoy a shift
symmetry that is exact at perturbative level [167, 168]. Hence they become massive
only via tiny non-perturbative e�ects which tend to make them naturally very light,
i.e. exponentially lighter than the gravitino mass which sets the mass scale of all
the other non-axionic moduli [169, 76]. Being ultra-light, these axions are perfect
candidates for dark radiation [14, 124] and quintessence �elds [170, 171, 172, 173],
and even for cold dark matter via the misalignment mechanism [174]. Another
cosmological application of axion-like particles is to act as curvaton �elds [175, 176].
In fact, during in�ation, these ultra-light �elds are expected to be much lighter
than the Hubble scale. Hence they acquire isocurvature �uctuations which can
be converted into standard adiabatic perturbations when the axions decay. If
instead the axions are so light that they are still stable, one has to make sure that
they do not contribute signi�cantly to dark matter otherwise the amplitude of the
isocurvature �uctuations would tend to be larger that the one detected in CMB
observations [139]. Examples of such ultra-light axions are given by C4 closed
string axions related to large cycles (e.g. volume cycle) in the extra dimensions.
Indeed, although they can get a mass through non-perturbative corrections to the
superpotential, their contribution will be exponentially suppressed giving rise to
sub-eV to nearly massless particles. These �elds are always present in the e�ective
�eld theory and their existence only relies on the topological properties of the
Calabi-Yau manifold. Axionic isocurvature �uctuations are guaranteed to remain
in the perturbative regime only when the �eld space is �at. On the other hand,
when the �elds live on a curved manifold we will see that an interesting dynamics
can develop.

This chapter is organised as follows. In Sec.4.2 we brie�y review the potential
geometrical destabilisation of in�ation. After that we show in Sec. 4.3 that, despite
what has been claimed by other authors, heavy modes are stable when the system
evolves along the attractor background trajectory, in agreement with previous
results found in models with non-minimal coupling [177, 178]. In Sec. 4.4 we
present our main result which is the new observation that a potential geometrical
instability arises instead generically for ultra-light �elds, i.e. ml Ñ 0, when the
background trajectory is geodesic. The occurrence of such instability is model
dependent and a full understanding of the in�ationary dynamics may require to
go beyond perturbation theory. Being interested in string in�ation model building,
we come to the conclusion that, due to the generic presence of ultra-light axions
and a curved �eld space, string in�ationary models might be plagued by geometric
destabilisation problems.
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For this reason we then focus on concrete examples writing down the equations
of motion for 2-�eld systems where we have a diagonal but non-canonical mass
matrix. We �rst analyse a toy-model with two �elds, φ1 and φ2, where φ1 is a
quintessence-like �eld whose potential is simply a negative exponential while φ2 is
massless, Sec. 4.5. We show that, despite the presence of a negatively curved �eld
space, this system does not feature any geometrical destabilisation due to a non-
zero turning rate of the underlying bending trajectory, which induces a positive
contribution to the mass-squared of the isocurvature �uctuations.

In Sec. 4.6 we then focus on a type IIB in�ationary model, Fibre In�ation (FI)
[101, 104], which is characterised by the presence of two ultra-light axions and a
curved �eld manifold. This model is particularly promising since it is based on an
e�ective rescaling shift symmetry [88] and it allows for the construction of globally
consistent Calabi-Yau models with in�ation and chirality [141, 2] and the study
of reheating [179]. Depending on which e�ects generate the in�ationary potential
(1-loop open string corrections [58, 60, 61] or higher derivative α1 e�ects [99, 100]),
slightly di�erent FI models can arise [101, 102, 103]. However all of them feature
a qualitatively similar shape of the in�ationary potential characterised by a trans-
Planckian plateau which resembles Starobinsky in�ation [180] and supergravity
α-attractors [181, 140]. The in�aton �eld range is around 5 in Planck units with
larger values bounded by the size of the Kähler cone [163]; we saw this constraint
arising in Chapter 3. In these models primordial gravity waves are at the edge of
detectability since the tensor-to-scalar ratio turns out to be of order 0.005 À r À
0.01.

We �rst analyse FI models in the limit where the two ultra-light axions are
exactly massless and show that the quantum �uctuations of one of these entropic
modes always experiences an exponential growth. We then try to avoid this geo-
metrical destabilisation by turning on a non-zero axionic mass via non-perturbative
e�ects. However we �nd that, in order to obtain a positive mass-squared of the
isocurvature modes, these non-perturbative e�ects have to be of the same order
of magnitude of the loop and higher derivative corrections which generate the in-
�ationary potential. The in�ationary model therefore changes completely since it
becomes intrinsically multi-�eld. Hence, its dynamics should be re-analysed and
the predictions for the cosmological observables should be re-derived. We therefore
may be tempted to conclude that, if one requires a typical FI dynamics at leading
order, there is no way to avoid a tachyonic instability for one of the two ultra-light
axions.

Nevertheless at this point we need to face a paradoxical state of a�airs. As
previously mentioned, the tachyonic instability appears also in case of massless
axion, that shows vanishing on-shell energy density. This happens despite the fact
that the background trajectory is essentially single �eld and stable. This result is
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somehow puzzling from a physical point of view and has prompted us to investigate
this issue further.

In the last part of this chapter we show that the growth of isocurvature pertur-
bations is triggered by the ill-de�ned coordinate system identi�ed by the tangent
and normal projectors into the in�ationary trajectory. We then summarise the
various de�nitions of entropy perturbations that are currently used in the liter-
ature, trying to understand which de�nition should be used in order to match
the experimental result coming from isocurvature bounds. We �nd that the right
quantity to compute is given by the standard de�nition of relative entropy between
two scalar �uids. In the FI system these are identi�ed by the energy density and
pressure related to the in�aton �eld and the massless axion. The full computation
of the relative entropy of the system shows that is it �nite and vanishing during
in�ation, suggesting that FI models are presently viable both in what concerns
curvature and entropy perturbations.

4.2 Geometrical destabilisation

The Lagrangian of a generic non-linear sigma model is:

L{
a
|g| � 1

2
γijpφiqBµφiBµφj � V pφiq , (4.1)

where γijpφiq denotes the �eld space metric. In such multi-�eld models the back-
ground trajectory de�nes a projection for the gauge invariant perturbations into a
tangent component, the curvature perturbations, and an orthogonal component,
the isocurvature perturbations. The in�ationary dynamics of these models has
been intensively studied over the last two decades and it has been shown to be sig-
ni�cantly richer than that of single-�eld models while still being compatible with
observational constraints.

The phenomenon of geometrical destabilisation follows directly from the mass
matrix of gauge invariant scalar perturbations:

Qi � δφi �
9φi

H
ψ , (4.2)

where φipt, xq � φiptq� δφipt, xq and ψpt, xq denotes the scalar perturbation to the
metric tensor. Let us therefore brie�y review how the mass matrix arises in the
context of multi-�eld models of in�ation.

In the 2-�eld models we will be dealing with, it is convenient to project the
gauge invariant perturbations Qi onto normal QN � NiQ

i and parallel QT � TiQ
i

components with respect to the background trajectory. N i and T i have unitary
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2-norm with respect to the �eld space metric, γij, so they satisfy the following
relations:

N iN jγij � 1 , T iN jγij � 0 , T iT jγij � 1 . (4.3)

From the second order action for the perturbations one �nds the following equation
of motion [182]:2

D2Qi

Bt2 � 3H
DQi

Bt � k2

a2
Qi �M i

jQ
j � 0 . (4.4)

The covariant derivatives are de�ned as:

DQi

Bt � BQi

Bt � Γijk
9φjQk , (4.5)

and the connections follow from the �eld space metric γij. The mass matrix in the
�eld basis reads:

M i
j � V i

;j �Ri
klj

9φk 9φl � 1

a3

D

Bt
�
a3

H
9φi 9φi



. (4.6)

It is convenient to study the perturbations in the tT,Nu basis, where one �nds an
equation of motion of similar form to (4.4) with the covariant derivatives de�ned
in terms of the spin connection (see e.g. [183, 184] for more details). Focusing on
the equation of motion for a single orthogonal perturbation, QN , one �nds that
the mass term takes the form:

m2
K, eff � V; NN � εRH2 � 3η2

KH
2 , (4.7)

where the projection of the covariant derivative is given by:

V; NN �
�
V,ij � ΓkijV,k

�
N iN j . (4.8)

In (4.7) the �rst two terms depend both on the geometry of the �eld space and on
the scalar potential, while ηK is related to the inverse of the radius of curvature of
the in�ationary trajectory in �eld space and parametrises its non-geodesicity:

ηK � ViN
i

9φ0H
with 9φ0 �

b
γij 9φi 9φj . (4.9)

The second term in (4.7) depends on the curvature of the 2-dimensional �eld space
R, and is the focus of this work. If negative and su�ciently large it can trigger
an instability for the isocurvature perturbations by turning their mass-squared
negative [185, 164]. Before delving into the stability analysis of speci�c models,
let us see under which conditions the geometrical instability may arise.

2In our notation i, j, ... denote �eld space directions while capital indices refer to the T and
N orthonormal basis.
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4.3 Geometrical stability for heavy �elds

The destabilisation originally considered in [164] concerned heavy spectator
�elds during in�ation. These are degrees of freedom with a super-Hubble mass,
that naively would not play a rôle in the low energy dynamics. Given that for
heavy �elds N iN jVij " H2 and during in�ation ε ! 1, this can happen only if
|R| " 1. Ref. [164] considered a simple model where a heavy �eld is coupled to
the in�aton kinetic terms via a higher-order operator suppressed by M :

L?�g �
1

2
f 2

� χ
M

	
BµφBµφ� 1

2
BµχBµχ� V pφq � 1

2
m2
hχ

2 , (4.10)

with mh " H and fχχ{f ¡ 0 for a certain range of M , the mass parameter setting
the scale of the �eld space curvature. In this case |R| � 4{M2, and so M ! 1 can
generate a large negative contribution to m2

K eff . Indeed, while the zero mode of
the heavy �eld sits at its minimum 9χ � χ � 0, causing ηK � 0, the mass-squared
of the isocurvature perturbations:

m2
K, eff � Vχχ � 2

fχχ
f
εH2 , (4.11)

becomes negative due to the curvature term dominating m2
K eff . This could trigger

an instability characterised by a super-horizon growth of the isocurvature pertur-
bations which signals a breakdown of perturbation theory and a potential prema-
ture end of in�ation [164]. Let us point out that negatively curved �eld manifolds
arise naturally both in supergravity and in multi�eld models with non-minimal
couplings [186]. In fact, the simple Kähler potential K � �3 lnpT � T̄ q for the
complex volume modulus T gives R � �8{3. However the reference scale of su-
pergravity is the Planck mass, and so M � 1. This implies that during in�ation
generically ε|R|H2 ! H2, resulting in an absence of any geometric instability.

In what follows we shall however show that, even if |R| " 1, m2
eff is negative

only if it is computed on a repulsive trajectory, while the isocurvature modes
are stable if the system evolves along the attractor trajectory. Thus the physical
interpretation ofm2

eff   0 is not that quantum �uctuations grow beyond the regime
of validity of perturbation theory but that the classical �eld trajectory is unstable
under perturbations of the initial conditions.

To analyse the model we focus on the case where:

γij �
�

1 0
0 f 2pφ1q



and V � V pφ1q � V pφ2q . (4.12)

Notice that we made this choice following [164] since it allows to have simple
analytic formulae, but a geometrical instability can arise also for more generic
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cases with non-diagonal metric and non-sum-separable potential. It can be shown
that the corresponding curvature scalar can be negative since it takes the form:

R � �2
f11

f
. (4.13)

The equations of motion from (4.1) and (4.12) for φi � φiptq in an expanding
Universe with

a|g| � a3 read:

9π1 � a3
�
ff1

9φ2
2 � V1

	
9π2 � �a3 V2 , (4.14)

where the conjugate momenta are:

π1 � a3 9φ1 π2 � a3f 2 9φ2 . (4.15)

The background dynamics of the system is determined by (4.14), (4.15) and the
Friedmann equation:

H2 � 1

3

�
1

2
γij 9φ

i 9φj � V



. (4.16)

4.3.1 Canonical heavy �eld

We �rst consider the case where the heavy �eld has canonical kinetic terms,
and so identify φ1 with the heavy scalar and φ2 with the in�aton. We see from
(4.14) that the equation for φ1 admits a slow-roll solution with [187]:

ff1
9φ2
2 � V1 , (4.17)

which implies that π1 is an approximately conserved quantity. Given that during
in�ation a9eHt, (4.15) then gives 9φ1 Ñ 0. In this solution the heavy �eld does
not sit at the minimum of its potential but it is displaced from it by the in�aton's
kinetic energy. Hence the motion is non-geodesic since:

ηK � V1

Hf 9φ2

� �f1
9φ2

H
, (4.18)

leading to an isocurvature mass:

m2
eff � V11 �

�
3η2

K � 2ε
f11

f



H2 . (4.19)

Using (4.17), we can further simplify m2
eff and show that on this generic solution

it is strictly positive:

m2
eff � 8ε

�
f1

f


2

H2 , (4.20)
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even if the Ricci scalar is negative. This signals that the background trajectory is
stable, regardless of the functional form of the kinetic coupling f 2pφ1q.

Notice however that, in particular cases where V1 � 0 and ff1 � 0 have a
common root, (4.17) could also be exactly satis�ed with the heavy �eld sitting at
the bottom of its potential. In this case ηK � 0, and so the e�ective mass (4.19)
reduces to:

m2
eff � V11 � 2ε

f11

f
H2 . (4.21)

If 0   f ! f11 (or f11 ! f   0), this e�ective mass can become negative in regimes
where the �eld space curvature contribution dominates [185, 164].

However we will now show that this unusual behaviour is merely a consequence
of doing cosmological perturbation theory on a repulsive background trajectory
since the trivial solution is unstable under perturbations of the initial conditions:

φ1 � φ̄1 � δ , (4.22)

where φ̄1 is the solution to ff1
9φ2
2 � V1 � 0 and δ is a small homogeneous pertur-

bation. One can then study the stability of the solution φ1 � φ̄1 by expanding
(4.14) to linear order in δ (we neglect perturbations in φ2 as we are interested in
getting a qualitative picture of the behaviour of the system) and solving for the
time evolution of the perturbation. From (4.14) one �nds:

9π1|φ̄1
� a3

�
V1 � ff1

9φ2
2

	���
φ̄1

� �a3
�
:δ � 3H 9δ � µ2δ

	
, (4.23)

where the mass parameter µ is de�ned as:

µ2 � V11|φ̄1
� pf 2

1 � ff11q|φ̄1
9φ2
2 . (4.24)

By de�nition of φ̄1, the l.h.s. of (4.23) vanishes, and so the perturbation to the
background trajectory δ obeys:

:δ � 3H 9δ � µ2δ � 0 . (4.25)

Evaluating (4.24) on the trivial solution ff1
9φ2
2 � V1 � 0 with ηK � 0, we �nd:

µ2 � m2
eff |φ̄1

, (4.26)

indicating that the super-horizon growth of the isocurvature perturbations for
m2

eff   0 is just an artifact of doing perturbation theory on an unstable background
with µ2   0. This is not a surprise since δ can be seen as a long wavelength
isocurvature perturbation. This means that the trivial solution is not an attractor
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for the in�ationary dynamics, and so the system will reach it only if the initial
conditions are �nely tuned such that at t � 0:

φ1 � φ̄1 and 9φ1 � :φ1 � 0 . (4.27)

However, from a multi-�eld point of view, the evolution of the system will proceed
initially along the steepest directions of the potential without leading to the initial
conditions (4.27). Hence, in general, the system will evolve along the generic
solution (4.17) which gives µ � 0, indicating that perturbations get exponentially
damped and this non-trivial background is indeed an attractor of the in�ationary
dynamics.

We illustrate this point in Figs. 4.1 and 4.2 which show the dynamics for the
minimal geometry of [164]:

f 2pφ1q � 1� 2
φ2

1

M2
, (4.28)

supplemented by a double quadratic potential:

V � 1

2
m2

1φ
2
1 �

1

2
m2

2φ
2
2 . (4.29)

Given the analytic arguments presented above, the qualitative features of this two-
�eld system do not depend on this particular choice. In fact, similar results can
be found with di�erent potentials like that of [164]. In this minimal geometry:

R � � 4M2

pM2 � 2φ2
1q2

� � 4

M2
, (4.30)

where in the last step we took φ1{M ! 1. By tuning the mass scale M small,
one can enhance the e�ects of the �eld space curvature and trigger the instability
as formulated in [164]. For numerical purposes we have chosen tm1,m2,Mu �
t1, 10, 0.05u. In Fig. 4.1 we show the evolution of m2

eff for the trivial background
where it is always negative, and upon addition of a small perturbation that triggers
the transition between the trivial solution ff1

9φ2
2 � V1 � 0 and the attractor of

(4.17) where m2
eff ¡ 0. Notice that these results are consistent with what has been

previously found in models with non-minimal coupling [177, 178].

To highlight the e�ects of perturbations to the initial conditions (4.27), we plot
in Fig. 4.2 (a subspace of) the phase space of the non-linear sigma model. It is
clear that even very small perturbations of (4.27) take the trajectory away from
the trivial solution and into the in�ationary attractor, con�rming the analytical
result of (4.26).
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Figure 4.1: E�ective mass for the isocurvature modes on the trivial background
(dashed) and upon transition from this solution to the attractor (4.17) by addition
of perturbations to the heavy �eld δ � t10�5, 10�15, 10�25u.

4.3.2 Canonical in�aton

We now identify the canonical �eld φ1 with the in�aton and study if an insta-
bility can arise. The equation for the heavy �eld φ2 in (4.14) is solved by V2 � 0

which from (4.15) implies that π2 � 0 is approximately constant with 9φ2 Ñ 0 if
f does not increase exponentially during in�ation. The momentum π2 becomes
exactly constant for:

V2 � 9φ2 � 0 , (4.31)

implying that on this trivial solution we have ~T � p�1, 0q and ~N � p0, f�1q. Notice
that this solution does not constrain f1, unlike in the case analysed in Sec. 4.3.1.
One can then show that (4.31) yields ηK � 0 and an e�ective mass of the form:

m2
eff �

V22

f 2
� f1

f
V1 � 2

f11

f
εH2 . (4.32)

Using the slow-roll approximation, the contribution to this e�ective mass coming
from the �eld space Christo�el symbols can be rewritten as:

f1

f
V1 � �3H

f1

f
9φ1 � �3H2d ln f

dN
, (4.33)

where N � ln a denotes the number of e-foldings. De�ning gpNq � d ln f
dN

one can
integrate to �nd:

fpNq � f0 e
³N
0 gpN 1qdN 1

. (4.34)
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Figure 4.2: Phase space projection of the non-linear sigma model. The trivial
trajectory is shown in grey. The repulsive nature of this background trajectory
is evident since small perturbations of the initial conditions (4.27) take the back-
ground towards the attractor solution (4.17).

The isocurvature e�ective mass (4.32) can then be rewritten in terms of the func-
tion gpNq as:

m2
eff

H2
� V22

H2f 2
� 3g � g2 � gε� dg

dN
, (4.35)

which shows that an instability would be present if:

1 ! V22

H2f 2
! g2 . (4.36)

The sign of gpNq is crucial for determining the behaviour of the system. For g ¡ 0,
f grows during in�ation and m2

eff   0 coincides with the mass of φ2 becoming
sub-Hubble, in contradiction with our assumption that φ2 is a heavy �eld which
corresponds to the �rst inequality in (4.36). In this case one should not talk about
an instability since the system becomes e�ectively a two-�eld model which would
require a di�erent analysis. Conversely, if g   0, the contribution to m2

eff coming
from the mass of φ2 increases and prevents the instability from ever taking hold.
Thus we conclude that the case with a canonical in�aton does not feature any
geometrical instability.
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4.4 An instability for ultra-light �elds?

In Sec. 4.3 we have shown that heavy �elds with mh " H do not su�er
from any geometrical destabilisation when the e�ective mass of the isocurvature
perturbations is computed on the attractor background solution. In this section,
we shall however point out that the case of ultra-light �elds with ml Ñ 0 is
potentially dangerous since isocurvature �uctuations can become tachyonic when
the background trajectory is geodesic. We shall again study separately the two
cases where the canonical �eld is either the ultra-light mode or the in�aton.

4.4.1 Canonical ultra-light �eld

If the ultra-light �eld is φ1, V � V pφ2q and so V1 � 0. In this case, as can be
seen from (4.14), π1 is not a conserved quantity and (4.15) shows that there is a

non-zero turning rate of the background trajectory since 9φ1 � 0. This results in
tangent and normal unit vectors with generic non-zero components:

~T � 1

| 9φ|
�
9φ1, 9φ2

	
~N � 1

f | 9φ|
�
�f 2 9φ2, 9φ1

	
, (4.37)

leading to a non-zero ηK of the form:

ηK �
9φ1V2

Hf | 9φ|2 . (4.38)

Hence the isocurvature mass (4.19) reduces to:

m2
eff

H2
� 3η2

K � 2ε
f11

f
� 2ε

��
f1

f


2

� f11

f

�
�Opε2q , (4.39)

where in the last step we have used the slow-roll approximation. Clearly the
sign of m2

eff depends on the particular functional dependence of fpφ1q. A generic
supergravity case is f � f0 e

kφp1 which gives m2
eff � 0 for p � 1 and any value of k.

This limiting case has been studied in [188, 165] which showed that the isocurvature
power spectrum remains constant on super-horizon scales and acts as a continuous
source of curvature perturbations due to a non-zero coupling induced by ηK � 0.
Di�erent values of p and k can lead to a positive or negative m2

eff , showing that
a geometrical instability can potentially arise. Notice that, in contrast with the
�ndings of Sec. 4.3.1, this case features a genuine instability which is not simply
a signal of the repulsive character of the background trajectory since (4.39) has

been computed for 9π1 � a3ff1
9φ2
2 that is the attractor of the dynamical system.
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4.4.2 Canonical in�aton

We now study the case where the in�aton is φ1 while the ultra-light �eld is φ2

with V2 � 0. From (4.14) we see that π2 is exactly constant, and so in slow-roll
(4.15) gives:

9φ2ptq � 9φ2p0q
�
fp0q
fptq


2

e�3Ht , (4.40)

which shows that 9φ2ptq � 0 if the initial condition is 9φ2p0q � 0. In this case the
trajectory is exactly geodesic with ηK � 0 and the isocurvature mass (4.35) reduces
to:

m2
eff

H2
� �3g � g2 � gε� dg

dN
. (4.41)

This signals the generic appearance of a geometrical instability which could be
avoided only for �3   g   0. Notice that, using (4.33), (4.41) in the slow-roll
approximation can also be rewritten as:

m2
eff

H2
� �3

f1

f

9φ1

H
� 2

f11

f
ε , (4.42)

showing that the sign of the in�aton velocity is crucial to determine the presence
of an instability. We stress again that this would be a genuine instability since we
are considering a trajectory which is a dynamical attractor.

An interesting string model where such a situation might arise is Fibre In�ation
[101] where the rôle of φ2 is played by the supersymmetric axionic partner of the
in�aton and in Kähler moduli In�ation [136] where the rôle of φ2 is played by the
axion related to the volume modulus. We study the �rst case in more detail in
Sec. 4.6.

If the initial velocity of the ultra-light �eld is di�erent from zero but f does
not decrease exponentially during in�ation, (4.40) shows that 9φ2 relaxes to zero
exponentially quickly, and so the previous analysis still holds. Ref. [189] however
considered the case with V � V0 e

�k1φ1 and f � f0 e
�k2φ1 � f0 e

�k1k2N where f
can decrease exponentially with the number of e-foldings if k1k2 ¡ 0. In this case
9φ2 can no longer be neglected and the system does not evolve along a geodesic
trajectory. Hence m2

eff receives a positive contribution proportional to:

η2
K �

�
f 9φ2V1

H

�2
1

| 9φ|4 � 0 , (4.43)

which can prevent the instability. Notice that, when 9φ2p0q � 0, the system can be

studied by integrating out 9φ2 and rewriting the �rst equation in (4.14) as:

9π1 � �a3 Veff,1 , (4.44)
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with a time-dependent e�ective potential, extending the de�nition given in [189]
to curved (time varying) backgrounds:

Veff � V pφ1q � π2
2

2a6f 2pφ1q . (4.45)

We extensively study this toy model in Sec. 4.5 where we classify all the possible
behaviors of the system, depending on the values of k1 and k2.

In what follows we will focus on concrete examples where a canonical in�aton
�eld φ1 is kinetically coupled to an ultra-light �eld φ2. The reason for this speci�c
choice comes from the fact that this is the most common situation that can be
found in concrete string in�ation models. In particular we will consider cases
where the ultra-light �eld is an axion and we assume that the �eld space metric
can be written as in Eq. (4.12). This class of metrics occurs often in the closed
string moduli sector, where the function f might depend explicitly on the in�aton
φ1 while the dependence on the other heavy moduli φh is given in terms of their
vacuum expectation values: f � fpφ1, xφhyq. In the remaining part of this section
we explicitly compute the main quantities that will be used in the analysis of
speci�c examples starting from Sec. 4.5. The 2-�eld system is described by:#

:φ1 � 3H 9φ1 � f f1
9φ2
2 � V1 � 0

:φ2 � 3H 9φ2 � 2f1

f
9φ2
9φ1 � V2

f2 � 0
(4.46)

and:

T a � 1

9φ0

�
9φ1

9φ2

�
Na � 1

9φ0

�
�f 9φ2

f�1 9φ1

�
. (4.47)

The turning rate of the trajectory reduces to:

ηK � 1

2εH3

�
f�1 9φ1V2 � f 9φ2V1

	
, (4.48)

where we used 9φ2
0 � 2εH2. This implies:

m2
K, eff � 1

9φ2
0

�
pf 9φ2q2

�
V11 � 3

V 2
1

9φ2
0

�

� 2 9φ1pf 9φ2q
�
V12

f
� f1

f

V2

f
� 3

V1V2

f 9φ2
0

�

� 9φ2
1

�
V22

f 2
� f1

f
V1 � 3

V 2
2

9φ2
0f

2

��
� 9φ2

0

f11

f
. (4.49)
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De�ning the fraction of kinetic energy carried by φ1 and φ2 as α1 � 9φ1
9φ0
and α2 � f 9φ2

9φ0

respectively, the entropic mass-squared can be written as:

m2
K, eff � α2

2

�
V11 � 3

V 2
1

9φ2
0

�
� 2α1α2

�
V12

f
� f1

f

V2

f
� 3

V1V2

f 9φ2
0

�

� α2
1

�
V22

f 2
� f1

f
V1 � 3

V 2
2

9φ2
0f

2

�
� 9φ2

0

f11

f
. (4.50)

If φ2 is ultra-light, i.e. V2 � 0, (4.50) reduces to:

m2
K, eff � α2

2

�
V11 � 3

V 2
1

9φ2
0

�
� α2

1

f1

f
V1 � 9φ2

0

f11

f
. (4.51)

In what follows we shall be interested in models where the curvature is constant
and negative:

R � �|R| � �2
f11

f
� constant , (4.52)

which implies:

fpφ1q � A� eλφ1 � A� e�λφ1 with λ �
c
|R|
2
. (4.53)

In the two special cases with respectively A� � 0 or A� � 0, the equations of
motion become: #

:φ1 � 3H 9φ1 	 λA2
� e

�2λφ1 9φ2
2 � V1 � 0

:φ2 � 3H 9φ2 � λ 9φ2
9φ1 � 0

(4.54)

while the e�ective mass-squared for the isocurvature perturbation simpli�es to:

m2
K, eff � �λ2 9φ2

0 � λα2
1V1 � α2

2

�
3V 2

1

9φ2
0

� V11

�
. (4.55)

In the single-�eld approximation where φ1 drives in�ation while the background
value of φ2 is essentially frozen, i.e. α2 ! α1 � 1, Eq. (4.55) can be approximated
as:

m2
K, eff � λ

�
�V1 � λ 9φ2

0

	
. (4.56)

The requirement of having a positive mass-squared for the isocurvature perturba-
tion then reduces to |V1| ¡ λ 9φ2

0 with V1 ¡ 0 for A� � 0 and V1   0 for A� � 0.

Using 9φ2
0 � 2εH2, and the single-�eld slow-roll approximations H2 � V {3 and

2ε � pV1{V q2, we can easily see that for ε ! 1 and λ � Op1q:
λ 9φ2

0

|V1| �
λ

3

?
2ε   1 . (4.57)
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Hence the positivity of the e�ective mass-squared of the isocurvature perturbation
is determined just by the sign of V1 which is the term associated with the metric
connection in Eq. (4.8). Interestingly, the Fibre In�ation models which we will
discuss in Sec. 4.6.1 feature two ultra-light axions, one with A� � 0 and the other
with A� � 0. Hence one of them has necessarily to be geometrically unstable.

Since in this context the geometrical destabilisation phenomenon is by de�ni-
tion model dependent, we devote the next two sections to the analysis of speci�c
examples. We �rst look into a simple quintessence-like potential before turning to
the string inspired case of Fibre In�ation.

4.5 Stability of quintessence-like potentials

4.5.1 Equations of motion

Exponential potentials can provide the energy density for driving the observed
late time accelerated expansion of the universe. Furthermore their simplicity ren-
ders them interesting for our purposes as it allows for exact analytic results. Let
us therefore focus on the following toy-model involving a quintessence-like �eld φ1

and a massless �eld φ2 with non-canonical kinetic terms. The metric has the same
form as (4.12) with f � f0 e

�k1φ1 while the scalar potential reads:

V � V0 e
�k2φ1 . (4.58)

From (4.51) we see that the e�ective mass-squared of the isocurvature perturba-
tions is:

m2
K, eff � k2 V

�
α2

2k2

�
1� 3V

9φ2
0

�
� α2

1k1

�
� k2

1
9φ2
0 . (4.59)

The equations of motion are:$&
%

:φ1 � 3H 9φ1 � k1

�
f 9φ2

	2

� k2V � 0

:φ2 �
�

3H � 2k1
9φ1

	
9φ2 � 0

(4.60)

which, after trading cosmic time for the number of efoldings N � ln a, can also be
rewritten as (the prime superscript denotes derivatives with respect to N):#

φ21 � p3� εq pφ11 � k2q � k1 pfφ12q2 � 0

φ22 � p3� ε� 2k1φ
1
1qφ12 � 0

(4.61)

The φ2 equation can be integrated exactly yielding an explicit expression for the
velocity of the ultra-light �eld:

φ12pNq � C e�3N�2k1φ1pNq�
³N
0 εpÑq dÑ , (4.62)
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where C � φ12p0q e�2k1φ1p0q. Since the kinetic terms of the massless �eld φ2 are
non-canonical, it is more appropriate to consider the quantity:

pfφ12q pNq � f0C e
�3N�k1φ1pNq�

³N
0 εpÑq dÑ , (4.63)

which enters into the in�ationary ε parameter:

ε � 1

2
φ121 �

1

2
pfφ12q2 . (4.64)

Let us now study the behaviour of the system using both an analytical and a
computational approach. In the attractor regime where φ21 � pfφ12q1 � 0, the
equations of motion take the form:#

p3� εq pφ11 � k2q � k1pfφ12q2 � 0

p3� ε� k1φ
1
1q pfφ12q � 0

(4.65)

The system admits two di�erent solutions depending on whether φ2 is frozen or
not.

f ϕ2
′ ≠ 0

f ϕ2
′ = 0

0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

k1

k
2

Figure 4.3: Velocity of the massless isocurvature mode in the pk1, k2q parameter
space.

4.5.2 Case I: Non-zero turning rate

This case is characterised by a rolling massless �eld with fφ12 � 0, ε � 3k2

p2k1�k2q
and: #

φ11 � 3�ε
k1

pfφ12q2 � φ121
�
k1k2

3�ε � 1
� . (4.66)
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For k1 ¡ 0, the conditions ε   1, k1φ
1
1 ¡ 0 and pfφ12q2 ¥ 0 can be satis�ed only

for:

k2 ¥
b
k2

1 � 6� k1 . (4.67)

It is easy to realise that under this condition the e�ective mass-squared of the
isocurvature mode remains always non-negative:

m2
K, eff

H2
� 6k1pk2

2 � 2k1k2 � 6q
2k1 � k2

¥ 0 . (4.68)

The absence of geometrical destabilisation is due to the fact that the trajectory
deviates from a simple geodesic since:

η2
K �

�p3� εq
2ε

V1

V
pfφ12q

�2

� k1

2k1 � k2

m2
K, eff

H2
� 0 . (4.69)

Notice that in the limiting case where k2 � �k1 �
a
k2

1 � 6, the system evolves
towards the attractor solution where fφ12 � 0, α2 � 0, α1 � 1, m2

K, eff � 0 and
ηK � 0. However, we checked that the convergence to this point is extremely slow
and the turning rate of the trajectory remains non-negligible for a large number
of e-foldings.

4.5.3 Case II: Geodesic motion

In this case fφ12 � 0, ε � k2
2{2 and the asymptotic state reached by the system

is: #
φ11 � k2

pfφ12q2 � 0
(4.70)

under the requirement:

k2 ¤
b
k2

1 � 6� k1 . (4.71)

Fig. 4.3 shows the behaviour of the velocity of the massless �eld φ2 for di�erent
values of the parameters k1 and k2. In this case the system evolves along a geodesic
with ηK � 0 and the sign of the e�ective mass-squared of the entropic perturbation
depends on the sign of k2 since:

m2
K, eff

H2
� k1k2

2

�
6� 2k1k2 � k2

2

�
l jh n

¥0

. (4.72)

Hence m2
K, eff ¥ 0 for k2 ¡ 0, while m2

K, eff ¤ 0 for k2   0. Notice that in
this case geometrical destabilisation can be avoided for k2 ¡ 0 due to the positive
contribution coming from the metric connection. These results are completely
independent on the initial conditions.
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ϵ=2.99

ϵ=2

ϵ=1

ϵ=0.5

ϵ=0

Figure 4.4: Evolution of α1 � 9φ1{ 9φ0 and α2 � f 9φ2{ 9φ0 (with α2
1 � α2

2 � 1) for

di�erent initial values of ε � 9φ2
0{p2H2q. We set k2 � βp

a
k2

1 � 6�k1q with β � 0.8
(left), β � 1 (centre), β � 1.2 (right) and k1 � 1.

4.5.4 Numerical analysis

In order to strengthen our analytical results, we also performed a numerical
analysis using several parameter sets. We considered di�erent values of the initial
kinetic energy εip0q � t0, 0.5, 1, 2, 3u3 and for each of these values we analysed 20
di�erent types of initial conditions for the �eld velocities:#

φ11p0q|pikq �
a

2εip0q cos
�
kπ
10

�
pfφ12q p0q|pikq �

a
2εip0q sin

�
kπ
10

� k � 0, . . . , 19 . (4.73)

The dynamics of the system is independent on both the initial �eld values and
the normalisation of the scalar potential and the kinetic function. Hence we set,
without loss of generality, φ1p0q � φ2p0q � 0 and V0 � f0 � 1. We studied the 3
interesting cases with k2 � βp

a
k2

1 � 6 � k1q and β � 0.8, 1, 1.2 for k1 � 1. Our
numerical results are shown in Figs. 4.4-4.6 and are in perfect agreement with
our analytical analysis. In Fig. 4.4 we can clearly see that for β ¤ 1 the system
converges to a single-�eld behaviour with ηK � 0, while for β ¡ 1 the turning rate
of the trajectory is non-zero and the asymptotic behaviour of the system depends
on the initial condition for the velocity of the massless �eld φ2.

Notice that the trajectories which move away from the unit circle α2
1 � α2

2 � 1
correspond to cases with special initial conditions, φ11p0q with the same sign as V1

3These values of ε describe initial conditions ranging from slow-roll (ε ! 1) to kinetic domi-
nation (ε � 3). For kinetic domination we actually chose ε � 2.99 in order to avoid a singularity
in the equations of motion stemming from the use of N as the time variable.
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ϵ=0

ϵ=0.5

ϵ=1

ϵ=2

ϵ=2.99

Figure 4.5: Evolution of the physical �elds tφ1pNq,
³N
0
fpφ1pÑqqφ12pÑqdÑu for dif-

ferent values of the initial kinetic energy (setting k � 1 in the initial conditions
(4.73) for the �eld velocities) and β � 0.8 (left), β � 1 (centre), β � 1.2 (right).

and φ12p0q � 0, where φ1 initially climbs up the potential and then it slows down
until it stops and changes its direction. At this point φ11 � φ12 � 0, and so the
coordinates α1 and α2 are ill-de�ned. As soon as φ1 changes its direction, φ11 � 0,
and so the system jumps to the opposite point in the unit circle.

Fig. 4.6 presents the evolution of m2
K, eff and ηK, showing that the numerical

solutions correctly approach our analytic results for 3 di�erent cases. Notice that
in the limiting case with β � 1 all curves tend asymptotically to m2

K, eff � ηK � 0,
while in case I with β � 1.2, only the blue curve corresponding to ω � 0 features
a negative mass-squared due to the initial condition pfφ12q p0q � 0. This is the
only case which could be plagued by a geometric destabilisation problem but it
corresponds to a very non-generic choice of initial conditions as argued in [3]. As
soon as pfφ12q p0q or ω slightly deviates from zero, Fig. 4.6 clearly shows that the
mass-squared becomes positive due to a non-vanishing ηK.

4.6 Geometrical destabilisation in Fibre In�ation

4.6.1 Ultra-light axions in Fibre in�ation

The simplest version of Fibre In�ation involves 3 type IIB Kähler moduli Ti �
τi � iθi, i � 1, 2, 3 where the τ 's control volumes of 4-cycles while the θ's are
periodic axion-like �elds which enjoy a perturbative shift symmetry. The Kähler
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Figure 4.6: Evolution of m2
K, eff{H2 (left) and ηK (right) for εp0q � 2 and di�erent

initial �eld velocities identi�ed by ωk � kπ{10 with κ � t0, 1, 4, 14, 18u. The 3
di�erent cases correspond to β � t0.8, 1, 1.2u.

potential reads:

K � �2 ln

�
V � ξ

2g
3{2
s

�
�Kgs , (4.74)
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where V � α
�?

τ1τ2 � λ3τ
3{2
3

	
is the Calabi-Yau volume, the Op1q constant ξ

controls the leading order α1 contribution [55], while Kgs denotes 1-loop open
string corrections [58, 60, 61]. The superpotential is instead given by a tree-level
constantW0 and non-perturbative e�ects from gaugino condensation on D7-branes
or ED3-instantons [190]:

W � W0 � A3 e
�a3T3 . (4.75)

If gs loops are neglected, the Kähler potential (4.74) and the superpotential (4.75)
generate a scalar potential of the LVS form [63, 62]:

VLVS � 8a2
3A

2
3

?
τ3

3αλ3V
e�2a3τ3 � 4a3A3τ3W0 cospa3θ3q

V2
e�a3τ3 � 3ξW 2

0

4g
3{2
s V3

, (4.76)

which leads to the existence of AdS vacua at exponentially large volume (in string
units) where V , τ3 and θ3 are stabilised at:

a3xθ3y � π , a3xτ3y �
�

ξ

2αλ3


2{3
1

gs
,

xVy � 3W0αλ3

4a3A3

a
xτ3y ea3xτ3y .

(4.77)

It is easy to see that the scalar potential (4.76) features three �at directions
corresponding to τ1 and the two axions θ1 and θ2. The inclusion of subleading gs
or α1 corrections to the Kähler potential can lift τ1 but not θ1 and θ2 which are
protected by a perturbative shift symmetry. In the presence of sources of positive
vacuum energy which can allow for dS vacua (see for example [65, 74, 73, 75]),
the potential for τ1 can be �at enough to drive in�ation. τ1 plays the rôle of the
in�aton since, when it is shifted away from its minimum, it is naturally much
lighter then the Hubble scale during in�ation H whose value is set by the mass of
τ1 close to the minimum, H2 � W 2

0 {V10{3 (see [101] for more details).
On the other hand, the other �ve spectator �elds are isocurvature modes which

are expected to stay around their minima during in�ation. Three of them, V , τ3

and θ3, are heavy �elds with a mass larger than H, while θ1 and θ2 are ultra-
light �elds since they can develop a non-zero mass only via tiny non-perturbative
corrections to the superpotential (4.75). In order to study the possibility of having
geometrical destabilisation of any of these entropic directions, we need to focus on
the �eld space metric which looks like:

Lkin � B2K

BTiBT̄j BµTiB
µT̄j � γij

2
pBµτiBµτj � BµθiBµθjq . (4.78)

The �eld space is curved, and so the kinetic terms can be diagonalised exactly only
locally. However, in LVS models, we can use the exponentially large overall volume
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V as an excellent expansion parameter to obtain leading order results. Thus if we
transform the real parts of the Kähler moduli as [160]:

τ1 � e
2?
3
φ1�
?

2
3
φ2� 1

2
φ2

3 , V � e
?

3
2
φ2 ,

τ3 �
�

3

4αλ3


2{3
e
?

2
3
φ2φ

4{3
3 ,

(4.79)

the kinetic Lagrangian (4.78) for the real parts simpli�es to:

Lpφq
kin � 1

2
Bµφ1Bµφ1

�
1� 3

4
φ2

3



� 1

2
Bµφ2Bµφ2 (4.80)

� 1

2
Bµφ3Bµφ3

�
1� 3

4
φ2

3 �
9

16
φ4

3



� 3

?
3

8
φ3

3 Bµφ1Bµφ3 .

Notice that this expression is diagonal at leading order since (4.79) implies φ2
3 �

OpV�1q ! 1, while subleading corrections induce a kinetic coupling between the
heavy �eld φ3 and the canonically normalised in�aton φ1. However we shall show
below that this �eld is heavy enough to prevent any geometrical destabilisation.
Moreover, we point out that in the kinetic Lagrangian (4.78) there is no mixing
between real and imaginary parts of the Kähler moduli. The kinetic terms for the
axions read:

Lpθq
kin � 1

4τ 2
1

Bµθ1Bµθ1 � α2λ3τ
3{2
3

2V2
?
τ1

Bµθ1Bµθ2 � α2τ1

2V2
Bµθ2Bµθ2

� 3αλ3
?
τ3

4τ1V
Bµθ1Bµθ3 � 3α2λ3

?
τ1
?
τ3

2V2
Bµθ2Bµθ3

� 3αλ3

8V?τ3

Bµθ3Bµθ3 , (4.81)

where τ1, V and τ3 are given by (4.79). The kinetic Lagrangian (4.81) clearly shows
that the two ultra-light axions θ1 and θ2 are kinetically coupled to the canonically
normalised in�aton φ1. It is therefore crucial to analyse the contribution to the
isocurvature power spectrum of each of these two entropic modes. We shall �nd
below that the e�ective mass-squared of one of these two ultra-light axions is
negative during in�ation while the other always remains positive. This result
justi�es the fact that we will study the dynamics of the system by focusing just
on the 2-�eld subspace spanned by the in�aton φ1 and the unstable isocurvature
direction, as summarised in Sec. 4.2.

We shall �nd that which of the two axions is unstable depends on the par-
ticular realisation of Fibre In�ation. Thus we conclude this section by providing
a brief description of two ways to generate the in�ationary potential which are
qualitatively similar but quantitatively slightly di�erent:
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� Right-left in�ation

Kaluza-Klein and winding 1-loop open string corrections to K [58, 60, 61]
generate a potential for the in�aton shifted from its minimum, i.e. φ1 �
xφ1y � φ̂1, of the form [101]:

V � V0

�
3� 4 e

� φ̂1?
3 � e

� 4φ̂1?
3



, (4.82)

where we included an uplifting term to achieve a dS vacuum after the end
of in�ation and we neglected additional subleading loop e�ects which would
lift the �atness of the in�ationary plateau at very large �eld values. Notice
that this is a case of right-left in�ation where φ̂1 evolves from positive and
large �eld values to smaller ones towards the end of in�ation. Hence Vφ̂1

¡ 0
during in�ation.

� Left-right in�ation

The in�ationary potential can receive non-negligible contributions not just
from string loops but also from higher derivative α1 e�ects which at the level
of the 4-dimensional e�ective �eld theory appear as F 4 terms [99, 100]. When
these e�ects are combined with Kaluza-Klein string loops, the in�ationary
potential looks like [102]:

V � Ṽ0

�
1� e

1?
3
φ̂1

	2

, (4.83)

where again we included an uplifting term and we ignored subdominant
contributions which would spoil the in�ationary plateau for φ̂1 negative and
very large in absolute value. Contrary to the previous case, this is therefore
a realisation of left-right in�ation where Vφ̂1

  0 during in�ation.

4.6.2 Stability of heavy �elds

The leading order potential (4.76) depends just on the three �elds φ2, φ3 and θ3,
which therefore turn out to be heavier that the in�aton φ1. We shall now consider
the 2-�eld subspaces spanned by φ1 and each of these heavy �elds separately, and
show that all of them are heavy enough to ensure the absence of any geometrical
destabilisation. The �eld space metric and the Ricci scalar of these 2-dimensional
subspaces are listed in Tab. 4.1.

The simpler cases to analyse involve φ2 and θ3 since the metric is diagonal
at this level of approximation (perturbative and non-perturbative corrections to
the Kähler potential will de�nitely induce subdominant non-diagonal entries), and
so the scalar curvature is vanishing. Moreover, we expect the heavy �elds to sit
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θ3 φ2 φ3

γij

�
1� 3

4
φ2

3 0
0 3αλ3

4V?τ3


 �
1� 3

4
φ2

3 0
0 1


 �
1� 3

4
φ2

3
3
?

3
8
φ3

3
3
?

3
8
φ3

3 1� 3
4
φ2

3 � 9
16
φ4

3

�

R 0 0 �3{2

Table 4.1: Field space metric and Ricci scalar for the 2-�eld subspaces spanned by
the in�aton φ1 and each of the three heavy �elds.

around their minima, i.e. Vφ2 � Vθ3 � 0, and in�ation to be driven by φ1, i.e.
αφ1 � 1 while αφ2 � αθ3 � 0. Therefore the trajectory is geodesic in both cases
(denoting the 2 heavy �elds collectively as φh):

ηK � 1

H 9φ0

�
αφ1

Vφh

f
� αφh

Vφ1



� 0 . (4.84)

The e�ective mass-squared (4.7) therefore reduces simply to:

m2
θ3, eff �

Vθ3θ3
f 2

� W 2
0

V2
" m2

φ2, eff � Vφ2φ2 �
W 2

0

V3
" H2 � W 2

0

V10{3 . (4.85)

Similar considerations apply to the subspace spanned by φ1 and φ3 since the �eld
space is �at at leading order. However subleading corrections proportional to
φ2

3 � OpV�1q ! 1, induce non-vanishing Christo�el symbols and Ricci scalar:

Γφ1

φ3φ3
� 9

?
3

8
φ2

3

�
1� 1

2
φ2

3 �
3

16
φ4

3



� O

�
1

V



, R � �3

2
. (4.86)

The e�ective mass-squared of the heavy �eld φ3 for Vφ3 � αφ3 � 0 and αφ1 � 1,
which imply ηK � 0, reduces to:

m2
φ3, eff � Vφ3φ3 � Γφ1

φ3φ3
Vφ1 �

3

2
εH2 . (4.87)

This quantity is clearly positive regardless of the shape of the in�ationary potential
since:

Vφ3φ3 �
W 2

0

V2
"
#

Γφ1

φ3φ3
Vφ1 � W 2

0

?
ε

V13{3

3
2
εH2 � W 2

0 ε

V10{3

. (4.88)

We have therefore shown that, as expected, all heavy �elds remain stable during
Fibre In�ation.
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θ1 θ2

γij

�
1 0

0 A2
� e

� 4?
3
φ1

� �
1 0

0 A2
� e

2?
3
φ1

�

R �8{3 �2{3

Table 4.2: Field space metric and Ricci scalar for the 2-�eld subspaces spanned by
the in�aton φ1 and each of the two ultra-light axions.

4.6.3 Potential destabilisation of ultra-light axions

In this section we analyse the behaviour of the two ultra-light axionic modes
θ1 and θ2. The metric of the 2-dimensional �eld spaces spanned by the in�aton
φ1 and either θ1 or θ2 takes the same form as (4.12) if we neglect subdominant
φ3-dependent corrections. Notice that the kinetic function fpφ1q becomes φ1-
dependent after (4.79) is used to express τ1 in terms of the canonically normalised
�elds φ2 and φ3 which are �xed at their minima. Given that fpφ1q is a particular
case of the more general form (4.53), the scalar curvature is constant and negative.
These geometrical quantities are summarised in Tab. 4.2 where the quantities A�
and A� depend on the background values of the heavy �elds.

In the case where θ1 and θ2 are exactly massless, we �nd that one of them is
always unstable. In order to solve this potential issue, we investigate the possibility
of stopping the exponential growth of the corresponding isocurvature perturbations
by turning on a tiny but non-zero mass for this entropic mode. Let us therefore
study these two di�erent cases separately.

Massless case

The analysis of the possible geometrical destabilisation of θ1 and θ2 can be
borrowed from Sec. 4.4.2 where we already discussed the case where the spectator
�elds are massless and φ1 drives in�ation in a single-�eld approximation. Using
the result (4.56) under the condition (4.57) we therefore conclude that one of
the two axions is always stable while the perturbations of the other experience a
geometrical instability. In particular, it is the sign of Vφ̂1

that determines which
of the two axions is unstable. For Vφ̂1

¡ 0, as in the case of right-left in�ation,
θ1 is unstable while θ2 is stable. On the contrary, for Vφ̂1

  0, as in the case of
left-right in�ation, θ1 is stable while θ2 becomes unstable.

These results have been obtained analytically in the single-�eld approximation
where αφ1 � 1 and αθi � 0 with i � 1, 2. However they hold more generically as
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we will show now via a more general semi-analytic study and a detailed numerical
analysis.

As pointed out above, the metric has the same form as (4.12) with f � f0 e
�k1φ̂1 ,

where f0 � A� e�k1xφ1y and k1 � 2{?3 for θ1, while f0 � A� e�k1xφ1y and k1 �
�1{?3 for θ2. The equations of motion which govern the evolution of the system
are very similar to the ones studied in Sec. 4.5.1 for the case of a quintessence-like
potential. We shall therefore use the same results, translating them for the case of
Fibre In�ation. In particular, the second equation in (4.61) does not depend on the
in�ationary potential, and so it applies exactly also to our case after identifying
φ2 with either θ1 or θ2. Its solution is given by (4.63) which in our case becomes:

pfθ1iq pNq � pfθ1iq p0q e�λpNq , @i � 1, 2 , (4.89)

where for ε ! 1 the exponent λpNq can be approximated as:

λpNq � 3N � k1

�
φ̂1pNq � φ̂1p0q

	
. (4.90)

The functional dependence of the in�aton φ1 on the number of e-foldings N de-
pends on the particular form of the in�ationary potential. Let us therefore consider
separately the case of right-left [101] and left-right in�ation [102].

� Right-left in�ation

For right-left in�ation the scalar potential is given by (4.82) which in the
in�ationary plateau region can be very well approximated as:

V � V0

�
3� 4 e�k2φ̂1

	
, with k2 � 1?

3
. (4.91)

The number of e-foldings N in the single-�eld slow-roll approximation is
given by:

Npφ̂1q �
» φ̂1p0q

φ̂1

V

Vφ̂1

dφ̂1

� 9

4

�
ek2φ̂1p0q � ek2φ̂1

	
�
?

3
�
φ̂1p0q � φ̂1

	
.

(4.92)

This expression cannot be inverted exactly but we can still express the in-
�aton at leading order as [179]:

φ̂1pNq � φ̂1p0q � 1

k2

ln

�
1� 4N

9
e�k2φ̂1p0q



, (4.93)

where φ̂1p0q corresponds to the value of the in�aton at CMB horizon exit. It
is easy to see that 50� 60 e-foldings of in�ation correspond to φ̂1p0q � Op6q.
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Substituting this result into the solution for the velocity of the ultra-light
axions (4.89), we �nd that the exponent (4.90) scales with the number of
e-foldings as:

λpNq � 3N � k1

k2

ln

�
1� 4N

9
e�k2φ̂1p0q



. (4.94)

This quantity is always positive for both k1 � 2{?3 and k1 � �1{?3,
implying that, regardless of the initial conditions, the velocity of the ultra-
light axions goes very quickly to zero, and so the system relaxes rapidly to
the simple case studied above with ηK � 0, αφ1 � 1 and αθi � 0 with i � 1, 2.

� Left-right in�ation

In the case of left-right in�ation, the number of e-foldings derived from the
in�ationary potential (4.83) in the slow-roll approximation is given by:

Npφ̂1q � 1

2k2

» φ̂1

φ̂1p0q

�
e�k2φ̂1 � 1

	
dφ̂1

� 1

2k2
2

�
e�k2φ̂1p0q � e�k2φ̂1p0q

	
� 1

k2

pφ̂1 � φ̂1p0qq .
(4.95)

Again, even if it is not possible to invert this expression exactly, we can still
obtain the following leading order approximation for the in�aton �eld:

φ̂1pNq � φ̂1p0q � � 1

k2

ln

�
1� 2N

3
ek2φ̂1p0q



, (4.96)

where φ̂1p0q   0 since in�ation proceeds from left to right starting from
in�aton values which are negative and large in absolute value. If the re-
sult (4.96) is substituted into the expression (4.90) for the exponent of the
solution (4.89) for the velocity of the isocurvature modes, we �nd:

λpNq � 3N � k1

k2

ln

�
1� 2N

3
ek2φ̂1p0q



. (4.97)

It is easy to realise that this quantity is again always positive for both k1 �
2{?3 and k1 � �1{?3. Hence also in this case, regardless of the initial
conditions, the system approaches very rapidly a geodesic trajectory with
ηK � 0.

We have checked these conclusions by performing a full numerical solution of
the equations of motion governing the evolution of the system for both right-left
and left-right in�ation. We present now the numerical results just for right-left
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in�ation since they are qualitatively very similar in the case of left-right in�ation.
Without loss of generality we considered f0 � V0 � 1, φ̂1p0q � 5.8 and θip0q � 0 for
i � 1, 2. Fig. 4.7 shows clearly that for di�erent values of the initial kinetic energy
and for several exponents of the kinetic function, k1 � t�5,�2,�1, 0, 1, 2, 5u, the
system always evolves towards a single-�eld behaviour.

k1 = -5

k1 = -2

k1 = -1

k1 = 0

k1 = 1

k1 = -2

k1 = 5

Figure 4.7: Evolution of the system for several values of k1 and di�erent initial
kinetic energies, εp0q � 1 (left), εp0q � 2 (centre), εp0q � 2.99 (right).

Fig. 4.8 presents instead the trajectory of the physical �elds φ̂1pNq and³N
0
pfθ1iqpÑqdÑ for di�erent values of k1. Finally Fig. 4.9 shows that any value of

k1 leads to a geodesic motion with ηK � 0 but the e�ective mass-squared of the
isocurvature perturbations can remain positive only for k1   0, implying that θ1

(with k1 � 2{?3) is unstable, while θ2 (with k1 � �1{?3) does not experience
any geometrical destabilisation. Notice that the situation is reversed in the case
of left-right in�ation.

Massive case

In Sec. 4.6.3 we have shown that in Fibre In�ation models, when the axions
are considered as exactly massless, one of them always experiences geometrical
destabilisation. However in a full quantum model, these entropic modes are ex-
pected to receive a tiny but non-zero mass from non-perturbative corrections to
the superpotential (4.75) which break their perturbative shift symmetry. Let us
investigate now if these non-perturbative e�ects can be large enough to avoid any
geometrical destabilisation problem and, at the same time, small enough to prevent
any modi�cation of the in�ationary dynamics.

As we have seen in the analysis of the massless case, the single-�eld approxi-
mation with αφ1 � 1 and αθi � 0 with i � 1, 2 provides a very good description of
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Figure 4.8: Trajectories of the physical �elds φ̂1pNq and
³N
0
fpφ1pÑqqθ1ipÑqdÑ for

di�erent values of k1 and εp0q � 1, φ̂11p0q �
?

2 cos pωq, pfθ1iq p0q �
?

2 sin pωq with
ω � 7π{5. The dashed line represents the single-�eld analytical approximation
with zero initial velocity.
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Figure 4.9: ηK (left) and m2
K, eff{H2 (right) as a function of the number of e-

foldings for di�erent values of k1, setting again εp0q � 1, φ̂11p0q �
?

2 cos pωq and
pfθ1iq p0q �

?
2 sin pωq with ω � 7π{5.

the more general dynamics of the system. Hence the equation to analyse is (4.50)
which after identifying φ2 with θi and setting αφ1 � 1 and αθi � 0 for i � 1, 2,
takes the form:

m2
θi, eff �

�
Vθiθi
f 2

� fφ̂1

f
Vφ̂1

� 3
V 2
θi

9φ2
0f

2

�
� 9φ2

0

fφ̂1φ̂1

f
. (4.98)

If we write the kinetic function as in (4.53) and we recall the slow-roll condition
(4.57), the e�ective mass-squared (4.98) for the dangerous entropic modes simpli-
�es to:

m2
θi, eff � �λ

���Vφ̂1

��� �1� 1

λf 2
?

2ε

�
Vθiθi
V

� 9

2ε

V 2
θi

V 2


�
, (4.99)



4.6. GEOMETRICAL DESTABILISATION IN FIBRE INFLATION 173

where we have used the slow-roll approximations 9φ2
0 � 2εH2 � 2εV {3 and

?
2ε ����Vφ̂1

��� {V .
The potential for the entropic directions is generated by Ti-dependent non-

perturbative corrections to the superpotential (4.75):

W � W0 � A3 e
�a3T3 � Ai e

�aiTi , i � 1, 2 , (4.100)

which induce a non-zero potential for the ultra-light axions θi of the form:

V pθiq � Λi cospaiθiq , with Λi � 4aiAiW0τi
V2

e�aiτi , i � 1, 2 . (4.101)

Hence we obtain:

V 2
θi
� a2

i Λ2
i sin2paiθiq and Vθiθi � �a2

i Λi cospaiθiq . (4.102)

The e�ective mass-squared of the isocurvature perturbations (4.99) can therefore
be rewritten as:

m2
θi, eff � �λ

���Vφ̂1

��� �1� a2
i

λf 2
?

2ε

�
9δ2

2ε
sin2paiθiq � δ cospaiθiq


�
, (4.103)

where δ is the ratio between the size of the axion potential and the in�ationary
potential:

δ � Λi

V pφ̂1q
. (4.104)

Let us point out that, once τi with i � 1, 2 is written in terms of canonically
normalised �elds using (4.79), the axion potential (4.101) clearly depends on the
in�aton φ̂1 since:

Λi � Λ
p0q
i e�gipφ̂1q , with Λ

p0q
i � 4aiAiW0xτiy

V2
@i � 1, 2 , (4.105)

where:

g1pφ̂1q � �2k2φ̂1 � a1xτ1y e2k2φ̂1 , g2pφ̂1q � k2φ̂1 � a2xτ2y e�k2φ̂1 . (4.106)

Notice that for the case of right-left in�ation, the dangerous axionic mode is θ1

and during in�ation φ̂1 evolves from positive large values to smaller one. On the
other hand, in left-right in�ation, we need to focus on θ2 and at the beginning of
in�ation φ̂1 is negative and large in absolute value. Thus in both cases, the axion
potential experiences a double exponential suppression, being larger close to the
end of in�ation and extremely suppressed in the region around CMB horizon exit.
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The fact that the axion potential is φ̂1-dependent implies that we cannot make
the mass of θi as large as we would like by tuning the underlying parameters
Ai and ai since at a certain point the potential (4.101) will become of the same
order of magnitude of the in�ationary potential. This will induce Op1q corrections
to the in�ationary dynamics which would destroy Fibre In�ation as we know it.
Hence for consistency we need to impose δ ! 1, which implies that the two terms
proportional to δ in (4.103) are subdominant.
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Figure 4.10: The plot on the left hand side shows the evolution of the 2-�eld system
of right-left in�ation for di�erent initial velocities, φ̂1p0q � 5.8, a1θ1p0q � 1, initial
kinetic energy εp0q � 0.1, A1 � W0 � 1, a1 � 2π, xτ1y � 5.43, V0 � 3.5�10�11 and
V � 1.8 � 103. The plot on the right hand side exhibits instead the behaviour of
the e�ective mass-squared of θ1 for φ̂11p0q �

?
2 cos pωq and pfθ11q p0q �

?
2 sin pωq

with ω � 7π{5.

Let us stress that, even if δ ! 1, one of these two terms might actually be
the dominant contribution since f ! 1 and ε ! 1, but this can occur only locally
around a particular region in �eld space. In fact, as can be seen from (4.106), Λi

has a double exponential suppression, and so small deviations of the in�aton φ̂1

would immediately suppress these positive contributions to m2
θi, eff . We conclude

that, even in the presence of non-vanishing scalar potential contributions, the
isocurvature �uctuations associated to one of the two ultra-light axions in Fibre
In�ation experience an exponential growth, regardless of the particular microscopic
realisation of the in�ationary model.

We checked the validity of these analytic results by performing a full numerical
solution of the evolution of the system in the presence of non-perturbative cor-
rections of the form (4.100). The results for right-left in�ation are shown in Fig.
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4.10-4.11. In particular, Fig. 4.10 shows that the system quickly converges towards
a geodesic trajectory and that the e�ective mass-squared of θ1 is initially positive
due to an appropriate choice of initial conditions but then rapidly settles down to
negative values. On the other hand, in Fig. 4.11 we see that natural choices of the
underlying parameters can keep the axion potential always subleading with respect
to the in�ationary potential. In this way, the in�ationary dynamics is guaranteed
to reproduce the one of Fibre In�ation but one of the axionic modes experiences
a potential geometrical destabilisation. We �nally point out that we obtained nu-
merical results also for left-right in�ation and they turn out to be qualitatively
very similar.

Right-left FI

A1 =1; a1 =2π

A1 =1; a1 =π

A1 =1; a1 =
2π

5

A1 =102 ; a1 =2π

2 4 6 8 10
ϕ1

-5.×10-11

5.×10-11

1.×10-10

V(ϕ1)

Figure 4.11: Comparison between the standard single-�eld and the 2-�eld version
of right-left in�ation for di�erent values of the parameters A1 and a1. Notice that
the axionic potential is subleading with respect to the in�ationary potential until
the end of in�ation only for A1 � 1 and a1 � 2π.

The growth of isocurvature perturbations does not seem to be avoidable in
these models, also considering small mass terms for axion �elds. In the next
section we point out that the coordinate system identi�ed by the normal and
tangent directions shows an anomalous behavior that may be the cause of the
uncontrolled growth of isocurvature perturbations.

4.6.4 A growing projector

In this section we brie�y analyse the time evolution of tangent and normal
vectors in case of a massless axion kinetically coupled to the in�aton as in the right-
left in�ation case of section 4.6.3. The relation between the covariant derivatives
of the two projectors are

DT a

dt
� �HηKNa ,

DNa

dt
� HηKT a. (4.107)
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Given the single �eld behaviour of the background system described in the previous
section, we saw that on-shell ηK � 0. The single components of T a and Na are
de�ned as

T a �
"
α1,

α2

f

*
, Na �

"
�α2,

α1

f

*
, (4.108)

where, again, α1 � 9φ?
9φ2�f2

9χ2
and α2 � f 9χ?

9φ2�f2
9χ2
parametrise the fraction of kinetic

energy carried by the �elds. The results obtained in Sec. 4.6.3 showed that these
two quantities quickly relax to α1 Ñ 1 and α2 Ñ 0 (see Fig. 4.7), implying that

T a Ñ t�1, 0u and Na Ñ t0,�1{fu. Knowing that HηK � �α2
Vφ
9φ0
, we can easily

�nd the time derivative of the projector components to be:

dT1

dt
� α2

2

�
fφ
f2

9φ0 � Vφ
9φ0

	
Ñ 0 ,

dT2

dt
� α1α2

Vφf
9φ0
Ñ 0 ,

dN1

dt
� α1α2

�
fφ
f
9φ0 � Vφ

9φ0

	
Ñ 0 ,

dN2

dt
� fφ 9φ0 � α2

2
Vφf

9φ0
Ñ fφ 9φ0   0 .

. (4.109)

From the previous equations, we see that the tangent vector seems to be well de-
�ned, i.e. its coordinates relax to constant values with vanishing time derivatives.
On the other hand, despite the system tends to a single-�eld behaviour, the second
component of the normal projector keeps on varying during in�ation. Since N2

starts from negative values and dN2

dt
is negative and decreases during in�ation, we

see that N2 evolves towards more and more negative values at increasing rate. The
time evolution of the single components is depicted in Figure 4.12. The continu-
ous growth of N2 during in�ation is due to the normalisation prescription of the
projectors and reveals that the coordinate system is probably ill-de�ned.

In the next section we discuss whether and how growing isocurvature modes can
a�ect the predictions on cosmological parameters and how experimental bounds on
isocurvature perturbations can constraint in�ationary models. We start by brie�y
reviewing how entropy perturbations can be computed during in�ation.

4.6.5 Entropy perturbations during in�ation

In this section we clarify the relations between the various de�nitions of entropy
that can be found in the literature, in an e�ort to understand how the entropy
generated during in�ation is then transferred to the primordial plasma in the
radiation phase.
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Figure 4.12: Evolution of Ta and Na components during in�ation in the system
described in Sec. 4.6.3. We refer in particular to the right-left in�ation case in Eq.
(4.91) where the two-�eld system is composed by the in�aton �eld φ and the θ1

massless axion with kinetic coupling f � e�2{?3φ.

For a generic �uid P � P pρ, Sq, i.e. the pressure is a function of the energy
density ρ and the entropy S. Pressure perturbations can therefore be decomposed
into an adiabatic and a non-adiabatic part, according to

δP � δP

δρ

���
S
δρ� δP

δS

���
ρ
δS. (4.110)

The adiabatic pressure perturbation is δPad � c2
sδρ, where c

2
s is the speed of sound

de�ned as c2
s � 9P

9ρ
. The non-adiabatic pressure perturbations, denoted δPnad are

formally given by δPnad � 9P
9S
δS and are in practice computed via δPnad � δP�δPad.

The total entropy can be de�ned in terms of the non-adiabatic pressure per-
turbations δPnad as

S � H

9P
δPnad � H

9P

�
δP � c2

sδρ
�
. (4.111)

If the Universe is composed by multiple �uids, labelled by α, one can de�ne the
intrinsic entropy perturbation Sint,α as

Sint,α � H

9P

�
δPα � c2

αδρα
�
, (4.112)

such that the total intrinsic entropy of a system with multiple components is

Sint �
¸
α

Sint,α. (4.113)

Note that Sint � 0 for �uids having equation of state Pα � Pαpραq. One can also
de�ne the relative entropy as

Srel � S � Sint . (4.114)
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Noting that δP � °
α δPα and that δρ � °

α δρα and making use of Eqs. (4.111),
(4.112) and (4.113) one may write [191]

Srel � H

9P 9ρ

¸
αβ

c2
αp 9ρβδρα � 9ραδρβq �

� � 1

6 9ρ 9P

¸
αβ

9ρα 9ρβpc2
α � c2

βqSαβ ,
(4.115)

where in the last line we introduced the standard de�nition of entropy perturbation
between two �uids

Sαβ � ζα � ζβ � �3H

�
δρα
9ρα
� δρβ

9ρβ



, (4.116)

as is commonly found in the context of hot big bang cosmology, and we have

de�ned the speed of sound of each �uid as c2
α � 9Pα

9ρα
. Note that, since the curvature

perturbation on uniform ρα hypersurfaces, ζα � �ψ �H δρα
9ρα
, is a gauge invariant

quantity (see Appendix B.1), Sαβ is automatically gauge invariant, even in the
presence of energy transfer between the �uids [192, 191].

During in�ation, when scalar �elds dominate the energy content of the Uni-
verse, one may write the entropies of the system in terms of φα, δφα and their
derivatives. In case of multi-�eld in�ation in a curved �eld manifold we have that
Eq. (4.111) reads

S � � H

3H 9φa 9φa � 2 9φaVa
δPnad , (4.117)

where δPnad is given by

δPnad � �2Vαδφ
α � Vα 9φαδφβ 9φβ

3H2 � 2
3H

Vλ 9φλ

9φγ 9φγ

�
9φα 9δφ

α�

�1
2
9φα 9φβBσGαβδφ

σ � Vαδφ
α
� (4.118)

and we used the spatially �at gauge. Further details and extended computations
can be found in App. B. For two minimally coupled scalars with canonical kinetic
terms and sum-separable potentials one can show that [193]

Srel � 2

3 9φ2
0

VN 9φ1
9φ2

3H 9φ0 � 2VT
S12 , (4.119)

where we have de�ned 9φ0 �
b

9φ2
1 � 9φ2

2, the projection of the scalar potential
along the direction of the background trajectory VT � T aVa and orthogonal to it
VN � NaVa. It can be readily shown that

S12 � a3 d

dt

�
δφ12

a3



(4.120)
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where we have used the notation of [194] and de�ned the quantity

δφ12 � δφ1

9φ1

� δφ2

9φ2

(4.121)

that in [193] is called generalised entropy and is gauge invariant by construction.
In the context of in�ationary physics, entropy perturbations are often charac-

terised in terms of the quantity

δs � Naδφa, (4.122)

often called isocurvature direction/perturbation, which can be directly related to
the total entropy on super-horizon scales [193]

S � �2H

9φ2
0

VN 9φ0

3H 9φ0 � 2VT
δs (4.123)

and to the generalised entropy between the two scalar �elds as

δs �
9φ1
9φ2

9φ0

δφ12 . (4.124)

Finding and solving the evolution equation for δs not only gives us an intuitive
picture of the entropy perturbations but is also a more robust manner of numer-
ically computing entropy perturbations than subtracting from the total pressure
perturbation its adiabatic component [193, 195]. For these reasons it has become
the preferred way of describing entropy perturbations during in�ation. The rela-
tions between the di�erent de�nitions of entropy perturbations are summed up in
Figure 4.13. We stress in particular which of them can be only used in case of �at
�eld space without kinetic coupling.

4.6.6 Entropy perturbations after in�ation

After in�ation and the subsequent reheating phase, the Universe is expected
to enter a radiation dominated phase, where radiation, baryons, dark matter and
neutrinos make up the primordial plasma. Neglecting velocity isocurvature pertur-
bations, the presence of entropy at this stage leads to a di�erence in the number
density perturbations, δnα

nα
, between the various species. Hence, we can have non-

vanishing relative entropies Sγ CDM, Sγ ν , Sγ baryons.
One crucial question to ask at this point is which de�nition of entropy should

be used to transfer the entropy mode from the scalar �eld system, used to describe
in�ation, to the primordial plasma, that consists of �uids only. We note that in
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Figure 4.13: Summary of the various de�nitions of entropy and of the relations
between them. The relations contained within the dashed rectangle hold only for
what we call minimal scalar models: scalar �elds with sum separable potentials
and canonical kinetic terms.
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previous works [196, 197, 198] the de�nition of entropy in Eq. (4.116) has been
used. We will argue in the next sections that the use of Eq. (4.116) can lead in
speci�c models to an instability in the entropy perturbations that is not physical
but is due to a ill-de�nition of the curvature ζ in those models. Interestingly, it
turns out that using one or the other variable does not lead to equivalent results:
in some cases the di�erence in the resulting isocurvature power spectrum that is
constrained by Planck is of several orders of magnitude [199]. It is then necessary
to understand what is the proper variable to be used when matching the in�ation-
ary perturbations onto the perturbations in the primordial radiation dominated
universe.

Let us try to be more explicit and review how the constraints can be enforced
on a simple two-�elds in�ationary model following [200]. The study of cosmo-
logical perturbations generated during in�ation boils down to the study of CMB
anisotropies that can be characterized by their power spectra

p2πq3δpk� qqPIJpkq � xIpkqIpqqy , (4.125)

where I, J denote the curvature ζ � °
α ζα and/or any isocurvature mode S. The

constraints can be formulated in terms of the primordial isocurvature fraction4

βisopkq � PS̃S̃pkq
Pζζpkq � PS̃S̃pkq

, (4.127)

where S̃ refers to the post-in�ationary isocurvature perturbations, i.e. any of
Sγ CDM, Sγ ν , Sγ baryons. In general this quantity is not scale invariant, so that the
Planck constraints are placed at three di�erent reference scales. Given our illus-
trative purposes though, we adopt the assumption of [200] and take the spectral
index for all the spectra to be zero, so that the primordial isocurvature fraction
turns out to be scale-independent.

Of course the constraint on βiso comes indirectly: once we have the primordial
power spectra PIJ at the start of the radiation dominated era (that implies that
we have consistently transferred all the perturbations from the in�ationary to
the post-in�ationary eras, as described above) we need to evolve them through
the Einstein equations till the release of the CMB, and then translate them into

4We are not interested in this paper on the other parameter that is constrained by Planck
observations, namely the correlation fraction

cos ∆IJ �
PIJ

pPIIPJJq1{2
P p�1, 1q , (4.126)

which is taken to be scale-independent in Planck analyses.
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observable quantities using the Boltzmann equations. Only then we are able to
indirectly place constraints on βiso by means of the constraints on CMB.

In the context of the hot big bang model, entropy, like curvature perturba-
tions, appears as an undetermined initial condition for the radiation epoch. In the
context of in�ationary cosmology, both curvature and entropy perturbations at
the onset of radiation domination are determined by the time evolution of scalars
during in�ation and reheating. In order to make contact between the two phases
one must have a complete model, where the couplings of the in�ationary scalars
to the various species are known and then to evolve Srel or Sαβ up to radiation
domination.

In the next section we focus again on Fibre in�ation models. Indeed, despite
the study of the reheating phase is far beyond the aim of the present work, we
can try understand whether the growth of isocurvature perturbations, that we
analysed in Sec. 4.6.3, can lead to large values of Sαβ at the end of in�ation.

4.6.7 Vanishing relative entropy from massless axions in FI

In order to provide some evidence that the geometrical instability studied in
Sec. 4.6.3 is unphysical, let us compute the relative entropy during in�ation, as
given by Srel for the two scalar �elds system described in Sec. 4.6.3. We focus for
simplicity on the right-left in�ation case where the θ1 massless axion induces the
would-be geometrical instability of the system. This can be summed up as:

L{?g � 1

2
pBφq2 � f 2

2
pBχq2 � V , f 2 � f 2

0 e
� 4?

3
φ1 , V � V0

�
3� 4 e

� φ?
3

	
,

where we set χ � θ1 to simplify notation. The energy momentum tensor during
in�ation can be factorised as

T µν � T µνp1q � T µνp2q , (4.128)

where the subscripts p1q and p2q refer to the scalars φ and χ respectively. Due to
the kinetic coupling, the individual T µνpiq are non conserved, but instead there is
energy transfer between the �uids:

∇νT
µν
p1q � Qµ and ∇νT

µν
p2q � �Qµ, (4.129)

where Qµ is the energy transfer function. Despite the fact that there is some
freedom in the de�nition of the two �uids, it is natural to write the energy density
and pressure of the two �elds as

ρ1 � 1

2
9φ2 � V pφq , ρ2 � 1

2
fpφq2 9χ2 , (4.130)
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P1 � 1

2
9φ2 � V pφq , P2 � ρ2 , (4.131)

so that the energy transfer function computed on background quantities takes the
form

Qµ �
�
9ρ1 � 3Hpρ1 � P1q

~0



�
�
ffφ 9φ 9χ2

~0



. (4.132)

The sound speeds of the two �uids de�ned in Eq. (4.130), (4.131) are

c2
s 1 � 1� 2Vφ

3H 9φ� ffφ 9χ2
, c2

s 2 � 1, (4.133)

while the overall sound speed is given by

c2
s � 1� 2

3H

Vα 9φ
α

9φγ 9φγ
. (4.134)

In order to compute the relative entropy between the �uids, we need to use per-
turbation theory at linear order. The following results are obtained using spatially
�at gauge. The perturbed Einstein equations and further details can be found in
App. B.2. Energy density and pressure perturbations take the form

δρ1 � �Φ 9φ2 � 9φ 9δφ� Vφδφ , (4.135)

δP1 � �Φ 9φ2 � 9φ 9δφ� Vφδφ , (4.136)

δρ2 � δP2 � �Φf 2
9χ2 � f 2

9χ 9δχ� 1

2
9χ2Bφf 2δφ , (4.137)

where the time lapse scalar perturbation is given by

Φ � 1

2H

�
9φδφ� f 2

9χδχ
	
. (4.138)

Since χ is a perfect �uid, the only intrinsic pressure perturbation is related to the
�eld φ

δPintr �
¸
α

�
δPα � c2

sαδρα
� �

� δP1 � c2
s 1δρ1

�
�
�Φ 9φ2 � 9φ 9δφ

	
p1� c2

s 1q � p1� c2
s 1qVφδφ .

(4.139)

The non-adiabatic pressure perturbation can be written as

δPnad � δPintr � δPrel , (4.140)
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thus it is easy to see that we can write

δPrel �
¸
α

�
c2
sα � c2

s

�
δρα . (4.141)

Writing down explicitly the di�erence between the total sound speed and that one
related to the single components (using the number of e-foldings as time variable)
we get

c2
s 1 � c2

s � pc2
s � 1qf 2χ

12

�
1� fφφ

1

3f

φ12 � f 2χ12 fφφ
1

3f

�
� Opf 2χ

12q ,

c2
s 2 � c2

s � p1� c2
sq .

(4.142)

It is easy to see that the in�aton contribution to δPrel is suppressed by the expo-
nentially decreasing factor fχ1, that we computed in Eqs. (4.89), (4.90) and whose
behaviour was also numerically checked in Sec. 4.6.3. In addition, we can recast
the energy density perturbations as follows:

δρφ � H2
��

Vφ
H2 � φ13

2

	
δφ� φ1δφ1

�
�H2f 2χ1 φ

12
2
δχ

� H2
��

Vφ
H2 � φ13

2

	
δφ� φ1δφ1

�
�Opfχ1q ,

(4.143)

δρχ � H2fχ1
�
χ1f
2

�
Bφf2

f2 � φ1
	
δφ� fδχ1 � f3χ12

2
δχ

�
� Opfχ1q .

(4.144)

From the previous equations we see that, during in�ation, δPrel � Opfχ1q Ñ 0
as fχ1 Ñ 0.
We conclude that in this 2-�eld system we would expect the non-adiabatic pressure
perturbations to be just given by the in�aton contribution to δPintr. This is con-
�rmed by the numerical analysis of the di�erent components of the non-adiabatic
entropy, S, Srel, Sintr, that is shown in Figure 4.14.

We can then conclude that the presence of the ultralight axion does not seem
to a�ect the entropy of the system and the geometrical instability of isocurvature
perturbations should not be considered as a physical e�ect. As mentioned in the
previous sections, observational bounds on isocurvature perturbations are given
in terms of the relative entropies Srel or Sαβ. Therefore the observed growth in
δs does not rule out these models. In order to check the constraints coming from
experimental observations, what one should do is to compute the relative entropy,
using Eq. (4.116) and evolve it till radiation domination era.

In this particular case however S12 is ill-de�ned as the axion �eld has an action

L{
a
|g| � f 2pφq

2
pBχq2 (4.145)
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Figure 4.14: Di�erent contributions to the entropy perturbations coming from
non-adiabatic pressure in the right-left FI case described in Sec. 4.6.3. It is easy
to see that Srel goes rapidly to zero and the total entropy of the system is just
given by Sintr.

from which we can read that ρ2 � f2pφq
2
pBχq2 vanishes on-shell. One therefore

sees that, despite the fact that Srel is �nite and vanishingly small, S12 is singular.
We note that the same problem arises for canonically normalised massless scalars
(which however do not su�er from a growing δs).

The fact that the growth in δs is due to a growing projector Na and that Srel
is �nite, allows us to argue that the instability noted in Sec. 4.6.3 is of no physical
consequence and that the underlying models are presently viable both in what
concerns curvature and entropy perturbations.

4.7 Conclusions

In this chapter we have studied the geometrical (in)stability in models of in-
�ation where the �eld space has negative scalar curvature. These models arise
naturally in the presence of non-minimal coupling, in supergravity and in string
theory. We have shown that there is no instability for heavy non-in�ationary
scalars and that the isocurvature modes are tachyonic only in a spurious, non-
attractive solution to the background dynamics. Notice that the stability of heavy
�elds is in agreement with results previously found in models with non-minimal
coupling [177, 178]. Moreover, ref. [201] has recently shown that, even if the
initial conditions are tuned such that 9χ � χ � 0, the backreaction of the isocur-
vature �uctuations shuts o� the instability before reaching the non-linear regime.
Instead we have shown that the instability can be present for massless spectator
�elds kinetically coupled to the in�aton. The existence of large numbers of mass-
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less scalars, the moduli, is a hallmark of string compacti�cation models. For the
phenomenological viability of such models it is imperative to generate a mass for
the moduli �elds, a research area that has seen signi�cant progress over the last
15 years and that often involves the addition of subleading corrections, both per-
turbative and non-perturbative, to the e�ective action. Despite the sophistication
of current constructions, one can sometimes end up with some remaining massless
�elds. These are the focus of the second part of this Chapter, in particular their
rôle during in�ation.

After gaining some intuition from analysing the simple case of exponential
quintessence-like potentials, we studied this instability in the context of Fibre In-
�ation [101, 104], a type IIB string in�ation model where the in�ationary potential
is generated by perturbative corrections to the Kähler potential. In this setup there
are two axionic �elds that remain massless after moduli stabilisation, θ1 and θ2,
both of which are kinetically coupled to the in�aton. We showed that one of these
�elds always induces a geometrical instability. For right-left Fibre In�ation mod-
els [101], it is the �bre axion θ1 that leads to unstable isocurvature perturbations,
while in left-right realisations of Fibre In�ation [102], the instability is triggered
by the base axion θ2. In both cases we have tried to avoid the instability by giving
a small mass to the axions. We found that, although a potential for these �elds
can be generated by non-perturbative e�ects, it is not possible to avoid the insta-
bility without signi�cantly modifying the dynamics of Fibre In�ation. This would
lead to a completely di�erent in�ationary model with a truly multi-�eld dynamics
that should be carefully analysed, but this is far beyond the aim of the current
work. Furthermore we have numerically probed the system and have shown that
the arising of geometrical destabilisation is independent of the choice of initial
conditions.

When present, this instability should make one reconsider the validity of what-
ever in�ationary model leading to it. The simplest possibility is that perturba-
tion theory remains valid throughout the evolution. In this case the growth of
the isocurvature perturbations might lead to a tension with current observational
bounds on the isocurvature fraction only if the ultra-light �elds contribute con-
siderably to dark matter [138], a possibility which we consider however unlikely
given that these �elds are in practice massless. We found that the entropy per-
turbations, as de�ned by δs, grow rapidly on superhorizon scales also considering
kinetically coupled massless scalars that have vanishing on-shell energy density.
This happens despite the fact that the background trajectory is essentially single
�eld and stable. This somewhat paradoxical state of a�airs has prompted us to
investigate this issue further.

In the analysis of Fibre In�ation with more than one ultra-light entropic direc-
tion, in order to make use of the results in the literature concerning the e�ective
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mass-squared of the isocurvature modes, we have reduced the �eld space to two
dimensions by projecting out one of the ultra-light directions at a time. Following
[202], we also numerically checked the full 3-�eld system but, since our results did
not qualitatively change, we decided not to insert the analysis in this work.

Moreover we showed that the coordinate system, identi�ed by tangent and or-
thogonal perturbations, is somehow ill-de�ned. Indeed, one of the two components
of the normal projector Na keeps on growing during in�ation, causing the growth
of the isocurvature mode δs.

Finally, we introduce the various de�nitions of entropy that can be found in the
literature, pointing out the relation between them and their limits of applicability.
Our aim was to understand if the growing isocurvature modes, that we found in
the previous sections, can a�ect the predictions on cosmological parameters. The
usual entropy de�nition that is used in the literature to transfer the entropy mode
from the in�ationary scalar �eld system to the primordial plasma [196, 197, 198]
is given in Eq. (4.116). We �nd that in the system under study S12 is ill-de�ned
as the massless axion has vanishing energy density on-shell. Nevertheless, we can
estimate the relative size of the entropy perturbations generated by non-adiabatic
pressure using the �uid approach. We showed that Srel is �nite and rapidly decays
in time. Therefore, the total entropy of the system is just given by the intrinsic
entropy of the in�aton �eld. This allows us to argue that the instability noted in
Sec. 4.6.3 has no physical impact and the underlying model is presently viable.
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Chapter 5

Axionic DM from String Theory:

3.55keV line

5.1 Introduction

In 4D string models, ALPs can emerge either as closed string modes aris-
ing from the dimensional reduction of 10D anti-symmetric forms or as phases of
open string modes charged under anomalous Up1q symmetries on stacks of D-
branes [167, 168, 169, 203, 76]. Some of these modes can be removed from the
low-energy spectrum by the orientifold projection which breaks N � 2 super-
symmetry down to N � 1, others can be eaten up by anomalous Up1q's via the
Green-Schwarz mechanism for anomaly cancellation or can become as heavy as the
gravitino if the corresponding saxions are stabilised by the same non-perturbative
e�ects which give mass to the axions. However the axions enjoy a shift symmetry
which is broken only at non-perturbative level. Therefore when the corresponding
saxions are frozen by perturbative corrections to the e�ective action, the axions
remain exactly massless at this level of approximation. They then develop a mass
via non-perturbative e�ects which are however exponentially suppressed with re-
spect to perturbative corrections. Hence whenever perturbative contributions to
the e�ective scalar potential play a crucial rôle for moduli stabilisation, the ax-
ions are exponentially lighter than the associated saxions [204]. Notice that this
case is rather generic in string compacti�cations for two main reasons: piq if the
background �uxes are not tuned, non-perturbative e�ects are naturally sublead-
ing with respect to perturbative ones; piiq it is technically di�cult to generate
non-perturbative contributions to the superpotential which depend on all moduli
(because of possible extra fermionic zero modes [190], chiral intersections with the
visible sector [116] or non-vanishing gauge �uxes due to Freed-Witten anomaly
cancellation [52]).

189
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Despite being naturally light, these particles can play both the rôle of cold DM
and dark radiation depending on their production mechanism. The oscillations
of classical misaligned axion �elds produce a condensate of non-relativistic axions
[13], while axions produced from heavy moduli decay can free-stream without
thermalising and may form today a Cosmic Axion Background (CAB) [16]. In this
Chapter we focus on the possible physical explanation of the 3.55 keV line that
has been recently detected from several galaxy clusters and other astrophysical
objects. This line could not be identi�ed with any other known spectral line from
atomic transitions in the intra-cluster medium and may be a possible sign of BSM
physics. A physical explanation that is in good accordance with experimental
results is given in [17], where the authors claim that the photon line is produced
by a double decay. A DM particle directly decay into extremely light ALPs that
convert into photons inside the galactic magnetic �eld. Indeed, thanks to the
existence of the following coupling between axions and photons:

Laγ � � a

4M
FµνF̃

µν � � a

2M
~E � ~B , (5.1)

an axion can convert into a photon or viceversa through Primako� e�ect in a back-
ground magnetic �eld (see Fig. 5.1). The axion-photon conversion probability in

Figure 5.1: Primako� e�ect.

a plasma with frequency ωp at leading order and in the small-angle approximation
is given by [17]:

PaÑγ �
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%

1
4

�
BL
M

	2

for ma   ωp

1
4

�
BL
M

	2�
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�
ωp
ma

	4

for ma " ωp
(5.2)

where L is the B-�eld coherence length and we considered a single domain of
homogeneous magnetic �eld. We therefore realise that in order to have a large
PaÑγ, we need to have magnetic �elds which are larger in size over huge domains.
Galaxy clusters meet these requirements and usually have ωp � 10�12 eV. Thus
ALPs with masses ma À 10�12 eV can give rise to observable signals in the X-ray
band [17].
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The main goal of this Chapter is to provide a string embedding of this model
[17] where we focus in particular on type IIB �ux compacti�cations where moduli
stabilisation has already been studied in depth.

This Chapter is organized as follows: in Sec. 5.2 we give an overview of the
experimental observations that have been collected in recent years and in Sec. 5.3
we list the requirements on the geometry of the extra dimensions that need to
be satis�ed in order to successfully reproduce the appearance of the photon line.
In Sec. 5.4 we �rst discuss the phenomenology of the dark matter to ALP to
photon model for the 3.5 keV line and its observational constraints, and then we
describe how these phenomenological conditions turn into precise requirements on
the Calabi-Yau geometry, the brane setup and gauge �uxes. We than point out
which of the 4D �elds can successfully play the rôle of either the DM particle or
the ultra-light ALP, we list the form of the various interactions and we present
the resulting low-energy 4D supergravity. Sec. 5.5 provides a thorough discuss of
moduli stabilisation showing how di�erent sources of corrections to the e�ective
action can �x all closed string moduli and the Up1q-charged open string modes.
In Sec. 5.6 we �rst derive the expressions for the canonically normalised �elds
and their masses and then we use these results to work out the strength of the
DM-ALP coupling. Several technical details are relegated to App. C.

5.2 The 3.55 keV line

Recently several studies have shown the appearance of a photon line at E � 3.5
keV, based on stacked X-ray data from galaxy clusters and the Andromeda galaxy
[205, 206]. The line has been detected in galaxy clusters by the X-ray observatories
XMM-Newton, Chandra and Suzaku [207, 208] and in Andromeda with XMM-
Newton [206]. The Hitomi satellite would have been able to study the 3.5 keV
line with unprecedented energy resolution. However, unfortunately Hitomi was
lost after only a few weeks in operation and the limited exposure time on the
Perseus cluster only allows to put upper bounds on the 3.5 keV line which are
consistent with the detection of the other satellites [209]. The �ndings of [205, 206]
have inspired further searches in other astrophysical objects such as the galactic
center [210, 211, 206, 212], galaxies [213], dwarfs [214, 215, 216] and other galaxy
clusters [217, 218].1 Currently, a compelling standard astrophysical explanation,
e.g. in terms of atomic lines of the (cluster) gas is lacking.2 This gives rise to the
possibility that the 3.5 keV line is a signal related to dark matter (DM) physics.

A much explored model is that of dark matter decay, e.g. a sterile neutrino with
mass mDM � 7 keV decaying into an active neutrino and a photon [221, 222]. In

1For a summary of observations and models on the 3.5 keV line see [219].
2See however [211, 220].
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this case, the photon �ux from an astrophysical object is solely determined by the
lifetime of the dark matter particle and the dark matter column density. The width
of the line is due to Doppler broadening. There are several observational tensions, if
one wants to explain the (non-)observation of the 3.5 keV line in currently analysed
astrophysical objects. Most prominently, these are:

� Non-observation of the 3.5 keV line from dwarf spheroidal galaxies [214, 215,
216]. The dark matter density of these objects is rather well known and
the X-ray background is low, making dwarf spheroidals a prime target for
detecting decaying dark matter.

� Non-observation of the 3.5 keV line from spiral galaxies [213], where again the
X-ray background is low. According to the dark matter estimates of [213],
the non-observation of a 3.5 keV signal from spiral galaxies excludes a dark
matter decay origin of the 3.5 keV line very strongly at 11σ.

� The radial pro�le of the 3.5 keV line in the Perseus cluster peaks on shorter
scales than the dark matter pro�le, rather following the gas pro�le than the
dark matter pro�le [205, 212]. However, the observed pro�le with Suzaku is
only in mild tension with the dark matter pro�le [208].

These tensions, even though they could be potentially explained by uncertainties
in the dark matter distributions in these objects [219], motivate di�erent dark
matter models than direct dark matter decay into a pair of 3.5 keV photons.

A dark matter model that is consistent with all the present (non-)observations
was given in [17]. A dark matter particle with mass mDM � 7 keV decays into
an almost massless (mALP À 10�12 eV) axion-like particle (ALP) with energy 3.5
keV which successively converts into 3.5 keV photons that are �nally observed.
Compared to direct dark matter decay into photons, the observed photon �ux does
not depend just on the dark matter column density, but also on the probability
for ALPs to convert into photons. This is determined by the size and coherence
scale of the magnetic �eld and the electron density in e.g. a galaxy cluster.

The 3.5 keV emission is stronger in astrophysical regions with relatively large
and coherent magnetic �eld. This is veri�ed by the experimental fact that cool core
clusters like the Perseus cluster have stronger magnetic �elds than non-cool core
clusters and also a higher 3.5 keV �ux is observed from such an object. Further-
more, the fact that central regions of a cool core cluster host particularly strong
magnetic �elds explains the radial morphology of the 3.5 keV �ux from Perseus
as the signal comes disproportionally from the central region of the cluster. The
model has made the prediction that galaxies can only generate a non-negligible
3.5 keV photon �ux if they are spiral and edge-on as for instance the Andromeda
galaxy [17]. In this case, the full length of the regions with regular magnetic �eld
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can be used e�ciently for ALP to photon conversion. These predictions agree
with the experimental results of non-observation of the 3.5 keV signal from generic
(edge-on and face-on) spiral galaxies and dwarf galaxies [223].3

5.3 Model requirements

Given that the 4D low-energy limit of string compacti�cations generically leads
to several light ALPs [167, 168, 169, 203, 76], it is natural to try to embed the
model of [17] in string theory.

String compacti�cations where some moduli are �xed by perturbative e�ects
are the perfect frameworks to derive models for the 3.5 keV line with light ALPs
which can behave as either the 7 keV decaying DM particle or as the ultra-light
ALP which converts into photons. Indeed, whenever perturbative contributions
to the e�ective scalar potential play a crucial rôle for moduli stabilisation, axions-
saxion mass degeneracy gets broken making the axions exponentially lighter than
their supersymmetric counterpart. Notice that this case is rather generic in string
compacti�cations for two main reasons: piq if the background �uxes are not tuned,
non-perturbative e�ects are naturally subleading with respect to perturbative ones;
piiq it is technically di�cult to generate non-perturbative contributions to the
superpotential which depend on all moduli (because of possible extra fermionic
zero modes [190], chiral intersections with the visible sector [116] or non-vanishing
gauge �uxes due to Freed-Witten anomaly cancellation [52]).

The main moduli stabilisation mechanism which exploits perturbative correc-
tions to the Kähler potential is the LARGE Volume Scenario (LVS) [63, 225, 62].
We shall therefore present an LVS model with the following main features (see Fig.
5.2 for a pictorial view of our microscopic setup):

� The underlying Calabi-Yau (CY) manifold is characterised by h1,1 � 5 Kähler
moduli Ti � τi�ici where the ci's are closed string axions while the τi's control
the volume of 5 di�erent divisors: a large four-cycle Db, a rigid del Pezzo
four-cycle Ds which intersects with a `Wilson divisor' Dp (h

0,1pDpq � 1 and
h0,2pDpq � 0) and two non-intersecting blow-up modes Dq1 and Dq2 .

� The two blow-up modes Dq1 and Dq2 shrink down to zero size due to D-term
stabilisation and support D3-branes at the resulting singularities. These
constructions are rather promising to build a semi-realistic visible sector
with SM-like gauge group, chiral spectrum and Yukawa couplings [226, 227].
If Dq1 and Dq2 are exchanged by the orientifold involution, the visible sector

3Despite the successful interpretation of all these observations, this model would not be able
to explain the dip around 3.5 keV in the Perseus AGN spectrum which might arise from Chandra
data [224].
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features two anomalous Up1q symmetries (this is always the case for any
del Pezzo singularity) [151, 228, 78], while if the two blow-up modes are
separately invariant, one of them supports the visible sector and the other a
hidden sector [229, 137]. Each of the two sectors is characterised by a single
anomalous Up1q factor.

� A smooth combination of Ds and Dp is wrapped by a stack of D7-branes
which give rise to string loop corrections to the Kähler potential K [58, 60,
61]. Moreover, non-vanishing world-volume �uxes generate moduli-dependent
Fayet-Iliopoulos (FI) terms [146, 147]. An ED3-instanton wraps the rigid di-
visor Ds and generates standard Ts-dependent non-perturbative corrections
to the superpotential W . A second ED3-instanton wraps the Wilson divisor
Dp. Due to the presence of Wilson line modulini, this ED3-instanton con-
tributes to the superpotential only via Tp-dependent poly-instanton e�ects
[230, 231].

� At leading order in an inverse volume expansion, the moduli are �xed su-
persymmetrically by requiring vanishing D- and F-terms. These conditions
�x the dilaton and the complex structure moduli in terms of three-form �ux
quanta together with the blow-up modes τq1 and τq2 in terms of charged open
string �elds, and hidden matter �elds on the D7-stack in terms of τp.

� Quantum corrections beyond tree-level break supersymmetry and stabilise
most of the remaining �at directions: α1 corrections to K [55] and single non-
perturbative corrections toW [65] �x τb, τs and cs, while soft supersymmetry
breaking mass terms and gs loop corrections to K �x τp.

� Subdominant Tp-dependent poly-instanton corrections to W stabilise the
local closed string axion cp while a highly suppressed Tb-dependent non-
perturbative superpotential �xes the bulk closed string axion cb. Sequestered
soft term contributions stabilise instead the radial component of Up1q-charged
matter �elds C � |C| ei θ living on the D3-brane stacks.

� Both cb and cp are exponentially lighter than the gravitino, and so could play
the rôle of the decaying DM particle with mDM � 7 keV. On the other hand
the ultra-light ALP with mALP À 10�12 eV which converts into photons is
given by the open string phase θ. Notice that if Dq1 and Dq2 are identi�ed
by the orientifold involution, there are two open string phases in the visible
sector: one behaves as the standard QCD axion, which is however heavier
than 10�12 eV, and the other is the ultra-light ALP θ. If instead Dq1 and
Dq2 are separately invariant under the involution, θ is an open string axion
belonging to a hidden sector.
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� The coupling of the closed string axions cb and cp to the open string ALP θ is
induced by kinetic mixing due to non-perturbative corrections to the Kähler
potential. However we shall show that the scale of the induced DM-ALP
coupling can be compatible with observations only if the DM candidate is
the local closed string axion cp.

� If the ultra-light ALP θ belongs to the hidden sector, its coupling to ordinary
photons can be induced by Up1q kinetic mixing which gets naturally gener-
ated by one-loop e�ects [232]. Interestingly, the strength of the resulting
interaction can easily satisfy the observational constraints if the open string
sector on the D3-brane stack is both unsequestered and fully sequestered
from the sources of supersymmetry breaking in the bulk.

� The branching ratio for the direct axion DM decay into ordinary photons
is negligible by construction since it is induced by kinetic mixing between
Abelian gauge boson on the D7-stack and ordinary photons on the D3-stack
which gives rise to an interaction controlled by a scale which is naturally
trans-Planckian.

5.4 Phenomenology and microscopic realisation

In this section we �rst discuss the observational constraints of the model of
[17] for the 3.5 keV line, and we outline the main phenomenological features of our
embedding in LVS type IIB �ux compacti�cations. We then provide the technical
details of the microscopic realisation of the DM to ALP to photon model for the
3.5 keV line. We start by illustrating the geometry of the underlying Calabi-Yau
compacti�cation manifold. We then present the brane setup and gauge �uxes, and
we �nally describe the main features of the resulting low-energy 4D e�ective �eld
theory.

5.4.1 Observational constraints

The e�ective Lagrangian of the dark matter to ALP to photon model for the
3.5 keV line can be described as follows:

L � �1

4
F µνFµν � aALP

4M
F µνF̃µν � 1

2
BµaALPBµaALP � 1

2
m2

ALPa
2
ALP

� aDM
Λ

BµaALPBµaALP � 1

2
BµaDMBµaDM � 1

2
m2

DMa
2
DM , (5.3)

where aALP is an ALP with mass mALP that converts into photons in astrophysical
magnetic �elds via the coupling suppressed by M . aDM is a pseudoscalar which is
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Figure 5.2: Pictorial view of our setup: a stack of D7-branes wraps the combination
τs � τp, two ED3-instantons wrap respectively the rigid cycle τs and the Wilson
divisor τp while two stacks of D3-branes at singularities support the visible and a
hidden sector. The DM particle is the closed string axion cp which acquires a 7 keV
mass due to tiny poly-instanton e�ects and decays to the ultra-light open string
ALP θ that gives the 3.5 keV line by converting into photons in the magnetic �eld
of galaxy clusters.
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the dark matter particle with mass mDM � 7 keV. It decays via the kinetic mixing
term in (5.3) with characteristic scale Λ. In order for ALP-photon conversion to be
e�cient in galaxy cluster magnetic �eld environments, we require mALP À 10�12

eV which is the characteristic energy scale of the electron-photon plasma [17].
Otherwise, the ALP to photon conversion is suppressed by � p10�12 eV{mALP q4.
Therefore aALP is too light to be the standard QCD axion but it has instead to be
a stringy axion-like particle.

The observed photon �ux at an X-ray detector is given by:

FDMÑ aALPÑ γ9ΓaDMÑaALP aALP PaALPÑγ ρDM , (5.4)

where ρDM is the dark matter column density and:

ΓaDMÑaALP aALP �
1

32π

m3
DM

Λ2
, (5.5)

is the dark matter decay rate and PaALPÑγ is the ALP to photon conversion prob-
ability. It is given as PaALPÑγ9M�2 and furthermore depends on the electron
density in the plasma, the energy of the ALP/photon, the coherence length and
the strength of the magnetic �eld. Hence, FDMÑaALPÑγ9Λ�2M�2. For the ALP
to photon conversion conditions in the Perseus cluster magnetic �eld, the observed
3.5 keV �ux then implies [17]:

Λ �M � 7 � 1028 GeV2 . (5.6)

The scales M and Λ are subject to certain constraints. There is a lower bound
M Á 1011 GeV from observations of SN1987A [233, 234, 235], the thermal spectrum
of galaxy clusters [236] and active galactic nuclei [237, 238, 239]. This lower bound
implies an upper bound on Λ via (5.6). To get su�ciently stable dark matter, we
assume that the dark matter particle has a lifetime larger than the age of the
universe, i.e. Λ Á 5 � 1012 GeV. This implies an upper bound on M via (5.6).
To summarise, the parameters M and Λ have to satisfy (5.6) together with the
following phenomenological constraints:

1011 GeV À M À 1016 GeV , 5 � 1012 GeV À Λ À 7 � 1017 GeV . (5.7)

Notice that ultra-light ALPs with intermediate scale couplings to photons will be
within the detection reach of helioscope experiments like IAXO [240] and poten-
tially light-shining-through-a-wall experiments like ALPS [241].

5.4.2 Phenomenological features

The phenomenological requirements for a viable explanation of the 3.5 keV line
from dark matter decay to ALPs which then convert into photons, can be trans-
lated into precise conditions on the topology and the brane setup of the microscopic
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realisation. We shall focus on type IIB �ux compacti�cations where moduli stabil-
isation has already been studied in depth. According to (5.6) and (5.7), we shall
focus on the parameter space region where the DM to ALP coupling is around the
GUT/Planck scale, Λ � 1016-1018 GeV, whereas the ALP to photon coupling is
intermediate: M � 1011-1013 GeV. This region is particularly interesting since an
ALP with this decay constant could also explain the di�use soft X-ray excess from
galaxy cluster via axion-photon conversion in the cluster magnetic �eld [242]. This
phenomenological requirement, together with the observation that mDM � 10 keV
while mALP À 10�12 eV, sets the following model building constraints:

� ALP as an open string axion at a singularity: From the microscopic
point of view, aALP can be either a closed or an open string axion. In the
case of closed string axions, aALP could be given by the reduction of C4 on
orientifold-even four-cycles or by the reduction of C2 on two-cycles duals
to orientifold-odd four-cycles. As explained in [168, 76] and reviewed in
App. C.1, since axions are the imaginary parts of moduli, Ti � τi � i ci
(ci is a canonically unnormalised axion), whose interaction with matter is
gravitational, they tend to be coupled to photons with Planckian strength.
However this is true only for bulk axions which have M � Mp, while the
coupling to photons of local axions, associated to blow-up modes of point-
like singularities, is controlled by the string scale: M � Ms. Ms � Mp{

?
V

can be signi�cantly lower than Mp if the volume of the extra dimensions in
string units V is very large, and so local closed string axions could realise
M �Ms � 1011-1013 GeV.

A moduli stabilisation scheme which leads to an exponentially large V is the
LARGE Volume Scenario [63, 225, 62] whose simplest realisation requires a
Calabi-Yau volume of the form:

V � τ
3{2
b � τ 3{2

s . (5.8)

The moduli are �xed by the interplay of the leading order α1 correction to the
Kähler potential and non-perturbative e�ects supported on the rigid cycle
τs. The decay constant of the axionic partner of τs, which we denote as cs, is
set by the string scale, M �Ms, but this mode develops a mass of order the
gravitino mass mcs � m3{2 � Mp{V . The large divisor τb is lighter than the
gravitino due to the underlying no-scale structure of the 4D e�ective �eld
theory, mτb � m3{2{

?
V , but it has to be heavier than about 50 TeV in order

to avoid any cosmological moduli problem. Hence the local axion cs is much
heavier than 10�12 eV, and so cannot play the rôle of aALP . Moreover, the
bulk axion cb cannot be the desired ALP as well since, even if it is almost
massless, its coupling scale to photons would be too high: M �Mp.
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We are therefore forced to consider an open string axion realisation for aALP .
Anomalous Up1q factors appear ubiquitously in both D7-branes wrapped
around four-cycles in the geometric regime and in D3-branes at singularities.
In the process of anomaly cancellation, the Up1q gauge boson becomes mas-
sive by eating up an axion [243]. As explained in [204], the combination of
axions which gets eaten up is mostly given by an open string axion for D7-
branes and by a closed string axion for D3-branes. The resulting low-energy
theory below the gauge boson mass, features a global Up1q which is an ideal
candidate for a Peccei-Quinn like symmetry. In the case of D3-branes at
singularities, the resulting D-term potential looks schematically like:

VD � g2
�
q|Ĉ|2 � ξ

	2

, (5.9)

where we focused just on one canonically normalised charged matter �eld
Ĉ � |Ĉ| ei θ whose phase θ can play the rôle of an axion with decay constant
set by the VEV of the radial part |Ĉ|. The FI term ξ � τq{V is controlled by
the four-cycle τq which gets charged under the anomalous Up1q and whose
volume resolves the singularity. A leading order supersymmetric solution
�xes |Ĉ|2 � ξ{q, leaving a �at direction in the p|Ĉ|, τqq-plane. This remaining
�at direction is �xed by subdominant supersymmetry breaking contributions
from background �uxes which take the form [78]:

VF p|Ĉ|q � c2m
2
0|Ĉ|2 � c3A|Ĉ|3 �Op|Ĉ|4q , (5.10)

where c2 and c3 are Op1q coe�cients. If we parametrise the volume depen-
dence of the soft scalar masses as m0 � Mp{Vα2 and the trilinear A-term
as A � Mp{Vα3 , and we use the vanishing D-term condition to write τq in

terms of |Ĉ| as τq � |Ĉ|2V , the matter �eld VEV scales as:

piq If c2 ¡ 0 |Ĉ| � 0 ô τq � 0 ,

piiq If c2   0 |Ĉ| � Mp

V2α2�α3
ô τq � 1

V4α2�2α3�1
.

Only in case piiq the matter �eld |Ĉ| becomes tachyonic and breaks the
Peccei-Quinn symmetry, leading to a viable axion realisation. In the presence
of �avour D7-branes intersecting the D3-brane stack at the singularity, the
soft terms are unsequestered and α2 � α3 � 1 [244], giving |Ĉ| � Mp{V �
m3{2 and τq � V�1 ! 1 which ensures that τq is still in the singular regime.
If the internal volume is of order V � 108, the large modulus τb is heavy
enough to avoid the cosmological moduli problem: mτb � 100 TeV. In turn

the gravitino mass, all soft terms and the axion decay constant faALP � |Ĉ|
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are around 109 GeV. Setting θ � aALP{faALP , the axion to photon coupling
then takes the form:

g2

32π2

aALP
faALP

FµνF̃
µν ô M � 32π2 faALP

g2
� 32π2 faALP

gs
� 1012 GeV ,

(5.11)
since for D3-branes the coupling g�2 � RepSq � g�1

s is set by the dilaton S
which controls also the size of the string coupling that we assume to be in
the perturbative regime: gs � 0.1.

On the other hand, in the absence of �avour D7-branes the soft terms are
sequestered with α3 � 2 and α2 � 3{2 or α2 � 2 depending on the form
of the quantum corrections to the Kähler metric for matter �elds and the
e�ects responsible for achieving a dS vacuum [77, 79]. Notice that possible
non-perturbative desequestering e�ects from couplings in the superpotential
of the form Wnp � Omatter e

�asTs with Omatter a gauge-invariant operator
composed of matter �elds, cannot actually change the volume dependence of
either the soft scalar masses or the A-terms [245]. Thus if α2 � 3{2 we have
faALP � |Ĉ| �Mp{V and τq � V�1 ! 1, while if α2 � 2 the open axion decay

constant scales as faALP � |Ĉ| � Mp{V2 and τq � V�3 ! 1. In both cases
without �avour D7-branes the gaugino masses scale asM1{2 � 0.1Mp{V2 and
lie around the TeV scale for V � 107. Considering this value of the volume,
the axion-photon coupling therefore becomes:

paq If α2 � 3

2
M � 32π2 faALP

gs
� 103m3{2 � 1013 GeV , (5.12)

pbq If α2 � 2 M � 32π2 faALP
gs

� 103 m3{2
V � 106 GeV . (5.13)

� ALP-photon coupling induced by Up1q kinetic mixing: We have
shown above that, if the matter �eld |Ĉ| charged under the anomalous Up1q
develops a non-zero VEV due to a tachyonic soft scalar mass contribution,
the open string axion θ can have an intermediate scale coupling to photons.
However θ in general plays the rôle of the standard QCD axion which be-
comes much heavier than mALP À 10�12 eV due to QCD instanton e�ects.
Hence the simplest realisation of an ultralight ALP with the desired phe-
nomenological features to reproduce the 3.5 keV line requires the existence
of at least two open string axions. The Calabi-Yau volume (5.8) has then to
be generalised to:

V � τ
3{2
b � τ 3{2

s � τ 3{2
q1

� τ 3{2
q2

, (5.14)

where τq1 and τq2 are both collapsed to a singularity via D-term �xing and
support a stack of D3-branes. There are two possibilities to realise a viable
aALP :
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1. The two blow-up modes τq1 and τq2 are exchanged by the orientifold
involution [151, 228, 78]. The resulting quiver gauge theory on the
visible sector stack of D3-branes generically features two anomalous
Up1q symmetries. This is for example always the case for del Pezzo
singularities. Hence the visible sector is characterised by the presence
of two open string axions: one behaves as the QCD axion while the
other can be an almost massless aALP with M � 1011-1012 GeV as in
(5.11) or (5.12). In this case the matter �eld |Ĉ| which develops a VEV
of order the gravitino mass has to be a Standard Model gauge singlet
in order not to break any visible sector gauge symmetry at a high scale.

2. The two blow-up divisors τq1 and τq2 are invariant under the orientifold
involution [229, 137]. Therefore one D3-stack has to reproduce the
visible sector while the other represents a hidden sector. Each of the
two sectors features an anomalous Up1q which gives rise to an open
string axion with a coupling to the respective photons controlled by the
scaleM . The visible sector axion plays the rôle of the QCD axion while
the hidden sector open string axion can behave as aALP . Its coupling to
ordinary photons can be induced by a Up1q kinetic mixing of the form
[232, 246, 247]:

L � �1

4
FµνF

µν� 1

4
GµνG

µν�χ
2
FµνG

µν� aQCD
4Mvis

FµνF̃
µν� aALP

4Mhid

GµνG̃
µν ,

(5.15)
where we denoted the QCD axion as aQCD, the kinetic mixing parameter
as χ and the visible sector Maxwell tensor as Fµν while the hidden one
as Gµν . The kinetic mixing parameter is induced at one-loop level and
scales as:

χ � gvisghid

16π2
� gs

16π2
� 10�3 . (5.16)

After diagonalising the gauge kinetic terms in (5.15) via Gµν � G1
µν �

χFµν , aALP acquires a coupling to ordinary photons of the form:

L � �χ
2 aALP

4Mhid

FµνF̃
µν ô M � Mhid

χ2
"Mhid . (5.17)

Given that M " Mhid, aALP can be a hidden sector open string axion
only in case (5.13) where the scale of the coupling to hidden photons of
order Mhid � 106 GeV is enhanced via Up1q kinetic mixing toM � 1012

GeV for the coupling to ordinary photons.

� DM as a local closed string axion �xed by poly-instanton e�ects:
In order to produce a monochromatic 3.5 keV line, the DM mass has to be
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around mDM � 7 keV. Such a light DM particle can be a sterile neutrino
realised as an open string mode belonging to either the visible or the hidden
sector. However we shall focus on a more model-independent realisation of
the decaying DM particle as a closed string axion. A generic feature of any
4D string model where the moduli are stabilised by perturbative e�ects, is the
presence of very light axions whose mass is exponentially suppressed with
respect to the gravitino mass [204]. Thus closed string axions are perfect
candidates for ultra-light DM particles. In LVS models, there are two kinds
of axions which remain light:

1. Bulk closed string axion cb since the corresponding supersymmetric
partner τb is �xed by α1 corrections to the Kähler potential K. This ax-
ionic mode develops a tiny mass only via Tb-dependent non-perturbative
contributions to the superpotential W : mcb � mτb e

�πτb ! mτb �
m3{2{

?
V .

2. Local closed string axion cp whose associated modulus τp is stabilised by
gs loop corrections toK. This can happen for so-called `Wilson divisors'
Dp which are rigid, i.e. h2,0pDpq � 0, with a Wilson line, i.e. h1,0pDpq �
1 [231]. Under these topological conditions, an ED3-instanton wrapping
such a divisor does not lead to a standard non-perturbative contribution
to W but it generates a non-perturbative correction to another ED3-
instanton wrapping a di�erent rigid divisor τs. This gives rise to poly-
instanton corrections to W of the form [230]:

Wnp � As e
�2πpTs�Ape�2πTpq � As e

�2πTs � 2πAsAp e
�2πTse�2πTp . (5.18)

In LVS models, the blow-up mode τs is �xed by the dominant non-
perturbative correction in (5.18) since the leading loop contribution to
the scalar potential is vanishing due to the `extended no-scale' structure
[61]. Thus the corresponding axion cs becomes too heavy to play the rôle
of aDM since it acquires a mass of the same order of magnitude: mτs �
mcs � m3{2. On the other hand, the Tp-dependent non-perturbative
correction in (5.18) has a double exponential suppression, and so τp gets
frozen by perturbative gs e�ects [58, 60]. Given that cp enjoys a shift
symmetry which is broken only at non-perturbative level, this axion
receives a potential only due to tiny poly-instanton contributions to W
which make it much lighter than τp. Hence cp is a natural candidate for
aDM since mcp � mτp e

�πτp{2 ! mτp � m3{2. Notice that the presence of
a `Wilson divisors' τp would modify the volume form (5.14) to [231]:

V � τ
3{2
b � τ 3{2

s � pτs � τpq3{2 � τ 3{2
q1

� τ 3{2
q2

. (5.19)
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� DM to ALP decay induced by non-perturbative e�ects in K: A DM
to ALP coupling controlled by the scale Λ of the form shown in (5.3) can arise
from the kinetic mixing between a closed string DM axion and an open string
ALP. Given that the kinetic terms are determined by the Kähler potential, a
kinetic mixing e�ect can be induced by non-perturbative corrections to the
Kähler metric for matter �elds which we assume to take the form:4

Knp � Bi e
�biτi cospbiciqCC̄ , (5.20)

where i � b if aDM is a bulk closed string axion or i � p if aDM is a local
closed string axion �xed by poly-instanton e�ects. As we shall show in Sec.
5.6.3 after performing a proper canonical normalisation of both axion �elds,
the resulting scale which controls the DM-ALP coupling is given by:

Λ �

$''''&
''''%

ebbτb

Bb V4{3 Mp � ebbV
2{3

Bb V4{3 Mp "Mp for aDM � cb

ebpτp

Bp V7{6 Mp � Mp

Bp V7{6�κ{N for aDM � cp

(5.21)

where bp � 2π{N , κ � τp{τs and we have approximated V � τ
3{2
b � e2πτs .

From (5.21) it is clear that Λ can be around the GUT/Planck scale only if the
DM particle is a local closed string axion stabilised by tiny poly-instanton
corrections to W which can give it a small mass of order mDM � 7 keV.

5.4.3 Calabi-Yau threefold

As explained in Sec. 5.4.2, the minimal setup which can yield a viable mi-
croscopic realisation of the aDM Ñ aALP Ñ γ model for the 3.5 keV line of [17],
is characterised by a Calabi-Yau with h1,1 � 5 Kähler moduli and a volume of
the form (5.19). A concrete Calabi-Yau threefold built via toric geometry which
reproduces the volume form (5.19) for h1,1 � 4 (setting either τq1 � 0 or τq2 � 0)
is given by example C of [231]. We therefore assume the existence of a Calabi-Yau
threefold X with one large divisor controlling the overall volume Db, three del
Pezzo surfaces, Ds, Dq1 and Dq2 and a `Wilson divisor' Dp.

We expand the Kähler form J in a basis of Poincaré dual two-forms as J �
tbD̂b � tsD̂s � tq1D̂q1 � tq2D̂q2 � tpD̂p, where the ti's are two-cycle volumes and we

4Similar non-perturbative corrections to K induced by ED1-instantons wrapped around two-
cycles have been computed for type I vacua in [248] and for type IIB vacua in [249], while similar
non-perturbative e�ects in K from an ED3-instanton wrapped around the K3 divisor in type I1

string theory, i.e. type IIB compacti�ed on K3�T 2{Z2, have been derived in [250].
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took a minus sign for the rigid divisors so that the corresponding ti's are positive.
The Calabi-Yau volume then looks like:

V � 1

6

»
X

J ^ J ^ J � 1

6

�
kbbbt

3
b � ksss pts � λtpq3 � µt3p � kq1q1q1t

3
q1
� kq2q2q2t

3
q2

�
,

(5.22)
where the coe�cients λ and µ are determined by the triple intersection numbers
kijk �

³
X
D̂i ^ D̂j ^ D̂k as:

λ � kssp
ksss

� kspp
kssp

and µ � kppp �
k3
ssp

k2
sss

.

The volume of the curve resulting from the intersection of the del Pezzo divisor
Ds with the Wilson surface Dp is given by:

VolpDs XDpq �
»
X

J ^ D̂s ^ D̂p � �pksspts � kspptpq � �kssp pts � λtpq . (5.23)

The volume of this curve is positive and the signature of the matrix B2V
BtiBtj is guar-

anteed to be p1, h1,1 � 1q (so with 1 positive and 4 negative eigenvalues) [28] if
kssp   0 while all the other intersection numbers are positive and ts � λtp ¡ 0.5

The four-cycle moduli can be computed as:

τi � 1

2

»
X

J ^ J ^ D̂i , (5.24)

and so they become:

τb � 1

2
kbbb t

2
b , τq1 �

1

2
kq1q1q1 t

2
q1
, τq2 �

1

2
kq2q2q2 t

2
q2
,

τs � 1

2

�
ksss t

2
s � kspp t

2
p � 2kssp tstp

� � 1

2
ksss pts � λtpq2 , (5.25)

τp � 1

2

�
kppp t

2
p � kssp t

2
s � 2kspp tstp

� � 1

2
kssp pts � λtpq2 � 1

2
µt2p .

The overall volume (5.22) can therefore be rewritten in terms of the four-cycle
moduli as:

V � λbτ
3{2
b � λsτ

3{2
s � λp pτp � xτsq3{2 � λq1τ

3{2
q1

� λq2τ
3{2
q2

, (5.26)

where:

λi � 1

3

c
2

kiii
, @ i � b, s, q1, q2 , λp � 1

3

c
2

µ
and x � �kssp

ksss
¡ 0 .

Notice that (5.26) reproduces exactly the volume form (5.19).

5This analysis includes example C of [231] where ksss � kspp � �kssp � 9 and kppp � 0.
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5.4.4 Brane set-up and �uxes

As explained in Sec. 5.4.2, aALP can be realised as an open string axion belong-
ing either to the visible sector or to a hidden sector. In the �rst case the two rigid
divisors Dq1 and Dq2 are exchanged by a proper orientifold involution whereas in
the second case they are invariant. As we shall see more in detail in Sec. 5.5.1,
these two blow-up modes shrink down to zero size due to D-term stabilisation and
support a stack of D3-branes at the resulting singularity.

Full moduli stabilisation requires the presence of non-perturbative corrections
to the superpotential. We shall therefore consider an ED3-instanton wrapped
around the `small' rigid divisor Ds which generates a standard non-perturbative
contribution to W , together with another ED3-instanton wrapped around the
Wilson surface Dp which gives rise to poly-instanton e�ects. In order to make τp
heavier than the DM axion cp, we need also to include a D7-stack that generates
τp-dependent string loop corrections to the Kähler potential. This can be achieved
if a stack of D7-branes wraps the divisor DD7 (which we assume to be smooth and
connected) given by:

DD7 � msDs �mpDp , with ms,mp P Z . (5.27)

In what follows we shall assume the existence of a suitable orientifold involution
and O7-planes which allow the presence of such a D7-stack in a way compatible
with D7-tadpole cancellation. The cancellation of Freed-Witten anomalies requires
to turn on half-integer world-volume �uxes on the instantons and the D7-stack of
the form [52]:

FD7 � fs D̂s � fp D̂p � 1

2
D̂D7 , Fs � 1

2
D̂s , Fp � 1

2
D̂p , (5.28)

with fs, fp P Z. In order to guarantee a non-vanishing contribution to W , the
total �ux Fj � Fj � ι�jB (with ι�jB the pull-back of the NSNS B-�eld on Dj) on
both instantons has to be zero: Fs � Fp � 0. This can be achieved if the B-�eld
is chosen such that:

B � 1

2
D̂s � 1

2
D̂p , (5.29)

and the pull-back of D̂s{2 on Dp and of D̂p{2 on Ds are both integer forms since
in this case we can always turn on integer �ux quanta to cancel their contribution
to the total gauge �ux. This is indeed the case if, for an arbitrary integer form
ω � ωiD̂i P H2pZ, Xq with ωi P Z, we have that:

1

2

»
X

D̂s ^ D̂p ^ ω � 1

2
pkssp ωs � kspp ωpq P Z . (5.30)

This condition can be easily satis�ed if both kssp and kspp are even.
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The total gauge �ux on the D7-stack instead becomes:

FD7 � fs D̂s � fp D̂p � 1

2
pms � 1q D̂s � 1

2
pmp � 1q D̂p � fs D̂s � fp D̂p ,

where without loss of generality, we have chosen ms � mp � 1 so that FD7 is an
integer �ux. The presence of this �ux has several implications:

� The blow-up moduli Ts and Tp get charged under the diagonal Up1q of the
D7-stack with charges:

qi �
»
X

FD7^D̂D7^D̂i � fs pkssi � kspiq�fp pkspi � kppiq , i � s, p , (5.31)

which implies qp � µfp � x qs.

� The coupling constant of the gauge theory living on DD7 acquires a �ux-
dependent shift of the form:

g�2
D7 � τs � τp � hpFD7qRepSq , (5.32)

where RepSq � e�ϕ � g�1
s is the real part of the axio-dilaton while the

�ux-dependent shift reads:

hpFD7q � 1

2

»
X

FD7 ^ FD7 ^ D̂D7 � fs
2
qs � fp

2
qp . (5.33)

� FD7 generates a moduli-dependent FI-term which looks like:

ξD7 � 1

4π V

»
X

J ^ FD7 ^ D̂D7 � 1

4π V pqs ts � qp tpq . (5.34)

� A non-vanishing gauge �ux on DD7 might induce chiral intersections between
the D7 stack and the instantons on Ds and Dp. Their net number is counted
by the moduli Up1q-charges as:

ID7-E3 �
»
X

FD7 ^ D̂D7 ^ D̂s � qs , ID7-poly �
»
X

FD7 ^ D̂D7 ^ D̂p � qp .

(5.35)

The relations (5.35) imply that, whenever an instanton has a non-vanishing chi-
ral intersection with a stack of D-branes, the four-cycle modulus Tinst wrapped by
the instanton gets charged under the diagonal Up1q on the D-brane stack. There-
fore a non-perturbative contribution to the superpotential of the formWnp � e�Tinst

would not be gauge invariant. Thus a proper combination of Up1q-charged matter
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�elds φi has to appear in the prefactor in order to make the whole contribution
gauge invariant: Wnp �

±
i φi e

�Tinst . If however the φi are visible sector matter
�elds, they have to develop a vanishing VEV in order not to break any Standard
Model gauge group at high energies [116]. In our case the absence of chiral inter-
sections between the instantons on Ds and Dp and the visible sector is guaranteed
by the structure of the intersection numbers since ksqij � 0 and kpqij � 0 @j for
either i � 1 or i � 2.

On the other hand, as can be seen from (5.35), there are chiral intersections
between the hidden D7-stack on DD7 and the two instantons on Ds and Dp. We
could kill both of these intersections by setting FD7 � 0. However this choice of
the gauge �ux on DD7 would also set to zero the FI-term in (5.34) which is instead
crucial to make τp heavier than the DM axion cp. We shall therefore perform a
choice of the gauge �ux FD7 which sets ID7-E3 � qs � 0 but leaves ID7-poly � qp � 0
so that ξD7 can develop a non-trivial dependence on τp. This can take place if the
�ux quanta fp and fs are chosen such that:

fp � �ksss � kssp
kssp � kspp

fs ô qs � 0 and qp � µfp . (5.36)

The FI-term in (5.34) then becomes:

ξD7 � qp
4π

tp
V � fp

?
2µ

4π

?
τp � xτs
V , (5.37)

while the shift of the gauge coupling in (5.33) simpli�es to hpFD7q � µ
2
f 2
p . Due to

non-zero chiral intersections between the D7-stack and the divisor Dp, the poly-
instanton contribution to the superpotential comes with a prefactor that depends
on a Up1q-charged matter �eld φ. In Sec. 5.5.1 we will show that the interplay
between D-terms and string loop e�ects can �x φ at a non-zero VEV, so that
the poly-instanton correction is non-vanishing. Notice that φ belongs to a hidden
sector, and so it can safely develop a non-zero VEV at high energies without
violating any phenomenological requirement.

5.4.5 Low-energy 4D theory

Type IIB string theory compacti�ed on an orientifold of the Calabi-Yau three-
fold described in Sec. 5.4.3 with the brane setup and gauge �uxes of Sec. 5.4.4
gives rise to an N � 1 4D supergravity e�ective �eld theory characterised by a
Kähler potential K and a superpotential W of the form:

K � Kmod �Kmatter and W � Wtree �Wnp , (5.38)

where:
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� The moduli Kähler potential receives perturbative α1 and gs corrections be-
yond the tree-level approximation:

Kmod � Ktree �Kα1 �Kgs , (5.39)

with:

Ktree � �2 lnV� τ
2
q1

V � τ
2
q2

V , Kα1 � � ζ

g
3{2
s V

, Kgs � gs
¸
i

CKK
i tKi
V . (5.40)

In (5.40) we neglected the tree-level Kähler potential for the dilaton S �
e�ϕ � iC0 and the complex structure moduli Ua� , a� � 1, � � � , h1,2

� and we
expanded the e�ective theory around the singularities obtained by collapsing
the two blow-up modes τq1 and τq2 (hence the volume V in (5.40) should be
thought of as (5.26) with τq1 � τq2 � 0). Moreover, we included only the

leading order α1 correction which depends on ζ � � ζp3qχpXq
2p2πq3 [55] since in the

large volume limit higher derivative α1 e�ects yield just subdominant contri-
butions [99]. Finally in Kgs we considered only string loop corrections arising
from the exchange of Kaluza-Klein modes between non-intersecting stacks of
D-branes and O-planes (CKK

i are complex structure dependent coe�cients
and tKi is the two-cycle controlling the distance between two parallel stacks
of D-branes/O-planes) while we did not introduce any gs e�ects coming from
the exchange of winding modes since these arise only in the presence of inter-
sections between D-branes which are however absent in our setup [61, 58, 60].

� In the matter Kähler potential we focus just on the dependence on the matter
�elds which will develop a non-zero VEV. These are two Up1q-charged matter
�elds: φ � |φ| eiψ which belongs to the hidden D7-stack on DD7 and C �
|C| eiθ which can be either a visible sector gauge singlet (if Dq1 and Dq2 are
exchanged by the orientifold involution) or a hidden sector �eld (if both Dq1

and Dq2 are invariant under the orientifold involution) living on a D3-brane
stack [251, 252]:

Kmatter � φφ̄

RepSq � K̃pTi, T̄iqCC̄ . (5.41)

In (5.41) we wrote down just the tree-level Kähler metric for φ while we shall
consider both perturbative and non-perturbative corrections to the Kähler
metric for C which we assume to take the form:

K̃pTi, T̄iq � fpS, Uq
V2{3 � K̃pert �Bi e

�biτi cospbiciq with i � b, p , (5.42)

where fpS, Uq is an undetermined function of the dilaton and complex struc-
ture moduli, K̃pert represents perturbative corrections which do not depend
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on the axionic �elds because of their shift symmetry and the last term is a
non-perturbative correction which can in principle depend on either the large
or the poly-instanton cycle. This term induces a kinetic mixing between the
open string axion θ and either of the two ultra-light closed string axions cb
and cp. As we shall see in Sec. 5.5.1, the open string axion ψ gets eaten
up by the anomalous Up1q on the D7-stack, and so light closed string axions
cannot decay to this heavy mode. This is the reason why we did not include
any non-perturbative e�ect in the Kähler metric for φ.

� The tree-level superpotential Wtree �
³
X
G3 ^ Ω, with Ω the Calabi-Yau

p3, 0q-form, is generated by turning on background three-form �uxes G3 �
F3� iSH3 and depends just on the dilaton and the U -moduli but not on the
T -moduli [38].

� The non-perturbative superpotential receives a single contribution from the
ED3-instanton wrapped around Ds together with poly-instanton e�ects from
the ED3-instanton wrapped around theWilson surfaceDp and takes the same
form as (5.18):

Wnp � As e
�2πTs � 2πAsAp e

�2πTse�2πTp . (5.43)

The prefactors As and Ap depend on S and U -moduli. Given that Tp is
charged under the anomalous diagonal Up1q on the D7-stack, Ap has to de-
pend also on the charged matter �eld φ in order to makeWnp gauge invariant.
If we make the dependence of Ap on φ explicit by replacing Ap Ñ Apφ

n with
arbitrary n, and we use the fact that φ and Tp behave under a Up1q trans-
formation as:

δφ � i qφ φ and δTp � i
qp
2π

, (5.44)

the variation of Wnp under a Up1q transformation becomes:

δWnp � Wnp

�
n
δφ

φ
� 2πδTp



� iWnp pn qφ � qpq . (5.45)

Hence W is gauge invariant only if n � qp{qφ. Notice that n ¡ 0 since, as we
shall see in Sec. 5.5.1, a consistent D-term stabilisation can yield a non-zero
VEV for φ only if qφ and qp have the same sign.

5.5 Moduli stabilisation

In this section we shall show how to stabilise all closed string moduli together
with the two charged open string modes φ and C. The total N � 1 supergravity
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scalar potential descending from the K and W described in Sec. 5.4.5, includes
both F- and D-term contributions of the form:

V � VF � VD � eK
�
KIJ̄DIWDJ̄W̄ � 3|W |2

	
� g2

D7

2
D2
D7 �

g2
D3

2
D2
D3 , (5.46)

where the Kähler covariant derivative is DIW � BIW �WBIK, the gauge coupling
of the �eld theory living on the D7-stack is given by (5.32) while g�2

D3 � RepSq for
the quiver gauge theory on the D3-stack. The two D-term contributions look like:

DD7 � qφ φ
BK
Bφ � ξD7 , and DD3 � qC C

BK
BC � ξD3 , (5.47)

where the FI-term for the D7-stack is given by (5.37) whereas the FI-term for the
D3-brane stack is:

ξD3 � qi
BK
BTqi

� qi
τqi
V for either i � 1 or i � 2 . (5.48)

In LVS models the Calabi-Yau volume is exponentially large in string units, and
so 1{V ! 1 is a small parameter which can be used to control the relative strength
of di�erent contributions to the total scalar potential (5.46). Let us analyse each
of these contributions separately.

5.5.1 Stabilisation at Op1{V2q

As can be seen from the volume scaling of the two FI-terms (5.37) and (5.48),
the total D-term potential scales as VD � M4

p {V2 � M4
s . Therefore its leading

order contribution has to be vanishing since otherwise the e�ective �eld theory
would not be under control since the scalar potential would be of order the string
scale. As we shall see in more detail below, this leading order supersymmetric
stabilisation �xes |φ| in terms of τ̃p � τp � xτs and τqi in terms of |C|. The open
string axion ψ and the closed string axion cqi are eaten up by the two anomalous
Up1q's living respectively on the D7 and D3-stack. Additional Op1{V2q tree-level
contributions to the scalar potential arise from background �uxes which stabilise
the dilaton and the complex structure moduli in a supersymmetric manner at
DSWtree � DUa�Wtree � 0 [38]. At this level of approximation the Kähler moduli
are still �at due to the no-scale cancellation. They can be lifted by subdominant
corrections to the e�ective action which can be studied by assuming a constant
tree-level superpotential W0 � xWtreey that is naturally of Op1q. Summarising
the total Op1{V2q contribution to the scalar potential looks schematically like (we
show the dependence just on the scalar �elds which get frozen):

VOp1{V2q � VDp|φ|, τqiq � V tree
F pS, Uq . (5.49)
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Let us focus in particular on the dynamics of the total D-term potential which
from (5.37), (5.46) and (5.48) reads:

VD � g2
D7

2

�
qφ

|φ|2
RepSq �

fp
?

2µ

4π

a
τ̃p

V

�2

� g2
D3

2

�
qC K̃pTi, T̄iq |C|2 � qi

τqi
V
	2

.

(5.50)
Supersymmetry is preserved if:

qφ
|φ|2

RepSq �
fp
?

2µ

4π

a
τ̃p

V and qC K̃pTi, T̄iq |C|2 � qi
τqi
V . (5.51)

These two relations �x one direction in the p|φ|, τ̃pq-plane and one direction in the
p|C|, τqiq-plane. Each of these two directions corresponds to the supersymmetric
partner of the axion which is eaten up by the relative anomalous Up1q gauge boson
in the process of anomaly cancellation. The axions which become the longitudinal
components of the massive gauge bosons are combinations of open string axions
with decay constant fop and closed string axions with decay constant fcl. The
Stückelberg mass of the anomalous Up1q's scales as [253]:

M2
Up1q � g2

�
f 2

op � f 2
cl

�
, (5.52)

where:

D7 case: f 2
op � |φ|2

RepSq �
fp
?

2µ

4π qφ

a
τ̃p

V " f 2
cl �

1

4

B2K

Bτ 2
p

� 1

4
?

2µ

1

V
a
τ̃p
,

D3 case: f 2
op � K̃pTi, T̄iq |C|2 � qi

qC

τqi
V ! f 2

cl �
1

4

B2K

Bτ 2
qi

� 1

2V , (5.53)

for:

τ̃p " zp � π qφ
2µfp

and τqi ! zqi �
qC
2qi

. (5.54)

In Sec. 5.5.2 and 5.5.3 we shall explain how to �x the remaining �at directions,
showing that the conditions in (5.54) can be satis�ed dynamically. These condi-
tions imply that for the D7 case the combination of axions eaten up is mostly given
by the open string axion ψ, and so (5.51) should be read o� as �xing |φ| in terms
of τ̃p, while for the D3 brane case the combination of axions eaten up is mostly
given by the closed string axion cqi which means that (5.51) �xes τqi in terms of
|C|. Notice that from (5.54) the Up1q gauge bosons acquire a mass of order the
string scale: MUp1q �Mp{

?
V �Ms.
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5.5.2 Stabilisation at Op1{V3q

As we shall explain more in detail below, Op1{V3q e�ects arise from both the
leading α1 and τ̃p-dependent gs corrections to K in (5.40) together with the single
instanton contribution in (5.43). They give rise to a scalar potential which depends
on τs, cs, τp and τb but not on the associated axions cp and cb since both Tp- and
Tb-dependent non-perturbative corrections toW are much more suppressed due to
the double exponential suppression of poly-instanton e�ects and the exponentially
large value of τb � V2{3. These Op1{V3q contributions alone would yield an AdS
minimum which breaks supersymmetry spontaneously [63, 225, 62]. Additional
contributions of the same order of magnitude can arise rather naturally from a
hidden D7 T-brane stack [73] or from anti-D3 branes at the tip of a warped throat
[65, 67, 70] and can be tuned to obtain a dS vacuum. The Kähler moduli develop
non-zero F-terms and mediate supersymmetry breaking to each open string sector
via gravitational interactions. Matter �elds on the D7-stack are unsequestered, and
so acquire soft masses of order m3{2. After using the vanishing D-term condition
to write |φ| in terms of τ̃p, the resulting F-term potential for the matter �elds also
scales as Op1{V3q. Thus the full Op1{V3q scalar potential behaves as:
VOp1{V3q � V α1

F pVq � V gs
F pV , τ̃pq � V E3

F pτs, cs,Vq � V matter
F pV , τ̃pq � VuppVq . (5.55)

All these Op1{V3q contributions take the following precise form:

V α1
F pVq �

3 ζ

32π
?
gs

W 2
0

V3
, V gs

F pV , τ̃pq �
3 gs λp
64π

�
gsC

KK

p

�2 W 2
0

V3
a
τ̃p
,

V E3

F pτs, cs,Vq � 4gsπA
2
s

3λs

?
τs e

�4πτs

V � gsAs cosp2πcsqW0 τs e
�2πτs

V2
,

V matter
F pV , τ̃pq � m2

3{2
|φ|2

RepSq �
3 gs λp
64πzp

W 2
0

a
τ̃p

V3
, (5.56)

where the string loop potential includes only the leading Kaluza-Klein contribution
from Kgs in (5.40) which is given by [61]:

V gs
F pV , τ̃pq �

� gs
8π

	 �
gsC

KK

p

�2 W 2
0

V2

B2K

Bτ 2
p

,

and in V matter
F we substituted the relation (5.51) which expresses |φ| in terms of τ̃p.

Summing up the four contributions in (5.56), the total scalar potential at Op1{V3q
has a minimum at (for 2πτs " 1):

cs � k � 1

2
with k P Z , V � 3λs

8πAs
W0

?
τs e

2πτs , (5.57)

τs �
�

ζ

2λs


2{3
1

gs
p1� εq � 1

gs
, τ̃p � zp pgsCKK

p q2 � 1

gs
,
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for CKK
p � g

�3{2
s " 1 and:

ε �
�

2λp
3ζzp



g3{2
s

a
τ̃p � g5{2

s CKK

p � gs ! 1 . (5.58)

Notice that the condition τ̃p " zp in (5.54), which ensures that the closed string
axion cp is not eaten up by the anomalous Up1q on the D7-stack and so can play

the rôle of DM, can be easily satis�ed if CKK
p � g

�3{2
s " 1. We point out that the

coe�cients of the string loop corrections are complex structure moduli dependent,
and so their values can be tuned by appropriate choices of background �uxes.
Therefore for zp � Op1q, τ̃p � τs � τp � g�1

s " 1. This behaviour justi�es also the
scaling of the small parameter ε in (5.58).

As stressed above, this minimum is AdS but can be uplifted to dS via sev-
eral di�erent positive de�nite contributions. Two examples which emerge rather
naturally in type IIB �ux compacti�cations are T-branes [73] or anti-D3 branes
[65, 67, 70].

5.5.3 Stabilisation at Op1{V3�pq

Taking into account all contributions to the scalar potential up to Op1{V3q,
there are still four �at directions: the charged matter �eld |C|, the open string
axion θ and the two closed string axions cp and cb. We shall now show how to
stabilise the DM axion cp and |C| which sets the decay constant of the ALP θ
and �xes τqi from (5.51). The bulk closed string axion cb receives scalar potential
contributions only from Tb-dependent non-perturbative corrections, and so it is
almost massless: mcb � mτb e

�π V2{3 � 0.
The closed string axion cp and the open string matter �eld |C| receive a

potential respectively via poly-instanton corrections to the e�ective action and
soft supersymmetry breaking terms. As we shall see below, these terms scale as
Op1{V3�pq with p ¡ 0. The only exception which leads to p � 0 is the case where
�avour D7-branes desequester the open string sector on the D3-brane at a singu-
larity. However, as shown in Sec. 5.4.2, these e�ects would not modify the VEV
of |C| which sets the open string axion decay constant, and so, without loss of
generality, we shall consider just the sequestered case. The resulting Op1{V3�pq
scalar potential looks schematically as (showing again just the dependence on the
�elds which get stabilised at this order in the inverse volume expansion of V ):

VOp1{V3�pq � V poly
F pcsq � V matter

F p|C|q . (5.59)

The leading order expression of the C-dependent soft supersymmetry breaking
terms is given by (5.10). A more complete expression in terms of the canonically
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normalised �eld Ĉ � |Ĉ| eiθ �
a
K̃ C (see Sec. 5.6.1 for more details) is (the ci's

are Op1q coe�cients) [78]:

VF p|Ĉ|q � c2m
2
0|Ĉ|2� c3A|Ĉ|3� c4λ|Ĉ|4�Op|Ĉ|5q� c5

τ 2
qi

V3

�
1�O

�
1

V


�
, (5.60)

where the �rst three terms originate from expanding the F-term potential in powers
of |Ĉ| up to fourth order, whereas the last term comes from the fact that the τqi-
dependent term in (5.40) breaks the no-scale structure. Using (5.51) we can rewrite
the last term in (5.60) in terms of |Ĉ| and parameterising the soft terms in Planck
units as m0 � V�α2 , A � V�α3 and λ � V�α4 , we obtain (up to fourth order in
|Ĉ|):

VF p|Ĉ|q � c2

Vα2
|Ĉ|2 � c3

Vα3
|Ĉ|3 � k4

Vα4
|Ĉ|4 with k4 � c4λ�

4c5z
2
qi

V1�α4
. (5.61)

If the soft masses are non-tachyonic, the VEV of the matter �eld |Ĉ| is zero, and
so the open string axion θ cannot play the rôle of the ALP aALP which gives the 3.5
keV line by converting into photons in astrophysical magnetic �elds. On the other
hand, as explained in Sec. 5.4.2, if c2   0 |Ĉ| can develop a non-vanishing VEV.
Open string modes living on D3-branes localised at singularities are geometrically
sequestered from the sources of supersymmetry breaking in the bulk, resulting in
α3 � 2, α4 � 1 and α2 � 3{2 or α2 � 2 depending on the exact moduli dependence
of K̃pert in (5.42) and the details of the uplifting mechanism to a dS vacuum

[77, 79]. The VEVs of |Ĉ| and τqi from (5.51) are therefore:

α2 � 3

2
case: |Ĉ| � faALP �

Mp

V ô τqi �
2 zqi
V ! zqi , (5.62)

α2 � 2 case: |Ĉ| � faALP �
Mp

V2
ô τqi �

2 zqi
V3

! zqi , (5.63)

where we have identi�ed the open string axion θ with the ALP aALP � faALP θ.
Notice that the ALP decay constant in (5.62) reproduces exactly the ALP coupling
to gauge bosons in (5.12) while the faALP in (5.63) gives the coupling in (5.13).
We stress that (5.62) and (5.63) show also how the condition τqi ! zqi in (5.54)
is easily satis�ed for 1{V ! 1. This ensures that the blow-up mode τqi is indeed
collapsed to a singularity. Let us remind the reader that i can be either i � 2 or
i � 3. When τq1 and τq2 are identi�ed by the orientifold involution, an open string

axion is the standard QCD axion aQCD while the other is aALP with |Ĉ| a Standard
Model gauge singlet with a large VEV. On the other hand, when the two blow-up
modes τq1 and τq2 are separately invariant under the involution, Ĉ belongs to a
hidden sector and, as described in Sec. 5.4.2, its axion θ has a coupling to ordinary
photons of the form (5.17) which is induced by Up1q kinetic mixing.
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The axionic partner cp of the Kähler modulus τp which controls the volume of
the Wilson divisor supporting poly-instanton e�ects, receives the following scalar
potential contributions from the second term in (5.43) with Ap Ñ Apφ

n and n �
qp{qφ:

V poly
F pcpq � �2gsπAsApφ

n

�
8p1� xqπAs

3λs
cosp2πcpq?τs e�2πτs

� W0 cosr2πpcs � cpqs pp1� xqτs � τ̃pq
V

�
e�2πτs e�2πτp

V ,

which, after using the �rst D-term relation in (5.51) and substituting the VEVs in
(5.57), reduces to (setting without loss of generality φ � |φ| with ψ � 0):

V poly
F pcpq � A

V3�p cosp2πcpq , (5.64)

where:

A � 3gsλsAp
4

�
3λpC

KK
p

8
?
zp


n{2 �3λs
?
τs

8πAs


κ

τ̃p
?
τsW

2�κ
0 ,

with:
κ � τp

τs
¡ 0 and p � n

2
� κ ¡ 0 . (5.65)

Therefore the DM axion cp is stabilised at Op1{V3�pq at cp � 1{2 � k with k P Z
and A ¡ 0.

5.6 Mass spectrum and couplings

In this section we shall �rst determine the expressions for all canonically nor-
malised �elds and their mass spectrum, and then we will compute the strength of
the coupling of the light DM axion cp to the open string ALP θ which is induced
by non-perturbative corrections to the matter Kähler metric in (5.42).

5.6.1 Canonical normalisation

Similarly to the scalar potential, also the kinetic Lagrangian derived from the
Kähler potential for the moduli given by the three terms in (5.40) and for the mat-
ter �elds given by (5.41), can be organised in an expansion in 1{V ! 1. Hence the
kinetic terms can be canonically normalised order by order in this inverse volume
expansion. The detailed calculation is presented in App. C.2 and here we just
quote the main results which are useful to work out the strength of the DM-ALP
coupling. The expressions for the canonically normalised �elds at leading order
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look like (the moduli and the matter �elds are dimensionless while canonically
normalised scalar �elds have standard mass dimensions):

|Ĉ|
Mp

�
a

2K̃|C| , aALP � |Ĉ|θ � faALP θ ,
|φ̂|
Mp

�
b

2
RepSq |φ| ,

φb
Mp

�
b

3
2

ln τb ,
ab
Mp

�
b

3
2
cb
τb
, φs

Mp
�
b

4λs
3V τ

3{4
s ,

φqi
Mp

� τqi?
V (5.66)

as
Mp

�
b

3λs
4V?τs cs ,

φ̃p
Mp

�
b

4λp
3V τ̃

3{4
p , ãp

Mp
�
c

3λp

4V
?
τ̃p
c̃p ,

where we did not include the axions ψ and cqi which are eaten up by two anomalous
Up1q's on the D7- and D3-brane stack respectively. Notice that the Kähler modulus
Tp � τp � i cp is given by the following combinations of the canonically normalised
�elds Φs � φs � i as and Φ̃p � φ̃p � i ãp:

τp � τ̃p � xτs �
�

3V
4


2{3
�
� 1

λ
2{3
p

�
φ̃p
Mp

�4{3

� x

λ
2{3
s

�
φs
Mp


4{3
�
� , (5.67)

and:

cp � c̃p � xcs �
c

4V
3

�
τ̃

1{4
pa
λp

ãp
Mp

� xτ
1{4
s?
λs

as
Mp

�
. (5.68)

5.6.2 Mass spectrum

The mass matrix around the global minimum and its eigenvalues are derived
in detail in App. C.3. Here we just show the leading order volume scaling of
the mass of all moduli and charged matter �elds for gs � 0.1 (in order to trust
our approach based on perturbation theory) and V � 107. As explained in Sec.
5.4.2, this choice of the internal volume leads naturally to TeV-scale soft terms
for sequestered scenarios with D3-branes at singularities, while it guarantees the
absence of any cosmological moduli problem for unsequestered cases with �avour
D7-branes. The resulting mass spectrum looks like:
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mcqi
� mτqi

� mψ � m|φ| �Ms � g1{4
s

?
π
Mp?
V
� 1015 GeV ,

mτs � mcs �
c
gs
8π

Mp

V lnV � 1011 GeV ,

m3{2 �
c
gs
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Mp

V � 1010 GeV ,

mτ̃p �
c
gs
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� 109 GeV ,
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8π

Mp
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c
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8π

Mp

V2
� 1 TeV , (5.69)

mcp �
c
gs
8π

Mp

V1�p{2
?

lnV � 10 keV for p � 9

2
,

mθ � Λ2
hid

faALP
À 10�12 eV ,

mcb �
c
gs
8π

Mp

V2{3 e
�π V2{3 � 0 ,

where we focused on the sequestered case with α2 � 2 illustrated in Sec. 5.5.3
and Λhid represents the scale of strong dynamics in the hidden sector which gives
mass to the open string axion θ � aALP{faALP whose decay constant is faALP �
|Ĉ| �Mp{V2. As explained in Sec. 5.4.2, this decay constant leads to a coupling to
hidden photons controlled by the scaleMhid � 106 GeV that can yield a coupling to
ordinary photons via Up1q kinetic mixing given by (5.17) which can be naturally
suppressed by an e�ective scale of order M � 1012 GeV. Notice that the DM
axion cp can acquire a mass from poly-instanton e�ects of order mcp � 10 keV if
p � n

2
� κ � 9

2
, which can be obtained for any Op1q value of n by appropriately

choosing the �ux dependent underlying parameters so that κ � τp
τs
� 1

2
p9� nq.

5.6.3 DM-ALP coupling

As shown by the mass spectrum in (5.69) and by the coupling to ordinary
photons in (5.17), the open string axion θ is a natural candidate for the ALP
mode aALP which converts into photons in the magnetic �eld of galaxy clusters and
generates the 3.5 keV line. However a monochromatic line requires the decay into a
pair of ALP particles of a DM particle aDM with mass mDM � 7 keV. According to
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the mass spectrum in (5.69) aDM could be either the local closed string axion
cp or the bulk closed string mode cb (if Tb-dependent non-perturbative e�ects
do not suppress its mass too much). We shall now show that non-perturbative
corrections to the matter Kähler metric in (5.41) can induce a coupling of the
form aDM

Λ
BµaALPBµaALP due to kinetic mixing between the closed string axion aDM

and the open string axion aALP . We shall also work out the value of the coupling
Λ, �nding that it can lie around the Planck/GUT scale only if the DM particle
is the local axion cp (cb would give a trans-Planckian Λ). Finally we will explain
how in our model a direct DM decay to photons induced by potential couplings of
the form aDM

4MDM
F µνF̃µν is naturally suppressed by construction.

In order to compute the DM-ALP coupling, let us focus on contributions to
the kinetic Lagrangian of the form:

Lkin � B2K

BCBC̄ BµCBµC̄ � K̃pTi, T̄iq
�Bµ|C|Bµ|C| � |C|2 BµθBµθ� . (5.70)

If we now expand the closed string axions ci and the charged open string mode
C � |C| ei θ around the minimum as:

cipxq Ñ xciy� cipxq , |C|pxq Ñ x|C|y � |Cpxq| , θpxq Ñ xθy� θpxq , (5.71)
the kinetic terms (5.70) become:�
xK̃y �Bi e

�biτi
�

cospbixciyqbi
2
ĉ2
i � sinpbixciyq biĉi


� �Bµ|C|Bµ|C| � |C|2 BµθBµθ� .
(5.72)

If we now express the open string mode C in terms of the canonically normalised
�elds Ĉ and aALP using (5.66), (5.72) contains DM-ALP interaction terms of the
form:

Bi

2xK̃y e
�bixτiy

�
cospbixciyqbi

2
ĉ2
i � sinpbixciyq bi ĉi



BµaALPBµaALP , (5.73)

showing that, in order to obtain a three-leg vertex which can induce a two-body
DM decay into a pair of ultra-light ALPs, the VEV of ci has to be such that
bixciy � p2k � 1qπ

2
with k P Z. Let us therefore focus on this case and consider

separately the two options with either i � b or i � p:

� i � b case: Plugging in (5.73) the canonical normalisation for cb from (5.66),
we �nd a DM-ALP coupling of the form:

ab
Λ
BµaALPBµaALP with Λ �

?
6xK̃y
Bbbb

ebbxτby

xτby Mp � ebbV
2{3

Bb V4{3 Mp "Mp ,

(5.74)
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which reproduces the value of Λ in (5.21) for aDM � cb. According to the
phenomenological constraints discussed in Sec. 5.4.1, cb cannot play the rôle
of the DM particle since the scale of its ALP coupling is trans-Planckian.

� i � p case: Writing bp � 2π
N

and using the fact that the minimum for cp lies
at xcpy � 1

2
� k1 with k1 P Z, the condition bpxcpy � p2k2 � 1qπ

2
with k2 P Z

can be satis�ed if N
2
� p2k1�1q

p2k2�1q . Hence in the simplest case with k1 � k2 � 0

we just need N � 2. Plugging in (5.73) the canonical normalisation for cp
from (5.68), the DM-ALP coupling turns out to be:

ãp
Λ
BµaALPBµaALP with Λ �

a
3λp

τ̃
1{4
p

xK̃y
Bpbp

ebpxτpy?
V

Mp � Mp

Bp V7{6�κ{N ,

(5.75)
which reproduces the value of Λ in (5.21) for aDM � cp. This scale of the
DM-ALP coupling can easily be around the Planck/GUT scale. For example
if N � 2 and the underlying parameters are chosen such that κ � τp{τs � 2,
Λ � Mp{V1{6 � 1017 GeV for V � 107 and Bp � Op1q. Due to the poly-
instanton nature of the non-perturbative e�ects supported by the Wilson
divisor Dp, the prefactor Bp can however be exponentially small. Comparing
Tp-dependent poly-instanton corrections to the superpotential in (5.43) with
Tp-dependent non-perturbative corrections to the matter Kähler metric in
(5.42), Bp at the minimum could scale as Bp � OpV�1q. In this case Λ can
be below the Planck scale only if κ ! N .

Let us conclude this section by showing that the branching ratio for direct DM
decay into ordinary photons is negligible. Using the fact that the gauge kinetic
function for the D7-stack is given by fD7 � Ts�Tp (we neglect the �ux dependent
shift) and the canonical normalisation (5.68), the closed string axion cp � xcpy� ĉp
couples to Abelian gauge bosons living on the hidden D7-stack via an interaction
term of the form:

ĉp
4 pxτsy � xτpyq F

µν
hidF̃

hid
µν � ãp

4Ms

F µν
hidF̃

hid
µν . (5.76)

One-loop e�ects generate a kinetic mixing between hidden photons on the D7-stack
and ordinary photons on the D3-stack which is controlled by the mixing parameter
χ � 10�3 given in (5.16). Thus the DM axion cp develops an e�ective coupling to
visible sector photons which from (5.17) looks like:

ãp
4MDM

FµνF̃
µν � χ2 ãp

4Ms

FµνF̃
µν ô MDM � Ms

χ2
� 105 Mp?

V
� 1020 GeV ,

(5.77)
which is naturally much larger than the scale Λ controlling the DM coupling to
ALPs.
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5.7 Conclusions

In this Chapter we described how to perform a successful global embedding in
type IIB string compacti�cations of the model of [17] for the recently observed 3.5
keV line from galaxy clusters. The main feature of this model is the fact that the
monochromatic 3.5 keV line is not generated by the direct decay of a 7 keV dark
matter particle into a pair of photons but it originates from DM decay into ultra-
light ALPs which subsequently convert into photons in the cluster magnetic �eld.
Therefore the �nal signal strength does not depend just on the DM distribution
but also on the magnitude of the astrophysical magnetic �eld and its coherence
length which, together with the ALP to photon coupling, determine the probability
for ALPs to convert into photons. These additional features make the model of
[17] particularly interesting since it manages to explain not just the observation
of a 3.5 keV line from galaxy clusters but also the morphology of the signal (e.g.
the intensity of the line from Perseus seems to be picked at the centre where the
magnetic �eld is in fact more intense) and its non-observation in dwarf spheroidal
galaxies (due to the fact that their magnetic �eld is not very intense and has a
relatively small spatial extension). These phenomenological features seem to make
this model more promising than standard explanations where DM directly decays
into a pair of photons.

Despite this observational success, the model of [17] for the 3.5 keV line did
not have a concrete microscopic realisation. In this Chapter we �lled this gap
by describing how to construct an explicit type IIB Calabi-Yau compacti�cation
which can reproduce all the main phenomenological features of the DM to ALP
to photon model. We focused in particular on LVS models since they generically
lead to very light axions because some of the moduli are stabilised by perturbative
corrections to the e�ective action. The DM particle is realised as a local closed
string axion which develops a tiny mass due to poly-instanton corrections to the
superpotential. By an appropriate choice of background and gauge �uxes, the DM
mass can be around 7 keV. The ultra-light ALP is instead given by the phase of an
open string mode living on D3-branes at singularities. The ALP decay constant is
set by the radial part of this open string mode which is charged under an anomalous
Up1q. Thus the radial part gets �xed in terms of a moduli-dependent FI-term. In
sequestered models with low-energy supersymmetry, the resulting decay constant
is naturally in the right ballpark to reproduce a coupling to ordinary photons via
Up1q kinetic mixing which is around the intermediate scale, in full agreement with
current observations. Notice that future helioscope experiments like IAXO might
be able to detect ultra-light ALPs with intermediate scale couplings to photons
[240]. Moreover the DM-ALP coupling is generated by kinetic mixing induced
by non-perturbative corrections to the Kähler potential. For suitable choices of
the underlying �ux dependent parameters, the scale which controls the associated



5.7. CONCLUSIONS 221

coupling can be around the GUT/Planck scale, again in good agreement with
present observational constraints.

We discussed in full depth moduli stabilisation, the mass spectrum and the
resulting strength of all relevant couplings but we just described the geometrical
and topological conditions on the underlying Calabi-Yau manifold without pre-
senting an explicit example built via toric geometry. This task is beyond the scope
of our work, and so we leave it for future work. Let us however stress that the
construction of a concrete Calabi-Yau example with all the desired features for a
successful microscopic realisation of our model for the 3.5 keV line is crucial to
have a fully trustworthy scenario. Moreover it would be very interesting to have
a more concrete computation of non-perturbative corrections to the 4D N � 1
Kähler potential.

Another aspect which would deserve further investigation is the cosmological
history of our setup from in�ation to the present epoch. Here we just point out that
the rôle of the in�aton could be played by a small blow-up mode like τs [137, 136].
On the other hand, reheating might be due to the volume mode τb which gets
displaced from its minimum during in�ation [122] and later on decays giving rise
to a reheating temperature of order Trh � 1� 10 GeV [128]. Such a low reheating
temperature would dilute standard thermal WIMP dark matter and reproduce it
non-thermally [128]. Given that in sequestered models with uni�ed gaugino masses
the WIMP is generically a Higgsino-like neutralino with an under-abundant non-
thermal production in vast regions of the underlying parameter space [129, 254],
an additional DM component in the form of a very light axion like cp would be
needed. Finally one should make sure that tight dark radiation bounds are satis�ed
since τb could decay both to a pair of ultra-light closed string axions cb and to a
pair of DM axions cp which could behave as extra neutrino-like species [14, 126].
Notice however that the decay of τb to open string axions θ living on D3-branes at
singularities is negligible since it is highly suppressed by sequestering e�ects [14].
The DM axions cp are produced non-thermally at the QCD phase transition via
the standard misalignment mechanism. Given that the decay constant of the local
closed string axion cp is of order the string scale which from (5.69) is rather high,
i.e. Ms � 1015 GeV, axion DM overproduction can be avoided only if the initial
misalignment angle is very small. This might be due to a selection e�ect from the
in�ationary dynamics [255]. We �nally stress that if in�ation is driven by a blow-
up mode like τs, the Hubble scale during in�ation is rather low, H � mτb � 106

GeV, and so axion isocurvature perturbations would not be in tension with CMB
data [256].
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Chapter 6

Axion In�ation and

electro-magnetic dissipation

6.1 Introduction

Axion-like particles are among the prime candidates for particle physics im-
plementations of cosmic in�ation. Protected by an approximate shift-symmetry,
these Pseudo Nambu Goldstone Bosons naturally come with a su�ciently �at
scalar potential to support slow-roll in�ation and to be protected against quantum
corrections. Many concrete realizations of axion in�ation in �eld theory have been
proposed beginning with Ref. [257], for axions in string theory see [258, 167].

As already seen in the previous Chapters, in the context of string theory, axion-
like particles can naturally emerge as closed and open string axions. These particles
may receive a mass through non-perturbative corrections due to world-sheet instan-
tons, gaugino condensation on space-time �lling D-branes and euclidian D-branes.
Thanks to these corrections the classical continuous shift symmetry is broken to
a discrete shift symmetry, usually involving a cosine potential. It is widely known
that, in order to get a prolonged in�ation with just one axion playing the rôle of
the in�aton, the decay constant associated to this �eld should be trans-Planckian.
Examples of axions showing this feature have not been found in a controlled string
compacti�cation. For instance, considering C4 axions, the largest decay constants
are related to large cycles that parametrise the overall volume. In such cases we
have that the eigenvalues of the Kähler metric in Eqs. (2.176),(2.177) are given
by λi � τ�1 implying that f � Mp{τ . Having a trans-Planckian decay constant
would require τ ! 1 but such small 4-cycles volumes are not consistent with the
EFT approach since α1 expansion is not under control. The reason why it is not
easy to evade the condition f ÀMp is summed up in the weak gravity conjecture
and its applications to axion �elds [108, 259]. In the case of a single axion �eld it
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states that fS À Mp, where S is the action of an instanton coupled to the axion
�eld. Indeed, if we want a single axion �eld to be the in�aton, its potential needs
to satisfy the constraints coming from COBE normalisation and the �eld mass can
not become arbitrarily small; since the instanton action S is related to the axion
mass, setting a bound such as Sf ÀMp puts severe constraints on model building.
In addition, these models need a trans-Planckian �eld range excursion during in-
�ation that would be in contrast with the in�nite distance swampland conjecture
[260]. As already mentioned in Sec. 2.4.2, a way to overcome the problem related
to the magnitude of the decay constant can be considering a system of two or
more axions, each with a sub-Planckian decay constant, where moduli stabilisa-
tion allows a combination of the �elds to enjoy an e�ective trans-Planckian decay
constant [109, 112, 110]. However we need to mention that such models may not
be under control since they show problems related to dS entropy [261] and moduli
stabilisation [113]. The second problem related to �eld space distance travelled
by the in�aton can be softened through electro-magnetic dissipation, introducing
a coupling with a Up1q gauge �eld [262]. This coupling to (hidden-)photons and
its phenomenological consequences are precisely what we are going to investigate
in the present Chapter, focusing in particular on the quantitative analysis of the
electro-magnetic backreaction e�ects on the in�ationary trajectory. Due to the
large amount of computational work, we restrict ourselves to a toy model given
by a single axionic in�aton showing a quadratic potential and a trans-Planckian
decay constant.

The shift-symmetry of the axion-like in�aton Φ allows for a derivative coupling
to the �eld strength tensor Fµν of a (dark) gauge sector,

Lint � �
?�g
4f

ΦFµνF̃
µν , (6.1)

with f denoting the axion decay constant and for simplicity, we will consider
Fµν to describe a hidden sector abelian gauge group, i.e. a dark photon.1 This
interaction triggers a tachyonic instability of the dark photon driven by the velocity
9Φ of the in�aton, leading to an exponential production of dark photons [265, 266,
267]. The resulting non-thermal gauge �eld distribution backreacts on the in�aton,
dampening its motion. At the same time, the gauge �elds act as a source of scalar
and tensor perturbations [268, 269, 270, 271], in addition to the standard vacuum
�uctuations ampli�ed during cosmic in�ation. These perturbations can be probed
by CMB observations [268, 272], searches for primordial black holes [273, 274,

1If the theory contains particles charged under this Up1q (as is e.g. the case for the Standard
Model hypercharge), these particles must be included in the analysis if they are su�ciently light,
as they will be produced via Schwinger production from the vacuum, thereby signi�cantly damp-
ing the gauge �eld production. On the contrary, the impact of heavier particles is exponentially
suppressed and they can be safely integrated out [263, 264].
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275, 276] and gravitational wave experiments [271, 277, 278, 279], rendering axion
in�ation not only a theoretically well motivated but also an experimentally testable
proposal for cosmic in�ation [269].

In this work we have a closer look at the backreaction of the gauge �eld distribu-
tion on the in�aton equations of motion. Since this determines the evolution of the
homogeneous in�aton �eld, this has a crucial impact on all potential observables
of this framework and may in�uence the required in�ationary �eld excursion. The
interaction (6.1) results in a friction term in the background equation of motion
for Φ which is proportional to xFF̃ y. In Fourier space, this non-linear interaction
involves an integral over all relevant Fourier modes of the gauge �eld, leading to
a integro-di�erential system describing the evolution of the gauge �eld modes and
the homogeneous component of the in�aton.

In many previous works, this system is solved by assuming the in�aton ve-
locity to be constant in the gauge �eld equation of motion (see e.g. [269]), moti-
vated by the usual slow-roll approximation employed in cosmic in�ation. However,
since the gauge �eld enhancement and hence the backreaction on the in�aton
are exponentially sensitive to this velocity, this approximation becomes invalid
in the phenomenologically interesting regime of sizable gauge �eld production.
Recently, several alternative approaches have been put forward. Lattice simula-
tions [280, 281, 282], focusing mainly on the preheating phase, accurately capture
the backreaction but are limited in the amount of time evolution that can be
tracked. Ref. [283] proposed a gradient expansion of the generated electric and
magnetic �eld. Self-consistent numerical solutions of the integro-di�erential sys-
tem have been obtained in Refs. [284, 285, 286]. These latter studies noted the
appearance of remarkable oscillatory features in the in�aton velocity. In this work,
we reproduce these �ndings and quantitatively explain the occurring resonance
phenomenon based on semi-analytical arguments. Since the enhancement of the
gauge �eld modes is most sensitive to the in�aton velocity around horizon crossing
whereas the backreaction is dominated by super-horizon gauge �eld modes, the
system responds with a time delay to a change in the in�aton velocity. This time
delay is logarithmically sensitive to the in�aton velocity. As the in�aton velocity
increases during the course of in�ation the system hits its resonance frequency,
leading to strong oscillations in the amplitude of xFF̃ y as a function of time. This
crucially impacts both the background equation of motion as well as the generation
of scalar and tensor perturbations.

The power spectrum of scalar perturbations can be obtained by solving the
linearized inhomogeneous equation of motion for the in�aton �eld taking into ac-
count the backreaction and source terms proportional to FF̃ . In the pioneering
works [262, 268, 270, 273] this task has been solved in the weak and very strong
backreaction regime. Here we extend these results to arbitrary in�aton gauge �eld
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couplings by numerically determining the Greens function including the backre-
action term. We report two important results. Firstly, for a smoothly growing
xFF̃ y, we �nd that the analytical estimate in [262] signi�cantly overestimates the
backreaction compared to our full numerical results. As a result, the actual power
spectrum is signi�cantly enhanced compared to previous estimates. Consequently,
a large primordial black hole (PBH) abundance can be generated, leading to an
early PBH dominated phase. Requiring the transition to radiation domination to
occur before the onset of big bang nucleosynthesis imposes stringent constraints on
the parameter space. Secondly, for an oscillating xFF̃ y as found in the numerical
solution of the background equation of motion, the scalar power spectrum features
prominent peaks which, for suitable parameters, may lead to a PBH population
peaked at logarithmically equidistant masses, accompanied by a gravitational wave
spectrum with similar features. This would be a smoking gun signature of the res-
onance phenomenon inherent to axion in�ation.

This Chapter is organized as follows. In Sec. 6.2 we review the mechanism of
axion in�ation. Sec. 6.3 explains the resonance inherent to this coupled system
of di�erential equations and provides analytical estimates for the relevant time
scales, which are further re�ned in appendix D.1. This is numerically con�rmed
by our numerical results presented in Sec. 6.4 for two exemplary values of the axion
decay constant. Based on these results for the background evolution, we compute
the power spectrum of scalar �uctuations in Sec. 6.5 before concluding in Sec. 6.6.
Details on our numerical procedure as well as on the comparison with previous
works can be found in appendices D.2 and D.4, respectively.

6.2 In�ationary dynamics

We consider a pseudo-scalar Φ coupled to the �eld strength tensor Fµν of an
abelian gauge group through a shift-symmetric coupling (see e.g. [269] for a review),

L?�g � �1

2
BµΦBµΦ� 1

4
FµνF

µν � V,Φ � 1

4 f
ΦFµνF̃

µν . (6.2)

Here V pΦq is a scalar potential explicitly breaking the shift-symmetry of Φ and
F̃ µν � εµνρσFρσ{p2?�gq with ε0123 � 1 is the dual �eld strength tensor. Working
in quasi de-Sitter space we introduce the time variable

N �
»
Hdt , (6.3)

where H � 9a{a denotes the (approximately constant) Hubble parameter. In the
separate Universe picture, the number of e-folds N elapsed in a time interval rt1, t2s
between two equal-density hyper surfaces varies by δN between `separate', locally
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homogeneous universes, accounting for the inhomogeneities in our primordial Uni-
verse [287, 288, 182, 289]. Expanding2

Φ � ΦδN�0 � BΦ

BN
����
δN�0

δN � φ� δφ (6.4)

we obtain the equation of motion for the homogeneous part

φ2 � H 1

H
φ1 � 3φ1 � V,φ

H2
� 1

fH2
x ~E ~By � 0 , (6.5)

with 1 � B{BN and x. . . y denoting the average over many universes, thus selecting
the globally homogeneous contribution.3

Turning to the gauge �elds, the CP -odd nature of FµνF̃
µν will be most trans-

parent when expanding in Fourier-modes of the comoving vector potential in the
chiral basis,

~Apτ, ~xq �
»

d2k

p2πq3{2
¸
σ��

�
Aσpτ,~kqêσpk̂qâp~kqei~k~x � A�

σpτ,~kqê�σpk̂qâ:p~kqe�i~k~x
�
,

(6.6)

with the polarization tensors obeying êσpk̂q � ~k � 0, êσpk̂q � êσ1pk̂q � δσσ1 and

i~k � êσpk̂q � σkêσpk̂q where ~k � |~k|k̂ � k k̂, â (â:) denoting the annihilation
(creation) operators and dτ � dt{a denoting conformal time. In this basis, the

equation of motion for the Fourier coe�cients Aσpτ,~kq is obtained as

d2A�pτ,~kq
dτ 2

� �
k2 � 2λξkaH

�
A�pτ,~kq � 0 with ξ � λφ1

2f
¡ 0 , (6.7)

where λ � signpφ1q. For a su�ciently large in�aton velocity the e�ective mass term
in the square brackets for the helicity mode with σ � �λ undergoes a tachyonic
instability, leading to an exponential enhancement. These gauge �elds backreact
on the in�aton equation of motion. The physical electric and magnetic �elds
entering in (6.5) are obtained as

~E � � 1

a2

d ~A

dτ
, ~B � 1

a2
~∇� ~A , (6.8)

2Here we are dropping terms of OpδN2q, assuming δN ! 1. Moreover, throughout this work,
we will neglect the spatial gradients of the in�aton �eld. As we will see later, due to the strong
enhancement of the scalar power spectrum in axion in�ation, this is a non-trivial limitation of
our analysis. To go beyond this and include strong spatial gradients of the scalar and gauge �eld
into the analysis would require moving beyond the δN -formalism, e.g. along the lines of the full
quantum formalism of [290].

3Here we assume a de�nite sign for the initial value of φ1. In a CP conserving universe this
corresponds to averaging over a �nite subset of Hubble patches.
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leading to

x ~E ~By � � λ

a4

»
dk

4π
k3 d

dτ

���A�λpτ,~kq
���2 , (6.9)

and the energy density

B
E2 �B2

2

F
� 1

a4

»
dk

4π2
k2

�
�
�����dA�λpτ,~kq

dτ

�����
2

� k2
���A�λpτ,~kq

���2
�

 , (6.10)

where we have considered only the dominant, enhanced helicity mode. In summary,
Eqs. (6.5), (6.7) and (6.9), together with the Friedmann equation

3H2M2
P � V pφq � 1

2
H2pφ1q2 �

B
E2 �B2

2

F
, (6.11)

form a closed, integro-di�erential system of equations describing the gauge �eld
production induced by the motion of the in�aton, taking into account the backre-
action of these gauge �elds.

6.3 Resonant gauge �eld production

In the limit of quasi de-Sitter space-time, τ � �1{paHq, and for constant ξ,
Eq. (6.7) can be solved exactly. For the enhanced mode, this yields

A�λpτ,~kq � eπξ{2?
2k
W�iξ,1{2p2ikτq . (6.12)

Here Wk,mpzq denotes the Whittaker function and we have imposed Bunch Davies
vacuum as an initial condition for far sub-horizon modes. Inserting this into
Eqs. (6.9) and (6.10) yields

x ~E ~By � � λe2πξ

221π2ξ4
H4

» xuv

0

x7e�xdx � �2.4 � 10�4 λH4 e
2πξ

ξ4
, (6.13)

and B
E2 �B2

2

F
� e2πξ

219π2ξ3
H4

�» xuv

0

x6e�xdx� 1

p23ξq2
» xuv

0

x8e�xdx
�

� 1.3 � 10�4H4 e
2πξ

ξ3
, (6.14)
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Figure 6.1: Blue dash: The square of the gauge �eld mode |A�λpτ,~kq|2. Red

solid: The x ~E ~By integrand k4 d
dτ
|A�λpτ,~kq|2. Both curves are evaluated at τ � �1,

and displayed as a function of wavenumber, such that ln
�
k
aH

� � 0 corresponds
to a horizon sized mode. Left vertical line: wavenumber (or number of e-folds

after horizon crossing) of the maximal exponential growth of |A�λpτ,~kq|2. Right

vertical line: The x ~E ~By integrand gets its dominant contribution at about ∆Nξ

later. Here we have set ξ � 5.

with xuv � 2ξ ensuring the cut-o� of the UV divergence. The last equality is valid
for ξ Á 3, smaller values of ξ require a more careful regularization scheme [291, 292].

We shall now provide arguments that once ξ becomes time-dependent, a second
time scale (besides H�1) appears, characterizing a resonance phenomenon with a
frequency in e-fold time of ωresN � 2π{∆Nξ. This resonance drives self-excited os-

cillations with frequency ωresN appearing in x ~E ~By.

Let us start our analysis by looking again at the gauge �eld Fourier mode
equation of motion (6.7). Rewriting this into e-fold time

dN � aHdτ ñ d2

dτ 2
� a2H2

�
d2

dN2
� p1� εq d

dN



, (6.15)

we get

A2
�p~kq � p1� εqA1

�p~kq �
k

aH

�
k

aH
� 2λξ



A�p~kq � 0 . (6.16)

In the remainder of this section, we will neglect all terms suppressed by the slow-
roll parameter ε � �H 1{H ! 1 . In our numerical analysis, described in Sec.
6.4, we keep all slow-roll corrections though. We see that the mode A�λ becomes
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tachyonic once k{paHq   2ξ , while it starts freezing out due to the friction
term A1

�λ taking over once k{paHq   1{p2ξq. We now look at the behaviour
of the mass term of the growing mode more closely. For constant ξ, the mass
terms takes its maximally negative value m̂2

�λ � �ξ2 at k{paHq � ξ since the
quadratic function of m2

�λ � k{paHq pk{paHq � 2ξq has zeroes at k{paHq � 0 and
at k{paHq � 2ξ. Hence, due the behaviour of the Whittaker function governing the
gauge �eld modes, the major part of the growth of A�λ out of the Bunch-Davies
initial conditions happens while k{paHq � ξ.

However, the integrand of x ~E ~By, due to the τ -derivative and the k4 prefactor,
takes its maximum contribution at approximately k{paHq � 2{ξ (see also Ap-

pendix D.1). This implies that x ~E ~By is dominated by modes whose `knowledge'
of the value of ξ governing their maximum growth period originates from about

∆Nξ � ln
ξ2

2
(6.17)

e-folds earlier. This is clearly visible in Fig. 6.1, where we see that the x ~E ~By inte-
grand k4 d

dτ
|A�λpτ,~kq|2 has its peak contribution about ∆Nξ after the time when

|A�λpτ,~kq|2 has its maximum exponential growth. Note, that in Fig. 6.1 we took
τ � �1 and expressed the wavenumber k as number of e-folds after horizon cross-
ing � ln k{aH. This means that the gauge modes are still sub-horizon at the time
of maximal growth (k{aH � ξ ¡ 1), but already super-horizon when they provide

the peak contribution to the x ~E ~By integrand (k{aH � 2{ξ   1).

Using this information, we can ask a simple question � how does x ~E ~By react
if we allow for a sudden step-like change of ξ at a certain moment of time? For
explicitness, let us assume that ξ � ξ0 changes to ξ0�∆ξ ¡ ξ0 at N � N0 suddenly.
At N � N0 the integral x ~E ~By gets its dominant contribution from modes A�λp~kq
with k{paHq � 2{ξ which had their growth happening ∆Nξ e-folds earlier. At that
time N0 �∆Nξ we still had ξ � ξ0 and hence

|x ~E ~ByN0 | � 2.4 � 10�4H4 e
2πξ0

ξ4
0

. (6.18)

Conversely, modes A�λp~kq with k{paHq � 2{ξ at N � N0 will grow towards their

plateau value and thus dominate x ~E ~By only starting at time N � N0 � ∆Nξ.
These modes experience their growth for N ¡ N0 when ξ ¡ ξ0. Hence, they will
approach a plateau governed by ξ � ξ0 �∆ξ and thus

|x ~E ~ByN0�∆Nξ | � 2.4 � 10�4H4 e
2πpξ0�∆ξq

pξ0 �∆ξq4 ¡ |x ~E ~ByN0 | . (6.19)
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Figure 6.2: Black solid: Numerically computed, and rescaled, response of x ~E ~By
to the change in ξ with signi�cant lag � ∆Nξ. Black dash: Almost step function
like change of ξ modeled as ξpNq � ξ0� ∆ξ

2
p1� tanhpµξpN �N0qqq with the jump

taking place at N0 � 3 from ξ0 � 5 with amplitude ∆ξ � 1 and steepness µξ � 10
(dashed black).

The transition from the initial plateau to the �nal plateau happens smoothly,
yet clearly the system shows `lag': It reacts to a sudden change in ξ by changing to
its new x ~E ~By value only with a time lag of about ∆Nξ. A numerical computation

of x ~E ~By displayed in Fig. 6.2 clearly con�rms this lag.

Assume now that instead of a sudden change, we provide ξ with a periodic
time dependence ξpN � 2π{ωNq � ξpNq with constant frequency ωN in e-fold

time. Clearly, x ~E ~By will now react with the same lag and thus oscillate with a
phase shift

∆α � ωN∆Nξ (6.20)

as long as this phase shift ∆α   2π.4 Clearly then, demanding ∆α � π as a
necessary condition for resonance (which can only occur if x ~E ~By couples back to
9φ, this we will discuss shortly), this de�nes a critical frequency

ω�N �
π

∆Nξ

. (6.21)

We can numerically compute the full x ~E ~By responding to a harmonic pertur-
bation of ξ around ξ̄ with frequency ωN . Figure 6.3 shows this for a frequency near

4To see this from the `sudden approximation' argument before, break up a periodic ξpNq into
small step-wise changes.



232 CHAPTER 6. AXION INFLATION

0 200 400 600 800 1000 1200

0.001

0.010

0.100

1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.8

0.9

1.0

1.1

1.2

Figure 6.3: Left: Numerically computed, and rescaled, response of x ~E ~By with
signi�cant lag (solid black) for a harmonic perturbation of ξ with near-critical fre-
quency ωN � ω�N (dashed black). Right: For much larger frequencies the response
averages out to zero. We chose ξ̄ � 5 and the oscillation amplitude ∆ξ � 1.

ω�N , and for a frequency much larger than ω�N . We see clearly, that at ωN � ω�N
there is strong response of x ~E ~By with lag. Moreover, at ωN � ω�N the lag corre-
sponds to a signi�cant phase shift, while for much larger frequencies the response
averages out to zero.

Finally, we can numerically determine the lag ∆Nξ occurring as a function of ξ.
This is shown in Fig. 6.4 for ωN � 0.2 and clearly shows (solid red line) the scaling
∆Nξ � lnpξ2{2q derived in Eq. (6.17). The re�ned estimate derived in App. D.1 is
depicted by the dashed red line. The oscillations visible at larger values of ξ are
not captured by the estimate (6.17), which was based on determining the di�er-

ence between the points of maximal growth and maximal contribution to x ~E ~By for
any given mode at constant ξ. For a periodically varying ξ these estimates receive
corrections, which depend in particular on the shape of the pulses in the periodic
function ξ.

At this point it becomes interesting to turn to our dynamically coupled system,
where the ξ-parameter is determined by the scalar �eld equation of motion

:φ� 3H 9φ� V,φ � 1

f
x ~E ~By � 0 . (6.22)

The driving force of the scalar potential V,φ is balanced by the sum of the Hubble
friction (second term) and the gauge-�eld induced friction (contained in the last

term), while the :φ only becomes relevant in the very last stages of in�ation. In
our full numerical solution which clearly displays a resonance (see Sec. 6.4) we can

observe that the oscillating parts of the two friction terms 3H 9φ and x ~E ~By (sourced
by the time-dependent part of ξ) cancel against each other at N À 60 where the
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Figure 6.4: Data points: The lag ∆Nξ for the numerically computed response of

x ~E ~By to a harmonic perturbation of ξ with frequency ωN � 0.2 as a function of
ξ. Solid red line: our estimate ∆Nξ � lnpξ2{2q in Eq. (6.17). Dashed red line:
re�ned estimate derived in App. D.1.

backreaction is not yet very strong, whereas V,φ, which depends only on φ but

not on 9φ, evolves to good approximation monotonously. This is clearly visible in
Fig. 6.5 where we plot the di�erent parts of the scalar �eld equation of motion
evaluated on the numerical solution for 1{f � 25, discussed in detail in Sec. 6.4.

We now parametrize ξ as ξ � ξ̄ �∆ξpNq with the long-time average ∆ξpNq �
1
N

³
dN∆ξpNq � 0, where an over-bar denotes averaging over time while all quan-

tities are implicitly containing an average over separate universes part of the δN
formalism (unless this average is written explicitly as x. . .y). Consequently, we can
recast the time dependent part of 9φ as ∆ξpNq and get approximately

6H2f

λ
∆ξ � 1

f
∆x ~E ~Byp∆ξq � 0 (6.23)

where x ~E ~By � x ~E ~By �∆x ~E ~By.
Now we use the properties of the background x ~E ~By given in Eqs. (6.9),(6.12)

to write

x ~E ~By � �λAEB (6.24)

where AEB ¡ 0 is a positive de�nite function. Assuming the oscillating part
∆x ~E ~By will not change the sign of the total x ~E ~By, we can then de�ne the split

of x ~E ~By into background and oscillatory part with a de�nite phase relative to the
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Figure 6.5: The contributions φ2 (black dash), BφV {H2 (black solid), p3 � εqφ1
(red short dash), and x ~E ~By{pfH2q (red dash-dot) to the scalar �eld equation of
motion for f � 1{25 and V pφq � m2φ2{2 (see Sec. 6.4) [in units of MP ]. We have

conveniently expressed the derivatives 9φ and :φ in terms of e-fold time derivatives
φ1, φ2. Note that for N À 60 we �nd that φ2 is negligible, while the �rst long-wave
oscillation has φ1 and x ~E ~By of opposite phase. Note further, that for N Á 60
the long-wave oscillations are superimposed by faster damped oscillations. For
these, φ2 is no longer negligible, and the phase shift at each step of the chain
φ2 Ñ φ1 Ñ x ~E ~By is about π{2.

sign of x ~E ~By by writing

x ~E ~By � x ~E ~By �∆x ~E ~By � �λ pAEB �∆AEBq . (6.25)

This allows us rewrite Eq. (6.23) as

∆ξ � 1

6f 2H2
∆AEBp∆ξq � 0 ô ∆ξ � �1

6

∆AEBp∆ξq
f 2H2

. (6.26)

Moreover, from the values of f and H we see that the factor 1{p6f 2H2q rescales
∆AEB to be dimensionless and to have the same magnitude as ∆ξ.

For this rescaled ∆AEB, the discussion around Eq. (6.21) and the numerical
observation of the time delay in Fig. 6.3 indicate the presence of a resonance at
ωN � ω�N . The argument for this goes as follows: At the resonance frequency the
observed time delay corresponds to a phase shift of φ, that is, we observe

∆AEBp∆ξpNqq
6f 2H2

� ∆ξ

�
N � π

ω�N



. (6.27)
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Moreover, if we assume a nearly harmonic perturbation with an approximately
constant frequency for ∆ξ, we have by de�nition

∆ξ

�
N � π

ω�N



� ∆ξ2 . (6.28)

Therefore, in plugging eq. (6.28) into eq. (6.27), and this in turn into the right-
hand side of Eq. (6.26) we �nd that on a harmonic perturbation the equation of
motion of ξ becomes consistent with an oscillator equation.

∆ξ � �∆ξ2 . (6.29)

Next, we observe that for N Á 60 in Fig. 6.5 there is a secondary pattern
of damped oscillations at higher frequency compared to the long-wave 'base fre-
quency' oscillations discussed above. For this pattern the oscillating contribution
of :φ is no longer negligible. Moreover, we observe that the phase shift at each step
of the chain φ2 Ñ φ1 Ñ x ~E ~By is about π{2. This implies that for this pattern
the corresponding high-frequency (labeled by `h.f.') oscillating parts ∆ξph.f.q and
∆Aph.f.q

EB , split o� the full quantities the same way as we did for the base frequency
parts above, satisfy

p∆ξph.f.qq1 � 3∆ξph.f.q � 1

2f 2H2
∆Aph.f.q

EB p∆ξq � 0 . (6.30)

The observed phase relation in Fig. 6.5 then states that ∆Aph.f.q
EB p∆ξq has a phase

shift of π{2 to the right compared to ∆ξph.f.q and of π to the right compared to
p∆ξph.f.qq1. Hence, the �gure indicates that for the high-frequency oscillations

∆ξph.f.q � p∆Aph.f.q
EB q1 , p∆ξph.f.qq1 � p∆Aph.f.q

EB q2 . (6.31)

Plugging this relation into Eq. (6.30) we get the structure of the dampened har-
monic oscillator di�erential equation

p∆Aph.f.q
EB q2 �Op1qp∆Aph.f.q

EB q1 � pωph.f.qq2∆Aph.f.q
EB � 0 . (6.32)

While we cannot determine the frequency of these faster oscillations ωph.f.q at
this time, we consider the fact that the equation of motion takes the dampened
oscillator form to be strong evidence supporting the existence of these secondary,
faster dampened oscillations in the coupled system.

It is due to this line of reasoning that we conclude the presence of resonance
occurring in the strong gauge-�eld back-reaction regime. Neglecting the reso-
nance phenomenon, ξ is typically a monotonically growing function of N , while
the resonance frequency only scales logarithmically with ξ and thus N . Hence, the
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sweep of ξ e�ectively scans over possible resonance frequencies. Hence we expect
the increasing value of ξ to eventually trigger the resonance behaviour with ap-
proximately the predicted frequency. Some of the ideas presented here have been
qualitatively previously presented in Refs. [284, 285, 286]. After formalizing these
arguments, we here succeed in quantitatively explaining the observed resonance
frequency. Strictly speaking, the arguments spelled out above form a necessary,
but not su�cient condition to ensure a resonance. However, in our numerical solu-
tions to this coupled system of di�erential equations (see next section) we always
see this resonance, indicating that this is indeed a generic feature.

6.4 Numerical results

We performed a full numerical analysis taking MP {f � t20, 25u and V pφq �
m2φ2{2 with m � 6� 10�6MP , reproducing the observed amplitude of the scalar
power spectrum at CMB scales.5 Our �nal goal is to �nd the solution of the
system of coupled integro-di�erential equations (6.5), (6.7) and (6.9). The �rst

step is to solve the in�aton equation of motion using the estimate of x ~E ~By given
in Eq. (6.13), which is obtained by solving the equations of motion of the gauge
�eld modes, A�λpτ, kq, assuming a constant in�aton speed, Eq. (6.12). Then,
choosing an appropriate array of k-modes, we solve Eq. (6.7) for each mode and
we compute the discretized integral of equation Eq. (6.9), getting a new estimate
of the backreaction. We reach the �nal solution by iterating this procedure until
we reach the end of in�ation with a self-consistent solution, see App. D.2 for
details. The initial conditions for the in�aton �eld are chosen at CMB scales in
accordance with the vacuum slow-roll solution while the Ak modes satisfy Bunch-
Davies vacuum conditions; we stop the time evolution when the system reaches
the end of in�ation ε � 1.

The results of our analysis for 1{f � t20, 25u are shown in Fig. 6.6 where

we compare the �nal solution for x ~E ~By and ρEB � xE2�B2

2
y with the analytical

estimate of Eqs. (6.13) and (6.14). We also plot the ξ parameter which shows
that the oscillatory behaviour of the in�aton speed becomes more apparent in
case of strong backreaction.6 We see that the numerical solution including the
backreaction oscillates around the analytical estimate, with an oscillation period

5As expected for the discussion in Sec. 6.3, the generic features of the results discussed here
are not very sensitive to the precise form of the scalar potential. In particular, we con�rm similar
results using a potential linear in φ.

6At the maxima of these oscillations, the value of ξ exceeds the threshold ξ � 4.7 bounding
the perturbative regime for approximately constant ξ [293, 294]. This threshold cannot be
immediately applied to a strongly oscillating ξ and we will comment on perturbativity constraints
in more detail in Sec. 6.5.
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Figure 6.6: Top: 1{f � 20. Bottom: 1{f � 25. The left panels show the numerical

results of ρEB and x ~E ~By (solid lines) compared to their analytical estimate (6.13),
(6.14) (dashed lines). The vertical lines refer to the end of in�ation in absence
of backreaction (black line) and for the full numerical analysis (red line). The
right panels show the oscillatory behaviour of the ξ parameter (solid black line)
compared to its analytical result coming from the solution of the in�aton equation
of motion when the gauge �eld backreaction is given by (6.13) (dashed red line).
For better visibility, we display only the last � 20 e-folds of in�ation.

of ∆Nξ � 3, in accordance with our estimate in Sec. 6.3. For f � 1{25 the value
of φ1 temporarily changes sign (at N � 62). The reason for this is the delay in
gauge friction term discussed in Sec. 6.3. As |φ1| drops, the gauge friction drops
and the opposite sign of φ1 (encoded by λ) entails the opposite sign for the gauge
friction term as one would expect of a friction term. However, since the gauge
friction term is dominated by modes which are controlled by the value of φ1 some
∆Nξ e-folds earlier, the sign change in the gauge friction term is delayed, allowing
φ1 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [284, 285,
286], which reported oscillatory features in the in�aton velocity with a period of
3�5 e-folds. All these studies are based on fully independent codes and numerical
methods, and the results observed can be nicely explained with the semi-analytical
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arguments presented in Sec. 6.3.

6.5 Scalar power spectrum and primordial black

holes

6.5.1 Scalar power spectrum sourced by gauge �eld con�g-

uration

The gauge �eld population does not only backreact on the dynamics of the ho-
mogeneous in�aton �eld but also acts as source term for the scalar inhomogeneities
sourcing the density perturbations of the Universe. In the separate universe pic-
ture, curvature �uctuations on super-horizon scales are obtained as [287, 288, 182,
289] 7

ζc � δNpt�q � N,φpt�q δφpt�q . (6.33)

HereNpt�q denotes the average number of e-folds elapsed between t� and the end of
in�ation, whereas δNpt�q denotes the deviation occurring in a particular patch of
the Universe induced by super-horizon scalar �uctuations. The perturbed version
of Eq. (6.5) reads

0 �φ2 �
�

3� H 1

H



φ1 � V,φ

H2

� H 1

H
δφ1 � φ1

B
BN

�
H 1

H



δN � B

BN
�
V,φ
H2



δN � 2H 1

fH3
x ~E ~By δN

� δφ2 � 3 δφ1 � 1

fH2
~E ~B � 1

fH2

Bx ~E ~By
BN δN . (6.34)

Since we are keeping only �uctuations to �rst order, all occurrences of H, V and
x ~E ~By are here understood to be evaluated in terms of the homogeneous �eld φ.

On the contrary, the factor ~E ~B in the third term of the third line includes the
inhomogeneities in the gauge �elds sourced by δφ. Using Eq. (6.5) to replace the
terms in the �rst line, dropping the slow-roll suppressed terms in the second line

7This expression relies on the assumption that ∆Npφ1, φ2q, the time in e-folds required for
the in�aton to move from φ1 to φ2 does not depend on any further independent parameters,
such as e.g. the in�aton velocity. For the attractor solution, this is justi�ed even taking into
account the strong, velocity-dependent friction. In the strongly oscillatory phase towards the
end of in�ation we expect corrections due to the break-down of the slow-roll approximation.
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and inserting Eq. (6.33) this simpli�es to

LN rδφpNqs � δφ2 � 3 δφ1 � N,φ

fH2

Bx ~E ~By
BN δφ � 1

fH2
p ~E ~B � x ~E ~Byq � 1

fH2
δEB .

(6.35)

This inhomogeneous linear di�erential equation can be solved by the Greens
function method, see e.g. [262, 270].8

For any linear operator LN , the Greens function satisfying

LN GpN,N 1q � δpN �N 1q , (6.36)

can be convoluted with the source term SpNq,

δφpNq �
»
GpN,N 1qSpN 1qdN 1 , (6.37)

to obtain a solution of the inhomogeneous equation LN δφpNq � SpNq. In Eq. (6.35)
we identify SpNq � δEB{pfH2q. Moreover, for any given function x ~E ~BypNq we
can determine (at least numerically) the Greens function of the corresponding lin-
ear operator LN by solving the ordinary di�erential equation (6.36). Since this is
a second order di�erential equation we need to specify two boundary conditions
which we take to be GpN,Nq � 0 and G1pN,Nq � 1.9

With this, the two-point function of scalar perturbations exiting the horizon
at e-fold N can be computed as

xζ2y � xδN2y � N2
,φxδφ2y � N2

,φ

»
dN 1GpN,N 1q

»
dN2GpN,N2qxSpN 1qSpN2qy .

(6.38)

8For a comparison with these pioneering works see App. D.4. In short, we con�rm the results
found in the weak backreaction regime but disagree in the strong backreaction regime. We �nd
the backreaction to be weaker than previously estimated, leading to a signi�cant enhancement
of the scalar power spectrum in this regime.

9For the retarded Green's function GpN,N 1q � 0 if N 1 ¡ N . In addition we know that
GpN,N 1q must be a continuous function since LNGpN,N

1q does not involve generalized func-
tions beyond δpN � N 1q functions and in particular it does not contain derivatives of δ func-
tions. Imposing continuity at equal time requires lim

N 1ÑN�
GpN,N 1q � lim

N 1ÑN�
GpN,N 1q � 0.

On the other hand, integrating (6.36) over an in�nitesimal neighbourhood of N � N 1 we get» N 1�ε

N 1�ε

LNGpN,N
1qdN � 1. G being continuous, BNG must be bounded and we immediately

see that if we shrink the integration domain to zero size the only term which can give a �-

nite contribution is lim
εÑ0

» N 1�ε

N 1�ε

LNGpN,N
1qdN � lim

εÑ0

» N 1�ε

N 1�ε

B2NGpN,N
1qdN � BNGpN

1
�, N

1q �

BNGpN
1
�, N

1q � BNGpN
1
�, N

1q � 1.
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We parametrize the unequal time correlations by gpN 1,∆Nq,» 8

N 1�∆N

dN2xSpN 1qSpN2qy � xSpN 1q2ygpN 1,∆Nq . (6.39)

with

gpN 1,∆Nq �
#
γ ∆N � 0

ε ∆N ¡ 0
(6.40)

where γ � Op1q and ε Ñ 0 in the limit of vanishing unequal time correlators, i.e.
in the limit of white noise. If GpN,N2q and xS2pN 1qy do not vary signi�cantly
over the support of gpN 1,∆Nq we can approximate10»

dN2GpN,N2qxSpN 1qSpN2qy � GpN,N 1qxS2pN 1qygpN 1, 0q

� GpN,N 1q
f 2H4

xδ2
EBpN 1qy

� GpN,N 1q
f 2H4

σ2
EBpN 1q , (6.41)

with σ2
EB � p ~E ~B � x ~E ~Byq2 denoting the variance of ~E ~B at a given time. For a

given set of mode functions AkpNq the variance σ2
EB can be computed explicitly,

see e.g. App. A of [273]. The �nal expression for the power spectrum then reads

∆2
ζ � xδζ2y � N2

,φ

»
dN 1G

2pN,N 1qσ2
EBpN 1q

f 2H2pN 1q � xζ2yvac , (6.42)

where xζ2y1{2vac � H{p2πφ1q is the usual vacuum contribution.
The result obtained by numerically evaluating the Greens function GpN,N 1q

and the variance σEB is depicted in Fig. 6.7. The power spectrum is dramatically
enhanced towards the end of in�ation and inherits the resonant oscillations present
in the source term. As highlighted by the gray band, the power spectrum extends
above ζ � 0.3, indicating the breakdown of the perturbative expansion used in

10 To verify these approximations and quantify the importance of the unequal time contribu-
tions, we numerically evaluate gpN 1,∆Nq using the mode functions AkpNq from the numerical
computation in Sec. 6.4. See App. D.3 for details. Far away from the resonance regime, we �nd
this approximation to be unproblematic. As we approach the resonant regime, the unequal time
correlators become more important while at the same time σ2

EB
varies more rapidly. We �nd

values of gpN 1, 0.1q{γ � 0.9 and gpN 1, 0.5q{γ � 0.4, indicating that most of the support of g is
focused on a small region over which σ2

EB
varies only moderately. We conclude that the unequal

time correlators most likely lead to an Op1q correction to (6.42) in the resonance regime, slightly
smearing out the peaks and troughs.
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Figure 6.7: Scalar power spectrum for 1{f � 20 (left) and 1{f � 25 (right).
The resonantly enhanced gauge �eld population leads to strong enhancement of
the scalar power spectrum at small scales, with peaks re�ecting the resonance
structure. The gray and red shaded areas indicate the limitations of the δN
formalism, see text for details.

our analysis. Moreover, for f � 1{25, the in�aton speed temporarily changes sign
(see Fig. 6.6), implying that φ is not monotonously increasing. Strictly speaking,
this requires to go beyond the standard δN formalism (see footnote 7). In prac-
tice, since this only happens for a very short period of time, we expect the δN
formalism (with the in�aton speed regularized to some small value round N � 62)
to nevertheless give a good estimate. The corresponding problematic region is
highlighted in red in the right panel of Fig. 6.7. Due to these caveats, we cannot
make a prediction about the precise amplitude of the scalar power spectrum at
small scales. However, we can conclude that power spectrum reaches values of
∆2
ζ Á 0.01 in the last e-folds of in�ation, exceeding the threshold for primordial

black hole formation (see below).
The very large values for the scalar perturbations at small scales, indicating

an inhomogeneous �eld con�guration with large gradient energy, may trigger a
premature end of in�ation. This would relax the bounds from primordial black hole
formation and consequently the bound on the coupling 1{f (see below). However,
recent �ndings [295, 296, 297, 298] indicate that high-scale in�ation is quite robust
against large gradient energies. How much of this stability against large gradients
remains on the � 2..3MP of �eld range corresponding to the last about 5 e-folds
of in�ation in a quadratic potential is an open question which we leave for future
work. We hope that our �ndings will trigger a more detailed non-perturbative
analysis of this last stage of in�ation.

Even discarding the peaks arising from the resonant enhancement, the ampli-
tude of the power spectrum in Fig. 6.7 at small scales is signi�cantly larger than
expected from previous estimates [262, 273]. We provide a detailed comparison
and discussion in Appendix D.4. In summary, we conclude that previous ana-
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lytical analyses have overestimated the amount of backreaction in Eq. (6.35) and
have hence underestimated the amplitude of the power spectrum in the strong
backreaction regime. Consequently, the amplitude of the scalar power spectrum
we report is in particular signi�cantly larger than found in [284], which accounted
for the oscillating in�aton velocity but used the estimate for the power spectrum
derived in [273].

6.5.2 Primordial black hole formation and phenomenology

If the scalar perturbations at a given scale exceed a critical threshold ζc � 0.5
they collapse into a primordial black hole upon horizon re-entry [299]. The mass
of the corresponding black hole is determined by the energy contained in a Hubble
volume at the time of horizon re-entry,

MPBHpNq � γ
4π

3
pe�jNHinfq�3 � 3 pe�jNHinfq2M2

P � 55 g γ

�
10�6MP

Hinf



ejN ,

(6.43)
with N counting the number of e-folds from the horizon exit of the respective
�uctuation until the end of in�ation, Hinf denoting the Hubble parameter at this
time, j � 2 (j � 3) for radiation (matter) domination after in�ation and γ � 0.4
parametrizes the e�ciency of the gravitational collapse [300, 301].

Once formed, the PBHs can slowly decay by emitting Hawking radiation. In
particular, PBHs with MPBH À 1011 kg decay into thermal radiation before the
onset of big bang nucleosynthesis and their abundance can thus be very large [302,
303]. On the other hand, PBHs with 1011 kg À MPBH À 1014 kg have a life-time
comparable with the age of the universe and their abundance is highly constrained
by the non-observation of their Hawking radiation. Heavier black holes are stable
and contribute to dark matter, their abundance is constrained by the observed
dark matter abundance as well as by direct searches, see e.g. Refs. [299, 304] for
an overview.

For a given amplitude of the scalar power spectrum, the probability of forming
PBHs depends on the statistical properties of the scalar �uctuations, since typically
PBH formation is a rare event occurring in the tail of the distribution function.
For a gaussian distribution any power spectrum generating stable black holes with
xζ2y Á 10�2 leads to an overclosure of the universe [305]. For a positive χ2-
distribution, as expected for the sourced scalar perturbations in axion in�ation,
this value is lowered to xζ2y Á 10�3 [273]. The amplitude of the power spectrum in
Fig. 6.7 clearly exceeds these values towards the end of in�ation. Thus requiring
MPBHpNq   1011 kg to avoid these overclosure bounds restricts the enhancement
of the scalar power spectrum to the last � 10 e-folds, see Eq. (6.43). Here we
have set j � 3 since the expected large abundance of PBHs generated right after
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in�ation will lead to an early matter dominated phase.
Consequently, the power spectrum depicted in Fig. 6.7 which is only enhanced

in the last � 5 (9) e-folds for f � 1{20 (1/25), is (marginally) compatible with
bounds from PBH formation. Signi�cantly larger values of 1{f will lead to over-
production of stable PBHs, though the precise bound will depend on the details
of the last stages of in�ation, see discussion below Eq. (6.42). On the contrary,
a large abundance of metastable black holes as found for 1{f À 25 entails sev-
eral interesting phenomenological consequences. Firstly, an early PBH dominated
phase, eventually releasing its energy into thermal Hawking radiation, provides a
remarkable reheating mechanism. Any radiation released during preheating or in
the in�aton decay is strongly red-shifted during the PBH dominated era, and hot
big cosmology is re-ignited once the PBHs decay. Among others, this poses inter-
esting challenges for baryogenesis. Secondly, there are three signi�cant sources of
gravitational waves (GWs): (i) GWs sourced by the gauge �eld population during
in�ation [271], (ii) GWs sourced (at second order) from the large scalar pertur-
bations [306, 307, 308] and (iii) GWs sourced as a component of the Hawking
radiation of the decaying PBHs [302, 309]. All of these sources result in high fre-
quency (� MHz and beyond) GWs, beyond the scope of current experiments but
suggesting a potential target for potential future high frequency experiments. We
expect that the characteristic oscillating features of the source x ~E ~By will also be
visible in the GW spectrum. Note that any GWs which are sub-horizon during the
PBH dominated phase will be strongly diluted, leading to an interesting interplay
between the GW and PBH spectrum. This applies in particular to GWs generated
during preheating right after in�ation [282].

6.6 Conclusions

Axion in�ation is generically accompanied by an explosive gauge �eld produc-
tion, triggered by a tachyonic instability of roughly horizon sized gauge �eld modes,
which is in turn sourced by the in�aton velocity. The energy budget of this gauge
�eld con�guration is drained from the kinetic motion of the in�ation, which can
be described as a backreaction of the classical gauge �elds on the homogeneous
in�aton equation of motion. In this chapter we study the resulting coupled system
of di�erential equations numerically, pointing out several new aspects which point
to a more complex dynamics than previously anticipated.

The tachyonic instability is most e�ective on slightly sub-horizon scales, and
hence the amplitude of any gauge �eld mode is set by the value of the in�aton
velocity just before this mode crosses the horizon. On the other hand, the non-
linear backreaction term is dominated by super-horizon gauge �eld modes, and
hence reacts with a time lag to any change in the in�aton velocity. As the average
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speed of the in�aton increases over the course of in�ation this system eventually
hits a resonance frequency, where this time-lag corresponds to a phase shift of π.
This leads to oscillations with increasing amplitude and �xed frequency in e-fold
time, clearly visible in the in�aton velocity, the backreaction term and the gauge
�eld energy density. This drastically changes the dynamics of axion in�ation in
the strong backreaction regime.

An example of an observable which is signi�cantly impacted by this change in
the in�aton dynamics is the scalar power spectrum. At very early times, when
the scales relevant for the CMB exited the horizon, the backreaction is irrelevant
and the spectrum closely resembles the usual spectrum of vacuum �uctuations. On
smaller scales, corresponding to later stages of in�ation, the scalar power spectrum
receives an additional contribution sourced by the inhomogeneous part of the gauge
�eld distribution, leading to an enhancement by many orders of magnitude. In this
work we re-visit the equation of motion for the scalar perturbations, reproducing
results found previously in the weak backreaction regime but �nding a signi�-
cant larger amplitude for the scalar power spectrum in the strong backreaction
regime. This result holds even when working with a time-averaged backreaction,
i.e. discarding the resonance discussed above. Including the resonance leads to
additional oscillatory features in the power spectrum at small scales. However,
our results also indicate that the strong backreaction regime entails such large
scalar perturbations (invoking in particular signi�cant spatial gradients in the in-
�aton �eld) that the perturbative description fails. The formation of (metastable)
primordial black holes seems unavoidable, entailing interesting phenomenological
consequences. Despite electro-magnetic dissipation reduces the required �eld ex-
cursion compared to axion in�ation models in absence of gauge couplings, we saw
in Sec. 6.4 that the full numerical treatment does not show signi�cant di�erences
in terms of initial �eld displacement. Nevertheless, the breakdown of perturbation
theory suggests that all predictions related to the last e-foldings should be revis-
ited. Unfortunately, any more quantitative analysis requires a non-perturbative
description of this system, which is beyond the scope of the present work.

In this context, it is interesting to note the recent progress made in simulating
the preheating phase of this model on the lattice [280, 281, 282] (see also [310]
for related work). The challenges induced by the growing separation of scales in
an expanding Universe limits the amount of e-folds which can be tracked, but
the characteristic time scale ∆Nξ � lnpξ2{2q of the resonance seems to be within
reach of such analyses. The preheating phase, and in particular its gravitational
wave production, can impose stringent bounds on the axion to photon coupling,
down to 1{f À 10 [282]. However, an early PBH dominated phase, triggered
by the drastically enhanced scalar power spectrum, would signi�cantly dilute the
energy density in gravitational wave radiation which redshifts faster than the PBH
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component. This could re-open the parameter space of larger couplings. We leave
a more detailed study of this question to future work.

The observed resonance phenomenon will not only a�ect the scalar power spec-
trum but also the tensor power spectrum, since it too receives a contribution
sourced by the gauge �eld population. Moreover, we expect that similar resonance
phenomena can occur in other cosmological systems which feature a tachyonic
instability of gauge �elds modes driven by a non-vanishing axion velocity. This in-
cludes models of baryogenesis driven by the motion of axion-like particle [291, 311]
and models of cosmological relaxation of the electroweak scale utilizing gauge �eld
friction [312, 313, 314, 315, 316, 317]. We leave these questions to future work.
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Chapter 7

Conclusions and Outlook

We conclude this work by providing a brief summary of the contents and the
results reported in this thesis.

In Chap. 1 we give an overview of the current knowledge of high energy physics
for what concerns both particle physics and cosmology. We brie�y review the main
achievements and limitations of the Standard Model of particle physics and ΛCDM
model. These models fail to address several issues like the hierarchy problem for
the Higgs mass, gauge coupling uni�cation and the strong CP problem. Moreover,
they are not able to explain the origin of DM, baryogenesis and dark energy.

In order to overcome the experimental and theoretical problems related to
the current state of the art, several theories have been proposed for fundamen-
tal physics beyond current understanding. In this work we focus in particular
on in�ation and axions and their possible embedding in string theory. In�ation,
that is presented in section 2.1, provides a dynamical way to overcome the initial
condition problems of standard Big Bang cosmology, leading to successful large
structure formation. The existence of axions was �rstly theorised to solve the
strong CP problem. Axions and ALPs are introduced in section 2.2, where we
explain how, depending on their production mechanism, their mass and coupling
to other particles, these �elds can represent both DM and dark radiation, or can
play the role of the in�aton �eld. Finally, we present a brief introduction on string
theory which is at present the best candidate for a uni�ed theory of all interactions,
which describes also gravity at the quantum level in a consistent way. In section
2.3 we focus in particular on type IIB string theory. We explain how to construct
low energy 4D theories that can reproduce the basic ingredients of SM physics,
such as chiral matter, gauge theories and Yukawa couplings. We presented an
overview of the generic tools needed for the study of string compacti�cations. We
showed which class of extra dimensions manifold allows us to get an N � 1 super-
symmetric e�ective �eld theory starting from the 10D action for massless string
states. Such 4D EFTs su�er from the presence of many massless scalar �elds,

247
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named moduli, that may lead to the presence of undetected �fth-forces and other
phenomenological problems. For these reasons we review the current mechanisms
that are used to provide a potential for these �elds. This goes under the name of
moduli stabilisation. In this thesis we use a bottom-up approach, analysing 4D
string vacua equipped with sets of local sources as Dp-branes and Op-planes. This
method may be more e�cient in trying to identify promising string vacua which
can reproduce all the features of the SM together with in�ation. We work in the
large volume scenario that allows us to work with CY manifolds also in presence
of background �uxes and induces an hierarchy between di�erent energy scales that
is suitable for safely building a 4D EFT description of in�ation.

The second part of this thesis contains the results, related to the aforementioned
topics, that I achieved during my PhD.

In Chapter 3 we construct the �rst explicit realisations of Fibre In�ation mod-
els in concrete type IIB Calabi-Yau orientifolds with consistent brane setups, full
closed string moduli �xing and chiral matter on D7-branes. We perform a consis-
tent choice of orientifold involution, brane setup and gauge �uxes which leads to
chiral matter and a moduli-dependent Fayet-Iliopoulos term. Using LVS we are
able to perform moduli stabilisation step by step. The underlying compacti�cation
manifold features h1,1 � 4 Kähler moduli and is reduced to the standard 3 moduli
of Fibre In�ation models after D-term stabilisation. The in�ationary potential is
generated by string loop corrections and higher derivative α

13F 4 corrections. We
found that the in�ationary dynamics is strongly constrained by the Kähler cone
conditions which never allow for enough efoldings of in�ation if we consider nat-
ural values of the internal volume (V � 103). For larger values of the Calabi-Yau
volume of order V � 104, the Kähler cone becomes large enough and allows to have
enough e-foldings. However, such a large value of V tends to suppress the ampli-
tude of the density perturbations below the reference COBE value. The tension
between getting the right number of e-foldings and matching the right normalisa-
tion of curvature perturbations can be softened choosing background �uxes that
allow for large values of the winding loop coe�cients or W0. However, some pa-
rameters as χeff , which controls the strength of Opα13q corrections due to presence
of O7-planes, and λ which is the combinatorial factor in Opα13q higher derivative
term, are not �ux dependent and have not been computed in full detail yet. A
better determination of these parameters may in�uence the required �eld range
during in�ation. On the other hand, if the current estimates of χeff and λ turn out
to be right, other possible ways of producing the correct amplitude of the scalar
power spectrum should be found. An interesting option may be given by the
curvaton scenario that can be realised by the presence of ultra-light closed string
axions associated to large bulk cycles that are always present in FI models. The
last open issue for future work is that, despite there are several known mechanisms
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responsible for the realisation of a dS vacuum (switching on magnetic �uxes on
D7-branes [64], adding anti D3-branes [65, 66, 67, 68, 69, 70, 71, 72], hidden sector
T-branes [73], non-perturbative e�ects at singularities [74] or non-zero F-terms of
the complex structure moduli [75]), our chiral global models still lack an explicit
dS construction.

In Chapter 4 we study geometrical destabilisation [164] and its application to
some 4D EFTs coming from string theory. It has recently been claimed that when
the �eld manifold is negatively curved, the e�ective mass-squared of the isocurva-
ture modes receives negative contributions from the Christo�el symbols and the
Ricci scalar which can potentially induce a geometrical instability by making them
tachyonic [164]. In principle this problem may be related to both heavy and light
�elds that are orthogonal to the in�ationary trajectory. The low-energy EFTs
coming from string theory are generally characterised by non-canonical kinetic
terms and can therefore be plagued by geometrical destabilisation problems. We
�rst analyse generic 2-�eld models with negative curvature and we conclude that
there is no instability for heavy non-in�ationary scalars. The background analysis
shows that the isocurvature modes may become tachyonic only for a short time
period and on spurious non-attractive solutions with extremely �ne-tuned initial
conditions. On the other hand, the analysis of 2-�eld systems with an ultra-light
scalar shows that the tachyonic instability of isocurvature modes can arise also
along stable background trajectories and is model dependent. We then move to
the analysis of concrete examples. We �rst study the simple case of quintessence-
like potentials and then we moved to the analysis of Fibre In�ation models where
the in�ationary potential is generated by perturbative corrections to the Kähler
potential. In this setup there are two axionic �elds that remain massless after
moduli stabilisation. These are the two bulk closed string axions which are both
kinetically coupled to the in�aton. The in�ationary dynamics of these systems
shows that, despite the background trajectory is stable against a wide range of
initial conditions, one of the two massless axions develops exponentially growing
isocurvature perturbations. We try to avoid this geometrical destabilisation by
turning on a non-zero axionic mass via non-perturbative e�ects. However we �nd
that, in order to obtain a positive mass-squared of the isocurvature modes, these
non-perturbative e�ects have to be of the same order of magnitude of the loop
corrections which generate the in�ationary potential, completely changing the in-
�ationary dynamics. In the last part of this chapter, we show however that the
geometrical destabilisation of these systems is just a spurious instability. We �rst
uncover the origin of the growth of the isocurvature perturbations in the ill-de�ned
kinematic basis. After that, we point out which de�nition of entropy should be
used in order to check the observational bounds on isocurvature perturbations.
This comes from the de�nition of the relative entropy between the �uids, iden-
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ti�ed with the in�aton and the kinetically coupled massless �eld. The standard
de�nition of entropy perturbation between two �uids cannot be applied in this
context, being the energy density of the massless axion vanishing on-shell. Nev-
ertheless we show that the relative entropy perturbation between the two scalars
is �nite and vanishingly small during in�ation. This allows us to argue that the
instability of Fibre In�ation systems has no physical impact and the underlying
models are presently viable. In the future it would be interesting to study which
de�nition of entropy should be used in these models (also considering small axion
masses) to transfer the entropy mode from the scalar �eld system used to describe
in�ation to the primordial plasma. Indeed, this cannot be done in a canonical
way [196, 197, 198] being the curvature associated to the axion �eld ill-de�ned.
Another important goal would be to extend the �uid approach in the estimate of
entropy perturbations [191, 318] to in�ationary systems with curved �eld space.

In Chapter 5 we study an example of axionic DM particle coming from type
IIB string compacti�cations. We focus on explaining the origin of the 3.5 keV
line that has been recently detected from galaxy clusters and other astrophysical
objects. In particular we describe how to perform a successful global embedding
in type IIB string compacti�cations of the model of [17]. In this model, the line
is generated by a double decay: a 7 keV dark matter particle decays into ultra-
light ALPs which are converted into photons in the cluster magnetic �eld. This
process is particularly interesting since it can explain the morphology of the signal
and other experimental evidences, namely its non-observation in dwarf spheroidal
galaxies. In this chapter we give a concrete microscopic realisation of [17], listing
the required properties for the explicit type IIB Calabi-Yau compacti�cation. We
focus on LVS models since they generically lead to very light axions, especially
when some of the moduli are stabilised by perturbative corrections to the e�ective
action. The 7 keV DM particle is given by a closed string axion that receives a
mass through poly-instanton e�ects to the superpotential. A hidden sector, hosting
the ultra-light ALP, and the visible sector come from two non-intersecting blow-
up modes that shrink down to zero size due to D-term stabilisation and support
D3-branes at singularities. The two divisors are invariant under the orientifold
involutions and the coupling between the ALP and ordinary photons is induced
by Up1q kinetic mixing. The ultra-light ALP is related to the phase of the hidden
sector open string mode which is charged under an anomalous Up1q. Its radial part
gets �xed in terms of a moduli-dependent FI-term and represents the ALP decay
constant. In sequestered models with low-energy supersymmetry the radial part
can develop a non-vanishing VEV due to a tachyonic soft scalar mass contribution
leading to an intermediate scale coupling between photons and ALPs which is in
full agreement with current observations. The DM-ALP coupling is generated by
kinetic mixing induced by non-perturbative corrections to the Kähler potential.
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Despite we discuss the required features needed to get a successful embedding of
[17], performing full moduli stabilisation and also computing the mass spectrum
and all relevant couplings, we do not present an explicit construction built via
toric geometry, leaving it as a future task. Another important open question for
future work would be to embed in�ation in this setup, trying also to reproduce
the cosmological history of the universe to the present epoch.

In Chapter 6 we analyse electro-magnetic dissipation in axion in�ation. Indeed,
these particles are naturally good in�aton candidates since they appear in the the-
ory equipped with an approximate shift symmetry that can protect the in�ationary
potential against dangerous quantum corrections. We study how the coupling to
a hidden sector Up1q gauge �eld can a�ect the in�ationary dynamics and if it may
lead to well recognisable imprints on the cosmological parameters. This coupling
causes a massive gauge �eld production, triggered by a tachyonic instability of
roughly horizon size gauge modes, that is sourced by the in�aton velocity. This
system has been widely studied in the literature using a semi-analytical approach.
It was shown that the electro-magnetic dissipation slows down the in�aton motion
and it can allow for in�ation also on steep potentials [262]. Moreover, from the
phenomenological point of view, it usually causes an enhancement of scalar and
tensor perturbations at small scales that is sourced classically by inhomogeneities
in the electromagnetic �eld [268, 269, 270, 271]. In this work we perform a full
numerical analysis of axion in�ation with a trans-Planckian decay constant and
a quadratic potential, bringing to light a new resonant behaviour that has not
been seen before. We found that the time lag between the tachyonic instability,
that is most e�ective on slightly sub-horizon scales where it sets the amplitude
of each gauge mode exiting the horizon, and the non-linear backreaction term,
that is dominated by superhorizon gauge modes, causes an oscillatory behaviour
in both the in�aton velocity and the gauge �eld production. In case of strong
backreaction regime, the system hits a resonance frequency that leads to oscilla-
tions with increasing amplitude and constant frequency. Studying the impact of
the resonant behaviour on the scalar power spectrum, we �nd that at early times
the backreaction is negligible and the scalar power spectrum matches the usual
vacuum �uctuations result. On the other hand, at smaller scales, the relevant
contribution to the scalar power spectrum comes from the inhomogeneous part of
the gauge �eld distribution. For strong backreactions, the power spectrum shows
a resonant behaviour at small scales and it grows to the point that the perturba-
tive description fails. This can have interesting phenomenological consequences,
as the production of a large amount of primordial black-holes and gravitational
waves. In order to give a quantitative description of these phenomena we should
develop a non-perturbative description of this system. This may be done in future
works, following the evolution of the system at least for few e-folding, using lattice
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simulations or full numerical GR tools. Another important goal would be to give
an embedding of this model in string theory. Since it is well known that single
axion in�ation models usually require a trans-Planckian decay constant that has
not be found in controlled string compacti�cations, we should focus on those con-
structions where the in�aton �eld is given by a combination of axions that enjoy
an e�ective trans-Planckian decay constant [109, 112, 110].

Let me conclude by stressing that the major aim of string cosmology (and of
high energy physics in general) is to provide a class of string compacti�cations (or
models) that can predict a viable in�ationary dynamics with the right couplings
between di�erent sectors, so that it can successfully reproduce standard Big Bang
cosmology, and therefore the SM degrees of freedom, at low energy. This problem
could be faced in di�erent ways, also using the EFT approach, and leads to many
di�erent models that share some features (in order to match the experimental con-
straints coming from in�ation), but rely on di�erent constructions. Indeed, the
lack of new experimental results in high energy physics, together with the end of
LHC run 2 without supersymmetric particles detection, leaves a lot of freedom
in model building. Fortunately, new experimental constraints will come from cos-
mological observations. Indeed, the large-scale structure and the evolution of the
universe has in the last few years entered a qualitatively new phase, driven by a
host of experimental results. In particular, results from CMB studies, collected
by COBE [319], WMAP [320] and the Planck Collaboration [10, 8], and grav-
itational wave data, collected by ground-based interferometers, e.g. LIGO and
VIRGO [321], will be combined in the next years with results coming from future
precision experiment, e.g. LISA interferometer [279] and Euclid satellite [322].
These experiments together will be able to span a wide range of redshift data,
constraining the nature of dark energy, dark matter, probing also the electroweak
scale and providing severe constraints on in�ationary models [323, 324]. I therefore
think that, precisely because there are many di�erent paths to follow, theoretical
e�orts must be made in order to give experimentalists clear and precise predictions
coming from di�erent models. As a theorist I believe that whatever e�ective �eld
theory of primordial cosmology should have a UV embedding in order to be con-
sidered complete. This is the reason why, during my PhD, I focused my research
on e�ective theories coming from strings.



Appendix A

Another example of global

embedding with chiral matter

A.1 Another chiral global example

A.1.1 Toric data

Let us consider the following toric data for a CY threefold with h1,1 � 4 which
is a K3-�bration over a P1 base along with a so-called `small' divisor:

x1 x2 x3 x4 x5 x6 x7 x8

8 0 0 0 1 1 1 1 4
6 0 0 1 0 1 0 1 3
6 0 1 0 0 0 1 1 3
4 1 0 0 0 0 0 1 2

dP5 NdP11 NdP11 dP7 K3 K3 SD1 SD2

with Hodge numbers ph2,1, h1,1q � p106, 4q and Euler number χ � �204. The
Stanley-Reisner ideal is:

SR � tx1x4, x1x7, x3x5, x4x5, x2x3x7, x2x6x8, x4x6x8u .

This corresponds to the CY threefold used in [325] to build global models with
chiral matter on D7-branes and Kähler moduli stabilisation but without any in-
�ationary dynamics. A detailed divisor analysis using cohomCalg [149, 150] shows
that the divisor D4 is a del Pezzo dP7 which we �nd to be shrinkable after in-
vestigating the CY volume form. Further, each of the divisors tD2, D3u are non-
diagonal del Pezzo surfaces and tD5, D6u are two K3 surfaces while the divisors
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tD7, D8u are two `special deformation' divisors with Hodge diamond:

SD1 �

1
0 0

3 38 3
0 0

1

and SD2 �

1
0 0

25 172 25
0 0

1

The intersection form in the basis of smooth divisors tD1, D4, D5, D6u can be
written as:

I3 � 2D1D5D6 � 2D2
1 D5 � 2D2

1 D6 � 2D3
4 � 4D3

1 . (A.1)

Writing the Kähler form in the above basis of divisors as J � t1D1 � t4D4 �
t5D5 � t6D6 and using the intersection polynomial (A.1), the CY overall volume
takes the form:

V � 2 t1 t5 t6 � t21 t5 � t21 t6 �
t34
3
� 2

3
t31 . (A.2)

In order to express V in terms of four-cycle moduli, we need to know the Kähler
cone conditions which can be determined from the following Kähler cone genera-
tors:

K1 � D1 �D5 �D6, K2 � D1 �D4 �D5 �D6, K3 � D5, K4 � D6 . (A.3)

Expanding the Kähler form J in these Kähler cone generators as J � °4
i�1 riKi

results in the following conditions for the two-cycle moduli:

r1 � t1 � t4 ¡ 0 , r2 � �t4 ¡ 0 , r3 � t5 � t1 ¡ 0 , r4 � t6 � t1 ¡ 0 .
(A.4)

Using the four-cycle moduli, τi � BtiV , given by:

τ1 � 2 pt5 � t1qpt6 � t1q, τ4 � t24, τ5 � t1p2 t6 � t1q, τ6 � t1p2 t5 � t1q , (A.5)

the overall volume can be rewritten as:

V � 1

3

�
t1τ1 � t5τ5 � t6τ6 � τ

3{2
4

	
. (A.6)

The second Chern class of the CY threefold X is instead given by:

c2pXq � 2D6D8 � 8D7D8 � 2D2
6 � 4D6D7 � 12D2

7 , (A.7)

which results in the following values of the topological quantities Πi's:

Π1 � 4, Π2 � Π3 � 16, Π4 � 8, Π5 � Π6 � 24, Π7 � 44, Π8 � 136 .
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The intersection curves between two coordinate divisors are given in Tab. A.1
while their volumes are listed in Tab. A.2.

D1 D2 D3 D4 D5 D6 D7 D8

D1 C5 P1 P1 H P1 P1 H T2

D2 P1 P1 \ P1 P1 \ P1 T2 T2 H P1 C3

D3 P1 P1 \ P1 P1 \ P1 T2 H T2 P1 C3

D4 H T2 T2 C3 H H T2 C3

D5 P1 T2 H H H T2 C2 C9

D6 P1 H T2 H T2 H C2 C9

D7 H P1 P1 T2 C2 C2 C3 C19

D8 T2 C3 C3 C3 C9 C9 C19 C89

Table A.1: Intersection curves of two coordinate divisors. Here Cg denotes a curve
with Hodge numbers h0,0 � 1 and h1,0 � g.

D1 D2 D3 D4 D5 D6 D7 D8

D1 4t1 � 2pt5 � t6q 2pt5 � t1q 2pt6 � t1q 0 2pt6 � t1q 2pt5 � t1q 0 2pt5 � t6q � 4t1
D2 2pt5 � t1q 2t4 2pt1 � t4q �2t4 2t1 0 2pt5 � t4q 2pt1 � 2t4 � 2t5q
D3 2pt6 � t1q 2pt1 � t4q 2t4 �2t4 0 2t1 2pt6 � t4q 2pt1 � 2t4 � 2t6q
D4 0 �2t4 �2t4 2t4 0 0 �2t4 �4t4
D5 2pt6 � t1q 2t1 0 0 0 2t1 2t6 2p2t6 � t1q
D6 2pt5 � t1q 0 2t1 0 2t1 0 2t5 2p2t5 � t1q
D7 0 2pt5 � t4q 2pt6 � t4q �2t4 2t6 2t5 2pt4 � t5 � t6q 4t4 � 6pt5 � t6q
D8 2pt5 � t6q � 4t1 2pt1 � 2t4 � 2t5q 2pt1 � 2t4 � 2t6q �4t4 2p2t6 � t1q 2p2t5 � t1q 4t4 � 6pt5 � t6q 4rt1 � 2t4 � 4pt5 � t6qs

Table A.2: Volumes of intersection curves between two coordinate divisors.

A.1.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi Ñ �xi with i � 1, ..., 8
which feature an O7-plane on Di and O3-planes at the �xed points listed in Tab.
A.3. The e�ective non-trivial �xed point set in Tab. A.3 has been obtained after
taking care of the SR ideal symmetry. Moreover, the total number of O3-planes
NO3 is obtained from the triple intersections restricted to the CY hypersurface,
while the e�ective Euler number χeff has been computed as:

χeff � χpXq � 2

»
X

rO7s ^ rO7s ^ rO7s . (A.8)

In what follows we shall focus on the orientifold involution σ : x7 Ñ �x7 which
features two non-intersecting O7-planes located in D1 and D7 and two O3-planes
at tD2D3D4u .
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σ O7 O3 NO3 χpO7q χeff

x1 Ñ �x1 D1 \D7 tD2D3D4u 2 54 -192
x2 Ñ �x2 D2 tD1D6D8, D3D4D7, D6D7D8u {2, 2, 6} 14 -208
x3 Ñ �x3 D3 tD1D5D8, D2D4D7, D5D7D8u {2, 2, 6} 14 -208
x4 Ñ �x4 D4 tD1D2D3, D1D5D6, {2, 2, 4, 4, 2 } 10 -200

D2D5D8, D3D6D8, D5D6D7u
x5 Ñ �x5 D5 tD1D3D8, D3D7D8, D2D4D8u {2, 2, 4} 24 -204
x6 Ñ �x6 D6 tD1D2D8, D2D7D8, D3D4D8u {2, 2, 4} 24 -204
x7 Ñ �x7 D1 \D7 tD2D3D4u 2 54 -192
x8 Ñ �x8 D8 H 0 224 -28

Table A.3: Fixed point set for the involutions which are re�ections of the eight
coordinates xi with i � 1, ..., 8.

A.1.3 Brane setup

If the D7-tadpole cancellation condition is satis�ed by placing four D7-branes
on top of the O7-plane, the string loop corrections to the scalar potential involve
only KK e�ects since winding contributions are absent due to the absence of any
intersection between D7-branes and/or O7-planes. Thus loop e�ects are too simple
to generate a viable in�ationary plateau. We shall therefore focus on a slightly
more complicate D7-brane setup which gives rise also to winding loop e�ects. This
can be achieved by placing D7-branes not entirely on top of the O7-plane as follows:

8rO7s � 8prD1s � rD7sq � 8 p2rD1s � rD2s � rD5sq . (A.9)

This brane setup involves three stacks of D7-branes wrapped around the divisors
D1, D2 and D5. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 � Nflux

2
�Ngauge � NO3

4
� χpO7q

12
�
¸
a

Na pχpDaq � χpD1
aqq

48
� 14 ,

showing that there is space for turning on both gauge and background three-form
�uxes for complex structure and dilaton stabilisation.
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A.1.4 Gauge �uxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D1,
D2 and D5 we need to turn on worldvolume gauge �uxes of the form:

Fi �
h1,1¸
j�1

fijD̂j � 1

2
D̂i � ι�DiB with fij P Z and i � 1, 2, 5 , (A.10)

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[51, 52].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term
in order to �x only one Kähler modulus via D-term stabilisation. In fact, if the
number of FI-terms is larger than one, there is no light Kähler modulus which
can play the rôle of the in�aton. Moreover we wrap a D3-brane instanton on
the rigid divisor D4 in order to generate a non-perturbative contribution to the
superpotential which is crucial for LVS moduli stabilisation. In order to cancel the
Freed-Witten anomaly, the D3-instanton has to support a half-integer �ux, and so
the general expression of the total gauge �ux on D4 becomes:

F4 �
h1,1¸
j�1

f4jD̂j � 1

2
D̂4 � ι�DiB with f4j P Z . (A.11)

However a non-vanishing F4 would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-�eld which can simultaneously
set F1 � F2 � 0 (we choose to have a non-vanishing gauge �ux only on D5 to have
just one moduli-dependent FI-term) and F4 � 0. If we set:

B � 1

2
D̂1 � 1

2
D̂2 � 1

2
D̂4 , (A.12)

the condition F1 � F2 � F4 � 0 reduces to the requirement that the following
forms are integer:

ι�D1

�
1

2
D̂2 � 1

2
D̂4



ι�D2

�
1

2
D̂1 � 1

2
D̂4



ι�D4

�
1

2
D̂1 � 1

2
D̂2



, (A.13)

since in this case the integer �ux quanta fij can always be adjusted to yield van-
ishing gauge �uxes. Taking an arbitrary integer form A P H2pZ, Xq which can be
expanded as A � ajD̂j with aj P Z, the pullbacks in (A.13) give rise to integer
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forms if:

b1 �
»
X

�
1

2
D̂2 � 1

2
D̂4



^ D̂1 ^ A P Z

b2 �
»
X

�
1

2
D̂1 � 1

2
D̂4



^ D̂2 ^ A P Z

b4 �
»
X

�
1

2
D̂1 � 1

2
D̂2



^ D̂4 ^ A P Z

Using the intersection polynomial (A.1) we �nd b1 � a5 � a1 P Z, b2 � b1 � a4 P Z
and b4 � �a4 P Z, showing how the choice of B-�eld in (A.12) can indeed allow for
F1 � F2 � F4 � 0. The only non-zero gauge �ux is F5 which does not feature any
half-integer contribution since c1pD5q � 0 given that D5 is a K3 surface. Given
that all the intersection numbers are even, the pullback of the B-�eld on D5 does
also not generate an half-integer �ux. We shall therefore consider a non-vanishing
gauge �ux on the worldvolume of D5 of the form:

F5 �
h1,1¸
j�1

f5jD̂j with f5j P Z . (A.14)

A.1.5 FI-term and chirality

Given that the divisor D5 is transversely invariant under the orientifold involu-
tion and it is wrapped by four D7-branes, it supports an Spp8q gauge group which
is broken down to Up4q � SUp4q � Up1q by a non-zero �ux F5 along the diagonal
Up1q. This non-trivial gauge �ux F5 induces also a Up1q-charge qi5 for the i-th
Kähler modulus of the form:

qi5 �
»
X

D̂i ^ D̂5 ^ F5 . (A.15)

Thus F5 � 0 yields:

q15 � 2pf56 � f51q q45 � q55 � 0 q65 � 2f51 , (A.16)

together with a �ux-dependent correction to the gauge kinetic function which looks
like:

Repf5q � α�1
5 � 4π

g2
5

� τ5 � hpF5qRepSq , (A.17)

where:

hpF5q � 1

2

»
X

D̂5 ^ F5 ^ F5 � 1

2
pf51q15 � f56q65q . (A.18)
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Moreover a non-vanishing gauge �ux F5 induces a moduli-dependent FI-term of
the form:

ξ � 1

4πV

»
X

D̂5 ^ J ^ F5 � 1

4πV
h1,1¸
j�1

qj5 tj � 1

4πV pq15 t1 � q65 t6q . (A.19)

For vanishing open string VEVs (induced for example by non-tachyonic scalar
masses), a leading-order supersymmetric stabilisation requires ξ � 0 which implies:

t6 � �q15

q65

t1 �
�

1� f56

f51



t1 � α t1 . (A.20)

This Up1q factor becomes massive via the Stückelberg mechanism and develops
an OpMsq mass by eating up a linear combination of an open and a closed string
axion which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
FI-terms, non-trivial gauge �uxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on D5 and the O7-planes
or the image branes give rise to the following zero-modes in the symmetric and
antisymmetric representations of Up4q:

I
pSq
5 � �1

2

»
X

D̂5 ^ rO7s ^ F5 �
»
X

D̂5 ^ D̂5 ^ F5 � �
�
q15 � q65

2

	
,(A.21)

I
pAq
5 � 1

2

»
X

D̂5 ^ rO7s ^ F5 �
»
X

D̂5 ^ D̂5 ^ F5 � �IpSq5 . (A.22)

Due to the absence of worldvolume �uxes on the D7-branes wrapped around
D1 and D2, the gauge groups supported by these two D7-stacks are respectively
SOp16q (since D1 is an O7-locus) and Spp8q (since D2 is transversely invariant)
which are both unbroken. Thus open strings stretched between the D7-branes on
D5 and D1 (or its image brane) give rise to chiral zero-modes in the bi-fundamental
representation (4,16) of Up4q and SOp16q whose number is:

I51 �
»
X

D̂5 ^ D̂1 ^ F5 � q15 . (A.23)

On the other hand, the number of 4D chiral zero-modes in the bi-fundamental
representation (4,8) of Up4q and Spp8q (corresponding to open strings stretching
between the D7s on D5 and D2) is:

I52 �
»
X

D̂5 ^ D̂2 ^ F5 � q65 . (A.24)
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We need �nally to check that there are no chiral intersections between the D7s on
D5 and the instanton onD4 to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured by the fact
that:

I54 �
»
X

D̂5 ^ D̂4 ^ F5 � 0 . (A.25)

A.1.6 In�ationary potential

Using the D-term �xing relation (A.20), the Kähler cone conditions (A.4) sim-
plify to t5 ¡ t1 ¡ �t4 ¡ 0 and α ¡ 1. Moreover the CY volume (A.6) reduces
to:

V � p2α � 1q t5t21 �
�
α � 2

3



t31 �

t34
3
� tbτf � 1

3
τ

3{2
4 . (A.26)

Given that this form is linear in t5, the e�ective CY volume after D-term stabili-
sation looks like a K3 �bre τf over a P1 base tb whose volumes are given by:

τf � τ5 � p2α � 1q t21 and tb � t5 �
�
α � 2

3

�
p2α � 1q t1 . (A.27)

Notice that the Kähler cone condition t5 ¡ t1 can be rewritten as:

τf   σpαqV2{3 , (A.28)

where:

σpαq � p2α � 1q
�

3

3α � 1


2{3
with α ¡ 1 . (A.29)

In terms of the canonically normalised in�aton shifted from its minimum, the
condition (A.28) reads:

τf � xτfy e2φ̂{?3   σ V2{3 ô φ̂  
?

3

2
ln

�
σ

xτfy V
2{3


. (A.30)

Let us now focus on the in�ationary potential. The winding loop corrections look
like (with κ � gs{p8πq for eKcs � 1):

V W

gs � �κW
2
0

V3

CW?
τf
, (A.31)

where:

CW � ?
2α � 1

�
CW

1 � CW
2

α



. (A.32)
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On the other hand, the KK loop corrections read (neglecting τ4-dependent terms
which yield subdominant contributions):

V KK

gs � κg2
s

W 2
0

V2

¸
i,j�1,5,6

CKK

i CKK

j Kij . (A.33)

After substituting t6 � αt1, we obtain:

ZV2
¸
i,j

CKK

i CKK

j Kij � at21 � C2
5 t5 pt5 � t1q � p1� Zq

�
bt21 � ct1t5 � C2

5

2
t25



,

where:

a � C1 pC1 � C5 � C6q � C5

�
C6 � C5

2



� C2

6

�
α2 � α � 1

2




b � αC1C6 � α2

2
C2

6 �
C2

1

2
c � C5 pC1 � αC6q ,

and:

Z � 1� 2

3α � 1

� τf
σ V2{3

	3{2
.

Notice that the Kähler cone conditions τf   σ V2{3 and α ¡ 1 imply 0   Z   1.
This guarantees the absence of any singularity in the Kähler metric. Expressing
the scalar potential in terms of the 4-cycle moduli, we end up with:

V KK

gs � κg2
s

W 2
0

ZV2

�
C2

5

τ 2
f

� 2

3 p2α � 1q3{2
C2

5

V?τf � d
τf
V2

�
1� h

τ
3{2
f

V

��
, (A.34)

where h � u{d with:

d � a

p2α � 1q �
2

3

c

p2α � 1q2 �
C2

5

p2α � 1q3
�
α2 � α

3
� 2

9




u � 2 b

3 p2α � 1q5{2
� 2 c

3

�
α � 2

3

�
p2α � 1q7{2

� C2
5

3

�
α � 2

3

�2

p2α � 1q9{2
.

If all the coe�cients of the KK corrections take natural Op1q values, the term in
(A.34) proportional to h is suppressed by h ! 1, and so it can be safely neglected.

On the other hand, higher derivative α13 F 4 corrections take the form (neglect-
ing the t4-dependent term and setting t6 � αt1):

VF 4 � �4κ2 λW
4
0

g
3{2
s V4

rp6α � 1qt1 � 6t5s , (A.35)
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which in terms of four-cycle moduli looks like:

VF 4 � �4κ2 λW
4
0

g
3{2
s V4

�
12α2 � 2α � 5

p2α � 1q3{2
?
τf � 6

V
τf

�
. (A.36)

Therefore the total in�ationary potential becomes:

V � V W

gs � V KK

gs � VF 4 � κ
W 2

0

V2

�
A1

τ 2
f

� A2

Vτf
� A3

V?τf �
B1
?
τf

V2
� B2 τf

V2

�
, (A.37)

where (with λ � �|λ|   0):

A1 � g2
s

Z
C2

5 A2 � 3

π

|λ|W 2
0?

gs
A3 � CW � g2

s

Z

2C2
5

3 p2α � 1q3{2
� CW (A.38)

and:

B1 � 12α2 � 2α � 5

6p2α � 1q3{2 A2 B2 � g2
s d

Z
. (A.39)

The potential (A.37) could support single-�eld slow-roll in�ation driven by τf
[101, 103]. In order to get enough efoldings before hitting the walls of the Kähler
cone given in (A.30), we need to focus on the region in �eld space where the in�aton
minimum is of order xτfy ! V2{3. Numerical estimates show that we need values
of order xτfy � Op1q and V � Op104q which, in turn, imply W0 � Op100q in order
to match the observed amplitude of the density perturbations. For gs À Op0.1q,
|λ| � Op10�3q and natural Op1q values of the coe�cients of the string loop e�ects,
the terms in (A.37) proportional to B1 and B2 are both negligible with respect to
the �rst three terms in the vicinity of the minimum where τf � Op1q ! V2{3.

The scalar potential (A.37) written in terms of the canonically normalised
in�aton φ � xφy � φ̂ looks like (with k � 2{?3):

V � κ
A1W

2
0

xτfy2V2

�
CdS � e�2kφ̂ � λ1Z e

�kφ̂ � λ2Z e
� kφ̂

2 �R1Z e
kφ̂
2 �R2 e

kφ̂
	
,

(A.40)
where we added a constant CdS � λ2Z�λ1Z�1�R1Z�R2 to obtain a Minkowski
(or slightly dS) vacuum and:

λ1 � 3xτfy
πC2

5

|λ|W 2
0

g
5{2
s V

� Op1� 10q λ2 � xτfy3{2
C2

5

CW

g2
s V

� Op1� 10q ,

while:

R1 � 12α2 � 2α � 5

6p2α � 1q3{2
λ1xτfy3{2

V ! 1 R2 � xτfy3
C2

5

d

V2
! 1 .
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The three negative exponentials in (A.40) compete to give a minimum at xτfy �
Op1q while the two positive exponentials cause a steepening behaviour at large φ̂.

In this section we shall not present a detailed quantitative analysis of in�ation.
We however point out that, if the approximated expression (A.30) is correct, in
this case the Kähler cone bounds seem to be more constraining than in the case
discussed in the main text since the in�aton direction τf is bounded by V2{3 instead
of V{?τs. Thus a viable in�ationary dynamics in this case would require a more
severe tuning of the underlying parameters and a better understanding of the
validity of our e�ective �eld theory approach.
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Appendix B

Cosmological perturbations in

curved �eld space

B.1 Note on �rst order gauge invariance for non

trivial scalar manifolds

The Lagrangian of a generic non-linear sigma model is:

L{
a
|g| � 1

2
GijpϕkqBµϕiBµϕj � V pϕkq , (B.1)

Here we choose a diagonal metric in the N -dimensional �eld space Gijpϕkq �
Gipϕkqδij. Let us also arbitrarily decompose the potential V pϕkq �

°
i V

piqpϕkq.
Let us split the �elds in background and �uctuation components ϕipxµq � φipx0q�
δφipxµq.

The background evolution in a FLRW space-time with scale factor a such that
H � 9a{a is given by (not using the covariant description in �eld space)

Gi
:φi � 3HGi

9φi �
¸
j

Gi,j
9φi 9φj � 1

2

¸
j

Gj,i
9φ2
j �

¸
j

V
pjq
,i � 0 . (B.2)

Let us de�ne the background density and pressure components of the system
as

ρ0i � 1

2
Gi

9φ2
i � V piq ,

P0i � 1

2
Gi

9φ2
i � V piq , (B.3)

which sum up to the total quantities ρ0 �
°
i ρ0i and P0 �

°
i P0i.
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Using the EOM (B.2) one �nds

9ρ0i � 1

2

¸
j

Gi,j
9φj 9φ

2
i �Gi

9φi :φi �
¸
j

V
piq
,j

9φj

� �3HGi
9φ2
i �

1

2

¸
j

Gi,j
9φj 9φ

2
i �

1

2

¸
j

Gj,i
9φ2
j
9φi �

¸
j

�
V
piq
,j

9φj � V
pjq
,i

9φi

	
.(B.4)

Then one can trivially verify

9ρ0 �
¸
i

9ρ0i � �3HGi
9φ2
i � �3Hpρ0 � P0q (B.5)

Moving to the density �uctuations we can write

δρi � �ΦGi
9φ2
i �

1

2

¸
j

Gi,j
9φ2
i δφ

j �Gi
9φiδ 9φi �

¸
j

V
piq
,j δφj . (B.6)

Let us consider a gauge transformation, induced by a change of reference frame
xµ Ñ x̃µ � xµ � ξµ. A change in the time component gives at linear order

δφ̃i � δφi � 9φiξ
0, Φ̃ � Φ� 9ξ0, Ψ̃ � Ψ�Hξ0 , (B.7)

where Φ and Ψ are the two metric scalar �uctuations with no derivatives in g00

and gii, respectively.
The change in the density �uctuations goes as follow

δρ̃i � �Φ̃Gi
9φ2
i �

1

2

¸
j

Gi,j
9φ2
i δφ̃

j �Gi
9φiδ

9̃φi �
¸
j

V
piq
,j δφ̃j

� �pΦ� 9ξ0qGi
9φ2
i �

1

2

¸
j

Gi,j
9φ2
i pδφj� 9φjξ

0q �Gi
9φipδ 9φi� 9φi 9ξ

0� :φiξ
0q(B.8)

�
¸
j

V
piq
,j pδφj� 9φjξ

0q

� δρi � ξ0
9ρ0i , (B.9)

where again the EOM (B.2) have been used.
Therefore one can construct N distinct gauge invariant variables

ζi � �Ψ�H
δρi
9ρ0i

(B.10)

as well as NpN�1q
2

relative entropy gauge invariant perturbations

Sij � 3pζi � ζjq � �3H

�
δρi
9ρ0i

� δρj
9ρ0j



. (B.11)
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B.2 Perturbation theory in curved �eld space

Let us start by considering the most generic perturbed line element

ds2 � �p1� 2Φqdt2 � 2aBidtdx
i � a2 rp1� 2Ψqδij � Eijs dxidxj . (B.12)

Combining metric perturbations with scalar �elds perturbations

φα � φ̄α � δφα (B.13)

we can compute the perturbed Einstein equations as (using natural units, i.e.
Mp � 1):

δGν
µ � δT νµ . (B.14)

Considering a curved �eld space, we list the resulting equations in the following
lines. In order to simplify the notation we will refer to background quantities φ̄
simply as φ. The p0, 0q component of Eq. (B.14) gives�

6HBt � 2
Bkk
a2



Ψ� 2H

BkkB
a

�
�

6H2 � 9φA 9φA
	

Φ� 1

2a2
BkiEki�

�VAδφA � 9φAGAB
9δφ
B � 1

2
9φA 9φBGAB,Cδφ

C � 0 .
(B.15)

From component pi, 0q we get

2Bi 9Ψ� 2HBiΦ� 1

2
Bj 9Eij � 9φAGABBiδφB � 0 . (B.16)

The spatial components pi, jq in case of i � j give rise to

BiBjΨ
a2

� BiBjΦ
a2

�
�Btt

2
� 3

2
HBt � Bkk

2a2



Eij � BikEjk

2a2
�

�BjkEik
2a2

� 1

a
pBt � 2Hq BijB � 0 ,

(B.17)

while if i � j we �nd�
6Btt � 2

Bii
a2
� 18HBt



Ψ� 2

a
pBt � 2Hq BkkB��

2
Bii
a2
� 6HBt � 6H2 � 12

:a

a
� 3 9φA 9φA



Φ� 1

2

BkiEik
a2

�

�3
�
VAδφ

A � 9δφ
A
9φBGAB � 9φA 9φBGAB,Cδφ

C
	
� 0 .

(B.18)
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In what follows we use the spatially �at gauge, E � Ψ � 0, that represents the
more convenient setup for computing in�ationary perturbations.

After two spatial integrations and �xing arbitrary integration functions of time
to zero, the component pi, jq with i � j reduces to

Φ� 2 9aB � a 9B � 0 . (B.19)

After one spatial integration, component p0, iq becomes

HΦ � 1

2
9φαδφ

α . (B.20)

Finally, the component p0, 0q is given by

6Φ
�

9a
a

�2 � 2 9a
a2Bii � Φ 9φα 9φ

α � 9φα 9δφ
α � 1

2
9φα 9φβBσGαβδφ

σ � Vαδφ
α (B.21)

and, making use of the previous equations, becomes:

BiBiB
a

� 1
2H

�
p 9φq2
2H

9φβ � 3H 9φβ � 1
2
Gρσ,β

9φρ 9φσ � Vβ

�
δφβ � 1

2H
9φβ 9δφ

β

. (B.22)

Working in the spatially �at gauge, the Mukhanov-Sasaki variables coincide with
�eld perturbations:

Qα � δφα �
9φα

H
Ψ � δφα (B.23)

and the Klein-Gordon equation for perturbations is given by

DtDtQ
ω � BiBi

a2 Q
ω � 3HDtQ

ω �
�
Rω
ρασ

9φρ 9φσ �GωλV;λα

� 1
H

�
9φαV

ω � Vα 9φ
ω
	
� 9φα 9φ

ω
�

3� p 9φq2
2H2

	�
Qα � 0

(B.24)

where DtX
a � BtXa � ΓabcX

b 9φc and V;λα � Vλα � ΓβλαVβ are referred to covariant
derivatives and Rω

ρασ is the Riemann tensor related to the �eld space. This is the
well-known gauge invariant equation for �eld perturbations [182].

B.2.1 Two inequivalent quantisations

We then move to the quantisation of the perturbation modes. Given that
neither the mass matrix, nor the kinetic terms of Eq. (B.24) are diagonal, we
need to �nd a way to perform canonical quantisation. Two di�erent approaches
are widely spread in the literature but they do not lead to the same results. We
call them �eld basis method (see e.g. [195]) and kinetic basis method (see e.g.
[193]), since the main di�erence between these two approaches is the moment in
which perturbations are projected into normal and tangent components to the
background in�ationary trajectory. Another important di�erence is given by the
normalisation conditions, i.e. the choice of �eld perturbations that should be
initialised to a BD vacuum.
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Field basis method To use this method we �rst need to de�ne an independent
set of canonical creation-annihilation operators âα that satis�es

râαpkq, âβ:ppqs � p2πq3δαβδpk� pq , α � 1, . . . , N . (B.25)

The number of operators is equal to the dimensionality of the �eld space. After
that we expand each mode Q̂α on this basis:

Q̂αpk, tq � Q̃αβpk, tq âβpkq ,
Q̂α:pk, tq � Q̃αβ�pk, tq â:βpkq .

(B.26)

The equations of motion for the new modes Q̃ωγ are given by:

DtDtQ̃
ωγ � BiBi

a2 Q̃
ωγ � 3HDtQ̃

ωγ �
�
Rω
ρασ

9φρ 9φσ �GωλV;λα

� 1
H

�
9φαV

ω � Vα 9φ
ω
	
� 9φα 9φ

ω
�

3� p 9φq2
2H2

	�
Q̃αγ � 0 .

(B.27)

Rephrasing the previous equations in terms of

vωγ � aQ̃ωγ (B.28)

we get

DτDτv
ωγ �

�
k2 � a2

a



vωγ �Mω

α v
αγ � 0 , (B.29)

where τ denotes conformal time, i.e. dτ � adt, and

Mω
α � a2

�
2H2εRω

ρασT
ρT σ �GωλV;λα �

?
2εpTαV ω � VαT

ωq
�2εH2p3� εqTαT ωs .

(B.30)

Finding the perturbation spectrum requires to set the initial conditions in Eq.(B.30).
We set BD conditions for Q̃ωγ in the far past. This implies that we need to choose
the basis such that Q̃ωγ are originally diagonal in the far past and the mode matrix
satis�es

d2vωγ

dτ 2
� k2vωγ � 0 . (B.31)

We can then safely set

lim
τÑ�8

vωγpk, τq � δωγ?
2k
e�ikτ . (B.32)

Finding a solution for �eld perturbations allows us to compute the power spectrum
tensor as

Pαβ � k3

2π2a2
vαγpk,Nqv�βγpk,Nq . (B.33)
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In order to de�ne the comoving curvature and isocurvature power spectra, we need
to de�ne a set of tangent and normal projectors onto the background trajectory.
In a two-�eld system we get

Tα � 1

| 9φ|
9φα , NαT

α � 0 , NαN
α � 1 , (B.34)

where | 9φ| �
b
Gαβ

9φα 9φβ. Since we are considering a 2-dimensional �eld space,

these projectors are related to the �eld space metric as follows

Gαβ � TαT β �NαNβ . (B.35)

The curvature perturbation on comoving hypersurfaces R and the isocurvature
perturbations S are related to the �eld perturbations as

R � H

| 9φ|TαQ̂
α , S � H

| 9φ|NαQ̂
α . (B.36)

Then, the adiabatic curvature power spectrum PR can be found projectiong Pαβ

along the tangent vector Tα as

PR � 1

2ε
TαTβPαβ . (B.37)

On the other hand, the isocurvature power spectrum PS arises from the projection
of Pαβ along the normal direction to the in�ationary background trajectory, Nα,
as

PS � 1

2ε
NαNβPαβ . (B.38)

Kinetic basis method An alternative way to treat perturbations in multi-�eld
in�ationary models is to perform from the very beginning a �eld rotation into an
adiabatic �eld, σ and isocurvature �elds si. In case of a 2-�eld system, these are
de�ned as

δσ � Tαδφ
α , δs � Nαδφ

α . (B.39)

The relation between the covariant derivatives of Tα and Nα is given by

DTα

dt
� �HηKNα ,

DNα

dt
� HηKTα (B.40)

where DXα{dt � d{dt � ΓαβγX
β 9φγ and ηK � NαVα

9φ0H
. Starting form Eq. (B.24) and

using the previous relations, we can easily �nd the equations of motion for δσ and
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δs. We write these equations in terms of vI � aQI � tvσ, vsu where QI � tδσ, δsu
and i � 1, 2:

vσ
2 � 2ζvs

1 � ζ2vσ � ζ 1vs � Ωσsv
s � pΩσσ � k2qvσ � 0 ,

vs
2 � 2ζvσ

1 � ζ2vs � ζ 1vσ � Ωσsv
σ � pk2 � Ωssqvs � 0 ,

(B.41)

where 1 � d{dτ and

Ωσσ � �a2H2p2� 2ε� 3η‖ � η‖ξ‖ � 4εη‖ � 2ε2 � η2
Kq ,

Ωss � �a2H2p2� εq � a2pV;ss �H2εRq ,
Ωσs � a2H2ηKp3� ε� 2η‖ � ξKq .

(B.42)

Again, we need to de�ne a normal set of creation and annihilation operators such
that

râαpkq, â:βppqs � p2πq3δαβδpk� pq , α, β � 1, 2 (B.43)

so that we can expand density and isocurvature perturbations as:

v̂Ipk, τq � ṽIαpk, τq âαpkq (B.44)

where ṽIα � tpvσqα , pvsqαu. We set the BD initial conditions as

lim
τÑ�8

vIαpk, τq � δIα?
2k
e�ikτ . (B.45)

The power spectrum related to tangent and normal perturbations is then given by

PIJ � k3

2π2a2
ṽIγpk,Nqṽ�Jγpk,Nq . (B.46)

Given that the renormalised curvature and entropy perturbations are

Rk � H

| 9φ|δσ Sk � H

| 9φ|δs , (B.47)

the comoving density and the isocurvature power spectra can be written as

PRpk, τq � 1

2ε
Pσσpk, τq , PSpk, τq � 1

2ε
Psspk, τq . (B.48)
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Di�erent Normalisations We can easily compare the BD normalisation pro-
cedure used in the two methods. The relation between the perturbation variables
is given by

vα � Tαvσ �Nαvs , (B.49)

from which we can conclude that

|v|2 � vαv
α� � pvσq2 � pvsq2, . (B.50)

Nevertheless, expanding the two basis on the same set of orthogonal creation and
annihilation operators we get:

vαβ � Tαvσβ �Nαvsβ . (B.51)

The �rst approach requires that

lim
τÑ�8

|vαβpk, τq| � δαβ?
2k

Ñ lim
τÑ�8

|v11pk, τq| � lim
τÑ�8

|v22pk, τq| � 1?
2k

,

(B.52)
while the second approach implies

lim
τÑ�8

|vIβpk, τq| � δIβ?
2k

Ñ lim
τÑ�8

|pvσq1pk, τq| � lim
τÑ�8

|pvsq2pk, τq| � 1?
2k

.

(B.53)
The discrepancy between the di�erent normalisation prescriptions becomes ap-
parent when the tangent and normal vector components become dynamically ill-
de�ned, i.e. they tend to zero or explode to in�nity. This is precisely what happens
in the 2-�eld system that we analyse in Sec. 4.6.3. Here We focus for simplicity
on the right-left �bre in�ation case where the θ1 massless axion induces the ge-
ometrical instability of the system. in this case the tangent and normal vector
asymptotically behave as

T a �
"
α1,

α2

f

*
Ñ t1, 0u , Na �

"
�α2,

α1

f

*
Ñ

"
0,

1

f

*
(B.54)

so that we �nd the following relation between perturbations in the two di�erent
schemes

vσ Ñ v1 , vs Ñ 1

f
v2 . (B.55)

It is immediate to �nd out that the two approaches are not equivalent as

|v22| � |pvsq2| �
����v22

f

���� . (B.56)
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Figure B.1: Power spectra behaviour of the right-left Fibre in�ation model pre-
sented in Sec. 4.6.3 in case of massless θ1 axion. We compare the results coming
from the two methods presented in this appendix. Left plot is referred to the power
spectrum of density perturbations, right plot contains the results of the isocurva-
ture power spectrum. Orange lines are related to the �eld basis pfbq method
while blue lines come from the kinetic basis pTNq method. We also numerically
checked the relation in Eq. (B.56): PS pfbq � f 2pNiqPS pTNq where Ni is the initial
simulation time where we set Bunch-Davies conditions.

Indeed, studying perturbations using the two methods in case of FI leads to the
results presented in Figure B.1 where we see that, while the results on PR coincide,
those ones related to PS di�er by many orders of magnitude. Indeed, despite the
evolution of the isocurvature power spectrum is very similar in the two approaches,
the di�erent choice of initial conditions leads to very huge discrepancies in case of
"ill-de�ned" tangent and normal projectors.

Entropy from non-adiabatic pressure

Considering the system described by Eq. (B.1), we can write down the total
background energy and pressure as

ρ � 1

2
9φα 9φ

α � V pφq , (B.57)

P � 1

2
9φα 9φ

α � V pφq . (B.58)

Computing cosmological perturbations as described in Appendix B.2 and using the
spatially �at gauge, E � Ψ � 0, we can write down energy density and pressure
perturbations

δρ � �δT 0
0 � �Φ 9φα 9φ

α � 9φα 9δφ
α � 1

2
9φα 9φβBσGαβδφ

σ � Vαδφ
α , (B.59)
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δP � δT ii � �Φ 9φα 9φ
α � 9φα 9δφ

α � 1

2
9φα 9φβBσGαβδφ

σ � Vαδφ
α . (B.60)

The adiabatic sound speed, given by c2
s � 9P

9ρ
, takes the following form:

c2
s � 1� 2

3H

Vα 9φ
α

9φγ 9φγ
(B.61)

and the non-adiabatic pressure, δPnad � δP � c2
sδρ, is given by

δPnad � �2Vαδφ
α � 2

3H
Vλ 9φλ

9φγ 9φγ

�
Φ 9φα 9φ

α � 9φα 9δφ
α � 1

2
9φα 9φβBσGαβδφ

σ � Vαδφ
α
�
.

(B.62)
Using Eq. (B.20) and considering the number of e-foldings as time variable, the
previous equation can be written as:

δPnad � fαpφ, φ1qδφα � gαpφ, φ1qδφ1α , (B.63)

where 1 � d{dN and

fαpφ, φ1q �
�
�2Vα � Vβφ

1β

3ε

�
εφ1α � 1

2
φ1ρφ1σBαGρσ � Vα

H2

��
,

gαpφ, φ1q � �Vλφ
1λ

3ε
φ1α .

. (B.64)

The entropy perturbation coming from non-adiabatic pressure is de�ned to be:

Snad � 1

P 1 δPnad (B.65)

where the pressure time derivative of the system is given by

P 1 � � �
3H2Gαβφ

1αφ1β � 2Vβφ
1β� . (B.66)

We can �nally compute the power spectrum of non-adiabatic entropy perturbations
as

PSnad �
k2

2π2pP 1q2
�
fαQ̃

αβ � gαQ̃
1αβ

	�
fγQ̃

�γβ � gγQ̃
1�γβ

	
, (B.67)

where we made use of Eq. (B.26).
Moreover, giving the following equations that link �eld perturbations with the

tangent and normal projectors

Qα � Tαδσ �Nαδs ,

Qα1 � dTα

dN
δσ � Tαδσ1 � dNα

dN
δs�Nαδs1 ,

dTα

dN
� �VNN

α

φ10H
� φ10ΓαβγT

βT γ ,

dNα

dN
� �VNT

α

φ10H
� φ10ΓαβγN

βT γ ,

(B.68)
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we can write Snad as a function of perturbations in the kinetic basis

Snad � 1

p3H2ε�φ10VT q
�
VT

�
1� VT

3φ10H2 � ε
3

	
δσ � VT

3
δσ1

�
� VN δs

3H2ε
, (B.69)

where VT � VαT
α and VN � VαN

α.
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Appendix C

Detailed computations on 3.55 keV

line

C.1 Closed string axion decay constants

In type IIB string compacti�cations on Calabi-Yau orientifolds axion-like par-
ticles emerge in the low-energy N � 1 e�ective �eld theory from the dimensional
reduction of the Ramond-Ramond forms Cp with p � 2, 4. The Kaluza-Klein
decomposition under the orientifold projection of these forms is given by [35]:

C2 � ci�pxq D̂i� and C4 � ci�pxqD̃i��Qi�
2 pxq^D̂i��V a�pxq^αa��Ṽa�pxq^βa� ,

where i� � 1, ..., h1,1
� , a� � 1, ..., h1,2

� , D̃i� is a basis of H2,2
� dual to the p1, 1q-forms

D̂i� and pαa� , βa�q is a real, symplectic basis of H3
� � H1,2

� `H2,1
� .

As explained in Sec. 5.5.1, in our model the orientifold-odd axions ci� , if
present, are eaten up by anomalous Up1q's in the process of anomaly cancellation.
We shall therefore focus on the case with h1,1

� � 0 where the Kähler moduli take
the simple expression Ti � τi � i ci with i � 1, ..., h1,1

� � h1,1.
The coupling of orientifold-even closed string axions to F ^ F can be derived

from the Kaluza-Klein reduction of the Chern-Simons term of the D-brane ac-
tion. Moreover, the periods of the canonically unnormalised axions ci are integer
multiples of Mp and their kinetic terms read [76]:

Lkin � KijBµciBµcj � 1

8
ηi Bµc1iBµc1i , (C.1)

where the c1i's are the axions which diagonalise the Kähler metric Kij and ηi are
its eigenvalues. A proper canonical normalisation of the kinetic terms can then be
easily obtained by de�ning:

1

8
ηiBµc1iBµc1i �

1

2
BµaiBµai with ai � 1

2

?
ηi c

1
i , (C.2)
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which shows that the canonically normalised axions ai acquire periods of the form:

2?
ηi
ai � 2?

ηi
ai �Mp ñ ai � ai �

?
ηi

2
Mp . (C.3)

We can then set the conventional axionic period as:

ai � ai � 2πfai with fai �
?
ηiMp

4π
, (C.4)

where fai is the standard axion decay constant. Closed string axions which prop-
agate in the bulk of the extra dimensions have a decay constant of order the
Kaluza-Klein scale MKK � Mp{V2{3, whereas the decay constant of closed string
axions whose corresponding saxion parameterises the volume of localised blow-up
modes is controlled by the string scale Ms �Mp{

?
V :

fai �
"
Mp{τi �MKK bulk axion

Mp{
?
V �Ms local axion

(C.5)

Notice however that the axion coupling to the Abelian gauge bosons living on
the D-brane wrapping the four-cycle whose volume is controlled by the associated
saxion τi, is given by:

g2
i

32π2

ai
fai

F piq
µν F̃

µν
piq �

1

32π2

ai
τifai

F piq
µν F̃

µν
piq , (C.6)

since the gauge coupling is set by the saxion as g2
i � τi. Hence combining (C.5)

with (C.6) we realise that that the coupling of bulk closed string axions to gauge
bosons is controlled by M � τifai � Mp, in agreement with the fact that moduli
couple to ordinary matter with gravitational strength. On the other hand the
coupling of local closed string axions to gauge bosons is set by the string scale Ms

which in LVS models with exponentially large volume can be considerably smaller
than the Planck scale.

C.2 Canonical normalisation

The kinetic terms for all Kähler moduli and the charged open string modes φ
and C can be derived from the total Kähler potential K � Kmod �Kmatter, where
Kmod is given by the three contributions in (5.40) and Kmatter is shown in (5.41)
and (5.42), as follows:

Lkin � B2K

BχiBχ̄j̄
BµχiBµχ̄j̄ , (C.7)
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where χi denotes an arbitrary scalar �eld of our model. As can be seen from (5.41),
the D7 open string mode φ mixes only with the dilaton S, and so can be easily
written in terms of the corresponding canonically normalised �eld φ̂ as:

φ̂

Mp

�
d

2

RepSq φ . (C.8)

From the �rst term in (5.40) we also realise that cross-terms between the blow-up
mode τqi and any of the other Kähler moduli are highly suppressed when evaluated
at the minimum for τqi � 0 (more precisely, as discussed in Sec. 5.5.3, depending
on the level of sequestering of soft masses, we can have either τqi � V�1 ! 1
or τqi � V�3 ! 1). Hence it is straightforward to write also τqi in terms of the
corresponding canonically normalised �eld φqi as:

φqi
Mp

� τqi?
V

for i � 1, 2 . (C.9)

The remaining �elds Tb, Ts, Tp and C mix with each other, leading to a non-trivial
Kähler metric whose components take the following leading order expressions for
V � λbτ

3{2
b " 1:

KTiT̄j̄
� 3

8V

�
���

2λb?
τb

� 3
τb

�
λs
?
τs � xλp

a
τ̃p
� � 3

τb
λp
a
τ̃p

� 3
τb

�
λs
?
τs � xλp

a
τ̃p
�

λs?
τs
� x2λp?

τ̃p

xλp?
τ̃p

� 3
τb
λp
a
τ̃p

xλp?
τ̃p

λp?
τ̃p

�
��


KTbC̄ � � K̃

2 τb
C , KTsC̄ �

K̃

2V
�
λs
?
τs � xλp

a
τ̃p
�
C ,

KTpC̄ � K̃

2V λp
a
τ̃pC , KCC̄ � K̃ .

In the large volume limit, di�erent contributions to the kinetic Lagrangian can be
organised in an expansion in 1{V ! 1 as follows:

Lkin � LOp1q
kin � LOpV�1q

kin � LOpV�4{3q
kin ,
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where, trading Tp for T̃p � Tp � xTs, we have:

LOp1q
kin � 3

4 τ 2
b

BµτbBµτb ,

LOpV�1q
kin � 3

8V

�
λs?
τs
pBµτsBµτs � BµcsBµcsq � λpa

τ̃p
pBµτ̃pBµτ̃p � Bµc̃pBµc̃pq

�

� 9

4V
Bµτb
τb

�
λs
?
τs Bµτs � λp

a
τ̃p Bµτ̃p

�
,

LOpV�4{3q
kin � 3

4 τ 2
b

BµcbBµcb .

At leading order the kinetic terms become canonical if τb is replaced by φb de�ned
as:

φb
Mp

�
c

3

2
ln τb , (C.10)

whereas LOpV�1q
kin becomes diagonal if the small modulus Ts and the Wilson modulus

T̃p are substituted by:

φs
Mp

�
c

4λs
3V τ 3{4

s ,
as
Mp

�
d

3λs
4V?τs cs ,

φ̃p
Mp

�
c

4λp
3V τ̃ 3{4

p ,
ãp
Mp

�
d

3λp

4V
a
τ̃p
c̃p , (C.11)

and the canonical normalisation (C.10) for τb gets modi�ed by the inclusion of a
subleading mixing with τs and τ̃p of the form:

φb
Mp

�
c

3

2
ln τb �

c
2

3

1

V
�
λsτ

3{2
s � λpτ̃

3{2
p

�
. (C.12)

Finally the kinetic term in LOpV�4{3q
kin are canonically normalised if the bulk axion

cb gets rede�ned as:
ab
Mp

�
c

3

2

cb
τb
. (C.13)

The Up1q-charged open string mode C appears in the kinetic Lagrangian only at
Op|C|2V�2{3q which according to (5.62) and (5.63) can scale as either V�8{3 or
V�14{3. This part of the kinetic Lagrangian looks like:

Lkin � K̃ |C|2
�Bµ|C|
|C|

Bµ|C|
|C| � BµθBµθ � Bµτb

τb

Bµ|C|
|C|



, (C.14)
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and becomes diagonal by rede�ning:

|Ĉ|
Mp

�
a

2K̃|C| and aALP � |Ĉ|θ � faALP θ .

C.3 Mass matrix

As described in Sec. 5.5.1, the moduli stabilised at tree-level are τqi and |φ|
while the corresponding axions are eaten up by two anomalous Up1q's. Given that
they �xed at Op1{V2q, all these modes develop a mass of order the string scale:

mτqi
� mcqi

� m|φ| � mψ �Ms � g1{4
s

?
π
Mp?
V
. (C.15)

On the other hand, τb, τs, τ̃p and the closed string axion cs are stabilised atOp1{V3q.
The masses of the corresponding canonically normalised �elds derived in App. C.2
are given by the eigenvalues of the mass matrix evaluated at the minimum of the
Op1{V3q scalar potential. The leading order contributions of all the elements of
this 4� 4 matrix read:

B2V

BφbBφb �
� gs

8π

	 9λs τ
3{2
s

2

W 2
0

V3
,

B2V

BφbBφs �
� gs

8π

	 3
?

2λs τ
3{4
s?

V

�
W0

V


2

p2πτsq ,

B2V

BφsBφs � B2V

BasBas � 4
� gs

8π

	�W0

V


2

p2πτsq2 ,

B2V

Bφ̃pBφ̃p
�

� gs
8π

	 1

4zpτ̃p

�
W0

V


2

,

B2V

BφbBφ̃p
� B2V

BφbBas �
B2V

BφsBφ̃p
� B2V

BφsBas �
B2V

Bφ̃pBas
� 0 ,

The eigenvalues of this mass matrix turn out to be:

m2
φs � m2

as � 4
� gs

8π

	�W0

V


2

p2πτsq2 � m2
3{2 plnVq2 ,

m2
φ̃p

�
� gs

8π

	 π

2zp

�
W0

V


2
1

2πτ̃p
� m2

3{2
lnV and m2

φb
� 0 , (C.16)

where the gravitino mass is given by:

m2
3{2 � eK |W |2 �

� gs
8π

	�W0

V


2

. (C.17)
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The mass of the canonically normalised large modulus φb becomes non-zero once
we include subleading 1{p2πτsq � 1{ lnV ! 1 corrections to the elements of the
mass matrix, and scales as (with c an Op1q numerical coe�cient):

m2
φb
� c λsτ

3{2
s

� gs
8π

	W 2
0

V3

1

2πτs
� m2

3{2
V lnV . (C.18)

As explained in Sec. 5.5.3, the charged matter �eld |C| is �xed by soft supersym-
metry breaking contributions to the scalar potential and can acquire a mass of
order m3{2{

?
V or m3{2{V depending on the level of sequestering. The correspond-

ing phase θ � aALP{faALP behaves as an open string ALP which develops a mass
of order:

maALP �
Λ2

hid

faALP
� Λ2

hid

|Ĉ| , (C.19)

where Λhid is the scale of strong dynamics e�ects in the hidden sector. In order
to obtain a phenomenologically viable value maALP À 10�12 eV, we need to have
Λhid À 104 eV if faALP � m3{2 � 1010 GeV or Λhid À 1 eV if faALP � m3{2{V � 1
TeV.

The DM axion cp is stabilised by tiny poly-instanton corrections at Op1{V3�pq.
Using the fact thatK�1

TpT̄p
� V

a
τ̃p and the expression (5.64) for the scalar potential

for cp, its mass can be easily estimated as:

m2
ãp � K�1

TpT̄p

B2V poly
F pcpq
Bc2

p

�
� gs

8π

	 W 2
0

V2�p 2πτ̃p �
m2

3{2
Vp lnV . (C.20)

If the volume is of order V � 107, this mass can be around 10 keV if p � 9{2. As
explained in Sec. 5.6.2 this value of p can be accommodated by an appropriate
choice of underlying �ux parameters. Finally the axion cb of the large modulus
Tb � τb� i cb can receive a potential only from highly suppressed non-perturbative
contributions to the superpotential of the form Wnp � Ab e

�2πTb which can be
shown to lead to a mass for the axion cb that scales as:

m2
ab
�
� gs

8π

	 M2
p

V4{3 e
� 2π

λ
2{3
b

V2{3

� 0 . (C.21)



Appendix D

Extended calculations on Axion

in�ation with electro-magnetic

backreaction

D.1 Phase shift

In this appendix we derive in a slightly di�erent manner the value of the char-
acteristic time scale ∆Nξ that denotes the lag between x ~E ~BypNq and ξpNq, given
in Eq. (6.17).

First, we notice that in the case of constant ξ we can de�ne a self-similar
function ÃpNq that captures the growth of the gauge modes for any large enough
value of ξ. If we evaluate the enhanced gauge modes A�λpN, kq at the time N �
ln 2ξ and additionally rescale their amplitude with

b
2πkξ

eπξ sinhpπξq (such that they

asymptote to unity) their equation of motion in e-folds reads

Ã2
k � Ã1

k �
k

aH

�
k

4aHξ2
� 1



Ãk � 0 . (D.1)

Therefore, plugging in the constant ξ solution for the gauge modes given in Eq.
(6.12), we �nd that

Ãk �
d

πξ

sinhpπξqW�iξ,1{2

�
�i k

aHξ



(D.2)

is a `self-similar' solution that only depends on N (and on a trivial way on k)
as long as the k{4aHξ2 correction can be neglected in Eq. (D.1). Numerically,
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Figure D.1: Evolution of
���Ãk���2 pNq evaluated at Nk � 0 (red and purple lines) and

support of 2ĨEBpNq (blue, orange and green lines) for various values of constant
ξ.

we �nd indeed that the ξ-dependence drops out for ξ Á 2. See Figure D.1. The
original gauge mode Ak can then be expressed in terms of Ãk as

Akpξ,Nq �
d

sinhpπξq
2πkξ

eπξ{2ÃkpN � ln 2ξq . (D.3)

Similarly, using Eq. (6.9), we de�ne a self-similar function for the integrand of

x ~E ~By
ĨE�BpNq � πξe�3N

sinhpπξqBN |W�iξ,1{2
��2ie�N�ln 2ξ

� |2, (D.4)

such that the integrand of x ~E ~By (in d ln k) is given by

IE�Bpk, ξ,Nq � H4 sinhpπξqeπξ
64π3ξ4a3

0

ĨE�BpN � ln 2ξ �Nkq , (D.5)

where Nk is the time that the mode k crosses the horizon. The self-similar inte-
grand (D.4) indeed becomes independent of ξ, but only for ξ Á 4. This is because
of the additional e�3N that shifts the peak almost 3 e-foldings to sub-horizon
scales. We �nd that ĨE�B peaks at N � �1.38 � lnp1{4q with amplitude Ĩ � 0.57
and has most of its support �1.5 e-foldings around it. See Figure D.1. The inte-
grand therefore peaks approximately at the wavenumber that crosses the horizon
at Npeak � N � ln ξ{2.
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Second, when ξ is time-dependent, the gauge mode function Ak grows to a
plateau value, corresponding to the value reached for some constant ξe�, Akpξpτq; kτ !
1q � Akpξe�; kτ ! 1q. If ξ is slowly varying in time, we expect ξe� to track ξ adia-
batically with some time delay. Indeed, we �nd that a good �t is given by

ξe�pNkq � ξpN�q with N� � Nk � logpξpN�q{aq, (D.6)

where N� is implicitly de�ned and a � 1.2� 2.0. This re�nes the argument given
in Sec. 6.3 that the value of ξ at k{aH � ξ determines the growth of Ak. If
we deviate from adiabatic tracking, however, the e�ective ξ averages out to some
degree. This makes sense, as the growth of the gauge modes will start to feel a
range of values of ξ. As we can see from Fig. 6.2, the e�ective ξ that x ~E ~By feels
is not exactly the value of ξ evaluated at a particular instance of time, but rather
an average over a range of values. We can imagine a smoothing window of width
� ln 4ξ2 going over the dashed curve as time proceeds. Only if the smoothing
window has completely passed the jump at N0, then x ~E ~By will have reached its
�nal plateau value. Therefore, we expect that Eq. (D.6) needs to be re�ned if ξ
changes considerably over the coarse of � ln 4ξ2 e-folds.

At this point we make an ansatz: the integrand of x ~E ~By is given by
IE�Bpk, ξe�pNkq, Nq. This indeed seems to be a good approximation for slowly
varying ξ, see Figure D.2, where we take a � 1.45. The above considerations allow
us to �nd a semi-analytical estimate for ∆Nξ. Let us focus on the harmonic

ξpNq � ξ̄ � A cospωξNq . (D.7)

The �rst maximum of ξe� re�ecting the maximum of ξ at N� � 0 will be at

0 � Nmax � ln
�pξ̄ � Aq{a� ÝÑ Nmax � ln

�pξ̄ � Aq{a� . (D.8)

Meanwhile, the integrand of x ~E ~BypNq peaks at Np � N � lnpξe�pNpq{2q and will
take the maximal value at N � ∆Nξ when Npeak � Nmax, hence

Nmax � ∆Nξ � ln
�pξ̄ � Aq{2� ÝÑ ∆Nξ � ln

�pξ̄ � Aq2{2a� . (D.9)

We �nd that a good �t is given for a � 1.45 and is shown in Figure 6.4 together
with the original estimate ∆Nξ � lnpξ2{2q that was argued for in the main text.

D.2 Details on the numerics

In order to obtain our numerical results we use an iterative procedure whose
starting point is given by the analytical estimate of the mode function Ak assuming
constant in�aton speed φ1pNq, Eq. (6.12):
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Figure D.2: Comparison of the integrand of x ~E ~By (discrete points) with
IEBpNk, ξe�pNkq, Nq (solid lines) for an oscillating ξ � 5 � cosp0.1Nq evaluated
at various times N .

x ~E ~Byp0q � 1
221 π2

H4
0

ξ4 e
2πξ

³8ξ

0
x7e�xdx , (D.10)

xρ
EB
yp0q � xE2�B2

2
yp0q � 6!

219π2

H4
0

ξ3 e
2πξ , (D.11)

where H0 is given by the Hubble parameter in absence of any backreaction, H2
0 �

V pφq
3� 1

2
φ12 . Denoting the j-th order iteration quantities with the subscript j, our

�rst step is to �nd the solution of the following di�erential equation for a given
x ~E ~Bypj�1q obtained in the previous iteration:

φ2pjq � p3� εpjqqφ1pjq �
1

H2
pjq

�
Vφpφpjqq � α

Λ
x ~E ~Bypj�1q

	
� 0 , (D.12)

where

H2
pjq �

V pφpjqq � xρEBypj�1q

3� φ12pjq
2

; εpjq � 1

2
φ12pjq �

2

3H2
pjq
xρ

EB
ypj�1q . (D.13)

Once we get the solution of this equation, φpjqpNq, we plug the derived quantities
HpjqpNq, εpjqpNq and ξpjqpNq inside the gauge mode equations

A2
k,� � p1� εpjqqA1

k,� � k
aHpjq

�
k

aHpjq
	 2 ξpjqpNq

	
Ak,� � 0 . (D.14)
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Then, choosing an array of k-modes with an exponential spacing, we estimate the
discretized version of xρ

EB
ypjq and x ~E ~Bypjq

xρ
EB
ypjq � 1

4π2a4

M̧

i�1

d ln ki

�
k3
i a

2H2
pjq|A

1σ
ki
|2 � k5

i |Aσki |2 � k4
i

	
θ pN �Niq , (D.15)

x ~E ~Bypjq � σ
Hpjq

4π2a3

M̧

i�1

d ln ki k
3
i

B
BN |A

σ
ki
|2θ pN �Niq , (D.16)

where σ is the polarization which experiences the tachyonic behaviour and the third
term in Eq. (D.15) accounts for the subtraction of the Bunch-Davies contributions.
With Ni � minN t2aHξ � ki   0u the Heaviside θ function is introduced to take
into account only those modes that have already become tachyonic.

The array of k-modes is de�ned as kp � kine
°p�1
i�1 ∆i where p � 2 . . .M , k1 � kin

is the lowest momentum taken into account and ∆i � t0.1, 0.02u. The value we
choose for ∆i depends on the oscillatory behaviour of the solution: the stronger
the backreaction, the thinner the momentum grid. Given this choice, we can write
down the integration step as dk � k d ln k. The weight related to the contribution
of a single mode to the integral is evaluated using the trapezoidal rule, i.e. d ln kp �
1
2

log
�
kp�1

kp�1

	
� ∆p and d ln k1 � 1

2
log

�
k2

k1

	
� ∆1

2
, d ln kM � 1

2
log

�
kM
kM�1

	
� ∆M�1

2
.

Once we have evaluated the integrals (D.15) and (D.16) in this way we are able
to de�ne next iteration quantities εpj�1q, Hpj�1q and the new approximated equation
of motion that the in�aton �eld needs to satisfy. Iterating this procedure allows us
to �nd better approximations of the real solution of the system. We stop the calcu-
lations when there is no appreciable di�erence between the consecutive iterations.
We do not prove here that this procedure always converges at a reasonable rate.
But if convergence is reached (as is the case in our explicit numerical examples),
this procedure ensures a self-consistent solution of the integro-di�erential system
(6.5), (6.7) and (6.9).

During the algorithm we check that the contributions coming from the non-
tachyonic polarizations is completely negligible.

D.3 Estimate of non-equal time correlation func-

tion

D.3.1 Analytical estimate

Far away from the resonance region the parameter ξ varies only slowly and we
can estimate the importance of the non-equal time contributions to Eq. (6.38) by
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looking at the result Eqs. (A3) and (A4) from [262]. These expressions are based
on parametrizing the gauge �eld mode functions with Whittaker functions, see
Eq. (6.12). Massaging the expressions a little bit, we get for the correlator

»
d3x ei~p~x x0|δEBpN 1, 0qδEBpN2, xq|0y � H 1H2

a13a23

e2πpξ1�ξ2q

p?ρ1 �?ρ2q10
Cpκq , (D.17)

Cpκq �κ5

8»
0

dqq3

1»
�1

dα
a

1� q2 � 2qαe�
?
κpq�

?
1�q2�2qαq

�
�

1�
?
q

p1� q2 � 2qαq1{4

 2π»

0

dφ|ε�p�q̂q � ε�pq̂ � êzq|2 .

Here, we de�ne ρ � 2ξ{paHq, ~q � ~k{|p|, ~p � |p|êz and κ � 4|p|p?ρ1�?ρ2q2. In this
appendix only, for notational brevity the superscripts pq1 and pq2 denote the given
quantity at time N 1 and N2, respectively. We now see, �rstly, that the κ5 factor
inside Cpκq and the factor 1{p?ρ1 � ?

ρ2q10 multiplying Cpκq cancel each other.
Secondly, we recognize that the correlator is bounded from above by its value on
far super-horizon scales κÑ 0, and that the correlator depends only polynomially
on a1 and a2 in this limit. Hence we �nd that the correlator at late times scales as»

d3x ei~p~x x0|δEBpN 1, 0qδEBpN2, xq|0y � 1

a13a23
� e�3pN 1�N2q � e�6N 1

e�3∆N ,

(D.18)
assuming N2 ¡ N 1 with loss of generality. By comparison, we conclude that
the argument of gpN,∆Nq scales as e�3∆N . For a functional form fp∆Nq �
expp�c∆Nq the integral

gpN 1, 0q �
» 8

N 1
dN2 expp�c∆Nq � 1

c
(D.19)

is of Op1q for Op1q values of c. Since in our case we have c � 3, the inclusion of
unequal time correlations does not signi�cantly alter our result. This can also be
con�rmed by a comparison of our results with previous analysis [262, 270] which
included this unequal time correlator, see App. D.4.

D.3.2 Numerical evaluation

In the resonant regime the Whittaker functions used in App. D.3.1 are no longer
a good approximation to the full mode functions. In this region, we evaluate the
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non-equal time correlator numerically, based on the mode functions obtained in
Sec. 6.4.

In order to compute the shape of the non-equal time correlation function, we
de�ne symmetrized version of δEB (see Eq. (6.35)), analogous to the symmetrized

x ~E ~By introduced in Eq. (6.9) (see also [291]),

δEBpτ, xqS �
�
Eipτ, xqBipτ, xq�

S
� x ~E ~BySpτ 1q

� 1

2

�
Eipτ, xqBipτ, xq �Bipτ, xqEipτ, xq�� x ~E ~BySpτq , (D.20)

and consequently

x0| rδEBpτ 1, xqS δEBpτ 2, 0qSsS |0y
� 1

2
x0|δEBpτ 1, xqSδEBpτ 2, 0qS � δEBpτ 2, 0qSδEBpτ 1, xqSy|0y .

(D.21)

If we consider only positive helicity modes, λ � �, and we use the following short
notation

Ei
1 � Eipk, τ 2, ~x,�q , Bi

1 � Bipk, τ 2, ~x,�q , Ej
2 � Ejpk, τ 1, 0,�q ,

Bj
2 � Bjpk, τ 1, 0,�q , Bj

2 � Bjpk, τ 1, 0,�q , A�pτ,~kq � Apτ,~kq (D.22)

we end up with

»
d3~xei~q�~xx0| rδEBpτ 1, xqSδEBpτ 2, 0qSsS |0y �

� 1

2

»
d3~xei~q�~x

�xEi
1E

j
2yxBi

1B
j
2y � xEi

1B
j
2yxBi

1E
j
2y�

�xEj
2E

i
1yxBj

2B
i
1y � xEj

2B
i
1yxBj

2E
i
1y
�

� 1

2a14a24

»
d3~k

p2πq3 |
~k|2

���~ε�p~kq � ~ε�p�~k � ~qq
���2�

�
#
BτApτ 1,�~k � ~qqBτA�pτ 2,�~k � ~qqApτ 1, ~kqA�pτ 2, ~kq�

� 2
| � ~k � ~q|

|~k|
Re

�
BτApτ 1,�~k � ~qqA�pτ 2,�~k � ~qqApτ 1, ~kqBτA�pτ 2, ~kq

�
�

�| �
~k � ~q|2
|~k|2

Apτ 2,�~k � ~qqA�pτ 1,�~k � ~qqBτApτ 2, ~kqBτA�pτ 1, ~kq
+

(D.23)
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where in this appendix only, a1 � apτ 1q and a2 � apτ 2q. Given that the positive
polarization vector can written as

ε�p~kq �
k̂ � êx � i

�
k̂pk̂ � êxq � êx

	
?

2|k̂ � êx|
, (D.24)

if we assume that ~q � t0, 0, qu, we can see that using polar coordinates and setting
cospθq � α, the polarization dependent factor inside Eq. (D.23) becomes

���ε�p~kq � ε�p�~q � ~kq���2 �2k2 � 4kqα � q2p1� α2q
4k2

�
1� 2α q

k
� q2

k2

	 �

� k3 � 3k2qα � q3α � kq2p1� 2α2q
2k3

�
1� 2α q

k
� q2

k2

	3{2 . (D.25)

In order to have a more compact notation we also de�ne

C1pk, q, αq �
���ε�p~kq � ε�p�~q � ~kq���2 ,

C2pk, q, αq � C1pk, q, αq
c

1� 2α
q

k
� q2

k2
, (D.26)

and since the gauge mode equation of motion depends just on the magnitude of
the k-vector, we can write

ApN,~kq � ApN, kq;

ApN,�~k � ~qq � ApN, k
c

1� 2α
q

k
� q2

k2
q � ApN, k, q, αq. (D.27)

Rearranging Eq. D.23 and using the number e-foldings as time variable we get»
d3~xei~q�~xx0| rδEBpN 1, xqSδEBpN2, 0qSsS |0y �

H 1H2

a13a23

» 8

0

dk

p4π2qk
4

» 1

�1

dα�

tC1pk, q, αqRe rBNApN 1, k, q, αqBNA�pN2, k, q, αqApN 1, kqA�pN2, kqs
�C2pk, q, αqRe rBNApN 1, k, q, αqA�pN2, k, q, αqApN 1, kqBNA�pN2, kqsu

(D.28)

where in this appendix only, H 1 � HpN 1q and H2 � HpN2q. It is easy to see that
the �nal result has the desired properties: it is real and symmetric under N 1 Ø N2

and ~xØ �~x.
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As in App. D.3.1 we focus on far super-horizon scales q Ñ 0,

xδEBpN 1qδEBpN2qy � lim
qÑ0

»
d3~xei~q�~xx0| rδEBpN 1, xqSδEBpN2, 0qSsS |0y

�H
1H2

a13a23

» 8

0

dk

p2π2qk
4�

tRe rBNApN 1, kqBNA�pN2, kqApN 1, kqA�pN2, kqs �
�Re rBNApN 1, kqA�pN2, kqApN 1, kqBNA�pN2, kqsu .

(D.29)

For numerical purposes we discretize the integral as follows

xδEBpN 1qδEBpN2qy � H 1H2

p2π2qa13a23

¸
ki

d ln ki k
5
i

¸
j

∆α �

tRe rBNApN 1, kiqBNA�pN2, kiqApN 1, kiqA�pN2, kiqs �
�Re rBNApN 1, kiqA�pN2, kiqApN 1, kiqBNA�pN2, kiqsu . (D.30)

the discretization scheme is the same as in App. (D.2).
We can now compute a numerical estimate of the normalized non-equal time

correlation function that was introduced in Eq. (6.39),

gpN 1,∆Nq � xδ2
EBpN 1qy�1

» 8

N 1�∆N

dN2xδEBpN 1qδEBpN2qy . (D.31)

Fig. D.3 shows the integrand of gpN 1,∆Nq at �ve distinct times deep in the res-
onance regime. As in our analytical estimate in App. D.3.1, the integrand of
gpN 1,∆Nq drops exponentially as expp�c∆Nq with c � Op1q. For small values of
∆N the behaviour deviates from the exponential decay. Numerically performing
the integral for some representative choices of ∆N yields

� N 1 � 60, ∆N � t1, 0.5, 0.1u, gpN 1,∆Nq{γ � t0.19, 0.46, 0.86u
� N 1 � 61.4, ∆N � t1, 0.5, 0.1u, gpN 1,∆Nq{γ � t6.6� 10�2, 0.31, 0.82u
� N 1 � 61.8, ∆N � t1, 0.5, 0.1u, gpN 1,∆Nq{γ � t6.4� 10�2, 0.24, 0.76u
� N 1 � 62, ∆N � t1, 0.5, 0.1u, gpN 1,∆Nq{γ � t0.13, 0.31, 0.76u
� N 1 � 62.2, ∆N � t1, 0.5, 0.1u, gpN 1,∆Nq{γ � t0.15, 0.34, 0.79u

We conclude that the support of gpN 1,∆Nq is mainly focused at small values of
∆N , i.e. that unequal time correlations are mainly relevant on time scales over
which xδ2pEBqy does not change too drastically. However, the contributions from
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Figure D.3: Integrand of gpN 1,∆Nq, for various values of N 1 for 1{f � 25. The
top left panel corresponds to the bottom left panel of Fig. 6.6 and serves as an
orientation to identify the position of the maxima and minima. All other panels
show the integrand of gpN 1,∆Nq for local minima (N 1 � 61.4), local maxima

(N 1 � 62) and steep regions (N 1 � t60, 61.8, 62.2u) of x ~E ~By. The red lines give
the best �t for the exponentially decreasing tail of the distributions.
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more distant times are not fully negligible, and hence we expect Op1q corrections
to the power spectrum in the resonance regime. These will tend to slightly smooth
the maxima and minima of the power spectrum in this regime. However, since the
minima are unobservable and the maxima violate perturbativity (see discussion in
Sec. 6.5) this does not signi�cantly impact our discussion in the main text.

D.4 Scalar power spectrum: comparison with ear-

lier work

The scalar power spectrum generated during axion in�ation has been previously
estimated in Refs. [262, 268, 270, 273] based on the analytical estimate for x ~E ~By
given in Eq. (6.13). In this appendix we brie�y review these derivations and their
limitations. Of particular interest to us are Refs. [262, 270] which are based on
the Greens function method. Generalizing this approach leads to the results for
the power spectrum reported in the main text.

We start from the equation of motion for the scalar perturbations, Eq. (6.35),

δφ2 � 3 δφ1 � N,φ

fH2

Bx ~E ~By
BN δφ � 1

fH2
δEB . (D.32)

Ref. [270] focuses on the regime of weak or mild backreaction (wb) where the

Bx ~E ~By{BN term can be neglected,1

L
pwbq
N rδφpNqs � δφ2 � 3 δφ1 � 1

fH2
δEB . (D.33)

Following the steps in Eq. (6.35) to (6.42) of the main text yields

xδN2ypwbq � N2
,φ

»
dN 1G

2
wbpN,N 1qσ2

EBpN 1q
f 2H2pN 1q , (D.34)

with GwbpN,N 1q denoting the Greens function of the linear operator L
pwbq
N .

Ref. [262] focuses on the opposite limit of strong backreaction. In this case,
the the backreaction term in Eq. (D.32) can be approximated as

N,φ

fH2

Bx ~E ~By
BN δφ � 1

2f 2H2

Bx ~E ~By
Bξ δφ1 � 1

2f 2H2

�
2πx ~E ~By

	
δφ1 � 2π

2fH2
V,φδφ

1 .

(D.35)

1We note that Eq. [270] includes the slow-roll suppressed mass term for δφ and (working in
Fourier space) the unequal time correlations in xδEBpNqδEBpN

1qy. However, as the very good
agreement in Fig. D.4 shows, these do not signi�cantly change the result.
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In the �rst step, we have Taylor expanded x ~E ~By in terms of ξ instead of N . This

is valid if x ~E ~By can be expressed as a function of ξ only and if ξ is strictly mono-
tonic, implying that the evolution of ξ can serve as a well-de�ned `clock' during
in�ation. As long as the �uctuations are small, δN, δξ ! 1, both descriptions are
then equivalent. In the full system studied in the main text where ξ becomes an
oscillating function, this procedure can not be applied. The second step relies on
the explicit form of x ~E ~By in Eq. (6.13) with the additional assumption of H being
approximately constant. The �nal step uses the background equation of motion
in the strong backreaction regime where the 9φ-term can be neglected.2 Based on
this, Eq. (D.32) can be expressed as

L
psbq
N rδφpNqs � δφ2 � 3δφ1 � π

fH2
V,φδφ

1 � 1

fH2
δEB , (D.36)

and correspondingly

xδN2ypsbq � N2
,φ

»
dN 1G

2
sbpN,N 1qσ2

EBpN 1q
f 2H2pN 1q , (D.37)

with GsbpN,N 1q denoting the Greens function of the linear operator L
psbq
N .

Fig. D.4 compares our formalism (black curve) with the approximations per-
formed in Ref. [270] (blue curves) and Ref. [262] (orange curve). In all cases,
for the purpose of the comparison with previous results, we assume in this ap-
pendix x ~E ~By to be given by Eq. (6.13) and correspondingly σ2

EB � x ~E ~By (see
e.g. Ref. [273]). The black solid curve indicates our result based on (6.42), i.e.
including the gauge �eld backreaction in the δφ equation of motion, with the gray
dashed curve displaying for reference the vacuum contribution. The dashed blue
curve (essentially coinciding with the black curve) is the result obtain based on the
linear operator (D.33) in the weak backreaction regime, the dashed orange curve
is correspondingly based on the linear operator (D.36) in the strong backreaction
regime3. The dotted blue and orange curves are the results derived in Refs. [270]
and [262] for the weak and strong backreaction regime, respectively, demonstrat-
ing our ability to reproduce these results when using the same approximations.
Finally, in the gray shaded region ζ ¥ 0.3, indicating that we cannot trust the
perturbative analysis underlying our computations.

The excellent agreement between our full result (black) and the weak backreac-
tion approximation (blue) indicates that the backreaction term in the δφ equation

2In our numerical evolution of this system of 1{f � 35 we �nd all three terms of the background
eom to be of similar size towards the end of in�ation. This approximation thus induces an Op5q
error in the Greens function, which is squared in the power spectrum and essentially accounts
for the discrepancy between the black and dashed orange curve.

3Note that the strong backreaction approximation can only be expected to be valid at large
values of ξ, towards the end of in�ation.
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Figure D.4: Scalar power spectrum sourced by Eq. (6.13) for 1{f � 35. The
black curve is our full result, the dashed blue and orange curves implement the
weak and strong backreaction approximation of Refs. [270] and [262], respectively.
The corresponding dotted curves indicate the very good agreement with the �nal
expressions for the power spectrum derived in these references. In this appendix
we use the convention that in�ation ends at N � 0.

of motion is essentially irrelevant for the parameters discussed here. This conclu-
sion is in contradiction to the conclusion drawn in [262, 273], which would indicate
that backreaction dominates roughly above the dotted orange horizontal line in
Fig. D.4, consequently suppressing the resulting power spectrum. We can track
this di�erence down to the approximations performed in Eq. (D.35), in particular
in the last step thereof. We conclude that the sourced scalar power spectrum is two
to three orders of magnitude larger than previously estimated. Nevertheless, our
procedure also entails approximations which need to be scrutinized, most notably
the omission of the gradients ∇Φ and the dropping the unequal time contribu-
tion of the δEB two-point correlator. Given the importance of this result for the
production of primordial black holes, this clearly calls for further investigation.

Finally, Ref. [273] presents a simpli�ed derivation of the results obtained in
Refs. [262, 270]. In the strong backreaction regime this relies on the same ap-
proximations as [262], hence it is not surprising that Ref. [273] also �nds a strong
suppression of the power spectrum in the strong backreaction regime.
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