Quintero Balbas, Diego Ivan
(2021)
Advanced Spectroscopy for the Study of Colourants in Cultural Heritage, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Chimica, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9583.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (14MB)
|
Abstract
Colourants are substances used to change the colour of something, and are classified in three typology of colorants: a) pigments, b) dyes, and c) lakes and hybrid pigments. Their identification is very important when studying cultural heritage; it gives information about the artistic technique, can help in dating, and offers insights on the condition of the object. Besides, the study of the degradation phenomena constitutes a framework for the preventive conservation strategies, provides evidence of the object's original appearance, and contributes to the authentication of works of art. However, the complexity of these systems makes it impossible to achieve a complete understanding using a single technique, making necessary a multi-analytical approach.
This work focuses on the set-up and application of advanced spectroscopic methods for the study of colourants in cultural heritage.
The first chapter presents the identification of modern synthetic organic pigments using Metal Underlayer-ATR (MU-ATR), and the characterization of synthetic dyes extracted from wool fibres using a combination of Thin Layer Chromatography (TLC) coupled to MU-ATR using AgI@Au plates.
The second chapter presents the study of the effect of metallic Ag in the photo-oxidation process of orpiment, and the influence of the different factors, such as light and relative humidity. We used a combination of vibrational and synchrotron radiation-based X-ray microspectroscopy techniques: µ-ATR-FT-IR, µ-Raman, SR-µ-XRF, µ-XANES at S K-, Ag L3- and As K-edges and SR-µ-XRD.
The third chapter presents the study of metal carboxylates in paintings, specifically on the formation of Zn and Pb carboxylates in three different binders: stand linseed oil, whole egg, and beeswax. We used micro-ATR-FT-IR, macro FT-IR in total reflection (rMA-FT-IR), portable Near-Infrared spectroscopy (NIR), macro X-ray Powder Diffraction (MA-XRPD), XRPD, and Gas Chromatography Mass-Spectrometry (GC-MS). For the data processing, we explored the data from rMA-FT-IR and NIR with the Principal Component Analysis (PCA).
Abstract
Colourants are substances used to change the colour of something, and are classified in three typology of colorants: a) pigments, b) dyes, and c) lakes and hybrid pigments. Their identification is very important when studying cultural heritage; it gives information about the artistic technique, can help in dating, and offers insights on the condition of the object. Besides, the study of the degradation phenomena constitutes a framework for the preventive conservation strategies, provides evidence of the object's original appearance, and contributes to the authentication of works of art. However, the complexity of these systems makes it impossible to achieve a complete understanding using a single technique, making necessary a multi-analytical approach.
This work focuses on the set-up and application of advanced spectroscopic methods for the study of colourants in cultural heritage.
The first chapter presents the identification of modern synthetic organic pigments using Metal Underlayer-ATR (MU-ATR), and the characterization of synthetic dyes extracted from wool fibres using a combination of Thin Layer Chromatography (TLC) coupled to MU-ATR using AgI@Au plates.
The second chapter presents the study of the effect of metallic Ag in the photo-oxidation process of orpiment, and the influence of the different factors, such as light and relative humidity. We used a combination of vibrational and synchrotron radiation-based X-ray microspectroscopy techniques: µ-ATR-FT-IR, µ-Raman, SR-µ-XRF, µ-XANES at S K-, Ag L3- and As K-edges and SR-µ-XRD.
The third chapter presents the study of metal carboxylates in paintings, specifically on the formation of Zn and Pb carboxylates in three different binders: stand linseed oil, whole egg, and beeswax. We used micro-ATR-FT-IR, macro FT-IR in total reflection (rMA-FT-IR), portable Near-Infrared spectroscopy (NIR), macro X-ray Powder Diffraction (MA-XRPD), XRPD, and Gas Chromatography Mass-Spectrometry (GC-MS). For the data processing, we explored the data from rMA-FT-IR and NIR with the Principal Component Analysis (PCA).
Tipologia del documento
Tesi di dottorato
Autore
Quintero Balbas, Diego Ivan
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
spectroscopy, colorants, cultural heritage, heritage science, carboxylates, arsenic pigments, synthetic organic pigments, synthetic dyes
URN:NBN
DOI
10.48676/unibo/amsdottorato/9583
Data di discussione
15 Aprile 2021
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Quintero Balbas, Diego Ivan
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
spectroscopy, colorants, cultural heritage, heritage science, carboxylates, arsenic pigments, synthetic organic pigments, synthetic dyes
URN:NBN
DOI
10.48676/unibo/amsdottorato/9583
Data di discussione
15 Aprile 2021
URI
Statistica sui download
Gestione del documento: