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Abstract

The crane is certainly one of the most ancient devices, still used today for the lifting
and transportation of heavy objects. A payload is attached to one cable and displaced
by adjusting the cable’s length and, possibly, the rotation or translation of some addi-
tional crane components. Even though this device is underactuated by design, that is,
there is no set of actuation parameters that can completely define the object position
and orientation from a purely geometric point of view, it has been and it still is widely
used, mainly when the ability to move bulky objects around large areas is of primary
importance.

The last three decades showed an evolution of the simple overhead crane design to-
wards faster, safer, and more controllable multi-cable machines: this evolution led to
so-called Cable-Driven Parallel Robots (CDPRs in short). An end-effector (EE in short)
is constrained and moved by a group of cables, whose number is typically larger than
the degrees of freedom of the EE: since cables can only exert tensile forces, the pres-
ence of redundant actuators allows cables to pull against each other, thus maintaining
the EE stable. There are, though, intermediate solutions between the simple crane
and redundantly-actuated CDPRs: these solutions form the family of underactuated
CDPRs, which employs less cables than the degrees of freedom of the EE. The use of
underactuated CDPRs, equipped with a limited number of cables, is justified in several
applications, in which the task to be performed requires a limited number of controlled
freedoms or a limitation of mobility is acceptable in order to enhance accessibility, de-
crease complexity, and ultimately decrease cost. On the other hand, the lack of full
constraints on the EE allows its motion even when actuators are locked. If the EE is
not in static equilibrium when the actuators cease to move, it exhibits undesired (and
possibly dangerous) oscillatory motions.

This thesis focuses on the dynamics of underactuated CDPRs, including various
aspects of robotic theory and practice, such as workspace computation, parameter
identification, and trajectory planning. After a brief introduction to CDPRs, UACDPR
kinematic and dynamic models are analyzed, under the relevant assumption of inex-
tensible cables. The free oscillatory motion of the EE (namely, its capability to oscil-
late when all actuators are locked), which is a unique feature of underactuated mech-
anisms, is studied in detail, from both a kinematic and a dynamic perspective. The
free (small) oscillations of the EE around equilibria are proved to be harmonic and the
corresponding natural oscillation frequencies are analytically computed. The free mo-
tion plays a fundamental role in several topics that are treated in the remainder of the
thesis. UACDPR workspace computation and analysis are then performed. A new per-
formance index is proposed for the analysis of the influence of actuator errors on ca-
ble tensions around equilibrium configurations, and a new type of workspace, called
tension-error-insensitive, is defined as the set of poses that a UACDPR EE can stati-
cally attain even in presence of actuation errors, while preserving tensions between
assigned (positive) bounds. EE free oscillations are then employed to conceive a novel



procedure aimed at identifying the EE inertial parameters. A significant feature of this
approach is that it does not require the use of force or torque measurements. More-
over, a self-calibration procedure for the experimental determination of UACDPR ini-
tial cable lengths is developed, which consequently enables the robot to automatically
infer the EE initial pose at machine start-up. Lastly, trajectory planning of UACDPRs is
investigated. Two alternative methods are proposed, which aim at (i) reducing EE os-
cillations even when model parameters are uncertain or (ii) eliminate EE oscillations
in case model parameters are perfectly known. EE oscillations are reduced in real-
time by dynamically scaling a nominal trajectory and filtering it with an input shaper,
whereas they can be eliminated if an off-line trajectory is computed that accounts for
the system internal dynamics.
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Chapter 1

Introduction

In the robotic landscape, parallel architecture mechanisms have been employed for
many years. A parallel robot can be loosely described as a platform, i.e. the end-
effector (EE in short) of the machine, moved around by a set of kinematic chains, the
so-called legs of the robot. The typical advantages of such an architecture with respect
to the serial (or anthropomorphic) one are:

• high payload capability;

• modular design;

• remarkable accuracy and repeatability;

Unfortunately, the presence of numerous possibly-complex legs usually restrict the
workspace of such manipulators, thus limiting their applications. In fact, sturdy legs
(Fig. 1.1a) or complex kinematic chains (Fig. 1.1b) may interfeare with each other, and
actuators limited strokes (Fig. 1.1a) represent a technological limit to dexterity and
workspace dimensions.

1.1 Cable-Driven Parallel Robots

Cable-Driven Parallel Robots (CDPRs) form a class of parallel robots, introduced in the
80’ [2,3], which employs cables in place of rigid-body extensible legs in order to control

(a) A Gough-Stewart platfrom (Source:
Wikipedia)

(b) The agile-eye [1]

Figure 1.1: Two types of parallel robots



Chapter 1. Introduction

(a) CAD model of a redundantly actu-
ated CDPR

(b) The CableRobot simulator pre-
sented in [7]

Figure 1.2: CDPR with more cables than degrees of freedom.

the EE pose (Fig. 1.2a). Despite the fact that cables can only provide tensile force, that
is, they can pull but not push, they present specific advantages over traditional parallel
robots:

• flexible cables can be coiled and uncoiled onto motorized winches, thus the
robot extensible legs can potentially be very long and its workspace remarkably
large [4];

• cable mass is often practically negligible, thus increasing the robot dynamic per-
formance [5];

• kinematic-chain elements, that is, winches and pulleys, can easily be rearranged,
thus machine reconfigurability is enhanced [6].

Since guaranteeing positive tensions in cables is a necessary requisite to control the
pose of the robot, the unilateral constraints imposed by cables complicate the control
of the system.

An historical classification of CDPRs focuses on the relationship between the num-
ber n of cables which control the EE, and the degrees of freedom nd (DoFs in short) of
the latter, from a constrain-ability perspective [8]:

• if n ≤ nd ≤ 6 the robot is defined underconstrained, since its EE cannot with-
stand an arbitrary external wrench with all the cables being under tension, or,
conversely, cables cannot be under tension without a counterbalancing external
load; in fact, these types of manipulators need at least an external action (i.e.
gravity) to keep cables taut;

• if n = nd +1 the robot is defined completely-constrained, since cables are suffi-
cient in number in order to effectively tension each other even without external
counterbalancing loads;

• if n > nd +1 the robot is defined redundantly-constrained, since the number of
cables is larger than the minimum number needed for constraining the EE; the
presence of additional cables allows for the optimization of CDPR performance.

12



1.1. Cable-Driven Parallel Robots

Most studies on CDPRs focused on manipulators with n ≥ nd + 1 (Fig. 1.2a): in-
deed, if the number of cables is larger that the degrees of freedom (DoFs) of the EE,
and cables surround the EE, cables can be controlled to both displace the EE and ten-
sion each other [9]. Even though practical applications of these machines may be lim-
ited (since the EE is surrounded by cables, its interaction with the environment is hin-
dered), CDPR with n ≥ nd +1 were proposed for several applications, such as motion
systems for wind tunnels [10], motion simulation platforms [7] (see also Fig. 1.2b), or
automated storage and retrieval systems [11], just to cite a few. This class of CDPRs
attracted so many researches over the years that a dedicated monography on the sub-
ject was recently published [12]: please refer to this book for additional information on
these manipulators.

One of the limitations of the classification proposed in [8] regards underconstrained
and completely-constrained CDPRs, since it is in contradiction with standard nomen-
clature in both analytical mechanics and control theory. In fact, in strictly physical
terms, the EE is underconstrained if it has more DoFs than the dimension of the con-
straint space spanned by passive and active constraints [13], and thus it preserves a
residual mobility even in case actuators are locked. In this case, the EE configuration
does not depend only on geometric constraints (i.e. the actuators displacements), but
also on mechanical equilibrium, namely the external loads that the EE is acted upon.
This is the main difference between underconstrained systems (as classically defined)
and those that are fully constrained: for the former, kinematics and statics (or dynam-
ics) are coupled, and cannot be solved independently [14, 15]. In this perspective, we
can infer that, notwithstanding the classification in [8]:

• if n = nd , when all cables are taut the manipulator is completely-constrained,
since the EE configuration is fully determined by cable lengths, and the solution
of the inverse dynamic (or static) problem allows a single set of cable tensions to
be computed (under the rigid-body assumption);

• if n > nd , when all cables are taut the robot is redundantly-constrained, and the
inverse dynamic (or static) problem admits infinite solutions under the rigid-
body assumption;

• for any n ≥ nd , if the number of taut cables is less than nd , the EE is still under-
constrained;

• if n < nd , the robot is necessarily underconstrained;

• the ability to be underconstrained, fully-constrained or redundantly-constrained
is an instantaneous property, rather than an architectural one, and it does not de-
pend only on the available number of actuated cables, but rather on the number
of cables that are instantaneously taut.

The above-mentioned limitations of the classification proposed in [8] often leads to a
misconception regarding the kinematic properties of CDPRs, with manipulators with
both n = nd and n < nd being considered kinematically deficient. In fact, this is not
true:

• any CDPR with n ≥ nd is kinematically defined when at least nd cable are taut
[16];

13



Chapter 1. Introduction

Figure 1.3: Underactuated suspended CDPR

• any CDPR with n < nd is kinematically deficient; any CDPR with n ≥ nd where
one or more cables become slack (for any reason) may become kinematically
deficient.

Thus, kinematically-defined manipulators with n ≥ nd are not to be confused or as-
similated with kinematically-deficient robots with n < nd . In the last decade, a growing
literature regarding kinematically-defined CDPR with n ≥ nd dealt with the study of dy-
namic trajectory planning of these systems, aiming at expanding their motion ability
outside their static workspace [17–22].

A last remark is dedicated to a special class of systems that use cables arranged in a
parallel fashion to constrain their end-effectors: they are usually assimilated to under-
constrained CDPRs, but they are kinematically defined (or even redundant). It is the
case of cable-driven systems whose structure can be discretely [23,24] or continuously
[25] reconfigured, by moving the cables routing locations by means of trolley or drones.

Kinematically-deficient CDPRs, also called underactuated CDPRs (UACDPRs in short)
since they have less actuators that their EE DoFs, are the focus of this thesis.

1.2 Underactuated Cable-Driven Parallel Robots

The use of UACDPRs, equipped with a limited number of cables which are usually
routed towards the EE from an elevated position (suspended UACDPRs), is justified
in several applications, in which the task to be performed requires a limited number
of controlled freedoms or a limitation of mobility is acceptable in order to enhance ac-
cessibility, decrease complexity, and ultimately cost. A CDPR is underactuated if the
number of actuated cables is less than the number of DoFs of the EE in the Cartesian
space (Fig. 1.3). UACDPR are intrinsically underconstrained [15], since their EE is sub-
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1.3. Thesis Goals and Outline

ject to less constaint actions than the number of its DoFs. As a consequence, the EE
preserves some freedoms once the actuators are locked, a condition that is referred as
free motion in the following.

For this class of manipulators, it is possible to prescribe a control law only for a
subset of the generalized coordinates of the system. However, if an arbitrary motion
is prescribed for a suitable subset of these coordinates, the constraint deficiency on
the other freedoms may lead to the impossibility of bringing the system at rest in a
prescribed time. In addition, the behavior of the system may not be stable, that is,
oscillatory motion of the EE may arise.

Several challenges emerge in the analysis of underactuated systems, since most of
the classical tools of robot analysis cannot be used in their traditional form. Nonethe-
less, the research dedicated to this class of manipulators is still limited.

The very first study on a UACDPR was conducted in [26], where the trajectory plan-
ning of a point-mass 2-DoF 1-cable system was analyzed. Planar 3-DoF 2-cable UACD-
PRs were considered in [27], where point-to-point motions were generated with para-
metric excitation of the cables, and in [28], where input-shaping was used to reduce EE
oscillations during and after a trajectory execution. The latter strategy was then tested
on spatial UACDPRs with 6-DoF actuated by 3 [29] and 4 [30] cables.

The geometrico-static modelling of UACDPRs was first addressed in [14]. Solutions
to the forward [31–34] and inverse [35,36] problems, and the stability of these solutions
[15], were addressed in detail.

UACDPRs were also studied from a control perspective, with the aim of stabilizing
EE oscillations. Stabilizing controllers were synthesized for planar UACDPRs oscillat-
ing outside the robot work-plane [37], for spatial UACDPRs with 4 cables [38], and for
purely planar UACDPRs [39].

Some efforts were also dedicated to the study of architecturally non-standard UACD-
PRs, which are often referred to as pendulum-like manipulators [40–42], since the cable-
driven assembly, or the EE itself, move similarly to the well-known simple or double
pendulum.

1.3 Thesis Goals and Outline

This thesis aims at analyzing UACDPRs dynamics, especially focusing on the cause of
the unconstrained motion of the robot EE: the internal-dynamics of the system [43].
On the one hand, the internal dynamics poses control problems, since EE coordi-
nates cannot be fully prescribed nor controlled, and undesirable platform oscillations
may be excited during motion. On the other hand, internal dynamics can be inter-
preted as a second-order non-holonomic constraint on the robot coordinates, since it
does not involve actuation or constraint actions in its formulation: this constraint can
be exploited to devise efficient algorithms dedicated to UACDPRs for the solution of
classical robotic problems, such as inertial-parameter identification. When this thesis
started, its main goal was to study the trajectory planning of UACDPRs, with a strong
focus on experimental validation of the results. By the time the first theoretical results
were available for field-testing, the author realized that a lot of standard practical prob-
lems for completely or redundantly actuated manipulators had no straightforward nor
readily-available solution for UACDPRs, and both experimentation and result analysis
were severely complicated. Then, the focus of this thesis broadened to several prac-
tical issues of robotics applied to UACDPRs, such as worskpace characterization and
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Chapter 1. Introduction

parameter identification.
Chapter 2 is dedicated to general kinematic and dynamic modelling of UACDPRs.

The geometric constraints imposed by cables and swivel pulleys on the moving plat-
form are analyzed, as well as their first- and second-order derivatives. The concepts
of EE free motion and controlled motion are introduced and ground rules for their de-
scription are formally laid-out. Then, the EE dynamics is considered, and analytical
methodology for internal dynamics derivation is proposed. In the end, static mod-
elling, which is a special case of dynamics, is also considered. Two novel stiffness ma-
trices, which have special meaning to UACDPRs and their analysis, are proposed.

Chapter 3 characterizes the static workspace of UACDPRs. This workspace is in-
trinsically a reachable one, since the EE DoFs cannot be fully controlled. A new per-
formance index, called maximum tension variation under a unit-norm cable displace-
ment, is proposed for the analysis of the influence of actuator errors in UACDPR cable
tensions. Lastly, a new type of workspace, called tension-error-insensitive, is defined as
the set of poses that a UACDPR EE can statically attain even in presence of actuation
errors, while cable tensions remain within assigned (positive) bounds.

Chapter 4 explores how to model and/or experimentally determine some UACDPR
parameters, namely its natural oscillation frequencies, its EE intertial parameters, and
the cable lengths at machine start-up:

• natural oscillation frequencies are modelled as the solution of the eigenproblem
arising from the linearization of the free-motion internal dynamics about equi-
librium configurations; this model is validated by extensive experimental testing
on 2-, 3-, and 4-cable robots;

• EE inertial parameters are experimentally identified according to a novel, internal-
dynamics-based, identification methodology; the use of this model allows one to
avoid any force or torque measurement for identification purposes; additionally,
the use of free motion as identification exciting trajectory allows a limited num-
ber of kinematic measurements to be employed for identification, thus simplify-
ing the experimental campaign;

• the estimation of initial cable lengths is performed by solving an extended (overde-
termined) forward geometrico-static problem at each machine start-up; the data
needed by the problem are recorded by following an automatic procedure, which
allows cable lengths and swivel-pulley angle displacements to be recorded while
maintaining cables under tension.

Chapter 5 is devoted to trajectory planning of UACDPRs controllable coordinates.
The use of input-shaping and its combination with dynamic scaling is investigated in
order to reduce EE oscillation in real-time with limited knowledge of robot geomet-
ric and dynamic parameters. Alternatively, the possibility to completely stop the EE
after an arbitrary trajectory is considered by designing so-called rest-to-rest trajecto-
ries. This latter type of trajectories need to be computed off-line relying on a precise
knowledge of robot parameters.

In the end, Chapter 6 draws conclusions and analyzes some issues that are still
open.
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Chapter 2

Modelling

This Chapter aims at introducing the mathematical models of a generic 6-DoF n-cable
UACDPR moving in the Special Euclidean space of dimension 3 (SE(3) in short). In this
thesis, cables are modelled as straight line segments, massless and inextensible. They
are coiled and uncoiled by servo-controlled winches, and their lengths are assumed to
vary proportionally to actuator displacements. Moreover, cables are routed inside the
workspace of the manipulator by means of swivel pulleys, whose geometry is consid-
ered in this work.

Section 2.1 presents UACDPR geometric modelling. UACDPR first and second order
differential kinematic models are described in Section 2.2 also introducing the concept
of free and controlled kinematics. Section 2.3 is dedicated to UACDPR dynamic models,
more specifically to EE internal dynamics. The concept of free and controlled motions
is applied to EE dynamics in order to underline some specific characteristics of under-
actuated manipulators.1

2.1 Geometric Modelling

A CDPR consists of a mobile platform coupled to the base by n < 6 cables, which can
be coiled and uncoiled by motorized winches. In the following, Ox y z is an inertial
frame, whereas P x ′y ′z ′ is a mobile frame attached to the moving platform, whose pose
is described by the position vector p of P , and the rotation matrix R (Fig. 2.1). In this
thesis, R is parametrized by a minimal set of orientation parameters, i.e. by tilt and
torsion angles ε= [φ,θ,χ]T [47], namely:

R(φ,θ,χ) = Ra(φ,θ)Rz(χ), Ra(φ,θ) = Rz(φ)Ry (θ)Rz(−φ) (2.1)

where a is a line obtained by rotating the y-axis by φ around the z-axis, Ra(φ,θ) is a
rotation θ about a, Ry (·) and Rz(·) are elementary rotation matrices about the y and
z axes. Tilt and torsion angles often allow for an easy visualization of the orientation
properties of the EE, even though a non-minimal set of orientation parameters would
avoid representation singularities. A non-minimal set is not preferred in this work
because, in the author opinion, it would unnecessarily complicate the mathematical

model description. EE generalized coordinates are finally denoted by ζ= [
pT εT

]T
.

1The content of this Chapter was partly sumitted to IEEE Transaction on Robotics and was partly
published in [44–46].



Chapter 2. Modelling

Figure 2.1: CDPR Geometric Model

Each cable is guided into the workspace by a swivel pulley of radius ri and center
Ci , mounted on an hinged support. The hinge axis, also called swivel axis in this work,
is denoted as zi , and it is tangent to the pulley in point Di (Fig. 2.2a, 2.2b). The cable
enters the pulley groove in Di , exits from it at point Bi , and it is attached to the platform
at point Ai . The coordinates of point Di are constant in the inertial frame and denoted
by di , whereas the coordinates of Ai are constant in the mobile frame, and denoted by
P a′

i ; thus, the coordinates of Ai in the inertial frame are computed as:

ai = p+a′
i = p+R P a′

i , a′
i = R P a′

i (2.2)

The position of point Bi depends on the pulley geometrical model [45, 48], which
is thus detailed hereafter. It is convenient, for each cable, to define an additional fixed
reference frame Di xi yi zi centered in Di , whose (constant) orientation is described in
Ox y z by unit vectors directed along xi , yi , zi axes, namely ii , ji , ki respectively (Fig.
2.2). The line through Ai and Di and the swivel axis zi are assumed to be co-planar
and, as a consequence, %i = ai −di and ki define the pulley plane.

If σi ∈ [−π,π], the swivel angle, is the angle between the coordinate plane xi zi and
the pulley plane (Fig. 2.2a), the unit vector wi normal to the latter is:

wi =−sin(σi ) ii +cos(σi ) ji (2.3)

Additionally, the unit vector ui directed as Ci −Di can be found as ui = wi ×ki or :

ui = cos(σi ) ii + sin(σi ) ji (2.4)

where the symbol × denotes the vector product between two vectors. By definition,
one constraint imposed by the pulley on the cable direction, is defined by the equation:

wi ·%i = 0 (2.5)

Accordingly, if ζ is known, σi can be computed from Eq. (2.5) (see App. A.1) as:

σi = atan2
(
ji ·%i , ii ·%i

)
(2.6)

If ψi ∈ [−π,π], the tangency angle, is the angle between ui and the unit vector ni in
the direction of Bi −Ci , we have:

ni = cos
(
ψi

)
ui + sin

(
ψi

)
ki (2.7)
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2.1. Geometric Modelling

(a) Swivel pulley local view (b) Pulley plane

Figure 2.2: Swivel Pulley Geometric Model

Additionally, the unit vector ti directed as Ai −Bi can be found as ti = wi ×ni or :

ti = sin
(
ψi

)
ui −cos

(
ψi

)
ki (2.8)

If we define the cable vector ρi = bi −ai
2, where bi is the position vector of Bi in Ox y z,

the second constraint imposed by the pulley on the cable direction is defined by the
equation:

ni ·ρi = 0 (2.9)

Accordingly, if ζ is known, ψi can be computed from Eq. (2.9) (see App. A.2) as:

ψi = 2atan

[
%ki

%ui

+
√(

%ki

%ui

)2

+1− 2ri

%ui

]
(2.10)

where %ki = ki ·%i and %ui = ui ·%i
If li > 0 is the total cable length, comprising the rectilinear part ‖ρi‖ and the arcÚDi Bi = ri (π−ψ) wrapped onto the pulley, the i-th cable vector can thus be defined as:

ρi = ai −bi =%i − ri (ui +ni ) (2.11)

or:
ρi =

[
li − ri (π−ψ)

]
ti = ‖ρi‖ti (2.12)

where:
‖ρi‖ = li − ri (π−ψ) (2.13)

The geometrical constraint imposed by each cable onto the platform is then:

ρi ·ρi −‖ρi‖2 =ρi ·ρi −
[
li − ri (π−ψ)

]2 = 0 (2.14)

By simply rearranging and extracting the square root of
[
li − ri (π−ψ)

]2, li can be com-
puted from Eq. (2.14), in case ζ is known, as:

li = ri (π−ψi )+√
ρi ·ρi (2.15)

2Please note that the use of ρ and % in defining position vectors bi −ai and di −ai is intentional, as
they are equivalent in case ri = 0, and thus bi = di .
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Chapter 2. Modelling

It should be noted that, in case the pulley radius is negligible or cables are routed
into the workspace through eyelets instead of pulleys, namely ri = 0, the model out-
lined in this Section is still valid and well defined. Obviously, %i =ρi .

Notice that geometric equations are not sufficient for the characterization and con-
trol of a generic UACDPR:

• on the one hand, when cable lengths are assigned, the forward geometric prob-
lem, defined by Eq. (2.15), with i = 1, . . . ,n, is still underdetermined, since n < 6
equations are not sufficient to determine the 6 elements of ζ;

• on the other hand, if the EE configuration ζ is known, the inverse geometric
problem, also defined by Eq. (2.15), with i = 1, . . . ,n, is completely determined,
and the cable lengths corresponding to this specific configuration may be evalu-
ated; however, the said configuration may not be achieved in practice, since in-
finitely many configurations correspond to the computed cable lengths (and the
robot will only reach those that are are compatible with mechanical equilibrium,
see Chapter 3 for an example of static configurations computation).

Section 2.2 aims at describing (i) the effects of cable length changes on the EE pose (the
EE controlled motion) and (ii) how the EE pose may vary regardless of a cable length
variation (the EE free motion). The causes of free motion are then described in Sec. 2.3.

2.2 Kinematic Modelling

If ω is the angular velocity of the EE, its twist is v = [ṗT ωT ]T . The angular velocity
depends in a non-linear way on the orientation-parameter array ε and linearly from its
time derivative ε̇, namely:

ω= H(ε)ε̇ (2.16)

thus the twist relationship with the pose ζ and its time derivative ζ̇ is given by:

v = D(ε)ζ̇, D(ε) =
[

I3×3 03×3

03×3 H(ε)

]
(2.17)

with I3×3 and 03×3 being identity and null matrices of dimension 3×3. Matrix H(ε) de-
pends on the orientation parametrization that is used, and for tilt-and-torsion angles
is given by:

H(ε) =
−cφsθ −sφ cφsθ
−sφsθ cφ sφsθ
1− cθ 0 cθ

 (2.18)

where cφ = cos(φ), sφ = sin(φ), cθ = cos(θ) and sθ = sin(θ).
The rate of change of the swivel angle σ̇i can be computed from the time derivative

of Eq. (2.5) (see App. A.3) as:

σ̇i = ξσi
·v, ξσi

= 1

%ui

[
wi

a′
i ×wi

]
(2.19)

whereas the rate of change of the tangency angle ψ̇i can be computed from the time
derivative of Eq. (2.9) (see App. A.4) as:

ψ̇i = ξψi
·v, ξψi

= 1

‖ρi‖
[

ni

a′
i ×ni

]
(2.20)
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2.2. Kinematic Modelling

Moreover, the rate of change of the cable length l̇i is computed from the time derivative
of Eq. (2.14) (see App. A.5) as:

l̇i = ξli
·v, ξli

=
[

ti

a′
i × ti

]
(2.21)

Equations (2.19) to (2.21), for i = 1, . . . ,n, can be written in matrix form as:

σ̇=ΞT
σv, Ξσ = [

ξσ1
. . . ξσn

]
(2.22)

ψ̇=ΞT
ψv, Ξψ = [

ξψ1
. . . ξψn

]
(2.23)

l̇ =ΞT
l v, Ξl =

[
ξl1

. . . ξln

]
(2.24)

where σ̇ = [σ̇1 . . . , σ̇n]T , ψ̇ = [ψ̇1 . . . ,ψ̇n]T and l̇ = [l̇1 . . . , l̇n]T . Matrices Ξσ, Ξψ and Ξl

are kinematic Jacobians, rather than proper Jacobians, since they do not correlate inte-
grable vectors (v is not integrable in general). Equations (2.22) to (2.24) can be rewrit-
ten by means of proper Jacobians if we substitute therein the definition of twist given
in Eq. (2.17), namely:

σ̇= JT
σ ζ̇, Jσ = DTΞσ (2.25)

ψ̇= JT
ψζ̇, Jψ = DTΞψ (2.26)

l̇ = JT
l ζ̇, Jl = DTΞl (2.27)

If α is the angular aceleration of the end effector, the twist time derivative is v̇ =
[p̈T αT ]T . The angular acceleration non-linearly depends on the value of the orienta-
tion parameters ε, it is bi-linear in ε̇, and linear in ε̈:

α= H(ε)ε̈+ Ḣ(ε, ε̇)ε̇, Ḣ(ε, ε̇) =
3∑

i=1

∂H(ε)

∂εi
ε̇i (2.28)

∂H(ε)

∂ε1
=

 sφsθ −cφ −sφsθ
−cφsθ −sφ cφsθ

0 0 0

 ,
∂H(ε)

∂ε2
=

−cφcθ 0 cφcθ
−sφcθ 0 sφcθ

sθ 0 −sθ

 (2.29)

and ∂H(ε)/∂ε3 = 03×3. Thus, the twist derivative relationship with the pose ζ and its
time derivatives ζ̇ and ζ̈ is given by:

v̇ = D(ε)ζ̈+ Ḋ(ε, ε̇)ζ̇, Ḋ(ε, ε̇) =
[

03×3 03×3

03×3 Ḣ(ε, ε̇)

]
(2.30)

The rate of change σ̈i of the swivel-angle time-derivative can be computed from
the time derivative of Eq. (2.19) as:

σ̈i = ξσi
· v̇+ ξ̇σi

·v (2.31)

or alternatively (see App. A.6) as:

σ̈i = vTξ′σi
v+ξT

σi
v̇ (2.32)

ξ′σi
= 1

%ui

(−2ξui
ξT
σi
+Awi

)
, ξui

=
[

ui

a′
i ×ui

]
, Awi =

[
03×3 03×3

03×3 ã′
i w̃i

]
(2.33)

where (̃·) denotes the skew-symmetric representation of the vector product.
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Chapter 2. Modelling

The rate of change ψ̈i of the tangency-angle time-derivative can be computed from
the time derivative of Eq. (2.20) as:

ψ̈i = ξ̇ψi
·v+ξψi

· v̇ (2.34)

or alternatively (see App. A.7) as:

ψ̈i = vTξ′ψi
v+ξT

ψi
v̇ (2.35)

ξ′ψi
= 1

‖ρi‖
(
%ui cos(ψi )ξσi

ξT
σi
− riξψi

ξT
ψi

−2ξli
ξT
ψi

+Ani

)
, Ani =

[
03×3 03×3

03×3 ã′
i ñi

]
(2.36)

Finally, the rate of change l̈i of the cable-length time-derivative can be computed from
the time-derivative of Eq. (2.21) as:

l̈i = ξ̇li
·v+ξli

· v̇ (2.37)

or alternatively (see App. A.8) as:

l̈i = vTξ′li
v+ξT

li
v̇ (2.38)

ξ′li
= sin(ψi )%uiξσi

ξT
σi
+‖ρi‖ξψi

ξT
ψi

+Ati , Ati =
[

03×3 03×3

03×3 ã′
i t̃i

]
(2.39)

2.2.1 EE free and controlled kinematics

Even if all cables are taut, that is, all kinematic constraints are active, and Ξl in Eq.
(2.24) has full column rank, the EE of the UACDPR is underactuated, namely the num-
ber of its DoFs is strictly greater than the number n of CDPR actuators. Thus, only n
coordinates of the EE pose can be controlled by varying the UACDPR cable lengths,
while the remaining λ= 6−n are to be determined according to the mechanical equi-
librium of the platform. In addition, even if the actuators are locked and cable lengths
are kept constant, λ freedoms remains. The n controlled coordinates will be referred to
as controlled pose-coordinates and denoted as ζc ∈ IRn , whereas the non-controllable
coordinates will be referred to as free pose-coordinates and denoted as ζ f ∈ IRλ. For
clarity sake, a 6× 6 permutation matrix3 P is introduced, so that the array of permu-
tated EE generalized coordinates, ζP , and its time-derivatives are defined as:

ζP =
[
ζc

ζ f

]
= Pζ, ζ̇P = Pζ̇, ζ̈P = Pζ̈ (2.40)

The free pose-coordinates are independent configuration variables, since in general
are not controllable (i.e. assignable) in an under-actuaded system. Their evolution is
determined by the mechanical equilibrium of the UACDPR [14], as it will be highlighted
in Sec. 2.3. On the other end, the controlled pose-coordinates are assignable and are
determined as a function of the system controlled variables, namely the cable lengths
l, and the free pose-coordinates, ζ f :

ζc = ζc
(
ζ f , l

)
(2.41)

3A permutation matrix is an orthogonal matrix, that has exactly one entry of 1 in each row and each
column, and has 0’s elsewhere [49]
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2.2. Kinematic Modelling

Equation (2.41) formally represents the direct geometric problem arising from Eq. (2.15),
for i = 1, . . . ,n. This problem is under-determined, since the value ofζ f is not assignable.

The aforementioned coordinate partition is particularly useful when dealing with
the trajectory planning for an UACDPR, but it attains additional kinematic meaning.
In fact, the EE twist v can be decomposed into two contributions, namely a free twist
v f and a controlled twist vc , so that:

v = v f +vc (2.42)

The free twist is defined as the EE twist when the platform is in free motion, and it
can be derived as the solution of Eq. (2.24) when l̇ = 0n×1, namely:

ΞT
l v f = 0n×1 (2.43)

The solution to Eq. (2.43) is readily obtained by considering the right nullspace Ξ⊥
l of

matrix ΞT
l . By definition, the right nullspace of a (n ×6) matrix is a (6×λ) matrix such

thatΞT
l Ξ

⊥
l = 0n×λ, thus its columns define a basis for the free twist v f :

v f =Ξ⊥
l c for some c ∈ IRλ (2.44)

If J⊥l is the right nullspace of matrix JT
l , we also have:

v f = Dζ̇= DJ⊥l c′ for some c′ ∈ IRλ (2.45)

By comparing Eqs. (2.44) and (2.45) and by choosing c = c′, we have:

Ξ⊥
l = DJ⊥l (2.46)

The coefficients c coincide with the free-pose coordinates derivative ζ̇ f , ifΞ⊥
l (and thus

J⊥l , cf. Eq.(2.46)) is computed according to the following procedure. First, we define the
permuted Jacobian matrix JP as:

JP = PJl = PDΞl =
[

Dc

D f

]
Ξl =

[
Jc

J f

]
(2.47)

where Dc ∈ IRn×6, D f ∈ IRλ×6, Jc = DcΞl ∈ IRn×n , and J f = D f Ξl ∈ IRλ×n . Then, the right
nullspace of the permuted Jacobian matrix J⊥P is, by definition:

JT
l J⊥l = JT

l PT PJ⊥l = JT
P J⊥P = 0n×λ, J⊥P = PJ⊥l (2.48)

Matrix J⊥P can be simbolically computed under the assumption that Jc is full rank
(namely, rank(Jc ) = n) and, thus, invertible. Since most orientation parametrizations
of SE(3), among which the tilt and torsion used in this thesis, allow rank(D) ≥ 5 and, for
an UACDPR, 5 ≥ n, we can conclude that rank(D) ≥ n. Thus, since rank(Ξl ) = n, if the
pose coordinates are partitioned (namely, P is chosen) so that rank(Dc ) = n, one may
always have rank(Jc ) = n. The expression of matrix J⊥P can be derived from Eq. (2.27)
with l = 0n×1:

JT
l ζ̇= JT

P ζ̇P = JT
c ζ̇c + JT

f ζ̇ f = 0n×1 (2.49)

where definitions in Eqs. (2.40) and (2.48) have been used. Then:

ζ̇c =−J−T
c JT

f ζ̇ f (2.50)
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Chapter 2. Modelling

and finally:

ζ̇P =
[
ζ̇c

ζ̇ f

]
=

[−J−T
c JT

f

Iλ×λ

]
ζ̇ f = J⊥P ζ̇ f , J⊥P =

[−J−T
c JT

f

Iλ×λ

]
(2.51)

It should be noted that the expression of ζ̇P provided in Eq. (2.51) is valid only in free
motion. In the end, one has:

v f = Dζ̇= DPT ζ̇P = DPT J⊥P ζ̇ f = DJ⊥l ζ̇ f =Ξ⊥
l ζ̇ f , Ξ⊥

l = DPT J⊥P = DJ⊥l (2.52)

where c = ζ̇ f . The controlled twist is defined as the EE twist due to cable actuation

only, that is, the one resulting from a zero free-pose coordinates derivative, ζ̇ f = 0λ×1.

The expression of ζ̇P in this case can be straightforwardly derived as the solution of Eq.
(2.27) by setting ζ̇ f = 0λ×1 and recalling position (2.47), namely:

l̇ = JT
l ζ̇= JT

P ζ̇P = JT
c ζ̇c =⇒ ζ̇c = J−T

c l̇ (2.53)

and consequently:

ζ̇P =
[

J−T
c

0λ×n

]
l̇ = J∥P l̇, J∥P =

[
J−T

c
0λ×n

]
(2.54)

Analogously to Eq. (2.51), the expression of ζ̇P provided in Eq. (2.54) is valid only for
ζ̇ f = 0λ×1. Finally, one has:

vc = Dζ̇= DPT ζ̇P = DPT J∥P l̇ = DJ∥l l̇ =Ξ∥
l l̇, Ξ∥

l = DPT J∥P , J∥l = PT J∥l (2.55)

The results of Eqs. (2.52) and (2.55) can be substituted back into Eq. (2.42) in order to
highlight the EE twist linear dependence on the robot controllable-coordinate deriva-
tive, l̇, and the free pose-coordinate derivatives, ζ̇ f :

v = v f +vc =Ξ⊥
l ζ̇ f +Ξ∥

l l̇ (2.56)

It can be straightforwardly verified that the expression of v in Eq. (2.56) verifies EE
first-order kinematics, expressed in Eq. (2.24):

l̇ =ΞT
l v =ΞT

l

(
Ξ⊥

l ζ̇ f +Ξ∥
l l̇

)
=ΞT

l Ξ
⊥
l︸ ︷︷ ︸

0n×λ

ζ̇ f +ΞT
l Ξ

∥
l︸ ︷︷ ︸

In×n

l̇ = l̇ (2.57)

Of course, since v = Dζ̇, one also has:

ζ̇= J⊥l ζ̇ f + J∥l l̇ (2.58)

Although it is always possible to find a permutation matrix P which allows for the
sound definition of free and controllable twists in one particular EE configuration, the
same permutation matrix may not provide the expected result throughout the entire
manipulator workspace. In fact, for a given EE pose parametrization, some parameters
may be locally controllable or not, depending on the rank of Jc . In case the latter rank is
less than n, but the EE still has n controllable DoFs and λ free DoFs, a parametrization
singularity is encountered. In this case, the choice of the free pose-coordinates must
be changed so that Jc preserves full rank. Should Ξl rank become less than n, instead,
a true kinematic singularity is encountered, and the number of controllable DoFs is
rank(Ξl ) = n′ < n. It should be noted that, upon (locally) re-defining controllable and
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2.3. Dynamic Modelling

free coordinates, so that ζc ∈ IRn′
and ζ f ∈ IRλ

′
, where λ′ = 6−n′, the model outlined in

this Section is still sound.
An analytical expression of the EE twist time-derivative is useful in EE dynamic

modelling, as it will be shown in Sec. 2.3, and it can be derived by differentiating Eq.
(2.56) w.r.t. time:

v̇ =Ξ⊥
l ζ̈ f +Ξ∥

l l̈+ Ξ̇⊥
l ζ̇ f + Ξ̇∥

l l̇ (2.59)

where Ξ̇
⊥
l and Ξ̇

∥
l can be derived from their definition in Eqs. (2.52) and (2.55) as:

Ξ̇
⊥
l = ḊPT J⊥P +DPT J̇⊥P , Ξ̇

∥
l = ḊPT J∥P +DPT J̇∥P (2.60)

and:

J̇⊥P =
[

J−T
c

(
J̇T

c J−T
c JT

f − J̇T
f

)
0λ×λ

]
, J̇∥P =

[−J−T
c J̇T

c J−T
c

0λ×n

]
(2.61)

At last, J̇c and J̇ f can be computed by differentiating Eq. (2.47) w.r.t. time, namely:

J̇P =
[

J̇c

J̇ f

]
= P

(
ḊΞl +DΞ̇l

)
, Ξ̇l =

[
ξ̇l1

. . . ξ̇ln

]
(2.62)

and ξ̇li
= ξ′li

v from Eqs. (2.37) and (2.38). Equations from (2.59) to (2.62) highlight that
the twist time-derivative is linearly dependent on the second-order time derivative of
the controlled and free variables of the CDPR (namely l̈ and ζ̈ f , respectively), and it is

bi-linear in their first-order time derivative (l̇ and ζ̇ f , respectively).

2.3 Dynamic Modelling

The non-linear dynamic model of the UACDPR emerges from the EE mechanical equi-
librium, subject to cable constraints, inertial actions, and a generic external wrench:

Mv̇+Cv =−Ξlτ+ f (2.63)

M =
[

mI3×3 −ms̃′

ms̃′ IP

]
, IP = IG −ms̃′s̃′

C =
[

03×3 −mω̃s̃′

03×3 ω̃IP

]
, f =

[
φ

ẽ′φ+µ
] (2.64)

where m is the EE mass, IG = RI′G RT is the (variable) EE inertia tensor about its center
of mass G expressed in the inertial frame, I′G is the (constant) EE matrix in the mobile
frame; τ ∈ IRn is an array containing the cable tension magnitudes, and f ∈ IR6 is a
generic external wrench, resulting from a force φ applied in point E and a moment µ
directed along φ (Fig. 2.3). Vectors s′ and e′ point from P to G and E , respectively, and
are computed in the inertial frame as:

s′ = R P s′, e′ = R P e′ (2.65)

with P s′ and P e′ being their coordinates in the mobile frame. In general, both the po-
sition of G and the position of E w.r.t. to point P are not constant, but may change
depending on the task that the EE is required to perform.

Since the constraint actions imposed by the cables, namely −Ξlτ, are not sufficient
for constraining the EE motion, the robot EE is under-constrained. In other words, the
dimension of the constraint space spanned by passive and active constraints acting on
the EE is smaller than six [13], and the EE preserves some degrees of freedom which
cannot be actively controlled by cables.
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Figure 2.3: EE Free-Body Diagram

2.3.1 EE internal-dynamics

In order to understand how the EE pose-coordinates evolve regardless of the cable con-
straint actions, Eq. (2.63) can be pre-multiplyed by Ξ⊥T

l . Since by definition Ξ⊥T
l Ξl =

0λ×n , we have:
Ξ⊥T

l Mv̇+Ξ⊥T
l Cv =Ξ⊥T

l f (2.66)

If we substitute the definitions of v and v̇ in Eqs. (2.17) and (2.30) in Eq. (2.66), we get:

Ξ⊥T
l MDζ̈+Ξ⊥T

l

(
MḊ+CD

)
ζ̇=Ξ⊥T

l f (2.67)

The relationship between the free coordinates of the end-effector and the controlled
ones is highlighted by substituting Eq. (2.40) in Eq. (2.67), yielding:

M⊥
cP ζ̈c +M⊥

f P ζ̈ f +C⊥
cP ζ̇c +C⊥

f P ζ̇ f + f⊥ = 0λ×1, f⊥ =−Ξ⊥T
l f (2.68)

where:

Ξ⊥T
l MDPT =

[
M⊥

cP M⊥
f P

]
, M⊥

cP ∈ IRλ×n , M⊥
f P ∈ IRλ×λ (2.69)

Ξ⊥T
l

(
MḊ+CD

)
PT =

[
C⊥

cP C⊥
f P

]
, C⊥

cP ∈ IRλ×n , C⊥
f P ∈ IRλ×λ (2.70)

Equation (2.68) allows one to analyze how the control of some EE coordinates influ-
ence the free ones, and it is referred to as a second-order non-holonomic constraint,
also known as internal dynamics, arising from the under-constrained nature of the sys-
tem [43]. This formulation is fundamental in order to analyze how an assigned trajec-
tory in the task-space, which must be limited to controllable DoFs, influence the EE
pose.

In case a trajectory in the actuator-space is assigned, its influence on the EE pose
evolution is analyzed by substituting the expressions of v and v̇ in Eqs. (2.56) and (2.59)
in Eq. (2.66):

M⊥
f ζ̈ f +M⊥

l l̈+C⊥
f ζ̇ f +C⊥

l l̇+ f⊥ = 0λ×1 (2.71)

where:

M⊥
f =Ξ⊥T

l MΞ⊥
l ∈ IRλ×λ, M⊥

l =Ξ⊥T
l MΞ∥

l ∈ IRλ×n (2.72)

C⊥
f =Ξ⊥T

l MΞ̇⊥
l +Ξ⊥T

l CΞ⊥
l ∈ IRλ×λ, C⊥

l =Ξ⊥T
l MΞ̇∥

l +Ξ⊥T
l CΞ∥

l ∈ IRλ×n (2.73)
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2.3. Dynamic Modelling

Moreover, in case actuators are locked (namely l̇ = l̈ = 0n×1), motion equations of the
free-pose coordinates, namely the free-motion internal dynamics, are obtained from
Eq. (2.71):

M⊥
f ζ̈ f +C⊥

f ζ̇ f + f⊥ = 0λ×1 (2.74)

Depending on the specific application, and possibly additional mathematical or
physical constraints, Eqs. (2.68), (2.71), or (2.74), can be numerically or analytically
solved with suitable tools:

• in Sec. 4.1, Eq. (2.74) is linearized about equilibrium configurations, and it is
shown how to determine a closed-form analytical solution that describes ma-
nipulator free motion about the said equilibrium configurations;

• in Sec. 5.1, Eq. (2.68) is used in order to compute the free coordinates evolution
when the system follows a known trajectory of the controlled coordinates; to this
end, Eq. (2.68) is transformed in state-space representation, and the initial value
problem, defined by combining the resulting ordinary differential equation with
initial conditions (an equilibrium state), is solved by means of state of Runge-
Kutta methods;

• in Sec. 5.2, Eq. (2.68) is used in order to compute a trajectory of the controlled
coordinates resulting in rest-to-rest motions; to this end, Eq. (2.68) is again trans-
formed in state-space representation, but a boundary value problem, defined by
combining the ordinary differential equation with initial and final equilibrium
conditions, is solved by means of collocation methods.

2.3.2 Cable tension computation

The knowledge of cable tensions is fundamental in any cable-robotic application, since
cables can only sustain tensile forces; for an UACDPR, they cannot be assigned as in
their over-actuated counterparts, but they can be calculated in closed form from the
manipulator dynamics in case the EE motion is known. In the following, it will be
shown how cable tensions are influenced by a prescribed trajectory: in case controlled
pose-coordinates are prescribed, cable tensions can be calculated by pre-multiplying
Eq. (2.63) by −Ξ∥T

l and substituting v and v̇ as in Eqs. (2.17) and (2.30), yielding:

M∥
cP ζ̈c +M∥

f P ζ̈ f +C∥
cP ζ̇c +C∥

f P ζ̇ f + f∥ =τ, f∥ =Ξ∥T
l f (2.75)

where:

−Ξ∥T
l MDPT =

[
M∥

cP M∥
f P

]
, M∥

cP ∈ IRn×n , M∥
f P ∈ IRn×λ (2.76)

−Ξ∥T
l

(
MḊ+CD

)
PT =

[
C∥

cP C∥
f P

]
, C∥

cP ∈ IRn×n , C∥
f P ∈ IRn×λ (2.77)

Alternatively, if we pre-multiply Eq. (2.63) by −Ξ∥T
l and we substitute the expres-

sions of v and v̇ in Eqs. (2.56) and (2.59), the explicit relationship between cable ten-
sions and cable-length variations is obtained:

M∥
f ζ̈ f +M∥

l l̈+C∥
f ζ̇ f +C∥

l l̇+ f∥ =τ (2.78)

where:
M∥

f =−M⊥T

l , M∥
l =−Ξ∥T

l MΞ∥
l ∈ IRn×n (2.79)
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C∥
f =−(Ξ∥T

l MΞ̇⊥
l +Ξ∥T

l CΞ⊥
l ) ∈ IRn×λ, C∥

l =−(Ξ∥T
l MΞ̇∥

l +Ξ∥T
l CΞ∥

l ) ∈ IRn×n (2.80)

In case actuators are locked, cable tensions are computed from the free-pose coordi-
nates as:

M∥
f ζ̈ f +C∥

f ζ̇ f + f∥ =τ (2.81)

2.4 Static Modelling

While in a completely-actuated CDPR the EE pose is determined in a purely geometric
way by assigning the cable lengths (provided that all cables are under tension), the pose
of a UACDPR depends on both cable lengths and mechanical equilibrium equations
[14, 15]. Only a set of n coordinates can be controlled, while the remaining ones are
determined by considering geometric and mechanical equilibrium equations. Even
though Statics is a particular case of Dynamics, it deserves special attention since its
study allows for the determination of EE stable equilibrium configurations.

2.4.1 Geometrico-Static problems

The static model of the platform is simply given by Eq. (2.63) where v̇ = v = 06×1,
namely:

Ξlτ= f (2.82)

In order to understand how the equilibrium pose of the EE is influenced by statics, Eq.

(2.82) can be pre-multiplied byΞ⊥T
(as in Eq. (2.66)), yielding:

Ξ⊥T
f =−f⊥ = 0λ×1 (2.83)

We will refer to Eq. (2.83) as the Static Constraint that EE pose variables must satisfy
when equilibrium is attained. The value of cable tensions when v̇ = v = 06×1 is calcu-
lated, as in Eq. (2.75), by pre-multiplying Eq. (2.82) byΞ∥T

:

τ=Ξ∥T
f = f∥ (2.84)

In case an inverse problem is formulated, only a subset of the pose ζ is assignable,
namely ζc ∈ IRn , and both ζ f ∈ IRλ and l ∈ IRn are to be determined: geometric equa-
tions are n, thus insufficient to determine λ+n = 6 unknowns. If the problem is di-
rect, the assigned variable is l ∈ IRn , and ζ ∈ IRn+λ has to be found, thus the number
of unknown does not change and the geometric problem is still underdetermined. By
coupling geometric equations and statics, the so-called Geometrico-Static problems of
UACDPRs [14, 15] are defined, whose aim is to determine equilibrium configurations,
namely a set (ζ, l) = (

ζ0, l0
)
, such that Eqs. (2.14) for i = 1, · · · ,n and (2.83) are satisfied,

and τ in Eq. (2.84) is stricly positive.
Although the aforementioned definition of the Geometrico-Static problem is gen-

eral, it may be specialized for the inverse or forward problem in order to simplify its
solution procedure. In fact, for the inverse problem (IGSP in short), it is simpler to:

• first, determine the value of ζ f which satisfies the Static Constraint for an as-
signed ζc , by solving the non-linear system of λ equations in Eq. (2.83), namely:

f⊥(ζ f ) = 0λ×1 (2.85)

The computation of ζ f can be carried out by using a numerical algorithm (e.g.
Newton Raphson scheme);
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2.4. Static Modelling

• then, evaluate cable tensions from Eq. (2.84): the evaluation of f∥ is straightfor-
ward after determining ζ f , since all pose coordinates are known;

• finally, if τº 0n×1 (º is used to indicate element-wise inequality), that is, all con-
straints are active, evaluate l according to Eq. (2.15).

The forward problem (FGSP) is slightly more intricated to formulate, because it is
not possible to decouple geometry and statics in the determination of the EE pose.
Accordingly, we suggest to:

• first, determine the value of ζ which satisfies the static equilibrium and the ge-
ometry of the UACDPR, by solving the non-linear system of 6 equations:

l1(ζ)− l1,0 = 0
...

ln(ζ)− ln,0 = 0

f⊥(ζ) = 0λ×1

(2.86)

where li (ζ) is calculated as in Eq. (2.15), and li ,0 is the assigned length of the i-th
cable;

• then, evaluate cable tensions by Eq. (2.84): if τº 0n×1 the solution is an equilib-
rium configuration.

Alternative formulations to Eq. (2.86) are possible [33, 34], which are particularly
suitable for the application of continuation methods or interval analysis, but it is the
author opinion that Eq. (2.86) provides some advantages if iterative non-linear solvers
(e.g. Newton-Raphson, Levenberg-Marquardt) are employed for the numerical com-
putation of one of its possibly many solutions [44].

It should be noted that both the inverse and the forward problem may admit multi-
ple real solutions: the inverse geometrico-static problem was investigated thoroughly
for 3- [36] and 4-cable [35] UACDPRs, whereas the direct geometrico-static problem
was studied for 3- [31, 32, 50], and general n−cable [33, 34] UACDPRs, and thus are not
the object of this thesis.

2.4.2 Free-Motion and Controlled-Motion stiffness

The equilibrium configuration of a UACDPR may change for two reasons: cable lengths
are varied, or the external wrench changes. The external wrench depends both on
modeled effects, such as external force fields or task-related actions, and thus depends
on the EE configuration, and on un-modeled disturbances, such as unexpected inter-
actions with the surrounding environment. For the purpose of this analysis, we will
consider that the external wrench is dependent on the EE configuration only, namely
f = f(ζ), and disturbances are quick and temporary phenomena. In other words, dis-
turbances may temporary alter equilibrium, but the system is nominally not affected
by them. The aim of this Subsection is to provide modelling tools for the analysis of
the variation of equilibrium configurations due to changes in the cable lenghts or the
external wrench..
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In case equilibrium is altered, its variation is studied by differentiating the static
constraint f⊥ = 0λ×1 in Eq. (2.83), namely:

df⊥ = ∂f⊥

∂ζ
dζ= 0λ×1 (2.87)

If we consider Eq. (2.58), namely, ζ̇ = J⊥l ζ̇ f + J∥l l̇, we can deduce that a pose variation
dζ may be produced by a variations of either cable lengths or free-pose coordinates,
namely:

dζ= J⊥l dζ f + J∥l dl (2.88)

So, if we substitute Eq. (2.88) in Eq.(2.87), we get:

df⊥ = ∂f⊥

∂ζ
J⊥l dζ f +

∂f⊥

∂ζ
J∥l dl = 0λ×1 (2.89)

Accounting for the right-hand side of Eq. (2.68) yields:

∂f⊥

∂ζ
=−

(
∂Ξ⊥T

l

∂ζ
f+Ξ⊥T

l

∂f

∂ζ

)
(2.90)

Since we are interested in variations around an equilibrium, we may use f = Ξτ from
Eq. (2.82) so that:

∂f⊥

∂ζ
=−

(
∂Ξ⊥T

l

∂ζ
Ξτ+Ξ⊥T

l

∂f

∂ζ

)
(2.91)

DifferentiatingΞ⊥T

l Ξl = 0λ×n with respect to ζ yields:

∂Ξ⊥T

l

∂ζ
Ξl +Ξ⊥T

l

∂Ξl

∂ζ
= 0λ×n (2.92)

so that Eq. (2.91) can be written as:

∂f⊥

∂ζ
=Ξ⊥T

l

(
∂Ξl

∂ζ
τ− ∂f

∂ζ

)
(2.93)

The first term in the parentheses at the right-hand side of Eq. (2.93) is calculated by
considering the right-hand side of Eq. (2.21):

∂Ξl

∂ζ
τ=

n∑
i=1

τi
∂ξli

∂ζ
=

n∑
i=1

τi

[ ∂ti
∂ζ

ã′
i
∂ti
∂ζ − t̃i

∂a′
i

∂ζ

]
(2.94)

It can be shown by computation (see App. A.9) that:

∂ti

∂ζ
= [

Ti −Ti ã′
i

]
D, Ti =

sinψi wi wT
i

%ui

+ ni nT
i

‖ρi‖
(2.95)

∂a′
i

∂ζ
= [

03×3 −ã′
i

]
D (2.96)

thus obtaining:
∂Ξl

∂ζ
τ= KD (2.97)
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K =
n∑

i=1
τi

[
Ti −Ti ã′

i
ã′

i Ti −ã′
i Ti ã′

i

]
+

n∑
i=1

τi

[
03×3 03×3

03×3 t̃i ã′
i

]
(2.98)

In the literature, the (6×6) matrix K is referred to as Geometric [51], Controllable [52]
or Active [53] Stiffness of the CDPR, because it is geometry dependent and, in over-
constrained CDPRs, τ can be actively controlled independently from the EE configura-
tion. It should be noted that its definition is fundamentally different from the so-called
Passive Stiffness generated by cable deformations (not considered in this thesis, since
cables are modelled as rigid). In UACDPRs, K cannot be actively controlled, because τ
depends on the equilibrium configuration.

The second term in the parentheses at the right-hand side of Eq. (2.93) is calculated
from Eqs. (2.64) and (2.65):

− ∂f

∂ζ
= ED−F (2.99)

E =
[

03×3 03×3

03×3 −φ̃i ẽ′
]

, F =
[

∂φ
∂ζ

R∂P e′
∂ζ

+ ẽ′ ∂φ
∂ζ

+ ∂µ
∂ζ

]
(2.100)

since ∂e′/∂ζ= [03×3 − ẽ′i D+R∂P e′
∂ζ ].

Finally, substituting Eqs. (2.97) and (2.99) in (2.93), yields:

∂f⊥

∂ζ
=Ξ⊥T

l [(K+E)D−F] (2.101)

where:

K+E =
n∑

i=1
τi

[
Ti −Ti ã′

i
ã′

i Ti −ã′
i Ti ã′

i

]
+

n∑
i=1

τi

[
03×3 03×3

03×3 −t̃i ã′
i

]
+

[
03×3 03×3

03×3 φ̃i ẽ′i

]
(2.102)

Notice that matrix K+E is generally non-symmetric, since, while the first summa-
tion in Eq. (2.102) is always symmetric, the other terms are not. In fact, at the static
equilibrium:

n∑
i=1

τi a′
i × ti = e′i ×φ+µ (2.103)

namely, in skew-symmetric representation:

n∑
i=1

τi
(
ã′

i t̃i − t̃i ã′
i

)= ẽ′φ̃− φ̃ẽ′+ µ̃ (2.104)

Equation (2.104) shows that the summation of the second and third term in Eq. (2.102),
namely,

φ̃ẽ′−
n∑

i=1
τi t̃i ã′

i = ẽ′φ̃−
n∑

i=1
τi ã′

i t̃i + µ̃=
(
φ̃ẽ′−

n∑
i=1

τi t̃i ã′
i

)T

+ µ̃ (2.105)

is symmetric if and only if µ= 03×1.
If we define:

K⊥
f = ∂f⊥

∂ζ
J⊥l =Ξ⊥T

l [(K+E)D−F]J⊥l (2.106)

K⊥
l = ∂f⊥

∂ζ
J∥l =Ξ⊥T

l [(K+E)D−F]J∥l (2.107)
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equation (2.89) may be written as:

K⊥
f dζ f +K⊥

l dl = 0λ×1 (2.108)

In case equilibrium is altered while cables are not varying their lengths (dl = 0n×1),
i.e. because of the temporary variation of the external wrench, the restoring action that
pushes the system back towards equilibrium generate the Free-Motion Stiffness (FMS)
K⊥

f = ∂f⊥/∂ζ f ∈ IRλ×λ of the UACDPR. The FMS was implicitly formulated for UACD-
PRs in [15], under the assumptions that cables exit the frame through eyelets, and the
platform is subject to the gravitational action only. Here, we re-formulated K⊥

f in a
more general case, namely introducing the pulley geometric model and considering a
generic external wrench f.

It should be noted that, in case external loads are conservative, an equilibrium is
stable if and only if the eigenvalues of K⊥

f are real positive numbers, otherwise it is

unstable. This assertion is equivalent to requiring K⊥
f to be positive-definite [15]. In

case external loads are not conservative, the analysis of K⊥
f is not sufficient to infer

equilibrium stability, and the inertial properties of the system are to be considered as
well [54]. This case will be analyzed in Sec. 4.1.

When alternatively the equilibrium is altered because of a variation of the cable
lengths, as in the case of small-amplitude controlled motions or cable-length control
errors, a new equilibrium configuration is reached, and cable tensions vary in order to
keep the EE in balance.

If the cable-length change is quasi-static and infinitesimal, cable tension variation
can be asserted by computing the Controlled-Motion Stiffness (CMS) K∥ = ∂τ/∂l ∈ IRn×n

of the UACDPR, which correlates small actuator displacements to a small variation of
cable tension. A change in cable lenghts affects the free coordinates of the platform
according to Eq. (2.108). Matrix K⊥

f is invertible if it is not semi-definite (thus it is
invertible if loads are conservative and the equilibrium configuration stable) and the
variation of the free-coordinates upon a variation of the cable lengths can be evaluated
as:

dζ f =−K−⊥
f K⊥

l dl (2.109)

Consequently, we can substitute Eq. (2.109) in Eq. (2.88) obtaining:

dζ=
(
−J⊥l K−⊥

f K⊥
l + J∥l

)
dl (2.110)

Then, we may compute K∥ as:

K∥ = ∂τ

∂l
= ∂f∥

∂l
= ∂f∥

∂ζ

∂ζ

∂l
= ∂f∥

∂ζ

(
−J⊥l K−⊥

f K⊥
l + J∥l

)
(2.111)

Matrix ∂f∥/∂ζ is evaluated similarly to ∂f⊥/∂ζ from Eq.(2.90) and the procedure is re-
called hereafter. Accounting for the right-hand side of Eq. (2.75), we have:

∂f∥

∂ζ
= ∂Ξ∥T

l

∂ζ
f+Ξ∥T

l

∂f

∂ζ
(2.112)

and, around equilibrium, f =Ξτ, thus:

∂f∥

∂ζ
= ∂Ξ∥T

l

∂ζ
Ξτ+Ξ∥T

l

∂f

∂ζ
(2.113)
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Then, differentiatingΞ∥T
Ξ= In×n with respect to ζ and substituting yields:

∂f∥

∂ζ
=−Ξ∥T

l

(
∂Ξl

∂ζ
τ− ∂f

∂ζ

)
(2.114)

where the terms inside the parentheses have already been calculated in Eq. (2.94)
through Eq. (2.100) as:

∂Ξl

∂ζ
τ− ∂f

∂ζ
= (K+E)D−F (2.115)

Finally, we have:

K∥ =−Ξ∥T

l [(K+E)D−F]
(
−J⊥l K−⊥

f K⊥
l + J∥l

)
(2.116)

In the end, if the force φ is constant and µ= 03×1, then F = 06×6, and both the FMS
and CMS are symmetric for any choice of EE pose parameters (both p and ε):

K⊥
f =Ξ⊥T

l (K+E)Ξ⊥
l (2.117)

K∥ =−Ξ∥T

l (K+E)
(
−Ξ⊥

l K−⊥
f Ξ⊥T

l (K+E)+ I6×6

)
Ξ∥

l (2.118)
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Chapter 3

Static Workspace Characterization

The workspace of a robotic manipulator can be defined as the set of configurations ζ
that can be reached by its EE. It is a crucial property that defines the robot possible ap-
plications. This set is commonly limited by different factors, such as mechanical limits
on passive joints, or self-collision between the elements of the robot. An additional
factor which is specific to any cable robot is that cable tension must always vary in a
prescribed non-negative range.

This chapter aims at summarizing commonly employed definitions for CDPR work-
spaces, and their adaptation to UACDPRs. For this class of manipulators, workspace
calculation relies on the evaluation of mechanical equilibrium as well as geometrical
considerations. A novel performance indexes which is specific to UACDPRs is proposed
and a novel fast workspace computation algorithm is detailed. Examples on 2-, 3-, and
4-cable robots are analyzed.

3.1 Common CDPR WS

In the following, commonly used workspace definitions in the context of parallel robots
are reported (see also [55]):

• constant-orientation workspace or translation workspace: all possible locations
of the reference point p of the EE that can be reached with a given orientation ε;

• orientation workspace: all possible orientations ε that can be reached while the
reference point p is in a fixed location;

• maximal workspace or reachable workspace: all locations of the reference point
p that may be reached with at least one orientation ε of the EE;

• total orientation workspace: all locations of the reference point p that may be
reached with all orientations ε within a set defined by ranges on the orientation
angles.

There are different criteria to decide if a pose belongs to the workspace:

• passive joints usually have mechanical limits that cannot be hit or surpassed,
because of a consequent robot-hardware failure;

• elements of the robot may self-collide (cable-cable or cable-platform), causing
the robot geometric and mechanical model to vary w.r.t. the nominal one;
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• actuators usually have a limited stroke, thus a mechanical limit: this is usually
neglected in cable-robotics, since the possibility to have practically unlimited
strokes is one of the primary advantages of CDPR w.r.t. conventional parallel
robots;

• robot legs reach singular configurations.

Cable interference criteria led to the definition of the Interference-Free Workspace
[56–58], where the platform can safely reach configurations without its cables interfer-
ing with themselves or specific elements in the environment. Although cable collision
implies loss of accuracy, the flexible nature of this transmission may not necessarily
threaten the robot integrity [59]. This aspect, as well as passive joints mechanical lim-
its, has limited impact for the suspended UACDPRs considered in this thesis, since in
this case the possibility of cable self-collision is limited, if not completely avoided, by
the suspended configuration and by the presence of a small number of cables.

Probably, the most important criterion that is specific to cable robots, though, is
that cables can only be actuated unilaterally through tension and not compression.
This consideration led to the definition of an additional specification to traditional
workspaces, which is the so-called wrench-closure property of CDPR workspaces [60,
61]: the set of configurations belonging to a Wrench-Closure workspace can be stati-
cally maintained by cables exerting a non-zero positive tension when a given external
load (often gravitational only) is acting upon the EE. More realistically, if cable ten-
sions must be limited within lower and upper positive bounds, the workspace is called
Wrench-Feasible (WFW ) [62].

Since mechanical equilibrium plays a key role in CDPR workspace definitions, it is
commonly assumed that cable tensions must counteract external static loads only, so
that EE is able to reach a configuration belonging to the workspace at rest [63, 64]. On
the other hand, recent studies also focused on the ability of CDPRs to move outside
of their static workspace when they are not in a static configuration, thus defining the
concept of dynamic workspace [65].

To the knowledge of the author, there exists a single work addressing the determi-
nation of the workspace of UACDPRs. The authors of [66] address this problem as the
determination of the set of poses ζ that a 6-DoF EE constrained by 4 cables can attain
statically, by taking only gravity into account. This set is determined by discretizing
the workspace and solving a nonlinear optimization problem with static equilibrium
conditions as the objective function, and constraints on the platform orientation and
cable tension values. While the approach presented in [66] appears simple and effec-
tive enough, several details regarding the computation method are missing or obscure
(even though the platform moves in SE(3), authors only mention an "angle", without
parametrization specifications, that must vary in a prescribed range).

In the following, a novel performance index UACDPRs, the maximum tension vari-
ation under a unit-norm cable displacement, is introduced. Accounting for this index,
a novel workspace definition, the Tension-Error-Insensitive Workspace (TEIW ), is put
forward, and a computation algorithm detailed. Exemplary applications on 2-, 3-, and
4-cable UACDPR will show how this index is particularly suitable for characterizing ma-
nipulators with non-decoupable translational and rotational mechanical equilibrium.
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3.2 Tension-Error-Insensitive workspace

Usually, kinematic performance indices are used in order to compare robot architec-
tures, and drive mechanical and control design. For example, it is often desired to
estimate the local kinematic sensitivity of a robotic manipulator, i.e., in a given pos-
ture, measure the effect of actuator displacements on the displacements of its end-
effector [67, 68]. In this Section, a novel performance index is proposed, which is tai-
lored for suspended CDPRs, thus applicable to the UACDPRs considered in this thesis.
In fact, it is based on three critical aspects of this technology:

• cable tension needs to be strictly bounded within positive limits for safety and
controllability reasons;

• cable-length estimation may not be very precise if fiber-rope cables or complex
cable-routing devices are employed;

• cable tension cannot be adjusted and depends on the EE pose.

Thus, it makes sense to investigate the sensitivity of robot cable tensions under er-
rors in cable-length assignments, namely, in other words, to identify CDPR configura-
tions which are more robust in terms of maintaining cables under tension when cable
lengths are not precisely estimated.

This index can be formulated by recalling the results of Section 2.4.2, which led to
the definition of the CMS of UACDPR K∥. In fact, matrix K∥ correlates small actuator
displacements (or errors) to small variation of cable tensions for UACDPRs with non-
deformable cables:

dτ= K∥dl (3.1)

This definition can be used to compute a novel geometrico-static performance in-
dex for UACDPR: the maximum tension variation under a unit-norm cable displace-
ment:

στ,q = max
‖dl‖q=1

‖dτ‖q (3.2)

where ‖ · ‖q indicates the vector q-norm. As it was highlighted in [69], and confirmed
in [67], the use of the infinity-norm (q =∞) attains the clearest physical meaning, since
it is consistent with a realistic actuation error model, that is:

−dli ,max ≤ dli ≤ dli ,max, i = 1, . . . ,n (3.3)

Thus, by considering Eq. (3.1) and the definitions of matrix norms [49], we have:

στ,∞ = max
‖dl‖∞=1

‖dτ‖∞ = ‖K∥‖∞ (3.4)

Note that the computation of the infinity norm of a matrix is straightforward, as it con-
sists of computing the 1-norms of its row vectors and choosing the largest.

According to the index value over the whole WFW , comparisons between different
design choices can be made: the smaller the index, the more robust to error in cable
actuation a UACDPR is. Alternatively, if the design is fixed, various robot configurations
can be compared:

• while planning a trajectory, some configurations may be avoided because they
are not safe to pass through;
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• in some robot architectures, e.g. the 4-cable robot, if a positioning task is to
be performed, orientation parameters can be optimized so as to minimize στ,∞
while following a trajectory of the EE reference point.

Additionally, if clear limits on cable errors are known, one may restrict the work-
space to those poses which are intrinsically "safe" to reach even in case of actuator
maximal errors, since cables will most likely stay within their non-zero positive bounds.
Upperτu = [τu,1 . . . ,τu,n]T and lowerτl = [τl ,1 . . . ,τl ,n]T limits od cable tensions in case
actuator present a maximum error of magnitude ∆l can be computed according to:

τl ,i = τi −‖K∥
i ‖1∆l , τu,i = τi +‖K∥

i ‖1∆l , i = 1, . . . ,n (3.5)

where ‖K∥
i ‖1 is the 1-norm of K∥ i-th row and τi is the i-th cable tension as calculated in

Eq. (2.84). Obviously, στ,∞ = max‖K∥
i ‖1 for i = 1, . . . ,n, but the maximum value of this

norm may not be the one which makes a cable tension surpass its bounds for a given
∆l , thus each row needs to be considered. In the end, cable tension bounds used for
the wrench-feasibility check can be compared with τl ,i and τu,i instead of τi , and, if a
pose is wrench feasible for τl ,i and τu,i , it is said to be Tension-Error-Insensitive.

3.3 Algorithm for Reachable Workspace Computation

The definition of a wrench-feasible reachable workspace is sound for any number of
cables:

• in case n = 2, if two translational components of the EE pose ζ are controlled,
this kind of workspace defines a surface in IR31: surface point coordinates are
given by the controlled coordinates and the free translational coordinate result-
ing from EE static equilibrium. Orientation parameters are determined accord-
ing to the EE static equilibrium as well;

• in case 3 ≤ n ≤ 5, a volume in IR3 is defined, by controlling at least the 3 trans-
lational coordinates of ζ. For 4 ≤ n ≤ 5, some orientation coordinates can be
controlled as well, thus the EE may attain several orientation configurations for
a fixed reference point;

• tension limits on every cable are easily verifiable.

It should be noted that, in some very specific but practically relevant cases, such as
cables exiting the frame through eyelets and external loads being the gravitational
one only, the surfaces defined by the wrench-feasible reachable workspace of a 2-cable
robot is a plane.

Numerous papers dealing with workspace calculation use methods based on the
discretisation of the pose parameters, in order to determine the workspace boundary.
In this discretisation approach, the workspace is covered by a regular or adaptive grid,
either Cartesian or polar, of nodes. Each node is then tested to see whether it belongs
to the workspace, according to various criteria. The main advantages of this approach
are:

• workspace calculation algorithms are straightforward;

1The surface shape is in general unknown a-priori, but it is practically a plane for limited pulley radius
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• any criteria is easily included;

• it is possible to additionally evaluate performance indexes associated with work-
space nodes.

On the other hands, the most noticeable drawbacks are:

• the accuracy of the workspace boundary depends on the grid resolution, and the
computation time grows exponentially with the resolution;

• problems may occur when the workspace possesses voids;

• the boundary representation may involve a large number of nodes.

In the following, our aim is not the accurate determination of workspace bound-
aries, but the rapid determination of a finite set of configurations that the EE is able
to reach (i) without the need of re-assembly or crossing singularities of any kind, (ii)
while statically maintaining cable tension within given bounds: thus, a regular-grid
discretization method is employed for workspace computation. The main steps for
workspace calculation are summarized as follows:

1. upper and lower limits of controlled pose coordinates, namely ζc,u and ζc,l re-
spectively, are assigned;

2. the intervals defined by these limitis are divided by a regular grid of ng nodes,
where ng is odd (thus there is a central node in each interval); the number of
nodes ng is determined by means of geometric considerations on the robot foot-
print;

3. for each controlled-pose node, a solution of the IGSP in Eq. (2.85) is sought;
if a solution for the free pose coordinates is found, cable tensions are checked
according to Eq. (2.84);

4. In case cable tensions are positive, that is, the pose belongs to the wrench-closure
workspace, additionally restrictive criteria are checked, namely:

• cable tensions are checked against their lower and upper positive bounds,
so that the pose is included in the wrench-feasible workspace;

• if the pose is wrench-feasible, equilibrium stability is checked, according to
the results of Sec. 2.4.2;

5. if all these additional restrictions apply, cable maximum error ∆l is set, and τu

and τl are computed according to Eq. (3.5); tension lower and upper positive
bounds are checked in order to include the pose in the Tension-Error-insensitive
workspace (TEIW in short).

One of the key complexities of the proposed steps is the solution of the IGSP, which
is nonlinear in ζ f . If a solution is sought by using a numerical iterative solver, such
as a Newton-Raphson scheme, the choice of an appropriate initial guess for the free
pose coordinates is fundamental. Such an initial guess should satisfy the Kantorovich
theorem [34], which provides sufficient conditions for the existence and uniqueness of
a solution to a nonlinear system of equation, given a specific initial guess. Algorithm 1
proposes an euristic, which allows for:
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Figure 3.1: Example of a 4-cable suspended UACDPR with an assigned installation vol-
ume: the volume (in green) is conveniently reduced in the z direction with respect to
the z coordinates of points Di in order to decrease computation time.

• fast UACDPRs workspace computation for any number of cables within 2 and 5
(2 ≤ n ≤ 5);

• the assignment of an initial guess for the IGSP which is most likely to be compat-
ible with the Kantorovich theorem;

• each configuration is checked only one time because of the algorithm structure.

In the case the EE is suspended and it is supposed to move inside a volume defined
by an installation frame and possibly other space constraints (see Fig. 3.1), points di

are on the volume boundaries and their z coordinates are on the volume upper part
(or over the upper part, such as in Fig. 3.1). The algorithm requires to choose as many
position coordinates as possible as controlled coordinates (thus 2 position coordinates
for a 2-cable robot and 3 position coordinates for 3-, 4-, and 5-cable robots): their lim-
its can be easily chosen by considering the robot installation volume. When additional
orientation coordinates can be selected as controlled (in the 4- and 5-cable cases), it is
useful that their limits have zero mean. The algorithm then starts from the center of the
controlled coordinate intervals and sequentially increases or decreases one of the con-
trolled coordinates. This choices lead to a fairly simple heuristic selection of the very
first initial guess for the numerical solution of the IGSP, if only gravity is considered as
an external load for workspace computation:

• in case the 2-cable robot is considered, the free position coordinate initial value
is selected as the corresponding coordinate in the center of the robot installation
volume; orientation free coordinates are initialized to the zero vector of dimen-
sion 3, which corresponds to the EE z ′ axis pointing upwards, thus parallel to the
fixed vertical z axis;

• for the 3-, 4-, and 5-cable robot, the orientation free coordinates are initialized to
0, which again corresponds to the EE z ′ axis pointing upwards.
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3.3. Algorithm for Reachable Workspace Computation

Algorithm 1: Workspace Computation
Data: ζc,l , ζc,u , τl , τu ,∆l , ng , UACDPR geometry and inertial parameters
Result: Set of configurations ζ belonging to the WFW
cc = (ζc,u +ζc,l )/2 /* Controlled coordinates center */
ζc = cc /* Initialize controlled coordinates */
sn = (ng −1)/2 /* Nodes on each side of the center */
Γ= 0λ,n /* Matrix of auxiliary initial guesses for the IGSP */
γ=Γ(:,n) /* Initial guess for the IGSP */
δζc = (ζc,u +ζc,l )/(ng −1) /* Constant distances between nodes */
iter = 0n , iter(n) =−1
dir = 1n

i = n
while 1 do /* Computation starts */

iter(i ) = iter(i )+1
ζc (i ) = cc (i )+dir(i )iter(i )δζc (i ) /* One coordinate is updated */
if iter(i ) > sn then /* limit is reached for i-th coordinate */

γ=Γ(:, i )
if dir(i ) = 1 then /* Limit is upper */

dir(i ) =−1
iter(i ) = 0

else /* Limit is lower */
dir(i ) = 1
iter(i ) =−1
i = i −1 /* Decrease the coordinate to update */
if i = 0 then

Exit While /* Computation is finished */
end

end
else

if i = n then
ζ f ← Solve IGSP for ζc , starting from γ

γ= ζ f

ζ= PT [ζT
c ,ζT

f ]T

τ= f∥

if τ is within limits and ζ is stable then
Assign ζ to WFW
Compute στ,∞
Compute τl and τu

if τl and τu are within limits then
Assign ζ to TEIW

end
end
if iter(n) = 0 & dir(n) = 1 then

Γ(:, i ) = γ /* Update auxiliary matrix of initial guesses when
coordinate n near is near the center */

end
else

if iter(i ) = 1 & dir(i ) = 1 then
Γ(:, i ) =Γ(:, i +1) /* Update auxiliary matrix of initial guesses
when coordinate i is near the center */

end
i = i +1

/* Increase the coordinate to update */
end

end
end
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In this way, IGSP numerical solution is forced towards the one (among the possibly
many) solution with the EE which is minimally tilted with respect to the fixed vertical z
axis: it is not the aim of this algorithm to find all the solutions to the IGSP problem, but
rather to determine a limited and finite set of configurations that the EE can practically
reach during operation. It should be noted that, in case different geometrical assump-
tions and external loads are considered, the choice on controlled coordinate limits and
free coordinate initial guess would probably slightly vary.

After the first node, the initial guesses for IGSP solution is always selected as the
solution obtained in the previous node, in order to start from the solution of a neigh-
bouring problem. Each time an upper or lower limit is reached while increasing or
decreasing controlled coordinates, the algorithm goes back to a configuration near the
center, and the initial guess is accordingly updated with the solution to the nearest
problem already solved.

3.3.1 Results on exemplary 2-, 3- and 4-cable robots

Workspaces for exemplary 2-, 3-, and 4-cable robots are evaluated according to Alg. 1
in order to show its effectiveness. Geometrical and inertial parameters of the robot EE
are summarized in App. B.1, in tables B.1 and B.2 respectively. Apart from the 4-cable
case, where all cables were connected to the EE, only cables 1 through 3 were attached
to the platform in the 3-cable case, only cables 1 and 3 in the 2-cable robot.

Pose limits were set to (see Fig. 3.1):

ζl =



0.196
−1.082
−1
−π
−π/2
−π/10

m,rad ζu =



2.152
0.739
0.059
π

π/2
π/10

m,rad (3.6)

and cable tension limits to τl = 10N and τu = 200N. The position of the reference point
and the EE torsion angle were selected as controlled coordinate of the 4-cable robot,
whereas, only the position of the EE was chosen for the 3-cable robot, and the y, z
coordinates for the 2-cable robot, thus resulting in the following permutation matrices
Pn , with n being the number of cables:

P4 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 , P3 = I6×6, P2 =



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.7)

TEIWs for the 2-cable UACDPR are reported in Fig. 3.2. By comparing the WFW ,namely
TEIW with ∆l = 0m in Fig. 3.2a, with TEIWs computed for increasing values of ∆l ,
namely ∆l = 0.001m in Fig. 3.2b, ∆l = 0.005m in Fig. 3.2c, and ∆l = 0.01m in Fig. 3.2d,
it can be inferred that:

• 2-cable robots cable tensions are limitedly influenced by cable-length errors as
no cable is expected to lose tension throughout robot WFW : WFW is practically
coincident with TEIWs with ∆l up to 1cm;

42



3.3. Algorithm for Reachable Workspace Computation

(a) 2-cable UACDPR WFW (b) 2-cable UACDPR TEIW , ∆l = 1mm

(c) 2-cable UACDPR TEIW , ∆l = 5mm (d) 2-cable UACDPR TEIW , ∆l = 1cm

Figure 3.2: 2-cable UACDPR workspaces; point colors indicate the value of στ,∞ per-
formance index; number of nodes per controlled coordinate ng = 101

• the surface of the WFW is practically planar.

TEIWs for the 3-cable UACDPR are reported in Fig. 3.3. By comparing the WFW ,namely
TEIW with ∆l = 0m in Fig. 3.3a, with TEIWs computed for and increasing value of ∆l ,
namely ∆l = 0.001m in Fig. 3.3b, ∆l = 0.005m in Fig. 3.3c, and ∆l = 0.01m in Fig. 3.3d,
it can be inferred that:

• 3-cable robots cable tensions are also limitedly influenced by cable length errors
as no cable is expected to lose tension throughout robot WFW : WFW is practi-
cally coincident with TEIWs with ∆l up to 1cm;
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(a) 3-cable UACDPR WFW (b) 3-cable UACDPR TEIW , ∆l = 1mm

(c) 3-cable UACDPR TEIW , ∆l = 5mm (d) 3-cable UACDPR TEIW , ∆l = 1cm

Figure 3.3: 3-cable UACDPR workspaces; point colors indicate the value of στ,∞ per-
formance index; number of nodes per controlled coordinate ng = 21

• manipulator workspace is almost equivalent to a prism with a triangular base,
which is roughly coincident with the robot installation volume: this is a favorable
characteristic of the 3-cable architecture, since its EE can practically reach any
point contained in its installation volume without cables becoming slack.

2- and 3-cable architectures are special, since translational and rotational equilib-
rium are decoupled, and the static problem is much simplified. In fact, it is possible
to determine the full pose of the platform by considering that the two or three lines
defined by the cable constraint forces shall pass through the EE center of mass: thus,
their external moments about the center of mass are always zero.
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(a) 4-cable UACDPR WFW (b) 4-cable UACDPR TEIW , ∆l = 1mm

(c) 4-cable UACDPR TEIW , ∆l = 5mm (d) 4-cable UACDPR TEIW , ∆l = 1cm

Figure 3.4: 4-cable UACDPR workspaces; point colors indicate the value of στ,∞ per-
formance index; number of nodes per controlled coordinate ng = 15

The case is different for the 4-cable architecture, where there is an inherent cou-
pling between rotational and translational equilibria. TEIWs for the 4-cable UACDPR
are reported in Fig. 3.4. By comparing the WFW , namely TEIW with ∆l = 0m in Fig.
3.4a, with TEIWs computed for and increasing value of ∆l , namely ∆l = 0.001m in Fig.
3.4b, ∆l = 0.005m in Fig. 3.4c, and ∆l = 0.01m in Fig. 3.4d, it can be inferred that:

• 4-cable robots cable tensions are severely influenced by cable-length errors and
even slight actuation error (1cm on a robot with a footprint of 4m2) may lead to
one or more cables loosing tension. This result is in accordance with the findings
of [33], where the non-robust nature of the 4-cable architecture was statistically
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investigated;

• manipulator WFW is almost equivalent to a prism, whose edges are parallel to
the external load direction (gravity): the incomplete equivalence is due to EE
and frame generic geometry, as well as the presence of swivel pulleys.

Special care should be paid in the design and control of a 4-cable UACDPR, since
its behaviour may largely vary with respect to expectations.
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Chapter 4

Parameter Identification

Geometric and mechanical models of a robot depend on several time-invariant pa-
rameters, whose knowledge allows for the computation of time-varying variables, such
as joint coordinates, EE pose, etc. An identification procedure is any method aiming at
determining the values of said parameters in order to minimize model errors according
to real-world data.

Geometric parameters, also known as kinematic parameters, appear in geometric
and kinematic models. Their knowledge is necessary to reach a high level of motion ac-
curacy, and they can usually be inferred with good approximation through Computer-
Aided-Design (CAD) data. The first source of uncertainty in their knowledge is me-
chanical manufacturing and assembly, which result in the deviation of the real system
with respect to the CAD one. On the other hand, robot real behaviour almost always
also depends on un-modelled effects, such as link elasticity: this results in model er-
rors even in case mechanical manufacturing and assembly are perfect. Thus, there is
the need to determine (optimize) such parameters, so that the modelling errors are the
smallest throughout the workspace of the manipulator. Additionally, some robot ge-
ometric parameters may inherently be impossible to know with good approximation
by CAD: this is, for example, the case of the coordinate of points Di in a CDPR (see
Fig. 2.1), which can be several meters apart and may have to adapt to an unknown
enviroment.

Inertial parameters only affect mechanical equilibrium and are usually needed in
order to employ modern control techniques, such as computed torque control. On
the other hand, Chapter 2 showed how UACDPR pose depends on mechanical equilib-
rium conditions, thus their knowledge is crucial in order to operate this class of ma-
nipulators. The knowledge of inertial parameters is often poor or even non-existent:
on the one hand, data of commercial components are not always provided by manu-
facturers, on the other, even in-house designed components may require tedious and
error-prone procedures to obtain a direct estimation.

Additional parameters, which are a by-product of geometric and inertial ones, may
be useful for particular robot operations: this is the case of UACDPR natural oscilla-
tion frequencies, which can be very useful in the context of their trajectory planning,
and UACDPR initial cable lengths at start-up. While the former depend on the robot
parameters and the EE pose, thus can be modelled, the latter need to be determined
each time the machine is started.

This Chapter aims at describing procedures for the determination of UACDPR:

• inertial parameters
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• natural oscillation frequencies

• initial cable lengths

Modelling peculiarities of UACDPRs will be discussed, and efficient algorithms for both
data acquisition and computation will be outlined. Even though natural oscillation
frequency computation is effectively carried out after inertial parameters estimation,
the optimal selection of configurations and trajectories for such estimations relies on
the dynamic model linearization. This linearization is at the basis of the definition of
natural oscillation frequencies, which are thus treated first. Unfortunately, geometric
parameters calibration could not be analyzed during the time of this thesis and is left
as future work.

4.1 Natural Frequencies of UACDPR

The knowledge of natural oscillation frequencies of UACDPRs was effectively employed
in order to derive point-to-point trajectory planners based on periodic excitation [27]
or input-shaping [28–30, 46], and it might also be exploited for optimal robot design
[70]. The authors of [27, 28] derived the single configuration-dependent natural oscil-
lation frequency of a planar 3-DoF 2-cable robot, by linearizing the robot dynamics
about equilibrium configurations, whereas in [29] the same technique was employed
for a spatial 6-DoF 3-cable system. In both cases, the translational and rotational equi-
libria of the EE could be decoupled, leading to equations which were mathematically
simpler to handle. This was not the case, instead, for the 6-DoF 4-cable manipulator
considered in [30]: here, the natural frequencies of the system were computed by the
authors by approximating the 6-DoF robot with two 3-DoF planar systems.

In this Section, a novel technique for the computation of the natural oscillation
frequencies of UACDPR with a generic number n of cables (2 ≤ n ≤ 5), and subject
to a generic external wrench, is proposed. This method is based on the linearization
of the system internal dynamics about an equilibrium configuration. The proposed
approach is able to deal with the coupling of translational and rotational mechanical
equilibria when n ≥ 4, and allows out-of-the-plane oscillation frequencies of planar
systems with n = 2 to be determined. Additionally, this method does not depend on
the specific parametrization of the EE orientation, thus it does not suffer from rep-
resentation singularities. In the end, experiments verify that the oscillation frequen-
cies computed by the proposed approach closely match the ones of physical 2, 3 and
4-cable UACDPR prototypes.1

4.1.1 Internal-dynamics linearization

The UACDPR natural oscillation frequencies can be computed from the eigenvalue
problem arising from the EE internal dynamics, after its linearization about an equilib-
rium configuration. For this purpose, it is convenient to linearize Eq. (2.71) by expand-
ing it in Taylor series and truncating the expansion at the first order (an example of
application to the linearization of the dynamic model of fully-actuated parallel manip-
ulators can be found in [71]). In the following, an approach similar to [71] is followed,

1The content of this Section has been submitted to IEEE Transaction on Robotics.
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but we consider ζ f and l as indipendent coordinates, instead of ζ. For simplicity sake,

we define a new coordinate vector q = [ζT
f , lT ]T .

If the left-hand side of Eq. (2.71) is denoted as h
(
q, q̇, q̈

)
, its Taylor expansion about

an equilibrium configuration (q = q̇0, q̇ = 06×1, q̈ = 06×1) truncated at the first order
yields:

h
(
q, q̇, q̈

)' h(q0,0,0)+ ∂h

∂ζ̈ f

∣∣∣∣∣
(q0,0,0)

ζ̈ f +
∂h

∂l̈

∣∣∣∣
(q0,0,0)

l̈+ ∂h

∂ζ̇ f

∣∣∣∣∣
(q0,0,0)

ζ̇ f +

+ ∂h

∂l̇

∣∣∣∣
(q0,0,0)

l̇+ ∂h

∂ζ f

∣∣∣∣∣
(q0,0,0)

(
ζ f −ζ f 0

)+ ∂h

∂l

∣∣∣∣
(q0,0,0)

(l− l0) = 0λ×1 (4.1)

At equilibrium, clearly h
(
q0,0,0

) = f⊥ = 0λ×1. The partial derivatives are readily ob-
tained as:

∂h

∂ζ̈ f

∣∣∣∣∣
(q0,0,0)

= M⊥
f

∣∣∣
(q0,0,0)

= M⊥
f 0 (4.2)

∂h

∂l̈

∣∣∣∣
(q0,0,0)

= M⊥
l

∣∣
(q0,0,0) = M⊥

l0 (4.3)

∂h

∂ζ̇ f

∣∣∣∣∣
(q0,0,0)

=
(

C⊥
f +

∂C⊥
f

∂ζ̇ f

ζ̇ f +
∂C⊥

l

∂ζ̇ f

l̇
)∣∣∣∣∣

(q0,0,0)
= 0λ×λ (4.4)

∂h

∂l̇

∣∣∣∣
(q0,0,0)

=
(

C⊥
l +

∂C⊥
f

∂l̇
ζ̇ f +

∂C⊥
l

∂l̇
l̇
)∣∣∣∣∣

(q0,0,0)
= 0λ×λ (4.5)

∂h

∂ζ f

∣∣∣∣∣
(q0,0,0)

=
(∂M⊥

f

∂ζ f
ζ̈ f +

∂M⊥
l

∂ζ f
l̈+

∂C⊥
f

∂ζ f
ζ̇ f +

∂C⊥
l

∂ζ f
l̇+ ∂f⊥

∂ζ f

)∣∣∣∣
(q0,0,0)

=

= ∂f⊥

∂ζ f

∣∣∣∣∣
(q0,0,0)

= K⊥
f

∣∣∣
(q0,0,0)

= K⊥
f 0 (4.6)

∂h

∂l

∣∣∣∣
(q0,0,0)

=
(∂M⊥

f

∂l
ζ̈ f +

∂M⊥
l

∂l
l̈+

∂C⊥
f

∂l
ζ̇ f +

∂C⊥
l

∂l
l̇+ ∂f⊥

∂l

)∣∣∣∣
(q0,0,0)

=

= ∂f⊥

∂l

∣∣∣∣∣
(q0,0,0)

= K⊥
l

∣∣
(q0,0,0) = K⊥

l0 (4.7)

where we have taken advantages that many elements vanishing in Eqs. from (4.2) to
(4.7) are linearly dependent on q̇ and q̈. All quantities at the far right-hand sides from
(4.2) to (4.7) are computed in the equilibrium configuration (q0,0,0) and thus denoted
by the subscript 0. Matrices M⊥

f , M⊥
l , K⊥

f and K⊥
l , given in Eqs. (2.72), (2.106) and

(2.107), are reported below for the sake of convenience:

M⊥
f =Ξ⊥T

l MΞ⊥
l ∈ IRλ×λ (4.8)

M⊥
l =Ξ⊥T

l MΞ∥
l ∈ IRλ×n (4.9)

K⊥
f =Ξ⊥T

l [(K+Q)D−F]J⊥l (4.10)

K⊥
l =Ξ⊥T

l [(K+Q)D−F]J∥l (4.11)
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Finally, Eq. (4.1) can be rewritten as:

M⊥
f 0ζ̈ f +M⊥

l0l̈+K⊥
f 0

(
ζ f −ζ f 0

)+K⊥
l0 (l− l0) =

= M⊥
f 0∆ζ̈ f 0 +M⊥

l0∆l̈0 +K⊥
f 0∆ζ f 0 +K⊥

l0∆l0 = 0λ×1 (4.12)

where ∆ζ̈ f 0 = ζ̈ f −0λ×1, ∆l̈0 = l̈−0n×1, ∆ζ f 0 = ζ f −ζ f 0, and ∆l0 = l− l0.

4.1.2 Linearized free-motion internal-dynamics and natural oscilla-
tion frequencies

In case actuators are locked, that is, ∆l0 =∆l̈0 = 0λ×1, Eq. (4.12) simplifies to:

M⊥
f 0∆ζ̈ f 0 +K⊥

f 0∆ζ f 0 = 0λ×1 (4.13)

This formulation leads to a generalized eigenvalue problem, whose solution allows
for the determination of the system natural oscillation frequencies in the equilibrium
configuration under investigation. By considering a solution of Eq. (4.13) in the form
∆ζ f 0(t ) =γeΛt , with Λ ∈C, so that:(

Λ2M⊥
f 0 +K⊥

f 0

)
γ= 0λ×1 (4.14)

the eigenvalues Λ2
1, . . . ,Λ2

λ
are found by solving the characteristic equation associated

to the generalized eigenvalue problem:

det
(
Λ2M⊥

f 0 +K⊥
f 0

)
= 0 (4.15)

It should be noted that if and only if Λ2
1, . . . ,Λ2

λ
are real negative numbers, the equilib-

rium configuration is stable, otherwise it is unstable [54]: this formulation allows to
study the equilibrium stability of non-conservative system.

Finally, natural oscillation frequencies are computed as:

f j =
ℑ(
Λ j

)
2π

, j = 1, . . . ,λ (4.16)

where ℑ (·) denotes the imaginary part of a complex number. Additionally, eigenvec-
tors γ j can be determined by solving Eq. (4.14) for any j and normalized according to

γT
j M⊥

f 0γ j = 1.

4.1.3 Experimental validation

In order to validate the methodology proposed in this section, a series of experiments
were conducted on the 6-DoF UACDPR prototype of the University of Bologna. Geo-
metrical and inertial properties of the prototype, defined in Sections 2.1 and 2.3, are
summarized in Tables B.1 and B.2 in App. B.1. The only external load applied to the
robot EE is gravity, thus e′ = s′,φ=−mg k and µ= 03×1.

The procedure described in this subsection was applied to, respectively: 36 equi-
librium configurations in which the platform was constrained by 4 cables (cables 1 to
4), 12 configurations in which only cables 1 through 3 were attached to the platform,
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(a) Isometric view (b) Top view

Figure 4.1: Layout of experimental configurations

and 12 configurations in which the platform was suspended only by cables 1 and 3
(Fig. 4.1).

In order to reach an equilibrium configuration, the platform was first displaced in
a desired location inside the robot wrench-feasible reachable workspace. Then, actu-
ators were controlled to hold their angular positions so that cable lengths could not
change: motor torques were checked to ensure that their values were compatible with
cables being taut. The EE was then manually slightly displaced with respect to its equi-
librium configuration, and swiftly released next: this operation was equivalent to im-
pose non-equilibrium initial conditions to the free-motion dynamics of the platform.
The positions pk , k = 1, . . . ,5, of 5 optical markers mounted on the robot platform were
tracked by 8 cameras of a VICON Motion Capture System (measurement accuracy was
±0.2 mm for each marker’s Cartesian component, at a 100 Hz sampling rate) for a to-
tal duration of 10 s for each experiment, thus acquiring ns = 1001 samples per marker
coordinate.

These coordinates were then filtered by using a zero-phase finite-impulse response
low-pass digital filter with a stop-band frequency of 10 Hz. No natural oscillation fre-
quency above 4 Hz was expected from the model, thus measurement noise and un-
modelled oscillatory phenomena at higher frequencies, such as cable elastic axial vi-
brations, were accordingly removed.

The ns EE poses corresponding to each experiment were reconstructed from the
position of the 5 markers, and the corresponding cable lengths were calculated by the
inverse geometric model (see Eq. (2.14)). The mean value over the ns samples of each
cable length differed from its maximum and minimum value by less than 1 mm and
thus it was considered as the constant experimental value of the variable. Alternatively,
cable lengths could be computed as the result of the inverse model applied to the rest
pose of the EE that is eventually reached. On the other hand, the procedure employed
is considered to be more robust, because static friction may lead the EE to stop in an
unpredictable configuration.

The natural-oscillation-frequency computation method is summarized as follows:

• given the value l0 of cable lengths, compute the EE static equilibrium pose ζ0 ac-
cording to the direct geometric-static model in Eq.(2.86) (ε is expressed by x y z
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Figure 4.2: Modelled and experimental oscillation frequencies for UACDPRs with 2, 3
and 4 cables.

Tait-Bryan angles in this Section); since the problem has possibly multiple solu-
tions, keep only the stable pose that is closer to the initial one;

• once the equilibrium configuration
(
ζ0, l0

)
is known, compute M⊥

0 and K⊥
0 ac-

cording to Eqs. (4.8) and (4.10);

• solve the generalized eigenvalue problem in Eq. (4.14) and compute the natural
oscillation frequencies according to Eq. (4.16).

The oscillation of each marker with respect to its equilibrium position can be ex-
perimentally computed as:

∆pk (t ) = pk (t )−pk (4.17)

where (·) denotes the mean value operator. The signal of any coordinate of∆pk (t ) con-
tains, in general, the system natural frequencies since, if pk is chosen as the platform
reference point, ∆pk (t ) can be modelled as:

∆pk (t ) = J⊥l ,k∆ζ f 0(t ) = J⊥l ,kγeΛt =γk eΛt , γk = J⊥l ,kγ (4.18)

where J⊥l ,k groups the first 3 rows of J⊥l as in:

J⊥l = PT J⊥P (4.19)

and J⊥P is given in the left-hand side of Eq. (2.51). Then, the Fast Fourier Transformation
(FFT) of each coordinate of∆pk (t ), for k = 1, . . . ,5, can be performed. This operation is
deemed necessary since: (i) depending to the actual value of γk , some modes may be
absent in some coordinate, (ii) depending on the manually imposed initial condition
of the EE oscillation, some modes may have an experimentally negligible amplitude
in the frequency spectra of a certain coordinate FFT , and (iii) high data redundancy,
which is achieved by considering 15 signals theoretically possessing frequency spectra
peaks corresponding to the same frequency values, robustifies experimental investi-
gation. In the following subsections, several small-amplitude peaks can be noticed
surrounding high amplitude-peaks: they are not present in the original signals, but ar-
tificially introduced because of an FFT resolution upscaling process. In fact, ns = 1001
samples recorded at 100 Hz would produce an FFT with 0.1 Hz frequency resolution.
This resolution was upscaled to 0.01 Hz in order to better isolate nearby peaks of the
signal FFTs. This operation was performed by adding, at the end of the ns recorded
samples, 9ns additional zero-value samples, for a total of 10ns = 10001 samples.
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The results of all experiments are summarized in Fig. 4.2. For each experiment,
the experimental natural frequency f ?j of the j -th mode ( j = 1, . . . ,λ) is determined

as the weighted mean of the frequencies f ?j ,kc corresponding to FFT peaks of a single
coordinate, with the oscillation amplitude Akc used as weight (k = 1, . . . ,5, c = x, y, z):

f ?j =
(

5∑
k=1

∑
c=x,y,z

Akc f ?j ,kc

)/(
5∑

k=1

∑
c=x,y,z

Akc

)
(4.20)

Accordingly, the standard deviation of the weighted mean is calculated as:

σ?j =
√√√√(

5∑
k=1

∑
c=x,y,z

Akc ( f ?j ,kc − f ?j )2

)/(
5∑

k=1

∑
c=x,y,z

Akc

)
(4.21)

The relative estimation error between the experimental frequency f ?j and the mod-
elled one f j is calculated as:

∆ f j % = 100
f ?j − f j

f j
(4.22)

In Fig. 4.2, each integer between 1 and 60 on the abscissa axis represents one of the ex-
perimental configurations portrayed in Fig. 4.1, with the ordinate representing the cor-
responding values of f j (in black) and f ?j (in dashed-red), for j = 1, . . . ,λ. In case no fre-
quency is experimentally detected, a red cross is superimposed to the corresponding
modelled frequency. The FFTs of two experiments for each architecture are provided
in Fig. 4.3 and they will be commented in detail in the following Subsections. For each
experiment, the 15 curves corresponding to the x, y, and z coordinate of the 5 markers
are superimposed, so as to show the presence of roughly the same experimental nat-
ural frequencies in each signal; in addition, the modelled natural frequencies f1, . . . , fλ
are reported in a box and denoted by a black vertical line. Complete experiment data
can be found in App. C.1.

4.1.3.1 Results for the 4-Cable UACDPR

Experimental results for the 4-Cable UACDPR are shown in the left side of Fig. 4.2,
namely in Experiments 1 through 36. Results are satisfactory, with the largest rela-
tive estimation error being 5.15% in Exp. 29 and very low standard deviations, with a
maximum value of 0.08 Hz over a 2.91 Hz natural frequency (2.75%) in Exp. 35. In 6
experiments, one out of 2 frequency was not retrievable by data:

• Exp. 9 and 11 have practically coincident natural frequencies for each mode, thus
only one peak is distinguishable in their FFTs;

• in Exp. 19, 28, 29 and 36, the highest mode was not experimentally excited, thus
only one peak is present in their FFTs.

Figure 4.3a shows the best overall result for the 4-cable prototype, obtained in Exp.
18. Experimental frequencies are remarkably close to the modelled one, with a relative
estimation error of 0.11% and −0.09%. In addition, standard deviations on experimen-
tal frequencies are very small, with less than 0.005 Hz over 1.39 Hz (less than 0.4%) and
0.02 Hz over 1.94 Hz (1%). Figure 4.3b shows the worst overall result for the 4-cable pro-
totype, obtained in Exp. 29. Only one experimental frequency, the lowest, has clearly
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(a) Best overall result on 4-cable
UACDPR: Experiment 18

(b) Worst overall result on 4-cable
UACDPR: Experiment 29

(c) Best overall result on 3-cable
UACDPR: Experiment 39

(d) Experiment 40 for the 3-cable
UACDPR: additional FFT peaks

(e) Best results on 2-cable UACDPR:
Experiment 57

(f) Experiment 58 for the 2-cable
UACDPR: additional FFT peaks

Figure 4.3: Experimental results FFTs

noticeable FFT peaks, and thus could be reconstructed, with a 0.01 Hz standard devi-
ation over 1.85 Hz (0.5%). On the other hand, the relative estimation error with respect
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to the modelled value is 5.11%. These results can be attributed to a very limited os-
cillation amplitude, which is easily corrupted by unmodelled frictional effects. It was
impossible to achieve a larger oscillation amplitude because the configuration was at
the edge of the manipulator workspace.

4.1.3.2 Results for the 3-Cable UACDPR

Experimental results for the 3-Cable UACDPR are shown in the central part of Fig. 4.2,
namely in Experiments 37 through 47. Results are still very good, with a maximum
relative estimation error of 3% in Exp. 43 and low standard deviations, with a maximum
value of 0.07 Hz over a 3.09 Hz natural frequency (2.3%). In 5 experiments, one out of
3 frequencies was not retrievable by data:

• Exp. 44 and 47 have practically coincident natural frequencies for the first two
modes, thus only one peak is distinguishable in their FFTs;

• in Exp. 39, 44, and 45, the highest mode was not experimentally excited, thus
only two peaks are present in their FFTs.

Figure 4.3c shows Exp. 39 results, which are the best over-all for the 3-cable prototype.
Experimental frequencies are remarkably close to the modelled one, with a relative
estimation error of −1.76%, 0.24%, and −0.27%. In addition, standard deviations on
experimental frequencies are limited, with less than 0.005 Hz over 1.31 Hz (less than
0.4%), 0.02 Hz over 1.83 Hz (1.1%), and 0.05 Hz over 2.6 Hz (1.9%). Figure 4.3d shows
Exp. 40 results, which presents even better results than Exp. 39 in terms of experi-
mental frequency reconstruction, but also shows additional FFT peaks, one at roughly
0.08 Hz (circled in black) and another at roughly 2.73 Hz (circled in red). These un-
expected peaks can be probably attributed to one cable losing tension during experi-
ments, thus transitioning to a 2-cable architecture. In fact, this may explain both addi-
tional FFT peaks. On the one hand, an additional peak at a higher frequency may be an
additional natural oscillation frequency gained by the loss of a constraint; on the other,
the presence of a nearly zero frequency peak is compatible with a non-oscillatory mo-
tion from one equilibrium configuration (the one of the 2-cable robot) to another (the
one of the 3-cable robot) It should be noted that Exp. 40 was also conducted on the
edge of the 3-cable robot workspace. Unfortunately, due to limitations in the experi-
mental equipment, our assumption regarding the loss of tension in one cable cannot
be strictly proved.

4.1.3.3 Results for the 2-Cable UACDPR

Experimental results for the 2-Cable UACDPR are shown in the right side of Fig. 4.2,
namely in Experiments 48 through 60. Results are still satisfactory, with a maximum
relative estimation error of −2.46% in Exp. 58 and low standard deviations in frequency
determination, with a maximum value of 0.07 Hz over a 2.26 Hz natural frequency,
(3.1%). In 5 experiments, up to 2 out of 4 frequencies were not retrievable by data:

• Exp. 52 has practically coincident natural frequencies for the last two modes,
thus only one peak is distinguishable in their FFTs;

• in Exp. 54 and 58 the highest mode was not experimentally excited, thus only
three peaks are present in their FFTs;
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• in Exp. 59 and 60 the two highest mode were not experimentally excited, thus
only two peaks are present in their FFTs.

Figure 4.3e shows Exp. 57 results, which are the best overall for the 2-cable prototype.
Experimental frequencies are remarkably close to the modelled one, with a relative es-
timation error of 0.05%, −1.46%, 0.33%, and −1.31%. In addition, standard deviations
on experimental frequencies are limited, with less than 0.005 Hz over 0.55 Hz (less than
0.9%) and 0.9 Hz (less than 0.6%), 0.03 Hz over 1.98 Hz (1.5%), and 0.06 Hz over 2.31 Hz
(2.3%). Figure 4.3f shows Exp. 58 results, with only 3 modes detected, and additional
FFT peaks of limited amplitude, at roughly 1.6 Hz and 1.9 Hz (circled in black). These
small peaks cannot be attributed to the frequency resolution upscaling process, but
they are probably related to other low-frequency unmodelled effects, such as cables os-
cillating out of the pulley planes. Additional oscillatory phenomena are not addressed
in this paper and will be the object of future research. On the other hand, they have
negligible amplitude compared to the dominant first two modes at lower frequency.
Two other small peaks are noticeable around the 4th mode and circled in red.

4.1.3.4 Comments

All in all, experimental results show a remarkable adherence to the model, especially
considering the prototype nature of the robots used in the experiments (most struc-
tural components, except for the winches, are made of 3D-printed plastic). Moreover,
all frictional effects and additional oscillatory phenomena, such as cables oscillating
outside the pulley plane, were neglected in our model.

4.2 Inertial Parameter Identification

Classical dynamical parameters identification models aim at determining [72]:

• the mass of moving links, the position of their centers of mass and inertia matri-
ces w.r.t. to some body-fixed frames;

• inertia, friction coefficients, and drive current gains for actuators.

In fact, these parameters are needed in any computed-torque-based controller, which
are the mostly employed ones in robotic control in case robot speed and accelerations
are high. Several strategies have been proposed in the literature to identify robot dy-
namic parameters, and most of them present some common practical features [73]:

• a dynamic model that is linear in the inertial parameters is formulated, so that
parameters can be algebraically isolated;

• an over-determined linear system of equations is realized, by applying the dy-
namic model to a sufficient number of configurations along some trajectory of
the robot;

• inertial parameters are determined by using linear regression techniques.

On the theoretical side, additional considerations often lead to identification best
practices:
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• identifiability of inertial parameters can be investigated, so that non-identifiable
or non-essential ones are eliminated from the dynamic model [73]; in fact, when
a parameter is intrinsically not identifiable or non-essential, it has a minimal
influence on the dynamic model: by eliminating it, identifiable parameters are
estimated with higher precision and the dynamic model is simplified;

• robot trajectories for identification should be optimal with respect to some iden-
tifiability criterion, in order to increase the accuracy of the regression analysis;

• after parameters are identified, statistical error analysis tools should be employed
to draw conclusions on the experimental results: in case statistical errors are
large, experiments should be disregarded and re-performed.

Since most CDPRs employ control schemes which need to keep cable tensions un-
der control, it is no surprise that a growing number of studies include inertial pa-
rameter identification in their results. Most notably, standard [74, 75] or simplified
[76, 77] identification metodologies are applied to redundantly actuated CDPRs or sin-
gle winches [78]. A few studies also exist on identification of EE parameters in robotic
systems which are practically coincident to UACDPRs [79, 80], even though their tar-
get application is inertial-parameter measurements per-se. The authors of [79, 80] de-
veloped an instrumentation for the precise measurements of inertial parameters of a
suspended body; the instrumentation employs 3 or 4 fixed-length cables, attached to
the fixed frame and the mobile platform by universal joints. Thanks to this set-up,
encoders on the universal joints connecting the cables to the frame allow for the mea-
surement of cables angular position and ultimately for the estimation of the EE pose.
Additionally, an axial force sensor, embedded between each universal joint and each
cable, measures the cable tension: this measurement is fundamental for the employ-
ment of state-of-the-art identification methods. One of the most notable innovations
of [79, 80] is the use of free-motion as excitation trajectory for identification.

The need to identify dynamic parameters in an UACDPR is justified even if a feed-
forward control scheme of cable lengths is used. In fact, the computation of actuator
set-points relies on the evaluation of the evolution of robot free coordinates while fol-
lowing a trajectory of the controlled ones [45, 46]: the free coordinates are found by
numerically integrating the EE internal dynamics, which is influenced by the dynamic
parameters of the EE.

In this Section, the dynamic model linearity in the inertial parameter will be out-
lined. More specifically, it will be shown that:

1. classical identification models may present difficulties in their application to CD-
PRs, because of the specific design of the actuators of this class of manipulators;

2. the internal dynamics of the EE can be used to derive a novel formulation of the
identification problem, which is particularly suitable for UACDPRs; the internal
dynamics does not depend on the EE mass, but only on the EE center-of-mass
location and its specific inertia matrix (that is, its inertia matrix divided by the EE
mass), and it is linear in these parameters;

3. identification of EE center-of-mass location and its specific inertia matrix can
be performed without recurring to any force or torque measurement and only
requires to directly measure or estimate λ EE coordinates, the free ones.
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Dynamic parameters will be calculated as the Total Least Square solution of an over-
determined system of equations generated from the application of the internal dynam-
ics over a sampled free-motion trajectory. Moreover, optimal free-motion trajectory
generation will be investigated and, finally, experimental results on a 4-cable proto-
type will be discussed.

4.2.1 Internal-dynamics and identification model

The identification of EE dynamical parameters starts from the rearrangement of EE
dynamic equations, so that a linear equation in these parameters is formulated. To
this end, we restrict our analysis to an EE which is acted upon by gravity only (φ= mg,
e = s, µ= 03×1), thus Eq. (2.63) may be rewritten as:[

m(p̈−g)−ms̃′α−mω̃s̃′ω
IPα+ ω̃IPω+ms̃′(p̈−g)

]
=−Ξlτ (4.23)

The left-hand side of Eq. (4.23) can be algebraically manipulated in order to isolate
the EE dynamic parameters. First, the vector product rule a×b =−b×a is applied, so
that: [

m(p̈−g)+m (α̃+ ω̃ω̃)s′

IPα+ ω̃IPω−m( ˜̈p− g̃)s′
]
=−Ξlτ (4.24)

Then, we consider that s′ = R P s′, and IP = R P IP RT , where P s′ and P IP are constant:[
m(p̈−g)+m (α̃+ ω̃ω̃)R P s′

R P IP RTα+ ω̃R P IP RTω−m( ˜̈p− g̃)R P s′
]
=−Ξlτ (4.25)

If we consider the following identity in the product of a generic symmetric matrix S and
a vector v :

Sv = v̄S̆ (4.26)

where:

S =
Sxx Sx y Sxz

Sx y Sy y Sy z

Sxz Sy z Szz

 v =
vx

vy

vz

 (4.27)

v̄ =
vx 0 0 vy vz 0

0 vy 0 vx 0 vz

0 0 vz 0 vx vy

 S̆ = [
Sxx Sy y Szz Sx y Sxz Sy z

]T
(4.28)

equation (4.25) can be rewritten as:[
m(p̈−g)+m (α̃+ ω̃ω̃)R P s′

(R Pα+ ω̃R Pω) ˘P IP −m( ˜̈p− g̃)R P s′

]
=−Ξlτ (4.29)

where Pα = RTα and Pω = RTω are the angular acceleration and velocity vectors ex-
pressed in the moving frame.

Finally, the EE dynamics can be expressed as a linear equation in the EE dynamic
parameters m, m P s′, and ˘P IP as:

WEE (ζ, ζ̇, ζ̈)XEE =−Ξl (ζ)τ (4.30)
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where:

WEE =
[

(p̈−g) (α̃+ ω̃ω̃)R 03×6s

03×1 −( ˜̈p− g̃)R (R Pα+ ω̃R Pω)

]
, XEE =

 m
m P s′

˘P IP

 (4.31)

If the EE motion and cable tensions can be measured or estimated, for example by
means of an external photogrammetry system such as the one described in Sec. 4.1.3
or direct kinematics, and force sensors embedded in the cable transmission, the appli-
cation of Eq. (4.30) over a trajectory which is sampled in ns configurations leads to the
definition of an over-determined system of 6ns equations in 10 unknowns, which can
be solved for XEE and analyzed with the tools of linear regression. It should be noted
that, in general, the EE pose and its derivatives cannot be inferred by means of direct
kinematics only, and additional sensors must be employed if a pose measuring device
is to be avoided. As an example, encoders on swivel axes could be employed [44], but
their efficacy for pose reconstruction has not been tested in dynamical applications.

On the other hand, in case force sensors are employed, cable tensions are com-
monly linearly proportional to force sensor currents ιτ,i , namely:

τi = γτ,i ιτ,i (4.32)

where γτ,i is a (possibly) unknown sensor gain. Thus, EE parameters and force sensor
gains may be determined according to the extended identification model:

W′
EE X′

EE = 06×1 (4.33)

where:

W′
EE = [

WEE Ξτ
]

X′
EE =

[
XEE

γτ

]
(4.34)

and:
γτ =

[
γτ,1 . . . γτ,n

]T
, Ξτ =

[
ξ1ιτ,1 . . . ξnιτ,n

]
(4.35)

Even though identification through Eqs. (4.30) and (4.33) is theoretically feasible, there
are two main drawbacks in their use:

• force sensors are not particularly accurate in predicting cable tensions, if a sim-
ple model such as the one just described is employed, since their readings are
disturbed by several factors, the most important of which is friction in the cable
transmission;

• if force sensors are not used for manipulator control, embedding accurate force
sensor in the CDPR is ultimately costly, because they cannot be removed without
altering the CDPR mechanical model.

A possible solution to this problem is to avoid force sensors, and model winch dy-
namics so as to correlate cable tensions and motor torques, which are readily available
data in any servo-drive. As any single-DoF mechanical transmission, the i-th winch
can be modelled by a single differential equation:

Im,i θ̈m,i + cm,i θ̇m,i = Tm,i −Tτ,i (4.36)

where θm,i is the motor angle, Im,i and cm,i are the total inertia and viscous friction
coefficient of the transmission reduced to the motor, respectively, Tm,i is the motor
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torque, and Tτ,i is the resistant torque produced by the i-th cable on the motor. Note
that viscous friction is a common but rather simplified assumption of the real power
dissipation in the mechanical transmission, but it works well in practice at medium to
high motor speed. By neglecting the friction on pulley bearing2 (cm is indeed produced
by several other friction sources in the winch), and recalling that cables are modelled as
non-extensible, we may introduce the winch-cable transmission ratio ηi , thus having:

Tτ,i = τi /ηi (4.37)

In addition, in case a standard servo-motor is used to drive winch mechanics, its torque
is usually proportional to a drive gain γm,i and to drive electrical current ιm,i :

Tm,i = γm,i ιm,i (4.38)

Thus, substituting Eqs. (4.37) and (4.38) in Eq. (4.36) one gets:

Im,i θ̈m,i + cm,i θ̇m,i = γm,i ιm,i −τi /ηi (4.39)

and, upon multiplying both sides by the constant and non-zero ηi :

Iη,i θ̈m,i + cη,i θ̇m,i = γη,i ιm,i −τi (4.40)

where:
Iη,i = Im,iηi , cη,i = cm,iηi , γη,i = γm,iηi (4.41)

Motor angle θm,i and current ιm,i are available measurements in servo-controlled ap-
plications, thus they can be used for identification purposes. Finally, τi linearly depend
on winch parameters Iη,i , cη,i , γη,i :

Wη,i Xη,i =−τi (4.42)

where:
Wη,i =

[
θ̈m,i θ̇m,i −ιi

]
, Xη,i =

[
Iη,i cη,i γη,i

]T
(4.43)

The complete identification model for each winch is readily obtained by considering
the n decoupled winch dynamic equations:

WηXη =−τ (4.44)

where:

Wη =


Wη,1 01×3 . . . 01×3

01×3 Wη,2 . . . 01×3
...

...
. . .

...
01×3 . . . 01×3 Wη,n

 , Xη =


Xη,1

Xη,2
...

Xη,n

 (4.45)

In the end, Eq. (4.44) can be substituted in Eq. (4.30), yielding:

WEE XEE −Ξl WηXη = 06×1 (4.46)

namely:
WmXm = 06×1 (4.47)

2The inclusion of such effects, which are fairly limited, would make the model non-linear.
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where:

Wm = [
WEE −Ξl Wη

]
, Xm = [

XT
EE XT

η

]T
(4.48)

Equation (4.47) is commonly employed for identification purposes [72], since it uses
standard embedded sensors, such as encoders on motor axes and drive current mea-
surements, as well as a pose measuring device or algorithm: thanks to these measured
quantities (and their numerical differentiation) matrix Wm may be known at any time.
The main drawbacks in the use of Eq. (4.47) for CDPR parameter identification are
related to winch dynamics:

• common winch design [12, 81] include multiple rototranslating elements, which
represent severe sources of friction: experiments in our laboratory showed that
this contribution may represent up to 70% of the torque produced by the actua-
tor, even at low speed;

• high friction is a serious problem in identification because of its unpredictable
nature; the transition between static and kinematic friction adds high frequency
effects to motor current signals, which needs to be carefully filtered; moreover,
the linear model outlined in this section is only valid at high motor speed, a con-
dition which effectively limits identification trajectories.

Thus, an alternative formulation of the identification model is hereby proposed, which
aims at determining EE dynamic parameters only, thus avoiding to measure cable ten-
sions (resp. force sensor currents) and motor torques (resp. drive currents). We start by

observing that if Eq. (4.30) is pre-multiplied by Ξ⊥T

l , the right-hand side of Eq. (4.30)
vanishes:

Ξ⊥T

l WEE XEE = 0λ×1 (4.49)

Identification equations are fewer in Eq. (4.49), λ, than in Eq. (4.30), n, thus the iden-
tification trajectory should be sampled in more points n′

s > ns , but no force or torque
measurement is now required. In addition, since the internal dynamics is linear in XEE

and homogeneous, its validity is not impacted by the multiplication or division by a
non-zero scalar. Thus, we can deduce that the EE internal dynamics is not influenced
by the EE mass, and we can divide Eq. (4.49) by m:

W′
EE X′

EE = 0λ×1 (4.50)

where:

W′
EE =Ξ⊥T

l WEE , X′
EE =

 1
P s′
˘P I′P

 , ˘P I′P = ˘P IP /m (4.51)

It should be noted that in case the EE mass is needed, it can be inferred by detach-
ing the EE and by weighting it. In case the detachment of the platform is not possible,
an alternative solution could be to add a known payload of mass ∆m to the EE in a
known location (P p′

L is the position vector of the payload center of mass in the moving
frame) and identify the new EE with additional payload. If the total center of mass of
the EE with the additional payload is denoted by P s′L , the definition of center of mass
gives:

(m +∆m) P s′L = m P s′+∆mP p′
L (4.52)
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and the EE mass m can be determined from:

m( P s′L − P s′) =∆m(P p′
L − P s′L) (4.53)

The knowledge of the standard deviations associated with the identified P s′L and P s′

could provide a weighting strategy for the solution of the over-determined system of
equations given in Eq. (4.53).

Equation (4.50) is valid in general for UACDPRs, but it can be further specialized in
order to simplify experimental identification. In fact, in case the EE exciting trajectory is
a free-motion one, the expression of ζ and its derivatives, which are needed in order to
compute the elements of W′

EE , depends only on the constant value of the cable lengths,
l0, and on the λ free coordinates of the EE ζ f (and its derivatives).

4.2.2 Total least square identification

Equation (4.50) is applied to n′
s configurations deriving from one or more free-motion

trajectories. Usually, the n′
s samples are obtained by over-sampling EE free coordinates

at high frequency, then by band-pass filtering them, and finally by decimating them.
This results in the over-determined system of equations:

WX = 0λn′
s×1, W =


W′

EE ,1
...

W′
EE ,n′

s

 (4.54)

where matrix W ∈ IRλn′
s×10 and vector X = X′

EE ∈ IR10×1. There are two primary source
of errors which are not considered in the ideal Eq. (4.54): model errors, and also mea-
surement errors. Indeed, Eq. (4.54) has two principal sources of measurement errors,
which are the numerical differentiation for velocity and acceleration determination,
and the strong dependence on kinematic parameters, since matrix Ξ⊥

l is employed.
Model errors are accounted for by considering that the right-hand side of Eq. (4.54)
is not a zero vector, but an error vector ε ∈ IRλn′

s×1, while measurement errors affects
matrix W, which can be more realistically modelled as W+∆W:

(W+∆W)X = ε (4.55)

The Total Least Square (TLS) [82] solution of Eq. (4.55) is therefore considered. This
technique allows to compute X while also minimizing ∆W and ε. According to the TLS
technique, the real system (W+∆W)X = ε is changed to its closest compatible system
of the form:

ŴX̂ = 0λn′
s×1 (4.56)

where rank(Ŵ) = 9 < 10 = rank(W), and it is closest to W with respect to the Frobenius
norm, i.e. Ŵ minimizes the Frobenius norm ‖Ŵ−W‖F . Accordingly, X̂ is the solution
of Eq. (4.56) and the TLS solution of Eq. (4.55).

Ŵ can be straightforwardly computed by performing the Singular Value Decompo-
sition (SVD) of W:

W = U
[

S
0(λn′

s−10)×10

]
VT (4.57)
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where U and V are, respectively, (λn′
s ×λn′

s) and 10×10 orthonormal matrices, and S is
the (10×10) diagonal matrices of W singular values (which we assume to be sorted in
decreasing order). Then, Ŵ is calculated as [82]:

Ŵ = W− s10U10VT
10 (4.58)

where s10 is the smallest singular value of W, and U10 and VT
10 are the 10-th column of

U and V, respectively. Then, the TLS solution of Eq. (4.54) is given by:

X = V10 (4.59)

where X is normalized so as to have 1 in its first element, according to Eq. (4.50).

Standard deviations σXi , with i = 2, . . . ,10, on the dynamic parameters are esti-
mated assuming that errors in the identification matrix W are independent and iden-
tically distributed with zero mean and common covariance σ2

W [73]. An unbiased esti-
mator of the standard deviation σW is given by [82]:

σW = s10√
λn′

s −10
(4.60)

and the covariance matrix of the TLS solution error is approximated by:

CX =σ2
W

(
1+‖X2:10‖2

2

)(
Ŵ

T
2:10Ŵ2:10

)−1
(4.61)

with X2:10 contains every element of X except the first one, and Ŵ2:10 contains all the
columns of Ŵ except the first one. Finally, standard deviations on the dynamic param-
eters are given by:

σXi =
√

CX (i , i ), i = 2, . . . ,10 (4.62)

where CX (i , i ) is the i-th diagonal term of CX , and its relative value with respect to the
identified parameter is:

σ%Xi = 100σXi /‖Xi‖ (4.63)

If the value of σ%Xi is lower than 5%, the corresponding parameter is commonly
considered to be well identified [73]. There are mainly 2 scenarios in which the values
of σ%Xi may be large, which require different additional steps:

• in case the parameter Xi is near zero, σ%Xi could naturally be very large: this
kind of parameters are called non-essentials and can be removed from the dy-
namic model because their influence is very limited; by removing them from
vector X and the corresponding column from matrix W, the TLS analysis can be
re-performed with possibly higher-accuracy results;

• in case the parameter Xi is not near zero, it means something went wrong during
experiments, or the parameters are non-identifiable: in the former case, exper-
iments should be re-performed, whereas the latter case requires different mod-
elling strategy and experiments.
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4.2.3 Optimal free-motion excitation

The problem of generating optimal exciting motion was extensively studied [83], and
it commonly aims at determining robot actuator motion laws by the constrained non-
linear optimization of some cost function correlated with the identification problem
[84]. Thus, experiment design focuses on two aspects: how to excite the system, and
what to optimize.

Actuator motion laws may be parametric polynomials [83], B-splines [85], sinu-
soidal [86] or other functions, so that the parameters upon which they depend can be
determined as the solution of the optimal excitation problem. Depending on the ma-
nipulator under study, the choice of a type of trajectory may have specific advantages.
For example, if the joints of a serial manipulator are excited by sinusoidal motion laws,
small control errors on joint angles may introduce noise in joint speed and accelera-
tion. Since the nominal trajectory is periodic and band-limited, it is quite easy to de-
sign a post-processing filter aiming at removing undesired noise from speed and accel-
eration signals, which are needed for identification [86]. In our case, we chose to apply
the exiting motion not to actuators, but to free-coordinates: the optimal identification
results reported in [79] demonstrated this approach to be both feasible and effective for
UACDPRs. This motion is naturally sinusoidal if the amplitude is limited. Indeed, Sec.
4.1.3 analyzed EE small-amplitude free motion about equilibrium configurations, and
experimentally verified that its sinusoidal approximation (c.f. Eq. (4.13) through Eq.
(4.16)) is true in practice. Thus the EE small-amplitude free-motion has the same ben-
efits as actuator sinusoidal excitation, i.e. ease of filtering. Thus, EE small-amplitude
free-motion is chosen as exciting trajectory.

In the following, EE small-amplitude free motion is characterized in more details.
Each mode j of the free coordinates has the form:

∆ζ f 0, j (t ) =γ j eΛ j t (4.64)

Since only stable equilibrium configurations are chosen as configurations about whom
the EE oscillates in free motion, the eigenvalues determined by solving Eq. (4.14) are
real negative number. This means that:

Λ j =±
√
−‖Λ2

j‖ =±i 2π f j (4.65)

with i being the imaginary unit. Since both solutions ±i 2π f j correspond to the same
eigenvector γ j , the general response of each mode is:

∆ζ f 0, j (t ) = A jγ j cos(2π f j t −ϕ j ) (4.66)

with A j and ϕ j being oscillation amplitude and phase, to be determined according to
free-motion initial conditions. The total free-motion response of the EE is thus:

∆ζ f 0(t ) =
λ∑

j=1
A jγ j cos(2π f j t −ϕ j ) (4.67)

In the end, we may conclude that the parameters to be optimized for a free-motion
excitation are A j , γ j , f j and ϕ j , for j = 1, . . . ,λ. On the other hand, these parameters
cannot be physically selected during experiment, since they depend on other physical
quantities, which are to be optimized on their behalf. More specifically, these parame-
ters depend on:
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• UACDPR cable lengths, whose fixed value allows the equilibrium configuration,
and consequently γ j and f j , to be determined;

• initial displacement and velocity of the free coordinates, which are the initial
conditions of the free-motion internal dynamics, and allow A j andϕ j to be com-
puted.

The total number of parameters to be determined is thus n+2λ, that is, n cable lengths
l0 and 2λ free-motion initial conditions∆ζ f 0(0) and∆ζ̇ f 0(0). In order to simplify he ex-

periment design, ∆ζ̇ f 0(0) can be chosen to be the zero vector3, which means to assign
a non-zero initial velocity to the EE free-motion. Accordingly, the EE should be dis-
placed w.r.t. its equilibrium configuration, kept still to make its velocity vanish, and
then left to oscillate. In addition, it should be noted that the oscillation about a single
equilibrium configuration is unlikely to result in a satisfactory identification, since the
resulting identification matrix would be biased: therefore, a better option is to let EE
oscillate about ne different equilibria, so that the optimal excitation algorithm should
determine l0,k and∆ζ f 0,k (0) (k = 1, . . . ,ne ), for a total of ne (n+λ) parameters. Note that,
in case an equal number of samples per equilibria ne

s , the total number of samples per
identification would be n′

s = ne
s ne .

The cost function to be minimized in order to determine optimal excitation param-
eters is always correlated to two main factors:

• the elements of the covariance matrix in Eq. (4.61) should be small: the smaller
its elements, the higher is the accuracy of the identification [87];

• the numerical solution of the identification problem, that is, the SVD decompo-
sition of W, should be stable: slight changes in the excitation trajectory should
not negatively affect the identification problem solution [88].

Practically, both of these issues are tackled by minimizing:

C = s1

s9
+ 1

s9
= s1 +1

s9
(4.68)

Since s1 and s9 are the largest and smallest non-zero singular value of Ŵ, minimiz-
ing s1/s9 amounts at requiring that the condition number of Ŵ is minimum4. Since
the aforementioned ratio could be minimum for small or large singular values alike,
the additional minimization of 1/s9 amount at requiring the singular values to be as

large as possible. In fact, the magnitude of matrix
(
Ŵ

T
2:10Ŵ2:10

)−1
elements depends on

the inverse of the singular values [88]. Thus, we propose the non-linear optimization
problem: [

l0,1, . . . , l0,ne ,∆ζ f 0,1(0), . . . ,∆ζ f 0,ne
(0)

]= argmin(C ) (4.69)

subject to: 
τi (t ) ≤ τM , ∀i , t

τi (t ) ≥ τm , ∀i , t

−∆ζ f L ≤∆ζ f 0(t ) ≤∆ζ f L , ∀t

(4.70)

3This implies ϕ j = 0, for every j .
4Note that the minimum value of the condition number is 1 [49]
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where τi is the i-th cable tension, τm and τM are minimum and maximum cable ten-
sion limits, and ∆ζ f L is an upper limit for the oscillation of the free coordinates. These
constraints essentially require the trajectory to be (dynamically) wrench-feasible and
oscillations to have limited amplitude. The theoretical absolute minimum value of the
cost function is 1: this information is useful because it allows us to determine how close
to theoretical optimality a real experiment is. A value of C < 100 is typically considered
good in practice, and C < 10 is optimal [83, 89].

A last remark is about computation. The elements of W require the computation
of the EE pose: since oscillations are constrained to be small and we verified that the
linearized model of Sec. 4.1.3 work well in practice, the EE pose can be determined,
about any equilibrium configuration, as:

ζ(t ) = ζ0 +∆ζ(t ) (4.71)

where∆ζ(t ) = J⊥l ,0∆ζ f 0(t ), J⊥l ,0 is calculated in the equilibrium configuration, and∆ζ f 0(t )
is as in Eq. (4.67). In this way, the numerical integration of the free-motion internal dy-
namics is avoided and computation is sped up. In addition, the computation of τi (t )
can similarly be carried out as:

τ(t ) =τ0 +∆τ0(t ) (4.72)

where τ0 is the tension vector value at equilibrium, calculated as in Eq. (2.84), and
∆τ0(t ) may be computed by linearizing Eq. (2.81) about the equilibrium configuration
(see App. A.10 for the derivation):

∆τ0(t ) = M∥
f 0∆ζ̈ f 0(t )+K∥

f 0∆ζ f 0(t ) (4.73)

where the subscript 0 denotes that matrices are constant and evaluated in the equilib-
rium configuration under consideration and:

M∥
f =−Ξ∥T

l MΞ⊥
l , K∥

f =−Ξ∥T

l [(K+Q)D−F]J⊥l (4.74)

4.2.4 Optimal excitation computation

The methodology proposed in this section was applied for the determination of the
inertial parameters of a 4-cable 6-DoF UACDPR prototype of the University of Bologna,
whose geometrical properties are defined in Section 2.1 and summarized in Table B.1
in App. B.1. The only external load applied to the robot EE was gravity, thus e′ = s′,
φ=−mg k and µ= 03×1.

The x and y coordinates of the EE reference point were chosen as UACDPR free
coordinates. This choice aims at minimizing experimental effort, thus cost and com-
plexity: these coordinates are straightforwardly recorded by an external measurement
system, if a marker is placed on the reference point. Orientation measurements would
require additional markers mounted on the platform and a mathematical model aim-
ing at extracting orientation information from the relative position of points. Tension
and oscillation limits were set to τm = 20N, τM = 200N and ∆ζ f L = [0.1,0.1]T m. The
trajectory optimization problem in Eq. (4.69) was solved considering nominal dynamic
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Table 4.1: Optimized cable lengths (in [m])

k 1 2 3 4 5 6 7 8 9 10 11 12

l1 1.66 1.32 1.30 1.52 1.11 1.38 1.19 1.16 1.46 1.43 1.35 1.52

l2 1.86 1.58 1.26 1.26 1.68 1.39 1.15 1.17 1.16 1.37 1.45 1.12

l3 1.68 1.99 1.57 1.27 2.19 1.36 1.65 1.63 1.24 1.27 1.42 1.17

l4 1.41 1.76 1.56 1.50 1.72 1.32 1.65 1.59 1.50 1.30 1.28 1.54

Table 4.2: Optimized free coordinate displacements ∆ζ f 0(0) (in [mm])

k 1 2 3 4 5 6 7 8 9 10 11 12

x 5.01 4.34 39.3 76.0 4.22 25.3 1.97 24.9 43.8 47.0 2.37 96.9

y 2.21 7.11 17.6 14.4 7.95 16.6 10.9 9.70 17.4 1.51 11.7 99.7

parameters estimated by CAD)

P s′ =
 0

0
0.19

 m, ˘P I′P =



0.051
0.069
0.037

0
0
0

 Kg ·m2 (4.75)

Since Eq.(4.69) is nonlinear and its gradient is not readily available, it was solved
numerically by using fmincon MATLAB function, which employs an interior-point al-
gorithm [90] and numerically estimates cost function gradient. Additionally, a multi-
start algorithm was employed in order to automatically provide 100 randomly selected
initial guesses for l0,k and∆ζ f 0,k (0), with k = 1, . . . ,ne . Note that the numerical solution
of the optimization problem requires also to chose the number of equilibrium configu-
ration, ne , and the number of samples per equilibrium, ne

s . They were tuned to ne = 12
and ne

s = 100 for optimal results, as discussed below.
The cost function was optimized to C = 5.94, resulting in cable lengths as in Tab. 4.1

and free coordinate displacements as in Tab. 4.2. This results is certainly good enough
w.r.t. identification best practices [83, 89].

It should be noted that the multistart algorithm provided a large number of local
minima with a cost function value C < 10 (the multistart optimization was run several
times for robustness, with negligible variations in results), showing that:

• optimization results are very limitedly influenced by the choice of equilibria upon
which the EE oscillate: every time the optimization was solved, different optimal
values for cable lengths and initial free coordinate displacements were found,
most of which resulted in a cost function value C < 10;

• the different equilibrium configurations about which the platform oscillates are
randomly positioned in the robot wrench-feasible reachable workspace: this fact
in probably related to a low bias typically induced by randomness;

• minimal value of C are found for large free-coordinate oscillations: their maxi-
mum values are such that cable tension values meet their limits for some t .
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Therefore, randomly selecting UACDPR equilibrium configurations and letting the plat-
form oscillate without cables loosing tension is expected to provide optimal identifi-
cation results, since the values of parameters resulting in a cost function C < 10 are
equally optimal in practice.

On the other hand, the number of different equilibria ne upon which the EE should
oscillate, and the number of samples per equilibria ne

s , appear to have far a larger influ-
ence on the cost function minimal value. Simulations showed that a number of equi-
libria between 8 and 16, and a number of samples per equilibria ne

s between 50 and
150, performed satisfactorily, resulting in C < 50. ne = 12 and ne

s = 100 were thus cho-
sen because they provided C < 10 in simulations most of the times. This values were
not chosen by performing a rigorous analysis, which is left as a future study.

4.2.5 Identification experiments and results

Experiments were performed in order to validate the proposed strategy for identifica-
tion of UACDPR dynamic parameters. Based on the results of the previous Section,
experimental analysis was conducted on randomly selected configurations. The plat-
form was displaced in 12 random equilibrium configurations inside the robot wrench-
feasible reachable workspace. Then, actuators were controlled to hold their angu-
lar positions so that cable lengths could not change: encoder angular positions were
recorded so as to determine the experimental value of the cable lengths l?0 , and motor
torques were checked to ensure that their values were compatible with cables being
taut.

The EE was then manually slightly displaced with respect to its equilibrium con-
figuration, and released next. The positions of the optical marker placed onto the EE
reference point was tracked by 8 cameras of a VICON Motion Capture System (mea-
surement accuracy was ±0.2 mm for each marker’s Cartesian component, at a 100 Hz
sampling rate) for a total duration of 10 s for each experiment, thus acquiring 1001
samples per marker coordinate. Marker position initial value before oscillations were
regarded as the equilibrium position of the EE.

These recorded coordinates were then filtered by using a zero-phase finite-impulse
response low-pass digital filter with a stop-band frequency of 10 Hz. Then, signals
were numerically differentiated in order to obtain the linear velocity and acceleration
of the reference point, and ultimately decimated in order to obtain 100 samples per
experiment. The total number or samples were thus n′

s = 1200.
The x and y coordinates of the marker were selected as EE free coordinates ζ f .

Accordingly, the experimental value of the controlled coordinates ζ?c were determined,
for all t , as the numerical solution of the non-linear problem defined by:

l1(ζ?f ,ζc )− l?1,0 = 0
...

ln(ζ?f ,ζc )− l?n,0 = 0

(4.76)

where li (ζ f ,ζc ) is calculated as in Eq. (2.15), ζ?f contains the measured free coordi-

nates, and l?i ,0 is the measured i-th cable length. Then, the EE twist and its time deriva-
tive were determined as (cf. Eqs. (2.52) and (2.59)):

v =Ξ⊥
l ζ̇ f , v̇ = Ξ̇⊥

l ζ̇ f +Ξ⊥
l ζ̈ f (4.77)
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Finally, by collecting all experiment data, the TLS solution of the identification
problem in Eq. (4.54) was obtained as:

X =

 1
P s′
˘P I′P

=



1
0.002

−0.0025
0.1984
0.0569
0.0627
0.0314
2e −4
−2e −4
1.6e −4


, σ%X =



0
4.32
3.09
0.15
0.64
0.31
1.76
80.5
99.4
136


, σW = 0.536, C = 8.36 (4.78)

Additional experiments were conducted by measuring the full EE pose during free
motion, by means of additional markers mounted onto the platform. Thus, the use of
Eqs. (4.76) and (4.77) was avoided, since pose data were complete, and the EE twist
and its derivatives could be obtained by numerically differentiating the pose. The TLS
solution of the identification problem in Eq. (4.54) corresponding to these data was
obtained as:

X f ul l =



1
0.0016
−0.0025

0.2
0.0563
0.0627
0.0322

4.8e −5
−2.5e −4
3.4e −4


, σ%X , f ul l =



0
2.43
0.92
0.05
0.14
0.16
0.46
107
−22
23


, σW = 0.552, C = 10.26 (4.79)

Both experiments show cost function values very close to the absolute minimum,
thus both of them provide optimal results. The relative deviation of practically non-
zero parameters are well below the 5% threshold for acceptability. The only parame-
ters estimated with very high relative standard deviations are the off-diagonal elements
of the inertia matrix, which have indeed very low magnitude. These parameters were
then disregarded according to identification best practice, since they are non-essential.
The identification problems were then modified by removing the column of W corre-
sponding to these parameters, but the value of previously well-identified parameters,
as well as their relative standard deviations, changed negligibly.

By comparing the identification results of experiments with partial and full pose
measurements, the following can be noticed:

• first, the accuracy of the results did not practically change: the same parameters
are well identified with relative standard deviations below 5%;

• second, the values of most parameters in X f ul l and X are comparable; if we com-
pute the percentage relative error between X f ul l and X as:

∆Xi ,% = 100

∥∥∥∥ Xi , f ul l −Xi

Xi

∥∥∥∥% (4.80)
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Figure 4.4: Internal dynamics standard deviation in cross-validating experiments

and we compare them with σ%X :

σ%X =



0
4.32
3.09
0.15
0.64
0.31
1.76
80.5
99.4
136


, ∆X% =



0
21.14
0.01
0.76
1.11
0.04
2.77

76.53
22.18

109.66


(4.81)

we can conclude that the two results are equivalent in practice, since the relative
errors between X f ul l and X are of the same order of magnitude of X standard
deviations. The only parameter which is relatively different by comparison is the
x coordinate of the center of mass. On the other hand, the absolute difference
of these components is 0.4mm, which is negligible in practice of an EE whose
dimension is of the decimeter order.

In order to assess whether identification results are generally valid, 22 cross-validation
free-motion experiments were conducted in random configurations (different from the
ones used for identification), and the EE full pose was measured. Model error ε= WX
was calculated for each experiment, with matrix W computed according to the mea-
sured data and X as in Eq. (4.78), and internal dynamics standard deviation σ⊥ was
calculated as:

σ⊥ =
√
εTε

ncv
(4.82)

with ncv being the number of samples in the cross-validation experiments, ncv = 1001.
The values of σ⊥ for the cross-validation experiments are reported in Fig. 4.4. The
order of magnitude σ⊥ for each experiment is near the one of σW in Eq. (4.78) (only
one experiment has σ⊥ >σW ), thus identification results are validated.

We can conclude that the identification method proposed is both theoretically and
practically effective in determining EE dynamic parameters with low errors. In the fu-
ture, we will consider different optimal excitation strategies that can be fully automatic
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and do not require manual intervention. Additionally, the external measuring device
will be substituted with a pose estimation strategy which employs low-cost proprio-
ceptive sensors.

4.3 Initial Cable Length Estimation

A major issue in the practical use of underactuated CDPRs is the estimation of the EE
initial-pose. When the machine is switched on in a generic start-up condition, the
EE pose is generally unknown, but its knowledge is fundamental for any subsequent
operation. In order to directly measure the EE pose, external measurement devices
such as laser trackers [91] or high-resolution cameras [92] can be employed. On the
other hand, an indirect estimation of the pose can be performed by measuring some
of the robot’s internal joint variables, followed by the solution of the direct kinematic
problem [93, 94]. When this approach is used for pose estimation in start-up condi-
tions, the solution to this problem is sometimes referred to as self-calibration [95] or
internal-calibration [96] of the EE initial-pose.

In [95], a self-calibration procedure for initial-pose estimation of a 2-DoF 4-cable
over-constrained robot is proposed, which is based on cable tension and length incre-
ment measurements. The proposed method relies on the over-constrained nature of
the robot. In [97] a two-stage calibration procedure for generic over-constrained CD-
PRs is introduced, aiming at both optimizing robot static parameters and determining
the initial-pose of the EE. Ref. [96] shows how to perform initial-pose estimation by
means of a manual self-calibration procedure for over-constrained robots, only rely-
ing on cable length increment measurements.

This Section extends the method introduced in [96] by proposing an automatic pro-
cedure to estimate the initial-pose of a generic suspended underactuated CDPR, e.g. a
6-DoF CDPR actuated by n < 6 cables, that only relies on incremental measurements of
cable lengths and orientations. An automatic data acquisition procedure is exploited
in order to reliably and autonomously collect the information required for estimation
purposes.

The initial-pose estimation is formulated as a non-linear least square optimization
problem (NLLS), which aims at minimizing the error of an extended forward geometrico-
static problem including swivel angles constraints. The problem tentative solution is
generated automatically according to a data acquisition algorithm. In Section 4.3.1, the
extended forward geometrico-static model of an underactuated CDPR which includes
swivel pulley angles measurement is developed. In Sections 4.3.2 and 4.3.3, the NLLS
optimization problem is formulated and the data acquisition algorithm employed for
its solution is discussed. Finally, simulation and experiments are presented.5

4.3.1 Extended forward geometrico-static problem

The aim of the forward geometrico-static problem, as analyzed in Sec. 2.4.1, is to de-
termine the EE pose, once the value of a suitable set of the robot’s internal joint vari-
ables is known. In the case that only cable length measurements are available, the
problem can be formulated as in Eq. (2.86), resulting in a completely determined sys-
tem of nonlinear equations, which thus can be numerically solved by using nonlinear

5The content of this Section was published in [44].
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solvers. Alternatively, if redundant measurements are available, one can (possibly) ne-
glect the static constraint equations and replace them with additional kinematic con-
straint equations that are explicitly dependent on the measured variables [93]. This
approach leads to a system of equations that, depending on the number and the type
of redundant measurements, can be completely determined or overdetermined (the
system is never underdetermined, because static equilibrium constraints can always
be accounted for).

In this Section, we assume that both cable lengths and swivel pulley angles can
be measured. We thus formulate an extended forward geometrico-static problem by
considering both 2n kinematic constraints, derived from Eqs. (2.6) and (2.15), and the
6 −n equations deriving from the static constraint of Eq. (2.83), thus leading to an
overdetermined system of 6+n equations in 6 unknowns ζ. By letting:

F1(ζ) =

σ1(ζ)−σ1
?

...
σn(ζ)−σn

?

 , F2(ζ) =

 l1(ζ)− l1
?

...
ln(ζ)− ln

?

 , F3(ζ) = f⊥(ζ) (4.83)

where li (ζ) and σi (ζ) are calculated as in Eq. (2.15) and (2.6), respectively, and li
? and

σi
? are the measured length of the i-th cable and swivel angle of the i-th pulley. The

extended forward geometrico-static problem in then formulated as:

F(ζ) =
F1(ζ)

F2(ζ)
F3(ζ)

= 06+n (4.84)

Equation (4.84) admits a fairly simple analytical formulation of its first-order differen-
tiation„ as described in Section 4.3.2, which is needed for the solution rapid computa-
tion.

4.3.2 Initial-pose estimation problem

In this section, the initial-pose estimation problem will be formulated by extending the
work presented in [96]. If the underactuated CDPR is equipped with incremental mea-
surement devices on motors and swivel axes, i.e. incremental encoders, cable lengths
and swivel angles at a generic pose ζi can be measured relatively to their initial values
σ0

i and l 0
i at pose ζ0, namely:

σ?i =σ0
i +∆σ?i (4.85)

l?i = l 0
i +∆l?i (4.86)

While ∆σ?i and ∆l?i are measures provided by the encoders, σ0
i and l 0

i are generally
unknown and are the objective of the self-calibration procedure. The extended forward
geometrico-static problem in Eq. (4.84) can thus be expressed as:

F(σ0, l0,ζ) = 06+n (4.87)

where σ0 = [σ0
1, · · · ,σ0

n]T and l0 = [l 0
1 , · · · , l 0

n]T . This problem has 6+n equations and
6+2n unknowns (σ0, l0, ζ), and it has generally an infinite number of solutions.

However, by assuming that nm different measurement sets are available, that is:

σ?i ,k =σ0
i +∆σ?i ,k

l?i ,k = l 0
i +∆l?i ,k

k = 1, · · · ,nm (4.88)
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the following system of equations is obtained:

G(X) = G(σ0, l0,ζ1, · · · ,ζnm
) = [F(σ0, l0,ζ1); · · · ;F(σ0, l0,ζnm

)] = 0(6+n)nm (4.89)

where X = [σ0T , l0T ,ζT
1 , · · · ,ζT

nm
]T ∈ IR6nm+2n .

The system (4.89) has a total of (6+n)nm equations and 6nm +2n unknowns. Thus,
if nm > 2, the initial-pose estimation problem is overdetermined and can be formu-
lated as a non-linear least-square optimization:

Xopt = argmin
X

‖G(X)‖2 (4.90)

This problem can be solved by employing numerical techniques, such as the Levenberg-
Marquardt algorithm. The efficient solution of Eq. (4.90) relies on a reasonable tenta-
tive solution Xguess (see Section 4.3.3), and an analytical formulation of the Jacobian
matrix of Eq.(4.89). While the former is fundamental for both the solution accuracy
and the algorithm rapidity, the latter is critical only in terms of computational time.

The Jacobian ∂G/∂X can be expressed analitically as:

∂G

∂X
=



−In×n 0n×n ∂σ(ζ1)/∂ζ 0n×6 · · · 0n×6

0n×n −In×n ∂l(ζ1)/∂ζ 0n×6 · · · 0n×6

0(6−n)×n 0(6−n)×n ∂F3(ζ1)/∂ζ 0(6−n)×6 · · · 0(6−n)×6

−In×n 0n×n 0n×6 ∂σ(ζ2)/∂ζ · · · 0n×6

0n×n −In×n 0n×6 ∂l(ζ2)/∂ζ · · · 0n×6

0(6−n)×n 0(6−n)×n 0(6−n)×6 ∂F3(ζ2)/∂ζ · · · 0(6−n)×6
...

...
...

...
. . .

...
−In×n 0n×n 0n×6 0n×6 · · · ∂σ(ζns

)/∂ζ
0n×n −In×n 0n×6 0n×6 · · · ∂l(ζns

)/∂ζ
0(6−n)×n 0(6−n)×n 0(6−n)×6 0(6−n)×6 · · · ∂F3(ζns

)/∂ζ


(4.91)

where σ(ζk ) = [σ1(ζk ); · · · ;σn(ζk )] and l(ζk ) = [l1(ζk ); · · · ; ln(ζk )] and, accounting for
Eqs. (2.25), (2.27), and (2.101) :

∂σ

∂ζ
= JT

σ ,
∂l

∂ζ
= JT

l ,
∂F3

∂ζ
= ∂f⊥

∂ζ
=Ξ⊥T

l [(K+E)D−F] (4.92)

4.3.3 Data acquisition algorithm

It is beyond the scope of this work to determine an optimal data acquisition algorithm.
However, a practical one, which enables autonomous and safe operation of the CDPR
during calibration, is provided hereafter. For this aim, cable tensions or alternatively
motor torques are assumed to be measurable or at least estimated, and actively con-
trolled by a suitable feedback system.

In the instant the robot is switched on, its pose is generally unknown. It is possibly
unsafe to start the self-calibration process in this configuration. Then, it is useful to
pre-determine a safe start configuration, in which every cable is taut and sufficiently
long, so that it can be coiled and uncoiled, and the EE may attain different poses. By
assigning a start cable tension vector τ0, the static problem (2.82) can be solved for ζ
as a non-linear system of six equations in six unknowns. Because of the non-linearity
of the problem, a finite set of real solutions can be determined: this calculation may
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be done off-line and just once, i.e. during robot parameter calibration. Only stable
solutions [15] among the possibly many available should be considered. Additionally,
τ0 may be selected so that only one stable solution exist.

In the following, we will consider a start cable tension vector leading to a unique
stable solution of problem (2.82). Accordingly, a (computed) start pose ζ0comp is un-
ambiguously determined, as well as start cable lengths l0

comp and swivel angles σ0
comp.

The real start pose ζ0 attained by the CDPR can be fairly different from the ideal one
ζ0comp, and its determination is the aim of the self-calibration procedure. A maximum
cable tension vector τm should be set as well. The data acquisition algorithm objective
is to ensure that every DoF of the EE is varied during measurements, so that problem
(4.90) is always well conditioned. The procedure workflow can be summarized as fol-
lows.

1. Start phase: command the CDPR so that cable tensions (or motor torques) quasi-
statically reach the assigned value τ0. When τ0 is reached and static conditions
are attained6, the j -th actuator is assigned an incremental cable tension (or mo-
tor torque) set-point, starting from j = 1. The change in a single actuator set-
point ensures that the pose of the end-effector is different at any iteration, thus
being effective, as well as practical and easy to implement;

2. Tensioning phase: quasi-statically move the CDPR by assigning nm/(2n) positive
increments of magnitude ∆τ= 2n(τ j ,m −τ j ,0)/nm to the tension set-point of the
j -th actuator, namely τ j ,k = τ j ,k−1 +∆τ, where τ j ,0 is the j -th component of τ0.
After each assignment k, the CDPR EE could possibly oscillate during the transi-
tion. When static conditions are attained, record measurements ∆σ?i ,k and ∆l?i ,k ,
for i = 1, · · · ,n;

3. Detensioning phase: assign nm/(2n) negative increments of magnitude∆τ to the
tension set-point of the j -th actuator, namely τ j ,k = τ j ,k−1 −∆τ. When static
conditions are attained, record measurements ∆σ∗

i ,k and ∆l∗i ,k , for i = 1, · · · ,n.
During the detensioning phase, the robot follows exactly the same cable tension
(motor torques) set-points as in the tensioning phase: on a real machine, due to
repeatability errors, this could lead to different cable lengths and swivel angles,
which are possibly useful in the calibration procedure in order to minimize the
repeatability error of the robot. nm/n measurement sets are thus obtained by
varying a single actuator set-point;

4. Increment phase: j = j +1; if j ≤ n then go to point 2, otherwise the algorithm is
finished because λ measurement sets have been recorded.

The initial guess for the solution of problem (4.90) is computed as:

Xguess =
[
σ0

comp; l0
comp; ζ1,comp; · · · ; ζnm ,comp

]
(4.93)

where ζk,comp, k = 1, . . . ,nm , can be evaluated by solving the static problem (2.82)
with assigned tension τk . Finally, by employing Xguess, ∆σ?k = [∆σ?1,k · · ·∆σ?n,k ]T and

6Notice that cable tensions are only used to lead the platform to poses where the robot is stable and
kinematic measures can be accurately performed. They have no role in the optimization problem so-
lution, since they do not appear as variables in Eq. (4.90). They may be affected by appreciable errors
without compromising the procedure, whereas platform stability plays a key role in the data acquisition
process.
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Table 4.3: Experiments results

i 1 2 3 4 5

ζ0[mm,◦]



−1314

900

−355

−5.0

−4.8

−32.0





−1345

922

−322

−4.0

−3.6

−31.9





−1348

917

310

−4.1

−3.4

−32.1





−1349

917

−310

−4.1

−3.4

−32.0





−1344

913

−314

−4.2

−3.6

−32.0



ζ0,opt[mm,◦]



−1324

906

−361

−4.5

−4.9

−32.1





−1347

913

−325

−4.2

−4.0

−32.0





−1357

895

−310

−5.0

−3.6

−32.0





−1359

914

−307

−4.2

−3.5

−31.9





−1348

918

−315

−4.0

−3.9

−31.9


‖ep‖ [mm] 13.4 9.9 23.4 11.5 5.7

‖eε‖ [◦] 0.5 0.4 0.9 0.2 0.4

∆l?k = [∆l?1,k · · ·∆l?n,k ]T for k = 1, · · · ,nm , it is possible to determine Xopt as a solution of

(4.90). Ideally, σ0
opt and l0

opt should converge to σ0 and l0, respectively.

4.3.4 Experimental Results

The proposed data acquisition strategy and calibration method was tested on a proto-
type. Swivel angles were measured by 16-bit incremental encoders, mounted directly
on the swivel axes of pulleys, whereas cable lengths were estimated by using 20-bit in-
cremental encoders on each motor axis and a kinematic model of the winch. Swivel
pulleys were manufactured by FDM technology, thus limited, but not negligible, errors
in their geometry and elasticity exist. Cables were coiled on IPAnema winches [98].
Clearance and elasticity in the winch components, as well as cable elasticity itself, are
possible sources of error in the estimation of cable lengths. Robot geometric and iner-
tial parameter for this experiments can be found in App. B.2.

In order to measure the real pose of the platform during experiments, 8 VICON
Motion Capture Systems cameras were employed to track the position of 4 markers
mounted on the robot platform.The accuracy of the measure is ±0.2mm for each di-
mension of the marker (x, y, z), according to manufacturer specifications. In the end,
the position of the reference point and the platform orientation were reconstructed
from the recorded position of each marker.

Because of the lack of force sensors in the robot set-up, motor torques were em-
ployed instead of cable tensions for the implementation of the algorithm presented in
Section 4.3.3. The start tension vector and maximum cable tensions were set to τ0 =[
40.0 40.0 40.0

]T
N and τm = [

80.0 80.0 80.0
]T

N, respectively, and converted in
motor torques according to static equilibrium of the cable transmissions. In the end,
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ns = 60 was chosen as a trade-off between accuracy of the initial-pose estimation and
data-acquisition speed.

The results of five experiments are reported in Table 4.3, where ζ0 is the real starting
pose, as measured by the motion tracking system, ζ0,opt is the estimated starting pose
resulting from the solution of the problem (4.90), ‖ep‖ = ‖ζ0 −ζ0,opt‖ is the reference
position error norm and ‖eε‖ = ‖ε0 −ε0,opt‖ is the norm of the error of the orientation
parameters. Positions are expressed in millimeters and angles in degrees. The exe-
cution of the calibration procedure required, on average, 4min for the data acquisition
procedure, and 2.5s for the initial-pose estimation, which was implemented in Matlab.

During experiments, it was observed that the orientation of the swivel pulley axes
plays a crucial role for the conditioning of problem (4.90). Pulley orientations were set
in order to achieve the best possible results with the robot architecture at hand, but
are not optimal. A maximum reference position error of 23.4mm and a maximum ori-
entation error of 0.9◦ are satisfactory, considering the modelling simplifications and
the hardware used for experimentation. The UACDPR prototype had a workspace of
roughly 6m3 and most of the components were made of 3D-printed plastic. In addi-
tion, swivel pulleys were not statically balanced: accordingly, when the swivel pulley
center of mass does not belong to the swivel axis, the cable direction cannot belong to
the pulley plane because it has to counteract the pulley weight, which is unmodelled
in this thesis. This effect was observed in our lab to be non negligible, especially when
low cable tensions are attained.

Finally, a good knowledge of the geometric parameters of the pulley transmission,
which correlates the measured swivel-pulley rotations to EE displacements, may have
a non-negligile impact in the statics of the UACDPR [48], but geometric-parameter ac-
curate determination is hard if swivel pulleys are mounted on a large structure. A better
swivel pulley design and a proper calibration of the system parameters which influence
the extended forward geometrico-static problem are expected to provide better results
than those reported in this Section, and they will be investigated in the future. Prelimi-
nary experiments in our laboratory showed that the application of standard kinematic
calibration models [99] are not sufficient for the determination of pulley geometric pa-
rameters, which are reasonably important if rotary encoders on swivel pulley axes are
employed for estimating the EE pose. Thus, a novel technique dedicated to their de-
termination is in order.
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Trajectory Planning

When planning the trajectory of a completely-actuated manipulator, we may define
both the geometric path of a reference point on the end-effector and its orientation
[100]. If the end-effector is underactuated, however, only a subset ζc of its generalized
coordinates, namely the controlled coordinates, may be assigned [101]. It is conve-
nient to consider a parametric representation of the path to track, such as ζc = ζc (u(t )).
We refer to the parameter u(t ) as the motion law, which is a function of time, with ini-
tial and final conditions u(0) = 0 and u(T ) = 1, where T is the trajectory execution
time. The composition (ζc ◦u) = ζc (u(t )) is what is usually referred to as the trajectory.
However, if an arbitrary motion is prescribed for ζc , the constraint deficiency on the
end-effector motions leads to the impossibility of bringing the system at rest in a pre-
scribed time, since the free coordinates ζ f evolve according to the system internal dy-
namics. In addition, the behavior of the system may not be stable, that is, unbounded
oscillatory motion of the end-effector may arise.

In this Chapter, the problem of trajectory planning of UACDPR is analyzed, and dif-
ferent planning techniques proposed. First, trajectory planning techniques aiming at
reducing EE oscillation are discussed, and two solutions which considers the use of
Multi-Mode Input Shaping and additionally Dynamic Scaling are laid out. Then, the
problem of rest-to-rest trajectory planning, which system theory defines as a transi-
tion problem between stationary setpoints [102], is considered. A solution procedure,
which accounts for constraints on motion time and path geometry, is put forward.

5.1 Oscillation-Limiting Trajectory Planners

When planning a trajectory of duration T of the actuated coordinates ζc , and the ge-
ometric path to follow ζc (u(t )) is assigned, only the motion law needs to be designed.
In the case of line-segment paths, which are the ones considered in this Section for the
sake of simplicity, the trajectory connecting two set-points ζc,s and ζc, f is:

ζc (t ) = ζc,s + (ζc, f −ζc,s)u(t ) (5.1)

In order to reduce EE oscillations, the authors of [28–30] proposed to apply Input Shap-
ing (IS in short) to 2- and 3-cable UACDPRs, as well as to a simplified model of 4-cable
UACDPR. IS is a well-known and simple approach dedicated to the reduction of oscil-
lations of second-order linear dynamic systems [103]. In order to compute UACDPRs
natural oscillation frequencies, the EE internal dynamics [45] needs to be derived first,
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and expressed in terms of a minimal set of EE residual DoFs next. Finally, natural fre-
quencies are determined by linearizing, about an equilibrium configuration, the EE
internal dynamics with respect to the EE residual DoFs, and by solving the resulting
eigenproblem. The authors of [28] derived the single configuration-dependent natural
oscillation frequency of a planar 3-DoF 2-cable robot, by intuitively selecting the plat-
form orientation as the EE residual DoF , whereas in [29] the same technique was em-
ployed for a spatial 6-DoF 3-cable system, where ZYX Tait-Bryan angles where chosen
as residual DoFs. In both cases, the translational and rotational mechanical equilib-
ria of the EE could be decoupled, which resulted in a mathematically simpler internal
dynamics formulation and linearization. This was not the case, instead, for the 6-DoF
4-cable manipulator considered in [30], where the authors determined the system nat-
ural frequencies with a method similar to the one developed in [28], by approximating
the 6-DoF robot with two 3-DoF planar sub-systems and selecting the orientation of
these sub-systems platforms as residual DoFs. In fact, because of the intrinsic coupling
of rotational and translational equilibria of 6-DoF UACDPRs with more than 3 cables, it
is not straightforward to derive and linearize manipulator internal dynamic equations
and select residual EE DoFs (1-DoF for 5-cable robots and 2-DoFs for 4-cable robots):
representation singularities may arise during calculations.

In this Section, Multi-Mode Zero-Vibration Input Shaping (MMZVIS) is applied to
a generic 4-cable UACDPR thanks to the general model outlined in Section 4.1: our
technique provides a solution for the selection of EE residual DoFs so that represen-
tation singularities are always avoided in the formulation and linearization of EE in-
ternal dynamics and the subsequent natural frequency computation. The approxi-
mated model employed in [30] demonstrated its effectiveness only for slowly varying
trajectories (the EE mean linear velocity module was 0.4 m/s), whereas the more accu-
rate model proposed in this thesis is able to effectively reduce oscillations even if high
speed trajectories are considered (the EE mean linear velocity module is larger than
1.2 m/s). Furthermore, the combination of MMZVIS and Dynamic Scaling (DS) of the
reference trajectory is considered in order to robustify oscillation-limiting trajectories
against the variation of robot natural oscillation frequencies, which are configuration
dependent and thus variable during a trajectory execution.1

IS practical implementation requires the convolution of a series S(t ) of impulses,
called the input shaper, with a reference signal. By denoting the convolution operator
with ∗, the input shaping of the trajectory in Eq. (5.1) is given by:

ζc (t )∗S(t ) = ζc,s + (ζc, f −ζc,s) (u(t )∗S(t )) , S(t ) =
k∑

i=1
Aiδi (t − ti ) (5.2)

where δi (t = ti ) = 1, δi (t 6= ti ) = 0, Ai is the impulse amplitude, ti is the time at which it
occurs, and k is the number of impulses. The pairs (Ai , ti ) can be determined by setting
to zero the amplitude A%( f ) of the Fourier trasform of S(t ), for an assigned frequency
f and k impulses (Zero-Vibration or ZV IS [103], Fig. 5.1a):

A%( f ) =
√√√√(

k∑
i=1

Ai cos(2π f ti )

)2

+
(

k∑
i=1

Ai sin(2π f ti )

)2

= 0 =⇒ (Ai , ti ) (5.3)

1The content of this Section was partly submitted to IEEE Transaction on Robotics and partly pub-
lished in [46].
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5.1. Oscillation-Limiting Trajectory Planners

(a) ZV and ZVD IS for f = 1Hz (b) Direct and Convoluted IS for
f j = 0.6,1.1,1.5Hz

Figure 5.1: Examples of Input-Shapers

By definition, an input shaper is able to eliminate oscillations at the given fre-
quency f (and some multiples of it), and to reduce the amplitude of oscillation associ-
ated with every other frequency (see the graph ZV in Fig. 5.1a), but always introduces
a delay in trajectory execution, which is quantifiable as td = tk , the time location of the
k-th impulse. If the shaper is supposed to eliminate the oscillations at µ frequencies
f j ( j = 1, . . . ,µ), two techniques can be employed, which result in a different number
of impulses and time delays [104]. The so-called direct method always uses the mini-
mum number of impulses kdi r = 1+µ, whereas the so-called convolved method leads
to kconv = 2µ. Usually, td ,di r < td ,conv =∑µ

j=1 1/(2 f j ), but A% is slightly higher when it is
not zero [104] (see Fig. 5.1b for f j = 0.6,1.1,1.5Hz, µ= 3). On the practical side, a con-
volved IS is easy to determine, because it results from the convolution of µ ZV shapers
(each one with 2 impulses), which can be computed analytically, whereas a direct IS
has to be numerically computed by imposing Eq. (5.3) to be satisfied simultaneously
at f1, . . . , fµ, which requires 1+µ impulses (one impulse more for each additional fre-
quency in the shaper). It should be noted that the minimum number of impulses of a
direct shaper is always preferable for real-time implementation, since the amount of
time required for the calculation of u(t )∗S(t ), for each t , and thus trajectory compu-
tational complexity, increases with the number of impulses in the shaper.

5.1.1 Input-Shaping of a nominal trajectory

On a 4-cable UACDPR, whose model parameters are defined in App. C.1, three trajecto-
ries with equal start and final configurations, only differing in the choice of the motion
law u(t ), are experimentally compared:

• the first motion law, which we call STDT , is a standard trapezoidal velocity pro-
file, with total transition time T , and αT acceleration and deceleration duration
(0 ≤α≤ 0.5):

uSTDT (t ) =


(t/T )2

2α(1−α) , t <αT
(−α+2t/T )

2(1−α) , αT ≤ t ≤ (1−α)T
−2α2+2α−1+t/T−(t/T )2

2α(1−α) , t > (1−α)T

(5.4)

• the second motion law, which we call STDT − IS, is the convolution of STDT with
a multi-mode zero-vibration input shaper:

uSTDT −IS(t ) = uSTDT (t )∗S(t ) (5.5)
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Chapter 5. Trajectory Planning

Figure 5.2: Modelled oscillation frequencies along u(t ).

the convolution with the input-shaper thus delays the total duration of the tra-
jectory by ∆T ;

• the last motion law, which we call STDT+∆T , is a standard trapezoidal velocity
profile, with total transition time T +∆T , and α(T +∆T ) acceleration and decel-
eration duration.

Once a trajectory for the controlled coordinates is assigned, the evolution of the
free coordinates when the system is following a prescribed trajectory must be evalu-
ated. Free coordinates are computed by numerically integrating the system internal
dynamics (2.68):

M⊥
cP ζ̈c +M⊥

f P ζ̈ f +C⊥
cP ζ̇c +C⊥

f P ζ̇ f + f⊥ = 0λ×1 (5.6)

after its state-form re-definition:

x =
[
ζ f

ζ̇ f

]
(5.7)

ẋ =
[

ζ̇ f

−M−⊥
f P

(
M⊥

cP ζ̈c +C⊥
cP ζ̇c +C⊥

f P ζ̇ f + f⊥
)]= f

(
x(t ),ζc (t ), ζ̇c (t ), ζ̈c (t )

)
(5.8)

and the assignment of initial rest condition x0 (ζ f 0 is the static equilibrium value for

an assigned ζc0 and ζ̇ f 0 = 0λ). Finally, cable lengths can be computed according to
the inverse geometric model in (2.15), and fed to low-level motor drivers for manip-
ulator control. While servo-motor angular positions are closed-loop controlled, there
is no feedback on the platform pose, and thus its configuration is only feed-forward
controlled.

Start and final configurations are selected near the UACDPR static workspace edges
(see Chapter 3), in order to stress the importance of careful trajectory planning so as
to avoid potentially dangerous situations, such as cable loss of tension due to platform
large oscillatory motions. ε is expressed by x y z Tait-Bryan angles, since no represen-
tation singularities are expected throughout the manipulator static workspace:

ζs = [0.36,−0.82,−0.37,−0.35,0.51,0.12]T [m,rad]

ζ f = [1.82,0.55,−0.37,0.38,−0.25,0]T [m,rad]

Natural oscillation frequencies along the path defined by ζs and ζ f vary in the range
[1.19,2.21] Hz (see Fig. 5.2) and are computed by the method described in Section 4.1.
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5.1. Oscillation-Limiting Trajectory Planners

(a) ε1 time evolution (b) ε2 time evolution

Figure 5.3: Free components of the 4-cable UACDPR prototype

Since the ratio between the maximum and minimum frequency is almost 2, a con-
voluted multi-mode zero-vibration Input Shaper with 3 modes is designed: the 4 pairs
(Ai , ti ), i = 1, . . . ,4 are determined by setting to zero both summations inside the paren-
theses in Eq. (5.3) for each element in f = 1.19, 1.7, 2.21 Hz (the minimum, mean and
maximum frequencies in the range), by considering t1 = 0 s, and imposing

∑k
i=1 Ai = 1;

this procedure results in:

I S :
A1 = A4 = 0.1575, A2 = A3 = 0.3425

t1 = 0s, t1 = 0.294s, t3 = 0.588s, t4 = 0.882s
(5.9)

with ∆T = t4. Trapezoidal motion law parameters are selected as α= 0.2 and T = 1.5 s.
Finally, controlled components are selected as p and ε3. While the choice of p as part
of the controlled coordinates is natural if a positioning task has to be performed, no
particular strategy is readily available for the choice of orientation parameters as con-
trolled coordinates. For our demonstrative purpose, any choice is basically good. We
decided to choose ε3 just because of its limited variation between the start and final
configurations.

Free components ε1 and ε2 time evolution during experiment is shown in Fig. 5.3 as
recorded by the Vicon Camera system described in Sec. 4.1. When comparing trajec-
tories with the same total duration, namely STDT − IS and STDT+∆T , it is evident that
the former allows for smaller amplitude oscillations, which are rapidly damped by un-
modelled frictional effects, once the target destination is reached. On the other hand,
when comparing unshaped and shaped trajectories, namely STDT and STDT − IS, the
advantage in employing the latter is even more evident, since the former results in
large platform oscillations not only at the final destination, but also during the transi-
tion: this fact could easily lead to platform instability and cable loss of tension, thus
ultimately robot loss of control.

5.1.2 Robust Oscillation limitation

The natural frequencies of a system are not always precisely known, due to either un-
certainty in the dynamic-model parameters or a variation of its internal configuration
(both cases occur to a robot in general). Loosely speaking, a trajectory is robust against
natural-frequency uncertainty or variation if the amplitude spectrum of ζc (t )∗S(t ) is
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Figure 5.4: UACDPR natural frequencies along the specified path

limited over some frequency range. In line-segment paths, for assigned set-points,
only u(t )∗ S(t ) is responsible for the location of maximum and minimum values of
this amplitude spectrum. If U ( f ) is the amplitude of the Fourier trasform of u(t ), the
amplitude spectrum of u(t )∗S(t ) is U ( f )A%( f ).

Limiting the amplitude of U ( f )A%( f ) over a frequency range around a given fre-
quency f0 can be achieved by Robust IS, which uses additional impulses, and thus vari-
ables (Ai , ti ), to either set A%( f0) = ∂A%( f0)/∂ f = ... = ∂h A%( f0)/∂ f h = 0 (ZV-Derivative
ZVD IS [103], Fig. 5.1a), or set A%( f ) = 0 in frequencies neighboring f0 (Extra-Insensitive
EI IS [105]). In either case, the amplitude of U ( f )∗A%( f ) is flattened, and thus limited,
around f0. The addition of impulses, though, augments the time delay of the shaper,
thus increasing the trajectory duration, and its computational complexity. As an al-
ternative way to obtain similar robustness results on U ( f )A%( f ) without the need to
modify the IS, we propose to use Dynamic Scaling (DS) of the reference trajectory [106].
An optimal value of T (as well as other trajectory parameters), for a fixed motion law
profile (trapezoidal velocity, polynomial, etc..), can be determined by setting U ( f ), or
equivalently Ü ( f ) = −(2π f )2U ( f ), to zero for the assigned frequency f . This strat-
egy has the additional advantage of determining an upper bound for the total robust-
trajectory duration, T + td . As an example, for a trapezoidal velocity profile, with αT
acceleration and deceleration durations (0 < α ≤ 0.5), α and T can be determined by
setting:

Ü ( f ) = 2

(1−α)α(πT )2 f
‖sin[(1−α)π f T ]sin[απ f T ]‖ = 0 (5.10)

By considering two frequencies f1 and f0, such that f1 ≥ f0, and setting the arguments
of the two sine functions to π, we obtain αopt = f0/( f1 + f0) and Topt = ( f1 + f0)/( f0 f1),
where Topt is strictly decreasing with f1. It is interesting to notice that, for f1 → f0,
αopt ,s = 0.5 and Topt ,s = 2/ f0, while, for f1 → +∞, αopt ,l = 0 and Topt ,l = 1/ f0. This
in turn means that the optimal time is bounded by the lowest frequency and, for any
f , α is always well defined. Moreover, total robust trajectory duration is bounded by:
Topt + td ≤ Topt ,s + td ,conv .

To verify the effectiveness of the combination of IS and DS, we consider
a linear trajectory of a 6-DoF 3-cable CDPR with a trapezoidal velocity mo-
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5.2. Rest-to-Rest Trajectory Planning

tion law. Its model parameters can be found in App.B.2. Natural fre-
quencies along the path between ζs = [0.793,1.180,−0.208,0.058,−0.641,0.042] and
ζ f = [−0.826,1.104,−1.424,−0.041,0.634,0.002] (units in m and rad) vary as in Fig. 5.4.
The equilibrium value of τ2 in ζ f is very small, and potential EE oscillation in this con-
figuration could lead to cable slackness. Since the system has 3 frequency spectra, an
IS with µ= 3 is used, as in [29], but a direct method (with 4 impulses) is employed, and
the corresponding frequencies are heuristically selected as the minimum, maximum,
and median ones from Fig. 5.4, i.e. f = 0.621,1.247,2.154Hz. In addition, since U ( f )
is decreasing with f and only 2 frequencies can be employed for the determination of
αopt and Topt , the minimum and median ones are considered for DS. These choices
lead to:

I S :
A1 = A4 = 0.2965, A2 = A3 = 0.2035

t1 = 0s, t1 = 0.42s, t3 = 0.705s, t4 = 1.125s
DS :

αopt = 0.332
Topt = 2.413s

(5.11)

The parameters in Eq. (5.11) are used to compute trajectory in Eq. (5.2), where
the controlled coordinates are selected as the position p of the EE reference point
(P = I6×6). Equation (5.8) is numerically solved with assigned initial conditions x =
[0.058,−0.641,0.042,0,0,0]T , in order to determine the evolution of the free coordi-
nates along the assigned trajectory. This step allows one to assess oscillations, but also
to check for cable slackness. In case these specifications are not satisfactorily met, an
intuitive solution may be to robustify IS: oscillations are naturally reduced and the in-
crease in time delay bounds cable tensions near their static equilibrium values. Most
critical oscillatory variables found in simulations2 are reported in Fig. 5.5 for four tra-
jectories: the first one is planned according to DS only, the second one is an IS version
of the first one (IS-DS), the third and fourth ones are IS versions of trapezoidal motion
laws with α = 1/3 (commonly employed value) and T = 0.6Topt < Topt (IS-T < Topt )
and T = 1.2Topt > Topt (IS-T > Topt ), respectively. It is clear that the use of IS leads
to a more limited oscillatory behavior, and smaller oscillations occur for an increasing
T (since the amplitude of U ( f ) is decreasing with T ). However, on the practical side,
T should be as small as possible, and IS may not lead to satisfactory results if T is too
small. Basically, DS helps in the choice of the best value of T (and α, for a trapezoidal
velocity profile) that optimizes the transition time and limits the oscillatory behavior.
Additionally, cable slackness due to oscillations is avoided with IS-DS (see Fig. 5.5b,
where τ is computed from Eq. (2.75)). In the end, if critically low oscillations are re-
quired, total transition time can always be increased by means of robust IS.

5.2 Rest-to-Rest Trajectory Planning

In this Section, we propose a novel trajectory-planning technique that allows the EE
to track a constrained geometric path in a specified time, and allows it to transition
between stable static configuration: this class of trajectories are called rest-to-rest. The
design of such a motion is based on the solution of a Boundary Value Problem, for-
mulated as the problem of finding a solution to the EE internal dynamics, with con-
straints on position and velocity at start and end times. Such a trajectory is theoret-
ically possible if model parameters are perfectly known, if the motion law of the sys-
tem is parametrized specifically, and these parameters are found as the solution of the

2Unfortunately, experimental verification was not possible during the time of the PhD thesis due to
prototype unavailability and time limitations.
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(a) θ = ε2 oscillatory behavior (b) τ2 oscillatory behavior

Figure 5.5: Critical oscillatory behaviors

Boundary Value Problem. The influence of model uncertainties in the execution of a
rest-to-rest trajectory was not considered in this thesis and is left as future study.3

System theory defines the problem of rest-to-rest trajectory planning for an un-
deractuated mechanical system as a transition problem between stationary setpoints
[102]. Such a transition has been proven to be possible [101], in most cases, if the
system undergoes an additional pre-actuation or post-actuation phase, that is, if the
system is actuated when t < 0, t > T (where T is the transition time) or both. However,
this leads to a theoretical impossibility of bringing the system at rest in a predefined
time. In addition, a precise path tracking can not be ensured, as the uncontrolled co-
ordinates behavior cannot be predicted, possibly leading the system to instability (i.e.
to an oscillatory behavior), thus strongly limiting practical applications.

In [107], a new method was proposed for the trajectory design of Single-Input Single-
Output (SISO) systems. The same approach was extended to Multi-Input Multi-Output
(MIMO) systems in [108], and later to systems performing not only single transitions,
but also cyclic tasks [109]. These methods ensure that the system is brought to a sta-
tionary position in a prescribed time T , but the nominal trajectory of the controlled
coordinates undergoes a substantial modification. This is often not desirable (when
not dangerous) in industrial applications involving robots, because of possible inter-
ference with obstacles.

If the geometric path to track is constrained, a variety of methods may be employed
to design the motion law used to track such a path. In the case of a completely or
redundantly actuated manipulator the problem of a stationary set point change only
requires the solution of a system of linear equations emerging from the fulfilment of
some boundary conditions and the necessity of a continuous and differentiable func-
tion. Polynomial motion laws are often sufficient to satisfy start- and end-point condi-
tions. An easy way to devise such polynomials is to use so-called transition polynomi-
als [110] of degree 2r +1:

u(t ) =
2r+1∑

i=r+1
ai

( t

T

)i
, t ∈ [0,T ] (5.12)

3The content of this Section was published in [45].
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where coefficients ai ’s do not depend on the task at hand and are given by:

ai = (−1)i−r−1(2r +1)!

i · r !(i − r −1)!(2r +1− i )!
(5.13)

with (if r ≥ 2):

2r+1∑
i=r+1

ai = 1,
2r+1∑

i=r+1
i ai = 0,

2r+1∑
i=r+1

i (i −1)ai = 0 (5.14)

The index r stands for the maximum order of derivation up to which the continuity of
the polynomial is required.

This approach is rarely sufficient for rest-to-rest motions if the system is underactu-
ated, because it does not take into account the internal dynamics in Eq. (2.68). In fact,
depending on the inertial effect caused by the geometric path and the chosen motion
law, the free coordinates ζ f may not reach a stationary condition when the end point
is attained.

In order to achieve the desired result, the nonholonomic constraint in Eq. (2.68)
must be considered in the planning phase. The stationary conditions on ζ f in the
start- and end-points can be regarded as boundary conditions (BCs) for the differential
equation (2.68), thus leading to a BVP. This problem has generally no solution when
both the path ζc (u) and the motion law u(t ) are assigned. On the other hand, if modi-
fications of u(t ) are allowed, the problem may admit a solution.

For a rest-to-rest trajectory planning, BCs in state form are:

x(0) =
[
ζ f (ζc (0))

03×1

]
:= x0, x(T ) =

[
ζ f (ζc (T ))

03×1

]
:= xT (5.15)

where [ζc (0)Tζ f (ζc (0))T ]T and [ζc (T )Tζ f (ζc (T ))T ]T are stable equilibrium configura-
tions of the system, that can be obtained as in [15].

Equation (5.8) has dimension 2λ and can only match 2λ out of the 4λ BCs estab-
lished in (5.15). One way to provide a solution to the problem is to consider 2λ addi-
tional scalar parametersκ= [κ1, . . . ,κ2λ]T (called free parameters), so that ζc = ζc (κ, t ).
The BVP with free parameters becomes then:{

ẋ = f
(
x(κ, t ),ζc (κ, t ), ζ̇c (κ, t ), ζ̈c (κ, t )

)
x(0) = x0, x(T ) = xT

(5.16)

The solution of (5.16) is a set
{
κ,x(κ, t )

}
, where the vector of free parameters κ ∈ IR2λ is

calculated so as the BC in Eq. (5.16) are satisfied.

5.2.1 Modification of the Motion Law

In the case of a constrained trajectory geometric path, the motion law is the only ele-
ment that can undergo a modification, that is, ζc = ζc (u(κ, t )) [111]. One way to design
such a modified motion law u, so that the actuated coordinates can meet the start and
end conditions prescribed by the task, is to consider the composition (u ◦γ)(κ, t ) =
u(γ(κ, t )), now expressed as:

u(γ(κ, t )) =
2r+1∑

i=r+1
aiγ

i (κ, t ) (5.17)

γ(κ,0) = 0, γ(κ,T ) = 1, ∀κ ∈ IR (5.18)
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where ai is still expressed as in (5.13) and the function γ(κ, t ) is continuous and differ-
entiable up to the second order.

For the purpose of this article, r = 3, so that continuity of jerk can be imposed in
the start and end positions, and any discontinuity in the cable tensions τ can be (at
least theoretically) avoided. In this way, we try to eliminate a different potential source
of residual oscillations.

As an example, γ(κ, t )4 may be intuitively designed as a polynomial of order 2λ+1:

γ(κ, t ) =αt +
2λ+1∑
i=2

κi−1t i , α= 1−∑2λ+1
i=2 κi−1T i

T
(5.19)

Accordingly, the time derivative of the actuated coordinates can be expressed as:

ζ̇c =
∂ζc

∂u

∂u

∂γ

∂γ

∂t
= ζ′c u?γ̇ (5.20)

where (·)′ denotes the partial derivative with respect to u and (·)? the partial derivative
with respect to γ. The second-order time derivative is hence:

ζ̈c = ζ′′c (u?γ̇)2 +ζ′c (u?γ̈+u??γ̇2) (5.21)

It should be noted that, as long as conditions (5.18) are satisfied and r ≥ 2, no other
conditions have to be imposed on γ(κ, t ). In fact, ζ̇c (κ,T ) = 0 and ζ̈c (κ,T ) = 0 is en-
sured for any κ by u?(γ(κ,T )) = 0 and u??(γ(κ,T )) = 0. Other formulations for either
γ(κ, t ) or the whole u(κ, t ) may be employed in order to achieve similar results. From
a practical point of view, though, the choice of γ(κ, t ) can affect the convergence rate
and speed of the solution algorithm described in Section 5.2.2. In addition, depending
on the specific formulation of γ(κ, t ), it may not be easy to determine an initial guess
for κ, which is needed in the numerical solution of Eq. (5.16).

5.2.2 Solution of the BVP with Free Parameters

Free parametersκ can be found as a consequence of the numerical solution of the BVP
expressed by Eq. (5.16). A number of algorithms are proposed in the literature and even
implemented in commercial softwares, such as the bvp4c and bvp5c routines available
in any MATLAB distribution [112]. These algorithms are finite-difference codes that
implement a collocation formula [113] and, thus, require a suitable set-up in order to
work efficiently and find a solution within a reasonable tolerance. However, even in
this case, there is still no guarantee of success.

During our simulation campaign, we were not able to solve problem (5.16) by em-
ploying these standard methods, thus we heuristically formulate the problem as a com-
bination of an Initial Value Problem (IVP) followed by the solution of a system of non-
linear equations. This approach is similar to a classic iterative shooting method [113],

4A general formulation for γ(κ, t ) is given by:

γ(κ, t ) = t

T

[(
1− t

T

)
h(κ, t )+1

]
where h(κ, t ) is any continuous and differentiable function up to the second order.
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which is a state-of-the-art method for the solution of standard BVPs without free pa-
rameters: at each iteration of the algorithm, the value of the free parameters is mod-
ified instead of the problem initial conditions. For any assigned κ, let x(κ, t ) be the
solution of the IVP defined by:{

ẋ = f
(
x(κ, t ),ζc (κ, t ), ζ̇c (κ, t ), ζ̈c (κ, t )

)
x(0) = x0

(5.22)

In general, for an arbitrary κ, x(κ, t ) does not meet the end-point condition in Eq.
(5.16), namely x(T ) 6= xT . Consider then the nonlinear equation in the unknown κ

defined by:
F(κ) = x(κ,T )−xT = 02λ×1 (5.23)

A solution for equation (5.23) may be found by the following iterative procedure:

0) assign κi for i = 0, e.g. κi = 02λ×1, and establish an adequately small tolerance
ε ∈ IR;

1) evaluate x(κi ,T ) as the end-point of the solution x(κi , t ) of the IVP (5.22).

2) If ‖F(κi )‖ ≤ ε,
{
κi ,x(κi , t )

}
is a solution of the BVP (5.16), otherwise set κi+1 =

κi + J−1
F (κi )F(κi ) and repeat the iteration.

JF (κ) = ∂F/∂κ is the Jacobian of Eq. (5.23) with respect to κ and it can be approxi-
mated by finite differences at every iteration. Finite-difference Jacobian can be effi-
ciently computed by using several parallel threads. However, due to the iterative and
approximated nature of the algorithm, the maximum computational time cannot be
predicted in advance. Accordingly, this algorithm is not suitable for real-time compu-
tation, and has to be employed offline. In our simulations, the algorithm has proven to
be sub-linearly convergent in the case it is started from a generic initial guess for κ.

Once a solution
{
κ,x(κ, t )

}
is found, the trajectory ζc (κ, t ) may be computed, and

the cable total length is found according to Eq. (2.15).
No explicit constraints on cable tensions or motor torques are considered in this

work other than positive cable tensions, which are verified during the integration of eq.
(5.22)5. In addition, it should be noted that the assigned transition time T cannot be
arbitrarily low. It is outside the scope of this section to determine an optimal transition
time for assigned set-points of a rest-to-rest trajectory. However, in all simulations and
experiments conducted, we heuristically determined that a transition time resulting
from an average speed of the platform reference point of approximatly 1m/s between
assigned set-points always results in a solution of (5.23) with positive tensions in all
cables.

5.2.3 Experimental Validation

The trajectory-planning methodology considered in this paper has been implemented
in a MATLAB code. For every desired s-th transition between stationary set points, the
inputs needed by the trajectory-planner are:

5While iteratively solving Eq. (5.23), the IVP (5.22) is integrated at each step, and the values of τ(t ) are
calculated by Eq. (2.75) for an assignedκi . In the case a negative value of one tension is determined, the
IVP integration is re-initialized with a different value of κi
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• the transition time sT ;

• the transition set-points (namely s−1ζc and sζc );

• the transition geometric path parametrization sζc (u);

After the solution of the problem defined by Eq. (5.16), the outputs of the planning
routine are:

• the array of free parameters sκ;

• the controlled and free coordinates, that is, sζc (t ) and sζ f (t ) for t ∈ [0, sT ];

• the subsequent cable lengths s li (t )(i = 1, · · · ,n) for t ∈ [0, sT ], determined by (2.15).

In the following, two scenarios will be addressed: i ) a 6-DoF spatial UACDPR actu-
ated by 3 cables whose reference point must track consecutive line segments; i i ) the
same spatial UACDPR as in case (i ) whose reference point must track consecutive cir-
cular arcs. Robot geometric and inertial parameters can be found in App. B.3.

The platform reference point P will transit and rest in 4 set-points. The stationary
(stable) poses of the platform, evaluated as in [15], are:

0ζ=



1.596
0.183
−1.300
−0.050
−0.603
−0.575


1ζ=



1.165
0.211
−0.900
−0.005
−0.210
−0.556


2ζ=



0.587
0.222
−1.300
0.009
0.255
−0.562


3ζ=0 ζ

and the transition times are:

1T = 1.5 s 2T = 1.5 s 3T = 2 s

Each transition is separated from the next one by a pause of 5 s, so that potential resid-
ual oscillations of the platform can be highlighted. "Rest-to-Rest" (RTR) trajectories,
designed according to our approach, are compared with "Standard" (STD) trajectories,
which are defined such as:

κ= 02λ×1, γ(κ, t ) = t

T
(5.24)

In this case, the end-effector orientation is estimated by forward integration of Eq.
(5.22) and the cable lengths by Eq. (2.15). It should be noted that the free coordinates
ζ f (t ) of the EE, and thus the lengths of the cables, are generally different for distinct
values of κ. Because of this, the equilibrium poses of the EE in the STD and RTR cases
will also be different. In order to be able to compare different subsequent trajectories,
STD cable lengths were quasi-statically varied during the pause time in order to match
the RTR ones, and thus have the same start configuration. For the transitions consid-
ered in this paper, the difference between them is in the order of some millimiters, so
that this procedure does not amplify residual oscillations (as it can be see in Fig. 5.8
and 5.13, where the procedure was simulated).
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Figure 5.6: Straight line paths.

RTR
STD

(a) First cable

RTR
STD

(b) Second cable

RTR
STD

(c) Third cable

Figure 5.7: Actuator position set-points for RTR and STD trajectories, in the case of
linear paths. Transitions between set-points are delimited by vertical dashed lines

RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 5.8: Computed end-effector pose for RTR and STD trajectories, in the case of
linear paths. Transitions between set-points are delimited by vertical dashed lines
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RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
STD

(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 5.9: Measured end-effector pose for RTR and STD trajectories, in the case of
linear paths. Transitions between set-points are delimited by vertical dashed lines

5.2.3.1 Straight Line Trajectories

In the first example, the set-points are connected by linear paths (Fig. 5.6). The s-th
transition is parametrized as:

sp(u) = s−1p+ ( sp− s−1p)u (5.25)

By employing the method outlined in Section 5.2.2, the solution of the BVP defined
by Eq. (5.16) for s = 1,2,3 is found starting from an initial guess κ = 06×1 in averagely
1.5min by using a MATLAB implementation installed on a Windows 10 PC, with a 7th
generation Intel I7 CPU and 16 Gb of RAM. The results are summarized in Eq. (5.26)
and Figs. 5.7 and 5.8:

1κ=



−14.006
41.906
−67.565
60.146
−27.779

5.195


2κ=



−12.278
38.731
−66.101
61.907
−29.927

5.827


3κ=



−4.204
8.826

−10.157
6.559
−2.234
0.312

 (5.26)

In order to verify the effectiveness of the proposed trajectory planning, no feedback
on the platform actual pose was used to stabilize or correct the end-effector position
and orientation during experimental testing.

Quantitative results regarding the end-effector pose can be found in Fig. 5.9. Since
no external measurement system, such as a laser tracker, was available in our labora-
tory during the experimental campaign, an indirect approach was used. Angles σ1, σ2

and σ3 were measured by incremental encoders attached to the swivel pulleys’ axes.
By employing such measurements and the commanded cable lengths, the pose of the
platform was estimated making use of a direct kinematic algorithm that employs addi-
tional cable orientation measurements [93].
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RTR
STD

(a) End-effector reference position

RTR
STD

(b) End-effector Euler angles

Figure 5.10: Enhanced view of most critical measured oscillations during linear paths.

This approach does not allow the platform pose to be inferred with a high preci-
sion during a dynamic motion (on the one hand, cables can slightly oscillate in the
grooves of their pulleys due to clearance; on the other, pulleys swivel with some lag
compared to the theoretical kinematic model, mainly due to friction in the mechani-
cal transmission chains). However, it provides a simple means to effectively compare
RTR and STD trajectories. It is apparent that, though the actuator set-points are very
similar for both trajectories, the results in terms of end-effector pose are significantly
different. The difference in the global motion of the platform can be explained, in gen-
eral, by considering that limited difference in the position set-points may be associated
with large difference in their higher order derivatives, which play a key role in the dy-
namics of the system. STD trajectories display residual oscillations which are damped
over time by dissipative effects and a slight drift in the EE coordinates, which may be
attributed to cables oscillating into the pulley grooves. On the other hand, RTR trajec-
tories results do not show any significant oscillation in the measurements provided by
our feedback system (Figs. 5.10a and 5.10b show an enhanced view of the most critical
oscillations observed during experiments, for 8s < t < 13s). We can clearly see that
both position and angular EE coordinates remain constant after the end of the second
transition when RTR trajectories are used. The video of the experimentation also dis-
plays little to no oscillation left after RTR transitions. The small residual swinging of
the platform at the end of transitions is due to minor-importance phenomena that are
not included in the dynamic model, such as clearance, elasticity, friction, etc.

Also, it can be noted from the planning results (Figs. 5.7a and 5.7c) that, in the first
transition, the slope of the cable commanded length in the RTR case is steeper com-
pared to the one of the STD case. Even though the encoder measurement of our pro-
totype motors show no tracking error, frictional effects in the cable transmission could
have led to delays in the actual uncoiling process, thus resulting in a slight modification
of the cable effective length during experiment. In addition, a steeper slope means that
higher frequency responses of the mechanical system can be excited, such as cables ax-
ial vibrations, that were not considered in this work. The second and third transitions
required more limited slope changes for cable lengths in the RTR case compared to STD
trajectories, and no detectable oscillations appear in the platform during experiments.
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Figure 5.11: Circular geometric paths.

RTR
STD

(a) First cable

RTR
STD

(b) Second cable

RTR
STD

(c) Third cable

Figure 5.12: Actuator position set-points for RTR and STD trajectories, in the case of
circular paths. Transitions between set-points are delimited by vertical dashed lines

RTR
STD

(a) x coordinate
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(b) y coordinate
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(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 5.13: Computed end-effector pose for RTR and STD trajectories, in the case of
circular paths. Transitions between set-points are delimited by vertical dashed lines
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RTR
STD

(a) x coordinate

RTR
STD

(b) y coordinate

RTR
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(c) z coordinate

RTR
STD

(d) φ Euler angle

RTR
STD

(e) θ Euler angle

RTR
STD

(f) χ Euler angle

Figure 5.14: Measured end-effector pose for RTR and STD trajectories, in the case of
circular paths. Transitions between set-points are delimited by vertical dashed lines

5.2.3.2 Circular Arc Trajectories

In the second example, circular geometric paths connecting the set-points are consid-
ered. The s-th transition is parametrized by the parametric equation of a circular arc
passing through 3 points:

sp(u) = c+ rc xc cos[ s−1β+ ( sβ− s−1β)u]+ rc yc sin[ s−1β+ ( sβ− s−1β)u] (5.27)

where c is the center of the circle passing through 3 points 0p, 1p and 2p, rc is its radius,
zc is a unit vector normal to the circle plane, xc = (0p−c)/‖0p−c‖, and yc = zc ×xc . In
addition, angle sβ is defined as:

sβ= arccos

[
( sp−c) · ( 0p−c)

r 2
c

]
rad (5.28)

The solution of the BVP defined by Eq. (5.16) for s = 1,2,3 is found starting from an
initial guess κ = 06×1 in averagely 2min and the results are summarized in Eq. (5.29)
and Fig. 5.12 and 5.13:

1κ=



−4.403
13.032
−23.118
22.991
−11.721

2.386


2κ=



−18.691
61.437

−107.706
102.695
−50.163

9.812


3κ=



−3.924
8.662

−10.559
7.231
−2.606
0.384

 (5.29)

It can be noted in the planning results that in the first transition the slope of the cable
commanded lengths is less steep for RTR trajectories than for STD ones, and the tran-
sition occurs smoothly without any oscillation left. The contrary occurs in the second
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RTR
STD

(a) End-effector reference position

RTR
STD

(b) End-effector Euler angles

Figure 5.15: Enhanced view of most critical oscillations during circular paths.

and the third transition. In the second one (Figs. 5.12a to 5.12c), this fact results in
a very quick final movement that excites axial vibrations in cables, which are rapidly
damped out, but cause a limited oscillatory behavior. Still, the amplitude of these os-
cillations is not detected by the feedback measurement system, whereas the wide os-
cillations in the STD case are apparent. The third and last transitions, in the STD case,
display one dangerous effect: the possibility of an unstable behavior of the EE due
to the lack of constraint (namely, the unactuated DoFs evolve with no predetermined
boundaries). While transitioning, the platform uncontrolled orientation (see Fig. 5.14)
was rapidly changing, almost leading the platform to tip over. In the RTR case, instead,
the platform slightly oscillates during the transition, and arrives at the rest position
with a very limited residual oscillation (Figs. 5.15a and 5.15b show an enhanced view
of the most critical oscillations observed during experiments, for 8s < t < 13s).

It is clear from the results presented in this section that the EE may be brought
to rest after a transition from one set-point to another only by an accurate trajectory
planning that takes into account the internal dynamics of the system.
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Chapter 6

Conclusions

Underactuated cable-driven parallel robots (UACDPRs in brief) represent a particu-
larly new and not yet fully characterized family of manipulators. This thesis aimed at
exploring some of the various issues a robotician faces when dealing with the practi-
cal application of this new robotic technology, and at proposing both theoretical and
practical solutions.

6.1 Main results

In order to better understand the strengths and the limits of applicability of UACDPR
technology, the static workspace was characterized by way of a new performance in-
dex, called the maximum tension variation under a unit-norm cable displacement.
This index allowed us to understand which configurations, inside the Wrench Feasi-
ble Workspaces (WFW ) of a UACDPR, are more prone to cable becoming slack in pres-
ence of actuation errors. Additionally, a novel type of workspace, the Tension-Error-
Insensitive Workspace (TEIW ), was defined as the set of poses that a UACDPR EE can
statically attain even in presence of actuation errors. It was shown that 2-, and 3-cable
UACDPRs TEIWs are practically coincident with their WFWs, whereas the 4-cable robot
has a severely limited TEIW compared to its WFW . 5-cable robots will be studied in the
near future.

The end-effector (EE) unconstrained motion when cables are not varying their
lengths, called free motion, was then studied. Small-amplitude free motion was mod-
elled as a harmonic oscillation, and a novel technique for the computation of natural
oscillation frequencies for generic UACDPRs was proposed. Extensive experimenta-
tion on 3 different prototype architectures (2-, 3-, and 4-cable UACDPRs) proved our
model to be effective in accurately predicting robot oscillation frequencies.

A novel inertial-parameter identification technique for UACDPR was then proposed,
based on EE internal dynamics. This formulation allows for the determination of EE
dynamic parameters without recurring to any force or torque measurement, which are
commonly required by state-of-the-art techniques. Additionally, it was observed that,
by using free-motion as identification exciting trajectory, the number of EE coordi-
nates to be measured during experiment can be reduced with respect to state-of-the-
art methods, without reducing the accuracy of results.

The problem of determining the initial lengths of cables at machine start-up was
also addressed. The solution of this problem proved to be crucial for robot safe op-
eration in case only incremental sensors are employed by the UACDPR. An automatic
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procedure based on a suitable redundant set of incremental sensors, and an extended
forward geometrico-static problem, was proposed. Experimental results proved to be
satisfactory, especially considering the limited knowledge of the robot geometric pa-
rameters and the prototypal nature of the robot used for experiments.

Last, but not least, the problem of trajectory planning of UACDPRs was tackled.
Two viable solutions were proposed, which are based on different principia and have
different strengths. Oscillation-reducing techniques were presented that are compu-
tationally fast and can work in real time even if robot parameters are uncertain, but
they do not allow for a-priori time-limited transitions between static equilibria. On the
contrary, these very strict transitions are possible with a rest-to-rest trajectory planner,
but this methodology only allows for off-line planning, in case model parameters are
known with high accuracy.

6.2 Open Issues

In the author’s opinion, two major problems still need to be thoroughly analyzed, which
are pose estimation, and feedback control.

The former problem is particularly involved for underactuated manipulator in gen-
eral, since actuator deficiency makes it impossible to use forward kinematics to corre-
late actuator displacements and the EE configuration. The use of forward geometrico-
static problems limits manipulator performances, since it only allows good tracking
performances in quasi-static motions. The consideration of both geometric relation-
ships and EE dynamics could provide a solution, but the performance of such an es-
timation scheme has to be demonstrated, since dynamic models are often simplified
in case they need to be computed in real-time. The use of additional proprioceptive
sensors, such as encoders on swivel pulleys, may provide a sufficient amount of data
for solving an extended forward geometric problem. On the other hand, common pul-
ley modelling relies on rather strict assumptions, which are not completely compatible
with applications characterized by non-negligible EE dynamics, thus the applicability
of such assumptions is to be fully verified.

As far as feedback control is concerned, only simple feedback controllers dedicated
to regulate the EE pose, while estimating it with approximated methods, are found in
the literature. It is the author opinion that an industrial controller of a robotic manip-
ulator should be able to robustly, rapidly, and accurately regulate the robot behaviour
in the Cartesian space: this problem is still vastly open.

This thesis spans over several different topics, mostly because during experimen-
tal implementation or validation of one solution, a scientific unsolved problem was
encountered and needed to be solved. Thus, it is with great honesty that the author
admits that he has only scratched the surface of his understanding of UACDPRs.

While characterizing the static workspace of UACDPRs, we showed that 4-cable
UACDPR may be intrinsically more difficult to use in real applications,if simple cable-
length control strategies are employed. The possibility of employing a hybrid concur-
rent cable-length / cable-force controller will be addressed in the future, in order to
guarantee safe operation inside the whole wrench-feasible workspace of robots with
more than 3 cables, while maintaining good tracking performances of a limited set of
EE coordinates.

Experiments in our laboratory showed us that standard geometric calibration tech-
niques, which only account for robot geometrical equations in the determination of
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geometric parameters, are not sufficiently accurate, particularly for those associated
with the pulley model. If sensors on pulleys are to be implemented for EE pose estima-
tion, dedicated calibration techniques should be devised.

Lastly, the problem of trajectory planning of UACDPRs is not yet completely satis-
factory for real industrial applications: on the one hand, oscillation-limiting trajecto-
ries may not meet strict requirements in terms of transition times, because of the delay
imposed by the input-shaping filter, and rest-to-rest trajectories can be limitedly used
on systems whose models are not perfectly known. A fusion of these two techniques
is currently under investigation, which aims at exploiting the advantages of both tech-
niques.
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Appendix A

Proofs

This appendix presents some mathematical proofs which were omitted in order to en-
hance readibility.

A.1 Computation of the swivel angle

Substituting Eq. (2.3) in Eq. (2.5) yields:[−sin(σi ) ii +cos(σi ) ji

] ·%i = 0 (A.1)

and rearranging:
sin(σi )

(
ii ·%i

)= cos(σi )
(
ji ·%i

)
(A.2)

thus leading to Eq. (2.6):
σi = atan2

(
ji ·%i , ii ·%i

)
(A.3)

Function atan2(·) is defined for any value of its arguments and allows for the compu-
tation of σi ∈ [−π,π] .

A.2 Computation of the tangency angle

If we consider:

ρi = ai −bi = ai − [di + ri (ui +ni )] =%i − ri (ui +ni ) (A.4)

and substitute it in Eq. (2.9), we obtain:

ni ·
[
%i − ri (ui +ni )

]= ni ·%i − ri (ni ·ui +1) = 0 (A.5)

Then, substituting Eq. (2.7) in Eq. (A.5) and rearranging yields:(
cos

(
ψi

)
ui + sin

(
ψi

)
ki

) ·%i − ri
[(

cos
(
ψi

)
ui + sin

(
ψi

)
ki

) ·ui +1
]=

= (
ui ·%i − ri

)
cos(ψi )+ki ·%i sin(ψi )− ri =

= (
%ui − ri

)
cos(ψi )+%ki sin(ψi )− ri = 0 (A.6)

where %ki = ki ·%i and %ui = ui ·%i . If the trigonometric identity:

cos(ψi ) = 1− t 2
i

1+ t 2
i

, sin(ψi ) = 2ti

1+ t 2
i

, ti = tan(ψ/2) (A.7)
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Figure A.1: Geometric interpretation of Eq. (A.9) double solution

is applied to Eq. (A.6), we get:(
%ui − ri

)(
1− t 2

i

)+2%ki ti − ri
(
1+ t 2

i

)=−%ui t 2
i +2%ki ti +%ui −2ri = 0 (A.8)

which can be straightforwardly solved for ti as:

ti = tan(ψ/2) = %ki

%ui

±
√(

%ki

%ui

)2

+1− 2ri

%ui

(A.9)

According to the cable being clockwise wrapped onto the pulley, the only physical solu-
tion for ti is the one with the positive sign in front of the square root (see Fig. A.1, where
the alternative solution is marked asψ?

i ). Finally Eq. (2.10) is obtained by inverting the
tan function and rearranging as:

ψi = 2atan

[
%ki

%ui

+
√(

%ki

%ui

)2

+1− 2ri

%ui

]
(A.10)

A.3 Computation of the swivel angle time derivative

The time derivative of Eq. (2.5) yields:

ẇi ·%i +wi · %̇i = 0 (A.11)

Since %̇i = ȧi , we may compute the velocity of point Ai and the rate of change of wi

from Eqs. (2.2) and (2.3) as:

ȧi = ṗ+ω×a′
i , ẇi =−σ̇i ui (A.12)

Substituting in Eq. (A.11) and rearranging yields:

ui ·%i σ̇i = %ui σ̇i = wi · ṗ+wi ·ω× ȧ′
i = ṗ ·wi +ω · ȧ′

i ×wi (A.13)

thus finally:

σ̇i = 1

%ui

(
ṗ ·wi +ω · ȧ′

i ×wi
)= ξσi

·v (A.14)
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A.4 Computation of the tangency angle time derivative

The time derivative of Eq. (2.9) yields:

ṅi ·ρi +ni · ρ̇i = 0 (A.15)

Its terms can be computed by differentiating w.r.t. time Eqs. (2.11), :

ρ̇i = ȧi − ri (u̇i + ṅi ) , u̇i = σ̇i wi , ṅi = cos(ψi )σ̇i wi − ψ̇i ti (A.16)

Substituting in Eq. (A.15) and rearranging yields:

ti ·ρi ψ̇i = ‖ρi‖ψ̇i = ni · ṗ+ni ·ω× ȧ′
i = ṗ ·ni +ω · ȧ′

i ×ni (A.17)

since wi ·ni = ti ·ni =ρi ·ni = 0. Finally:

ψ̇i = 1

‖ρi‖
(
ṗ ·ni +ω · ȧ′

i ×ni
)= ξψi

·v (A.18)

A.5 Computation of the cable length time derivative

The time derivative of Eq. (2.14) yields:

2ρ̇i ·ρi −2‖ρi‖
∂‖ρi‖
∂t

= 0 (A.19)

The time derivative of ‖ρi‖ is computed from Eq. (2.13) as:

∂‖ρi‖
∂t

= l̇i + ri ψ̇i (A.20)

Substituting Eqs. (2.12), the left-hand side of Eq. (A.16) and (A.20) in Eq. (A.19) yields:

‖ρi‖ȧi · ti − ri‖ρi‖
[(

cos(ψi )+1
)
σ̇i wi − ψ̇i ti

] · ti −‖ρi‖(l̇i + ri ψ̇i ) = 0 (A.21)

Simplifying and rearranging Eq. (A.21) finally gives:

l̇i =
(
ṗ · ti +ω · ȧ′

i × ti
)= ξli

·v (A.22)

A.6 Swivel angle second order time derivative

The time derivative of Eq. (A.3) yields:[
u̇i ·%i +ui · %̇i

]
σ̇i +%ui σ̈i = ẇi · ȧi +wi · äi (A.23)

and accounting for Eqs. (2.5), (A.12) and:

äi = p̈+α×a′
i +ω× (

ω×a′
i

)
(A.24)

one has:

σ̈i =− 2

%ui

(ξui
·v)(ξσi

·v)+ξσi
· v̇+ wi

%ui

·ω× (
ω×a′

i

)
, ξui

=
[

ui

a′
i ×ui

]
(A.25)
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Thanks to the Jacobi identity of the vector product, one has:

wi ·ω× (
ω×a′

i

)=ω ·a′
i × (wi ×ω) (A.26)

and Eq. (A.25) can be rewritten in matrix form as:

σ̈i = vTξ′σi
v+ξT

σi
v̇ (A.27)

where:

ξ′σi
= 1

%ui

(−2ξui
ξT
σi
+Awi

)
, Awi =

[
03×3 03×3

03×3 ã′
i w̃i

]
(A.28)

It should be noted that:

σ̈i = ξ̇σi
·v+ξσi

· v̇, ξ̇σi
= ξ′σi

v (A.29)

A.7 Tangency angle second order time derivative

The time derivative of Eq. (A.17) yields:

∂‖ρi‖
∂t

ψ̇i +‖ρi‖ψ̈i = ṅi · ȧi +ni · äi (A.30)

If one accounts for Eqs. (A.16) and (A.20), one has:

ψ̈i = 1

‖ρi‖
(
%ui cos(ψi )σ̇i

2 − ri ψ̇
2
i −2l̇i ψ̇i +ni ·ω× (

ω×a′
i

))+ξψi
· v̇ (A.31)

which can be written in matrix form, by using the Jacobi identity and Eqs. (A.14), (A.18)
and (A.22), as:

ψ̈i = vTξ′ψi
v+ξT

ψi
v̇ (A.32)

where:

ξ′ψi
= 1

‖ρi‖
(
%ui cos(ψi )ξσi

ξT
σi
− riξψi

ξT
ψi

−2ξli
ξT
ψi

+Ani

)
, Ani =

[
03×3 03×3

03×3 ã′
i ñi

]
(A.33)

It should be noted that:

ψ̈i = ξ̇ψi
·v+ξψi

· v̇, ξ̇ψi
= ξ′ψi

v (A.34)

A.8 Cable length second order time derivative

The time derivative of Eq. (A.22) yields:

l̈i = ṫi · ȧi + ti · äi (A.35)

where ṫi is evaluated as the time derivative of Eq. (2.8) as:

ṫi = sin(ψi )σ̇i wi + ψ̇i ni (A.36)

Then, according to Eqs. (A.14) and (A.18), one has;

l̈i = sin(ψi )%ui σ̇
2
i +‖ρi‖ψ̇2

i + ti ·ω× (
ω×a′

i

)+ξli
· v̇ (A.37)
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which can be written in matrix form, by using the Jacobi identity and Eqs. (A.14) and
(A.18) as:

l̈i = vTξ′li
v+ξT

li
v̇ (A.38)

where:

ξ′li
= sin(ψi )%uiξσi

ξT
σi
+‖ρi‖ξψi

ξT
ψi

+Ati , Ati =
[

03×3 03×3

03×3 ã′
i t̃i

]
(A.39)

It should be noted that:
l̈i = ξ̇li

·v+ξli
· v̇, ξ̇li

= ξ′li
v (A.40)

A.9 Tangent vector first order time derivative

The time derivative of Eq. (2.8) yields:

ṫi =
(
cos

(
ψi

)
ui + sin

(
ψi

)
ki

)
ψ̇i + sin

(
ψi

)
u̇i (A.41)

If we substitute the results of Eqs. (2.7) and (A.16) in Eq. (A.41), we get:

ṫi = ni ψ̇i + sin
(
ψi

)
wi σ̇i (A.42)

Finally, substituting Eqs. (A.3) and (A.4) in Eq. (A.42) yields:

ṫi =
(
niξ

T
ψi

+ sin
(
ψi

)
wiξ

T
σi

)
v (A.43)

Then, if we consider the definition of Eq. (2.17):

ṫi =
(
niξ

T
ψi

+ sin
(
ψi

)
wiξ

T
σi

)
Dζ̇ (A.44)

we can also deduce:
∂ti

∂ζ
=

(
niξ

T
ψi

+ sin
(
ψi

)
wiξ

T
σi

)
D (A.45)

which can be written in matrix form as:

∂ti

∂ζ
= [

Ti −Ti ã′
i

]
D, Ti =

sinψi wi wT
i

%ui

+ ni nT
i

‖ρi‖
(A.46)

A.10 Free-Motion Cable Tension Variation

In order to determine the free-motion cable tension variation, Eq.(2.81), which is here
reported for the sake of convenience:

M∥
f ζ̈ f +C∥

f ζ̇ f + f∥ =τ (A.47)

has to be linearized about an equilibrium configuration.
To this end, if the left-hand side of Eq. (A.47) is denoted as h

(
ζ f , ζ̇ f , ζ̈ f

)
, the Taylor

expansion about an equilibrium configuration (ζ f = ζ f 0, ζ̇ f = 06×1, ζ̈ f = 06×1) trun-
cated at the first order yields:

τ= h
(
ζ f , ζ̇ f , ζ̈ f

)' h(ζ f 0,0,0)+

+ ∂h

∂ζ̈ f

∣∣∣∣∣(
ζ f 0,0,0

) ζ̈ f +
∂h

∂ζ̇ f

∣∣∣∣∣(
ζ f 0,0,0

) ζ̇ f +
∂h

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

)
(
ζ f −ζ f 0

)
(A.48)
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Appendix A. Proofs

At equilibrium, clearly h
(
ζ f 0,0,0

)=τ0. The partial derivatives are readily obtained as:

∂h

∂ζ̈ f

∣∣∣∣∣(
ζ f 0,0,0

) = M∥
f

∣∣∣(
ζ f 0,0,0

) = M∥
f 0 (A.49)

∂h

∂ζ̇ f

∣∣∣∣∣(
ζ f 0,0,0

) =
(

C∥
f +

∂C∥
f

∂ζ̇ f

ζ̇ f

)∣∣∣∣∣∣(
ζ f 0,0,0

) = 0λ×λ (A.50)

∂h

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

) =
(∂M∥

f

∂ζ f
ζ̈ f +

∂C∥
f

∂ζ f
ζ̇ f +

∂f∥

∂ζ f

)∣∣∣∣
(,0,0)

=

= ∂f∥

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

) = K∥
f

∣∣∣(
ζ f 0,0,0

) = K∥
f 0 (A.51)

where we have taken advantages that many elements vanishing in Eqs. from (A.49) to
(A.51) are linearly dependent on ζ̇ f and ζ̈ f . All quantities at the far right-hand sides
from (A.49) to (A.51) are computed in the equilibrium configuration (ζ f 0,0,0) and thus

denoted by the subscript 0. Matrix M∥
f is given in Eq. (2.79) and is reported below for

the sake of convenience:
M∥

f =−Ξ∥T

l MΞ⊥
l ∈ IRn×λ (A.52)

Matrix K∥
f can be derived according to the results of Sec. 2.4.2:

K∥
f =

∂f∥

∂ζ f
= ∂f∥

∂ζ

∂ζ

∂ζ f
(A.53)

and considering Eqs.(2.114) and (2.115):

K∥
f =−Ξ∥T

l [(K+E)D−F]J⊥l (A.54)

Finally, Eq. (A.48) can be rewritten as:

∆τ0 =τ−τ0 = M∥
f 0ζ̈ f +K∥

f 0

(
ζ f −ζ f 0

)= M∥
f 0∆ζ̈ f 0 +K∥

f 0∆ζ f 0 (A.55)

where ∆ζ̈ f 0 = ζ̈ f −0λ×1, ∆ζ f 0 = ζ f −ζ f 0, and ∆τ0 =τ−τ0.
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Appendix B

Geometrical and Inertial Data of
UACDPRs

This appendix collects all the geometrical and inertial data of the UACDPRs used in this
thesis. These data are primarily derived by the mechanical evolution of the prototype
of the university available at Bologna and were obtained either by Computer-Aided-
Design models or by calibration and identification techniques.

B.1 Data for Workspace Computation

Geometrical and inertial properties of the prototype used for workspace analyses (Fig. B.1),
defined in Sections 2.1 and 2.3, are summarized in Tables B.1 and B.2, where i = [1;0;0]T ,
j = [0;1;0]T , and k = [0;0;1]T , and the only external load applied to the robot EE is grav-
ity, thus e′ = s′, φ = −mg k and µ = 03×3. The coordinates of a′

i , s′ and IG are constant
in the EE frame, and denoted as P a′

i , P s′ and P IG in P x ′y ′z ′.

B.2 Data for Initial Length Estimation and Input-Shaping
Trajectory Planning

Geometrical and inertial properties of the prototype used for Initial Length Estimation
(Fig. B.2), defined in Sections 2.1 and 2.3, are summarized in Tables B.3 and B.4, where

Cable 3

Swivel Pulleys

Markers
Cable 1

Cable 4
Cable 2

Figure B.1: UACDPR Prototype in 2020



Appendix B. Geometrical and Inertial Data of UACDPRs

Table B.1: Actuators’ properties

i 1 2 3 4

di [m]


0.219

−1.316

0.527




2.295

−1.158

0.521




2.153

0.973

0.560




0.0532

0.796

0.532


ri [m] 0.025 0.025 0.025 0.025

P a′
i [m]


−0.144

−0.219

0.264




0.115

−0.233

0.270




0.142

0.220

0.266



−0.120

0.236

0.266


xi j −i −j i

yi −k −k -k -k

zi −i −j i j

Table B.2: Platform inertial properties

m [Kg] P IG [Kg ·m2] P s′ [m]

8


0.1338 0.0059 0.0021

0.0059 0.1814 −0.0055

0.0021 −0.0055 0.2602




0.002

−0.002

0.200



i = [1;0;0]T , j = [0;1;0]T , and k = [0;0;1]T , and the only external load applied to the
robot EE is gravity, thus e′ = s′, φ = −mg k and µ = 03×3. The coordinates of a′

i , s′ and
IG are constant in the EE frame, and denoted as P a′

i , P s′ and P IG in P x ′y ′z ′.

Figure B.2: UACDPR Prototype in 2018
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B.3. Data for Rest-to-Rest Trajectory Planning

Table B.3: Actuators’ properties

i 1 2 3

di [m]


−2.030

−0.170

0.806




0.066

0.920

0.757



−2.043

2.241

0.738


ri [m] 0.025 0.025 0.025

P a′
i [m]


0.020

−0.287

0.250




0.251

0.153

0.250



−0.211

0.153

0.250


xi j −i −j

yi −k −k k

zi −i −j −i

Table B.4: Platform inertial properties

m [Kg] P IG [Kg ·m2] P s′ [m]

8


0.1338 0.0059 0.0021

0.0059 0.1814 −0.0055

0.0021 −0.0055 0.2602




0.000

0.000

0.182



B.3 Data for Rest-to-Rest Trajectory Planning

Geometrical and inertial properties of the prototype used for Initial Length Estimation
(Fig. B.2), defined in Sections 2.1 and 2.3, are summarized in Tables B.3 and B.4, where
i = [1;0;0]T , j = [0;1;0]T , and k = [0;0;1]T , and the only external load applied to the
robot EE is gravity, thus e′ = s′, φ = −mg k and µ = 03×3. The coordinates of a′

i , s′ and
IG are constant in the EE frame, and denoted as P a′

i , P s′ and P IG in P x ′y ′z ′.

109



Appendix B. Geometrical and Inertial Data of UACDPRs

Table B.5: Actuation unit properties

i 1 2 3

di [m]


0.160

−0.835

−0.025




2.175

0.180

−0.035




0.260

1.290

−0.043


ri [m] 0.025 0.025 0.025

P a′
i [m]


0

−0.267

0.270




0.231

0.133

0.270]



−0.231

0.133

0.270


xi j −i −j

yi −i −j i

zi k k k

Table B.6: Platform properties

m [Kg] P IG [Kg ·m2] P r′ [m]

8


0.14 0 0

0 0.14 0

0 0 0.216




0

0

0.182


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Appendix C

Additional Experimental Results

This appendix collects additional experimental results which, because of their size,
could impair the reading of this manuscript.

C.1 Natural Frequency Compuation

Tables provide the EE static configuration ζ0, the corresponding cable lengths l0, the
array of modeled natural frequencies f, the array of experimental natural frequencies
f?, the standard deviation obtained in experimental frequency determination σ?, and
finally the relative estimation error between experimental and modeled natural fre-
quencies ∆f%. Tables C.1 and C.2 are dedicated to a 4-cable UACDPR, Tables C.3 and
C.4 to a 3-cable UACDPR and Tables C.5 and C.6 to a 2-cable UACDPR.



Appendix C. Additional Experimental Results
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0.98,0.20
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−
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C.1. Natural Frequency Compuation
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C.1. Natural Frequency Compuation
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Appendix C. Additional Experimental Results
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