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Abstract 

Three-dimensional printing techniques demonstrated the high potentiality of 

interactive processes applied to medicine and surgery. The current, wide availability of 

different materials and bio-inks allows the precise control of chemical and physical 

properties of the printed objects obtained through additive manufacturing technology. In 

addition, 3D printing may produce far-reaching changes in surgical pre-operative 

management, thanks to the potential interactions with medical imaging modalities. 

We developed a method based on rapid freeze prototyping (RFP) 3D printer, 

reconstruction cutting, nano dry formulation, fast freeze gelation, disinfection and 

partial processes for the 3D to 5D digital models functionalization. We processed a 

computed tomography angiography scan of a human femoral artery bifurcation, and we 

reconstructed the 3D model of the vessel to obtain and verify the additive 

manufacturing processes. Afterwards, a biocompatible eluting-freeform coating for a 

drug-eluting balloon selected on the basis of the 3D-printed vessel was created under a 

biosafety cabinet. The alginate-printed coating contained 40nm fluorescent 

nanoparticles (NP), and was reconstructed by means of RFP printer, and gelled with 

ethanol (EtOH 98%). Feasibility and effectiveness of this 3D-printed scaffold was 

tested in-vivo and in-vitro. 

In order to test this method in-vivo, the NP-loaded 5D device was deployed in a 

rat’s vena cava. The coating dissolved in a few minutes releasing NP, which were 

rapidly absorbed in the vessel’s wall, specifically interstitial tissue and vascular smooth 

muscle cells (confirmed with two-photon microscopy). NP internalisation was also 

confirmed in-vitro, on vascular smooth muscle cells, and on human umbilical vein 

endothelial cell (HUVEC) line. 
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We developed 5D, high-resolution, self-dissolving devices containing NP, which 

can be applied to the personalised medicine, specifically vascular and endovascular 

devices (such as coatings for drug-eluting balloons or stents, or vascular graft 

substitutes). In fact, NP can potentially be loaded with different drugs or molecules, in 

order to obtain a biological activity, thus clinical applicability. 
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Introduction 

Chronic peripheral arterial disease (PAD) is the third leading cause of 

atherosclerotic cardiovascular morbidity, following coronary artery disease and stroke, 

and one of the principal causes of loss of walking ability. Currently, endovascular 

treatment (EVT) – mainly through balloon angioplasty (BA) – represents the most 

commonly performed treatment for patients affected by symptomatic PAD, followed by 

bypass surgery (BS)1. Over the last decades, important advances have been developed 

in endovascular technologies to address a great variety of anatomic challenges, and 

current and future efforts are directed toward improving long-term patency rates. Drug-

coated balloons (DCB) are associated with lower rates of re-stenosis, thus a more 

durable benefit with less need of re-interventions2. However, BA and DCB are 

characterized by well-known limitations. In fact, only few different anti-proliferative 

agents (and excipients) are available, with fixed concentrations (thus limited device 

choice, and lack of personalisation). 

The 3D printing techniques demonstrated the potential of interactive processes 

for medicine and its clinical applications, and related toxicity and vitality studies3,4. 

Materials selected for bio-printed scaffolds are predominantly based on both naturally 

developed polymers (such as gelatine, collagen, chitosan and hyaluronic acid) or 

synthetic molecules (e.g. polyethylene glycol)5–7. These molecules allow the accurate 

and specific management of chemical and physical properties8. 

5D-printing merges the data used to create 3D models with functionalization and 

customization (physiological activity); this process may lead to personalised therapy9. 

In this work, we describe how the 5D manufacturing method may be applied to create 

personalised models of patient’s pathology10. Specifically, we investigated PAD and, in 

particular, the femoral artery bifurcation. We adopted the available 3D printing 
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technology to identify the best operative processes, and the related parameters, to obtain 

the optimal final object starting from a digital model. So, we selected bio-inks and new 

composite materials. Then, we customised macro- and micro-morphologies and 

biological properties (5D), merging these engineered devices with the shape obtained 

from the patient. Finally, in order to pave the way for future personalised medicine, we 

functionalised these printed object with nanoparticles (NP). 

 

Current treatments for PAD 

Medical Treatment. The aims of PAD treatments are: (i) symptoms resolution 

(or, at least, amelioration); (ii) improvement of patients’ functional capacity; and (iii) 

reduction of cardiovascular and cerebrovascular morbidity and mortality, and slowing 

the progression of systemic atherosclerosis11. In general, oral antiplatelet therapy was 

found to be protective in terms of reduced risk of vascular occlusive events 

occurrence12. This includes patients with an acute or previous myocardial infarction or 

ischaemic stroke, angina (stable or unstable), PAD, or atrial fibrillation. Acetylsalicylic 

acid (ASA) is the most investigated antiplatelet agent, and long-term therapy is usually 

carried out with a low-dose oral intake of 75mg to 150mg daily. Daily ASA intake also 

demonstrated its effectiveness in terms of reduction of the risk of infra-inguinal bypass 

graft occlusion13. Clopidogrel 75mg daily has a comparable effect, demonstrating to 

reduce severe vascular events in a slightly larger portion of patients12. These results 

with clopidogrel were similar to those obtained with ticlopidine 250mg twice daily. 

Recently, the COMPASS trial proposed the combination of rivaroxaban 2.5mg twice 

daily (a Novel Oral AntiCoagulant, NOAC) and low-dose ASA for patients with lower 

extremity PAD14. This combination significantly reduced the incidence of major 
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adverse limb events and their related complications. Thus, this study concluded low-

dose NOAC + ASA should be considered as an important therapy for patients with 

PAD14. Statin therapy has been shown to reduce cardiovascular events and mortality 

rates even in the most advanced stages of PAD, so it should be considered in all 

atherosclerotic patients15–17. Lifestyle modifications, such as stopping smoking, 

adopting a healthy diet, weight control, and regular exercise are particularly important 

in terms of life and limb salvage18. Finally, supervised exercise demonstrated its 

effectiveness in PAD patients, especially for those with intermittent claudication (IC)19. 

Surgical treatment. Surgical correction of PAD is indicated to obtain limb 

salvage and to resolve rest pain. In case of IC, it is usually indicated to start with 

medical treatment and supervised exercise11,15,18,20,21. The treatment choice should be 

based on patient’s symptoms and his surgical risk, taking into account the anatomical 

distribution of the atherosclerosis22. Surgical treatment mainly consists in BS or 

endarterectomy (EA). BS redirects the blood flow around an arterial occlusion or 

stenosis, in order to increase the distal perfusion of the limb. BS can be classified in 

anatomic or extra-anatomic. While an anatomic bypass (e.g. femoro-popliteal bypass) 

follows the normal vascular pathways, an extra-anatomic bypass (e.g. axillo-femoral 

bypass) is placed outside a normal path but still represents an important tool for 

vascular surgeons. BS can also be classified according to the grafted material: 

autologous (e.g. great saphenous vein, femoral vein, upper limb veins), prosthetic 

(polytetrafluoroethylene, PTFE or polyethylene terephthalate, Dacron), or allografts 

(e.g. cryo-preserved arterial or venous homografts). Autologous material is associated 

with better patency rates (77.2% for above-knee vein, 64.8% for below-knee vein at 5 

years)23. The early mortality rate is usually below 2%, mostly due to heart 

complications18,23. 
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EA is a basic vascular procedure, which involves the removal of obstructive or 

stenotic atherosclerotic plaque from the arterial lumen. EA can be performed as the sole 

therapeutic technique, or in combination with BS. Several methods for EA are described 

in literature, including: open EA, semi-closed, or eversion EA. Regarding open EA, the 

artery is usually opened through a longitudinal arteriotomy. The plaque is then 

removed, following a plane developed between the atherosclerotic plaque and the media 

or adventitia. The arteriotomy is eventually closed primarily, or with a patch (prosthetic, 

autologous vein, or heterologous patch such as bovine pericardial patch)24. 

Finally, all surgical “open” treatments can also be combined with EVT, in order 

to perform a hybrid treatment25. 

Endovascular treatment. Thanks to recent advances in endovascular materials 

and techniques, catheter-based intervention represents now a feasible and widespread 

treatment modality for PAD, and percutaneous treatments regularly replaced standard 

open surgery as the first line treatment. An EVT is often the default strategy, especially 

for short stenosis or occlusion of the iliac arteries. In fact, in this case, long-term 

patency is excellent (more than 90% after 5 years of follow-up), with low risk or 

complications26. EVT advantages include: avoidance of general anaesthesia, avoidance 

of incision-related complications, reduced cardiovascular stress, and faster recovery. 

Even though EVT is associated with higher rates of restenosis or re-occlusions, re-

interventions are more easily performed when required11,24,27. EVT for PAD include the 

following techniques: percutaneous BA, stenting, endografting (by using covered 

stents). Additional techniques and devices include: DCB, drug-eluting stents, 

atherectomy (excisional or ablative), thrombectomy, and thrombolysis28–31. In general, 

the approach to PAD patients should be planned based upon the location of the arterial 

lesion, its suitability for BA or BS, patient’s surgical risk, and patient’s life expectancy. 
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Finally, the possibility that a specific EVT may limit future surgical options should be 

considered. 

 

History of 3D-bioprinting 

The addictive manufacturing industry was revolutionised in the eighties. An 

American engineer, Charles Hull, built the first 3D printer. Basing on an object created 

with computer-aided design (CAD), this printer was able to depose sequential layers of 

an acrylic photopolymer, which was concurrently cross-linked by UV light, creating a 

solid 3D object. This technology was named stereolithography (STL)32. Then, in the 

nineties, healthcare professionals started to 3D-print dental implants, custom prosthetics 

and kidney bladders. Afterwards, the term “3D-bioprinting” started to appear in 

literature. “3D-bioprinting” was adopted when the material being printed, so-called 

“bio-ink”, was made of living cells, biomaterials, or active biomolecules33. 3D-

bioprinting, similarly to additive manufacturing, consists in layer-by-layer deposition of 

bio-ink for 3D tissues and organs creation32–34. In addition to organ and tissue printing, 

3D-bioprinting can also be employed for tissue models fabrication, disease modelling, 

and numerous other in-vitro applications. 

Currently, 3D-bioprinting may be classified in three sub-groups: extrusion, 

droplet, or laser-based bioprinting32,34,35. Each bio-printing modality has its own bio-ink 

selection, based on bio-ink’s viscosity, rheology, cross-linking chemistry, and 

biocompatibility. Over the last decades, bio-inks evolved, as well as secondary 

techniques to overcome 3D-bioprinting limitations. For example, low-viscosity bio-inks 

may be extruded in a granular support bath containing yield stress hydrogels which 

solidify around the printed structure in order to prevent its collapse36. In the meantime, 

significant advancements were also obtained in imaging modalities, and post-processing 
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software programs. Nowadays, thanks to the above-mentioned progresses, 3D bio-

printing is emerging as a encouraging new approach for the fabrication of complex 

biological creations in the fields of tissue engineering, regenerative medicine and 

reconstructive surgery32. 

In the current work, we applied these techniques, specifically 5D additive 

manufacturing, to create personalised models of patients’ pathology, and to pave the 

way for the future creation of personalised, active coatings for DCB, or vascular graft 

substitutes. 
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Materials and Methods 

Computed Tomography 

To 3D-print a femoral bifurcation, we started from a Computed Tomography 

(CT) Angiography (CTA) of a PAD patient. All CTA were performed with a 128-

section CT system (SOMATOM Definition Flash, Siemens Healthcare GmbH, 

Erlangen, Germany). 

A standard lower extremity CTA was carried out in cranio-caudal direction 

during deep-inspiration breath-hold, with scan volume from the para-renal aorta to the 

feet, and consisted in a two-phase acquisition. A first, unenhanced, phase to clearly 

identify the presence of calcifications or previously implanted materials such as 

vascular stents, was followed by an arterial phase with bolus tracking. Contrast medium 

was injected through an 18-gauge cannula in an antecubital vein with the use of a 

double-syringe electronic injector (Medrad Stellant, Bayer HealthCare LLC, Whippany, 

NJ, USA). Initially, 60 mL of a non-ionic, monomeric iodinated contrast medium 

(Iomeron 400, Bracco SA, Milan, Italy) was administered at a rate of 3 mL/s, followed 

by 30 mL at 2 mL/s. Finally, a 40-mL saline chaser was injected at a 3mL/s rate. A 

region of interest (ROI) at the level of the aortic bifurcation was used for bolus-

tracking; the scan started 15 s after the enhancement of this ROI crosses the threshold 

trigger of 140 Hounsfield Units (HU). Additional data acquisition parameters were: 

voltage 120-140 kV, current 200-250 mAs, pitch 1.0, collimation 128x0.6 mm, and 

rotation time 0.5 s. CTA were reconstructed at 1-mm slice thickness, every 0.7-mm 

slice increment. 
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3D printable model creation 

 Images were exported in Digital Imaging and Communications in Medicine 

(DICOM) format, then uploaded and analysed on an independent dedicated workstation 

equipped with an open source medical image viewer (Horos 2.4.0, The Horos Project). 

First, the CTA-scan was viewed in 3D-Volume Rendering (3D-VR) modality. Bones 

were removed with the appropriate tool. Residual fragments, or structures, other than 

arteries, were removed with the scissor tool. Then, the CT-scan was cropped by leaving 

only that area of interest (i.e. the femoral bifurcation), in order to obtain a smaller STL 

file. 

Multiple ROI were placed along the course of the arteries to obtain Hounsfield 

numbers of the vessels of interest. Then, a new, separate series based upon these HU 

intervals was created. 

Finally, the 3D Surface Rendering can be created, and the 3D model exported to 

an STL file for 3D printing. Since some surface details of this STL model may be not 

printable, the STL file usually needs post-processing with a CAD-like software. 

Our 3D-printing lab is equipped with: custom-made hybrid printer, hybrid 

deposition printer in climatic chamber, stereolithography printer for resins 

polymerization, custom-made rapid freeze prototyping printer, and 6 laboratories for 

rapid prototyping. 

 

General equipment description 

Most of the tests regarding in-vitro and in-vivo studies, as well as simulation 

tests, were carried out in the Laboratories of the Department of Medicine and Surgery, 
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University of Parma, and in the Common Research Centre of the University Hospital of 

Parma. The Common Research Center of the University Hospital of Parma consists of 

about 1600 square meters of research space, made up of various, closely linked 

components. The research/diagnostic laboratory (CoreLAB) with genomic, proteomic 

and cell biology facilities, contains the following technologies/expertise: micro array 

(Affimetrix and Agilent platforms), nucleic acid extractors (Hamilton MicroLab 

STARlet), flow cytometry and cell sorting (FACS Aria III, Becton-Dickinson; F500, 

Beckman-Coulter), bioinformatics. 

The SIM.LAB (Clinical Simulation Laboratory) of the University of Parma, 

located within the Hospital area, provides a space already suitable for simulation and 

training for a wide range of clinical and surgical procedures, and was used for 

preoperative EVT planning and material selection. The SIM.LAB consists of about 300 

square meters of simulation space, and includes: one operating theater simulation room 

(with the possibility to use fluoroscopy with a mobile C-arm), an endoscopy simulation 

room (gastrointestinal and bronchial), a surgical hand scrub simulation space, two 

rooms dedicated to control/direction and filming (equipped with ETC FusionHD FULL 

KbPort), a storage area, a skill room (to train skills such as peripheral or central venous 

catheter insertion, arterial cannulation, vascular accesses, or cardiopulmonary 

resuscitation) divided into three compartments, a medical office for communication 

laboratory, offices for secretaries and technical services. In particular, the operating 

theater simulation room is equipped with different manikins, a virtual patient simulator 

and skill trainers related to different medical specialties. 
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3D bio-printer settings and analysis, and model design 

Part of the materials and methods described in this section was also preliminarily 

published in a peer-reviewed scientific journal10. The rapid freeze prototyping bio-

printer was custom-made (Arduino-based). It was positioned under a biosafety cabinet 

(HeraSAFE Heraeus, Thermo Fisher Scientific, Waltham, MA, USA), and equipped 

with 2 mechanical extruders for 5ml syringes (BD Emerald, Franklin Lakes, NJ, USA), 

and a removable Peltier cold plate34. The cold plate temperature was measured with a 

Flir A325 infrared camera (Flir Systems, Wilsonville, OR, USA). Then, a scaffold was 

designed, getting the following characteristics: biocompatibility, ability to dissolve 

itself, capability to be functionalized by NP addition. The scaffold was designed using 

SolidWorks2015 (Solidsolution, London, UK), and sliced with Slic3r open source 

software (Slic3r 1.3.0, www.slic3r.org). 

 

Development of the nano-functional scaffold 

In order to develop the scaffold/coating, we used two different materials as bio-

inks: alginate powder and natural polylactic acid (PLA), as previously described in our 

recent publication10. The first one, alginate powder (W201502, Sigma-Aldrich, 

Steinheim am Albuch, Germany), is a low-cost hydro-soluble biomaterial used for 

sweets fabrication or for molecular cooking. The second one, natural PLA (175N1, 

Velleman Inc., Legen Heirweg, Gavere, Belgium) without colour pigments (diameter 

1.75mm, density 1.25g/cm3 (at 21.5°C), printing temperature 190-225°C, impact 

strength 5kJ/m2), recently demonstrated its use for clinical applications8,37. 
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Nano Dry Formulation (NDF). To minimize particle aggregation, all NP (40nm 

Fluorescent nanobeads, Thermofisher, Milano, Italy) were sonicated (Branson 

Ultrasonics, Danbury, CT, USA) for 30 minutes at T=37°C, and 3µl (50µg/ml) of NP 

solution were added into sodium alginate powder. This sonication was performed before 

all the following experiments involving NP. Afterwards, high-glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) without phenol red (Gibco, Thermo Fisher 

Scientific, Waltham, MA, USA) was added, in order to achieve a final alginate solution 

concentration of 7%, 9% and 11% wt/vol. 

3D Fast Freeze Gelation (3DFFG). Scaffolds were printed onto aluminium plate 

with a temperature of about -30°C (at room temperature), through a 26G needle (BD 

Emerald, Franklin Lakes, NJ, USA), and covered with ethanol 95% in order to obtain 

gelation and disinfection, simultaneously38,39. Specifically, the nano-laden scaffolds that 

will be used for the following in-vitro and in-vivo tests were 3D-printed with alginate 

11% at 6mm/s printing speed. These printing values were in accordance with the under-

mentioned results of the macro-morphological characterisation and resolution 

assessment. 

 

Characterisation of the coating micro-porosity 

Scanning electron microscopy (SEM) characterizations of the 3D-printed 

scaffolds were performed using a field emission SEM (FESEM, Nova NanoSEM 450, 

FEI company, Hillsboro, OR, USA). This was useful to obtain morphological 

information, specifically micro-porosity characterizations, of the 3D-printed objects. 

All-images were acquired in field-free lens mode using the Everhart-Thornley detector 
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for the secondary electron imaging signal. The accelerating voltage of 10kV, the spot 

size of 4.5nm, and the working distance of 6mm were used for all image acquisition10. 

 

In-vitro vascular smooth muscle cells (VSMC) tests 

Cell culture. Part of the following methods was recently, preliminarily published 

in literature by our research group10. Mice VSMC were cultured in DMEM (high-

glucose) with 2mM glutamine, 10% foetal bovine serum (FBS, Euroclone, Milano, 

Italy) and 1% penicillin/streptomycin (5,000 UI/mL). Cells were cultured as 

recommended and maintained under standard cell culture conditions at 37°C in a water-

saturated atmosphere of 5% CO2 in air. We seeded 3x105 VSMC in a 50mm Petri dish 

for direct and indirect measurements, for a total of eight measurements. Regarding the 

direct measurement, we added after 24 hours the alginate scaffold-enriched NP 

(50µg/ml) cross-linked with ethanol to the culture, as described above. For the indirect 

method, the same scaffold-enriched NP was totally dissolved directly in the medium 

before being added to the culture. 

Viability assay. In order to evaluate cell viability, VSMC were counted in a 

Buerker haemocytometer by trypan blue exclusion method and evaluated under a phase 

contrast microscope. Cell viability was also confirmed using calcein acetoxymethyl 

(AM) staining (Thermo Fisher, Waltham, MA, USA). Specifically, after the treatment, 

the media was replaced with a fresh one containing 5µM calcein AM. After 30 minutes 

of incubation at 37°C in 5% of CO2, cells were washed twice with phosphate buffered 

saline (PBS) before being imaged with an upright fluorescent microscope (Leica 

Microsystems, Wetzlar, Germany) through a x20/0.7 or x40/1.3 oil objective. 

Scaffold dissolving methods. We performed two different dissolving methods: 
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1. Direct method: the scaffold was placed directly in the Petri dish 

containing cells with 4mL of culture medium; 

2. Indirect method: the scaffold was placed and dissolved in a 15mL tube 

into 2mL of culture medium. Once the scaffold was dissolved, we added 

2mL more of culture medium; then, this solution was added in the Petri 

dish, where the cells were previously cultured. 

 

In-vivo experiments 

We tested a total of five Sprague Dawley rats. Preliminary results on two albino 

laboratory rats were already published by our research group, using similar methods10.  

These experiments were performed in accordance with the local ethical guidelines. The 

protocol was approved by the Italian Ministry of Health (Prot. N 989/2017.PR). All the 

procedures followed the directives of the European Law 63/2010 and the Italian law 

26/2014 for experimental animal use. Animals were anesthetised, and the inferior vena 

cava was exposed through surgery39. The proximal portion of the inferior vena cava was 

ligated, and the NP-laden scaffold was inserted 1cm distally, via a 26G needle through a 

short venotomy. This scaffold was left in place for 2 minutes in the vena cava, in order 

to obtain complete dissolution. Then, the vessel was removed. This specimen was 

subsequently washed in PBS, opened with a longitudinal venotomy, and fixed in 4% 

buffered formalin solution for 24–48 hours before two-photon microscopy evaluation. 

 

Microscope analysis for in-vitro and in-vivo tests 

Parts of the following materials and analyses were preliminarily published in 

literature by our research group10. 
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Stimulation-emission depletion (STED) microscopy. Before STED microscopy 

analysis, the cells were fixed on a cover glass (thickness n°1.5) with 4% 

paraformaldehyde (PFA) for 10 minutes; then blocked, and permeabilised with 3% 

normal goat serum, 0.1% Triton X-100 in 1 x PBS for 1 hour as previously described40. 

Briefly, STED xyz images were acquired with a Leica SP8 STED3X confocal 

microscope system (Leica Microsystem, Wetzlar, Germany). Green NP (Molecular 

Probes, Eugene, OR, USA) were excited with a 488 nm Argon Laser, and emission was 

collected from 507 to 614nm, while wheat germ agglutinin (WGA, Thermo Fisher, 

Waltham, MA, USA) was excited with a 545/547nm-tuned white light laser (WLL), and 

emission was collected from 555 to 647nm. Sequential acquisition was applied to avoid 

fluorescence overlap. A 660nm conventional wisdom (CW)-depletion laser was used for 

both excitations. Images were acquired with a Leica HC PL APO 100x/1.40 oil STED 

White objective. CW-STED and gated-STED were applied to the fluorescent NP and 

WGA, respectively. Collected images were de-convolved with Huygens Professional 

software (Scientific Volume Imaging, Hilversum, The Netherlands) and analysed using 

Imaris 7.4.2 software (Bitplane, Belfast, UK). 

Two-photon microscopy. The laboratory rat’s vena cava exposed to NP-laden 

scaffolds was fixed and stained with WGA, and imaged with the two-photon 

microscopy (Trim Scope II, LaVision BioTec, Bielefeld, Germany). Two-photon 

microscopy allows cells and NP imaging for the entire thickness with a 10–20 µm of Z-

stack40. 
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In-vitro human umbilical vein endothelial cell (HUVEC) analysis 

The sterile plastic material for the cell cultures was purchased from Costar, 

Corning (Amsterdam, The Netherlands), and PBS from Euroclone (Milano, Italy). The 

ATP colorimetric assay kit was obtained from Novus Biologicals (Centennial, CO, 

USA). MTT (3-(4,5-dimethyl-thiazol-2-yl)2,5-diphenyl tetrazolium bromide) was 

provided by Sigma (St. Louis, MO, USA), which also supplied all of the other reagents, 

unless otherwise specified. Regarding HUVEC analysis, parts of the materials and 

methods described below were preliminarily published in literature by our research 

group10. 

Cell culture, treatment and proliferation/viability studies. HUVEC (purchased 

from Lonza, Basel, Switzerland) were grown in a fully supplemented EGM-2MV Bullet 

Kit (Lonza, Basel, Switzerland) at 37°C in a 5% CO2 humidified incubator. Before the 

treatments, cells were seeded in plates and cultured to 80-90% confluence. 

Next, we seeded 3x105 HUVEC in 2mL of medium for 2-24-48 hours before 

toxicology assays, applying both the direct and the indirect treatment previously 

described for the VSMC. 

Cells’ morphology was monitored using an inverted microscope (Olympus 

CK40-RFL, Tokyo, Japan), and their number was evaluated by cell counting in a 

Buerker haemocytometer. 

Viability was also assessed by MTT assay. The formazan crystals were 

solubilised, and the absorbance was measured using an automated microwell plate 

reader (Multiskan Ascent, Thermo Labsystems, Helsinki, Finland) at 550nm.  

Cellular ATP levels were determined using the ATP assay kit, following the 

manufacturer’s instructions. All results were expressed as the percentage of controls 
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(untreated cells).  The uptake of fluorescent NP was evaluated by flow cytometry using 

a FC500 flow cytometer (Instrumentation Laboratory, Bedford, MA, USA). Data were 

processed using the FlowJo software package (Tree Star Inc., Ashland, OR, USA). 

 

Statistics 

Normal distribution vs. skewed distribution of variables was assessed with the 

Kolmogorov-Smirnov test. Statistics of variables included One-sample T-test signed 

rank test, unpaired Student’s t-test, two-way ANOVA (post hoc analyses: Bonferroni 

test or Games-Howell test, where appropriate), Wilcoxon sign rank test and Kruskal-

Wallis (post hoc analyses: Dunn’s multiple comparison). Data were analysed with Epi 

Info 7.2.2.16 (CDC, Atlanta, Ga, USA), or Prism 6.0 software (GraphPad Software, San 

Diego, CA, USA). Details about the specific test adopted for each experiment will be 

described in the figure legends. A p value <.05 was considered statistically significant.  
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Results 

The 5D printing technique is the result of data regarding 3D printing 

technologies merged with local control composition of the biomimetic materials (+1D), 

and particles distributions with the capability to reproduce a life-like organ response 

during physiology studies (+1D)9,41. Starting from a patient’s CTA, we continued by 

reconstructing the 3D model of his femoral artery bifurcation. Then, we obtained a 

nano-laden aerogel as a carrier for the fast release of integrated NP. These bio-printed 

devices were subsequently used to realise a biomimetic bio-composite material (4D) for 

the in-vitro and in-vivo tests. Eventually, we customised the 4D model by adding NP, 

which directly interacted with the organ physiology, obtaining a 5D bio-printed device. 

The design of a standardised approach, to develop 5D printed devices, required 3 

phases (Table I): pre-printing, printing and post-printing42. Each phase requires the 

analysis and the validation of the following modelling steps: (i) requirement; (ii) model 

orientation; (iii) trajectory generation; (iv) printing process analysis; and (v) digital 

model adherence10. 

Using a Peltier-based system (Fig. 1a), we developed soft scaffolds (Fig. 1b) 

with a complex shape (Fig. 1c). The implemented cooled bed (Fig. 1d) reached a 

temperature of -30°C in 19.6±0.9s (31.2±0.1°C in 120s), and returned to room 

temperature (ΔT=57°C) in 25.4±0.7s. 

The selected mechanical micro-extrusion technology, with volumetric planning, 

did not require any process change in the use of different materials or bio-ink viscosities 

(Fig. 2a)10,43. Real-time pressure adaptation is necessary, since this would be impossible 

by pneumatic control extrusion alone (Fig. 2b-d). To obtain dimensions very close to 

those of a 26G syringe needle (inner diameter Φ = 292µm), we found that by using a 

concentration of 11% alginate the fresh filament diameter, measured after 3D printing, 
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was the optimal biomaterial concentration (Fig. 3a, green columns). On the other hand, 

when using 7% and 9% alginate solutions for scaffold fabrication with 400µm of 

macro-porosity, it was difficult to preserve the bridge for the required freezing time. 

Thus, it was required a low environmental temperature to subtract the thermal energy in 

a shorter time. Or, to maintain the same speed, we had to print a larger filament to 

adequately distribute the filament weight, which would not fit the 26G needle. The 

minimum deposition speeds for the different percentages of biomaterials to maintain a 

regular shape distribution were: 6 mm/s for 11% of alginate (Fig. 3b); 10 mm/s for 9% 

of alginate (Fig. 3c); and 14 mm/s for 7% of alginate (Fig. 3d). Eventually, with the 

minimum speed (6 mm/s) and maximum concentration (11% of alginate) we used for 

3D bio-printing, we also performed a validation test of both corners and drop (Fig. 3e, 

3f), proving the high resolution of the applied technology. Parts of these results were 

preliminarily published in literature in a peer-reviewed journal paper10. 

We developed the creation of models of fast release vascular therapy through the 

bio-printing fixation (Fig. 4a), followed by freeze gelation, using ethanol (Fig. 4b), 

allowing the fabrication of 5D nano-laden hydrogels (Fig. 4c)44. We initially printed a 

total of eight scaffolds, with and without 40nm fluorescent NP addition (Fig. 4d). These 

scaffolds self-dissolved in DMEM in 198.3±1.6s, and 207.3±2s, respectively. The 

difference of dissolution time between the two groups (with or without embedded NP) 

was not statistically significant (Fig. 4d). On the other hand, the normal CaCl2 gelation 

scaffold (Fig. 4e) displayed the same structure after 24 hours. The alginate-printed 

scaffolds showed an extremely porous and fibrillar microstructure, as depicted by 

scanning electron microscopy (SEM) images. The high surface area led to a greater 

interaction with biological tissues (Fig. 4f). Conversely, ethanol-gelled structures (Fig. 
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4g) presented a more compact and less porous microstructure, characterised by a higher 

speed of resorption, release of drugs, and reduced surface volume ratio10. 

Preliminary in-vitro analysis on VSMC (Fig. 5), demonstrated cell viability in 

both the considered gelation processes (CaCl2 and ethanol). Dissolution time for both 

direct and indirect methods was similar, and the difference was not statistically 

significant if compared to control. 

Then, after the dissolution of these bio-printed structures (Fig. 6a), NP 

internalisation into VSMC was revealed through STED confocal microscopy (Fig. 6b-

d). Subsequently, we inserted the same NP-laden structures in a rat’s vena cava (Fig. 7), 

in order to confirm the feasibility of these methods in-vivo. Dissolution occurred in a 

short amount of time (approximately 2 minutes)10. We confirmed NP internalisation 

into both the interstitial tissue and the vascular cells (Fig. 6e-g)45. To corroborate our 

findings, during the last year of this project, we repeated the in-vivo experiment with 

four additional albino laboratory rats. We obtained similar results even if we modified 

the technique. In fact, the scaffold dissolved in approximately 2 minutes also in the rat’s 

aorta, and in a non-ligated vena cava. Finally, NP internalisation was confirmed via 

two-photon microscopy. 

Eventually, cellular vitality and metabolism were assessed in a HUVEC line, to 

test if our printing method may alter cell surviving in any way. The percentage of 

alginate (11%) we used for our biological application did not influence cellular vitality 

or metabolism in both direct (Fig. 8a, c, e) and indirect (Fig. 8b, d, f) methods for 

dissolution. Likewise, gelation and NP administration did not alter the HUVEC viability 

or metabolism (Fig. 8a-f). To check if NP may interact with our cell line, we also 

performed a cytofluorimetric analysis, which demonstrated HUVEC can bind and/or 

internalise NP with slight 24 hours changes (Fig. 8g). 
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Basing on these preliminary results from in-vitro and in-vivo studies, we moved 

on from functionalization method (4D), to customisation method (5D). So, we printed a 

model of a femoral artery bifurcation (Fig. 9), directly from a patient’s CT-scan with the 

aim to reconstruct, by 3D bio-printing, the portion of interest (Fig. 10) with sodium 

alginate-based material. The bio-ink was functionalised with an interface and the 

relative reinforcement, obtaining a composite biomaterial (Fig. 11a). Basing on this 

result, we manufactured a bio-composite material (nano-functionalised 4D bio-

engineered scaffold) with a new type of fibre (Fig. 11b), customised with different 

functional matrix (for cellular adhesion, gradual release, etc.) (Fig. 11c). Finally, we 

merged this material with the correct technology parameterisation, and we printed and 

perfused a complex vessel system (Fig. 11d–f).  

The fibre (Fig. 11g) allowed scaffold engineering (performance mimicry, 

vascularisation for cell viability). The surface micro-morphology modification (Fig. 

11h) enabled different types of applications (cell adherence, active or passive stimuli 

response). With different types of coating and matrix we could customise the 4D bio-

composite materials (Fig. 11i)10. Also, in order to print the nano-laden scaffold, we 

could realise a composite biomaterial, or rehydrating an aerogel scaffold. Then, after the 

implementation of the adhesive coating and matrix, we could customise the biological 

device (Fig. 11j) to achieve the desired physiological properties (Fig. 11k). 

Finally, we obtained a 5D bio-printed device as a theoretical, customised coating 

for a DCB for percutaneous angioplasty (Fig. 12a–d)9. The reported fabrication 

processes pave the way for the post-printing phases, and “6D” smart material device 

(e.g. autonomous regeneration). These next phases will include tissue and organ 

reconstruction, medical training on bio-printed objects (Fig. 12e–g), and/or systems for 
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the controlled release for scaffold functionalization (e.g. vascularised scaffold, capillary 

systems) (Fig. 12h). 
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Discussion 

The worldwide prevalence of PAD is uncertain46. Nevertheless, approximately 8 

to 10 million people are affected with lower extremity PAD in the United States, and 

almost 40 million in Europe15,20. Moreover, the number of patients with PAD is rising, 

due to global aging, growing world population, and increased incidence of diabetes and 

hypertension. 

Even though PAD may be asymptomatic in more than 20% of the cases, typical 

clinical manifestations include some type of pain47. Atherosclerotic stenoses or 

occlusions within the lower extremity arterial tree reduce the blood flow to the leg, 

causing varying degrees of soft tissue ischemia. Symptomatic PAD may present as IC, 

or with limb-threatening ischemia associated with rest pain and/or ischemic ulcerations 

or gangrene, usually referred to as chronic limb-threatening ischemia (CLTI)18. Unlike 

IC, which rarely progresses to the point of requiring amputation, CLTI is associated 

with a high risk of limb loss without intervention21. 

The BASIL (Bypass Versus Angioplasty for Severe Ischemia of the Leg) trial, is 

the only multicentre, randomized controlled trial (RCT) which compared BS and 

EVT/BA1. This study concluded that these two treatments are associated with 

comparable outcomes in terms of amputation-free survival. Each strategy demonstrated 

its own different advantages and drawbacks. In fact, patients who underwent BS 

experienced a more durable benefit, but this approach was associated with a significant 

higher rate of post-operative morbidity, greater length of stay, and more frequent need 

of intensive-care unit stay. On the other hand, the BA group experienced lesser early 

morbidity rates and shorter length of stay, but higher immediate failure and 12-month 

re-intervention rates. Finally, average costs were lower in the latter group. 
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One of the major limits of this RCT, is that current endovascular technologies 

have not been included27. In fact, due to its clear advantages at least in the short-term, 

EVT represents – at present – the most commonly used treatment for PAD48. 

DCB are made up of a semi-compliant or non-compliant balloon catheter 

covered with an anti-proliferative agent (typically paclitaxel), and an excipient (e.g. 

urea) to facilitate drug transfer into the vessel wall on balloon inflation2. The main 

advantage provided by DCB angioplasty over plain old BA (POBA) is the lower rates 

of re-stenosis, thus a more durable benefit with less need of re-interventions. In fact, 

POBA has been associated with 1-year re-stenosis rates up to 60% in the 

femoropopliteal region2,49. Even though the implantation of a bare metal stent (BMS) 

may halve the risk of re-stenosis, BMS are associated with additional complications 

such as fractures, thrombosis and in-stent re-stenosis2,48,50. Recent RCT reported 

favourable outcomes with DCB when compared with POBA. One-year primary patency 

rates were 87.5% in the IN.PACT SFA, 82.3% in the ILLUMENATE US, and 73.5% in 

LEVANT 22,51,52. Significantly higher primary patency rates were confirmed at 36 

months follow-up (69.5% in the DCB group vs. 45.1% in the POBA group; log-rank 

P<.001)2. To note, these results were similar to those obtained with drug-eluting 

stents53. At present, new, customizable, endovascular devices are eagerly awaited, in 

order to improve target lesion patency and extend EVT feasibility. 

The production of synthetic organs and living tissues requires the realisation of 

bio-mimetic bio-scaffolds for cell seeding, the presence of integrated vascular systems 

for long-term perfusion, and a precise cell deposition process with the related scaffold 

customisation for 5D technique implementation and bio-mimicry screening8,10. The 

macro-structure should allow the synthetic organ function bio-mimicry (e.g. 
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vasoconstriction), while the surface characteristics should support cell adherence and 

subsequent cell vitality. 

Using the Formulation and Analysis for Nanoparticle Additive Manufacturing 

(FANNAM) method (Table I) applied to the reconstruction of PAD, it is possible to 

carry out pre-surgical training and 5D short-term medical device, identifying the 

correlation and the related scheduling between methods steps, parameters, operative 

processes, and the printing phases related to organ printing10,34,42,54. The realisation of 

5D printed soft tissues (cf. Table I) requires: (i) evaluation of the parameters resuming 

the interaction between the 3D printed object and the selected biological tissue; (ii) 

functionalization to apply operative processes in health application; and (iii) validation 

of the printing phases with 3D partial processes and customisation of digital bio-library. 

The 3D pre-printing process requires three major steps: (i) image acquisition and 

selection, slicing and analysis; (ii) computer aided tissue engineering (CATE) 

processing; and (iii) printing. The first step, i.e. image acquisition, is achieved with 

Magnetic Resonance Imaging or CT; CT is usually the preferred method by reason of 

its faster sampling. Volumetric data are rendered in DICOM format, which cannot be 

directly 3D printed55. Thus, image data require conversion to .STL format, using a 

specific software; then, the g-code generated by computer aided manufacturing (CAM) 

controls the motors56. The selected material and its customisation address the selection 

of technology and the correct printing parameters for its manipulation. The total quality 

improvement process begins by recognizing the type of object and the quality 

evaluation of the results for the adopted production technology and concerns: material 

properties, geometric parameters, micro-porosity, the degradation of the gelled object, 

as well as the cells’ viability and/or the material toxicity10. RFP technology allows the 

high-defined scaffolds development. Thus, the method we are presenting may improve 
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the current state of the art57,58. Indeed, we were able to obtain the same resolution of the 

existing technology, while avoiding the use of toxic photo-activators, indispensable for 

the stereolithographic apparatus (SLA)10,59. Additionally, in contrast to selective laser 

sintering or SLA, we did not produce material waste. Furthermore, the use of cell-laden 

bio-ink would not be possible with standard fused deposition modelling, since it passes 

the temperature of 37 °C. 

High resolution was achieved by identifying 46 geometrical parameters for the 

scaffold analysis, developing a continuous improvement operative process to better 

understand and validate the deviation trend and applying the inner diameter value as 

“filament parameter”8,10,58. Difficulties regarding the height of the layer were solved, 

and variance using the geometrical parameters was reduced as well as the incomplete 

lap, the over accumulation and the redundant lap57,60. In this context, viscosity has a key 

role in the deposition of filament without support (bridge). As a matter of fact, it is well 

known that alginate dissolved in bovine serum affects the rheological properties of 

polymer mixture solution. The viscosity is directly related to the alginate concentration, 

and inversely related to the temperature61,62. In fact, the development of shape with high 

viscosity material becomes very easy in printing; however, the energy that has to be 

subtracted from the scaffold and/or the time for the freezing phase has to be added. 

To identify the region of interest, we created a digital model and the related 

digital bio-library able to control the manufacturing phases. This library requires 

thorough validation, to apply the same file for its development with the largest number 

of hard and soft materials. 

For these reasons, the identification of macro-morphology resolution must be 

merged with the printing parameters lower limits. The FANNAM method includes four 

processes: 3D reconstruction cutting (3DRC), 3D fast freeze gelation (3DFFG), nano 
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dry formulation (NDF), and 3D partial processes (3DPP), designing new digital 

elaboration steps to define the best correlation between different materials and 

technology. The final goal is the definition of an optimal printing configuration, and an 

alginate-based material formulation with integrated NP, while simultaneously 

disinfecting the 3D-printed object43. By using 3DRC, the missing biological 

components can be rebuilt, defining the best fit between the 3D model and the final 

trajectory related to printing materials10. The alginate-based materials with embedded 

NP we used for these experiments were made with NDF, without NP waste and with the 

goal to guarantee low variance in terms of released nano-laden material. We 

implemented 3DFFG, which allows fast gelation, the rapid release of alginate 

(approximately 2-3 minutes), and simultaneous disinfection, enabling the long-term 

preservation without any additional treatment63. In fact, once the adherent printed object 

is obtained with the digital model, the instantaneous gelation closed the loop for 

scaffold fabrication, fixing the freezed scaffold promptly. 

The functional adherence of the 3D-printed object, the amount of used material, 

and the similarity with the digital model are assured via the 3DPP. 3DPP includes all 

activities of configuration, calibration or modification carried out in the processes and 

stages of 3D model development, which competes for maximum quality performance. 

Partial processes are therefore mandatory in the development of 3D-printed objects 

through rapid prototyping and viscous materials. For instance, if we change the 

development speed on a machine with a subtractive technology, the surface roughness 

alteration does not modify the mechanical characteristics; on the other hand, when using 

the additive manufacturing technology to realise cake decorations, its morphology 

changes, obtaining the functional aim of the object (aesthetics, in this case). Thus, the 

assessment of the parameters is directly related with the functionality of the 5D object, 
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and in the case of soft tissue realization, we must take into account accidentally falling 

drops, or the creation of vascular channel to bring, where required, the gelation fluid for 

the morphology long-term fixation. Dedicated tests are required to better assess any 

manufactured object and each possible customisation61,62,64–68. 

Eventually, post-print and analyses increase the quality and the biological 

potentials of digitalised pathological models and the evaluation of the printed 5D model 

adherence, assuring a continuous improvement system with the use of a custom CATE 

for the smart and fast storing of all processed data in new digital library pathology10. 

In virtue of the high scaffold customisation potential (NP or functionalised 

matrix for a gradual drug release), we can design and bio-print 5D personalised medical 

devices. Specifically, by modifying the composite biomaterial and the manufacturing 

methods, the interaction of the grafted structures with the biological substrate may be 

modified in accordance with the experimental requirements69–71. When it is possible to 

transplant bio-compatible tissues (prosthetic grafts, stents, etc.) and activate the 

functionalised material for restoring physiological activity (with, for instance, external 

stimuli such as electrical, magnetic, photonic, etc., or chemical agents), the 5D printing 

becomes “active”41,72. Therefore, as a result of the analyses and the digitalisation of the 

diseases over time, it is possible to validate and determine key directives in order to 

develop the region of interest for the scaffolds for future in-vivo tests. 

The method we described can be applied to different types of materials and 

gelation. In this study, we used alginate, and gelled the scaffold with EtOH and CaCl2. 

These two developed bio-materials scaffolds demonstrated distinctive micro-

morphology as well as functional application. Anyway, both of these bio-materials were 

associated with a low influence on cell viability. These developed devices demonstrated 

the capability to control gradual release, as we confirmed with our in-vitro and in-vivo 
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studies regarding dissolution of the 5D-printed device in a solution with VSMC and, 

consequently, in an albino rat’s inferior vena cava. The pharmacokinetics and 

pharmacodynamics of the release was very similar to DCB application. Moreover, these 

nano-laden scaffolds demonstrated to be able to carry NP, and also their long-term 

storage potential was confirmed. Reproducing the same tests on HUVEC, the results 

demonstrated the potential of human scaling of the proposed method. The high 

variability in biological application requires rigorous standards for analysis and we 

identified a good scheduling for the 5D processes and parameters digitalisation with the 

goal to support the synthetic organ development and the digital bio-library 

improvement. Our method showed that is possible to develop nano-laden 5D devices 

for training, pharmacological tests and in-vivo applications, and the possibility to 

improve the current DCB therapy, merging patients morphology with the high 

resolution of RFP technology. 
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Conclusions 

3D-printing of a custom balloon coating is feasible. These printed scaffolds with 

11% of alginate concentration demonstrated no toxicity in in-vitro studies. These 

biocompatible scaffolds can be integrated with active NP, and their effectiveness was 

confirmed in both in-vitro and in-vivo tests (NP internalisation in target cells and 

tissues). This method paves the way for future personalised medicine, since these 5D- 

printed scaffolds can be functionalized with different nanoparticles, i.e. fluorescent 

nano-beads as a convenient model of drug carrier, chemo-carrying nanoparticles (e.g. 

paclitaxel), or plasmonic nanoparticles. 
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Tables 

Method Parameters Operative 
processes 

Printing phases Organ Printing 
Phases 

Parameters 
identification Region of interest 

Imaging 
acquisition (CT, 

MRI, PET) 

Images processing 
sectioning and cell 

isolation 

PRE-PRINTING 

Materials 
selection Process 

Technological 
sizing based upon 
material properties 

Formulation 

Technology 
assessment Geometrical 

CATE (computed 
aided tissue 
engineering) 
processing 

Blueprint 

Pre-processing 
reconstruction Printing 

3D imaging 
digitalization and 

printing 
simulation 

3DRC (3D 
reconstruction 

cutting) and digital 
bio-library related 

to the model 

3D Object 
processing 

Chemical and 
Physical 

Additive 
manufacturing and 

fixation 

3DFFG (3D fast 
freeze gelation) 

PRINTING 

4D 
Functionalization 

Functional and 
biomimicry 

Definition of 
dynamic and 

active properties 

NDF (nano dry 
formulation) 

5D Customization Pathology and 
physiology 

Health device 
development 

3DPP (3D partial 
processes) and 

digital bio-library 
functional 

customisation 
Therapy Predictive Biological tests Biomonitoring 

POST-PRINTING 

Synthetic organ 
transplantation Health guideline Clinical analysis Treatment and 

validation 

Bio-based smart 
bioprinting Adaptive Smart processing 

Human mimicry 
and autonomous 

regeneration 
 

 

Table I. The 3 phases involved in 5D printed devices development (from pre-processing 

reconstructions, to 5D customisation). In this Table (adapted from our preliminarily published work: 

Foresti R et al. In-vivo vascular application via ultra-fast bioprinting for future 5D personalised 

nanomedicine. Sci Rep 2020;10:3205), methods, parameters, and operative processes are described. 

 

  



 44 

Figures 

 

Figure 1. Peltier cold plate, and scaffold fabrication. (a) Bioscaffold with 200µm of macro-

porosity on the Peltier cold plate. (b) Detail of the 47.5 x 47.5 mm 3D-printed scaffold. (c) Hybrid 

scaffold with Hilbert curve geometry. (d) Thermal camera visualization of the Peltier cell, and detail of 

electro-thermal transition. The white square identifies the analysed surface area. 
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Figure 2. Viscosity and extrusion force applied to the syringe for three different alginate 

percentage scaffold fabrication. (a) Temperature/viscosity relation of different bio-ink alginate percentage 

(green: 11%; purple 9%; orange 7%). (b) Force applied to the syringe to print 5 different scaffolds with a 

speed of 20mm/s at 11% alginate concentration. (c) Force applied to the syringe to print 5 different 

scaffolds with a speed of 20mm/s at 9% alginate concentration. (d) Force applied to the syringe to print 5 

different scaffolds with a speed of 20mm/s at 7% alginate concentration. 
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Figure 3. Scaffold macro-morphological characterisation and resolution assessment. (a) Scaffold 

filament diameter at different speed and alginate concentration with volume integration: 11% (green), 9% 

(purple), 7% (orange); (b) Printed scaffolds with 11% of alginate concentration under (left panel) and 

over (right panel) the minimum speed (6 mm/s). (c) same as (b) for printed scaffolds with 9% of alginate 

concentration and minimum speed of 10 mm/s. (d) same as (b) for printed scaffolds with 7% of alginate 

concentration and minimum speed of 14 mm/s. (e) Example of validation tests of printed corners at 60°, 

45° and 30°: .STL file (left panel); printed trajectory (right panel). (f) Example of validation tests of 

printed drops: .STL file (left panel); printed trajectory (right panel). Wilcoxon sign rank test was 

performed and statistical significance was set at p<.05. Data are represented as median ± discrepancy. 

Note: adapted from our preliminarily published work Foresti R et al. Sci Rep 2020;10:3205. 
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Figure 4. 3D Fast Freeze Gelation, dissolution time and micro-morphology. (a) Freeze fixation; 

(b) Freeze gelation; (c) Scaffold detail displaying fluorescence spots. (d) Dissolution time of alginate 

ethanol gelled scaffold in DMEM, without (grey), or with (white) nanoparticles. (e) Alginate based 

scaffold (gelled with CaCl2) after 24 hours conservation in DMEM. (f) Alginate Scanning Electron 

Microscope (SEM) images of a 3D-printed scaffold gelled with CaCl2, and with (g) ethanol at different 

magnifications. Unpaired t-test was performed and statistical significance was set at p<.05. ** with vs. 

without nanoparticles. Data are represented as mean ± SEM. Note: adapted from our preliminarily 

published work Foresti R et al. Sci Rep 2020;10:3205. 
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Figure 5. VSMC Viability. (a) Calcein AM-loaded VSMC after scaffold solubilisation with (b) 

direct or (c) indirect method gelled with EtOH (left panels) or CaCl2 (right panels). VSMC viability 

(Live/Dead assay) after dissolving the scaffold gelled with EtOH or CaCl2, with (d) direct or (e) indirect 

method. Unpaired t-test was performed and statistical significance was set at p<.05. Data are represented 

as mean ± SEM. Note: adapted from our preliminarily published work Foresti R et al. Sci Rep 

2020;10:3205. 
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Figure 6. Scaffold-derived nanoparticles internalization. (a) Aerogel scaffold and filament after 

more than 12 months of storage in the petri dish. (b) Frontal view obtained by STED confocal 

microscopy of wheat germ agglutinin (WGA) stained vascular smooth muscle cells (VSMC, red) that 

included nanoparticles (green). (c) Orthogonal view showing the same nanoparticles into the cultured 

cells. (d) Render image obtained by the white square in “b” showing nanoparticle internalization from the 

VMSC membrane. Nanoparticle diameter: 40 nm. (e) Two-photon microscopy imaging of a WGA-

stained rat vein. (f) Same as (e) with a vein exposed to the scaffold containing nanoparticles, showing the 

internalization of the nanoparticles in the VSMC cells. (g) same as (f) with high-scan resolution. Note: 

adapted from our preliminarily published work Foresti R et al. Sci Rep 2020;10:3205. 
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Figure 7. The rat’s vena cava (purple structure in the middle of the picture) is isolated and 

ligated. We are preparing the venotomy (scissors), which will be used to insert the 3D-printed nano-laden 

filament for in-vivo analysis. 
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Figure 8. In-vitro viability and metabolism evaluation in HUVEC line (adapted from our 

preliminarily published work Foresti R et al. Sci Rep 2020;10:3205). (a) cell number evaluation at 

2h, 24h and 48h after scaffold direct dissolution in: (i) control cell (first column); (ii) cells after 11% of 

alginate administration (second column); (iii) cell after 11% of alginate administration and ethanol 

crosslinking (third column); (iv) cell after 11% of alginate administration, ethanol crosslinking and NP 
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administration (forth column); (v) cell after NP administration (fifth column). (b) same as (a) for scaffold 

indirect dissolution. (c) cell viability evaluation at 2h, 24h and 48h after scaffold direct dissolution in: (i) 

control cell (first column); (ii) cells after 11% of alginate administration (second column); (iii) cell after 

11% of alginate administration and ethanol crosslinking (third column); (iv) cell after 11% of alginate 

administration, ethanol crosslinking and NP administration (forth column); (v) cell after NP 

administration (fifth column). (d) same as (c) for scaffold indirect dissolution. (e) ATP evaluation at 2h, 

24h and 48h after scaffold direct dissolution in: (i) control cell (first column); (ii) cells after 11% of 

alginate administration (second column); (iii) cell after 11% of alginate administration and ethanol 

crosslinking (third column); (iv) cell after 11% of alginate administration, ethanol crosslinking and NP 

administration (forth column); (v) cell after NP administration (fifth column). (f) same as (e) for scaffold 

indirect dissolution. White columns: control cells; grey columns: cells with 11% of alginate scaffold; pink 

columns: cells with 11% of alginate scaffold gelled with EtOH; blue columns: cells with 11% of alginate 

scaffold gelled with EtOH containing NPs: yellow columns: cells with NPs. (g) Cytofluorimetric analysis 

of HUVEC control cell after 24h (black trace), HUVEC and alginate after 24h (red trace), HUVEC and 

alginate plus NP after 2h (green trace) and after 24h (blue trace). Kruskal-Wallis (post hoc analyses: 

Dunn’s multiple comparison) was performed and statistical significance was set at p<.05. Data are 

represented as mean ± SEM. 

  



 53 

 

Figure 9. The process of 3D-printing starting from a CT-scan. (a) CT-angiography of the patient 

(3D Surface Rendering). (b) Cut section of the right femoral bifurcation. (c) The femoral bifurcation in 

.STL format. (d) Surfaces details of a non-printable .STL model. (e) 3D digital reconstructed model. (f) 

.STL format of a printable model. (g) The femoral bifurcation printed in polylactic acid. 
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Figure 10. The 3D partial processes. (a) A section of a 3D-printed femoral artery. (b) Automatic 

.STL file generated by the CAD-like software. (c) 3D-printed PLA object, with defects. (d) Adapted and 

corrected .STL model. (e) 3D-printed object without defects, scalable and usable for tissue bioprinting. 
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Figure 11. Bio-composite material vessel fabrication (adapted from our preliminarily published 

work Foresti R et al. Sci Rep 2020;10:3205). (a) Composite biomaterial (bio-based, biocompatible and 

biodegradable): matrix (red, functions), interface (green, performance and stability) and reinforcement 

(yellow, fibre, nanoparticles, nano-tubes, etc.). (b) Bio-composite material (Nano-functionalised 4D bio-

engineered scaffold): matrix (blue, functions), interface (green, performance and stability) and fibre (red, 

composite/ biocomposite scaffold reinforcement). (c) Bio-composite material vessel schema: nano-laden 

fibre (yellow points and red), interface (green), not functionalised matrix (blue) and functionalised matrix 

(white). (d) 3D digital model of complex vessel. (e) Complex vessel section; (f) Nano-functionalised 4D 

Bio-engineered scaffold perfusion test. (g) Complex geometry aerogel scaffold (left panel) and related 
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detail (right panel, 4x magnification). (h) Aerogel with functionalised surface micro-porosity (left panel) 

and related detail (right panel, 4x magnification). (i) Nano-laden bioengineered scaffold (left panel) and 

related detail (right panel, 4x magnification). (j) Dehydrated 5D bioprinted vascular device after more 

than 24 months of Petri dish storage. (k) Bio-composite material customisation schema: nano-laden fibre 

(yellow points and red), interface (green), not functionalised matrix (blue), functionalised matrix for 

dedicated cells (yellow), adhesive coating (black) and customised matrix for physiology analyses (white 

point and violet).  
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Figure 12. The 5D customised scaffold (adapted from our preliminarily published work Foresti 

R et al. Sci Rep 2020;10:3205). (a) 5D soft scaffold printing phase. (b) Composite biomaterial scaffold 

with green (upper panel) and red (lower panel) fluorescent nanoparticle. (c and d) Integration of soft and 

hard materials for gradual release tests. (e) Femoral bifurcation model for ballon angioplasty tests and 

training. (f) Surfaces detail of not printable .STL model with 3D digital reconstructed model. (g) 3D PLA 

printed model without pathology. (h) Capillary vascular bifurcation with 0.65 mm inner diameter and 1.7 

mm outer diameter. Model design (upper panel), and 3D-printed object (lower panel). 

 


