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ABSTRACT 

Kidney glomerulosclerosis commonly progresses to end-stage kidney failure, but path-

ogenic mechanisms are still poorly understood. Here, we show that podocyte expres-

sion of decay-accelerating factor (DAF/CD55), a complement C3 convertase regulator, 

crucially controls disease in murine models of adriamycin (ADR)-induced focal and 

segmental glomerulosclerosis (FSGS) and streptozotocin (STZ)-induced diabetic 

glomerulosclerosis. ADR induces enzymatic cleavage of DAF from podocyte surfaces, 

leading to complement activation. C3 deficiency or prevention of C3a receptor (C3aR) 

signaling abrogates disease despite DAF deficiency, confirming complement depen-

dence. Mechanistic studies show that C3a/C3aR ligations on podocytes initiate an au-

tocrine IL-1β/IL-1R1 signaling loop that reduces nephrin expression, causing actin cy-

toskeleton rearrangement. Uncoupling IL-1β/IL-1R1 signaling prevents disease, provid-

ing a causal link. Glomeruli of patients with FSGS lack DAF and stain positive for C3d, 

and urinary C3a positively correlates with the degree of proteinuria. Together, our data 

indicate that the development and progression of glomerulosclerosis involve loss of 

podocyte DAF, triggering local, complement-dependent, IL-1β-induced podocyte injury, 

potentially identifying new therapeutic targets. 

�  of �2 56



INTRODUCTION 

Primary focal and segmental glomerulosclerosis (FSGS) represents one of the leading 

causes of idiopathic nephrotic syndrome in adults and child [1]. The treatment of choice 

is represented by steroid, achieving a sustained remission in less than 50% of affected 

subjects and, among who do not achieve remission, progression to end stage renal dis-

ease (ESRD) is reported for a consistent part [2]. Considering the limited therapeutic 

efficacy and the toxicity of these drugs, alternative interventions are needed for im-

proved therapeutical approaches, ideally derived from new knowledge of disease 

pathogenesis [3].   

While the discovery of genetic variants [4] that predispose to development of FSGS has 

provided some mechanistic insight into the pathogenesis of disease in a subset of pa-

tients, podocyte injury and depletion represents the key pathogenic features of disease 

progression, as suggested by evidence derived from multiple experimental models [5-7]. 

The driving forces underlying podocyte injury remain inadequately understood, therefore 

the development of novel therapeutics results still limited [7].  

The complement cascade, traditionally considered a constituent of innate immunity re-

quired for host defense against pathogens, is now recognized as a crucial pathogenic 

mediator of various kidney diseases [8, 9]. Complement components produced by the 

liver and circulating in the plasma undergo activation through the classical and/or man-

nose-binding lectin pathways to mediate autoantibody-initiated glomerulonephritides 

(GN) [10]. The alternative pathway of complement activation has been implicated in 
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non-antibody-mediated models of GN including human and murine C3 nephropathies 

[11-13]. While selected studies in murine models that mimic features of human FSGS 

have been associated with complement deposition, mechanisms linking complement to 

podocyte injury and FSGS remain poorly understood [10].  

Decay accelerating factor (DAF, CD55), a cell surface expressed, glycophosphatidyl in-

ositol (GPI)-anchored protein, regulates complement activation at the C3/C4 convertase 

steps. A previous report indicated that, in mice with FSGS induced by injection of sheep 

antibodies against mouse podocytes, the absence of DAF in T cells is correlated with 

worsen of disease severity, but mechanisms have not been elucidated [14]. That DAF is 

highly expressed on podocytes is well known, therefore we tested the hypothesis that 

DAF locally restrains complement activation and as a consequence, its downregulation 

leads to complement-mediated podocyte injury that results in FSGS.  
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MATERIALS AND METHODS 

Mice and procedures 

Wild-type (WT) BALB/c and C57BL/6J (B6) mice were purchased from The Jackson 

Laboratory (Bar Harbor, MA). To generate DAFfl/fl mice, we obtained embrionic stem 

(ES) cells from European Conditional Mouse Mutagenesis Program (EUCOMM). The 

ES cells were injected into pseudopregnant B6 mice (The Jackson Laboratory) by stan-

dard techniques at the mouse genetics core facility at Icahn School of Medicine at 

Mount Sinai. Founders were validated by genotyping.  We then crossed them to a flp/flp 

mouse (from Jax) to remove the neo cassette and then backcrossed to B6 and crossed 

with B6 mice expressing the Podocin-Cre or CD11c-Cre (The Jackson Laboratory). 

Animal experiments were performed with the approval of the Institutional Animal 

Care and Use Committee of Icahn School of Medicine at Mount Sinai, New York.  

Male and female mice (age 8-12 weeks), with a body weight of 20 to 25 g, were treat-

ed with a single retro-orbital injection of ADR (doxorubicin HCl, Ben Venue Laborato-

ries, Bedford, OH), at the dose of 10 mg/kg for BALB/c or 20 mg/kg for B6 mice. 

C3aR-A (SB290157, Sigma-Aldrich, MO) or vehicle control was administered through 

subcutaneous pumps (micro-osmotic pump, model 1004, Alzet, CA) at the dose of 1 

mg/kg/die (powder dissolved in PBS and 10% DMSO) for 28 days. Rat anti-mouse IL-1β 

mAb (InVivoMab, B122, BioXCell, NH) or isotype control (InVivoMab polyclonal Armen-

ian hamster IgG, BioXCell) was administed i.p. at the dose of 50 µg/mice twice a 

week for 6 weeks [15].  

Renal histology 
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To obtain kidneys, mice were anesthetized with i.p. injection of 100 µl of a solution made 

of sterile ketamine (16 mg/ml) and xylazine (7 mg/ml) in phosphate buffered saline 

(PBS, Gibco, CA) and trans-cardially perfused with periodate-lysin-paraformaldehyde 

fixate at 4% in PBS. Kidneys were harvested and frozen in Optimal Cutting Temperature 

compound (Tissue-Tek O.C.T., Sakura, CA) or paraffin-embedded. In selected experi-

ments, one kidney was removed and clamped before periodate-lysin-paraformaldehyde 

fixation of the other kidney. 

Light microscopy 

Paraffin-embedded kidney sections (3 µm) were stained with Periodic acid–Schiff (PAS). 

Histological scoring was performed in a blinded manner by a renal pathologist. The ex-

tent of segmental and global glomerular sclerosis was assessed by examining all 

glomeruli on a kidney cross-section, and calculating the percent involved as previously 

described [16].  

Immunofluorescence  

O.C.T.-preserved cryosections (5 µm thick) were washed  with PBS for 5 minutes, then 

left for 30 to 60 min at room temperature with blocking solution containing PBS, 2% 

bovine serum albumin, 2% fetal bovine serum, and 0.2% fish gelatin. Affinipure fab 

fragment goat anti mouse IgG (Jackson ImmunoResearch, PA) was subsequently ap-

plied for 3 hours, followed by incubation at 4°C overnight or at room temperature for 

1 hour with specific primary antibodies (see table below). Sections were then washed 
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and incubated with the appropriate secondary antibody for 45 or 60 minutes at room 

temperature: anti-mouse IgG antibody conjugated with Alexa Fluor 594 (1:200; Ther-

mo Fisher Scientific, MA), anti-hamster IgG antibody conjugated with Alexa Fluor 488 

(1:200; Thermo Fisher Scientific), and anti-rat IgG antibody conjugated with Alexa 

Fluor 568 (1:500; Life Technologies, CA), anti-rabbit IgG antibody conjugated with 

Alexa Fluor 594 (1:500; Life Technologies), anti-mouse IgG antibody conjugated with 

Alexa Fluor 594 (1:500; Jackson ImmunoResearch), anti-goat IgG antibody conjugated 

with Alexa Fluor 594 (1:500; Life Technologies) were used. Nuclei were counterstained 

with DAPI mounting media (ProLong Gold antifade reagent with DAPI, P36931, Invitro-

gen, CA). 

Antibodies expression was estimated by constructing a contour mask on the bright-

field image. Software ImageJ was used to quantify DAF and C3b staining intensity. 

List of antibodies and assay-specific concentrations 

Antibody  R e a c-

t i v e 

Species 

Company Catalogue # Dilution

Synaptopodin  mouse Fitzgerald 10R-S125a IF 1:5

Podocin (NPHS2)  mouse Sigma-Aldrich P0372 IF 1:50

CD55 
 mouse

BioLegend
( R i k o - 5 ) 

131802 
IF 1:50

CD55 
 human Santa Cruz 

Biotechnology
sc-51733

IF 1:50 

WB 1:100

C1q  rat Abcam ab11861 IF 1:50

�  of �7 56



Renal ultrastructural analysis 

Fresh kidneys underwent primary fixation with 2% glutaraldehyde in PBS. They were 

then post-fixed in 1% osmium tetroxide for 1 hour and dehydrated in 50%,70%, 90%, 

95%, 100%, ethanol and propylene oxide for 10 minutes each. Samples were further 

infiltrated with epoxy resin mixture. Ultra-thin sections were collected on copper 

grids, and sections were stained using 10% uranyl acetate in 50% methanol and modi-

fied Sato lead stain. A Morgagni 268 electron microscope was used for picture acquisi-

tion (Pathology Laboratory, Columbia University, New York, NY). Total glomerular cap-

illary surface area with foot process effacement were evaluated by ultrastructural 

C4b rabbit Abcam ab181241 IF 1:50

CD59 (FITC)  mouse LSBio LS-C210253 IF 1:50

Claudin-1  human Thermo Fisher 51-9000 IF 1:25

C3b
 mouse, 

human
Hycult Biotech HM1065 IF 1:50

C3b (FITC)  mouse Cappel IF 1:100

Phalloidin (Alexa fluor 

568)

 human
Invitrogen A12380 IF 1:1,000

F-actin (FITC)  human? Life Technologies r37122 IF 1 drop/ml

NPHS1
 human, 

mouse
Abcam ab136894 WB 1:1,000 

GPI-PLD  human Abcam Ab210753 WB 1:1,000

B-actin
 human GeneTex  

Sigma-Aldrich

GTX109639 

A3854
WB 1:10,000

C3aR  mouse Origene BP4002 IF 1:100
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analysis (>8 glomeruli/mouse) and graded on a percentage quantification, as previous-

ly reported [17]. 

Urine Albumin and Creatinine 

Urine spot samples were collected from individual mice before treatment and at 

weekly intervals until sacrifice. Urine creatinine was quantified using commercial kits 

from Cayman Chemical (Ann Arbor, MI). Urine albumin was determined using a com-

mercial assay from Bethyl Laboratory Inc. (Houston, TX). Urine albumin excretion was 

expressed as the ratio of urine albumin to creatinine. 

Cell Culture 

Human immortalized podocytes (hiPod) were cultured as described by Saleem et al. 

[18]. Re-differentiation of hiPod was performed by thermoshifting to 37°C for up to 15 

days. 

As indicated in the text, some experiments were repeated in human kidney progenitor 

cells derived from amniotic fluid (hAKPC) that were isolated and characterized as 

previously described [19]. Briefly, hAKPC positively selected for OB-cadherin, CD24 

and podocalyxin were expanded and differentiated into podocytes (hAKPC-P) by cul-

turing on collagen I (Corning, NY)-coated plates in VRADD media: RPMI-1640 (Gibco) 

supplemented with 10% FBS (Gibco), 1% antibiotic (Gibco), 1,25(OH)2D3 [100 nM, 

cholecalciferol] (Sigma-Aldrich), all trans retinoic acid (ATRA) [1µM] dexamethasone 

[100nM] (Sigma-Aldrich), for up to 30 days. 
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Twenty-four hour in vitro experiments were established for hAKPC-P and hiPod (in 

quadruplicates). Cells were initially cultured for 24 hours at a concentration of 

200,000 cells per 12-well collagen I coated plates, then incubated for 2 hours in RPMI-

1640 supplemented with 0.2% FBS and 1% antibiotic. After 2 hours, the following 

groups were established: cells + goat IgG (0.5 µg/mL, R&D Systems, MN), C3a (50 nM) 

+ goat IgG, or C3a + anti-IL-1β antibody (0.5 µg/mL, Gibco), and incubated for 30 

minutes or 24 hours. Protein lysates were collected and stored in -80°C until analysis.  

Twelve-well chamber slides were also created for immunofluoresecne studies with the 

following culture conditions: 1) vehicle, C3a (50 nM), or C3a + C3aR-A (50 nM), 2) goat 

IgG (0.5 µg/mL, R&D Systems), IL-1β + goat IgG, IL-1β + anti-IL-1β Ab (0.5 µg/mL, 

Gibco), C3a (50 nM), or C3a + anti-IL-1β Ab (0.5 µg/mL, Gibco), and 3) vehicle, ADR 

(0.3 µg/ml) (Pfizer, NY), vehicle + PLAD inhibitor (1 µM, 1-10 phenantroline, Sigma-

Aldrich), or ADR + PLAD inhibitor. 

Real-time quantitative reverse transcription PCR 

RNA was prepared from 0.5 cm of the mouse kidneys or from cultured podocytes using 

Trizol (Invitrogen). cDNA was synthesized using reverse transcription reagent (Applied 

Biosystems). Real-time PCR assays using the TaqMan universal PCR Master Mix and 

p r i m e r s e t s f o r h u m a n a n d / o r m o u s e D A F ( H s 0 0 8 9 2 6 1 8 _ m 1 ; 

Mm00438377_m1), PLAD (Hs00946499_m1; Mm01289339_m1), IL1B 

( H s 0 1 5 5 5 4 1 0 _ m 1 ) , R n 1 8 S ( H s 9 9 9 9 9 9 0 1 _ s 1 ; M m 0 3 9 2 8 9 9 0 _ g 1 ) , 

and GAPDH (Hs02786624_g1; Mm99999915_g1) genes were purchased from Thermo 

�  of �10 56



Fisher. PCR was performed on an Applied Biosystems 7500 Fast system. All experi-

ments were performed at least in triplicate, and gene expression was normalized to 

housekeeping gene 18s or GAPDH. 

  

  

Immunofluorescence studies in vitro  

Immunofluorescence staining was performed on chamber slides of representative cell 

types (hAKPC-P and hiPod) following 20 minutes fixation by 4% paraformaldehyde 

(Santa Cruz Biotechnology, Dallas, TX) and serial washes with PBS after 24 hours incu-

bation with components. Wells of interest were prepared for staining by blocking with 

5% bovine serum albumin (Jackson ImmunoResearch) in PBS for 30 minutes. Damage to 

podocytes was assessed by 1 hour incubation at room temperature with F-actin (1 

drop: 1000 µl, Life Technologies) followed by DAPI mounting (Vector Laboratories, 

CA). DAF expression was assessed by staining cells with anti-DAF Ab (see table above) 

at 4°C overnight, followed by washing and staining with secondary antibody (anti 

mouse Alexa Fluor 488 Thermo Fisher Scientific, 1:200 in blocking solution) for 1 hour 

at room temperature. Cells were then permeabilized with 0.1% Triton X-100/PBS (15 

minutes) and stained for F-actin (Phalloidin, Alexa fluor 568, Invitrogen, 1:1000). Nu-

clei were counterstained with DAPI mounting media (ProLong Gold antifade reagent 

with DAPI, Invitrogen). 

Cells were visualized with a Leica DM5500 B Microscope System. Minimum of 5 20× 

immunofluorescent microscopic images (Leica DM5500 B Microscope System) per ex-
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perimental group were counted for cytoskeletal rearrangement expression. ImageJ 

software (NIH) was used to determine cell count. 

In each field, cells were segmented based on the actin signaling, and the intensity of 

DAF normalized to the intensity of actin pixel-by-pixel. The mean fluorescence inten-

sity (MFI) of the DAF signal was then calculated for all the pixels in the cell. 

Western Blot Analysis 

Total protein from was extracted from in vitro podocyte cultures, by initially washing 

cells with PBS, then scraping the cells with a plastic 1.8 cm blade cell scraper (Falcon 

Cell Scraper, Thermo Fisher Scientific) in radioimmunoprecipitation assay RIPA lysis 

buffer (Santa Cruz Biotechnology) or 1% SDS lysis buffer (Millipore Sigma, Burlington, 

MA) containing a protease inhibitor cocktail (Thermo Fisher Scientific). Protein lysates 

were centrifuged at 13500 rpm, 4°C for 15 minutes to obtain the protein suspension. 

The supernatants were then collected and protein extracts were separated on 4%–20% 

pre-cast Protean TGX gels (Bio-Rad, CA) followed by transfer onto 0.2 µm polyvinyli-

dene fluoride (PVDF) membranes (Bio-Rad) using the Trans-blot Turbo transfer system 

(Bio-Rad). Membranes were soaked in methanol 100% for 5 minutes, quickly rinsed in 

0.1% tween 20 (Sigma-Aldrich), 1X Tris-buffered saline buffer (TBS-T). Blocking was 

performed in 5% non-fat dry milk (Santa Cruz Biotechnology) in TBS-T buffer for 1 

hour at room temperature, followed by primary antibody (1:1000 NPHS1, Abcam, 

Cambridge, UK) or incubation (in 2.5% milk solution) overnight at 4°C in rocking con-

ditions. Following washes in TBS-T buffer (10 minutes for 3 times), membranes were 
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blotted with host-specific horseradish peroxidase (HRP)-conjugated secondary anti-

bodies diluted in 2.5% skim milk (in TBS-T) at room temperature for 30 minutes. Signal 

was detected by using the SuperSignal West Femto substrate (Thermo Fisher Scientif-

ic) and impressed on Amersham Hyperfilm ECL (GE Healthcare, IL). Densitometry was 

performed on images using ImageJ software. Protein analysis of podocyte culture su-

pernatants was performed after concentrating 10 ml of cell culture supernantant in 

an Amicon Ultracentrifugal filter unit (Millipore Sigma) per manufacturer’s instruc-

tions. 30 µl of concentrated supernatant were run on Bolt Bis-Tris 4%-12% pre-cast gel 

(Thermo Fisher Scientific), transferred and blocked as described above. Membranes 

were probed with anti-DAF (1:100, Santa Cruz Biotechnology) and then with secondary 

antibodies, as described above. Membranes were developed on  an Odyssey Fc Imag-

ing system (Li-Cor, Lincoln, NE) and quantified using ImageStudio software (Li-Cor).  

Cytokine Analysis 

Media from hiPod cultured for 24 hours without and with C3a (50 nM), or C3a (50 nM) 

+ C3aR antagonist (50 nM) was collected and stored in the -80°C until used to evalu-

ate cytokine expression in accords to manufacturer protocols. To perform cytokine 

measurements, samples were thawed and protein expression profiles were obtained 

using a Proteome Profiler Human XL Cytokine Array Kit (R&D Systems), a membrane-

based sandwich immunoassay that measures 102 human cytokines and growth factors 

simultaneously, following manufacturer protocols. Briefly, samples were incubated 

overnight with the nitrocellulose membranes after a blocking step, washed to remove 

nonspecific proteins, and biotin-labeled detection antibodies were added. The cy-
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tokine-antibody-biotin complexes were visualized using chemiluminescent detection 

reagents. Average chemiluminescent intensity was obtained by measuring pixel densi-

ty.  

Patients 

We studied paraffin-embedded renal tissues of 3 patients with FSGS from the archives 

of the Unit of Nephrology, Dialysis and Kidney Transplant St. Orsola Hospital (Bologna, 

Italy). Demographic and clinical parameters (proteinuria and serum creatinine levels, 

and glomerular filtration rate estimated by the “Chronic Kidney Disease Epidemiology 

Collaboration” equation, CKD-Epi) at the time of renal biopsy were retrieved from the 

hospital database.  

We analyzed 70 frozen urine supernatants from FSGS patients obtained at the Unit of 

Nephrology, Dialysis and Kidney Transplant St. Orsola Hospital, Bologna, Italy. 

All experimental protocols involving human subjects and requiring informed consent are 

carried out in accordance with the Declaration of Helsinki and good clinical practice 

guidelines, and approved by the Institutional Review Board (IRB) of the Clinical Re-

search Center of the St. Orsola Hospital (IRB: 420/2018/Oss/AOUBo). 

As control, we used renal specimens of deceased kidney donors (n = 10 donors) biop-

sied to evaluate single or double allocation [20], in accordance to the Italian Clinical 

Guidelines published by the Italian National Transplant Centre (CNT) (http://www.-
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trapianti.salute.gov.it). Due to the retrospective nature of this specimens, registra-

tion or approval by the ethics committee was waived.  

Statistics 

We used paired or unpaired 2-tailed t tests for 2-group comparisons and 1-way or 2-way 

ANOVA (with Tukey test for post hoc pairwise differences) for multiple independent 

group comparisons. Linear regression analysis was used to test the association be-

tween urinary C3a and proteinuria in FSGS patients. A 2-tailed P value of less than 0.05 

was regarded as statistically significant. All statistical analyses were performed using 

GraphPad Prism (version 7 for Windows, GraphPad Software Inc.). 

Study approval 

Animal study protocols were approved by the Institutional Animal Care and Use Com-

mittee at Icahn School of Medicine at Mount Sinai (New York, NY). 

The human studies were carried out in accordance with the principles of the Declaration 

of Helsinki, and all procedures were approved by the Human Subjects Committee at 

participating sites. All participants provided informed consent. 
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RESULTS 

ADR-induced FSGS associates with reduced DAF expression and complement 

activation in BALB/c mice 

We initially analyzed glomerular patterns of DAF expression in naive BALB/c mice kid-

neys (a strain known to be susceptible to ADR [Wang et al., 2000]) by immunofluores-

cence (IF). We observed strong DAF staining that colocalized with synaptopodin, indica-

tive of podocyte expression in naive animals (Fig. 1 A). 1 wk after ADR administration, 

we observed markedly decreased glomerular DAF expression (Fig. 1, B and C), ac-

companied by glomerular C3b deposition (Fig. 1, D–F), the latter consistent with DAF’s 

physiological function of restraining local complement activation [21]. 

To begin testing for functional links between DAF expression and ADR-induced kidney 

disease, we injected ADR into male and female WT or germline DAF−/− BALB/c mice. 

These experiments showed significantly more albuminuria (Fig. 1 G) with more severe 

histological changes (Fig. 1 H) in the DAF-deficient BALB/c mice, regardless of sex (Fig. 
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1 I), noting that females are more resistant to ADR-initiated glomerular injury, consistent 

with previous reports and with human studies [22-24]. 

Genetically determined DAF absence confers ADR susceptibility in B6 mice 

We next investigated the relationship between DAF expression and FSGS in C57BL/6 

(B6) mice, a strain that is resistant to the development of ADR-induced FSGS lesions 

[25]. While ADR administration did not induce proteinuria or glomerulosclerosis in WT 

B6 mice [25], ADR remarkably induced proteinuria and glomerulosclerosis or tubular at-

rophy/interstitial sclerosis in congenic B6 DAF−/− mice (Fig. 1, J–M), associated with 

increased glomerular C3b deposition. Because DAF has complement-independent func-

tions, we performed additional control studies to verify that ADR-induced FSGS in DAF-

deficient mice is complement dependent (Fig. 1, J–M). ADR administration to DAF−/

−C3−/− mice indeed did not result in proteinuria, glomerulosclerosis, or tubular sclero-

sis. 
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Figure 1. 

Figure 1. Glomerular DAF downregulation promotes murine ADR-induced FSGS through a com-

plement-mediated mechanism.  

(A–F) Representative pictures and data quantification of glomerular (A–C) DAF and (D–F) C3b staining of male WT 

BALB/c mice treated with vehicle or ADR (10 mg/kg, i.v.). Background staining for C3b is present in the periphery of 

all glomeruli, with higher intraglomerular C3b staining (arrows) in the ADR-treated animals. DAF and C3b glomerular 

fluorescence intensity was quantified relative to isotype using ImageJ software. At least 30 glomeruli per mouse from 

two animals were included in the analysis. Each dot represents a glomerulus. (G and H) Urinary A/C at weekly inter-

vals (G) and representative renal histological (PAS stain) lesions (H) of male WT (n = 8) or DAF−/− (n = 9) BALB/c 

mice sacrificed at 5 wk after ADR injection (10 mg/kg, i.v.). (I) Urinary A/C at weekly intervals of female WT (n = 5) or 

DAF−/− (n = 4) BALB/c mice sacrificed at 5 wk after ADR injection (10 mg/kg, i.v.). (J–M) Urinary A/C at weekly inter-

vals (J) and representative renal histological (PAS) lesions (K) with data quantification (L and M) of male WT (n = 18), 

DAF−/− (n = 13), or DAF−/−C3−/− (n = 4) B6 mice sacrificed at 5 wk after ADR injection (20 mg/kg, i.v.). All experi-

mental data were verified in at least three independent experiments. *P < 0.05 versus WT at the same time point. 

n.s., not significant. Scale bars: 50 µm. Error bars are SEM. 
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Podocyte-specific DAF-null mice are more susceptible to ADR 

DAF is an intrinsic complement regulator that limits complement activation only on the 

cells on which it is expressed [21], raising the possibility that DAF expression specifical-

ly on podocytes locally regulates the ADR-induced, complement-dependent podocyte 

injury in this model. To test this, we newly generated B6 DAFfl/fl mice and crossed them 

to podocin-CrePOS animals (Fig. S2 A) and confirmed selective absence of DAF from 

podocyte surfaces (but detection on tubular cells) in these DAFfl/fl podocin-CrePOS 

mice (Fig. S2, B–E). DAFfl/fl podocin-CrePOS mice are healthy without growth abnor-

malities and do not spontaneously develop proteinuria, renal insufficiency, or other renal 

functional abnormalities when followed for up to 12 mo of age (data not shown). Where-

as ADR injection did not induce proteinuria or glomerulosclerosis in the DAFfl/fl podocin-

CreNEG control animals (Fig. 2, A and B), ADR administration to DAFfl/fl podocin-Cre-

POS animals resulted in albuminuria by day 21 along with histological evidence of 

glomerulosclerosis and tubular atrophy/interstitial sclerosis, the latter similar in severity 

to the lesions in germline DAF−/− mice (Fig. 2, A, C, E, and F). As an additional control, 
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we also generated DAFfl/fl CD11c-CrePOS mice that lack DAF on myeloid immune 

cells. In these animals, ADR injection did not induce proteinuria or glomerulosclerosis 

and tubular atrophy/interstitial sclerosis, a result that did not differ from the ADR-injected 

DAFfl/fl podocin-CreNEG control animals (Fig. 2, A, B, and D–F). At 35 d after ADR in-

jection, ultrastructural analysis showed no abnormalities in vehicle-injected animals, but 

ADR resulted in significantly higher podocyte foot process effacement in DAFfl/fl 

podocin-CrePOS animals versus podocin-CreNEG control animals (Fig. 2, G and H). 

Together the data newly support the conclusion that podocyte-expressed DAF is protec-

tive in this model system. 

To provide insight into the complement-dependent mechanisms that result in glomerular 

injury without DAF, we stained kidneys from DAFfl/fl podocin-CreNEG and podocin-

CrePOS mice after ADR injection for complement activation products. These analyses 

showed increased glomerular deposition of C3b, without C1q or C4b in DAFfl/fl podocin-

CrePOS compared with podocin-CreNEG control animals (Fig. 2, F–J), implicating 

complement activation predominantly via the alternative pathway. 

Phenotypic expression of FSGS requires C3aR 

Building on (1) the above data (Fig. 1; Fig. 2, A–C; Fig. S1; and Fig. S2, B–E), (2) DAF’s 

known mechanism of restraining complement activation at the C3 convertase step, and 

(3) our previous reports that DAF deficiency augments C3a production [8], we postulat-

ed that, without DAF, locally produced C3a ligates podocyte-expressed C3aR to func-

tion as a crucial driver of the podocyte injury in this model. After documenting that 

podocytes express C3aR and that C3aR expression is increased 2 wk after ADR injec-

tion (Data not shown), we administered ADR to groups of germline DAF−/−C3aR−/− 
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mice and to WT and DAF−/− control animals (Fig. 2, I and J). These experiments 

showed that germline C3aR deficiency fully prevented the ADR-induced FSGS ob-

served in DAF-deficient mice. We observed similar protection against FSGS develop-

ment in ADR-administered BALB/c mice treated with the selective C3aR antagonist 

(C3aR-A) SB290157 (1 mg/kg/d s.c. for 28 d by injection pumps; Fig. 2, K and L). 

C3aR-A administration to ADR-treated BALB/c mice also showed significantly less al-

buminuria than untreated control animals after ADR injection (albumin/creatinine [A/C], 

253 ± 59 versus 752 ± 97 mg/g; P < 0.05). When we administered ADR to B6 DAFfl/fl 

podocin-CrePOS with or without C3aR-A, we also observed a significant decrease in 

the clinical and histological manifestations of kidney disease (Fig. 2, M and N). 

Figure S2. 
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F i g u r e 

S 2 . 

Podocyte-

specific DAF-KO mice show increased glomerular C3b deposition in the absence of C1q or C4b deposits in 
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response to ADR. (A) Schematic demonstrating the breeding of the DAFfl/fl mice with the podocin-Cre mice to gen-

erate DAFfl/fl podocin-CrePOS animals. (B–E) Representative pictures of renal staining of DAF expression in the 

glomeruli and tubules (B and C) and data quantification (D and E) from 8-wk-old male DAFfl/fl podocin-CrePOS and 

podocin-CreNEG mice. DAF glomerular and tubular fluorescence intensity were quantified as in Fig. 1. (F–J) Repre-

sentative glomerular C1q (F), C4 (G), and C3b (H) staining in B6 DAFfl/fl podocin-CreNEG and podocin-CrePOS 

mice at 2 wk after ADR injection. Synaptopodin is stained in red. As positive controls for C1q and C4b, we used MRL-

lpr lupus-prone mice at 4 mo of age (I and J). All experimental data were verified in at least three independent exper-

iments. n.s., not significant. Scale bars: 50 µm. *P < 0.05. Error bars are SEM. 
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Figure 2. Podocyte-specific removal of DAF from podocytes increases susceptibility to ADR-induced injury 

through C3a/C3aR signaling. (A–F) Urinary A/C at weekly intervals (A) and representative renal histological (PAS) 

lesions (B–D) with data quantification (E and F) of male DAFfl/fl podocin-CreNEG (n = 10), DAFfl/fl podocin-CrePOS 

(n = 19), and DAFfl/fl CD11c-CrePOS (n = 5) mice injected with ADR (20 mg/kg, i.v.) and sacrificed after 5 wk. (G and 

H) Representative electron micrographs (G) and quantification (H) of podocyte effacement in 8-wk-old DAFfl/fl 

podocin-CrePOS or DAFfl/fl podocin-CreNEG mice at 5 wk after treatment with saline or ADR (20 mg/kg, i.v.). (I and 

J) Urinary A/C at weekly intervals (I) and representative renal histological (PAS) lesions (J) of WT (n = 16), DAF−/− (n 

= 13), and DAF−/−C3aR−/− (n = 4) male B6 mice injected with ADR (20 mg/kg, i.v.). (K and L) Urinary A/C at weekly 

intervals (K) and representative renal histological (PAS) lesions (L) of male BALB/c mice given ADR (10 mg/kg, i.v.) 

and treated with C3aR-A (1 mg/kg/d, s.c.; n = 5) or saline (n = 5). (M and N) Urinary A/C at weekly intervals (M) and 

representative renal histological (PAS) lesions (N) of male B6 DAFfl/fl podocin-CrePOS mice given ADR (20 mg/kg, 

i.v.) and treated with C3aR-A (1 mg/kg/d, s.c.; n = 5) or saline (n = 5). *P < 0.05 versus podocin-CreNEG, WT, or 

C3aR-A. All experimental data were verified in at least three independent experiments. n.s., not significant. Scale 

bars: 50 µm. Error bars are SEM. 
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ADR promotes phospholipase D–mediated cleavage of DAF from podocyte sur-

faces 

Our data thus far indicate that ADR-induced DAF downregulation on podocytes con-

tributes to the development of glomerulosclerosis. To discern the molecular mechanisms 

underlying this ADR-induced decrease in DAF expression, we quantified Daf mRNA 

(qPCR) in kidneys from BALB/c mice treated with vehicle or ADR. These experiments 

surprisingly showed significantly more Daf gene expression after ADR injection (3.9 ± 

2.1-fold versus 1.1 ± 0.4-fold, respectively; P < 0.05; n = 3 animals per group), despite 

the above observed decrease in glomerular DAF by IF staining. In vitro cultures of im-

mortalized human podocytes (hiPod) with or without ADR similarly showed that ADR 

augmented Daf gene expression (2.3 ± 0.1-fold versus 1.0 ± 0.1-fold, respectively; P < 

0.01; n = 3 experiments per group), but they showed decreased DAF on cell surfaces 

(Fig. 3, A and B). 

DAF is a GPI-anchored membrane protein that can be cleaved by phospholipases, in-

cluding, among others, phospholipase D (PLAD), raising the possibility that ADR-in-

duced DAF surface protein downregulation is mediated by PLAD-dependent GPI cleav-

age. We observed increased Gpld1 gene expression in the kidneys from BALB/c mice 1 

wk after ADR treatment compared with saline injection (4.4 ± 1.0-fold versus 1.0 ± 0.2-

fold, respectively; P < 0.05) and in hiPod exposed to ADR compared with vehicle-treat-

ed cells for 24 h (2.0 ± 0.6-fold versus 1.0 ± 0.1-fold, respectively; P < 0.05). Im-

munoblots of hiPod showed a significant increase in PLAD protein following ADR expo-
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sure (Fig. 3, C and D). To test for a causal link between PLAD expression and DAF 

cleavage, we exposed podocytes to ADR in the presence or absence of a selective 

PLAD inhibitor (PLADi). Consistent with the hypothesis that ADR promotes DAF cleav-

age by increasing PLAD expression, the PLADi preserved membrane expression of 

DAF in podocytes exposed to ADR (Fig. 3, A and B). Addition of the PLADi also reduced 

soluble DAF in the supernatants of podocytes exposed to ADR, supporting the hypothe-

sis that PLAD reduces DAF expression through GPI cleavage (Fig. 3, E and F). When 

we tested the urine of WT BALB/c mice 2 wk after injection with ADR or vehicle control, 

we found cleaved DAF in ADR-treated animals (but not in control animals), further sup-

porting the conclusion that ADR induces glomerular DAF cleavage in vivo (Fig. 3 G). 
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Figure 3. 

Figure 3. 

Figure 3. ADR induces PLAD-dependent cleavage of DAF. (A and B) Representative images (A) and distribution of 

DAF expression (B) quantified in hiPod exposed to vehicle, ADR (0.3 µg/ml), PLADi (1 µM), or ADR + PLADi (0.3 µg/

ml in 1 µM) for 24 h. DAF IF signal was normalized to actin expression pixel by pixel, and the MFI for each cell was 

computed. Results are representative of two independent experiments with similar results. (C and D) Representative 

blots (C) and densitometric analysis (D) of PLAD expression in hiPod cell lysates previously exposed to vehicle or 

ADR for 24 h. (E and F) Representative blots (E) and densitometric analysis (F) of DAF in the supernatants of hiPod 

exposed to ADR for 24 h with or without PLADi (WB). (G) Representative blot of DAF in the urine from BALB/c male 

mice at 2 wk after treatment with vehicle or ADR compared with recombinant mouse DAF (rDAF). In each group, we 
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pooled and concentrated urine samples from eight mice (see Materials and methods). All experimental data were 

verified in at least three independent experiments. *P < 0.05; n.s., not significant. Scale bars: 50 µm. Error bars are 

SEM. 

DAF-deficient mice are more susceptible to STZ-induced diabetic kidney disease 

To test the hypothesis that DAF cleavage and associated complement activation modu-

late clinical and histological expression of another form of glomerulosclerosis, we stud-

ied mice with STZ-induced type 1 diabetic kidney disease, which is manifested patho-

logically by increased mesangial expansion and sclerosed glomeruli [26]. In this model, 

STZ associated with glomerular deposition of C3b (Fig. 4, A and B). Whereas WT BALB/

c mice 20 wk after STZ show modest albuminuria and glomerular lesions (Fig. 4, C and 

D), STZ-treated DAF−/− mice show significantly higher urinary albumin (Fig. 4 C) and 

more severe glomerular changes (Fig. 4 D), despite similar levels of hyperglycemia be-

tween groups (Fig. 4 E). STZ-treated B6 DAFfl/fl podocin-CrePOS mice lacking DAF on 

podocytes had higher levels of C3b deposition in the glomeruli than control animals 

(Fig. 4, F and G), which was associated with more severe diabetic kidney disease (Fig. 

4, H and I) despite similar glycemic levels (Fig. 4 J). Together the findings newly impli-

cate DAF deficiency specifically on podocytes and resultant complement activation as 

contributing to the pathogenesis of this form of glomerulosclerosis as well as to FSGS. 
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Figure 4. 
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Figure 4. Glomerular DAF downregulation promotes murine STZ-induced diabetic kidney disease.  

(A and B) Representative pictures (A) and data quantification (B) of glomerular C3b in BALB/c WT mice at 5 wk after 

vehicle or STZ injection. ***P < 0.001. (C and D) Urinary A/C at weekly intervals (C) and representative renal histolog-

ical (PAS) lesions (D) of male WT (n = 8) or DAF−/− (n = 5) BALB/c mice sacrificed at 5 wk after STZ injection (50 

mg/kg, i.p., for five consecutive days). *P < 0.05 versus WT at the same time point. (E) Glycemic levels of mice in-

jected with STZ shown in A–D. (F and G) Representative pictures (F) and data quantification (G) of glomerular C3b in 

DAFfl/fl podocin-CreNEG/POS B6 mice at 5 wk after STZ injection. ****P < 0.001. (H and I) Urinary A/C at weekly 

intervals (H) and representative renal histological (PAS) lesions (I) of male DAFfl/fl podocin-CreNEG (n = 9) or 

podocin-CrePOS (n = 8) B6 mice sacrificed at 20 wk after STZ injection (50 mg/kg, i.p., for five consecutive days). *P 

< 0.05 versus DAFfl/fl podocin-CreNEG at the same time point. (J) Glycemic levels of mice injected with STZ shown 

in H and I. Only mice that reached glycemia >300 mg/dl at 2 wk after STZ injection were included in this set of exper-

iments. All experimental data were verified in at least three independent experiments. Scale bars: 50 µm. Error bars 

are SEM. 
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DAF and complement in human FSGS and diabetic kidney disease 

To test whether the above murine findings potentially apply to humans with FSGS and 

diabetic kidney disease, we examined data from one large published RNA-sequencing 

study using Nephroseq (http://www.nephroseq.org/). The study compared expression 

levels of RNA extracted from microdissected glomerular samples from patients with 

FSGS (n = 17), diabetic nephropathy (n = 12), and control individuals (kidney living 

donors; n = 35). Our analyses showed significantly increased expression of mRNA for 

C3, C3aR, and C5aR in samples from patients with FSGS or diabetic kidney disease 

compared with control individuals (Fig. 5, A–C), providing associative evidence that the 

complement system is implicated in the pathogenesis of human diseases. In the same 

FSGS and diabetic kidney disease patients, we also observed increased DAF mRNA 

expression in the diseased kidneys versus control individuals (Fig. 5 D). When we 

stained kidney biopsies from 18 patients with FSGS, we observed increased C3d depo-

sition compared with control individuals (Fig. 5, E and F; Table 1). Consistent with 

murine data (Fig. 1, A–C), DAF staining of glomeruli with FSGS (n = 18) showed weaker 

expression than control kidneys (n = 10; Fig. 5, G and H). As one approach to test 

whether the lower DAF expression results in complement activation in the kidney, we 

quantified urinary C3a and proteinuria in urine samples from 27 patients with FSGS and 

in 10 healthy control individuals (Fig. 5, I–L; Table 2). These analyses showed a signifi-

cant correlation between urinary C3a and proteinuria at the time of diagnosis in the 

FSGS cohort (Fig. 5 I), while no C3a was detected in the urine of healthy control indi-

viduals. We observed that the elevations in proteinuria and urinary C3a were significant-

ly reduced after therapy (Fig. 5, J and K), and their changes correlated with one another 
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(Fig. 5 L). Together with previous observations by others [27], our data support the con-

cept that complement components are present in the urinary space of subjects with pro-

teinuria and are activated by DAF downregulation, leading to the formation of C3a and 

C5a. 

We also tested for cleaved DAF in the urine of patients with FSGS and healthy control 

individuals by immunoblotting. These assays showed that soluble/cleaved DAF was de-

tectable in the urine of patients with FSGS but not in healthy control individuals, further 

supporting the concept that DAF reduction observed in patients with FSGS is due to its 

cleavage (Fig. 5 M). 

�  of �34 56



Figure 5. 
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Figure 5. FSGS in humans is associated with DAF down-regulation and complement activation. (A–D) C3 (A), 

C3aR (B), C5aR (C), and DAF mRNA (D) expression in glomeruli of human biopsy specimens with pathological diag-

nosis of FSGS or diabetic kidney disease compared with normal kidneys. Data are from previously published microar-

ray studies by Ju et al. (2013) and were subjected to further analysis using Nephroseq. (E–H) Representative renal 

staining and data quantification for C3d (IF; E and F) and DAF (immunohistochemistry; G and H) in patients with 

FSGS (n = 18) and in kidneys from healthy renal donors (n = 10). (I) Correlation between protein and C3a in urine 

samples from 27 patients with FSGS taken at the time of kidney biopsy (before therapy). (J and K) Differences in 

proteinuria (J) and urinary C3a (K) measured before versus 3–6 mo after steroid therapy in a subset of 13 patients 

with FSGS. (L) Correlation between the change in proteinuria and change in urinary C3a before and after therapy for 

each of the same 13 patients. (M) Representative blot of DAF in the urine from healthy control individuals and pa-

tients with FSGS compared with recombinant human DAF (rDAF). In each group, we pooled and concentrated urine 

samples from five and five subjects, respectively (see Materials and methods). *P ≤ 0.05. Scale bars: 25 µm. Error 

bars are SEM. 
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C3a/C3aR signaling promotes actin cytoskeleton rearrangement in human 

podocytes 

Absence of surface DAF lifts restraint on local complement activation, resulting in pro-

duction of C3a [8]. As our above data (Fig. 2, I–N) showed that C3aR signaling on 

podocytes drives ADR-induced FSGS, we next tested molecular links between C3a/

C3aR and podocyte injury. After verifying that cultured hiPod express C3aR (data not 

shown), we exposed them to recombinant C3a for 24 h and used IF to quantify actin cy-

toskeleton expression and distribution because they are functionally linked to podocyte 

structure and permselectivity [28]. C3a induced rearrangement of actin cytoskeleton 

(Fig. 6, A and B), an effect that was prevented by the selective C3aR antagonist 

SB290157 but not vehicle control (Fig. 6, A and B), implicating C3aR as the mediator of 

C3a effects. To test for the effect of C3a on podocyte viability, we stained the cells for 

caspase-3 (apoptotic marker), and we showed that C3a–C3aR interaction promotes cell 

apoptosis as well (Fig. 6 C). We similarly observed C3a/C3aR-induced cytoskeleton re-

arrangement of human podocytes derived from amniotic fluid kidney progenitor cells 

[19, 29] (Fig. 6, D and E). 

Data from studies performed in both human and mouse podocytes show that podocyte 

damage (including damage caused by C3a/C3aR1 signaling) increases expression of 

Snail that, in turn, decreases nephrin expression and disrupts the slit diaphragm [30]. In 

accordance with these observations by others, addition of C3a increased podocyte 

Snail and TGF-β protein expression in cultured human podocytes, and the effects were 

prevented by addition of a C3aR antagonist (Fig. 6, F and G). 
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To provide additional mechanistic insight, we used a protein array to measure changes 

in 105 cytokines and mediators of kidney injury from supernatants of hiPod exposed to 

vehicle, C3a, or C3a plus C3aR-A for 24 h. These analyses showed that C3a selectively 

increased 16 of the molecules in the array (Fig. 6 H). We used the Genome-scale Inte-

grated Analysis of Gene Networks in Tissues (GIANT, now HumanBase) Bayesian inte-

gration (Wong et al., 2018) to capture the most relevant podocyte-specific functional in-

teractions between C3aR and nephrin, a major component of the slit diaphragm. Each 

interaction (or functional relationship) in the networks generated represents a body of 

data, probabilistically weighted and integrated, focused on a particular biological ques-

tion/tissue. Of the 16 molecules selectively upregulated by C3a (but not by C3a + C3aR-

A) the GIANT analyses indicated that IL-1β provided the strongest predicted functional 

connection between C3aR and nephrin selectively in podocytes (Fig. 6 I). 
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Figure 6. 
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Figure 6. C3a–C3aR interaction disrupts actin cytoskeleton in human cultured podocytes. (A and B) Represen-

tative images (A) and quantification (B) of cell injury of hiPod exposed to vehicle, C3a (50 nM), or C3a + C3aR-A (50 

nM) for 24 h and stained for F-actin and nephrin. (C) Representative images of caspase-3 staining of the same cells 

pictured above. (D and E) Representative images (D) and quantification (E) of cell injury of amniotic fluid–derived 

human podocytes exposed to vehicle, C3a (50 nM), or C3a + C3aR-A (50 nM) for 24 h and stained for F-actin and 

nephrin. *P < 0.05. (F and G) Representative blots and densitometric analysis of Snail (F) and TGF-β (G) expression 

in hiPod treated with vehicle, C3a, or C3a + C3aR-A for 24 h. Snail was measured in cell lysates; TGF-β was mea-

sured in cell supernatants. *P < 0.05; **P < 0.01. (H) Differentially expressed proteins in the supernatants of hiPod 

exposed for 24 h to vehicle, C3a (50 nM), or C3a + C3aR-A (50 nM; Proteome Profiler Human XL Cytokine Array). 

The cytokines represented here are the only ones among the 105 analyzed (see Materials and methods) whose ex-

pression levels significantly differed in C3a-treated podocytes versus both vehicle- and C3a + C3aR antagonist–

treated cells. *P < 0.05 versus vehicle and C3a + C3aR antagonist. (I) Functional network showing the relationship 

between C3aR, IL-1β, and nephrin in renal tubular cells and in podocytes (https://hb.flatironinstitute.org/gene/; query 

genes C3aR, IL1B, and NPHS1; tissue, renal tubules or podocytes; maximum number of genes, 15). All experimental 

data were verified in at least two independent experiments. Scale bars: 20 µm. Error bars are SEM. 
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C3a/C3aR signaling is linked to podocyte injury and FSGS through IL-1β 

IL-1β is a proinflammatory cytokine produced by monocytes, lymphocytes, and other 

cells, including podocytes [31, 32], and it is detected in glomeruli of subjects with pro-

teinuric nephropathies, including FSGS. IL-1β is produced as a precursor (pro–IL-1β) 

that must be cleaved by the multiprotein inflammasome complex in order to be activated 

and secreted. Given that C3a/C3aR ligations transduce signals that promote IL-1β re-

lease in other cell types, including monocytes [33], we hypothesized that C3a/C3aR 

signaling promotes podocyte production and release of IL-1β, which in turn binds to 

IL-1β receptor (IL-1R1) on the same cells (paracrine and autocrine) to promote nephrin 

reduction and cytoskeleton rearrangement [34]. Consistent with our hypothesis, when 

we cultured hiPod with C3a, we observed a significant increase in IL1B transcripts (Fig. 

7 A). When podocytes were cultured with LPS with or without C3a, we found that C3a 

significantly augmented IL-1β secretion (Fig. 7 B), the latter indicative of increased in-

flammasome activation [33]. 

To test the hypothesis that C3a-induced IL-1β production is responsible for podocyte 

injury, we exposed hiPod to C3a, C3a + anti–IL-1β–neutralizing antibody, or isotype IgG 

alone (Fig. 7 C). These experiments showed that C3a reduced nephrin expression and 

that the effect was abolished when C3a was administered with anti–IL-1β–neutralizing 

antibody but not isotype control, together supporting the conclusion that C3a-induced 

reduction in nephrin requires IL-1β/IL-1R1 signaling as an intermediary step. 
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On the basis of evidence that IL-1β induces actin cytoskeleton rearrangement through 

IL-1R1 signaling in podocytes, we tested whether blockade of IL-1β prevents C3a-in-

duced effects on the cytoskeleton. C3a promoted rearrangement of the podocyte cy-

toskeleton, and this effect was fully prevented when cells were exposed to C3a in con-

junction with anti–IL-1β–neutralizing antibody (Fig. 7, D and E). 

Figure 7. 
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Figure 7. IL-1β mediates complement-induced podocyte injury in vitro. (A) IL1B gene expression in hiPod at 

serial time points after C3a stimulation (50 nM). (B) IL-1β levels in the supernatants of hiPod at 24 h after LPS (5 ng/

ml) with or without C3a stimulation. (C) Nephrin expression in hiPod at 24 h after stimulation with isotype, C3a + anti–

IL-1β–neutralizing antibody, and C3a + isotype (WB). *P < 0.05 versus 0 h. (D and E) Representative images (D) and 

quantification (E) of cell injury of hiPod exposed to isotype control, IL-1β (50 ng/ml) + isotype control, or IL-1β (50 ng/

ml) + anti–IL-1β–neutralizing antibody (0.5 µg/ml; upper row). In the bottom row, the same cells were exposed to C3a 

+ isotype control or C3a + anti–IL-1β–neutralizing antibody for 1 h. All experimental data were verified in at least two 

independent experiments. *P < 0.05. Scale bars: 100 µm. Error bars are SEM. 
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Finally, to test how the in vitro mechanisms implicating pathogenic links among C3aR, 

IL-1β, and podocyte dysfunction apply to the development of ADR-induced FSGS, we 

treated ADR-injected BALB/c mice with anti–IL-1β–neutralizing antibody or isotype con-

trol, beginning on the day of ADR injection. These experiments showed significantly 

lower albuminuria levels and reduced histological evidence of disease in mice treated 

with the neutralizing antibody (Fig. 8, A and B), despite similar amounts of C3b deposit-

ed in the glomeruli (Fig. 8, C and D). To formally test whether these protective effects 

are due to IL-1R signaling, we administered ADR to DAFfl/fl podocin-CrePOS and Cre-

NEG littermate control animals and treated them with anakinra or vehicle control starting 

from the day of ADR administration. These experiments showed that IL-1R blockade 

with anakinra also prevented the onset of albuminuria and glomerular lesions (Fig. 8, E 

and F). Together with the previous experiments, the data indicate that DAF-regulated 

C3a/C3aR ligations on podocytes cause ADR-induced glomerular injury via an IL-1β–

dependent mechanism. Data from Nephroseq analyses of glomeruli of patients with 

FSGS or healthy control individuals showed increased levels of IL1B and IL1R1 mRNA 

levels in individuals with FSGS, supporting the conclusion that similar mechanisms ap-

ply to humans (Fig. 8, G and H). 
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Figure 8. 
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Figure 8. L-1β mediates complement-induced podocyte injury in vivo. (A and B) Urinary A/C (A) and representa-

tive renal histological changes (B) in BALB/c mice injected with 10 mg/kg of ADR (i.v.) and rat anti-mouse IL-1β–neu-

tralizing mAb (50 µg/mice twice per week, i.p.; n = 4) or isotype control (n = 4). Scale bars: 50 µm. *P < 0.05 versus 

anti–IL-1β–neutralizing antibody at the same time point. (C and D) Representative images of C3b deposition in the 

glomeruli of mice treated with (C) anti–IL-1β–neutralizing antibody or (D) isotype control. (E and F) Urinary A/C (E) 

and representative renal histological changes (F) in B6 DAFfl/fl podocin-CrePOS male mice injected with 10 mg/kg of 

ADR (i.v.) and anakinra (25 mg/kg/d through s.c. pumps; n = 4) or vehicle control (n = 3). Scale bars: 50 µm. *P < 

0.05 versus anakinra at the same time point. (G and H) IL1B (G) and IL1R1 mRNA expression (H) in glomeruli of 

human biopsy specimens with pathological diagnosis of FSGS compared with normal kidneys. Data are from previ-

ously published microarray studies by Ju et al. (2013) and were subjected to further analysis using Nephroseq. *P < 

0.05. All experimental data were verified in at least two independent experiments. Error bars are SEM. 

DISCUSSION 
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Individuals with FSGS have often C3d deposits in the glomeruli and their presence as-

sociates with worse clinical outcomes. Our present results identify DAF cleavage on 

podocyte membranes as the central mechanism for complement activation in FSGS 

pathogenesis. Importantly, data from DAF-/-C3-/- mice document that, in the absence of 

C3, mice are protected from ADR-induced FSGS, indicating that complement is required 

for glomerulosclerosis formation.  

Deposition of C3b, but not C1q nor C4b in the glomeruli of mice with FSGS suggests 

that complement activation occurs mainly through the alternative pathway. This finding 

is consistent with previously reported data by Lenderink et al. [35] showing that mice 

lacking factor B (fB), a regulator of alternative complement pathway activation, develop 

lower proteinuria than WT controls upon ADR injection. Similarly, factor D (fD)-deficient 

mice show lower proteinuria and less glomerular and tubulointerstitial injury after ADR-

injection compared to WT [36]. In a model of FSGS due to protein overload [37], factor 

H (fH)-deficient mice displayed higher C3b glomerular deposition and more severe le-

sions than WT controls, overall supporting a pathogenic role of alternative complement 

activation in FSGS. 

The experiments with conditional DAF removal from podocytes indicate that pathogenic 

complement activation occurs locally on the surface of these cells. The fact that C3aR 

deficiency in podocytes is also protective, indicates that C3a/C3aR interaction is the 

main effector mechanism responsible for the complement-induced podocyte injury. Sys-
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temic administration of a C3aR antagonist prevents ADR-induced glomerulosclerosis, 

providing a rationale for future studies testing the hypothesis that pharmacological 

blockade of C3a formation or signaling downstream C3aR prevents progression of 

FSGS also in humans.  

Importantly, our data with conditional DAF knock-out mice were replicated in male and 

female BALB/c mice, as well as in B6 animals that are more resistant to ADR. Previous 

data indicate that different susceptibility to ADR across mouse strains depends on muta-

tions in the Prkdc gene, which encodes a critical nuclear DNA double-stranded break 

repair protein [25]. However, our data suggest that strain susceptibility to ADR could, at 

least in part, also depend on different predisposition to complement activation. While 

both BALB/c and B6 mice expressed DAF in podocytes, DAF cleavage and C3b deposi-

tion in the glomeruli were more pronounced in BALB/c animals. Overall, these data con-

cur to document that complement activation is a central pathogenic mechanism in 

glomerulosclerosis affecting disease severity. 

Our in vitro and in vivo data indicate that ADR promotes DAF cleavage on podocyte 

membranes through the upregulation of PLAD. PLAD is specific for the glycosyl-phos-

phatidylinositol anchor found on many eukaryotic cell surface proteins including DAF 

[38]. To the best of our knowledge, this is the first demonstration that PLAD is produced 

by human podocytes and regulates DAF expression on their surfaces. Development of 

small molecules with PLAD inhibitory activity may, therefore, have clinical utility in pa-

tients with FSGS [39]. 
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Our in vitro studies show that C3a/C3aR interaction in podocytes leads to significant cell 

cytoskeleton rearrangements and that this is mediated by C3a-induced increase in IL-1β 

production that, through an autocrine and paracrine signaling, reduces nephrin expres-

sion. Though C3a has been shown to lead to increased IL-1β production in monocytes 

[33] and podocytes are known for their capacity to make IL-1β [31], to the best of our 

knowledge this is the first study reporting a link between C3a/C3aR signaling and IL-1β 

production in podocytes. These new mechanistic insights may contribute to explain the 

antiproteinuric effects of anti-IL-1β antibody treatment in individuals with amyloidosis 

[40, 41].  

Our in vitro and in vivo data in mice are corroborated by human findings, implicating a 

role for complement in both murine and human FSGS. In renal biopsies from patients 

with FSGS, we found the C3d deposition in the glomeruli was paralleled by a reduction 

in DAF expression, suggesting that complement activation is at least in part mediated 

by a downregulation of this regulator. The association between urinary C3a or C5a and 

proteinuria further supports a pathogenic role for alternative pathway complement acti-

vation in the disease and the testable hypothesis that C3a represents also a biomarker 

for disease activity more sensitive than proteinuria. C3d deposition was associated with 

podocyte expression of IL-1β in individuals with FSGS.  

The present data suggest a physiological role for DAF expression on podocytes as a 

mechanism of protection from spontaneous activation of urinary complement compo-

nents and provide mechanisms for previously unexplained observations, including that 

C3b deposition in the glomeruli of subjects with FSGS [42] or diabetic kidney disease 
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(DKD) [43] correlates with poor renal survival and that subjects with loss-of-function mu-

tations in CD55 gene (encoding for DAF) present evidence of glomerular injury [44-46]. 

Intriguingly, data from the early nineties indicate that steroids, the most widely used first-

line therapy for FSGS, inhibit activation of the alternative pathway of complement acti-

vation. In light of our new discoveries, this effect could, at least in part, explain the an-

tiproteinuric effects of steroid treatment in FSGS cases.  

Our study has some limitations. While the present data indicate that complement cas-

cade is activated through the alternative pathway, we cannot discriminate between a 

primary activation of this pathway and an uncontrolled activation of the downstream 

amplification loop. Also, our studies do not decipher the source of complement factors 

activated in the glomeruli, i.e. whether they are produced by the liver and other organs 

and filtered into the kidney or produced by the kidney itself. Previous data indicate that 

systemic, but not kidney produced complement is the major source of complement fac-

tors activated in the glomeruli in the albumin overload model of FSGS [47]. However, we 

also show that in glomeruli from humans with FSGS there is an upregulation of C3 

complement gene, suggesting that the kidney represents another source of comple-

ment. 

Our studies mainly focused on FSGS. However, data by others support the concept that 

complement activation is implicated in the pathogenesis of other glomerular diseases. 

Therefore, our current working model could apply to other proteinuric nephropathies. 

CONCLUSIONS 
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In summary, our data support a conceptual paradigm shift, suggesting as fundamental 

the the specific role of C3a/C3aR signaling in podocytes injury in the pathogenesis of 

FSGS. Our data are of sure interest also for other different proteinuric nephropathies. 

Various inhibitors of complement component C3 and antagonists of the C3aR, along 

with IL-1β or IL-1R1 antagonists are actively being developed by pharmaceutical com-

panies. Therefore, our data set the basis for future interventional trials testing the hy-

pothesis that counteracting C3a/C3aR and/or IL-1β/IL-1R1 signaling prevents or retards 

progression of proteinuric nephropathies [48]. 
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