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Abstract 
 

Nowadays the development of real-time ionizing radiation detection system 
operating over large areas is crucial. Despite the excellent detecting performance 
exhibited by inorganic semiconductors (e.g. a-Se, CZT…) as direct solid state 
detectors, the increasing quest for flexible, portable, low cost and low power 
consumption sensors pushed the scientific community to look for alternative 
materials and technologies able to fulfill these new requirements. In this thesis the 
potentiality of organic semiconductors and metal oxides as material platforms for 
novel ionizing radiation sensors is demonstrated. In particular, organic 
semiconductors are human tissue-equivalent in terms of radiation absorption and 
this represents a unique and desirable property for the development of dosimeters 
to be employed in the medical field. The ionizing radiation sensors described in this 
thesis have been designed, fabricated and characterized during my PhD research 
and are realized onto thin polymeric foils leading to flexible devices operating at 
low voltages, in ambient condition and able to directly detect X-rays, gamma-rays 
and protons. Following the study of the properties and of the mechanisms of 
interaction between the ionizing radiation and the active layers of the sensors, 
several strategies have been put in place in order to enhance the efficiency of these 
novel radiation detectors. Innovative real-time X-rays dosimeters based on organic 
semiconductors have been realized presenting record sensitivity values compared 
with the state of the art for large area radiation detection. The unprecedentedly 
reported performance led to the possibility to testing these devices in actual medical 
(dental radiography) environments. Moreover, the proof-of-principle demonstration 
of a real-time dosimetric detection of high energy proton beam (5Mev and 70MeV) 
by organic-based sensors is reported. Finally, a new sensing platform based on 
metal oxides is introduced. Combining the advantages of amorphous high mobility 
oxide semiconductors with a novel stacked multilayer dielectric, new devices have 
been designed, capable of providing a sensitivity one order of magnitude higher 
than the one shown by the standard CMOS RADFETs. Thanks to their unique 
properties, these sensors have been integrated with a wireless readout system based 
on a commercial RFID tag and its assessment is presented. 
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Introduction 
 
The detection of ionizing radiation is a crucial task in several fields of human 

society. In many applications, novel requirements are emerging such as mechanical 

flexibility and conformability, portability, ease of fabrication processes, stability in 

ambient conditions and low production cost. For these reasons, in the last decades 

several efforts have been done by the scientific community to find new materials, 

processes and technologies able to fulfill these novel emerging necessities. The 

development of flexible and large area electronics offered new opportunities for the 

implementation of innovative radiation sensors. The active materials used for such 

devices are processable by low-cost fabrication techniques at low temperatures, 

leading to the possibility to deposit them onto polymeric and flexible foils and to 

scale up the devices onto large areas. 

In this thesis I focused my research on the study of two classes of materials that 

possess the above described features and that can be implemented as active layer 

in high-energy radiation sensors. In particular, I investigated organic small-

molecules semiconductors and metal oxides thin films employed to fabricate large-

area and flexible detectors. These two material platforms demonstrated to be 

promising candidates to overcome the main limitations imposed by the existing 

solid-state sensors based on bulky and rigid inorganic materials. They offered the 

chance to develop conformable and large area sensing platforms formed by thin 

film-based devices able to detect X-rays, gamma-rays, and protons. 

In the first chapter, a general introduction to flexible and large area electronics is 

given with a particular focus on the employment of organic semiconductors and 
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metal oxide semiconducting materials. Their charge transport mechanisms and the 

main deposition techniques implemented for the fabrication of thin film transistors 

are discussed, together with their operation characteristics and non-idealities. 

The second chapter is dedicated to ionizing radiation detectors. After a first brief 

summary about ionizing radiation sources, the main mechanisms of interaction with 

matter and the definition of important physical quantities adopted in this field, 

ionizing radiation detectors based on semiconducting materials are introduced. The 

figures of merit employed to describe the capability of detection are listed together 

with the main architectures employed to realize this class of sensors and a critical 

comparative discussion of the advantages and disadvantages. This chapter 

illustrates the state of the art regarding flexible and large area direct ionizing 

radiation detectors focusing both on organic semiconductor based and on metal 

oxide-based devices. Finally, the state of the art for proton detection is presented. 

The materials and experimental tools used for the devices under study are described 

in chapter three. Besides, the main fabrication techniques employed for the 

realization of these sensors are shown. 

Chapter four is dedicated to the experimental results achieved by the ionizing 

radiation detectors fabricated in this research work, based on organic 

semiconductors. A deep study regarding the mechanism of detection occurring in 

these sensors is illustrated and several strategies adopted in order to tune the 

sensing capability are proved. The assessment of the detection performances of this 

class of devices for X-ray medical applications (dental radiography) is reported. 

Finally, the results achieved by organic semiconductor-based devices for the 

detection of proton beams is discussed. 
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The ionizing radiation detection performance of high mobility metal oxide 

semiconductor-based devices are described in chapter five and the proof of concept 

for the detection of gamma-rays is also reported. Here the implementation of a 

wireless readout system based on a CMOS RFID (Radio-frequency identification) 

tag is demonstrated.  

This study has been carried out at the Department of Physics and Astronomy of 

the University of Bologna, Italy, in close cooperation with several international 

research groups. In particular, I collaborated with Prof. J. E. Anthony from the 

University of Kentucky (U.S.A), Dr. M. Mas Torrent’s group at Institut de Ciència 

de Materials de Barcelona (Spain) and Prof. P. Baquinha’s group at Faculdade de 

Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal). I performed some 

measurements at the Compagnia Elettronica Italiana (Bologna, Italy) using 

irradiating setups employed in the field of dental radiography and commercialized 

by Skanray Europe srl and Skan-X Radiology Devices S.p.A, and also at the 

LABEC (Laboratory of Nuclear techniques for Environment and Cultural Heritage, 

INFN Firenze, Italy) and TIFPA Proton Therapy Center (Trento, Italy). Finally, 

part of this work has been conducted during my exchange semester spent at the 

Columbia University (New York City, USA) hosted by Prof. I. Kymissis’ research 

group. 
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1.  

Flexible and large area 
electronics: organic and high-
mobility oxide semiconductors 

 

In this first chapter, an introduction about flexible and large area electronics is 

given. At the beginning, a brief history of flexible electronics is presented. The core 

of the chapter is focused on the description of two classes of materials: organic 

semiconductors and amorphous oxide semiconductors. Finally, the main 

applications of flexible and large-area electronics are summarized with a particular 

attention on thin film transistors. 

 

1.1. Brief history of flexible 
electronics 

 

Flexible and large-area electronics has been deeply investigated in the last decades 

by the scientific community and industry. These studies aim to the development 

of new technologies able to fulfill new devices’ requirements for several applications 

such as the low cost of fabrication, the portability and conformability, the 
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lightweight, the robustness and the scalability onto large areas. Even if the push in 

this field has been particularly emerged in the last years, the beginning of this story 

dates back to the 1960s [1]. 

The main driving force at that time was the solar industry and the need to produce 

solar cells able to lower the cost of photovoltaic energy. The first tentative was 

made by thinning a crystal silicon wafer but soon the researchers moved their 

efforts on a new material processable at low temperature and thus compatible with 

plastic and flexible substrates: the hydrogenated amorphous silicon (a-Si:H). In the 

1980s the first cells based on a-Si:H were produced [2] [3] and the era of flexible 

and large-area electronics started. A second context in which the flexibility and 

large-area were ambitious and appealing properties was the displays market. In the 

1980s, the active-matrix liquid-crystal display (AMLCD) industry started in Japan 

by adopting the same fabrication techniques used for the flexible solar cells. Here 

in fact, a-Si:H was implemented as the active material of the transistor (thin film 

transistors – TFTs) constituting the active backplane of the displays.  From that 

moment, the research on flexible electronics has rapidly expanded and many 

research groups and companies have developed flexible displays on plastic foil 

substrates.  

From the beginning, the development of this new branch of electronics has covered 

several topics of the research: from the materials, process to the systems and 

applications. As a matter of fact, the choice of the materials is for sure the heart 

of this technology. In fact, in order to directly pattern the electronic system onto 

a flexible foil, materials compatible with low temperature processes must be chosen. 

In particular, physical vapor deposition or solution-based printing technique are 

the two options which allow the development of a flexible system. 
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In fact, even if some examples are reported in literature, the use of a-Si:H and 

polycrystalline-Si [4] [5] directly printed on polymeric substrates is still limited 

because of the need of high temperature processing. On the contrary, other 

materials don’t present this necessity and they have been largely employed for the 

development of large-area and flexible electronics such as organic materials and 

metal oxides. Important to notice is the fact that, hybrid solution-processable 

materials have recently received a lot of interest, with the aim to combine the best 

features of different materials, such as mechanical flexibility and processability of 

polymers, with high performance of 1D or 2D structures (e.g. graphene [6], carbon 

nano-tubes (CNTs) [7], [8]). Notably, a new emerging class of solution-processable 

materials, called hybrid metal-organic perovskites, has opened up vast 

opportunities for low-temperature fabrication of efficient flexible solar cells [9] and 

solution-processable optoelectronic devices and sensors [10]. The studies concerning 

the mechanical flexibility of this novel class of materials started some years ago in 

the field of solar cells and involved other applications only more recently. In 

particular, still few works demonstrating the development flexible radiation sensors 

based on halide-perovskites are reported in literature and deeper investigations are 

ongoing [11]–[14]. 

 

1.2. Materials for flexible electronics 
 

As it has just been shown in the previous section, several materials have been 

employed in order to develop flexible and large-area devices. All these classes of 
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materials share an important property: the possibility to process them at low 

temperature and deposit them directly onto large-area polymeric foils. 

In particular, in the next sections two of these materials which are fully compatible 

with circuit fabrication on foil will be introduced: the organic semiconductors 

(OSCs) and the amorphous oxide semiconductors (AOSs). In fact, in the recent 

years both these two types of semiconductor families have reached a transport 

performance level superior to amorphous silicon, which has long been the 

technology benchmark for flexible electronics [15]. (Table 1.1) 

 a – Si poly - Si AOS OSC 

Mobility (cm2 V-1 s-1) <1 50-100 1-50 <10 

Channel polarity n n and p N n and p 

Reliability moderate high High moderate/high 

Process Temperature (°C) 250-350 <500 RT - 250 RT - 100 

Flexibility εmax (%) 0.2 – 0.4 0.1 – 0.5 0.7 1 – 2 

Table 1.1 Comparison of key performance parameters of organic and high mobility amorphous oxide 
semiconductors with benchmark technologies. Adapted from [15] 

 

1.2.1. Organic semiconductors 
 

Organic semiconductors (OSs) are carbon-based materials. For this reason, to 

understand the properties of organic compounds it is important to see the electronic 

structure of the carbon atom and the possible bonds that it can form. Carbon is a 

IV group material and so it has four electrons in the outer energy level (i.e. it can 

form four bonds with other atoms). In particular, the IUPAC electron configuration 

of Carbon is 1s22s22p2. An important property of the carbon atom is that it can 
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hybridize in several forms. The concept of hybridization was introduced by Linus 

Pauling in 1931 and it describes the linear combination between different atomic 

orbitals. VESPR theory indicates that carbon can form three different kinds of 

hybrid orbitals named sp, sp2 and sp3. These represent the combination of s and p 

orbitals. Let’s consider as an example the sp2 hybridization shown in Figure 1.1a. 

In this case, the 2s orbital combines with two of the 2p orbitals (e.g. 2px and 2py) 

forming three hybrid sp2 orbitals which lie in the XY plane. The fourth 

unhybridized orbital (in this case 2pz) places orthogonal to the XY plane as 

depicted in Figure 1.1b. If we consider now two sp2-hybridised carbon atoms 

coming into close contact, they can form two different kinds of chemical bonds. On 

one hand, the overlap between two sp2 orbitals leads to a covalent bond called σ-

bond formed along the line joining the two carbon atoms’ nuclei. On the other 

hand, the partial overlap between the two unhybridized 2pz orbitals forms another 

type of covalent bond called π-bond (see Figure 1.1c). Energetically speaking, the 

much larger overlap between the two sp2 orbitals if compared with the two 

unhybridized 2pz orbitals leads to a difference in strength between these two: the 

σ-bond is a stronger bond that the π-bond. This aspect has very important 

consequences for the electrical behavior of the organic molecules: in σ-bond, the 

involved electrons (σ-electrons) are too localized to be free to move while the 

electrons involved in π-bond (π-electrons) are much more delocalized. As a result, 

the σ-electrons forms the skeleton of the molecules while the π-electrons are free to 

move across the molecule and they contribute to the electrical properties of the 

material.  
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Figure 1.1 a) electron density probability surfaces for the constituent components of the sp2 
hybridization. b) Schematically show the geometry of the sp2 orbital structures. c) Two sp2 bonded 
carbon atoms. Adapted from [16] 

 

Typically, the organic semiconductors are formed by a repetition of conjugated 

units in which single and double π-bond alternate. Depending on the length of the 

π-conjugated systems (i.e. the number of conjugated units) one can distinguish 

small molecules and polymers (Figure 1.2). The organic small molecules are 

compounds with a well-defined molecular weight while polymers are long-chain 

molecules consisting of an indeterminate number of molecular repeat units. Despite 

this, these compounds share more similarities than differences especially in terms 

of both optical and electrical properties [17][18]. 



Flexible and large area electronics: organic and high-mobility oxide semiconductors 

23 

 

 

Figure 1.2 Chemical structure of the most studied (a) Organic Small Molecules and (b) polymers 

semiconductor. Adapted from [19]. 

 

A quantitative description of the energetic structure of the organic semiconductors 

can be provided by the theory of Molecular Orbitals (MOs) [20]. According to this 

theory, the orbitals of a complex molecule can be described as a linear combination 

of the atomic orbitals (AOs) corresponding to the single constituents. This 

approach is known as LCAO (Linear Combination of Atomic Orbitals) and it 

provides the mathematical calculations regarding the energetic structure of 

molecular systems. This method identifies two categories of energy levels: the 

bonding (π) and the anti-bonding (π*) which together form a band-like structure. 

In particular, the occupied π levels form the HOMO (Highest Occupied Molecular 

Orbital) and the unoccupied π* form the LUMO (Lowest Unoccupied Molecular 

Orbital). These represent respectively the outer shell occupied by electrons (the 

analogue of the valence band) and the lowest energy level unoccupied (the 

correspondent to the conduction band). The energy difference between the HOMO 
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and LUMO represents the energy gap (EG) of the semiconductor. It has been proved 

that in conjugated molecules, for longer chain the energy gap results lower. 

In order to describe the charge transport in organic semiconductors, one should 

note that while in the inorganic semiconductors the atoms are bonded with covalent 

bonds, the organic molecules aggregate in a solid through the weak Van der Waals 

interaction. Such a weak intermolecular force lowers the conductivity of the organic 

semiconductors and determine the need of new models able to describe the charge 

transport within these solids.  

 

1.2.1.1. Charge transport in organic small molecules 

semiconductors 
 

As it has been introduced in the previous section, while the charge transport in 

inorganic semiconductors occurs through delocalized states and can be described 

by a band transport, in organic semiconductors the molecular units are connected 

by weak Van der Waals interactions and the transport occurs between localized 

states. The transport, in this latter case, depends on the overlap between the π 

orbitals and for this reason it is deeply related to the structural characteristic of 

the organic film. Depending on the degree of order of the organic system the charge 

transport can be described by the band theory (for the organic single crystals i.e. 

long-range ordered systems) or by the hopping model (for the amorphous or poly-

crystalline systems). 

Even if a complete knowledge is still lacking, several models have been introduced 

in the last decades in order to describe the charge transport in amorphous or 
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disordered materials and some reviews described them in details [19], [21]–[26]. Here 

the most used models will be illustrated.  

Hopping Transport 

The hopping model was firstly introduced by Mott [27] and Conwell [28] and later 

it was revisited by Mills and Abrahams [29]. This model assesses that while in an 

ordered system, the electrons are free to move along delocalized states, in disordered 

or amorphous solids the charges move hopping between localized states. To 

determine which is the best model to describe a system, one must observe how the 

electrical mobility varies with the temperature. In fact, in the band-like model the 

increase of temperature leads to an increase in the scattering occurring between the 

charges and the phonon and consequently it leads to a drop of the mobility (� ∝
��� ; 0 	 
 	 3) (Figure 1.3).  

 

Figure 1.3 Hole and electron mobility in ultrapure naphtalene organic single crystal as a function 
of Temperature. The trend of the curves (� ∝ ���) is a proof of a band-like transport in organic 
ordered systems. Adapted from [30]. 
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On the opposite side, the hopping mechanism is thermally assisted and therefore 

the mobility increases with temperature. In particular, in the hopping model the 

mobility is proportional to the transition rate between two different states Wij (e.g. 

from i to j) which is defined by the Mills-Abrahams expression (Eq. 1.1). 

 �
� = �� ����−2���
��� ���� �− �� − �
� � !    ∀ �� > �

1                                      �%&�  (1.1) 

where υ0 is the phonon vibration frequency, γ-1 is the wavefunctions overlap 

between the two states Rij is the distance between the two states and εi and εj are 

the energy respectively of the initial and final states. 

Small Polaron model 

To identify the nature of the localized states in organic materials, Holstein 

introduced in 1959 the theory of the Small Polaron [31]. When a charge flows across 

the conjugate chain of an organic materials, because of its long-range interaction it 

polarizes and deforms the molecular system itself. The result of this deformation is 

called polaron and it provokes the self-trapping of the charges responsible of the 

effect. 

The Holstein model is a one-dimension, one-electron model in which the total 

energy of the system can be obtained by the sum of three terms. The lattice energy 

EL is given by the sum of N harmonic oscillators that vibrate at the frequency ω0 

(Eq. 1.2): 

 '( = ) 12*
+

�,-
�ħ/ 001�!2 + 12 *4�21�2 (1.2) 

where un is the displacement of the nth molecule from its equilibrium position and 

M is the reduced mass of the nth molecular site. 



Flexible and large area electronics: organic and high-mobility oxide semiconductors 

27 

 

The energy of the electrons is calculated in the tight binding approximation and it 

assumes that the potential at each chain site affects only the nearest neighbor (Eq. 

1.3 where J is the electron transfer energy and a is the lattice constant). And finally, 

the electrons-lattice coupling is expressed in Eq.1.4 where A is a constant. 

 '5 =  '� − 2 6 78&9:;< (1.3) 

 �� = −=1� (1.4) 

An important parameter in this model is the polaron binding energy EB which is 

defined as ' = =2 2*4�2⁄  and indicates the energy gain of an infinitely slow carrier 

due to the polarization of the lattice. Then the mobility (Eq. 1.5) of the small 

polaron is determined by solving the time-dependent Schrödinger equation [23]. 

 � = ?@2 �;2
ħ 62

A' 
9� �<�B 2⁄ ��� �− ' 2� �! (1.5) 

Multiple Trapping and Release 

The Multiple Trapping and Release is a model able to describe the charge transport 

in polycrystalline semiconductors [32], [33]. In this kind of materials, crystalline 

regions form domains which are divided each other by amorphous grain boundaries. 

While within the same microcrystal the transport occurs across delocalized states 

and can be described by the band-like model, when the charges reach the grain 

boundaries they are trapped, and the electrical mobility drops down.  

Depending on the dimension on the grains, Horowitz et al. proposed a step forward 

in this model [34]. The polycrystalline system can be illustrated as many resistors 

(i.e. the single grains and the grain boundaries) connected in series. According to 

this point, the mobility can be expressed as: 
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 1� = 1�C + 1�  (1.6) 

where µG and µB are the mobilities respectively within the grains and at the grain 

boundaries.  

 

Figure 1.4 Energy scheme of a polycrystalline materials in two extreme cases: (a) when the grain 
size (l) is higher than the Debye Length (big grains) and (b) when l<LD. (c) Arrhenius plot of the 
mobility as a function of the temperature for sexithiophene (6T) and octothiophene (8T) based thin 
film devices. The samples deposited at higher T, present bigger grains while the one fabricated at 
room temperature (RT) is formed by small crystalline grains. [34] 

 

Depending on the dimensions of the grains (l) with respect to the Debye Length 

(LD) one can distinguish two different regimes: 

1. When l > 2LD (Figure 1.4a): the traps are located only at the grain boundaries 

and the mobility is expressed by the Eq. 1.7. 

 � = � = DE̅%8� � ��� �− ' � �! (1.7) 

where q is the electrical charge, E̅ is the mean velocity of the charge and EB is 

the height of the energy barrier induced by the trapped charges at the grain 

boundaries. In this case the mobility is linearly proportional to the dimensions 
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of the grains. Moreover, for low temperature, the transport is dominated by the 

tunneling of the charges across the energy barriers and the mobility results 

independent from the temperature (see Figure 1.4c); 

2. When l < LD (Figure 1.4b): the traps at the grain boundaries can be thought 

as uniformly distributed and the mobility can be described by the Eq.1.8. 

 � ∝ �� ��� �− ' � �! (1.8) 

where µ0 is the mobility within the grain. In this case, the transport can be 

considered as thermal activated and the mobility increases with the temperature. 

In particular, the energy barrier induced by the trapped charges at the grain 

boundaries (EB) can be estimated looking at the mobility as a function of the 

temperature (Figure 1.4c). 

 

1.2.1.2. Deposition techniques 
 

Organic semiconductors can be deposited either from the vapor or solution phase, 

depending on their vapor pressure and solubility. Depending on the technique of 

deposition, it is possible to obtain different morphologies and molecular structures 

which, as it has been illustrated in the previous sections, can strongly influence the 

transport properties of the materials.  

Although the pioneering studies on organic semiconducting materials have been 

conducted on organic single crystals deposited by vapor phase [35], for the 

development of flexible and large-area electronics looking at devices based on 

organic thin films deposited by solution technique is more suitable. In fact, solution 
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growth allows to obtain uniform and large area films at low temperature (i.e. 

making possible to fabricate devices onto polymeric foils) leading to scalable and 

flexible technologies at low cost of production. Moreover, even if the good 

performance in terms of transport properties have been reached thanks to 

evaporated semiconductors, the great progresses regarding the deposition methods 

achieved in the past decades, lead to an incredible improvement of the devices 

fabricated by solution [36]–[40].  

Many reviews have been published in the last years in order to illustrate all the 

fabrication processes exploited for the fabrication of organic devices and to figure 

out some strategies in order to optimize and control the film growth [35], [41]–[43]. 

Here the most used technique of deposition by solution developed in the last 

decades are summarized (see Figure 1.5). 

 

 

Figure 1.5 A schematic summary of the most used deposition technique by solution. [35] 
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Drop casting 

Drop casting is the simplest technique of deposition by solution. It consists in 

dropping the solution (i.e. the organic semiconductor dissolved in an appropriate 

solvent) directly onto the substrate. The spontaneous evaporation of the solvent 

leaves behind individual crystals or thin films. In the last years, some modifications 

to the standard technique have been proposed in order to optimize the 

crystallization of the organic semiconductor. For instance, with the Vibration-

Assisted-Crystallization (VAC), applying to the substrate a controlled gentle 

vibration lets the molecules acquire sufficient energy in order to pass from a 

metastable state to a minimum potential energy configuration with the highest 

degree of order [44]. Moreover, by the Solvent-Assisted-Crystallization (SAC) [45] 

or by surface treatments [46] it is possible to slow down the evaporation rate of the 

solvent improving the crystallization of the semiconducting film. 

Spin coating 

Spin coating is the most used technique to deposit organic semiconductors by 

solution in research laboratories. The organic solution is deposited onto the 

substrate which is rotated at high speed (>1000 rpm). The centripetal acceleration 

induces the uniform spread of the solution over the substrate and the evaporation 

of the solvent left the organic semiconducting film. The properties of the film (e.g. 

thickness, uniformity, film microstructures...) depend on several parameters such 

as the spinning velocity and acceleration, the concentration of the solute in the 

solution, the nature of the solvent. Even in this case, modification of the standard 

spin coating technique leaded optimized film in terms of transport and 

morphological properties. Yuan et al. [47] developed an off-centered spinning 

technique in which the substrate is placed apart from the rotational center. 
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Therefore, the solution is no longer spread radially but aligned in a specific 

direction. 

Meniscus-guided technique 

Many solution-based deposition techniques use the linear translation of either the 

substrate or the coating tool to induce aligned crystallite growth in the deposited 

thin films. These methods involve the evolution of a solution meniscus, which 

induces the solvent evaporation. Indeed, the solution concentrates with the removal 

of solvent, and once the point of supersaturation is reached, the solute precipitates 

and is deposited as thin film. Due to the linear motion of the solution with respect 

to the substrate, in many of these techniques the alignment of the microstructure 

in the organic thin film is achieved. Several parameters can influence the film 

crystallization (e.g. the velocity and the temperature of deposition [48]) and 

depending on the tool used for the shearing it is possible to identify many different 

techniques. 

Dip-coating consists in the immersion of the substrate in the organic solution and 

the following withdrawal of the sample at controlled velocity. Depending on the 

evaporation rate of the solvent and on the velocity of the substrate, different 

thicknesses and crystalline packings are achievable. [49] 

Blade coating is the most popular meniscus-guided technique. Depending on the 

shape of the tool used to spread the solution on the substrate, it is possible to 

distinguish several methods such as doctor blading, bar coating… Passing on the 

top of a reservoir of organic solution, the spreading element (i.e. the bar, the blade, 

the knife…) leaves a wet thin film on the top of the substrate which crystalize after 

the evaporation of the solvent. The velocity and the temperature of deposition are, 

also in this case, the key parameters to tune the properties of the organic thin film. 
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Blading is one of the most scalable deposition technique and it has been adapted 

to roll-to-roll process [50]. A particular blading developed by Marta Mas Torrent 

et al. [51], [52] is called Bar Assisted Meniscus Shearing (BAMS) and it 

demonstrated to offer optimal performance organic thin films formed by small 

molecules semiconductors blended with polymers. 

Printing technique 

Printing techniques allow to deposit organic thin films spatially confined making 

possible a direct pattern of the semiconducting layer. 

Inkjet printing is the most famous printing technique for organic electronics.  This 

consists in the jetting of the organic ink in the form of small droplets thanks to a 

piezoelectric or thermal process. The key parameters of this deposition technique 

are related to the ink-substrate interaction: the surface energy of the substrate and 

the viscosity of the solution. A promising optimization of this technique has been 

developed by Kymissis et al. [53] and it is called Pneumatic Nozzle Printing. This 

is a combination between a inkjet printing and a meniscus guided technique in 

which the solution is printed by a nozzle placed very close to the surface in order 

to create a meniscus. Thanks to this method it is possible to obtain a patterned 

organic thin film which present ultra-aligned microcrystallites. 

Spray Coating is another example of printing technique based on the ejection from 

a nozzle of small droplets aerosolized by an inert carrier gas. The aerosolized 

particles then hit the substrate and dry rapidly, forming homogeneous films. Several 

parameters can influence the properties of the films such as the pressure of the inert 

gas, the shape and dimension of the nozzle, the concentration of the solution and 

the duration time of deposition. Also this technique is easily scalable and high-

quality thin films have been produced onto large-area substrates [54]. 



1.2 Materials for flexible electronics 

34 

 

1.2.1.3. Charge carrier traps in Organic Semiconductors 
 

As it has been introduced in the previous sections, the weak intermolecular 

interactions in organic semiconductors (i.e. Van der Waals forces) make them very 

susceptible to defect formation, resulting in localized states in the band-gap that 

can trap charge carriers [55]. Indeed, charge carrier traps influence the transport 

mechanism of organic semiconductors and they can deeply affect the electrical and 

optoelectronic properties of the devices based on this class of materials. 

An electronic trap is an imperfection in the semiconductor that creates localized 

states laying within the energy band gap of the semiconductor. Depending on the 

distance from the band edges in terms of energy, one can distinguish shallow traps 

(i.e. the ones placed few KBT far from the HOMO/LUMO edge) and deep traps 

(i.e. the traps placed several KBT away from the HOMO/LUMO edge). As depicted 

in Figure 1.6, the shallow traps can be activated by thermal effect and they play 

and important role in the mechanism of transport in the semiconductor. On the 

opposite side, the deep traps can’t be thermally excited, and they often act as 

recombination centers. 

 

Figure 1.6 Trap Density Of State (left) and schematic and spatial diagram of shallow and deep 
traps in organic semiconductors [55]. 
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In this section the possible sources of traps in organic semiconductors are 

summarized and it is discussed how they can affect the transport properties in these 

materials. Moreover, a deepening on their effects on the electrical parameters of a 

specific electronic device (i.e. thin film transistor) is presented in Section 1.3.1.1. 

Sources of traps in organic semiconductors 

The sources of electron traps in organic semiconductors can be divided in intrinsic 

and extrinsic ones. In fact, while the disorder can be considered an intrinsic source, 

on the opposite side dopants, interfacial, environmental, and bias stress effects are 

considered extrinsic sources. 

Disorder 

The disorder can be dynamic or static. The dynamic disorder is caused by thermal 

motions of the molecules and it is time dependent involving the entire molecular 

system. On the other side, static disorder is caused by structural defects or by 

chemical impurities, it is time-independent and it involves only the location where 

the defects are present. Both induce localized tail states in the band gap. 

In particular, structural defects are mainly related to the growth of the organic 

semiconductors (i.e. the growth rate, method of fabrication) and they are present 

both in organic single crystals and in thin films. The spatial deviation from the 

crystal lattice order induces a variation in the local electronic polarization energies 

for the charge carriers in the vicinity of such defects causing the formation of 

localized trapping states. As far as the organic poly-crystalline thin films concerned, 

another important source of traps is related to the grain boundaries [56]. In fact, 

they act both as trap states and as energy barriers for charge carriers. 
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Interfacial Effects 

In all the devices based on organic semiconductors, the organic films are always 

interposed between other kind of materials forming interfaces OSC/dielectric, 

OSC/metal or OSCs/OSC. 

In particular, the dielectric/OSCs interface can be source of trap states because of 

non-uniform topology, surface energy, chemistry, roughness of the dielectric and 

finally it can be related to the adsorption of impurities such as water, oxygen or 

hydroxyl groups. 

Also, the OSC/metal contact interfaces can induce several trap states which affect 

in particular the injection/collection of charge carriers. This effect can be observed 

by an high contact resistance in electronic devices [57]. 

Environmental Effects 

Exposure to environmental either during the device fabrication, handling, and 

characterization, often affects the quality of the organic semiconductor and can 

lead to trap formation. Temperature, moisture (H2O), ambient gases (O2) and 

electromagnetic radiation such as light or X-rays are some other possible sources 

of traps [55]. 

 

1.2.2. High mobility amorphous oxide 
semiconductors 

 

Amorphous Oxide Semiconductors (AOSs) are other promising materials employed 

for the development of large-scale flexible electronics. In fact, on one side the 
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amorphous phase ensures the uniformity of the materials over a large-area (avoiding 

the presence of grain boundaries) and on the other side, despite the structural 

disorder, AOSs maintain a high electrical mobility (i.e. µ >10 cm2V-1s-1). To better 

understand the peculiarity of these semiconductors, their molecular structure and 

their electronic configuration are here described. 

AOSs are multicomponent compounds in which the mixing of different oxides 

ensures the amorphous phase. In fact, as depicted in Figure 1.7a, the assembly of 

different cations with different sizes and ionic charges prevent the crystallization of 

the material and leads to the existence of a high number of AOSs species. In 

particular indium, gallium, zinc and tin are the major constituents of the most 

studied AOSs. Besides, from the graph reported in Figure 1.7b, it is possible to see 

how the incorporation of a stabilizer cation (such as Gallium) is a crucial point for 

the formation of a good semiconductor. In fact, the Ga-O bond is stronger than the 

Zn-O and the In-O ones and it allows to lower the oxygen vacancies and 

consequently offers the possibility to have a higher control of the charge densities. 

 

Figure 1.7 (a) Amorphous formation and (b) electron transport properties of In2O3-Ga2O3-ZnO thin 
films. The values in (b) denote the electron Hall mobility (cm2V-1s-1) with density (1018 cm-3) in 
parenthesis. Adapted from [58]. 
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Considering the standard covalent semiconductors, we are used to think that the 

switch from a crystalline phase to an amorphous phase brings a dramatic 

degradation of the charge transport in the material (e.g. for Silicon µc-Si ≈ 1500 

cm2V-1s-1 while µa-Si <1 cm2V-1s-1). On the contrary, in AOSs the electrical mobility 

remains unchanged despite the amorphous structure and the reason of this property 

is based on the strong ionicity of these compounds and on their electronic 

structures. 

If we look at Silicon, the conduction band minimum and the valence band 

maximum are formed respectively by the anti-bonding (sp3 σ*) and bonding (sp3 

σ) states of Si sp3 hybridized orbitals and the corresponding energy band gap is 

formed by the energy splitting of these two (see Figure 1.8a). On the contrary, 

when a metal comes in the vicinity of oxygen in order to form oxides, charge 

transfer occurs from the former to the last due to the different electron affinities. 

In particular, as it is shown in Figure 1.8b,c, the electronic structure of the ionic 

compound is stabilized by the Madelung potential formed by these ions, raising the 

energy levels of the metallic cations and lowering the ones of the oxygen. Thus, 

here the maximum of the valence band is formed by the fully occupied oxygen 2p 

orbitals while the minimum of the conduction band is composed by the empty 

metal cation s orbitals. The difference between these two edges forms the energy 

band gap of the AOSs. [59] 

The electronic configuration described above, explains why AOSs maintain high 

electrical mobility even if they present an amorphous structure. Since the minimum 

of the conduction band is mainly formed by the spherical s orbitals of the metal 

cations, when the radius of these orbitals exceeds the inter-cation distance the 

overlap between these leads to a broad band dispersion (i.e. a small electron 
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effective mass). Moreover, while the sp3 orbitals forming the conduction band in 

Silicon are strongly unidirectional, the spherical s orbitals involved in the formation 

of the conduction band in AOSs are not affected by the structural disorder 

maintaining a good overlap also in amorphous materials (Figure 1.8d, e, f, g). 

 

Figure 1.8 Schematic electronic structures in Silicon and in ionic oxide semiconductors. Band-gap 
formation mechanisms in (a) covalent and (b, c) ionic semiconductors. Carrier transport paths in 
(d) c-Si, (e) a-Si, (f) c-oxides and (g) AOSs. [58] 

 

1.2.2.1. Charge transport in AOS 
 

In AOSs the transport mechanism can be described using a band-like transport. In 

fact, as it has been discussed in the previous section, despite the amorphous 

structure presented by this class of materials, the electronic configuration forming 

the conduction band of AOSs does not affect the formations of bands. In Figure 

1.9a the pseudo-band structures of a-Indium Gallium Zinc Oxide (a-IGZO i.e. a 

ternary AOS) and a-Si obtained through DFT calculations are depicted. As it is 
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shown, while the a-Si presents very small width bands, on the opposite side in the 

a-IGZO the conduction band has a large dispersion with a bandwidth ≈1eV 

indicating that the electrons in a-IGZO are delocalized [60].  

Moreover, AOSs present two unusual carrier transport properties:  

o The electron mobility increases with the free electron charge density (Figure 

1.9b) both in amorphous and crystalline material while in the typical 

crystalline semiconductor this trend is the opposite. In fact, typically the 

increasing of charge density is due to an increase of the materials doping 

and thus to an increase in the scattering of the free charges with the 

impurities. On the opposite side, in AOSs the doping of the materials mainly 

occurs through a modulation of the oxygen vacancy density avoiding the 

introduction of impurities in the material. 

o The electron mobility increases with the temperature both in amorphous 

and crystalline material despite the degeneration of the density of charges 

[59]. This thermally activated mechanism suggests that the transport of free 

carriers in the conduction band is limited by potential barriers above the 

band edge. These are well explained in the percolation transport model [61] 

depicted in Figure 1.9c. With the increasing of temperature, the charges 

acquired enough energy to pass over the potential barriers and take the 

shorter path, enhancing the electrical mobility of the AOSs. 

Finally, AOSs present very high values of electrical mobility (i.e. >10 cm2V-1s-1) 

which can be explained by the charge transport mechanism occurring and by the 

low density of sub-gap defects states [62]. 
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Figure 1.9 a) Pseudo band-structure of a-IGZO (left) and a-Si (right). b) The relation between 
electrical mobility and charge carrier density for a-IGZO and c-IGZO. c) Schematic of the 
percolation conduction showing the short (i) and the long (ii) pathways. The isosurface represents 
the electron potential in the conduction band. Adapted from [58], [63] 

 

1.2.2.2. Deposition techniques 
 

As for the organic semiconductors, the AOSs can be deposited both by solution 

and by vacuum deposition techniques.  

Vacuum deposition processes are widely used in flat-panel display manufacturing 

and in particular sputtering technology is one of the most employed techniques 

among the others [10], [64]–[68]. In fact, this method of deposition offers several 

advantages such as the possibility to operate at low-temperature (i.e. RT) and it 

allows to obtain a good adhesion of uniform and dense films onto large-area 

substrates [69]. 

In order to focus on the development on scalable and flexible system based on AOSs 

in the last years several works and reviews have been published about the 

possibility to employ the traditional technique of deposition by solution (i.e. the 

ones discussed for the OSCs) also for this class of materials [70]–[73]. 



1.3 Large-area and flexible devices: applications 

42 

 

1.3. Large-area and flexible devices: 
applications 

 

In recent years, large-area and flexible electronics have developed at an 

unprecedented rate. In fact, the increasing quest of scalable and stretchable devices 

forced the scientific community and the industries to look for alternative pathways 

in order to find new materials able to address these necessities. 

Large area and flexible devices are employed in several applications such as in 

personal devices (e.g. wearable health monitoring devices), large-area sensors (e.g. 

electronic skin, biomedical devices, digital medical imagers), rollable displays, solar 

cells and smart tagging of products with radio-frequencies identification tags (see 

Figure 1.10) [10], [74]. 

 

Figure 1.10 Applications of flexible and Large-area Electronics. Adapted from [75]. 
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1.3.1. Thin Film Transistors (TFTs) 
 

Among this wide range of possible applications, flexible and scalable technologies 

have been implemented for the development of thin film transistors (TFTs). In 

particular, organic semiconductors [16], [24], [25], [38], [41], [43], [45], [76]–[78] and 

amorphous oxide semiconductors [60], [70], [79]–[86] have been both exploited as 

materials forming the semiconducting layer of the device (see Section 1.3.1.2). 

The TFT is a three terminal device where it is possible to tune the current flowing 

in a semiconductor placed between two electrodes (i.e. source and drain). A 

dielectric layer is inserted between the semiconductor and a third electrode named 

gate, being the current modulation achieved by the capacitive injection of carriers 

at the interface between the semiconductor and the dielectric layers. This effect is 

turned possible due to the parallel plate capacitor structure formed by the gate 

electrode, insulator and semiconductor and it is known as field effect. 

Depending on the position of the semiconducting layer respect to the electrodes, 

four different configurations can be distinguished: bottom gate-bottom contact 

(BGBC), bottom gate-top contact (BGTC), top gate-bottom contact (TGBC) and 

top gate-top contact (TGTC) (see Figure 1.11). The TFTs reported in this thesis 

are all in the bottom gate bottom contact configuration. 
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Figure 1.11 Thin film transistor structures 

 

While the typical field effect devices (e.g. MOSFETs) operation is based on the 

inversion regime, the working principle of the TFTs is based on the creation of a 

conductive channel at the interface between the semiconductor and the dielectric 

layer (i.e. accumulation regime). Let us consider as an example a TFT based on an 

n-type (p-type) semiconductor. When a positive (negative) bias is applied through 

the gate electrode (i.e. VGS), electrons (holes) are attracted at the interface between 

the insulator and the semiconductor and a conductive channel is created. Applying 

then a bias between the source and drain electrodes leads the flowing of these 

charges across the channel length and a current (i.e. IDS) can be measured. On the 

opposite side, when a negative (positive) bias is applied at the gate terminal, the 

interface between the semiconductor and the insulator is depleted and no electrical 

currents can be measured between the source and drain electrodes. The former 

denotes the ON-state of the transistor while the last is the OFF-state of the device. 

Ideally, the switching from the ON-state to the OFF-state should happen at VGS = 
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0V. Indeed, in a real device the switching between these two regimes of operation 

does not occur at VGS = 0V but at a threshold voltage (i.e. Vth) which depends on 

the background carrier concentration of the semiconductor, the charge density 

residing within the dielectric and the trap density at the interface and within the 

semiconductor. 

Considering now the ON-state of the transistor (i.e. |VGS| > |Vth|), depending on 

the intensity of the bias applied at the drain electrode (i.e. VDS), two different 

regimes can be distinguished: 

o Linear Regime VDS < (VGS – Vth) 

In this regime, the charges accumulated in the channel are spatially uniformly 

distributed and the IDS increases linearly with the VGS as expressed by the following 

Equation 1.9: 

HIJ = K
� �L M9NCJ − NOP<NIJ − 12 NIJ2 Q ~K
� �L 9NCJ − NOP<NIJ (1.9) 

Where Ci is the capacitance per unit of area of the dielectric layer, W is the width 

of the channel and L is the length of the channel. 

o Saturation Regime VDS > (VGS – Vth) 

When the VDS is higher that (VGS – Vth), the region close to the drain electrode 

becomes depleted leading to the saturation of IDS (i.e. pinch-off of the conductive 

channel). In this regime the drain current can be expressed by the following 

Equation 1.10: 

 HIJ = K
� �2L 9NCJ − NOP<2 (1.10) 
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Both these regimes of operation are depicted in Figure 1.12 where the Output and 

the transfer characteristic curves are reported. 

 

Figure 1.12 a) Output characteristic. Both the linear and saturation regimes are indicated. b) 
Transfer characteristic in saturation regime.  

The electrical performance of the TFTs can be described by several parameters 

which can be extracted from the graphs reported in Figure 1.12. 

o ION/IOFF ratio indicates the ratio between the maximum and the 

minimum value of IDS. A high value is desirable for a good operation 

of the device as an electronic switch. 

o The Threshold Voltage (Vth) indicates the value of VGS at which the 

TFT changes the status between ON-state and OFF-state. It can be 

extrapolated from the transfer characteristic as it is depicted in the 

graph (Figure 1.12). It strongly depends on the trap states for 

majority carriers being present at the semiconducting layer and for 

this reason, an estimation of the density of interfacial traps (Nit) can 

be calculated observing the variation of the threshold voltage with the 

temperature (Eq. 1.11): 
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 S
O = K
� � 0NOP0�  (1.11) 

o The sub-threshold swing slope (S) indicates how fast the TFT switches 

from the OFF-state to the ON-state changing the VGS. It can be 

extracted from the transfer characteristic in the LOG-LIN plot as the 

inverse of the maximum slope (Eq. 1.12): 

 T = U0 log9HIJ<0NCJ Y
Z[\

]�-
 (1.12) 

It strongly depends on the on the majority carriers trap states as well, 

as highlighted by the following Equation (Eq. 1.13): 

 T = � �%
910<D US
OD2
K
 + 1] (1.13) 

 

o The Mobility (µ) represents how quickly a charge carrier moves in 

response to an electric field. Ideally the mobility extracted from the 

TFTs characteristic curves and the intrinsic mobility of the material 

would be the same. As a matter of fact, the mobility in TFTs strongly 

depends on structural defects of the semiconducting layer and on 

interface states and roughness. Therefore, in this case, it is reasonable 

thinking about the mobility as a property of the device more than of 

the material. Moreover, the mobility depends on the VGS applied and 

for this reason it is possible to calculate this parameter both in linear 

(Eq. 1.14) and in saturation regime (Eq. 1.15).  
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�^_,b[O = U0AHIJ0NCJ ]2

12 K
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 (1.15) 

   

1.3.1.1. The role of trap states: TFTs non idealities 
 

As it has been introduced in Section 1.2.1.3, the presence of traps has a profound 

impact on the performance of electronic devices such as TFTs. This effect can be 

studied through the analysis of the electrical parameters [55] and the characteristic 

curves discussed in the previous section. The main nonidealities induced by traps 

are summarized in Figure 1.13. Recent reviews by H. I. Un et al. [87] and T. Yang 

et al. [88] provide a complete discussion on this topic. 

 



Flexible and large area electronics: organic and high-mobility oxide semiconductors 

49 

 

 

Figure 1.13 Summary of the relationship between the origins of nonidealities and the resulting 
shapes of the transfer characteristics. 

 

First of all, the trap charge carriers reduce the electrical mobility with the density 

of traps and trapping timescale. In fact, in this case the mobility is VGS dependent. 

In particular, at low VGS, the injected/accumulated charges occupy the available 

trap states, and the electrical conduction is based on the thermally-activated 

hoping/tunneling between these states. For higher VGS, the trap states are filled 

and the charge carriers can finally occupy the extended states and consequently 

increase the mobility. This is the reason for the deviation of the Vth from 0 V which 

can be observed as non-idealities in TFTs [89]. The most relevant sources of 
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trapping in this case are the ones induced in the semiconductor bulk or at the 

semiconductor/dielectric interface. For example, the presence of functional groups 

(e.g. -OH, -NH2, -COOH) on the dielectric surface, can lead to a reaction with 

water molecules eventually present near the metal contacts bringing the formation 

of charge trapping layers. One possible solution to this issue is offered by the 

employment of surface treatments (e.g. hexamethyldisilzane (HMDS) treatment for 

the passivation of SiO2 surface) or by the use of polymer dielectric which does not 

contain functional groups (e.g. polystyrene). 

Contact resistance is another crucial aspect which can strongly affect the transport 

properties of the TFTs inducing a downward bending of the transfer characteristic 

and a consequent non-linearity of the curve. This can have both an electrical and/or 

a structural origin. In fact, on one side the surface of organic materials is full of 

defects and when they are kept in contact with metallic materials localized states 

are induced at the interface. These states bring a surface potential which increases 

the injection barrier interposed between the electrodes and the conductive channel. 

On the other hand, also the semiconductor morphology plays a crucial role in this 

sense. For example, in BGBC TFTs the higher contact resistance is due the 

discontinuous coverage and poor film morphology of the semiconductor layer near 

the edge of the contacts. Also in this case, some strategies can be adopted in order 

to overcome this issue. For instance, organic self-assembled monolayer (e.g. 

pentafluorobenzenethiol (PFBT), see Section 3.3.3) can be employed to modify the 

Au electrodes for achieving a more uniform orientation of the organic 

semiconducting film. 

Besides, another salient feature in practical OFETs, resulting from the existence of 

traps, is the bias stress effect. This phenomenon is represented by a shift of Vth or 
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VON (which is modeled by a stretched exponential) due to the continuous 

application of a VGS. The causes of this can be several such as the charge trapping 

within the semiconductor bulk, in the dielectric or at the semiconductor/dielectric 

interface. Many strategies have been tested in the past decades in order to reduce 

this effect. For example, Kippelen et al. [90] have recently demonstrated remarkable 

bias stress stability employing an ultrathin bilayer dielectric formed by CYTOP 

and Al2O3. In this case, the best device showed ∆Vth below 0.2 V when it was kept 

in saturation condition for 40 hours (VGS = -10 V; VDS = -10 V) and in linear regime 

for 100 hours (VGS = -10 V; VDS = -2 V). 

Finally, hysteresis in the current-voltage characteristics is another clear indication 

of the existence of traps. In this case, the charge carriers are trapped in the 

semiconductor or at the semiconductor/dielectric interface during the forward 

voltage sweep and are then released during the reverse voltage sweep causing a 

differential current. Also to correct this nonidealities, several methods can be 

adopted such as using different crystallization techniques [91] or employing post-

deposition thermal annealing [92]. 

 

1.3.1.2. Flexible TFTs: State of Art 
 

As large-area and flexible electronics continue to advance, the research on TFTs 

becomes more elaborate and divergent, extending to new materials, device concepts, 

manufacturing processes, and integrated systems that offer improved performance 

and more functionalities, ultimately leading to new markets [93]. 
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As it has been anticipated at the beginning of this section, both organic 

semiconductors and amorphous oxide semiconductors have been employed as active 

layer in this class of devices. 

In this paragraph some examples of the advances of these two technologies are 

illustrated with a particular focus on flexible systems. 

As far as the OFETs concern, several efforts have been done in the last years in 

order to push the electrical performances of these devices and to adapt and 

implement them in several fields of applications. The intense work has been 

conducted on several aspects such as the improvement and the scalability of the 

fabrication techniques, the implementation of the devices onto new platforms, and 

the creation of novel architectures. In Figure 1.14 some recent examples reported 

in literature are shown. In particular, Figure 1.14a,b,c report three different 

architectures which can offer several advantages. The first one is reported in a 

recent review by Kleemann et al. where the main aspects of the vertical organic 

transistors are summarized [94]. Here it is illustrated how, exploiting this 

architecture it is possible to fabricate OFETs with a very short channel length 

leading to the possibility of increase the transition frequency up to 40 MHz. The 

second option is reported by Wakayama et al. in [95] where they show the 

potentiality of an antiambipolar architecture for recording a steep increase and 

decrease in drain current within a certain range of gate bias voltage. And finally, 

another new architecture proposed by Cosseddu et al. and implemented for sensing 

application is called organic charge modulated field effect transistor (i.e. OCMFET) 

[96]. This device is based on a floating gate transistor and it is biased through a 

control capacitor. In the meanwhile, part of the floating gate is exposed to the 

environment forming the sensing area of this technology. 
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Moreover, OFETs have been fabricated using exotic substrates such as ultrathin 

polymeric foils [97] or paper [98]. In particular, this latter possibility opens the way 

for tattoo-paper transfer electronics and edible electronics [99]. 

Finally, scalability onto large area and flexible substrates have been the main aspect 

which have driven the evolution of the fabrication techniques [100]. In Figure 1.14e 

an example of the adaptation of the standard photolithography process in order to 

produce a large-area and flexible pixelated matrix composed by OFETs is reported. 

Moreover, other studies as the one reported by M. Mas Torrent et al. [101] 

regarding the modulation of the organic semiconductor deposition for the 

enhancement of the bendability properties are central for the development of 

flexible technology systems.  
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Figure 1.14 Flexible and large-area OFETs: state of art. New architectures have been implemented 
such as a) the vertical organic transistors[94], b) the antiambipolar OFET [95], and c) the Organic 
Charge Modulated Field Effect Transistor (OCMFET) [96]. d) Novel substrates have been employed 
opening the way to the tattoo-paper transfer electronics and edible electronics [99]. e) New 
fabrication techniques have been invented in order to scale onto flexible and large area substrates 
pixelated matrix for sensing and electronic applications [102]. 

 

For what the amorphous oxide semiconductor-based TFTs concern, similar 

approaches to the ones described for OFETs have been followed in order to adapt 

these systems to scalable and flexible technologies. In Figure 1.15 some examples 

of the main strategies employed are shown [70], [103]. 
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For example, in Figure 1.15a, Kim et al. [104] showed the fabrication of an a-

IGZO-based TFT implemented onto an ultrathin 1.5 µm-thick PI foil. They 

demonstrated the enhancement of the folding stability of the devices thank to the 

use of an additional 1.5 µm-thick PI deposited on the top which ensure that the 

devices are located at the neutral plane. Moreover, several efforts have been done 

to improve the deposition techniques from solution dedicated to the production of 

flexible devices to be implemented in several technologies such as sensors, displays 

and circuits. In Figure 1.15b for example it is shown an ultrathin (3.5 nm) In2O3 

films prepared for a biosensor application, using a one-step spin-coating process 

and an aqueous In2O3 solution. The resulting biosensor platform was used to detect 

pH and glucose [105]. Moreover, different architecture (e.g. vertical TFT, see 

Figure 1.15c) [106] or bilayer-structured organic/oxide material (see Figure 1.15d) 

[107] have been reported in literature in order enhance the efficiency of flexible 

phototransistor for light sensing. 
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Figure 1.15 Flexible and large area a-oxide-based TFTs: state of the art. a) Fabrication of neutral 
plane TFTs based on a-IGZO on a 1.5 µm thick PI substrate [104]. b) fabrication process of a ultra-
flexible and conformable biosensor based on In2O3 3.5 nm thick [105]. c) Schematic layout of the 
cross section of a flexible vertical field effect phototransistor, and illustration of the current transport 
of conventional planar type and vertical type TFTs [106]. d) Bilayer-structured TFT based on both 
a-oxide and organic semiconductors for the visible-light detection; schematic structure of the device 
and picture of the bended device under test [107].



2.  

Solid State Ionizing Radiation 
Detectors based on Thin Film 
Devices 

 

In this second chapter, an overview on solid state ionizing radiation detectors is 

reported. The first part is focused on the radiation sources and in particular on X-

Rays, Gamma-Rays and protons production. After, the main mechanisms of 

interaction between radiation and matter and the most important physical 

quantities related to the radiation are described. The following part of the chapter 

is focused on the description of the main properties of a radiation detector, the 

figures of merit used to describe the quality of such a detector and finally the 

possible architectures used for the realization of a solid state sensor. Finally, at the 

end of the chapter, the state-of-the-art for the direct solid state and large area 

radiation detectors and for proton detectors employed in medical field is presented. 
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2.1. Ionizing Radiation Sources 
 

The radiation can be conventionally divided into two general categories: charged 

particles radiation which includes fast electrons and heavy charged particles, and 

uncharged radiation where electromagnetic radiation and neutrons can be placed. 

Depending on the type of radiation, different sources can be identified and moreover 

several kinds of interaction with matter can occur. 

Hereafter, the sources of electromagnetic radiation (i.e. X- and Gamma Rays) and 

heavy charged particles are introduced. 

 

2.1.1. Electromagnetic Radiation 
 

In this thesis I focused only on specific ranges of the electromagnetic spectrum. In 

particular, I worked on sensors able to detect high energy electromagnetic radiation 

such as X-Rays and Gamma-Rays. These classes of radiation present an energy 

laying in the range between 120 eV and 120 keV and a wavelength in the range 

between 0.1 and 100 Å. The main difference between the two is related to the 

sources as it is shown in the next paragraphs. [108] 

2.1.1.1. X-Rays 
 

X-Rays can be produced by three different sources exploiting different physical 

effects. 
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Bremsstrahlung radiation (see Figure 2.16a) is a broad spectrum generated by the 

deceleration of fast electrons impinging on a solid. The energy of the photons 

consists in a continuous spectrum which extends as high as the energy of the fast 

electrons and it depends also on the atomic number of the absorber material (i.e. 

higher is Z, higher is the mean energy of the produced radiation beam).  

Characteristic X-Rays (see Figure 2.16b) are produced by atomic transitions. In 

fact, when an atom is excited by a radiation decay or by an external radiation (i.e. 

the electrons occupy higher energy orbitals) there is a natural tendency for the 

electrons to rearrange in order to come back to the ground energy configuration. 

The transition of the electrons from an outer shell to an inner shell produces 

photons with a discrete and well-defined energy that corresponds to the difference 

between the final and the initial state. Depending on the shells involved in the 

transition, it is possible to distinguish K, L, M emissions all identified by the specific 

energy of the element involved.  

Bremsstrahlung and characteristic radiation are the main two phenomena occurring 

in the production of X-Rays by typical X-Ray tubes (see Figure 2.16c). Here, a 

beam of monoenergetic electrons is accelerated at tens of kV from a heated filament 

(i.e. cathode) to a target material (i.e. anode). The impact of the electrons to the 

target excites the elements forming the target (typically W, Mo or Cu) and the 

following relaxation of the atoms produces the characteristic radiation described 

above. Besides, the deceleration of the fast electrons produces the Bremsstrahlung 

radiation. Indeed, the produced radiation is a convolution of these two. 

Finally, another important source of X-Rays is the synchrotron radiation [109], 

[110]. From the classical electrodynamics an accelerated charged particle emits 

radiation. In particular, if this particle is forced in a circular orbit at relativistic 
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speed (γ ≈ 103 - 104), it loses energy (i.e. synchrotron radiation) tangent to the orbit 

and with an angular dispersion ∆φ = 1/γ. In order to produce synchrotron 

radiation, several facilities have been built up in the last decades all over the world. 

One example is depicted in Figure 2.16d. Here, a LINAC accelerates the electrons 

firstly in a booster ring and later the beam of particles is introduced in the main 

accelerator called storage ring. Here the particles are forced in the circular orbit 

thanks to bending magnets. Tangentially to the ring, following the trajectory of 

the synchrotron radiation, several experimental lines (i.e. beamline) are present. 

Three kinds of insertion devices are used along the ring to generate the X-rays: 

bending magnet, undulators and wigglers. In general, the synchrotron radiation is 

very collimated, very intense and with a broad energy spectrum (i.e. between few 

eV and 104 eV) which can be monochromatized. 

 

Figure 2.16 a) Spectrum from an X-Ray tube formed by both the Bremsstrahlung and the 
characteristic radiation. b) schematic of the atomic energy shell transitions which produce 
characteristic radiation. c) schematic of an X-ray tube and d) of a Synchrotron facility. Adapted 
from [110]. 
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2.1.1.2. Gamma-Rays 
 

Gamma Rays can be produced by three different sources all related to nuclear 

physics. 

Firstly, they can come from β decays. When a parent radionucleus decays, it leads 

to a daughter nucleus in an excited nuclear state. The transition of the latter to a 

lower-lying nuclear level produces a gamma ray whose energy is equal to the 

difference in energy between the initial and the final nuclear state. While the half-

life of the parent nuclei is of the order of hundreds of days, the transition of the 

daughter elements is much faster with an average lifetime of the order of 

picoseconds. Because of the well-defined energies of the nuclear states, this source 

of radiation is nearly monoenergetic and for this reason it is often employed for the 

calibration of detectors with very good energy resolution. The energy of the 

produced photons can have a maximum energy of 2.8 MeV. 

Second, gamma rays can be produced by annihilation. In fact, when a β+ decay 

occurs, a positron is produced and it can easily recombine within the same material 

with an electron. This recombination leads two 0.511 MeV photons with opposite 

directions known as annihilation radiation. 

Finally, other nuclear reactions can be exploited to produce gamma rays with 

energies higher than 2.8 MeV. Typically, alpha emitters are involved in this kind 

of reactions where a stable element is transformed in a product nucleus in an excited 

state which decaying emits gamma rays. Unfortunately, due to the short lifetime 

of these states, the energy of this gamma rays spreads of about 1%. 
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2.1.2. Heavy Charged Particles 
 

Depending on the kind of heavy charged particles, several sources are present such 

as alpha decay for the alpha particles or spontaneous fission for heavier particles. 

In this paragraph I will briefly introduce the two main sources of protons because 

these are the only heavy charged particles treated in this thesis. 

 

2.1.2.1. Protons 
 

The main source for high energy proton beams is based on particle accelerators. 

These can be divided in several categories depending on the shapes, dimensions, 

energy delivered. Despite the differences, all of them share three important 

properties: the existence of a proton source, the use of electric and a magnetic fields 

in order to respectively accelerate and guide the particles and finally a good vacuum 

through which the beam travels avoiding scattering events. In order to generate 

protons, a hydrogen gas is employed and ionized in order to strip the electron from 

the atoms. Then, to accelerate the charged particles, electric fields are used and in 

particular, in order to obtain high energy beams (i.e. >MeV) very high difference 

of potential has to be applied. Working with such high voltages is not easy and for 

this reason, several technologies exploit instead several repetitions of weaker electric 

fields. In particular, linear accelerators (LINACs) and cyclic accelerators (e.g. 

Cyclotrons and Synchrotrons) have been developed. In cyclotrons, the accelerating 

electric field oscillates at fixed frequency between the two dees (see Figure 2.17) 

and the guiding magnetic field has a fixed intensity which forces the particles in a 
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spiral motion before their extraction. On the opposite side, in the synchrotrons as 

the protons are accelerated, the magnetic field is increased in order to maintain the 

radius of the orbit approximately constant. [111] 

 

Figure 2.17 Schematic of a Cyclotron for the production of ion beams 

 

2.2. Ionizing Radiation interaction 
with matter 

 

The operation of the radiation detectors depends on the mechanism of interaction 

between the active material forming the sensor and the radiation impinging on it. 

For this reason, in this section I will summarize the main manners in which the 

high energy photons and the protons interact with matter. 
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2.2.1. Interaction of high energy photons 
 

High Energy Photons (i.e. X-Rays and Gamma-Rays) interact with matter mainly 

through three different mechanisms: photoelectric absorption, Compton scattering 

and pair production. In all of them, the energy of the photons is partially or totally 

transferred to the atoms forming the material. 

The photoelectric absorption consists in the complete absorption of a photon by an 

atom. The absorbed energy causes the ejection of an electron of the inner shell (e.g. 

K shell) which escapes from the atom with a kinetic energy Ee- = hν - Eb where hν 

is the photon energy and Eb is the binding energy of the electron. The vacancy left 

by the electron is quickly filled by the capture of a free electron or by the 

rearrangement of the electronic configuration of the atom itself. This process, as it 

has been explained in the previous section, generates a characteristic X-Ray or in 

some case an Auger electron. In both cases, the ejected primary electron and the 

Auger electron or the X-rays characteristic are often reabsorbed by the material 

inducing a cascade of events. 

As in the photoelectric absorption, also in the Compton Scattering the high energy 

photons interact with the electrons of the material. In this case, the transfer of 

energy from the photon to the electron is partial and the photon is not totally 

absorbed but it is only deviated. The probability of Compton scattering increases 

with the number of electrons per atom (i.e. Z number) and it is common for photons 

with energy of the order of 1 MeV. 

The pair production occurs for photons with higher energies. When the photon 

exceeds several MeV it is able to interact within the electrical field built up by 
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nuclei and it can form an electron-positron pair. When the two particles slow down, 

the positron annihilates and two photons are generated as secondary products. 

In Figure 2.18 the probability of these main three mechanisms of interaction is 

depicted as a function of the photon energies and the atomic number of the 

material. 

 

 

Figure 2.18 The relative importance of the three major types of high energy radiation interaction. 
The lines show the values of Z and hυ for which the two mechanism have the same probability to 
occur. [112] 

 

2.2.2. Interaction of protons 
 

Protons interact with matter in three distinct ways. Due to the electromagnetic 

interaction, they can slow down after inelastic collisions with the atomic electrons 

of the material or they can be slightly deflected by elastic scattering with nuclei. 

More rarely, they can also have head-on collisions with nuclei setting secondary 

particles in motion. [113] 
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Due to the myriad of inelastic collisions with electrons, the protons lose energy 

along their pathways within the material. The stopping power S is the quantity 

which expresses the energy loss per unit path length and it can be defined by the 

Bethe-Bloch equation (Eq. 2.1) [114] 
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where v and ze are the velocity and the charge of the primary particle, N and Z 

are the density and the atomic number of the absorber atoms, m0 and e are 

respectively the electron rest mass and charge and I is the average excitation and 

ionization potential of absorber. For a non-relativistic proton, the stopping power 

varies inversely with particle energy. This can be explained by noting that a slower 

proton spends much more time in the vicinity of electrons, and it is able to transfer 

to them much more energy. The Bethe-Bloch equation begins to fail at low particle 

energies where charge exchange between the particle and the absorber becomes 

important. In Figure 2.19 the stopping power as a function of the penetration 

depth is depicted both for photons and for protons. In the case of charged particles, 

this plot is named Bragg Curve and the sharp peak depicts exactly the large dose 

enhancement just before the protons stop. In fact, while photons exhibit a dose 

buildup followed by an exponential decay, in the charged particles (e.g. protons) 

where electromagnetic interaction occurs, the energy of each one decreases 

continuously and so the entire beam stops at more or less the same depth. This 

feature has great consequence in the field of radiotherapy/proton therapy as it will 

be illustrated in the following sections.  
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Figure 2.19 Stopping power as a function of penetration depth for both high-energy photons and 
proton radiation. Adapted from [115]. 

 

2.3. Ionizing radiation physical 
quantities 

 

In this section the main quantities describing ionizing radiation (or charged 

particles) and the corresponding units of measurements are summarized. [116][117] 

Activity 

This quantity described the number of decays per second for a specific radioactive 

material. It is expressed in Becquerel (Bq) which is defined as one disintegration 

per second. The corresponding CGS unit of measurement is the Curie (Ci) which 

is equal to 3.7 · 1010 decays per second (1 Ci = 3.7 · 1010 Bq). 
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Fluence and Flux 

The fluence of radiation is defined as the number of photons (or protons, or charged 

particles in general) per unit of area (Eq. 2.2) while the flux is equal to the fluence 

per unit of time (Eq. 2.3). 

 l%1�
7� [7g�2] =  S =o  (2.2) 

 l%1� [7g�2&�-] =  S = ∙ q/g�o  (2.3) 

Linear Attenuation Coefficient 

When the radiation pass through matter, it is attenuated by the interaction 

mechanisms described above. For photons, the decay of an incident beam of 

radiation I0 is described by the exponential law in Eq. 2.4. 

 HH� = ��rO (2.4) 

Where t is the thickness of the material and α is called linear attenuation fraction. 

This latter indicates the probability of interaction of one photon per unit of 

pathlength and can be expressed as the inverse of the mean free path λ. The 

probability of interaction between the photon and the material depends also on the 

density of matter and for this reason, it is common to use the mass attenuation 

coefficient α/ρ instead of the linear attenuation coefficient. 

KERMA (Kinetic Energy released per unit Mass in matter) 

KERMA is a quantity referred only to particles such as photons for which the 

ionization is an indirect process. In this case, when the photons imping onto matter, 

they firstly generate primary products (i.e. charged particles such as electrons) and 

after these charged particles can ionize and excite the atoms of the medium. The 
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KERMA is related to the first process and it indicates the mean energy transferred 

to the first products by the radiation per unit of mass (Eq. 2.5). 

 �'�*= [6 :s�-] = c'tOucg  (2.5) 

The KERMA can be expressed as a function of radiation flux using Eq. 2.6. 

 �'�*= = φ ��wOux ! 'Ou (2.6) 

Where φ is the radiation flux and αtr/ρ is the mass attenuation coefficient. 

KERMA is used to express the intensity of the radiation in a specific position in 

the space. In particular, AIR KERMA is commonly employed and it indicates the 

energy transferred by the radiation to a unit of mass of air. This value can be 

converted for any absorber material, just multiplying it for the ratio between the 

mass attenuation coefficient of the material and of the air. 

Absorbed Dose 

The Absorbed Dose is a quantity referred to any type of radiation. It indicates the 

energy absorbed by a medium per unit of mass and it is expressed by Eq. 2.7. 

 =y&8zy�c {8&� [|}] = �c'[~bcg ! (2.7) 

The SI unit of measurement for the dose is the Gray which is defined as 1 Gy = 1 

joule/kg. 

Noteworthy for a thick medium, the energy transferred to primary products (Etr) 

is equal to the one absorbed by the medium and thus KERMA is the same as the 

absorbed dose. 
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Equivalent Dose 

When the effects of radiation on living organism are evaluated, depending on the 

nature of radiation it is possible to obtain different biological effects.  For this 

reason, another important quantity considering this aspect has been introduced. 

The Equivalent Dose (HT,R) in a tissue (T) for a given type of radiation (R) is the 

product of the absorbed dose (DT,R) and the radiation weighting factor (wR) (Eq. 

2.8). 

 ��,� [TE] = {�,�  ∙  �� (2.8) 

The SI unit of measurement of the equivalent dose is the Sievert (Sv) and it is used 

when the dose is expressed in Gray. 

In 1991 The International Commission on Radiological Protection (IRCP) [118] 

evaluated all the radiation weighting factor that have been tabulated. 

 

2.4. Ionizing radiation detectors 
 

Ionizing radiation detectors are devices able to collect the energy released by 

radiation into the active volume of the sensor and convert it into an electrical 

output signal. Depending on the kind of radiation and on the mechanism of 

detection, several classes of these sensors exist. [119], [120] 

The first radiation detectors were gas-based devices (e.g. ionization chamber, 

Geiger counters) and they are still employed in some specific applications. The 

main limitations presented by this class of detectors are related to their high 

ionization energy (≈30 eV) and their low density. This is the reason why in the last 
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decades, solid-state detectors have replaced gas filled devices in most of the cases. 

In fact, due to their higher density (≈1000 times) and the lower ionization energy 

(≈3-6 eV), for the same amount of impinging radiation the absorbed dose results 

higher and the electron-hole pairs generated as secondary products are achieving 

better performances in terms of detection. 

Solid state ionizing radiation detectors can be divided into two categories (Figure 

2.20). Indirect detection is based on a two-steps process in which the high energy 

radiation is firstly converted into visible photons and then these are detected by a 

photodetector which convert them into an electrical output signal. On the opposite 

side, direct detectors directly transduce the high energy radiation into an electrical 

output signal in a one-step process. In the first case, scintillating materials are 

usually coupled with photodetectors, while in the latter case semiconducting 

materials are employed. 

 

 

Figure 2.20 Indirect detection is based onto a two steps conversion process while the direct detectors 
convert directly the ionizing radiation into an electrical output signal. 
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In this thesis I will focus on the direct detection of radiation by semiconducting 

materials  which offers the advantages of a faster response and of an higher signal 

to noise ratio [121]. 

In the direct detection, when the high energy radiation impinges onto the sensor, 

due to the mechanisms of interaction summarized in the previous sections, it 

generates primary excitons. After that, these primary products interact with the 

active volume of the sensor (i.e. the semiconductor) inducing a large number of 

secondary products (i.e. electron/hole pairs). In a semiconductor detector, an 

electric field is typically imposed to the device to separate the induced charges and 

to record a photocurrent as the electrical signal produced by the absorbed high 

energy radiation. To achieve good detecting performances, the semiconductor 

employed as the active material of the sensor must fulfill some requirements. In 

particular, it has to present a high Z-number and a great density to maximize the 

absorption of radiation, its energy gap should be higher than 1.5 eV in order to 

lower the intrinsic carrier concentration and consequently the dark current, but it 

has to be lower than 5 eV to minimize the e-h pair generation energy and finally it 

has to show good transport properties (i.e. high µτ product) to guarantee a good 

collection of the photogenerated charges. Moreover, depending on the specific 

application, some other requirements should be satisfied such as the mechanical 

flexibility, the possibility to fabricate uniform and large area sensing systems at 

limited costs, the portability and finally the human-tissue equivalence in terms of 

radiation absorption. 
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2.4.1. Solid State Ionizing Radiation 
Detectors: Figures of Merit 

 

In this section, the most significant figure of merits which describe the potentiality 

of a device implemented as ionizing radiation detector are described. [122], [123] 

Quantum Efficiency (QE) 

The quantum efficiency, also known as attenuated fraction, indicates the efficiency 

with which the semiconductor attenuates the radiation. It depends on the linear 

attenuation coefficient α, which is strongly energy dependent, and it can be 

expressed by the Equation 2.9. 

 �' = 1 − ��rO (2.9) 

Where t is the thickness of the semiconductor. Higher is the density and the atomic 

number Z of the active material, higher is the efficiency of the detector. 

To highlight the difference between the External Quantum Efficiency (QEE) and 

the Internal Quantum Efficiency (QEI): in the first case the QE indicates the 

fraction of the collected charges over the incident radiation while in the second case 

the QE is calculated over the absorbed radiation. 

Electron-Hole Pair Generation Energy (W±) 

The e-/h pair generation energy indicates the energy needed  to create a collectable 

electron hole pair. In fact, the charge ∆Q induced by the absorption of energy ∆E 

of radiation is equal to e∆E/W± where e is the electron charge. To increase the 

sensitivity of the sensor, low W± is required. In many material systems, W± is 

proportional to the bandgap of the semiconductor. 
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Charge Collection Efficiency (CCE) 

The charges generated by the absorbed radiation have to be collected by the 

electrodes avoiding trapping and recombination effects. The condition to ensure 

high CCE is µτE > L where µ is the carrier mobility, τ is the lifetime of the charges 

before recombination, E is the electrical field imposed, and L is the channel length 

between the two collecting electrodes. 

Dark Current 

The dark current represents the current flowing in the semiconductor in absence of 

any radiation stimulus. It determines the noise of the detector and for this reason 

should be as small as possible to achieve high signal to noise ratio (SNR) and low 

minimum detectable dose (LOD). The possible sources of the dark current are 

three: the presence of defective states, the injection of carriers from the electrodes, 

and the thermal generation of carriers in the materials. To lower this quantity 

several strategies can be exploited. First of all, low-defective semiconductors have 

to be employed such as ultra-pure single crystals or polycrystalline films where 

passivation treatments can reduce the trap density. Moreover, wider bandgap 

semiconductor can limit the thermal generation of carriers and non-injecting 

electrodes are desirable. 

Radiation Hardness 

During the irradiation, the active material can be damaged temporarily or even 

permanently by the generation of various defects especially under high radiation 

doses or for long exposure time. The accumulation of these induced defects can 

generate two different consequences. First it can lead to a ghosting effect in which 

the photogenerated charges recombine with previously trapped charges without 



Solid State Ionizing Radiation Detectors based on Thin Film Devices 

75 

 

reaching the collecting electrode. This recombination causes a lowering of the 

detection response of the sensor. Second, the net space charge due to the trapped 

carriers modifies the applied electric field modifying the CCE. 

Sensitivity 

The sensitivity (S) is the quantity which quantifies the charge collected (Q) per 

unit of radiation (X), often expressed per unit of area irradiated (A). This is 

expressed by the Equation 2.10 and it indicates the capability of the sensor to 

detect the radiation and produce an electrical output signal. [123] 

 T = �� ∙ = (2.10) 

Kasap et al. introduced a general expression to calculate the theoretical sensitivity 

of an X-ray detector based on a-Se semiconductor which is equal to the product 

between the three fundamental steps forming the detection process (Eq. 2.11).  [124] 

 T = U5.45 ∙ 10-B�9w�� x⁄ <[
u ] ∙ �' ∙ U9w�� w⁄ <'�P�± ] ∙ KK' (2.11) 

In Equation. 2.10, the first term represents the radiation fluence per unit of 

Roetgen, the second term is the quantum efficiency of the sensing material and it 

indicates the effective absorption of radiation by the semiconductor, the third term 

shows the quantity of electron/hole pairs generated by the absorbed radiation and 

finally the CCE illustrates the capability of the device to collect the photocharges 

induced by the energy released. [117] 

Typically, for a detector operating in current mode, the sensitivity can be extracted 

from the linear plot of the photocurrent VS dose rate as the slope of the curve. 

 



2.4 Ionizing radiation detectors 

76 

 

Limit Of Detection 

The limit of detection (LOD) expresses the minimum detectable dose of radiation 

which a sensor is able to transform in an electrical output signal. This figure of 

merit can define the range of application of the sensor as each of them operate in 

different irradiation condition. For example, while in medical diagnostic very low 

dose rates are employed (e.g. few µGy s-1 for mammography [125]), on the opposite 

side higher doses are used in radiotherapy (tens of mGy s-1 with total doses up to 

few Gy [126]). The definition which I used during the characterization of the 

detectors here presented, is the one offered by the IUPAC description [127] that 

corresponds to the minimum radiation which provokes a SNR = 3. Therefore, in 

order to obtain a low LOD two aspects have to be taken into account: a high 

sensitivity and a low level of noise (i.e. dark current). 

 

2.4.2. Solid State Ionizing Radiation 
Detectors: Architectures 

 

The radiation detectors based on semiconducting materials can be divided into 

three classes depending on their architecture which are depicted in Figure 2.21: 

photoconductors, photodiodes and phototransistors. [123] 

The first two are two-terminals devices where the active semiconducting layer is 

placed between two metal electrodes to collect the induced charges. The geometry 

of these devices can be both vertical or co-planar (see Figure 2.21a-b). In the 

vertical structures, thicker semiconducting layer can be employed and the 

implementation of these devices in pixelated matrix can be easier. On the opposite 
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side, the co-planar geometry results simpler to fabricate and moreover, it ensures a 

good collection of the induced charges even at low voltages because it depends only 

on the distance between the metallic electrodes [128]. Moreover, in the photodiodes 

configuration (see Figure 2.21c), the sensor can be operated in reverse polarization 

inducing a depletion region which minimizes the dark current and leads to an 

improvement of the SNR and the LOD values. 

The transistor architecture (see Figure 2.21d) is less implemented for ionizing 

radiation detection if compared with the other two geometries even if it offers a 

unique property. In fact, thanks to the gate electrode it is possible to modulate the 

detecting response by tuning the charge density in the conductive channel of the 

device. Another appealing peculiarity of this architecture is referred to the pixelated 

imager and the possibility of avoiding the introduction of addressing TFTs 

exploiting the capability of switching on and off the sensor itself. The most used 

transistor in the field of radiation detection is the MOSFET where the active layer 

in terms of detection is not the semiconductor but the gate dielectric. In fact, as it 

will be explained in the next sections, the charges induced by radiation within the 

insulating layer are suddenly trapped and provoke a shift in the Vth of the transistor 

which determine the output signal of the sensor. 
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Figure 2.21 Schematics of the typical architectures employed for direct radiation detectors: a) 
vertical photoconductor; b) co-planar photoconductor; c) photodiode; d) phototransistor. [123] 

 

2.5. Solid State Ionizing Radiation 
Detectors: State Of the Art 

 

As it has already been mentioned in the previous sections, the direct detection of 

radiation offers two main advantages compared to the indirect process: a faster 

response and a higher SNR due to the single-step conversion of radiation into 

electrical output signal. Moreover, the employment of semiconducting active 

materials instead of gas-phase ones permits the miniaturization of the sensing 

devices maintaining a high efficiency of conversion of the radiation into electrical 

photocurrents. 

Nowadays, many solid-state radiation detectors based on crystalline inorganic 

semiconductors such as Silicon, Germanium and other compounds as CdTe, SiC, 

CdZnTe are employed [129]. In fact, on one side they offer excellent performance 
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in terms of energy resolution but on the other hand they often have to be operated 

at cryogenic temperature and moreover they exhibit very high costs of production 

because of the high purity level necessary to obtain such a good performance. 

Besides, in several fields of application (e.g. medical diagnostic and radiotherapy) 

an important quest is the development of large-area detectors able to cover 

extended surfaces. To attend this new requirement, as already discussed in the first 

Chapter, amorphous and polycrystalline materials are the only practical choice. 

Therefore, in order to fulfill this new necessity, in the last decades the scientific 

community and the industries focused on the search for alternative and novel 

materials to be implemented as the active volume of large-area radiation sensors 

[124]. 

Among the others (e.g. a-Si:H, and polycrystalline HgI2, PbI2, PbO, TIBr), 

amorphous Selenide (a-Se) is the benchmark material employed for the 

development of large-area radiation detectors and in particular for the realization 

of Flat panel X-ray Imagers (FPXIs). The schematic diagram of a FPXI is depicted 

in Figure 2.22a. It is formed by a large array of pixels as part of an active matrix 

array (AMA). An AMA is a two-dimensional array of single-detector in which each 

pixel has a TFT that can be externally addressed. The active matrix is then covered 

by a suitable photo-converting layer (e.g. stabilized a-Se) which is sandwiched with 

a top electrode in order to be biased. Each pixel contains a storage capacitor which 

collects the photocharges induced by the absorbed radiation. Then, the 

photocurrent can flow through the TFT to the multiplexer only when the specific 

pixel is addressed. In 1995 Rowlands and Zhao employed stabilized a-Se 

semiconductor layer to develop a FPXI for the first time [130]. Stabilized a-Se (a-

Se alloyed with 0.2-0.5% As and doped with 5-20 ppm Cl) is currently the preferred 
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photoconductor for clinical X-ray image sensors because it can be quickly and easily 

deposited as a uniform film over large areas by vacuum deposition techniques, it 

has an acceptable X-ray absorption coefficient, good charge-transport properties 

for both electrons and holes and finally, thanks to the adding of two blocking layers, 

it presents a low dark current. The typical sensitivity value reported for a standard 

X-ray detector based on a-Se is 25 µC Gy-1 cm-2 [124]. Despite the optimal 

performances showed by a-Se, some important drawbacks are still present. The 

main issue is related to the operation voltages used to biasing the semiconducting 

layer. In fact, the typical value used in a-Se devices is 10 V/µm that means 2000 

V of biasing for a 200  µm thick sensor [124]. 

 

 

Figure 2.22 a) schematic representation of a FPXI. The AMA is formed by several identical pixels 
which are entirely covered by the photoconductor and a top electrode. b) schematic cross section of 
a single pixel. Adapted from [124]. 
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In the last few years, thin films based on perovskites gained the interest of the 

scientific community for their implementation as active layers in large-area direct 

radiation detectors. The first proof of principle was published by Yakunin et al. in 

2015 [131] and after that a huge improvement of this technology has been already 

achieved. The highest sensitivity value for this class of sensor has been reported by 

Hu et al. and it is equal to 1.22 · 105 µC Gy-1 cm-2 [132]. 

In this thesis, I present other two classes of materials able to fulfill the main 

requirements to develop a new generation of large area and flexible radiation 

detectors: organic semiconductors and amorphous oxide thin films, introduced in 

the next two sections. 

 

2.5.1. Solid State Ionizing Radiation 
Detectors based on Organic Semiconductors 

 

In the field of ionizing radiation detection, organic materials have been mainly 

employed in the indirect detection process. In fact, they have been deeply studied 

and implemented both as scintillating materials able to convert the high energy 

photons into visible radiation and also as semiconducting layer in the photodiode 

used to transduce the visible radiation into an electrical output signal. Only in the 

last years, they have been investigated for the development of direct detection 

systems and in this thesis I will deeply discuss this latter approach. 

The organic semiconductors offer unique properties [133]. First, as largely discussed 

in Chapter 1, they can be deposited by solution at low temperature onto large 

areas. This possibility leads to the development of flexible detectors directly printed 
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onto large polymeric foils and able to cover curved surfaces. Second, they offer the 

possibility to easily chemically tailor their atomic structure, reaching the desired 

properties. Finally, their atomic composition mainly formed by low-Z elements (i.e. 

C, O, H) makes them human tissue equivalent in terms of radiation absorption. 

This important feature allows to skip all the calibration procedures of the detector 

during, for instance, the dose monitoring of a patient subjected to a radiation 

treatment. 

Organic single crystals have been firstly employed as the active layer of X-Ray 

detectors offering a real-time, fast and box-shaped response [121], [134]–[137]. But 

the development of large-area devices and in particular of large-area ionizing 

radiation detectors is still not addressable with crystalline materials and for this 

reason this topic will not be treated in this thesis. 

In 2007 Prof. Sellin et al. [138] gave the first proof of principle of direct radiation 

detection by organic thin film-based devices employing photodiodes with thick 

conjugated polymer as active layers. He tested several organic polymers such as 

poly[1-methoxy-4-(2-ethylhexyloxy)-phenylenevinylene] (MEH-PPV) [138], 

poly(9,9-dictyluorene) (PFO) [138], and poly(triarylamine) (PTAA) [139], [140]. 

These first devices showed moderate sensitivity values, however they highlighted 

for the first time the possibility to detect in real-time high energy radiation by 

organic-based devices. 

As illustrated at the beginning of this paragraph, the chemical composition of the 

organic materials makes them optimal candidate for the radiation detection in 

medical field because of the human tissue-like behavior in terms of absorption. On 

the other side, the low-Z elements forming the active layer of this class of sensors 

poorly absorb high energy radiation and the optimization of the detection response 
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is the most challenging aspects of this technology. Considering the sensitivity as 

the most relevant figure of merit able to describe the efficiency of a sensing system, 

Equation 2.11 indicates that several pathways can be followed to enhance the 

detection performance. For instance, the active volume of the detector can be 

increased by employing thicker semiconducting layer but, on the other end this 

choice could bring to a loose of flexibility, a worse charge collection and an increase 

in the operating-voltage of the system. 

Another strategy to improve the radiation response of organic-based detectors is 

based on increasing the cross section of interaction between the high energy photons 

and the active layer of the detector. With this aim, many researchers employed the 

blending of organic semiconductors with high-Z nanocomposites leading to an 

increase of the attenuation fraction of the device. Several examples based on this 

approach are reported in literature. First, Intaniwet et al. [141] tested a blend of 

bismuth oxide (Bi2O3) nanoparticles (NPs) and PTAA 20 µm thick active layer 

arranged in a photodiode geometry (Figure 2.23a). The sensitivity reached with 

the blended devices was 2.5 times higher than the PTAA-pure photodiode (2 · 102 

µC Gy-1 cm-3). In a following work [142], they highlighted the differences between 

the introduction of metallic Ta NPs and insulating Bi2O3 NPs in organic polymers 

(PTAA and poly([9,9-dioctylfluorenyl-2,7-diyl]-cobithiophene) (F8T2) fabricating 

devices with the same architecture as the previously reported. Despite the higher 

attenuation mass of the Bi2O3 NPs, the Ta NPs based devices offered higher 

sensitivity, up to 4.34 · 102 µC Gy-1 cm-3, probably due to a better charge transfer 

from the metallic nanostructures and the polymeric matrix. 

Ciavatti et al. [143] reached a very high sensitivity (S = 2.4 · 105 µC Gy-1 cm-3) 

employing an organic photodiode doped with high-Z Bi2O3 NPs (Figure 2.23b). 
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Further, a comparison between the charge-injection condition (forward bias) and 

charge-collection condition (reverse bias) is reported. 

A similar approach was followed by Ankah et al. [144] who reported the results 

obtained with a bulk heterojunction (BHJ) fabricated blending inorganic lead 

sulfide (PbS) nanocrystal quantum dots in a semiconducting polymer matrix of 

P3HT:PCBM (Figure 2.23c). More recently, Thirimanne et al. [145] reported the 

results achieved with a similar BHJ photodiode with a 10-30 µm thick active layer 

made of organic P3HT:PCBM blended with Bi2O3 NPs (Figure 2.23d). 

Buchele et al. [146] proposed a different strategy in order to push the sensing 

performances by organic devices, employing a quasi-direct mechanism of detection. 

They showed the results obtained with a photodiode formed by an active layer 

based on scintillating terbium-doped gadolinium oxysulfide (GOS:Tb) X-ray 

absorbers blended in a polymer BHJ (P3HT:PCBM) (Figure 2.23e). They reported 

sensitivities up to S = 7.3 · 103 µC Gy-1 cm-3. 
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Figure 2.23 Blending of inorganic high-Z nanostructures in polymeric matrixes. a) Picture of the 
blended PTAA with bismuth oxide (Bi2O3) nanoparticles (NPs) pilled of from the glass-ITO 
substrate [141]. b) Schematic and Current-Voltage curve of an organic photodiode doped with high-
Z Bi2O3 NPs [143]. c) HR-TEM image of PbS quantum dots embedded in a P3HT:PCBM bulk 
hetero-junction [144]. d) schematic of a bulk heterojunction photodiode with a 10-30 µm thick active 
layer made of organic P3HT:PCBM blended with Bi2O3 NPs [145] and e) of a photodiode formed 
by an active layer based on scintillating terbium-doped gadolinium oxysulfide (GOS:Tb) X-ray 
absorbers blended in a polymer BHJ (P3HT:PCBM) [146]. 

 

The major limit of this approach is related to the charge collection efficiency of 

these devices. In fact, the introduction of nanostructures in polymeric matrixes 

often degrades the transport properties of the latter and moreover, aggregates and 

clusters have been observed trying to increase over a certain percentage the 

concentration of the NPs. Second, the blending of the organic polymers with 

inorganic nanocomposites leads the loose of human-like absorption which is a 

peculiarity of organic-based sensors. Finally, the thick active layers employed in 

these devices imposes very high voltage operation. 
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In order to overcome these limitations, other approaches have been proposed. For 

instance, to maintain the human-tissue equivalence, blending of the organic active 

layer with other organic compounds has been tested. This strategy can improve the 

transport properties of the device by enhancing the charge collection of the sensor. 

Some examples are reported in literature such as the blend of PTAA with TIPS-

pentacene [147] and a polymer matrix blended with carbon nanotubes [148]. 

Finally, a novel strategy to enhance the efficiency of the organic radiation detectors 

is based on the exploiting of the physical phenomenon that occurs when the high 

energy photons interact with organic thin film devices. This is known as 

Photoconductive Gain Effect (PG) and it will be deeply discussed in the next 

paragraph. 

Following all these enhancement strategies, organic detectors reached a good level 

of performances and they have been recently tested under actual irradiation 

conditions used in medical diagnostic (e.g. radiography) and radiotherapy 

demonstrating the potentiality of this technology in order to develop a new 

generation of medical dosimeters and imagers. [149]–[151] 

In this thesis I will show additional and very effective strategies exploited to further 

boosting the detection performance of organic thin film-based devices (see Chapter 

4). 

 

2.5.1.1. Photoconductive Gain Effect 
 

In highly ordered crystalline semiconductors and in polycrystalline film-based 

photodiodes, the detection of high energy photons is ruled by charge collection (see 
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Figure 2.24a). On the opposite side, Photoconductive Gain [123] is the physical 

phenomenon occurring in a semiconductor thin film-based radiation detector. As it 

is depicted in Figure 2.24b, when the electron-hole pairs are generated by the 

absorbed radiation, the trapping of minority carriers can induce an amplification 

of the collected photocharges by a gain factor G. In order to maintain the charge 

neutrality, the majority carriers are continuously re-injected from the ohmic 

contact inside the conductive channel contributing more than one time to the total 

photocurrent. Thus, the internal quantum efficiency of the detector exceeds 100% 

and the sensitivity values result very high. The inner amplification process can be 

described using the factor G (Eq. 2.12) which is expressed as the ratio between the 

recombination time (τr) and the transit time (τt) (Eq. 2.13 and 2.14 respectively). 

 | = �u�O (2.12) 

 �u = w� Mw %
 �x�x�!Q-���
 (2.13) 

 �O = L2
� N (2.14) 

where α, γ and ρ0 are material-specific constants describing the characteristic time-

scale and the dispersion of trap states, and a reference carrier density respectively, 

ρX is the photogenerated carrier concentration, L is the channel length, µ is the 

electrical mobility and V is the applied bias. 

The recombination and the transit time are the two characteristic times of the 

system describing the time-scale of recombination of the trapped minority carriers 

and the time of transit of the majority carriers through the conductive channel 

respectively. 
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Figure 2.24 Schematics of the direct X-ray detection processes. a) Charge collection in photodiode 
architecture. b) Photoconductive gain in photoconductor architecture. c) Photoconductive gain in 
phototransistor architecture. [152] 

 

In 2016, the photoconductive gain effect model has been introduced by Basiricò et 

al. in order to modelling the high X-ray response of an organic thin film 

photoconductor based on TIPS-pentacene and derivatives [153]. In this work, they 

demonstrated how, despite the extremely low X-ray absorption (about 0.0015% for 

100 nm thick TIPS-pentacene polycrystalline film) due to the low-Z elements 

forming the absorbing material and the low thickness of active layer, it was possible 

to record very high photocurrents resulting in very high sensitivity values (S = 7.7 

· 104 µC Gy-1 cm-3). Moreover, developing the analytic kinetic model, the authors 

explained the slow recombination dynamics through stretched exponential curves 

and they calculated gain values up to 4.7 · 104. 

A first strategy to maximize and exploit the photoconductive gain mechanism is 

based on the employment of a phototransistor architecture.  In fact, as it is depicted 

in Figure 2.24c, the use of the gate polarization allows to increase the charge 

density in the OFET channel (i.e. ρ0), leading to an enhancement of minority 

carriers trapping and majority carriers conduction. Further in over-threshold 

condition τt decreases. Thanks to these effects, in 2017 Lai et al. reported a higher 
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gain factor (G = 3 · 105) and an higher sensitivity  4.8 · 105 µC Gy-1 cm-3  with 

respect for what it was obtained with a coplanar architecture [154]. 

 

2.5.2. Solid State Ionizing Radiation 
Detectors based on High Mobility Oxide 
Thin Films 

 

Many microelectronic dosimeters are realized in silicon-based complementary 

metal-oxide semiconductor (CMOS) technology and consist in diode or transistor 

structures. In this paragraph I will focus on the radiation-sensitive Field Effect 

Transistor (RADFET) which employs a thick silicon oxide (SiO2) layer as the active 

volume for high-energy radiation detection. When a standard Metal-Oxide-

Semiconductor Field Effect Transistor (MOSFET) is irradiated by high-energy 

photons, electron-hole pairs are generated within the dielectric SiO2 layer due to 

the absorption of energy from the radiation. While the electrons either recombine 

or are collected by the gate electrode in a timescale of a few picoseconds, holes have 

lower mobility and remain trapped in long-term sites inside the insulator longer. 

These trapped holes build-up a net positive charge in the SiO2 which interferes with 

the electric field imposed by the gate electrode and causing a negative shift of the 

MOSFET Threshold Voltage (Vth) (see Figure 2.25a, b). The Threshold voltage 

shift (∆Vth) is proportional to the dose absorbed (D) in the oxide and can be 

monitored during irradiation or at any time after irradiation due to the integration 

of the information about the radiation exposure history [155]. The RADFET 

sensitivity is defined as it is reported in Equation 2.15 [156]. 
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 T � N|}! = ∆NOP{  (2.15) 

Typical values of sensitivity reported for commercial devices span between 0.05 and 

0.3 V/Gy depending on oxide thickness and photon energy [155]. 

Assuming that the holes are uniformly distributed within the dielectric layer, the 

∆Vth can also be expressed as in Equation 2.16. 

 ∆NOP = − DS�\K�\  (2.16) 

where q is the electronic charge, NOx is the number of trapped holes per unit area 

inside the SiO2 layer and COx is the capacitance per unit area of the oxide. 

The finite number of traps in the oxide layer leads to a saturation of the RADFET 

effect and the reaching of a threshold voltage plateaus. Several studies reported in 

literature illustrate some strategies to recycle the saturated RADFETs employing 

current or thermal annealing [157], [158].  

The RADFETs can be operated both in passive mode or by applying a positive 

voltage to the gate electrode in order to inhibit the recombination of pairs and 

enhance the sensitivity and the storage capacity of the sensor. Besides, the 

incorporation of a floating gate in monolithic MOSFET has been achieved, and the 

integrated chip was employed in miniaturized, low-power dosimeters with wireless 

data transmission [159]–[161]. 

The small size of dosimetric volume, ability to permanently store accumulated dose, 

dose-rate independence and ease of readout make RADFET ideal for many 

applications [120]. They have been employed in space mission to detect the space 

radiation on satellites [162] (Figure 2.25c) and in particular they have shown 

particular strengths for in vivo dosimetry during radiotherapy [163]. In fact, they 



Solid State Ionizing Radiation Detectors based on Thin Film Devices 

91 

 

can be placed on the patient’s skin to monitor the delivery dose on a patient 

subjected to radiation treatments. For instance the MOSkin is a MOSFET mounted 

underneath a thin plastic layer which has been tested for several in-vivo dosimetry 

application (Figure 2.25d) and other radiation diagnostic applications [164]–[169]. 

 

 

Figure 2.25 a) Holes trapping in the SiO2 dielectric induced by radiation [170]. b)Shift of the 
RADFET threshold Voltage (Vth) due to the absorption of radiation. b) RADFET employed in 
space missions [162] and c) MOSkin mounted over an endorectal balloon for in-vivo dosimetry [165]. 

 

The main limitation presented by the RADFET technology is related to the low 

stopping power of SiO2. Moreover, the CMOS technology is incompatible with the 

development of large area and flexible devices. For these reasons, the search of new 

materials is essential to enhance the efficiency of this class of radiation detectors. 
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In Chapter 5, I will illustrate how to implement amorphous oxide thin films to 

overcome these two major limitations achieving an enhancement of the detection 

performance of the RADFET technology. 

 

2.6. Proton Detectors: State Of the 
Art 

 

The development of detectors for protons is a long-lasting research topic not only 

for fundamental applications, but also, more recently, for monitoring energy and 

fluences of particles in ion beam applications. Among the others, the most 

demanding application for which accurate measurements are needed is hadron 

therapy of cancer. In this application, ion beams (and in particular proton beams) 

are used for the controlled treatment of cancer by the delivery of the prescribed 

amount of  dose to the tumor, sparing the surrounding healthy tissues as much as 

possible [171]. Hadron therapy and proton therapy are preferred to radiotherapy to 

treat all those tumors close to organs at risk because of the different releasing of 

energy depicted in Figure 2.19. In order to assure the safe, effective and consistent 

radiation delivery, accurate monitoring of the beams and measurements of the 

absorbed dose are essential. In this paragraph, the main proton detectors employed 

nowadays with this aim are briefly described. For a complete discussion, the reader 

can refer to several reviews and books reported in literature [113], [120], [172], [173]. 

The detectors employed for the monitoring of the proton beams have the crucial 

role to continuously measure the proton fluences and the transversal distribution 

to guide the irradiation. Arrays of parallel plate ionization chambers, with either a 
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single large electrode or electrodes segmented in strips or pixels [174], together with 

multi-wire ionization chambers [175] are the most employed detectors for this 

purpose. These beam position monitors are characterized by 1.5-5 mm strips/wires 

pitch aiming a spatial resolution below 0.3 mm. Moreover, they must be able to 

detect continuous or pulsed irradiations (1–10 μs) with proton fluxes in the range 

from 108 to 1011–1012 protons/s. Also, Faraday cups and calorimeters are widely 

used to monitor the proton beam fluences with a high accuracy. 

Other detectors are employed to monitor the dose distribution delivered to the 

patients. The main characteristics of these sensors are: 

o The tissue equivalence to limit the perturbation of the beams. 

o The active volume shall be small enough to provide good spatial resolution 

and to be able to detect steep gradient of doses. 

o They should feature 2D mapping capabilities. 

o Energy and dose rate independence. 

o Real-time monitoring to speed up the verification and improve the 

effectiveness. 

So far, a single sensor which fulfil all these requirements does not exist and different 

detectors are used for the monitoring of the delivered dose at single point or the 

longitudinal and transverse profile.  

The most widely employed dosimeters for point dose measurements are pinpoint, 

cylindrical and plane-parallel integrate circuits (ICs) properly calibrated and 

embedded within water or plastic phantoms [176]. 
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The longitudinal profile of the delivered dose is defined by the trend of the 

ionization charges integrated over a plane perpendicular to the proton beam as a 

function of the penetration depth. This profile is mainly adopted to monitor the 

range and the Bragg peak depth of the irradiating beam. For the measurement of 

the Integrated Depth-Dose (IDD) profile, plane-parallel ICs are commonly used 

because of their high accuracy and their independence from the energy. The main 

drawback related to this technology is the difficulty to cover a large enough area 

to be able to detect all the secondary scattered products coming from the primary 

beam (Ø ≈ 8-12 cm). To achieve the longitudinal profile, the movement of the 

sensor is employed [177] or alternatively Multi-Layer Ionization Chambers (MLICs) 

which let measure the dose simultaneously at different depth can be used [178]. 

The transversal dose distribution is commonly measured in to assess the spatial 

homogeneity and dimension of the beam. Here the spatial resolution is the key-

point and it can span in the range between 10 mm to 0.1 mm. Several dosimeters 

can be employed with this aim such as radiochromic or radiographic films [179], 

scintillating screens [180], silicon microstrips, MOSFETs [166], [181] and diamond 

array detectors [182]. 

Both radiographic and radiochromic films produce a relative dose-induced map 

which has to be read by a photometric device and need to be calibrated in terms 

of absorbed dose. the main difference between the two is that radiochromic films 

can be operated in the daylight while the radiographic is highly light sensitive and 

must be kept in dark. The main advantages related to these technologies are the 

human tissue equivalence, the weak energy dependence, a linear response over a 

large dose range, a good spatial resolution (0.1-0.2 mm) and the mechanical 

flexibility. On the other side, the main drawback presented by these films is related 
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to the readout system which is not in real-time and it has to follow a complex 

protocol for the calibration. 

Scintillating screens are formed by a plate coated with a scintillating material (e.g. 

Gd2O2S:Tb) and are typically coupled with a CCD camera used to acquire the 

emitted light. The luminescence distribution results proportional to the absorbed 

dose, presenting a high spatial resolution (0.5 mm) and a good linearity up to high 

proton fluences. While radiochromic films provide a single integrated transversal 

dose at the end of the delivery and must be digitalized and analyzed off-line, the 

scintillating screens can be operated in a real-time mode employing an 

instantaneous optical-electrical readout. Plastic scintillators are also employed for 

beam diagnostics and in particular, scintillating fibers recently showed very good 

results [183]. The main drawback presented by this class of sensors is related to the 

light detection which has to be very sensitive in order to obtain reliable results. 

For this reason, a complex readout chain must be implemented to this system 

including photomultiplier tubes and photomultipliers. 

Two-D arrays of ionization chamber can also be employed as dosimeter [184]. The 

main limitation here is determined by the poor spatial resolution. 

Silicon-based solid-state detectors (e.g. MOSFETs, Si microstrip) are largely used 

as dosimeters for proton beams offering high signals and a very high spatial 

resolution (< mm). The main limitations presented by this class of detectors are 

the non-water equivalence, the energy-dependent response, the impossibility to 

realize large area and flexible detecting systems. 

In this thesis (see Section 4.4) I will discuss the potentiality of organic 

semiconductors as active material of a novel generation of direct proton detectors 

for flexible and large area sensing during medical treatment.





3.  

Materials and Methods 

 
In this third chapter, the materials and the experimental methods involved in this 

dissertation are presented. In the first Section, a graphical summary of the several 

device architectures of the sensors tested is shown. The second Section is dedicated 

to the different materials implemented in these devices while in the third section, 

some on the fabrication techniques are discussed. Finally, all the characterization 

methods followed in this thesis are summarized. In particular, the electrical and 

morphological characterizations are presented. Besides, an entire section is 

dedicated to the photocurrent spectroscopy experiment. In conclusion, all the 

experimental setups employed for the characterization of the radiation sensing 

performance are described. 

 

3.1. Devices structure and 
architecture 

 

In this dissertation, the results obtained by several solid-state detectors are shown. 

In this paragraph a summary of the different geometries, materials and fabrication 

techniques that I implemented is given. 
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I mainly tested two different geometries which have been already presented in 

Section 2.4.2: the two-terminals co-planar architecture and the Bottom Gate-

Bottom Contacts (BGBC) thin film transistor configuration. A comparison between 

these two structures is shown in Section 4.1. 

In Figure 3.26 the typical two-terminals co-planar architecture is depicted, and 

the main materials and deposition techniques employed are listed [153]. This kind 

of samples has been used to achieve the results shown in Section 4.3 and Section 

4.4. 

 

 

Figure 3.26 Two-terminal co-planar device based on organic semiconductors. 

 

In Figure 3.27 the Bottom Gate – Bottom Contacts Organic Field Effect Transistor 

structures realized for several classes of detectors are shown and a list of the 

materials and the main fabrication techniques is provided.  
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In particular, the OFETs depicted in Figure 3.27a have been fabricated at the 

University of Cagliari by Prof. A. Bonfiglio’s research group and they have been 

employed to reach the results reported in Section 4.2.2.  

The transistors shown in Figure 3.27b have been produced at the Institut de 

Ciència de Materials de Barcelona (ICMAB, Spain) by Dr. M. Mas Torrent’s 

research group and these allowed us to conduct the studies discussed in Section 

4.2.1.1 and Section 4.2.3. 

Finally, I realized the devices depicted in Figure 3.27c during my six-months stay 

at the Columbia University (New York, USA) hosted by Prof. I. Kymissis. By these 

OFETs I obtained the results described in Section 4.2.1.2 and Section 4.2.5. 
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Figure 3.27 Three different OFET structures employed in this dissertation. a) Ultra-low voltage 
OFET designed and fabricated by Cosseddu et al. [185]. b) OFETs fabricated at ICMAB (Barcelona, 
Spain) employed the BAMS technique developed by Mas-Torrent et al. [52]. c) OFETs designed 
and fabricated at Columbia University during my 6-months spent in the laboratories of professor 
Kymissis. 
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Finally, in Figure 3.28 the Bottom Gate - Bottom Contacts Thin Film Transistor 

based on HMAOs is reported. These devices have been fabricated at the Faculdade 

de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT UNINOVA, 

Portugal) and the results achieved by this class of sensors are described in Chapter 

5. 

 

Figure 3.28 HMAO TFTs realized and characterized as Radiation Detectors. The devices have been 
fabricated in the clean room of CENIMAT at Uninova (Lisbon, Portugal). 

 

All the transistor structures have been fabricated following the standard 

photolithography process (Karl-Suss MA6 mask aligner). In particular, the different 

layers have been patterned using positive photoresist (e.g. S1811, AZ6632), 

developed by metal ion free developer (e.g. AZ726MIF, AZ300MIF), and etch by 

dry or wet etching (TRION PHANTOM III RIE). 

In particular, in the case of the samples fabricated at the Columbia University I 

followed the entire process starting from the design of the layout (LayoutEditor) 

and the realization of the photo-lithography masks (DWL 66+ laser writer). 
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3.2. Materials 
 

In the following sections, a brief description is given regarding the main materials 

implemented to develop the here studied devices. The first paragraph is focused on 

the flexible substrates, the core is centered on the different semiconducting 

materials and finally the implemented dielectrics are described. 

 

3.2.1. Plastic substrates: PET and PEN 
 

One of the purposes of this thesis is the demonstration of the radiation detection 

abilities of solid-state sensors fabricated onto flexible substrates employing 

deposition techniques scalable onto large areas (see Figure 3.29a). With this aim I 

fabricated the devices preferably onto plastic substrates and in particular onto 

Polyethylene (PET) and Polyethylene naphthalate (PEN) 125 µm thick foils. The 

two chemical structures are reported in Figure 3.29b,c. Before the fabrication 

process, the substrates have been cleaned by a subsequent 15 minutes ultrasonic 

baths in acetone and isopropyl alcohol followed by a rinsing in de-ionized water 

and drying under nitrogen flow. 

 

Figure 3.29 a) Picture of a flexible radiation detector fabricated onto a plastic foil. Chemical 
structures of b) PET and c) PEN. 
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The main properties of the two plastics are reported in Table 3.2. The main 

difference between the two is based on the thermal properties: PEN can be 

employed for processes which require higher temperatures (if compared with PET) 

up to 160 °C. 

 Properties Max Deposition 
Temperature 

PET 

Optical transparent; good chemical resistance; 

inexpensive; moderate moisture absorption; good 

flexibility (tensile strength [190-260] MPa) 

120 °C 

PEN 

Optical transparent; good chemical resistance; 

inexpensive; moderate moisture absorption; Young 

modulus higher than PET 

160 °C 

Table 3.2 Main properties of PET and PEN substrates [75]. 

 

3.2.2. Organic Semiconductors 
 

As organic semiconductors, I mainly focused on acenes [186]. This is a class of 

organic compounds and polycyclic aromatic hydrocarbons made up of linearly fused 

n-benzene rings. Pentacene (i.e. n=5) is the acene, and more in general one of the 

organic semiconductors, which exhibits high performances in terms of stability and 

electrical mobilities (> 1 cm2 V-1 s-1) [187]. Despite the common use as active layer 

in several electronic applications, it presents two main limitations. First, it is 

insoluble in the most of organic solvents and for this reason it is not possible to 

deposit it from solution by the low-cost and scalable techniques described in 

Chapter 1. Also, pentacene crystallize in the edge to face herringbone structure 
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(see Figure 3.30a) which provides a poor π-stacking with a consequent poor 

dispersion of the electronic bands in the solid and limited transport properties. 

With the aim of overcome these two main issues, the functionalization of pentacene 

has been extensively exploited in the last decades by means of the substitution of 

different functional groups [188]–[191]. These functionalized molecules on one side 

result soluble in organic solvents making possible to deposit them from solution by 

spin coating [192], drop casting, meniscus shearing [193] and printing techniques. 

On the other side, they present a greater π-stacking and an improvement of the 

transport properties. For instance, the substitution of the bulky trialkylsilylethynyl 

substituent facilitates the close cofacial face-to-face arrangement of the acene 

backbone (see Figure 3.30b), and results in dramatic improvements in the 

solubility, stability and electrical properties. 

 

 

Figure 3.30 Molecular packing arrangements with average distances between the π-faces in a) 
Pentacene and b) TIPS-Pn. [194] 

 

In particular, in this work I employed two functionalized acenes by means 6,13-

bis(triisopropylsilylethynyl)pentacene (TIPS-Pn, C44H54Si2) [191], [195] and 2,8-

difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT, 

C34H36F2S2Si2) [196]–[198]. Their chemical structures are reported in Figure 3.31a. 
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Both these organic small molecules have been extensively studied in the last years 

because of their good properties among the soluble organic small molecules in terms 

of transport properties and stability. They have been employed as the active layer 

of OFETs offering high electrical mobilities up to 20 cm2V-1s-1 [39].  

 

 

Figure 3.31 Molecular structure of a) TIPS-Pn, diF-TES-ADT and b) the chemically tailored 
TIPGe-Pn and diF-TEG-ADT. 

 

Moreover, in order to enhance the radiation detection performance of the organic-

based sensors I exploited another unique characteristic of organic semiconductors 

that is the possibility to chemically tailor their molecular structure in an easy way. 

With this purpose, I worked with two synthetized molecules developed by J. E. 

Anthony et al. (i.e. triisopropyl- germanylethynylpentacene (TIPGe-Pn, 

C44H54Ge2) and 5,11-bis(triethylgermylethynyl)anthra- dithiophene (diF-TEG-

ADT C34H36F2S2Ge2) in which the two Silicon atoms present in TIPS-Pn and diF-
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TES-ADT have been substituted with two Germanium atoms. Both the molecular 

structures of TIPGe-Pn and diF-TEG-ADT are reported in Figure 3.31b. Besides, 

it has been demonstrated that in both these Ge-based molecules the greater 

molecular packing enhances the transport properties if compared with the standard 

Silicon-based counterparts [45], [199], [200]. 

Finally, with the aim to improve the electrical properties of the organic devices, I 

employed some OFETs in which the active layer is formed by a blend of TIPS-Pn 

and polystyrene (PS). In fact, it has been demonstrated that the blending of the 

organic small molecules and inert dielectric polymers (e.g. polystyrene) leads to 

easier processing, better control of the solution viscosity, greater uniformity 

throughout the film, and even vertical demixing of the blend constituents [201], 

[202]. 

In this thesis, the organic semiconducting layers have been deposited from solution 

employing several deposition techniques. In particular, among the procedures 

described in Chapter 1, I employed the drop casting, the blade coating, the BAMS 

technique and the Pneumatic Nozzle Printing. The organic molecules have been 

dissolved in appropriate organic solvent (e.g. Toluene or Chlorobenzene) in 

different concentration in the range between 0.5%wt and 4%wt depending on the 

adopted deposition technique. 

3.2.3. High Mobility Amorphous Oxide 
Semiconductors 

 

As AOS I implemented the amorphous indium-gallium-zinc oxide (a-IGZO). As it 

has been discussed in Chapter 1, in this class of multicomponent oxide 
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semiconductors, the different cations can be mixed in different percentage and 

consequently it is possible to tune the properties of the final compound. In 

particular in a-IGZO, In3+ cations are the main elements of the conduction band, 

Ga3+ limits the free charges in the semiconductor creating strong bonds with oxygen 

and lowering their vacancies and Zn2+ prevent the crystallization of the material 

assuring the maintaining of the amorphous phase. 

In this thesis, the a-IGZO has been sputtered from a multi-component target with 

(2:1:1) (atomic In/Ga/Zn ratio) composition with the addition of oxygen to the 

argon flow in order to keep controlled the self-doping of the final semiconducting 

layer. 

 

3.2.4. Dielectric Layers 
 

In this thesis, I employed mainly three different materials as the insulating layers 

of the developed thin film transistors. 

1. Al2O3 + parylene C in some of the OFETs as deeply discussed by P. 

Cosseddu et al. in [185]; 

2. Parylene C in some other OFETs fabricated at the Columbia University 

in New York City; 

3. SiO2/Ta2O5 multilayer dielectric implemented as the active layer of the 

radiation detectors based on AOSs. 

In the next two sections, a brief description of the Parylene C and the high-k 

dielectrics are reported. 
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3.2.4.1. Parylene C 
 

Parylene is a polymer which belongs to the family of poly(p-xylylene). It consists 

in a linear chain of Benzene rings with two methilene groups replacing two 

hydrogen atoms on opposite sides of the benzene ring and serving as coupling links 

for the polymer. Parylene C differs from the standard one because of the 

substitution of a Cl atom instead of one of the aromatic H. The molecular structure 

of the monomer is depicted in Figure 3.32. 

 

Figure 3.32 Chemical structure of Parylene C. 

The main properties of Parylene C are the following: 

o High crystallinity; 

o Low permeability to gases and moisture; 

o Optical transparency; 

o Biocompatibility; 

o Uniform thickness and good dielectric properties (ε ~ 3); 

o High mechanical flexibility; 

o Compatibility with most of the solvents and fabrication processes employed 

for the development of electronic devices; 
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o Capability to form layers perfectly conformable to the substrate. 

Accordingly to all these properties, Parylene is often employed in flexible electronic 

devices both to encapsulate the systems preventing the degradation due to ambient 

conditions [203], and as dielectric layer in TFTs. 

In this thesis, I implemented Parylene C as dielectric layer in several OFETs. It 

has been deposited by Chemical Vapor Deposition (CVD) as it is deeply discussed 

in Section 3.3.2. The thicknesses of the layers vary in the range between 150nm 

and 250 nm. 

 

3.2.4.2. SiO2/Ta2O5 multilayer dielectric 
 

In this work, as insulator in AOS TFTs, a multilayer dielectric has been employed 

using a co-sputtering technique with SiO2 and Ta2O5. 

This multilayer structure offers a twofold advantage combining the properties of 

both the materials employed.  

On one side Ta2O5 belongs to a class of insulator called high-k dielectric. As it has 

been discussed in Chapter 1, in the field effect transistors the creation of the 

conductive channel of the device is ruled by the capacitive behavior of the 

gate/insulator/semiconductor structure. In order to achieve a high carrier density 

with low operative bias, a high capacitance of the insulating layer has to be ensured. 

For this purpose, one option could be to decrease the dielectric thickness, but this 

can lead to the increase of the undesired leakage current. As alternative high-k 

dielectric can be employed to increase the capacitance even with the same dielectric 
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thickness. In fact, these materials show higher dielectric constant than for example 

SiO2 and for this reason it is possible to induce a high carrier density in the TFTs 

channel using minimal gate operating voltage even in thick dielectric which can 

prevent the leakage current. The main drawback of this class of insulators is linked 

to their energy bandgap. In fact, usually for most metal oxide dielectric EG is 

inversely proportional to the dielectric constant. And so, even if the high-k 

materials allow the realization of thicker dielectric layer preserving the capacitance, 

if the EG is too low, leakage current can still remain an issue. 

On the other side, silicon dioxide presents a very high energy bandgap (i.e. EG ~ 

8.9 eV) which successfully prevents the leakage current. For this reason, by mixing 

a high-k/low-EG oxide (e.g. Ta2O5) with a low-k/high-EG oxide (e.g. SiO2) it is 

possible to achieve a gate dielectric which allows low operation voltage, low leakage 

current and besides it assures an amorphous structure with a smoother surface with 

improved interface properties [204]. 

Moreover, this dielectric multilayer can be deposited by RF sputtering (see Section 

3.3.1.1) without intentional substrate heating during deposition which makes this 

technique compatible with the fabrication of electronic devices onto flexible 

polymeric foils. 

Finally, it is noteworthy that in this kind of AOS TFTs the active layer in terms 

of radiation detection is formed by the here described multicomponent insulator, 

as it will be deeply discussed in Chapter 5. As it has been highlighted for the 

organic semiconducting molecules (Section 3.2.2) the adding of a high Z element 

(e.g. Ta, ZTa = 73) increases the cross section of interaction between the high energy 

photons and the atoms of the sensor leading to an improvement of the efficiency of 

the detector. 
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3.3. Fabrication techniques 
 

In this paragraph, the main fabrication techniques employed in this work are 

described. In particular, the deposition methods employed for the realization of the 

devices are discussed and finally, a treatment used for the electrodes’ 

functionalization is illustrated. The deposition techniques from solution employed 

for the realization of the organic semiconducting layers have already been listed in 

Section 3.2.2 and more details will be given in Chapter 4. 

 

3.3.1. Physical Vapor Deposition (PVD) 
 

In PVD techniques, atoms or molecules are physically removed from a source 

material and transported through high-vacuum to a substrate, where they form a 

thin film. Depending on the mechanism which allows to remove the material atoms 

from the sources, several techniques can be distinguished. In this research I mainly 

employed three of these which will be described in the following sections. 

 

3.3.1.1. Sputtering 
 

The sputtering technique is based on the creation of a gaseous plasma and the 

consequent acceleration of the generated ions in the direction of a target composed 

by the material to deposit with its consequent erosion. In fact, due to the transfer 
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of energy, the accelerated ions are able to kick out from the target atoms of the 

desired material in the form of neutral particles. As it is depicted in Figure 3.33a, 

these ejected atoms reach the substrate placed on the opposite side of the target 

and they start forming the thin film. This process occurs in a vacuum chamber 

containing two electrodes: the cathode including the target and the anode covered 

by the substrate generally grounded. An inert gas (e.g. Argon) is introduced in the 

chamber and it is suddenly ionized or excited by all the electrons present in the 

chamber and accelerated between the two electrodes. If the Ar+ present a kinetic 

energy higher than a threshold value to achieve a sputter yield (i.e. number of 

atoms ejected from the target for each bombardment ion) higher than unity, the 

sputtering deposition takes place. 

Three different types of sputtering techniques exist: DC, RF and magnetron. 

Despite the DC sputtering (i.e a DC bias applied between the anode and the 

cathode) is the simplest configuration, only RF sputtering (i.e. high frequency 

voltage supplied to the target) offers the opportunity to deposit also insulating 

materials. In fact, while in the DC configuration insulators are not able to supply 

the target surface with sufficient secondary electrons to maintain the plasma in the 

chamber, in the RF configuration, these are attracted to the target during the 

positive portion of the RF signal. In this way, a self-biased DC voltage emerges in 

the target, creating the conditions for sputtering to occur. 

Moreover, magnetron sputtering (see Figure 3.33b) offers an additive improvement 

of the technique avoiding the bombardment of the forming thin film with the 

electrons present in the chamber and increasing the rate of deposition. In fact, it 

employs magnets behind the cathode to trap free electrons in a magnetic field 

directly above the target surface. Hence, these electrons are not free to bombard 
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the substrate and at the same time, they enhance their probability of hitting and 

ionizing a neutral gas atom [69]. 

 

Figure 3.33 a) Schematic of a typical Sputtering process. b) Magnetron Sputtering. 

 

RF magnetron Sputtering has been intensively used in this thesis to deposit metallic 

electrodes made by molybdenum, multilayer SiO2/Ta2O5 dielectric and a-IGZO in 

AOS TFTs. The procedure took place without intentional substrate heating. AJA 

ATC-1300F and AJA ATC 1800-S existent at CEMOP (Universidade Nove de 

Lisboa, Postugal) have been used for this purpose (see Figure 3.34a,b).  

 

3.3.1.2. Electron-beam and thermal Evaporation 
 

Physical evaporation is the oldest and one of the most used deposition techniques 

especially for metals. This consists essentially in heating the materials who is 

supposed to be deposited up to its point of vaporization to allow the evaporated 

molecules to reach the substrate placed close to the source material. In order to 
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reduce the possibility of scattering and to maximize the probability of reaching the 

substrate, the evaporation process takes place under high-vacuum. 

Depending on the way to induce the evaporation, it is possible to distinguish 

thermal and electron-beam deposition. 

In the first case, the material to deposit is placed on the top of a filament made by 

a refractory metal (e.g. tungsten or tantalum). Due to the electrical current forced 

to flow through this filament, it heats up and induces the evaporation of the 

material. For all those materials which require high temperature to evaporate, a 

cross-contamination from the material of the filament can occur. 

In the electron-beam (e-beam) evaporation, instead of using a heated filament a 

highly energetic electron beam is employed to induce the evaporation of the 

material. In particular, the electrons produced by thermoionic emission are 

accelerated against the material target by a magnetic field. In this way, only the 

region hit by the beam is heated and thus it is possible to evaporate also material 

with high melting points, avoiding external contamination. 

In this work I used both these two techniques to deposit Chromium and Gold 

electrodes. For the thermal evaporation I employed a custom tool. For this 

procedure, the AC current flowing in the tungsten filament is in the range [10 – 20] 

A and the pressure of the chamber lays in the range [2 - 8] · 10-6 mbar. For the e-

beam evaporation I employed an Angstrom EvoVac e-beam deposition system (see 

Figure 3.34c) located in the CNI cleanroom at the Columbia University (New 

York, USA). This tool provides a chamber pressure between 1 · 10-7 and 8 · 10-8 

mbar and the possibility to deposit at very low deposition rates down to 1 Å s-1. 
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Figure 3.34 a) Picture of AJA ATC 1800-S sputtering system used for the deposition of metallic 
contacts. b) detail of the main chamber where the targets are shown. c) Picture of the Angstrom 
EvoVac e-beam deposition system. 

 

3.3.2. Chemical Vapor Deposition (CVD) 
 

Chemical vapor deposition (CVD) is referred to as deposition process of thin films 

and nanostructures through chemical reactions of vapor phase precursors. Since 

CVD can be conducted using high purity precursors, it likely leads to thin film and 

nanostructures with high purity [205]. 

In this work, Parylene C implemented as dielectric layer in some OFETs has been 

deposited by CVD following the steps depicted in Figure 3.35a. In particular, the 
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process starts from the dimers of the parylene molecule which are firstly sublimated 

in the vaporizer chamber. After, they are broken into monomers in the Pyrolizer 

furnace and then deposited as long chain polymers on substrates in the deposition 

chamber. The exhaust is pumped into a liquid-nitrogen trap by a mechanical oil 

trap. The cold trap serves to prevent vapors being evacuated from the process from 

entering the vacuum pump where they would condense and contaminate all the 

system. 

For the realization of the dielectric layer in some of the OFETs here reported I 

used a CVD-PDS-2010 SCS Labcoater® Parylene deposition system located in the 

CNI cleanroom at the Columbia University (New York, USA) (see Figure 3.35b). 

An adhesion promoter consisting of sylane was used during the deposition to 

improve the adhesion between parylene-C and the underlayers. 

 

 

Figure 3.35 a) Parylene deposition process. b) SCS Labcoater® Parylene deposition system (CVD-
PDS-2010). 
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3.3.3. Electrodes functionalization 
 

Considering the Organic Field Effect Transistors analyzed in this work, the source 

and drain electrodes have been fabricated using gold. In fact, this is the metal 

which better satisfies the matching between the metal work function (φAu = [-5.10 

– -5.47] eV) and the HOMO level of the implemented semiconductor (e.g. 

HOMOTIPS-Pn = -5.15 eV; HOMOdiF-TES-ADT = -5.35 eV), providing a good 

injection/collection of charge carriers. In order to further improve the coupling 

between the metallic contact and the semiconducting layer, the approach proposed 

by Kim et al. has been employed [206]. In fact, he demonstrated that the chemical 

tailoring of the electrode surface with a SAM (i.e. Self Assembled Monolayer) 

composed by pentafluorobenzenethiol (PFBT) enhances the injection and the 

transport properties of OFETs based on diF-TES-ADT. Moreover, it has been 

demonstrated that this functionalization of the electrodes acts in two parallel 

directions. On one side, it induces a shift of the metallic work function which leads 

to a more efficient injection into the HOMO lowering the contact resistance [39]. 

On the other side, it helps a better crystallization of the organic semiconductor 

close to the contacts interfaces. 

In this work I employed the PFBT treatment on the gold source/drain electrodes 

present in the OFETs. It consists in a 30 min immersion of the sample in a 30 mM 

solution of PFBT in isopropyl alcohol (or ethanol) and then the rinse using the 

same fresh solvent. 
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3.4. Electrical characterization 
 

Electrical characterizations have been performed in ambient conditions (i.e. in air 

and at room temperature) in order to assess the transport properties of the tested 

devices. A customized probe station has been employed equipped with tungsten 

probe-tips controlled by micro-manipulator and with a metal box acting as Faraday 

box shielding the external electrical noise and keeping the samples in dark during 

the measurements. The electrical characterizations have been conducted using a 

Keithley 2614B or a Keysight B2912 source meter units (see Figure 3.36a). 

Moreover, with the aim to test pixelated geometry acquiring the electrical curves 

of different devices laying on the same array a customized Analog Multiplexer 

SPDT (Single Pole Double Throw) 20 channels has been employed (see Figure 

3.36b). These setups have been used in order to acquire the current-voltage curves 

(i.e. I-V curves) of the planar devices and the transfer and the output characteristic 

of the thin film transistors as the ones described in Chapter 1. The electrical 

parameters have been extracted from the acquired curves using a MATLAB script. 

Besides, for the characterization of the insulating layers implemented as dielectrics 

in the TFTs, some impedance measurements have been carried on employing a 

Metrohm PGSTAT204. Both the electrical connections employed for the I-V and 

C-V curves are summarized in Figure 3.36c. 
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Figure 3.36 a) Setup employed for the electric characterization of the tested devices. b) Analog 
customized Multiplexer used for the simultaneous characterization of several devices laying on the 
same pixelated array. c) Schematics of the electrical connections employed for the acquisition of the 
IV curves and for the impedance measurements. 

 

3.5. Morphological characterization 
 

For a macroscopic characterization of the semiconductor morphology, two optical 

microscopes have been employed: an OPTIKA zoom stereo microscope SZM and 

an OPTIKA polarization microscope. Besides, for a microscopic characterization, 

atomic force microscopy (AFM) has been exploited both to evaluate the thickness 

of the semiconducting and dielectric layers, the roughness and the microcrystalline 

structures obtained with different deposition techniques. In the following 

paragraph, a brief introduction of AFM technique is illustrated. 
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3.5.1. Atomic Force Microscopy 
 

Atomic Force Microscopy is a high-resolution surface characterization technique 

employed to image and measure the properties of a material surface. Unlike its 

precursor Scanning Tunneling Microscopy (STM), AFM can characterize both 

conducting and insulating materials exploiting the interaction between the atoms 

of a very sharp tip and the sample surface. The interaction between two atoms 

separated by a distance r can be expressed using the Lennard-Jones potential which 

is depicted in Figure 3.37. Depending on the distance between the two atoms, 

compared with the interatomic spacing in equilibrium condition (i.e. r0), one can 

distinguish two different forces: for r < r0 the force results repulsive while r > r0 

leads to an attractive interaction. 

 

Figure 3.37 Lennard-Jones Potential. The interaction between two atoms is repulsive or attractive 
respectively when their distance r is >r0 or <r0. 

 

These two different regimes can be exploited to implement two AFM operation 

modes: 
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Contact Mode   

The AFM tip touches the sample surface, and the tip-sample repulsive force deflects 

the tip cantilever. Here the cantilever deflection is monitored and used as the 

feedback signal. 

Non-Contact Mode 

The cantilever is externally oscillated at its resonance frequency. The tip-sample 

attractive interaction is altered as the tip-sample distance changes, leading to a 

change in oscillation amplitude and resonance frequency. These deviations from the 

reference amplitude and frequency are used as feedback signals to obtain the 

topography of the sample surface. 

Even if, as it is shown in Figure 3.37, the huge slope presented by the curve in the 

repulsive interaction region (i.e. in Contact Mode) provides a greater resolution, 

bringing the tip in contact with the sample surface can lead to severe damages both 

at the tip and at the sample. For this reason, non-contact mode is often preferred 

even if it presents a lower resolution. 

In non-contact mode the surface mapping is carried out by measuring the changes 

in the phase or in amplitude of the vibration of the cantilever holding the tip due 

to the attractive force between the probe tip and the sample while the cantilever 

is mechanically oscillated near its resonant frequency (i.e. ω0). 

The cantilever oscillation can be described by the Eq. 3.1, considering the tip as a 

point-mass spring. 

 gf� + g4�� f� + :f = lOb + l�cos 94�q< (3.1) 
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where k is the elastic constant, Q the quality factor, Fts the tip-sample interaction, 

F0 and ωd the amplitude and the angular frequency of the driving force respectively. 

When the tip approaches the sample surface, the attractive force causes a shift of 

the cantilever resonance curve and for small oscillation, this system can be 

considered a weakly perturbed harmonic oscillator. The frequency shift can be 

expressed by the Eq. 3.2 and for attractive forces (i.e. 0lOb 0fo > 0) the force 

gradient lowers the resonance frequency. 

 ∆�� = − ��2: 0lOb0f  (3.2) 

where �� = 4� 2@⁄ . 

Hence, to acquire the map of the sample surface, the force gradient has to be 

recorded scanning the x-y area and so varying the tip-surface distance depending 

on the morphology of the sample. To measure this quantity, the knowledge of the 

frequency shift due to the tip-sample interaction is essential. With this aim, the 

cantilever is forced to vibrate at a frequency f1 (see Figure 3.38b) where the 

amplitude change (∆A) is large also with very small shift of intrinsic frequencies 

due to atomic attraction. Thus, the ∆A measured in f1 reports the distance change 

(∆d) between the probe tip and the surface atoms (see Figure 3.38c). The non-

contact mode feedback loop compensates the change in the oscillation of the 

cantilever and keeping constant the vibration amplitude and so the distance 

between the tip and the sample surface. In this way the AFM can acquire the 

topography of the samples. 
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Figure 3.38 a) Free resonance frequency, b) frequency shift and c) distance of the tip from the 
sample surface and z-feedback as a function of amplitude modulation. Adapted from [207]. 

 

To characterize the morphology of my samples, I used a Park NX10 scanning probe 

microscope operated as AFM in Non-contact Mode. In Figure 3.39 a scheme of the 

system is reported.  

 

Figure 3.39 Non-contact AFM system. 

The samples are placed on a piezo tube scanner which allow the scanning in the 

x,y and z directions. The cantilever is mechanically forced to vibrate near its 
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resonance frequency (typically between 100 and 400 kHz) by a biomorph. The user 

can set the vibrational amplitude of the cantilever by applying an AC signal (i.e. 

Amplitude Drive). The cantilever deflection due to the interaction with the sample 

surface is acquired by a Position Sensitive Photo Detector (PSPD) which is a four-

section split photodiode. It can monitor the cantilever movement changes thank to 

the reflected beam laser intensity and moreover it can establish a feedback loop 

which controls and coordinates the piezo tube z-scanner comparing the signal 

received from the PSPD and the parameters set by the operator (e.g. Amplitude 

setpoint and Z servo gain). Finally, the voltage signal used by the z feedback-loop 

to compensate the deviation of the cantilever oscillation amplitude provides the 

information to reconstruct the topography of the sample surface. 

 

3.6. Photocurrent Spectroscopy 
 

The photocurrent spectroscopy (PC) is an experimental technique which allows to 

investigate the optoelectronic properties of a semiconductor. It is based on the 

photoconductivity phenomenon which indicates the increase of the electrical 

conductivity as a result of incident electromagnetic radiation (e.g. visible light, 

ultraviolet light, infra-red light, X-rays). This phenomenon is based on the 

absorption of a photon by an electron (i.e. internal photoelectric effect). If the 

energy absorbed by the electron is higher than the energy gap of the semiconductor, 

the photon is able to create excitons promoting the electron in the conduction band 

(i.e. LUMO for OSC) and leaving an hole in the valence band (i.e. HOMO for 

OSC). Thus, the density of free electrons and holes changes and the semiconductor 
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conductivity increases. Also transitions induced by photons with lower or higher 

energies than EG are possible respectively if the presence of trap states intra-gap is 

recorded or if many anti-bonding orbitals are present. 

The conductivity of a semiconductor kept in dark, can be expressed by Eq. 3.3 

 � = �9
�� + ���< (3.3) 

where e is the electron charge, µn/p is the electron/hole mobility and n and p indicate 

the electron and hole density. When the semiconductor absorbs energy from an 

impinging electromagnetic radiation, the generation of electron/hole pairs occurs 

and the conductivity increases: 

 � + ∆� = ��9
 + ∆
< �� + 9� + ∆�< ��� (3.4) 

Thus, when an electric field E is applied to separate the generated excitons, the 

current density J increases by a factor Jph which is called photocurrent: 

 6 = 9� + ∆�<' = 6~�a5 + 6�P (3.5) 

Therefore, the recording of the current flowing in the semiconductor provides 

information regarding the radiation absorption of the material and consequently 

about its optoelectronic properties. It is important to notice that the photocurrent 

is strongly related to the energy band diagram of the tested materials and it can 

provide important information on the trap states present in the semiconductor 

which can induce a modification of the recorded photocurrent [208]–[211]. The 

information provided by this technique are deeply discussed by R.H. Bube in [212]. 

In order to characterize the optoelectronic properties of the organic semiconductor-

based devices, I employed a setup depicted in the schematic in Figure 3.40. 



3.6 Photocurrent Spectroscopy 

126 

 

 

Figure 3.40 Schematic of photocurrent experimental set-up. 

 

As radiation source, a QTH (Quartz Tungsten Halogen) lamp (22 V, 150 W) is 

employed. This source produces a white spectrum which is sent to a Cornestone 

260 monochromator (resolution ∆λ = 1nm). This is composed by a rotative 

diffraction grid and a system of mirrors which select a wavelength at a time and 

focus it on the sample. At the entrance and at the exit of the monochromator, two 

slits allow the collimation of the light beam for the improvement of the intensity 

and sensitivity of the irradiation. In order to filter the photo-induced signal and 

discriminate it from the surrounding electrical noise, a chopper is coupled with a 

lock-in amplifier. The chopper (i.e. a dark disk with periodic holes) is placed 

between the lamp and the monochromator and it transforms the incident 

continuous illumination in a chopped light at a set frequency. This reference 

frequency (37 Hz) is sent to the Stanford Research 830 lock-in amplifier which is 
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employed to filter the recorded photocurrent. The device is connected to the system 

as it is shown in Figure 3.41. In fact, in order to enhance the measurement of the 

induced photocurrent, considering the high resistivity of the organic semiconductors 

(R~1-100 MΩ) a voltage-mode measurement has been acquired. Instead of directly 

measure the photocurrent flowing in the semiconductor, a load resistance (RL) of 

the same order of magnitude of the organic layers is employed and it is connected 

in parallel with the lock-in amplifier. When a small change in the current is recorded 

due to the illumination, a relatively high drop of potential is induced in RL. 

 

Figure 3.41 Electrical connection employed during PC experiments. 

 

The photocurrent spectra have been normalized for the lamp spectrum acquired 

with a Pyroelectric sensor (Scitec Instruments, LTQ2 Pyroelectric Single Element 

Detector for Measurement Applications) kept in the same experimental conditions. 

This sensor provides a flat responsivity, independent from the light wavelength. 
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3.7. Detector characterization 
 

3.7.1. X-ray tubes 
 

In order to assess the X-ray detection performances, I tested the samples under the 

radiation provided by two different X-ray tubes. In the next two paragraphs they 

are briefly described.  

In both cases, a mechanical shutter has been placed between the X-ray source and 

the detector in order to acquire dynamical responses by the sensors recorded for 

ON/OFF cycles of irradiation (i.e. opening/closing the beam). 

Moreover, both the X-ray tubes have been calibrated using a Barracuda radiation 

detector (RTI Group, Sweden). 

Both the irradiation apparatuses are enclosed in a lead-based screening box which 

provides the protection of the operator during the measurements. 

During the irradiation, the devices have been electrically connected to the source 

meters as described in Section 3.4. 

The typical procedure followed for the characterization of the X-rays detectors, the 

data analysis and the extraction of the fundamental figures of merit are intensively 

discussed in Chapter 4 and in particular in Section 4.2. 
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3.7.1.1. Mo-tube 
 

A commercial PANalytical PW2285/20 X-ray tube with a Molybdenum target has 

been employed (Kα ~ 17.4 keV, Kβ ~ 19.6 keV). The tube has been kept at 35 kVp 

and the electron current flowing between the anode and the cathode has been tuned 

in the range [5; 30] mA, corresponding to dose rates of X-ray between 5 and 30 

mGy s-1. The samples have been placed 29 cm far from the tube and centered along 

the beam direction. The X-ray spot at that distance is about 1cm2. The samples 

have been electrically connected in different way depending on the geometry of the 

sensing system under test. In some cases, the samples have been enclosed in a 

Faraday box with an aperture covered by a thin Aluminum foil in order to prevent 

electrical noise, to keep the sample in dark during the measurements and to let the 

X-ray beam pass through the aperture avoiding its attenuation. In other cases (see 

Figure 3.42a) the samples have been directly connected with the tungsten probe-

tips described in Section 3.4. 

In Figure 3.42b the simulated spectrum provided by this X-ray tube kept at 35 

kVp is reported. In Figure 3.42c the calibration curve acquired by the Barracuda 

detector is shown. 

Moreover, interposing several layers of Aluminum between the sensor and the X-

ray tube we could attenuate the radiation beam down to (2.32 ± 0.02) µGy s-1 and 

this allows us to measure the limit of detection of the X-rays sensors. 
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Figure 3.42 a) samples tested under X-rays produced by the Mo target tube. b) simulated spectra 
of 35kV, 35 mA Mo-tube. c) calibration of the tube employing a Barracuda detector. 

 

3.7.1.2. W-tube microfocus 
 

A L12161-07 150kV Microfocus X-ray tube with a Tungsten target commercialized 

by Hamamatsu has been employed (Kα ~ 59.3 keV) (see Figure 3.43a). The 

accelerating voltage applied to the tube spans between 40 kVp and 150 kVp. 

Depending on the accelerating voltage and the filament current, several dose rates 

of X-ray have been employed for the irradiation of the sensors as it is indicated in 

the calibration graph reported in Figure 3.43b and performed with the Barracuda 

detector. The simulated spectrum representing the 150kVp operating condition is 

illustrated in Figure 3.43c. 
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Figure 3.43 a) sample tested under X-rays produced by the W target tube. b) simulated spectra of 
150 kV W-tube. c) calibration of the tube polarized at different voltages acquired by a Barracuda 
detector. 

 

3.7.2. Dental X-ray setup by Skanray 
Europe S.r.l. 

 

To assess the potentiality of the here reported detectors in dental radiography field, 

we employed two different commercial radiation sources kept in actual medical 

conditions: 

1. A commercial tungsten-target X-ray tube (OPX/105 Serial Number: 681502 

by Skan-X Radiology Devices S.p.A., see Figure 3.44a) operated at 70 kVp 

accelerating voltage and 4 mA anodic current. I varied the exposure time 

between 0.5 s and 2 s obtaining a total dose of irradiation which spans in 

the range [15.5-64.6] µGy. 
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2. A commercial dental radiography system (Interskan DC, SkanRay Europe 

S.r.l., see Figure 3.44b). The source has been operated at 70kVp with an 

anodic current varying in the range [4-8] mA. In this way, the response of 

the sensors has been tested irradiating them with tunable dose rates of 

radiation in the range [1.13-2.31] mGy s-1 provided in short pulses 100 ms 

long.  

 

Figure 3.44 a) dental radiography X-ray tube (OPX/105 Serial Number: 681502 by Skan-X 
Radiology Devices S.p.A.). b) Dental radiography system (Interskan DC, SkanRay Europe S.r.l.). 

 

3.7.3. Gamma sources 
 

I tested the detectors based on AOSs under two different gamma sources at Istituto 

Nazionale di Astrofisica (INAF, Bologna, Italy). To this aim I employed 137Cs and 

109Cd radiation sources sealed in a leaded shield. The 109Cd source emits a primary 

electromagnetic radiation at 22 keV and a secondary at 88 keV with a total activity 

of 105.1 MBq. On the other side, the 137Cs source emits a primary electromagnetic 
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radiation between 32 and 36 keV and a secondary at 662 keV with a total activity 

of 1.6 MBq. The sources have been placed 1 cm far from the sensor. We performed 

the measurements in ambient condition, and we acquired the electrical output 

signal connecting the device as illustrated in Section 3.4. 

 

3.7.4. Proton Irradiation 
 

With the aim to test the devices based on OSC as proton detectors, I measured 

their responses under the proton beams provided by two different facilities. The 

main purpose of this study is the investigation of the potentiality of this sensing 

technology for its implementation in the medical field as dosimeter employed in 

proton therapy. For this reason, I tested the performances under proton beams at 

low (5 MeV) and high (70 MeV) energies in order to investigate their response both 

under the typical energy employed in radiotherapy (i.e. 70 MeV) and under the 

end-of-range values of the scattered protons (i.e. 5 MeV). 
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3.7.4.1. LABEC (Laboratory of Nuclear techniques for 

Environment and Cultural Heritage, INFN Firenze) 
 

The organic-based sensors have been tested under a 5MeV beam provided by the 

3 MV Tandetron accelerator at the LABEC ion beam center. The irradiation 

system is reported in Figure 3.45. 

 

 

Figure 3.45 a) Proton beamline at LABEC. b) The detectors have been enclosed in a box during 
the irradiations in order avoid the illumination of the devices. 

 

The sample has been centered under the proton beam at 8 mm from the beam’s 

exit and it has been enclosed in a box to keep the dark during the measurements. 

The sensors have been electrically connected as described in Section 3.4. to 

determine the actual energy of the protons impinging onto the device. The energy 

loss of the charged particles passing through the several layers interposed between 

the beam and the sensor (i.e. 200 nm of Si3N4 for the beam extraction window, 8 

mm of mixed air-He, 14 µm of Al for the entrance window of the box and 14 mm 

of air inside the box) have been calculated by a SRIM Monte Carlo simulation 

[213]. 
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The proton beam currents employed are in the range between 1-100 pA which 

correspond to fluences between 3.5 · 109 H+cm-2 and 8.7 · 1011 H+cm-2. The weak 

intensity of the beam has been monitored and measured using a rotative chopper 

placed between the proton source and the sample in order to intercept the beam 

[214]. The chopper is a graphite vane covered with a thin nickel evaporation, and 

the Ni X-ray yield is used as an indirect measurement of the proton current. 

 

3.7.4.2. TIFPA (Trento Institute for Fundamental 

Physics and Applications) 
 

The organic-based detectors have been tested under therapeutic proton beams 

provided by the Trento Proton Therapy facility and supervised by the Trento 

Institute for Fundamental Physics and Applications. In this case it has been 

possible to carry on the measurements under real conditions of irradiation employed 

during the medical treatments and to test the detection response of our devices 

under actual proton fluxes and energies recorded for the primary beam. 

In this facility, the cyclotron (see Chapter 2) accelerates the beam up to a 

maximum energy of 228 MeV. After the cyclotron exit, a coarse energy selection is 

carried-out by a rotating degrader of different thicknesses and materials to select 

the beam energy down to its minimum value of 70 MeV. Moreover, different beam 

intensities can be requested at the exit of the cyclotron, in the range spanning 

between 1 and 320 nA. The calibration of the beam is provided by an ionization 

chamber for the measurements of the fluxes and GAFCHROMIC for the evaluation 
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of the spot size. Recently, Tommasino et al. reported the main properties of the 

facility [215]. 

During my work, I carried on some preliminary test at TIFPA setting the energy 

of the protons at 70 MeV and looking at the detection response acquired for 

different proton fluxes. Moreover, I tested the effect of solid waters of different 

thicknesses interposed between the sensor and the proton source. The experimental 

setup is depicted in Figure 3.46. 

 

 

Figure 3.46 Experimental setup at TIFPA. 

 



4.  

Ionizing radiation detectors 
based on Organic 
Semiconductors 
 

 

In this fourth chapter, the experimental work on organic thin film-based detectors 

carried on in these three years is illustrated. The chapter is divided in four main 

sections. 

In the first section, the difference in terms of detection between the two main 

architectures involved in my work are pointed out. 

The second section is dedicated to the X-ray detection. After a first summary which 

describes the main measurements carried on in order to characterize the sensors, 

several strategies studied and adopted in order to improve the efficiency of this 

class of detectors are described. Firstly, a deep study of the trap states which rule 

the detection mechanism is shown. Second, the improvement of the sensing 

performance achieved by the employment of new high-Z synthesized organic 

molecules as active layer is discussed. Later, the impact of the transport properties 

of the devices onto the detection capability is shown. Finally, the role of the device 
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architectures on the X-ray detection is discussed. In the following section, the 

results achieved during my six-months period spent at the Columbia University are 

shown. At the end of this section, a summary about all the strategies adopted in 

this work is proposed. 

The third section illustrates the results achieved testing the organic thin film-based 

devices in actual clinical environments for their application in the field of dental 

radiography. 

The last section describes the results about the proton detection experiments 

carried on with organic based devices. The first part of the section is dedicated to 

the measurements that took place at the LABEC laboratory using 5 MeV protons. 

While the second part of the paragraph is focused on the preliminary results 

achieved at the TIFPA Proton Therapy Center employing a therapeutic proton 

beams at 70 MeV. 

 

4.1. Co-planar and OFET 
architectures 

 

In order to assess the potentiality of organic-based devices for radiation and proton 

detection, two main architectures have been tested. In particular, as it has been 

already discussed in Chapter 3, two-terminal coplanar (Figure 4.47a) and OFET 

(Figure 4.47b) structures have been realized. The geometry, the materials and the 

main fabrication techniques employed for the fabrication of the devices are 

described in Figure 3.26 and Figure 3.27. 
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Figure 4.47 a) Two-terminals coplanar and b) Organic Field Effect Transistor architectures. 

 

Both architectures present collecting electrodes with an interdigitated geometry in 

order to maximize the channel width keeping a limited pixel area. This is the 

optimized option to implement pixelated detectors onto large-area, able to provide 

a spatial resolution of the impinging radiation signal. 

The two-terminal and the three-terminal devices offer different kind of advantages. 

On one side, the co-planar architecture is composed by only two layers and this 

implies an easier fabrication process. 

On the other side, the transistor configuration offers several advantages as it has 

already been reported by S. Lai et al. [154]. 

1) Transistors are multiparametric devices and for this reason different 

electrical parameters can be analyzed to study the radiation effect on the 

detector. 

2) Transistors can be employed for transducing the sensing event. 

3) The use of the gate electrode can tune the operating condition of both the 

electrical device and the sensor, as illustrated in Figure 4.48. In fact, 

considering a p-type semiconductor (e.g. TIPS-Pn), when a negative voltage 

is applied to the gate (i.e. |VGS| > |Vth|) the OFET is turned on and the 
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sensor responds to the radiation with an increase of the IDS proportional to 

the impinging dose rate. On the contrary, when the OFET is turned OFF 

(i.e. |VGS| > |Vth|) the sensor is switched off as well providing a poor response 

to the radiation. This aspect offers an enormous advantage if compared with 

the performance achieved with the standard two-terminals architecture 

because it allows to address the single pixel in a matrix structure (e.g. FPXI) 

avoiding the implementation of an additional TFT (backplane in the FPXI, 

see Section 2.5). 

 

 

Figure 4.48 Impact of the gate voltage on the detector performance. When |VGS| > |Vth| (here VGS 
= -5 V) the sensor responds to the radiation providing a IDS proportional to the dose rate of 
radiation and a sensitivity S = (6 ± 1) µC Gy-1. On the opposite side, when |VGS| < |Vth|, the sensor 
is switched off and it shows a very low sensitivity (S = (52 ± 6) nC Gy-1). 

 

4) The transistor structure permits to enhance the charge density in the 

channel boosting of the efficiency of both hole conduction and electron 

accumulation. Now, considering the photoconductive gain effect (see Section 

2.5.1.1) as the mechanism which rules the detection performance of this 

class of sensor, an increase of the charge density in the semiconducting 
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channel brings to an increase of the gain factor which amplify the 

photocurrent signal. 

5) The contact resistance of the device can be tuned by exploiting the 

polarization condition of the transistor. In particular, as it is shown in 

Figure 4.49 ,  in the saturation regime the injection/collection of the 

generated charges is facilitated if compared with the linear regime and 

consequently the recorded sensitivity values are higher. 

 

 

Figure 4.49 Impact of the drain voltage on the detection performance. Keeping VGS = -5 V constant, 
the sensitivity of the detector is higher when the OFET is operated in saturation regime in compared 
with the linear regime. 
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4.2. X-ray detection 
 

I have investigated the direct X-ray detection properties of organic semiconductor-

based sensors by testing the devices’ electrical response under X-ray beams 

provided by a W-based and a Mo-based X-ray tubes (see Section 3.7.1.1 and 

3.7.1.2). As it has been extensively discussed in the previous paragraph, in order 

to have a full and complete characterization on the detection process occurring in 

organic detectors, I employed OFETs architectures which allowed to monitor the 

changes of all the transport parameters of the devices during the irradiation. 

The transistors were connected as described in Section 3.4 and the current flowing 

between the source and drain electrodes has been acquired as a function of time. 

Changing the intensity of the X-ray beam (i.e. the current imposed between the 

anode and the cathode of the X-ray tube) it has been possible to monitor the 

variation of the IDS due to different doses of radiation absorbed by the sensors. In 

particular, Figure 4.50 shows the typical dynamic curve acquired using this class 

of sensors. This measurement consists in the monitoring of IDS during consequent 

ON/OFF cycles of the X-ray beam. This allows to calculate the photocurrent 

induced by the radiation as 

 �ℎ8q871zz�
q = |H�+| − |H�^^| (4.1) 

where ION and IOFF are the current flowing between the source and drain electrodes 

respectively when the sample is irradiated and kept in the dark condition. 

The curve is always acquired for almost four different dose rates in order to observe 

the different photocurrent induced by diverse amount of absorbed radiation. 
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I typically acquired at least three consequent photocurrent peaks for each dose rate 

tested with the aim to check the reproducibility of the radiation induced signal. 

In Figure 4.50 the yellow squares indicate the time during which the shutter is 

open and the sensor is irradiated.  

 

 

Figure 4.50 Dynamic measurement of the OFET-based detectors. a)  Three consequent 
photocurrent peaks acquired between the source and drain electrodes as a function of time. The 
yellow squares indicate the time intervals in which the sample are irradiated, and the ON/OFF 
cycles correspond to 60 s. The different colors indicate four different dose rates of irradiation 
(decreased from 1 to 4). b) In this graph the photocurrents as a function of the corresponding dose 
rates are reported. The slope of the fitting curve represents the sensitivity of the sensor. 

 

From the dynamic response of the sensor it is possible to plot the photocurrent as 

a function of the relative dose rate. This is shown in Figure 4.50 b from which it 

is possible to notice that, in this specific range of operation, the response of the 

sensor increases linearly with the dose rates. Moreover, as it has been discussed in 

Section 2.4.1, by fitting this curve it is possible to extract the sensitivity of the 

sensor as the slope of the obtained line. This is the most studied figure of merit in 

this work and it is employed to evaluate the detection performance of the tested 

devices. 
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The time of the ON/OFF cycles have been set at 60 s following the study reported 

by Basiricò et al. [153]. In fact, this time allows to reach a saturation of the 

detection process and to record the maximized value of photocurrent (see Figure 

4.51 ). 

 

Figure 4.51 Sensitivity values over time exposure to X-rays. The error bars refer to the fit error 
over three experimental points (corresponding to three different dose rates), employed for the 
calculation of the sensitivity values [216]. 

 

Besides, following the considerations reported in the previous section, in order to 

achieve the best detection responses and to push the sensitivity values I 

characterized the OFETs keeping them in saturation regime. 

As it has been already discussed in Chapter 2, organic-based radiation detectors 

offer a unique advantage among the several existent sensing technologies. In fact, 

their chemical composition mainly formed by low-Z elements makes them human 

tissue-equivalent in terms of radiation absorption. This property is very appealing 

especially for the development of radiation dosimeters to be employed in the 

medical field because it would offer the advantage to skip the calibration process 
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and to directly measure the total dose absorbed by the patient during a therapeutic 

treatment or a diagnostic exam. Besides, they could be interposed between the 

patient and the radiation source without interfere with the impinging photons 

letting the beam pass. 

If on one side, this aspect renders organic detectors the most suitable technology 

in the medical field, on the other side it makes the radiation detection challenging. 

In fact, the low-Z elements forming the active layer of the detector leads to a very 

poor absorption which provides a very low external quantum efficiency. For this 

reason, it is important to study and deeply characterize the detection mechanism 

in order to find possible roots which allow to control and enhance the radiation 

detection capability. 

In the following sections, several pathways experimented during this work are 

described. 

 

4.2.1. Enhancing and controlling the 
photoconductive gain effect 

 

As discussed in Section 2.5.1.1, the detection mechanism involved in thin film 

devices based on polycrystalline semiconductors is called Photoconductive Gain 

effect (PG). This consists in an inner amplification process which is activated by 

trap states for minority carriers (i.e. electrons in the cases here studied). Thus, 

considering the fact that the photoresponse of these devices is mediated by active 

traps, the slow rise and decay of the radiation detection signal can be considered 

the fingerprint of this kind of detectors. 
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As already shown, the gain factor is represented by the ratio of two characteristic 

times (Eq. 2.13, 2.14): τt which mainly depends on the transport properties and on 

the geometry of the device and τr which is related to the properties of the active 

electron traps that induce the PG. Then, in order to deeply understand the 

detection properties of this class of devices a complete characterization of the active 

material should be carried on. For this reason, in this work, an intense analysis of 

the possible causes of traps has been conducted. 

 

Figure 4.52 Experimental and fitted curves of the response of an organic detector for three different 
dose rates of radiation. The fit curves have been obtained by applying the PG analytical model 
described in [153]. Adapted from [216]. 

 

With this aim a MATLAB script has been implemented in order to fit the dynamic 

curves measured with different OFETs. By this fitting procedure, it has been 

possible to determine the stretched exponential decay of the photocurrent after the 

irradiation, due to the slow relaxation of the trapped electrons. Then, the 

extrapolation of the main parameters which determine the characteristic times has 

been achieved and then the calculation of the gain factor G has been provided. 
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In Figure 4.52 a graph representing the dynamic response of the sensor for different 

dose rates is reported. As it is possible to notice, the photoconductive gain model 

greatly fit these curves and it provides a unique set of parameters able to describe 

the exponential trap distribution. 

In the next two paragraphs, two possible sources of active traps which can tune 

the PG effect, and thus determine the detector response, are discussed. 

 

4.2.1.1. Impact of the morphology of the organic 

semiconducting layer 
 

The results shown in this section are reported in a recent publication that describes 

the results obtained from a collaboration with Prof. M. Mas-Torrent’s research 

group at the ICMAB (Institut de Ciència de Materials de Barcelona, Barcelona, 

Spain) [216]. 

In order to investigate the role that the morphology of the organic thin film plays 

in the X-ray detection, we tested some BGBC OFETs fabricated onto Si/SiO2 

substrates, with gold interdigitated electrodes and the active layer formed by TIPS-

Pn deposited by Bar Assisted Meniscus Shearing technique (see Figure 3.2b). 

BAMS has been already mentioned in Section 1.2.1.2 among the Shearing 

deposition techniques highlighting the fact that it allows to deposit very high 

quality organic thin films with a good spatial uniformity. In Figure 4.53 a sketch 

of the BAMS setup is reported and a picture of the layout of the final fabricated 

devices is shown.  
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Figure 4.53 Pictures of the samples indicating the substrate dimensions and the spacing between 
the devices. b) Sketch of the BAMS setup present at ICMAB (Barcelona, Spain) for the deposition 
of organic semiconductors [216]. 

 

By exploiting the modification of the deposition parameters we could tune the 

morphology of the organic thin films. In particular, the modification of the 

deposition speed impacts on the crystallization regime of the film, affecting the 

morphology, the domain size, and even the molecular orientation [48], [217]–[219]. 

In fact, as shown in Figure 4.54 , by tuning the deposition speed we could vary 

the crystalline grain dimensions. In particular, coating at a speed of 4-5 mm s-1 

gives rise to the same spherulitic domains found when coating at a speed of 10-30 

mm s-1 but with bigger domain size. The polarized optical images of two samples 

fabricated respectively at 4 mm s-1 and 28 mm s-1 are reported as an example, in 

Figure 4.54 a and b, where the different grain dimensions are clearly visible.  We 

evaluated by Atomic Force Microscopy both the morphology (see Figure 4.54 c 

and d) and the thickness of the two films, which result quite comparable (see 

Figure 4.54  e and f).  
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Figure 4.54 Cross-polarized optical microscope images and AFM topography images of TIPS-Pn 
thin films deposited at a), c) low speed (4 mm s-1) and b), d) high speed (28 mm s-1). The dashed 
red box in a) indicated the pixel area used to normalize the following parameters. Scale bar: 10 µm. 
Topographic AFM images and relative depth profiles for thicknesses estimation for the low-speed 
and high-speed samples. Adapted from [216]. 
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Both the thickness and the grain dimensions have been extracted from the AFM 

images using Gwyddion functions and they are listed in Table 4.3.  

 

Deposition 
Speed (mm s-1) 

Grain 
Size 
(µm2) 

Thickness 
(nm) 

Mobility 

(cm2 V-1 s-1) 

NT 

(1012 eV-1 cm-2) 

Sensitivity 

(µC Gy-1 cm-2) 
Gain 

Low (4) 17 ± 3 70 ± 20 
(2.5 ± 0.7) 

·10-2 
1.7 ± 0.4 

(1.0 ± 0.2) · 
102 

(7 ± 2) 
· 105 

Standard (10) 6 ± 2 80 ± 20 
(1.7 ± 0.5) 

·10-2 
1.8 ± 0.5 

(3.8 ± 0.1) · 
102 

(20 ± 6) 
· 105 

High (28) 6 ± 2 120 ± 50 
(2.4 ± 0.6) 

·10-2 
1.6 ± 0.4 

(3.8 ± 1.2) · 
102 

(40 ± 15) 
· 105 

 

Table 4.3 Structural, electrical and detection parameters for devices based on TIPS-Pn thin films 
fabricated at different deposition speeds [216]. 

 

It is important to notice that films deposited at a coating speed between 10 and 28 

mm s-1 did not show great differences in morphology or in grain dimension (see 

Figure 4.55). Higher speeds have not been tested because they provide a non-

uniform organic film. 

 

Figure 4.55 AFM topography image of a TIPS-Pn film deposited at 10 mm s-1 (i.e. standard speed). 
Scale bar: 10 µm. [216] 
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Samples deposited both at high and low deposition speeds have been tested under 

X-rays produced by a Mo-target tube (see Section 3.7.1.1) following the procedure 

described in Section 4.2 and keeping them in saturation regime (i.e. VGS = -15 V, 

VDS = -20 V). From the dynamic response of the sensors we calculated the 

sensitivity values obtained with these two types of devices, as it is shown in Figure 

4.50. The graph from which they have been extracted is reported in Figure 4.56 

and it is possible to notice that the sensitivity value varies considerably with the 

deposition speed.  

 

 

Figure 4.56 X-ray induced photocurrent versus dose rate plot for the two types of film and relative 
calculated sensitivity, obtained under irradiation by a Mo-target X-ray tube. The error bars refer 
to the statistical fluctuations of the signal amplitude over three on/off switching cycles of the X-
ray beam in the same condition [216]. 

 

In particular, the devices processed at high-speed show a sensitivity more than 

three times higher than that of the low-speed processed devices (3.8 · 102 and 1 · 

102 µC Gy-1 cm-2 respectively). Considering that the transport properties of these 
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devices are comparable (see the calculated electrical mobilities µ and density of 

traps for majority carriers NT reported in Table 4.3) the different radiation 

responses can be ascribed only to the different morphologies and to the different 

densities of grain boundaries. In fact, as it is shown in Table 4.3, the gain factor 

G calculated for both the high-speed and low-speed samples results higher for the 

first, indicating a greater amplification of the photocurrent. This means that the 

higher is the density of grain boundaries the greater is the density of electron traps 

which provides the better activation of the photoconductive gain mechanism. 

The presence of the electron traps impacts on the recombination time τr, i.e., the 

electron lifetime, which is directly proportional to the gain G (Eq. 2.13). The 

correlation existing between the electron traps, the density of grain boundaries 

determined by the deposition speed, and the sensitivity to the radiation can be 

then explained comparing the experimentally determined sensitivity and hole 

mobility with the analytical calculation of τt and τr for different deposition speeds. 

These calculations have been carried out as it has been described in the previous 

section. The resulting values are reported in the graphs in Figure 4.57: both the 

recombination time (related to electron traps) and the sensitivity increase with 

increasing deposition speed, i.e., with the reduction of grain size and thus with the 

increasing of grain boundary density. A plateau is reached for similar grain sizes 

(standard and high speed). On the other hand, we could assess how the 

experimentally measured hole mobility and the related hole transit time show a 

markedly different trend. 
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Figure 4.57 Correlation between mobility, sensitivity, and traps. Experimentally determined hole 
mobility (a) and sensitivity (b). Analytically determined τt (c) and τr (d)for TIPS-Pn thin films 
deposited at different speeds (i.e. with different density of grain boundaries). The error bars refer 
to statistical fluctuations of the parameters over four samples for each deposition speed.[216] 

 

Another important consideration can be extracted by the thickness values reported 

in Table 4.3. in fact, as it is possible to notice, the thicknesses do not strongly 

affect the radiation detection response of the device. Devices deposited at low and 

standard deposition speeds have similar thicknesses but different sensitivities and 

G values. This stems from the fact that in OFETs charge transport occurs at the 

interface between the organic semiconductor and the dielectric layer, i.e., the few 

nanometers of the transistor channel. This differs from what happens in a vertical 

stacked organic detectors (e.g. the heterojunction devices based on 

P3HT:PCBM:Bi2O3 reported by C. A. Mills & S. R. P. Silva et al. [145], [220], 
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[221]) where charge transport occurs through the bulk of the organic layer, and so 

its thickness plays a crucial role in the detection process. On the contrary, in our 

case the radiation-induced charge carriers involved in the photoconductive gain 

process flow within the OFET channel, meaning that the detection performance is 

more affected by the efficacy of the transport process at the 

semiconductor/dielectric interface than by the efficacy of the radiation absorption 

in the semiconductor bulk. For this reason, increasing the active layer thickness 

does not represent a winning strategy to improve the X-ray detection properties of 

OFET-based sensors. 

To conclude, in this paragraph I have shown a promising strategy in order to 

enhance the detection efficiency of this class of sensors. Increasing the grain 

boundaries density provides a greater number of electron traps which induces a 

higher activation of the PG mechanism. 

 

4.2.1.2. Impact of the interface dielectric/organic 

semiconductor 
 

Another frequent source of charge trapping in OFETs structure is the 

dielectric/organic semiconductor interface (see Sections 1.2.1.3 and 1.3.1.1). In 

order to relate also this kind of traps to the activation of the PG, analogous samples 

as the ones described in the previous section have been tested. But, instead of 

tuning the morphology of the organic films, for this experiment we kept the 

deposition parameters constant (i.e. 10 mm s-1 of deposition speed) while we varied 

the Si/SiO2 substrates. In particular, we used two different silicon dioxides provided 
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by Bruno Kessler Institute (FBK, Trento, Italy) and we fabricated on them exactly 

the same devices as the ones depicted in the previous section. 

The silicon dioxides layers have been grown by different techniques:  

1) a PECVD SiO2 has been evaporated on a Si wafer. This dielectric layer 

presents a thickness of (304 ± 3) nm. Due to the low process temperature 

(i.e. 200 °C) and the high deposition rate, this insulator shows the highest 

trap density.  

2) a TEOS SiO2 (i.e. tetraethyl ortosilicate) deposited at 630 °C has been used 

(thickness = (299 ± 4) nm) as dielectric layer. This silicon dioxide presents 

a higher density of defects if compared with the thermal SiO2 (as the one 

used to fabricate the samples described in the previous sections). The 

presence of defects is limited, lower than in the PECVD and it is generated 

by unsaturated bonds at the dielectric surface [222], [223]. 

In Figure 4.58a, two transfer characteristic curves kept in saturation regime are 

reported for OFETs fabricated onto both types of silicon dioxides.  

 

Figure 4.58 a) Transfer characteristics in saturation regime (VDS = -15 V) and b) photocurrent vs 
Dose Rate plots for OFETs fabricated on PECVD SiO2 and TEOS SiO2. 
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The electrical mobility is higher in TEOS samples (µ =(3.3 ± 0. 1)·10-2 cm2 V-1 s-

1) than in PECVD ones (µ = (0.014 ± 0.005) cm2 V-1 s-1) that is reasonable because 

the latter form a more defective interface with the organic semiconductor. PECVD 

samples show a very positive threshold voltage (Vth = (6.5 ± 0.2) V) which, in p-

type OFETs, indicates a strong presence of electron traps as well. On the contrary, 

the TEOS samples show a slightly negative Vth = (-0.9 ± 0.2) V. 

Both types of devices have been tested as radiation detectors irradiating them with 

X-rays provided by a W-target tube (see Section 3.7.1.2). By the dynamic curves 

it has been possible to calculate the sensitivities as the slope of the fitting curves 

reported in Figure 4.58b. As it is possible to notice, the PECVD samples show a 

higher sensitivity than the TEOS ones (S = (1.2 ± 0.2) · 103 µC Gy-1 cm-2 and S 

= (0.49 ± 0.07) · 103 µC Gy-1 cm-2 respectively). 

Despite the poorer transport properties, the higher radiation response shown by 

the PECVD OFETs could be due to the higher number of electron traps related to 

the PECVD SiO2/TIPS-Pn interface identified by the shifted Vth shown in Figure 

4.58a. 

Important to notice is the fact that in this case the transistors have been irradiated 

by a different tube compared to the one used for the samples described in the 

previous section. In particular, this latter is a W-target based tube with a mean 

energy higher than the Mo-target based one. Moreover, the dose rates employed in 

these last measurements were lower than the ones used for the previous 

experiments. These are probably the reasons why the TEOS samples presented a 

higher sensitivity than the devices fabricated on thermal SiO2 reported before 

despite they probably present much more traps for majority carriers. 
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These preliminary results demonstrated the key role played by the traps at the 

dielectric/organic semiconductor interface in the enhancement of the PG 

mechanism.  

Another relevant test on this effect has been carried on with a different set of 

samples realized during my six months stay at the Columbia University in New 

York (USA), under the supervision of Prof. I. Kymissis.  I fabricated several flexible 

BGBT OFETs presenting the structure depicted in Figure 3.27c. I employed a 

surface treatment to modify the properties of the dielectric/TIPS-Pn interfaces. In 

particular, I exposed the parylene-C dielectric layer to UV-ozone for different times 

(i.e. 0, 5, 10, 15 minutes) before depositing the organic semiconductor. 

This treatment induced a shift of the threshold voltage towards positive values 

proportionally to the duration of the treatment (Figure 4.59a). Figure 4.59b shows 

how this treatment does not affect the electrical mobility of the OFETs while it 

has a strong impact on the Vth. As observed in the previous cases, for these p-type 

devices, the direction of this shift indicates the presence of electron traps at the 

dielectric/organic semiconductor interface. As reported by Kymissis et al. [224], 

while the unexposed dielectric surface is mostly −CH3 terminated and 

electroneutral, the UV-treated dielectric surface is partially terminated by 

electronegative −COOH groups that behave as acceptor-like traps and can attract 

electrons from TIPS-Pn. The filled traps are almost immobile and form a layer of 

negative charge which shifts the threshold voltage. 

This kind of devices offers another opportunity to further enhance the PG effect 

exploiting the electron traps induced at the dielectric/organic semiconductor 

interface by the UV-ozone treatment. Moreover, they allow to transfer the studies 

conducted so far on Si/SiO2 substrates onto flexible platforms. 
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Figure 4.59 a) Transfer characteristics in saturation regime (VDS = -15 V) for samples exposed to 

UV-ozone for different duration times. The curves clearly indicate a shift of the threshold voltage 
towards positive bias depending on the time of exposure. Hole mobility (b) and threshold voltage 
(b) reported as a function of the minutes of UV-ozone exposure. 

 

4.2.2. Increasing of the absorption rate by 
small molecule tailoring 

 

Another strategy experimented during this work in order to enhance the detection 

efficiency of the organic semiconductor-based devices exploits an important and 

peculiar property of this class of materials. In fact, organic semiconductors are 

easily tailored by chemical processes. Thus, we employed synthesized new small 

molecules which increase the cross section of interaction between the high energy 
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photons and the active material of the sensor by the addition of high-Z atoms in 

the basic molecular structure. This approach allows to overcome the main 

limitation presented by the blending of organic semiconductors with high-Z 

nanocomposites (discussed in Section 2.5.1) recently proposed by other researchers 

to increase the efficiency of detection. In fact, in the here reported approach the 

high-Z elements are directly inserted in the molecular structure of the material 

avoiding the degradation of the transport properties observed with the 

implementation of the semiconductor with external species. The results shown in 

this section are reported in a paper published on Advanced Functional Materials 

in 2018 [225]. 

We tested the TIPGe-Pn molecule provided by Prof. J. E. Anthony from the 

University of Kentucky, derived from TIPS-Pn with Ge-substitution in place of the 

Si atoms. These molecules have been described and depicted in Section 3.2.2. 

Thanks to the much higher Ge atomic number (Z = 32) than the one of Si atoms 

(Z = 14) the X-ray attenuated fraction of TIPGe-Pn is intrinsically much higher 

than the TIPS-Pn molecule 

(see Figure 4.60a), and the attenuation length at an X-ray energy of 17 keV, is ten 

times shorter (7.8 mm for TIPS-Pn and 0.6 mm for TIPGe-Pn). Moreover, the 

substitution of Ge for Si leads to a new material with similar solubility and 

processing parameters as TIPS-Pn. 

TIPGe-Pn thin films have been deposited by drop-casting onto interdigitated gold 

electrodes on flexible plastic substrate as depicted in Figure 3.26. Good 

crystallization and uniform polycrystalline films have been obtained, enabling the 

efficient flow of electrical current through the fingers of the electrodes. Optical and 

atomic force microscopy (AFM) images show needle-like crystals, hundreds of 
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micrometer-long and 200 nm thick (see Figure 4.60b). Besides, photocurrent 

spectroscopy confirms the good optoelectronic properties of the film and its quality. 

The high and stable photocurrent 

signal with a smooth spectrum presenting the known vibronic modes [226], [227] is 

reported in Figure 4.60c. The forbidden energy gap has been extracted from the 

Tauc formula [228] since the photocurrent signal is well approximated by the 

absorption spectrum in low absorption condition as at the rising edge of the gap 

[212]. The calculated energy gap for TIPGe-Pn is (1.60 ± 0.03) eV, slightly larger 

than the one of TIPS-Pn, (1.56 ± 0.09) eV. 

 

Figure 4.60 a) X-ray attenuated fraction at energy 17 keV as function of material thickness, showing 
the much smaller attenuation length of TIPGe-Pn compared to TIPS-Pn. b) Polarized optical 
microscope image of 200 nm thick microcrystalline layer formed by drop-cast TIPGe-Pn 0.5 wt% 
solution in toluene onto plastic substrate. Red marker 100 μm. Bottom: AFM image of a few 
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crystallites. c) Photocurrent spectra of TIPS-Pn (150 nm thick, blue line) and TIPGe-Pn (200 nm 
thick, green line) thin films. [225] 

To assess the radiation detection performances, I deposited TIPGe-Pn by drop 

casting onto the BGBC low-voltage OFET structure already described in Section 

3.1 and depicted in Figure 3.2a. Important to notice is the fact that the same 

device architecture had been used to test TIPS-Pn-based devices [229] and so it 

constitutes an optimal benchmark for the characterization of TIPGe-Pn detecting 

performance in comparison to what it had been observed with TIPS-Pn-based 

sensors. 

I fabricated OFETs from solutions of TIPGe-Pn at a concentration of 0.5 wt% in 

toluene or in chlorobenzene solvent. In general, high performing p-type transistors 

have been obtained operating at very low voltages. Figure 4.61a and b report the 

output and the transfer characteristic curves of the optimized device. These indicate 

a good field effect, no hysteresis, low contact resistance, a very low threshold 

voltage (< -0.2 V), low leakage current (< 10-9 A), and a good ON/OFF ratio (102-

105). Moreover, the average electrical mobility for devices with chlorobenzene 

solvent is (0.28 ± 0.11) cm2 V−1 s−1, while the highest measured value was 0.4 cm2 

V−1 s−1. As shown in Figure 4.61c, these electrical mobility values are more than 

one order of magnitude higher than those reported for TIPS-Pn devices (i.e. (1.8 ± 

1.0) · 10-2cm2 V−1 s−1) fabricated exactly on the same substrate, confirming the 

better transport properties provided by the Ge-based molecules compared with the 

Si-based ones (see Section 3.2.2). 
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Figure 4.61 Typical output (a) and transfer characteristic (b) curved acquired by a low-voltage 
OFET fabricated onto plastic substrate based on TIPGe-Pn semiconductor. c) Electrical mobility 
comparison between TIPGe-Pn-based and TIPS-Pn-based OFETs fabricated onto the same OFET 
structure. [225] 

 

The mechanical flexibility of the devices has been tested stressing the OFETs by 

incrementally reducing the bending radius and thus increasing the strain on the 

film. The current variation is small up to strain of 1% (Figure 4.62). The transfer 

characteristic (i.e. the transport properties of the OFETs) returns to the starting 

point when the samples are restored in the initial flat position (Figure 4.62b). This 

means that no permanent damages are induced in the bending process which lasts 

40 minutes. This study confirmed what has been previously reported regarding the 

mechanical flexibility of TIPS-Pn-based OFETs [101], [230]. 
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Figure 4.62 Mechanical stress test of a TIPGe-Pn-based OFET under different bending radius 
(down to 1 cm). a) Relative current variation under the increasing application of strain. The strain 
starts to be significant at 0.9%. b) Transfer characteristic curves acquired at different bending radii. 
The current totally recovers when the flat position is repristinated after the bending test. [225] 

 

The TIPGe-Pn-based OFETs have been tested as X-rays detectors measuring them 

under a radiation beam produced by a Mo-target tube (see Section 3.7.1.1) and 

following the procedure described in Section 4.2. During the exposures the devices 

have been kept in saturation regime (VGS = -2 V; VDS = -3 V) in order to maximize 

the photoresponse. The typical dynamic curve acquired by this class of devices is 

reported in Figure 4.63a. From this, it has been possible to calculate the sensitivity 

by the linear fit shown in Figure 4.63b. The mean sensitivity (averaged over 15 

samples) is (3080 ± 20) nC Gy−1 ((6.2 ± 0.1) × 105 μC Gy−1 cm−3), with top 

recorded value of (4460 ± 50) nC Gy−1 ((9.0 ± 0.1) × 105 μC Gy−1 cm−3). 
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Figure 4.63 a) Typical dynamic response of the TIPGe-Pn-based detector irradiated by consequent 
ON/OFF cycles of X-rays at different dose rates. The yellow shaded areas indicate when the beam 
is ON. b) Comparison between X-rays induced photocurrent at different dose rates for TIPS (black 
squares) and TIPGe (red squares) [225]. 

 

Table 4.4 and Figure 4.63b report the direct comparison with TIPS-Pn thin film 

detectors fabricated on the same flexible substrate confirming the better 

performance of TIPGe-Pn. In fact, the average sensitivity of TIPGe-Pn thin film 

detectors is three times higher than for TIPS-Pn-based devices. 

 

Molecule Solution 
Mobility 

(cm2V-1s-1) 

Operative 
Voltage 

(V) 

Film 
Thickness 

(nm) 

Average 
Sensitivity 

(nCGy-1) 

SA 

(µCGy-1cm-

2) 

SV 

(µCGy-1cm-

3) 

TIPS-Pn 0.5wt% 
in 

toluene 
dropcast 

0.02 ± 0.01 
VDS = -3  

VGS = -2  

150 960 ± 70 3.9 ± 0.3 
(2.6 ± 0.2) 

· 105 

TIPGe-
Pn 

0.27 ± 0.09 200 3080 ± 20 12.3 ± 0.2 
(6.2 ± 0.1) 

· 105 

 

Table 4.4 Comparison of mobility, sensitivity, sensitivity per area and sensitivity per unit of volume 
for TIPS-Pn and TIPGe-Pn based sensors realized on the same OFET structure. [225] 
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Two aspects related to TIPGe-Pn sensitivity are important to notice:  

1) The sensitivity per unit of volume is one of the highest reported among solid-

state X-ray detectors based on organic and hybrid thin films [152]. The 

corresponding sensitivity per unit of area is competitive with state-of-art 

inorganic materials currently used to fabricate large-area detectors (i.e. a-Se 

which typically presents 25 µC Gy-1 cm-2) [124]. 

2) The lowest detectable dose rate (defined as three times the detector noise, 

as it has been discussed in Chapter 2) from the slope of the linear fit of 

Figure 4.64b, it results equal to 1.66 μGy s−1. Figure 4.64 reports the 

photocurrent response of TIPGe-Pn detectors in linear region (VDS = −0.5V) 

at low exposure doses, down to a dose rate of 6.4 μGy s−1. Remarkably, the 

detectors show a linear response to X-rays over four orders of magnitude in 

the dose rate range. In addition, the smallest total dose detectable has been 

measured over an X-ray exposition of 1 s and we could reliably detect down 

to 12 μGy (Figure 4.64c). These values are among the lowest reported for 

organic and hybrid-based thin films devices and besides, they are below the 

threshold of regular medical diagnostic (dose rate about 5.5 µGy s-1) [125], 

[231]. 
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Figure 4.64 a) Dynamic response of TIPGe-Pn at low dose rates, biased at VDS = −0.5V (linear 
region). b) X-ray induced photocurrent at very low dose rates, down to 6.4 μGy s−1. Inset: 
Corresponding photocurrent signal versus time. c) Photocurrent as a function of the relative total 
integrated doses over 1 s of exposure. Minimum detected total dose equal to 12 µGy. [225] 

 

So far, it has been shown that the idea of chemical tailoring of organic molecules 

such as TIPS-Pn to synthetize a new molecule with high-Z atoms intrinsically 

bonded into the basic molecule (TIPGe-Pn) is effective. In order to confirm the 

validity of this strategy, the same experiment has been repeated employing another 

set of organic small-molecule: diF-TES-ADT and its derivative with Ge in place of 

Si atoms, diF-TEG-ADT. Both these molecules have been described in Section 

3.2.2. OFETs with the same structure as before have been fabricated with diF-
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TES-ADT and diF-TEG-ADT spin coated as active layer (1.2 wt% solution in 

chlorobenzene). 

The morphology of the two films is shown by the AFM images reported in Figure 

4.65. The diF-TES-ADT crystallized in larger and thicker microstructures 

(thickness 120 nm) if compared with the diF-TEG-ADT (thickness of 90 nm), but 

both the films presented a good spatial uniformity. 

 

 

Figure 4.65 AFM morphology maps of (a) diF-TES-ADT and (b) diF-TEG-ADT thin films. [225] 

 

Due to the higher-Z elements present in the molecular structure, while the X-ray 

attenuated fraction is equal to 0.0031% for diF-TES-ADT, it results 0.015% for 

diF-TEG-ADT. For both materials good field effect mobility in low voltage 

transistor devices has been obtained and, in spite of the crystal dimensions, diF-

TEG-ADT devices show on average a better mobility compared to diF-TES-ADT 

ones confirming what has been reported in literature and in Chapter 3 [45]. By the 

way, for the test under X-rays, devices with comparable mobility values have been 

measured, in order to explicitly exclude the effects of transport properties on X-ray 
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sensitivity. Figure 4.66 reports the X-ray photocurrent versus dose rate of diF-

TES-ADT and diF-TEG-ADT transistors, with mobility of (5.2 ± 0.3) × 10−2 and 

(6.9 ± 0.4) × 10−2 cm2 V−1 s−1, respectively. The extracted 

sensitivity of diF-TEG-ADT-based detectors (3400 ± 400) nC mGy−1 cm−3 is 40 

times higher than the one calculated for diF-TES-ADT devices (see Table 4.5). 

 

Figure 4.66 Comparison between X-rays induced photocurrent at different dose rates for diF-TES-
ADT (black squares) and diF-TEG-ADT (red circles). [225] 

 

Molecule Solution 
Mobility 

(cm2 V-1 s-1) 

Operative 
Voltage 

Film 
Thickness 

(nm) 

SV 

(µC Gy-1 cm-3) 

diF-TES-
ADT 1.2wt% in 

chlorobenzen

e spincast 

(5.2 ± 0.3) · 
10-2 VDS = -3 V 

VGS = -2 V 

120 80 ± 10 

diF-TEG-
ADT 

(6.9 ± 0.4) · 
10-2 

90 3400 ± 400 

 

Table 4.5 Comparison of sensitivity per unit of volume for diF-TES-ADT and diF-TEG-ADT based 
sensors realized on the same OFET structure and with similar electrical mobilities. [225] 
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This crosscheck test confirmed the effectiveness of the here shown strategy, that is, 

increasing the atomic number of organic molecules by chemical tailoring, that 

successfully leads to the improvement in X-ray sensitivity of organic thin film 

detectors. 

 

4.2.2.1. Different activation of photoconductive gain 

effect 
 

As it has been already discussed in the previous sections, in organic semiconductor-

based radiation detectors the generated photocurrent is the product of the gain 

factor G and the primary collected charges ICC: the gain factor G rises 

proportionally with the improvement of mobility and with the density of electron 

traps, while ICC increases with the improvement of X-ray absorption. Considering 

that both the electrical mobility and the attenuation fraction of the TIPGe-Pn-

based OFETs results more than ten times higher than in the TIPS-Pn, the 

sensitivity values resulted by the first should be higher than what has been 

obtained. 

One possible reason for this discrepancy could be attributed to the different area 

coverage that has initially been obtained by the two films. In fact, employing the 

same deposition conditions, the area coverage of TIPS-Pn crystallites is about 76% 

with small variation between the samples, while the variation of percentage of full 

coverage in TIPGe-Pn-based devices is relevant, in the range 40–75% (see Figure 

4.67). If we calculate the potential sensitivity, that is, the sensitivity normalized 

for the actual coverage as if the full area is covered, we obtain 3.4 × 105 μC Gy−1 
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cm−3 for TIPS-Pn devices, and 21 × 105 μC Gy−1 cm−3 for TIPGe-Pn ones. It is 

clear that the difference of area coverage between TIPS-Pn and TIPGe-Pn can only 

partially explain this underestimation. 

 

 

Figure 4.67 optical image representing the poor area coverage obtained with TIPGe-Pn drop-casted. 
[225] 

 

Another possible reason could be related to a different activation of the 

photoconductive gain effect which rules the amplification of the X-rays induced 

signal. 

In order to deeper investigate this aspect, OFETs fabricated at the Columbia 

University employing the Pneumatic Nozzle Printing technique have been 

analyzed. These BGBC OFETs present the structure depicted in Figure 3.27c. The 

Pneumatic Nozzle Printing deposition technique allows to obtain very well packed 

and uniform thin films both for TIPS-Pn and for TIPGe-Pn as shown by the optical 

images reported in Figure 4.68. 
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Figure 4.68 Optical images of (a) TIPS-Pn and (b) TIPGe-Pn thin films deposited by Pneumatic 
Nozzle Printing at the Columbia University. 

 

Several OFETs, for each type of molecule, presenting similar electrical mobilities, 

morphologies (i.e. density of grain boundaries) and sensitivities to the X-rays have 

been compared and characterized employing photocurrent spectroscopy 

experiments. In particular, in Figure 4.69, a meaningful example which shows the 

same features observed in photocurrent spectra for TIPGe-Pn and TIPS-Pn OFETs 

is reported. The OFETs properties are summarized in Table 4.6. 

 

 

Figure 4.69 Photocurrent spectra of a TIPS-Pn (blue) and TIPGe-Pn (red) based OFET which 
share similar electrical mobilities, morphologies (i.e. density of grain boundaries) and sensitivities 
to the X-rays. 
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Molecule 
Grain 

dimension 

Mobility 

(cm2 V-1 s-1) 

Sensitivity 

(µC Gy-1) 

TIPS-Pn 7 ± 2 0.10 ± 0.02 21.4 ± 0.5 

TIPGe-Pn 5.4 ± 0.2 0.09 ± 0.01 21 ± 1 

 

Table 4.6 Morphological, electrical, and detecting properties of TIPS-Pn and TIPGe-Pn-based 
OFETs compared in Figure 4.22. 

 

In the two normalized photocurrent spectra, a large discrepancy between the TIPS-

Pn and TIPGe-Pn at low wavelengths (see Figure 4.69) can be noticed. In 

particular, the peaks at 370 nm and 442 nm are smaller for the TIPGe-Pn than for 

the TIPS-Pn. This aspect can be interpretated considering what I. Kymissis et.al. 

reported in [224]. They analyzed pentacene-based OFETs comparing the visible 

photocurrent induced in a UV-ozone treated sample and an identical one with no 

air or ozone exposure. They demonstrated intensified photocurrent peaks in oxygen-

doped samples in the range of 350–480 nm. These peaks are attributed to the 

formation of excitons and improved dissociation into electrons and holes, owing to 

the electron trap states formed at the interface between the UV-treated dielectric 

and the pentacene, which also accounts for positively shifted threshold voltage in 

the UV-treated sample.  

According to that work, the lower intensity of the peaks in the range 300-500nm 

for TIPGe-Pn could be due to a lower density of those electron traps which are 

responsible of the photoconductive gain mechanism under X-rays. This could be an 

additional aspect which lowers the sensitivity of the TIPGe-based radiation sensors 

with respect to the TIPS-based ones. 
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4.2.3. Impact of the transport properties on 
the radiation detection 

 

In this section another aspect which can affect the X-ray detection response of 

direct organic-based sensor is discussed. These results are reported in [216] and 

they highlight the impact of the OFETs transport properties on the X-ray 

sensitivity. 

I tested some OFETs presenting the same structure described in Section 4.2.1.1 

and depicted in Figure 3.27b. In this case the conditions of deposition (e.g. coating 

speed) have been kept constant while the addition of an insulating polymer blended 

with the TIPS-Pn in different concentration has been performed. In fact, as it has 

been already discussed in Section 1.2.1.2, 1.3.1.1 and 3.2.2, the addition of an 

insulating polymer such as polystyrene (i.e. PS) to the organic ink has shown to be 

an effective way to improve thin-film processability and stability, and to boost the 

performance of TIPS-Pn transistors [52], [232]. 

In particular, several OFETs based on different TIPS-Pn:PS blending ratios (1:0 

i.e. pure TIPS-Pn, 4:1, 2:1, 1:1) have been fabricated and tested. 
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Figure 4.70 Cross-polarised optical microscope images of TIPS-Pn:PS thin films with different 
blending ratios (4:1 (a), 2:1 (b), 1:1 (c)). Scale bar: 100 µm. (d-g) Topographic AFM images and 
(h-k) depth profiles. The blending ratio is indicated on the top of each image. Scale bar: 5 µm. [216] 
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In Figure 4.70a, b, c, the polarized optical images of the different samples are 

shown. All the films present a good spatial uniformity and the spherulitic 

crystallization of the TIPS-Pn already observed for the pure-TIPS-Pn films. 

Moreover, in Figure 4.70d-g and h-k, the AFM images and the extrapolated 

profiles have been used to further characterize the morphologies and the thicknesses 

of the different films. As it is summarized in Table 4.7, all the thin films presented 

a thickness in the range between 40 and 90 nm while only the PS-containing films 

presented a smoother surface demonstrating the uniformity provided by the 

polymer. This aspect is an indication that TIPS-Pn crystals are embedded in the 

polymeric matrix. 

 

Blend Ratio rms (nm) Thickness (nm) 

1 : 0 37 80 ± 20 

4 : 1 6 40 ± 10 

2 : 1 9 60 ± 5 

1 : 1 2 90 ± 5 

 

Table 4.7 Roughness (rms) and thin-film thickness for different blend ratios [216]. 

 

A statistical analysis of the main OFET parameters of 1:0, 4:1, 2:1 and 1:1 TIPS-

Pn:PS devices was performed employing different batches of samples to test 

reproducibility (10 devices for each formulation). Statistics on the saturation field 

effect mobility µ, hole trap density (NT), on/off ratio (ON/OFF) and threshold 

voltage (Vth) are collected in Figure 4.71 and in Table 4.8.  
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Blend 
Ratio 

Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

NT 

(1012 eV-1 cm-2) 

1 : 0 (4 ± 2) · 103 (1.0 ± 0.3) · 10-2 6 ± 2 1.6 ± 0.4 2.7 ± 0.7 

4 : 1 (3 ± 2) · 105 (5 ± 2) · 10-1 -1 ± 2 0.6 ± 0.2 1.0 ± 0.3 

2 : 1 (4 ± 2) · 105 (5 ± 3) · 10-1 -1 ± 1 0.5 ± 0.1 0.8 ± 0.1 

1 : 1 
(1.4 ± 0.9) · 

105 
(6 ± 4) · 10-2 -2 ± 1 0.7 ± 0.1 1.2 ± 0.2 

 

Table 4.8 OFET parameters for different ratio of TIPS-Pn:PS blends. [216] 

 

A comparison between all studied blends shows a general improvement of the 

electrical performance when PS is added to the ink. In particular, it can be observed 

that the on/off ratio and the mobility are higher for PS containing devices. For 4:1 

and 2:1 blends the average values reach 4·105 and 0.5 cm2 V-1 s-1, respectively, 

which represents an increase of almost two orders of magnitude with respect to the 

pure TIPS-Pn devices. It is important to notice the gradual decrease of the 

subthreshold swing slope (i.e. S) in the PS-containing devices which indicates a 

reduction of interfacial trap states for majority carriers (NT) calculated by Eq. 1.13. 

Indeed, it has already been reported for various systems of organic 

semiconductor:PS thin films processed by solution that the crystalline 

semiconducting layer is formed on top of a PS buffering layer[47], [233], [234]. 

Thanks to this vertical phase separation, the PS layer in direct contact with the 

silicon dielectric passivates the surface, reducing the density of hole traps at the 

dielectric/organic semiconductor interface and thus justifying the observed 

increased mobility. 
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Figure 4.71 Box-plot statistics for the OFET mobility (a), density of hole traps (b), ON/OFF ratio 
(c) and threshold voltage (d), obtained from ten devices of each TIPS-Pn:PS blend ratio (1:0, 4:1, 
2:1, 1:1). [216] 

 

The response to X-rays provided by a Mo-target tube was tested for all the 

proposed TIPS-Pn:PS formulations, 1:0, 4:1, 2:1 and 1:1. Figure 4.72 shows the 

estimated sensitivity values, which are higher for PS containing devices, especially 

for 4:1 and 2:1 blends. Remarkably, an outstanding X-ray sensitivity as high as 

1.3· 104 µC Gy-1 cm-2, normalized to the pixel area (indicated by the dashed red 

square in Figure 4.54 a), was obtained, which is the highest value reported for 
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organic X-ray detectors. The sensitivity is about three and two orders of magnitude 

higher than the reference value for a-Se and poly-CZT X-ray detectors respectively 

[124]. As a matter of fact, the gain mechanism in the blended devices is so efficient 

that the X-ray sensitivity values are comparable with direct detectors based on 

thick polycrystalline perovskite devices [235]. 

 

Figure 4.72 Box-plot statistics for the OFET sensitivity obtained from ten devices of each TIPS-
Pn:PS blend ratio (1:0, 4:1, 2:1, 1:1). [216] 

 

To underline the outperformance achieved by this class of sensors, two graphs 

reported in a recent review by L. Basiricò et al. are shown in Figure 4.73  [123]. 

These plots show the X-ray top sensitivities per unit of area (Figure 4.73 a) and 

of volume (Figure 4.73 b) achieved by detectors based on thick/thin active layer 

of perovskite (red) and organic/hybrid (blue) semiconductors. Both these plots 

highlight the high sensitivity registered employing TIPS-Pn:PS-based detectors 

(plotted in yellow) clearly pointing out their potential to real applications. In fact, 

the top sensitivity value per unit of volume achieved by this class of devices is 3.2 

· 109 µC Gy-1 cm-3 which is three orders of magnitude higher than the hybrid 



Ionizing radiation detectors based on Organic Semiconductors 

179 

 

organic/inorganic photodiodes recently reported in literature [145] and four orders 

of magnitude higher than State-of-the-Art all-organic X-ray detectors [154], [225]. 

 

Figure 4.73 Histogram of the top sensitivity values per a) unit area and b) unit volume for the 
materials reported as thick/thin active layer of perovskite (red) and organic/hybrid (blue) direct 
X-ray detectors. In (a) is also reported their variation in thickness (empty black squares—right 
axis). The sensitivities achieved by the samples described in this Section are highlighted in yellow. 
The numbers inserted in the plots correspond to the references reported in the review by L. Basiricò 
et al. [123]. 
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In order to study the impact of the transport properties on the X-ray detection 

performance of this class of devices, the trend of X-ray sensitivity versus TIPS-

Pn:PS ratio (Figure 4.72) has been compared with the OFETs mobilities (Figure 

4.71a). The two graphs point out a similar behavior meaning that the improvement 

of the transistor electrical performance, i.e. the hole mobility, due to the PS 

passivating action for hole traps at the semiconductor/dielectric interface, 

positively impacts on the detection performance, decreasing the holes transit time 

τt (Eq. 2.13). 

However, the detection mechanism based on the photoconductive gain effect is 

mediated by the presence of traps for minority carriers i.e. electrons in this case, in 

the organic semiconductor layer (see Section 4.2.1.1). The experimentally 

determined mobility µ and the values of τt, τr and gain G calculated from the fit 

of the experimental data for both 1:0 and 4:1 devices with the active layer deposited 

at different speeds are shown in Figure 4.74. The plots clearly show how, for both 

pure TIPS-Pn samples and blended ones, for similar mobility values, the variation 

of the photocurrent gain with increasing deposition speed follows the variation of 

the recombination time (affected by the electron traps). 

This demonstrates that both strategies, the first acting on the morphology of the 

film and the tuning of electron trap density (Section 4.2.1.1) and the second 

enhancing the transport properties by passivating the hole traps at the 

dielectric/organic semiconductor interface, are two effective and independent tools 

to control and unprecedentedly boost X-rays sensitivity in organic thin-films. 

 

In the next three subsections, other achievements and studies conducted on this 

category of samples are discussed. 
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Figure 4.74 Comparison between pure TIPS-pentacene (1:0) and blended (4:1) devices of: (a) 
experimentally determined mobility and (b) corresponding transit time; analytically determined (c) 
photoconductive gain and (d) recombination time, for different deposition speeds. The error bars 
refer to the statistical fluctuations (SD) of the parameters over 4 samples for each deposition speed. 
[216] 

 

Aging 

In order to assess the reliability and stability of our devices, the shelf-life of the 

best performing blends, 4:1 and 2:1 have been investigated, by monitoring the 

performance of the detectors for up to 80 days. During this period, the devices were 

stored and measured under dark and ambient conditions. Both the field-effect 

mobility and the X-ray sensitivity evolution are depicted in Figure 4.75. A decrease 

in the X-ray response of 30-40% was observed after more than 2 months from 

fabrication, as well as a device mobility drop of 55% in average. These changes are 

often attributed in the literature to degradation due to ambient humidity, an issue 



4.2 X-ray detection 

182 

 

that is usually avoided by depositing an encapsulation layer on top of the organic 

film, that is not present in the here reported devices [236], [237]. Indeed, TIPS 

Pn:PS devices show a more stable behavior than those based on pure TIPS 

pentacene probably due to the partially passivation provided by the insulating 

polymer PS. 

 

Figure 4.75 Evolution over time up to 80 days of X-ray sensitivity (up) and field-effect mobility 
(down) of 4:1 and 2:1 TIPS pentacene:PS devices. It is noteworthy that the here reported devices 
were not encapsulated. Values have been normalised to the initial values. The error bars refer to 
the statistical fluctuations of the parameters over 8 samples. 

 

Limit of Detection 

By interposing different Al layers between the Mo-tube and the detector, we 

attenuated the X-ray beam intensity, reaching few µGy s-1. To achieve this result, 

we lowered the dark current of the sensor following two roots: the gate electrode 

has been connected at ground (VGS = 0 V) and the samples have been enclosed in 

shielding boxes which avoid the illumination of the sensors. The condition of 
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polarization explains the fast response of the sensor shown in the dynamic reported 

in Figure 4.76a. In this case, in fact, the X-ray response is not mediated by the 

photoconductive gain effect but it represents the separation and the collection of 

ionization charges generated by X-ray photon absorption [143]. 

For these samples, a dose rate down to 35 µGy s-1 has been assessed with a linear 

behavior of the detector response and a calculated sensitivity of (32 ± 2) µC Gy-1 

cm-2 (see Figure 4.76b). As in the case of TIPGe-Pn (Section 4.2.2) also these 

results are promising for the implementation of these devices in the medical field 

where low dose rates are typically employed. 

 

 

Figure 4.76 a) X ray induced photocurrent response of a TIPS-Pn:PS 4:1 device at several dose 
rates, down to 35 µGy s-1. b) Photocurrent versus dose rate, including the linear fit used for the 
sensitivity calculation. The error bars refer to the statistical fluctuations (SD) of the signal 
amplitude over three on/off switching cycles of the X-ray beam in the same condition. [216] 

 

Wheatstone Bridge 

As discussed in Section 2.4.1, the dark current is an important figure of merit to 

evaluate the capability of a detector. In this work, exploiting the uniformity 
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provided by the BAMS deposition technique, a Wheatstone Bridge architecture has 

been implemented in order to compensate and correct small anomalies (such as bias 

stress or aging effect) and achieve a stable and low dark current. 

The Wheatstone bridge is a widely used device architecture which allows to 

measure an unknown resistance value and it is typically used in resistive sensor 

systems. In fact, as illustrated in Figure 4.77a, when the bridge is balanced (i.e. 

the four resistances are equal) the current flowing in the two branches is equal and 

the voltage difference between the C and D nodes is Vout = 0 V. If the bridge is 

unbalanced (i.e. the four resistances are not equal), the electrical currents flowing 

in these two branches is different and Vout ≠ 0 V. Therefore, by monitoring the 

voltage difference between C and D it is possible to employ the Wheatstone bridge 

architecture as a detector sensitive to external stimuli able to modify the resistance 

of at least one of the resistors of the system. As the Wheatstone bridge architecture 

is very sensitive to small differences in any one of the four resistances, it is crucial 

to employ a processing technique for large-area deposition that grants a high degree 

of film uniformity. 

Here I show that, thanks to the excellent and uniform properties of the organic 

devices fabricated with the BAMS technique, a Wheatstone bridge consisting of 

four 4:1 TIPS-Pn:PS OFETs that operate as resistors has been fabricated, with the 

layout reported in Figure 4.77b. When X-ray photons impact onto the OFETs, 

the OFET channel resistance decreases due to the photocurrent increase. Thus, the 

bridge state turns from the balanced to the unbalanced state by exposing to X-rays 

only two OFETs, R1 and R4 in the reported case. In Figure 4.77c the voltage 

difference between the C and D nodes generated by different dose rates of X-ray 

radiation is reported. Important to notice is the fact that the dark current is low 
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and constant as was expected with this type of architecture and that.  the 

Wheatstone bridge responses proportionally to the increase of dose rates (Figure 

4.77d). 

 

Figure 4.77 a) Wheatstone bridge circuit and b) schematic representation of the layout designed 
for the fabrication of the devices. The resistors R1, R2, R3 and R4 consist in the channel of four 
different transistors based on 4:1 TIPS-Pn:PS. During the exposure to X-rays, only R1 and R4 are 
irradiated while R2 and R3 are kept in dark. Because of the decrease of the channel resistance due 
to the photocharges generated by the radiation the unbalanced bridge causes a ∆Vout between the 
C and D nodes. (c) ∆Vout generated by different intensity of the X-ray beam and applying VGS = -
5 V at the gate contacts of the OFETs and -20 V to the entire circuit. d) Linear response of the 
circuit for different doses of radiation. [216] 
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4.2.4. Impact of different geometries and 
architecture 

 

During this work, a comparison between two different OFETs geometries has been 

carried on. In particular, the radiation detection performances of BGBC and TGBC 

OFETs have been compared (see Section 1.3.1). The two geometries reported in 

the comparison have been fabricated at the Columbia University during my six-

months abroad period employing printed TIPS-Pn as active layer. In particular, 

the BGBC OFETs present the structure depicted in Figure 3.27c while the TGBC 

OFETs have been fabricated using the same fabrication processes in order to 

achieve the structure reported in Figure 4.78. In this case, for the gate dielectric 

several materials have been employed (i.e. Au and Al) and the thickness of the 

metallic electrode has been tuned between 50nm and 200 nm as well. In order to 

pattern this last layer, shadow masks have been employed. 

 

 

Figure 4.78 TGBC OFETs structure and picture of the entire device. 
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The OFETs have been electrically characterized and the main transport properties 

for both the two architectures are summarized in the Table 4.9. 

Bottom Gate – Bottom Contacts 

Gate Thickness (nm) Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

60 nm (Au) (5 ± 2) · 104 (8.5 ± 1.2) · 10-2 4.7 ± 1.3 2.1 ± 0.5 

Top Gate – Bottom Contacts 

Gate Thickness (nm) Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

200 nm (Au) (1.5 ± 0.8) · 104 (7 ± 3) · 10-3 12 ± 6 3.8 ± 0.5 

50 nm (Au) (1.7 ± 0.7) · 104 (9 ± 4) · 10-3 13.7 ± 1.1 5.8 ± 0.5 

200 nm (Al) (6 ± 5) · 103 (1.5 ± 0.4) · 10-3 12 ± 2 4.3 ± 0.3 

50 nm (Al) (1.5 ± 1.0) · 104 (5.2 ± 0.8) · 10-3 8 ± 4 4.6 ± 0.4 

 

Table 4.9 Electrical parameters calculated for BGBC and TGBC OFETs. All the values represent 
a statistical analysis conducted over six devices per type. 

 

While all the different TGBC OFETs share a similar electrical behavior, from the 

data reported in Table 4.9, it is possible to notice that the transport properties are 

strongly affected by the transistor architecture. In particular, the TGBC OFETs 

offered poorer electrical performances with respect to the ones obtained by the 

BGBC.  In the top gate the charge mobility is always one order of magnitude lower, 

as the ON/OFF ratio, the subthreshold swing results higher and finally the 

threshold voltage is more shifted far from 0 V. All these discrepancies can be due 

to a different density of traps both for electrons and for holes in the two geometries. 
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To evaluate their X-ray detection capability, the OFETs have been tested under 

the radiation produced by the W-target tube (Section 3.7.1.2) keeping the devices 

in saturation regime (VGS = -5 V, VDS = -20 V). While for the BGBC OFETs a 

sensitivity value has been obtained in line with the values reported so far for 

analogous devices (top result SA = (265 ± 30) µC Gy-1 cm-2), for TGBC OFETs 

poorer performances have been registered. For instance, for the 50 nm Au and 200 

nm Al gate electrode devices average sensitivities as SA = (24 ± 4) µC Gy-1 cm-2 

and SA = (12 ± 4) µC Gy-1 cm-2 have been measured respectively. 

Other experiments should be carried on in order to deeper investigate the 

discrepancy obtained with the two typologies of OFETs, but some hypothesis can 

be already formulated.  

o The main reason could be attributed to the different transport properties 

shown by the two. This difference could be due to the different 

configuration of the semiconductor/dielectric interface or to structural 

differences. In fact, organic semiconductors from solution are typically 

deposited under uncontrolled environmental conditions. As the solvent 

evaporates, moisture and impurities in the air can be trapped in the 

semiconductor especially where the surface is exposed to the environment 

despite where it is in contact with the substrate. This factor may become 

relevant since the first molecular layers of the semiconductor in contact 

with the dielectric are those that contribute predominantly to the 

electrical transport in organic field effect transistors. In bottom-gate 

transistors the semiconductor is deposited on the dielectric, while in top-

gate transistors the dielectric is deposited on the semiconductor.  
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o Another important difference could be related to the interfaces’ 

roughness of the diverse devices. In fact, for BGBC transistors the 

Parylene C dielectric is directly deposited onto the smooth gate electrode, 

while for the TGBC devices the insulator is placed on the top of the 

rougher organic semiconductor. This means that once Parylene C is 

deposited, in the top-gate transistors we got a dielectric semiconductor 

interface much rougher than the bottom-gate.  

o The presence of structural defects, which can also act as trap states or 

scattering centers, seems to be in the top-gate transistors the most likely 

cause for the increase of the threshold voltage and the decrease of 

mobility. The roughness of the dielectric/semiconductor interface implies 

that the mean-life time of the charges is shorter, and the recombination 

is more likely. As a result, the sensitivity of the device is also reduced. 

To conclude, it is clear that in order to achieve optimal radiation detection 

performances employing organic thin film-based devices, the BGBC OFETs offer 

the most promising properties. 

4.2.5. Pneumatic Nozzle Printed Organic 
Ionizing Radiation Detectors 

 

During my six-months spent at the Columbia University (New York, USA), I 

worked on the implementation of most of the characteristics here reported in one 

single device. In particular, I fabricated some OFETs presenting the structure 

depicted in Figure 3.27c. The transistors, presenting a BGBC architecture, have 
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been patterned by photolithography process and they have been placed in two 6-

pixels array as it is shown in Figure 4.79. 

 

Figure 4.79 OFETs fabricated during my six months-period spent at the Columbia University (New 
York). a) Photolithography mask designed by LayoutEditor and real device where two 6-pixel arrays 
are placed with the source electrode in common and the gate and the drain independent. c,d,e) 
Cross-polarized optical microscope images of the organic thin films printed on the top. f) 
Topographic AFM image and g) extracted profile of a printed organic film. 

The organic semiconductors have been deposited from solution by Pneumatic 

Nozzle Printing which allowed a self-patterning of the layer (as already discussed 

in Section 1.2.1.2). During my work I implemented all the four molecules 

considered so far (i.e. TIPS-Pn, TIPGe-Pn, diF-TES-ADT, diF-TEG-ADT). As it 

is shown in Figure 4.79c, d, e, this deposition technique allowed to obtain very 

uniform and well-packed thin films which present microcrystalline structures 

aligned along the printing direction (i.e. orthogonal to the conductive channel) and 

with a thickness in the range [100-200] nm. Moreover, tuning the coating speed it 

has been possible also in this case to reach a full control on the grain dimensions 

(see Figure 4.80) [238]. 
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Figure 4.80 Cross-polarized optical microscope images of TIPS-Pn, TIPGe-Pn, diF-TES-ADT, and diF-TEG-ADT thin films printed at different deposition speed in 

the range [0.1 – 1] mms-1. 
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Thanks to the good-quality films achieved by this deposition technique, good 

transport properties has been registered as well. The main electrical parameters are 

listed for each molecule in Table 4.10. For all the devices, high ON/OFF ratio and 

high mobility values in line with the state of the art for flexible devices have been 

achieved. In particular, the mobility presented by the TIPS-Pn OFETs is one order 

of magnitude higher than the one reported for the pure-TIPS OFETs fabricated by 

BASM technique onto Si/SiO2 substrate (see Section 4.2.1.1) [216] and by drop-

casting onto flexible foils (see Section 4.2.2) [154], [225]. On the contrary, the 

transport properties of the TIPGe-Pn based OFETs are slightly higher than the 

performances measured with the drop casted samples reported in Section 4.2.2 

[225]. But most important, in this case the Pneumatic Nozzle Printing strongly 

improved the area coverage and the film packing (as it has been already mentioned 

in Section 4.2.2.1). 

It is important to notice the little deviation of the threshold voltage from 0 V 

towards positive biases. This aspect could be a sign of the presence of trap states 

at the interface between the organic semiconductor and the dielectric layer. The 

highest Vth values have been measured for the diF-TEG-ADT-based OFETs and 

this could be the reason for their anomalous behavior under X-rays. These data are 

not reported in this work because further investigations are needed. 

TIPS-Pn 

Deposition Speed 
(mm s-1) 

Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

0.2 
(2.0 ± 0.7) · 

105 
(4 ± 1) · 10-2 1 ± 1 1.8 ± 0.4 

0.4 (2 ± 1) · 105 (5 ± 1) · 10-2 4 ± 1 1.0 ± 0.1 

0.6 (2 ± 1) · 105 (9 ± 2) · 10-2 3.2 ± 10.5 1.0 ± 0. 2 
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0.8 (2 ± 2) · 105 (6 ± 1) · 10-2 4.3 ± 0.3 0.8 ± 0.2 

TIPGe-Pn 

Deposition Speed 
(mm s-1) 

Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

0.1 (6 ± 5) · 104 (6 ± 5) · 10-2 (7.9 ± 0.8) (1.4 ± 0.4) 

0.2 (3 ± 5) · 105 (17 ± 3) · 10-2 (5.6 ± 0.3) (0.7 ± 0.1) 

0.4 (9 ± 10) · 104 (13 ± 1) · 10-2 (4.3 ± 0.6) (0.9 ± 0.1) 

0.6 (1 ± 1) · 105 (5 ± 2) · 10-2 (4.6 ± 0.6) (0.8 ± 0.1) 

diF-TES-ADT 

Deposition Speed 
(mm s-1) 

Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

0.2 (12 ± 1) · 103 
(15 ± 1) · 10-

2 
(4.8 ± 0.2) (2.60 ± 0.05) 

0.4 (18 ± 8) · 103 (9 ± 2) · 10-2 (3.60 ± 0.05) (2.1 ± 0.3) 

0.6 (8 ± 9) · 104 
(10 ± 2) · 10-

2 
(2.4 ± 0.2) (1.8 ± 0.6) 

0.8 (4 ± 1) · 104 (8 ± 1) · 10-2 (1.8 ± 0.3) (1.3 ± 0.2) 

diF-TEG-ADT 

Deposition Speed 
(mm s-1) 

Ion/Ioff 
Mobility 

(cm2 V-1 s-1) 

Vth 

(V) 

S 

(V dec-1) 

0.2 
(4.9 ± 0.6) · 

102 
(10 ± 1) · 10-2 (14.6 ± 0.8) (6.0 ± 0.3) 

0.4 (3 ± 2) · 103 (10 ± 1) · 10-2 (11 ± 1) (4.1 ± 0.8) 

0.6 (9 ± 7) · 102 (4 ± 1) · 10-2 (13 ± 4) (5 ± 2) 

0.8 (10 ± 13) · 102 (4 ± 1) · 10-2 (11 ± 2) (5 ± 1) 

Table 4.10 Electrical parameters of TIPS-Pn, TIPGe-Pn, diF-TES-ADT, and diF-TEG-ADT -
based OFETs printed at different deposition speeds. All the reported values have been calculated 
from a statistical analysis conducted over 6 OFETs per type. 

 

All the devices have been characterized as radiation detectors exposing them under 

X-rays provided by the W-target tube described in Section 3.7.1.2. The top 



4.2 X-ray detection 

194 

 

sensitivity values obtained for each molecule are summarized in Table 4.11 where, 

also the performances reached by the samples described so far are reported as 

comparison. 

Sample 
Mobility 

(cm2 V-1 s-1) 

Operativ
e 

Voltage 

(V) 

S 

(µC Gy-1) 

SA 

(µC Gy-1 cm-2) 

SV 

(µC Gy-1 cm-3) 
Reference 

TIPS-Pn 

Drop casted 

(5.2 ± 0.3) · 
10-2 

VDS = -3 

VGS = -2 
0.96 ± 0.07 3.9 ± 0.3 

(2.6 ± 0.2) · 
105 

Section 4.2.2 

[225] 

TIPS-Pn 

BAMS 

(1.7 ± 0.5) · 

10-2 

VDS = -

20 

VGS = -

15 

1.60 ± 0.04 
(3.8 ± 0.1) · 

102 

(4.2 ± 0.1) · 

107 

Section 
4.2.1.1 

[216] 

TIPS-Pn 

Printed 

(9 ± 2) · 

10-2 

VDS = -

20 

VGS = -5 

20.8 ± 1.6 
(5.2 ± 0.4) · 

102 
(3.5 ± 0.3) · 

107 
Section 4.2.5 

TIPS-Pn:PS 

BAMS 

(5 ± 2) · 

10-1 

VDS = -
20 

VGS = -
15 

54 1.3 · 104 3.2 · 109 
Section 4.2.3 

[216] 

TIPGe-Pn 

Drop casted 

(6.9 ± 0.4) · 
10-2 

VDS = -3 

VGS = -2 
3.08 ± 0.02 12.3 ± 0.2 

(6.2 ± 0.1) · 
105 

Section 4.2.2 

[225] 

TIPGe-Pn 

Printed 

(13 ± 1) · 

10-2 

VDS = -

20 

VGS = -5 

28.4 ± 0.8 
(7.1 ± 0.2) · 

102 

(8.9 ± 0.3) · 

107 
Section 4.2.5 

diF-TES-
ADT 

Spin coated 

(5.2 ± 0.3) · 
10-2 

VDS = -3 

VGS = -2 

(2.4 ± 0.3) 
· 10-4 

(9.6 ± 1.2) · 
10-4 

(80 ± 10) 
Section 4.2.2 

[225] 

diF-TES-
ADT 

Printed 

(15 ± 1) · 
10-2 

VDS = -

20 

VGS = -2 

3.2 ± 0.5 
(8.0 ± 1.3) · 

101 
(8.0 ± 1.3) · 

106 
Section 4.2.5 
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Table 4.11 Summary of the top X-ray sensitivities achieved by the here reported organic thin film-
based sensor. 

 

As it is possible to notice from the values reported in the Table 4.11, by adopting 

most of the strategies illustrated in this chapter allowed to obtain excellent X-ray 

detection performances.  

The printed devices fabricated at the Columbia University well summarize all the 

characteristics listed in this chapter: they present a BGBC OFET architecture, the 

Pneumatic Nozzle Printing technique allowed to obtain packed, uniform and well 

aligned semiconducting layer which on one side makes more effective the grain 

boundaries as source of electron traps, on the other side it brings an improvement 

on the transport properties of the devices. Further, by this technique it is possible 

to deposit from solution the Ge-based molecules which enhance the absorption of 

the high energy photons. Moreover, by this process it has been possible to fabricate 

flexible devices easily scalable onto larger areas.  

To conclude, the printed TIPGe-Pn-based OFETs reached very high sensitivities 

(SA = (710 ± 20) µC Gy-1cm-2; SV = (8.9 ± 0.3) · 107 µC Gy-1cm-3). Further 

improvements could be achieved by implement the polystyrene blending in the 

printed TIPGe-Pn devices to passivate the hole traps present at the interface with 

the dielectric and improving the transport properties of the OFETs. 
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4.2.6. Summary 
 

To conclude this section, a summary about all the strategies studied and 

implemented in order to understand and control the radiation detection mechanism 

occurring in organic semiconductor-based devices is given. In order to achieve these 

results, a deep study of the materials, of the mechanism of interaction radiation-

matter and of the device operation has been conducted. 

o The advantages gained using a transistor structure instead of a 2-

terminal coplanar one have been listed and critically discussed. In 

particular, it has been explained how by using the polarization condition 

of the transistor it is possible to control the operation of the sensor as 

well. It has been demonstrated that the BGBC configuration is the most 

promising architecture in order to achieve the best detecting 

performances  

o A recap about the mechanism which rules the radiation detection in thin 

film-based devices has been offered and a detailed study on the role of 

electron traps in the activation of the photoconductive gain effect has 

been illustrated. In particular, two main methods in order to investigate 

different kind of traps have been discussed: tuning the density of grain 

boundaries and acting on the semiconductor/dielectric interface.  

o The employment of new synthetized small molecule with higher-Z 

elements directly inserted in the molecular structure by chemical 

tailoring has been exploited to further improve the efficiency of these 

detectors  
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o the impact of the transport properties on the radiation detection 

capability has been discussed. In particular, it has been demonstrated 

how enhancing the electrical behavior of the transistors (i.e. using a blend 

with Polystyrene) it is possible to boost the radiation detection 

performances reaching unprecedent values of sensitivity. 

All the here summarized strategies (depicted in Figure 4.81) are independent each 

other and can be separately adopted in order to maximize the X-ray detection 

efficiency. 

 

Figure 4.81 Independent strategies adopted in this thesis in order to boost the X-ray detection 
efficiency of the organic sensors. Here the photocurrent induced by the radiation is expressed as the 
product between the photoconductive gain factor G and the photocurrent directly produced by the 
absorption of photons ICC. 

 

4.3. X-ray detection in medical 
application 

 

I tested the potentiality of the organic thin film-based X-ray detectors for their 

implementation in the field of dental radiography. These results are included in a 
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more general discussion reported by L. Basiricò et al. in [151], where the assessment 

of this flexible, large-area and human-tissue like sensing technology is provided for 

the detection of radiation in several medical fields. In particular, we tested them as 

bone density analyzers, as medical personal dosimeters for mammography, and 

finally we show a proof of principle for their implementation as medical imager. 

In the field of dental radiography, the technology described so far would offer 

enormous advantages. The flexibility and conformability, the low operating 

voltages and the low-cost fabrication are highly desirable properties in this field of 

application. In this section, the results achieved by the validation of direct organic-

based X-ray detectors in actual clinical environment are presented. These 

measurements have been possible thanks to the collaboration with the Skan-X 

Radiology Devices S.p.A and Skanray Europe srl and CEI (Compagnia Elettronica 

Italiana) (Bologna, Italy). They provided us access to two different commercial 

Dental Radiography irradiation systems. (see also Section 3.7.2) that allowed us 

to conduce the measurements in the real operation conditions employed for dental 

radiography. In particular, these applications require energies around a peak 

kilovoltage of 70 kVp, low irradiation doses down to few µGy and short irradiation 

pulses of the order of hundreds of ms. 

For these experiments, co-planar devices presenting the structure depicted in 

Figure 3.26 and fabricated onto plastic polymeric foils have been employed. The 

active layer of the sensors is a TIPGe-Pn thin film deposited from solution by drop 

casting. The devices have been enclosed in metallic box in order to screen the 

electrical noise during the measurements and to keep the samples in dark for the 

lowering of the dark-current. 
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The dynamic responses for 0.5, 1, 1.5, 2 s of irradiation at 70 kVp from the W-

target X-ray tube are reported in Figure 4.82a. 

 

 

Figure 4.82 a) Current response of the detector to the X-ray beam provided by a W-target X-ray 
tube operated at 70 kVp accelerating voltage and 4mA filament current, for different exposition 
time windows: 0.5, 1, 1.5, 2 s. The vertical grey dashed lines indicate when the X-ray tube is turned 
on while the grey arrows when it is switched off. b) Plot of the corresponding generated photocharges 
as a function of the total dose impinged on the detector for the different exposure times. [151] 

 

In this case, the X-ray flux is kept constant by setting the anodic current at 4 mA, 

therefore decreasing the exposure time leads to the decrease of the total dose 

impinging on the detector in the range [15.5-64.6] µGy. The dynamical response to 

X-rays is the one typical of organic thin films-based devices and it is clearly 

distinguishable from the background down to 15.5 μGy of total dose.  The integral 

of the peaks present in the dynamic curve correspond to the amount of charges 

generated in the organic layer by the interaction with the radiation. These data are 

plotted in Figure 4.82b as a function of the corresponding total X-rays dose and 

from the slope of the linear fit of this curve, a sensitivity of 1.6 · 105 μC Gy−1 cm−3 

has been obtained. This value is in-line with that reported for analogous devices 

considering the detector structures [153] and the organic semiconductor employed 
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[225], characterized at much higher Xray doses and lower energies (5–30 mGy s−1; 

35 kVp). In order to test the detector performance under short pulses of X-rays 

and to validate it in actual measurement conditions for medical imaging 

application, we expose it to a pulsed X-ray beam (duration 100ms) provided by a 

commercial dental radiography system (see Section 3.7.2). The detectors respond 

to the 100ms X-ray pulses with clean and steep output signals with an amplitude 

proportional to the impinging dose rate, demonstrating to be able to follow the 

typical frame rates of a commercial dental radiographic apparatus. Both the 

dynamic response and the sensitivity curve are reported in Figure 4.83a, b. 

Further, from the baseline of the measurement reported in Figure 4.83a the noise 

of the system has been calculated as three times the root mean square of the 

experimental data, obtaining the value of 1.5 pA. Combining this value with the 

plot reported in Figure 4.83b, the lowest detectable dose has been extrapolated 

and it results 12 μGy. This value confirmed the potentiality of the employment of 

this class of detectors in the field of dental radiography where few μGy of radiation 

for the diagnostic exams are delivered. 

 

Figure 4.83 Dynamic signal response to 100ms X-rays pulses at different dose rates provided by 
the Intraskan DC machine and (b) the corresponding plot of X-ray induced photocurrent as a  
function of the dose rate. [151] 
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It is important to note, regarding the fast response here reported, that even if the 

radiation detection mechanism occurring in these devices is mediated by electron 

traps (i.e.PG mechanism) and so it presents long characteristic times, also with 

very short pulses of radiation the sensor is able to generate a clear peak of 

photocurrent. This confirms what has already been discussed in Section 4.2 and 

depicted in the graph in Figure 4.51 . 

Finally, working at low doses and short pulses strongly improves the signal 

stability. In fact, while at higher doses these sensors present a limited and 

reversable degradation, in this range of doses a deviation small of 2.7% for 10 

subsequent repetitions of 500ms X-rays exposure has been recorded (Figure 4.84). 

 

Figure 4.84 Normalized signal amplitude variation for 500ms X-ray pulses exposure over 10 
repetitions. [151] 

 

4.4. Proton detection 
 

In the framework of the INFN CSN5 FIRE - Flexible organic Ionizing Radiation 

dEtectors project, the study of proton direct detection by organic thin film-based 
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sensors has been carried out. The properties which made the organic 

semiconductors appealing for their implementation as active layer in direct X-ray 

radiation detectors (see Section 2.5.1), are also valid for the detection of protons. 

The mechanical flexibility and conformability, the large-area, the low cost of 

production and finally the human tissue-like behavior in terms of absorption make 

them promising candidate in order to overcome the main limitation presented by 

the commonly used proton detectors. Therefore, with the aim to assess the 

potentiality of this class of sensors in the field of proton therapy, two main 

experiments have been conducted. The first one took place at LABEC – 

Laboratorio di Tecniche Nucleari Applicate ai Beni Culturali (Florence, Italy) 

(Section 3.7.4.1) where 5 MeV protons have been detected. The energies and the 

fluxes employed during this experiment are of the order of the end-of-range values 

for proton therapy beams, in particular of the energies of scattered protons reaching 

internal healthy tissues surrounding the target. These results are discussed in 

Section 4.4.1. The second experiment provided the results shown in Section 4.4.2 

and they have been collected at TIFPA Proton Therapy Center (TN) (Section 

3.7.4.2). In this case, the typical energies and fluxes involved in the treatment for 

the primary beam have been tested. 

 

4.4.1. LABEC – 5 MeV proton beams 
 

In order to detect the 5 MeV protons provided by the 3 MV Tandetron present at 

LABEC, several co-planar devices as the one depicted in Figure 4.47a have been 

employed. The active layer of the sensors is formed by TIPGe-Pn deposited from 

solution by drop casting and presenting a thickness of 150 nm. The devices have 
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been fabricated directly onto a 125 µm thick plastic foil (i.e. PET or PEN). In 

particular, we fabricated and tested samples with two different geometries: same 

channel length (i.e. the distance between the fingers of the electrodes) of L = 30 

μm and two different width, i.e. W = 205.5 mm (W/L = 6850) and W = 45 mm 

(W/L = 1500). The irradiation setup and the system involved for the beam 

monitoring are described in Section 3.7.4.1. 

After passing all the layers interposing between the proton source and the sensor, 

protons loose about 390 keV keV, as calculated with the SRIM Monte Carlo code 

[213]. Figure 4.85 reports the SRIM simulation of the Linear Transfer Energy 

(LET) of each proton in the TIPGe film and in the plastic substrate. 

 

 

Figure 4.85 SRIM simulated curve of the energy released by the proton beam in the organic 
semiconducting layer (150 nm thick) and in the plastic substrate (125 µm thick). 

 

The total released energy, given by the integral of the curves, in the plastic 

substrate is much higher than the one deposited in the organic semiconductor, due 

to the significantly different layer thicknesses. In particular, the energy lost by each 
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proton within the TIPGe-Pn layer is on average 1.55 keV, while the energy 

absorbed by the plastic substrate is about 1590 keV. Such difference has been 

effectively exploited to implement a proton detector able to simultaneously operate, 

as detailed in the following, in two distinct modes: 

o  real-time mode, exploiting the absorption of the organic thin film 

o integration-mode, based on the absorption within the plastic substrate,  

During the irradiation, the sensors were polarized at low voltages (<1 V) in order 

to collect the charges generated by anelastic interactions of protons with the 

electrons of the semiconducting layer. The detectors performance has been tested 

under consecutive ON/OFF cycles of exposure to 5 MeV proton beam, tuning the 

fluence of particles impinging onto the devices in the range between 3.5 · 109 H+cm-

2 and 8.7 · 1011 H+cm-2. 

Figure 4.86 reports the typical dynamic current response, where the colored areas 

of the graphs represent the time windows of proton irradiation. The measurements 

have been carried out either keeping the exposure time constant (t = 10 s, Figure 

4.86a), or varying it between 10 s and 30 s (Figure 4.86b). 

Figure 4.86c zooms into one of the peaks reported in Figure 4.86a and Figure 

4.86b, highlighting the typical curve of response to proton irradiation by the 

detector. The shadowed area indicates the total collected charges during the 

interval of exposure to the flux of protons. The small spikes during proton 

irradiation are due to the small metal plate of the chopper necessary for the 

accurate evaluation of the beam flux (as described in Section 3.7.4.1). As in the 

X-ray case, due to the energy absorption from the impinging radiation, electron-

hole pairs are generated within the organic semiconductor and the electrical current 
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measured between the two electrodes increases by ∆I. When the beam is switched 

off, the current has an initial fast drop due to the recombination of the charges, 

followed by a slower decay. As it has been already discussed, the shape of the 

dynamic curve is a fingerprint for the PG mechanism which rules the detection of 

ionizing radiation by thin-film organic semiconductor-based sensors. 

For each exposure cycle, the radiation dose absorbed by the sensor has been 

calculated by Equation 4.1: 

 { =  '[~b ∙ S�u�Ox���C���� ∙ N8%1g� (4.1) 

where Eabs is the simulated value of the energy released by each proton to the 

organic thin film (LET), Nprot is the number of protons impinging onto the sensor 

and monitored by the rotating beam chopper, ρTIPG-Pn and Volume are respectively 

the density and the volume of the TIPGe-Pn active layer. The proton-induced 

charges collected during each exposure cycle have been calculated as the integral 

of the photocurrent peaks (i.e. the colored shadow in Figure 4.86c). 

Figure 4.86d reports the collected charges as a function of the total proton dose 

for four samples: two samples with W/L = 1500 (black dots) and two samples with 

W/L = 6850 (red dots). The response of all tested detectors is linear with increasing 

radiation dose in a wide range of doses between 40 Gy and 11 kGy. Different 

samples with equal geometry lay on the same fit line, assessing the reproducibility 

and the repeatability of the detection response. From the plots in Figure 4.86d, 

the sensitivity of the detector (i.e. the induced charges collected per unit of 

absorbed dose) has been extracted as the slope of the linear fitting curve, reaching 

the values of SW/L=1500 = (5.15 ± 0.13) pC Gy-1 and SW/L=6850 = (3.40 ± 0.18) pC Gy-

1. The different responses achieved with the two geometries can be ascribed to the 
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different electrical efficiency for the extraction/injection of the induced charges by 

the electrodes. 

 

 

Figure 4.86 a) and b) Photocurrent vs. time response of the detectors irradiated by subsequent 
ON/OFF cycles of protons tuning the incident fluences (3.5 · 109 - 9 · 1011 H+cm-2). The detectors 
have been tested keeping the exposure time constant t = 10 s (a) or varying it between 10 s and 30 
s (b). During the measurements, an electric field (applied bias < 1 V) was imposed to the organic 
semiconducting layer. The time window of the irradiation is colored in the graphs and the color 
intensity of the boxes indicates the intensity of the proton beam. c) Highlight of dynamic response 
of the detector. The slow increase of the current indicates photoconductive gain effect. The 
photocurrent (∆I) is calculated as the difference between maximum peak current and the baseline 
current before the irradiation. The integral of the plot (colored in pink) represents the total charge 
induced by the protons. d) Plots of the collected charges in function of the total dose of protons for 
two different W/L are shown. The black squares correspond to W/L = 1500 while the red circles 
represent W/L = 6850. In both cases the graphs indicate a linear response of the detector in a wide 
range of fluences (40 Gy - 11 · 103 Gy). 
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The limit of detection has been calculated as: 

 L�{ =  3 ∙ �*Tb
 �[aT�
&/q/E/q}  (4.2) 

Where RMSsignal is the root mean square of the current flowing in the device in dark 

condition and the Sensitivity is the higher sensitivity obtained. By applying this 

definition, a LOD down to (30 ± 6) cGy s-1 has been estimated. 

The linearity of the real-time response holds even after 28.5 kGy of proton 

irradiation, assessing the reliability and the radiation hardness of TIPGe-Pn -based 

detectors. 

Up to now, we discussed the sensor’s detection mechanism in real-time mode, based 

on the interaction between the proton beam and the organic thin film. However, 

the persistent current turns to be reproducible and scale with the total absorbed 

dose. Hereafter, we discuss how to exploit the gradual baseline shift induced by 

multiple successive exposures, to implement an integration-mode operation, 

following the irradiation history of the sensor. 

Figure 4.87 reports the current-voltage characteristics (IV) of a TIPGe-Pn detector 

before and after proton irradiation, and after up to 3 months storage in the dark. 

The increase of conductivity of the organic layer due to the interaction with the 

proton beam is evident. The conductivity raises from (1.93 ± 0.08) · 10-6 S m-1 to 

(36.4 ± 0.1) · 10-6 S m-1 after 66 nC of incident protons. The effect is reversible, 

in fact, despite the long relaxation time, full recovery occurs after 3 months 

(conductivity of (1.88 ± 0.07) · 10-6 S m-1). 
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Figure 4.87 Current-Voltage curves acquired before (black) the irradiation, after 2.5 · 1011 incident 
protons (42 nC, red line), after 4 · 1011 incident protons (66 nC, green line), after four hours (blue 
line), sixty-four hours (light blue line), ninety-five days (pink line and dots) of storage in dark. The 
graph shows the increase of conductivity of the organic semiconducting layer due to the irradiation. 

 

Looking closely at the typical dynamic response curve of the detector to proton 

irradiation (see Figure 4.88a), the total proton irradiation-induced current can be 

considered composed by two different contributions. The first one is the real-time 

response as a result of energy released in the organic semiconductor layer and 

photoconductive gain effect. This has been already discussed before and called ∆I. 

The second contribution, here denoted as I0, represents the current baseline shift 

due to the fixed charges trapped in the plastic substrate after each proton beam 

exposure and depends on the irradiation history of the detector. In analogy to the 

procedure described above, the total induced charges (i.e. the integral of the green 

area highlighted in the dynamic curve of Figure 4.88a) and the dose corresponding 

to each exposure can be calculated (following the procedure indicated previously). 

The integrated amount of charges generated in the substrate, responsible for the 

current baseline shift (and of its long relaxation time), is linearly dependent on the 
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integrated dose of proton irradiation received by the detectors. From the linear fit 

of the curve reported in Figure 4.88b, the sensitivity of the detector, here thus 

operating in an integration-mode, results S = (6.97 ± 0.18) · 10-1 pC Gy-1. The 

generation of charges in polymeric foils following proton irradiation is an effect 

known in the literature [239]–[243] and is well justified in the here presented devices, 

fabricated onto a 125 μm thick plastic substrate absorbing a consistent fraction of 

the proton energy (about 1590 keV per H+, as already discussed). 

 

 

Figure 4.88 a) Dynamic curve (black line) of the current response of the detector to different 
fluences of incident protons ((4.5·10-11 – 6.6·10-11) H+cm-2). Two different contributions can be 
distinguished: ∆I (pink shadow) is the real-time response proportional to the dose (already described 
in Figure 4.86), while I0 (green shadow) represents the baseline shift due to the fixed charges 
trapped in the plastic substrate. b) Linear increase of the total charges generated in the plastic 
substrate as a function of the integrated dose which irradiates the sample. 

 

These proton-induced charges, accumulated in the plastic substrate, act as a 

bottom-gate effect for the organic semiconductor layer, increasing its electrical 

conductivity. This effect can in fact be assimilated to what occurs in a field effect 

transistor (Figure 4.89) where the gate electrode is used to tune the density of 

charges flowing in the thin 



4.4 Proton detection 

210 

 

channel at the semiconductor/dielectric interface, between the source and drain 

electrodes. Here, as the charges induced in the plastic substrate have a long lifetime 

(as assessed by the IV curves reported in Figure 4.87), this gating effect adds up 

after each proton exposure, with a contribution proportional to the actual dose 

received, thus allowing to quantitatively monitor the irradiation history of the 

detector. 

It is noteworthy that to collect and to exploit the information accumulated within 

the plastic substrate, the organic semiconducting layer and its interface with the 

substrate play an essential role, as they permit to transduce into a source-drain 

current the information stored in the static charges induced in the by proton 

irradiation. 
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Figure 4.89 Schematics of the detector integration-mode operation: the protons irradiating the sample generate charges in the polymeric foil with a very long 

relaxation time. These trapped negative charges induce an increase of the semiconductor conductivity leading to higher source-drain current in the organic thin film. 

This effect is similar to what happens in an Organic Field Effect Transistor (OFET) structure, where the gate electrode is typically used to tune the current flowing 

between the source and the drain electrodes. In this case, the irradiated polymeric substrate of the sensor acts as the bottom gate electrode of an OFET structure 

creating a gating effect proportional to the integrated dose of irradiating protons. 
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4.4.2. TIFPA – 70 MeV proton beams 
 

In this paragraph, preliminary results achieved by exposing organic-based devices 

under 70MeV protons provided by the Proton Therapy Center TIFPA – Trento 

Institute for Fundamental Physics and Applications (Trento, Italy) Proton 

Therapy Center are illustrated. These data demonstrate the potentiality of these 

novel class of direct detectors for their implementation in proton dosimetry for 

medical therapy. These represent the first measurements which should be followed 

by deeper investigation in actual medical environment for a more solid 

interpretation of the detection mechanism occurring in organic-based sensors 

exposed to higher energy protons.  

Co-planar devices as the one employed at LABEC (see Figure 3.26) have been 

exposed to a 70 MeV proton beams varying the fluences of irradiation in the range 

between [4 - 10] · 1010 protons cm-2. 

The irradiation experiment has been conducted interposing several solid water 

layers between the proton source and the samples. These polymeric panels present 

a density of (1.032 ± 0.005) g cm-3 which simulate well the human tissues passed 

through the protons during a medical treatment. Varying their thicknesses, we 

could assess the detection response of the device as it would be placed in different 

position inside a human body. In Figure 4.90, the dynamic curves measured during 

the ON/OFF exposition cycles are shown for different solid water thicknesses 

(indicated by the numbers reported in the single plots). The yellow squares indicate 

the time interval during which the beam was turned on.  
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Figure 4.90 Dynamic response of the organic thin film-based device exposed to three subsequent 
ON/OFF cycles of increasing fluences (in the range between [4 - 10] · 1010 protons cm-2) of 70 MeV 
protons. Different thicknesses of solid water have been interposed between the proton source and 
the sample, in particular (a) 0 cm, (b) 3 cm, (c) 3.6 cm, (d) 3.8 cm, (e) 3.5 cm. (f) Charges induced 
by the three exposures reported in (e) plotted as a function of the correspondent fluence of protons. 

 

As it is demonstrated by these plots, the detector responds to the beam showing a 

clear increase of the current due to the absorption of protons only when a specific 

amount of solid water is placed in front of it (Figure 4.90e). In fact, in this case 

the sensor shows an increase of the current which linearly depends on the fluence 

of the proton beam. This trend is shown in Figure 4.90f where a sensitivity of (7.7 

± 1.1) · 10-19 C protons-1 cm-2 has been calculated. 

On the contrary, when the solid layer thicknesses are either lower or higher than 

this specific amount (i.e. 3.5 cm) the detector doesn’t exhibit a clear response. In 

more detail, for lower thicknesses (Figure 4.90c, d) the sensor shows a decrease of 

the current during the exposures which seems not depending on the proton fluences. 

On the opposite side, for slightly higher thicknesses (Figure 4.90c) the current 
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increases due to the absorption of protons but the proportionality with the intensity 

of the beam is lost. For much higher solid water thicknesses, the detector does not 

show any change induced by the irradiation (Figure 4.90d). 

These differences are related to the change of the Bragg peak position due to the 

different layers which the protons have to pass through before reaching the sensor.  

By the data collected so far, only a speculative interpretation of these 

measurements can be given and further experiments and simulations should be 

carried out in order to confirm it. As it has been introduced in Section 2.2.2, 

protons interact with matter in a different way compared to high energy photons. 

In particular, the graph reported in Figure 2.19 clearly depicts the difference 

between the two in releasing energy during their pathways. One can deduce that 

interposing 3.5 cm of solid water moves the Bragg peak exactly on the active layer 

of the sensor achieving the clearer response by the detector. On the contrary, when 

thinner solid water layers are placed in front of the sample, the Bragg peak moves 

behind the organic detector and the energy released in the semiconducting layer is 

not enough to produce an increase of current. Indeed, with the release of this 

amount of energy the protons activate other mechanisms within the organic 

semiconductors which bring a decrease of the current. More important, when the 

thickness of the solid water interposed between the proton source and the detector 

is much higher than 3.5 cm, the Brag peak falls before the sensor position and the 

detector correctly responds as no protons is present at that larger depth. This last 

aspect is very appealing thinking about a possible application for this class of 

devices. In fact, in addition to the monitoring of the dose delivered at the tumor 

during the treatments, the monitoring of the surrounding healthy tissues is a crucial 

aspect. The human tissue equivalence and the mechanical flexibility together with 
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these last results confirm the great potential of direct organic thin film-based 

detectors for their employment as radiation detectors able to assess in real-time the 

presence of unwanted extra radiation doses delivered onto the healthy tissues 

surrounding the tumor during a medical treatment. 





5.  

Ionizing Radiation Detectors 
based on High Mobility 
Amorphous Oxide 
Semiconductors (ROXFET) 

 

In this fifth chapter, the main results regarding the employment of thin film 

transistors based on high mobility amorphous oxide semiconductors as radiation 

detectors are shown. In particular, in the first section a brief description of the 

TFTs structure and electrical behavior is provided. Following, the X-ray detection 

experiments which allowed to assess the sensing performances of these devices are 

described with a comparison between the standard RADiation sensitive Field Effect 

Transistor (RADFET) [244] and the here presented Radiation sensitive OXide 

semiconductor Field Effect Transistor (ROXFET). Thus, the following paragraph 

is focused on the innovative dielectric layer implemented in these devices and the 

impact of the thickness of this insulator on the detection performances is illustrated. 

Finally, the integration of these sensors with a passive RFID chip for the readout 

of the dosimeter is shown. At the end, the proof of concept for the detection of high 

energy gamma rays by this class of detectors is demonstrated. 
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5.1. High Mobility Amorphous 
Oxides Thin Film Transistors 

 

The radiation detection capability of Amorphous Oxide Semiconductor TFTs have 

been tested employing the devices described in Section 3.1 and depicted in Figure 

3.28. The basic structure of the TFTs is also reported in Figure 5.91. 

 

 

Figure 5.91 Schematic of the thin film transistor based on amorphous oxide semiconductors. 

 

 The transistors have been fabricated following the procedures shown in Section 

3.1. In particular, thirty-six BGBC TFTs have been placed in four 3 x 3 matrixes 

as it is shown in Figure 5.92. They have been fabricated onto PEN foils in order 

to obtain fully flexible devices (see Figure 5.92e). The dimensions of the transistors 

are W = 320 µm and L = 20 µm presenting a linear channel as depicted in Figure 

5.92d. This layout allowed to electrically connect all the nine TFTs forming the 

same 3 x 3 matrix at the same time, using the multiplexer system described in 

Section 3.4 (see Figure 3.36). This method leads the possibility to characterize 
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more than one device at the same time, leading to assess the statistical uniformity 

of transport properties and radiation detection performances. This is an essential 

task in order to prove the potentiality of this technology for the development of 

large area systems. 

 

 

Figure 5.92 a-c) The entire layout of the AOS TFTs matrix is here depicted. The 36 TFTs have 
been placed in four different 3 x 3 matrixes in which the source electrode is in common and the 
drain and the gate are independent for each transistor. d) The single pixel is constituted by a TFT 
with a linear channel (L = µm, W = 320 µm). e) The devices have been fabricated onto PEN 125 
µm thick foils in order to achieve fully flexible detectors. 

 

The TFTs have been electrically tested as described in Section 3.4. A typical 

transfer characteristic in saturation regime acquired for nine TFTs laying in the 

same matrix is reported in Figure 5.93 where the great spatial uniformity achieved 

by this fabrication process is demonstrated. 
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Figure 5.93 Transfer characteristics in saturation regime for nine TFTs laying in the same 

matrix. 

Depending on the dielectric thickness, the transistors show mobilities in the range 

of 10 to 22 cm2 V-1 s-1, a steep subthreshold swing S (0.16 to 0.35 V/decade), low 

leakage currents (<1 pA) (see Table 5.12), and stable operation up to frequencies 

of 1 MHz (see Figure 5.94). 

 

Figure 5.94 Gate capacitance at different AC frequencies as a function of gate voltage. The 
capacitance rises when the conductive channel is formed, and the transistor is switched on [245]. 
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Dielectric 

Thickness (nm) 

Mobility 

(cm2 V-1 s-1) 

Leackage 

current @ 5 V 

(pA) 

S 

(V dec-1) 

NT 

(1011 eV-1 cm-2) 

114 (29.4 ± 1.7) 0.250 ± 0.005 0.16 ± 0.01 5.9 ± 0.9 

205 (22.5 ± 1.8) 0.150 ± 0.005 0.27 ± 0.04 8.7 ± 1.0 

293 (17.3 ± 1.8) 0.10 ± 0.01 0.30 ± 0.10 7.3 ± 1.0 

352 (12.0 ± 0.4) 0.05 ± 0.01 0.35 ± 0.13 8.5 ± 1.1 

 

Table 5.12 Electrical parameters describing TFTs with different dielectric thicknesses [245]. 

 

5.2. X-ray detection 
 

The results reported in this section have been published by T. Cramer et al. in 

2018 [245] and they emerged from a collaboration with the Faculdade de Ciências 

e Tecnologia of the Universidade Nova de Lisboa (Portugal) and with the Company 

Tagsys RFID. 

The sensors have been tested exposing them under X-rays produced by a Mo-target 

tube kept at 35 kV and varying the doses in the range [5 – 75] mGy. The TFTs 

have been electrically connected as described in Section 3.4. During the X-ray 

exposure, the three terminals of the TFTs have been kept at ground potential, 

while transfer characteristics have been acquired during the irradiation every 2 s in 

a time interval of 6 ms as depicted in Figure 5.95a. Thus, the parameters of the 
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TFTs have been extracted from the transfer characteristics acquired in saturation 

regime (Figure 5.95b). 

 

Figure 5.95 Determination of TFT threshold voltage in radiation experiments. a) Transfer 
characteristics acquired in a 6 ms time interval applying a voltage ramp to the gate electrode. The 
filled points are the ones considered for the electrical characterization. b) Linear fit to the plot of 
VG vs IDS

1/2 was used to determine the threshold voltage. For the rest of the time all terminals of 
the TFT were connected to ground [245]. 

 

In the following paragraphs, the detection response physical mechanism of the 

sensors is described. The innovative structure of the dielectric, which in this case 

plays the role of the sensing active layer, is shown focusing on the detection 

mechanism which induces the radiation-response. Finally, the integration of a 

readout system formed by a low-cost CMOS radiofrequency identification (RFID) 

tag is illustrated. 
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5.2.1. Radiation-sensitive OXide 
semiconductor FET: the ROXFET 

 

The radiation-sensitive Field Effect Transistor (RADFET) which employs a thick 

silicon oxide (SiO2) layer as the active volume for high-energy radiation detection 

is a very diffuse sensing technology employed in several fields of application (see 

Section 2.5.2 and Figure 5.97a). It offers numerous advantages such as the small 

size, the ability to permanently store accumulated dose, the dose-rate 

independence, and the ease of readout. However, many drawbacks related to this 

class of sensors are still present such as the incompatibility of the CMOS 

technologies with flexible polymeric substrates and the low stopping power offered 

by SiO2 which causes poor sensitivities spanning in the range [0.05 – 0.3] V Gy-1. 

With the aim of overcoming these two main limitations, we introduced the 

radiation-sensitive oxide semiconductor Field Effect Transistor (i.e. ROXFET). 

These devices are based on a-IGZO as semiconductor (see Section 3.2.3) and on a 

multilayer dielectric containing tantalum oxide and silicon dioxide (Section 

3.2.4.2). The use of HMOSs as the active materials for the development of TFTs 

make them compatible with low-temperature processes which allow to fabricate 

flexible devices onto polymeric foils (as already discussed in Chapter 1). Second, 

the multilayer dielectric formed both by multilayers of sputtered SiO2 and Ta2O5 

enormously improved the performance of AOS TFTs both in terms of sensitivity 

and of operating voltages. 

 In ones considers the higher Z number of Ta if compared with Si (ZSi = 14, ZTa = 

73), the introduction of Tantalum Oxide brings an increase of the attenuation 

fraction by the active layer of the sensor and thus an increment of the corresponding 
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sensitivity (see Figure 5.96). The high content of high-Z tantalum atoms leads to 

50 times shorter photon mean-free path than in pure SiO2 dielectrics at the assessed 

X-ray energies that are beyond the Tantalum X-ray absorption L-edge. Moreover, 

the Ta2O5 (k = 44) belongs to a category of dielectric called high-k insulators [246] 

which allows the TFT to work at very low voltages (or even in passive mode) still 

ensuring an effective separation of the electron-hole pairs generated by the radiation 

absorption thanks to the inner electric field built up by the dielectric layer itself.  

 

Figure 5.96 Calculated attenuation length spectra for silicon dioxide and tantalum penta-oxide 
based on NIST data base [245]. 

 

As in the RADFET systems, the absorption of radiation in this kind of devices 

induces the generation of a net-positive charge accumulated in the dielectric layer 

(see Figure 5.97). This provokes a shift of the transfer curve to negative gate 

voltages which is well illustrated by the graph reported in Figure 2.25b. No other 

TFT parameters such as subthreshold slope or mobility is affected, simultaneously 

confirming the radiation sensitivity of the transistor structure and the radiation 

hardness of oxide semiconductor transport properties [247]. 
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Figure 5.97 Schemes (not in scale) of the (a) RADFET where a unique SiO2 dielectric layer is 
present and (b) ROXFET where a stacked multilayer is inserted. In (b) the generation of trapped 
positive charge in the dielectric as a consequence of X-ray absorption is shown [245]. 

 

Figure 5.98a, shows the threshold voltage shift towards negative values for 

different total dose of radiation absorbed during one second of exposure. In Figure 

5.98b it is possible to notice that the ∆Vth scales linearly with the exposure dose, 

thus allowing to define a sensitivity S in units of Volts per Gray. Here, the 

sensitivity value amounts to S = (3.4 ± 0.2) V Gy-1, outperforming typical CMOS 

RADFET devices by about an order of magnitude. 

The integration mode operation of this kind of detector is well summarized and 

demonstrated by the graph reported in Figure 5.98c. Here, 30 mGy of total 

radiation has been delivered to the sensor in different ways. The black curve 

indicates the single-step delivery, while the red and the green curves show the 

response due to two or three consequent exposures of 15 mGy and 10 mGy 

respectively. As it is possible to see, the final threshold voltage depends only on the 

total dose and it is independent on the dose rate.  
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Figure 5.98 a) Threshold voltage shift of TFTs due to 1 s X-rays exposure of three different doses. 
b) ∆Vth reported as a function of the total dose of exposure. From this graph it is possible to 
calculate the sensitivity of the sensor as the slop of the fitting curve. It results S = (3.4 ± 0.2) V 
Gy-1. c) The threshold voltage of the oxide transistor as a function of time. Three different situations 
are compared: one exposure of 30 mGy (black), two consecutive exposures of 15 mGy each (red) 
and three exposures of 10 mGy each (green). This graph illustrates the integration mode operation 
of this class of detectors [245]. 

 

When observing the ROXFET response on a longer time scale, it is possible to 

notice (Figure 5.99a) that the threshold voltage returns to the initial value after 

exposure, thus indicating the annealing of positive ionization charge in the 

dielectric. The dynamics of the annealing process cannot be described by a single 

exponential but has contributions at different time scales resulting in a stretched 

exponential behavior (see Eq. 5.1).  
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NOP9q< − NOP9q = ∞<|NOP9q = 0< − NOP9q = ∞<| = ��� M− �q�!�Q (5.1) 

 

The dynamics is independent on dose, and, after normalization, all time traces 

superimpose on a universal curve, as shown in Figure 5.99b. Quantitatively, this 

behavior is described by a stretched exponential using a time constant of τ = 17.9 

min and an exponent of γ = 0.67. Stretched exponential behavior (as the one which 

describes the PG relaxation in organic-based sensors in Chapter 4) results from 

processes that follow a distribution of time constants, characteristic for transport 

in amorphous, disordered energy landscapes [248], [249]. Here, the behavior is 

attributed to trap states in the dielectric that are distributed in their characteristic 

energy and therefore keep the ionization charges captured for different 

characteristic time scales.  

 

 

Figure 5.99 a) Threshold voltage as a function of time after x-ray exposures at different total doses: 
recombination processes lead to the annealing of trapped charges in the dielectric on a slow time 
scale. b) Normalized threshold voltage shift for different exposure doses: the threshold recovers its 
initial value following the universal stretched exponential indicated in the graph [245]. 
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In comparison to silicon oxide–based RADFET sensors, in the case of ROXFET 

the annealing happens on faster time scales, and corrections have to be included 

when the sensor is used as an integrative dosimeter over long time scales. Moreover, 

it has been demonstrated that the trap annealing time can be further shortened by 

increasing temperature (see Figure 5.100a) or by applying electric fields across the 

dielectric (Figure 5.100b). In this way, it is possible to easily reset the dosimeter 

to its initial state and to reuse the device [250]. 

 

 

Figure 5.100 a) Acceleration of the ROXFET recovery by heating the sample with aa IR-lamp. 
The blue line shows a TFT that was exposed to 2 x 300 mGy doses (yellow bars) and then left at 
room temperature. The red line results from the same exposure with the difference that the TFT 
was heated to 80°C with a IR lamp during the time indicated with the red box. b) Acceleration of 
the ROXFET recovery by applying a gate voltage to the TFTs. The graph reports the threshold 
voltage as a function of time before and after exposure to 15 mGy of X-ray (indicated by the yellow 
bar). Without application of a potential (VGS=0), the device maintains a stable threshold voltage 
after exposure and returns only on a long time-scale to the original threshold value. By applying 
VGS=2V after exposure, annealing processes accelerate and in addition bias stress occurs, shifting 
the threshold to negative values. Importantly, when applying again 0V after 300 s, the device 
recovers from bias stress and returns to the original threshold value, demonstrating that no trapped 
charge is left in the dielectric [245]. 
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5.2.2. Dielectric thickness impact 
 

The dielectric of the proposed ROXFET plays a crucial role in obtaining high x-

ray sensitivity and a high signal-to-noise ratio for dosimeter applications. In 

particular, it has to combine low leakage and high permittivity with high X-ray 

cross section and high quantum efficiency as it has already been discussed in 

Section 3.2.4.2. For this purpose, the stacked 7-multilayer dielectric depicted in 

the inset in Figure 5.101 has been employed. The role of Ta2O5 has already been 

discussed while the SiO2 layers have been incorporated both for the lowering of the 

leackage current below 1 pA and in order to achieve a less defective interface with 

the a-IGZO oxide semiconductor [251]. 

In order to investigate in more detail, the role of the dielectric in the detection of 

X-rays, several devices presenting different insulator total thicknesses have been 

tested. The total thickness of the dielectric has been varied between 110 and 380 

nm nm, but the ratio of total Ta2O5 + SiO2 to SiO2 layer thickness has been kept 

constant at a value of dTa/dSi = 3.5. Figure 5.101 shows how the capacitance scales 

with the dielectric layer thickness. As expected, a reciprocal relation is shown, 

where the intercept is related to the interfacial layer of silicon oxide. The data fit 

well to a multilayer structure with alternating layers [246], yielding an effective 

permittivity of εr = 13.4. Because of this increased permittivity, the specific 

capacitance results 25 nF cm-2 for the TFTs with the thickest dielectric (382 nm), 

assuring a steep subthreshold slope and low-voltage operation. 
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Figure 5.101 Inverse dependence of the reciprocal of specific capacitance with the multilayer 
dielectric total thickness. From this graph the effective permittivity of the stacked structure has 
been calculated and it results εr = 13.4. The inset shows the multilayer structure of the dielectric 
[245]. 

 

Next, the impact of the multilayer dielectric thickness on X-ray sensitivity has been 

evaluated. Figure 5.102a shows the threshold voltage shifts obtained at different 

X-ray doses for transistors with different dielectric thickness. For each tested 

device, a linear relation is obtained, and the resulting slope is reported in Figure 

5.102b as X-ray sensitivity as a function of layer thickness. From this latter graph, 

a quantitative analysis has been carried out in order to assess relevant parameters 

for the conversion of photons into ionization charge in these materials. Here, the 

increase of sensitivity follows a quadratic dependency, similar to what happens in 

classical RADFET dosimeters. In fact, after the absorption of energy by the 

impinging radiation, it is possible to assume that the ionization charge density σ is 

distributed equally in the dielectric. The ionization charge is counterbalanced on 

one site of the dielectric by mobile electron carriers causing a shift in the transistor 

threshold: 
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 ∆NOP = �9c<279c< (5.2) 

Where both σ and the specific capacitance of the dielectric c depend on the 

dielectric layer thickness d. This is the reason for the quadratic behavior observed 

in Figure 5.102b. 

 

 

Figure 5.102 a) Threshold voltage shift as a function of total dose for oxide transistors with different 
dielectric layer thicknesses. b) X-ray sensitivity, defined as the threshold voltage shift per dose, as 
a function of dielectric thickness. The line represents the quadratic fit described in the text [245]. 

 

It is possible to extract the quantum efficiency of the sensor considering the 

following. The amount of ionization charge that is produced in the dielectric 

depends on radiation dose ∆D (expressed in air kerma). Knowing the X-ray photon 

absorption length λ it is possible to estimate the amount of absorbed energy ∆E 

as: 

 ∆' 9c< = ∆{ c7Z,[
u ¢ (5.3) 
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The amount of charge produced depends then on the electron-hole-pair formation 

energy W± and the internal quantum efficiency of the process QEI that is limited 

due to recombination processes and thermal dissipation 

 � 9c< = �'� � ∆'9c<�±  (5.4) 

If one indicates the specific capacitance of the dielectric as 

 17 = c�u�� (5.5) 

Combining all these equations (Eq. 5.2-Eq. 5.5) it is possible to express the 

sensitivity of the detector as: 

  T = ∆£¤¥∆I = ¦_§ � 
2¨©,ª«¬­®¬®¯°± c2 (5.6) 

 

Then, fitting the curve reported in Figure 5.102b, from the extraction of the slope 

it has been possible to calculate the internal quantum efficiency of the sensor. In 

particular, setting the Mo-Kα line (17 keV) as the relevant photon energy to obtain 

values for cm,air and λ, W± = 12.9 eV that is three times the bandgap reported for 

Ta2O5, the internal quantum efficiency QEI results 16%. 

 

5.2.3. Readout system based on RFID 
 

This optimized multilayer dielectric endows the ROXFET with an increased X-ray 

sensitivity (i.e. one order of magnitude higher than the typical values reported for 

the standard CMOS RADFET), a high-frequency operation, and a steep 
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subthreshold behavior. The combination of these properties leads to the possibility 

of directly combine a ROXFET-based dosimeter with a passive RFID chip to 

achieve a low-cost x-ray dosimeter tag, as shown in Figure 5.103.  

 

 

Figure 5.103 Picture of flexible RFID X-ray sensor tag [245]. 

 

The main purpose of such an X-ray tag is to provide information upon wireless 

interrogation if the integrated absorbed radiation dose has overcome a certain 

programmable threshold. Upon the RFID reader command, the integrated RFID 

tag probes the channel impedance Z of the ROXFET that has changed its value in 

case of radiation exposure.  

A simple version of such a functionality is implemented in commercial RFID chips 

as a tamper alarm and switching occurs if the measured impedance varies from 

below 2 MΩ to above 20 MΩ. X-ray exposure can actually induce such an order-

of-magnitude variation in the ROXFET channel impedance because of the resulting 

charging of the dielectric and the threshold voltage shift that is large enough to 

turn the transistor from an off state to an on state. This switch of state is then 



5.2 X-ray detection 

234 

 

communicated by the RFID chip in the digital information that is contained in the 

reflected RF signal.  

To set the point of work of the unexposed device, a capacitance has been connected 

between gate and source and it has been charged with a programming voltage VC 

as it is illustrated in Figure 5.104.  

 

Figure 5.104 Electrical circuit diagram showing how the radiation sensitive oxide TFT is connected  
to the commercial RFID sensor and how the programming voltage VC is applied [245]. 

 

Figure 5.105 illustrates the impact of VC on channel impedance at the relevant 

probing frequency of the RFID tag (1 kHz). At VC values below 0 V, the channel 

is in the off state and the impedance is >20 MΩ, so the RFID tag remains in the 

off state (i.e. 0). Here, the impedance of the ROXFET in the off-state results mostly 

from the parasitic capacitance due to overlap between gate and source/drain 

electrodes rather than OFF current flowing in the semiconductor when the 

transistor is switched off. Moving to positive VC values, charge carriers accumulate 

in the channel, the transistor turns on, and the impedance drops. Within an interval 
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of 0.6 V, the channel impedance lowers an order of magnitude down to <2 MΩ, 

and the RFID chip changes its memory status.  

 

Figure 5.105 TFT channel impedance Z as a function of VC. The RFID switches its status in a 
narrow interval (i.e.0.6V) close to the turn-on voltage of the transistor when the impedance of the 
device drops down because of the creation of the conductive channel [245]. 

 

Figure 5.106a shows how X-ray exposure affects channel impedance. Three 

dosimeter tags are compared, after being initially charged with different (negative) 

VC voltages to program different X-ray threshold doses. In the initial states, all 

dosimeters are in the high-impedance state, and the impedance remains high and 

constant also after the voltage source used to program VC is removed. This aspect 

is very important in order to demonstrate the possibility to operate the sensing 

system in passive mode and it has been possible thanks to the very low leakage 

current presented by the TFTs. At t = 0, the devices have been exposed to X-ray, 

and the impedances start to drop during exposure. The reduction in impedance 

continues until the X-ray exposure is stopped, as indicated by the arrows in the 

figure. Charging of the capacitance with the VC voltage 
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allowed to program the X-ray threshold dose by controlling the impedance variation 

during X-ray exposure. In fact, because of the VC voltage, an electric field builds 

up across the multilayer dielectric of the ROXFET. Before ionization charges can 

induce carrier accumulation in the channel by field effect causing the drop of the 

impedance, they have to compensate the VC field. Accordingly, it is possible to 

observe that more negative VC voltages require longer exposure times to sufficiently 

decrease the channel impedance for RFID status switching. Moreover, Figure 

5.106b shows the dependence of the critical dose needed to switch the RFID state 

as a function of VC voltage. The graph demonstrates that the ROXFET-based, 

passive RFID dosimeter allows to detect programmable threshold doses in the range 

of hundreds of milligrays. 

 

 

Figure 5.106 Channel impedance Z as a function of time for different RFID programming voltages 
VC. At time = 0, the sensor has been exposed to X-ray (30 mGy s-1) for the indicated amount of 
time, leading to an order-of-magnitude decrease in Z and switching the RFID status. The amount 
of exposing time needed to achieve the switch depends on the programmed VC. b) Threshold dose 
necessary to switch RFID status as a function of VC. 
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5.3. Gamma-ray detection 
 

AOS TFTs have been investigated also under γ sources of Cd109 and Cs137 at the 

Istituto Nazionale di Astrofisica (INAF, CNR Bologna). The experimental setup 

and the activity of the sources have been described in Section 3.7.3 while the sensor 

characterization followed the same procedure illustrated in the previous section. In 

particular, in this case the fast transfer characteristic has been acquired every five 

minutes. 

Figure 5.107 shows the preliminary results about the threshold voltage shift caused 

by the absorption of gamma rays produced by (a) Cd109 and (b) Cs137 during twenty-

five minutes of exposure. The clear shift of Vth towards negative values indicates 

that also in this range of energies the sensor is sensible and the RADFET effect is 

effective. 

These represent only a proof of concept showing the potentiality of this class of 

sensors in order to be implemented also as gamma ray detectors but for a deeper 

and more quantitative interpretation of the results, further measurements are 

needed. 
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Figure 5.107 Threshold voltage as a function of time during the exposure of the sensor to gamma 
rays produced by (a) Cd109 and (b) Cs137 sources kept at 1 cm from the TFT. The yellow boxes 
indicate the time interval during which the sample has been exposed (i.e. 25 minutes). 

 

 

 

 



Conclusions 
 

 
In this thesis I researched and demonstrated the potential of thin film devices based 

on organic semiconductors and high mobility metal oxides to be employed as 

flexible and large area solid state ionizing radiation detectors. Both these classes of 

materials offer the possibility to be deposited by low cost and low temperature 

processes directly onto large area thin polymeric foils. It is shown and assessed how 

they are able to provide a reliable real-time detection of X-rays, gamma-rays and 

protons operating at very low voltages and in ambient conditions. 

Ionizing radiation detectors based on organic semiconductors offer a unique 

property which is related to their chemical composition: the low-Z elements forming 

these materials render them human-tissue equivalent in terms of radiation 

absorption. This feature is very appealing for the development of sensing platforms 

for the direct and in-situ monitoring of dose delivery during medical diagnostic 

exams and radiation-based therapies. On the other side, this aspect makes the 

detection challenging because of the poor absorption of high energy radiation. In 

this work, I demonstrated several pathways to be implemented in order to boost 

the efficiency of these sensors maintaining the thin films architecture and thus the 

mechanical flexibility of the system. First, I demonstrated how, by exploiting the 

transistor structure it is possible to tune the detection response of the sensors acting 

on the polarization conditions. Second, a deep study of the mechanism of 

interaction between the X-rays and the organic semiconductors has been carried 

out to understand, model and control the photoconductive gain phenomenon which 
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rules the response of this class of sensors. Therefore, I analyzed and controlled the 

role of the active traps responsible for the amplification of the radiation induced 

signal. To this aim I investigated the impact of the grain boundaries present in 

organic semiconducting thin films and the impact of the organic 

semiconductor/dielectric interfaces. I exploited another unique property offered by 

organic materials which is the ease of tailoring of the molecular structure by 

chemical processes. This aspect leads to the possibility of introducing high-Z 

elements directly in the organic small molecule, thus s increasing the cross section 

of interaction between the high energy photons and the active layer of the sensors. 

Following this idea, I demonstrated the enhancement of the sensitivity to radiation 

due to the employment of novel synthetized organic small molecules where the 

silicon atoms have been substituted by germanium ones. The role and the impact 

of the charge transport properties of the electronic devices on their sensing 

capability has been studied. I demonstrated that the blending of the organic 

semiconductors with an insulating polymer (i.e. polystyrene) passivates hole traps 

at the interface with the dielectric layer, leading to an improvement of the electrical 

mobility of the transistors. This feature provided an increased charge collection 

which, in turn, provoked an enhancement of the sensors’ sensitivities. Finally, 

exploiting an innovative deposition technique from solution (i.e. Pneumatic Nozzle 

Printing) performed at the Columbia University, it has been possible to fabricate 

highly performing detectors. This technique allows to deposit the organic 

semiconductors in a highly controlled way obtaining very aligned and very well 

packed microcrystalline structures.  

Combining all these strategies I reached the record sensitivity values among the 

direct ionizing radiation detectors based on organic semiconductors both for rigid 

(S= 1.3·104 µC Gy-1cm-2) and flexible (S= 7.1·102 µC Gy-1cm-2) substrates. These 
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performances are comparable or even higher than the results reported in the 

literature for direct hybrid radiation detectors based on thin and thick layers of 

perovskites, another class of very promising semiconducting materials for 

photovoltaics and radiation detection devices. 

The promising performances demonstrated by this novel class of direct ionizing 

radiation detectors have been assessed in actual medical environments. In 

particular, in this thesis I report the results achieved testing real X-rays sources 

employed in the field of dental radiography. Here, the detectors are typically 

irradiated by very short pulses of radiation (i.e. 100 ms) at the typical doses 

employed during this kind of diagnostic exams (i.e. few tens of µGy) and the 

detectors fabricated and characterized in this research work responded linearly with 

the increase of the radiation dose. 

Organic semiconducting-based devices have been tested also for the detection of 

proton beams (5 MeV and 70 MeV) These values are of interest for proton therapy 

applications, the lower energy corresponding to the typical energy of the end of 

range of the accelerated ions while the latter is the energy of the primary beam. 

Ionizing radiation detectors based on organic semiconductors demonstrated to 

properly operate both as real-time and as integrator dosimeter, exploiting the 

coupling of the device with the plastic substrate.  

Ionizing radiation detectors based on metal oxides have been fabricated and 

characterized, following a novel device concept and geometry, that we labeled 

ROXFET (radiation-sensitive oxide semiconductor Field Effect Transistor) and 

that overcomes the main drawbacks of the standard RADFET (radiation-sensitive 

Field Effect Transistor) sensors. In fact, by employing the amorphous high mobility 

oxide semiconductors (i.e. a-IGZO) instead of silicon in the CMOS technology it 
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has been possible to fabricate flexible devices scalable onto large area, still keeping 

excellent performances in terms of transport properties. On the other side, the 

implementation of a stacked multilayer dielectric formed by SiO2 and Ta2O5 allowed 

to improve the absorption rate of the high energy photons leading to an 

outperforming sensitivity S = (3.4 ± 0.2) V Gy-1, one order of magnitude higher 

than the typical value reported for the standard CMOS RADFETs. A proof of 

principle for the detection of gamma-rays by this class of sensors has been provided. 

This ROXFET sensing concept offers the additional possibility of coupling the 

detector with a wireless readout system based on a passive RFID chip, very 

interesting for a fully passive monitoring of received radiation dose.  
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