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Chapter 1

Introduction

This work presents the greater part of the research I have carried out in Ph.D. course
concerning Visual Servoing and its strictly connected disciplines like projective geometry,
image processing, robotics and non-linear control. From this point of view Visual Servo-
ing represents a many-sided research field where different subjects meet together trying to
create more “intelligent” systems. Visual Servoing, on the other side, is one of the branch
of the wider environment known in literature as Sensor Based Control: in this discipline
the measurements provided by “sensors” make up all the necessary informations needed
to drive the controlled dynamical systems to the desired configuration.
In Visual Servoing, more specifically, digital cameras play the main rule: that is why nowa-
days, thank to the outstanding improvements of camera hardware performances (both in
terms of computational time and of image resolution), vision based control has become a
challenging research topic for the international scientific community.
This thesis addresses the problem to control a robotic manipulator through one of the
largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Im-
age Based Visual Servoing the robot is driven by on-line performing a feedback control
loop that is closed directly in the 2D space of the camera sensor. The work considers the
case of a monocular system with the only camera mounted on the robot end effector (eye
in hand configuration). Through IBVS the system can be positioned with respect to a
3D fixed target by minimizing the differences between its initial view and its goal view,
corresponding respectively to the initial and the goal system configurations: the robot
Cartesian Motion is thus generated only by means of visual informations.
IBVS has received great attention from researchers because it ensures stability and con-
vergence even in the presence of modelling [ECR92] and calibration errors [Esp93]. The
convergence properties can be improved by using adaptive schemes devoted to estimate
on line some of the extrinsic parameters (usually depths) appearing in the image control
law [CA01, DFD03].
However, the execution of a positioning control task by IBVS is not straightforward be-
cause singularity problems may occur and local minima may be reached where the reached
image is very close to the target one but the 3D positioning task is far from being fulfilled
[Cha99]: this happens in particular for large camera displacements, when the the initial
and the goal target views are noticeably different.
To overcame singularity and local minima drawbacks, maintaining the good properties of
IBVS robustness with respect to modeling and camera calibration errors, an opportune
image path planning can be exploited [MC02]. This work deals with the problem of gener-
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Chapter 1. Introduction 2

ating opportune image plane trajectories for tracked points of the servoing control scheme
(a trajectory is made of a path plus a time law). The generated image plane paths must
be feasible i.e. they must be compliant with rigid body motion of the camera with respect
to the object so as to avoid image jacobian singularities and local minima problems. In
addition, the image planned trajectories must generate camera velocity screws which are
smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion
planning algorithm can be devised in order to generate feasible image plane trajectories.
Since the paths in the image are off-line generated it is also possible to tune the planning
parameters so as to maintain the target inside the camera field of view even if, in some
unfortunate cases, the feature target points would leave the camera images due to 3D
robot motions. The thesis is structured as follow:

• Chapter II describes all the fundamental notions concerning projective geometry,
camera models, and two views geometry. First the basic primitives of P2 and P3

projective spaces are presented as well as the projective transformations; then the
digital image is introduced and the most important geometric models for digital
cameras are addressed.

• Chapter III presents some useful relation concerning two-view Geometry: the plan-
parallax equation is presented together with the Planar Pixel Homography and
the corresponding Euclidean Homography between two views. Finally the Structure
from Motion problem from two calibrated views is solved both for planar and for
general 3D targets. The results of this chapter will be widely exploited in the control
planning strategy.

• In Chapter IV Visual Servoing control is addressed, focusing on Image Based Visual
Servoing approach with points as visual features. The chapter explains in detail also
the image path planning strategy that has been developed so as to increase the
control performances also in presence of large camera displacements and to avoid
singularity and local minima problems.

• Chapter V presents an extension of the presented planning and control schemes to
3D non planar targets modeled through a pair of coaxial circles plus one point,
like for instance axial symmetric objects. Moreover in this case full calibration data
(fixed internal parameters) are obtained from two views, resulting in a self-calibrated
approach. Calibration results are then used to recover Euclidean target structure
and camera relative pose.

• Chapter VI reports several results concerning both simulation analysis and real robot
experiments. To first test the validity of the proposed approach some simulations
have been performed: for the axial symmetric target case, to check for the influence
of noise in the path planning approach, a dedicated analysis has also been realized .
Several experiments have been realized with a 6DOF anthropomorphic manipulator
with a fire-wire camera installed on its end effector: the results demonstrate the good
performances and the feasibility of the proposed approach.

• Finally in Chapter VII conclusions and future key points are discussed.



Chapter 2

Projective Geometry

Before to address the control issues typical of Image Based Visual Servoing, it is
essential to master some basics notions of Projective Geometry; this subject indeed, among
various items, investigates the relations between 3D entities and its image projections,
building up a formalism to model images, camera sensor and 3D world both from an
algebraic and a geometrical point of view. In this sense Projective Geometry represents
a precious background to develop control schemes based on image informations. This
chapter introduces some topics that will be useful to understand the following part of the
work, focusing the attention on image-primitives, camera models and two-view geometry.

2.1 The 2D projective plane
The basic ideas of planar geometry are familiar to anyone who have studied mathema-

tics even at elementary level. In fact, they are so much a part of our everyday experience
that we take them for granted: we’ll show in the sequel that what seem to be granted
probably could be not. Le be a point in the plane to be represented by the couple of
coordinates x, y embedded in the column vector x = (x, y)T ∈ R2×1: thus is common to
identify the plane with R2. In this section we introduce the homogeneous notations for
points, lines and conics as primitives of the plane.

2.1.1 Homogeneous representation of lines

A line in the plane can be represented by the homogeneous equation:

ax+ by + c = 0 (2.1)

where different choices for the a, b and c coefficients give rise to different lines. A line can
thus be naturally represented by the non-minimal parameterization of the vector (a, b, c)T

∈ R3×1. The correspondence between lines and vectors is not one to one since the lines
ax+ by + c = 0 and (ka)x+ (kb)y + (kc) = 0 are the same, for any non zero constant k.
For this reason, in Projective Geometry, two vectors that differ just for a scaling factor k
are considered equivalent. From the previous statement is clear that any vector (a, b, c)T

is a representative of an equivalence class.
The set of equivalence classes of vector ∈ R3×1 − (0, 0, 0)T form the projective space P2×1.
As previous pointed the vector (0, 0, 0)T , which not correspond to any line, is excluded.

3



Chapter 2. Projective Geometry 4

2.1.2 Homogeneous representation of points

A point x = (x, y)T lies on the line l = (a, b, c)T if and only if ax + bx + c = 0. This
can be also rewritten using the inner product as:

(x, y, 1)(a, b, c)T = (x, y, 1)l = 0 ; (2.2)

by this way the point (x, y)T ∈ R3×1 is represented by a vector ∈ R3×1 by adding the final
coordinate of 1. Note that for any non-zero constant k and line l we have (kx, ky, k)l = 0
if and only if (x, y, 1)l = 0. The set of vector (kx, ky, k) for varying values of k can thus be
considered as the representation of the point (x, y)T ∈ R3×1. As with the lines also points
are represented by homogeneous vectors. An arbitrary homogeneous vector representative
of a point is of the form x = (x1, x2, x3)

T , representing the point (x1/x3, x2/x3)
T ∈ R2×1

in inhomogeneous coordinates. Points, then, as homogeneous vector are also elements of
P2×1. To determine if a point belong to a line one has the following simple result:

Theorem 2.1.2.1. The point x lies on the line l if and only if xT l = 0.

Note that 2 independent parameters are sufficient to represent both points and lines,
respectively the x, y and the ratios a/b, b/c: they thus have 2 degrees of freedom.
Given the lines l = (a, b, c)T and l

′
= (a

′
, b

′
, c

′
)T define the vector x = l ∧ l

′
, where ∧

represents the vector or cross product. From the identity lT (l ∧ l
′
) = l

′ T (l ∧ l
′
) = 0 is

clear that lTx = l
′ Tx = 0. Thus if x is the representation of a point, it lies both on lines

l and l
′
; this shows:

Theorem 2.1.2.2. The intersection of two lines l and l
′
is the point x = (l ∧ l

′
).

With an analogous demonstration one can also verify that:

Theorem 2.1.2.3. The line through two points x and x
′ is l = (x ∧ x

′
).

2.1.3 Conics

A conic is a curve described by a second-degree equation in the plane; in Euclidean
geometry conics are of three main types: hyperbola, ellipse an parabola (apart from the
so-called degenerate conics). Conics can be obtained by the intersection between a cone
and a plane in different orientation (degenerate conics arise from plane containing the
cone vertex). The inhomogeneous representation of a conic is:

ax2 + bxy + cy2 + dx+ ey + f = 0 . (2.3)

By replacing x 7→ x1/x3 and y 7→ x2/x3 one find :

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0 (2.4)

or in matrix form
xTCx = 0 , (2.5)
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where C is the following symmetric matrix:

C =

 a b/2 d/2

b/2 c e/2

d/2 e/2 f

 . (2.6)

As for homogeneous representation of points and lines, only the ratios of the coefficients
matrix elements are important, since multiplying C by a non zero scalar does not affect
the above equation: thus C is the homogeneous representation of a conic. C has only 5
degrees of freedom that can be thought as its 6 coefficients less one for scale.

Theorem 2.1.3.1. The line l tangent to C at a point x on C is given by l = Cx.

The line defined by l = Cx passes through x, since lTx = xTCx = 0. If l has one-
point contact with the conic, then it is tangent and the above is proved; otherwise suppose
that l meets the conic in another point y. Then yTCy = 0 and xTCy = lTy = 0. From
this it follow that (x + αy)TC(x + αy) = 0 for all α, which means that the whole line
l = Cx joining x and y lies on the conic C, which is therefore degenerate.
A point x and a conic C define the line l = Cx: the line l is called polar of x with respect
to C, and the point x is the pole of l with respect to C.

Theorem 2.1.3.2. The polar line l = Cx of the point x with respect to a conic C
intersects the conic in two points. The two lines tangent to C at these points intersect at
x.

To proof this theorem consider a point y on C. The tangent line at y is Cy, and
this line contains x is xTCy = 0. Using the symmetry of C, the condition xTCy =
(Cx)Ty = 0 is that the point y lies on the line Cx. Thus the polar line Cx intersects
the conic in the point y at which the tangent line contains x. As the point x approaches
the conic the tangent line become closer to collinear, and the contact point on the conic
also become closer. In the limit that x lies on C we have:

Theorem 2.1.3.3. If the point x is on C then the polar is the tangent line to the conic
at x.

2.1.4 Ideal points and line at infinite

Homogeneous vector x = (x1, x2, x3)
T with x3 6= 0 corresponds to finite points in the

Cartesian plane represented by R2×1. One may augment R2×1 by adding points with last
coordinate x3 = 0. The resulting space is the set of all homogeneous vector, the projective
plane P2×1. The points with last coordinate x3 = 0 are known as ideal points or points at
infinite: all these points can be written as (x1, x2, 0)T , with a particular point specified by
the ratio x1 : x2. Note that this set lies on a single line, the line at infinite, defined by the
vector l∞ = (0, 0, 1)T : indeed one can verify (0, 0, 1)(x1, x2, 0)T = 0. The line l = (a, b, c)T

intersects l∞ in the ideal point (b,−a, 0)T , as one can verify by using theorem (2.1.2.2).
A line l

′
= (a, b, c

′
)T parallel to l intersects l∞ in the same ideal point (b,−a, 0)T for any

value c′ : this observation agrees with the usual idea that parallel line meet at infinite.
In inhomogeneous notation (b,−a)T is a vector tangent to the line and orthogonal to the
line normal (a, b), thus representing the line directions. As the line direction varies, the
ideal point (b,−a, 0)T varies over l∞: for this reason l∞ can be thought of as the set of
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directions of lines in the plane.
The introduction of the points at infinite is useful to simplify the intersection properties
of points and lines. In the projective space P2×1 one may state without qualification that
two distinct line meet in a single point and two distinct points define a single line. This
is not true in the Euclidean geometry of R2×1 in which parallel line form a special case.

2.1.4.1 The circular Points

The circular points also called absolute points are a pair of complex conjugate points
on l∞ denoted as I, J , with the following canonical coordinates

I =

 1

i

0

 J =

 1

−i
0

 . (2.7)

The name “circular points” arises because every circle intersects l∞ at the circular points.
To verify it consider the homogeneous representation of a circle, derived from equation
(2.4) setting a = c and b = 0:

x2
1 + x2

2 + dx1x3 + ex2x3 + fx2
3 = 0 ,

where a has been set to unity. This conic intersects l∞ in the ideal points for which x3 = 0,
namely

x2
1 + x2

2 = 0

with solution I = (1, i, 0)T and J = (1,−i, 0)T : thus any circle intersects l∞the circular
points.

2.1.5 A model for the projective plane

The projective plane P2×1 can be though as the set of rays in R3×1 as shown in figure
(2.1). The set of all vectors k(x1, x2, x3)

T as k varies forms a ray through the origin: this
ray may be thought of as representing as a single point of P2×1. The I In this model, the

Figure 2.1: A model fro the projective plane P2×1.

lines of P2×1 are planes passing through the origin. One verifies that two non-identical
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rays lies on exactly one plane, and two planes intersect in one ray in analogy respectively
with points and lines of P2×1. Points and lines may be obtained by intersecting this set of
rays and planes with the plane x3 = 1.The rays representing ideal points are parallel to
the plane x3 = 1 and form the plane representing l∞.

2.1.6 Projective Transformations

A transformation of the projective plane is named projectivity and represents a map-
ping from points in P2×1 to points in P2×1 that maps lines to lines (see figure 2.2).

Definition 1. A projectivity is an invertible mapping h from P2×1 to itself such that
three points x1, x2 and x3 lie on the same line if and only if g(x1), g(x2) and g(x3) do.

Projectivity form a group since both the inverse and the composition of projectivities
are projectivities. A projectivity can be also named as collineation or homography (the
terms are synonymous). In the previous definition a projectivity is defined in terms of
a coordinate-free geometry.An equivalent algebraic definitions of projectivity is possible
thanks to the following results:

Theorem 2.1.6.1. A mapping g : P2×1 → P2×1 is a projectivity if and only if there exists
a non-singiular 3× 3 matrix G such that for any point in P2×1, represented by a vector x
it is true that h(x) = Gx.

To prove this theorem let be x1, x2 and x3 lie on a line l. Thus lTxi = 0 for i =
1, ... , 3. Let G be a non singular matrix ∈ R3×3. It is easy to verify that lTG−1Gxi = 0.
Thus the points Gxi all lies on the line G−T l, and collinearity is preserved by the transfor-
mation. The converse is much harder to prove, namely that each projectivity arise in this
way. A projectivity can thus be considered as a linear mapping of homogeneous coordi-

x

O

x’

x

y x’

y’

immagine 1 immagine 2

piano oggetto

R,T

a) b)

Figure 2.2: a) The two images generated by the rays of a central projection model are linked
by a projectivity. b) The images generated by the combination of two central projection
models via a plane are linked by a projectivity.

nates. Thanks to the theorem (2.1.6.1) it is possible to define a projective transformation
as follows.
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Definition 2. A planar projective transformation is a linear transformation on ho-
mogeneous 3-vectors represented by a non singular 3× 3 matrix: x

′
1

x
′
2

x
′
3

 =

 g11 g12 g13

g21 g22 g23

g31 g32 g33


 x1

x2

x3

 , (2.8)

that is x
′
= Gx.

The matrix G defined in the previous equation may be changed by a multiplication by
an arbitrary non-zero scalar factor without altering the projective transformation: G is
thus an homogeneous matrix since, as for the representation of point and line in P2×1, only
the ratio of the matrix elements are significant. There are eight independent ratio among
the nine elements of G, and it follows that a projectivity has eight degrees of freedom.

2.1.6.1 Transformation of lines

It has been shown in the proof of theorem (2.1.6.1) that if point xi lies on a line l, the
transformed point x

′
i = Gxi under an homography lies on the line l

′
= G−T l. In this

way incidence of points on lines is preserved, since l
′ Tx

′
i = lTG−1Gxi = 0. This gives

the transformation rule for lines:

Theorem 2.1.6.2. Under a point transformation x
′

= Gx, a line transforms as
l
′
= G−T l.

One may alternatively write l
′ T = lTG−1. Note the fundamentally different way in

which points and lines transform. Points transforms according to G (namely contravari-
antly) while line according to G−1 (namely covariantly).

2.1.6.2 Transformation of conics

Under a point transformation x
′

= Gx the conic equation (2.5) becomes

xTCx = x
′ T [G−1]TCG−1x

′

= x
′ TG−TCG−1x

′
,

which is a quadratic form x
′ TC

′
x
′ with C

′
= G−TCG−1. This gives the transformation

rule for a conic:

Theorem 2.1.6.3. Under a point transformation x
′

= Gx, a conic C transforms to
C

′
= G−TCG−1.

The presence of G−1 in the theorem may be expressed by saying that a conic transforms
covariantly.

2.2 The 3D projective space
Let now outline some fundamental properties and entities of the projective 3-space,

named P3×1. Most of these are a straightforward generalizations of those of the projective
plane described in the previous section and will be useful for the development of the work.
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2.2.1 Points

A point in 3-space is represented in homogeneous coordinate as a 4-vector. More
precisely the homogeneous vector x = (x1, x2, x3, x4)

T with x4 6= 0 represents the point
(x, y, z)T of R3×1 with inhomogeneous coordinates

x =
x1

x4

, y =
x2

x4

, z =
x3

x4

, .

Homogeneous points with x4 = 0 represents points at infinity.

2.2.2 Planes

A plane in 3-space may be written as

π1x+ π2y + π3z + π4 = 0 . (2.9)

Clearly this equation is unaffected by multiplication by a non-zero scalar, so only the
three independent ratios {π1 : π2 : π3 : π4} of the plane coefficients are significant. It
follows that a plane has 3 degrees of freedom in 3-space. The homogeneous representation
of a plane is the 4-vector π = (π1, π2, π3, π4)

T . The first 3 components of π correspond to
the plane normal n wile (π4/||n||) is the signed distance of the plane from the origin.
Rearranging equation (2.9) in homogeneous form by substituting x 7→ x1/x4, y 7→ x2/x4

and z 7→ x3/x4, we have the following expression:

π1x1 + π2x2 + π3x3 + π4x4 = 0

ore more briefly
πTx = 0 (2.10)

which express that the point x belong to the plane π.

2.2.3 The Plane at infinite

In the geometry of projective 3-space P3×1 the corresponding entity of the line at
infinite l∞, presented in subsection (2.1.4), is the plane at infinite π∞.
The plane at infinite has its canonical position expressed by π∞ = (0, 0, 0, 1)T in the affine
3-space. π∞ contains all the points at infinite of P3×1 (all the directions) of coordinates
d∞ = (x1, x2, x3, 0)T . π∞ enables the identification of affine properties such as parallelism
from a 3D perspective reconstruction. We have indeed that:

• Two planes are parallel if, and only if, their line of intersection is on π∞.

• A line is parallel to another line, or to a plane, if their point of intersection is on
π∞.

We then have that in P3×1 any pair of planes intersect in a line, with parallel planes
intersecting in a line belonging to the plane at infinite.
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2.2.4 The absolute conic

The corresponding entities of circular points I and I, defined in subsection (2.1.4),
in the projective geometry of P3×1 is the absolute conic Ω∞. The absolute conic is a
degenerate point conic on plane at infinite π∞ defined by the following equations:{

x2
1 + x2

2 + x2
3 = 0

x4 = 0
. (2.11)

Note that two equation are necessary to define Ω∞.
For directions on π∞ (that are points with x4 = 0) the defining equation can be written

(x1, x2, x3)I(x1, x2, x3)
T = 0

so that Ω∞ correspond to a conic C with matrix C = I. Ω∞ is thus a conic of purely
imaginary points on π∞. Even though Ω∞ does not have any real points, it shares prop-
erties of any conic such as that a line intersects a conic in two points; the pole-polar
relationship and etc. Here are few particular properties of Ω∞:

• All circles intersect Ω∞ in two points. Suppose that the support plane of the circle
is π. Then π. intersect π∞ in a line, and this line intersects Ω∞ into two points.
These two points are the circular points of π.

• All spheres intersects π∞ in Ω∞.

2.3 Image and Camera Devices
This section presents the image concept and the basic working principle of the most

commonly used digital camera sensor: these themes are of great importance dealing with
vision based control.

2.3.1 Image and Picture

A practical definition of image can be the following:

Definition 3. An Image is a measured physical quantity as function of position.

Radiation intensity (X-ray, UV, visible and IR), acoustical wave and surface depth
measurements as function or the position are common image examples. Among differ-
ent image types Two-dimensional Images I2 represent a measured physical quantity (i.e.
the light brightness) in a compact region Ω2 of a two dimensional space while Three-
dimensional Images I3 (i.e. the computerized tomography or the magnetic resonance
imaging) map a compact portion Ω3 of a three dimensional space in the measurement
space. From a closer analytical point of view, two and three dimensional images can be
respectively defined as follows:

I2 : Ω2 ⊂ R2 → R+; (x, y) 7→ I2(x, y)

I3 : Ω3 ⊂ R3 → R+; (x, y, z) 7→ I3(x, y, z) ,
(2.12)



Chapter 2. Projective Geometry 11

where we have considered the image measurement range R+ mono-dimensional. For in-
stance, in case of a camera, Ω2 is planar, rectangular region occupied by the photographic
medium or by the CCD sensor. In case of a digital image, both the domain ω2 and the range
R+ are discretized. For instance, Ω2 = [1, 640] × [1, 480] ⊂ Z2 and R+ is approximated
by an interval of integers [0, 255] ⊂ Z+. The graphical representation of the analytical
function I, representing the image, do not seem very indicative of the properties of the
scene it embeds. A different representation of the same image that is better suited for
interpretation by the human visual system is obtained by generating a picture (i.e. by
plotting a photos from image I).
Definition 4. A picture can be thought of as a scene different from the true one that
produces on the imaging sensor (the eye in this case) the same image as the true one.

In this sense pictures are “controlled illusions”: they are scenes different from the true
one (they are flat) that produce in the eye the same image as the original scenes (but
they contain exactly the same informations of the original images).
In order to describe image formation process through a two-dimensional camera sensor,
we must specify the value of I2(x, y) at each point (x, y) in Ω2. Such a value I2(x, y) is
typically called image intensity or brightness, or more formally irradiance. It has the units
of power per unit area (W/m2) and describes the energy falling onto a small patch of the
imaging sensor. The irradiance at a point of coordinates (x, y) is obtained by integrating
power both in time (i.e., the shutter interval in a camera or the integration time in a CCD
array) and in a region of space. The region of space that contributes to the irradiance at
(x, y) depends upon the shape of the object (surface) of interest, the optics of the imaging
device, and it is by no means trivial to determine.

2.3.2 Digital Image

As mentioned above, to treat an image with a computer we need to convert the con-
tinuous image I2 of equation (2.12) in its digital representation: digital cameras perform
this operation leading to the formation of the digital image:
Definition 5. A digital image, whatever its type, is represented by a matrix of numbers.

The exact correspondence between the digital image and physical 3D world is de-
termined by the acquisition process that depends on the adopted camera sensor: all the
informations that can be retrieved from a digital image (such as shapes, distances and
objects identifications) have to be extracted from the matrix of number encoding them.
Each entry of the matrix representing the digital image is called image pixel. Larger the
size of the number matrix, bigger will be the image resolution (corresponding to the total
pixel number) and the memory requested to store the digital image in a computer.
Digital images can be subdivided in two main groups: mono-channel images and multi-
channel images. Among the mono-channel images the most used types in computer vision
are:

• the Binary image, also known as bilevel image, where each pixel can assume only
two discrete values, 0 and 1, corresponding respectively to black and white color
levels, thus requiring a very limited memory space to be stored;

• the Grayscale image, also known as intensity image, where each pixel can assume an
integer value ranging from 1 to 256 (or from 0 to 255 adopting the zero convention)
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representing as the name suggests a scale of grays from black (1) to white (256): in
such image each pixel occupies 8 − bits of memory (generally speaking it is called
indeed 8-bit images);

• the Indexed images where each pixel assumes an integer value that is codified in a
color by a predefined colormap (the pixel value is a pointer to a precise element of
the colormap).

In multi-channel images instead each pixel is associated with more than one value: such
images are thus represented by a multidimensional matrix where the first two dimension
(row and column indexes) represent the pixel position and the other dimensions (remaining
indexes) represents the image channels. Among the multichannel images we recall:

• the Truecolor image, also known as RGB image, that are three channels images (thus
coded by a matrix ∈ Zm×n×3) where each pixel is associated with three integers
numbers all ranging from 1 to 256 respectively corresponding to the three primary
color level of the red green and blue (also different colorimetric spaces can be used
like HSV lett. hue-saturation-value);

• the Multispectral Images where each pixel is associated with more than three channel
(i.e. R,G,B channel plus infra-red IR and ultraviolet UV channels) largely used in
photogrammetry and in satellite images (where also 16 channels per pixel can be
reached!.

Usually a digital image file, further on embedding the pixel matrix, contains also some
general data (such as the capture time and date of the image) called metadata.
In this thesis we’ll be interested more in grayscale and truecolor images that are the
standard output of digital camera sensor adopted in visual servoing systems.

2.3.3 CCD and CMOS cameras

A Digital camera camera is a sensor mapping the continuous 3D space in a time and
space sampled 2D image. This sensor is a complex system embedding various devices;
from a simplified point of view it can be thought as formed by three main components:

• a lens (camera optical system) used to “direct” light (that is to control the change in
the direction of light propagation). This can be performed by means of diffraction,
refraction an reflection. By the optical system indeed light rays coming from 3D
space are directed to converge in a focus, the optical center ;

• a sensor placed near the camera optical center measuring the light intensity on its
surface and storing it in some memory registers; to measure the light reflected from
the 3D scene, the sensor is formed by matrix of small photosensitive elements, the
sensor pixels, able to transform the light radiation power in electrical energy;

• a electronic device, called frame grabber, used to build the digital images (sensor
video stream) and to send it with the desired time step (the camera frame rate) to
the computer.
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Today several types of sensors are available: they differs in the physical principle used
to transform light radiation power.The most commonly used are the CCD and CMOS
sensors: both two exploit the photoelectric effect of semiconductors. Now it is clear that
the CCD and CMOS sensor perform a spatial image sampling while the frame grabber
behaves as time sampler.

2.3.3.1 CCD

A CCD (Charge Coupled Device) sensor is composed by a rectangular pixel matrix.
The total pixel number determine the image resolution. By means of the photoelectric
effect, when the light photon hits the semiconductor, some free electrons are created
so that each pixel stores an electric charge depending on the time integral of the light
intensity incident in the pixel itself. Such electric charge is passed by a shift device (like
an analog shift register) to an output amplifier while, at the same time, the pixel runs
down. The output signal is further on processed to generate the final video stream. CCD
sensor are the commonly used both in professional camera and in low cost webcam.
A drawback of CCD sensor is the overflow effect : this effect arises when the electrons from
a saturated pixel overflow on the neighbouring pixels thus falsifying their color levels: this
effect provokes a blurring in the overflow zone of the image. The key parameters to describe
a CCD sensor are the following:

• size with an order of magnitude of about 1cm;

• resolution usually of (320× 240) or (640× 480) pixels for the cheaper cameras; for
expensive digital cameras higher resolution are reached (i.e. 2048× 1536);

• pixel size with an order of magnitude of about 1µm

• pixel capacity having an order of magnitude of about 700 electrons for a µm2;

• filling factor. It is the ratio between the active area of the sensor (occupied by pixels)
and the overall area;

• absolute sensitivity defined as the smallest detectable light intensity level higher
than the background noise;

• relative sensitivity defined as the smallest detectable increment of light intensity.

As any real sensor also CCD is subjected to various sources of noise:

• the photon noise due to the particle nature of light; photon noise is always present
and can be described as a white noise;

• the quantization noise due to the discretization of the continuous light intensity
signal;

• the thermic noise; this noise source becomes relevant at the increasing of the CCD
working temperature.
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2.3.3.2 CMOS

A CMOS sensor (Complementary Metal Oxide Semiconductor) is composed by a rect-
angular matrix of photodiodes (the CMOS pixels defining image resolution). The junction
of each photodiode is preloaded and is unloaded every time it is hit by photons. An inte-
grated amplifier in each pixel is able to transform the photon charge in a precise current
or voltage level. The main difference with the CCD sensor is that CMOS pixels don’t
perform time integration: after their activation indeed CMOS pixels measure the photons
quantity of and not the photon volume. By this way CMOS sensor solves the overflow
effect typical of CCD. However CMOS sensor are more expensive of CCD and for this
reason are not so widely used.

2.4 A Hierarchy of Camera Models
This section introduces the most used mathematical models of image formation process

through a camera sensor. Since cameras are the key sensors of a visual servoing system,
to develop suitable geometrical model for image projection, according to both system
specifications and image sensor features, is essential for the designing strategy of the
control architecture. The level of abstraction and complexity in modeling image formation
must trade off physical constraints and mathematical simplicity in order to result in a
manageable camera model, one that can be inverted with reasonable effort. The section
describes a hierarchy of geometrical camera models useful for vision systems.

2.4.1 The thin lens model

The simplest possible model of light propagation through a lens is the one of the thin
lens : it is defined by an axis, called the optical axis, and a plane perpendicular to the axis,
called focal plane, with a circular aperture centered in the optical center (the intersection
of the focal plan with the optical axis), as shown in figure (2.3). The thin lens has two
parameters: its focal length f and its diameter d. Its propagation model for the light is
characterized by two properties:

• all rays entering the aperture parallel to the optical axis intersect on the optical axis
at a distance f from the optical center; the point of intersection is called focus of
the lens;

• all rays passing through the optical center remain undeflected.

Consider a point X ∈ R3×1 not too far from the optical axis at a distance Z from the
focal plane. Now direct two rays from the point X: one parallel to the optical axis and
one through the optical center. The first one intersects the optical axis at the focus while
the second remains undeflected. Call x the point where the two rays intersect and let be z
its distance from the focal plane. By decomposing any other ray from P into a component
ray parallel to optical axis and one through the optical center, we can easily see that all
rays from X intersect at x in the opposite side of the lens. Let be respectively H and
h the distances of X and x from the optical axis; exploiting the properties of similar
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Figure 2.3: The thin lens model.

triangles we have: 
H+h
Z+z

= h
z

.
H
h

= f
z−f

(2.13)

Injecting the second equation of (2.13) in the first by making H
h

explicit, it is possible to
obtain the fundamental equation of the thin lens :

1

Z
+

1

z
=

1

f
. (2.14)

The point x will be called the projection or simply the “image” of X : be careful to don’t
confuse x with the irradiance I(x) defined before.

2.4.2 Basic pinhole camera

If we let the aperture of a thin lens decrease to zero, all rays are forced to go through
the optical center o, and therefore remain undeflected. In such a configuration only the
points that contribute to the irradiance at image point x = [x y]T are on a line through
the center o of the lens. Let be X = [XY Z]T a 3D point relative to a reference frame C,
centered at the optical center o, with its z-axis being the lens optical axis pointing to the
scene, defined as camera frame. It is immediate to see from triangles similitude that the
coordinates of X and of its corresponding image x on the image plane are related by the
so called central perspective projection:

x = −f X
Z
, y = −f Y

Z
, (2.15)

where f is referred as focal length. Simply we write that the projection is a map η:

η : R3×1 → R2×1; X 7→ x . (2.16)

We also often write x = η(X). Notice that any other point on the same ray through
o and X projects onto the same image point x = [x y]T . This imaging model is called
pinhole camera model. It is an idealization of the thin lens model since, when lens aperture
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decreases, diffractions effect become dominant and so the purely refractive thin lens model
do not hold. Furthermore as lens aperture decreases to zero, the energy going through the
lens also becomes zero. Although it is possible to actually build devices that approximate
pinhole cameras, this model is just an simplification of a well-focused imaging system. The
negative sign present in equation (2.15) make the image of an object to appear upside
down on the image plane (also called retina). To eliminate this effect, we can just flip the
image: (x, y) 7→ (−x,−y). This correspond to place the image plane (z = −f) between
the optical center and the scene (z = f) obtaining a more convenient “frontal” pinhole
camera model. In this case the relation between a point X and its image x becomes:

x = f
X

Z
, y = f

Y

Z
, (2.17)

In practice, the size of the image plane is limited, hence not every point X in the space will
generate an image inside this plane. We define field of view (FOV) the angle subtended
by the spatial size of the sensor as seen from the optical center. If 2r is the larger side of
the sensor (the base of the CCD) then the field of view is θ = 2 arctan(r/f). Since in a
classic camera a flat plane is used as the image plane, then θ is always less than 180◦. If
we use homogeneous coordinates to express image point x = [x, y, 1]T , the basic pinhole
projection model can be expressed by the composition of two linear transformation with
scaling 1/Z as follows:

x = η(γ(X)) 1
Z
⇒ x = Kf (KI X) 1

Z
= KX 1

Z
= K m̃

 x

y

1

 =

 f 0 0

0 f 0

0 0 1


 1 0 0

0 1 0

0 0 1


 X

Y

Z

 1
Z
.

(2.18)

The vector m̃ inside equation (2.18) is called normalized image point:

m̃ =

 X/Z

Y/Z

1

 =
1

Z
X ; (2.19)

it represents the image of X observed by an ideal pinhole camera with f = 1 applying
the map γ (corresponding to the identity 3 × 3 matrix KI), while Kf = diag(f, f, 1),
applies the map η and embeds the focal length of the actual camera.
The matrix K = Kf KI , defined in equation (2.18), is called intrinsic camera calibration
matrix containing all characteristic camera own parameters. The pinhole model is thus
defined by a single parameter: the focal length f (a time varying f models a zooming
camera).
The principal point, the image plane, the camera frame etc. are ideal geometric entities
modeling the camera projection mapping: they don’t refer directly to any physical camera
components.
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2.4.3 Full CCD perspective camera

The basic pinhole model is specified relative to a very particular frame C (the camera
or canonical retina frame) as defined in (2.4.2). In practice when one captures images
with a digital camera the measurements are obtained in terms of pixels (i, j), with the
origin of the image coordinate typically in the upper-left corner of the image. In order to
render usable the model of equation (2.18), we need to specify the relationship between
the image plane of the pinhole model(retinal plane) and the pixel array.
The first step consists in specifying the units along the x− and y− axes in the retinal
plane: if the pinhole image (x, y) is specified in terms of metric units (e.g. millimeters),
and (xs, ys) are scaled version corresponding to pixel coordinates, then the transformation
can be described by the scaling matrix:[

xs

ys

]
=

[
sx 0

0 sy

][
x

y

]
(2.20)

that depends on the pixel size (in metric units) along the x and y directions. When sx = sy
each pixel is square. In general they can be different and the pixel is rectangular. However
xs and ys are still specified relative to the principal point (defined as the intersection
of C z− axis and the retina plane), whereas pixel index (i, j) is conventionally specified
relative to the upper left corner, and is indicated by positive numbers. Therefore we need
to translate the origin of image plane coordinate system to this corner:{

px = xs + ox

py = ys + oy ,
(2.21)

where (ox, oy) ore the pixel coordinates of the principal point relative to the upper left
centered pixel image coordinate system. So the actual image pixel coordinates are given
in homogeneous coordinates by the vector p = [px, py, 1]T instead of the pinhole image
coordinates x = [x, y, 1]T . Considering the above steps of coordinate transformation can
be written as:

p =

 px

py

1

 =

 sx 0 ox

0 sy oy

0 0 1


 x

y

1

 , (2.22)

with px and py actual image coordinates in pixels. In the case the pixel sides are not
perpendicular a more general form for the scaling matrix can be considered:[

sx sθ

0 sy

]
∈ R2×2 ; (2.23)

sθ is called skew factor and is proportional to cot(θ) where θ is the angle between pixel
sides. The transformation matrix in (2.22) takes the general form:

Ks =

 sx sθ ox

0 sy oy

0 0 1

 ∈ R3×3 . (2.24)
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In many practical applications θ is very close to 90◦, and hence it is common to assume
that sθ = 0. Now, combining the scaling of equation (2.22) with the pinhole model of
equation (2.18), we obtain the full perspective CCD camera model :

p = σ( η( γ( X ) ) ) 1
Z
⇒ p = Ks(Kf (KI X)) 1

Z
= KX 1

Z
= Ks Kf m̃

 px

py

1

 =

 sx sθ ox

0 sy oy

0 0 1


 f 0 0

0 f 0

0 0 1


 1 0 0

0 1 0

0 0 1


 X

Y

Z

 1
Z
.

(2.25)

Notice that in this case the intrinsic camera calibration matrix K results:

Figure 2.4: The CCD camera model.

K =

 f sx f sθ ox

0 f sy oy

0 0 1

 , (2.26)

while the relation between a normalized point m̃ and a pixel point p results:

p = Km̃ . (2.27)

The entries of matrix K have the following geometric interpretation (see figure 2.4):

• ox and oy are the principal point pixel coordinates:

• f sx = αx is the focal length expressed in pixel horizontal unit;

• f sx = αy is the focal length expressed in pixel vertical unit;

• αx/αy is the aspect ratio σ;
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• f sθ is the skew parameter of the pixel often close to zero.

When K is known, we say that the system is calibrated : by inversion of equation (2.27)
is thus possible to find the normalized point coordinates from the respective pixel ones.
Furthermore it is easy to see that a normalized image point m̃ = [mx,my, 1]T represents
also the direction of the ray through the camera optical center and the 3D point X
expressed in C: calibration makes thus possible to know the direction of 3D ray from the
camera optical center.

2.4.4 CCD camera with lens distortion

In addition to the affine mapping defined by intrinsic calibration matrix K, if a cheap
camera with a wild field of view is used (like commercial web-cams), one can often observe
significant distortion in the images: 3−D straight lines appear no more straight in the im-
age but result noticeably curved. To overcome this problem, distortion has to be properly
modeled in order to compensate for it. In this thesis we will consider the distortion model
first introduced by Brown in 1966 and called “Plumb Bob” model (“radial polynomial ”
plus “thin prism” models). This model considers two distortion sources: the radial distor-
tion defined by three coefficients and the tangential distortion defined by two coefficients:
while the first arises for cameras with wide FOV, the second is due to “decentering”, or
imperfect centering of the lens components and other manufacturing defects in a com-
pound lens. Plumb Bob distortion model consists in a non linear transformation between
the normalized image point m = [mx, my]

T = [X/Z, Y/Z]T and the respective distorted
normalized image point md = [md x, md y]

T (expressed in non homogeneous coordinates);
it is defined as follows:

md = kr m + dt , (2.28)

where:

• dt is the tangential distortion vector ;

• kr is the radial distortion factor (scalar).

The scalar kr and the vector dt are defined in the following forms:
kr = 1 + c1 r

2 + c2 r
4 + c3 r

6

dt =

[
2 p1mxmy + p2 (r2 + 2m2

x)

2 p2mxmy + p1 (r2 + 2m2
y)

]
∈ R2×1 ;

(2.29)

r2 = (m2
x + m2

y) is the distance of the normalized image point from the principal point,
while (c1, c2, c3) and (p1, p2) are respectively the radial and tangential distortion coeffi-
cients. Once defined md, to find the corresponding image point in pixel coordinates p,
the CCD projective model is finally applied:

p =

 px

py

1

 =

 f sx f sθ ox

0 f sy oy

0 0 1


 md x

md y

1

 (2.30)
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The projection of a 3D point X on the image pixel point p by the CCD perspective
camera with Plumb Bob distortion model, can be thus decomposed into four concatenate
mappings:

p = σ( η( δ( γ( X
1

Z
) ) ) ) ⇒ p = Ks Kf (δ (KI X

1

Z
)) = Ks Kf δ(m) = K m̃d .

(2.31)
Notice that in this case the mapping δ represented by equation (2.28) is no more linear
like σ, η and γ and is moreover described by non-homogeneous coordinates.

2.4.4.1 Undistort an image

Supposing to deal with a calibrated system, that is to know both K and the five
distortion coefficients (c1, c2, c3, p1, p2), if we want to find the corresponding normalized
image point m starting from the pixel image point p, we have execute two steps:

• compute the distorted normalized point from the corresponding pixel one as
m̃d = K−1 p ;

• compensate for the distortion determining m = δ− 1(md) in equation (2.31).

The second step has been solved at Oulu University by using iterative procedure realizing
the inversion of (2.28) summarized as follows:

initialization → m1 = md

iteration → mi+1 = md−dt(mi)

kr (mi)

stop condition → (mi+1 − mi) = µ < ε

(2.32)

As clear from (2.32), the unknown point m (the cycle iterating variable) is initialized
with md. The iterations stop when µ is less than a certain accuracy threshold ε: usually
the procedure converges for i < 10.

2.4.5 Extrinsic camera parameters

Usually 3D point coordinates X are not directly available with respect to the camera
frame Fc but are only known with respect to a world frame defined as Fo: let be such
point world based coordinates Xo = [Xo, Yo, Zo, 1]T in homogeneous coordinates.
The rotation matrix Rc

o ∈ SO(3) and the translation vector tco ∈ R3×1 defining the rigid-
body motion between the camera frame and the world frame, are known as extrinsic
calibration parameters ; X and Xo are linked by this equation:

X =
[

Rc
o tco .

]
Xo (2.33)
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The overall model of image formation between a 3D point Xo and its pixel image p,
neglecting distortion effects, can thus be modeled by joining equations (2.25) and (2.33):

Zp = Ks Kf KI

[
Rc
o tco

]
Xo = K

[
Rc
o tco

]
Xo =

[
KRc

o Ktco
]
Xo ,

Z

 px

py

1

 =

 sx sθ ox

0 sy oy

0 0 1


 f 0 0

0 f 0

0 0 1


 1 0 0

0 1 0

0 0 1


 Rc

o tco



Xo

Yo

Zo

1

 .
(2.34)

The matrix
[

KRc
o Ktco

]
∈ R3×4 is called camera projection matrix and embeds both

internal and external calibration parameters. This model is the most appropriate for
medium and expensive professional firewire cameras: on the contrary for cheaper cameras
like webcams distortion effects in image formation can’t be neglected.
There exists several ways to retrieve the camera projection matrix and then the intrinsic
matrix for a certain camera, assuming a precise geometric model among the ones described
above. These techniques are known in literature as camera calibration techniques. Most of
this calibration strategy use the image correspondences obtained from 3D textured “cal-
ibration grid” or just a planar chessboard and the corresponding known 3D grid model
[MSKS03], [HZ03]. Other approach, on the contrary, called self-calibration techniques ex-
ploit the special target structure to retrieve the camera intrinsics [CDBP05] as we will see
in chapter (5).



Chapter 3

Geometry of two views

Now we investigate the geometric relationships that can be derived from two views of
a 3D object of interest grabbed from different camera poses; such relations summarize the
fundamental concepts of two view projective geometry and will be useful for the further
developments of the image based control path planning strategy.

3.1 Planar Parallax Equation
Consider an initial view Ii and a final view If of a 3D target of interest respectively

related to an initial camera frame Ci and to a final camera frame Cf : let be the target
identified in both the views by several well detectable points and suppose to know the
point correspondences between the views. Let be π a plane passing through the target
with normal ni expressed in Ci and define P a generic 3D target point, as shown in figure
(3.1). Let be Rf

i and tfi the orthogonal rotation matrix and the translation vector between
Cf and Ci (namely the columns of Rf

i are the unit vector of Ci expressed in Cf while tfi
is the origin of Ci expressed in Cf ).
The point P can be expressed in Cf from both its projection in Ci and the cinematic
parameters defining Ci with respect to Cf as:

P f = Rf
i P i + tfi (3.1)

Let us define respectively h as the signed distance between P and the plane π while let
be dπ i the distance between Ci origin and π. It is clear from the figure that the following
relation holds:

nT
i P i = dπ i + h ⇒ 1 =

nT
i P i − h

dπ i
(3.2)

Injecting equation(3.2) in equation(3.1) we obtain:

P f = Rf
i P i + tfi

(
nT

i P i−h
dπ i

)
P f =

[
Rf
i P i + tfi

(
nT

i P i

dπ i

)]
− h

dπ i
tfi .

(3.3)

Suppose without loss of generality to have used the same camera with fixed parameters
(no zoom) to grab both Ii and If and to use the full CCD perspective model of subsection

22
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Figure 3.1: 3D Scene: the two cameras and the 3D target.

(2.4.3); camera intrinsic matrix K is also supposed to be known. As pointed in equation
(2.25), we have:

pi = 1
Zi

KP i ⇒ P i = ZiK
−1pi

pf = 1
Zf

KP f ⇒ P f = ZfK
−1pf ,

(3.4)

where pi and pi are the pixel projection of P respectively in Ii and If . By injecting
relations (3.4) in equation (3.3), after easy algebraic manipulations we obtain:

Zf
Zi

pf = K

[
Rf
i + tfi

(
nT
i

dπ i

)]
K−1pi −

h

Zi dπ i
Ktfi . (3.5)

Now it is time to introduce the following entites:

Gf
i = K

[
Rf
i + tfi

(
nT

i

dπ i

)]
K−1 , (3.6)

ẽf = Ktfi . (3.7)

By using equations (3.6) and (3.7), relation (3.5) assumes a more compact form:

Zf
Zi

pf = Gf
i pi −

h

Zi dπ i
ẽf (3.8)

that is
pf ∝ Gf

i pi − λi ẽf , (3.9)
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where λi =
(

h
Zi dπ i

)
. Relation (3.9) is known as Plane-Parallax Equation: it states that

the image of a generic 3D point P in the final image If is composed of two elements:

• the first is function of the initial image pixel point pi mapped through the projec-
tivity matrix Gf

i ∈ R3×3; Gf
i is called as pixel homography matrix between Ii and

If induced by the plane π;

• the second is proportional, according to λi, to the homogeneous unnormalized point
ẽf ∈ R3×1. ẽf is known as epipole of If (expressed in homogeneous coordinates)
and represents the image of Ci origin in If .

3.2 Plane induced Homography

Notice that if the 3D point P ∈ π (that is h = 0) or if the translation tfi = 0, the
second terms in the right member of (3.9) vanishes and the plane-parallax decomposition
simplifies in the following equation:

pf ∝ Gf
i pi =

Zi
Zf

Gf
i pi . (3.10)

In this last case image Ii is mapped to If just through the Pixel Homography Matrix Gf
i .

The Pixel Homography Matrix is a full rank matrix strictly related to the plane π, namely
it is induced by π; Gf

i is only function of the Ci, Cf , and π relative displacements while
is invariant with respect to the 3D target imaged points: moreover if the plane π and the
initial camera frame Ci are fixed in the space, Gf

i has only 6 DOF , namely the six rigid
body independent degrees of freedom to define the final camera frame Cf with respect to
Ci (3 embedded in the orthogonal matrix Rf

i and 3 to define the translation vector tfi ).
Considering the following kinematic relations:

Rf
i = Ri−1

f = Ri T
f ,

tfi = −Ri T
f tif ,

(3.11)

the pixel homography matrix of equation (3.6) can also be written as:

Gf
i = KRf

i

[
I − tif

(
nT
i

dπ i

)]
K−1 , (3.12)

or
Gf
i = KRi T

f

(
I − tsifn

T
i

)
K−1 , (3.13)

where tsif = (tif/dπ i) is the scaled translation between Ci and Cf , being all the elements
of equation (3.13) expressed with respect to Ci.
Let now define the Euclidean Homography Matrix Hf

i as:

Hf
i = Ri T

f

(
I − tsifn

T
i

)
=
(
Rf
i + tsfi n

T
i

)
; (3.14)
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by injecting (3.14) in (3.13), the pixel homography matrix can be finally expressed by:

Gf
i = KHf

i K
−1 . (3.15)

The Euclidean Homography Hf
i is the corresponding homography to Gf

i when the tar-
get image points are expressed in normalized coordinates (see equation (2.19) that is
considering a calibration matrix K = I:

m̃f ∝ Hf
i m̃i =

Zi
Zf

Hf
i m̃i . (3.16)

• Hf
i depends only on the scene structure and is invariant with respect to the partic-

ular camera adopted.

• as clearly visible in equation (3.14) Hf
i embeds all the kinematic parameters defining

both the relative camera poses between Ci and Cf and the π plane orientation.

3.3 Structure from Motion with two calibrated images
One of the most important issues of subjects like Computer Vision or Photogramme-

try, is to derive from 2D images as much informations as possible concerning the projected
Euclidean 3D space; in this sense images represents a set of first raw measurements that
need to be conveniently processed and condensed in order to infer informations about 3D
world.
The problem of retrieving from two calibrated view the 3D scene structure linking the
target of interest and the two image-related cameras is known in literature as the two
view Structure from Motion Problem (SFM). In this section we explain how SFM, that is
by its own nature nonlinear, can be solved in linear fashion both dealing with a planar or
three-dimensional target; from the SFM solutions we will advantage of many 3D “image
based” informations that will be useful both in the control and in the planning strategies
reported in the following chapter. The linear solution can be directly exploited in the
image based control or can be taken as the first step to provide the initialization of a non
linear algorithm when time processing allows it. An example of non linear method for 3D
data estimation is given in [CH04]. Standard linear computer vision methods, such as the
“8-point” algorithm exists to solve the SFM problem [HZ03], but in this work we prefer
to address strategies that directly exploits the two views homography theory of section
(3) resulting more stable results and free from degenerate configurations, as pointed out
in [MCB00].
Suppose then to have two images Ii and If as in section (3) of a 3D target taken respec-
tively from the camera frames Ci and Cf ; suppose to be able to extract n pixel image
target points from Ii and their corresponding from If ; let us know finally the point cor-
respondences in the two images (namely tho have already solved the feature matching
problem) and to know the constant camera calibration matrix K. By considering the pre-
vious assumptions, SFM consists in the estimation of the following set of 3D parameters:{

Ri
f , tsif , ni

}
(3.17)

SFM can be subdivided into three main steps:
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• estimation the Pixel Homography Gf
i from Ii and If ;

• computation the Euclidean Homography Hf
i from Gf

i and K;

• decomposition of Hf
i in order to find cameras Ci and Cf relative rotation Ri

f , scaled
translation tsif and target plane normal ni.

For a valid reference concerning the solution of the SFM problem we remand also to
[MSKS03].

3.3.1 Estimation of the Pixel Homography

The first step to perform SFM process id to estimate the Pixel homography Gf
i

from image data. When the n detected feature target points are distributed in 3D space
(general target case), a general algorithm must be used; if on the contrary at least four
target points lie on the same plane (planar target case) a simpler method can be adopted.

3.3.1.1 General Case

Among the n target points, let us consider three non collinear points P i, i = 1, 2, 3.
P i project, according to equation (2.22), in the homogeneous pixel points pii and pfi
respectively in Ii and If . Notice that these three points has to be chosen so as to maximize
the areas of the two triangles defined by their images in both views (imaged points have
not to be collinear as well). Let us call Virtual Plane the plane defined by the three
3D points P i, denoted in figure (3.2) as π. Since P i belong to the same plane, we can

Figure 3.2: The two cameras, the 3D target and the corresponding images.

express the relation between their images through the unknown planar pixel homography
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Gf
i according to equation (3.10):

pif ∝ Gf
i p

i
i i = 1, 2, 3 . (3.18)

Let us remark that Gf
i is an homogeneous matrix defined up to a scalar factor, therefore

one of its entries can be set to 1 without loss of generality.
When a general 3D target point P j that does not belong to π, the line OiP j and the
plane π intersect in a virtual 3D point P j ′ , as shown in the figure. P j ′ and P j project
in the same point pji in the initial image Ii, but they give rise to different image points
in If (respectively the image point pjf and the virtual image point pj

′

f ∝ Gf
i p

j
i ) : this is

known as parallax effect (see section (3.1).
The full CCD perspective model, through the projection performed from K matrix, pre-
serves collinearity; for this reason the points Oi, P j ′ and P j, belonging on the same 3D
ray are projected in If respectively on the image points ef , pj

′

f and pjf belonging to the
image line ljf . Notice that ef is epipole of If while ljf is an epipolar line (since it passes
through the epipole).
ljf can thus be defined as the line through the points pjf and pj

′

f ; exploiting equation (3.18)
and theorem (2.1.2.3), ljf we can thus write:

ljf = pjf ∧Gf
i p

j
i . (3.19)

Let us choose other two general 3D target points P k and P l /∈ π, through their images,
they respectively will give rise in If to the epipolar lines lkf and llf . Since all epipolar the
lines of an image intersects at the epipole the following equation hold:∣∣ ljf lkf llf

∣∣ = 0 , (3.20)

where | | denotes the determinant operator. Relation (3.20) can be easily demonstrated
with the following passages:

ef = α
(
ljf ∧ lkf

)
= γ

(
ljf ∧ llf

)
ljf ∧

(
αlkf
)
− ljf ∧

(
γllf
)

= 0

ljf ∧
(
αlkf − γllf

)
= 0 ;

(3.21)

with α and γ constants ∈ (R− 0). Equation (3.21) can be verified if and only if we have
lkf = (γ/α)llf or if ljf ∝

(
αlkf − γllf

)
, showing the three epipolar line vectors to be linearly

dependent, thus verifying equation (3.20). By exploiting equation (3.19), relation (3.20)
becomes: ∣∣∣ pjf ∧Gf

i p
j
i pkf ∧Gf

i p
k
i plf ∧Gf

i p
l
i

∣∣∣ = 0 . (3.22)

Equation (3.22) however is non-linear with respect to the unknown entries of the pixel
homography matrix Gf

i . In order to simplify the computation of Gf
i a change of projective
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coordinates can be done. Let us define the two transformation matrices as follows:

M f =
[
p1
f p2

f p3
f

]−1
M i =

[
p1
i p2

i p3
i

]−1
, (3.23)

they have as columns the three image points used to define the virtual plane π. The trans-
formed image points are thus defined respectively in If and Ii by these transformations:

p̃jf = M fp
j
f p̃ji = M ip

j
i , (3.24)

where with ˜ we denote here the transformed entities. By applying transformations (3.24),
it is clear that the coordinates of the three π imaged points become:[

p̃1
f p̃2

f p̃3
f

]
=

[
p̃1
i p̃2

i p̃3
i

]
= I ∈ R3×3 , (3.25)

while transformed pixel homography matrix is easily derived considering equation (3.18):

G̃
f

i = M fG
f
i M

−1
i . (3.26)

Notice that by applying the transformations (3.24), the three imaged points p̃1
i , p̃2

i and p̃3
i

have become the so called fixed points of the transformed pixel homography G̃
f

i (namely
the homography eigenvectors); furthermore they form according to (3.25) the canonical
base of the transformed spaces; for the previous reasons the matrix G̃

f

i results diagonal:

G̃
f

i =

 g̃u 0 0

0 g̃v 0

0 0 g̃w

 ; (3.27)

according to equation (3.27), once g̃u, g̃v and g̃w are estimated, G̃
f

i and thus Gf
i can be

finally retrieved. Equation (3.22) can be rewritten after the coordinates transformations
as: ∣∣∣ p̃jf ∧ G̃

f

i p̃
j
i p̃kf ∧ G̃

f

i p̃
k
i p̃lf ∧ G̃

f

i p̃
l
i

∣∣∣ = 0 . (3.28)

The previous equation results now homogeneous and polynomial of degree three in the
unknown (g̃u, g̃v, g̃w): moreover it does not depend on the epipole thus avoiding prob-
lems due to epipolar singularity configurations. After some time-consuming computation
equation (3.28) can be rearranged in the homogeneous form:

Cjkl
g̃ x = 0 , (3.29)

where the entries of the measurements row vector Cjkl
g̃ ∈ R1×7 are given in [MCB00] and

the vector x is defined by:

xT =
[
g̃u

2g̃v g̃v
2g̃u g̃u

2g̃w g̃v
2g̃w g̃w

2g̃u g̃w
2g̃v g̃ug̃vg̃w

]
, (3.30)

that is a cubic combination of the three normalized homography G̃
f

i unknown entries.
Selecting different feature points combinations by changing i,j and k indexes (i.e selecting
different epipolar lines) from the available n−3 (three have been used to define the virtual
plane π), we can derive other homogeneous equations analogous to (3.29), obtaining new
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measurements vectors Cjkl
g̃ . All the derived measurements vectors Cjkl

g̃ can be finally
stacked together building up a an overall measurement matrix C g̃ ∈ Rm×7 where m >> 7

is the number of derived Cjkl
g̃ raw vectors; the resulting equations system can be finally

written as:
C g̃ x = 0 ∈ R(m>>7)×1 ; (3.31)

providing an linear homogeneous system of m equations in the seven x unknowns. Since
from n epipolar line (one for each image point but the three points defining π) can be
formed up to m = n!

(6(n−3)!)
different sets of three epipolar lines, we have that at least

eight 3D target points (three reference points and five supplementary points) are needed
as imaged features to solve system (3.31).
Once the measurements matrix C g̃ has been computed, the problem can be solved by
performing the SV D of C g̃ = USV T and by selecting as solution the column of V
corresponding to the minimal singular value sii (0 in absence of noise). However, since
C g̃ ∈ Rm×7 with m >> 7, it is possible to obtain the same solution from the SV D of
CT
g̃ C g̃ = V STSV T , which is of dimension (7× 7): memory space and time processing

are thus minimized.
Finally the three G̃

f

i unknowns g̃u, g̃v and g̃w of equation (3.27) can be computed by
similarly solving a second linear homogeneous system:

−x̄2 x̄1 0

x̄5 0 −x̄3

−x̄7 x̄3 0

x̄7 0 −x̄1

−x̄4 x̄7 0

x̄4 0 −x̄2

−x̄6 0 x̄7

0 −x̄6 x̄4



 g̃u

g̃w

g̃w

 = 0 . (3.32)

Once G̃
f

i is estimated, it is easy to compute the pixel homography matrix Gf
i by inversion

of equation (3.26).

3.3.1.2 Planar Target or Rotational Motion Case

If at least four 3D target points lies on a plane π or if the motion between Ci and Cf
is a pure rotation, we can use a simpler algorithm of the previous shown above known in
literature as the Direct Linear Transformation (DLT) algorithm. Suppose then to have
n ≥ 4 coplanar target points P i, i = 1, ..., n ∈ π (or 0 as camera translation vector)
respectively projecting in Ii and If in the homogeneous pixel points pii and pfi , according
to equation 2.22. As shown in (3.2)we have:

pif ∝ Gf
i p

i
i i = 1, ..., n . (3.33)

Note that this is an equation involving homogeneous vector: pif and Gf
i p

i
i indeed are not

equal, they have the same direction but may differ in magnitude by anon zero scale factor.
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This fact can be expressed in terms of the vector cross product:

pif ∧Gf
i p

i
i = 0 ∀i, i = 1, ..., n . (3.34)

This form will enable a simple linear solution for Gf
i estimation problem. If the j−th

row of Gf
i is denoted by gj T , then we may write:

Gf
i p

i
i =

 g1T pii
g2T pii
g3T pii

 . (3.35)

Recalling that, as shown in (2.22), the pixel homogeneous point pif = [pif x, p
i
f y, 1]T , the

cross product of (3.34) may then be given explicitly as:

pif ∧Gf
i p

i
i =

 pif y (g3Tpii) − g2Tpii
g1Tpii − pif x (g3Tpii)

pif x (g2Tpii) − pif y (g1Tpii)

 = 0 . (3.36)

Since gj Tpii = pi Ti gj for j = 1, ..., 3, this gives a set of three equation in the entries of
Gf
i , which may be written in the form: 0T −pi Ti pif yp

i T
i

pi Ti 0T −pif xpi Ti
−pif ypi Ti pif xp

i T
i 0T


 g1

g2

g3

 = 0 ∈ R9×1 . (3.37)

These equations have the form Ai g = 0, where Ai is a (3× 9) matrix, and g is a (9× 1)
vector made up of the entries of the pixel homography matrix Gf

i :

g =

 g1

g2

g3

 , Gf
i =

 g1 g2 g3

g4 g5 g6

g7 g8 g9

 , (3.38)

with gi the i−th element of g. The resulting equation of (3.38) Ai g = 0 is linear in the
unknown g. The matrix elements of Ai are quadratic in the known pixel image points
coordinates of Ii and If .
Although (3.37) is composed by three equations, only two of them are linearly independent
(since the third row is obtained, up to a scale, from the sum of pif x times the first row
and pif y times the second). Thus each point correspondence pii → pif gives two equations
in the entries of Gf

i : for this reason it is usual to omit the third equation in the solving
system. The set of solving equation finally become:

[
0T −pi Ti pif yp

i T
i

pi Ti 0T −pif xpi Ti

] g1

g2

g3

 = Ai g = 0 ∈ R9×1 , (3.39)

where now Ai is a (2× 9) matrix. Staking together all the (2×n) equations derived from
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the n point correspondences, we obtain the overall system equation:

A g = 0 ∈ R9×1 , (3.40)

where A is the matrix coefficients built from the matrix rows Ai contributed from each
correspondence. If n = 4 A is a 8× 9 with rank 8: a solution for g and thus for Gf

i is
provided by vector belonging to the 1-dimensional null space of A. Such a solution can
be only determined up to a non-zero scale factor. However Gf

i is an homogeneous matrix
defined up to a scale, so the solution g gives the required Gf

i . A scale may be arbitrarily
chosen for g by imposing that ‖g‖ = 1 .
If the number of available correspondences n > 4, then the set of equation in (3.40) is
over determined. If points pixel coordinates are exact A will still have rank 8, a one-
dimensional null space, and there is an exact solution for h. This is will not the case
that occurs when we have inexact noisy data (i.e. with real pixel measurements); in this
case, instead of finding an impossible exact solutions for g we search for an optimal one
as stated by the following constrained optimization problem: find h that minimize ‖A g‖
subject to the usual constraint ‖h‖ = 1. The solution to the previous problem, as similarly
done to solve (3.31) is given by performing the SV D of A = U S V T and by choosing
as solution for g the (unit) column of V corresponding to the smallest singular value sii
of A.

3.3.2 Computation of the Euclidean Homography

Notice that in general the pixel collineation matrix Gf
i , estimated in subsection (3.3.1)

either with the general or with the simplified method, do not match the matrix defined in
equations (3.12 - 3.13) but differs from it by a residual scale factor. This is a consequence
of the fact that the homography between two views is a projective transformation of P2×1

that can be defined by any of the ∞1 (3×3) matrices with the same 8 element ratios (see
subsection (2.1.6)). The estimated Gf

i , according to (3.6), will thus have the following
form:

Gf
i = λ K

[
Rf
i + tfi

(
nT
i

dπ i

)]
K−1 , (3.41)

where λ is the residual scale factor. Since the camera calibration matrix K is known, we
can compute from the estimated Gf

i the following matrix:

H̃
f

i = K−1 Gf
i K . (3.42)

Notice that H̃
f

i is the Euclidean Homography Hf
i up to the residual factor λ - see equa-

tions (3.15) and (3.14):

H̃
f

i = λHf
i = λ

[
Rf
i + tfi

(
nT
i

dπ i

)]
= λ

(
Rf
i + tsfi n

T
i

)
. (3.43)

It is clear from the previous equation that to estimate the Euclidean Homography matrix
Hf

i it is just necessary to determine the residual scaling factor λ. It can be demonstrated
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that for a matrix of the form H̃
f

i we have:

|λ| = σ2 (H̃
f

i ) , (3.44)

where σ2 (H̃
f

i ) ∈ R is the second largest singular value of H̃
f

i . To prove the previous
equation let us define the following vector:

u =
1

dπ i
Rf T
i tfi = − 1

dπ i
tif ∈ R3×1 ; (3.45)

then, recalling that ‖u‖2 = uTu, with simple passages we have:

H̃
f T

i H̃
f

i = λ2
(
I + unT

i + niu
T + ‖u‖2 nin

T
i

)
. (3.46)

Notice that the vector (u ∧ ni) ∈ R3×1, which is orthogonal to both u and ni, is an
eigenvector of H̃

f T

i H̃
f

i with eigenvalue λ2 that is:

H̃
f T

i H̃
f

i (u ∧ ni) = λ2(u ∧ ni) . (3.47)

Hence |λ| is a singular value of H̃
f

i . We only have to show that it is the second largest.
Let be:

v = ‖u‖ni , w =
u

‖u‖
∈ R3×1 ; (3.48)

it is easy to prove that:

Q = unT
i + niu

T + ‖u‖2 nin
T
i = (w + v) (w − v)T −wwT . (3.49)

The matrix Q has a positive, negative and a 0 eigenvalue ( except that when u ∝ ni, Q

will have two repeated 0 eigenvalue). In any case, H̃
f T

i H̃
f

i has λ2 as its second-largest
eigenvalue. Then if {σ1, σ2, σ3} are the singular values of H̃

f

i recovered from linear least-
square estimation, we can compute the Euclidean Homography as:

Hf
i =

H̃
f

i

σ2 (H̃
f

i )
. (3.50)

This recovers Hf
i up to the form Hf

i = ± (Rf
i + tsfi n

T
i ). To get the right sign, remem-

bering equation (3.16), it is sufficient to choose the solution that ensures the following
constraint:

mi T
f

(
Hf

i m
i
f

)
> 0 ∀ i, ..., n , (3.51)

where n is the number of point belonging to the plane π. Condition (3.51) is equivalent
to impose the positiveness of the depths Zi for all the points ∈ π.
Thus, the Euclidean Homography Hf

i between Ii and If can be uniquely determined from
the image pixel points coordinates and their correspondences.



Chapter 3. Geometry of two views 33

3.3.3 Euclidean Homography Decomposition

In the previous section we have recovered the Euclidean Homography Hf
i in the fol-

lowing form:

Hf
i =

[
Rf
i + tfi

(
nT
i

dπ i

)]
=
(
Rf
i + tsfi n

T
i

)
, (3.52)

with tsfi = (tfi / dπ i) . Now, to solve the SFM problem, we have to study how to decom-
pose Hf

i into its motion and structure parameters:{
Rf
i , tsfi , ni

}
. (3.53)

Theorem 3.3.3.1. There are at most two physically possible solutions for the decompo-
sition of Hf

i into
{

Rf
i , tsfi , ni

}
rising from four analytically existing solutions.

To demonstrate the above statement, it is useful to point out some key aspects:

• The Euclidean Homography Hf
i is a non-singular matrix.

• Since rotation matrices preserves the norms of the rotated vectors, from (3.52) we
can state that Hf

i preserves the length of any vector a ∈ R3×1 orthogonal to ni,
namely:

∀a⊥ni Hf
i a = Rf

i a ⇒
∥∥∥Hf

i a
∥∥∥ =

∥∥∥Rf
i a
∥∥∥ = ‖a‖ . (3.54)

• When the plane spanned by the vectors that are orthogonal to ni is known, then, as
a consequence also two solutions for ni are known (the two reversed plane normal).

Let us first recover all the possible solution for ni keeping in mind the previous aspects.
The symmetric matrix Hf T

i Hf
i is definite-positive for definition: it will then have three

real distinct non-zero eigenvalues σ2
1 ≥ σ2

2 ≥ σ2
3 ≥ 0 ; from subsection (3.3.2) we know

also that σ2 = 1 so that also σ2
2 = 1 . Hf T

i Hf
i can thus be diagonalized by the orthonor-

mal eigenvector matrix V ∈ SO(3) such that:

Hf T
i Hf

i = V ∆V T , (3.55)

where ∆ = diag {σ2
1, σ

2
2, σ

2
3} is the diagonal eigenvalues matrix and V = [v1 v2,v3].

Moreover recalling the result obtained in equation (3.47) we have:

v2 = (u ∧ ni) = (− 1

dπ i
tif ∧ ni) , (3.56)

From the eigenvector definition we have:

Hf T
i Hf

i v1 = σ2
1v1 , Hf T

i Hf
i v2 = v2 , Hf T

i Hf
i v3 = σ2

3v3 . (3.57)

Hence the unit eigenvector v2 is orthogonal both to tif and ni : its length is thus preserved
under the mapping Hf

i . Let us define the other two vectors:

u1 =

√
1− σ2

3v1 +
√
σ2

2 − 1v3√
σ2

1 − σ2
3

, u2 =

√
1− σ2

3v1 −
√
σ2

2 − 1v3√
σ2

1 − σ2
3

. (3.58)
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By exploiting the following properties
vTi vj = 0

vTi vi = 1

‖•‖2 = [•]T [•] ,

(3.59)

with i 6= j; i, j = (1, 2, 3), it is easy to verify that both u1 and u2 are unit vectors and
their lengths is preserved through the map Hf

i . Notice that v2 is orthogonal both to u1

and u2 since the last two are linear combinations of v1 and v3. Furthermore it is easy to
verify that Hf

i preserves the length of any vector belonging to the two subspaces defined
by the following basis:

S1 = span {v2, u1} , S2 = span {v2, u2} . (3.60)

To do this is sufficient to prove these two equivalence:∥∥∥Hf
i (λ2v2 + λ1u1)

∥∥∥2

= ‖λ2v2 + λ1u1‖2 ,

∥∥∥Hf
i (λ2v2 + λ3u2)

∥∥∥2

= ‖λ2v2 + λ3u2‖2 ,

(3.61)

with ∀ λ1, λ1, λ3 ∈ R. Now we have found two planes, one defined by S1 and another one

Figure 3.3: In terms of singular vectors (v1, v2, v3) and singular values (σ1, σ2, σ3) of
the matrix Hf

i , there are two candidates subspaces S1 and S2 where the vectors length is
preserved by the homography Hf

i .

defined by S2, whose vectors preserve their magnitudes through the map Hf
i : therefore,

according the previous pointed out aspects, all the admissible candidates normals for ni

are defined by these four unit vectors, that are orthogonal both to S1 and S2 as shown in
figure (3.3):

± (v2 ∧ u1) , ±(v2 ∧ u2) . (3.62)

In this case, since any vectors orthogonal ni preserves its norm through Hf
i , the following
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relations can be written:

Hf
i v2 = Rf

i v2; Hf
i ui = Rf

i ui;

(Hf
i v2) ∧ (Hf

i ui) = (Rf
i v2) ∧ (Rf

i ui) = Rf
i (v2 ∧ ui) ,

(3.63)

where i = 1, 2 . By exploiting the relations (3.63), we can build up four orthonormal
bases of R3:

U 1 = [v2, u1, (v2 ∧ u1)] , W 1 =
[
Hf

i v2, Hf
i u1, (Hf

i v2) ∧ (Hf
i u1)

]
;

U 2 = [v2, u2, (v2 ∧ u2)] , W 2 =
[
Hf

i v2, Hf
i u2, (Hf

i v2) ∧ (Hf
i u2)

]
.

(3.64)

Notice that they are respectively two by two rotated by the matrix Rf
i :

Rf
i U 1 = W 1, Rf

i U 2 = W 2. (3.65)

By inverting equations (3.65) we obtain two candidates for the rotation Rf
i that finally

splits into four analytically admissible solution for the Structure from Motions problem
(due to the four ni candidates of equations-3.62). The four solutions for Rf

i and ni

are given by row in table (3.1). In all solutions the scaled translation tfi /(dπ i) is finally

Solution Rf
i ni

1 W 1U
T
1 (v2 ∧ u1)

2 W 1U
T
1 −(v2 ∧ u1)

3 W 2U
T
2 (v2 ∧ u2)

4 W 2U
T
2 −(v2 ∧ u2)

Table 3.1: The four analytically admissible solutions of the Euclidean Homography decom-
position.

calculated by equation (3.52) with the following equation:

tfi /(dπ i) = (Hf
i −Rf

i )ni . (3.66)

In order to reduce the number of physically possible solutions, we can exploit the positive
depth constraint. Since the camera is able to visualize only 3D target points that are in
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front of it, a physically possible solution must respect the following conditions:{
nT
i ki = ni 3 > 0 ,

nT
f kf = nf 3 > 0 ,

(3.67)

where nf = Rf
i ni is the normal of π expressed in the camera frame Cf and ki, kf are

respectively the camera focal axis of Ci and Cf both two expressed by the unit vector
[0, 0, 1]. By imposing conditions (3.67) we can discard two solution from the four of table
(3.1), since their normal directions are two by two reversed. We finally have at most two
physically admissible solutions for the decomposition problem of (3.52)-(3.53).
To select the true solution from the remaining two physically possible we proceed as
follows:

• If we have a 3D target and we have used the general algorithm of section (3.3.1.1), to
estimate the pixel homography Gf

i , it is sufficient to repeat all the SFM procedure
by choosing a different virtual plane π; we finally compare the four solutions arising
from the two SFM runs (two plus two physically possible) and choose the solution
with the same rotation Rf

i in both runs.

• If we deal with a planar target and we have thus used the algorithm of section
(3.3.1.2), to estimate the pixel homography Gf

i , it is necessary to provide a third
auxiliary target view Ia to find for the real solution of SFM decomposition. Also
in this case it is necessary to repeat the SFM procedure a second time by using Ii
and Ia views and finally choose from the four arisen solutions in the two runs the
one with the same π normal ni.

We finally are able to estimate the structure and motion parameters (3.17) among the
camera frames Ci, Cf and the plane π through the target image points coordinates and
their correspondences, with a calibrated camera K.
Notice that, after the SFM solution, the only unknown in equation (3.52) remains the
distance dπ i of Ci origin from the plane π. This is a consequence of the fact that image
informations can provide the structure of the 3D scene but not its real dimension: retriev-
ing the factor dπ i would be as to determine the 3D target and scene dimensions. This
concept is summarized in the literature by saying that SFM solution provides a Scaled
Euclidean Reconstruction (SER) of the scene.



Chapter 4

Visual Servoing

Nowadays the choice of vision sensors to control in real-time complex robotic systems
has become a common use, thanks to the increasing performances of both modern com-
puters and hardware components. Various techniques have been proposed to control the
behavior of a dynamic system exploiting the visual information provided by one ore more
cameras inside a feedback control-loop: these approaches are known in literature as Visual
Servoing [HHC96].
Visual Servoing concerns several field of research including vision systems, robotics and
automation control: it can be a useful solution for a wide range of applications in the
control many different dynamics systems like manipulators arms, mobile robots aircraft,
computer aided surgery etc.
This chapter describe how a robotic 6DOF system provided with a single camera mounted
on its end-effector can be on-line controlled by exploiting only the visual information avail-
able at frame-rate from the camera video stream. The chapter is organized as follows: in
the first section an overview of the main visual servoing approaches is given while the
second is focused in Image Based Visual Servoing ; the third section instead addresses the
problem of image path planning generation to increase the performances and the stability
of the image based control approach.

4.1 An Overview of Visual Servoing Approaches
As pointed out above, Visual Servoing exploits the visual informations provided from

one or more cameras in a feedback control loop to drive the controlled dynamic system
in a goal configuration. In particular, using of Visual Servoing, a robot can be positioned
with respect to a target placed in its workspace, by minimizing the differences between
the current target view Ic (correspondent to the current robot configuration) and the goal
or desired camera view If (correspondent to the desired robot configuration). This specific
control task is called in literature Positioning Task.
Visually controlled systems may differ in the control architecture , in the number of cam-
era used (mono, stereo or multi-camera configurations) and in their placing in the system.
When the cameras are attached to the ground frame, pointed to the manipulator, the
vision system is called Eye to Hand while if the cameras are mounted on the robot end
effector the system is called Eye in hand. In this thesis we will refer in particular to a
mono-camera system in eye in hand configuration.

37
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A fundamental classification of visual servoing approaches depends on the design of the
control architecture: two are the the main adopted choices. The first control architecture
is called “direct visual servoing” since the vision-based controller directly computes the
input of the dynamic system (i.e. the robot actuators). The visual servoing is carried
out at a very fast control updating frequency (at least 100 Hz, with rate of 10 ms): this
approach gives good performances in terms of system time-response but can be used only
when expensive high frame rate camera are available and when low time consuming algo-
rithm can be used for image processing (only with very simple visual features). The second
control scheme can be called, contrary to the first one, “indirect visual servoing” since the
vision-based control computes a reference control law which is sent to a second a low level
controller of the dynamic system (inner control loop), that is usually the standard one
provided by the vendor of the manipulator. Most of the visual servoing proposed in the
literature follows an indirect control scheme which is called “dynamic look-and-move”. In
this case the servoing of the inner control loop (generally the rate is 10 ms) must be faster
than the visual servoing one which speed is limited by the camera frame rate (usually the
maximum rate is limited to 50 ms).

4.1.1 Key control steps

Consider to have a 6DOF manipulator with a monocular eye in hand visual system
and let be q = [q1, q2, ..., q6]

T ∈ Rn×1 the joint variables vector defining the manipulator
configuration in the joints space. Let us define kinematic pose of a coordinate system C
the (6× 1) vector

r =

[
p

φ

]
, (4.1)

where p = [px, py, pz]
T is the coordinate vector of C origin and φ = [φ, θ, ψ]T is a

minimal representation of C attitude (i.e. the Euler angles or the RPY representation)
all being expressed with respect to a reference frame W attached to the ground. Notice
moreover that the robot end-effector pose re can be expressed through the joint variables
vector q by the manipulator direct kinematic function:

r = k(q) . (4.2)

The function k can be computed by knowing the geometrical manipulator parameters (i.e
the Denavit-Hartenberg parameters) after the execution of the robot kinematic calibration.
Let be M c

e the 4 × 4 constant homogeneous matrix defining the the camera frame with
respect to the robot end effector frame (the camera is fixed with respect to the end
effector):

M e
c =

[
Re
c tec

0T 1

]
, (4.3)

where Re
c ∈ R3×3 and tec ∈ R3×1 are respectively the rotation matrix and position vector

of the camera frame with respect to the end effector frame. Notice that the camera pose rc
is completely defined if both re and M e

c are known. Various calibration techniques have
been developed to estimate M e

c with an already calibrated camera intrinsics K [AHE01].
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In order to execute a positioning task with a visual servoing system, many steps have to
be performed; here we summarize the most important:

• Goal View Acquisition - First a goal target view If corresponding to a goal manip-
ulator configuration rf (and to a goal camera pose Cf ) has to be stored in memory:
in general in fact the robot will be in an initial configuration ri corresponding to
the camera frame Ci providing the target initial image Ii different from the goal
configuration.

• Features Extraction - A set of well detectable visual features (or image features) f
has to be chosen both from Ii and If . A visual feature can be defined by various image
primitives like points, lines, ellipses or more complex contours. Several techniques of
Image Processing can be used in the extraction process like i.e. the Harris detector
for points or the Canny algorithm in case of line or more complex contours. In spite
of a complex automatic process, in this work to the user is able to choose the feature
in both images by a mouse-pick selection. The number of chosen visual features has
to be sufficient to control all the 6 DOF of the manipulator (see later).

• Feature Matching - the problem of find the corresponding image features between
Ii and If (i.e. the image of the same 3D points, lines, circles, etc.. in both images ) is
known as matching problem; also in this case it is particularly difficult to automate
the matching process (the problem is not yet solved) especially when we have a large
camera displacement between Ci and Cf thus providing consistent image differences
between Ii and If . Also the matching problem has been overcome in this work
by considering the selection order during the mouse-pick procedure of the feature
selection in Ii and If (the selection order identifies the feature correspondences).

• System Error Definition - when the previous step are executed it is necessary to
define the system error vector e(f) ∈ Rn×1 as function of the chosen visual features
f with n ≥ 6. The control system will have to minimize e by providing opportune
references to the manipulator actuators in order to drive the robot to the goal pose
corresponding to the goal target view If .

• Features Tracking - During the on-line positioning phase, at each time-step of the
visual controller, the image features have to be tracked in the actual image in order
to refresh their coordinates. Several tacking techniques exist to perform feature
tracking: for points feature the most largely used is the Lucas-Kanade optical flow
estimation algorithm. Features tracking is local operation in the image to be done on-
line (a local matching in a square pixel window between the i and the (i−1) images):
it must be as less time-consuming as possible in order to ensure good performances of
the control. Feature tracking in fact represents the most computational demanding
phase of all the other the on-line control steps.

From the control scheme point of view, Visual Servoing approaches can be subdivided into
three different main groups, depending on the type of error function e that is adopted to
regulate the system: Position Based Visual Servoing (PBVS), Image based Visual Servoing
(IBVS) and Hybrid Visual Servoing.
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4.1.2 PBVS

In Position Based Visual Servoing the error is computed by estimating from images
some 3D features of interest (like the desired camera rotation and translation etc...): this
approach allows the user to fully define the robot trajectory in 3D space but has proved
to be very sensitive with respect to both camera and robot calibration errors and usually
requires the knowledge of the 3D target model [HHC96].

4.1.3 IBVS

In Image based Visual Servoing, on the other hand, the feedback control loop is directly
closed in the image since the system error is defined by primitives directly extracted from
images (such as 2D points, lines, or more complex shapes [ECR92]).
Image based approach in general does not require a priori knowledge of the target (model-
free technique) and is known to be really robust with respect to both camera and robot
calibration errors [Esp93]. On the other hand only local stability of the controlled system
has been proved: that is why, during task executions, singularities and local minima of
the control law may occur especially when the initial and the desired view of the target
are noticeably different (large camera displacements) [Cha99]. To overcome singularity
and local minima problems a convenient path planning in the image can be exploited.
Hereafter we summarize the state of the art concerning the various image based visual
servoing techniques: each technique has different strength points and drawbacks and thus
is more suitable for certain applications.

4.1.3.1 Invariant IBVS

Visual servoing methods typically require the a priori knowledge of internal calibration
data. A particular research trend is that of the development of strategies that relax this
requirement, thus allowing to work with uncalibrated settings. In the approach proposed
in [Mal04], image features are mapped onto a special projective space which is invariant
to changes in camera intrinsics. Although the control error is invariant with respect to
camera intrinsics, these parameters are still required to estimate the Jacobian; for this
reason, calibration errors may affect the stability of the control law. A second way to avoid
off-line calibration is to rely on self-calibration techniques developed by the computer
vision community, and exploit the (partial) knowledge of scene structure and/or camera
parameters to perform on-line camera calibration—see e.g. [HZ03]. The main limitation
of self-calibration approaches is that they require a priori information that may not be
available.

4.1.3.2 Weighted features IBVS

To cope with target occlusions and problems like features disappearing also for the
limited camera field of view a particular technique of image based visual servoing has
been developed: this strategy uses a weight function in the control law for each controlled
feature [GAMO05]. This technique has also been tested with the invariant approach above
mentioned.
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4.1.3.3 Homography Based IBVS

A novel image based technique called Homography Based Visual Servoing have also
to be mentioned: this technique uses directly the planar Euclidean homography to define
the system error and results locally stable [BM06]. Homography based Visual Servoing,
differently from the other IBVS strategies, does not need any feature depth estimate in
the control scheme since is based on a 2D innovative control law.

4.1.4 Hybrid Visual Servoing

The hybrid visual servoing scheme, also known as 2−1/2−D Visual Servoing, adopts
a system error that is defined both with image and with Cartesian primitives, mixing
together different types of features: this method ensures good analytical stability proper-
ties (sufficient conditions for global stability has been proved) [MCB99]; however also in
this approaches 3D robot trajectory is not predictable and the target may go out of the
camera field of view, causing the loss of the visual informations (the visual features) and
thus the failure of the task.

4.2 Control
In this Section we will show the control strategy of Visual Servoing systems showing

in detail the Image Based approach. First of all let us recall some notions of differential
kinematics that will be useful in the following of the work. Let thus be I, J and K three
different reference frames and let be P a 3D point attached to I. The twist screw of I with
respect to J expressed in K with center in P (attached to I) is defined by the following
(6× 1) vector:

P
k wi

j =

[
P
k vij
P
k ωi

j

]
, (4.4)

where P
k vij =, [vx, vy, vz]

T is the velocity of the point P with respect to J expressed in K
and P

k ωi
j = [ωx, ωy, ωz]

T is the instantaneous rotational velocity (angular velocity) of I
with respect to J expressed in K as well. The twist screw P

k wi
j, also called velocity screw,

defines completely the differential cinematic motion of I with respect to J . Notice that
usually is convenient to choose as point of the twist screw P the origin of I itself: in this
case the notation can be simplified to:

P ≡ OI → P
k wi

j = kw
i
j ; (4.5)

in this case the P
k vij = kv

i
j is equal to the translational velocity of I with respect to J .

To simply express the twist screw kw
i
j with respect to another frame L it is sufficient

to exploit the rotation matrix Rl
k having as columns the K unit vectors expressed with

respect to L :

lw
i
j =

[
Rl
k 0

0 Rl
k

]
= l

kW kw
i
j . (4.6)
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Let us define another frame M fixed with respect to I and suppose to know the twist
screw iw

i
j expressed in I. if we want to evaluate the twist screw M with respect to J

expressed in M (changing both the frame for twist computation and the frame in which
the screw is expressed), it can be shown that the following equation must be used:

mwm
j =

[
Rm
i [tmi ]×Rm

i

0 Rm
i

]
iw

i
j = m

i V iw
i
j , (4.7)

where [ ]× denotes the skew symmetric matrix operator applied to the (3×1) translation
vector tmi . The skew symmetric operator is finally defined as follow:

[u]× =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , (4.8)

where u = [u1, u2, u3]
T .

4.2.1 The Interaction Matrix

Let us choose now a set of adequate target visual features f to control the 6DOF of
the manipulator. Let us built up from f the system state vector x ∈ Rm×1 with m ≥ 6.
For the Image Based Visual Servoing addressed in this work x will be directly formed
with the extracted image features. Since we assumed to deal with a fixed target, the visual
feature f and consequently the state vector x are only function of the time varying camera
pose rc(t), according to the definition (4.1):

x = x(rc(t)) = x(pc(t) ,φc(t)) , (4.9)

Let be w the (6× 1) camera twist screw with respect to the ground frame W , expressed
in the camera frame C and centered in the camera origin Oc:

w =̇ cw
c
w = [vT , ωT ]T = [vx, vy, vz, ωx, ωy, ωz]

T ; (4.10)

by deriving the equation (4.9), we obtain the following differential kinematic relation:

ẋ =
∂x

∂rc

∂rc
∂t

=
∂x

∂rc
ṙc = J(x, rc(t)) w . (4.11)

The (m × 6) matrix J in the above equation is called Interaction Matrix or Image
Jacobian and is function of the state system vector (visual features) and of the 3D camera
pose. The Interaction Matrix represents a local linear mapping between feature velocity
ẋ in the image and the camera twist-screw w in the Cartesian space. Notice that the
analytic “Jacobian”

[
∂x
∂rc

]
∈ Rm×6 however results slightly different from J since the

time derivative of the attitude angles φ̇c is different from the instantaneous rotational
velocity ω:

ω = T φ̇c . (4.12)
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If the Euler angles are used as attitude minimal representation, the (3×3) transformation
matrix T in equation (4.12) results:

T =

 0 − sinφ cosφ sin θ

0 cosφ sinφ sin θ

1 0 cos θ

 . (4.13)

4.2.1.1 Points as Visual Features

Consider now as visual feature a normalized image point m̃i, as defined in equation
(2.19) and let P i = [Xi, Yi, Zi]

T the coordinates of the corresponding 3D target point
expressed in the camera frame C. The point m̃i can be easily obtained from the corre-
sponding extracted image pixel point pi by inversion of equation (2.27) since K is assumed
to be known. Let be mi the non-homogeneous point normalized coordinates:

mi =

[
Xi/Zi

Yi/Zi

]
=

[
xi

yi

]
. (4.14)

The velocity of P i with respect to the world frame W (absolute velocity) expressed from
the relative camera frame C results:

Ṗ i A = Ṗ i T + Ṗ i C , (4.15)

where Ṗ i T is called rigid body velocity and Ṗ i C is the point relative velocity seen from
C. The rigid body point velocity can be expressed by:

Ṗ i T = v + [ω]×Pi =
[
I − [P i]×

]
w . (4.16)

where v and ω are respectively the translational and rotational components of the camera
twist screw w defined in (4.10) and I the (3×3) identity matrix. The point relative velocity
on the contrary results:

Ṗ i C =
∂P i

∂t
= [Ẋi, Ẏi, Żi]

T . (4.17)

Since we deal with a fixed target and moving camera Ṗ i A = 0 and equation (4.15)
becomes:

Ṗ i C = −Ṗ i T , (4.18)

or better, by injecting equation (4.16):

Ṗ i C =
[
−I [P i]×

]
w . (4.19)

By computing the time derivative of the normalized image point mi we have:

ṁi =

[
ẋi

ẏi

]
Ṗ i C =

[
1/Zi 0 −Xi/Z

2
i

0 1/Zi −Yi/Z2
i

]
Ṗ i C . (4.20)
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Finally by injecting (4.19) in (4.20), we obtain the Interaction matrix for an normalized
image point mi:

ṁi = J iw =


− 1

Zi
0

xi
Zi

xiyi − (1 + x2
i ) yi

0 − 1

Zi

yi
Zi

(1 + y2
i ) −xiyi −xi

w . (4.21)

Notice that J i depends on the point image coordinates xi, yi and on the 3D point depth
Zi with respect to the camera frame C, varying with the camera pose:

J i = J i(mi(t), Zi(t)) . (4.22)

While the image point coordinates can be directly measured from the actual image, the
unknown depth Zi will be on-line estimated in the control phase by exploiting the adaptive
law described in [CA01]. In general if we use n > (m/2) points as target visual features,
namely to track at least 4 different image points, we can make explicit the system state
vector introduced in (4.9) as:

x =
[

mT
1 mT

2 . . . mT
n

]T
. (4.23)

From (4.21), stacking together the interaction matrices J i for all the considered image
points, we build up on the other side the global system image jacobian J ∈ R2n×6 :

J =
[

JT
1 JT

2 . . . JT
n

]T
. (4.24)

By eploiting equations (4.21), (4.23) and (4.24), we finally obtain the differential kinematic
equation of the system:

ẋ = J(x,Zx)w. (4.25)

4.2.2 System Dynamic

Let us recall now that the twist screw of the camera w = cw
c
w can be related to the

twist screw of the robot end effector wwe
w expressed in W coordinates by the composition

of the two transformation of equations (4.7) and (4.6):

w = cw
c
w = c

eV ew
e
w = c

eV
e
wW (q)wwe

w = c
eF (q) wwe

w (4.26)

where wwe
w is the end effector screw with respect to W , expressed in W and centered in

E origin. The overall change of screws matrix c
eF (q) in (4.26) results:

c
eF (q) = c

eV
e
wW (q). (4.27)

Notice that, since we deal with an eye-in-hand system, the matrix c
eV , built with Rc

e

and tce, is constant (see also eq.(4.3)) while the matrix e
wW (q), formed with the rotation

matrix Re
w(q), is function of the time varying robot configuration q(t). Finally the twist

screw wwe
w can be related to the robot velocity in the joints space by the Geometric Robot
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Jacobian:
wwe

w = JG(q)q̇ . (4.28)

Joining together the three equations (4.11), (4.26) and (4.28), we obtain the total dynamic
equation for the considered eye in hand system:

ẋ = J c
eFJG q̇ +

∂x

∂t
. (4.29)

The term
(
∂x
∂t

)
in the above equation takes into account for target motions with respect

to the ground frame W :
(
∂x
∂t

)
vanishes for motionless targets like the one considered in

this work.

4.2.2.1 System Error

Making the hypotheses to have a controller that fully compensate for the manipulator
dynamics (ideal controller), to have a perfect kinematic model of the robot and to remain
far from kinematic manipulator singularities, we can choose as control input to regulate
the visual system directly the twist camera screw w that can be rewritten according to
(4.29) as:

w = cw
c
w = c

eFJG q̇ (4.30)

In this case we can define the system error as follow:

e = (xd − x) ∈ Rn×1. (4.31)

where xd and x are the state vectors respectively in the reference and in the actual system
configurations.
By using points as visual features the system error e corresponds to the difference between
the reference and the actual normalized image points: e is thus fully defined in the image
according to the image based visual servoing strategy of section (4.1.3).

4.2.2.2 Control Law

By inspection of (4.11), we can use a control law based on the image error e and on
the left-pseudoinverse of the estimate interaction matrix Ĵ †:

w = Ĵ †(ke + ẋd) , (4.32)

where Ĵ † = (ĴT Ĵ )
−1

ĴT and k is a positive gain. Expression (4.32) is valid only when Ĵ
has full rank (there must be at least 6 linearly independent raws on J). The control law
(4.32) contains both an error proportional term and a feed-forward term. Notice that the
vector ẋd in the feed forward term represents the time derivative of the reference state
vector:

• if the IBVS control doesn’t provide any image planning xd corresponds to the goal
view If features set ⇒ xd = xf = cost;

• when path planning is done xd 6= cost corresponds with the planned image trajec-
tories ranging from xi in Ii to xf in If .
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4.2.3 Stability Conditions

To prove the stability of the system we use the following Lyapunov candidate:

V =
1

2
eTe . (4.33)

The time derivate of (4.33), by using (4.31),(4.32) and (4.11) results:

V̇ = eT ė (4.34)
V̇ = eT (ẋd − ẋ)

V̇ = eT (ẋd − Jw)

V̇ = eT (ẋd − JĴ
†
(ke + ẋd))

V̇ = −keTJĴ
†
e + eT (I − JĴ

†
)ẋd . (4.35)

If a good estimate of J is computed, we have that Ĵ ≈ J and:

V̇ = −keTJJ †e + eT (I − JJ †)ẋd . (4.36)

Notice that the controlled system results locally stable if the following condition is satisfied:

V̇ ≤ 0 ; (4.37)

let us now investigate what are the conditions for local stability. At first it is necessary to
point out some remarks on equation (4.36):

• The first term −(eTJĴ
†
e) is semidefinite negative and vanishes if and only if e

belongs to the (m− 6) dimensional null space of JT : N (JT ). Notice that N (JT ) is
the orthogonal space to the 6 dimensional space I(J), namely the image space of
J .

• It is easy to show that the second term (I − JJ †) is a projector N (JT ): thus, if e
or ẋd /∈ N (JT ) or also when ẋd = 0 this term vanishes; otherwise nothing can
be stated on its sign.

The system error e can be rearranged as follow:

e = eN + eI , (4.38)

where eN and eI are the error components respectively belonging to N (JT ) and I(J).
By imposing condition (4.37) and exploiting equations (4.36) and (4.38) we easily obtain:

V̇ ≤ −k σm ‖eI‖2 + ‖ẋdN‖ ‖eN‖2 ≤ 0 , (4.39)

where ẋdN is the component of ẋd belonging to N (JT ) and σm is the smallest of the 6
positive non-zero singular values of the symmetric matrix (JJ †).
To ensure local stability it is thus sufficient to have:

k σm ‖eI‖2 ≥ ‖ẋdN‖ ‖eN‖2 . (4.40)
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The above inequality and then local stability are thus verified when one of the two fol-
lowing option is chosen:

1. to set ẋd = 0 → ẋdN = 0, without providing any image path planning, thus
resulting in xd = xf . This choice however is not advisable for two reasons:

• Singularities of the control law especially may arise when Ii and If are very
different (for large camera displacements and thus large initial error e): in
singularity the rank of the interaction matrix J decreases thus giving rise to
very high camera twist screw w (see control law (4.32)) and provoking the
failure of the positioning task.

• Local Minima may occur in this case if the system reach the condition eI = 0.
Local Minima are in fact configuration where the error e 6= 0 ∈ N (JT ) thus
resulting in a control twist screw w = 0 (according to (4.32) with ẋd ∈ 0): as
a consequence the system converges in a configuration different from the goal
one even if e 6= 0 and positioning task fails. Notice that if we had a square
Interaction matrix the null space N (JT ) would be equal to 0 ∈ Rm×1 and
Local Minima would not exist: this situation could be verified in our case by
using just 3 points as visual features; however in such a case the system would
be unfortunately affected by Singularity drawbacks as known from literature
[Cha99].

2. to keep ‖eI‖ as much as possible bigger than ‖eN‖ and to minimize ‖ẋdN‖ by
performing an adequate image path planning on the references ẋd To reach this
goal it will be necessary at first to maintain the system error as smaller (“local”)
as possible since both N (JT ) and I(J) are two orthogonal subspaces that are
variable with the local linear mapping J(x(t), rc(t)) and at second to set feasible
configurations (namely feasible target views) for the reference state vector xd.

In order to avoid all the problems related with the above first option it is essential per-
form an image path planning on the reference image features xd. The image planning
strategy will have also to take into account the 3D motion constraint of the camera in
the generation of the planned image trajectories so as to generate feasible reference target
views.

4.3 Image Path Planning
Consider to deal with a target identified at least by n ≥ 4 points P i, i = 1, ..., n

without any point collinear with other two belonging to a plane π, respectively projecting
in Ii and If in the homogeneous pixel points pii and pfi , according to equation (2.22). Refer
thus to the system described in section (4.2.1.1) for the definition of the state vector x
and of the interaction matrix J . To perform image path planning, the structure of the
Euclidean Homography Hf

i , defined in (3.14), can be exploited. Between the initial an
the goal views in fact, the following equation holds:

m̃f ∝ Hf
i m̃i =

Zi
Zf

Hf
i m̃i , (4.41)
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where we have recalled (3.16), referring to image points in normalized coordinates.
Notice that Hf

i can be estimated by the method reported in section (3.3.1.2) from Ii
and If image points coordinates and their correspondences. Recall that the image path
planning is needed to set the time-varying reference image trajectory xd(t) defined by:

xd(t) =
[
mT

d 1(t) mT
d 2(t) ... mT

dn(t)
]T ∈ R(2n×1) (4.42)

Similarly to equation (4.41) the planned image trajectories, as shown in figure (4.1), can
be generated by defining a Time-varying Reference Euclidean Homography Hd(t) such
that for a generic reference feature point m̃d(t) of xd(t) we have:

m̃d(s(t)) ∝ Hd(s(t))m̃i → xd(s(t)) = f(Hd(s(t))). (4.43)

where m̃i is the corresponding image point in Ii and s = s(t) is a suitable scalar time law
that have to be chosen opportunely.
The IBVS control input, namely the camera twist-screw w, can thus be generated

Figure 4.1: Evolution of the planning trajectories xd(s(t)) .

smoothly varying the reference homography Hd(s) between the initial and the goal views.
In this work the planning of the reference paths for the IBVS control is generated off-line.
Here we summarize the main steps of our IBVS strategy:

• Off-Line Steps

1. Estimate Hf
i from the pixel point coordinates pii and

pif i = 1, ..., n and their correspondences through the algorithm described
in (3.3.1.2).

2. Define an opportune planning Homography Hd(s) with the recovered camera
kinematic parameters from Ii and If (we will see i the following how it can be
done).

3. Choose for an adequate time law s(t) ranging from 0 to 1.
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4. Generate the planned image trajectories xd(s(t)) by exploiting equation (4.43)
for the n feature points.

5. Compute the time derivative of the reference trajectories ẋd(s(t)).

• On-Line Steps

1. Estimate the actual system Interaction Matrix Ĵ(x, Zx) according to (4.21) by
using the actual tracked points normalized coordinates (m1, m2, ...mn, ) and
by adaptively estimating the actual 3D point depths (Ẑ1, Ẑ2, ... Ẑn, ) through
the law described in [CA01].

2. Compute the image error e = (xd − x) .

3. Calculate the camera twist screw w according to (4.32) and send it to the robot
controller to minimize e between actual and the planned reference views.

Since in the control section (4.2) we have already shown how to execute the On-line Steps
in the following we will show in detail the image path planning strategy and thus how the
above Off-line Steps can be performed.

4.3.1 The Time Law

To obtain smooth variations of the reference image features xd(s(t)) we define the time
law s(t) as a quintic-polynomial ranging from the initial time ti = 0 to the final planning
time tf :

s(τ) = a(τ)5 + b(τ)4 + c(τ)3 + d(τ)2 + e(τ) + f, (4.44)

with τ = (t/tf ). The coefficients in s can be found as the solution of (6×6) a linear system
satisfying the following boundary conditions imposed on s(t) ant its first two order time
derivatives ˙s(t) and ¨s(t): 

s(0) = 0, ṡ(0) = 0, s̈(0) = 0,

s(tf ) = 1, ṡ(tf ) = 0, s̈(tf ) = 0 .

(4.45)

4.3.2 The Euclidean Reference Homography

To ensure that the generic feature point reference planning trajectory m̃d will range
from m̃i to m̃f according to s(t), the planning reference homography Hd(s) ∈ R3×3,
according to equation (4.43) must verify the following boundary conditions:

m̃i → m̃d → m̃f ⇒


Hd(0) = I

Hd(1) = Hf
i

(4.46)

According to equation (3.14) the estimated euclidean homography Hf
i between Ii and If

results:
Hf

i = Ri T
f

(
I − tsifn

T
i

)
(4.47)
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where Ri
f = Rf T

i and tsif are respectively the rotation matrix and the scaled translation
defining the goal camera frame Cf with respect to Ci and ni is the plane π normal
expressed in Ci. Let us recall also that the scaled translation tsif is defined by:

tsif =
tif
di

(4.48)

that is the origin of Cf expressed in Ci divided by the distance di of Ci origin from
the plane π. To plan Hd(s) compatible with the rigid camera motion, we thus exploit

Figure 4.2: The reference homography Hd(s) is obtained from the reference rotation Rd(s)
and from the reference scaled translation tsd(s).

Euclidean Homography structure of (4.48) as shown in figure (4.2) obtaining:

Hd(s) = Rd(s)
T (I − tsd(s)ni

T ) (4.49)

where to verify the boundary conditions (4.46) it is natural to impose the following kine-
matic conditions: 

Rd(0) = I, Rd(1) = Ri
f ,

tsd(0) = 0, tsd(1) = tsif .

(4.50)

The vector tsd = td

di
(s) represents the scaled translation between the planned scaled

camera frame and the initial one. To estimate the unknown parameters Ri
f , tsif and

ni from Hf
i it is necessary to perform the Euclidean homography normalization and

decomposition respectively reported in section (3.3.2) and (3.3.3). The definition of Hd(s),
considering equation (4.49), is now split into the following two sub-problems: the Reference
Rotation matrix Rd(s) definition and the the reference scaled translation vector tsd(s)
definition.
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4.3.2.1 The Reference Rotation Matrix

The Reference rotation matrix Rd(s) in equation (4.49) can be defined by exploiting
Rodriguez formula, derived from the matrix exponential form:

Rd(s) = I + [u]× sin(θd(s)) + [u]2×(1− cos(θd(s)) . (4.51)

Let us assume for the reference rotation angle θd(s) the following law:

θd(s) = θif s(t) (4.52)

so as to obtain the boundary conditions θd(0) = 0 for t = 0 and θd(1) = θif for t = tf .
By injecting the previous equation in (4.51) we finally obtain:

Rd(s) = I + [u]× sin(θif s) + [u]2×(1− cos(θif s)) , (4.53)

where u is the unit vector identifying the finite rotation axis between Ci and Cf and θif
is the overall rotation angle. [ ]× denotes, as already stated, the skew operator.
The parameter set (u, θif ) known as axis-angle representation, can be estimated from the
known rotation matrix Ri

f as follows:

cos(θif ) =
1

2
(tr(Ri

f )− 1) ,

sin(θif ) =
√

1− cos(θif )
2 , (4.54)

θif = atan2(sin(θi
f) , cos(θi

f)),

and

[u]× =

 0 −uz uy

uz 0 −ux
−uy ux 0

 =
Ri T
f − Ri

f

2 sin(θif )
. (4.55)

Notice moreover that u is the unit length eigenvector or Ri
f associated with the eigenvalue

1. From expressions (4.54) we always obtain 0 ≤ θif ≤ π.

4.3.2.2 The Reference Scaled Translation

To define the time dependent reference scaled translation of the camera td(s)/di =
tsd(s) of equation (4.49) we must choose a trajectory that identifies the position of the
scaled reference camera frame origin during the task considering also the boundary con-
ditions of (4.50).
Since the parameter di is unknown, we only are able to define the shape of the reference
trajectory and not its real dimension (we define, in fact, a scaled trajectory). Notice that
whatever the unknown scale factor, the desired trajectories in the image plane remain
the same. So, if the control is synthesized in the image plane, the positioning task can
be fulfilled regardless of the scale factor. Moreover we observe that the knowledge of di is
equivalent to the knowledge of the real dimensions of the whole scene (object of interest
and reference trajectory).
Among the infinite shapes for the reference translation we choose for our planning the
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helicoidal trajectory; we consider indeed the helicoidal shape as the most appropriate to
join the initial and desired positions of the camera since it perfectly harmonizes trasla-
tion with rotation [AF05]. A generic helix is characterized by these canonical parametric
equations: 

x(γ(s)) = r cos(γ(s))

y(γ(s)) = r sin(γ(s))

z(γ(s)) = p
2π
γ(s)

(4.56)

0 ≤ γ(s) ≤ γ1 ,

where x,y and z are the coordinates of the curve expressed in a canonical cartesian frame
defined by E as shown in figure (4.3). This right-handed coordinate system has the z-axis
coincident with the axis of the helix and the x-axis defined by the vector perpendicular
to the helix axis through initial point of the curve (the point defined by s = 0). The helix
we choose has the z-axis direction coincident with the unit vector u and the total angle
γ1 covered by the curve equal to θif , as shown in the Figure. We also assume :

γ(s) = θd(s) = θif s ; (4.57)

in this way we obtain for the camera motion a translation that is perfectly harmonized
with the rotation. To completely define our scaled reference helix we must still find:

Figure 4.3: Reference scaled helix used for the camera translation path in the general
motion case.

• the pitch of the helix p;
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• the radius of the helix r;

• the origin of the canonical coordinate system E in the scaled 3D space.

In order to find these parameters we decompose the overall scaled translation tsif of (4.47)
in its parallel and orthogonal components to the unit vector u, respectively tspu and tsou.
We have:

tspu = (tsi Tf u)u , (4.58)
tsou = tsif − tspu . (4.59)

Now we have another three sub cases:

(1) - tspu 6= 0 and tsou 6= 0;

(2) - tspu 6= 0 and tsou = 0;

(3) - tspu = 0 and tsou 6= 0.

Sub case - 1 : tspu 6= 0 and tsou 6= 0 − In this sub case it is easy to check that:

p/(2π) = (tsif
T

u)/θif . (4.60)

From the previous equation the helix pitch can be obtained:

p =
2π

θif
(tsif

T
u) . (4.61)

We can note from (4.61) that if we have (tsTpuu) > 0 we get a right helix while if (tsTpuu) <
0 we get a left helix. With simple geometric passages we obtain the radius as:

r =
|tsou|

2 sin(θif/2)
. (4.62)

The radius and the pitch of the real reference helix, respectively rr and pr, are unknown
variables expressed from these relations:

rr = rdi , pr = pdi . (4.63)

To fix the scaled helix in the space we have to finally find the coordinate of the origin of
the frame E, defined as Oe, respect the initial frame Ci of the camera.
Let be G a right-handed coordinate system with the same origin of Ci and orthogonal
unit vectors defined as follow:

vp = tsou

|tsou|
∧ u

vt⊥u = tsou

|tsou|
u

; (4.64)
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from the last relations we can compute the (4× 4) transformation matrix from Ci to G :

MCi
G =

[
vp vt⊥u u 0

0 0 0 1

]
=

[
RCi
G 0

0T 1

]
. (4.65)

The position and the orientation of E expressed in G are respectively represented by
the vector tsGE and by the rotation matrix RG

E; from simple geometry considerations, we
obtain:

tsGE = [ −r cos(θif/2) r sin(θif/2) 0 ]T , (4.66)

RG
E =

 cos(θif/2) sin(θif/2) 0

− sin(θif/2) cos(θif/2) 0

0 0 1

 . (4.67)

The transformation matrix from G to E can be expressed as:

MG
E =

[
RG
E tsGE

0T 1

]
. (4.68)

Now we are able to identify the placement of E from the coordinate system Ci through
the transformation matrix MCi

E :

MCi
E = MCi

G MG
E . (4.69)

From the equations (4.56) and (4.57) we obtain the reference scaled position of the camera
expressed in E :

tsd(E) =


x(s) = r cos(θifs))

y(s) = r sin(θifs)

z(s) = p
2π
θifs

(4.70)

Using equation (4.69) we obtain the reference scaled translation expressed in Ci:

t̃sd = MCi
E t̃sd(E), (4.71)

with t̃sd = [tsd, 1]T and t̃sd(E) = [tsd(E), 1]T , thus finally obtaining the reference scaled
translation tsd.

Sub case - 2 : tspu 6= 0 and tsou = 0 − From equation (4.62) we have in this sub case r = 0.
In this situation the helix degenerates into a line and the scaled reference translation can
easily be computed:

tsd = s tsif (4.72)

Sub case - 3 : tspu = 0 and tsou 6= 0 − From the equations (4.58) and (4.61) we have
p = 0. In this sub case the helix degenerates into an arc of circle and the vector tsd(E)
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of equation (4.70) become:

tsd(E) =


x(s) = r cos(θifs)

y(s) = r sin(θifs)

z(s) = 0

. (4.73)

4.3.2.2.1 Pure rotational motion case In this case we have only to produce a
rotation of the camera to reach the desired view, in fact equation (4.47) become:

Hf
i = Ri T

f . (4.74)

We extract as in in the previous subsection the unit vector u and the angle θif from the
rotation matrix Ri

f and we plan the rotation of the camera using equation (4.53):

Rd(s) = I + [u]× sin(θif s) + [u]2×(1− cos(θif s)) .

4.3.2.2.2 Pure translational motion case In this last case equation (4.47) be-
comes:

Hf
i = (I −

tif
di

ni
T ) (4.75)

and the camera need only to translate to reach the desired position. We plan the desired
trajectory along a line joining the initial and desired position using the parameterization
expressed in (4.72):

tsd = stsif

4.3.3 Optimization of the desired trajectory

It could be useful to do some further modifications to the helicoidal planning defined
above in order to better suite any admissible initial and desired view of the target and
respective camera poses.
The first modification comes from the fact that the reference helicoidal trajectory extends
in the robot workspace and in some cases, because of its convexity, brings the camera
too much close to the target: in this situation some feature point can leave the camera
field of view and the task is compromised. To avoid these cases it is sufficient to have the
convexity of the helicoidal reference trajectory always turned from the opposite part respect
to the target.
To reach this goal we at first consider the frame G defined in (4.64): we note that any
helix produced from the planning lies in the half space delimited by the coordinate plane
with normal vp characterized by its positive direction. Since we assume the normal ni to
the target plane π, obtained from the decomposition of Hf

i , to have its positive direction
toward the half space delimited by π containing the target, we operate in this manner:

• we maintain the helix generated from the previous planning if (vTp ni ≤ 0)

• we instead modify the reference helix if (vTp ni > 0 = (in these cases, in fact, the
convexity of the curve is turned toward the target).
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Figure 4.4: First available modification for scaled helix planning: to plan on the green helix
arc instead of on the red one.

The change we operate if (vtp ni > 0) is to plan the reference position trajectory on an
helix symmetric to the old one respect to the coordinate plane of W with normal vp as
shown in figure (4.4). To operate this symmetry it is sufficient to introduce a matrix of
the form:

S = diag(−1, 1, 1, 1) . (4.76)

in equation (4.69). This equation become:

MCi
Esimm

= MCi
G S MG

E , (4.77)

where with Esimm we have defined the canonical frame associated to the modified sym-
metric helix. The second modification we produce to optimize the camera translation path
rises from the fact that in some complex tasks the orientation planning brings the camera
to turn toward the opposite part respect to the target: also in these cases the target gets
out of the camera field of view and the task is compromised. These unfortunate cases
might arise when the initial view, the desired or both views are particular views in which
the camera focal axis intersects the object plane Π in a point with negative depth. To
resolve this problem we plan the camera orientation and translation on a different helix
characterized by these new parameters as shown in figure (4.5):

unew = −u , θifnew = 2π − θif . (4.78)

This modification makes the camera to join the desired frame always maintaining the
camera toward the target. Notice that, even if in some unfortunate cases the feature points
would leave the camera field of view, the paths planning in the image space permits to
prevent these situations and so to avoid them choosing a different reference scaled 3D



Chapter 4. Visual Servoing 57

u
if

c
f

c
i

if
2

-u

c
f

c
i

-

a) b)

Figure 4.5: Second available modification for scaled helix planning. a) Helix before the
modification. b) Helix after the modification.

trajectory for the camera.



Chapter 5

IBVS from Coaxial Circles

In this chapter is presented a self-calibrated approach to visual servoing with respect
to a wide class of non planar targets. Valid targets are those that can be modeled through
a pair of coaxial circles plus one point on either circle plane. This a priori assumption on
target shape makes it possible to self-calibrate a full perspective camera (fixed internal
parameters) from two views, by exploiting the method originally developed in [CDBP05]
for a single view of a solid of revolution. The special target structure also allows the
reformulation of the servoing problem in terms of camera positioning with respect to a
virtual planar target. Calibration data are used to recover the scaled Euclidean structure
of the virtual plane, together with scaled camera relative pose. Pose disambiguation is
achieved by generating a synthetic third view of the target from the second one. The
approach includes an off-line 2D trajectory planning strategy by which the camera follows
a 3D helicoidal path around an arbitrary axis, which can be conveniently chosen as the
target axis itself. The chapter is organized as follows. In Sect. 5.1.1 the target model is
defined; its imaged properties are then discussed in Sect. 5.1.2 together with calibration
and 3D estimation issues. In Sect. 5.1.3 the control scheme is described, and an algorithm
for helicoidal path planning is given. Next Chapter includes for completion results obtained
from simulation tests.

5.1 The Approach

5.1.1 Modeling

The visual servoing approach proposed in this chapter works for a class of targets which
can be modeled through a pair of coaxial circles. This geometric structure is shared by a
large class of man-made objects, including solids of revolution such as bottles, vases, lamps
and any lathe-crafted objects as a special case. An additional requirement for targets is
the existence of a well detectable point different from a circle center, and placed anywhere
on either circle planes: this point (referred to in this work as reference point P r) can be
related either to the visual texture of the object, or to special artifacts on it—e.g., the
handle of a cup. Fig. 5.1(a) provides an example of solid of revolution target. Only two
views of the target, referred to as initial and desired view, are required in the proposed
approach. Moreover, the approach is self-calibrated, the only condition on the camera
internal parameters, embedded in the matrix K, is that they remain unchanged during
task execution. For any target, the plane πr through the circles’ axis and the reference
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(a) (b)

Figure 5.1: A solid of revolution target and its geometry. (a): A view of the target. (b):
The features relevant for the approach.

point can be defined. Consequently, the servoing task can be reformulated in terms of
initial and final visual appearance of a reference quadrangle on πr, with vertexes P r, O1,
O2, Qr—see Fig. 5.1(b). The control approach in thus finally equivalent to the feature
point one described above in in Chapter (4.2).

5.1.2 Vision

5.1.2.1 Imaged target and related 2D features

Anytime during task execution, perspective projection of the 3D object onto the image
plane gives rise to the two ellipses C1 and C2 (i.e., the images of the two coaxial circles,
represented as 3 × 3 symmetric homogeneous matrices), and the imaged reference point
pr (represented as a homogeneous 3-vector).
The axial symmetry properties of the 3D target induce a projectively symmetric 2D
configuration of the ellipses, which is characterized by the imaged symmetry axis ls and
the vanishing point v∞ of the normal direction of the plane passing through ls and the
camera center. Two other fundamental entities characterizing the imaged target are the
imaged circular points i and j of the pencil of planes orthogonal to the target axis (ref.
section (2.1.4).
As shown in [CDBP05], the image entities ls, v∞, i and j can all be computed from the
knowledge of the ellipses C1 and C2 and their conditions of visibility. Given C1, C2 and
pr (which without loss of generality will be assumed as belonging to C1), the vanishing
line l∞ = (i ∧ j) of the plane pencil above is used at any time during task execution to
compute the remaining imaged vertexes of the reference quadrangle, namely o1, o2, and
qr—see Fig. 5.2. For line and point projective geometry refer to section (2.2). Explicitly,
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Figure 5.2: Construction of the imaged target geometry.

the imaged circle centers are computed from the pole-polar relationships (ref. to section
2.1.3): {

o1 = C−1
1 l∞

o2 = C−1
2 l∞ .

(5.1)

Once these are known, the vanishing point of the line (O1 ∧ P r) is computed as:

vr = (o1 ∧ pr) ∧ l∞ . (5.2)

Finally, the fourth vertex qr is obtained by first intersecting the line (o2 ∧ vr) with the
ellipse C2, and then choosing, between the two possible solutions, the one farthest from
vr. During task execution, the position of the imaged vertexes of the reference quadrangle
are computed at each frame by estimates of both the two ellipses and the reference point.

5.1.2.2 Self-calibration

The imaged target axis ls and the vanishing point v∞ are related to each other as
[WMC03]:

ls = ω v∞ , (5.3)

where ω is the image of the absolute conic (IAC) Ω∞ defined in section (2.2.4). ω carries
out all the information about the camera calibration matrix K and its internal parameters;
it can be shown in fact that:

ω = (KKT )−1 . (5.4)

Other two constraints on K which are induced by the special structure of the target are:

iTω i = jTω j = 0 . (5.5)
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In [CDBP05] it is demonstrated that, for each view, the system composed by eqs. 5.3 and
5.5 provides three independent constraints on ω, and hence on the five internal camera
parameters as for the full perspective CCD model defined in (2.4.3). Therefore, under the
hypothesis of unchanged K, a full camera calibration can be obtained from the image
data of both the initial and final target views.

5.1.2.3 Scaled 3D measurements

Also in this case, for the purpose of trajectory planning (later addressed in Sect. 5.1.3),
estimates of the 3D structure of the reference quadrangle and the relative camera displace-
ment are required. Although three of them are “virtual” (namely not directly extracted
from the image), the four reference quadrangle vertexes can be effectively considered as
four point features: the problem is thus reduced to a simple planar target case. Thanks to
the above observation the 3D scene structure can be estimated by solving one more time
the structure from motion problem described in section (3.3).

First, the 3× 3 planar pixel homography Gf
i , mapping the corresponding vertexes of

the initial and final imaged quadrangles, is computed as shown in (3.3.1.2) as the solution
of the following system:

[pr f o1 f o2 f qr f ] = Gf
i [pr i o1 i o2 i qr i] . (5.6)

The calibration matrix K, estimated whit the self-calibration technique above, is then
used to compute the so called “Euclidean homography” Hf

i = K−1Gf
i K. Finally, by

performing the normalization described in (3.3.2), the Euclidean homography can be
decomposed through the procedure (3.3.3) into its rotational and parallax components
recalling the form (4.47):

Hf
i = Rit

f (I − tsif nt
i r) , (5.7)

where, as explained in section (3.1) we have:

• Ri
f is the rotation matrix between the initial (Fi) and final (Ff ) camera frames;

• tsif is the scaled translation between Fi and Ff ;

• nt
i r is the unit normal to πr.

Notice that all the elements are expressed with respect to Fi. As specified in (3.3.3), the
planar homography decomposition problem from a palnar target has a twofold ambiguity,
which can be removed by the additional information provided by a third view of the plane.
In this work, a real third view of the target is actually not needed, being it sufficient
to exploit the symmetry properties of the target. To this aim, a synthetic view of the
quadrangle can be generated by arbitrarily choosing, in the final image, a new point pv ∈
C1 other than pr, and using the method expounded above to obtain the corresponding
fourth quadrangle vertex (Fig. 5.3).
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Figure 5.3: Construction of the synthetic view for pose disambiguation.

5.1.3 Control

5.1.3.1 Control scheme

Now let us calculate the normalized coordinates of the four quadrangle vertexes from
the pixel ones by inverting equation (2.27):

p̃nr = K−1pr õn1 = K−1o1 õn2 = K−1o2 q̃nr = K−1qr , (5.8)

The state system vector x (see 4.2.1) can be built in this case with the four quadrangle
vertexes in normalized inhomogeneous coordinates:

x = [pnt
r ont

1 ont2 qnt
r ]t (5.9)

be the 8-vector constructed using, in a generic view, the imaged vertexes of the reference
quadrangle. Recall that the system dynamics is expressed by:

ẋ = J w , (5.10)

where w = [vt ωt]t ∈ IR6×1 is the twist velocity screw of the camera expressed in the
camera frame and J = [Jt

1 Jt
2 Jt

3 Jt
4 ]

t, its generic block Jk is the quadrangle vertexes
interaction matrix like (4.21). The system can thus be visually controlled like in the planar
target case, with point as visual features, described in section (4.2.1.1). The control law
used is [AC99, MC02]:

w = Ĵ
†
[λe + ẋd] , (5.11)

where Ĵ
†

is the pseudo-inverse of the estimated Jacobian obtained through the on-line
adaptive depth estimation law proposed in [CA01], λ is a positive gain, e = (xd−x̂) is the
image error (difference between the desired and the actual normalized imaged quadrangle
vertexes), and ẋd is the reference evolution of quadrangle appearance resulting from image
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path planning.

5.1.3.2 Path planning

Off-line image path planning is performed by generating, at each time step t, a Eu-
clidean homography Hd(t) by which the reference imaged quadrangle is given by

[λ1p
n
r d(t) λ2o

n
1 d(t) λ3o

n
2 d(t) λ4q

n
r d(t)] = Hd(t) [pnr i on1 i on2 i qnr i] , (5.12)

where (λ1, λ2, λ3, λ4) are scale factors that can be removed by normalizing the third coor-
dinates of the planned vertexes to 1. While in section (4.3) the special case of helicoidal
planning with constant radius and axis identical to the instantaneous axis of motion has
discussed, here we address the general case of variable radius and arbitrary axis.
In this case, the planned Euclidean homography is designed so that the camera follows a
helicoidal trajectory in the 3D space, whose radius and axis depend on the overall displace-
ment [Ri

f tsif ] between the initial and current camera frames. Following the decomposition
of eq. (4.47), the planning homography can be written as

Hd(t) = Rit
d (t)(I − titd (t) nt i

r ) , (5.13)

where [Rit
d (t) titd (t))] denotes the desired 3D displacement of the camera at time t with

respect to frame Fi. As in section (4.3.2.1), the planned rotation Rit
d (t) can be expressed

through the Rodriguez’ formula [MSKS03] as

Rit
d (t) = I +

[
iu
]
× sin(θif s(t)) +

[
iu
]2
× [1− cos(θif s(t))] , (5.14)

where [ · ]× is the skew-symmetric operator, (iu, θif ) is the axis-angle representation of
the overall camera rotation matrix Ri

f , and s(t) can be chosen as the smooth monotonic
function of time law defined in section (4.3.1) with s(ti) = 0 and s(tf ) = 1. In order to
plan a helicoidal trajectory around an arbitrary 3D axis L, the desired scaled translation
iτ̃d(t) is computed by the following algorithm—see also Fig. 5.4.

i) Let πi and πf be the planes through the target axis L and the initial and final camera
centers, respectively. Compute the unit vectors ini and
inf = Ri

f
fnf normal to the planes using the imaged axes li and lf and the for-

mula n = Ktl/‖Ktl‖.

ii) Compute the direction of the helicoidal axis as iul = (ini×inf )/‖ini×inf‖. Compute
the vector component iτ̃⊥f perpendicular to iul of the overall scaled translation tsif .

iii) Compute the (scaled) distances between L and the initial and final camera centers
respectively as ri = | iτ̃⊥f × ini| and rf = | iτ̃⊥f × inf |. Compute the angle between
the planes πi and πf as

αif = arccos

(
r2
i + r2

f − ‖iτ̃
⊥
f ‖2

2rirf

)
. (5.15)



Chapter 5. IBVS from Coaxial Circles 64

iv) Compute the (scaled) pitch of the planned helix as

pd =
2π

αif

iτ̃ t
f ul . (5.16)

v) Define the right-handed coordinate frame Fh with the following characteristics: (a)
(scaled) origin on L, at the point at minimum distance from the initial camera
center; (b) x-axis orthogonal to L and directed toward the initial camera center; (c)
z-axis parallel to ul. The planned (scaled) helix equations in this frame are

hτ̃ (t)d =

 r(t) cos(αifs(t))

r(t) sin(αifs(t))

(pd/2π)αifs(t)

 , (5.17)

where r(t) = ri + (rf − ri) s(t) represents the variable helicoidal radius.

vi) Finally, compute the desired scaled translation iτ̃ d(t) from hτ̃ (t)d by the change of
frame mapping Fh 7→ Fi.

Notice that, as tsif is defined up to a scale factor, the lack of knowledge about the real
distance between the initial and final camera centers does not affect the planning in any
way.
Although the algorithm above applies to any arbitrarily chosen axis, the special structure
of the target suggests that the most natural choice for the axis is that of the target axis
itself. In the following chapter, this choice will be discussed and compared with the one
proposed in (4.3.2.1).
One of the remarkable properties of off-line planning is the possibility to forecast whether
image features will remain or not in the camera field of view during task execution.
Fig. 5.5 shows the three planar loci for camera center where singularities occur. In planes
π1 and π2, one of the ellipses degenerates into a line segment; in πr the vertexes of the
imaged quadrangle are all aligned. Singularities occurring on-line can be pointed out
by visual analysis: They can be bypassed by opening the control loop near degeneracy
conditions, and using a “reduced” control law including the feedforward term and the last
useful estimate of the imaged Jacobian [AC99].
Choosing the helicoidal axis coincident with the target axis has the further advantage that
degenerate ellipses are avoided, provided that both the initial and final camera centers
both lie below, in the middle or above π1 and π2.
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Figure 5.4: Geometric construction for the desired scaled translation.

Figure 5.5: Vision and control singularity planes for camera center position.



Chapter 6

Results

To demonstrate the feasibility of the addressed planning approach, both simulation
results using Matlab c© and real experiment have been carried out. The chapter is or-
ganized as follows: first simulations for positioning tasks are reported by using both a
planar square target and an axial symmetric object; then several results concerning IBVS
experiments on planar targets in different conditions are shown. Both simulation and ex-
periments demonstrate the good performances of the proposed approach also for large
camera displacements.

6.1 Simulations
Numerical results have been performed by the development a simulator reproducing

the scene and the controlled system dynamic taking also into account on-line depth es-
timation. For the axial symmetric target case moreover analysis have been performed
showing the influence of Gaussian noise in features extraction on control performances.

6.1.1 Servoing from points

Simulation results for the planar target case are obtained using a full projective camera
with the following intrinsic matrix:

K =

 458 0.01 323

0 462 237

0 0 1

 . (6.1)

We consider for these simulations a CCD with resolution of (640 × 480) like most of
the usually adopted cameras for visual servoing systems. The target is defined by 4 well-
detectable points at the vertexes of a (0.4m× 0.4 m) square . The initial and the desired
camera poses are defined with respect to the target frame T having its origin at the center
of the square and z-axis pointing inside the target plane π. A camera pose is defined by:

• the vector (tx, ty, tz), expressed in meters-[m], identifying the camera frame origin
with respect to the target frame T ;

• the (ZY Z) Euler angles (φ, θ, ψ), expressed in degrees-[deg], identifying the camera
frame orientation with respect to T .
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6.1.1.1 Simulation I

In this simulation the initial camera frame Ci is defined with respect to T by:

tx i = −0.6 ty i = 0.7 tz i = −1
φi = −35 θi = 40 ψi = 65

Cf instead defined is with respect to T by:

tx f = 1.5 ty f = 2.8 tz f = −3
φf = 90 θf = −50 ψf = 170

The corresponding initial and goal target images with the image point trajectories are
shown in Figure 6.1 in normalized coordinates. As shown in Figure 6.2 the control system
well drives the actual features to the goal image along the planned trajectories. Both
image error e and estimated depth errors decrease to zero, as respectively reported in
Figure 6.3-a and 6.3-b, keeping smooth and feasible the control camera velocity screw w
as can be observed in Figures 6.9 and 6.5.
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Figure 6.1: Initial (left) and goal (right) target views with planned and executed trajectories
in the normalized image space. The executed trajectories are overlapped with the reference
ones.
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Figure 6.2: Reference (rescaled to the actual scale factor di) and real camera trajectories in
3D space ranging from the initial camera pose (bottom-left) to the goal camera pose (top).
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Figure 6.3: a) The 8 image errors e components during task execution: as shown the
components evolution is smooth according to the quintic time law s(t). b)Estimated depth
errors (Zi − Ẑi) i = 1, ... , 4 for the tracked feature point during task execution: as pictured
depth errors starting from large initial values is minimized toward 0. The depth estimates
are computed exploiting the adaptive law addressed in [CA01].
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Figure 6.4: a) Camera twist screw w translational velocity components (vx, vy vz) versus
time. All the 3 screw components evolves smoothly according to the quintic polynomial time
law for the image planning trajectory s(t).
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Figure 6.5: Camera twist screw w rotational velocity components (ωx, ωy ωz) versus time.
All the 3 screw components evolves smoothly according to the quintic polynomial time law
for the image planning trajectory s(t).
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6.1.1.2 Simulation II

Now we show a more difficult positioning task simulation where the goal camera view
has an higher perspective “distortion” than in the previous simulation. The initial camera
frame Ci is defined with respect to T by:

tx i = −0.4 ty i = 0.5 tz i = −1
φi = −25 θi = 30 ψi = 35

Cf instead defined is with respect to T by:

tx f = 0.6 ty f = 1.8 tz f = −0.1
φf = 90 θf = −100 ψf = 20

The corresponding initial and goal target images with the image point trajectories images
are shown in Figure 6.6 in reprojected pixel point coordinates. As shown in Figure 6.7
the control system well drives the actual features to the goal image along the planned
trajectories. Both image error e and estimated depth errors decrease to zero as respectively
reported in Figure 6.8-a and 6.8-b keeping smooth and feasible the control camera velocity
screw w as can be observed in Figures 6.9 and 6.10.
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Figure 6.6: Initial (left) and goal (right) target views with planned and executed trajectories
in the image space. The executed trajectories are overlapped with the reference ones.
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Figure 6.7: Reference (rescaled to the actual scale factor di) and real camera trajectories in
3D space ranging from the initial camera pose (top) to the goal camera pose (bottom-left).
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Figure 6.8: a) The 8 image errors e components during task execution: as shown the
components evolution is smooth according to the quintic time law s(t). b) Estimated depth
errors (Zi − Ẑi) i = 1, ... , 4 for the tracked feature point during task execution: as pictured
depth errors starting from large initial values is minimized toward 0. The depth estimates
are computed exploiting the adaptive law addressed in [CA01].
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Figure 6.9: a) Camera twist screw w translational velocity components (vx, vy vz) versus
time. All the 3 screw components evolves smoothly according to the quintic polynomial time
law for the image planning trajectory s(t).
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Figure 6.10: Camera twist screw w rotational velocity components (ωx, ωy ωz) versus time.
All the 3 screw components evolves smoothly according to the quintic polynomial time law
for the image planning trajectory s(t).
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6.1.2 Servoing from coaxial circles

To gain an insight into the approach of section (5), a simulator for general image-based
visual servoing tasks with an eye-in-hand robotic system has been developed, and various
tests have been carried out. The simulation software allows to define the 3D shape of the
target models (two circles plus one point), and then to define visual tasks by generating
arbitrary initial and goal views. Off-line path planning can be defined with respect to
an arbitrary axis in space. On-line task execution includes the generation of successive
views reflecting the actual camera motion and noise conditions, and the estimation of
visual parameters from each view. The actual target visibility constraints (self-occlusions)
are taken into account. Ellipses are estimated by using the least square fitting algorithm
proposed in [FPF99]. In all the tests, views have been generated using a solid of revolution
target, a perspective camera with (640× 480) pixels, and a calibration matrix

K =

 468.2 1.0 310.0

427.2 230.0

1.0

 . (6.2)

As for the simulated planar target cases of subsection (6.1.1), tasks executed in the
absence of image noise are performed with negligible error—both on camera calibration
and positioning accuracy—with respect to ground truth values, thus proving the theoret-
ical correctness of the formulation. In the following, tests performed in the presence of
zero mean additive Gaussian noise on ellipse points are discussed.

6.1.2.1 Off-line noise

The first test concerns the case of off-line noise only, and is aimed at focusing on the
effects of a noisy self-calibration (and hence on system behavior) on task accuracy—see
also [Esp93]. Due to image noise, the estimated calibration matrix is

K̂ =

 496.3 5.7 331.4

407.5 211.6

1.0

 . (6.3)

Fig. 6.11(a) illustrates the initial and goal views used for the test. The evolution of target
appearance is summarized in Fig. 6.11(b). Fig. 6.12(a) shows both the planned and the
actual trajectories of the imaged vertexes of the reference quadrangle. Noisy trajectories
reach the goal points with negligible error. Inspection of Fig. 6.12(b), reporting the time
evolution of the eight components of the image error e, provides an insight into task
accuracy. Camera velocities during task execution are shown in Fig. 6.13.
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Figure 6.11: (a): Initial (thicker line) and final views for the servoing task considered in
the off-line noise case. (b): Evolution of target appearance.
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Figure 6.12: (a): Planned vs actual trajectories of the vertexes of the imaged quadrangle
in the off-line noise case. Thicker lines refer to the initial view. (b): The eight components
of the image error e.
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Velocity profiles are smooth and physically feasible (in particular, with zero velocity at
the initial and final task times), thanks to the choice of an appropriate quintic polynomial
for the planning function s(t).
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Figure 6.13: Camera velocities. (a): Translational camera velocities v. (b): Angular camera
velocities ω.
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Figure 6.14: Adaptive depth estimation error.

Fig. 6.14 reports on adaptive depth estimation errors during task execution for the
four quadrangle vertexes. Depth values have been initialized by arbitrarily fixing to unity
the unknown scale factor of camera translation. Notice that, even if the depth errors are
initially quite large, they quickly decrease, although not zero, due the properties of the
gradient adaptation law. As a result of depth adaptation, the unknown scale factor can
be eventually estimated, making it possible to get an estimate of the real size (e.g., in
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Figure 6.15: Planned vs actual 3D camera trajectories in the off-line noise case.

millimeters) of the target—a fact which is impossible to obtain using standard computer
vision multi-view approaches with any number of target images.
Fig. 6.15 shows the planned and actual trajectories of the camera. Regardless of the
noisy planning trajectory due to gross errors in the estimate of the scaled target axis,
the final camera position attained at the end of the actual trajectory has been found to
exactly correspond to the ground truth. An interpretation of this is that the errors in the
Euclidean homography H induced by a wrong estimate of K are such that the projective
homography G is anyway correct. This is one of the beneficial effects of closing the control
loop in the image.

6.1.2.2 On-line and off-line noise

The second test reports on the effects of the combination of off-line and on-line noise
on task accuracy. The noise standard deviation was 0.2 pixel. The estimated calibration
matrix is in this case

K̂ =

 517.3 3.1 322.7

470.9 212.3

1.0

 , (6.4)

which is affected by a larger error than in the previous case.
Fig. 6.16(a) shows the task at hand, and Fig. 6.16(b) shows the image trajectories

for the quadrangle vertexes. Despite the jittering, which is due in part to the use of
ideal actuators with zero response time, actual trajectories follow quite well the planned
trajectories. Fig. 6.17 shows the discrepancy between the planned and the actual 3D
camera trajectories. The same comments of Fig. 6.15 apply here. The 3D error with
respect to the overall camera displacement is about 3.6% for translations, and 1.8% for
rotations.

In order to test the sensitivity of the approach to image noise, a Monte Carlo test
has also been performed, for noise standard deviation ranging from 0 to 1 pixel. For each
noise level, 1000 trials were executed. Fig. 6.18 shows the average and standard deviation
of the 3D camera positioning error on both the translational and rotational components.
Results are shown in percentage with respect to the ground truth camera displacement
between the two views. Errors almost linearly increase with noise values. Even if they
show the same qualitative behavior, translational errors are larger than rotational ones;
this is due to the fact that, since rotations do not actually depend on depth estimates—see



Chapter 6. Results 78

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

[pixel]

[
p
i
x
e
l
]

(a)

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

[pixel]

[
p
i
x
e
l
]

Init. View

Fin. View

Planned Traj .

Real Traj .

(b)

Figure 6.16: (a): Initial and final views for the servoing task in the off-line/on-line noise
case. (b): Planned vs actual trajectories of the vertexes of the imaged quadrangle. Thicker
lines refer to the initial view.
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Figure 6.17: Planned vs actual 3D camera trajectories in the off-line/on-line noise case.

eq. 4.21—depth estimation errors only affect translational velocities.
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Figure 6.18: Positioning error vs noise standard deviation. The mean is represented by
a polygonal line; the standard deviation by vertical bars of width 2σ centered around the
mean value. Translational and rotational errors are respectively reported in [m] and [deg]
with respect to ground truth values. (a): Translational error. (b): Rotational error.
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Figure 6.19: Actual vs planned imaged trajectories (thicker lines refer to the initial view)
using different helicoidal axes. (a): Target axis. (b): Instantaneous rotational axis.

Figure 6.20: Helicoidal trajectories for two different axis choices. The solid line refers to
the target axis choice.

6.1.2.3 Choice of the helicoidal axis

A noiseless test has also been performed in order to compare the two different choices
of the helicoidal axis—namely, target axis Ls, and instantaneous rotation axis La—in
off-line path planning mentioned earlier in the paper. Fig. 6.19 shows the different 2D
imaged trajectories arising in the two cases, while Fig. 6.20 shows the corresponding 3D
camera trajectories. It is worth noticing that, although the choice of the target axis as
the helicoidal axis gives rise to a 2D trajectory which is apparently unnatural, the corre-
sponding 3D helix has a larger radius than the other, thus requiring smaller accelerations
for the actuators. Moreover, the 3D trajectory generated by the instantaneous rotational
axis choice gets closer to the singularity plane.
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6.2 Experiments
To perform the experiments 6 DOF Kuka c© manipulator has been used with a IEEE

1394 firewire camera mounted on its end effector. Control software components has been
developed in OROCOS (Open RObot Control Software) a C++ open source tool de-
veloped by the Autonomous Compliant Motion Group of the Mechanical Engineering
Department in the Katholieke Universiteit of Leuven (Belgium) [Bru01], [Soe06].
The control software has been compiled on a real time platform with RTL installed (Real
Time Linux), driving the input for the robot actuators. Feature point matching and track-
ing has been performed by using Intel c© OpenCV computer vision library [Ope01].
The target was defined by 4 well-detectable points at the vertexes of a (0.09m× 0.09m)
square. A first set of experiments have been devoted to test the software implementa-
tion correctness and the overall system behavior as a consequence of camera intrinsic and
extrinsic (evaluated with respect to the end effector frame E) estimated parameters. In
a second set of experiments IBVS performances with the proposed image path planning
strategy has been fully investigated. A third set of experiment has also carried out by
selecting four feature points from more “natural” targets. System robustness with respect
to camera calibration error has also been tested in a a final set of experiments.
The visual control (point tracking, e and w computations) has performed at a frequency
of 60 Hz (the maximum frame-rate available from the camera) while the robot actuators
controller run at frequency of 100 Hz (faster inner feedback control-loop) according to the
static look and move architecture described in section (4.1).
The firewire camera has calibrated using the Matlab c© Camera Calibration toolbox devel-
oped by Jean Yves Bouguet from California Institute of Technology [Bou07].
The resulting intrinsic camera parameters are the following:

K =

 1120.10 0 342.05

0 1120.19 199.57

0 0 1

 , (6.5)

with a CCD of resolution 640 × 480. The positioning task initial and goal system con-
figurations are described by the end effector poses E defined with respect to the ground
frame W of the manipulator. Let be thus (tx, ty, tz), the vector, expressed in meters-[m],
identifying E origin with respect to W and (φ, θ, ψ), the three Roll-Pitch-Yaw angles
(RPY ), expressed in degrees-[deg], identifying E attitude with respect to W .
To evaluate the positioning performances the attitude and the translational errors at the
end of the task have been reported. The translational error is defined as the differences
in [mm] between the goal and the reached end effector translation vectors, respectively
tf and tr expressed in W :

ep = tf − tr = [ep x, ep y, ep z]
T . (6.6)

The attitude error defined as the difference in [deg] between the goal and the reached
RPY rotation angles vectors, respectively φf and φr of E frame expressed in W :

ea = φf − φr = [eaφ, ea θ, eaψ]T . (6.7)
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In (6.2.1) a first experiment without planning and small camera displacement is shown.
In (6.2.2) we report the results concerning experiments executed with the proposed path
planning mechanism with respect to an “ad hoc build” planar target as defined above.
In section (6.2.3) we report two experiments done with more “natural” targets show as
to demonstrate the generality of the approach. Finally in (6.2.4) the system robustness
with respect to camera calibration error is proved. Experiments exhibit the very good
performances of the planning approach despite the change the changing of the camera
poses and the large displacements of the positioning tasks. Some problem arises when
the light reflected from the target surface causes feature disappearing: in such a case the
strategy referenced in (4.1.3.2) could be used to ensure satisfactory performances as well.
The system shown hereafter has resulted to be robust up to the 40% of error in the entries
of the camera calibration matrix K.
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6.2.1 First Trial without Path Planning

6.2.1.1 Experiment I

In this first experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.9 ty i = −0.4 tz i = 0.9 [m]
φi = −89.4 θi = 17.8 ψi = 34.3 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.9 ty f = −0.4 tzf = 0.8 [m]
φf = −95.1 θf = 18.79 ψf = 48.58 [deg]

Figure (6.21) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.21: a) Initial target view Ii. b) Goal target view If .
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Figure (6.22) shows the components of the camera twist screw w induced from the
control law (4.32) without the feed-forward term derived from path planning (ẋd = 0).

a) b)

Figure 6.22: a) Angular camera velocity components (ωx, ωy, ωz) in [rad/s]. b) Transla-
tional camera velocity components (vx, vy, vz) in [m/s].

Figure 6.23: The eight normalized image error e components converge to zero inducing the
camera twist screw w of figure (6.22).
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The 3D end-effector origin trajectories measured during task execution is reported
in Figure (6.24):the end effector reaches the goal position for this small positioning task
camera displacements. In Figure (6.23) reports the image error e components As clearly

Figure 6.24: End-effector origins trajectories (red line) resulting from the experiment. No-
tice that the end effector reach the goal position (bottom green circle).

visible e components converges monotonically from the initial values to zero.
In the following table is reported the positioning task error as defined in section (6.2).

ep x = 2.1 ep y = 1.5 ep z = 1.7 [mm]
eaφ = 0.127 ea θ = 0.110 eaψ = 0.206 [deg]

Notwithstanding the absence of the image path planning we can notice the good perfor-
mances of the control system in case of small camera displacements.
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6.2.2 Experiments with “ ad hoc ” Target

6.2.2.1 Experiment I

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.62 [m]
φi = −112 θi = 30 ψi = 0 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −1.2 ty f = 0.6 tzf = 0.8 [m]
φf = −37 θf = −31.5 ψf = 40 [deg]

Figure (6.25) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.25: a) Initial target view Ii. b) Goal target view If .
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Figure (6.26) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.27) shows the components of the camera twist screw w induced from the control

Figure 6.26: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.27: Angular camera velocity components (ωx, ωy, ωz) in [rad/s]-left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.29) a) and b) are respectively reported image error e components

Figure 6.28: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D depth estimation error for the first tracked feature-point. As clearly visible
e components remain very small during task execution conveniently exploiting the local
stability properties of the control law. The adaptive estimation law, as clear from figure
(6.29)-b, gives noisy depth estimates but converges to a better estimation of the target
point unknown depth Z1. In the following table is reported the positioning task error as
defined in section (6.2).

ep x = 0.4210 ep y = 0.1240 ep z = −0.3610 [mm]
eaφ = 0.12 ea θ = −0.01 eaψ = 0.01 [deg]

Notice the nice performances of the IBVS system.
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a)

b)

Figure 6.29: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.27). b) Depth estimation error [m] on the first target
point.
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6.2.2.2 Experiment II

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.62 [m]
φi = −112 θi = 30 ψi = 0 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.8 ty f = −0.3 tzf = 1.2 [m]
φf = −91.7 θf = 23 ψf = 83 [deg]

Figure (6.30) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.30: a) Initial target view Ii. b) Goal target view If .
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Figure (6.31) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.32) shows the components of the camera twist screw w induced from the control

Figure 6.31: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth with increasing noise at the task end due to the decreasing size
of the target image (the camera is increasing its distance from the target).

Figure 6.32: Angular camera velocity components (ωx, ωy, ωz) in [rad/s]-left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.34)-a is reported image error e components the tracked feature-

Figure 6.33: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

point. Normalized image error e components in this experiment grows more than in the
previous one reflecting however the time law derivative ṡ(t) shape: this is due to the larger
camera displacement between the initial and the goal poses. In Figure (6.34)-b the mea-
sured end-effector 3D trajectory is shown: as planned through the image paths it results
in an helix arc. In the following table is reported the positioning task error as defined in
section (6.2).

ep x = 8.2 ep y = 5.3 ep z = 2.8 [mm]
eaφ = 0.13 ea θ = −0.28 eaψ = 0.46 [deg]

Also in this case the system performances results satisfactory. Notice that by increasing
the feature point a more accurate could be obtained.
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a)

b)

Figure 6.34: a) Normalized image error e components: in this experiments the error com-
ponents are bigger than the previous experiment ones: this is due to the larger camera
displacement. The error evolution during time also reflect the quintic time law s(t) defined
for the path planning. b) End effector measured trajectory.
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6.2.2.3 Experiment III

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.62 [m]
φi = −112 θi = 30 ψi = 0 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.65 ty f = −0.55 tzf = 0.9 [m]
φf = −68.8 θf = 34.4 ψf = 51.6 [deg]

Figure (6.35) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.35: a) Initial target view Ii b) Goal target view If .



Chapter 6. Results 95

Figure (6.36) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.37) shows the components of the camera twist screw w induced from the control

Figure 6.36: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.37: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task exe-
cution are reported in Figure (6.38): the camera moves also in this case on a helical-shape
trajectory induced from the image path planning xd. In Figure (6.39) a) and b) are re-

Figure 6.38: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

spectively reported image error e components and the 3D depth estimation error for the
first tracked feature-point. As clearly visible e components remain very small during task
execution conveniently exploiting the local stability properties of the control law. The
adaptive estimation law, as clear from figure (6.39)-b, gives noisy depth estimates but
converges to a better estimation of the target point unknown depth Z1. In the following
table is reported the positioning task error as defined in section (6.2).

ep x = 0.09 ep y = 0.65 ep z = 0.29 [mm]
eaφ = −0.13 ea θ = −0.018 eaψ = −0.16 [deg]

Notice the very good performances of the IBVS system for this positioning task.
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a)

b)

Figure 6.39: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.37). b) Depth estimation error [m] on the first target
point: the error decrease to a smaller value during task execution.
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6.2.2.4 Experiment IV

In this fourth experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.67 ty i = −0.5 tz i = 0.6 [m]
φi = −91.7 θi = 23 ψi = 83.1 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.8 ty f = −0.3 tzf = 1.2 [m]
φf = −68.8 θf = 22.9 ψf = 54.4 [deg]

Figure (6.40) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.40: a) Initial target view Ii b) Goal target view If .
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Figure (6.41) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.42) shows the components of the camera twist screw w induced from the control

Figure 6.41: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.42: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.43): the camera moves on a helical-shape trajectory induced
from the image path planning xd. In Figure (6.44) a) and b) are respectively reported

Figure 6.43: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

image error e components and the 3D end effector measured trajectory. As clearly visible
e components remain very small during task execution conveniently exploiting the local
stability properties of the control law. The 3D end effector trajectory follows an helix arc
driving the system to the goal view. In the following table is reported the positioning task
error as defined in section (6.2).

ep x = 3.2 ep y = 3.9 ep z = 1 [m]
eaφ = −0.069 ea θ = 0.265 eaψ = −0.131 [deg]

Notice the good performances of the IBVS system for this positioning task.
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a)

b)

Figure 6.44: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.42). b) End effector measured trajectory ent to the
goal position (blue circle).
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6.2.2.5 Experiment V

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.1 tz i = 0.4 [m]
φi = −137.5 θi = 33.2 ψi = −5.7 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −1.2 ty f = 0.6 tzf = 0.8 [m]
φf = −37 θf = −31.5 ψf = 65.9 [deg]

Figure (6.45) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.45: a) Initial target view Ii b) Goal target view If .
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Notice in this case the big differences between Ii and If . Figure (6.46) reports the
reference image planned trajectory xd reprojected in pixel (blue lines); this figure re-
ports also in thin green the auxiliary view Ia, used tho solve the Euclidean homography
decomposition for a planar target explained in Section (3.3.3). Figure (6.47) shows the

Figure 6.46: Pixel planned image trajectories xd (blue lines) during the off-line phase.

components of the camera twist screw w induced from the control law: they result very
smooth and no noisy according to the time law s(t) in section (4.3.1).

Figure 6.47: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task ex-
ecution are reported in Figure (6.28): the camera is driven on a helical-shape induced
from the image path planning xd finally resulting in a harmonious movement: notice the
large camera displacement for this task. In Figure (6.49) a) and b) are respectively re-

Figure 6.48: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

ported image error e components and the 3D depth estimation error for the first tracked
feature-point. As clearly visible e components remain very small during task execution
conveniently exploiting the local stability properties of the control law. The adaptive es-
timation law, as clear from figure (6.49)-b, gives noisy depth estimates but converges to a
better estimation of the target point unknown depth Z1. In the following table is reported
the positioning task error as defined in section (6.2).

ep x = 3.15 ep y = 3.75 ep z = −1
eaφ = −0.057 ea θ = 0.165 eaψ = 0.095

Notice the nice performances of the IBVS system also for this large camera displacement
task.
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a)

b)

Figure 6.49: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.47). b) Depth estimation error [m] on the first target
point.
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6.2.2.6 Experiment VI

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.1 tz i = 0.4 [m]
φi = −137.5 θi = 33.2 ψi = −5.7 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.8 ty f = −0.3 tzf = 1.2 [m]
φf = −91.7 θf = 22.9 ψf = 83.1 [deg]

Figure (6.50) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.50: a) Initial target view Ii. b) Goal target view If .
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Figure (6.51) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); the figure shows also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.52) shows the components of the camera twist screw w induced from the control

Figure 6.51: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.52: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.53): the camera is driven on a helicoidal trajectory induced
from the image path planning xd finally reaching the goal pose. In Figure (6.54) a) and

Figure 6.53: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

b) are respectively reported image error e components and the 3D end effector mea-
sured trajectory As clearly visible e components remain very small during task execution
conveniently exploiting the local stability properties of the control law. The end effector
trajectory well follow an helical shape. In the following table is reported the positioning
task error as defined in section (6.2).

ep x = 0.9 ep y = 4.5 ep z = 1.1 [mm]
eaφ = −0.013 ea θ = 0.248 eaψ = −0.128 [deg]

Notice the fulfillment of the positioning task also in this case
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a)

b)

Figure 6.54: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.52). b) Measured 3D end effector trajectory.
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6.2.2.7 Experiment VII

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.1 tz i = 0.4 [m]
φi = −137.5 θi = 33.2 ψi = −5.7 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.8 ty f = 0.3 tzf = 1.2 [m]
φf = −80.2 θf = 29.9 ψf = 68.8 [deg]

Figure (6.55) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.55: a) Initial target view Ii. b) Goal target view If .
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Figure (6.56) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.57) shows the components of the camera twist screw w induced from the control

Figure 6.56: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.57: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.59) a) and b) are respectively reported image error e components

Figure 6.58: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D depth estimate for the first tracked feature-point. As clearly visible e compo-
nents remain very small during task execution conveniently exploiting the local stability
properties of the control law. The adaptive estimation law, as clear from figure (6.59)-b,
gives noisy depth estimates but the overall behavior follows the increasing camera distance
from the target point Z1. In the following table is reported the positioning task error as
defined in section (6.2).

ep x = 7.1 ep y = 9.3 ep z = 2.5 [mm]
eaφ = 0.253 ea θ = 0.531 eaψ = 0.540 [deg]

The IBVS system shows also in this case satisfactory perfomances.
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a)

b)

Figure 6.59: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.57). b) Depth estimate [m] on the first target point.
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6.2.2.8 Experiment VIII

In this case the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.4 [m]
φi = −137.5 θi = 35.5 ψi = −17.2 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.67 ty f = −0.5 tzf = 0.6 [m]
φf = −68.75 θf = 22.9 ψf = 54.4 [deg]

Figure (6.60) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.60: a) Initial target view Ii. b) Goal target view If .
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Figure (6.61) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.62) shows the components of the camera twist screw w induced from the control

Figure 6.61: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.62: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.64) a) and b) are respectively reported image error e components

Figure 6.63: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D depth estimation error for the first tracked feature-point. As clearly visible
e components remain very small during task execution conveniently exploiting the local
stability properties of the control law. The adaptive estimation law, as clear from figure
(6.64)-b, gives converges to a good estimation of the target point unknown depth Z1. In
the following table is reported the positioning task error as defined in section (6.2).

ep x = 0.54 ep y = −0.22 ep z = −0.98 [mm]
eaφ = −0.066 ea θ = −0.023 eaψ = 0.011 [deg]

Notice the very good performances of the IBVS system for this positioning task.
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a)

b)

Figure 6.64: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.62). b) Depth estimation error [m] on the first target
point.
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6.2.2.9 Experiment IX

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.4 [m]
φi = −137.5 θi = 35.5 ψi = −17.2 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.65 ty f = −0.55 tzf = 1.15 [m]
φf = −68.75 θf = 34.4 ψf = 45.8 [deg]

Figure (6.65) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.65: a) Initial target view Ii. b) Goal target view If .
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Figure (6.66) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.67) shows the components of the camera twist screw w induced from the control

Figure 6.66: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.67: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.69) a) and b) are respectively reported image error e components

Figure 6.68: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D depth estimation error for the first tracked feature-point. As clearly visible e
components remain very small during task execution conveniently exploiting the local sta-
bility properties of the control law. The adaptive estimation law, shown in figure (6.69)-b,
gives in this case a satisfactory estimate of the point depth Z1. In the following table is
reported the positioning task error as defined in section (6.2).

ep x = 1.6 ep y = 3.8 ep z = 0.2 [mm]
eaφ = −0.164 ea θ = 0.160 eaψ = −0.229 [deg]

Also in this experiment the IBVS system demonstrates the good performances.
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a)

b)

Figure 6.69: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.27). b) Depth estimation error [m] on the first target
point.
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6.2.2.10 Experiment X

In this experiment the initial end effector camera frame Ei is defined w.r.t. W by:

tx i = −0.8 ty i = −0.16 tz i = 0.4 [m]
φi = −137.5 θi = 35.5 ψi = −17.2 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.65 ty f = −0.55 tzf = 0.7 [m]
φf = −68.7 θf = 28.6 ψf = 45.8 [deg]

Figure (6.70) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.70: a) Initial target view Ii. b) Goal target view If .



Chapter 6. Results 123

Figure (6.71) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.72) shows the components of the camera twist screw w induced from the control

Figure 6.71: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.72: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.28): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.74) a) and b) are respectively reported image error e components

Figure 6.73: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D depth estimation error for the first tracked feature-point. As clearly visible
e components remain very small during task execution conveniently exploiting the local
stability properties of the control law. The adaptive estimation law, as clear from figure
(6.74)-b, minimize the depth error converging to a good estimate of Z1. In the following
table is reported the positioning task error as defined in section (6.2).

ep x = 0.70 ep y = 0.84 ep z = −0.38 [mm]
eaφ = −0.084 ea θ = 0.075 eaψ = −0.097 [deg]

The IBVS system results very accurate also for this positioning task.
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a)

b)

Figure 6.74: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.72). b) Depth estimation error [m] on the first target
point.
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6.2.3 Experiments with “ natural ” Target

6.2.3.1 Experiment I

The initial end effector camera frame Ei is defined with respect to W by:

tx i = −0.8 ty i = −0.16 tz i = 0.45 [m]
φi = −130 θi = 31.5 ψi = −5.7 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.65 ty f = −0.55 tzf = 0.7 [m]
φf = −68.7 θf = 34.3 ψf = 45.8 [deg]

Figure (6.75) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.75: a) Initial target view Ii. b) Goal target view If .
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Figure (6.76) reports the reference image planned trajectory xd reprojected in pixel
(blue lines); this figure reports also in thin green the auxiliary view Ia, used tho solve
the Euclidean homography decomposition for a planar target explained in Section (3.3.3).
Figure (6.77) shows the components of the camera twist screw w induced from the control

Figure 6.76: Pixel planned image trajectories xd (blue lines) during the off-line phase.

law: they result smooth and feasible as set by the quintic polynomial time law s(t) in
section (4.3.1).

Figure 6.77: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.78): as clearly visible the camera moves on a helical-shape
trajectory induced from the image path planning xd finally resulting in a harmonious
movement. In Figure (6.79) a) and b) are respectively reported image error e components

Figure 6.78: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector reach the goal position
(blue circle).

and the 3D end-effector trajectory. As clearly visible e components remain very small
during task execution conveniently exploiting the local stability properties of the control
law. The camera 3D trajectory in (6.79)-b,follows an helical shape. In the following table
is reported the positioning task error as defined in section (6.2).

ep x = 5.8 ep y = 4.2 ep z = 4 [mm]
eaφ = 0.309 ea θ = 0.085 eaψ = 0.687 [deg]

Notice the very good performances of the IBVS system also with this more “natural”
target.
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a)

b)

Figure 6.79: a) Normalized image error e components: although very noisy the error
components remain very small during the whole task thus giving rise to the smooth twist
screw components profiles of Figure (6.27). b) 3D end effector trajectory [m] registered
during task execution.



Chapter 6. Results 130

6.2.3.2 Experiment II

The initial end effector camera frame Ei is defined with respect to W by:

tx i = −0.8 ty i = −0.16 tz i = 0.62 [m]
φi = −112.9 θi = 29.79 ψi = 0 [deg]

The final end effector pose Ef is instead defined with respect to W by:

tx f = −0.67 ty f = −0.5 tzf = 0.6 [m]
φf = −68.7 θf = 22.9 ψf = 54.4 [deg]

Figure (6.75) shows the initial and final target views (Ii and If ) grabbed from the camera;

a)

b)

Figure 6.80: a) Initial target view Ii. b) Goal target view If .
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Notice in this case the particular target shape: the chosen 4 feature points point form
a non convex quadrangle. Figure (6.81) reports the reference image planned trajectory xd
reprojected in pixel (blue lines); this figure reports also in thin green the auxiliary view Ia,
used tho solve the Euclidean homography decomposition for a planar target explained in
Section (3.3.3). Figure (6.82) shows the components of the camera twist screw w induced

Figure 6.81: Pixel planned image trajectories xd (blue lines) during the off-line phase.

from the control law: they have some spikes due to the bad light reflection properties of
the target.

Figure 6.82: Angular camera velocity components (ωx, ωy, ωz) in [rad/s] -left side. Trans-
lational camera velocity components (vx, vy, vz) in [m/s]-right side.
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The 3D camera frame and end-effector origin trajectories measured during task execu-
tion are reported in Figure (6.83): despite the problems due to light reflection of the target
the camera moves on the helical-shape trajectory induced from the image path planning
xd. In Figure (6.84) a) and b) are respectively reported image error e components and

Figure 6.83: Envelope of the 3D camera poses and end-effector origins trajectories (red
line) resulting from the experiment. Notice that the end effector in this case stops before the
goal position (blue circle): this is due to feature disappearing consequent to light reflections
problem .

the 3D end-effector trajectory. e components follows the time law s(t) induced behavior
up to grow in consequence of light reflection phenomena. The end-effector trajectory in
(6.84)-b, however follow the induced helical shape. In the following table is reported the
positioning task error as defined in section (6.2).

ep x = 20 ep y = 45 ep z = 8.4 [mm]
eaφ = −1.25 ea θ = −4.67 eaψ = 0.56 [deg]

Notice that for this positioning task the light reflection phenomena cause the partial fail
of the task.
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a)

b)

Figure 6.84: a) Normalized image error e components. b) 3D end effector trajectory [m]
registered during task execution.
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6.2.4 Experiments with coarse Camera Calibration

In this section we report the experimental results obtained by using a coarse camera
intrinsic K to investigate the system robustness with respect to camera calibration errors.
Remember that the camera calibration matrix, according to the full perspective camera
model of equation (2.26) with 0 skew factor, is defined as follow:

K =

 αx 0 ox

0 fαy oy

0 0 1

 . (6.8)

For this purpose the same positioning task have been performed five times increasing the
error on K entries from 0% to 40%, at step of 10%, as shown in the following table:

Exp. N◦ αx αy ox oy Err
1 1120.10 1120.19 342.05 199.57 0%
2 1008.09 1008.17 307.85 179.61 10%
3 896.08 896.15 273.64 159.66 20%
4 784.07 784.13 239.43 139.70 30%
5 672.06 672.11 205.23 119.74 40%

where each row correspond to the indicated percentage of error in the camera intrinsic
matrix. For this mentioned task the initial end effector camera frame Ei is defined with
respect to the world robot frame W by :

tx i = −0.8 ty i = −0.16 tz i = 0.62
φi = −112.97 θi = 28.65 ψi = 0

while the goal end effector pose Ef is instead defined with respect to W by :

tx f = −0.9 ty f = −0.4 tzf = 0.7
φf = −95.11 θf = 18.79 ψf = 48.59

The following table summarizes the positioning task errors resulting from the the five
experiments according to error translation and rotation vectors definitions in equations
(6.6) and (6.7):

Exp. N◦ ep x [mm] ep y [mm] ep z [mm] eaφ [deg] ea θ [deg] eaψ [deg]
1 1.0 1.1 0.7 0.082 0.031 0.100
2 −16 0.7 0.1 −0.444 −0.733 −1.17
3 7.2 4.7 0.1 −0.824 3.595 −2.332
4 8.5 47.2 0.4 −0.882 4.094 −2.602
5 −0.7 42 −0.7 −0.882 2.823 −2.555

As resulting from the table, the feedback image control, notwithstanding the often large
camera calibration errors, drives the system toward the goal 3D configuration: this is
one of the nice properties of the IBVS approach. Path planning ensures in these cases,
the stability of the system for large camera displacements as well. Moreover off-line path
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planning addressed in this thesis gives the possibility to choose the 3D shape of the camera
trajectory for task accomplishment. In Figure (6.85) the pixel reprojected planned image
trajectories (blue lines) driving to the goal view If (blue quadrangles) are shown for
the the five positioning task runs. In figure (6.86) the corresponding 3D measured end-
effector origin and camera trajectory are reported. As reported, also in 3D space at larger
calibration errors correspond higher curvature and longer 3D end effector trajectories:
the goal pose anyway is reached in all cases. For calibration errors larger than 40% the
positioning has failed since the planned image paths would have driven the robot out of
its workspace during task accomplishment.
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0% calibration error. 10% calibration error.

20% calibration error. 30% calibration error.

40% calibration error.

Figure 6.85: Image planning trajectories - blue lines - at increasing camera calibration error
ranging from 0% to 40% at step of 10%: as shown at larger calibration errors correspond
larger curvatures for the image planned trajectories. In green is reported the auxiliary view
Ia necessary used tho solve the Euclidean homography decomposition for a planar target
explained in Section (3.3.3).
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0% calibration error. 10% calibration error.

20% calibration error. 30% calibration error.

40% calibration error.

Figure 6.86: 3D end-effector origin and camera trajectories at increasing camera calibration
error ranging from 0% to 40% at step of 10%: as shown at larger calibration errors the 3D
end effector trajectories increase their lenghts and their curvatures.
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Conclusions

In this dissertation the control of a robotic system through an Image Visual Servoing
approach is presented: the work considers a 6DOF manipulator with a camera mounted
in eye-in-hand-configuration. The control is used to position the robot with respect to a
fixed target placed in the camera field of view.
The scheme exploits image points or ellipses plus one point respectively for planar and
axial-symmetric targets as visual features. The feature matching control step is manually
performed by the user while imaged points are on-line automatically tracked.
The control strategy benefits of an innovative off-line image path planning strategy ob-
tained from a scaled Euclidean reconstruction of the scene. By mean of this image paths
is possible to drive the robot end effector and camera trajectories along an helical arc,
joining the initial and the goal poses. Planned trajectories results feasible (i.e. compliant
with the camera rigid body motion) and induce smooth velocity screws to the robot actu-
ators avoiding singularity and local minima in particular for large camera displacements.
Since path planning is executed off-line, it is possible to tune the planing parameter so as
to prevent image feature to leave the camera field of view during task accomplishment.
The presented results concern simulation and real robot experiments. Simulation have
been realized by the implementation of a Matlab c© software while the experiment have
been executed on by means of an anthropomorphic Kuka c© robot provided with a fire-wire
camera on its end effector.
Both simulation and real experiment shows the feasibility of the proposed approach and
the good performances of the controlled system also in presence of camera calibration
errors.
Some problems arises in the tracking part when the only available visual features are “un-
stable” due to light reflection phenomena or complex target textures. From this point of
view it would be an challenging subject for future research to study innovative techniques
able to deal with more “natural” target, eventually coping with feature disappearing and
self-occlusions.
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