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Abstract

Since their emergence, locally resonant metamaterials have found several applica-
tions for the control of surface waves, from micrometer-sized electronic devices to
meter-sized seismic barriers. The interaction between Rayleigh-type surface waves
and resonant metamaterials has been investigated through the realization of locally
resonant metasurfaces, thin elastic interfaces constituted by a cluster of resonant
inclusions or oscillators embedded near the surface of an elastic waveguide. When
such resonant metasurfaces are embedded in an elastic homogeneous half-space, they
can filter out the propagation of Rayleigh waves, creating low-frequency bandgaps
at selected frequencies. In the civil engineering context, heavy resonating masses
are needed to extend the bandgap frequency width of locally resonant devices, a
requirement that limits their practical implementations. In this dissertation, the
wave attenuation capabilities of locally resonant metasurfaces have been enriched
by proposing (i) tunable metasurfaces to open large frequency bandgaps with small
effective inertia, and by developing (ii) an analytical framework aimed at studying
the propagation of Rayleigh waves propagation in deep resonant waveguides.

In more detail, inertial amplified resonators are exploited to design advanced
metasurfaces with a prescribed static and a tunable dynamic response. The modular
design of the tunable metasurfaces allows to shift and enlarge low-frequency spectral
bandgaps without modifying the total inertia of the metasurface. Besides, an
original dispersion law is derived to study the dispersive properties of Rayleigh
waves propagating in thick resonant layers made of sub-wavelength resonators.
Accordingly, a deep resonant wave barrier of mechanical resonators embedded
inside the soil is designed to impede the propagation of seismic surface waves.
Numerical models are developed to confirm the analytical dispersion predictions of
the tunable metasurface and resonant layer. Finally, a medium-size scale resonant
wave barrier is designed according to the soil stratigraphy of a real geophysical
scenario to attenuate ground-borne vibration.
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Chapter 1

Introduction

1.1 Literature Review

Controlling the propagation of mechanical waves through elastic media, sound
and water waves in fluids, and electromagnetic waves in vacuum and material
medium, have been studied for many years. Major scientific breakthroughs in the
control of waves across different contexts and scales have been achieved in recent
years thanks to the development of metamaterials. The term “Metamaterial” has
emerged to describe rationally designed composite materials with extraordinary
material properties not commonly observed in natural materials. Such an artificially
structured composite is usually made of different elements fashioned in periodic or
random arrangements. Peculiar characteristics of the metamaterials, which make
them capable of manipulating the propagation of waves, are not inherited from single
components but arise from the size, geometry, and arrangement of their artificially
manufactured elements [1]. These elements are intentionally designed to have
dimensions much smaller than the wavelength of incident waves. Such dimensions
guarantee that the interaction between the metamaterials and phenomena they
influence occurs at a sub-wavelength scale.

The concept of metamaterials has emerged in optics around a half-century
ago where negative-index materials were theoretically introduced [2]. In 2000,
left-handed metamaterials were practically developed to modulate electromagnetic
waves through lenses [3]. The surge of various electromagnetic metamaterial designs
was mainly due to the incorporation of the concept of photonic crystals. Photonic
crystals are periodic optical crystals realized to control the propagation of light [4].
Functioning metamaterials have been evolved from the combination of periodic
structures and photonic crystals to filter out the propagation of light waves with the
wavelengths comparable to the metamaterial periodicity [5]. An example of such
electromagnetic metamaterial is the periodic arrangement of split-ring resonators

1
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notched on a dielectric substrate [6]. Electromagnetic metamaterials have later
found their counterparts in different areas of science such as thermodynamics,
classical mechanics (including acoustics, elastostatics, elastodynamics, and fluid
dynamics) [7]. This paradigm shift has led to the born of acoustic and elastic
metamaterials. In the context of acoustics, phononic crystals (PCs) were engineered
to guide, hinder, and amplify the sound waves. The wave filtering property of
phononic crystals relies on material periodicity. In the past few years, phononic
crystals found broad applications in vibration control, noise reduction devices,
acoustic cloaking, and waveguide structures [1].

In elastodynamics, sub-wavelength resonant units are incorporated in the design
of metamaterials to inhibit the wave transmission in specific frequency ranges,
namely bandgap (BG) frequencies [8]. Differently from phononic crystals, elastic
metamaterials exploit resonance-induced bandgaps to impede mechanical wave
propagation. Hence, more recently, elastic metamaterials have found numerous
applications in mechanical and civil engineering fields such as ground-borne vi-
bration mitigation devices and seismic isolation systems [9]. For the latter case,
a new branch of elastic metamaterials, namely seismic metamaterials (SMs), has
emerged. So far, the main target in earthquake engineering is to enhance the
bearing capacity of the soil layer below the structures and to improve the strength
of superstructures or infrastructure. Instead, seismic metamaterials propose a
novel strategy completely different from the traditional methods to shield the
vulnerable infrastructures/structures by attenuating, reflecting, and refracting the
incoming seismic surface waves [10]. The seismic isolation performance of the
seismic metamaterials has been experimentally validated at the geophysical scale
in the past few years [11]. Within this context, the study and design of elastic
metamaterials to mitigate the propagation of seismic surface waves are getting
increasing attention.

Surface waves are mechanical waves that propagate along the surface of an elastic
medium or along the interface between two different solid media. In seismology,
surface waves are categorized into horizontally (e.g., Love waves) and vertically
(e.g., Rayleigh waves) polarized waves. During an earthquake, the far-field elastic
energy of seismic waves is mainly carried out by Rayleigh waves. Hence, the control
of Rayleigh waves propagation is of paramount importance to safeguard existing
structures. In this dissertation, we study and design locally resonant metamaterials
to control the propagation of Rayleigh waves.

In what follows, a brief review of the basic concepts of the phononic crystals and
elastic metamaterials is provided. Next, the state of the art and recent advancements
of seismic metamaterials are extensively discussed. Finally, theoretical and practical
limitations and open challenges on the application of resonant metamaterials for
the control of elastic waves are discussed.
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1.1.1 Phononic crystals

Phononic crystals (PCs) are usually defined as rationally designed materials made
of the periodic distribution of scatterers or inclusions embedded in a host matrix
that allow the manipulation of waves [1]. The emergence of phononic crystals was
followed by the advancement of period structures. A periodic structure is made of
a finite or infinite repetition of a unit cell, the smallest repeating portion of crystal
structure possessing its full symmetry, in one, two, or three dimensions as shown
in Fig. 1.1a, b, and c, respectively. The spatial periodicity of a periodic medium is
either due to a repetition of different geometries or material phases.

(a) (b) (c)

(d) (e) (f)Phonon
ic Cryst

als
Metama

terials

1D 2D 3D

Figure 1.1: Phononic Crystals vs. Metamaterials. Figures on the first row depict
phononic crystals with (a) 1D [12], (b) 2D, and (c) 3D periodicity [13]. Figures on
the second row depict metamaterials with (d) 1D [12], (e) 2D, and (f) 3D periodicity.
Panel (b) is reproduced with permission [14], Copyright 2012, Elsevier. Panel (e)
is reproduced with permission [15], Copyright 2012, AIP Publishing. Panel (f) is
reproduced with permission [16], Copyright 2000, The American Association for
the Advancement of Science.

The idea of conceptualizing a composite material made of functional building
blocks packed into a host material backs to 1873, when James Clerk Maxwell
discussed the possibility of laminates [17]. Later on, the French physicist Léon
Nicolas Brillouin studied wave propagation in the periodic media. In more de-
tail, he studied the propagation of elastic waves in atomic vibrations (phonons),
propagation of electromagnetic waves, and the interaction of periodic media with
acoustic waves [18]. He discussed some fundamental concepts in periodic materials
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including most notably Brillouin scattering, Brillouin function, Brillouin zone, and
frequency bandgaps (BGs). The frequency bandgap is a frequency span in which
the propagation of the waves is inhibited. Brillouin zone (or reciprocal space) is
the representation wave properties of the corresponding infinite periodic system
in the wave vector space (k-space). The first Brillouin zone which describes the
dispersion relations of elastic waves can be calculated by using a unit cell. In
physics, dispersion relations describe the effect of dispersion on the properties of
waves propagating throughout a medium. Dispersion is the dependence of the
wavenumber (or wavelength) to the wave frequency. In other words, dispersion
relations also describe the phase and group velocity of waves. Wave scattering,
Brillouin zones, and unit cell definitions are widely used to characterize the dynamic
features of and ideal infinite periodic structures.

The development of periodic structures was remarkably contributed to the
advancements of photonic and phononic crystals in the twentieth century. In 1979,
a superlattice structure (a one-dimensional phononic crystal) was experimentally
developed to control the propagation of high-frequency phonons [19]. During
the early 1990s, two-dimensional and three-dimensional phononic crystals were
conceived by Sigalas and Economou [20, 21]. They discussed the band structure of
acoustic and elastic waves in three-dimensional structures composed of periodically
distributed spheres in a host medium [20], and two-dimensional fluid and solid
systems constituted of periodic arrays of cylindrical inclusions embedded in a
matrix [21]. The full band structure of out-of-plane vibration of the two-dimensional
periodic elastic composite was calculated by Kushwaha et al [22]. Later on, phononic
crystals were used to hinder the propagation of longitudinal [23], transverse [24],
Lamb [25], and Rayleigh waves [26] inside the stop-band frequencies observed in
the band structure diagrams of different lattice structures.

Phononic crystals exploit the Bragg scattering mechanism to control the disper-
sion of waves. Bragg scattering is the scattering of waves by a periodic distribution
of scatterers having dimensions comparable to the wavelength of the propagating
waves. An example of a one-dimensional phononic crystal made by the repetition of
two different materials is schematically shown in Fig.1.2a. A simple lumped-mass
model, an infinite chain of discrete mass-spring system, is considered to simplify
the physical description of the problem. The dispersion relation of the 1D phononic
crystal (see Fig.1.2c) is obtained via the mass-spring model and compared to
the dispersion of a one-dimensional elastic homogeneous material, as shown in
Fig.1.2b. The formation of the Bragg scattering mechanism leads to the generation
of a low-frequency bandgap (see the gray box in Fig.1.1c) in the first irreducible
Brillouin zone. The formation of the bandgap mechanism highlights the wave
filtering property of phononic crystals which opens the possibility of designing
innovative and smart materials. During the past two decades, many researchers
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have tried to employ periodic structures and phononic crystals to regulate elastic
wave propagation in different wavelength scales.

Frequen
cy ω

(a)

(b)

unit cell
a

ma mb

(c)
Bandgap

Wavenumber kWavenumber k Frequen
cy ωω(k)= ck k=π/a

Figure 1.2: (a) Schematics of a one-dimensional phononic rod modeled as a dis-
cretized spring-mass lattice. (b) Dispersion relation of a generic isotropic homoge-
neous medium, and (c) phononic crystal. The shaded area represents the spectral
bandgap [27].

1.1.2 Elastic Metamaterials

We discussed how periodic structures can substantially impact the propagation of
waves. In this section, we present the concept of metamaterials as an alternative
solution to achieve such a similar behavior without having limitations on the size of
the structure. Periodic structures, photonic, and phononic crystals are sometimes
defined as subclasses of metamaterials in the literature [7]. However, metamaterials
have a broad definition and they are commonly referred to as artificial composite
materials characterized by resonant units or inclusions embedded in the host
medium of the composite. According to this definition, metamaterials can also be
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non-periodic, although most of the designed metamaterials are realized as periodic
composites.

Examples of one, two, and three-dimensional metamaterials are shown in
Fig.1.1d, e, and f, respectively. The principal dynamic characteristic of the metama-
terials is the generation of the local resonance mechanism. Under certain conditions,
effective mass density and bulk-material properties of metamaterials can become
negative at a narrow frequency band precisely located at the frequency ranges
around the bandgaps associated with the collective resonances of resonant inclu-
sion/resonators. A discrete mass-spring chain model with localized resonators each
having an angular resonant frequency of ωr, (see Fig.1.3a), is exploited to describe
the dynamic features of a one-dimensional metamaterial rod. The dispersion re-
lation of an elastic rod (e.g., Fig.1.3b) is compared to a metamaterial rod (e.g.,
Fig.1.3c). The introduction of the resonant units hybridizes the fundamental mode
into two repelling branches and generates a sub-wavelength bandgap. Local reso-
nance bandgaps, although narrow in their frequency band, allow the possibility to
filter waves at specifically selected frequencies, control the low-frequency vibrations,
and obtain a negative refraction index.

Acoustic Metamaterials The first conceptual realization of acoustic metama-
terials is discussed in the work of Liu et al. [16] published in 2000. In this seminal
work, a cubic sonic crystal consisting of a heavy solid core material (e.g., lead)
coaxially coated with an elastic soft material (e.g., silicone rubber) embedded in
a hard matrix material (e.g., epoxy) is studied (see Fig.1.1f). Two low-frequency
bandgaps were generated corresponding to that of the local resonance of the lead
and elastomer resonator, respectively. Since the wavelength of acoustic waves
is orders of magnitude larger than the centimeter-sized cubic crystal, the inter-
action of waves and metamaterial occurs at the sub-wavelength scale. Within
the sub-wavelength regime, the dynamics of the three-phase metamaterial can be
appropriately described by using an “effective” description via multiple scattering
theory [28]. This description yields a homogeneous material with effective mass
density and effective elastic moduli characterized by a dynamic response equivalent
to one of the composite media in the long-wavelength regime.

The notion of acoustic metamaterials together with the possibility of tuning
the bandgap frequency generated by the local resonance mechanism has been
a source of inspiration for designing metamaterials viable for wave propagation
control in different scales. Following the advent of hard-soft-hard composite
materials [29, 30, 31], different configurations have been proposed such as split-
rings [32], hollow cylinders or spheres [33], trusses and beams equipped with internal
resonators [34, 35], two-dimensional metamaterials [36, 37, 38], structures with
inertial amplifiers [39, 40], membranes [37], chiral lattices [41, 42], metamaterials
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Figure 1.3: (a) A simple mass-spring model to describe the one-dimensional
metamaterial with local resonance. (b) Dispersion relation of a generic isotropic
homogeneous medium, and (c) locally resonant metamaterial. The shaded area
represents the spectral bandgap [27].

with negative effective stiffness [43, 44], discrete mass-in-mass systems [45, 46],
and three-dimensional architected media [47, 48]. More recently, the description of
the resonant units has been enriched to account for viscoelastic material behavior
[49, 50, 51, 52], nonlinearity [53, 54, 55], hierarchical geometry [56, 57], and time-
dependent mechanical properties of metamaterials [58, 59, 60].

Furthermore, it is worth noting that several homogenization techniques have
been used in the literature to retrieve the effective properties of the heterogeneous
metamaterials, including static and dynamic homogenization, averaging techniques
like retrieval methods, micromechanical techniques, Multiple Scattering, and Co-
herent Potential Approximation methods (see the review article [61] for a broader
overview).
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Inertial amplified metamaterials Several approaches have been proposed in
the literature to enrich the dynamic properties and the operational frequency range
of metamaterials. One strategy to enhance the dynamic response of metamaterials
is to employ inertial amplification mechanisms, as originally proposed in Ref. [39].
An inertial amplification mechanism exploits inerters, rigid mechanisms designed
to provide a force proportional to the relative acceleration between two points.
This additional force can be used to generate resonant and anti-resonant responses,
and to alter the frequency spectrum of discrete lattice materials [39, 40, 62] or
continuous waveguides [63, 64] where these mechanisms are incorporated. More
interestingly, Zhou et al. designed a nonlinear inertial amplification-based resonator
to design a switch to control the propagation of flexural waves [65].

Inerters can be equivalently used to change the dynamic of mass-spring os-
cillators, as demonstrated in the design of dynamic vibration absorbers [66] and
tuned mass dampers (TMDs) [67]. De Domenico et al. combined seismic isolation
with a tuned-inerter damper, where they were able to simultaneously control the
response of the base-isolated structures and superstructure [68]. Overall, inertial
amplification can be classified as a different mechanism rather than Bragg scattering
or local resonance mechanism and can be used to generate wide bandgaps in the
low-frequency regime.

1.1.3 Seismic Metamaterials

Metamaterials have been introduced into the domain of mechanics after their
successful implementations in acoustics and electromagnetism. For instance, elastic
metamaterials have found numerous applications in civil engineering. In particular,
metamaterial-based devices are proposed as an innovative solution to the existing
seismic isolation techniques to mitigate the effects of seismic waves and thus shield
historical sites, urban areas, as well as unprotected structures and infrastructures [69,
70, 71, 72, 73]. This class of devices, frequently indicated as “seismic metamaterials
(SMs)” from the seminal work by Brule et al. [74] (see Fig. 1.4a), includes periodic
and resonant foundations as well as periodic and resonant wave barriers able to
interact with the propagation of seismic waves. Since then, different types of SMs
have been developed. SMs can be classified into different categories. According
to Kim and Mukunda [75], seismic cloaking and artificial shadow zone are two
main methods to deflect and attenuate seismic waves. Brule et al. [10] classified
SMs into five categories, namely seismic soil-metamaterials, buried mass-resonators,
above-surface resonators, auxetic metamaterials, and other dissipative structures.
A systematic and comprehensive review of the development of SMs has been done
in 2020 by Mu et al. [9], where they classified SMs based on their arrangement,
regulation mechanism, application, and performed experimental studies. In what
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follows, we adopt a classification from the physical perspective of the SMs and
based on their regulation mechanisms. As a result, SMs are divided into three main
categories, namely phononic-based SMs, locally resonant SMs, and transformed
urbanism.

I. Phononic-based SMs Inspired by phononic crystals concept, phononic-based
SMs are developed exploiting the Bragg scattering mechanism to damp the propa-
gation of seismic waves. In 1999, Meseguer et al. [26] experimentally studied the
scattering of surface elastic waves through a periodic array of cylindrical holes in a
marble quarry. Fifteen years later, seismic metamaterials were born when phononic
crystals constituted by meter-size holes drilled in a periodic arrangement along the
sedimentary soil surface (see Fig.1.4a) were experimentally tested to attenuate the
propagation of soil vibration at frequencies around 50 Hz [74]. Additionally, Chen
et al. conducted lab-scale experiments on SMs made of concrete piles and observed
broadband frequency bandgaps (< 7.2 Hz) in the multilayered SMs together with
the surface confinement of elastic waves [76]. Later on, different design approaches
of the periodic pile barriers were used to attenuate surface waves in layered soil
[77] and poroelastic half-space [78].(a) (b)

Figure 1.4: (a) First experiment of seismic metamaterial [74]. (b) An example of
phononic-based seismic metamaterial made of transparent cylindrical holes inside
the soil. Panel (b) is reproduced with permission [10], Copyright 2020, Elsevier
Ltd.

Periodic foundations The concept of periodic (layered) foundations backs
to the early 2010s. In 2012 Bao et al. proved that the seismic response of the
structure equipped with a periodic foundation can be highly reduced in both
vertical and horizontal directions for an arbitrary incident seismic wave [69]. Xiang
et al. experimentally tested the periodic foundations by conducting the shaking
table tests, where they were able to prove the existence of the attenuation zones
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that seismic wave amplitudes were remarkably decreased [79]. Cheng and Shi
developed two-dimensional composite periodic structures made of concrete, steel,
and rubber materials characterized by a low-frequency attenuation zone (< 20
Hz) [80]. Shi et al. designed a three-dimensional periodic foundation able to
damp the incoming seismic waves in any direction inside the effective attenuation
zone [70]. Since then, efforts have been done to improve the efficiency of the
periodic foundations by exploiting the concepts of the pentamode metamaterials
[81], negative stiffness mechanism [82], damped-layer periodic foundation [83],
directional attenuation zones [84], and combining the local resonance mechanism
and dual-stiffness structures [85].

Although revolutionary in their conception, practical implementation of phononic-
based SMs at the low-frequency range (<30 Hz) characteristic of seismic events
requires very large structures, since the wavelengths of typical seismic waves can
be of several meters or decameters.

II. Locally resonant SMs Complementary to the phononic-based SMs, locally
resonant SMs exploit an array of embedded locally resonant units to interact with
propagating surface waves at a sub-wavelength scale. Therefore, for seismic waves
characterized by long wavelengths, locally resonant metamaterials allow for the
design and construction of more viable devices, i.e. of smaller and feasible spatial
dimensions. On the basis of this paradigm, two classes of resonant metamaterials,
namely resonant metafoundations, and metasurfaces have been proposed in recent
years. Resonant metafoundations consist of a cascade of mass-spring systems em-
bedded in the foundations to isolate the related substructure [86, 87, 82]. Resonant
metasurfaces, instead, consists of an array of locally resonant units embedded close
to the soil surface, capable of shielding buildings and infrastructures from surface
Rayleigh [88, 89] or Love waves [90, 91, 92].

Resonant Metafoundations Inspired by the development of the metama-
terials concept, resonant metafoundations were proposed as a novel solution for
seismic protection of the foundations and superstructure. Finite locally resonant
metafoundations are realized as foundations with embedded resonators. They are
characterized by attenuation zones in which seismic waves can be dissipated and
non-attenuation zones where the response of the superstructure is amplified [93].
Resonant metafoundations can be either implemented to the unprotected structure
alone or simultaneously with another seismic protection system. Colombi et al.
combined two metamaterial-based isolation strategies, namely metasurface and
metafoundation, to shield a typical structure and pointed out that the incorporated
design approach remarkably enlarges the mitigation bandwidth of seismic surface
waves [94].
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Apart from the seismic isolation application of resonant metafoundations for
the buildings and structures, they have been used to shield critical industrial
structures against seismic action [82]. La Salandra et al. conceptualized the design
of three-dimensional resonant metamaterial consist of periodically arranged locally
resonant units for the seismic protection of storage tanks [86]. Later on, Basone
et al. experimentally tested a finite locally resonant metafoundation designed
to support storage fuel tanks [87], which is shown in Fig.1.5. Franchini et al.
proposed a metafoundation realized by steel columns placed between concrete slabs
with concrete resonators to protect slender tanks against seismic actions with a
significant vertical acceleration [95].(a) (b)

Figure 1.5: Resonant metafoundation (a) Isometric, and (b) plan view a storage
tank isolated with resonant metafoundation. Reproduced with permission[87]
Copyright 2019, John Wiley and Sons Ltd.

Despite the great advances in the design of metafoundations, their practical
applications in civil engineering are still limited due to the lack of study on the
bearing capacity of the foundations, stability of superstructure, and their cost of
realization.

Resonant Metasurfaces The idea of a resonant metasurface, in particular,
is motivated by the fact that far from the epicenter surface waves can carry a
significant portion of the earthquake energy [96] and that existing structures may
be hard to be retrofitted with conventional foundation systems. The resonant
metasurfaces found their principle basis on the interaction between purposely
engineered resonant units with surface waves in the low-frequency regime (<10 Hz).
The resonant units are generally mass-stiffness resonators, embedded near-surface
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or placed directly atop of the soil and excited by the vertical component of the
Rayleigh wave motion (see Fig.1.6a). When the resonant units are arranged at the
free surface of an elastic waveguide, to form a so-called metasurface, the propagation
of waves confined at the soil surface can be controlled. Once activated, the dynamic
interaction of metasurfaces with the soil steers part of the elastic Rayleigh wave
energy into the interior stratum of the soil deposit as bulk shear waves [88, 97].

(b)

(a)

(c) (d)

Figure 1.6: (a) Locally resonant seismic barrier. (b) The meter-sized surface
resonator as the building block of the barrier. (c) Schematic of resonators interacting
with Rayleigh waves. (d) Dispersion relation presents a low-frequency bandgap
corresponding to the formation of local resonance mechanism [88].

In 2016, Colombi et al. found out that periodically arranged pine trees of a forest
in Grenoble, France can be treated as a natural resonant metasurface [98]. In their
experiments, longitudinal resonances of the trees were coupled to Rayleigh waves,
resulted in the generation of multiple bandgap frequencies. The thought-provoking
results of this research inspired many researchers to design engineered metasurfaces
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able to attenuate surface seismic waves in the low-frequency regime. Palermo et
al. [88] designed tailored metasurfaces made of a periodic arrangement of steel
masses suspended by elastic bearings encased in concrete shells, embedded close
to the surface of an idealized soil (see Fig.1.6a and b). The strong impedance
mismatch between the resonators and Rayleigh wave opened up a narrow frequency
bandgap in the spectrum of Rayleigh wave, as shown in the shaded area of Fig.1.6d.
More interestingly, surface Rayleigh to bulk shear wave conversion is observed
in the sound cone (e.g., frequency region near bandgap where only purely shear
modes propagate). The filtering and wave conversion effects were predicted by
deriving ad-hoc dispersion laws formulated by considering the metasurfaces as a
dynamic boundary condition for the elastic waveguides [99]. Besides, Colquitt
et al. theoretically studied the flexural and compressional resonances of seismic
metasurfaces (modeled as periodic rods placed over an elastic homogeneous semi-
infinite medium) coupled to Rayleigh wave [97].

Some strategies have been proposed to enlarge the narrow Rayleigh-induced
bandgap frequencies. Among those, Miniaci et al. combined the Bragg scatter-
ing (cross-like cavity and hollow cylinder) and local resonant cylinders made of
steel/concrete mass suspended by rubber material embedded in the soil, to design
large-scale SMs (see Fig.1.7) [72]. The designed metamaterials were able to suc-
cessfully attenuate both the surface waves (e.g., Rayleigh waves) and bulk waves
in the low-frequency regime. Colombi et al. proposed a seismic metawedge made
of spatially graded sub-wavelength resonant rods (with increasing or decreasing
resonant frequency) placed over an elastic half-space (see Fig.1.8a). Hence, the
classic resonant metawedge reflects the Rayleigh waves and exhibits a seismic
“rainbow trapping effect”(see Fig.1.8b). Conversely, inverse resonant metawedge
(see Fig.1.8c) converts surface Rayleigh waves into bulk shear waves [100]. Palermo
et al. tackled the problem and proposed multi-mass seismic metasurfaces using an
analytical approach followed by numerical verification. The multi-mass metasur-
faces were able to create multiple bandgaps in the dispersion relation of Rayleigh
waves and increase the bandwidth of the ground motion attenuation zone [101].

The soil characteristics highly influence the propagation velocity and amplitude
decay of the seismic surface waves. In the above-mentioned studies, soil material is
considered as an idealized homogeneous and elastic material for simple mathematical
treatment purposes. Palermo et al. studied the heterogeneity effect of soil in the
interaction of Rayleigh waves and elastic metasurfaces by experimentally testing
the surface wave propagation in a multi-layer granular material. Although a surface
wave attenuation is observed around the resonant frequency of the resonators, the
generation of Rayleigh-induced bandgap typical of the homogeneous medium is
hindered by higher-order surface modes [102]. Pu et al. investigated the interaction
of Rayleigh waves with elastic metasurfaces attached to a porous layered media,
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Figure 1.7: Schematics of large-scale metamaterials (a) 3D and (b) cross-sectional
(yz-plane) view. (c) Unit cells arranging the seismic metamaterial (top view). (d)
The first Brillouin zone with the irreducible part. (e) Cross-like cavity unit cell. (f)
Hollow cylinder unit cell. (g) Coated cylinder unit cell [72].

where due to the fluid-solid interaction surface waves propagate in the form of slow
pressure waves [103].

Complementary to Rayleigh waves, locally resonant metasurface were conceived
to control also the propagation of horizontally polarized surface waves (i.e. Love
waves). Palermo and Marzani designed gradient-index metalenses (Maxwell and
Luneburg lenses) to redirect the propagation of Love waves [104]. In a complemen-
tary study, Palermo et al. discussed the effect of the metasurface inertia on the
dispersion of love waves [92] where large inertial masses increase surface confinement
of fundamental surface mode. Maurel et al. studied the possibility of wave trapping
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(a)

(b)

(c)

(d)

Figure 1.8: The resonant metawedge (a) The geometry and material properties.
Displacement wavefield of the (b) classic, and (c) inverse metawedge. Panel (d)
gives the theoretical versus numerical prediction, of the turning point position for
various frequencies for the wedge in (a) [100].

and surface Love wave conversion in a forest tree [91]. Zaccherini et al. conducted
a table-top to experimentally study the interaction of horizontally polarized sur-
face waves and locally resonant metasurface in a granular medium [105], where
a frequency attenuation zone is observed while the surface to bulk conversion is
prevented by the depth-dependent profile of the unconsolidated granular medium.

More recently, several approaches have been proposed to enrich the dynamic
response of the locally resonant metasurfaces. Active metasurfaces are designed
through piezoelectric materials to tune the frequency response of the resonators
[106, 107, 108, 109]. Time-modulated resonators are incorporated as nonlinear
metasurface for unidirectional waveguiding of Rayleigh waves [110, 111]. The
rainbow trapping in elastic metasurfaces is exploited for elastic energy harvesting
[112, 113]. Furthermore, Chaplain et al. coupled surface Rayleigh waves to reversed
bulk shear and compressional waves to achieve tunable redirection and wave focusing
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inside the bulk material [114]. Although some important physical aspects of the
resonant metasurface were carefully analyzed through recent years, the seismic
isolation performance of the metasurfaces is still unexplored and did not tackle by
the above-mentioned studies.

III. Transformed urbanism Introduced in optics, the concept of negative
refraction has been exploited to design transformed crystals for elastic waves
manipulation exploiting Snell’s law. In recent years and after the manifestation
of SMs, the transformed mechanism has been used to propose seismic cloaks to
manipulate the seismic wavefront and shield a target structure behind the cloak
[115, 116]. In transformation elastodynamics, seismic cloaking is the ability to
render a district of buildings invisible to the incident seismic wave, which can be
achieved by exploiting restricted and unrestricted micropolar medium [117] and
Willis equations [115]. As an example, a periodic arrangement of concrete columns
with variable dimensions has been proposed to modify the velocity of seismic
waves and reroute them around a protected area [118], exploiting concepts of ray
theory and lens designing. Brule et al. considered buildings of a neighborhood as
subsurface elastic resonators, capable to interact with seismic waves, to design a
seismic cloak [119].

Henceforth, a periodic arrangement of rigid columns embedded in a soft and
thin sedimentary basin overlaying the bedrock (see Fig.1.9a and b) constituted a
surface waves reflector [120]. Interestingly, the designed SMs proved the possibility
of opening a broadband zero-frequency stopband in the frequency spectrum of
seismic surface wave, as shown in the dispersion curve of Fig.1.9d. Another class
of seismic cloaks is proposed using auxetic metamaterials combining effects of
impedance mismatch, local resonances, and Bragg scattering mechanisms [121].

For more detailed reviews on the previous studies and advancements of phononic
crystals, acoustic/elastic, and seismic metamaterials, the readers may refer to Ref
[122, 123], [124, 125, 126], and [9, 10], respectively.

1.2 Applications and open issues

Periodic and locally resonant metamaterials are rapidly expanding research fields
with promising future applications in the context of wave propagation manipulation.
Local resonance and Bragg scattering allow the possibility to control waves in
different wavelength scales, from micrometer [127] to meter-size scale [88, 128].
In the low-frequency regime, seismic metamaterials were proposed to impede the
propagation of seismic surface waves [98, 72, 88], as described in Sec.1.1.3. Fig.1.10
summarizes some examples of metamaterial-based defense systems designed to
shield critical structures or infrastructures prone to seismic hazards [129].
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(c) (d)

Figure 1.9: Phononic-based seismic metamaterial (a) Side view, and (b) plan view
of SMs around the protected building. Dispersion relations (c) clamped bedrock
with no column, and (d) with rigid column [120].

(b) (c) (e)(d)

(a)

Figure 1.10: Schematics of four lines of the metamaterial-based seismic defense
system. (a) Metasurfaces to convert surface waves into bulk shear waves. (b)
Metalenses to redirect seismic waves. (c) Perforated buried cylinders to convert
seismic waves into sound. (d) Forest trees as locally resonant metasurfaces to
attenuate surface waves. Reproduced with permission. [129], Copyright 2016,
Elsevier Ltd.
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Although the dynamics of the resonant wave barriers are well-described by ana-
lytical models [88, 97, 128] and numerical simulations [88, 101, 130], experimental
validations of these devices are still limited to a few small-scale experiments for
surface Rayleigh [88, 102, 131], and shear waves [105]. At the geophysical scale, the
coupling between surface waves and distributed resonators has been evinced only
by analyzing the propagation of ground vibrations through forest trees [98]. Indeed,
to be able to open considerable spectral bandgaps, large structures with very heavy
resonating mass are required. This limitation restricts the engineering application
of metasurfaces for seismic isolation. The trade-off between the amount of resonant
mass and the attenuation efficiency of these devices, together with concerns about
the structural integrity of these systems, are open issues that require in-depth
investigations supported by experimental evidence suggesting first the design of
medium-scale experiments, able to test the dynamics of real resonators on the field.

So far, the investigations on the metasurfaces are limited to resonant units
embedded very close to the surface or placed at the surface layer of the elastic
waveguides. Hence, the scenarios where resonators are distributed through the
whole medium depth or within a thick surface layer overlying a homogeneous
half-space are still unexplored. Understanding the dynamics of these systems is
fundamental to ease the development of novel devices, like barriers and foundations,
to control and mitigate the propagation of Rayleigh waves.

1.3 Thesis Objectives and outlines

1.3.1 Thesis objectives

This dissertation aims to investigate the dynamics of the Rayleigh-type surface
waves propagating in locally resonant metasurfaces, and to address some of the
open questions and existing challenges discussed in the previous section. To this
end, three main objectives are set as follows:

1. Design advanced metasurfaces with a tunable dynamic response;

2. Investigate the dynamics of surface waves propagating in a finite-thickness
resonant layer made of bulk resonant metamaterials;

3. Design of a medium-scale resonant wave barrier considering the effects of soil
heterogeneity properties (stratification, topography, etc).
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1.3.2 Thesis Outlines

The dissertation is organized as follows. In Chapter 2, an advanced metasurface
is proposed exploiting the kinematics of the inertial amplified mechanism. The
chapter comprises the derivation of an analytical closed-form dispersion law for
Rayleigh waves propagating in a homogeneous half-space equipped with a resonant
boundary layer made of Inertial Amplified Resonators (IARs). Next, 2D finite
element models are developed according to the wave finite element method to
validate analytical dispersion curves. Further numerical simulations are carried
out to show and discuss the transmission coefficients of different IAR metasurface
configurations and to design graded metasurfaces for wideband Rayleigh waves
attenuation.

In Chapter 3, the dynamics of resonant layers with variable thicknesses composed
of randomly distributed resonators over the whole depth of the layer are studied.
In particular, the dispersion relations of a finite-depth resonant layer laid over
a homogeneous half-space, and an infinite-depth resonant half-space are derived
analytically. Dispersion laws are then validated by numerical simulations. A
resonant seismic wave barrier is designed according to the analytical/numerical
findings of the resonant layer concept, and harmonic analyses are performed via
finite element simulations to evaluate the seismic attenuation performance of the
proposed resonant barrier.

In Chapter 4, the numerical design procedure of an experimental campaign aimed
at assessing the surface ground motion attenuation performance of a medium-size
scale resonant wave barrier within the frequency range of 50− 100 Hz is presented.
Hence, the soil stratification and its in-situ properties (obtained from Euroseistest
site) as well as the components, and arrangement of the proposed wave barrier
are described. Then, the seismic isolation performance of the barrier through a
numerical dispersion analysis is tested, and numerical predictions are made via
time transient simulations. Eventually, graded resonant barriers are designed, to
achieve broadband seismic wave attenuation.

Finally, Chapter 5 provides a summary of the main findings discussed in previous
chapters, briefly reviews the ongoing research activities, and gives an insight into
the possible future research directions.





Chapter 2

Design of a tunable metasurface
with inertial amplified resonators

Abstract

The chapter studies the design principles of an advanced locally resonant metasur-
face able to manipulate the propagation of surface waves. The metasurface consists
of a cascade of Inertial Amplified Resonators (IARs), e.g., mechanical resonators
coupled with two inerters suspended by two inclined rigid links which are connected
to an additional mass encased in a rhomboid geometry. The IAR has a static
behavior equivalent to that of a single-degree-of-freedom (SDOF) oscillator whereas
its dynamic response can be controlled by means of the effective inertia of the res-
onators and their geometrical configuration. A closed-form dispersion law is derived
analytically to study the interaction between Rayleigh waves and the advanced
metasurface coupled to an elastic half-space. The proposed metasurface presents
some unique dynamic features including a tunable dynamic response to shifting
its bandgap frequency without altering the mass or stiffness of the resonators.
Moreover, the tunability feature of the metasurface allows the design of graded
metasurfaces for broadband filtering purposes, and to obtain a high-frequency
behavior typical of dead masses which contributes to having additional filtering
properties. The analytical findings of the chapter are verified via finite element
numerical simulations.

2.1 Introduction

Elastic metasurfaces have been developed as a novel class of locally resonant
metamaterials capable to interact with the incoming waves. Locally resonant
metasurfaces are realized as a dynamic boundary layer attached to the surface of an

21
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elastic waveguide [132]. The resonant boundary layer usually consists of the periodic
arrangement of sub-wavelength scale resonant units (e.g., resonant inclusions or
oscillators). Locally resonant metasurfaces provide several applications among
different fields in recent years. In electromagnetism, smart metasurfaces allow the
realization of superlens [133, 134, 135], and electrically small resonators are used
to design metasurface antennas [136, 137]. In acoustics, acoustic metasurfaces were
designed for controllable transmission [138, 139], controllable reflection [140], and
near-perfect absorption purposes [141, 142]. The main applications of the acoustic
metasurfaces noted in the literature are self-bending beams [139], beam focusing
[143], sound-absorbing of acoustic metamaterial beams [144], and asymmetrical
transmission [145]. The readers may refer to Ref. [146] for an extensive literature
review of the acoustic metasurface.

Later on, elastic metasurfaces are proposed to manipulate the elastic wave
propagation [88, 97], or to design transmission metasurface for elastic solids [147,
148]. In elastodynamics, resonant metasurfaces made of pillars and surface or
embedded resonant structures are used to design elastic waveguides [149, 99, 110],
metalenses [118, 90], and surface wave filtering metastructures [98, 150].

Garova et al. conceptualized one of the simplest realizations of elastic meta-
surfaces by considering a sub-wavelength arrangement of discrete mass-spring
resonators attached to the free waveguide of an elastic semi-infinite media [151].
Elastic metasurfaces exploit the locally resonant mechanism of the resonators to
open up frequency bandgaps and to change the surface wave trajectory direction
into bulk media across different length scales [152, 153, 118]. The bandgaps are

generated around the collective resonant modes of the resonators ωr,S = (K/m)1/2,
where (K) is the stiffness and (m) is the mass of the resonators. One of the main
limitations of the classical elastic metasurfaces is that for a given static response
(prescribed mass and stiffness), the dynamic response of the metasurface is deter-
mined. To overcome this limitation, we propose the design of an advanced locally
resonant metasurface with a tunable dynamic response in this chapter.

Complementary to the Bragg scattering and local resonance, the Inertial Am-
plification Mechanism (IAM) is proposed by Yilmaz et al. in 2007 as an alternative
mechanism to enlarge phononic bandgaps of elastic metamaterials [39]. In this
mechanism, the effective inertia of the dynamic system is amplified via inerters or
embedded amplification mechanisms [39].

Inerters are proposed for low-frequency vibration control, where they can achieve
large dynamic inertia while retaining the static mass of the dynamic system to the
minimum value [154, 155]. Inerters have found various applications in the usage
of tuned-mass-dampers (TMDs) [67, 156], lattice structures [157], and dynamic
vibration absorbers (DVAs) [66].

An embedded inertial amplification mechanism has been used in different lattice
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structures to enhance their dynamic responses. In 2D lattice structures, IAM
generates large effective inertial forces by amplifying the small static mass of the
system [39]. This additional force generates resonant and anti-resonant responses
and modifies the frequency spectrum of discrete 2D (see Fig.2.1) [39, 40, 158] as
well as 3D lattice structures [62, 159].(a) (b)

Figure 2.1: (a) An example of a two-dimensional lattice structure with embedded
inertial amplification mechanism. (b) Experimental test setup to measure the wide
phononic bandgap. Reproduced with permission [158], Copyright 2013, Elsevier
Ltd.

Inspired by the tunable dynamic nature of the IAM, we design an advanced
metasurface in this chapter. To this end, an array of near-surface Inertial Amplified
Resonators (IARs), i.e., mass-spring oscillators with embedded amplification mech-
anism, manifests the metasurface design. The IAR consists of the SDOF resonator
coupled with two rigid lateral mechanisms, carrying each an additional mass, able
to amplify or attenuate the inertia of the oscillator [39].

The IAR, characterized by the same overall static mass (m) and stiffness
(K) of the mass-stiffness oscillator, presents an enriched dynamic response, i.e.,
resonance, anti-resonance, and high-frequency behavior, which can be controlled
by the geometrical configurations and the mass distribution of the amplification
mechanism. The dynamic response of the IAR is obtained through the Dynamic
Amplification Factor (DAF), which is the ratio between the static and maximum
dynamic displacement of the resonator, as well as the vertical force which is
translated to the base of the resonator. We exploit the tuning properties of IAR to
realize a metasurface of whose frequency bandgap and high-frequency response can
be changed by varying the geometrical configuration of the IAR. We discuss these
dynamic properties through the derivation of a closed-form dispersion relation
specialized for the IAR metasurface and investigating its transmission properties
through numerical simulations.
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2.2 Dynamics of the inertial amplified resonator

In this section, we analyze the main dynamic properties of the Inertial Amplified
Resonator (IAR) as a building block of the advanced metasurface. The IAR
configuration comprises a mass-stiffness block (mT , K) attached to two lateral
inertia (mL) linked via four rigid connectors oriented at an angle 0◦ < θ < 90◦

with respect to the vertical z-axis, as schematically shown in Fig. 2.2b. The
far-ends of the rigid connectors and the spring are realized by moment-free hinges
to prevent the generation of bending moments. The vertical spring of the IAR
enables translational motion of the top mass in the vertical direction while the
horizontal motion of the IAR is neglected. An identical mechanism has been
studied in Ref.[40] to generate low-frequency and wide stopbands in periodic lattice
structures. (a) (b)

𝑚𝐿𝑚𝐿

𝑚𝑇

K 𝜔𝑟 ,𝐼

𝜃

𝑑𝑥

𝑑𝑧

𝑢𝑔

zxz

xz
𝜏𝑥𝑧 = 0

𝜎𝑧 = 𝜎𝑏

(c) (d)
Elastic homogeneous half-space

Elastic homogeneous half-space(E, ρ, ν) 
Metasurface as a boundary layer

Figure 2.2: (a) Schematics of the advanced metasurface. (b) Schematic representa-
tion of an IAR resonator. (c) Effective medium description of the IAR metasurface
modeled as a thin boundary condition (dark gray layer) on the top of a homogeneous
half-space (light gray layer). (d) Representation of the vertical and tangential
stresses at the interface and free surface above the metasurface.

We begin our investigation by formulating the IAR dynamic response for the
case of harmonic base excitation. To do so, the dynamic amplification factor
(DAF) and the vertical force at the base of the proposed resonators is formulated.
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The force exerted by the resonator to the base is a fundamental element that is
used lately to couple dynamics of the IAR to an elastic semi-infinite medium (see
Fig.2.2a and Sec.2.3).

The equation of motion (EOM) of the top mass mT in terms of absolute vertical
displacement, evaluated under the small displacement assumptions, namely around
the IAR undeformed configuration defined by a constant internal angle θ, reads:

mT z̈ +
1

2
mL

(
z̈ + üg

)
+

1

2
mL

(
z̈ − üg
tan2 θ

)
+K(z − ug) = 0 (2.1)

where ug is the ground displacement.
Eq. (2.1) exploits additional linearized inertia forces due to the embedded

lateral masses with respect to the inertia of a single-degree-of-freedom (SDOF)
oscillator. These additional inertia contributions have emerged from the horizontal
and vertical displacements of the extra embedded mass terms, respectively

dx =
ug − z
2 tan θ

, dz =
z + ug

2
(2.2)

In particular, the term:

fine =
1

2
mL

(
z̈ − üg
tan2 θ

)
(2.3)

stems from the relative acceleration between the top mass and the resonator base
highlighting the contribution of an additional inerter. The benefit of the proposed
advanced metasurface is to have the ability to alter the properties of the inerter by
means of modifying the geometrical properties (i.e., internal angle of the rhomboid
geometry θ) of the locally resonant metasurface.

By introducing the dimensionless mass ratio α = mT/m, where m = mT+2mL is
the total inertia of the advanced IAR, the resonator equilibrium equation, Eq. (2.1),
can be rearranged as:

αmz̈ +
1

4
m(1− α)

(
z̈
(
1 + cot2 θ) + üg(1− cot2 θ)

)
+K(z − ug) = 0 (2.4)

The following investigations on the dynamics of the IAR metasurface are limited
to the internal angles ranging in the interval of 10◦ < θ < 80◦ in order to have a
meaningful physical explanation.

We derive the dynamic amplification (DAF) of the IAR by imposing a harmonic
base motion, i.e., ug = Uge

iωt, and considering a time-harmonic response z = Zeiωt

as:

D(ω, α, θ) =
Z

Ug
=
K + mω2

4
(1− α)(1− cot2 θ)

K − m
4

(3α + 1 + 1−α
tan2 θ

)ω2
(2.5)



26 CHAPTER 2. DESIGN OF A TUNABLE METASURFACE

The resonance ωr,I(α, θ) and anti-resonance frequencies ωar,I(α, θ) of the IAR
are obtained respectively for D(ωr,I , α, θ)→∞ and D(ωar,I , α, θ)→ 0:

ωr,I(α, θ) =

√
K

m
4

(3α + 1 + 1−α
tan2 θ

)
=

√
K

mI

(2.6)

ωar,I(α, θ) =

√
K

m
4

(1− α)(cot2 θ − 1)
(2.7)

where mI in Eq. (2.6) represents an equivalent mass of the resonating system:

mI =
m

4

(
3α + 1 +

1− α
tan2 θ

)
(2.8)

From Eq.(2.8), one can conclude that for θ = 30◦, the equivalent mass mI

becomes identical to the total inertia of the advanced metasurface m, independently
from the mass distribution factor α (cf. Eq. (2.9)).

mI = m⇐⇒ 3(α− 1) =
1− α
tan2 θ

⇐⇒ θ = 30◦ (2.9)

Fig. 2.3a presents the equivalent inertia of the IAR resonator, normalized by its
total inertia, with respect to the internal angle θ.

The DAF of an SDOF resonator can be recovered for α = 1 as:

D(ω, 1, θ) =
ω2
r,S

ω2
r,S − ω2

(2.10)

and similarly, the natural angular frequency of the standard SDOF resonator can
be recovered as ωr,I(1, θ) = ωr,S = (K/m)1/2. We leverage the natural frequency of
the SDOF resonator to introduce the non-dimensional frequencies:

ω
′
=

ω

ωr,I(1, θ)
, ω

′

r,I(α, θ) =
ωr,I(α, θ)

ωr,I(1, θ)
, ω

′

ar,I(α, θ) =
ωar,I(α, θ)

ωr,I(1, θ)

Fig. 2.3b shows that the non-dimensional angular resonant frequency of the IAR
ω
′
r,I(α, θ) can be controlled by modification of the introduced design parameters α

and θ. With a prescribed total inertia m and stiffness K, the natural frequency
of the IAR can be significantly modified even with a minimal modification of the
mass distribution, for instance, α = 0.75. For θ = 30◦ regardless of the variation of
the α values, the IAR natural resonant frequency becomes identical to one of the
SDOF resonators, as it can be inferred from Eq. (2.6).

The absolute dynamic amplifications of two different advanced resonator config-
urations, namely, D(ω

′
, 1, θ), i.e. the one for the equivalent SDOF resonator, and
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Figure 2.3: (a) Equivalent mass of the IAR (mI in Eq.(2.8)) normalized by the
total resonator mass (m). (b) The resonant frequency of the IAR normalized by the
resonant frequency of the equivalent SDOF oscillator for different internal angles
(10◦ < θ < 80◦) and mass ratios (α = [0.25, 0.5, 0.75, 1]). (c) The DAF of the IAR.
(d) The anti-resonance frequency vs. internal angle for variation of the inertia ratio.
Reproduced with permission [160], Copyright 2019, Springer Nature.

D(ω
′
, 0.5, 30◦), are shown in Fig. 2.3c. Indeed, the high-frequency limit (ω

′ →∞)
of the IAR dynamic amplification converges to a non-null value:

lim
ω′→∞

D(ω′, α, θ) =
(1− α)(cot2 θ − 1)

3α + 1 + 1−α
tan2 θ

(2.11)
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on the contrary with a standard SDOF resonator, for which D(ω
′ →∞, 1, θ) = 0.

This unique feature of the IAR has a remarkable effect on the high-frequency re-
sponse of the IAR metasurface, as will be discussed later in Sec. 2.3. Furthermore,
similar to the resonance, the anti-resonant response of the IAR can also be tuned
by the modification of the introduced design parameters θ and α, cf. Eq (2.7).
Particularly, Fig. 2.3d reveals the dependence of the IAR anti-resonance ωar,I ,
normalized by the IAR angular resonance ωr,I , with the variation of the geometrical
design parameter. The anti-resonance frequency is bounded by the IAR resonance
(ω
′
ar,I > ω

′
r,I for any θ), and gives rises for an increasing internal angle, diverging at

θ = 45◦.

Next, we investigate the amount of vertical force exerted by the IAR to the
base, to be able to investigate the dynamic interaction of the IAR resonator with
an elastic substrate. The vertical force transferred at the base of IAR is derived by
exploiting the equilibrium of forces as:

fb,I(ω
′
, α, θ) = mUg

(
1

4
ω
′2(1− α)

(
1 +D +

1−D
tan2 θ

)
+
mI

m
ω
′2
r,I

(
D − 1

))
(2.12)

and can be compared to the vertical force transferred to the base of standard SDOF
oscillator:

fb,I(ω
′
, 1, θ) = fb,S = mUg

(
D(ω

′
, 1, θ)− 1

)
(2.13)

The comparison between the base force exerted by the IAR and standard SDOF
resonators is shown in Fig. 2.4a. In the low-frequency range, IAR transfers less
vertical stress to its base in comparison with the SDOF resonator since part of
the elastic force is used to counter-balance the horizontal displacement of the
embedded lateral inertia system. On the contrary, the IAR behaves similarly to an
extra dead mass, with a base force proportional to the vertical acceleration, in the
high-frequency regime. This phenomenon is completely different from the dynamic
behavior of the standard mass-spring oscillator, which instead transfers a negligible
force in the high-frequency regime (fb,I(ω

′
, 1, θ)→ 0 for ω

′ →∞). Eventually, we
report the observation of the third frequency value of interest, where the base force
of the IAR becomes zero:

ω
′

f0
(α, θ) = ω

′

r,I

√
1 +

(1 + α)2 tan2 θ

(1− α)(1 + α tan2 θ)
(2.14)

which we label as zero-force (or equivalently zero-stress) frequency. We remark that
the zero-force frequency is always larger than the resonant frequency of IAR (See
Eq. (2.14)), and it gives rise to an increase in the introduced design parameters
α, θ, as shown in Fig. 2.4b.
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Figure 2.4: (a) Normalized base force of the IAR (fb/fs, where fs = KUg). (b)
Normalized zero-force frequency values with respect to the internal angle for the
variation of mass ratio values. Reproduced with permission [160], Copyright 2019,
Springer Nature.

2.3 Dispersive properties of the IAR metasur-

face

2.3.1 Analytical model

This section studies the dynamics of Rayleigh wave propagation in a homogeneous
half-space equipped with an IAR metasurface layer attached to its free surface.
We exploit the effective medium approach [153] as a simple analytical approach
to discuss the dynamics of the IAR metasurface couple to an elastic semi-infinite
half-space. Such an approach has been used in the study of the classical metasurface
[88, 90, 92].

According to the effective medium approach, IAR metasurface comprises reg-
ularly distributed sub-wavelength oscillators that transfer uniform vertical stress
over the surface of the elastic homogeneous semi-infinite medium. This uniform
stress distribution is calculated from the base force (fb) of each oscillator over an
average influence area (S), defined from the regular spatial arrangement of the
IAR oscillators over the waveguide surface. Accordingly, the IAR metasurface is
modeled as an effective boundary condition for the elastic medium, as depicted in
Fig. 2.2c. Indeed, the IAR metasurface exerts only the vertical stress (σb = fb,I/S)
to the elastic half-space.

Following the analytical approach for the derivation of the dispersion law of
the Rayleigh waves from Ref. [96], we can derive an original dispersion law to
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describe the coupling between the IAR metasurface and the vertically polarized
surface waves. As such, we replace the standard zero-stress boundary conditions
at the surfaces of half-space with the stresses exerted by the IAR metasurface to
the elastic substrate. The closed-form dispersion of Rayleigh waves propagating
along the x -axis of an elastic medium of longitudinal velocity cL, shear velocity cT ,
density ρ, and interacting with generic vertical resonators exerting a base force fb
reads [150]:(
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where γ = cT/cL and k

′
= k · cT/ωr,I(1, θ) is the dimensionless wavenumber. This

relationship can be specialized for the IAR metasurfaces by replacing the force at
the base fb with the one of the IAR as Eq. (2.12):(
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where the parameter Υ:

Υ =
mωr,I(1, θ)

SρcT
≈ m

Sρλωr,I(1,θ)
(2.17)

represents an approximate ratio between the inertia of the IAR and the inertia of
a Rayleigh wave at a reference resonant frequency ωr,I(1, θ).

The roots of the Eq. (2.16) return the dispersion relation of Rayleigh waves and
IAR metasurface as shown in Fig. 2.5a and b, for an IAR metasurface with Υ = 0.59,
γ = 0.53, θ = 30◦ and α = 0.5. Moreover, we demonstrate that the dispersion curve
for α = 1 is identical to the standard SDOF resonators metasurface in Fig. 2.5b.
According to the dispersion relations, the IAR metasurface presents a classical
avoided-crossing behavior in the low-frequency regime, where the fundamental
Rayleigh wave is hybridized around the resonant frequency of the IARs, resulting
in the generation of a surface waves bandgap. Surface to shear wave conversion is
also achieved for the case of the IAR metasurface in the frequency range close to
the collective resonant frequencies of the resonators analogous to what has been
observed for Rayleigh waves interacting with classical SDOF resonators [153, 88].
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On the contrary, surface waves are characterized by lower velocities cp < cR in the
high-frequency regime, with a dispersive behavior similar to the one, observed for an
elastic half-space with additional dead mass atop, following the behavior observed
for the IAR force response. This hypothesis is confirmed by the high-frequency
approximation ω

′
>> ω

′
r,I of the IAR dispersion relation in Eq. (2.16), which reads:
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(2.18)
The factor ψ(α, θ):

ψ(α, θ) =
(1− α)(1 + α tan2 θ)

1− α + tan2 θ(1 + 3α)
(2.19)

allows mapping the approximate IAR dispersion law in Eq. (2.18) to the one of
a semi-infinite homogeneous substrate with an additional mass attached to its
free surface madd = mψ(α, θ). Indeed, a mass-loading madd applied over the free
surface of an elastic medium exerts uniform vertical stresses, σam, proportional to
the vertical acceleration of the substrate:

σam = −maddω
2

S
Uge

iωt (2.20)

where Ug is the vertical displacement at z = 0. Hence, following Eq.(2.15) we can
derive the dispersion law for a layer of added masses distributed on the free surface
of a homogeneous half-space:
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(2.21)
The reader can appreciate the similarity between Eq. (2.21) and Eq. (2.18).

In the frequency region between the upper edge of the bandgap and the zero-force
frequency, the upper dispersive branch has a phase velocity cR < cp < cT , where cR
is the Rayleigh wave velocity. The zero-force frequency marks the condition when
cp = cR, where the IAR metasurface becomes transparent to the Rayleigh waves
propagation.
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Figure 2.5: (a) Dispersion curve of IAR metasurface in the high-frequency range.
The dark gray region indicates the substrate sound cone, i.e., cp > cT . (b) Detail of
the IAR low-frequency behavior. IAR metasurface dispersion curves for (c) variable
mass ratios and θ = 30◦ and for (d) variable internal angles with constant mass
ratio α = 0.5. (e) Frequency bandgap evolution for different mass ratios (α = 0.25,
α = 0.5, and α = 1). Reproduced with permission [160], Copyright 2019, Springer
Nature.
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We take advantage of the tunable dynamic response of the IAR with respect
to its design parameters to tune the dispersive characteristics of the advanced
metasurface. Fig. 2.5c and 2.5d emphasize how the variation of the design
parameters α and θ can modify the dispersion curves of the IAR metasurface.
As an example, for a constant internal angle θ = 30◦, an increase in the mass
distribution ratio results in a surge in the phase velocity of the upper dispersive
branch. Similarly, for a constant α = 0.5, larger values of the internal angle θ result
in higher phase velocities of the upper-frequency branch, as displayed in Fig. 2.5d.

The bandgap frequency ranges are also influenced by the modifications of the
design parameters, as shown in Fig. 2.5e. The bandgap width widens for larger
inertia distribution and also larger internal angle θ. Lower frequency bandgaps occur
at the expense of their frequency width, as observed in other resonant metamaterials.
Conversely, higher frequency resonances allow for broader attenuation bands.

2.3.2 Numerical verification

We develop a 2D finite element model in Comsol Multiphysics [161] following
Bloch’s theorem [18] to validate the analytically derived dispersion laws of the IAR
metasurface. In this regards, we build the IAR metasurface unit cell considering
a portion of the elastic domain with the depth H = 3λωr,I(1,θ) and width a <<
λωr,I(1,θ), as shown in Fig.2.6a. The elastic half-space is modeled under plane-strain
assumptions. Periodic boundary conditions are imposed on the lateral edges of the
unit cell to obtain the numerical dispersion relation of Rayleigh waves propagating
in the principle wavenumber direction kx (e.g., along the x-axis) of the half-space.
The bottom edge of the model is restrained to prevent any undesired rigid motions.

The inertial amplified resonator comprises four rigid truss elements of length
L connecting the three masses and a vertical spring element linking the top mass
to the unit cell’s base. The top mT,2D and lateral mL,2D embedded masses are
modeled as added point masses at the truss elements’ tips. The total inertia of
the IAR in the 2D model is set as m2D = mT,2D + 2mT,2D = m · a/S, to achieve a
linear distribution of resonator mass equivalent to the one assumed in our analytical
model. The lateral displacement of the top mass is restrained, again in accordance
with the developed analytical model in Sec.2.2.

The unit cell domain is discretized with quadratic triangular elements with
a minimum dimension of dmin = a/2 to provide an adequate approximation of
the shortest wavelength at the highest frequency of interest. Henceforth, an extra
thin homogeneous layer of thickness tl < a << λωr,I(1,θ), with a larger stiffness
with respect to the elastic half-space, i.e., cL,lay = 2cL, cT,lay = 2cT , is placed
between the IAR and half-space. The existence of the thin stiff layer avoids
stress concentrations at the IAR-substrate connection ensuring the uniform stress
distribution assumption of the analytical effective medium approach.
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Dispersion curves, as extracted from the numerical model with a = λωr,I(1,θ)/124
and tl = a/6 are shown in Fig. 2.6b for three different internal angles θ =
[20◦, 30◦, 40◦] and a constant mass distribution ratio α = 0.5. The FE eigensolutions,
marked by solid circles well-matched the analytical predictions reported with
continuous lines. (a) (b)
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Figure 2.6: (a) Schematic of the 2D IAR metasurface unit cell. (b) Dispersion
curves as extracted from the Finite Element (FE) model (dots) and analytical
dispersion law (continuous lines) for varying internal angles θ = [20◦, 30◦, 40◦].
Panel (b) is reproduced with permission [160], Copyright 2019, Springer Nature.

2.4 Transmission of a finite-length IAR metasur-

face

In this section, we employ the metasurface unit cell model (Fig.2.6a) as the building
block of an extended numerical model to investigate the transmission coefficient
of a finite-length IAR metasurface, i.e., LM = 3λωr,I(1,θ) (see Fig. 2.7a). The
metasurface layer is inserted within two half-space domains: (I) an input domain
of length Linp = 10λωr,I(1,θ), where a harmonic surface point source is placed at
a distance ds = 2λωr,I(1,θ) from the model edge; (II) an output domain of length
Lout = 4λωr,I(1,θ). The harmonic point source excites the input domain with vertical
unitary displacement. Horizontal and vertical rigid motions of the numerical model
are restrained by the two fixed hinges placed at the model bottom corners. Then,
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Low-reflective boundary conditions (LRBs) are applied at the lateral edges of the
model to minimize the wave reflections effect from the boundaries. LRBC uses the
material properties of the adjacent media to create an impedance-matched interface
for the propagating longitudinal and shear waves [162]. The whole domain is
discretized using triangular elements with a minimum dimension of dmin = a/2 and
a maximum dimension equals 1/20 of the reference Rayleigh wavelength (λωr,I(1,θ)).

(a)

3λ ωr,I Lout=3λωr,I
LRBC LRBCFixed constraint Fixed constraint

xz
Input Source Output

LRBC

Metasurface λωr,I8λωr,I2λωr,I
17λωr,I(b) 𝜃 ↑

3λ ωr,I Lout=3λωr,I
LRBC LRBCFixed constraint Fixed constraint

xz
Input Source Output

LRBC

Graded Metasurface
λωr,I8λωr,I2λωr,I

17λωr,I

𝜃=cte

LM=3λωr,I

LM=3λωr,I

Figure 2.7: (a) Schematics of a finite-length single-frequency resonant metasurface.
(b) Schematics of the graded IAR metasurface of increasing internal angle θ =
[10◦ − 50◦] and constant mass distribution α = 0.5.
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Harmonic analyses within the normalized angular frequency range ω
′

= [0 − 4]
are performed for an IAR metasurface with design parameters set as α = 0.5 and
θ = 30◦. The vertical displacement fields for Rayleigh waves propagating at the
FE model are shown in Fig. 2.8a and b, for excitation frequencies ω′ = ω′r,I and
ω′ = ω′f0, respectively. The contour plot confirms the conversion of the incident
Rayleigh wave into bulk shear waves at the resonant frequency of IAR metasurface
(see Fig. 2.8a). Conversely, Fig. 2.8b highlights the zero-force frequency ω′ = ω′f0
behavior in which the metasurface becomes transparent to the propagation of
incoming Rayleigh waves.

metasurfacefree wave-guide free wave-guide
ω'=1 3λωr,I(a)

(b)ω'=1.51
metasurfacefree wave-guide free wave-guide

Figure 2.8: (a) The vertical displacement field for a vertical harmonic excitation at
the resonant frequency of the advanced metasurfaces. (b) The vertical displacement
field of the z-axis is driven by a harmonic excitation at the zero-force frequency.

We perform extended frequency domain analyses in the same normalized fre-
quency range (ω′ = [0 − 4]) for different IAR configurations by keeping the
mass ratio constant (α = 0.5) and altering the internal angle within the range
θ = [20◦, 30◦, 40◦] to compare the transmission efficiency of the different IAR
metasurface configurations. The transmission coefficient is calculated as:

T (ω′) =

∫ 3λωr,I (1,θ)

0 |νz,m|dx∫ 3λωr,I (1,θ)

0 |νz,f |dx
(2.22)

where νz,m is the averaged nodal vertical displacement as calculated from the
numerical simulations along the output domain for a length 3λωr,I(1,θ). Likewise,
νz,f is the averaged nodal vertical displacement of the “free” wave field extracted
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from a reference numerical model in the absence of the metasurface layer. As
expected, in the relevant bandgap frequency zone, the amplitude of the input signal
is significantly decreased, for all different configurations of IAR metasurface, which
achieve comparable values of peak attenuation. We note that the possibility of
tuning the bandgap frequency range comes at the expense of its frequency width,
as already observed from the metasurface dispersion curves (see Fig.2.5e) [160].
Moreover, in the high-frequency range, the transmission coefficient presents a
marked decreasing trend, almost linear in frequency, which depends on the internal
angle of the IAR. This behavior stems from the dead mass dynamics of the IAR
metasurface which presents an increasing impedance mismatch with the Rayleigh
waves in the homogeneous medium.

Eventually, we leverage the tunable dispersive feature of the advanced metasur-
face to design a graded metasurface exploiting the concept of rainbow trapping [100]
(see Chapter.1 Fig.1.8), i.e., a frequency-varying metasurface of resonators with
increasing natural frequencies along its length. Consequently, by keeping constant
the IAR inertia ratio (i.e. α = 0.5) and increasing the internal angle of the resonator
along the metasurface length from θ = 10◦ to θ = 50◦, we can realize a metasurface
with a constant static response and variable dynamic response. The schematic
of the graded metasurface is presented in Fig. 2.7b, where the normalized IAR
resonance frequency is increased linearly within the normalized angular frequency
range ω′r,I(α, θ) = [0.5 − 1.2] along the metasurface array. The variation of the
internal angle over the metasurface length is obtained by rearranging Eq. (2.6) as
below:

θ(ω′, α) = arctan

√
1− α

( 2
ω′

)2 − 3α− 1
(2.23)

The transmission curve of the graded metasurface is shown in Fig. 2.9b. The
multiple-frequency metasurface recovers the bandgap frequencies of the different
IAR configurations. Additionally, its high-frequency behavior is governed by the
response of the IAR metasurface with a low internal angle, which indeed presents
the highest impedance mismatch.

2.5 Conclusions

We designed an advanced tunable metasurface exploiting the concept of inertial
amplification mechanism (IAM) capable to interact and impede the propagation
of vertically polarized surface waves. Inertial Amplified Resonator (IAR) as the
building block of the advanced tunable metasurface is realized by two lateral
inerters, i.e., kinematical devices made by two inclined rigid links connected to an
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Figure 2.9: (a) Transmission coefficient of different IAR metasurfaces. (b) Trans-
mission coefficient for the graded metasurface of IARs. Figures are reproduced
with permission [160], Copyright 2019, Springer Nature.

additional mass to modify the total inertia of the resonator. The natural frequency
of the IAR is controlled by two design parameters, namely the internal angle (θ)
and the mass distribution ratio (α).

We followed the effective medium approach [99] to derive an original dispersion
relation for a locally resonant metasurface made of a periodic arrangement of
IARs at the free waveguide surface of an elastic half-space. We have shown that
the interaction between Rayleigh waves and locally resonant IAR metasurfaces
generates a low-frequency bandgap analogous to that of a classical mass-spring
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metasurface. On the contrary, IAR metasurface presents a tunable dynamic
response with a prescribed static response and allows the possibility of opening
large spectral bandgaps with a small amount of effective mass. Besides, IAR
metasurface demonstrated a high-frequency filtering behavior analogous to an array
of ”dead masses” placed directly over an elastic substrate. We took advantage of the
modular and tunable design of the IAR metasurface to design graded metasurface
(or varying-frequency metasurface) of increasing resonant frequency for broadband
Rayleigh waves attenuation.

A resonant seismic wave barrier can be realized according to the proposed
advance metasurface by assuming a shear velocity cT = 120 m/s, a longitudinal
wave velocity cL = 230 m/s, a density of ρ = 1300 kg/m3 for the soil; a resonant
frequency fr= 4.9 Hz and an overall mass of m = 3000 kg for the resonator [88]. In
this case, a tunable resonator could be practically conceived utilizing rigid telescopic
links with a variable length such that for a given elongating elastic bearing of
length Ls different IAR configurations (i.e., different IAR angles) can be achieved
by simply altering the length of the rigid telescopic links (see the schematic in Fig.
2.10).

(a) (b)MT MT

MLML MLML
L0 θ0

L1 θ1LSLS
Figure 2.10: Schematic of a possible design for a tunable IAR for seismic Rayleigh
waves in (a) undeformed and (b) deformed configurations. Reproduced with
permission [160], Copyright 2019, Springer Nature.

For wide-band low-frequency random seismic excitation, an IAR metasurface
with the maximum inclination angle θ = 80◦ and 0.5 < α < 1 (see Fig. 2.5e) should
be considered to open a considerable large low-frequency bandgap.

In summary, the proposed IAR metasurface is able to tune the dynamic response
of the locally resonant metasurfaces. The IAR metasurface can have multiple
applications in the context of surface waves manipulation, from SAW devices to
seismic isolation systems.
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Chapter 3

Rayleigh waves in resonant bulk
metamaterials

Abstract

In this chapter, we go beyond the assumption of considering the locally resonant
metasurfaces as a thin resonant interface placed at the free surface of an elastic
waveguide by investigating the dynamics of Rayleigh waves propagation in thick
resonant layers made of regularly distributed resonant materials along with the
depth of the waveguide. In particular, we derive an analytical dispersion law for
the case of a resonant layer with a variable thickness coupled to a non-resonant
elastic half-space. The interaction of sub-wavelength embedded resonators and
Rayleigh waves generates a low-frequency bandgap in the frequency span where
the effective mass density of the resonant metamaterial assumes negative values.
Around the bandgap frequency, we observe the existence of a leaky surface mode
which disperses part of elastic wave energy into the half-space and contributes to
the Rayleigh wave attenuation mechanism. Then, we perform parametric studies
to unveil the dependence of bandgap width on the thickness of the resonant
layer. Furthermore, we demonstrate that our analytical framework can capture
the fundamental dynamics of a resonant metasurface, conceived as a thin resonant
layer, as well as a full resonant half-space.

We take advantage of the dispersive features of the resonant layer to propose a
seismic wave barrier realized by meter-size mechanical oscillators embedded inside
the soil. Numerical models are developed according to the WFEM approach and
Bloch’s theorem to validate the dispersion laws. Eventually, to verify the theoretical
findings of the work, the design procedure of a table-top experimental campaign is
described. This procedure includes the design of a resonant metamaterial plate with
the thin and thick resonant layers analogous to the presented analytical framework.

41
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3.1 Introduction

Resonant metamaterials are artificial composites with local resonant particles or
structures of sub-wavelength dimensions hosted in an elastic medium [163]. In a
medium containing sub-wavelength resonators, surface waves hybridize with the
local resonances and generate bulk waves bandgaps stems from the avoided crossing
behavior of fundamental surface mode [153]. The bandgaps arise in the narrow
frequency range between the resonance and anti-resonance of the resonators, where
the density of the effective homogeneous medium assumes negative values.

Resonant metamaterials were initially realized to impede the propagation of
bulk waves inside the local resonance-induced bandgaps [16]. For example, a bulk
metamaterial realized by an arrangement of solid inclusions coated with a layer of
soft material and embedded in an elastic matrix (hard-soft-hard metamaterial) has
shown the generation of low-frequency bandgaps around the inclusions resonant
frequencies [29, 28, 31]. These bandgaps were found to be related to the “effective”
negative mass density of the material. The same physical phenomenon has been
observed later in discrete mass-in-mass spring systems [45, 46], in trusses and
beams equipped with internal resonators [34, 35], and 2D resonant metamaterials
[36, 37, 38].

Complementary to the resonant inclusions embedded in a hosting material,
resonant structures arranged at the top of an elastic medium, also known as
locally resonant metasurfaces, have been proposed to control the propagation
of surface Rayleigh waves. Surface-to-shear wave conversion [88, 97], filtering
[164, 98, 100], and waveguiding [99, 8, 104] are among the notable applications of
locally resonant metasurfaces. These peculiar dynamic effects were predicted by
exploiting ad-hoc dispersion laws formulated by considering the metasurfaces as a
dynamic resonant boundary condition for the elastic waveguides [99]. Despite the
numerous applications of the resonant metasurfaces, the scenarios where resonators
are distributed through the bulk medium or within a thick surface layer overlying
a homogeneous half-space are still unexplored. Understanding the dynamics of
these systems is essential to ease the development of novel devices and strategies to
control and mitigate the propagation of surface waves, like metabarriers [88, 101]
and metafoundations [87, 82] recently conceived for ground vibrations and seismic
waves.

Henceforth, in this chapter, we study and investigate the dynamics of Rayleigh-
type surface waves propagating through a medium composed of a finite-thickness
resonant layer overlaid a homogeneous non-resonant half-space. The resonant
layer is considered to have isotropic homogeneous material property made of the
randomly distributed resonators, discrete mass-in-mass composite [46], attached to
the host media via elastic connectors. Such an appropriate physical model is able
to predict the effective medium dynamic properties, namely effective mass density
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in the long-wavelength range. Then, we employ a static homogenization approach
to derive the effective bulk velocities. We use this description to derive an original
dispersion law to predict the dispersive features of the resonant bulk metamaterial,
particularly the existence and extension of bandgaps for Rayleigh waves.

We continue our investigation by considering a case study of seismic waves
propagation through a deep barrier made of buried resonators inside the soil, to
validate our proposed analytical framework. Hence, we first consider the limit case
of a very thick resonant layer with a depth much larger than the wavelength of
interest, namely a resonant half-space. Next, we investigate the resonant layer
with variable thicknesses placed over the non-resonant half-space and discuss the
variation in dispersion properties and bandgaps width with respect to the resonant
layer thickness. We develop numerical models according to WFEM [165] and
Bloch wave [18], to verify our analytical findings including the validity of the
applied homogenization approach and derived dispersion laws. The attenuation
performance of the proposed seismic barrier is investigated through full 2D FE
simulations.

The chapter is organized as follows. First, we derive the dispersion relation of
a finite-thickness resonant layer overlaying a homogeneous half-space in Sec. 3.2.
Next, we investigate the dispersive properties of the proposed resonant seismic
barrier as the case study in Sec. 3.3. The analytical results are confronted and
validated against finite element simulations where the exact geometry of the resonant
barrier is employed. In Sec. 3.4, harmonic analyses are performed to calculate the
transmission coefficients of different resonant layer configurations and to compare
their attenuation performances. Besides, it is shown how the proposed analytical
model recovers the dynamic behavior of a resonant metasurface. In Sec. 3.5,
we describe the design guidelines of a resonant metamaterial plate composed of
resonant layers with different thicknesses. The resonant metamaterial plate mimics
the partially resonant waveguide whose dynamic properties have been studied
analytically and numerically in this chapter. The rationally designed plate is set
to test and verify the main findings of this study experimentally. Finally, some
conclusions are drawn in Sec. 3.6.

3.2 Dispersion law for Rayleigh waves propagat-

ing in a resonant layer coupled with a homo-

geneous non-resonant half-space

In what follows, we derive the dispersive properties of Rayleigh-type surface waves
in a resonant layer of finite thickness H coupled to a homogeneous, isotropic, and
elastic non-resonant half-space. Without loss of generality, we restrict our interest
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to the waves propagating in the x− z domain assuming plane-strain conditions.

3.2.1 Resonant layer and effective medium description

The resonant layer is composed of local resonators randomly distributed in the host
medium (see Fig. 3.1). Each resonator consists of a rigid mass (mr) suspended by
horizontal and vertical springs with identical axial stiffness K. This yields to the
existence of degenerate resonant modes with an angular frequency ωr,x = ωr,z = ωr
along the axis x − z. The local resonators have dimensions significantly smaller
than the wavelength of the propagating surface waves (λ) in the low-frequency
range of interest. Additionally, we assume the host material to be isotropic and
homogeneous with Lamé parameters λh and µh and density ρh.

u K mr

ρh, cT,h, cL,h

ρs, cT,s, cL,s
H xz x, uz, w

λ ρeff, cT,eff, cL,eff

L
L

Figure 3.1: Schematic of a resonant layer made of randomly distributed resonators
overlying a non-resonant homogeneous semi-infinite medium. The inset shows a
detail of the reference volume element (RVE).

Under these assumptions, the dynamics of such resonant metamaterial can be
appropriately described utilizing an “effective” medium approach. The effective
description aims at defining the properties of an equivalent homogeneous material
with frequency-dependent mass density and bulk waves velocities able to approxi-
mate the dynamic response of the composite medium in the long-wavelength regime.
Our purpose is to derive effective density and bulk waves speeds expressions for
the resonant material and use them to obtain an analytical formulation of the
dispersion laws for surface waves existing in the layered resonant medium. The
analytical formulation should provide an accurate description of the low-frequency
dynamics of the layered resonant medium.

We consider an ensemble of n discrete resonators embedded in the host material
within a reference volume V = St, where S = L2 is the surface area of the 2D
plane-strain model (see inset in Fig. 3.1), and t is the unitary out-of-plane thickness,
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to properly define the effective density. For this configuration, the effective density
can be adequately represented by a scalar frequency-dependent function [166]:

ρeff (ω) =
mh + nmr

V
+
nmr

V

ω2

ω2
r − ω2

= ρ0

(
1 + α

ω2

ω2
r − ω2

)
(3.1)

where ω is the angular frequency, mh is the mass of host material enclosed in
the reference volume, ρ0 = (mh + nmr)/V is the static (ω = 0) density, and
α = nmr/(V ρ0) is the ratio between the resonator mass per unit volume and the
static density.

Given our interest in the low-frequency response of the resonant metamaterial,
we resort to a static homogenization of its elastic parameters. Hence, for the
definition of the effective elastic response of the composite material, here assumed
to be isotropic at the length scale of interest, we need to compute two effective
elastic parameters. For example, the reference volume material (or reference area
in a 2D plane-strain model) can be subjected to a constrained uniaxial strain
state (Fig. 3.2a) and to a shear strain state (Fig. 3.2b) to estimate the effective
longitudinal modulus Meff = λeff + 2µeff and the effective shear modulus µeff ,
respectively. If so, the two elastic parameters are calculated as:

Meff =
σxx
εxx

, µeff =
σxz
γxz

, (3.2)

where:

σxx =

∫
S
σxxdS

S
, εxx =

∫
S
εxxdS

S
, σxz =

∫
L
σxzdL t

Lt
, γxz =

∆u

L
(3.3)

In Eq. (3.3), σxx and εxx are respectively the average stress and average strain
components associated with the uniaxial constrained deformation state calculated
within the host medium enclosed in the reference area S. Similarly, σxz and γxz
are respectively the average shear stress calculated along the top surface of the
reference volume element and the related average shear strain.

At this stage, the effective bulk velocities of the homogenized composite can be
obtained as:

cL,eff (ω) =

√
λeff + 2µeff
ρeff (ω)

(3.4)

cT,eff (ω) =

√
µeff

ρeff (ω)
(3.5)

These velocities are utilized in the analytical framework developed in the next
section to describe the dispersive properties of surface waves in resonant materials.
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(a) (b)

L

L
Δu

w=0

w=0ρh, cT,h, cL,h ρh, cT,h, cL,h

K mr K mr

u=0
Figure 3.2: Schematics of the reference volumes used for the calculation of the (a)
effective longitudinal modulus Meff and (b) effective shear modulus µeff .

3.2.2 Longitudinal and shear wave velocities in the anisotropic
2D continuum

In long-wavelength approximation, the dynamics of the resonant layer can be
discussed as an anisotropic 2D crystal, which is equivalent to those of cubic crystals.
We discuss such a consideration together with the effect of wave polarization on
the extraction of longitudinal and shear waves in this section. According to the
classical theory of elastodynamics, the equations of motion for the cubic crystal
read:

∇ ·C : ∇su = ρeff ü (3.6)

where C is the tensor of elastic coefficients and u is the displacement vector.
For an arbitrary plane harmonic wave with the propagation direction defined by
wavenumber components kx and kz in x− z plane of the resonant layer, the wave
motions assume the solutions in the form of:

uj = Apj exp[i(kxx+ kzz − ωt)] (j = x, z) (3.7)

where A is the wave amplitude, pj is the wave polarization, and (kx, kz) is the
direction of the propagating wave. By substituting the wave solution in Eq. (3.7)
into Eq. (3.6), Christoffel’s equation for a 2D crystal is obtained as:[

λxx − ρeffc2 λxz
λxz λzz − ρeffc2

] [
px
pz

]
=

[
0
0

]
(3.8)

where c = ω/k is the velocity of the propagating wave.
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λxx = l2C11 +m2C44

λzz = m2C11 + l2C44

λxz = ml(C12 + C44)

(3.9)

where m = sin θ and l = cos θ. For the wave propagation along x-axis, Eq. (3.8)
becomes: [

C11 − ρeffc2 0
0 C44 − ρeffc2

] [
px
pz

]
=

[
0
0

]
(3.10)

From Eq. (3.10), the longitudinal and shear wave speeds are obtained as:

cL,eff (ω) =

√
C11

ρeff (ω)
(3.11)

cT,eff (ω) =

√
C44

ρeff (ω)
(3.12)

where C11 and C44 are the elastic parameters of the resonant layer. For an
isotropic material C11 = λ+ 2µ and C44 = µ.

For the plane harmonic wave propagating at an angle of θ = 45 with respect to
the principal directions, m = l =

√
2/2, Eq. (3.8) can be updated as:[

(C11+C44)
2

− ρeffc2 (C12+C44)
2

(C12+C44)
2

(C11+C44)
2

− ρeffc2

] [
px
pz

]
=

[
0
0

]
(3.13)

The eigenvalues of the Eq. (3.13) return the wave speeds:

c1(ω) =

√
C11 + C12 + C44

2ρeff (ω)

c2(ω) =

√
C11 − c12
2ρeff (ω)

(3.14)

The pure longitudinal wave (p1 = p2 =
√

2/2) exists for c = c1(ω). Pure shear
wave exists in (x− z̄) plane when p1 = −p2.
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3.2.3 Derivation of the dispersion relation

We now analyze the propagation of vertically polarized (Rayleigh-like) surface waves
in a semi-infinite domain (x− z plane, for z > 0), composed of a resonant layer of
depth H overlying an elastic isotropic non-resonant half-space (see Fig. 3.1). The
dynamics of the resonant layer is described by exploiting its frequency-dependent
effective properties, namely ρeff , cL,eff and cT,eff , as derived in Sec. 3.2.1, whereas
the isotropic, homogeneous half-space is characterized by mass density ρs and
longitudinal and shear waves speed cL,s, and cT,s, respectively. In what follows,
parameters with subscript 1 denote the resonant layer and 2 elastic half-space,
respectively.

We consider a plane harmonic wave propagating along the x-axis with a
wavenumber k and angular frequency ω. For a wave polarized in the x − z
plane, the displacement vectors in the resonant layer u1 and the half-space u2 read:

uj = [uj, vj, wj] j = 1, 2 (3.15)

where v1 = v2 = 0 are null displacement components. The displacement fields can
be expressed in terms of the potential functions Φj, and Ψy,j:

uj =
∂Φj

∂x
− ∂Ψy,j

∂z
, wj =

∂Φj

∂z
+
∂Ψy,j

∂x
j = 1, 2 (3.16)

where Φj is the scalar dilatation potential while Ψy,j is the y-component of the
distortional vector potential Ψ. These potentials should satisfy the wave equations
in both the resonant layer and the half-space:

∇2Φ1 =
1

(cL,eff )2
∂2Φ1

∂t2
, ∇2Ψy,1 =

1

(cT,eff )2
∂2Ψy,1

∂t2
,

∇2Φ2 =
1

(cL,s)2
∂2Φ2

∂t2
, ∇2Ψy,2 =

1

(cT,s)2
∂2Ψy,2

∂t2
.

(3.17)

Solutions of Eqs. (3.17) can be provided in the form:

Φ1(x, z, t) = (ad1e
ikr1z + au1e

−ikr1z)ei(ωt−kx),

Ψy,1(x, z, t) = (bd1e
iks1z + bu1e

−iks1z)ei(ωt−kx),

Φ2(x, z, t) = (ad2e
ikr2(z−H) + au2e

−ikr2(z−H))ei(ωt−kx),

Ψy,2(x, z, t) = (bd2e
iks2(z−H) + bu2e

−iks2(z−H))ei(ωt−kx).

(3.18)
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where rj and sj, for j = 1, 2, are given by:

r1 =

√(
ω

kcL,eff

)2

− 1, s1 =

√(
ω

kcT,eff

)2

− 1,

r2 =

√(
ω

kcL,s

)2

− 1, s2 =

√(
ω

kcT,s

)2

− 1.

(3.19)

and where adj , b
d
j , a

u
j , and buj , for j = 1, 2, denote the amplitudes of the downgoing

(superscript d) and upgoing (superscript u) body waves, respectively. We restrict
our interest to the derivation of surface wave solutions by assuming inhomogeneous
potentials within the elastic half-space as:

Φ2(x, z, t) = ad2 e
−kr∗2(z−H)+i(ωt−kx)

Ψy,2(x, z, t) = bd2 e
−ks∗2(z−H)+i(ωt−kx) (3.20)

where:

r2 = ir∗2, r∗2 =

√
1−

(
ω

kcL,s

)2

, s2 = is∗2, s∗2 =

√
1−

(
ω

kcT,s

)2

, (3.21)

and considering waves with phase velocity c = ω
k
< cT,s < cL,s. We highlight that

the exponentially increasing waves do not propagate in the half-space and they
have been eliminated by imposing au2 = 0, and bu2 = 0. After some simple algebraic
manipulations, the potential functions in both the resonant and homogeneous
half-space are reformulated as:

Φ1(x, z, t) =

(
A1 cos(kr1z) + A2 sin(kr1z)

)
ei(ωt−kx)

Φ2(x, z, t) = A3 e
−kr∗2(z−H)+i(ωt−kx)

Ψy,1(x, z, t) =

(
A4 cos(ks1z) + A5 sin(ks1z)

)
ei(ωt−kx)

Ψy,2(x, z, t) = A6 e
−ks∗2(z−H)+i(ωt−kx)

(3.22)

where Aj , for j = 1, ..., 6, are constants that can be derived from auj , adj , b
u
j , bdj (e.g.,

A1 = ad1 + au1). Substituting Eq. (3.22) into Eq. (3.16), and dropping the common
propagating term ei(ωt−kx), the horizontal and vertical displacement functions in
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the resonant layer can be derived as:

u1 = −k

[
i

(
A1 cos(kr1z) + A2 sin(kr1z)

)
+ s1

(
− A4 sin(ks1z) + A5 cos(ks1z)

)]

w1 = −k

[
r1

(
A1 sin(kr1z)− A2 cos(kr1z)

)
+ i

(
A4 cos(ks1z) + A5 sin(ks1z)

)]
(3.23)

Similarly, the displacements in the half-space are obtained as:

u2 = −k
(
iA3 e

−kr∗2(z−H) − s∗2A6 e
−ks∗2(z−H)

)
w2 = −k

(
r∗2A3 e

−kr∗2(z−H) + iA6 e
−ks∗2(z−H)

) (3.24)

By exploiting linear elastic isotropic constitutive relations, the stress components
within the layers are expressed as:

σzx,j = µj

(
∂wj
∂x

+
∂uj
∂z

)
, σzz,j = λj divuj + 2µj

∂wj
∂z

. j = 1, 2. (3.25)

We substitute the displacements of the layered systems, Eq. (3.23) and Eq. (3.24),
into Eq. (3.25), to obtain the tangential and normal stresses in the resonant layer:

σzx,1 = ρeffω
2
[
ir1γ1

(
A1 sin(kr1z)− A2 cos(kr1z)

)
− δ1

(
A4 cos(ks1z) + A5 sin(ks1z)

)]
σzz,1 = ρeffω

2
[
δ1
(
A1 cos(kr1z) + A2 sin(kr1z)

)
+ iγ1s1

(
A4 sin(ks1z)− A5 cos(ks1z)

)]
(3.26)

where, γ1 = 2
(
kcT,eff/ω

)2
and δ1 = γ1 − 1. Similarly, the stress components in the

half-space are derived as:

σzx,2 = ρsω
2

[
ir∗2γ2A3 e

−kr∗2(z−H) − δ2A6 e
−ks∗2(z−H)

]
σzz,2 = ρsω

2

[
δ2A3 e

−kr∗2(z−H) + γ2is
∗
2A6 e

−ks∗2(z−H)

] (3.27)

with, γ2 = 2
(
kcT,s/ω

)2
and δ2 = γ2 − 1. At this stage, the governing boundary

problem for the layered medium is obtained by imposing the following boundary
conditions:

σzx,1 = 0, σzz,1 = 0 for z = 0, (3.28)

u1 = u2, w1 = w2 for z = H, (3.29)
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σzx,1 = σzx,2, σzz,1 = σzz,2 for z = H. (3.30)

namely, zero stresses at the medium free surface, Eq. (3.28), and continuity of
displacements and stresses at the interface between the resonant layer and the
half-space, Eq. (3.29), and Eq. (3.30), respectively. By exploiting the identities
A2 = −A4δ1/(ir1γ1) and A5 = A1δ1/(is1γ1), we can reduce the boundary problem
to a set of four independent equations. In particular, the continuity of displacements
at the interface can be rewritten as:

i(cosP − δ1
γ1
cosQ)A1 − (

δ1
r1γ1

sinP + s1sinQ)A4 − iA3 + s2
∗A6 = 0

(r1sinP +
δ1
s1γ1

sinQ)A1 + i(− δ1
γ1
cosP + cosQ)A4 − r2∗A3 − iA6 = 0

(3.31)

where P = kr1H and Q = ks1H. Similarly, the equilibrium condition on the
tangential and normal stresses at the interface can be reformulated as:

i(r1γ1sinP +
δ1

2

s1γ1
sinQ)A1 + δ1(cosP − cosQ)A4 −

ρs
ρeff

(
ir2
∗γ2A3 − δ2A6

)
= 0

δ1(cosP − cosQ)A1 + i(
δ1

2

r1γ1
sinP + s1γ1sinQ)A4 −

ρs
ρeff

(
δ2A3 + is2

∗γ2A6

)
= 0

(3.32)

The system of equations (3.31) and (3.32), can be rearranged in matrix form:


i(cosP − δ1

γ1
cosQ) − δ1

r1γ1
sinP − s1sinQ −i s2∗

r1sinP + δ1
s1γ1

sinQ i(− δ1
γ1
cosP + cosQ) −r2∗ −i

iρeff (r1γ1sinP + δ1
2

s1γ1
sinQ) ρeff δ1(cosP − cosQ) −iρsγ2r2∗ ρsδ2

ρeff δ1(cosP − cosQ) iρeff (
δ1

2

r1γ1
sinP + s1γ1sinQ) −ρsδ2 −ρsiγ2s2∗



A1

A4

A3

A6

 =


0
0
0
0


(3.33)

which can be written in a compact form as D(k, ω)A = 0.
Non-trivial solutions of Eq. (3.33) are found by imposing the det(D(k, ω)) = 0.
Solutions of such nonlinear equation in the variables ω and k provide the dispersive
properties of surface waves propagating in the layered resonant medium.

3.2.4 Limit case: Dispersion relation of a full resonant half-
space

We first consider a limit case in which the whole half-space is resonant z = H.
In this configuration, it is necessary to specify only the potential functions in
the resonant layer. As in the previous derivation, we restrict our search to wave
solutions confined to the surface by assuming potentials with the form:
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Φ1(x, z, t) = a1e
ikr∗1zei(ωt−kx),

Ψy,1(x, z, t) = b1e
iks∗1zei(ωt−kx)

(3.34)

where:

r∗1 =

√(
1− ω

kcL,eff

)2

, s∗1 =

√(
1− ω

kcT,eff

)2

(3.35)

The dispersion relation of a resonant half-space can be obtained by expressing
the stress components in the resonant medium, Eq. (3.25), as functions of the
potentials in Eq. (3.34) and imposing the free-stress boundary conditions at
the surface of the half-space, Eq. (3.28). The procedure yields a system of two
homogeneous equations: −2i

√
1−

(
ω

kcL,eff

)2
2−

(
ω

kcT,eff

)2(
ω

kcT,eff

)2 − 2 −2i
√

1−
(

ω
kcT,eff

)2
[a1

b1

]
=

[
0
0

]
. (3.36)

Non-trivial solutions of Eq. (3.36) provide the dispersion law for Rayleigh waves in
a resonant half-space:(

2−
(

ω

kcT,eff

)2
)2

− 4

√
1−

(
ω

kcT,eff

)2
√

1−
(

ω

kcL,eff

)2

= 0. (3.37)

Note that Eq. (3.37) has the same form of the classical expression of Rayleigh
waves in a homogeneous medium [96], here adapted with the “effective” velocities
of the elastic half-space, namely cL,eff and cT,eff .

In the following section, we utilize the obtained analytical formulation in Eqs.
(3.33) and (3.37) to evaluate and discuss the dispersive properties of surface waves
propagating through resonant layers with different thicknesses.

3.3 Case study: Dispersive properties of seismic

barriers

To validate our analytical framework and discuss the fundamental dispersive
features of surface waves in resonant materials, we consider the scenario of an
array of meter-size resonators, known as metabarrier [88], embedded in the soil to
attenuate the propagation of seismic surface waves and ground vibrations. The
validation of our approach, which comprises the effective medium description and
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the related dispersion relations is performed by comparing the predictions of the
analytical models with the numerical outcomes of finite element models, where
the resonant unit cells are modeled accounting for their exact geometries and
mechanical parameters.

The configuration of interest is displayed in Fig. 3.3a. It comprises a layer of
resonators embedded in the soil and arranged periodically in a square lattice of
spacing a, for an overall depth H. Each unit cell consists of a resonator attached to
the host medium via elastic connectors, modeled as discrete springs, with identical
horizontal and vertical stiffness K, as schematically shown in Fig. 3.3b. In our
numerical investigations, we resort to a unit cell (see Fig. 3.3b) with length a = 1
[m], with a square hole of length av = 0.6 a enclosing a resonator of dimensions
ar × ar = 0.25 a2. The host medium is a soft soil with mass density ρh = 1500
[kg/m3], and bulk longitudinal and shear velocities of cL,h = 335 [m/s], and
cT,h = 120 [m/s] [88], respectively. The 2D plane-strain model has an out-of-plane
thickness t = 1 [m]. The mass of the resonator is mr = ρra

2
rt, where ρr = 2400

[kg/m3] is the mass density, and ωr = 2πfr is the angular resonant frequency of
the resonator, with fr = 5 Hz.(a) (b)

ρh, cT,h, cL,h
x, ux

z, wzHz-H
a a

ar

av
resonatorhost mediumK

Figure 3.3: (a) Schematics of the resonant layer with a regular grid of embedded
resonators overlying a homogeneous half-space. In the inset is shown a representative
strip of the bilayered half-space. (b) Barrier unit cell.

Under the assumptions of the analytical model (Sec. 3.2), we restrict our analysis
to the low-frequency range where the dimensions of the resonators are much smaller
than both the wavelength and the penetration depth of the fundamental surface
mode. In this scenario, the density of the resonant unit can be adequately described
using the approach discussed in Sec. 3.2. Similarly, we approximate the elastic
response of the composite material as an effective isotropic medium. In doing so, we
neglect the orthotropic behavior induced by the square lattice arrangement of the
resonators. Still, we demonstrate that this approach can capture the fundamental
physics of the considered problem.
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3.3.1 Effective resonant layer model of the seismic barrier

Static Homogenization for the derivation of elastic moduli

To characterize the elastic properties (Meff and µeff) of the unit cell, we utilize
the procedure discussed in Sec. 3.2. The calculation of the average stresses is
performed via FE simulations using the software Comsol Multiphysics [161]. In
more detail, we model a unit cell of the barrier under plane-strain conditions using
Lagrange quadrilateral elements to discretize the host material and truss elements
for the springs connecting the host material to the resonator. For the calculation
of the longitudinal modulus, we impose a unitary lateral pressure load to the unit
cell restraining its top and bottom boundaries along the vertical direction (see
Fig. 3.4a). Fig. 3.4c and Fig. 3.4e depict the obtained longitudinal stress and
strain distributions, respectively. We calculate the average stress σxx and strain
εxx components within the host medium, and estimate an effective longitudinal
modulus Meff = σxx/εxx = 36.37 [MPa].

For the calculation of the shear modulus µeff we impose a unitary horizontal
displacement at the top surface of the unit cell, restraining the bottom boundary
along the horizontal direction (Fig. 3.4b). Additionally, we impose continuity
conditions along the unit cell lateral boundaries to simulate the effect of neighboring
unit cells. Fig. 3.4d and Fig. 3.4f show the obtained shear stress and strain
distributions, respectively. From the average stress σxz we estimate an effective
shear modulus µeff = σxz/γxz = 3.66 [MPa].

For the calculation of the unit cell effective mass density (EMD), we utilize Eq.
(3.1). Given the regular arrangement of the resonators, we consider as reference
volume the one of a unit cell which encloses a single resonator, i.e., V = a2t = 1 [m3]
and n = 1 in Eq. (3.1). As a result, the static density of the homogenized medium
is ρ0 = (mh + mr)/V = 1560 [kg] with mh = ρh(a

2 − a2v)t = 960 [kg] being the
mass of the external host medium enclosed in a unit cell; whereas the mass ratio
α = mr/(V ρ0) = 0.384.

FE verification of the adopted static homogenization

We develop FE numerical model to extract the effective velocities of the resonant
metamaterial and verify the efficiency of the adopted static homogenization ap-
proach. To this end, we estimate the bulk velocities of the resonant composite first
and then calculate the effective bulk velocities of the homogenized composite in the
long-wavelength range. The finite element model of the unit cell presented in Fig.
3.5a is again developed in Comsol Multiphysics. The material properties of the host
media, resonator, and elastic spring are given in Sec. 3.2.1 are assigned to the model.
Bloch periodic condition is applied to the lateral edges of the model to extract the
dispersion of the bulk waves propagating in one of the principle directions (e.g.,



3.3. CASE STUDY: DISPERSIVE PROPERTIES OF SEISMIC BARRIERS 55

(a) (b)u=1

(c) (d)

(e) (f)
σxx/max(σxx)

εxx/max(εxx) γxz/max(γxz)

u=1 u=1

10-1
σxz/max(σxz)10-1

10-1
10-1

Figure 3.4: (a) Schematics of the FE model used to calculate the longitudinal
modulus Meff , and (b) shear modulus µeff of the resonant barrier. Longitudinal
strain (c) and stress (e) components are associated with the uniaxial constrained
deformation state. Shear strain (d) and stress (f) components are associated with
the pure shear deformation state.
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x-direction), considering the symmetry of the resonant cell. The eigenfrequency
response of the resonant cell in the long-wavelength regime is plotted in Fig. 3.4b.
cL,est = 153 [m/s] and cT,est = 49 [m/s] are the estimated longitudinal and shear
wave speeds obtained from blue and red tangent lines, respectively. These values
are extracted from small wavenumbers (k ≈ 0), where the dispersion curve presents
almost linear trends. (a) (b)

0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

3

Re(k')
ω'

cL,est
cT,est

Bloch B
.C.

Bloch B
.C.

Figure 3.5: (a) Developed FE unit cell in Comsol Multiphysics. (b) Numerical dis-
persion relation of the unit cell used to extract the equivalent shear and longitudinal
velocities of the cell.

We use the estimated velocities to calculate the elastic modulus, Poisson’s ratio,
and elastic moduli of the resonant composite as follow:

Eest = ρstcT,est
2
(3cL,est

2 − 4cT,est
2

cL,est2 − cT,est2
)
,

νest =
cL,est

2 − 2cT,est
2

2(cL,est2 − cT,est2)
,

µest =
Eest

2(1 + νest)
,

λest =
Eestνest

(1 + νest)(1− 2νest)
,

(3.38)

The effective description of the considered resonant metamaterial defines dis-
persive longitudinal cL,eff (ω) and shear cT,eff (ω) effective bulk velocities as:

cT,eff (ω) =

√
µest

ρeff (ω)
(3.39)
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cL,eff (ω) =

√
λest + 2µest
ρeff (ω)

(3.40)

We remark that the effective bulk velocities obtained from Eq.(3.40) and
Eq.(3.39) are identical to those of Eq.(3.4) and Eq.(3.5).

Effective bulk velocities

The value of the effective density calculated as per Eq. (3.1) is reported in Fig.
3.6a in terms of normalized density ρ′ = ρeff/ρ0 and normalized angular frequency
ω
′

= ω/ωr. As shown in the literature, the effective density assumes negative values
in the interval ω

′ ∈ [1, (1/(1 − α))1/2] due to the out-of-phase motion between
the internal oscillator and the host medium. Conversely, in the long-wavelength
(low-frequency) limit, the density recovers its static value ρeff (ω = 0) = ρ0, while in
the high-frequency limit it approaches ρeff (ω =∞) = mh/V , namely the resonator
mass does not contribute to the unit cell effective inertia.

Knowledge of the effective density and effective longitudinal and shear moduli
allow us calculating the bulk velocities of the resonant layer to approximate the
dynamics of the seismic barrier in the low-frequency range.

In Fig. 3.6b, the values of the bulk velocities, which are normalized by the
shear velocity of host medium cT,h, are reported in the normalized frequency range
ω′ = [0, 3]. As expected, in the frequency range where the effective mass density
of the cell assumes negative values, the effective bulk velocities have null real
components (Fig. 3.6b) and non-null imaginary values with an asymmetric profile
(Fig. 3.6c) characteristic of a resonant type frequency bandgap (BG). It is noted
that the BG of both the bulk modes occurs within the same frequency region due
to the isotropic behavior of the resonators.

3.3.2 Dispersive properties of a deep seismic barrier mod-
eled as a resonant half-space

We start our investigation considering a configuration where the depth of the
barrier, namely the depth of the resonant layer, has a thickness of H >> λ. In this
scenario, we can neglect the presence of the homogeneous substrate and exploit
the analytical relation derived for the case of a resonant half-space, Eq. (3.37), to
predict the dispersive properties of Rayleigh-like waves.

In particular, we seek for the complex wavenumbers k = <(k) + i=(k) of
Eq. (3.37) in the dimensionless angular frequency range ω′=[0, 2.5], where the
resonance modes of the unit cell should be found. The real <(k′) vs. ω′ and
imaginary =(k′) vs. ω′ dispersion curves, calculated using a bisection root-finding
scheme, are shown in Fig. 3.7a, and Fig. 3.7b, respectively, by continuous black
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Figure 3.6: Effective properties of the resonant barrier. (a) Effective mass density.
(b) Effective velocities of propagating bulk waves and (c) evanescent bulk waves.
Shaded areas indicate the bandgap associated with negative EMD and purely
imaginary values of the effective velocities.

lines. The black dashed line in Fig. 3.7a denotes the non-dispersive roots of the
Rayleigh wave solutions in the homogeneous soil (hosting medium).

We observe that the resonant half-space is characterized by a BG for the surface
waves in the frequency range where the EMD is negative. This result can be
interpreted by recalling that a Rayleigh wave stems from the interaction between
the bulk longitudinal and shear waves. Hence, in the frequency range where bulk
waves are impeded by the resonant metamaterial, the Rayleigh solutions cannot
propagate too.

Additionally, we observe that the Rayleigh mode in the resonant medium
decay with an attenuation, i.e., =(kR,eff ), that is comparable to the one of a
shear wave (=(kT,eff)) and greater than the one of the longitudinal bulk mode
(=(kL,eff)), see Fig. 3.7b. This occurs because the imaginary component of the
wavenumber is inversely proportional to the imaginary component of the velocity,
namely =(k) = ω

=(c) . Thus, the ratio =(kR,eff)=(kL,eff )
is equal to the ratio of the velocities

=(cL,eff)
=(cR,eff)

(compare Fig. 3.6b to Fig. 3.7d). Interestingly, the ratio of the velocities
does not vary within the gap and is equal to the ratio of the real components
<(cL,eff )
<(cR,eff )

, calculated at any frequency outside the gap (compare Fig. 3.7c to Fig.

3.6a). Since the latter ratio is always larger than 1 for any material, the same

result applies to the ratio =(kR,eff)=(kL,eff )
. Similar arguments apply to the comparison

between Rayleigh and shear waves.
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Figure 3.7: (a) Real and (b) imaginary wavenumber for the dispersion of Rayleigh
waves propagating across a full resonant half-space, respectively. (c) Real and (d)
imaginary parts of the effective Rayleigh wave velocity in the resonant medium,
respectively.
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Rayleigh-like mode shapes in the resonant half-space

We now exploit the effective medium description to reconstruct the Rayleigh-like
mode shapes within the resonant half-space as [96]:

ur = −ikB1e
−ηz +B2ζe

−ζz

wr = −ηB1e
−ηz − ikB2e

−ζz (3.41)

where ur and wr are the amplitudes of the horizontal and vertical components of the
eigenmode, respectively, η = (k2−(ω/cL,eff )2)(1/2), ζ = (k2−(ω/cT,eff )2)(1/2), and z
is the coordinate depth of the resonant half-space. The constants B1 and B2 are arbi-
trarily chosen to satisfy Eq. (3.41), for example B2 = 1 and B1 = (−2iζk)/(ζ2+k2).

-1-0.500.51-1-0.500.51 -3-2.5-2
-1.5-1
-0.5 ω'=1.5

-3-2.5-2
-1.5-1
-0.5 ω'=0.8 00 (a) (b)

uruhwrwh Normalized displacement [-]Normalized displacement [-]

z/λ 0 z/λ 0

Figure 3.8: Rayleigh wave mode shapes in resonant half-space (continuous lines)
and in the host medium (dashed lines) computed for a dimensionless circular
frequency of (a) ω ′ = 0.8 (in-phase), and (b) ω ′ = 1.5 (out-of-phase).

Examples of Rayleigh-like mode shapes propagating within the resonant half-
space at the normalized frequency ω ′ = 0.8 and ω ′ = 1.5 correspondings to the
in-phase (lower) and the out-of-phase (upper) dispersive branches are shown in Fig.
3.8a and 3.8b, respectively. The reader can compare these eigenshapes with those of
the Rayleigh wave propagating in the homogeneous host medium (uh,wh), i.e., soil
with no resonators (dashed lines in Fig. 3.8). The displacements are normalized
by their corresponding absolute value at z = 0 and are represented along the
normalized depth coordinate z/λ0, where λ0 = 2πcR,h/ωr, and cR,h = 113.5 [m/s]
denotes the Rayleigh velocity of the host material. Comparison between Rayleigh
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modes in the resonant and non-resonant half-spaces propagating at a frequency
slightly lower than the BG reveals that the mode is more confined to the surface
due to the lower effective velocity. In analogy, modes above the bandgap are less
confined due to the larger effective velocity.

FE Validation

To verify the analytical predictions provided by the proposed effective medium
approach, we develop a bi-dimensional Finite Element (FE) model to compute the
roots of the dispersion relation. To this aim, we model a representative strip of
the resonant half-space in plane-strain condition, with a depth of 3λ0 and a width
equal to that of the resonant unit cell a << λ0, as shown in Fig. 3.9a. The depth
of the strip is adequate to simulate a half-space domain in the frequency range
around the unit cell resonance.

The base displacement of the strip in Fig. 3.9a is restricted both horizontally
and vertically to prevent any undesirable rigid motion. Bloch boundary conditions
are applied along the side edges of the model to replicate the dynamics of an infinite
half-space in the x-direction. To accurately model the shortest wavelength at the
highest frequency of interest, the domain is discretized by Lagrange quadrilateral
elements with minimum and maximum dimensions of dmin = a/10 and dmax = a/5,
respectively.

The eigensolutions of the FE problem for given real wavenumbers from zero
to k′ = 0.4 are marked by dots in Fig. 3.9b, whereas our analytical solutions of
Eq. (3.37) are reported in continuous black lines. The numerical model predicts a
plethora of solutions that include several bulk-like modes. To discriminate between
surface solutions and the bulk modes, we use a selection criterion based on the
position of the displacement shape centroid Gr within the strip depth:

Gr =

∫ 3λ0
0
|w|z dz∫ 3λ0

0
|w| dz

< 0.9λ0 (3.42)

thus selecting only those modes with a displacement centroid located within the
uppermost region of the model depth. The analytical predictions well match the
surface modes selected according to this criterion, which are marked by blue dots in
Fig. 3.9b. Furthermore, the numerical model predicts a flat branch of eigensolutions
at ω′ = 1.72, resulting from the rotational motion of the resonators (see detail in
Fig. 3.9d).

We now analyze some of the mode shapes obtained from the numerical model.
For better visualization, we display the wavefield by replicating the eigenmode of
the unit cell with a phase shift eikx along the direction of wave propagation. The
surface mode with angular frequency ω

′
= 0.91, and wavenumber k

′
= 0.3 is shown
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Figure 3.9: (a) Schematic of a strip of the resonant half-space. (b) Dispersion
relation of the resonant half-space. Solid lines present the analytical solutions,
and circles mark the FE eigensolutions (blue dots denote the surface modes). (c)
Zoom-in on the wavefield (H = λ0) of a surface mode computed at ω

′
= 2.11 and

k
′

= 0.3 showing an out-of-phase displacement between the internal mass and
the host medium; (d) rotating mode at ω

′
= 1.72 and k

′
= 0.3; (e) surface mode

computed at ω
′

= 0.91 and k
′

= 0.3 with in-phase motion between the host medium
and the internal resonant mass.
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in Fig. 3.9e. We note that each resonator moves in-phase with the motion of the
host medium (the color in Fig. 3.9e denotes the w displacement amplitude), as
observed along the acoustic branch of any resonant waveguide. Conversely, the
wavefield at ω

′
= 2.11 and k

′
= 0.3 is characterized by an out-of-phase motion

between the resonator and the hosting medium, which is typical of the optical
branch of resonant materials (see Fig. 3.9c).

3.3.3 Dispersion of finite-depth seismic barriers

We now generalize our investigation by calculating and discussing the dispersive
properties of Rayleigh-like waves traveling in a seismic barrier of depth H, modeled
as a resonant layer of the same depth, overlaying a half-space of homogeneous soil.
We aim to find the roots of det(D(k, ω)) = 0, calculated as per Eq. (3.33), within
the frequency range where we expect to observe the Rayleigh wave bandgap. To this
purpose, we calculate the determinant within the frequency range ω

′
= [0, 2.5]

and wavenumber range k
′

= [0, 0.5], and visualize its minimal values in Fig.
3.10a for a resonant layer of depth H = λ0. Note that this depth corresponds
roughly to a barrier of 23 unit cells.

Different from the resonant half-space scenario, the bilayer medium supports the
propagation of multiple surface modes (marked by blue lines in Fig. 3.10a). These
surface waves are hybridized by the unit cell resonant modes. The hybridization
leads to the generation of a low-frequency resonant bandgap, bounded between
the resonance frequency of the barrier ωr and the crossing point between the bulk
shear velocity cT,h of the half-space, and fundamental hybridized mode marked as
a continuous black line in Fig. 3.10a.

The half-space shear velocity identifies the (ω
′
-k
′
) domain, labeled as sound-cone

and highlighted by a dark gray area in Fig. 3.10a, where purely surface-confined
modes cannot exist because s∗2 in Eq. (3.21) assumes imaginary values. Inside this
domain, we should instead observe leaky surface modes, which radiate part of their
energy into the half-space. For example, by tracking the fundamental mode, i.e.,
by solving det(D(k, ω)) = 0 numerically for the unknown complex wavenumbers
k = <(k) + i=(k), we can verify that a branch of this mode extends within the
sound-cone. Additionally, we observe that the same mode becomes evanescent
<(k) = 0, and =(k) 6= 0, within the frequency BG of the bulk modes, where both
r1 and s1 in Eq. (3.19) assume imaginary values (see Fig. 3.10b).

We extend our investigation considering configurations with different resonant
layer depths, H = [0.2, 0.5, 1, 2]λ0, with H = 0.2λ0 roughly corresponding to a
barrier of five unit cells and H = 2λ0 corresponding to a barrier of 46 unit cells
along with the depth of the resonant layer, respectively. The related real dispersive
properties are shown in Figs. 3.11(a)-(d). A comparison between the analyzed
scenarios shows that an increase in the thickness of the resonant layer widens the
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Figure 3.10: Dispersion relation of (a) propagating and (b) evanescent Rayleigh
waves in a resonant layer with a depth of H = λ0 overlaying a homogeneous
half-space. The fundamental surface mode is marked by black lines.

frequency range of the BG. To quantify this behavior, we calculate the BG extension
for different depths of the resonant layer by visually inspecting the crossing point
of fundamental surface mode and shear velocity of half-space.

The bandgap evolution in terms of normalized angular frequency is shown in
Fig. 3.11e for the normalized variation depth (H/λ0) of the resonant layer. We
observe a linear trend for resonant layers with H < 0.5λ0. The BG extension
reaches a maximum value ω

′
RL = 1.37 for H ≥ 0.5λ0, which is larger than the

bandgap of a resonant half-space, whose upper edge ω
′
HS is indicated in Fig. 3.7a.

The latter result can be interpreted by recalling that in the resonant layered system
two attenuation mechanisms contribute to prevent the propagation of Rayleigh
waves. First, as in the case of a fully resonant half-space, the bulk modes within
the resonant layer are impeded within the frequency range where the effective
density assumes negative values. As a result, the surface modes which stem from
the superposition of these bulk modes (see Eq. (3.18)) are inhibited. Second,
within an additional frequency range above the bulk waves BG, the apparent phase
velocity of the surface modes assumes values c > cTh . This condition allows only
the existence of leaky modes that disperse their energy in the half-space region, as
discussed for the barrier with H = λ0.

Regarding the case of a thin resonant layer, we underline that its dispersive
properties can be equally predicted by treating the presence of the resonators as a
stress boundary condition on the half-space (see Appendix A). This description,
widely employed in literature to describe the dynamics of metasurfaces, yields a
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closed-form estimation of the upper edge frequency of the BG [88]:

ω
′

MS = β +
√
β2 + 1, (3.43)

where:

β =
mres ωr

2ares ρh cT,h

√
1−

(
cT,h
cL,h

)2

. (3.44)

The reader can appreciate that this prediction, marked by a red dashed line in
Fig. 3.11e, well matches the BG extension of a thin H = 0.05λ0 resonant layer,
i.e., approximately a single unit cell layer, calculated according to our framework.

A single-resonator barrier modeled as a locally resonant metasurface

The dynamics of a resonant layer with a very thin depth, for example, the case of
a barrier with one unit cell (H = a), can be adequately described as a resonant
metasurface (see Fig. 3.12a), an array of subwavelength mass-spring resonators
attached to the free surface of a homogeneous elastic half-space. Such a configuration
can be analyzed by modeling the presence of the resonator as a stress distribution
applied on the free surface of the half-space [151]. According to this description, the
dispersion relation of the resonant metasurface interacting with vertically polarized
surface waves reads [153]:

((
ω

ωr

)2

− 1

)[(
2−

(
ω

k cT,h

)2)2

− 4

√
1−

(
ω

k cL,h

)2
√

1−
(

ω

k cT,h

)2
]

=
mres ω

4

A ρh c4T,h k
3

√
1−

(
ω

k cL,h

)2

(3.45)

where A = art is an average area where each resonator exerts its stress. In Fig.
3.12b, we compare the dispersive properties of a single layer H = a resonant barrier
modeled according to the metasurface description (Eq. (3.45), red dashed lines in
Fig. 3.12b) and the framework proposed in our work (Eq. (3.33), black lines in
Fig. 3.12b). Both developed models provide analogous results in the case of a thin
resonant layer.

FE Validation

To verify the dispersion results found analytically, we develop a dedicated finite
element numerical model and perform numerical simulations.
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Figure 3.11: Dispersion curves of real wavenumbers for a semi-infinite resonant
medium consisting of a homogeneous half-space below a resonant layer with the
depth of (a) H = 0.2λ0, (b) H = 0.5λ0, (c) H = λ0, and (d) H = 2λ0, respectively.
(e) bandgap width in normalized angular frequency vs. normalized depth of the
resonant layer. The dashed blue line indicates the BG upper edge of a resonant
half-space, while the dashed red line indicates the upper edge for a metasurface.
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Figure 3.12: (a) Schematic of the metasurface layer attached to the free surface of
a homogeneous half-space. (b) Dispersion of the resonant layer composed of single
unit cell embedded to host material(RL) vs. locally resonant metasurface(MS).

The FE model depicted in Fig. 3.13c consists of a strip of resonators with depth
H placed on top of a homogeneous soil. Following the procedure described for the
derivation of the numerical dispersion of the resonant half-space (Sec. 3.2), the
numerical eigensolutions (marked by dots) are calculated and over-imposed to the
analytical dispersion curves for the two scenarios of thin (H = 0.2λ0) and thick
(H = λ0) resonant layer in Fig. 3.13a and b, respectively. Among all the numerical
eigenmodes, surface solutions, highlighted by blue dots, are selected using the
identification criterion reported in Eq. (3.42). We note that the numerical model
also accounts for multiple rotational modes of the resonators as previously seen in
the case of resonant half-space (see Fig. 3.9b), which results in an additional flat
branch around ω

′
= 1.72.

We highlight that the numerical and analytical outcomes are in good agree-
ment. In particular, numerical simulations confirm the same variation of the BG
concerning the resonant layer thickness found analytically. Additionally, insight
on the dispersive properties of the fundamental surface mode confirms its “leaky”
behavior within the sound-cone domain, evident by visualizing the full wavefield
of the mode at k

′
= 0.08 and ω

′
= 1.33, as shown in Fig. 3.13d. The same mode

remains instead confined to the surface when computed outside the sound-cone
region (see Fig. 3.13e).
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Figure 3.13: (a) FE surface modes (blue dots), discriminated according to the
criterion reported in Eq. (3.42), and over-imposed to the analytical dispersion
relation (solid lines) for H = 0.2λ0 and (b) H = λ0. (c) A representative unit cell
of a resonant barrier on top of a homogeneous soil. (d) The vertical displacement
wavefields of a leaky surface mode corresponding to k

′
= 0.08 and ω

′
= 1.33. (e)

The vertical displacement wavefield of the fundamental surface mode for k
′

= 0.18
and ω

′
= 1.54. Note that the resonators move out-of-phase with respect to the

host medium.
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3.4 Rayleigh waves transmission through a finite-

length seismic barrier

In this section, we investigate the propagation of Rayleigh waves within a domain
composed of a resonant barrier of finite dimensions embedded within a homogeneous
non-resonant half-space. Our aim is twofold: first, we want to verify the accuracy
of the effective medium description for harmonic analyzes; second, we want to
evaluate the attenuation properties of the finite length resonant barrier. To this
end, we develop two dedicated finite element models: the first model accounts for
the true geometry and materials of the barrier, the second, instead, utilizes an
effective resonant medium to replace the barrier. In both models, the domain of
interest Lt ×Ht, depicted in Fig. 3.14a, has dimensions of 10λ0 × 3λ0, respectively.
The barrier is located at a distance of 5λ0 from the input source, with a length
of 2λ0 and a variable depth H. A vertical unitary displacement, applied at a
distance ds = λ0 from the domain edge, is used as a point source to generate surface
Rayleigh waves. An output region of length Lout = 2λ0 is used to recover the signal
amplitude after the resonant portion. Low reflecting boundary conditions (LRBCs)
are applied at the lateral and bottom edges to reduce wave reflections. Both the
domains are discretized by Lagrange quadrilateral elements with a minimum and
maximum mesh dimension of dmin = a/10 and dmax = λ0/5, respectively.

Frequency-domain analyzes are performed within the range of ω′ = [0.7, 2.5]
for a resonant layer of thickness H = λ0. We define a transmission coefficient
calculated as [150]:

T (ω′) =

∫ Lout
0
|w r|dx∫ Lout

0
|w p|dx

(3.46)

where wr is the vertical nodal displacement as calculated from the FE simulations
along with the output domain, while wp is the vertical nodal displacement calculated
within the same domain using a twin reference model where the resonant domain
is substituted by the homogeneous non-resonant material (cT,h, cL,h, ρh).

The true barrier model and the effective resonant layer provide analogous values
of the transmission coefficient within the whole frequency range of interest (see
Fig. 3.14b). Similarly, the vertical displacement wavefields obtained utilizing
two FE models (true barrier and effective layer) are in excellent agreement for
harmonic analyzes within and outside the bandgap region (see Fig. 3.15a,b for
harmonic simulations at ω′ = 1 and Fig. 3.15c,d for harmonic simulations at
ω′ = 1.3). Following the prediction of the dispersion curve reported in Fig. 3.13b,
the Rayleigh wave propagation is hindered through the resonant layer for a harmonic
excitation within the BG range (see Fig. 3.15b). Besides, Fig. 3.15d highlights the
attenuation of a leaky surface mode, which spreads part of its elastic energy below
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the barrier.

These results confirm the possibility of using the effective model within a FE
approach. Thus, we perform a parametric study and calculate the transmission
coefficients of resonant layers with thickness H = [0.2, 0.5, 1]λ0. The results are
displayed in Fig. 3.16 and prove that the barrier attenuation frequency range varies
with the barrier depth, as predicted by the proposed dispersion laws.(a)
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Figure 3.14: (a) Schematic of the FE model used for the calculation of the trans-
mission coefficients. (b) Comparison of transmission coefficients T (ω′) calculated
for the seismic barrier and homogenized layer with an identical depth of H = λ0.

Similarly, the attenuation efficiency of the resonant layer increases with an
increase in the barrier depth. For all the cases, the attenuation peaks are located in
the frequency range close to the metamaterial resonance, where the EMD assumes
large negative values. Within this frequency range, a negligible part of the energy
is transmitted in the form of surface solutions traveling below the resonant layer
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(see Fig. 3.15a). Conversely, the transmission coefficients assume larger values
outside the negative EMD region, since Rayleigh waves are attenuated only due
to energy leakage. Attenuation due to leakage is indeed much less effective than
attenuation due to negative EMD (see Fig. 3.16) and would require a much longer
barrier to significantly reduce the surface Rayleigh wave amplitude.ω'=1

ω'=1.3

(a) wmax

wmin
10-1

ω'=1

ω'=1.3 wmax

wmin
10-1

(b)

(c) (d)

Figure 3.15: Snapshots of the vertical displacement field (z-axis) for (a) the seismic
barrier and (b) its equivalent resonant layer driven by a vertical harmonic excitation
at ω

′
= 1 and for (c) the seismic barrier (d) and (d) its equivalent resonant layer is

driven by a vertical harmonic excitation at ω
′
= 1.3.

3.5 Design of a resonant metamaterial plate

Finally, we extend our study to design a small-scale prototype metamaterial plate
capable to capture the dispersive properties of a resonant metamaterial discussed
analytically in previous sections. To this end, we implement Bloch wave theory
[18] to numerically design the metamaterial plate containing embedded resonators.
We plan to exploit SLVD to measure the displacement and velocity of the plate
in the table-top experimental campaign and to use PZTs as the excitation source.
The fabrication of the metamaterial plate is currently under development and
experimental analysis of the plate is postponed.

The design procedure commences by the realization of the phononic unit cell
made of PVC material, with material properties given in Table.3.1, and will be
concluded by periodically arranging them inside the pristine PVC plate. The unit
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Figure 3.16: Transmission coefficients of resonant layers with different thicknesses,
H = [0.2, 0.5, 1]λ0. The red box highlights the bandgap of H = 0.2λ0, while the
shaded gray region marks the bandgap of H = 0.5λ0 and H = λ0. (c)

cell is designed to have a dimension of 35× 35× 10mm as shown in Fig. 3.17a,
which is much smaller than the wavelength of Rayleigh wave in PVC material
a << λRW,PV C . The resonator is realized by perforating a concentric hole inside the
phononic cell and press-fitting the steel cube inside the hole as shown in Fig. 3.17b.
The cubic mass has a dimension of 10× 10× 10mm. The mechanical properties
of steel mass are, ρstl = 7850 kg/m3, Estl = 210GPa, and νstl = 0.3 which are
mass density, elastic modulus, and Poisson’s ratio, respectively. The resonator is
attached to the phononic cell via four elastic connectors, each having a dimension
of 3× 2× 2mm.

Material ρ [kg/m3] E [GPa] ν [−] cL [m/s] cT [m/s] cR [m/s]
PVC 1470 3.4 0.4 2032 910 853

Table 3.1: Mechanical parameters of the metamaterial plate.

Following the WFEM approach earlier discussed in Sec.3.3, we evaluate the
dispersion curve for the phononic cell in the absence and presence of resonator
as shown in Fig. 3.17c and d, respectively. As expected, the introduction of the
resonator substantially modifies the dispersive properties of the phononic cell, and
opens a low-frequency bandgap (see the shaded area in Fig. 3.18a) in the dispersion
of bulk waves, in analogy to what we observed in the numerical simulations of 2D
resonant cell reported in Fig.3.7a. The lower edge of the BG is marked by the
resonant frequency of the resonator fr,PV C = 4640Hz. Furthermore, the flat mode
f = 5123Hz inside the BG corresponds to the rotational motion of the resonator
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with respect to the PVC casing.
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Figure 3.17: (a) Schematics of the phononic cell. (b) Schematics of the resonant
unit cell. Bulk waves dispersion curves for (c) the basic and (d) resonant cells,
respectively.

We compare the bulk dispersion of the resonant cell in its 3D configuration with
the equivalent 2D model, to justify the simplification of exploiting the 2D model of
the phononic cell with local resonance used in the analytical study of Sec. 3.2. By
assuming a unitary out-of-plane dimension of 2D configuration, K = Kr/4 becomes
the equivalent axial stiffness of each spring, where Kr = ρstl ×Astl × 1× (2pifr)

2 is
the total axial stiffness of elastic connectors in 3D geometry. Next, we evaluate the
numerical dispersion relation of the equivalent 2D model as shown in Fig.3.19a by
gray lines. Apart from the prediction of rotational mode, which we did not account
for in our analytical approach, the 2D approximation proved to be sufficient to
capture the fundamental dispersive features of the resonant cell, including the
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Figure 3.18: (a) A zoom in the bulk dispersion of the resonant unit cell (see
Fig.3.18b). (b) Bulk modes are obtained from eigenfrequency analysis of the unit
cell.

low-frequency BG and identical mode shapes (see Fig.3.19b), however, a minor
shift in the frequency spectrum is observed.
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Figure 3.19: (a) Bulk dispersion of the 3D resonant unit cell vs. equivalent 2D
model. (b) Bulk modes of the equivalent 2D unit cell.
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Figure 3.20: (a) Bulk dispersion of a resonant layer over a non-resonant PVC
half-space over-imposed by the FE dispersion (red dots). (b) Schematics of the
unit cell for FE Rayleigh mode extraction with the depth of 1m. The resonant
part includes 5 resonators with a depth of one wavelength (λ). (c) Bulk dispersion
with filtered surface modes. (d) Vertical displacement wavefield for in-phase and
out-of-phase branches. Highlighted gray region denotes the low-frequency surface
wave bandgap.
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We investigate the dispersion of Rayleigh waves in a dedicated unit cell with
the length and width of 35 mm and depth of 1m, made of 5 rows of resonators
(Ht) placed atop of the PVC material layer with the total depth of 1m, as shown
in Fig.3.20b. Such a dimension is sufficiently large that the PVC layer can be
considered as a homogeneous half-space. Following the WFEM approach introduced
in Sec.3.3, we calculate the numerical eignenmodes (see red dots in Fig.3.20a) over-
imposed to bulk dispersion (solid blue lines). In order to discriminate the surfaces
and bulk modes, we used the criterion in Eq.(3.42).

Fig.3.20c depicts the extracted Rayleigh modes using the criterion in Eq.(3.42),
where the existence of two surface modes at 4220Hz and 6832Hz, are reported,
respectively. These surface modes identify the edges of the surface bandgap
frequency region. We note that Rayleigh waves become evanescent in this frequency
range, in analogy to what we have seen in our numerical and analytical framework
in Sec.3.3. We highlight the in-phase and out-of-phase surface modes in Fig.3.20d.
Additionally, other surface modes marked inside the BG are numerical artifacts
whose existence can be neglected by adjusting different threshold values of the
surface mode selection criterion of Eq.(3.42), by using, for instance, 0.2Ht instead
of 0.3Ht.

Finally, we designed the metamaterial plate according to the numerical findings
of this section, such that the designed metamaterial plate confirms the analytical
framework of the study. The plate has a dimension of 1000×1000×10mm as shown
schematically in Fig.3.21b and c. The top view of the 2D basic cell is also illustrated
in Fig.3.21a. The metamaterial plate is fashioned by the regular repetition of the
basic cells in a periodic arrangement. Two wave barriers with different thicknesses
( five and three resonant cells along with the thickness) are designed to examine the
variation of barrier thickness on the dispersion of surface Rayleigh waves. We expect
to observe higher surface wave attenuation for the Rayleigh waves propagation
across the thick barrier of embedded mechanical resonators.

3.6 Conclusions

We have investigated the propagation of Rayleigh waves in bulk and layered
resonant metamaterials analytically and numerically. In more detail, a finite-depth
resonant layer coupled to an elastic half-space is analyzed to reveal the dispersion
of Rayleigh-like waves in such a composite medium. Then, we have shown how a
metamaterial plate can be properly designed to verify the numerical and analytical
findings of this research.
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Figure 3.21: (a) 2D Schematic design of the resonant unit cell and (b) metamaterial
plate. (c) 3D view of the designed metamaterial plate.

The resonant layer is characterized by randomly distributed resonators attached
to the host medium via elastic connectors. We assumed an equivalent homogenized
model of the resonant material exploiting a simple static homogenization approach
to obtain the effective mechanical properties of composite in the low-frequency
(i.e., long-wavelength) regime. By assuming such an effective description, we were
able to develop an original analytical dispersion law for vertically polarized surface
waves interacting with a resonant layer laid over a homogeneous half-space.

According to our model, the resonant layer supports the propagation of multiple
surface modes, which get hybridized by the localized resonances of the resonators
and generate a bandgap in the spectrum of Rayleigh waves.

We performed a parametric study to investigate the effect of the resonant layer
depth on the size of the spectral bandgap. We showed that an increase in the
resonant layer thickness leads to a larger BG, eventually broader than the one of
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a full resonant half-space. The resonant half-space presents a BG width, which
coincides with that of its bulk waves. The Rayleigh wave bandgap existence is
ascribable to the occurrence of negative values of effective mass densities, which in
turn cause an exponential decay of both bulk and Rayleigh waves.

Besides, for the layered scenario, we observed the existence of a leaky mode,
i.e., a surface mode with a phase velocity higher than the shear velocity of the host
material, in a narrow frequency region above the bulk BG. The frequency region
where this surface mode leaks its energy into the half-space contributes to extend
the BG of a layered resonant system. All these observations were confirmed via
FE numerical simulations both in terms of dispersion properties and transmission
coefficients.

Finally, a metamaterial plate with embedded local resonators is designed accord-
ing to the analytical framework of this research. We expect that the metamaterial
plate verifies the existence of the low-frequency surface wave bandgap analogous to
what we have seen in the analytical and numerical study of the partially resonant
waveguides. We aim to test the efficiency of the locally resonant barriers with
variable thickness by measuring the transmission of Rayleigh-like waves through
the designed metamaterial plate.

Overall, our work provides the analytical insight to extend current studies on
locally resonant metasurfaces by accounting for the effective depth of the resonant
layer. Such an analytical framework can be used to design low-frequency wave
barriers viable for surface waves control across different disciplines.
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Chapter 4

A medium-size scale resonant
wave barrier

Abstract

The emergence of seismic metamaterials has led to the development of several novel
isolation devices viable for seismic and ground-borne vibration control. Locally
resonant barriers, also known as metabarriers, are one of those devices made of
a cluster of near-surface mechanical resonators. The resonant frequency of these
meter-size resonators is tuned to fall within the frequency spectrum of seismic surface
waves. Resonant wave barriers can be placed around the vulnerable structures or
infrastructures to attenuate the Rayleigh-induced ground motions and mitigate
the risk of seismic hazards. Although the vibration attenuation capabilities of the
resonant wave barriers are validated through multiple numerical studies and a few
small-scale experiments, their full-scale experimental validation is still unexplored.
In this chapter, we validate the attenuation performance of a medium-size scale
locally resonant wave barrier operating at the frequency range between 50 to 100
Hz.

Real soil properties of the Euroseistest site (Mygdonia, Greece) are incorporated
to develop the numerical simulations aimed at designing the resonant wave barrier.
In specific, the dispersive properties of the bare soil, a configuration of “dead masses”
placed over the soil surface, and a locally resonant metasurface, are compared
numerically. The locally resonant wave barrier introduces a significant amplitude
reduction of the surface Rayleigh waves in a narrow frequency range around the
collective resonant frequency of the resonators. Frequency-varying barriers are
designed with increasing, decreasing, and random resonant frequencies to enlarge
the attenuation frequency band of Rayleigh waves. This variable-frequency design
approach is obtained by tuning either the mass or stiffness of the resonators.

79
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We expect that the medium-scale experimental tests, designed according to the
presented numerical framework, will confirm the attenuation of the ground motion
in the presence of the resonant wave barrier.

4.1 Introduction

Periodic foundations, locally resonant metafoundations, and locally resonant wave
barriers are rationally designed metastructures able to attenuate the propagation of
seismic surface waves. These novel isolation devices can represent a breakthrough
for the safeguarding and the preservation of historic and critical infrastructures
including hospitals, schools, and industrial plants [69, 70, 168, 71, 72, 88]. These
metastructures, commonly referred to as ”seismic metamaterials” in the litera-
ture [74], found their seismic isolation capabilities on the physical concepts well
established in the fields of resonant metamaterials and phononic crystals (PCs) [9].

As it is explained before in Chapter1.1.1.1, phononic crystals are periodic
materials that can present large stopbands, frequency spans where the propagation
of waves with wavelengths in the order of material periodicity is prohibited. For
seismic-scale applications, meter-size phononic crystals made of cylindrical holes
in sedimentary soil have proved the possibility of reflecting seismic waves and
attenuating the ground accelerations at a frequency range around 50 Hz [74]. More
recently, a similar rationale has been used to design seismic metalenses with large
gradient-index able to bypass the target structure [90]. Although revolutionary in
their conceptualization, engineering application of the phononic-based isolation
devices at the long-wavelength (i.e., low-frequencies) nature of seismic events (< 30
Hz) requires giant structures since the wavelengths of typical seismic waves can be
several meters. Besides phononic crystals, resonant metamaterials exploit an array
of locally resonant inclusions embedded in a host material capable to interact with
propagating waves at a sub-wavelength scale (see Chapter 1.1.1.2). Henceforth, for
seismic waves characterized by long-wavelengths, resonant metamaterials allow for
the design of viable isolation devices with practical dimensions from the engineering
perspective. To this end, sub-wavelength structures, in the form of resonant
foundations [86, 87, 82] or resonant metasurfaces [72, 88, 169, 170] have been
proposed in recent years to protect buildings and infrastructures from the incoming
seismic longitudinal waves or to shield them from surface Rayleigh [88, 103, 171]
and Love waves[90, 92], respectively.

Although the physics behind the resonant wave barriers has been predicted
analytically and verified numerically at different frequency ranges [132, 88, 172], the
experimental proof of the bandgap mechanism and attenuation capabilities of the
resonant metabarriers are up to now restricted to a few small-scale experimental
tests [88, 102, 105, 131]. Nonetheless, preliminary numerical simulations at the
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geophysical scale encourages the realization of an experimental proof of the resonant
metasurface concept in the real-scale scenario.

In this chapter, we aim at making another step towards the realization of
one-to-one scale resonant metabarriers for Rayleigh waves by testing the efficiency
of a resonant wave barrier at a medium-size scale, within a [50− 100] Hz frequency
range, taking into account the inevitable variability in stiffness and strength of
the soil and the components of the resonators. To this end, the design of an
experimental campaign under development at the Euroseistest TA facility [173]
is presented. The barrier is designed according to the in-situ soil properties and
the available operative frequency range of the measuring equipment. An array of
geophones are used to measure the soil response for surface wave excitation in the
frequency range of 50− 100 Hz for three scenarios including (I) the bare soil, (II)
along with an array of dead mass over the soil, and (III) surface resonant wave
barrier. The test setup is expected to confirm an attenuation of the ground motion
in the presence of the resonant wave barrier considering the soil heterogeneity
nature.

The chapter is organized as follows. In Sec.4.2, the soil properties, metabarrier
components, and their different design configurations of the resonant barrier are
discussed. In Sec.4.3, the attenuation performance of the metabarrier is analyzed
through numerical dispersion analysis and finite element simulations. Besides,
graded resonant metabarriers with increasing, decreasing, and random resonant
frequencies are designed in Sec. Sec.4.4 to enlarge the attenuation frequency band
of the proposed seismic barrier. Sec.4.5 presents the results of the preliminary
experimental campaign where the case of the dead mass and bare soil condition
are compared. Finally, some conclusions are drawn in Sec.4.5.

4.2 A medium-scale resonant wave barrier

4.2.1 Experimental field site description

Previous studies proved that soil properties can highly influence the amplitude decay
of seismic surface waves propagating across the upper layer of the earth [174]. This
is also valid for surface waves propagating across a small-scale resonant wave barrier
[102], suggesting first to analyze the main characteristics of soil stratigraphy to
properly design the metabarrier. We aimed at performing the test in the Euroseistest
site. Euroseistest is a geotechnical test site located in the center of a tectonically
active graben of Mygdonia, about 30 km to the NE of the city of Thessaloniki
in northern Greece [175]. Euroseistest site was the epicenter of the Thessaloniki
earthquake (1978) with a magnitude of 6.5 Mw. The soil stratification, mechanical,
and dynamic properties of the Euroseistest have been carefully analyzed through
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seismic - geophysical experiments, in-situ geotechnical surveys, and laboratory
testings [175, 176, 173, 177]. The well-documented depth-dependent longitudinal
and shear bulk wave speeds and density of the soil (ρ = 1500 kg/m3) allows for a
viable design of the metabarrier (see Fig. 4.1).
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Figure 4.1: (a) Longitudinal and (b) shear waves speed profiles of the Euroseistest
site. Reproduced with permission [177], Reproduced with permission, Copyright
2018, Elsevier Ltd.

4.2.2 Description of the locally resonant wave barrier

We design a locally resonant wave barrier, also referred to as metabarrier, made
of an array of 5 by 10 surface resonators fashioned in a regular grid with equal
spacing of 0.7 m (see the sky view in Fig. 4.2a). The dimensions of the resonators
are rationally set to be small enough to guarantee that resonators and surface
Rayleigh waves interact at a sub-wavelength scale. Similar configurations have been
numerically studied to assess the attenuation of seismic surface waves exploiting
the horizontal [71] and vertical [88] vibration modes of the resonators. In this
chapter, we focus our attention on the interaction of the vertical component of
Rayleigh waves with the vertical resonance fr of the oscillators which governs the
fundamental dynamics of resonant wave barriers.

In this chapter, we propose an easy-to-implement and economic design strategy
for the resonators by incorporating commonly used construction materials such
as steel springs and cylindrical PVC barrels filled with dry sand, as shown in Fig.
4.2b. The preliminary design of the resonator consists of a PVC barrel (with a 60
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liter of volume, diameter 40 cm, and height of approximately 50 cm), two steel
plates (40× 40× 1 cm) suspended by four to eight vertical steel springs. The base
plate is anchored to the soil surface via four steel bolts. The barrels are filled with
dry sand to reach an overall mass of 100 kg. Besides, a twin design configuration
is proposed to study the effect of an array of “dead masses”, PVC barrels simply
placed directly over the soil, as shown in Fig. 4.2c.

The resonant frequency of the mechanical oscillators is set to provide a surface
wave attenuation in the frequency range interval of [45− 50] Hz, well above the
operating frequency range of seismic waves (< 10 Hz). We note that by modifying
the volume of the pouring sand in the barrels (or the number of steel springs and),
we are able to modify the overall mass (or stiffness) of the resonators, to achieve
a modular design of the locally resonant metabarrier during experiments. As an
example, for total inertia of 100 kg and a tuned resonant frequency fr = 50 Hz, the
overall springs stiffness is Ktot = 100 · (2πfr)2 = 9869.6 kN/m. Also, the proposed
design approach allows the realization of the multiple-frequency wave barrier, an
array of the graded resonators with increasing, decreasing, or random resonant
frequencies, to enlarge the attenuation frequency band of the locally resonant wave
barrier.
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Figure 4.2: (a) An array of 5 by 10 resonators forming the metabarrier design (top
view). (b) Schematics of a single resonator. (c) Schematics of a dead mass placed
over the soil layer without the presence of steel plates and springs. Reproduced
with permission [162], Copyright 2020, Taylor and Francis.
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4.3 Finite element analysis of the resonant bar-

rier

We develop numerical models exploiting Finite Element Analysis (FEA) to mimic
and envisage the seismic isolation capability of the proposed locally resonant wave
barrier. To this end, we first calculate the dispersion of surface Rayleigh waves
propagating through the array of the wave barrier following WFEM approach,
similar to what we have done in previous chapters for the IAR metasurface and
resonant layer, respectively. Next, we incorporate the developed unit cell as
the building block of the fully developed FE models to asses the Rayleigh wave
attenuation performance of the proposed resonant wave barrier.

4.3.1 Numerical dispersion analysis of the barrier

In this section, we develop 2D unit cell models in Comsol Multiphysics [161] to
evaluate the dynamics of Rayleigh waves traveling through the array of the locally
resonant wave barrier. In specific, we numerically investigate the fundamental
dynamic features of three cases: (I) a section of bare soil referred to as reference
soil model (RSM), (II) a soil section containing dead mass on its surface layer
(DM), and (III) a portion of soil with the resonant metabarrier (MB) attached to
its surface.

For the RSM case, we consider a soil column with a height of h = 70 m, and
the length of w = 0.7 m, as shown in Fig. 4.3a. The depth-dependent bulk waves
velocity profiles of the soil presented in Fig. 4.1 are assigned to the model. The
unit cell domain is discretized by quadratic quadrilateral elements with a maximum
dimension of dmax = 0.7 m. Periodic Bloch condition is applied to the lateral edges
of the FE model to obtain the surface modes of the bare soil column.

The frequency-dependent properties of the stratified bare soil (RSM) model
in the frequency span of 10− 70 Hz are shown in Fig. 4.3b, altogether with the
extracted phase velocities reported in Fig. 4.3c. In opposition to the case of bare
homogeneous soil where only a single surface mode can propagate [96], a plethora
of surface modes can be found due to the heterogeneous nature of the soil profile in
real conditions. Here, we just report the four lowest-order surface modes (e.g., M1
to M4). An approximated analytical prediction of the lowest-order surface mode in
the considered heterogeneous RSM model is obtained via classical Rayleigh wave
dispersion relation of a homogeneous semi-infinite media [96]:(
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where, k is the wavenumber, ω is the angular frequency, cL, and cT are the
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Figure 4.3: (a) Reference soil model (RSM) unit cell. Dispersion curves in terms of
(b) frequency vs. wavenumber, and (c) phase velocity vs. frequency. Analytical
prediction of the fundamental mode according to Eq. (1) (red line) is over-imposed
to the dispersion curves. Reproduced with permission [162], Copyright 2020, Taylor
and Francis.

longitudinal and shear wave velocities of the upper layer of the heterogeneous soil
with 5m of depth extracted from Fig.4.1a and b, respectively.

The dead mass (DM) configuration is modeled by introducing the dead mass
to the previously developed RSM model, as shown in Fig.4.4a. The surface wave
dispersion relations of the dead mass on the soil surface are displayed in Fig.4.4b.
By comparing Fig.4.4c to Fig.4.3c, one can conclude that the introduction of the
dead mass slightly modifies the velocity of all surface modes in the high-frequency
range (e.g., > 60 Hz).

Similar to the RSM case, the fundamental dispersive features of the lowest-order
Rayleigh mode of DM configuration can be approximated analytically via Eq.
(4.2), where the classical Rayleigh wave dispersion relation for a homogeneous
semi-infinite media is modified by considering the effect of the dead masses via
their exerting inertia forces at the free surface of the homogeneous waveguide [160]
as:
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In Eq. (4.2) ρ is the approximated density of the soil, S = w× t is the influence
area of the dead mass, M is the mass of the DM, cL, and cT are the longitudinal
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Figure 4.4: (a) Dead Mass (DM) unit cell. Dispersion curves in terms of (b)
frequency vs. wavenumber, and (c) phase velocity vs. frequency. The over-imposed
red curve in panel (b) has been obtained using Eq. (4.2). Reproduced with
permission [162], Copyright 2020, Taylor and Francis.

and transverse wave speed of the fundamental surface mode of the bare soil at
f = 44 Hz (extracted from Fig.4.3c), respectively. The analytical dispersion curve
of Eq. (4.2) is over-imposed to the numerical FE solutions and marked as a solid
red line in Fig. 4.4b. As expected, the analytical prediction of the homogeneous
soil captures just the fundamental surface mode (e.g., M1) of the heterogeneous
soil, emphasizing the importance of using FE models to accurately describe the
dynamics of DM over the stratified soil condition.

We now focus our attention on the modeling of the resonant wave barrier based
on the FE model of the dead mass. Thus, we develop the resonant barrier unit cell
model by adding two steel springs, each having vertical stiffness of Ks = Ktot/2,
between the soil and the mass of the DM model (see Fig. 4.5a). The frequency vs.
wavenumber relation of Rayleigh-type surface waves interacting with the surface
resonatoris extracted from eigenfrequency analysis and plotted in Fig. 4.5b. The
mechanical oscillator induces a flat dispersive branch around 44 Hz (see M1 mode in
Fig. 4.5b), corresponding to the vertical motion of the resonator. The lowest-order
surface mode asymptotically approaches the nominal resonant frequency of the
resonators.

We note that the upper layer of the soil behaves as a very soft spring, reducing
the nominal resonant frequency of the resonators attached to the soil surface, namely
at 50 Hz. We compare the numerical predictions obtained via FE simulation with an
analytical estimation of the Rayleigh fundamental mode interacting with the barrier
via Eq. (4.3) [88] similar to what is observed for the RSM and DM cases. The
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theoretical prediction is specialized to consider the interaction between the resonant
barrier and surface Rayleigh waves propagating in an idealized homogeneous and
isotropic soil with longitudinal and transverse wave speeds obtained from the phase
velocity of the fundamental surface mode of the bare stratified soil (see Fig.4.3c) at
f = 44 Hz:
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In Eq. (4.3), ωr = 2πfr is the natural frequency, and S = 0.7m2 is the diameter of
the PVC barrels which marks the influence area of resonators.

The solution of the analytical dispersion relation obtained from the Bisection
root-finding scheme is over-imposed to the FE numerical solutions as a continuous
red line in Fig. 4.5b. For an idealized homogeneous soil media, the analytical
expression predicts the existence of a surface wave bandgap (gray box in Fig.
4.5b), identified by a flat dispersive branch (bottom edge) and the intersection
between the fundamental surface mode with the bulk shear wave speed (upper
edge) [88, 97]. Inside the frequency bandgap, Rayleigh waves cannot propagate,
and they will propagate to the soil bulk in the form of shear waves [88, 98] as a
result of surface-to-shear conversion. This phenomenon is not observed here in
the case of layered soil medium, as it can be concluded from Fig. 4.5b, where the
indicated frequency bandgap of the homogeneous soil is crossed by the higher-order
surface modes [102]. Although, also for a stratified soil profile, the presence of the
resonators induces the generation of a flat branch around the natural frequency of
resonators fr = 44 Hz. Around this frequency, a remarkable wave attenuation is
expected due to the strong impedance mismatch at the interface between the bare
soil and soil equipped with the sub-wavelength resonators.

In addition, we also investigate another metabarrier configuration where the
resonant barrier is installed over the soil inside a trench. The trench has dimensions
of 0.5× 0.5 m, as it is shown in Fig. 4.6a. Excluding the presence of the trench,
the soil column computational model is unchanged and the surface wave dispersion
extraction follows the same procedure as the pristine soil. An additional flat branch
in the low-frequency range of around 20Hz (Fig. 4.6b) is observed for the case of
embedded metabarrier in comparison to the surface resonator. The presence of this
mode is linked to the resonant behavior of the lateral cantilevered soil columns.
In practice, this mode is prevented by utilizing stiffer material or by employing
retaining walls. Within the remaining frequency range, no significant change in the
dispersion curve is found, as shown in Fig. 4.6c.
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Figure 4.5: (a) Resonant wave barrier (MB) unit cell. Dispersion curves in terms
of (b) frequency vs. wavenumber, and (c) phase velocity vs. frequency. The curves
reported as red lines in panel (b) have been obtained by Eq. (4.3). Reproduced
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Figure 4.6: (a) Buried Metabarrier inside a trench (MB) unit cell. Dispersion curves
in terms of (b) frequency vs. wavenumber, and (c) phase velocity vs. frequency.
The curves reported as red lines in panel (b) have been obtained by Eq. (4.3).

Complementary to the dispersive properties, we also investigate the vertical
mode profile of the soil column extracted from Bloch-FE dispersion relations at
the resonance (fr = 44 Hz) comparing the DM and MB cases with the bare soil
reference model. The vertical displacements of 701 points equally distributed along
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Figure 4.7: Normalized amplitude obtained from vertical nodal displacement for
the dead mass (panel a) and metabarrier (panel b) cases vs. the RSM (dashed
lines) at the resonant frequency of resonators (fr = 44 Hz). In the presence of
metabarrier, all the surface modes are characterized by a vanishing displacement
at the soil surface (continuous lines in the panel (b)).

the depth of the soil column with equal spacing of 0.1 m are extracted. The results
are normalized by the maximum vertical nodal displacement of the corresponding
mode and plotted versus the depth in Fig. 4.7 for M1, M2, M3, and M4 surface
modes, respectively. We observe that the addition of dead masses to the soil surface
does not substantially modify the soil displacement (see solid lines with asterisk
marker in panel a of Fig. 4.7). Conversely, the presence of the resonator significantly
changes the vertical displacement of the soil. In particular, the fundamental mode
gets confined to the surface due to the coupling with the resonators, while all the
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higher-order modes assume almost vanishing displacement amplitude at the surface
level z = 0 (see continuous lines in Fig. 4.7b). Hence, we expect that these modes
do not contribute to the surface wavefield for the frequencies around the natural
frequency of the resonator.

4.3.2 Time transient analysis

We develop 2D FE models to simulate the field experimental setup, and time history
analyses are performed under the plane-strain conditions to validate the numerical
predictions of the dispersion analyzes. Likewise the dispersion analysis, three
full-scale numerical models are compared: (I) the reference soil model (RSM), (II)
the case with an array of masses place over the soil without elastic connectors (DM),
and (III) the resonant wave barrier placed over the soil surface (MB). The numerical
2D domain with a dimension of 30 m × 70 m (see the model schematics in Fig.
4.8a) is developed to model the propagation of a surface Rayleigh wave traveling
through bare soil, an array of dead mass, and an array of resonant metabarrier.
Two bottom corners of the model are restrained in both x and z directions to
prevent any undesired rigid motion. Besides, Low Reflective Boundary Conditions
(LRBCs) are applied to the lateral and bottom boundaries of the model to minimize
the wave reflection effects from the boundaries. Soil density (ρ = 1500 kg/m3)
and depth-dependent bulk velocity profiles of Fig. 4.1 are assigned to the model.
The field domain is discretized by the same mesh type and size used in dispersion
analysis of Sec. 4.3.1 (quadratic quadrilateral elements with a maximum dimension
of dmax = 0.7 m).

Fig. 4.8b shows the schematics of the experimental setup, where the location of
the source, mechanical resonators, and measuring instrumentation are reported.
Eighteen geophones are incorporated for the data acquisition, half of them (geo-
phones A to I) measure the soil response along the barrier, namely output 1, and the
rest (geophones J to R) measure the soil response after the barrier, namely output
2. A Mexican hat wavelet with a central frequency of 50 Hz, able to illuminate
the whole frequency range of interest (0 − 100 Hz), generates surface Rayleigh
waves from the source location, with an offset of 5 m from the edge of the model.
The output wavefields are evaluated as the averaged vertical nodal displacement
extracted over an array of 9 points with an overall length of 6.3 m (i.e., equivalent
to the array of geophones in the design of experiments) distributed along (e.g.,
output 1) and after the barrier (e.g., output 2).

Frequency spectra of the averaged nodal displacements for RSM, DM, and
MB configurations are calculated to quantify the attenuation performance of the
resonant wave barrier in terms of amplitude and frequency range. The results
are presented for the array output 1 and 2 in Fig. 4.9a and b, respectively. The
introduction of dead masses (DM) to the soil surface does not yield a remarkable
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Figure 4.8: (a) Schematics of the full 2D FE model used in time history analyzes.
(b) The layout of on-field experimental test setup (instrumentation, source offsets,
and barrier arrangement). Reproduced with permission [162], Copyright 2020,
Taylor and Francis.

reduction in the surface wave spectrum. Comparison between the outputs extracted
within (output 1) and outside (output 2) the DM array evidence minor changes in
the spectrum ascribable to the dispersive effects in heterogeneous soils.

Conversely, the introduction of the resonators (MB) yields a considerable,
although narrow, amplitude reduction around the resonant frequency of resonators
fr = 44 Hz, confirming the significant impedance mismatch between the resonant
wave barrier and Rayleigh waves. In the case of frequency spectra obtained from
the output measured within the barrier area (output 1), the amplitude reduction is
accompanied by an amplitude peak (see Fig.4.9a) for frequencies approaching the
barrier resonance, as a result of the surface confinement of the fundamental surface
mode, displayed in Fig.4.7b. This peak disappears in the output recorded after the
barrier (Fig.4.9b).

We perform a Two-Dimensional Fast Fourier Transform (2D FFT) to derive
the Rayleigh wave dispersion (frequency vs. wavenumber) from time responses
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Figure 4.9: Frequency spectra of the vertical displacement fields generated by a
Ricker wavelet with a central frequency of 50Hz obtained from the measurement
(a) along the barrier (e.g., output 1), and (b) after the barrier (e.g., output2) for the
RSM, DM, and MB configurations. Reproduced with permission [162], Copyright
2020, Taylor and Francis.

calculated along with a line across the barrier (e.g., output 1). The 2D Fourier
spectrum for the DM case is displayed in Fig. 4.10a. The numerical dispersion
obtained from the eigenfrequency analysis of the unit cell (see Fig. 4.4b) is over-
imposed to the figure. Although the resolution in the wavenumber is limited due
to the finite length of the measurement array, we can observe that the spectral
amplitude of the surface displacement is located along the lowest-order mode
predicted by the numerical dispersion curve.

The 2D Fourier spectrum of the Rayleigh waves traveling through an array of the
resonant wave barrier (metabarrier) is shown in Fig. 4.10b. Similar to the previous
case, the surface modes calculated using the unit cell eigenfrequency analysis (Fig.
4.5b), are added to the figure. The results obtained from the numerical dispersion
and time history analysis are in good agreement. The flat dispersive branch around
the resonance frequency, as well as the frequency bandgap (gray box in Fig. 4.10b),
are well-predicted and the lack of surface wave amplitude in the frequency region
above the resonance confirms that higher-order modes do not contribute to the
surface wavefield around the resonance.

The vertical displacement fields of the RSM, and MB configurations, obtained
from the time transient analyzes at the time instant t = 0.3 s, are presented in Fig.
4.11a,b, respectively. The wavefield map confirms a surface displacement reduction
for the metabarrier case, ascribable to the dispersive nature of Rayleigh-type waves
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(a) Dead Mass (b) Metabarrier

Figure 4.10: Dispersion spectra obtained from 2D FFTs of the time-domain surface
displacements for the DM and MB cases (output 1). The dispersion curves predicted
by the WFEM models in the Sec.4.3.1 are over-imposed as continuous lines. The
gray box denotes the Rayleigh-induced bandgap. Reproduced with permission
[162], Copyright 2020, Taylor and Francis.

(a)

(b)

vz [m]

Figure 4.11: The vertical displacement field of (a) RSM, and (b) metabarrier (MB)
configurations. Gray box denotes the bandgap region. Reproduced with permission
[162], Copyright 2020, Taylor and Francis.

propagation through the array of near-surface resonators and to the modified
displacement profile, which gets confined below the surface.
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4.4 Frequency-variable resonant wave barrier

We take advantage of the modular design of the resonant wave barrier designed
in this chapter to propose frequency-variable barriers, e.g., locally resonant wave
barriers with graded resonant frequencies, for broadband attenuation purposes.
The approach follows the idea of the “rainbow trapping”, originally presented in
Ref. [100] to discuss the dynamics of Rayleigh waves interacting with an array of
elastic beams with increasing or decreasing frequencies.

The multiple-frequency resonant barrier is made by a regular arrangement of
equally-distributed resonators with increasing, decreasing, or random resonant
frequencies. The resonant frequencies of the resonators can be tailored by varying
either the mass (e.g., pouring different volumes of dry sand into the PVC barrels)
or the vertical stiffness (e.g., changing the number of steel springs) of the resonator.
In the first case, by linearly increasing the mass of the resonators from 55 to 100
kg and keeping the number of springs constant (Ktot = 9869.6 kN/m), we reduce
the natural frequency of resonators with a factor 1/

√
(d), where d is the resonator

location along with the array, as shown in Fig.4.12a. This approach yields a wave
barriers with decreasing mass for a constant stiffness, to obtain a barrier with
increasing frequency (Fig.4.12b). In both cases, the outputs are measured within
(output 1) and after the barrier (output 2) exploiting 9 geophones (see Fig.4.8a).

On one hand, we remind that the interaction of surface Rayleigh waves and a
graded wave barrier with decreasing frequency (the so-called classical metawedge
[100]) is able to open a wide bandgap for a homogeneous and isotropic soil half-
space, where the Rayleigh waves are confined and back-reflected by an array of the
mechanical oscillators. In this study where the soil modeled is more complicated
and soil stratification plays a significant role, the overall behavior of the graded
resonant wave is similar. The wave motion is confined and amplified along the wave
barrier, as evidenced by the wider amplitude peak shown in Fig.4.12c. After the
resonant wave barrier array (see Fig.4.12e), a significant attenuation is observed as
a result of the wave reflection effect.

On the other hand, for an increasing frequency wave barrier overlaying a homoge-
neous soil (i.e., the inverse metawedge [100]), the amplitude reduction is ascribable
to the surface-to-shear wave conversion, with no displacement confinement along
the barrier. In our heterogeneous soil scenario, although the surface-to-shear wave
conversion is partially prevented by the higher-order surface modes, the behavior
of the barrier is similar. The surface wave energy is attenuated inside the barrier
in a broader frequency range of approximately 40 − 70 Hz, and no significant
amplifications are observed (see Fig.4.12d). The amplitude in the attenuation
frequency zone increases gradually as the resonant frequency increases. After the
barrier (see Fig.4.12f), the attenuation performance remains similar, although a
sharper peak attenuation is observed around 55 Hz.
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Figure 4.12: Mass distribution and the resonant frequency of the graded resonant
barrier with increasing mass (a), and decreasing mass (b). Frequency spectra
calculated along the graded barrier (output 1) with increasing mass (c), and
decreasing mass (d) for a constant stiffness of the resonators. Frequency spectra
after the graded barrier (output 2) with increasing mass (e), and decreasing mass
(f) for a constant stiffness of the resonators (Ktot = 9869.6 kN/m). Reproduced
with permission [162], Copyright 2020, Taylor and Francis.
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Figure 4.13: Stiffness and the resonant frequency of the graded resonant barrier with
increasing stiffness (a), and decreasing stiffness (b). Frequency spectra calculated
along the graded barrier (output 1) with increasing vertical stiffness (c), and
decreasing vertical stiffness (d) for a constant mass of the resonators. Frequency
spectra are calculated after the graded barrier (output 2) with increasing vertical
stiffness (e) and decreasing vertical stiffness (f) for a constant mass of the resonators
(M = 100 kg). Reproduced with permission [162], Copyright 2020, Taylor and
Francis.
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Similar results can be achieved by designing graded resonant wave barriers with
constant mass (e.g., M = 100 kg) and varying stiffness of increasing or decreasing
resonant frequencies, as shown in Fig.4.13a and b, respectively. For instance, we can
design a resonant wave barrier with an increasing number of springs per resonator,
starting with a resonator with 4 springs and reaching up to 13 springs for the last
resonator of the barrier. The increasing frequency barrier (with increasing stiffness)
shows a dynamic behavior similar to the case with decreasing mass, as shown in
Fig. 4.13c and e, for attenuation measurements along and after barrier, respectively.
Conversely, by mirroring the distribution of the resonator along with the array, so
to obtain a barrier with decreasing frequency, a wider range of frequency where
surface waves are confined and amplified within (Fig. 4.13d) and after the barrier
(Fig. 4.13e) is obtained. The broader frequency range covered by the barrier allows
us to obtain a wider frequency range of attenuation.

Given the fact that during the experiments, some factors may lead to an
unexpected variation of the nominal resonant frequency of the resonators, we
propose the design of a random frequency varying barrier. The source of error
during the experiments can be the variation of resonator mass, production of steel
springs with different length and axial stiffness, variation in the dimensions of the
steel plates, rocking motion of the resonators during the excitation, horizontal and
vertical motion of the steel bolts inside the soil, etc.

We investigate the attenuation performance of random-frequency barriers, con-
sidering three cases whose masses are randomly distributed between 55 and 100
kg while their stiffness is kept constant, as shown in Fig.4.14a, b, and c. The
attenuation frequency range of the random barriers shifts to higher frequencies with
higher amplitude in comparison with the resonant frequency of the single-frequency
barrier reported in Fig. 4.9b.

4.5 Preliminary Experimental Test: Dead Mass

over the soil surface

The experimental tests were planned to be carried out in two different phases (P1)
and (P2). The first phase (P1) has been executed in the Euroseistest facility and
comprised two sets of tests:

1. T0: Ambient noise, vibration testing (pneumatic vibrators), and impact load
(Sledgehammer loading) on the soil in pristine conditions. This primary set of
tests aimed at defining a baseline of records with different vibrating sources,
various source offsets, defining the operational frequency range of the sources,
the amplitude of the records within the test field, and the dispersive features
of the records (see Fig. 4.15a).
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Figure 4.14: Mass and resonant frequency of three random resonant barriers (a),
(b), and (c), respectively. (d) Comparison between the frequency spectra (output
1) of the three random cases.

2. T1: Ambient noise, vibration testing, and impact load on the soil equipped
with an array of 5 × 10 (3.5 m × 7 m) masses placed directly over the soil
surface, e.g., dead mass (DM) configuration, in compliance with the numerical
models (see Fig. 4.15b).

The second phase of the experiments is delayed due to the spread of the
SARS-CoV-2 pandemic; therefore, we just report the results of the P1 in what
follows.

4.5.1 Instrumentation setup

The soil organic horizon of the test site was removed, and the soil surface was
compacted to prepare the pristine condition suitable for the experiments. The



4.5. PRELIMINARY EXPERIMENTAL TEST RESULTS 99

measuring instruments were placed over the soil surface according to the designed
test setup earlier reported in Fig. 4.2a. The test field equipped with the sensor
placement shown in Fig. 4.15a is set to execute the line measurement from
geophones A to N for the T0 setting (see the schematics of Fig. 4.8b). A sequence of
multiple tests was run to measure the ambient noise and soil response for different
source types in different positions. Fifty PVC barrels with a volume of 60 liters,
filled with dry sand with an approximate weight of 981 N were used to realize the
dead mass (see Fig. 4.15b) analogous to the numerical dispersion discussed in Fig.
4.4b. The array of dead masses over soil was arranged following the dimensions
and specifications of the designed configuration shown in Fig. 4.2b.(a) (b)

Figure 4.15: (a) On-field line measurement setup across DM length on soil pristine
(T0 setting) (b) Dead mass configuration (barrel with 100 kg of mass) atop of soil
pristine (T1 setting).

4.5.2 Source characterization

Three types of loading sources (Linear Pneumatic Vibrator NTP-25, Rotary Pneu-
matic Vibrator VT-24, and Hammer impact) were used to generate surface waves.
We fairly analyzed the characteristics of each source first, considering the limitations
of the sensor nodes discussed above, and then compared the recorded results for
the dead mass case (T1) to the soil (T0). To this end, we perform Fast Fourier
Transform (FFT) of the signals recorded from the specific geophone of choice, at
this stage we select accelerometer at location H (see Fig.4.2a) inside the DM array,
to describe the frequency spectra of the source. The sampling frequency is set to
200 Hz, and a high-pass filter is used to allow the high-frequency signals to pass
from the source to the sensor.

The frequency content of both linear and rotary pneumatic vibrators (with
different input pressures) falls within two separated frequency windows; hence,
the application of pneumatic vibrators are not adequate for the assessment of the
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resonant wave barrier dynamics, which is expected within the frequency range from
40 to 70 Hz. Therefore, we just report the outcomes of the hammer impact loading
excited the test field from source location 2, as shown in Fig.4.16a.
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Figure 4.16: Sledgehammer impact. (a) The source excites the far-field from
position 2, and sensor H (accelerometer) measures the response. (b) Signal time
trace and mean of the FFTs of the recorded signal for the free field and (c) dead
mass conditions.

The sledgehammer was used to generate the surface waves when the operator
hit a steel disk. In general, between 10 to 15 strikes were recorded for T0 and T1 in
different test configurations. We characterize the frequency spectra of the hammer
input by chopping the received signal for each impact into time intervals of 0.5
sec. We then perform the FFTs of the corresponding time traces of each strike and
eventually calculate the mean spectrum, as depicted in Fig. 4.16b and c for soil and
dead mass, respectively. The frequency content of the hammer impact obtained
from a series of strikes spreads in the whole frequency range of interest from 0 to
100 Hz, which makes it suitable to investigate the signal attenuation introduced by
the resonators in metabarrier (MB) configuration. We remark that the location
(inside or outside of DM zone) and type (seismometer or accelerometer) of the
geophone are highly influencing the recorded response of the DM configuration.
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4.5.3 Experimental Results

We compare the response of the soil in the presence and absence of the dead
masses, both numerically and experimentally. We plot the mean FFTs of soil
and dead mass reported in Fig.4.16b and c together in Fig. 4.17a. Amplitude
reduction of the surface waves observed in the low-frequency regime is negligible.
While, in the high-frequency range, the amplitude reduction becomes more signifi-
cant, where the wavelength becomes comparable to the influence area of the masses.
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Figure 4.17: Comparison between soil (RSM) and dead mass (DM) from (a)
experimental tests, and (b) numerical simulations.

We adopt the numerical model used in Fig.4.9a and move the location of the
input source to location 2 (6 m apart from the dead mass area) to correctly replicate
the test setup scenario. The hammer impulse recorded by geophone H from the
free field condition is used as the benchmark input source (see Fig.4.16b). A total
number of 12 sub-signals extracted for each strike are applied to the model. The
output field is measured separately for each strike according to what we have done
in Sec.4.3.2 for the Ricker excitation. The mean of the 12 output frequency spectra
is then calculated and displayed for the DM and RSM, as shown in Fig.4.17b.
The amplitude reduction in the frequency spectra of the DM resulted from the
numerical simulation, which confirms the experimental findings.



102 CHAPTER 4. A MEDIUM-SIZE SCALE RESONANT WAVE BARRIER

4.6 Conclusions

The resonant wave barrier consists of an array of locally resonant oscillators
which can be installed close to the soil surface around the target structure or
infrastructure to be protected from incident surface Rayleigh waves. Since their
installation does not require any intervention on the existing structure, the resonant
wave barrier can be represented as an innovative approach for seismic retrofitting
of vulnerable structures and infrastructures of prior importance for public safety
(e.g., schools, hospitals, power plants, etc.). In this chapter, the seismic wave
attenuation capability of a medium-scale resonant wave barrier placed on top of
the heterogeneous soil is evaluated numerically, to provide the required guidelines
of an experimental campaign aimed at assessing the isolation performance of the
seismic barrier in the real geophysical scenario.

The numerical investigations of this chapter showed that while a deep trench
inside the soil provides seismic attenuation due to scattering at frequencies related
to the depth of the trench, the resonant wave barrier exploits the local resonance
mechanism to attenuate the seismic motion at frequency ranges related to the nat-
ural frequency of resonators. We have shown that a resonant barrier of periodically
distributed resonators placed directly over the soil surface provides attenuation
performance identical to that of the barrier inside the trench while it can simplify
the test realization and minimize its costs.

Some numerical simulations were performed on a finite-length resonant barrier
according to the WFEM approach, to measure the attenuation of Rayleigh-type
surface waves traveling within and after the resonant barrier. Besides the resonant
barrier, an array of dead masses directly placed over the soil surface is evaluated
as a case study, and the numerical results of these two cases were compared to the
reference soil model (RSM). Besides, the graded resonant barriers with increasing,
decreasing, and random resonant frequencies along with the array of resonators are
designed for large-bandwidth attenuation of Rayleigh waves.

Complimentary to the numerical simulations, a preliminary experimental cam-
paign (P1) is designed to test the resonant wave barrier in the Euroseistest site
(Mygdonia, Greece). In particular, dead mass (DM) configuration (metabarrier
without elastic connectors) is compared to the soil in pristine condition. The
experimental outcomes showed a marked amplitude reduction of the soil response
in the presence of dead masses analogous to what we have observed in the numerical
predictions. Further experimental tests (P2) can be designed to examine the isola-
tion performance of resonant wave barrier by adding steel bolts, plates, and springs
to the dead mass according to the design strategy of the resonant barrier, allowing
the oscillation of the tuned-resonator. In this scenario, The MASW technique can
be incorporated to measure the soil response. The numerical and experimental
outcomes of this research can provide a better understanding of the dynamics of
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locally resonant devices for surface wave manipulation and allow the design and
fabrication of full-scale resonant barriers in the future.
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Chapter 5

Conclusions, ongoing research
activities, and future outlook

The presented dissertation addresses the design and analysis of locally resonant
metamaterials developed for the manipulation of surface Rayleigh waves across
different frequency ranges. Specific considerations are devoted to the development
of resonant wave barriers capable to hinder the propagation of seismic surface
waves with the application of safeguarding vulnerable structures/infrastructures.
To this purpose, a detailed literature review of periodic and resonant elastic
metamaterials is provided in Chapter. 1. Chapter. 2 conceptualizes the design
of an enhanced locally resonant metasurface to overcome the limits of classical
mass-spring metasurfaces. Chapter. 3 proposes a rigorous analytical approach to
study the dispersive properties of a thick resonant layer of resonant metamaterials,
and design a deep seismic resonant barrier buried inside the soil surface. Finally,
Chapter 4 presents the numerical design of a medium-size scale resonant wave
barrier for the attenuation of seismic surface waves. Although detailed conclusions
are provided at the end of each chapter, here we summarize the main findings of
the dissertation and describe the current research activities followed by an overview
of the possible future research outlooks.

5.1 Conclusions of Chapter II

Chapter. 2 proposed an advanced class of locally resonant metasurfaces, namely
Inertial Amplified Resonator (IAR) metasurface. IAR metasurface is rationally
designed to enhance the overall dynamic properties of the elastic metasurfaces to
control the propagation of surface waves. The main conclusions of the chapter are
listed as follows:

1. The natural frequency of the IAR metasurface can be controlled via two
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design parameters, e.g., the internal angle of the rhomboid geometry and the
mass distribution ratio between the mass-stiffness system and additionally
embedded inerters.

2. The dynamic interaction between the IAR metasurfaces arranged over an
elastic half-space and Rayleigh-type surface waves was described through
a closed-form dispersion law (i.e., frequency vs. wavenumber relation) ex-
ploiting the effective medium approach. The dispersion relation revealed
three interesting key frequency regions, e.g., resonance, anti-resonance, and
zero-stress frequency, which can be controlled via design parameters. The
coupling between the metasurface and propagating surface waves has led to
the generation of a low-frequency bandgap. By distributing the total inertia
among mass-spring and embedded inertial systems, IAR metasurface has been
capable to open wider bandgaps in comparison with the classical metasurfaces.
Numerical simulations were performed to confirm the dispersive features of
the advanced metasurfaces predicted by analytical dispersion laws.

3. Surface wave propagation is prohibited inside the bandgap region. Nev-
ertheless, the advanced metasurface becomes transparent to the Rayleigh
waves at zero-stress frequency. The strong impedance mismatch between the
metasurface and Rayleigh waves was observed in the high-frequency regime,
where the advanced metasurface presented a similar behavior analogous to
dead masses placed over the free surface of an elastic half-space.

4. Graded resonant metasurfaces were designed to enlarge the resonance-induced
stopband by modifying one of the design parameters (e.g., by keeping the
inertia constant and varying the internal angle of the resonators).

5. A seismic wave barrier was proposed based on the tunable and dispersive
characteristics of the IAR metasurface. The resonant wave barrier showed
the capability of steering the seismic wave trajectory into the soil medium as
shear bulk waves and filtering them within the bandgap frequency range.

5.2 Conclusions of Chapter III

Chapter. 3 is dedicated to the study of the surface waves propagation through
partially resonant waveguides constituted of a resonant layer over an elastic half-
space. The resonant layer is realized by resonant metamaterials with dimensions
much smaller than the wavelength of incident surface waves. In brief, the findings
of the chapter are listed as follows:
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1. The dynamics of the resonant metamaterial have been described via a mixed
static-dynamic homogenization. The mass density of the locally resonant
metamaterials is derived by the dynamic homogenization technique in the
long-wavelength regime, followed by a static homogenization used for the
derivation of elastic moduli. Consequently, effective bulk waves speed of
the homogenized medium were explicitly obtained. The out-of-phase motion
of the resonators with respect to the host material yields a low-frequency
bandgap in the dispersion of bulk waves.

2. The dispersion of Rayleigh waves propagating in a homogenized thick resonant
layer attached to the surface of an elastic semi-infinite medium is studied
analytically.

3. The existence of a bandgap in the frequency spectrum of the Rayleigh
waves and the relation between its frequency width and the thickness of the
resonant metamaterial layer were discussed analytically. Indeed, increasing
the thickness of the resonant layers extends the bandgap frequencies range.
Numerical Finite Element models were developed to confirm the analytical
predictions made by analytical dispersion laws.

4. The layered resonant half-space system supports the propagation of multiple
surface modes, which are hybridized around the low-frequency bandgap. In
addition, the generation of leaky surface waves was observed which contribute
to the extension of the bandgap width.

5. The developed analytical framework successfully captured the fundamental
dynamic properties of an ultra-thin resonant layer analogous to the locally
resonant metasurface. Besides, a limit scenario of the full resonant half-space
has been also investigated, where the surface BG is confluent to that of the
bulk waves.

6. A seismic wave barrier of deep resonators buried in the soil layer was selected as
a case study. Numerical simulations confirmed the surface waves attenuation
of a deep finite-length seismic barrier. The proposed resonant wave barrier
can be installed as subsurface resonant structures around the infrastructure
we aim to shield.

5.3 Conclusions of Chapter IV

Chapter. 4 presented the numerical strategy to design a medium-size scale resonant
wave barrier for the control of seismic surface waves. The prototype barrier was
constructed with commonly used construction materials including steel, rubber,
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and sand to simplify the cost of realization. In what follows, the main outcomes of
the chapter are highlighted.

1. A simple and cost-effective medium-scale resonant wave barrier with the
operating frequency ranging from 50 to 100 Hz was numerically designed
via the Wave Finite Element approach considering the real soil properties.
In more detail, numerical dispersion curves were obtained using Comsol
Multiphysics [161] to design a barrier with optimal geometry to operate at
the target frequency range. The resonant barrier consists of mechanical
mass-spring oscillators, e.g., a base plate anchored to the soil, four to eight
steel springs suspended between the base and overhead plate, and a plastic
barrel filled with sand placed over the steel plate.

2. The proposed passive seismic isolation system was tailored to interact with the
vertical motion of the Rayleigh waves at specific frequencies. Once activated,
the coupling between the resonant barrier and propagating incident waves
remarkably influences the frequency spectra and amplitude decay of the
seismic surface waves. This observation was confirmed via time history FE
analysis.

3. Graded resonant barriers with increasing and decreasing resonant frequencies
were designed to extend the attenuation frequency bandwidth. To account for
the frequency variation of the resonators along the array of the metasurface in
the real scenario, the seismic isolation performance of a barrier with random
resonant frequencies was also studied.

4. A preliminary experimental campaign was conducted to investigate the soil
bulk waves speeds, and to characterize the source and measuring equipment.
In this set of tests, two scenarios were investigated and compared; (i) the soil
in pristine condition and (ii) an array of dead masses (plastic barrels filled
with sand) directly placed over the soil surface. The test result confirmed
the amplitude reduction of the soil response in the presence of the dead
masses. The outcomes of the experiments will serve as a benchmark for the
experimental investigation of the designed resonant wave barrier planned to
be run in the Euroseistest site.

5.4 Ongoing research

This section provides a brief description of two ongoing experimental research
projects, which had been delayed due to the spread of the COVID-19 pandemic.
One project addresses the experimental testing of a resonant metamaterial plate
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fabricated according to the design principles discussed in Sec.3.6 of Chapter. 3.
The other project is dedicated to the final experimental phase of the medium-scale
seismic barrier testing. The preliminary experimental test results of the project
were reported in Sec. 4.5 of Chapter. 4.

5.4.1 Experimental investigation of surface waves in a res-
onant metamaterial plate

As discussed in Chapter.3, a metamaterial plate (designed according to the
schematic in Fig.3.21) is fabricated to unveil the dispersive nature of surface
waves in bulk resonant metamaterials. To confirm the previously discussed analyti-
cal and numerical findings, a set of experiments is designed on the metamaterial
plate and a reference pristine plate. Both plates are made of PVC material, whereas
their mechanical properties are reported in Table.3.1. The metamaterial plate is
perforated in accordance with the repetition pattern of the designed phononic cell
using a CNC machine, as shown in Fig. 5.1a. In total, 250 basic cells (see Fig.
5.1c) are designed to realize two different wave barrier configurations with different
thicknesses along the sides of the plate. Three steel bars with the dimension of
10× 10× 1000mm are cut into 300 steel cubes with dimensions of 10× 10× 10mm.
Next, steel cubes are press-fitted inside the holes of each unit cell (see Fig. 5.1b)
to form the metamaterial plate, as shown in Fig. 5.1d.

Before starting with the perforated plate, a pristine PVC plate was tested. The
plate was placed horizontally over an anti-vibration table as shown in Fig.5.2a. A
piezoelectric disk was glued at the edge of the plate (see 5.2b) to generate surface
waves at the frequency range of interest (e.g., 5000 Hz), where we expect to observe
the surface bandgap for the case of resonant metamaterial plate. The Optomet
Scanning Laser Doppler Vibrometer (SLVD) was exploited to generate a wave
signal and measure the response over the edge of the plate in terms of displacement.
An emitter was connected to an amplifier, and the SLVD was connected to a
computer, monitor, and amplifier. Fig. 5.2d depicts the dispersion of the surface
waves propagation within the pristine plate obtained by performing the Fast Fourier
Transform (FFT) of the measured displacement amplitudes in time and space.
Analytical dispersion of longitudinal, shear, and Rayleigh waves are over-imposed
to the figure in blue, red, and green lines, respectively. In addition, a FE model
was developed similar to the one used in Chapter.3 to extract eigenfrequencies of
the PVC plate. Fig. 5.2c shows the fundamental surface mode. The analytical,
numerical, and experimental results are in good agreement. These experimental
findings can be used as a base for the experimental dispersion analysis of the surface
waves of the perforated metamaterial plate.
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Figure 5.1: (a) A CNC machine is used to perforate the PVC plate. (b) Steel
masses are press-fitted inside each basic cells of the plate. (c) The phononic unit
cell is realized with four elastic connectors holding a resonating rigid mass. (d)
Resonant metamaterial plate made by the regular repetition of the phononic cell.
Metamaterial plate includes two barriers with different thicknesses (three and five
rows of the resonant cells on the top and bottom edges of the plate, respectively).

5.4.2 Experimental assessment of an innovative proof-of-
concept medium-size scale resonant wave barrier

As stated in Chapter.4, the proposed preliminary design of the resonant wave
barrier is planned to be experimentally assessed on the field. Considering the
results obtained from the first set of experiments (see Sec.4.5 of Chapter.4), several
factors can be identified as a possible source of discrepancies between numerical
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(c)

(a) (b)

(d)

Figure 5.2: (a) Experimental test setup. (b) Pristine PVC plate excited with
a piezoelectric buzzer to generate surface waves. (c) The fundamental surface
mode of the plate (e.g., f=5 kHz and k=56 rad/m) is obtained from FE analysis.
(d) Surface wave dispersion obtained from FFT response in time and space for
excitation at 5 kHz.

and experimental outcomes. Among those factors that can remarkably impact
the accuracy of the tests, we can refer to the complex dynamic nature of the soil,
instrument errors, excitation source variability, etc. Putting these variables into
consideration, it is highly important to first test the dynamic response of a single
resonator (see Fig. 5.2b) to achieve full control over the functionality of the barrier
during experiments. To do so, the dynamic response of a single resonator, which is
purposely designed to operate at 50Hz, was investigated under vertical loading in a
collaboration with the laboratory of Soil Mechanics, Foundation, and Geotechnical
Earthquake Engineering of the Aristotle University of Thessaloniki.

The prototype resonator comprised of two steel plates and eight steel springs
were placed on the surface of the floor. Two uniaxial accelerometers were installed
to measure the vertical response of the resonator; one was placed at the center
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of the top plate and the second at one corner of the top plate, as shown in Fig.
5.2a. Additionally, a triaxial accelerometer was installed at the same corner with
the uniaxial accelerometer to validate the vertical measurement and to record the
possible translational motion of the resonator. Next, a static mass of 100 kg was
placed over the plates, as shown in Fig. 5.2b. An elastic hammer was then used as
the input source.

(c)

(a) (b)

Figure 5.3: (a) Instrumented resonators without the presence of the static mass. (b)
The realization of the prototype resonator as the building block of the medium-scale
resonant wave barrier. (c) Instrumented resonators with 100 kg of the mass.

The dynamic testing of the resonator has resulted in a nominal resonant fre-
quency of 25Hz for the resonators, approximately one-half of the designed value.
In-depth investigations proved that this discrepancy is due to the imperfect con-
nection between springs and plates. In more detail, only 3 out of 8 springs were
in full contact with two plates. This happens due to the fact that some of the
steel springs have small discrepancies of 0.5 mm to 1 mm in their lengths. Should
all the springs are manufactured with very small variations, the vertical resonant
frequency of the resonator will match with the analytical and numerical results.
The outcomes of the free vibration testing of a single resonator proved to be decisive
to predict the dynamic behavior of the resonant seismic waves barrier on the field.
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The minimization of spring defects to achieve the desired frequency response for
each resonator.

5.5 Future outlook

The analytical frameworks of this dissertation are developed under simplified
assumptions. One of those assumptions is to neglect the damping effect of the
locally resonant metasurfaces. Previous studies showed that energy dissipation does
not have a significant impact on the fundamental dynamic behavior of resonant
metamaterials [9, 94, 178]. One of the possible future research directions is to
include the damping effect in the physical models of the locally resonant devices
(e.g., IAR metasurface or the concept of the resonant layer), however, it is not going
to substantially modify the overall dynamic response of the elastic metasurface.

The preliminary design of the medium-scale resonant wave barrier exploits
common construction materials like steel, concrete, sand, and elastomer bearings.
The availability, durability, carbon emission, and more importantly the cost of
the materials should also be considered in the design procedure. A systematic
cost–benefit analysis is necessary to design economically viable locally resonant
devices.

Complimentary to the vertically polarized surface waves (Rayleigh waves),
future research could aim at the designing of the resonant wave barriers able to
filter the propagation of horizontally polarized surface waves, namely Love waves.
Since Love waves contribute to the wavefield of earthquakes propagating in the
complex stratified soil, special attention should be devoted to the control of this
type of mechanical surface wave. While the locally resonant metasurfaces were not
able to open bandgaps in the frequency spectrum of horizontally polarized waves
[104, 105], the presented analytical approach of the resonant layers comprised of
bulk resonant metamaterials can tackle this problem.

More sophisticated analytical models of the resonant metamaterials for seismic
surface waves manipulation purposes can be developed to include seismic site
effect, wave focusing, the nonlinear behavior of soil, complex soil topography effect,
and basin effect. It would be interesting to investigate soil models considering a
representative elementary volume consist of air-water-soil composition. Additionally,
the effects of nonlinearity should be foreseen also in the design of the resonant
metamaterials components.

Complementary to the passive locally resonant devices, active resonant meta-
materials can be designed for the filtering, guiding, sensing, and actuation of elastic
surface waves across different frequency ranges.
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[115] A. Diatta, Y. Achaoui, S. Brûlé, S. Enoch, and S. Guenneau, “Control of
rayleigh-like waves in thick plate willis metamaterials,” AIP Advances, vol. 6,
no. 12, p. 121707, 2016.

[116] R. Aznavourian, T. M. Puvirajesinghe, S. Brûlé, S. Enoch, and S. Guenneau,
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[120] Y. Achaoui, T. Antonakakis, S. Brûlé, R. V. Craster, S. Enoch, and S. Guen-
neau, “Clamped seismic metamaterials: ultra-low frequency stop bands,”
New Journal of Physics, vol. 19, no. 6, p. 063022, 2017.
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