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Introduction

Singularities of robot manipulators have been intensely studied in the last
decades by researchers of many fields.

Until the end of the eighties, it was commonly believed that serial sin-
gularities had to be met whenever a serial manipulator performs a posture-
changing path. Many examples disproved this belief, and gave rise to an
increasing interest of many researchers, who investigated the conditions that
made a singularity-free posture change possible. This led to the study of the
partition induced by the singularity locus in the jointspace of serial manip-
ulators, in order to understand into how many pieces the jointspace is cut
by the singularity-locus, and how the different postures are distributed into
such pieces. However, the motivation to the study of serial singularities is
mainly theoretical, because they cause no damage to the manipulator, unless
possibly some local loss of dexterity.

Parallel machines became more and more attractive for many applications
in the nineties, because of their higher stiffness, speed, and pay-load. Unfor-
tunately, one of their main drawbacks are parallel singularities. Unlike serial
manipulators, when a parallel manipulator crosses a parallel singularity, the
control of the platform is locally lost, which can jeopardize the manipulator
itself, or the environment wherein it is working. Therefore, all possible care
must be taken for avoiding parallel singularities, which is again strictly re-
lated to the shape of the singularity locus, and to how it splits the workspace
of the parallel machine.

Both problems of serial and parallel singularities lead to the study of the
shape of the singularity locus, with particular attention to connectedness.
The mathematical tools that study the shape of objects have been developed
in the last two century by topologists. These tools will be recalled in Chapter
1, and will be used in Chapter 2 to develop a numerical procedure capable
of analyzing the singularity locus of a given manipulator.

This procedure, which is the core of this work, is able to answer the
ensuing two questions, for a given manipulator:

• How mamy singularity-free regions are partitioned by the singularity
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in the space containing all possible positions of a manipulator?

• Given any two configuration of a manipulator, is it possible to connect
them through singularity-free paths?

Chapter 3 and Chapter 4 present some examples of application of the
algorithm described in Chapter 2 to serial and parallel manipulators respec-
tively.

Chapter 5 recalls some of the methods used in this work for solving poly-
nomial equations, which are usually the most difficult step of the proposed
algorithm, and Chapter 6 concludes the paper.

This work was developed during a three-year Phd. at the department
of Mechanical Engineering of the University of Bologna (DIEM), and was
financed by the Italian Ministry for Research.



Chapter 1

Differential Topology

This Chapter recalls the mathematical tools that will be used in the entire
work. The material for Section 1.1 and Section 1.2 has been mainly retrieved
from textbooks such as [1], [2], [3], and [4], whereas the material about
Morse Theory, reported in Section 1.3, stems from [5]. The main difficulty
in understanding the meaning of some definitions and theorems, especially
in Topology, is the very abstract nature of many concepts, which hardly
admits a physical interpretation. To this extent, the on-line free encyclopedia
www.wikipedia.org has been of great help for grasping the core ideas of many
results.

1.1 Historical Background

Differential topology and differential geometry are two branches of mathe-
matics strictly related to each other, with the common aim of studying the
shape of smooth objects.

The idea of differential geometry is as old as Euclidean geometry. Indeed,
since Euclid included in its Elements the famous ”fifth postulate”, many
geometers throughout two thousand years tried to prove it by means of the
others. The reason why such an effort has been made to prove this postulate,
is that anyone feels it is true, but at the same time not as self-evident as the
others. Nevertheless, any attempt to prove the fifth postulate led only to
realize that removing the fifth postulates from the body of assumptions only
produced conclusions which feel absurd, but neither contradict the first four
postulates, nor appear more self-evident than the fifth one.

Only in the early nineteenth century the mathematicians realized that
the problem was not the fifth postulate itself, but in a possible misunder-
standing of the definitions, and of the ”primitive concepts” that had been
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implicitly taken for granted by Euclid. For example, the concepts of plane
and straight line never seemed to need any definition, for they appeared to
be naturally nested in the human mind. However, a casual reader of Euclid’s
Elements might fancy a ”plane” as spherical surface, and a ”straight line” as
a maximum circle on it. Such reader would soon discover that all first four
postulates make sense, but the fifth one is definitely wrong. In this way, new
geometries can be constructed on objects like the spherical surface, where the
fifth postulate does not hold, but many results that seem absurd on a plane
become reasonable. For example, the sum of internal angles in a triangle is
greater than π on a sphere.

The basis of such new noneuclidean geometries is the concept of mani-
fold, first introduced by Bernard Riemann, while formally developing for the
first time noneuclidean geometries. The German word used by Riemann was
Mannigfaltigkeit (see [6] page 33), which literally means something multi-
farious, which can vary in many ways. Two main features are essential to
understand the idea of manifold. First, a manifold can be considered as an
object on its own, i.e. all its properties can be defined intrinsically, with no
need of a Euclidean space containing it. For example, there is no need to
think of a spherical surface embedded in a three-dimensional Euclidean space
containing it: all its essential properties can be defined just using points in-
side the sphere. When the spherical surface is considered as a manifold,
it becomes the entire universe, and what lays outside the sphere looses any
meaning, exactly in the same way the outside of the Euclidean plane becomes
meaningless while studying Euclidean geometry. Second, the manifold locally
resembles a Euclidean space. For example, in order to realize that the earth
surface has the geometry of a sphere, it is necessary to undertake a long
travel, or to look outside the earth, for all the geometric properties of the
neighborhood of each point cannot be told apart from those of a plane.

Differential geometry mainly developed the study of the local properties
(such as curvature) of smooth manifolds, i.e. manifolds which are similar
enough to a Euclidean space to enable the use of differential calculus. On
the other hand, another branch of mathematics, topology, developed more
or less in the same period the study of global properties of objects. Indeed,
there are some properties, such as connectedness, or the number of holes,
that do not depend on the local features of the object at hand, and do not
change even after heavy deformations of an object.

The first to analyze a problem under this global point of view was prob-
ably Euler. A common pastime in the city of Königsberg where Euler lived
was to try to find a path crossing all seven bridges of the city once, and only
once (see Figure 1.1). In 1736, Euler published a paper proving that this was
impossible. The title of the paper was (translated in English) ”The solution
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Figure 1.1: The seven bridges of Königsberg

of a problem relating to the geometry of position”, implicitly meaning that
the problem tackled in the paper dealt with a new kind of geometry, that
did not care about the exact measures of distances between points, but was
mainly concerned with the global shape of objects. Indeed, the possibility
of finding a path crossing all seven bridges did not depend on the distance
between the bridges, or on their length, but on how the river cut the city,
and which ones of the different islands cut by the river were joined by the
bridges, which is preeminently a topological problem.

Differential topology studies the topological properties of smooth mani-
folds. One of the first and more important tools for this purpose is Morse
theory, whose development was started by Marston Morse in the twenties.
This theory establishes a strong relationship between the number and the
type of critical points of a smooth real-valued function defined on a smooth
manifold and the shape of the manifold. Therefore, by studying the critical
points of a suitable function defined on a manifold it is possible to obtain
information about its shape, and, conversely, by knowing the shape of a man-
ifold it is possible to foresee that any function defined on it will have a least
amount of critical points with certain characteristics.

In the next sections, the main topological concepts will be recalled first,
and the formal definition of manifold will be given. Then, the main results
of Morse theory will be stated and discussed.
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1.2 Basic Concepts

1.2.1 Topological space

The first thing to be defined is the object studied by topology, i.e. the
topological space:

Definition 1.1 A topological space is a set X together with a collection
T of subsets of X such that

• the empty set and the whole set X are contained in T

• the union of any collection of elements of T is also contained in T

• the intersection of any finite collection of elements of T is also con-
tained in T

The collection of subsets T is said to be a topology on X . The elements of
X are called points, whereas the elements of T are called open sets. The
closed sets are defined as the complements of the open sets.

Note that, according to this definition, the idea of open set depends on
the topology defined on the set X , and that different topologies can be
generated by changing the definition of what an open set is. A distance d1

always produces a metric topology on a set X . When a distance is defined,
it is immediately defined the concept of open ball centered on a point:

Definition 1.2 An open ball of radius r centered at a point P of X is a
subset of X containing all points Q ∈X such that d(P,Q) < r.

Then, a subset of X can be defined as open if it contains at least one
open ball centered at each of its points. The collection of open sets just
defined is the metric topology on X .

Consider for example the sets X1 and X2 represented in Figure 1.2, con-
taining all the points X of the Euclidean plane such that d (X, (0, 0)) ≤ 1,
and d (X, (3, 0)) ≤ 1, respectively, where d is the usual Euclidean distance
on the Euclidean plane. Then let the set X be the union of X1 and X2.

The Euclidean distance restricted to the set X defines a distance on X ,
and therefore a metric topology. Note that, according to the definition of
topology, the whole set X and the empty set are both closed and open, or,
as it is often said, clopen. Moreover, each of the two circles X1 and X2 is
clopen. Indeed, the circle X1 is open, because, for each of its point, one

1A distance is a real valued function d(X,Y ) of two points X and Y of X , such that
d(x, y) ≥ 0, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z).
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Figure 1.2: Example of a topological space

can find an open ball centered at this point and completely contained in X1,
as shown in Figure 1.2. For the same reason also X2 is open. However,
since the union of X1 and X2 yields the whole set X , such two sets are the
complement of each other, and therefore also closed.

1.2.2 Relationships between topological spaces

With the definition of topological space,, it is now possible to define how to
establish whether two spaces have the same shape or not. The idea is that
if a topological space can be deformed into another by stretching or bending
it, but without cutting it, or gluing pieces to it, then its basic shape features,
such as number of holes or disconnected pieces remain the same. A common
joke about the topologist, is that he cannot tell the donut he is eating from
the coffee cup he is drinking from. Indeed, both of them are made of one
piece and have one hole, and one could easily make a clay donut out of a
clay coffee-cup by simply stretching and bending it, with no need of cutting
or adding pieces.

The concept of such a continuous deformation is formalized in many dif-
ferent ways, all based on continuous functions. The first one is homeomor-
phism.

Definition 1.3 A function f from a topological space A to a topological
space B is a homeomorphism if

• f is a bijection

• f is continuous

• the inverse function f−1 : B → A is continuous.



14 Differential Topology

A and B are said homeomorphic if there exists a homeomorphism between
them. If the function f is also differentiable, then it is named a diffeomor-
phism and A and B are said to be diffeomorphic.

For example, a ball can be stretched to a cube through homeomorphism,
but not through diffeomorphism. Diffeomorphisms are a little bit more de-
manding, for they require differentiability, therefore they cannot produce the
edges of the cube out of the smooth boundary of the ball. Being homeomor-
phic is an equivalence relation, and partitions the set of topological spaces
into equivalence classes. The same can be said for being diffeomorphic, which,
adding more requirements subdivides each of the previous classes into sub-
classes of diffeomorphic spaces.

The classification induced by homeomorphisms is very strong, so strong
that in topology it is said that a topological space is a sphere if the topolog-
ical space is homeomorphic to the sphere. Yet, there are many topological
features which are the same for non-homeomorphic topological spaces. For
instance, a three-dimensional ball and a point possess a similar shape in
many ways, for they are both composed of a single connected piece and have
no holes. Nevertheless, a ball is obviously not homeomorphic to a point. In
order to introduce a more flexible classification, homotopy equivalence has
been introduced. To understand this relation, it is first necessary to define
an equivalence relation among functions:

Definition 1.4 Two continuous functions f and g from a topological space
A to a topological space B are homotopic if there exists a continuous func-
tion h : [0, 1] × A → B such that h(0, P ) = f(P ) and h(1, P ) = g(P ) for
any point P in A .

The homotopy function h is used to smoothly deform the function f into
the function g. This smooth deformation is conveyed on the topological
spaces through the ensuing definition:

Definition 1.5 Two topological spaces A and B are homotopy equiva-
lent if there exist two functions f : A → B and g : B → A such that g ◦ f
is homotopic to the identity on A and f ◦ g is homotopic to the identity on
B.

Homotopy is an equivalence relation in the space of functions, and homotopy
equivalence is an equivalence relation in the set of topological spaces.

It is useful, in order to prove the theorems of Section 1.3, to give a re-
stricted definition of homotopy, for specific application to subsets.
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Definition 1.6 A function r : A → S from a topological space A to a
subset S ⊂ A is a retract if the restriction of r to S is the identity
function on S .

A retract is thus a function that brings the whole space into a subset, in such
a way that the points of the subset remain fixed. Conversely, the inclusion
function can be defined as follows:

Definition 1.7 A function i : S → A from a subset S ⊂ A to a topo-
logical space A is an inclusion if i delivers each element of S to the same
element in A.

Inclusion and retract can be used to define this special case of deformation
retract:

Definition 1.8 A subset S of a topological space A is a deformation
retract of A if there exists a retract r from A to S such that, given the
inclusion i, i ◦ r is homotopic to the identity map on A .

The deformation retract is just a special case of homotopy equivalence to
subsets. If a subset is a deformation retract of the whole space, than the
subset and the whole space are always homotopy equivalent.

Figure 1.3: Example of deformation retract.

Consider for example Figure 1.3. The topological space X1 is defined as
in Figure 1.2, i.e. it is the closed ball of radius 1 centered at the origin of
the Euclidean plane. Let S be the subset of X1 containing the center of
the ball O. A retract r : X1 → S can be defined, such that r(P ) = O for
any P ∈ X1. The inclusion composed to this function is homotopic to the
identity on X1. To see this, it is easy to construct the ensuing homotopy
function h : [0, 1]×X1 →X1:

h(t, P ) = O + (P −O)t (1.1)
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Since h is continuous, h(1, P ) is the identity on X1, and h(0, P ) is i ◦ r(P ),
then S is a deformation retract of X1. It is easily proved that X1 and S
are also homotopy equivalent. Consider the retract r and the inclusion i. By
definition of retract and inclusion, r ◦ i is the identity on S , and therefore
trivially homotopic to the identity on S . The function i ◦ r is homotopic
to the identity, because S is a deformation retract of X1, therefore S and
X1 are homotopy equivalent, by Definition 1.5. The continuous shrinkage of
the space X1 into the subset S can be visualized by considering, for any P ,
the paths h(t, P ), while t evolves from 0 to 1. It can be therewith realized
that each point is continuously conveyed to the center upon radial continuous
paths, and that h(t,X1) is a ball centered at O with radius t.

1.2.3 Properties of Topological spaces

Many topological properties can be defined to characterize the shape of a
topological space. This section will recall some of them, that will be used in
the following chapters.

The first important topological property is compactness, which is the base
to prove many cornerstone theorems. The easiest definition for compactness
applies to subsets of Euclidean spaces: a subset of Rn is compact if it is
closed and bounded. Unfortunately, this definition is not intrinsic to the
subset, because to decide whether a space is compact or not it is always
unavoidable to embed it in a Euclidean space of proper dimension. Consider
for example the open interval I = (0, 1). If I is included in the Euclidean
space R, with the usual metric topology, then I is not compact, because it is
open. On the other hand, if the same definition were applied to I considered
as topological space on its own, with the same metric topology, then it would
be compact, because it is closed (see Section 1.2.1) and bounded. Therefore,
in order to formalize the idea of compactness with no need of a broader
Euclidean space, the ensuing definition is given:

Definition 1.9 A topological space X is compact if any open cover of X
has a finite subcover.

To understand this definition, it is necessary to recall what an open cover
is. Let an indexed family be a function U (A) : A → T , that associates
to each point A of a given set A an open set contained in the topology T
on X . The collection of all the open sets U (A), contained in the image of
the indexed family, is an open cover of X if their union contains the whole
set X . A subcover is a subset of the cover that is still a cover of X . If,
for every open cover it is possible to extract a subcover composed of a finite
number of elements, then the space is compact.
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Consider again the interval I = (0, 1). Then, define the indexed family
U (r) : R+ → T that associates to any positive real number r the open
interval (1/r, 1). The sets of all U (r) is an open cover of (0, 1), but there ex-
ists no finite subcover, hence I is not compact, regardless of the topological
space that might contain it.

Another crucial property for this work is connectedness, which formalizes
the idea that a topological space is composed of one single piece. The first,
and simplest definition of connectedness is the following:

Definition 1.10 A topological space is disconnected if it can be obtained
as the union of two disjoint open sets, connected otherwise.

In Definition 1.10, disjoint means that the intersection is the empty set. For
example, the topological space X of Figure 1.2 can be obtained through the
union of the two disjoint open sets X1 and X2, therefore X is disconnected.

It might seem obvious that a finite path between any points of a connected
topological space always exists. Surprisingly, this is not true: there are some
examples2 of connected manifolds, whose points are not always mutually
reachable through finite paths. Therefore, a stronger definition is required,
to include this property. First, let a path be defined as follows:

Definition 1.11 A path between two points A and B of a topological space
X is a continuous function p : [0, 1]→X such that p(0) = A and p(1) = B.
If A ≡ B, then the path is closed.

It is now possible to define path-connectedness:

Definition 1.12 A topological space X is path-connected if there exists a
path between any two points in X .

For the purpose of this work, path-connectedness will be the essential and
more important notion, therefore, from now on, the word connected will be
used to mean path-connected.

If a set is connected, we know that it is composed of just one single piece.
On the other hand, an important property of a non-connected topological
space is the number of connected pieces it is composed of. Let first the
following equivalence relation on the points of the topological space X :

Definition 1.13 The point B is reachable from the point A if there exists
a path between A and B.

2For example the topologist’s sine curve is connected but not path-connected. For more
details see http://en.wikipedia.org/wiki/Topologist%27s sine curve.
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It is now possible to define the disjoint regions composing X :

Definition 1.14 The equivalence classes containing the reachable points are
named disjoint regions.

The number of disjoint regions is preserved through homeomorphism and
homotopy equivalence. This important property will be very useful in the
following work, therefore a proof will be hereafter provided.

Figure 1.4: The image of a connected space through a continuous function
is connected.

Let us first prove the ensuing lemma:

Lemma 1.1 The image of a connected space through a continuous function
is connected.

With reference to Figure 1.4, consider a connected topological space X , and
its image f(X ) through a continuous function f . By definition of image, for
any two points A′ and B′ in f(X ) there exist two points A and B in X
such that f(A) = A′ and f(B) = B′. Since X is connected, there exists a
path p(t) in X such that p(0) = A and p(1) = B. The function q = f ◦ p is
a path, for f is continuous, and q(0) = A′, q(1) = B′. Such a path q can be
found for any A′ and B′ in f(X ), therefore f(X ) is connected.

The ensuing theorem will be hereafter proved:

Theorem 1.2 Two homeomorphic topological spaces are composed of the
same number of disjoint regions.

With reference to Figure 1.5, consider two homeomorphic spaces X and Y .
By definition, there exists a homeomorphism f : X → Y . Let m be the
number of disjoint regions of X , and n the number of disjoint regions of
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Figure 1.5: Two homeomorphic spaces are composed of the same number of
disjoint regions.

Y . m and n will be supposed finite, which is enough for the applications
in this work. Suppose now, by absurd, that m > n. It is possible to find
a point Pi, i = 1, . . . ,m, contained in each of the m disjoint regions of X ,
therefore none of the points Pi is reachable from any other point Pj, if i 6= j.
There must exist at least two images f(Pj) and f(Pk), with j 6= k, contained
in the same disjoint region Yh of Y , because m > n (see Figure 1.5). The
image f−1(Yh) therefore contains both points f(Pj) and f(Pk), and must be
disconnected. This conclusion is absurd, because Yh is connected, and its
image through the continuous function f−1 must be connected, which proves
that m ≤ n. Symmetrically, it can be proved that n ≤ m, therefore m and n
must be equal. Obviously, Theorem 1.2 is valid also for diffeomorphic spaces,
because if two spaces are diffeomorphic they are always homeomorphic.

The same result can be stated also for homotopy equivalent spaces:

Theorem 1.3 Two homotopy equivalent topological spaces are composed of
the same number of disjoint regions.

With reference to Figure 1.6, consider again two homotopy equvalent spaces
X and Y . By definition of homotopy equivalece, there exist two continuous
functions f : X → Y and g : Y → X , such that their compositions
are homotopic to the identities on the two topological spaces. As for the
previous case, m and n are supposed to be the finite number of disjoint regions
composing X and Y , respectively, and, by absurd, m is supposed greater
than n. Consider again m points Pi, i = 1, . . . ,m, contained in different
disjoint regions of X . Since m > n, there must be at least two images f(Pj)
and f(Pk), with j 6= k, contained in the same disjoint region Yh of Y . If these
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Figure 1.6: Two homotopy equivalent spaces are composed of the same num-
ber of disjoint regions.

two images are sent back to X through g, they must be delivered to the same
disjoint region of X , for g is continuous. Therefore, either g(f(Pj)) does not
belong to the same disjoint region as Pj, or g(f(Pk)) does not belong to the
same disjoint region as Pk. Without loss of generality, it will be supposed
(see Figure 1.6) that g(f(Pk)) does not belong to the same disjoint region as
Pk, therefore there exists no path from Pk to g(f(Pk)). However, g ◦ f must
be homotopic to the identity, therefore there must be a continuous function
h : [0, 1] ×X → X such that h(0, P ) = P and h(1, P ) = g(f(P )) for any
P ∈X . The univariate function p = h(t, Pk), for t ∈ [0, 1], is a path between
Pk and g(f(Pk), which contradicts the hypothesis m > n, thus m ≤ n. It
can be symmetrically proved that n ≥ m, therefore m = n.

Another important property, which characterizes the shape of a topo-
logical space, is the number of holes. Unfortunately, unlike the number of
disjoint regions, the number of holes is not easily reduced to a formal defi-
nition, because there exist different types of holes with different topological
properties. For example, it is evident that both a sphere and a circle have
a hole, but the topology of such a hole is very different: every closed path
on a sphere can be continuously shrunk to a point (i.e. the sphere is simply
connected), wheres on a circle not.

The number of holes of different shapes is formally characterized by Betti
number sequence. The 0th Betti number of a topological space is the number
of disjoint regions composing it. The first Betti number can be intuitively
defined as the number of cuts which can be made on a topological space,
before it becomes disconnected. For instance, if the operation of cutting a
torus is defined as the removal of a closed path from the surface, then the
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Figure 1.7: The two-dimensional torus can be cut twice, before falling apart.

torus can be cut at most twice, in order to preserve connectedness (see Figure
1.7), therefore the first Betti number of the torus is two.

The rigorous definition of the nth Betti number for n > 1 is rather com-
plex, and beyond the scope of this work. The kth Betti number Bk is often
referred to as the number of kth-dimensional holes of a topological space,
even though this is definition is useless, for it is hard to understand what
a kth-dimensional hole is, other than through vague examples, such as that
the hole inside a circle is one-dimensional, and the hole inside a sphere is
two-dimensional. For a more rigorous definition, refer to [3], suffice it to say
here that the sequence of Betti numbers can be defined for most topological
spaces that will be considered in this work, as reported in Table 1.1.

Topological Space kth Betti number Bk

n-dimensional Euclidean Space 1 if k = 0, 0 otherwise
n-dimensional sphere 1 if k = 0 or k = n, 0 otherwise

n-dimensional torus
(
n
k

)
n-dimensional real projective space 1 if k ≤ n, 0 otherwise

Table 1.1: Betti numbers of some topologicla spaces

As for connectedness, Betti number sequence is a topological invariant,
and it is preserved by homeomorphism and homotopy equivalence.

1.2.4 Manifolds

The objects that will be dealt with in this work, are a special kind of topo-
logical space, with more specific properties, i.e. manifolds, that are defined
as follows3:

3Usually, this definition is stronger, for it includes also that the topological space is
Hausdorff and second-countable. However, such details are beyond the aim of this work,
for more information, see [2].
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Definition 1.15 An nth-dimensional manifold is a topological space that is
locally homeomorphic to an open ball in the nth-dimensional Euclidean space.

Locally homeomorphic means that there exists a neighborhood of any point
of a manifold, which is homeomorphic to an open ball of the nth-dimensional
Euclidean space. This definition formalizes the idea that a manifold locally
resembles the Euclidean space, as discussed in Section 1.1. The homeomor-
phisms map each neighborhood into the Euclidean space, and vice versa,
exactly like topographic charts are used to represent on a plane small parcels
of the earth globe. Therefore, such homeomorphisms are called charts, or
local coordinate systems, because they associate to each point of Rn one and
only one point of a portion of the manifold.

This definition is useful, but still does not include an important class of
topological spaces. Consider for example the topological space X of Figure
1.2. The topological space X is no manifold, in the sense of Definition
1.15, because none of the points of the two circles d (X, (0, 0)) = 1 and
d (X, (3, 0)) = 1 has a neighborhood homeomorphic to an open ball in the
Euclidean plane. To include such cases, the concept of manifold with
boundary has been introduced:

Definition 1.16 An nth-dimensional manifold with boundary is a topo-
logical space that is locally homeomorphic to an open ball in the nth-dimensional
Euclidean space, or to a half ball in the nth-dimensional Euclidean space.

The half ball is the set containing all the n-tuples (x1, x2, . . . xn) of the Eu-
clidean space Rn such that x2

1 + x2
2 + . . .+ x2

n < r2 and x1 ≥ 0.
Also the concept of interior and boundary can now be defined for mani-

folds with boundary:

Definition 1.17 A point of a manifold with boundary is said to be an in-
ternal point if there exists a neighborhood of this point homeomorphic to
an open ball in Rn, a boundary point otherwise.

Therefore, points such as P1 in Figure 1.2 are internal points of X , whereas
points such as P2 are boundary points. Note that the concepts of interior
and boundary have been therewith defined intrinsically, without involving
points outside the manifold, for outside has no meaning, for a manifold.

The definition of boundary usually given for subsets of Rn coincides only
partially with Definition 1.17. According to such definition, any neighbor-
hood of a boundary point of a subset of Rn contains at least one point of
the set itself, and one point not contained in the set. The main drawback
of this definition is that being or not a boundary point of a set depends on
what there is outside the set, and might thus be ambiguous. For example,
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if the set X of Figure 1.2, composed of two disks is considered embedded
in the plane, then the origin (0, 0) is an interior point. On the other hand,
if the whole plane containing X were considered embedded in the three-
dimensional space, any point of the plane would be a boundary point, and
therefore any point of X would be a boundary point. Therefore, the term
boundary will be henceforth used to designate the boundary of a set consid-
ered as a manifold, not the boundary of a subset of Rn.

1.3 Morse Theory

Morse theory is an important branch of differential topology, which tries to
gain information about the topological properties (such as connectedness, or
Betti numbers, as recalled in Section 1.2.3) of a manifold, from the number
and the type of critical points of a smooth function defined on it. The
main ideas of Morse Theory will be exposed through an example in the next
section, whereas in the following sections rigorous results will be stated and
proved.

1.3.1 Visualization

Figure 1.8: Example on the torus M .

Consider a torus M , touching a plane π at the point P , as in Figure 1.8.
Then, define the function f : M → R as the height of any point of the torus
above the plane π. Consider the set M a

M a = f−1(−∞, a] (1.2)
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containing all the points of M below a certain height a. We now observe
the changes in the topological properties of M a while the height a grows
from −∞ to +∞. Such changes are described through the changes in the
homotopy type.

Figure 1.9: If f(P ) < a < f(Q), M a is homotopy equivalent to a point.

As long as a remains lower than 0, M a is the empty set. As soon as
a grows above 0-level, the set M a changes its topological properties, and
becomes homotopy equivalent to a point (see Figure 1.9). Indeed, the whole
set M a could be continuously shrunk to the point P .

Let a k-cell be rigorously defined as follows:

Definition 1.18 A k-cell ek is the k-dimensional ball with boundary of ra-
dius 1, i.e. the set containing all points x ∈ Rn such that ‖x‖ ≤ 1.

Therefore the k-cell is a manifold with boundary, and the boundary is the
(k − 1)-dimensional sphere ‖x‖ = 1. The change in the topology of M a,
when a changes its sign, can be described as adding a 0-cell e0 to the empty
set.

The point Q is the closest point to P where the tangent plane is parallel
to π. It easy to see that, as long as 0 < a < f(Q), the set M a stretches,
but is still contractible to a point, therefore its topological properties are
preserved.

As soon as a reaches the height f(Q), the topological properties of the
set M a undergo again a sudden change. A ”handle” is glued to the set M a,
which is now not contractible to a point anymore, but is homotopy equivalent
to a circle. The operation of gluing a handle to M a, can be formally defined
as attaching a k-cell :
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Figure 1.10: As soon as a = f(Q), a 1-cell is attached to M a.

Definition 1.19 By attaching a k-cell to a topological space X , a topo-
logical space Y is obtained through the ensuing operations:

• Y is initially the empty set;

• the disjoint union of the k-cell and X is included in Y ;

• a continuous function g from the boundary of the k-cell to X is defined;

• each point of the boundary of the k-cell is identified with its image in
X , i.e. each point and its image are henceforth considered as the same
point of Y .

Thus, as soon as a = f(Q), a 1-cell is attached to M a by means of a contin-
uous function g, and becomes the ”handle” we need to describe the variation
of the homotopy type of M a (see Figure 1.10).

If at the point R the tangent plane of the torus is again parallel to π (see
Figure 1.11), then we see that so far as f(Q) < a < f(R) the set M a grows
while a grows, stretches and bends, but still remains homotopy equivalent to
a 1-cell attached to a 0-cell. Therefore, the number of pieces and the number
of holes in M a remain the same as long as f(Q) < a < f(R).

As soon as a reaches the height of R, the topology of M a changes abruptly
once more: another 1-cell is attached to it (see Figure 1.12). Again, between
the heights of the two points R and S, where the tangent plane is parallel to
π, the topological properties remain unchanged.

Eventually, the maximum height f(S) is reached by a, which produces the
last change in topological properties of M a: a 2-cell is attached (see Figure
1.13). From f(S) upward, the set M a coincides with the whole torus M ,
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Figure 1.11: While f(Q) < a < f(R), the topological properties of M a do
not change.

Figure 1.12: As soon as a = f(R), another 1-cell is attached to M a.
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Figure 1.13: As soon as a = f(S), a 2-cell is attached to M a.

thus the way M a has been built adding k-cells provides information about
how the whole manifold M can be built by successive attachment of k-cells.

Note that changes in the topological properties of M a are discrete, and
occur suddenly as soon as the points P , Q, R, and S are included into the
manifold M a. It is easy to see that such points are critical points of the
function f on M , and that different types of critical points produce the
attachment of different cells. Indeed, the minimum P attaches a 0-cell, the
saddles Q and R attach 1-cells, and the maximum S attaches a 2-cell.

In the next section, the process just outlined will be formalized in a set
of important theorems.

1.3.2 Definitions

The first concept to be defined is smoothness, both for manifolds and func-
tions:

Definition 1.20 A manifold M is smooth if all the homeomorphisms
mapping neighborhoods of M into an open ball in the Euclidean space are of
class C∞.

Definition 1.21 A real-valued function f on a smooth manifold M is
smooth if f ∈ C∞ on M .

We consider henceforth a smooth real-valued function f on a smooth n-
dimensional manifold M . In a neighborhood of every point, it is possible to
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define a local coordinate system x = (x1, x2, . . . , xn), which unambiguously
identifies any point of the neighborhood. Thus, the gradient of the function
f is an n-dimensional vector, defined as

∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
(1.3)

The definition of critical point naturally stems from the definition of gra-
dient:

Definition 1.22 A point C of M is a critical point of f , if ∇f |C = 0.

The second-order variations of f must be considered, to characterize the
different effects of different types of critical points. Such second-order varia-
tions are controlled by the Hessian matrix of f at a critical point C, Hf |C ,
which is defined as the n× n square matrix, whose elements hij are defined
as:

hij =
∂2f

∂xi∂xj

∣∣∣∣∣
C

(1.4)

Definition 1.23 A critical point of f is nondegenerate if the Hessian
matrix Hf |C is nonsingular.

If a critical point is nondegenerate, the Hessian matrix completely char-
acterizes the shape of the function f in the neighborhood of a critical point
(see Section 1.3.4). In particular, what is important to know is the index :

Definition 1.24 The index of a nondegenerate critical point C is the num-
ber of negative eigenvalues of the Hessian matrix Hf |C.

It will be shown in the rest of this section that the index determines
the dimension of the cell which is attached to the set M a, as soon as as it
includes a new critical point of f .

The definitions of nondegenerate critical point and index have been here
based upon a local system of coordinates on the manifold M a. Such def-
inition can be given intrinsically (see [5], pp. 4-6), and it can be proven
that neither being a nondegenerate critical point nor the index depend on
the specific coordinate system used to calculate the gradient or the Hessian
matrix.
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1.3.3 Between critical points

Before analyzing in detail what happens when a critical point is included in
the set M a, it will be hereafter proved that if a varies, but no critical points
of f are met, the topological properties do not change, which is formalized
through the ensuing theorem:

Theorem 1.4 Let f be a smooth real-valued function on a smooth manifold
M . Let a < b, with a, b ∈ R. Suppose that the set f−1[a, b] is compact and
contains no critical points of f . Then M a = f−1(−∞, a] is diffeomorphic to
M b = f−1(−∞, b]. Furthermore, M a is a deformation retract of M b

An important tool for proving Theorem 1.4 is the 1-parameter group of
diffeomorphisms, defined as follows:

Definition 1.25 A 1-parameter group of diffeomorphisms of a smooth
manifold M is a C∞ function ϕ : M ×R →M such that:

• for each t ∈ R the map ϕt : M →M defined by ϕt(Q) = ϕ(t, Q) is a
diffeomorphism of M onto itself.

• for all t, s ∈ R, ϕt+s = ϕt ◦ ϕs

A 1-parameter group of diffeomorphisms can be generated by means of a
vector field on M . Let x(Q) be a vector field on M , i.e. a smooth function
which yields a vector in the tangent space of M at Q for every point Q ∈M .
Suppose also that the vector field x vanishes outside of a compact subset
K ⊂M . Then, for any Q, define the function ϕ(t, Q), as the solution curve
p : R →M , of the differential equation:

dp(t)/dt = x(p(t)), (1.5)

under the initial condition p(0) = Q.
It can be proved that, for every point of M , there exists a neighborhood

U and a real number ε such that the solution of Equation (1.5) exists and
is unique for any Q ∈ U and |t| < ε. Furthermore, the function ϕ(t, Q) just
defined is smooth both in t and in Q.4

Consider now the function r(t) = p(s + t), where s is a real constant. It
is easy to see that r(t) is the solution of the ensuing Cauchy problem:{

dr(t)/dt = dp(t+ s)/dt = x(p(t+ s)) = x(r(t))
r(0) = p(s)

(1.6)

4See [7], chapter IX.
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Therefore, according to Equation (1.6) and Equation (1.5), r(t) = ϕ(t, p(s)),
provided that p(s) ∈ U and |t+ s| < ε. This proves that ϕ(t, ϕ(s,Q)) =
ϕ(t, p(s)) = r(t) = p(t+ s) = ϕ(t+ s,Q), which satisfies the second require-
ment of Definition 1.25.

The only thing that remains to do, is to extend the function ϕ(t, Q)
outside of a local neighborhood U . The set containing all the neighborhoods
UP , with P ∈ K , where the solution exists and is unique, is a cover of K .
Since K is compact, there exists a finite number of neighborhoods covering
the whole K , and each of such neighborhoods has its own value ε, which
limits the variation range of t. Denote with ε0 the smallest of such numbers.
For any value of t there exist a natural number m and a real remainder
w < ε0/2, such that t = mε0/2 + w. Therefore, the function ϕ(t, Q) can be
defined as:

ϕt(Q) = ϕε0/2 ◦ ϕε0/2 ◦ . . . ◦ ϕε0/2︸ ︷︷ ︸
m times

◦ϕw(Q) (1.7)

Equation (1.7) is thus the needed extension of ϕ(t, Q) for any real number,
and for any point of the compact set K . The function ϕ(t, Q) generated by
the vector fiel x is unique. Outside the compact set K , the function ϕ(t, Q)
always yields Q for any t.

Figure 1.14: Generation of a 1-parameter group of diffeomorphisms.

The function ϕ(t, Q) generated in this way from the vector field x is there-
fore a 1-parameter group of diffeomorphisms. The group of diffeomorphisms
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ϕ(t, Q) can be viewed as a bundle of curves on M (see Figure 1.14). All the
curves of the bundle are smooth, and tangent to the direction of the vector
field at each of their points. Each point in M is the initial point for one of
the curves, therefore the curves never intersect, because at each point there
must exist only one solution to Equation (1.5). The tth diffeomorphisms ϕt
”pushes” each point of M along the afore mentioned curves, following the
vector field x, and the larger is t, the further along the curve the point is
delivered. The points where the vector field vanishes remain fixed under any
diffeomorphism of the group, therefore, the closer the points are to the region
where x = 0, the shorter their displacements are.

Figure 1.15: Generation of a 1-parameter group of diffeomorphisms through
the gradient of f .

In order to prove Theorem 1.4, a 1-parameter group of diffeomorphisms
will be generated, by means of the vector field defined by the gradient of f .
Let the function ρ : M → R be a smooth function, which is equal to the
scalar product of the gradient of f with itself: ρ = ∇f · ∇f inside the set
f−1[a, b], and which vanishes outside of a compact set K ⊃ f−1[a, b]. Then
let the vector field x be defined as

x(Q) = ρ(Q) ∇f |Q (1.8)

The vector field x generates a unique 1-parameter group of diffeomorphisms
ϕt, as shown in Figure 1.15. Consider now, for a given point Q, the curve
composed of the points ϕt(Q), while t varies. By applying the derivation
chain rule,the derivative of f with respect to t along this curve can be cal-
culated:

df(ϕt(Q))

dt
=

dϕt(Q)

dt
· ∇f |Q = x(Q) · ∇f |Q = 1 (1.9)
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Thus the value of f increases linearly along with the variable t, upon any of
such curves, as long as the points of the curves remain within the set f−1[a, b].
For example, if f(Q) = a, then f(ϕt(Q)) = a + t. Thus, as shown in Figure
1.15, the diffeomorphism of the group ϕb−a carries any point of the boundary
f−1(a) of M a to a point of the boundary f−1(b) of M b. Furthermore, any
point inside M a is carried inside M b, therefore ϕb−a is a diffeomorphism
between M a and M b, which proves the first half of Theorem 1.4.

For the second half, consider the retract r : M b →M a:

r(Q) =

{
Q if Q ∈M a

ϕ(a−f(Q))(Q) if Q ∈ f−1[a, b]
(1.10)

The retract r brings all the points on the curves ϕt(Q) in f−1[a, b] to
the point of intersection between the curve and the level set f−1(a). Then
consider the homotopy function h : [0, 1]×M b →M b:

h(t, Q) =

{
Q if Q ∈M a

ϕt(a−f(Q))(Q) if Q ∈ f−1[a, b]
(1.11)

It is easily verified that h(0, Q) is the identity on M b and h(1, Q) is the
retract r composed with the inclusion, which proves that M a is a deformation
retract of M b.

Theorem 1.4 proves that if the set M a does not include new critical
points, while a varies, then it always remains of the same diffeomorphism
type, therefore its topological properties do not change.

1.3.4 Effect of critical points

Before analyzing in detail the effect of critical points on the topological prop-
erties of M a, it is necessary to prove two lemmas, which outline the shape
of the function f in the neighborhood of a critical point.

Lemma 1.5 Let f be a smooth real-valued function in a convex neighborhood
U of 0 in Rn, with f(0) = 0. Then

f(x1, . . . , xn) =
n∑
i=1

xigi(x1, . . . , xn)

for some suitable smooth functions gi defined in U , with gi(0) = ∂f/∂xi|0.

Lemma 1.5 can be easily proved, for

f(x1, . . . , xn) =
∫ 1

0

df(tx1, . . . , txn)

dt
dt =

n∑
i=1

xi

∫ 1

0

∂f

∂xi

∣∣∣∣∣
(tx1,...,txn)

dt (1.12)
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Thus, the unknown functions gi are defined as:

gi =
∫ 1

0

∂f

∂xi

∣∣∣∣∣
(tx1,...,txn)

dt (1.13)

Lemma 1.6 (lemma of Morse) Let f be a smooth real-valued function on
a smooth manifold. Let P be a nondegenerate critical point for of f . Then
there is a local coordinate system (y1, . . . , yn) in a neighborhood U of P with
yi(P ) = 0 for any i and such that the identity:

f = f(P )− y2
1 − . . .− y2

k + y2
k+1 + . . .+ y2

n

holds throughout U , where k is the index of the critical point P .

It is immediately clear that if such an expression for f exists, then k is the
index of P . Indeed, the Hessian matrix written in the coordinate system
(y1, . . . , yn) is a diagonal matrix, with k negative elements on the diagonal.

It will be hereafter shown that such a suitable coordinate system always
exists. First of all we choose a coordinate system (x1, . . . , xn) such that P
is mapped into the origin of Rn. By applying Lemma 1.5 to the function
f(x1, . . . , xn)− f(0), one obtains:

f(x1, . . . , xn)− f(0) =
n∑
i=1

xigi(x1, . . . , xn) (1.14)

which holds in some neighborhood of P . Since P is a critical point,

gi(0) =
∂f

∂xi

∣∣∣∣∣
P

= 0 ∀i (1.15)

then Lemma 1.5 can be applied to the functions gi, too:

gi(x1, . . . , xn) =
n∑
j=1

xjaij(x1, . . . , xn) (1.16)

Thus, by inserting Equation (1.16) into Equation (1.14), one obtains:

f(x1, . . . , xn)− f(0) =
n∑

i,j=1

xixjaij(x1, . . . , xn) (1.17)

By defining bij = (1/2)(aij + aji), the previous equation assumes the ensuing
symmetric form:

f(x1, . . . , xn)− f(0) =
n∑

i,j=1

xixjbij(x1, . . . , xn) (1.18)



34 Differential Topology

where bij = bji. Let the matrix B be the matrix containing the elements bij.
Then B(0) is equal to half the Hessian matrix of f at the point P , and, being
P a generic critical point by hypothesis, B(0) must be nonsingular.

Equation (1.18) can be diagonalized in the same way quadratic forms are
usually diagonalized. It is first supposed by induction that there exists a
local coordinate system (u1, . . . , un) in a neighborhood U1 of 0 such that:

f(u1, . . . , un)− f(0) = ±u2
1 ± . . .± u2

r−1 +
∑
i,j≥r

uiujcij(u1, . . . , un) (1.19)

The matrix C, containing the elements cij of Equation (1.19) for i, j ≥ r, and
whose other elements are equal to 0 outside the diaglonal and to ±1 upon
the diagonal, is also supposed by induction to be symmetric. C(0) is again
half the Hessian matrix of f at P , in the coordinate system (u1, . . . , un),
therefore C(0) is nonsingular. Furthermore, it can be assumed that C(0) is
diagonal5, thus element crr(0) cannot vanish. This immediately implies that
there exists a neighborhood U2 of 0, possibly smaller than U1, where the
function crr does not vanish.

Equation (1.19) can be rewritten as:

f(u1, . . . , un)− f(0) = ±u2
1 ± . . .± u2

r−1 + 2
∑
i≥r

uiurcir(u1, . . . , un) +

+
∑
i,j>r

uiujcij(u1, . . . , un) (1.20)

Consider now the function v : Rn → Rn such that: vi = ui if i 6= r

vr(u1, . . . , un) =
√

2 |crr(u1, . . . , un)|
[
ur +

∑
i>r ui

cir(u1,...,un)
2crr(u1,...,un)

]
(1.21)

It can be easily verified that the Jacobian matrix of v is nonsingular at 0,
therefore, in a neighborhood U3 of 0, possibly smaller than U2, the func-
tion v can be inverted, and the inverse function is continuous, by virtue of
the inverse function theorem. Thus v is a local coordinate system on U3.
Moreover, it is easily verified that:

2
∑
i≥r

uiurcir(u1, . . . , un) = v2
r −

∑
i,j>r

vivj
cir(u(v))cjr(u(v))

2crr(u(v))
(1.22)

5If C(0) were not diagonal, a simple linear change of coordinates would easily diago-
nalize it.
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By inserting Equation (1.22) and Equation (1.21) into Equation (1.20) one
obtains:

f(u1, . . . , un)− f(0) = ±v2
1 ± . . .± v2

r +
∑

i,j≥r+1

vivjdij(v1, . . . , vn) (1.23)

Equation (1.18) can be considered as the starting point of the induction,
which, after n steps, leads to the proof of Lemma 1.6.

A direct consequence of Lemma 1.6 is the following:

Theorem 1.7 Nondegenerate critical points are always isolated.

Lemma 1.6 is very important, because it not only states that any function
can be approximated by a quadratic form, in the neighborhood of a critical
point for a given coordinate system, but also that f is a quadratic form,
within a sufficiently small neighborhood and in a proper coordinate system.
This is essential for proving the ensuing fundamental result:

Theorem 1.8 Let f : M → R be a smooth function, and let P be a
nondegenerate critical point of index k. Setting f(P ) = c, suppose that
f−1[c − ε, c + ε] is compact, and contains no critical points of f other than
P , for some ε > 0. Then, for all sufficiently small ε, the set M c+ε has the
homotopy type of M c−ε with a k-cell attached.

Indeed, according to Lemma 1.6, it is possible to choose a coordinate
system (u1, . . . , un) such that the critical point P coincides with the origin,
and in a neighborhood U of P the ensuing identity holds:

f = c− u2
1 − . . .− u2

k + u2
k+1 + . . .+ u2

n (1.24)

A real ε is chosen, so that:

• the region f−1[c − ε, c + ε] is compact and contains no critical points
other than P ;

• the closed ball u2
1 + . . .+ u2

n ≤ 2ε is contained in the neighborhood U .

We consider also the set ek, defined as follows:

ek =
{
P ∈ U : u2

1 + . . .+ u2
k ≤ ε and uk+1 = . . . = un = 0

}
(1.25)

Clearly, ek is homeomorphic to the k-cell, therefore we will say henceforth
that ek is the k-cell.

The resulting situation is represented in two dimensions in Figure 1.16:
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Figure 1.16: Proof of Theorem 1.8.

• the coordinate lines represent the planes uk+1 = 0, . . . , un = 0 and
u1 = 0, . . . , uk = 0;

• the dashed circle is the boundary of the ball of radius
√

2ε;

• the hyperbolas represent the hypersurfaces f−1(c− ε) and f−1(c+ ε);

• the region M c−ε is painted with dark gray;

• the region f−1[c− ε, c] is painted with medium gray;

• the region f−1[c, c+ ε] is painted with light gray;

• the horizontal dark line through P is the k-cell.

Note that the boundary of the k-cell is on the set M c−ε, therefore the k-cell
is indeed attached to the set M c−ε.

It will be hereafter proved that M c−ε∪ek is a deformation retract of M c+ε.
To do so, a new function F will be constructed, which is equal to f outside
the ball of radius

√
2ε, but lesser than f inside the ball. Let µ : R → R be

a smooth function, satisfying the ensuing conditions:

• µ(0) > ε,
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• µ(r) = 0 for r ≥ 2ε,

• −1 < µ′(r) ≤ 0 for all r,

where µ′ = dµ/dr. Now let the function F : M → R coincide with f outside
the neighborhood U , and be defined inside U by the ensuing equation:

F = f − µ(ξ(u) + 2η(u)) (1.26)

where ξ and η are the following two functions:

ξ(u) = u2
1 + . . .+ u2

k

η(u) = u2
k+1 + . . .+ u2

n

(1.27)

Thus f and F can be written as

f(u) = c− ξ(u) + η(u)

F ((u)) = −ξ(u) + η(u)− µ(ξ(u) + 2η(u)
(1.28)

It is easy to verify that F = f outside the ellipsoid ξ + 2ν ≤ 2ε, whereas
inside such ellipsoid the ensuing inequality holds:

F ≤ f = c− ξ + η ≤ c+ (1/2)ξ + η ≤ c+ ε (1.29)

which proves that the region F−1(−∞, c+ ε] coincides with f−1(−∞, c+ ε],
which is M c+ε.

Furthermore, the critical points of F are the same as those of f . Indeed,
the critical points of F inside U do satisfy the ensuing condition:

∂F

∂ui
=
∂F

∂ξ

∂ξ

∂ui
+
∂F

∂η

∂η

∂ui
= 0 i = 1, . . . , n (1.30)

However the partial derivatives of F with respect to ξ and η never vanish,
because:

∂F/∂ξ = −1− µ′(ξ + 2η) < 0

∂F/∂η = 1− 2µ′(ξ + 2η) ≥ 1
(1.31)

Since ∂ξ/∂ui and ∂η/∂ui vanish only at the origin, the only critical point
inside U is P . Outside U F and f do coincide, therefore the two functions
have the same critical points over the whole M .

Consider now the region F−1[c−ε, c+ε]. Since it has just been shown that
F−1(−∞, c + ε] coincides with f−1(−∞, c + ε], and since F ≤ f , it follows
that

F−1[c− ε, c+ ε] ⊂ f−1[c− ε, c+ ε] (1.32)
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Therefore F−1[c − ε, c + ε] is compact, and it cannot contain any critical
points, except possibly P . However, since F (P ) = c− µ(0) < c− ε, P is not
contained in F−1[c− ε, c+ ε], thus such region is free of critical points.

Therefore, according to Theorem 1.4, the region F−1(−∞, c − ε] is a
deformation retract of F−1(−∞, c+ ε], which coincides with M c+ε.

Figure 1.17: The handle H .

The only thing that remains to be proved is that M c−ε∪ ek is a deforma-
tion retract of F−1(−∞, c−ε]. Consider Figure 1.17. The set F−1(−∞, c−ε]
can be viewed as the union between M c−ε and a ”handle” H , where H de-
notes the closure of F−1(−∞, c − ε] −M c−ε. The handle H represents
the additional region, in the neighborhood of P , which is included into
F−1(−∞, c− ε], for F ≤ f in the neighborhood U .

Let now the retract r from M c−ε∪H to M c−ε∪ek be defined as depicted
in Figure 1.18, according to three different cases.

• CASE 1: within the region ξ ≤ ε, r is defined as:

r(u1, . . . , un) = (u1, . . . , uk, 0, . . . , 0) (1.33)

therefore all points are delivered into the k-cell.

• CASE 2: within the region ε ≤ ξ ≤ η + ε, r is defined as:

r(u1, . . . , un) = (u1, . . . , uk, suk+1, . . . , sun) (1.34)
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Figure 1.18: Retract from M c−ε ∪H to M c−ε ∪ ek.

where
s = [(ξ − ε)/η]1/2 (1.35)

therefore all points are delivered onto the hypersurface f−1(c− ε).

• CASE 3 within the region η + ε ≤ ξ, i.e., within M c−ε, r is defined as
the identity.

It can be easily verified that the afore defined retract is continuous.
Consider now the ensuing homotopy function h : [0, 1] ×M c−ε ∪H →

M c−ε ∪H :

• CASE 1: within the region ξ ≤ ε, r is defined as:

h(t, u1, . . . , un) = (u1, . . . , uk, tuk+1, . . . , tun) (1.36)

which, for t = 1 is the identity, whereas for t = 0 coincides with the
retract composed with the inclusion.

• CASE 2: within the region ε ≤ ξ ≤ η + ε, r is defined as:

h(t, u1, . . . , un) = ((u1, . . . , uk, stuk+1, . . . , stun) (1.37)

where
st = t+ (1− t) [(ξ − ε)/η]1/2 (1.38)

which, for t = 1 is the identity, whereas for t = 0 coincides with the
retract composed with the inclusion.

• CASE 3 within the region η + ε ≤ ξ, i.e., within M c−ε, h is defined as
the identity for any t
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It can be easily verified that this homotopy function is continuous, therefore
the retract composed the inclusion is homotopic to the identity, and M c−ε∪ek
is a deformation retract of M c−ε ∪H , which proves Theorem 1.8.

By remembering that nondegenerate critical points are always isolated
(Theorem 1.7), it is immediately possible to generalize Theorem 1.8 to the
case f−1(c) contains many critical points: a k-cell is attached for each critical
point of index k (see [5]).

Eventually, if the set M a
+ is defined as f−1[a,+∞), then the ensuing two

analogous theorems can be easily proved, by considering the function −f in
place of f :

Theorem 1.9 Let f be a smooth real-valued function on a smooth manifold
M . Let a < b, with a, b ∈ R. Suppose that the set f−1[a, b] is compact
and contains no critical points of f . Then M a

+ is diffeomorphic to M b
+.

Furthermore, M b
+ is a deformation retract of M a

+

Theorem 1.10 Let f : M → R be a smooth function, and let P be a
nondegenerate critical point of index k. Setting f(P ) = c, suppose that
f−1[c − ε, c + ε] is compact, and contains no critical points of f other than
P , for some ε > 0. Then, for all sufficiently small ε, the set M c−ε

+ has the
homotopy type of M c+ε

+ with a (n−k)-cell attached, where n is the dimension
of M .

1.3.5 Morse inequalities

Figure 1.19: The torus is homotopy equivalent to a CW-complex.
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The results of the previous sections make it possible to build a ”skele-
ton”, by attaching cells upon each other, which is homotopy equivalent to
any compact manifold M 6. Such a skeleton is usually named CW-complex.
For example, the height function defined on the two dimensional torus in
Section 1.3.1 proves that the torus is homotopy equivalent to a CW-complex
composed by one 0-cell, attached by the minimum P , two 1-cells, attached
by the saddles Q and R, and one 2-cell, attached by the maximum S, as
shown in Figure 1.19.

Clearly, there is a minimum of k-cells that must be used to build a CW-
complex homotopy equivalent to a given manifold. For example, the torus
of Figure 1.19 cannot be build using only 0-cells, otherwise it would be com-
posed by a certain number of disjoint regions, and each of such regions would

be contractible to a point. It can be proved that, if Bk is the kth Betti num-
ber of a manifold, and ck is the number of k-cells used to build a CW-complex
homotopic to the same manifold, then the ensuing inequality holds:

Bk ≤ ck (1.39)

which immediately leads to an analogous constraint on the number of crit-
ical points of index k of any smooth real-valued function defined on such
manifold7 .

For example, if a manifold is composed of a n disjoint regions, i.e. the

0th Betti number is equal to n, then any homotopy equivalent CW-complex
must be built by using at least n 0-cells. Furthermore, any function defined
on such manifold must have at least n minima and n maxima, which could
be also easily proved by means of Weierstraß theorem applied to each disjoint
region. The torus depicted in Figure 1.19 can be reduced to a CW-complex
containing at least one 0-cell, two 1-cells, and one 2-cell (see Table 1.1 for the
Betti numbers of the torus), therefore the height function defined in Section
1.3.1 has the least possible number of critical point for each index.

This result will be used in the following sections, but the proof will be
omitted. For further details, refer to [5], chapter 5.

6See Theorem 3.5 at page 20 of [5].
7see Theorem 5.2 at page 29 of [5].
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Chapter 2

Analysis of Singularity Loci

In this chapter, the concepts of serial and parallel singularities will be re-
called. By means of the results of Chapter 1, a numerical method will be
proposed, capable of finding out a singularity-free path between any two con-
figurations of a manipulators, if there exist any, and to count the number of
maximal singularity-free regions.

2.1 Singularities

2.1.1 Serial Singularities

Figure 2.1: Serial manipulators.

Serial manipulators (see Figure 2.1) are open serial kinematic chains,
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where each joint is actuated. The links are the rigid bodies connecting the
joints. Each link of a serial manipulator connects at most two joints, and each
joint connects at most two links. Usually, the joints are revolute or prismatic
kinematic pairs. The first link of the chain is fixed in most applications, and
therefore it will be named base.

Serial manipulators are the most widely used in industry, for many differ-
ent tasks, ranging from pick-an-place applications to machining and welding.
Their main features are their flexibility, and their easily controllable kine-
matics.

Figure 2.2: End effectors of different planar manipulators.

The end-effector of a serial manipulator is defined according to the task
that must be fulfilled by the manipulator itself. For example, consider the 3R
planar manipulator depicted in Figure 2.2. The task of this manipulator is to
position link 3 in the plane, thus link 3 is the end-effector and its position can
be identified through the coordinates (x, y) of a point P of the end-effector,
and an angle ϕ representing the orientation of the end-effector in the plane.
On the other hand, the task of the 2R planar manipulator shown in Figure 2.2
is to place the point P in the plane, therefore the point P is the end-effector,
and its position can be identified through the coordinates (x, y) only. Thus,
different end-effectors might be defined for the same manipulator, according
to the different tasks that can be accomplished through that manipulator.

If the number of degrees of freedom of the end-effector is equal to the
number of joints, then the serial manipulator is nonredundant. Only nonre-
dundant manipulators will be considered in this work

The jointspace J of a serial manipulator is a manifold whose points are
defined by the positions of all actuators of the manipulator, whereas the
workspace W is the manifold containing all possible positions of the end-
effector.
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The kinematics of serial manipulators can be described through a function
f from the jointspace to the workspace, which associates the corresponding
position of the end-effector to a set of positions of the actuated joints. If Q
is a point of the jointspace, and X is a point of the workspace, this function
can be written as:

X = f(Q) (2.1)

If, at a given point Q of the jointspace, the virtual displacement of the end-
effector, ∂X = ∂f(Q), vanishes for a certain nonzero virtual displacement
of the point in the jointspace, ∂(Q), then the manipulator is at a serial
singularity. In other words, the manipulator is crossing a serial singularity
if it is possible to impress a nonzero velocity to some actuators producing a
corresponding zero velocity of the end-effector.

Singularities can also be defined by means of a given coordinate system.

If the variable qi locally describes the position of the ith actuated joint, then
the vector q = (q1, . . . , qn) is a local coordinate system for the jointspace.
Analogously, a vector x = (xi, ..., xn) is supposed to provide a local coordinate
system for the workspace. Then, the function f can be locally written as
follows:

x = f(q) (2.2)

The relationship between the first order variations of x and q then becomes:

∂x = A(q)∂q (2.3)

where the matrix A(q) is the Jacobian matrix of the function f in the lo-
cal coordinate system (q1, . . . , qn). If, according to the given definition, ∂x
must vanish for a certain nonzero ∂q, then the matrix A(q) must be sin-
gular, at a serial singularity. Thus, a position of a serial manipulator is a
singular position if J(q) = det A(q) = 0. J(q) is the Jacobian determinant
in the chosen local coordinate system. If we assume that there exists a set
of local coordinate systems such that J is defined as a smooth function on
the whole jointspace, serial singularities can be described as the points Q
of the jointspace where the real valued function J(Q) vanishes. Therefore
serial singularities are organized in a singularity locus, or surface, of dimen-
sion n − 1, where n is the dimension of the jointspace, and such locus cuts
the jointspace into two or more disconnected pieces. In one or more of such
pieces the Jacobian determinant is positive, and in one or more pieces it is
negative.

A simple example of serial singularity is shown in Figure 2.3. Serial
singularities are harmless for serial manipulators, however, crossing a serial
singularity means loosing the capability of moving the end-effector along
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Figure 2.3: End effector of different planar manipulators.

a particular direction, therefore it might be undesirable for some applica-
tions. Contrarily to some commonly given definitions, some examples (see
[8]) showed that serial singularities do not always occur for positions of the
end-effector on the boundary of the workspace. In fact, the image of a serial
singularity may be inside the workspace, too, and work as a wall, precluding
the possibility of following a given trajectory of the end-effector. Therefore,
it could be interesting to know whether a singularity-free path between any
two points in the jointspace exists or not, and in the first case to find it out.
Clearly, this question is strictly related to the number of disjoint regions into
which the jointspace is cut by the singularity locus.

Furthermore, it has long been believed (see [9]) that a serial singularity
must be crossed during any change of posture of a manipulator. Two dif-
ferent postures of a manipulators are two points of the jointspace with the
same image through f in the workspace, and a change of posture is a path
in the jointspace connecting two different postures of a manipulator. Many
researches pointed out that singularity-free posture changes of a serial manip-
ulators are possible, and provided significant examples (see [10], [11], [12]).
However, no general methods have been given to determine whether, given
any two postures, there exists a singularity-free posture change connecting
them or not.

2.1.2 Parallel Singularities

Parallel manipulators are often complex machines, composed of many links,
each of which can be connected to any number of other links through a
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proper number of joints. The field of application of parallel machines i still
much narrower than that of serial manipulators. The main advantages of
parallel manipulators is due to their closed-loop structure, which increases
stiffness and structural strength. Therefore they seem promising for appli-
cations such as light-weight space robots, high-precision machining tools or
high-speed pick-and-place machines, for they provide higher stiffness and
pay-load despite their lower weight. Unfortunately, the closed-loop structure
is also the main drawback of parallel robots, because it increases the com-
plexity of the kinematic model, the possibility of collisions between the links,
and the danger of loosing control of the machine.

Figure 2.4: A fully-parallel planar manipulator.

Analogously to serial manipulators, the end-effector can be defined also
for parallel manipulators, according to the specific task to be performed. The
rigid body upon which the end-effector is placed is the platform.

The huge variety of parallel manipulators demands a more restricted def-
inition, in order to bound the subject of this work:

Definition 2.1 A fully-parallel manipulator is a parallel machine such
that the platform is connected to the base through a number of serial kinematic
chains ( legs) equal to the number of degrees of freedom of the manipulator.
Furthermore, each serial leg contains one actuated joint only.

Similar definitions can be found in [13], [14]. The jointspace J and the
workspace W of a parallel manipulator can be defined, analogously to serial
manipulators, as the manifold containing the positions of all actuators and
the manifold containing all possible positions of the end-effector. We define
also the configuration of the manipulator as an ordered set containing the
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positions of all the rigid bodies of the manipulator. Then, the configuration
space can be defined as the manifold containing all the configurations of the
manipulator allowed by the constraints.

An example of fully-parallel planar manipulator is shown in Figure 2.4.
The task of the manipulator depicted in Figure 2.4 is to position the platform
in the plane, therefore the end-effector and the platform do coincide. The
workspace is the manifold containing all possible positions of a rigid body in
the plane. For every leg there is an actuated joint Qi, and the ordered sets
containing the positions of the three actuators are all points of the jointspace.
A configuration of the manipulator is a snapshot of the positions of all the
links: for example, Figure 2.4 is a configuration. The manifold containing
all possible snapshots like Figure 2.4, is the configuration space of the 3RRR
planar manipulator.

The configuration space of the fully-parallel manipulators that will be
analyzed can be described as the level set g−1(0) of a smooth function g :
J ×W → R . According to this definition, the configuration space is defined
as the points (Q,X) for which the ensuing equation holds:

g(Q,X) = 0 (2.4)

where Q is a point of the jointspace and X is a point of the workspace.
Clearly, the definition of the configuration space could be easily extended
to serial manipulators, too: in this case, the configuration space is easily
described by the jointspace itself.

The points (Q,X) of the configuration space such that there exists a
nonzero virtual displacement of the actuators, ∂Q, and a zero virtual dis-
placement of the end-effector, ∂X, which satisfy the constraints, i.e. produce
a zero variation of g, are named serial singularities. Indeed, the effect of serial
singularities is the same on parallel and serial manipulators, for they cause
in both cases a local loss of mobility of the end-effector.

The points (Q,X) of the configuration space such that there exists a
nonzero virtual displacement of the end-effector, ∂X, and a zero virtual dis-
placement of the actuators, ∂Q, which satisfy the constraints, i.e. produce a
zero variation of g, are named parallel singularities. At a parallel singularity,
small displacements of the end-effector along a certain direction are allowed,
even though all actuators are kept locked.

The effect of parallel singularities is much more dangerous than that of
serial singularities, for they might jeopardize the structural integrity of the
machine, or produce the loss of control of the platform. This hazard can be
understood by means of the principle of virtual work. If a proper set of forces
or torques w is applied to the end-effector, and a set of forces or toques t is
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applied to the actuated joints, then the manipulator is at equilibrium if and
only if the sum of the virtual works produced by w and t vanishes for any
virtual displacement in the configuration space, i.e.:

w · ∂X + t · ∂Q = 0 (2.5)

By the aforementioned definition, at a parallel singularity there exist two
virtual displacements ∂Xs and ∂Qs, of the end effector and of the joints
respectively, which are allowed by the constraints and such that ∂Xs 6= 0
and ∂Qs = 0. Along this particular displacements, Equation (2.5) becomes

w · ∂xs = 0 (2.6)

Figure 2.5: A fully-parallel planar manipulator.

If a set of actions w with a nonzero component along ∂Xs is applied
to the end-effector, the equilibrium is impossible and either the control of
the platform is lost, or in the worst case some of the components of the
machine are damaged. The set of actions w needs not to be an external
load applied to the platform: it might also be, by virtue of D’Alembert’s
principle, the set of inertial loads acting on the platform while operating along
a certain trajectory. It is therefore utterly important to avoid crossing parallel
singularities when moving a parallel manipulator from a position to another,
lest inertial or external loads might not be withstood by the actuators. An
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example of parallel singularity is depicted in Figure 2.5: the platform can
undergo infinitesimal horizontal translations even though all three actuators
are locked. An external horizontal force applied to the platform cannot be
balanced by any set of torques applied by the actuators.

If local coordinate systems (q1, . . . , qn) and (x1, . . . , xn) are defined in the
jointspace and in the workspace respectively, a virtual variation of Equation
(2.4) can be expressed as follows:

∂g(q,x) = A(q,x)∂q + B(q,x)∂x (2.7)

where A and B are the Jacobian matrices of g with respect to the coordinates
(q1, . . . , qn) and (x1, . . . , xn) respectively. Then, according to the previous
definitions, serial singularities occur for all points (q,x) of the configuration
space such that det A = 0, and parallel singularities occur for all points (q,x)
of the configuration space such that J(q,x) = det B = 0. This classification
is similar to that proposed in [22]. Analogous to serial singularities, if we
suppose that the Jacobian determinant J can be define as a smooth real-
valued function on the whole configuration space, also parallel singularities
are organized in a singularity locus, which is the zero level set J .

Many authors coped with the problem of avoiding parallel singularities.
The easiest way to tackle this problem is to reduce the configuration space
of the parallel manipulator, so that no parallel singularity lies inside the
configuration space. However, this solution is also the most burdensome one,
because it decreases the reachable space of the machine. An alternative way
to eliminate singularities from the configuration space is to add redundant
actuators to the manipulator (see, for example [15] and [16]), but this means
to increase the complexity of the machine, which might be undesired.

If none of the two previous solutions is viable and the configuration space
contains parallel singularities, there are only two possibilities left. The former
is to try to control the manipulator as it meets a singularity, by taking into
account the dynamics of the manipulator (as proposed in [17], [18], [19]).
The latter is to plan a singularity-free path in the configuration space ([20]
and [21]), given the starting and ending point of the path. Unfortunately,
to the author knowledge, the path-planning strategies available so far in the
literature are all local, which means that if they fail to find a singularity-free
path it is not sure that a singularity free path does not exist at all.

Obviously, the problem of singularity-free path-planning is strictly related
to the problem of identifying and characterizing the different disjoint regions
into which the configuration space is split by the singularity locus. As it
has just been pointed out in this Section 2.1, it will be supposed that the
singularity locus of a manipulator, either serial or parallel, can be defined
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through the zero level set of a smooth real-valued function J . In Section 2.3
a method capable of identifying the disjoint regions cut by the set J = 0 in
the configuration space of a parallel or serial manipulator will be presented.
The following section will first specialize to this extent the results of Chapter
1 to the number of disjoint regions composing a manifold.

2.2 Results about connectedness

Given a smooth real-valued function f on a smooth manifold M , we define,
analogous to the previous chapter, the set M a

− = f−1(−∞, a], and M a
+ =

f−1[a,+∞). Theorem 1.4 and Theorem 1.9 can be specialized as follows:

Theorem 2.1 If a < b and f−1[a, b] is compact and contains no critical
points of f , then M a

− is composed of the same number of disjoint regions as
M b
−, and M a

+ is composed of the same number of disjoint regions as M b
+

The proof immediately stems from Theorem 1.4, Theorem 1.9 and Theorem
1.2.

Analogously, by considering Theorem 1.3, Theorem 1.8 and Theorem 1.10
can be focused on the change of the number of disjoint regions produced by
critical points:

Theorem 2.2 Let P be a nondegenerate critical point of index k. Setting
f(P ) = c, suppose that f−1[c − ε, c + ε] is compact, and contains no critical
points of f other than P , for some ε > 0. Then, for all sufficiently small ε,
the set M c+ε

− has the same number of regions as M c−ε
− with a k-cell attached,

and the set M c−ε
+ has the same number of disjoint regions as M c+ε

+ with a
(n− k)-cell attached, where n is the dimension of M .

It is now necessary to understand the effect of attaching a k-cell on the
number of regions of a topological space. The first result is the following:

Theorem 2.3 If a k-cell is attached to a topological space X , then

• if k = 0, the number of disjoint regions of X is always increased by
one;

• if k 6= 0, the number of disjoint regions of X does not increase.

Theorem 2.3 can be proved as follows. The 0-cell has no boundary, there-
fore the image of the function g, used to glue the 0-cell, is empty. Recalling
Definition 1.19, the result of attaching the 0-cell to X is just the disjoint
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union of the two sets, which means that the 0-cell has generated a new dis-
joint region. Any other k-cell, with k greater than zero, has a boundary,
therefore, when the k-cell is attached to X at least one point C of the cell is
identified with one point X of X . Since the cell is connected, C is reachable
from any point of the cell, and, since C after the attachment coincides with
X, all points of the cell are contained in the same disjoint region of X, which
existed before the attachment of the cell.

Figure 2.6: Attaching a 1-cell to a topological space, may or may not decrease
by 1 the number of disjoint regions.

The ensuing result defines when the number of disjoint regions can de-
crease:

Theorem 2.4 If a k-cell is attached to a topological space X , then

• if the number of disjoint regions of X decreases, then it decreases by
1, and k = 1;

• if k 6= 1, the number of disjoint regions of X does not decrease.

Indeed, suppose the number of regions decreases after attaching the k-cell.
If so, after the attachment of the k-cell, there exists a continuous path going
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from a point of a region of X to a point belonging to another. This path
should start from the first point, enter the cell somewhere inside the first
region through the image of g, exit the cell inside the second region through
the image of g and reach the second point (see Figure 2.6). In order to allow
this path, the image of g must contain at least two points belonging to two
different disjoint regions, i.e. be disconnected. But the gluing function g is
required to be continuous, thus, if its domain is continuous, its image must
also be continuous, by virtue of Lemma 1.1. Any k-cell with k > 1 has a
continuous boundary, therefore the image of g must be continuous and the
number of cells cannot decrease.

If k = 1, then the number of disjoint regions may or may not decrease.
With reference to Figure 2.6, the 1-cell can be attached as a bridge between
two disjoint regions, connecting them, or as a handle to one disjoint region,
producing a hole. At any rate, the 1-cell can connect at most two disjoint
regions, because its boundary contains two points only.

A direct consequence of Theorem 2.3 and Theorem 2.4 is that the only
k-cells which can affect the number of disjoint regions are the 0-cell and the
1-cell. Any other k-cell is unable to change the number of disjoint regions of
a topological space, through the attachment.

2.3 Numerical Method

As pointed out in Section 2.1, two questions frequently arise when coping
with singularities, most of all with parallel ones:

• Given any two configurations of the manipulator, is it possible to con-
nect them through a singularity-free path?

• How many singularity-free disjoint regions do exist in the configuration
space?

In this section, a numerical procedure will be developed, capable of answering
these two questions.

It will be hereafter supposed that the configuration space C of a manip-
ulator is a smooth compact n-dimensional manifold. The singularity locus
will be supposed to be defined as the zero level set, J−1(0), of a smooth real
valued function J defined on C , which might be the Jacobian determinant,
as discussed in Section 2.1.

In order to visualize the proposed method, imagine that the graph of the
function J is plotted as a landscape upon the configuration space C . The
landscape can be imagined as partially covered with water and the level of
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Figure 2.7: Graph of the function J on C .

water is equal to zero. Figure 2.7 provides a lower-dimensional visualiza-
tion of this representation, where the manifold C is supposed to be two-
dimensional, and the graph of J is supposed to be a three-dimensional graph
on C . According to this representation, the shore-line is the singularity locus
J−1(0). The set C 0

+ = J−1[0,+∞) is the set containing the positive disjoint
regions, i.e. the disjoint regions composing C − J−1(0) where the function
J is positive, and is represented as the islands above the shore-line. The set
C 0
− = J−1(−∞, 0] is the set containing the negative disjoint regions, i.e. the

disjoint regions composing C − J−1(0) where the function J is negative, and
is represented as the region below the shore-line.

Since the function J is smooth, and is defined upon the compact manifold
C , there are an absolute maximum and an absolute minimum of J on C .
We can then imagine that the level of water is raised above the level of
the absolute maximum, until the whole landscape is completely flooded with
water. From this point, we imagine that the level of water a slowly decreases,
down to zero level, and we observe the evolution of the set C a

+ = J−1[a,+∞),
composed of the islands above the current water level.

Suppose now that the graph of J is similar to that depicted in Figure
2.8, with two nondegenerate maxima M1 and M2 and one nondegenerate
saddle point S. S is supposed to be a (n − 1)-saddle point, where n is
the dimension of the manifold C , and a k-saddle point is defined as a saddle
point with index k. If the water level a is higher than the level of the absolute
maximum M1, then the set C a

+ is empty. As soon as the water level reaches
the height of the highest peak, M1, an island crops out from the water. As
soon as a critical point of J is met, the number of disjoint regions composing
C a

+ changes. Before meeting the absolute maximum M1, C a
+ was empty: it
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Figure 2.8: The number of islands above the water is observed, while the
level of water decreases.

contained zero disjoint regions. After meeting the absolute maximum, the
number of disjoint regions composing it changes as if a k-cell were attached
to it . The maximum is a critical point of index n and the dimension of the
manifold C a

+ is also n, thus, k equals 0 (Theorem 2.2). By virtue of Theorem
2.3, if a 0-cell is attached to the set C a

+ one disjoint region is added, thus,
after passing the maximum the number of regions is 1.

Figure 2.9: The steepest ascent path starting from P determines the disjoint
region to which P belongs.

The level of water a keeps on decreasing: as long as it remains between
m1 and m2, the heights of the two maxima of Figure 2.8, the number of
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disjoint regions remains equal to 1, by virtue of Theorem 2.1. There exists
only one island above the water. As soon as the maximum M2 is reached,
another island appears and a new disjoint region of C a

+ is generated. Passing
the level m2 the number of disjoint regions changes as if another 0-cell were
attached to C a

+ for Theorem 2.2, thus the number of disjoint regions now
equals 2 for Theorem 2.3. The number of disjoint regions remains equal to 2
until the saddle point S is reached by virtue of Theorem 2.1. Consider a point
P of C a

+, with a contained in the open interval (s,m2). It is possible to assess
whether P belongs to the disjoint region generated by M1 or to the disjoint
region generated by M2. The steepest ascent path starting from P must reach
one of the two maxima M1 or M2: P belongs to the disjoint region generated
by the maximum point reached (see Figure 2.9). Thus, the maxima work as
labels for the disjoint regions: each disjoint region can be identified by means
of the maximum contained in it. The steepest ascent path is a path which
is tangent to the direction of the gradient at each of its points, and which is
oriented as the gradient. Such paths can also be viewed as the curve ϕt(P ) of
the 1-parameter group of diffeomorphisms generated in Section 1.3.3: every
point can be delivered through the diffeomorphism ϕt arbitrarily close to the
maximum which generated the disjoint region containing the point.

As soon as the level a reaches the height of the saddle point S, another
variation of the number of disjoint regions of C a

+ is expected. Since the index
of S is equal to n − 1, the number of regions composing C a

+ changes as if a
1-cell were attached to it. By virtue of Theorem 2.4, the number of regions
may be diminished by one or remain constant.

a) b)

Figure 2.10: A (n − 1)-saddle point may join two disjoint regions (a), or
produce a new hole (b).

In Figure 2.10, the two possibilities are shown. The boundary of C a
+

is drawn with thin solid line before meeting the saddle, with bold line at
the level of the saddle and with dashed line after having met the saddle.
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The maxima are represented as crosses, while the saddles are the ”touching
points” of the boundary of C a

+. Two disjoint regions may touch and join at
the saddle, as occurs in Figure 2.8, or a disjoint region may join with itself.
In the former case, the number of disjoint regions is diminished by 1. In
the latter, the topology of Figure 2.8 changes, because a hole appears after
meeting the saddle, but the number of disjoint regions remains constant. To
decide whether or not the number of disjoint regions has decreased, it is
necessary to find out to which one of the existing regions the saddle point
belongs. The method to reach this goal is identical to that proposed for
a noncritical point: the steepest ascent path is followed starting from the
saddle, until a maximum is reached. There are two different steepest ascent
path starting from a (n− 1)-saddle point (dotted lines in Figure 2.10): they
leave the saddle point along the direction of the eigenvector associated to the
positive eigenvalue of the Hessian matrix. If the steepest ascent paths reach
the same maximum (cross in Figure 2.10), then a region joins with itself,
and the number of regions remains constant (Figure 2.10b). If the steepest
ascent paths reach two different maxima, the regions generated by the two
maxima join together (Figure 2.10a).

To identify the new region generated by the joining, the maxima inside it
(in case of Figure 2.10a, the two maxima) can be used: the steepest ascent
path starting from any point inside the new disjoint region will lead to one
of its critical points. In some rather imprbable cases, such paths may lead
to the saddle point S: in such cases it is possible to follow any of the two
steepest ascent paths starting from the saddle point, in order to reach one of
the maxima contained in the new region.

From now on it is possible to proceed iteratively. Each maximum gener-
ates a new region, and each (n− 1)-saddle may connect two existing regions.
Following the two steepest ascent paths as for the first saddle, two maxima
are reached: if they belong to two different regions, such two regions have
joined. If the reached critical points belong to the same region, the number
of regions remains constant.

As the level a reaches the value 0, the number of regions that compose
C a

+ is determined. Each of these regions is provided with a set of maxima
that completely characterizes it. Furthermore, all the maxima are connected
to each other through a network of singularity-free paths.

Note that the singular critical points must not be considered: if the sin-
gular critical point is a maximum, an isolated singular point appears in the
jointspace, if it is a (n−1)-saddle point, two regions ”touch” on their bound-
ary, but no connection is established between them.

The critical points with indexes different from n or (n − 1) are ignored.
When such a critical point is met, a k-cell with k > 1 is attached to C a

+,
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Figure 2.11: The critical points with indexes different from n or (n− 1) are
ignored.

therefore, for Theorem 2.3 and Theorem 2.4, the number of regions remains
the same. Figure 2.11 shows an example for a two-dimensional manifold
C : in the neighborhood of a non-degenerate positive minimum point, the
graph of the function J looks like a bowl, because the value of J increases
for any small enough displacement starting from the minimum point. While
approaching the level of the minimum, a hole appears sooner or later in C a

+.
Passing the minimum, the effect on C a

+ is the same as if a rubber patch, a
2-cell, were attached to it. The hole is closed by the patch, but the number
of regions composing C a

+ does not vary, because the patch must be glued
along its boundary, which is connected, thus the patch cannot work as a
bridge between two disjoint regions. Recalling the analogy with landscape
and water, there is a lake on an island. As the level of water decreases, the
lake disappears, but the number of islands remains obviously the same.

If a degenerate critical point is met, it is not possible to know whether
the number of regions composing C a

+ is changing by means of the Hessian
matrix only. Higher derivatives have to be considered: the point might be a
maximum, thus a new region is born. Or it might be neither a maximum nor
a minimum and two or more regions could join together. Figure 2.12 shows
an example of a monkey saddle1, which joins three disjoint regions.

1The monkey saddle is for example the point (0, 0) for the function f(x, y) = −x3+3xy2.
The monkey saddle is usually depicted as in Figure 2.12, but with opposite sign, and the
name is due to the fact that its graph might be a good saddle for monkeys. Indeed, since
the monkey has the tail, it needs three sides of the saddle pointing downward, and only
the front side pointing upward.
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Figure 2.12: A monkey saddle joins three disjoint regions.

Of course, an analogous method can be used to count and identify the
number of regions composing C a

−, thus, at the end of this procedure, it is
possible to establish to which region any non-singular point belongs. Sum-
marizing the procedure, the following operations have to be performed:

1. Determine all the critical points of J . This is the toughest part of the
procedure, and will be developed according to the specific case at hand.

2. By studying the eigenvalues of the Hessian matrix of J , each critical
point is identified as a degenerate or nondegenerate critical point, and
the indexes of nondegenerate critical points are calculated.

3. The value of J is calculated at each critical point, in order to recognize
those belonging to C a

+, those belonging to C a
− and the singular ones. If

any nonsingular degenerate critical point is found, it is impossible to
proceed, for Morse theory does not hold anymore.

4. The maxima of C a
+ are sorted from the highest to the lowest, according

to the value of J . The same is done with the (n − 1)-saddles of C a
+,

while other critical points in C a
+ are ignored.

5. Starting from each positive (n−1)-saddle, the two steepest ascent paths
are followed, until they reach any of the maxima higher than the saddle.
All maxima belonging to the same region of the two reached maxima
are assigned to the same region. This operation is performed from the
highest to the lowest saddle point. The singularity-free steepest ascent
paths connecting the positive maxima are stored.
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6. The minima of C a
− are sorted from the lowest to the highest, according

to the value of J . The same is done with the 1-saddles of C a
−, while

other critical points in C a
− are ignored.

7. Starting from each negative 1-saddle, the two steepest descent paths are
followed, until they reach any of the minima lower than the saddle. All
the maxima belonging to the same region of the two reached maxima
are assigned to the same region. This operation is performed from the
lowest to the highest saddle point. The singularity-free steepest descent
paths connecting the negative minima are stored.

Figure 2.13: A singularity-free path between any two points in the same
disjoint region is always found.

At this point, given any two configurations P1 and P2 it is always possible
to find a singularity-free path connecting them, if it exists. The values of
J(P1) and J(P2) are calculated. If the sign of J(P1) is different from the
sign of J(P2), then there exists no singularity-free path between P1 and P2

because on any path J will vanish as its sign changes.
If J(P1) and J(P2) are both positive, then the steepest ascent paths start-

ing from P1 and P2 are generated. If the two paths reach maxima belonging
to two different positive disjoint regions, then there exists no singularity-free
path between P1 and P2. If the two reached maxima belong to the same dis-
joint region, then a singularity-free path between P1 and P2 can be obtained
by joining the two steepest ascent paths from P1 and P2 to the maxima, and
any path in the singularity-free network connecting the maxima (see Fig-
ure 2.13). An analogous method can be used if J(P1) and J(P2) are both
negative.



Chapter 3

Serial Manipulators

In this Chapter, the serial singularity loci of two types of serial manipulators
will be defined and analyzed by means of the numerical method proposed in
Chapter 2.

3.1 Spatial 3R regional serial Manipulators

Figure 3.1: A spatial 3R regional serial manipulator.

A spatial 3R regional serial manipulator (3R manipulator henceforth) is a
serial manipulator, composed of four rigid links, connected by three actuated
revolute pairs. The task of such 3R manipulators is to place a point, the end-
effector, in the three-dimensional Euclidean space (see Figure 3.1).

The serial singularity locus of 3R manipulators has been actively studied
in the last two decades, probably because such singularity locus can be writ-
ten as a relatively simple equation and can be easily visualized through a
two-dimensional representation. Nevertheless, the shape of such singularity
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locus is not trivial at all, which justifies a deeper search of a better geomet-
rical insight.

3.1.1 Jointspace and Workspace

Figure 3.2: Jointspace of a spatial 3R regional serial manipulator.

The points in the jointspace of a 3R manipulator are the ordered sets
containing the positions of the three actuated revolute joints. If the posi-

tion of the ith revolute joint is defined through the angle θi between the
two links connected by the revolute joint, then each triplet (θ1, θ2, θ3) iden-
tifies a set of positions of the actuators. Therefore, the jointspace of the
3R manipulator is homeomorphic to the set containing all possible triplets
of real numbers modulo 2π, for the angles θi and θi + 2π do coincide. The
jointspace is homeomorphic to the Cartesian product S1 ×S1 ×S1, where
S1 is the one-dimensional circle. This Cartesian product is a 3-torus, (see
[9]), and is homeomorphic to a three-dimensional cube, whose opposite faces
are identified. This cube is depicted in Figure 3.2: the triplets (θ1, θ2, θ3) are
plotted in the three-dimensional Euclidean space, and the cube represents
the region where all three variables are greater than −π and lesser that +π.
The opposite faces θi = −π and θi = +π identify the same points in the
jointspace, and therefore are ”glued” together, similar to the attachment of
k-cells in the previous chapters.

The workspace of 3R manipulators contains all the points of the three-
dimensional Euclidean space that can be reached by the end-effector, and
can be defined as the image of the aforementioned 3-torus through a proper
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function f . A global coordinate system (x, y, z) can be introduced in the
workspace of 3R manipulators, because it is a subset of the three-dimensional
Euclidean space. The function f which links each position of the end-effector
(x, y, z) to each point in the jointspace (θ1, θ2, θ3), can be found by means of
4× 4 homogeneous transformation matrices, first introduced by Denavit and
Hartenberg (see [23] and [24], Chapter 2).

Figure 3.3: DH-parameters of a rigid link.

First of all, a reference frame is attached to each rigid link of the manip-
ulator with two revolute joints. (see Figure 3.3). The axis zi of the reference

frame Si, attached to the ith link, is directed along the revolute joint closest
to the end-effector, and the axis xi is orthogonal to the axes of both revolute
joints of the link.

The reference frame Si−1 can be obtained from the reference frame Si by
means of the ensuing subsequent operations:

1. the reference frame Si is rotated about xi axis an angle αi, in order for
axes zi and zi−1 to become parallel;

2. the reference frame obtained at point 1 is translated along xi axis a
distance ai, in order for axes zi and zi−1 to coincide;

3. the reference frame obtained at point 2 is translated along zi−1 axis a
distance di, in order for the origins of the two frames to coincide;

4. the reference frame obtained at point 3 is rotated about zi−1 axis an

angle θi, the ith joint angle, which eventually superimposes the two
frames;
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Therefore the three link parameters ai,di, and αi and the joint angle θi com-
pletely define the relative position of two reference frames fixed upon two
adjoining links. The three aforementioned link parameters are usually named
Denavit-Hartemberg parameters (DH-parameters henceforth).

Figure 3.4: DH-parameters for 3R manipulators.

For 3R manipulators, two reference frames can be attached upon links
with two revolute joints, i.e. links 1 and 2, as discussed above. A reference
frame S0 is defined upon base link 0, so that the axis z0 is the axis of the first
revolute joint, the origin O0 lies upon axis x1. Whatever fixed axis normal
to z0 at O0 can be used to define x0.

A reference frame S3 is defined upon the last link 3, so that the origin O3

coincides with the end-effector, the z3 axis is parallel to the axis of the last
revolute joint, and the x3 axis is the normal line from O3 to z2.

Eventually, seven DH-parameters and three joint angles can be used to
characterize the relative position of the four reference frames S0, S1, S2, and
S3 , as shown in Figure 3.4 and summarized in Table 3.1.

The seven DH-parameters completely define the geometry of a 3R ma-
nipulator, whereas the three joint angles define its configuration.

The coordinate change from the frame Si to the frame Si−1 can be defined

by means of a 4× 4 homogeneous transformation matrix. If (xi, yi, zi, 1)T is
a vector containing the homogeneous coordinates of a point with respect to

frame Si, then the vector (xi−1, yi−1, zi−1, 1)T, containing the coordinates of
the same point with respect to Si−1 can be expressed as:
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Reference frames DH-parameters Joint angle
S1 → S0 a1, α1 θ1

S2 → S1 a2, d2, α2 θ2

S3 → S2 a3, d3 θ3

Table 3.1: DH-parameters defining the geometry of a 3R manipulator.


xi−1

yi−1

zi−1

1

 = A(i−1),i


xi
yi
zi
1

 (3.1)

The matrix A(i−1),i is a 4× 4 matrix, composed as follows:

A(i−1),i =

(
R(i−1),i ui−1(Oi)
0 0 0 1

)
(3.2)

where

• R(i−1),i is the 3×3 rotation matrix from frame Si, to frame Si−1, whose
columns are the directions cosines of the axes of Si with respect to the
axes of Si−1;

• ui−1(Oi) is the vector containing the coordinates of the origin Oi of Si
with respect to Si−1.

In terms of DH-parameters ai, di, αi, and of the joint angle θi, the matrix
A(i−1),i is can be written as follows:

A(i−1),i =


cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di
0 0 0 1

 (3.3)

where s and c are acronyms for sine and cosine.
The transformation matrix from end-effector frame S3 to base frame S0

is obtained as follows:

A0,3(θ1, θ2, θ3) = A0,1(θ1)A1,2(θ2)A2,3(θ3) (3.4)

Finally, the position of the end-effector related to three generic joint an-
gles is determined through matrix A0,3 as the coordinates (x, y, z, 1)T in



66 Serial Manipulators

frame S0 of the origin of frame S3, namely:
x
y
z
1

 = A0,3(θ1, θ2, θ3)


0
0
0
1

 (3.5)

From Equation (3.5) the function f such that

(x, y, z) = f(θ1, θ2, θ3) (3.6)

can be easily inferred. The image of the torus through such function also
defines the workspace of the 3R manipulator.

Equation (3.6) yields the unique solution to the direct kinematics prob-
lem. The inverse kinematics problem, i.e. the problem of finding all points in
the jointspace with the same given image in the workspace, can be reduced
to finding out all the roots of a fourth-order polynomial in one joint angle.
This solution will be omitted here, for more details see [25], annex 1.

3.1.2 Serial singularity locus

Serial singularities of 3R manipulators can be found by differentiating Equa-
tion (3.6):  ∂x

∂y
∂z

 = Qf (θ1, θ2, θ3)

 ∂θ1

∂θ2

∂θ3

 (3.7)

where Qf is the Jacobian matrix of f . Serial singularities are the configu-
rations of the manipulator where there exists a virtual displacement in the
jointspace which produces no virtual displacement of the end-effector. There-
fore, serial singularities are the points of the jointspace (θ1, θ2, θ3) such that:

J(θ1, θ2, θ3) = det Qf = 0 (3.8)

The function J can be written as follows (see also [26] and [9]):

J(θ2, θ3) = a3 (V1(θ3)cθ1 + V2(θ3)sθ2 + V3(θ3)) (3.9)

where:

V1(θ3) = m1c
2θ3 +m4sθ3cθ3 +m6cθ3 +m7sθ3

V2(θ3) = m2c
2θ3 +m3s

2θ3 +m5sθ3cθ3 +m8cθ3 +m9sθ3 (3.10)

V3(θ3) = m10sθ3cθ3 +m11cθ3 +m12sθ3
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and:

m1 = a3d2sα1sα2

m2 = a2a3cα1sα2

m3 = a2a3sα1cα2

m4 = a1a3cα1cα2sα2 − a2a3sα1

m5 = −a3d2sα1cα2sα2

m6 = a2d2sα1sα2 − a1d3cα1s
2α2

m7 = −a2
2sα1 (3.11)

m8 = d2d3sα1s
2α2 + a1a2cα1sα2

m9 = −a2d3sα1sα2

m10 = −a1a3sα1s
2α2

m11 = −a1d3sα1cα2sα2

m12 = −a1a2sα1

It is evident from Equation (3.9) that if a3 = 0 any position of the manipu-
lator is trivially singular. It will be hereafter assumed that a3 is equal to the
unit length, and that a1, a2, d2, and d3 are measured accordingly.

Figure 3.5: The singularity locus is an extruded surface along the θ1 generator
of the torus.

Equation (3.9) shows that the singularity locus can be expressed as the
zero level set of a smooth function J , defined over all the jointspace. Fur-
thermore, the function J does not depend on the first joint angle θ1. The
singularity surface can be obtained by extruding the section on plane θ2θ3
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along θ1 generator, as shown in Figure 3.5. Thus, the geometry of the sin-
gularity locus can be better studied and represented by considering only its
section through the plane θ2θ3, which completely characterizes it (see [25]).

Figure 3.6: The section of the jointspace through θ2θ3 plane is a two-
dimensional torus.

The section through θ2θ3 plane of the jointspace is a square with the
opposite sides identified. This is a representation of a two-dimensional torus,
cut along its two generators and laid flat on a plane, as shown in Figure
3.6. Since this work is focused on the topology of the singularity locus, the
2-torus described by the two angles θ2 and θ3 will be henceforth referred
to as the whole jointspace of the 3R manipulator. The singularity locus is
represented as a set of curves upon this 2-torus, which will be henceforth
named singularity curves.

Figure 3.7: Only a radial section of the workspace is considered.

The workspace of 3R manipulators is clearly a solid obtained by revolution
of a certain section about the axis of the first revolute joint. Since the image
of the singularity locus in the workspace is a revolute surface about the axis
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of the first revolute joint too, only a radial section of the workspace will be
henceforth considered. With reference to Figure 3.7, the radial section of the
workspace will be represented on a Cartesian plane, where the two axis z and
ρ represent the coordinate z and the distance from z0 axis of the end-effector,
respectively. Therefore ρ =

√
x2 + y2.

The singularity locus of 3R manipulators has been intensely studied, with
particular attention to the capability of changing posture along a singularity-
free path. In [27], [28], and [29] it was proved that a 3R manipulator can
change posture without crossing a singularity if and only if there are cusp
points in its workspace. Such manipulators were also named cuspidal manip-
ulators. A point of the workspace is a cusp if the inverse kinematics problem
admits three coincident solutions for such point. Cusps usually appear as
sharp corners of the image of the singularity curves in the workspace, as
depicted in Figure 3.7. The dynamics of the singularity-free posture change
has been analyzed and discussed in [30], [31], and [32].

However, no method was given to find out a singularity-free path between
any two postures of a manipulator, or to count and identify the singularity-
free regions in the jointspace. The general method derived in Chapter 2 has
been applied in [33] to 3R manipulators, and will be discussed in the next
Section.

3.1.3 Analysis of serial singularity locus for 3R manip-
ulators

With the same notation as in Chapter 2, the serial singularity locus of a
3R manipulator is defined as the zero level set of the smooth function J
on the configuration space, which coincides with the jointspace for serial
manipulators.

The first thing needed for the application of the method of Chapter 2
is all critical points of J on the 2-torus representing the jointspace, which
can be obtained by imposing that the gradient of J vanishes. The system of
equations ∇J = 0 can be written as follows:

(
∂J/∂θ3

∂J/∂θ2

)
=

(
V ′1(θ3) V ′2(θ3)
V2(θ3) −V1(θ3)

)(
cθ2

sθ2

)
=

(
−V ′3(θ3)

0

)
(3.12)

where V ′1(θ3), V
′
2(θ3) and V ′3(θ3) are the first derivatives of V1(θ3), V2(θ3), and

V3(θ3) with respect to θ3.

The sine and cosine of θ2 are immediately obtained from Equation (3.12),
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if V ′1V1 + V ′2V2 6= 0: (
cθ2

sθ2

)
=

1

V ′1V1 + V ′2V2

(
−V ′3V1

−V ′3V2

)
(3.13)

By summing up the squares of the sine and cosine of θ2 and subtracting 1, a
polynomial equation in the only joint angle θ3 is obtained:

(V ′1V1 + V ′2V2)
2

= (V ′3)
2
(
V 2

1 + V 2
2

)
(3.14)

It can be easily checked that Equation (3.14) stems from Equation (3.12) also
under the hypothesis V ′1V1 + V ′2V2 = 0. Therefore, all values of θ3 at critical
points are always solutions to Equation (3.14). If the sine and cosine of θ3 are
replaced in Equation (3.14) by their expressions in function of the tangent of
θ3/2, Equation (3.14) becomes a polynomial of degree sixteen in the tangent
of θ3/2. At most sixteen different values of θ3 are expected at critical points,
which can be easily found numerically at any desired precision.

The unique value of θ2 corresponding to each θ3 is found through Equation
(3.13), if V ′1V1 + V ′2V2 6= 0. If V ′1V1 + V ′2V2 = 0 there are three possible cases:

1. V1 = V2 = V ′3 = 0, with the following sub-cases:

• V ′1 = 0 and V ′2 = 0. In this particular case any value of θ2 satisfies
Equation (3.12): a horizontal line of critical points is found. Since
Theorem 1.7 states that nondegenerate critical points are always
isolated, these points must be all degenerate. If J 6= 0 at one of
these points the algorithm must stop.

• V ′1 6= 0 and V ′2 = 0: θ2 = ±π/2 , two critical points are found.

• V ′2 6= 0: tan θ2 = −V ′1/V ′2 , two critical points are found.

2. V1 = V2 = 0 and V ′3 6= 0. Equation (3.12) reduces to the first equation
only, that can be easily solved leading to zero, one or two critical points.

3. V 2
1 + V 2

2 6= 0 and V ′3 = 0. Equation (3.12) reduces to two equivalent
equations, and at least one of the coefficients of the second never van-
ishes. The second equation can be solved in a similar way as the last
two sub-cases of case 1, bringing two critical points.

Therefore, there are at most sixteen real solutions θ3 of Equation (3.14)
where V ′1V1 + V ′2V2 6= 0, for which there is only one value of θ2 such that
(θ2, θ3) is a critical point. For each real solution θ3 of Equation (3.14) where
V ′1V1 + V ′2V2 = 0 there can be zero, one, two or infinite critical points. If
there are infinite critical points, they are all degenerate. If V ′1V1 + V ′2V2 = 0
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at a solution θ3 of Equation (3.14), then its multiplicity must be greater than
one, for the first derivative of Equation (3.14) vanishes. Thus there can be
at most eight solutions θ3 of Equation (3.14) which identify two different
nondegenerate critical points. This proves that, at any rate, there can be at
most sixteen nondegenerate critical points of J upon the 2-torus.

By differentiating the gradient of J , the Hessian matrix at critical points
can be easily calculated, therefore all critical points are classified according
to their index, and subdivided into positive or negative according to the value
of J .

Positive maxima and negative minima generate positive and negative re-
gions respectively. On the other hand, negative maxima and positive minima
shall be ignored, because they produce the attachment of 2-cells, unable to
change the number of regions.

In this particular case, the dimension n of the jointspace is two, therefore
any saddle point is both a 1-saddle and and a (n−1)-saddle point at the same
time. Indeed, the positive saddle points glue the boundaries of the positive
regions, whereas the negative saddles glue the boundaries of the negative
regions.

The steepest ascent paths can be constructed by subsequent displace-
ments along the direction of the gradient. Starting from the 1-saddles, two
first small displacements are performed along the direction of the eigenvec-
tor corresponding to the positive eigenvalue of the Hessian matrix. The next
point of each path is found by adding a small displacement along the direc-
tion of the gradient to the previous point. Before continuing with another
displacement, two failsafe checkups are performed: it is ascertained that the
value of J always increases along the path, and it is ascertained that the
direction of the gradient does not undergo angular variations greater than
a given threshold, which would mean that a critical point has already been
passed. If the two failsafe checkups are both positive, then the second point
is accepted, and the length of the next displacement is increased. If one
of the two failsafe checkups yields negative response, then the next point is
rejected, and the displacement is repeated with a shorter length. The pre-
sented algorithm is rather stable and it never occurred that it failed to track
steepest ascent paths.

After each small displacement, it is checked that any of the maxima of J
is closer than a given threshold. If this control is positive for one maximum,
then such maximum is reached. The same can be done for steepest descent
paths.
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3.1.4 Examples

Some numerical examples of application of the proposed method will be
hereafter presented.

Consider the manipulator M1, whose DH-parameters are reported in Ta-
ble 3.2.

a1 a2 a3 d2 d3 α1 α2

4 2 1 0 3 −80◦ −80◦

Table 3.2: DH-parameters of manipulator M1

The critical points and the steepest ascent paths are found as discussed
above. The positive critical points are one maximum M1, two saddles S1 and
S2 and a minimum N1. In Figure 3.8, the positive maximum is depicted as
a cross, the positive saddles as stars, the positive minimum as a circle, and
the steepest ascent paths as dash-dotted lines.

Figure 3.8: Positive critical points of manipulator M1.

Since the jointspace is two-dimensional in this case, the level sets of the
Jacobian determinant can be easily plotted, in order to verify the procedure
proposed in Chapter 2. Figures 3.9, 3.10, and 3.11 show the evolution of
the level sets while the level decreases. A new region is generated at the
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a) b)

Figure 3.9: The maximum generates the positive region.

a) b)

Figure 3.10: The two saddles glue the boundary of the positive region, pro-
ducing two holes.
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maximum M1 (Figure 3.9), the two saddles glue the boundary of the level
set producing two holes (Figure 3.10), and the minimum N1 closes one of
such gaps.

a) b)

Figure 3.11: The minimum closes one hole.

Figure 3.12: Negative critical points of manipulator M1.

The negative critical points are reported in Figure 3.12, there are only
one saddle and one minimum. Thus, since there is only one maximum and
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one minimum of J for manipulator M1, there are one positive region and
one negative region in its jointspace. All points with the same sign of the
Jacobian determinat can be connected by singularity free paths. In order to
find such paths, it is sufficient to follow the steepest ascent paths for positive
points, and the steepest descent paths for negative points, which always lead
to the absolute maximum or to the absolute minimum respectively.

Figure 3.13: Positive critical points of manipulator M2.

The second example is manipulator M2, defined by DH-parameters re-
ported in Table 3.3.

a1 a2 a3 d2 d3 α1 α2

0.4 0.8 1 0.4 0.04 90◦ 90◦

Table 3.3: DH-parameters of manipulator M2

The positive critical points and the steepest ascent paths connecting them
are shown in Figure 3.13. There are three maxima M1, M2, and M3, and
one saddle point S. The steepest ascent paths starting from S reach the two
maxima M1 and M2, which are joined, whereas maximum M3 generates a
separate positive region. Thus we know that there are two positive regions,
with no need of plotting them: Figure 3.13 shows a hypothetical singular
boundary enclosing the two positive regions.
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Consider now the three points P1 = (−2.5rad, 1rad) , P2 = (1rad, 3rad)
and P3 = (2rad,−2.1rad), where J is positive. The steepest ascent paths
starting from P1, P2, and P3 lead to the maxima M1, M2, and M3 respectively.
The steepest ascent paths and the three points are reported in Figure 3.13.
Therefore P1 and P2 belong to the same disjoint region, and can be connected
by a singularity-free path. A singularity-free path from P1 to P2 is obtained
by joining the steepest ascent paths from P1 to M1, from the saddle S to
M1 and M2, and from P2 to M2.

1 On the other hand, since P3 belongs to
another positive disjoint region, it is not possible to reach P1 or P2 starting
from P3 without crossing a singularity.

Figure 3.14: Singularity curves of manipulator M2.

The results just obtained can be easily verified by plotting the singularity
curves, as shown in Figure 3.14.

The analysis of the negative critical points shows that there are four
minima, all connected through a network of steepest descent paths starting
from six negative saddles (Figure 3.15). Therefore there is only one nega-
tive disjoint region, and all points with negative Jacobian determinant can

1The first joint angle θ1 is not considered, because, as already discussed, it does not
affect the singularity locus. If the values of θ1 were different at points P1 and P2, it would
be possible to find a singularity-free path by using the proposed path for the last two
angles, and a simple linear interpolation between the two values of θ1 at P1 and P2 for the
first.
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Figure 3.15: Negative critical points of manipulator M2.

be connected through singularity-free paths. Consider for example the two
negative points P4 = (−1, 2) and P5 = (0,−2.8). The steepest descent path
connecting P4 and P5 to two minima can be calculated (dotted lines in Figure
3.15). It is now necessary to find a path connecting the two minima, but in
this case there are many possibilities, since the steepest descent paths con-
necting the saddles to the minima compose a rather complicated network. If
paths with no loops are searched for, the following procedure can be used.
Starting from one of the two minima, all the ”nearby” saddles are found,
i.e. the saddles that are directly connected by a steepest descent path to the
minima, and the paths connecting the saddles to the minimum. From this
saddles, another steepest descent path starts, leading to other minima. If
one of these minima is the one to be reached, the path followed is a possible
connecting path, if not, the same procedure is repeated for it. If, during these
procedure, one of the minima has already been reached before, the path is
discarded, because a loop has been completed. In the case of these two points
this procedure finds out six different paths without loops. Two of them are
shown in Figure 3.16.

The two manipulators M3 and M4, whose DH-parameters are reported in
Tables 3.4 and 3.5, show the effect of singular critical points on the singularity
curves.

The positive critical points and the singularity curves of manipulators
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a) b)

Figure 3.16: Two possible singularity-free paths connecting two negative
points in the jointspace.

a1 a2 a3 d2 d3 α1 α2

3.886172281172819 2 1 0 3 80◦ −80◦

Table 3.4: DH-parameters of manipulator M3

a1 a2 a3 d2 d3 α1 α2

3 1 1 0 3 −60◦ 60◦

Table 3.5: DH-parameters of manipulator M4
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M3 and M4 are shown in Figure 3.17. In the jointspace of M3 there is an
isolated critical point2, the maximum M2, which obviously does not produce
the generation of a new positive region. Manipulator M4 features a singu-
lar saddle point S1, where the boundaries of two positive regions ”touch”,
without joining.

a) b)

Figure 3.17: Two manipulators M3 (a) and M4 (b) with singular critical
points.

The proposed method is unable to analyze a manipulator, if J has a de-
generate non-singular critical point. Such manipulators are very rare, but not
impossible: Figure 3.18a, shows manipulator M5 with a degenerate critical
point. The negative degenerate critical point D is reached by the steepest
descent path starting from the negative saddle S2, but at the same time
a steepest descent path should connect it to the minimum N2. It can be
proved3 that any function can be approximated by a function with no de-
generate critical points. In most of cases an approximating function can be
searched by means of a slight perturbation of the DH-parameters. This can
be done if the manipulator has no singular critical points: in this case it is
possible to slightly perturb its geometry, preserving all topological proper-
ties of its singularity locus4. In Figure 3.18b the manipulator M5 has been

2This example proves that isolated singular points, or one-dimensional singularity loci
if angle θ1 is considered, do exist. By adding the continuity of J for manipulator M3, this
disproves what stated in [26] at page 83.

3In [5], corollary 6.8, it is proved that any function on a manifold that can be embedded
in a Euclidean space can be uniformly approximated through functions with non-generic
critical points

4In other words, the manipulator is generic, as defined in [34], and recalled in Section
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a) b)

Figure 3.18: (a) A manipulator M5 with a degenerate nonsingular critical
point D; (b) a manipulator M6 without degenerate critical points obtained
by perturbing M5

slightly perturbed, obtaining manipulator M6: the degenerate critical point
disappears, splitting into the minimum N3 and the saddle S3, nevertheless
the topology of the singularity locus remains almost the same. The DH-
parameters of manipulators M5 and M6 are reported in Table 3.6 and Table
3.7.

a1 a2 a3 d2 d3 α1 α2

1/3 5/6 1 0 0.5 100◦ −29.81375632659814◦

Table 3.6: DH-parameters of manipulator M5

a1 a2 a3 d2 d3 α1 α2

2/3 5/6 1 0 0.5 100◦ −30◦

Table 3.7: DH-parameters of manipulator M6
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Figure 3.19: A manipulator with 16 critical points of J , DH-parameters
a1 = 1/12, a2 = 1/2, a3 = 1, d2 = 2/15, d3 = 1/12, α1 = 90◦, and α2 = −90◦.

3.1.5 Upper-bound for number of singularity-free re-
gions

An upper-bound can be found for the number of singularity-free disjoint
regions of 3R manipulators, by exploiting the maximum number of critical
points of the function J upon the jointspace. This upper-bound will be
searched for manipulators with nondegenerate critical points only. Section
3.1.3 has proved that there can be at most 16 nondegenrate critical points
of J . Figure 3.19 shows the singularity curves of a 3R manipulators with 16
critical points of J .

First, the disjoint regions where J is positive are considered, together with
its singular boundary. Each of such positive regions is a compact set, and J is
continuous, therefore each positive region must contain at least a maximum
and a minimum of J , by virtue of Weierstraß theorem. The minimum is
located on the singular boundary, where J = 0, and in general is no critical
point of J on the torus. On the other hand, the maximum must be located
inside the positive region, and must be one of the 16 critical points of J on
the torus. The torus is a compact set, thus there must be also a minimum

3.1.6.
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of J on the torus, which must be a critical point of J . Thus there can be at
most 15 maxima of J on the torus, i.e. at most 15 positive regions.

Suppose that there were 15 maxima and one minimum of J upon the
torus. According to the hints of Morse theory recalled in Chapter 1, the two
torus would be homotopy equivalent to a CW-complex composed of 15 0-cells,
and one 2-cell. This is impossible, because the torus would be composed of 15
disjoint regions, according to Theorem 2.3, whereas the torus is a connected
manifold. By virtue of Theorem 2.4, a 1-cell is always needed to attach two
disjoint regions, therefore, if there existed 15 maxima, there should also be 14
positive or negative saddles on the torus, in order to connect the 15 regions
generated by the maxima, which is still impossible, because it would exceed
the maximum number of 16 nondegenerate critical points. This leads to the
conclusion that there can be at most 8 maxima on the jointspace, because
there must also be 7 saddles, in order for the disjoint regions generated by
the maxima to be joined.

When a 1-cell is attached to two 0-cells in such a way that the two 0-
cells are joined, the two 0-cells are identified with the boundary of the 1-cell,
therefore the result is again a 1-cell. All cell are contractible to a single point,
therefore, when two 0-cells are attached through a 1-cell, the result is one
single 0-cell. If there where 8 positive maxima and 7 saddles, the 8 maxima
would generate 8 0-cells, that would be progressively attached in pairs by the
seven saddles, leading to one single 0-cell. This would imply that the torus
would be homotopy equivalent to a CW-complex composed of one 0-cell and
one 2-cell, i.e. a sphere, which is not true.

The Betti numbers of the torus are 1, 2, 1, 0, 0, ..., as reported in Table
1.1, therefore, according to Morse inequalities, recalled in Section 1.3.5, at
least two 1-cells are needed to build a two-dimensional torus. There can be
at most 7 maxima, 6 saddles to join them into one single connected piece, 2
saddles to generate the two holes of the torus, and 1 minimum to close the
surface.

This implies that there can be no more than seven singularity-free disjoint
regions with the same sign of the Jacobian determinant, if there are only non-
degenerate critical points. If there are seven positive singularity-free regions,
there can be at most one negative singularity-free region, because there can
be at most one minimum. For each negative singularity-free region that is
added, one minimum must replace a maximum, and the saddle which is not
needed to join the removed positive region is needed to join the new negative
one. Therefore there cannot be more than 8 singularity-free regions at all, if
there are only nondegenerate critical points.
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3.1.6 Homotopy classes

a) b)

Figure 3.20: Two manipulators obtained through small perturbations of ma-
nipulator M4 with a singular saddle point

Päı and Leu introduced in [34] the important notion of generic manipu-
lator. Generic manipulators have the property that the topological features
of their singularity surfaces are preserved under small perturbations of the
DH-parameters.5 They proved that a 3R manipulator is generic if and only
if there exist no points in the jointspace where

J = 0

∇J = 0 (3.15)

In other words, a manipulator is generic if all its critical points are nonsin-
gular. A 3R manipulator is said nongeneric otherwise. The gradient of J is
normal to any level-set of the function J . If a 3R manipulator is generic, the
normal vector to the singularity curve, which is a level-set of the function J , is
always defined. Therefore also the tangent to the singularity curve is defined,
i.e. the singularity curve is smooth. Neither corners nor self-intersections are
allowed for the singularity curve of a generic 3R manipulator. An exam-
ple of nongeneric manipulator is manipulator M4, whose DH-parameters are
reported in Table 3.4 and whose singularity curves are depicted in Figure
3.17. M4 features a self-intersection of the singularity curves, which are not

5The definition of genericity is based upon the concept of transversal manifolds, whose
intersections are stable under small perturbations of the manifolds themselves. For further
details see [36] and [34].
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smooth. If a small perturbation (±0.1 degrees) is applied to the value of
DH-parameter α1, M4 turns into a generic manipulator, but the topological
properties of its singularity locus change. With reference to Figure 3.20, if
the singular saddle becomes negative, a bubble detaches from the singularity
curve, generating a positive disjoint region, whereas if the singular saddle
becomes positive, the bubble is glued to the rest of the singularity curve, and
the positive disjoint region disappears.

In [26], Burdick proposed a classification method for generic 3R manipu-
lators, based on the ensuing concepts. A closed loop on the 2-torus J repre-
senting the jointspace can be defined as a univariate function f : [a, b]→J
such that f(a) equals f(b). The set of closed loops can the be subdivided in
equivalent classes of homotopic loops, according to Definition 1.4.

The singularity curve of a generic 3R manipulator can be subdivided into
disjoint regions, according to Definition 1.14. The disjoint regions composing
the singularity locus were named branches in [26]. Since the branches com-
posing the singularity curve of generic 3R manipulators are always closed,
they can be considered as the image of closed loops on the jointspace. Two
generic 3R manipulators are then said homotopic if their singularity curves
are homotopic. This definition is the base of the classification proposed in
[26]: homotopy is an equivalence relation and subdivides the set of generic 3R
manipulators into different classes of homotopic manipulators. Non-generic
manipulators lie on the boundary of such classes in the space of all 3R ma-
nipulators, as the example of Figure 3.20 shows.

Figure 3.21: A 1(0,0)+2(1,0) manipulator.

It can be proved that two closed loops on a torus, and therefore two
branches on the jointspace, are homotopic if and only if they wrap the same
number of times around the two generators of the torus. Each branch can
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be identified through a couple of integers (n2, n3): n2 (respectively n3) rep-
resents the number of times the branch encircles the torus along the θ2-
(respectively θ3-) generator. In Figure 3.21 an example is shown: on the left
the singularity curve is represented on the torus, in order to show how the
branches encircle it, while on the right the singularity curve is represented on
the square obtained by cutting the torus along its generators. In Figure 3.21
the singularity curve is composed of two branches of homotopy class (1,0),
that encircle the torus once along θ2-generator, and one (0,0) branch, that
encircles no generators at all. Thus the manipulator of Figure 3.21 belongs
to the homotopy class 1(0,0)+2(1,0).

Only quaternary manipulators, which have four inverse kinematic solu-
tions at some positions of the end-effector in the workspace, were consid-
ered in [35], where it was stated that only eight homotopy classes of quater-
nary generic 3R manipulators can exist, namely 1(0,0), 2(0,0), 1(0,0)+2(1,0),
2(1,0), 4(1,0), 2(0,1), 2(1,1), and 2(2,1). In [37] a manipulator has been pre-
sented that belongs to a new homotopy class. Such a manipulator will be
hereafter presented and discussed.

In Figure 3.22 the three-dimensional kinematic sketch of the manipulator
M7, defined by the set of DH-parameters reported in Table 3.8, is shown.
The center of the sphere represents the end-effector, i.e. the point to be
positioned in the workspace.

a1 a2 a3 d2 d3 α1 α2

1.178 0.339 1 0.32 0.67 1.55rad -1.124rad

Table 3.8: DH-parameters of manipulator M7

M7 is a generic 3R manipulator, and Figure 3.23a shows the singularity
curve in the jointspace of M7. It can be easily verified that M7 belongs to the
homotopy class 2(0,0)+2(1,0) which is not included among the eight classes
enumerated in [35].

Figure 3.23b shows the workspace, with the same representation dis-
cussed in Section 3.1.1. The cross in Figure 3.23b indicates the position
P = (0.26, 0, 0) of the end-effector in the workspace. The four crosses in Fig-
ure 3.23a represent the projections on a θ2θ3-plane of the inverse kinematic
solutions pertaining to P . The numbers in Figure 3.23b indicate the num-
ber of inverse kinematic solutions inside each region separated by the image
of the singularity surface. The region with four inverse kinematic solutions
that does not contain P is very narrow, yet it has non-zero volume. The
four branches in the jointspace have been identified trough letters b′1, b

′
2, b

′
3,
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Figure 3.22: Manipulator M7.

Figure 3.23: M7 is a 2(0,0)+2(1,0) manipulator.
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b′4 in Figure 3.23a, while the respective images of the four branches in the
workspace have been named b1, b2, b3, b4 in Figure 3.23b.

The manipulator M7 features two properties that no manipulator belong-
ing to the eight classes already found in [35] exhibits. First, although M7 has
four singularity-free disjoint regions, there is a different number of inverse
kinematic solutions in each region, also for those points of the workspace
reachable through four postures. On the contrary, the generic 3R manipula-
tors with four disjoint regions found in [35] have one solution per singularity-
free disjoint region.

In particular, one singularity-free disjoint region contains two inverse kine-
matic solution, while another contains none. This leads to the second prop-
erty: the manipulator is capable of non-singular posture changes, because
two postures lie in the same disjoint region, and is therefore cuspidal, as
proved in [27]. Indeed, in the four points of the jointspace C ′1, C

′
2, C

′
3, C

′
4,

marked with circles in Figure 3.23a, there are three coincident inverse kine-
matic solutions, therefore their images in the workspace (C1, C2, C3, and C4

respectively) are cusp points (see [27]). Thus, M7 disproves Theorem 9 of
[35], which states that a generic quaternary 3R manipulator is non-cuspidal
if and only if it has four disjoint regions.

The manipulator [35] has been found through a random automatic search.
The manipulator [35] has three singularity-free disjoint regions in its jointspace,
where the Jacobian determinant J has the same sign (the two regions en-
closed by the two (0,0)-branches and the band-shaped region enclosed by
the two (1,0)-branches that does not contain the (0,0)-branches), while all
the already known generic manipulators have at most two. The procedure
developed in this work has been used to analyze a large number of randomly
generated manipulators, until a manipulator with more than two singularity-
free disjoint regions where the sign of the Jacobian determinant is the same
has been found.

Theorem 7 of [35] states that a (0,0)-branch may either appear alone,
together with an additional (0,0)-branch, or with two (1,0)-branches. By
virtue of Theorem 7, the existence of manipulators like M7 was excluded in
[35]. To prove Theorem 7, the fact that there can be at most four inter-
sections between a θ3-generator and the singularity curve was exploited, for
Equation (3.9) can be written as a fourth order polynomial in the tangent
of θ3/2. Analogously, it can be proved that there can be at most two inter-
sections between a θ2-generator and the singularity curve. But Figure 3.23a
shows that 2(0,0)-branches and 2(1,0)-branches can coexist without exceed-
ing four intersections with any θ3-generator and two intersections with any
θ2-generator.

Theoretically, any number of (0,0)-branches could coexist, if they were
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Figure 3.24: Any number of (0,0)-branches can coexist with two (1,0)
branches.

only limited by the number of intersections with the generators of the torus,
as shown in Figure 3.24. It will be hereafter proved that the singularity curve
of a generic 3R manipulator can be composed of at most four branches of
any kind, thus Figure 3.24 cannot represent the singularity curve of a generic
3R manipulator.

Wenger [35] proved that only five homotopy types of branches are allowed
for generic 3R manipulators, namely (0,0), (1,0), (0,1), (1,1) and (2,1). He
proved also that if there is a (0,1)-, a (1,1)- or a (2,1)-branch then there must
be only two branches of the same homotopy type. The problem is therefore
to establish how many (0,0)- and (1,0)-branches can coexist.

Both (0,0)- and (1,0)-branches are compact subsets of the torus. It is
easy to see that there always exists a θ2-generator that does not intersect
any (0,0)- or (1,0)-branches, for any generic manipulator. This stems from
the fact that any θ2-generator can intersect the singularity curve at most
twice, and that the singularity curves of generic manipulators are always
smooth. It will be assumed that the origin of the angle θ3 is such that the
equation θ3 = π defines a θ2-generator that does not intersect any (0,0)- or
(1,0)-branches. It is now possible to define a function f : J → R that
associates to each point of the torus its θ3-coordinate. The function f is
not continuous upon the torus, but, according to the just defined origin for
θ3, the restriction of f upon any (0,0)- or (1,0)-branch is always continuous.
By virtue of Weierstraß theorem, there must be at least a maximum and a
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minimum of f upon any (0,0)- or (1,0)-branch. The problem is to establish
how many critical points of the function f(θ2, θ3) = θ3 can exist upon the
constraint J(θ2, θ3) = 0.

f and its constraint are smooth, because the manipulator is generic, thus
the critical points of f can be found by means of Lagrange’s multipliers. The
critical points satisfy the condition:

J = 0
λ∂J/∂θ2 = 0
λ∂J/∂θ3 = 1

(3.16)

Figure 3.25: The tangent of the singularity curve is parallel to θ2-generator
at solutions of Equation (3.16).

A geometric interpretation can be given to Equation (3.16): its solutions
are points of the singularity curve where the tangent is parallel to the θ2-
generator. In Figure 3.25 the solutions to Equation (3.16) are marked: it
can be checked that each (0,0)- and (1,0)-branch must contain at least two
solutions of Equation (3.16).

If Lagrange’s multiplier λ vanished, the third equation of Equation (3.16)
could not be satisfied, thus λ can be simplified in the second equation. θ2

can be eliminated from the first two equations, yielding the ensuing equation
in θ3:

V1(θ3)
2 + V2(θ3)

2 − V3(θ3)
2 = 0 (3.17)
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Equation (3.17) can be written as an eighth order polynomial in the tan-
gent of θ3/2, thus there can be 2,4,6,8 or infinite real solutions to Equation
(3.17), counting each solution with its multiplicity. Suppose there exist infi-
nite real solutions to Equation (3.17). If V3 vanished at each of the infinite
real solutions, also V1 and V2 would have to, and the manipulator would be
nongeneric, for J would be constantly equal to zero. Thus there must exist
one of the infinite solutions to Equation (3.17), θ∗3, such that V3(θ

∗
3) does

not vanish. The first two equations of Equation (3.17) yield the ensuing
equations: {

−V3(θ
∗
3) cos θ∗2 = V1(θ

∗
3)

−V3(θ
∗
3) sin θ∗2 = V2(θ

∗
3)

(3.18)

where θ∗2 is the value of θ2 that satisfies Equation (3.17) along with θ∗3. If
there are infinite solutions to Equation (3.17), the left hand side of Equation
(3.17) must be identically equal to zero, and its derivative must be identically
equal to zero too. By substituting Equation (3.18) into the derivative of
Equation (3.17), one can obtain:

−V3(θ
∗
3)

 ∂V1

∂θ3

∣∣∣∣∣
θ∗3

cos θ∗2 +
∂V2

∂θ3

∣∣∣∣∣
θ∗3

sin θ∗2 +
∂V3

∂θ3

∣∣∣∣∣
θ∗3

 =

= −V3(θ
∗
3)

∂J

∂θ3

∣∣∣∣∣
(θ∗2 ,θ

∗
3)

= 0 (3.19)

where ∂/∂θ3|P is the derivative with respect to θ3, computed at the point
P .

Equations 3.19 and 3.16 imply that both J and its gradient vanish at
the point (θ∗2, θ

∗
3), i.e. the manipulator is nongeneric. There can be at most

eight points satisfying Equation (3.16), because there cannot exist infinite
real solutions to Equation (3.17) without contradicting the hypothesis of
genericity of the manipulator. Therefore, at most four of such branches can
coexist, because each (0,0)- and (1,0)-branch must contain at least two points
satisfying Equation (3.16). This also proves that generic manipulators cannot
have more than four singularity-free disjoint regions with the same sign of
the Jacobian determinant, and, by analyzing all classes that have not yet
been excluded, not more than five singularity-free disjoint regions at all.

Wenger proved that (1,0)-branches must appear in pair or sets of four
(theorem 6 of [35]), thus all the classes containing (1,0)-branches have already
been found. Two other possibilities remain, namely 3(0,0) and 4(0,0), but
the author has been so far unable to prove that they are to be excluded.
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Figure 3.26: A manipulator of class 2(0,0)+2(1,0) can have two positive and
two negative disjoint regions.

Manipulators of class 2(0,0)+2(1,0) may also have two positive and two
negative singularity-free disjoint regions, unlike M7 which possesses three
disjoint regions with the same sign of the Jacobian determinant. None of
such manipulators has been found so far, but Figure 3.26 shows a possible
example.

On the other hand, 3(0,0) and 4(0,0) manipulators, if any existed, should
possess three and four disjoint regions with the same sign of the Jacobian
determinant. Indeed, each (0,0)-branch cuts two regions on the torus: one is
homotopically contractible to a point, the other not. Inside the region con-
tractible to a point there can be no other singular points, lest the two allowed
intersections with a θ2-generator are exceeded. Therefore, any other (0,0)-
branch must be inside the region which is not contractible to a point, and
such region is cut by any other (0,0)-branch into two more regions, one con-
tractible, and one not. If there are only n (0,0)-branches, they cut the torus
into n contractible regions, all surrounded by one region, not contractible.
Therefore, all n contractible regions cut by (0,0)-branches must have the op-
posite sign with respect to the noncontractible region, as shown in Figure
3.27.

Several hundred thousands randomly generated 3R manipulators have
been analyzed, but the only manipulators with more than two singularity-
free disjoint regions with the same sign of the Jacobian determinant that
have been found are like M7.
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Figure 3.27: Manipulators of class 3(0,0) or 4(0,0) should have three or four
singolarity-free disjoint regions with the same sign.

3.2 6R Manipulators

3.2.1 Singularity locus

6R manipulators are analogous to 3R manipulators, but they have six rev-
olute joints, and their aim is to position a rigid body, the end effector, in
the three-dimensional space. Figure 3.28 shows an example of a general 6R
manipulator.

Analogously to 3R manipulators, the jointspace is homeomorphic to a
6-torus, obtained by the Cartesian product of the six one-dimensional circles
S, representing the positions of the six revolute joints, and parameterized
through six joint angles θi. However, unlike 3R manipulators, the workspace
is not in general homeomorphic to a subset of a Euclidean space, therefore it
is impossible to find a global coordinate system for the workspace. Indeed,
the workspace is a subset of the manifold containing all possible positions of
a rigid body in the three-dimensional Euclidean space. This manifold can
be represented as the Cartesian product of the three-dimensional Euclidean
space, containing the position of one point of the end-effector, and the three-
dimensional projective space, containing all possible orientations of the end-
effector.

In order to define the singularity-locus as the level set of a smooth func-
tion on the jointspace, it is not convenient to differentiate the function f ,
that links each point in the jointspace with the corresponding position of
the end-effector in the workspace. In fact, in order to write such function,
a parameterization of the position of the end-effector would be needed, but
any possible parameterization of the orientation of a rigid body either con-
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Figure 3.28: A 6R manipulator. The rigid links are numbered from 0 to 6.

tains itself singularities, which are not singular positions of the manipulator,
or needs redundant parameters tied by means of proper equations, which
increases the complexity of the problem. This is a direct consequence of the
fact that the manifold containing all orientations of a rigid body and the
three-dimensional Euclidean space are not homeomorphic, and therefore no
global system of coordinates can be found.

Probably, the smartest way for computing the Jacobian matrix of a 6R
manipulator is the screw-based Jacobian, proposed by Waldron et al.(see [38],
[39], [40] and [24], pp.193-195 ). This geometrical method will be hereafter
recalled,without mentioning explicitly the idea of screws. For more details
about screws, see for example [41].

If a three-dimensional Cartesian reference frame (x, y, z) is chosen, then
a local coordinate system for the position of a rigid body can be defined, in
order to identify all possible virtual displacements of the rigid body from a
given position. We can consider the point of the rigid body that in the given
position coincides with the origin of the reference frame, and identify the
displaced position of such point through a vector (∂x, ∂y, ∂z). Any virtual
variation of the orientation of the rigid body can be identified through the
vector (∂ξ, ∂η, ∂ζ), containing the virtual rotations around the axes x, y,
and z of the chosen reference frame. Therefore, once a proper reference
frame is chosen, the vector (∂x, ∂y, ∂z, ∂ξ, ∂η, ∂ζ) completely defines a virtual
displacement of the end-effector of a 6R manipulator.
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In this local coordinate frame, it is possible to write the virtual displace-
ment of the end-effector in function of the six virtual variations of the six
joint angles θi: 

∂x
∂y
∂z
∂ξ
∂η
∂ζ


= D



∂θ1

∂θ2

∂θ3

∂θ4

∂θ5

∂θ6


(3.20)

where D is the Jacobian matrix of the manipulator. The virtual displace-
ments of the end-effector can also be viewed as the sum of the displacements
produced by the variation of each joint angle alone, with all other actua-
tors locked. This is equivalent to splitting the vector-matrix product on the
right-hand side of Equation (3.20) as a linear combination of the columns of
D through the coefficients ∂θi, i.e.:



∂x
∂y
∂z
∂ξ
∂η
∂ζ


=

6∑
i=1

Si∂θi (3.21)

where Si are the columns of the Jacobian matrix.

Figure 3.29: Determination of the ith-column of the Jacobian matrix.

In order to find Si, we suppose that ∂θj = 0, for j 6= i, i.e. all actuators

but the ith are locked. With reference to Figure 3.29, by choosing a generic
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fixed reference frame S, it is easy to see that:

∂x
∂y
∂z
∂ξ
∂η
∂ζ


=

(
u

u× (O − P )

)
∂θi = Si∂θi (3.22)

where u is a three-dimensional vector containing the components of the

unit vector directed along the axis of the ith revolute joint, P is a generic

point on the axis of the ith revolute joint, and O is the origin of the frame
S.

The optimal choice for the reference frame S, is a fixed frame which coin-
cides in the actual configuration of the manipulator with Denavit-Hartenberg
frame (see Figure 3.3) attached to one of the middle links of the manipulator,
such as link number 4 of Figure 3.28. This frame will be named S4

Figure 3.30: The DH-frame attached to link 4 is the optimal choice.

Referring to Figure 3.30, the vector u, if expressed in the DH reference

frame attached to the (i − 1)th link, is equal to (0, 0, 1)T. Therefore, the
components ui−1 of u in S4 can be obtained as:

(
ui−1

0

)
= A4,(i−1)


0
0
1
0

 (3.23)

where A4,(i−1) is the 4× 4 homogeneous transformation matrix between the
DH-frames attached to links (i− 1) and 4. A4,(i−1) can be obtained as:

A4,(i−1) = A4,5 . . .A(i−3),(i−2)A(i−2),(i−1) if (i− 1) > 4



96 Serial Manipulators

A4,i = A−1
3,4 . . .Ai,(i+1)A

−1
(i−1),i if i < 4 (3.24)

A4,4 = I

where matrices A(i−1),i have already been defined in Equation (3.3). Analo-
gously, the vector (O4 −Oi−1) in frame S4 can be obtained as

(
(O4 −Oi−1)

1

)
= A4,i−1


0
0
0
1

 (3.25)

with these two vectors, the ith column of the Jacobian matrix Si is expressed
in the reference frame S4 as

Si =

(
ui−1

ui−1 × (O4 −Oi−1)

)
(3.26)

By composing the six column obtained in this way, the Jacobian matrix of a
generic 6R manipulator is obtained, and the Jacobian determinant J can be
easily calculated.

It can be easily seen (see [10], [11], [12]) that J does not depend on the
first and the last joint angles θ1 and θ6. Furthermore, the sines and cosines of
θ2 and θ5 appear with degree one in J , and the sines and cosines of θ3 and θ4

appear with degree two. Therefore, the singularity locus depends only upon
four angles, and can be viewed as a locus on a 4-torus.

The critical points of J on the 4-torus can be found by imposing that the
gradient of J vanishes. Unfortunately, unlike 3R manipulators, no general
elimination method has been found to solve this problem. In some particular
simple cases, the critical points can be found by means of ad hoc elimination
methods, but in the most general cases only homotopy continuation method
is able to tackle the problem. In Section 3.2.2 a couple of examples thereof
are reported.

3.2.2 Examples

Without loss of generality, we can suppose that the reference frame S0, at-
tached to the base has the origin on the axis x1 of the reference frame attached
to the first link, and that the reference frame on the end-effector S6 has the
same origin and z-axis as the reference frame attached to link 5. According
to these simplifications, fourteen DH-parameters are necessary to identify
the geometry of a general 6R manipulator. Indeed, the six coordinate trans-
formations from S6 to S0 can be completely defined through the fourteen
DH-parameters and the six joint angles summarized in Table 3.9
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Figure 3.31: 6R manipulator M8.

Reference frames DH-parameters Joint angle
S1 → S0 a1, α1 θ1

S2 → S1 a2, d2, α2 θ2

S3 → S2 a3, d3, α3 θ3

S4 → S3 a4, d4, α4 θ4

S5 → S4 a5, d5, α5 θ5

S6 → S5 θ6

Table 3.9: DH-parameters defining the geometry of a 6R manipulator.
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The first example is manipulator M8, defined by DH-parameters reported
in Table 3.10 and shown in Figure 3.31.

a1 a2 a3 a4 a5 d2 d3 d4 d5 α1 α2 α3 α4 α5

1 1 1 0 1 1 1 1 0 90◦ 90◦ 0 90◦ 90◦

Table 3.10: DH-parameters of manipulator M8

The Jacobian determinant of manipulator M8 is equal to:

J = −c3 c4 s2 s4 − c32 c4 s2 s4 − c4 s2 s3 s4 − c4 s2 s3
2 s4 − c3 s2 s4

2+
+s2 s3 s4

2 − c2 c3 c42 s5 − c2 c32 c4
2 s5 − 2 c3 c4

2 s2 s5 + c4
2 s3 s5+

+c2 c4
2 s3 s5 + c3 c4

2 s3 s5 + c2 c3 c4
2 s3 s5 + 2 c4

2 s2 s3 s5−
−c2 c3 s4

2 s5 − c2 c32 s4
2 s5 − 2 c3 s2 s4

2 s5 + s3 s4
2 s5 + c2 s3 s4

2 s5+
+c3 s3 s4

2 s5 + c2 c3 s3 s4
2 s5 + 2 s2 s3 s4

2 s5

(3.27)

where ci and si stand for the cosine and sine of θi respectively.
By imposing that the gradient of J vanishes, the ensuing four equations

are obtained, whose solutions are the critical points of J :

− c2 c3 + c2 c3 c4
2 + c2 s3 − c2 c42 s3 − c2 c4 s4−

−c2 c3 c4 s4 − c2 c4 s3 s4 − 2 c2 c3 s5 + c3 s2 s5+

c3
2 s2 s5 + 2 c2 s3 s5 − s2 s3 s5 − c3 s2 s3 s5 = 0 (3.28)

−c3 c4 s2 s4 + c4 s2 s3 s4 + c3 s2 s4
2 + s2 s3 s4

2−
−s5 − c2 s5 + c3 s5 + c2 c3 s5 + 2 c3

2 s5 + 2 c2 c3
2 s5+

+2 c3 s2 s5 + c2 s3 s5 + 2 c2 c3 s3 s5 + 2 s2 s3 s5 = 0 (3.29)

−s2

(
−1− c3 + 2 c4

2 + 2 c3 c4
2 − s3 + 2 c4

2 s3+

+2 c3 c4 s4 − 2 c4 s3 s4) = 0 (3.30)

−c5
(
c2 c3 + c2 c3

2 + 2 c3 s2 − s3 − c2 s3−
−c3 s3 − c2 c3 s3 − 2 s2 s3) = 0 (3.31)

The critical points can be found exploiting the fact that the last two equa-
tions can be factored. In particular, the ensuing cases have to be considered:

• s2 = c5 = 0, in this case the last two equations are satisfied, and
the values for θ3 and θ4 can be found from the first two equations by



3.2 6R Manipulators 99

replacing the tangents of half angles and by means of Sylvester dialytic
elimination method (see Section 5.1);

• c5 = 0, s2 6= 0 , in this case it can be easily seen that J vanishes,
therefore none of these points has to be considered;

• c5 6= 0, s2 = 0, in this case Equation (3.28) and Equation (3.29) are
linear in c2 and s2, that can be easily eliminated; Equation (3.30) is
already free of c2 and s2, therefore a set of two equations in the tangents
of half θ3 and θ4 can be obtained, and solved through Sylvester dialytic
elimination method.

• c5 6= 0, s2 6= 0 , in this case the first equation yields immediately s5 as
a function of the other variables, c2 and s2 can be eliminated from the
second and the fourth equation, whereas the third equation contains
only variables θ3 and θ4; in this way two equations in the tangents of
half θ3 and θ4 can be obtained, and solved as in the previous point.

In this way 128 nonsingular critical points of J on the 4-torus are obtained
for M8. Of these critical points, 8 are positive maxima, 10 are negative min-
ima, 44 are positive 3-saddles and 46 are negative 1-saddles. The remaining
20 critical points shall not be considered, because their index does not pro-
duce any generation or attachment of regions.

By analyzing the steepest ascent paths, all maxima turn out to be con-
nected through steepest ascent paths starting from the positive 3-saddles.
Analogously, all minima are connected through steepest descent paths start-
ing from the negative 1-saddles. Therefore there is only one positive singularity-
free disjoint region and one negative singularity-free disjoint region in the
jointspace of M8

The second example is manipulator M9, with DH-parameters summarized
in Table 3.11, and depicted in Figure 3.32.

a1 a2 a3 a4 a5 d2 d3 d4 d5 α1 α2 α3 α4 α5

2 1 3 3 2 2 3 1 4 1.1rad 1.3rad 2.1rad 0.8rad 2.9rad

Table 3.11: DH-parameters of manipulator M9

For manipulator M9 no elimination method has been found to determine
all critical points. Therefore it is necessary to resort to homotopy continu-
ation method, which is the only numerical method able to find in any case
all solutions to a system of polynomial equations. Homotopy continuation
method and its application to this problem are better detailed in Section
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5.2. In case of manipulator M9, 1120 finite solutions have been found, 140 of
which are real solutions, i.e. critical points of the function J .

Among these critical points there are 6 positive maxima, 6 negative min-
ima, 37 positive 3-saddles, 33 negative 1-saddles, and 58 critical points unable
to produce generation or attachment of new regions. Also in the case of M9,
all maxima are connected by a network of steepest ascent paths, and all min-
ima are connected by a network of steepest descent paths, therefore there
is only one positive singularity-free region and one negative singularity free
region in the jointspace of M9.

Figure 3.32: 6R manipulator M9.



Chapter 4

Parallel Manipulators

In this Chapter, some examples of application of the method proposed in
Chapter 2 to parallel manipulators will be presented. As discussed in Chapter
2, the serial singularities are harmless for parallel manipulators, and will
therefore be ignored. On the other hand, parallel singularities might produce
the loss of control of the platform, and therefore are to be avoided. Therefore,
the proposed method will be used to find out safe paths free of parallel
singularities, and to count and identify the parallel-singularity-free regions
in the configuration space of parallel manipulators.

4.1 Spherical Wrists

The analysis of the partition induced by the parallel singularity locus on the
workspace of some classes of spherical wrists was presented in [42], and will
be discussed in this section.

4.1.1 3UPS Spherical wrists

Spherical wrists are manipulators whose task is to position a rigid body with
a fixed point. Thus, by moving the actuators, the orientation of the platform
is varied. 3UPS spherical wrists devise a simple parallel architecture to reach
this target, which is depicted in Figure 4.1.

A 3UPS spherical wrist is composed of a platform, connected to the base
by a spherical joint, and three legs, composed of two rigid bodies connected
through a prismatic joint. The three legs are connected to the base and to the
platform by means of a spherical joint and a universal joint. The universal
joint could possibly be replaced by a spherical joint, but the legs would gain
a passive rotational degree of freedom which might be undesired.
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Figure 4.1: A 3UPS spherical wrist.

Let S and S ′ be two reference frames, attached to the base and to the
platform respectively, and with the origin in the center of the spherical joint
between the platform and the base. Let the three points P1, P2, and P3, be
the centers of the joints between the base and the legs, and the three points
Q1, Q2, and Q3 be the centers of the joints between the platform and the
legs. The kinematic architecture of any 3UPS wrist is identified by the three
vectors p1, p2, and p3, containing the coordinates of points P1, P2, and P3

relative to frame S, along with the three vectors q1, q2, and q3, containing
the coordinates of points Q1, Q2, and Q3 relative to frame S ′.

3UPS spherical wrists were first studied in [43], where the direct kine-
matics problem was solved. In [44], an alternative elimination method for
the solution of the direct kinematics was proposed. In [45] the singularity
locus of 3UPS spherical wrists was studied, and a representation method was
proposed. However in the following sections a completely different parame-
terization and visualization will be adopted.

4.1.2 Configuration space

The workspace of a 3UPS spherical wrists contains all possible orientations
of the platform. According to Euler theorem, any possible orientation of a
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rigid body with a fixed point can be obtained from a given reference position
of the body by performing a rotation of an angle θ about an axis directed as a
unit vector u and containing the fixed point. Therefore, adopted a reference
position where frames S ′ and S coincide, any orientation of the platform can
be defined by way of a unit vector u and an angle θ. The orientations of the
platform associated to u and θ, and to −u and −θ always coincide, thus the
variation range of the angle θ can be restricted to the interval [0, π].

Figure 4.2: Visualization of the workspace of a spherical wrist.

A possible visualization of the workspace can be obtained by considering
a ball of radius π in the three-dimensional Euclidean space. With reference
to Figure 4.2, every point P inside the ball represents the orientation of the
platform identified by the unit vector directed as the position vector of P ,
and by the angle θ equal to the length of the position vector of P . Thus, every
orientation of the platform with an angle θ lesser than π corresponds to only
one point inside the ball, whereas any orientation with θ = π is identified by
two diametrically opposite points on the boundary sphere of the ball.

Analogous to the torus for the jointspace of serial manipulators, the
workspace of a wrist is thus homeomorphic to a ball in the three-dimensional
space, where any two diametrically opposite points on the boundary sphere
are indeed the same point. For instance, with reference to Figure 4.3, a path
starting from a point A to a point B of the ball can exit the ball on a point of
the boundary sphere and enter back again through a diametrically opposite
point.

It is useful to introduce a more homogeneous parameterization of the
orientation of a rigid body, i.e. Euler parameters, which will enable an easier
determination of the critical points of the Jacobian determinant. We consider
the vector e, containing the four parameters (e0, e1, e2, e3) defined as follows:
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Figure 4.3: Diametrically opposite points on the boundary sphere are iden-
tified.

e0 = cos
θ

2

e1 = u1 sin
θ

2
(4.1)

e2 = u2 sin
θ

2

e3 = u3 sin
θ

2

where u = (u1, u2, u3). It is easy to see that, since u is a unit vector:

e20 + e21 + e22 + e23 = 1 (4.2)

Moreover, e0 is always not lesser that zero, because 0 ≤ θ ≤ π, and, if e0 is
equal to zero, the vectors e and −e represent the same orientation of the plat-
form. Therefore the workspace is homeomorphic to a half three-dimensional
sphere in the four-dimensional Euclidean space, where the diametrically op-
posite points on the cutting plane are identified.

Eventually, it is evident from Euler parameterization that any any ori-
entation of the platform can be bijectively associated to a direction in R4,
which means that the workspace of a wrist is homeomorphic to the three-
dimensional projective space P3, whose points are the equivalence classes of
proportional vectors in R4.

Each point of the jointspace can be identified via the three length of the
legs, i.e. the three distances li between points Pi and Qi of Figure 4.1. There-
fore, the jointspace is always a subset of the three-dimensional Euclidean
space, whose points can be identified by the vector l = (l1, l2, l3).
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Figure 4.4: Constraints of the spherical wrist through Carnot theorem.

The vector (l1, l2, l3, e0, e1, e2, e3) can be used to identify a configuration
of the parallel wrist, yet, not any such vector determines an allowed config-
uration of the wrist, for three constraints must be satisfied. The equations
expressing these constraints are derived by means of Carnot theorem ap-
plied to the three triangles PiOQi, as shown in Figure 4.4. For each of such
triangles one can write the constraint:

l2i = pTi Rqi i = 1, 2, 3 (4.3)

where R is the rotation matrix ruling the coordinate change from S ′ to S,
whereas pi and Rqi are the column vectors containing the coordinates of
points Pi and Qi in the fixed frame S.

The rotation matrix can be written as a quadratic function of the four
Euler parameters, according to the following equation:

R =

 1− 2e22 − 2e23 2(e1e2 − e3e0) 2(e1e3 + e2e0)
2(e1e2 + e3e0) 1− 2e21 − 2e23 2(e2e3 − e1e0)
2(e1e3 − e2e0) 2(e1e0 + e2e3) 1− 2e21 − 2e22

 (4.4)

Equation (4.3) represents a set of three quadratic equations in Euler param-
eters and leg lengths. If only positive leg lengths are accepted, which indeed
does not exclude any configuration of the wrist, there is only one set of leg
lengths for any orientation of the platform. Thus, the workspace alone can
be used to represent the whole configuration space of the wrist.
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4.1.3 Singularity Locus

In order to determine the singularity locus of the 3UPS spherical wrist, Equa-
tion (4.3) is differentiated:

A

 ∂l1
∂l2
∂l3

 = B


∂e0

∂e1

∂e2

∂e3

 (4.5)

where A and B are the Jacobian matrices of Equation (4.3) with respect
to leg lengths and Euler parameters respectively. Note that B is a 3 × 4
rectangular matrix.

Moreover, not any virtual variation of Euler parameters is allowed, for
Equation (4.2) must hold for first order variations too. Thus, differentiation
of Equation (4.2) yields the ensuing constraint upon the virtual variations of
Euler parameters:

e0∂e0 + e1∂e1 + e2∂e2 + e3∂e3 = 0 (4.6)

If Equation (4.6) and Equation (4.5) are put together, the ensuing relation
is obtained:

(
A

0 0 0

) ∂l1
∂l2
∂l3

 =

(
B

e0 e1 e2 e3

)
∂e0

∂e1

∂e2

∂e3

 (4.7)

Parallel singularities occur whenever a nonzero virtual displacement of the
platform is allowed by the constraints, although the actuators undergo no
virtual displacements. This implies that the determinant of the matrix at
the right-hand side of Equation (4.7) vanishes. Thus the parallel singularity
locus is defined as the zero level set of a function J on the configuration
space, which contains all possible orientations of the platform. The function
J can be obtained as:

J = det

(
B

e0 e1 e2 e3

)
(4.8)

Each element of matrix B is linear and homogeneous in the four Euler
parameters, therefore J is a fourth-order homogeneous polynomial in the
four Euler parameters. The singularity locus J = 0 can be represented as a
two-dimensional surface cutting the workspace, as schematically depicted in
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Figure 4.5. In the next section, the method developed in Chapter 2 will be
used to determine how many parallel-singularity-free regions are partitioned
by the singularity locus, and to find out whether it is possible or not to reach
a desired position in the workspace without crossing a parallel singularity.

Figure 4.5: The singularity locus can be represented as a surface in the
workspace.

4.1.4 Analysis of Singularity Locus

The toughest and most important task is the determination of all critical
points of the function J on the configuration space, which coincides in this
case with the workspace. For the case at hand, a redundant parameterization
is used, because the four Euler parameters, tied by Equation (4.2), identify
a point of the three dimensional manifold containing all possible orientation
of a rigid body.

The most straightforward way to tackle the problem is to resort to La-
grange’s multipliers. At the critical points of J the gradient of J is parallel
to the gradient of the constraint, formalized by Equation (4.2), i.e.:

∂J/∂e0 = λe0

∂J/∂e1 = λe1

∂J/∂e2 = λe2 (4.9)

∂J/∂e3 = λe3

where λ is Lagrange multiplier. λ can be easily eliminated considering the
ensuing equation-set:

(∂J/∂e1) e0 − (∂J/∂e0) e1 = 0
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(∂J/∂e2) e0 − (∂J/∂e0) e2 = 0 (4.10)

(∂J/∂e3) e1 − (∂J/∂e1) e3 = 0

Equation (4.10) has been obtained by Equation (4.9) by multiplying the ith

equation by ej and by subtracting the result from the product of the jth

equation by ei, with a proper choice of i and j.
Equation (4.10) is set of three homogeneous fourth-order polynomial

equations, in the four Euler parameters. Each solution in the projective
space of such equation, when properly normalized, is set of Euler parameters
defining a critical point of J on the workspace, except some extraneous solu-
tions introduced while passing from Equation (4.9) to Equation (4.10). Such
extraneous solutions are obtained when e0 or e1 are posed equal to zero. If
e0 = 0 Equation (4.10) becomes:

(∂J/∂e0) = 0

(∂J/∂e0) = 0 (4.11)

(∂J/∂e3) e1 − (∂J/∂e1) e3 = 0

where the first two equations degenerate into the same one. Therefore, Equa-
tion (4.11) is a set of two homogeneous equations, the first of degree three
and the second of degree four, in three unknowns. By virtue of Bezout theo-
rem, Equation (4.11) admits 12 solutions, which are extraneous solutions to
Equation (4.9), that does not admit, in general, solutions with e0 = 0.

Analogously, if e1 = 0, Equation (4.10) degenerates into the two ensuing
equations

(∂J/∂e1) = 0

(∂J/∂e2) e0 − (∂J/∂e0) e2 = 0 (4.12)

that yield twelve extraneous solutions, too.
Equation (4.10) is a set of three homogeneous equations of degree 4,

therefore, by virtue of Bezout theorem, it admits 43 = 64 solutions in the
complex projective space. Since 24 solutions are extraneous for Equation
(4.9), there are 40 solutions to Equation (4.9), and the real ones are critical
points of J .

Such forty solutions can be obtained by partial homogenization. First
of all, Equation (4.10) is transformed into a non homogeneous system of
equations, by posing e0 = 1. In this way, any homogeneous solution with e0 =
0 becomes a solution at infinity, included the twelve extraneous solutions.
Then, Equation (4.10) is partially homogenized, by posing e2 = x1/x0 and
e3 = x2/x0, and by simplifying the denominators. In this way, Equation
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(4.10) becomes a system of three homogeneous equations of degree four in
the three variables x1, x2, and x0, where variable e1, that has been left out
of partial homogenization, is hidden in the coefficients. Variables x1, x2, and
x0 can be got rid of by means of classical elimination methods, as recalled in
Section 5.1, obtaining a polynomial in the hidden variable e1.

Coming from a homogeneous equation set that should have 64 solutions,
the resultant polynomial should be of degree 64. However, since the homo-
geneous equation set always possesses 12 solutions with e0 = 0, the resultant
polynomial must have at least 12 solutions at infinity, and its degree will be
at most 52.

Furthermore, since there are always twelve extraneous solutions with
e1 = 0, the resultant polynomial will be divisible by the monomial e12

1 . By
dividing the resultant by e12

1 , a final equation of degree 40 is obtained, that
is completely purged from extraneous solutions.

The polynomial of degree 40 is solved numerically, and the values of e2
and e3 corresponding to each solution in e1 are found as recalled in Section
5.1. The values obtained are homogeneous solutions with e0 = 1. In order
to obtain the four Euler parameters identifying the orientation of the rigid
body, the four values just obtained must be normalized, so that Equation
(4.2) is satisfied. Should there be any critical point with e0 = 0, this would
be another solution at infinity to the resultant polynomial, whose degree
would be lesser than 40. In this case, the loss of a solution is easily detected
by the loss of one degree of the final polynomial, and the lost solution can
easily be found by substituting e0 = 0 into Equation (4.9).

In this way, all 40 complex solutions to Equation (4.9) are found, and
the real ones are the critical points of the function J . These critical points
must be classified into maxima, minima, 1-saddles and 2-saddles. In order to
perform the classification, a local coordinate system could be chosen, and the
Hessian matrix could be calculated and analyzed. However, this is not the
most straightforward way to proceed, for the parameterization used hence-
forth is redundant, and represents no local coordinate system. A method to
determine the type of critical points with a redundant parameterization is
the Hessian matrix of Lagrangian equation, also called sometimes bordered
Hessian, which will be hereafter briefly recalled. For further details see for
example [46].

Lagrange multipliers made it possible to determine the critical points of
J under the constraint defined by Equation (4.2). Lagrange multipliers are
based upon the intrinsic property that, at a critical point, the first order
increment of the function J along any direction contained in the tangent
space of the constraint must vanish. In other words the gradient of J must
be parallel to the gradient of the constraint.
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At the same way, it is possible to analyze the second order variations of J
in the neighborhood of a critical point. The maximum increase and maximum
decrease directions of the second order approximation of the function J are
searched for, in the tangent space of the constraint. A maximum will then be
a critical point where there are no steepest increase directions in the tangent
space of the constraint, a 1-saddle is a point where there is one steepest
decrease direction and two steepest increase directions, and so forth.

Let ẽ be a set of Euler parameters defining a critical point of J . Let c be
defined as:

c(e) = e20 + e21 + e22 + e23 − 1 (4.13)

Thus c = 0 defines the constraint under which the critical points have been
found.

Figure 4.6: Small displacement from the critical point.

Suppose now that a small displacement a is performed on the constraint,
starting from the critical point ẽ. The displaced point ẽ + a must belong to
the constraint, too, thus the ensuing equation holds:

c(ẽ + a) = 0 (4.14)

The displacement a can be decomposed into a first order displacement, a1,
and a higher order displacement a2, as shown in Figure 4.6. The first order
displacement a1 is the projection of a onto the tangent space of the constraint,
therefore the ensuing condition holds:

aT1∇c = 0 (4.15)
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Furthermore, only displacements with the same arbitrary small length l
will be considered, therefore all displacements are constrained by the ensuing
condition:

aTa− l2 = 0 (4.16)

If only infinitesimals up to the second order are considered, Equation (4.16)
becomes:

a1
Ta1 − l2 = 0 (4.17)

The increment of the function J along the displacement a is approximated
up to the second order, as follows:

∆J(a) = J(ẽ + a)− J(ẽ) = aT2 ∇f |ẽ +
1

2
aT1 H|ẽ a1 (4.18)

where ∇f |ẽ and H|ẽ are the gradient and the 4 × 4 Hessian matrix of J
at the critical point ẽ, obtained by differentiating J with respect to all four
Euler parameters.

Equation (4.14) can be approximated up to the second order, obtaining:

c(ẽ + a1 + a2) = aT2 ∇c|ẽ +
1

2
aT1 Hc|ẽ a1 = 0 (4.19)

where ∇c|ẽ and Hc|ẽ are the gradient and the Hessian matrix of the con-
straint with respect to the four Euler parameters.

Since ẽ is a critical point, the ensuing relation holds:

∇f |ẽ = λ ∇c|ẽ (4.20)

By composing Equations 4.19 and 4.20, one obtains:

aT2 ∇f |ẽ = −λ1

2
aT1 Hc|ẽ a1 (4.21)

By inserting Equation (4.21) into Equation (4.18), the ensuing expression
for the increment of J is derived:

∆J(a1) =
1

2
aT1 (H|ẽ − λ Hc|ẽ) a1 (4.22)

The steepest increase and decrease directions, in the neighborhood of the
critical point ẽ, can be found as the critical points of the function ∆J(a1),
under the constraints defined by Equations 4.15 and 4.17, which impose that
the first order components lie in the tangent space, and that the displace-
ments have equal lengths. Lagrange multipliers method is again the most
suited tool to tackle the problem, yielding the ensuing equations:
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∇a1(∆J) = (H|ẽ − λ Hc|ẽ) a1 = αa1 + β ∇c|ẽ (4.23)

where ∇a1 is the gradient calculated with respect to the first order compo-
nents of the displacement vector a.

Equation (4.23) can be rewritten as follows:

(H|∗ẽ − αI∗) a∗ = 0 (4.24)

where:

• H|∗ẽ is the bordered Hessian, built as follows:

H|∗ẽ =

(
(H|ẽ − λ Hc|ẽ) − ∇c|ẽ
− ∇c|Tẽ 0

)
(4.25)

If the Lagrangian function L(e, λ) = J(e) − λc(e) is introduced to
build Equation (4.9), then the bordered Hessian matrix is the 5 × 5
Hessian matrix of L, calculated with respect to all its five variables.
The value of λ necessary to calculate H|∗ẽ at each critical point is easily
determined through Equation (4.9);

• I∗ is equal to the 5 × 5 identity matrix, save the fifth element of the
fifth row, which is equal to zero;

• a∗ is a vector obtained by appending to vector a the multiplier β, which
is an unimportant dummy variable.

Therefore Equation (4.24) is a common eigenvalue problem, and the steep-
est increase or decrease directions are the directions for which the ensuing
condition is satisfied:

det (H|∗ẽ − αI∗) = 0 (4.26)

Equation (4.26) is always a third order polynomial in the eigenvalue α, there-
fore three solutions are expected. For each positive solution, Equation (4.24)
yields the corresponding steepest increase direction, whereas for each nega-
tive solution a steepest decrease direction is found. The index of the critical
point is the number of negative solutions to Equation (4.26), which enables
the classification of any possible critical point of J .

Also the generation of the steepest ascent or descent paths does not re-
quire the use of a local coordinate system. A method analogous to that
presented in Section 3.1.3 can be used, and the steepest ascent direction is
easily obtained as the component of the gradient of J normal to the gradient
of the constraint c. Whenever, while following a steepest ascent or descent
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path, a set of Euler parameters e with e0 < 0 is reached, it is possible to
immediately replace it with −e, which is the same position of the platform,
in order that e0 is always greater than zero, as discussed in Section 4.1.2.

Analogous to Section 3.1.5, it is possible to exploit the maximum number
of critical points of J to give an upper bound to the number of singularity-free
regions composing the workspace of a 3UPU spherical wrist. By considering
that there can be at most 40 real solutions to Equation (4.9), and that the
Betti number sequence of the workspace is 1,1,1,0,0,0,. . . , as recalled in Table
1.1, there can be no more than 20 parallel-singularity-free regions with the
same sign of the Jacobian determinant, and not more than 21 regions at all.

4.1.5 Example

The 3UPS spherical wrist W1 will be used to show the application of the
discussed method. The parameters defining manipulator W1 are reported in
Table 4.1, according to the convention discussed in Section 4.1.1.

p1 p2 p3 q1 q2 q3
(1,0,0) (0,1,0) (0,1,1) (-9,2,6)/11 (6,6,7)/11 (-1,1,0)

Table 4.1: Parameters defining manipulator W1.

Through the elimination method discussed in the previous section, 32
critical points are determined, among which there are 4 positive maxima, 2
positive 2-saddles, 4 negative minima, 12 negative 1-saddles, and 10 singular
2-saddles.

Figure 4.7 shows the workspace of the spherical wrist, through the rep-
resentation discussed in Section 4.1.2, according to which the workspace is
a three-dimensional ball with diametrically opposite boundary points iden-
tified. The four positive maxima M1, M2, M3, and M4, are depicted as
cones, and the two positive 2-saddles S1 and S2, depicted as spheres. In this
representation, the coordinate of these critical points are reprted in Table
4.2.

The steepest ascent paths starting from the two 2-saddles S1 and S2 join
M1 to M2 and M3 to M4 respectively, thus there are two positive regions free
of parallel singularities. The steepest ascent paths are represented in Figure
4.7 as black lines.

Given the three points P1 = (−1.85, 0.78,−1.55), P2 = (−0.50,−0.75,−1.90),
and P3 = (0.30, 1.14,−2.47), where J is positive, it can be assessed to which
one of the two positive regions they do belong by following the steepest ascent
paths (black lines in Figure 4.7). The steepest ascent paths starting from
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Figure 4.7: Positive critical points in the workspace of W1.

Critical point Coordinates
M1 (-2.19,1.13,-0.27)
M2 (-0.69,-1.17,-1.57)
M3 (1.36,1.74,-1.30)
M4 (0.69,0.22,0.91)
S1 (-1.69,-0.08,-1.14)
S2 (1.16,1.06,-0.08)

Table 4.2: Coordinates of the positive critical points of W1.
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P1, P2, and P3 reach the maxima M1, M2, and M3, respectively. Therefore
P1and P2 belong to the same aspect, and the path P1-M1-S1-M2-P2, con-
necting P1 to P2 is singularity-free. The steepest ascent path starting from
P3 reaches M3, which belongs to a different region, therefore there exists no
singularity-free path at all to reach P1 or P2 starting from P3.

Figure 4.8 shows the evolution of the level sets of the function J while
the level decreases. Four regions are generated by the four maxima, and are
joined in pairs by the two 2-saddles.

The four minima are all connected through a network of steepest de-
scent paths starting from the saddles, therefore there is only one negative
singularity-free region.

4.1.6 3UPU Spherical wrist

The 3UPU architecture for a spherical wrist was first proposed in [47], where
it was proved that it is able to perform local spherical motions, whereas in
[48] and [49] its capability of generating a finite set of spherical motions was
proved.

The 3UPU wrist, depicted in Figure 4.9, is very similar to the 3UPS
spherical wrist, for it consists of a platform connected to the base through
three legs composed of two universal joints and one actuated prismatic joint.
The two universal joints are such that the axes of the revolute joints attached
to the platform and to the base converge in the same point O, and the axes
of the two remaining revolute joints of each leg are parallel. Analogous to
the 3UPS wrist the architecture of the 3UPU wrist can be described through
the coordinate vectors pi and qi of the centers Pi and Qi of the universal
joints of the base an the platform respectively. Furthermore, the equations
describing the kinematics of the wrist, and therefore the parallel singularity
locus are identicl to those of the 3UPS wrist.

The main difference is that the center of spherical motion is determined
by the particular geometry and assemblage of the legs of the machine in the
3UPU wrist, and not through a physical joint as in the 3UPS wrist. With
reference to Figure 4.10, if the platform is considered as the end-effector

of the serial chain given by the ith leg, it is easy to see that the point of
the platform coincident with point O of the base can only undergo virtual
displacements ∂O contained in the plane determined by points Pi, O, and
Qi. Therefore, whenever the normals to the three such planes determined by
the three legs are linearly independent, the only allowed virtual displacement
of point O is zero, i.e. the platform is constrained to spherical motion with
center O.
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Figure 4.8: Evolution of the level sets of J as the level decreases.
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Figure 4.9: A 3UPU spherical wrist.

Figure 4.10: The center of the spherical motion of 3UPU wrists is determined
by the architecture of the legs.
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This condition is almost always verified, except for some singular posi-
tions, where the constraint of spherical motion is lost, and the wrist gains
a translational degree of freedom. These singular positions were named by
Zlatanov et al. in [50] constraint singularities, because at such positions some
constraints of the parallel architecture are locally lost. Constraint singular-
ities are typical of lower mobility parallel manipulators where the platform
possesses less than six degrees of freedom. In such manipulators, some of
the six degrees of freedom of the platform are controlled through the actua-
tors of the manipulator, whereas some other (the translational ones, in the
case of 3UPU spherical wrist) are passively constrained through the geom-
etry of the legs. Parallel singularities are always detected by differentiating
the equations connecting the input variables of the jointspace to the output
variables of the workspace, but constraint singularities may not. In order
to detect constraint singularities is always necessary to consider all six de-
grees of freedom of the platform, and to investigate under which conditions
the constraints upon the degrees of freedom that are not controlled by the
actuators might fail. For more detail about constraint singularities refer for
example to [50] or [51].

In case of 3UPU wrists, as briefly shown, constraint singularities occur
when the normals to the three planes containing the points Pi, O, and Qi

are linearly dependent. This geometrical condition coincides, in the case of
3UPU wrists, with the condition for the occurrence of parallel singularities
J = 0, where J is defined as in Equation (4.8). Thus the singular positions
J = 0 for 3UPU wrists are twice as dangerous as the same positions of
3UPS wrists, because, in addition to a local rotation, a local translation is
gained by the manipulator, and the spherical constraint might be lost by the
manipulator.

However, any other position where J 6= 0 is safe, and the machine is
well constrained, thus an identical method to the one proposed for 3UPS
manipulators can be used to find out safe paths, free of both parallel and
constraint singularities.

A more rigorous treatment of parallel and constraint singularities of the
3UPU wrist can be found in [49], were Di Gregorio rigorously proves for
the first time that parallel and constraint singularities of the 3UPU wrist
do coincide. In [49] the explicit equation of the singularity locus of 3UPU
wrists is given in terms of Rodrigues parameters, which is equivalent to the
condition J = 0 determined in Section 4.1.3 in terms of Euler parameters.
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4.2 3-UPU Translational Manipulator

4.2.1 Architecture

Figure 4.11: Kinematic architecture of a 3UPU translational manipulator.

3UPU translational manipulators have been proposed and analyzed in
[52], [53], and [54].

The architecture that will be hereafter considered is that proposed in
[53], and sketched in Figure 4.11. The platform is connected to the base
by means of three legs, consisting of two links connected to each other by
a prismatic joint and to the base and the platform through universal joints.
The universal joints satisfy the ensuing two geometrical requirements:

• in each leg, the axes of the two revolute joints connected to the base
and to the platform are parallel;

• in each leg, the axes of the two middle revolute joints, not connected
to the base nor to the platform, are parallel.

It can be proved that this architecture constrains the platform to pure
translational motions (see [53]).

With reference to Figure 4.12, the geometry of 3UPU translational ma-
nipulators, can be parametrized in the ensuing way:
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Figure 4.12: Parametrization of the geometry of a 3UPU translational ma-
nipulator.

• two reference frames S and S ′ with parallel axes, attached to the base
and to the platform respectively, are defined;

• on the ith leg, the center Pi of the universal joint attached to the base
is identified through its coordinate vector pi in frame S;

• on the ith leg, the center Qi of the universal joint attached to the
platform is identified through its coordinate vector qi in frame S ′;

• on the ith leg, the common directions of the axes of the revolute joints
attached to the base or to the platform is identified by way of a unit
vector ri

Therefore, the nine vectors p1, p2, p3, q1, q2, q3, r1, r2, and r3 completely
define the kinematic architecture of 3UPU translational manipulators.

4.2.2 Configuration space

The workspace of a 3UPU translational manipulator is the manifold contain-
ing all possible positions of the platform. Each point of the workspace can
be identified by means of the coordinate vector x = (x, y, z) of a point, for
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Figure 4.13: The position of the platform is determined by the position vector
of O′.

example the origin O′ of S ′, with respect to the fixed frame S ′. Therefore
the workspace is the whole three dimensional Euclidean space.

Any point of the jointspace is defined by the lengths l1, l2, and l3 of the
three actuated legs, thus the jointspace is a subset of the three dimensional
Euclidean space, too. More specifically, the length li is equal to the distance
between points Pi and Qi.

Therefore, the vector (l1, l2, l3, x, y, z) identifies a configuration of the ma-
nipulator only if the ensuing constraints are satisfied:

l2i = (Qi − Pi)2 = (qi + x− pi)
2 (4.27)

Like the spherical wrists, if only positive lengths are accepted to describe
the length of the legs, there exists only one point of the jointspace that defines
a configuration along with a given point in the workspace, which means that
the workspace and the configuration space are homeomorphic, and can be
considered as the same manifold. In other words, the vector (x, y, z) identifies
both a position of the platform and a configuration of the manipulator.
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4.2.3 Singularity locus

Equation (4.27) can be differentiated, obtaining the ensuing relation:

A

 ∂l1
∂l2
∂l3

 = B

 ∂x
∂y
∂z

 (4.28)

where the ith row of matrix B is the vector 2(Qi−Pi)T , which can be written

as 2(x + ci)
T , where ci is a constant vector for the ith row. This means that

the determinant of B is linear in the variables x, y, and z.
The parallel singularity locus is therefore a plane in the three-dimensional

Euclidean space, because it is determined by the equation:

Jp = det B = 0 (4.29)

which is linear in the variables x, y, and z.
Analogous to 3UPU spherical wrists, 3UPU translational manipulators

possess constraint singularities, because the constraint to translational mo-
tion is only ensured by the particular geometry of the legs. However, unlike
the 3UPU wrist, constraint singularities do not coincide with parallel ones,
for 3UPU translational manipulators. Constraint singularities of transla-
tional 3UPU manipulators were studied and rigorously determined by Parenti
Castelli and Di Gregorio in [51], where the equation defining the singularity
locus of a 3UPU translational manipulator is explicitly reported.

Constraint singularities can be determined in an similar manner to 3UPU
spherical wrists. By observing the architecture of each leg of the 3UPU
translational manipulator (Figure 4.13), it can be easily inferred that each
leg allows only two rotational degrees of freedom of the platform. If the
directions of the axes of the two revolute pairs composing each universal joint
are denoted through the unit vectors ri and si, each leg allows only virtual
rotations about axes directed as linear combinations of ri and si. Therefore,
any virtual rotation about a vector with nonzero component along a vector ti,

normal to both ri and si, is hindered by the ith leg. Thus, if the three vectors
t1, t2, and t3 of the three legs are linearly independent, the platform can
perform no virtual rotation. On the other hand, if t1, t2, and t3 are linearly
dependent, the platform can undergo an uncontrolled virtual rotation, i.e.
the manipulator is at a constraint singularity. Such constraint singularities
are organized in a locus, which is defined by the ensuing equation:

Jc = det C = 0 (4.30)
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Figure 4.14: Each leg hinders a virtual rotation of the platform.

where C is a matrix whose columns are the components of vectors ti with
respect to frame S ′. Such components can be expressed as follows:

ti = (Qi − Pi)− [(Qi − Pi)ri] ri (4.31)

Equation (4.30) is a third order polynomial in the coordinates x, y, and
z, identifying the configurations of the manipulator.

4.2.4 Analysis of singularity locus

Both constraints and parallel singularities are equally dangerous for the
3UPU translational manipulator, and must be avoided while moving from
a configuration to another. In this section, the method developed in Chapter
2 will be applied to 3UPU translational manipulators, in order to find out,
if it exists, a path free of constraint and parallel singularities connecting any
two configurations of the manipulator.

The surface to be avoided is the zero level set of the function JpJc on
the workspace of the 3UPU translational manipulator. Unfortunately, the
workspace of a translational manipulator is the three-dimensional Euclidean
space, which is not compact. Thus, the method developed in Chapter 2
cannot be straightforwardly applied, because it works on compact manifolds
only.

Yet, it is possible to transform the three-dimensional Euclidean space
into a compact manifold. First of all, consider the three-dimensional real
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projective space associated to the three-dimensional Euclidean space, i.e.
each vector (x0, x1, x2, x3) of the projective space is such that the coordinates
(x, y, z) in the Euclidean space satisfy the ensuing condition:

x = x1/x0

y = x2/x0 (4.32)

z = x3/x0

Each point of the projective space corresponds to one point of the Euclidean
space, except the points with x0 = 0, i.e. points at infinity, that do not exist
in the Euclidean space.

We can imagine the workspace of the 3UPU manipulator as the projective
space, where the points with x0 = 0 must never be crossed, exactly like
singularities. Thus, the locus of ”forbidden” points, the points that must not
be crossed, is defined by the ensuing equation in the real projective space:

J = x0JpJc = 0 (4.33)

where Jp and Jc are properly converted to homogeneous coordinates.

Figure 4.15: Singularity locus of the 3UPU translational manipulator.

The real projective space can be represented as a ball, analogous to the
manifold containing all orientations of a rigid body. With reference to Fig-
ure 4.15, a three-dimensional ball with radius 1 is considered. For any point
inside the ball, the coordinates of the point are the homogeneous coordinates
x1, x2, and x3 of the corresponding point in the projective space. The pro-

jective coordinate x0 is defined as x0 =
√

1− x2
1 − x2

2 − x2
3. In this way, all

the points of the ball correspond to one point of the projective space. Fur-
thermore, all points on the spherical boundary of the ball are points with
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x0 = 0, i.e. points at infinity. Like Euler parameters, we represent a point
of the projective space as a four-dimensional vector (x0, x1, x2, x3), with the
constraint:

x2
0 + x2

1 + x2
2 + x2

3 = 1 (4.34)

and with x0 >= 0.
The set of points of the projective space that must not be crossed, ex-

pressed formally by Equation (4.33), is the union of the ensuing sets:

• the locus of parallel singularities, linear in the four projective coordi-
nates;

• the locus of constraint singularities, which is a third order polynomial
in the four projective coordinates;

• the set of points at infinity with x0 = 0, which is the spherical boundary
of the ball in Figure 4.15

As usual, the critical points of J on the configuration space must be found.
The configuration space is the three-dimensional real projective space, and
the critical points can be found through Lagrange multipliers method:

∂J/∂x0 = λx0

∂J/∂x1 = λx1

∂J/∂x2 = λx2 (4.35)

∂J/∂x3 = λx3

where λ is Lagrange multiplier. λ can be easily eliminated considering the
ensuing equation-set:

T1 = (∂J/∂x1)x0 − (∂J/∂x0)x1 = 0

T2 = (∂J/∂x2)x0 − (∂J/∂x0)x2 = 0 (4.36)

T3 = (∂J/∂x3)x0 − (∂J/∂x0)x3 = 0

obtained by extracting λ from the first equation and then substituting it into
the remaining three. Equation (4.36) is a set of three homogeneous equations
of degree five. Any critical point with x0 = 0 must not be considered, because
it lies on the locus J = 0. Therefore it is possible to substitute x0 = 1 into
Equation (4.36), and to search for the solutions in terms of x1, x2, and x3.

Since J is divisible by Jc and Jp, Equation (4.36) can be written in the
ensuing form:

M

 Jc
Jp
JcJp

 = 0 (4.37)
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where the elements M are polynomials in variables x1, x2, and x3. Therefore
all points where Jc = 0 and Jp = 0 are critical points of J . This points
form in general a curve in the workspace, and, not being isolated, are always
degenerate critical points. Fortunately, the critical points where Jc = Jp = 0
are all singular, and must be ruled out of the analysis. Thus, only critical
points where either Jc or Jp do not vanish must be considered, which, along
with Equation (4.37) yields the ensuing additional equation:

T4 = det M = 0 (4.38)

Equation (4.38) is a third order equation in x1, x2, and x3 and can be
used to reduce the degree of Equation (4.36). Each of the three polynomials
T1, T2, and T3 can be written as follows:

Ti = T4Qi +Ri (4.39)

where Qi and Ri are the quotient and the remainder of a polynomial division
performed on Ti through the divisor T4, with respect to a given variable xj.
At every points where all Ti vanish along with T4, all remainders Ri must
vanish too. Therefore the equation set

R1 = 0

R2 = 0 (4.40)

R3 = 0

T4 = 0

is always equivalent to Equation (4.36), along with the condition T4 = 0.
If R1, R2, and R3 are remainders of polynomial divisions performed with
respect to x2, x1, and x1 respectively, R1, R2, and R3 are polynomials of
degree four in the two variables x2 and x3. Therefore the equation set:

R1 = 0

R2 = 0 (4.41)

R3 = 0

can be solved with a method similar to Section 4.1.4. Variable x1 can be
hidden in the coefficients, and a partial homogenization with respect to x2

and x3 yields a set of three homogeneous equations in three unknowns of
degree four. A resultant polynomial in x1 can then be found through the
elimination method reported in Section 5.1.

Unfortunately, in this way the condition T4 = 0 has not been directly
imposed: Equation (4.41) is not completely equivalent to Equation (4.40),
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which introduces extraneous solutions. The author has found no way to
factor out such extraneous solutions from the resultant polynomial, however
they can be easily detected, for they do not satisfy the condition T4 = 0.

Once all real solutions have been found by solving numerically the resul-
tant polynomial, and all extraneous solutions have been canceled, all critical
points of J are known. The classification of critical points, and the deter-
mination of steepest ascent paths is then analogous to the one proposed in
Section 4.1.4 for spherical wrists.

4.2.5 Example

According to the conventional parameterization proposed in Section 4.2.1,
manipulator T1, defined by vectors of Table 4.3, is considered.

p1 p2 p3 q1 q2 q3 r1 r2 r3

(1,0,0) (0,1,0) (0,1,-1) (1,1,1) (0,1,-1) (1,1,1) (1,0,2)√
3

(−1,0,1√
2

(−1,−1,0)√
2

Table 4.3: Parameters defining manipulator T1.

In the workspace of T1 there are three positive maxima and two positive
2-saddles, whose homogeneous coordinates are listed in Table 4.4, and vi-
sualized in Figure 4.16 through the conventional representation proposed in
Section 4.2.2.

Critical point Homogeneous coordinates
M1 ( 0.722, -0.505, -0.425, 0.209)
M2 (0.575, 0.326, 0.491, 0.568)
M3 (0.606, 0.596, -0.313, -0.423)
S1 (0.657, 0.681, -0.156, 0.282)
S2 (0.079, 0.417, 0.902, -0.076)

Table 4.4: Coordinates of the positive critical points of T1.

Figure 4.16 also shows the steepest ascent paths (black lines), departing
from the positive 2-saddles and reaching the maxima. It can be seen that
maximaM2 andM3 are joined, while no paths reach maximumM3. Therefore
there are two positive regions, free of parallel and constraint singularities.

Figure 4.17 shows the evolution of the level sets of the function J , while
the level decreases from the height of the maximum to that of the lowest
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Figure 4.16: Positive critical points of manipulator T1.

saddle. Three regions are generated by the three maxima, and two of them
are joined twice by the two 2-saddles.

Figure 4.18 shows the level set J = 0. The outer spherical boundary
belongs to the locus, but it has not been plotted, in order for the inside of
the ball to be visible. The darker surface inside the ball represents the locus
of parallel singularities, whereas the brighter surface the locus of constraint
singularities. The intersection curve of the two surfaces is a set of singular
degenerate critical points, that have been ruled out from the determination
of critical points by means of the polynomial division.

There are five negative minima and four negative 1-saddles, and the net-
work of steepest descent paths is such that there are also two negative regions.

Figure 4.19 shows all relevant critical points: the positive maxima are
depicted as upward bound cones, the negative minima as downward bound
cones, and the saddle points as spheres. The network of singularity-free
steepest ascent and descent paths is represnted as black lines. Figure 4.20
shows two rotated views of the locus J = 0, where it is possible to verify that
the steepest ascent and descent paths never cross the spherical boundary, nor
the parallel and constraint singularity loci.
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Figure 4.17: Evolution of the level sets of J as long as the level decreases.
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Figure 4.18: Locus defined by J = 0.

Figure 4.19: All relevant critical points of T1.
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Figure 4.20: The steepest ascent and descent paths are all singularity-free.

4.3 3RRR Planar Manipulators

This section collects the results of the application of the analysis method
developed in Chapter 2 to 3RRR planar manipulator, published in [66].

4.3.1 Architecture

A 3RRR planar manipulator with general structure is depicted in Figure 4.21.
The platform is connected to the rigid frame through three legs, composed of
two connecting rods and three revolute joints, with the middle one actuated.

The center of the ith leg revolute joint on the fixed frame is indicated by Pi,

whereas the center of the ith leg revolute joint on the platform is indicated

by Qi. The center of the actuated revolute joint of the ith leg is denoted by
Ri.

The kinematical structure of the platform can be determined through the
three parameters u2, u3, and v3, defining the coordinates of Q1, Q2, and Q3

in the reference frame uQ1v attached to the platform, as shown in Figure
4.21. Analogously, the kinematic structure of the fixed frame is given by the
three parameters a2, a3, and b3, defining the coordinates of P1, P2, and P3

in the fixed reference frame xP1y. The ith leg can be defined through the
lengths of the two connecting rods: li and mi (see Figure 4.21). Thus twelve
parameters are used to define a 3RRR manipulator.
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Figure 4.21: A 3RRR manipulator.

This class of planar manipulators have been widely studied, and often
used as an example, due to its simple kinematic architecture. Workspace
analysis methods for similar manipulators were proposed in [55] and [56],
and the singularity locus of analogous manipulators was defined and studied
in [57] and [58].

4.3.2 Configuration space: the assembly configurations

The workspace of a 3RRR planar manipulator is a subset of the manifold
containing all possible positions of the platform in the plane. Each points of
the workspace will be identified by the coordinates x and y of point Q1 in
the fixed reference frame xP1y, and by the angle ϕ between x- and u-axes.

The position of the ith actuator is given by the angle θi, between the two
rods composing each leg. Any point in the jointspace is therefore identified
by the three angles (θ1, θ2, θ3).

Any configuration of the manipulator can be represented through the
six parameters (x, y, ϕ, θ1, θ2, θ3). However, not any combination of these
six parameters identifies a configuration of the manipulator, for the ensuing
constraints imposed by the three legs must be satisfied:

f = 0 (4.42)

where f = (f1, f2, f3), and

fi = (Pi −Qi(x, y, ϕ))2 − l2i −m2
i − 2limi cos θi (4.43)
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Equation (4.43) can be easily derived by expressing the coordinates of each
Qi in the fixed reference frame xP1y, and by applying Carnot theorem to the
three triangles PiQiRi.

The configuration space is thus represented as the three dimensional man-
ifold C described by Equation (4.42) and embedded in the six dimensional
manifold containing all the possible vectors (x, y, ϕ, θ1, θ2, θ3).

Figure 4.22: A Grashof four-bar linkage.

Unlike the manipulators presented so far, the configuration space of pla-
nar 3RRR manipulators coincides neither with the workspace nor with the
jointspace. Moreover, C is not always connected, and might be composed
of one or more disjoint regions. If two configurations belong to two different
of such disjoint regions, then there are no feasible paths connecting them,
which physically means that to bring the manipulator from one configuration
to the other the kinematic chain must be dismantled. This problem is typi-
cal of parallel architectures. A classical single-degree-of-freedom example is
Grashof four-bar linkage (see [59]), such as the one depicted in Figure 4.22.
If the linkage of Figure 4.22 is at configuration 1, it is impossible to reach
configuration 2 without disassembling the kinematic chain.

The disjoint regions composing the configuration space were named as-
sembly circuits for single-degree-of-freedom mechanism in [60], where an in-
teresting discussion is provided to discriminate circuits from branches. The
name circuit can be understood by considering the four-bar linkage. If a
configuration of the four-bar linkage is identified by means of the two an-
gles θ1 and θ2, between the crank and the frame, and between the rocker
and the frame, than the configuration space is described by an equation like
g(θ1, θ2) = 0. If the set g(θ1, θ2) = 0 is plotted on the torus spanned by the
two angles θ1 and θ2, the disjoint regions of the configuration space appear
as closed curves, or, in other words, circuits. Many authors tackled the prob-
lem of counting the different assembly circuits in single-dof mechanisms. For
example, refer to [60], [61], [62], and [63].
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The denomination assembly configuration was introduced in [60], to gen-
eralize the notion of assembly circuit to multi-degree-of-freedom mechanisms.
A criterion was given in [63] to determine the number of ACs composing the
configuration space of any single-loop planar kinematic chain, which was
proved to be at most two. A counting method for the ACs of two-dof multi-
loop mechanisms was given in [64] and [65]. In Section 4.3.5 the method
proposed in Chapter 2 will be extended, in order to be able to count and
identify the assembly configurations of 3RRR planar manipulators, and to
find a feasible path between any two configuratons, whenever it exists.

Furthermore, the Configuration space C might not be a smooth mani-
fold, which hinders the application of the proposed method. This happens
whenever the gradients of f1, f2, and f3 are linearly dependent. These cases
are very rare, however, should any such manipulator be analyzed, it will be
detected while finding the critical points, and excluded from the analysis, as
discussed in Section 4.3.4.

4.3.3 Singularity locus

In order to derive the equation of the singularity locus, the relationship be-
tween the virtual displacements of the platform and the actuators is needed.
Such relationship is obtained by differentiating Equation (4.42):

A

 ∂θ1

∂θ2

∂θ3

+ B

 ∂x
∂y
∂ϕ

 = 0 (4.44)

where A and B are the Jacobian matrices of the constraints f , with
respect to jointspace and workspace variables, respectively. Parallel singu-
larities occur when the platform can perform virtual displacements, even
though all actuators are locked. Thus all parallel singularities must satisfy
the following condition:

J(x, y, ϕ) = det B = 0 (4.45)

Serial singularities occur when det A = 0, but they will be ignored, because
they are not dangerous for the manipulator. The singularity locus is a two-
dimensional manifold defined by the zero level-set of the function J , on the
three-dimensional configuration space C . In the next section, the method de-
veloped in Chapter 2 will be applied to the analysis of the parallel-singularity
locus of 3RRR planar manipulators.
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4.3.4 Analysis of singularity locus

According to Lagrange’s optimization method, the Lagrangian function L
can be defined as:

L(x, y, ϕ, θ1, θ2, θ3, λ1, λ2, λ3) = J − λ1f1 − λ2f2 − λ3f3 (4.46)

where f1, f2, and f3, are defined by Equation (4.43). The critical points
of J constrained on C are the points where the gradient of L with respect to
all its nine variables vanishes. By equating to zero the derivatives of L with

respect to the ith actuator angle θi, the ensuing equations are obtained:

λi sin θi = 0 (4.47)

Therefore, the following four cases are obtained.

Case a: All Lagrange’s multipliers are not equal to zero.

In this case the sine of the three angles θi must vanish (Equation (4.47)), thus
all three legs are completely outstretched or folded-up, for i is equal to 0 or
π. Such positions can be obtained by substituting all possible combinations
of 0 and π into each θi of Equation (4.42), which is reobtained as derivatives
of L with respect to Lagrange’s multipliers.

By subtracting the first equation of Equation (4.42) from the last two,
two linear equations in x and y are obtained. From these linear equations,
x and y can be determined as functions of the sine and cosine of ϕ , and
back substituted into the first of Equation (4.42), yielding a trigonometric
equation in ϕ. This last equation is easily solved by expressing the sine
and cosine of ϕ in function of tanϕ/2, and then solving the resulting single-
variable polynomial equation. Lagrange’s multipliers, which will be useful for
the classification of critical points, can be determined through the remaining
derivatives of L.

Case b: ith Lagrange’s multiplier is equal to zero.

In this case, only the sines of θj and θk vanish, with j and k different from i.
Analogous to the previous case, two equations for x, y, and ϕ are obtained
by substituting all possible combinations of 0 and π into θj and θk, in the

jth and the kth equations of Equation (4.42). By subtracting one of such
equations from the other, a linear equation in x is obtained:

g(y, ϕ)x− h(y, ϕ) = 0 (4.48)
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which yields x as a function of y and ϕ .
By equating to zero the derivatives of L with respect to x, y, and ϕ, the

ensuing equation is obtained:

A(x, y, ϕ)

 1
λi
λj

 = 0 (4.49)

where A is a 3 × 3 matrix, whose columns contain the gradients of J ,
fj, and fk with respect to variables x, y, and ϕ . Equation (4.49) implies
that the determinant of A must vanish, which yields the third condition in
x, y, and ϕ . By substituting the expression of x obtained from Equation

(4.48) into this equation and into the jth equation of Equation (4.42), the
variable x is eliminated, and two polynomial equations in y and the tangent
of ϕ/2 are obtained, which can be easily solved through Sylvester dialytic
elimination method (see Section 5.1).

Among the solutions just obtained, there are some extraneous solutions,
which can be easily detected and got rid of, for at such solutions the two
coefficients g and h of Equation (4.48) vanish. The angles θj and θk are

equal to 0 or π , whilst the angle θi can be derived from the ith equation of

Equation (4.42). The jth and kth Lagrange’s multipliers are obtained from

Equation (4.49), and the ith is obviously zero.

Case c: ith and jth Lagrange’s multipliers vanish, but the kth not.

By equating to zero the derivatives of L with respect to x, y, and ϕ, the
ensuing equation is obtained:

B(x, y, ϕ)

(
1
λk

)
= 0 (4.50)

where B is a 3 × 2 matrix, whose columns contain the gradients of J and
fk with respect to variables x, y, and ϕ. Equation (4.50) implies that all
the three 2 × 2 minors of B are singular, which yields three equations. By
considering two of the three conditions just derived, along with the equation

obtained by substituting 0 or π into θk in the kth equation of Equation (4.42),
three equations in the variables x, y, and ϕ are obtained, which can be solved
analogously to case b.

It is possible to prove that, by equating to zero only two of the three
2 × 2 minor determinants, some extraneous solutions are introduced, which
do not make the determinant of the third minor vanish. By imposing this last
condition, it is possible to detect and get rid of such extraneous solutions.
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Case d: All Lagrange’s multipliers are equal to zero.

In this case the gradient of J with respect to x, y, and ϕ must vanish, which
yields two linear equations in x and y, and a quadratic equation in x and y.
This equation-set can be solved by techniques analogous to case a.

In this way, all possible critical points are determined. Note that this
solution method finds all the points where the gradient of J and the gra-
dients of the constraints with respect to the six configuration variables are
linearly dependent. Thus, if at any configuration the gradients of the three
constraints are linearly dependent, i.e. the configuration space is not smooth,
this configuration is included among the critical points. In order to assess
whether C is smooth, and this method is applicable, as pointed out in Sec-
tion 4.3.2, it is therefore sufficient to check that, at all critical points, the
gradients of the three constraints are not linearly dependent.

Once the critical points are determined, they are all classified by methods
analogous to Section 4.1.4. The maximum increase and decrease directions,
in the neighborhood of a critical point, are the six-dimensional vectors a1

satisfying the ensuing eigenvalue problem:

(H∗ − αI∗)a∗ = 0 (4.51)

where:

• H∗ is the Hessian matrix of the Lagrangian L, calculated with respect
to all its nine variables, at the critical point to be classified.

• I∗ is equal to the 9 × 9 identity matrix, with the last three diagonal
elements set equal to zero.

• a∗ is a nine-dimensional vector obtained by appending three dummy
variables to a1.

The equation
det(H∗ − αI∗) = 0 (4.52)

is a third order polynomial in α. Positive and negative solutions to Equa-
tion (4.52) represent maximum increase and maximum decrease directions,
therefore the number of negative solutions is the index of the critical point.
The maximum increase or decrease directions corresponding to each solution
can be determined through Equation (4.51).

The steepest ascent or descent paths can be generated starting form 2-
or 1-saddles along the maximum increase or decrease eigenvector. Between
the critical points, the steepest ascent direction is obtained by projecting the
gradient upon the tangent space of the constraints, as in Section 4.1.4. With
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the steepest ascent direction at any point, steepest ascent or descent paths
are easily generated.

4.3.5 Analysis of assembly configurations

The method proposed in Chapter 2 can be extended, in order to count the
assembly configurations, too. In Chapter 2 the evolution of the set C a

+ has
been considered, with level a decreasing form the absolute maximum of J
down to zero.

Suppose now that the level a keeps on decreasing, below zero level. The
process of generation and joining of disjoint regions continues just the same as
above zero level: the negative maxima generate new disjoint regions, whereas
negative 2-saddles may join existing disjoint regions, but now if the steepest
ascent paths starting from negative 2-saddles reach positive maxima, they
are not singularity-free anymore. However, they are still feasible paths, even
though dynamic-control techniques shall be devised in order to keep the
platform under control while crossing parallel singularities.

There must exist an absolute minimum of the function J on C , for C is
compact and J is continuous. As soon as level a reaches the absolute mini-
mum level, the manifold C a

+ coincides with the whole configuration space C .
Therefore, the disjoint regions composing C a

+ are indeed the assembly config-
urations composing the whole configuration space C a

+. As for the singularity-
free regions, each assembly configuration is endowed with a set of maxima
of the function J , which completely defines it. All the maxima contained in
the same assembly configuration are connected through a network of steepest
ascent feasible paths.

In order to assess whether two points belong to the same assembly config-
uration, the steepest ascent paths starting from such points can be followed,
until any of the maxima is reached. If the two maxima belong to the same
assembly configuration, then there exists at least one feasible path connect-
ing them, which can be obtained by joining the steepest ascent paths from
the two points to the reached maxima, and any of the feasible paths among
the network connecting the two maxima. This path is singularity-free only if
the two points also belong to the same singularity-free region which can be
assessed through the method described in Chapter 2.

This process can be analogously repeated for the manifold C a
− , letting the

level a increase from the absolute minimum to the absolute maximum. This
second procedure is redundant for the purpose of determining the assembly
configurations, but it might be useful to find out which negative singularity-
free regions belong to which assembly configuration, and to cross-check the
results hitherto obtained.
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The procedure just described can be summarized in the following steps:

1. All critical points of the Jacobian determinant J on the configuration
space C are determined.

2. The critical points are classified into positive and negative maxima and
into positive and negative 1- and 2-saddles.

3. The two steepest ascent paths are followed, starting from each positive
2-sadlle up to two positive maxima. The two positive maxima, and any
maxima belonging to their singularity-free region are assigned to the
same singularity-free region. After all the positive 2-saddles have been
processed, the positive maxima belonging to each positive singularity-
free region are stored.

4. The two steepest ascent paths are followed, starting from each nega-
tive 2-saddle up to two maxima. The two maxima, and any maxima
belonging to their assembly configuration are assigned to the same as-
sembly configuration. After having processed all negative 2-saddles,
the maxima of each assembly configuration are stored.

5. Step 3) is repeated, suitably modified, for the negative singularity-
free regions, to find the negative minima contained in each negative
singularity-free regions.

6. Step 4) is repeated, suitably modified, for the positive 1-saddles, to find
the minima contained in each assembly configuration.

At the end of this procedure, it is always possible to assess whether a feasible
or a singularity-free path exists between any two configurations of the ma-
nipulator, by simply following the steepest ascent or descent paths starting
from the two points and considering the maxima they reach.

4.3.6 Examples

a2 a3 b3 u2 u3 v3 l1 m1 l2 m2 l3 m3

10 3 10 10 3 3 1 2 10 2 6 7

Table 4.5: DH-parameters of manipulator P1

Consider manipulator P1, whose kinematical structure is summarized in
Table 4.5, according to the parameterization defined in Section 4.3.1.
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Figure 4.23: The four positive maxima of manipulator P1.
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For P1, there are four positive maxima, nine positive 2-saddles, four neg-
ative 2-saddles, and no negative maxima. The four positive maxima are
shown in Figure 4.23. Maxima M1 and M2 are joined by steepest ascent
paths starting from some of the positive 2-saddles, while M3 and M4 are
not connected to any other maximum by any steepest ascent path starting
from any positive or negative 2-saddle. Therefore, there are three assembly
configurations: one containing M1 and M2, and the other two containing M3

and M4. P1 was generated by searching a manipulator such that the loop
composed by leg 1, leg 2, the platform and the frame has two assembly con-
figurations, according the condition derived in [63], and that leg 3 be able to
completely outstretch in one of such assembly configuration, but not in the
other. Therefore one of the two assembly configurations of the loop is split
into two assembly configurations by the fact that leg 3 can never outstretch,
nor fold back.

The analysis of the negative critical points shows that each of the tree
assembly configurations is split into two singularity-free regions, one positive,
and one negative. Therefore, if the sign of the Jacobian determinant is the
same at two configurations belonging to the same assembly configuration, a
singularity-free path connecting them always exists.

a2 a3 b3 u2 u3 v3 l1 m1 l2 m2 l3 m3

10 3 10 10 3 3 1 2 4 2 5 6

Table 4.6: DH-parameters of manipulator P2

However, the assembly configurations are not always split into two singularity-
free regions only, as manipulator P2 shows. In P2 there is only one assembly
configuration, therefore any configuration of the manipulator is reachable,
but this assembly configuration is split into four singularity-free regions, three
positive and one negative. Figure 4.24 shows three positive maxima belong-
ing to the three positive singularity-free regions: many feasible paths connect
these three configurations where the Jacobian determinant is positive, but
none of them is free of parallel singularities.
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Figure 4.24: Three positive maxima of manipulator P2, belonging to three
different singularity-free regions.



Chapter 5

Solution Methods for
polynomial Equations

As shown in the previous Chapters, the application of the proposed method
always needs the determination of all critical points of a function on a mani-
fold. In case of the robot manipulators presented above, this problem always
reduces to finding all roots of a polynomial equation-set. In this Chapter,
some of the standard methods that have been used to solve polynomial equa-
tions are reported and discussed.

5.1 Algebraic elimination methods

The most classical solution methods for polynomial equations make use of
algebraic elimination, whose application to some standard problems will be
recalled in this section. For further details, refer for example to [67].

We suppose to deal with a system on n polynomial equations. The stan-
dard method for algebraic elimination is then to proceed with partial homog-
enization, with respect to n− 1 variables, and to hide the remaining one in
the coefficients. After partial homogenization, a system of n homogeneous
polynomial equations in n variables is available, whose coefficients depend
on the hidden variable. A condition on the coefficients of the homogeneous
system is now required, in order for the n homogeneous equations to have a
common solution in the n variables.

The target of algebraic elimination is to find out enough different equiv-
alent equations to the original homogeneous system to write it as:

My = 0 (5.1)

where M is a square matrix whose elements depend on the hidden variable
only, and y is in general a vector containing monomials obtained as products
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of some homogeneous variables. The homogeneous variables cannot be all
equal to zero simultaneously, thus, if y is properly built, y never vanishes,
too.

Eventually, if it is possible to write the original system in this desired
form, Equation (5.1) admits a set of common homogeneous solutions if

det M = 0 (5.2)

which is the desired condition in the coefficients, and therefore in the hidden
variable. det M is also named the resultant of the polynomial equation set.

In the rest of this section, some particular cases will be considered. It will
be supposed that partial homogenization has already been performed, and
it will be shown how the homogeneous system can be written in the form of
Equation (5.1).

5.1.1 Sylvester’s dialytic elimination method

This method applies to two homogeneous polynomial equations in two vari-
ables. Consider, for example, the ensuing two polynomial equations:

p1(x0, x1) = am0x
m
1 + a(m−1)1x

(m−1)
1 x0 + . . .+ a0mx

m
0 = 0 (5.3)

p2(x0, x1) = bn0x
n
1 + b(n−1)1x

(n−1)
1 x0 + . . .+ b0nx

n
0 = 0

where x0 and x1 are the homogeneous variables and aij and bij are the coeffi-
cients of the monomial xi1x

j
0 in the first and the second equations respectively,

which contain the hidden variable. The first and the second equations are of
degree m and n respectively.

Consider now the n equations obtained by multiplying p1 by the n mono-
mials of degree (n−1), x

(n−1)
1 , x

(n−2)
1 x0, . . . , x1x

(n−2)
0 , x

(n−1)
0 , and the m equa-

tions obtained by multiplying p2 by the m monomials of degree (m − 1),

x
(m−1)
1 , x

(m−2)
1 x0, . . . , x1x

(m−2)
0 , x

(m−1)
0 . In this way, m+n equations of degree

m + n − 1 have been obtained, which are satisfied by all solutions to the
original Equation (5.3). The m + n equations just obtained can be written
in the form:

M



x
(m+n−1)
1

x
(m+n−2)
1 x0

...

x1x
(m+n−2)
0

x
(m+n−1)
0


= 0 (5.4)

Since all m+ n monomials xi1x
j
0 of degree m+ n− 1 cannot vanish simulta-

neously, Equation (5.4) leads to the desired condition in the coefficients aij
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and bij of the two equations:

det M = 0 (5.5)

If the coefficients hide a nonhomogenized variable, then Equation (5.5) is the
resultant polynomial equation in that variable, that can be solved numeri-
cally.

Whenever Equation (5.5) is verified, then Equation (5.3) is verified for
a point (x0, x1) in the projective space. This point can be found by posing
x0 = 1 in Equation (5.4), which yields the ensuing linear system:

M∗


x

(
1m+ n− 1)

x
(m+n−2)
1

...
x1

 = −m∗ (5.6)

where M∗ is a matrix obtained by M through removal of the last column
and of one of its rows, and m∗ is the last column of M with the same row
removed. The solution of this linear system yields the powers of the unknown
variable x1, and the last unknown is the desired value of x1 that is associated
to x0 = 1. Should Equation (5.6) possess no solution, then the imposition
x0 = 1 is wrong, which implies that x0 = 0, x1 = 1 is a solution to Equation
(5.3).

5.1.2 Sylvester’s elimination method for three equa-
tions

Consider the ensuing three homogeneous polynomial equations in three vari-
ables, with the same degree n:

p1(x0, x1, x2) = an00x
n
2 + a(n−1)10x

(n−1)
2 x1 + . . .+ a00nx

n
0 = 0

p2(x0, x1, x2) = bn00x
n
2 + b(n−1)10x

(n−1)
2 x1 + . . .+ b00nx

n
0 = 0 (5.7)

p3(x0, x1, x2) = cn00x
n
2 + c(n−1)10x

(n−1)
2 x1 + . . .+ c00nx

n
0 = 0

where x0, x1 and x2 are the homogeneous variables and aijk, bijk and cijk are
the coefficients of the monomial xi2x

j
1x

k
0 in the first, the second and the third

equation respectively.
Let the degree n of the two equations be equal to two. In this case, the

ensuing result can be exploited to generate more equivalent homogeneous
equations of degree two:
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Theorem 5.1 Let p(x) be a homogeneous n-dimensional function in x, with
all components of the same degree. Let J(x) be the determinant of the Ja-
cobian matrix of p, calculated at point x, and ∇J |x be the gradient of J
calculated at point x. If the point x̃ is a solution to the set of homogeneous
equations p(x) = 0 of the same degree, then x̃ is also a solution to the
homogeneous equations:

J(x̃) = 0 (5.8)

∇J |x̃ = 0 (5.9)

For a proof of Theorem 5.1 refer to [67] p.84.
If the degree of p = (p1, p2, p3)

T is equal to two, as the case at hand, then
the elements of its Jacobian matrix are linear in the homogeneous variables,
and the degree of the Jacobian determinant is three. By virtue of Theo-
rem 5.1, the ensuing second-order equations must hold at each solution of
Equation (5.7):

∇J |(x0,x1,x2) = 0 (5.10)

By adding to Equation (5.10) the original equation set, the ensuing set
of six second-order equations is obtained:

p1(x0, x1, x2) = 0

p2(x0, x1, x2) = 0

p3(x0, x1, x2) = 0 (5.11)

∇J |(x0,x1,x2) = 0 (5.12)

Since there are exactly six homogeneous second-order monomials of degree
2 in three variables, Equation (5.7) can be rewritten as follows:

M



x2
1

x2
2

x2
3

x0x1

x1x2

x0x2


= 0 (5.13)

which obviously yields the desired resultant equation det M = 0. Whenever
the resultant equation is satisfied, the set of values for x0, x1, and x2 that
satisfy Equation (5.13) can be found in analogous manner as Section 5.1.1:
x0 = 1 is substituted into Equation (5.13) and the resulting linear equation
is solved.
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If the system p = 0 is composed of three equations of degree three,
Theorem 5.1 can be again used to find the resultant. In this case, the elements
of the Jacobian matrix are of degree two, and the Jacobian determinant is
a sixth-order polynomial. By imposing that the gradient of the Jacobian
determinant vanishes, three additional equations of degree five are obtained.

If each third-order equation of the original set is multiplied by the six
second-order monomials in three variables, 18 equations of degree five are
obtained. By adding the gradient of the Jacobian determinant, a set of 21
equations is obtained. Since there are exactly 21 fifth-order monomials in
three variables, the set of 21 homogeneous equations can be written as:

My = 0 (5.14)

where M is 21 × 21 matrix containing the coefficients of the 21 fifth-order
equations, and y is a vector containing all 21 monomials of degree five, that
can never vanish simultaneously. The determinant of M is again the desired
resultant polynomial.

If the degree of the three equations is greater than three, it is not possible
to exploit the gradient of the Jacobian determinant anymore. However, a
general algebraic elimination method, also due to Sylvester, is still available.

Suppose for instance that the equation-set is composed of three homoge-
neous equations of degree four, as occurred in Sections 4.1.4 and 4.2.4. 18
equations of degree six can be obtained by multiplying each of the three equa-
tions by the six second-order monomials x2

1, x
2
2, x

2
3, x0x1, x1x2, x0x2. Since the

number of monomials of degree six is equal to 28, ten more equations are
needed, in order to write an equation analogous to Equation (5.14).

The three fourth-order equations can be decomposed in the ensuing form:

u1x
4
0 + v1x1 + w1x2 = 0

u2x
4
0 + v2x1 + w2x2 = 0 (5.15)

u3x
4
0 + v3x1 + w3x2 = 0

where ui, vi, and wi are polynomials in the homogeneous variables.
Equation (5.15) takes the ensuing matrix form: u1 v1 w1

u2 v2 w2

u3 v3 w3


 x4

0

x1

x2

 (5.16)

Since the homogeneous monomials x4
0, x1, x2 cannot vanish simultaneously,

the ensuing condition must hold:

det

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 = 0 (5.17)
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Equation (5.17) is a sixth-order polynomial equation, that can be added to
18 already found. Through a similar procedure, by decomposing the three
original equations into a form like the following:

u1x
α
0 + v1x

β
1 + w1x

γ
2 = 0

u2x
α
0 + v2x

β
1 + w2x

γ
2 = 0 (5.18)

u3x
α
0 + v3x

β
1 + w3x

γ
2 = 0

(5.19)

where α + β + γ = 6, for all possible combinations, the remaining nine
equations are found.. In this way, 28 sixth-order equations in the 28 sixth-
order monomials are available, and straightforwardly lead to the elimination
of the homogeneous variables.

This method can be directly generalized to the case of n equations in n
unknowns of the same degree. For more details see [67], page 86.

5.2 Homotopy Continuation Method

Homotopy continuation method is a method for solving polynomial equations
that has been widely applied in many technological and scientific fields. In
particular, in robotics it has been used to solve direct and inverse kinematic
problems for many parallel and serial manipulators, whenever a specific elim-
ination method was not available. Homotopy continuation method will be
hereafter outlined, for more details refer to [68], [69], and [70].

The core idea of homotopy continuation method is to start form an easily
solvable system of polynomial equations, and then smoothly and continuously
deform it into a desired, hardly-solvable system of polynomial equations. The
solutions of the easily solvable system will then be smoothly and continuously
deformed into the desired solutions of the complicated one.

Consider, for instance, the ensuing second order equation in one variable:

p(x) = x2 − 5x+ 6 = 0 (5.20)

and the factored equation:

ps(x) = x(x− 1) = 0 (5.21)

whose solutions are obviously x = 0 and x = 1.
Consider now the ensuing linear combination of the previous two equa-

tions:
h(x, λ) = λp(x) + (1− λ)ps(x) = 0 (5.22)
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Clearly, h is a homotopy function between ps and p: h is continuous ,h(x, 0) =
ps(x), and h(x, 1) = p(x). While λ varies smoothly from 0 to 1, the function h
turns smoothly from ps into p. Also the solutions to the polynomial equation
h(x, λ) = 0 will move along smooth paths from the solutions to ps = 0,
x = 0 and x = 1, to the solutions of p = 0, x = 2 and x = 3, while λ
continuously changes from zero to one. Such smooth paths can be followed
by imposing small increments dλ on λ, and then by searching for solutions
to h(x, λ+dλ) = 0 close to the solutions of h(x, λ) = 0, that are known from
the previous step. In this way, step by step, the solutions of ps(x) = 0 are
turned into solutions of p(x) = 0, with no actual need of solving this last
equation.

If ps is chosen as a third-order equation, instead of a second-order one,
then the starting equation will have three solutions instead of two. Equation
h(x, λ) = 0 is at the beginning a third-order equation, but, as long as λ
approaches one, the coefficient of x3 approaches zero, therefore one solution
diverges to infinity, whereas the remaining two approach to the desired two
solutions of p = 0.

On the other hand, if ps is chosen as a linear function, then the starting
equation will have only one solution instead of two. Equation h(x, λ) = 0 is
initially linear, but, as soon as λ becomes greater than zero, the coefficient of
x2 will not vanish, and a second solution will appear, and evolve from infinity
down to one of the solutions of p(x) = 0 while λ approaches one. Therefore,
if only the single solution of the initial linear equation is tracked, only one
solution to p(x) = 0 is found, while the other one is lost.

It is therefore crucial to start from an initial equation ps with the same
degree as the equation to be solved. If the degree of the initial equation is
greater than that of the equation to be solved, then some of the paths starting
from its solutions lead to infinity, which is a useless loss of computational
time, because no actual solutions are found. On the other hand, if the degree
of the initial equation is lesser, some solutions are lost, which is unacceptable
for the purposes of this work, because all critical points must always be found.

Analogous problems arise when more equations are considered, but, un-
fortunately, the notion of ”degree” of an equation-set is not straightforwardly
generalized from the one-dimensional case. Like the one-dimensional exam-
ple, the starting equation-set for a polynomial continuation must have a
number of finite solutions not lesser than the equation-set to be solved, lest
some solutions are lost. However, the number of solutions must be as close
as possible to that of the final equation-set, or lots of computational effort is
lost while tracking paths leading to infinity.

We consider as an example the equation-set of Section 3.2.2, that is used
to find all critical points of the Jacobian determinant on the Jointspace
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of a 6R serial manipulator. The gradient of the Jacobian determinant of
a 6R manipulator can be written as polynomial equation in the variables
s1, c1, s2, c2, s3, c3, s4, and c4, where si and ci are the sine and the cosine

of the ith joint angle θi. Imposing that the gradient vanishes leads to the
equation-set p = 0, i.e.:

p1 = g1(s1, c1, s2, c2, s3, c3, s4, c4) = 0

p2 = g2(s1, c1, s2, c2, s3, c3, s4, c4) = 0

p3 = g3(s1, c1, s2, c2, s3, c3, s4, c4) = 0

p4 = g4(s1, c1, s2, c2, s3, c3, s4, c4) = 0 (5.23)

p5(s1, c1) = s2
1 + c21 − 1 = 0

p6(s2, c2) = s2
2 + c22 − 1 = 0

p7(s3, c3) = s2
3 + c23 − 1 = 0

p8(s4, c4) = s2
4 + c24 − 1 = 0

(5.24)

The first four components of p are equal to g1, g2,g3, and g4, i.e. the com-
ponents of the gradient of the Jacobian determinant. Due to the structure
of the Jacobian determinant, these first four equations are of degree 1 with
respect to variables s1 and c1, of degree 2 with respect to variables s2 and c2,
of degree 2 with respect to variables s3 and c3, and of degree 1 with respect
to variables s1 and c1.

The Bezout degree of Equation (5.23) is equal to 20736, because it is the
product of the degrees of all eight equations, and the first four are of degree
six, whereas the last four are of degree two. By virtue of Bezout theorem, the
number of finite solutions to Equation (5.23) will be at most 20736, therefore
any equation-set with the first four equations of degree six and the last four
equations of degree two will be a possible starting system for a homotopy
continuation method.

However, most solutions would lead to infinity, because the structure
of the first four equations of Equation (5.23) is particular. For example,
no variable appears with degree greater than two, whereas an equation of
degree 6 contains in general the sixth powers of all variables. The structure
of Equation (5.23) must be better characterized, in order to find a starting
system with a lower number of solutions.

This characterization can be found via multi-homogenization methods
(see [71], [72], and [73]). Suppose that a partition in the set of variables is
introduced, for example we consider the following sets of variables: {s1, c1},
{s2, c2}, {s3, c3}, and {s4, c4}. Then we can multi-homogenize the equation-
set: we replace si and ci with xi/zi and yi/zi respectively, and clear all the
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denominators. A multi-homogeneous equation-set is obtained, i.e. a set of
equations homogeneous with respect to the triplets of variables xi, yi, and
zi.

It can be proved that any multi-homogeneous equation-set, homogeneous
with respect to the same triplets of variables, has the same number of solu-
tions in the multi-homogeneous projective space as Equation (5.23), if it has
the same degree with respect to all multi-homogeneous triplets of variables.

For example,consider the equation-set

ps = (q1, q2, q3, q4, r1, r2, r3, r4)
T = 0 (5.25)

The elements qi are defined as:

qi = a1i(x1, y1, z1)a2i(x2, y2, z2)a3i(x2, y2, z2)
a4i(x3, y3, z3)a5i(x3, y3, z3)a6i(x4, y4, z4)

(5.26)

where the aji are homogeneous linear functions of their variables, with ran-
domly generated coefficients. Each qi has degree 1 with respect to the
group of variables {x1, y1, z1}, degree 2 with respect to the group of vari-
ables {x2, y2, z2}, degree 2 with respect to the group of variables {x3, y3, z3},
and degree 1 with respect to the group of variables {x4, y4, z4}, exactly as
the first four equations of Equation (5.23).

The elements ri are defined as:

ri = b1i(xi, yi, zi)b2i(xi, yi, zi) (5.27)

where the bji are homogeneous linear functions of their variables, with ran-
domly generated coefficients. Each ri has degree 2 with respect to the variable
group {xi, yi, zi}, exactly as the last four equations of Equation (5.23).

Therefore Equation (5.25) and Equation (5.23) have the same structure
in the multi-homogeneous projective space defined by the considered group
of variables, where they have the same number of solutions. Furthermore,
Equation (5.25) is easily solvable, for its equations are all products of linear
factors, and the number of such solutions is 1536, which is far lesser than the
number of solutions estimated through Bezout theorem.

Then the ensuing homotopy function can be constructed

h(x, λ) = λp(x, λ) + (1− λ)ps(x, λ) (5.28)

where x is a vector containing all multi-homogenized coordinates. The so-
lutions of the starting equation-set (5.26) can all be determined, and by
means of small increments of λ and of Newton method such solutions can be
smoothly brought into the solutions of Equation (5.23).



152 Solution Methods for polynomial Equations

Notwithstanding the closest guess of the number of finite solutions of the
original system, Equation (5.23) admits less than 1536 solutions, therefore
some paths might diverge to infinity. It is therefore more convenient to track
paths using the homogenized variables: in this way paths diverging to infinity
simply converge to solutions where one or more variables zi vanish, but the
norm of the homogeneous triplets can always be kept equal to 1. Thanks
to this trick, the distance between the solutions at two nearby steps never
approaches infinity, which might cause numerical problems. In the case of
the example reported in Section 3.2.2, 1120 finite solutions have been found,
while 416 solutions approached infinity. However, although 416 paths have
been uselessly followed, all solutions to Equation (5.23) have been found.



Chapter 6

Conclusion

This work presented a numerical method able to count and identify the
singularity-free regions carved by the singularity locus in the configuration
space of a manipulator, and its application to some serial and parallel ma-
nipulators.

In principle, this method works for any manipulator, but some very par-
ticular cases, where there are degenerate critical points of the Jacobian deter-
minant, or the configuration space is not a smooth manifold. The application
is rather simple, except the determination of all critical points of the Jaco-
bian determinant on the configuration space. This part of the procedure
reduces in most cases to the determination of all solutions to a polynomial
equation-set, that might be a very hard task in practice, although it is always
theoretically possible.

However, if the determination of the critical points of the Jacobian deter-
minant is viable, like the presented examples, the proposed method represents
a stable and powerful tool for analyzing the topology of the singularity locus
and for planning singularity-free paths of the manipulator.

The proposed method does not take into account the possible reduction
of configuration space of a manipulator due to the mechanical interference
between the links. The analysis of the singularity locus under the additional
constraint that no collision between the links takes place is a possible fu-
ture development of the proposed method, as well as its application to more
parallel manipulators with six degrees of freedom.
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seconde édition, Paris, 1997

[15] Collins, C.L. and Long, G.L., 1995, ”The Singularity Analysis of an In-
Parallel Hand Controller for Force-Relected Teleoperation,”
IEEE Transactions On Robotics and Automation, vol. 11, No.5, pp. 661-
669.

[16] Dasgupta, B. and Mruthyunjaya, T., 1998, ”Force redundancy in parallel
manipulators: theoretical and practical issues,”
Mechanism and Machines Theory, vol. 33, No.6, pp. 727-742.

[17] Nenchev, D.N. and Uchiyama, M., 1996, ”Dynamic analysis of parallel-
link manipulators under the singularity-consistent formulation,”
Proceedings of IROS 96, vol. 33, No.6, pp. 1227-1233.

[18] Kevin Jui, C.K. and Sun, Q., 2003, ”Path trackability and verification
for parallel manipulators,”
Proceedings of IEEE international conference on Robotics and Automa-
tion, pp. 4336-4341.

[19] Kevin Jui, C.K. and Sun, Q., 2005, ”Path tracking of parallel manipu-
lators in the presence of force singularity,”
Journal of Dynamic Systems, Measurement and Control, Vol. 127, pp.
550-563.



BIBLIOGRAPHY 157

[20] Dasgupta, B. and Mruthyunjaya, T., 1998, ”Singularity-free path plan-
ning for the Stewart platform manipulator,”
Mechanism and Machines Theory, vol. 33, No.6, pp. 711-725.

[21] Bhattacharya, S., Hatwal, H., and Ghosh, A., 1998, ”Comparison of an
exact and an approximate method of singularity avoidance in platform
type parallel manipulators,”
Mechanism and Machines Theory, vol. 33, No.7, pp. 965-974.

[22] Gosselin, C., and Angeles, J., 1990, ”Singularity analysis of closed-loop
kinematic chains,”
IEEE Transactions On Robotics and Automation, Vol. 6, No.3, pp. 281-
290.

[23] Denavit, J. and Hartenberg, R.S., 1955, ”A kinematic Notation for
Lower Pair Mechanisms Based on Matrices,”
ASME Journal of Applied Mechanics, vol. 77, pp. 215-221.

[24] Tsai, L.W.; 1999, ”Robot Analysis,”
John Wiley and sons, inc.

[25] El Omri, J.; 1996, ”Analyse Géométrique et Cinématique des
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