A new approach for the dynamic modelling of the human knee

Sancisi, Nicola (2008) A new approach for the dynamic modelling of the human knee, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Meccanica applicata, 20 Ciclo. DOI 10.6092/unibo/amsdottorato/953.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (6MB) | Anteprima

Abstract

Mathematical models of the knee joint are important tools which have both theoretical and practical applications. They are used by researchers to fully understand the stabilizing role of the components of the joint, by engineers as an aid for prosthetic design, by surgeons during the planning of an operation or during the operation itself, and by orthopedists for diagnosis and rehabilitation purposes. The principal aims of knee models are to reproduce the restraining function of each structure of the joint and to replicate the relative motion of the bones which constitute the joint itself. It is clear that the first point is functional to the second one. However, the standard procedures for the dynamic modelling of the knee tend to be more focused on the second aspect: the motion of the joint is correctly replicated, but the stabilizing role of the articular components is somehow lost. A first contribution of this dissertation is the definition of a novel approach — called sequential approach — for the dynamic modelling of the knee. The procedure makes it possible to develop more and more sophisticated models of the joint by a succession of steps, starting from a first simple model of its passive motion. The fundamental characteristic of the proposed procedure is that the results obtained at each step do not worsen those already obtained at previous steps, thus preserving the restraining function of the knee structures. The models which stem from the first two steps of the sequential approach are then presented. The result of the first step is a model of the passive motion of the knee, comprehensive of the patello-femoral joint. Kinematical and anatomical considerations lead to define a one degree of freedom rigid link mechanism, whose members represent determinate components of the joint. The result of the second step is a stiffness model of the knee. This model is obtained from the first one, by following the rules of the proposed procedure. Both models have been identified from experimental data by means of an optimization procedure. The simulated motions of the models then have been compared to the experimental ones. Both models accurately reproduce the motion of the joint under the corresponding loading conditions. Moreover, the sequential approach makes sure the results obtained at the first step are not worsened at the second step: the stiffness model can also reproduce the passive motion of the knee with the same accuracy than the previous simpler model. The procedure proved to be successful and thus promising for the definition of more complex models which could also involve the effect of muscular forces.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Sancisi, Nicola
Supervisore
Dottorato di ricerca
Ciclo
20
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
knee modelling sequential approach passive motion stiffness
URN:NBN
DOI
10.6092/unibo/amsdottorato/953
Data di discussione
17 Aprile 2008
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^