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ABSTRACT

In this study we propose a class of hedonic regression models to pre-
dict prices of fashion products using attributes obtained featurizing
text. Using the internet as a source of data, we developed web-
scrapers to collect data on prices and product descriptions of items
sold in the websites of five famous fashion retailers and producers.
For a set of scraped items, given the pair (price, description) our
goal is to estimate hedonic regression models by leveraging the in-
formation about the product contained in the description. After
each description is mapped to a point in a high-dimensional vec-
tor space, our estimation strategy uses sparse modelling, as well
as text mining techniques of dimensionality reduction and topic
modelling to find the model with the best out-of-sample predictive
performance. We refer to this approach as Hedonic Text-Regression
modelling. With this approach, we estimate the implicit price of
words that are used in descriptions. To the best of our knowledge
no previous work has been conducted in the Fashion industry. Em-
pirically, the proposed models outperform the traditional hedonic
pricing models in terms of predictive accuracy while performing
also consistent variable selection.
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CHAPTER

1

INTRODUCTION

In the last years, the expansion of e-commerce and online mar-
kets has acquired a great importance in consumers’ purchasing be-
haviour. More and more products are being sold online and con-
sumers can buy directly from producers’ websites who are partially
substituting to local retailers. This expansion offers researchers the
opportunity to have at disposal high-dimensional collections of data
on different collections of products. Therefore, it opens up the pos-
sibility to a much wider range of statistical methodologies for data
analysis. As pointed out by Einav and Levin [2014], the emergence
of Big Data requires researchers in economic statistics and empiri-
cal economics to develop new data management and data collection
skills. To give some examples on how much interest is growing on
the analysis of web data, the biggest community powered shopping
application in Japan, Mercari, launched in 2017 a Kaggle competi-
tion to develop pricing algorithms to automatically suggest product
prices to sellers based on textual description. The competition re-
warded the best three pricing algorithms1 with a monetary prize
of 60k, 30k, and 10k dollars respectively. Einav et al. [2013] and
Einav et al. [2011] collaborate with eBay to study internet pricing
and sales strategies. The researchers of the Billion Prices Project at
the Massachussets Institute of Technology coordinate with retailers

1in terms of Root Mean Squared Logarithmic Error
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to produce daily prices indexes that closely resemble the Consumer
Price Index provided by the Bureau of Labour Statistics [Cavallo,
2018, 2017].

On such premises, the aim of this study is to estimate pricing
models of italian fashion products by web-scraping the e-commerce
websites of several fashion brands, being both producers and retail-
ers. As these models regress the price of one good on a function of
its attributes, they may be interpreted as hedonic models2 [Feenstra
and Shapiro, 2007]. Therefore, a hedonic model requires a collection
of control variables for measurable and observable attributes.

Apparel items sold in online stores are always equipped with a
textual description providing many details on attributes like ma-
terials, finishes, comfort and design which are supposed to drive
consumer preferences. Moreover, products descriptions provide de-
tails either on easily observable attributes (i.e. color, material) as
well as on other attributes that are more difficult to measure and
consequently to take into account in a model. Therefore, the main
objective of this study is to understand how one can use product
descriptions to set up a hedonic pricing model of fashion products.
In turn, this means to give a hedonic value to the description by
estimating the implicit price of the most relevant words therein
contained. To give an example, consider the following description:

A dappled print invades this lightweight blouse in silk
Georgette fabric. A style with a young, wild spirit that
will sublimely complete casual looks with jeans or tai-
lored trousers

The resulting hedonic model should estimate both the marginal
price of materials, in this case silk, and the effect of details about the
weight (lightweight) and the design (young, wild). Out of this frame-
work, the effect of these attributes concerning the desing would
probably have been dropped from the analysis and absorbed into
an error term.

In recent statistical applications, it is common to refer to these
sources of data as unstructured data sources. This is a way to say
that this kind of data do not naturally come in the form of a matrix
and need a specific algebraic model to be used for statistical appli-
cations [George et al., 2016, Gupta and George, 2016]. Given that,
our modelling strategy starts by featurizing text, which means to
text-mine product descriptions to embed them into a feature or vec-
tor space. Once that text have been featurized, the set of features

2The appelative hedonic was first introduced by Court [1939]
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can be used as attributes for Hedonic Pricing Modelling. There-
fore, we refer to the resulting model as a Hedonic Text Regression
Pricing Model.

From a methodological point of view, the main challenge that is
posed by text data is high-dimensionality. Text data is intrinsically
high-dimensional. The number of features that can be extracted
from text - and so the set of covariates - tends to increase with the
sample size and, depending on the rate, can become even greater.
In this framework, traditional Ordinary Least Squares estimation
- if feasible - is likely to overfit the data and give bad predictions
of prices. Additionally, not all the features that one can extract
from text need to be significant determinant of prices. Some words
can simply add nothing to prices (think of the word invades in the
previous example). Thus, some form of variable selection or dimen-
sionality reduction is needed to identify the most appropriate set
of attributes. Regarding variable selection, traditional approaches
like best subset selection are not applicable or too expensive from
a computational point of view. In the last years, sparse model-
ing has become a very popular tool to improve predictive accu-
racy [Friedman et al., 2001]. These procedures are based on solv-
ing convex optimization problems that encourage the solution to
be sparse. Regarding dimensionality reduction, we leverage text-
mining techniques for unsupervised dimensionality reduction and
topic modelling to obtain a new set of covariates. These techniques
are unsupervised in the sense that they not consider the presence
of additional variables other than text variables. Consequently, we
propose Partial Least Squares as a way to derive supervised topics.

Concerning model selection and evaluation, traditional hedo-
nic regression modelling relies on goodness of fit to select the best
functional form of the model [Cassel and Mendelsohn, 1985]. In
this work, we use some results from statistical learning literature to
show that this measure is not the most appropriate for model se-
lection. Thus, model selection is performed by selecting the model
that achieves the lowest prediction error for the price of new obser-
vations based on their set of characteristics.

A similar approach to that presented in this study has been
proposed by Nowak and Smith [2017] in real estate. The authors
show that text, when used in combination with a traditional set
of structured covariates, leads to a better predictive accuracy. In
this work, we do not assume to have at disposal any structured
auxiliary information other than text, which puts ourselves in a
less favourable condition. Also, our attempt to develop hedonic
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models leveraging topic modelling and aggregated predictors was
previously unattempted in this field.

The remainder of this thesis is organized as follows. Chapter 2
focuses on the usage of text for regression purposes. After a review
of the related studies in this field, the chapter introduces the theory
of hedonic models and continues with the major challenges posed by
text data in this context. Also, the chapter gives an introduction
to web scraping and the preliminary operations to process text.
Chapter 3 illustrates the most common methods in text mining as
well as a review of statistical estimators for regression models with
high-dimensional data. The data analysis is presented in Chapter 4.
The analysis is repeated separately for two categories of products,
dresses and trousers. Also, the role of the brand in the proposed
hedonic model is discussed. Eventually, we report our conclusion
and directions for further research in Chapter 5.
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CHAPTER

2

TEXT AS DATA

Text Mining is the a process of automatic extraction of information
from text. Depending on the community of the practitioner, text
mining is also referred to as Text Analytics or Statistical Natural
Language Processing. These methodologies have become popular
over the last years mostly because of the increasing availability of
this type of data and, consequently, of the need of specific analysis.
Web-pages, electronic news, digital libraries and social media are
some examples of data sources that contain lots of text data.

In this study, we make use of text data in the form of descrip-
tions accompanying products found in e-commerce website to build
several predictive pricing models. For this reason, this chapter be-
gins with a review of previous studies on the usage of text data
for predicting continuous outcomes - that is, text-regression. Af-
terwards, we offer a brief overview of the preliminary procedures
to set-up regression models that build on text data. This will
cover web-scraping, data pre-processing and the procedures to set-
up matrices of textual predictors. Also, we briefly introduce the
fundamentals of hedonic models. In fact, text-regression may be
interpreted in terms of a hedonic model.
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2.1 Literature Review

While there is plenty of methodological and applied contributions
on the usage of text data for document clustering and classifica-
tion (see Weiss et al. [2015], Berry and Castellanos [2004], Berry
and Kogan [2010], Steyvers and Griffiths [2007] for some reviews),
not as many research has been produced on the usage of text for
regression purposes. Recently, many documents (mostly from the
web) are frequently associated with quantitative variables. To give
some examples: in a collection of movie reviews, each document is
summarized by a numerical rating; in a collection of news articles,
each document is assigned to a section of the newspaper; in a col-
lection of on-line scientific articles, each document is downloaded
a certain number of times. In this study, listings of products sold
in online fashion stores contain descriptions assigned to product
prices. Therefore, the task of predicting discrete or continuous out-
comes using text as input has been referred to as text-regression
[Gentzkow et al., 2019].

In general, text data contains a lot in information which can
be hardly leveraged. Computer scientists were the first to improve
the interpretation of documents by introducing machine learning
methodologies to discover latent concepts - or topics - inside collec-
tions of documents. Among these, the most widely used method is
probably the Latent Dirichlet Allocation (LDA) [Blei et al., 2003],
a generative probabilistic model for topic modelling that has also
been used to create features for classification and regression pur-
poses. In fact, it can be regarded to as a method for dimension-
ality reduction via probabilistic matrix factorization [Fei-Fei and
Perona, 2005],[Aggarwal and Zhai, 2012]. Still, unsupervised topic
modelling and dimensionality reduction like LDA have been criti-
cized because the extracted features may not be correlated to the
outcome to predict. Mcauliffe and Blei [2008] proposed supervised
LDA as an extension of traditional LDA. The authors jointly model
documents and response variables to find topics that best predict
the response given a set of new observed documents. As alterna-
tive approach to supervised LDA, Taddy [2013] proposed Multino-
mial Inverse Regression (MNIR) as a new model of annotated text
based on the influence of metadata and response variables on the
distribution of words in a document. Motivated by previous work
by Gentzkow and Shapiro [2010], the author shows that logistic
regression of phrase counts onto document annotations (like rat-
ings) can be used to obtain lower dimensional document represen-
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tations that are rich in sentiment information. The author perform
three different text analysis. First, they take constituent percent-
age vote-share for G.W. Bush and Republican party membership re-
gressed onto speech for a member of the 109th US congress. Second,
they take users’ overall ratings regressed onto the content of their
we8there.com restaurant review. Rabinovich and Blei [2014] pro-
posed an extension of MNIR, the Inverse Regression Topic Model
(IRTM), combining the strength of the former with LDA. They ap-
ply the model to a corpus of 73K congressional press releases and to
a corpus of 150k yelp reviews. Their results show that IRTM out-
performs both MNIR, supervised LDA and LDA based regression.
Büschken and Allenby [2016] provide another extension of Latent
Dirichlet Allocation by introducing a bag-of-sentences model in con-
trast to the standard bag-of-words assumption. They use data from
Italian restaurants reviews from we8there.com and hotels from ex-
pedia.com to predict consumer ratings through regression.

In the field of empirical research, many contributions have been
published in different domains which are summarized in Table 2.1.
It is evident that most applications are concerned with finance. In
general, these aim at predicting price volatility or stock returns
based on news documents. The majority of these studies try to un-
derstand whether financial fenomena are related to news, intended
as the mood of the markets. These methods are mostly concerned
with linear regression model for time series analysis, with some
exceptions that use Support Vector Regression (SVR). An early
example on analyzing news text for stock price prediction appears
in Cowles 3rd [1933]. The closest modern analog of Cowles’s study
is Antweiler and Frank [2004], who take a generative modeling ap-
proach to ask how informative are the views of stock market prog-
nosticators who post on internet message boards. The authors clas-
sify postings on stock message boards as buy, sell, or hold signals.
In Tetlock et al. [2008], the authors use word counts in the Wall
Street Journals’ widely read "Abreast of the Market" column. Us-
ing the Harvard VI psychosocial dictionary, they map counts from
each article to a high dimensional sentiment score vector and de-
rive a "pessimism factor" using Principal Components to forecast
stock market activity. Dictionary based applications can be found
in Loughran and McDonald [2011] where the authors demonstrate
that the widely used Harvard dictionary can be ill-suited for fi-
nancial applications. Bollen et al. [2011] instead analyze how the
mood of daily Twitter feeds can be used to predict the Dow Jones
Industrial Average over time. Kogan et al. [2009] use a company’s
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annual financial report to predict the financial risk of investment
in that company, measured empirically by a quantity known as
stock return volatility. They use support vector regression and find
text-regression model predictions to correlate with true volatility
nearly as well as historical volatility. Wisniewski and Lambe [2013]
show that negative media attention of the banking sector, summa-
rized via ad hoc pre-defined word lists, Granger-causes bank stock
returns during the 2007-2009 financial crisis and not the reverse,
suggesting that journalistic views have the potential to influence
market outcomes, at least in extreme states of the world. The use
of text regression for asset pricing is exemplified by Jegadeesh and
Wu [2013]. They estimate the response of company-level stock re-
turns to text information in the company’s annual report. The au-
thors’ objective is to determine whether regression techniques offer
improved stock return forecasts relative to dictionary methods by
proposing a specific regression model. Manela and Moreira [2017]
take a regression approach to construct an index of news-implied
market volatility based on text from the Wall Street Journal from
1890-2009, by applying support vector machines. Bandiera et al.
[2020] apply Latent Dirichlet Allocation to a large panel of CEO
diary data. They uncover two distinct behavioral types that they
classify as leaders who focus on communication and coordination
activities, and managers who emphasize production related activi-
ties. Thorsrud [2018] shows how textual data collected from a major
Norwegian business newspaper can be used to construct a daily co-
incident index of the business cycle within a mixed frequency time
varying dynamic factor model. A related line of research analyzes
the impact of communication from central banks on financial mar-
kets. Lucca and Trebbi [2009] use the content of Federal Open
Market Committee (FOMC) statements to predict fluctuations in
Treasury securities. Born et al. [2014] extend this idea to study the
effect of central bank sentiment on stock market returns and volatil-
ity. Hansen et al. [2018] research how FOMC transparency affects
debate during meetings by studying a change in disclosure policy.
The authors use topic modeling to study 149 FOMC meeting tran-
scripts during Alan Greenspanas tenure. Some studies use text to
infer causal relationships or the parameters of structural economic
models. Engelberg and Parsons [2011] measure local news cover-
age of earnings announcements, then use the relationship between
coverage and trading by local investors to separate the causal effect
of news from other sources of correlation between news and stock
prices.
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Another domain of application can be found in studies con-
cerning political slant and policy uncertainty. In this category, the
methods adopted build mostly on logistic regression and multino-
mial logistic regression, which underlies the Multinomial Inverse Re-
gresion (MNIR) and the Inverse Regression Topic Model (IRTM).
These approaches are also close to the applications in the field of
opinion mining, in fact, both are closely related to sentiment analy-
sis [Liu, 2015]. Baker et al. [2016] provide one of the most influential
applications of text analysis in the literature to date defining a mea-
sure of economic policy uncertainty (EPU). The authors define the
unit of observation to be a country-month and the outcome of inter-
est is the true level of economic policy uncertainty. The authors ap-
ply a dictionary method to produce estimates of uncertainty based
on digital archives of ten leading newspapers in the United States.
Groseclose and Milyo [2005] offer a pioneering application of text
analysis methods to this problem. They compare the text of large
US newsmedia outlets to speeches of congresspeople in order to es-
timate the outlets’ political slant. Gentzkow and Shapiro [2010] use
congressional and news text to estimate each news outlets’ politi-
cal slant in order to investigate the supply and demand forces that
determine slant in equilibrium. Stephens-Davidowitz [2014] uses
Google search data to estimate local areas’ racial animus in order
to address the causal effect of racial animus on votes for Barack
Obama in the 2008 election. Saiz and Simonsohn [2013] use web
search results to estimate the current extent of corruption in US
cities using a dictionary approach.

In terms of the data used as input, the contributions above share
some similarities with those in the field of nowcasting. Following a
bayesian approach, Scott and Varian [2014] and Scott and Varian
[2013] use data from Google searches to produce high-frequency es-
timates of macroeconomic variables such as unemployment claims,
retail sales, and consumer sentiment that are otherwise available
only at lower frequencies from survey data. Zeng and Wagner [2002]
note that the volume of searches or web hits seeking information
related to a disease may be a strong predictor of its prevalence.
Johnson et al. [2004] provide an early data point suggesting that
browsing influenza-related articles on the website healthlink.com is
correlated with traditional surveillance data from the Centers for
Disease Control (CDC). A similar approach has been carried out in
[Ginsberg et al., 2009].

In the field of industrial organization and market definition,
many important questions hinge on the appropriate definition of
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product markets. Nevertheless, standard industry definitions can
be an imperfect proxy for the economically relevant concept. Hoberg
and Phillips [2016] provide a novel way of classifying industries
based on product descriptions in the text of company disclosures.
Kelly et al. [2018] use cosine similarity among patent documents to
create new indicators of patent quality.

Eventually, we report the major contributions in the field of
empirical economics. Foster et al. [2013] provide an example on
the usage of text for regression. The authors use listings for real es-
tates that report the price of a property, a description about its key
features and details such as the number of rooms, bathrooms and
square-feets to build a hedonic regression model. Nowak and Smith
[2017] provide another application of text regression in real estate.
They incorporate text data from MLS listings into a hedonic pricing
model and found text, used in combination with other covariates, to
be an important determinant to reduce pricing error. They compare
the performances of two common penalized regression techniques,
namely the Lasso [Tibshirani, 1996] and the procedure proposed in
[Belloni et al., 2011]. Joshi et al. [2010] provide an experiment in
text regression on movie reviews and revenue. They use a linear
regression to predict the gross revenue aggregated over the opening
weekend. They obtain data from movie reviews from 2005 to 2009
by crawling metacric.com as well as data about budget and revenue
by crawling the-numbers.com. They use the elastic net [Zou and
Hastie, 2005] for model estimation. Ghose et al. [2007] set up an
econometric model to infer the economic value of text by giving a
value to each opinion phrase using transaction and reputation data
from Amazon.com. Archak et al. [2007] and Archak et al. [2011]
use text-mining to study the influence of textual product reviews on
product choice decisions. Following Chevalier and Mayzlin [2006],
they model the impact of product reviews on sales by directly incor-
porating product review information in a linear model for the sales
rank. To this purpose, they use data from Amazon web services on
41 digital cameras and camcoders.

The present study joins to the aforementioned contributions in
empirical economics. In particular, our approach is connected with
the studies by Foster et al. [2013] and Nowak and Smith [2017].
However, beyond the domain of application, our approach is dif-
ferent in the sense that both these studies use text data as sup-
plement of another set of structured covariates while we use just
the attributes that we obtain from text. In terms of the methods
discussed in [Nowak and Smith, 2017, Foster et al., 2013], our work
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goes in their same direction but in addition, our approach explores
supervised dimensionality reduction, topic modeling via LDA, as
well as variants of penalized linear model that have not been ad-
dressed before.

23



T
ab

le
2.

1:
R

ev
ie

w
of

st
ud

ie
s

in
re

gr
es

si
on

us
in

g
te

xt
da

ta

A
ut

ho
r

Y
ea

r
O

ut
co

m
e

In
pu

t
M

et
ho

d

F
in

an
ce

C
ow

le
s

3r
d

19
33

st
oc

k
pr

ic
es

ne
w

s
te

xt
LR

Te
tl

oc
k

et
al

.
20

08
F
ir

m
s’

ea
rn

in
gs

,s
to

ck
pr

ic
es

Se
nt

im
en

t
LR

A
nt

w
ei

le
r

an
d

Fr
an

k
20

04
st

oc
k

pr
ic

es
m

es
sa

ge
bo

ar
ds

LR
W

is
ni

ew
sk

ia
nd

La
m

be
20

13
st

oc
k

re
tu

rn
s

Te
xt

LR
Je

ga
de

es
h

an
d

W
u

20
13

st
oc

k
re

tu
rn

s
co

m
pa

ni
es

an
n.

re
p.

LR
K

og
an

et
al

.
20

09
V

ol
at

ili
ty

Te
xt

SV
R

Lo
ug

hr
an

an
d

M
cD

on
al

d
20

11
R

et
ur

ns
Se

nt
im

en
t

LR
Te

tl
oc

k
et

al
.

20
08

F
ir

m
s’

ea
rn

in
gs

,s
to

ck
pr

ic
es

Se
nt

im
en

t
LR

E
ng

el
be

rg
an

d
P
ar

so
ns

20
11

St
oc

k
pr

ic
es

ea
rn

in
g

an
no

un
c.

LR
M

an
el

a
an

d
M

or
ei

ra
20

17
m

ar
ke

t
vo

la
ti

lit
y

W
S

Jo
ur

na
l

SV
R

B
an

di
er

a
et

al
.

20
20

M
an

ag
em

en
ts

ty
pe

C
E

O
di

ar
y

da
ta

LD
A

E
co

no
m

ic
s

C
he

va
lie

r
an

d
M

ay
zl

in
20

06
sa

le
s

ra
nk

s
re

vi
ew

s
LR

A
rc

ha
k

et
al

.
20

11
Sa

le
s

ra
nk

s
Te

xt
LR

Fo
st

er
et

al
.

20
13

P
ri

ce
Te

xt
LR

N
ow

ak
an

d
Sm

it
h

20
17

P
ri

ce
Te

xt
LR

C
on

tin
ue

d
on

ne
xt

pa
ge

24



Ta
bl

e
2.

2
–

C
on

tin
ue

d
fr
om

pr
ev

io
us

pa
ge

A
ut

ho
r

Y
ea

r
O

ut
co

m
e

In
pu

t
M

et
ho

d
T

ho
rs

ru
d

20
18

B
us

in
es

s
cy

cl
e

bu
si

ne
ss

ne
w

sp
.

D
FA

M
ar

ke
tin

g
B

üs
ch

ke
n

an
d

A
lle

nb
y

20
16

R
at

in
gs

To
pi

c-
co

nt
en

t
To

pi
c

m
od

el
-

in
g,

LR
H

ob
er

g
an

d
P

hi
lli

ps
[2

01
6]

20
16

In
du

st
ry

ty
pe

P
ro

du
ct

de
sc

.
LR

K
el

ly
et

al
.

20
18

pa
te

nt
Te

xt
C

lu
st

er
in

g

P
ol

iti
ca

ls
la

nt
,
po

lic
y

un
ce

rt
ai

nt
y

G
en

tz
ko

w
an

d
Sh

ap
ir

o
20

10
D

oc
.

A
nn

ot
at

io
ns

P
hr

as
e

co
un

ts
Lo

g.
R

eg
re

s-
si

on
G

ro
se

cl
os

e
an

d
M

ily
o

20
05

po
lit

ic
al

sl
an

t
U

S
ne

w
sm

ed
ia

ou
tl

et
s

M
ul

t.
re

g
St

ep
he

ns
-D

av
id

ow
it

z
20

14
go

og
le

se
ar

ch
vo

te
sh

ar
es

LR
Sa

iz
an

d
Si

m
on

so
hn

20
13

w
eb

se
ar

ch
es

co
rr

up
ti

on
LR

Ta
dd

y
20

13
vo

te
sh

ar
e,

ra
ti

ng
s

te
xt

M
N

IR
R

ab
in

ov
ic

h
an

d
B

le
i

20
14

pa
rt

y
affi

lia
ti

on
,r

at
in

gs
Te

xt
,S

en
ti

m
en

t
IR

T
M

N
ow

ca
st

in
g

Sc
ot

t
an

d
V

ar
ia

n
20

13
m

ac
ro

ec
on

om
ic

in
de

xe
s

go
og

le
se

ar
ch

es
B

ay
.R

eg
Sc

ot
t

an
d

V
ar

ia
n

20
13

m
ac

ro
ec

on
om

ic
in

de
xe

s
go

og
le

se
ar

ch
es

B
ay

.R
eg

Ze
ng

an
d

W
ag

ne
r

20
02

di
se

as
e

m
ap

pi
ng

w
eb

se
ar

ch
es

LR

O
pi

ni
on

M
in

in
g

C
on

tin
ue

d
on

ne
xt

pa
ge

25



Ta
bl

e
2.

2
–

C
on

tin
ue

d
fr
om

pr
ev

io
us

pa
ge

A
ut

ho
r

Y
ea

r
O

ut
co

m
e

In
pu

t
M

et
ho

d
B

ol
le

n
et

al
.

20
11

D
JI

A
Fe

ed
s

se
nt

im
en

t
LR

G
ho

se
et

al
.

20
07

P
ri

ce
pr

em
iu

m
R

ep
ut

at
io

n
LR

Jo
sh

ie
t

al
.

20
10

M
ov

ie
re

ve
nu

e
n
-g

ra
m

s
E

la
st

ic
N

et
M

ca
ul

iff
e

an
d

B
le

i
20

08
ra

ti
ng

To
pi

cs
sL

D
A

26



2.2 Microeconomic background of hedo-
nic models

A Hedonic regression model regresses the price of one unit of a com-
modity on a function of the characteristics of the model and a time
dummy variable [Feenstra and Shapiro, 2007]. It is assumed that a
sample of model prices can be collected for two or more time peri-
ods along with a vector of the associated model characteristics. An
interesting theoretical question which is discussed by Rosen [1974]
is whether we can provide a microeconomic interpretation for the
function of the characteristics on the right hand side of the regres-
sion. Here, we illustrate the model in [Feenstra and Shapiro, 2007]
which develops on the former based on the following assumptions

• every consumer has a separable sub-utility function f(z), z ∈
Rn which gives sub-utility Z = f(z), from the purchase of
one unit of a commodity that has a vector of characteristics
z

• The sub-utility that consumer gets from consuming Z units of
a commodity can be combined with the utility derived by con-
sumption of another commodity X to give an overall (macro)
utility ut = U t(X,Z) in time period t.

The set {(X,Z) : U t = ut} is the consumer indifferent curve
for period t. It is further assumed that utility can be solved for X
(explicitly or implicitly) and that ∂gt(U,Z)/∂Z < 0. Now, let pt

and P t be, respectively, the prices for one unit of X and Z, then
the consumer expenditure minimization problem is

min
X,Z

[ptX + P tZ : X = gt(ut, Z)] = min
Z

[ptgt(ut, Z) + P tZ] (2.1)

The price of the hedonic aggregate P t can be derived by setting the
gradient of the right hand side of 2.1 to zero to obtain

P t = −pt∂gt(U,Z)

∂Z
:= ωt(Z, ut, pt) (2.2)

where ω is interpreted as the consumer willingness to pay price
function. In order to come at the final hedonic regression model, it
assumed also that there are Kt models available at time t, where
model k sells at unit price P t

k as has characteristics ztk ∈ Rnk . If the
consumer decides to purchase from model k then we can equate his
willingness to pay for one unit to price P t

k so that

P t
k = −f(zt

k)p
t∂gt(ut, f(zt

k))

∂Z
(2.3)
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where f(zt
k)p

t∂gt(ut, f(zt
k))/∂Z = Zωt(Z, ut, pt) is the amount of

money that a consumer is willing to pay for a model with charac-
teristics z (where we used the fact that Z = f(z)). No statement
on g has been made so far, it can be assumed that every consumer
has the same subutility function f and that the i-th consumer is
given the following linear indifference function

gti(u
t
i, Z) = −atZ + btiu

t
i

where at, bt > 0. Substituting in 2.3 we get easily

P t
k = ptatf(ztk) = ρtf(zt

k) (2.4)

This equation will consitute the basis to derive the most used func-
tional forms of hedonic regression models, namely the log-log, the
semilog and the linear. Assume that

log f(z) = α0 +
"

i

αi log zi (2.5)

the log-log hedonic model can be derived easily by taking logs
of 2.3 plugging 2.5 and adding an error term ε

logP t
k = log ρt + α0 +

"

i

αi log z
t
ik + εti

1 (2.6)

On the other hand if it is assumed that

log f(z) = α0 +
"

i

αizi (2.7)

subsitututing in 2.3 plugging 2.5 and adding an error term ε we
obtain the following semilog hedonic regression model

logP t
k = log ρt + α0 +

"

i

αiz
t
ik + εti

2 (2.8)

In the linear model it is assumed that f is a linear function of
the characteristics so that the hedonic regression model turns out
to be

P t
k = ρt(α0 +

"

i

αiz
t
ik) + εti (2.9)

which is non-linear in the parameters and thus it is not usually
estimated. This model is usually approximated by its linear version

1log ρt = 0 is set for idendifiability
2log ρt = 0 is set for idendifiability
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P t
k = ρt + α0 +

"

i

αiz
t
ik + εti (2.10)

The choice of the most suitable functional form has been object
of debate, see for example Rosen [1974], Cassel and Mendelsohn
[1985], Freeman III [1979] and Halvorsen and Pollakowski [1981].
In what follows we use a linear specification as in 2.10 since our
focus is the actual level of price.

2.3 Web-Scraping
Web scraping is the automated collection of data from the internet.
Although web scraping is not a new term - in past years this prac-
tice has been more commonly known as screen scraping, web data
mining, web harvesting - general consensus today seems to favour
web scraping. Occasionally, we will make use of web-crawling as
synonymous.

A complete description of how to do web scraping would be
impossible, since there are too many different ways and solutions
to that, depending on the specific needs. These start from the
programming language to be used to its actual implementation. Of
course, web scraping is not a statistical procedure per-se, yet, the
most common statistical programming languages are coming with
several good packages to perform scraping routines. For example,
data scientist or statisticians may prefer using R or Python. For
the purpose of this work, we used Python Scrapy as environment,
although other packages like beautiful soup (in Python) and rvest
(in R) are excellent alternatives. The main steps that a web-crawler
needs to accomplish are outlined below, with more technical details
reported in Algorithm 1. These are:

1. Retrieving HTML3 data from a domain name

2. Parsing that data for target information

3. Storing the target information

4. Moving to other pages and repeat (optional)

It is worthwhile to examine the specific issues that arise in
extracting text from the Web. To begin with, several aspects of
text extraction are highly platform-specific. Broadly speaking, this

3Hyper-Text Markup Language
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means that each website has its own structure so that it needs a
specificly designed crawler to get its data collected. A Web page
may often be organised into content blocks that are not related to
the primary subject matter of the page. For example, irrelevant
blocks such as advertisements, disclaimers, or notices, that are not
very helpful to mine. The web-crawler has to be designed so that
when it scrolls a web page looking for data, the information con-
tained in these blocks is not considered.

Algorithm 1: Pseudo code for web-scraping
Data: Web pages URL, N - number of search result pages

(i), n - number of results on search page (j)
Result: JSON file with scraped data
Send request via URL to server;
for i ← 1 to N do

Set i result page;
Set n;
for j ← 1 to n do

Send request to server for j-th page from the search
results ;

Get the data from HTML through X-Path and
Regex expression;

Store data in a JSON file;
end

end

In brief, the basic action that a web crawler needs to perform
is to scroll the entire HTML of the web page looking for specific
tags containing the desired information. HTML is a tree structure
with nodes and leafs, indexed by tags, where the latter usually con-
tains the information that one needs to scrape. XPath is a querying
language that allows to scroll the tree structure to get to the leaf
containing the needed information. Regex are programming ex-
pressions that can automatically detect specific patterns in text by
manipulating text strings with the purpose to isolate the desired
information4. As discussed, web data like text are unstructured,
therefore it is not recommended to store this data in a standard csv
file. The most appropriate way to collect data from web scraping

4As example, the find and replace function of many software is a front end
implementation of some regex
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is to store it in Javascript Object Notation (JSON) format which
can be easily handled by the most common statistical programming
languages [Kwartler, 2017].

2.4 Preprocessing text
Once that text data has been collected, the first step is to convert
the raw text into a character sequence. We refer to the raw text
as a character sequence that contains a significant amount of meta-
information. For example, an HTML document will contain various
tags and anchor text, and an XML document will contain meta-
information about various fields. Here, the analyst has to make
a judgement about the importance of the text to the specific ap-
plication at hand, and remove all the irrelevant meta-information.
The character sequence is then parsed into tokens. Consider the
following example of a character sequence:

After sleeping for four hours, he decided to sleep for
another four.

The tokens from this character sequence are ("After", "sleep-
ing", "for", "four", "hours", ",","he", "decided","to","sleep","for","four","hours",".").
Note that some words are repeated multiple times and some are not
consolidated. In addition, some words are capitalized. Thus, a to-
ken is a sequence of characters from a text that is treated as an
indivisible unit for processing. Tokenization presents some chal-
lenging issues from the perspective of deciding word boundaries.
A very simple and primitive rule for tokenization is to use white
spaces as separators after removing punctuation. This method is
simplistic and may lack of human interpretation when words nat-
urally come in pairs or exhibit a specific pattern that has to be
captured in the analysis. A much richer tokenization would include
also sequences of n adjacent words, the so-called n-grams. It must
be noticed though that there is no unique way of performing the
best tokenization. To give and example, consider the following de-
scription of a dress scraped from an e-commerce website of a fashion
retailer:

Not the usual pencil dress: the V-neck with tulle insert
and the star appliques are that something extra you will
immediately fall in love with. Ultra-fitted bodycon cut
that shows off your silhouette. Perfect with soaring heels
at evening parties.
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White-space tokenization will separate the words pencil and
dress. This is not a problem if the analysis were carried out on
just this category but it would be very different if we were to model
different categories of apparels at once. In this case, the word pencil
may not be immediately be associated with dresses but with other
categories of apparels. The use of bi-grams would consider pencil
dress as a distinct token. Of course, reacher tokenizations corre-
spond to better interpretability, but this is not coming without side
effects, as it shall be discussed.

Tokens that can be extracted from a character sequence may not
be all of practical use. The goal of the analysis is to discard some
tokens and to retain the subset that preserve the core content of the
text. To this purpose, the following steps are usually recommended.
However, these are just indicative so that some can be skipped or
performed in alternative order [Aggarwal and Zhai, 2012, Kwartler,
2017].

removing stop-words Stop-words are words in language that do
not add much content to a sentence. These are usually ar-
ticles, conjunctions, prepositions and pronouns which occur
very frequently in the collection. These words typically oc-
cur at one end of the spectrum, they are not discriminative
for most mining applications and only add a large amount
of noise. Depending on the specific domain This list can be
enlarged with other words. For example, when dealing with a
collection of reviews on dresses, the word dress may not add
any specific content to the review.

removing punctuation Punctuation is usually not assumed to
be a key role in statistical applications and is often removed.
This includes also hyphens, accents, apostrophes.

stemming Stemming is the process of consolidating related words
with the same root. For example, a text document might
contain the singular or plural form of the same word, various
tenses, and other variations. In such cases, it makes sense to
consolidate these words into a single one. Consolidation plays
a crucial role for subsequent statistical analysis; since terms
can be used as covariates, consolidation has a direct impact
on the dimensionality of data.

lemmatizations Often referred to as stem-completion. After stem-
ming it yields the dictionary word. The most widely used
stemming-lemmatization algorithm are the Porter’s stemmer
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[Van Rijsbergen et al., 1980], Snowball [Porter, 2001] which
applies to other languages and WordNet [Miller, 1995].

By filtering out some tokens, pre-processing text reduces the
dimensionality of the problem. In text mining or statistical natu-
ral language processing this is known as feature selection [Guyon
and Elisseeff, 2003]. In addition to the steps outlined above, pre-
processing can be further encouraged by filtering out tokens with
low frequencies based on some thresholding rule. Other criteria that
have been proposed in the literature, in particular term-variance
[Liu et al., 2005] and term-variance quality [Dhillon et al., 2004]
consider the variance of term frequencies to define thresholding
rules.

The set of remaining tokens after pre-processing is referred to as
the lexicon or the vocabulary. Some text mining books [Aggarwal,
2018] make a further distinction and refer to these left tokens as
terms to better establish the connection with the idea of a vocab-
ulary.

2.5 Weighting schemes and the vector space
model

In order to use text for statistical applications it is necessary an ap-
propriate model. The most famous model in text mining literature
is known as Bag of Words (BoW). In this model, the documents
are given a sparse multidimensional representation where the di-
mensions correspond to terms or features. This is the reason why
we stated that reacher tokenizations may have a cost to be paid. In
this case, the cost is directly related to the dimensionality of data.

Let D be a collection of D documents. Suppose that documents
have been pre-processed using the criteria discussed above and let
V be a vocabulary of size V . The vocabulary is retrieved according
to the tokenization (words, bi-grams, words and bigrams,. . . ) that
the researcher believes is the best for the problem at hand. Usually,
the most common and straightforward choice is to identify tokens
in words so that throughout this study, we will assume tokens to be
words. After pre-processing, each document w is represented as a
point in a V -dimensional vector space, w ∈ RV , whose dimensions
correspond to the words in the vocabulary. A corpus D is then
equivalently defined as a collection D = {w1,w2, ...,wD} of points
in this space. Given that the size of the vocabulary is often very
large, documents are points in a high-dimensional vector space.
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The matrix

W =

#

$
w′

1

...
w′

D

%

& (2.11)

is referred to as the Document-Term Matrix (DTM). Equiva-
lently, its transpose is referred to as the Term-Document Matrix
(TDM). Since each document only uses a small portion of the vo-
cabulary, this matrix is highly sparse. Also, the vector space model
is based on the implicit assumption that the order of words in doc-
uments can be neglected. This is the reason why this model has
been named after bag-of-words in text mining literature [Jurafsky
and Martin, 2014].

For Document Term Matrices, entries wij can be defined in dif-
ferent ways, depending on the requirements of the analysis. Let
tfij and dfj denote respectively, the number of occurrences of word
j in document i and the number of documents in the collection
containing word j. Three popular ways of defining weights are the
following:

Term Frequency captures how salient a word is within a given
document. The higher the frequency the more likely it is that
the word is a good description of the content of the document.
Thus

wij := tfij

Term frequency is usually dampened by some concave func-
tion such that f(x) =

'
(x) or f(x) = 1 + log(x). This is

because un-dampened occurrences may overestimate the im-
portance of words [Aggarwal, 2018]. Alternatively, wij-s can
be defined as relative frequencies by dividing by the number
of words in the document.

Term Presence Sometimes the presence or absence of a specific
word is likely to be more important than its frequency. There-
fore, a binary weighting scheme, also known as one-hot encod-
ing, or Bernoulli is defined as

wij := 1tfij>0

Term Frequency-Inverse Document Frequency Salton and McGill
[1986]. This weighting scheme is widely used in the litera-
ture on text mining and information retrieval because it puts
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higher weight on words having high frequency in the docu-
ment and low frequency in the collection. Conversely, it gives
less weight to most common terms. The weights under Term
Frequency Inverse Document Frequency are defined as:

wij := tfij × log−1(D/dfj)

For the sake of completeness, a new stream of the literature
Mikolov et al. [2013a,b], and Pennington et al. [2014] introduced
vector space representations based on Neural-Network embeddings.
These representations are becoming quite popular in text-mining
applications to statistics [Lenz et al., 2018]. The key features of
these methods is to produce very meaningful interpretations of word
representations.

2.6 Challenges and difficulties in auto-
matic processing of text

The Hedonic Pricing Model (HPM) assumes that prices of differ-
entiated goods can be described by a bunch of measurable fea-
tures/attributes and that the consumer’s valuation of a good can
be decomposed into implicit values of each product feature [Rosen,
1974]. With a slight change of notation with respect to the model
in 2.10, let pi denote the price for item i and let xi ∈ Rp be a
bundle of embodied attributes valued by some implicit or shadow
prices embedded in the vector β ∈ Rp[Baltas and Saridakis, 2010].
The hedonic model in 2.10 can be reformulated as

pi = β0 + β1xi1 + · · ·+ βpxip + εi (2.12)

where εi is a zero mean and finite variance error term. Note
that in 2.12 we suppress the time index which is considered in 2.10
and previous models since we are interested in explaining sectional
prices’ variations.

The traditional approach to hedonic modeling assumes that the
choice of which attributes have to be included in the model is made
by the researcher. On the contrary, in this study we aim at a
data-driven selection of predictors that leverages the information
contained in the descriptions of the items on sale. In other words,
we are interested in answering to questions like what tokens are
relevant to explain the variations within prices and which method
is performing best among the ones that we consider. We are aware
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that a punctual evaluation of attributes - for example in terms of a
detailed composition of materials - may improve the interpretation
in prices’ variation, however, this procedure is affordable just for
very small datasets and does not scale to bigger ones.

The advantage of using web-data is that products are always
provided with a textual descriptions that contains very detailed in-
formation about their attributes. This means that if it were possible
to leverage this data to obtain this rich set of attributes, it would
be also possible to reduce some bias due to omitted variables. In
addition, this procedure is applicable to datasets of any size.

Therefore, compared to traditional HMP where data is modeled
as a collection of prices and attributes, {(pi,xi)

n
i=1}, in this frame-

work the goal is to model the collection {(pi, texti)ni=1} where texti
is the textual description of the good associated with price i. In
light of what introduced in Section 2.5, let D be a collection of D
product descriptions and let V be the vocabulary5 of size V associ-
ated to D. In addition, let W ∈ RD×V be Document Term Matrix
collecting the vector space representation of the descriptions. In
the hedonic text-regression pricing model we let the vector of at-
tributes of a given product to be the representation its description
in the vector space defined in Equation 2.11:

x
′

i := w′
i ∈ RV

obtaining the following specification

pi = β0 + β1wi1 + · · ·+ βVwiV + εi (2.13)

Remarkably, to estimate 2.13 corresponds to estimate the im-
plicit value of each word in the description, and thus the hedonic
value of the description.

The key feature of this model is that it allows for both observ-
able features - like materials - and for intangible product features
- quality of product, design, ease of use, robustness - that proba-
bly would have not been included following a traditional approach.
To see this, consider the example illustrated in Figure 2.1i. The
price for this item is 337 euros. The hedonic text regression model
will estimate the implicit price of intangible product features de-
noted by words delicate, wild, young, clearly defining the style of
the blouse, while allowing for observable attributes like materials
(silk, georgette). Also, at least in principle, it is possible to estimate
the hedonic value of the item combined with another that form a

5obtained after the pre-processing steps illustrated in Section 2.4
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particular outfit. For example, this would be the marginal effect of
the word heel for the item in Figure 2.1ii.

(i) A dappled print invades this lightweight blouse in silk
dappled print invades this lightweight blouse in Georgette
fabric. A style with a young, wild spirit that will sublimely
complete casual looks with jeans or tailored trouser

(ii) Lightweight and airy, this classic-cut blouse is made
unique by the tulle star insert that adorns the neckline. A
delicate design that you will love with a suit and 12 cm
heels.

Figure 2.1: Example of descriptions

Given the importance that words can have in explaining prices,
a proper estimator of the vector of coefficients is fundamental. In
fact, not all the words that are contained in product descriptions
need to be good predictors of prices. Again, consider the example in
Figure 2.1i. From an economic perspective, words like looks, spirit
would not be as strong as dappled, silk, georgette, or lightweight in
determining prices. In this case it is assumed that only a subset S
of the set of features (i.e. words) actually determines prices. Thus,
to estimate a Hedonic model like 2.13 is also a matter of selecting
a suitable statistical learning algorithm to retrieve this subset.

Unfortunately, when dealing with text data, traditional variable
selection procedures like best subset selection or forward/backward
stepwise selection are rarely of practical use. The first consists in
comparing 2V model which is prohibitive when V - the size of the
vocabulary - is greater than 40. The latter can still be applied as
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long as D - the documents in the collection - is less than V but
they are way computationally expensive. Moreover, if one were to
include also non linearities, interactions or a richer representation
of text based on n-grams the number of covariates obtained by
featurizing text may become larger than the available sample size.

Another challenge of text data is that the bag-of-words model
fails to deal with two aspect of natural language, namely polysemy
and synonymy as it gives to synonyms and polysemys different di-
mensions in the vector space. Also, the high-dimensionality and the
sparsity of the DTM matrix sometimes make necessary the usage of
dimensionality reduction techniques to improve the interpretation
of data.
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CHAPTER

3

METHODS

In Section 2.1, we introduced the Bag of Words model to summarise
the information in document collection via a sparse Document-
Term Matrix. This chapter introduces additional statistical mod-
els that use text to explain the variation of a continuous out-
come like price. Gentzkow et al. [2019] distinguish between i) text-
regression models, where they account also dimension reduction,
penalized linear models and other non-linear models ii) generative
language models iii) word embeddings and iv) uncertainty classifi-
cation. Given that the interpretability of results is the priority of
this study we decided to focus on the first two.

In particular, we review two alternative models for text data,
Latent Semantic Indexing (LSI) [Deerwester et al., 1990] and Latent
Dirichlet Allocation (LDA) [Blei et al., 2003] - which belong to the
class of dimensionality reduction and topic modelling techniques
- some variations of penalized linear models (Lasso, SLOPE) and
aggregated predictors. Eventually, in Section 3.8 we discuss their
implementation as well as the procedures for perfomance evalua-
tion.
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3.1 Latent Semantic Indexing
The intuition behind Latent Semantic Indexing is that by com-
prising the DTM with a lower-rank approximation, one may ob-
tain a lower dimensional representation that best represents co-
occurrences among words in documents. As example, those due
to polysemy and synonymyms. This intuition suggests that not
only should retrieval quality not suffer too much from the dimen-
sion reduction, but in fact may improve. For this reason, LSI has
been regarded also as a topic modeling technique [Steyvers and
Griffiths, 2007, Aggarwal, 2018, Crain et al., 2012, Evangelopoulos
et al., 2012].

A topic model is a statistical model for discovering latent top-
ics - or concepts - inside a collection of documents [Blei et al.,
2003]. Topic models usually factorize a Document-Term Matrix
into a product of two or three matrices. Usually, one of these gives
insights about the topics’ dominance inside each document, and
another explains how much each topic is defined by the words in
the vocabulary. LSI is obtained by means of a lower rank approx-
imation Wk of the DTM W such that Wk can be decomposed in
the product of three matrices. The value of the chosen rank, k,
identifies the number of concepts in data [Manning et al., 2010].
This decomposition can be represented as

W ≈ Wk = UkΣkV
′
k.

The matrices Uk ∈ RD×k,Vk ∈ RV×k in this decomposition rep-
resent respectively the coordinates of documents and terms in the
lower dimensional latent space of concepts or topics. The remaining
matrix instead says how much each topic dominates the collection
of documents. This is illustrated in Figure 3.1. The j-th topic is
interpreted according to the magnitude and the sign of the coordi-
nates with respect to the j-th column of Vk. Opposed to the sparse
bag of words model, this representation is dense.

Singular Value Decomposition Given a generic Document Term
Matrix W ∈ RD×V , let U be a D×D matrix such that its columns
{u1, ...,uD} are the eigenvectors of WW′ and let V be a V × V
matrix whose columns {v1, ...,vV } are the eigenvectors of W′W.

Theorem 1 Let r be the rank of matrix W. Then, there is a sin-
gular value decomposition (SVD) of W such that

W = UΣV′ (3.1)
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Figure 3.1: Visual representation of LSI for a given Document
Term Matrix.

where

1. the eigenvalues λ1, ...,λr > 0 of WW′ are the same as those
of W′W.

2. Matrix Σ ∈ RD×V is a diagonal matrix such that for 1 ≤ i ≤
r, Σii = σi =

√
λi.

The values σi are referred to as the singular values of W. When
practically computing the SVD, it is more convenient to represent
Σ as an r × r matrix with the singular values on the diagonal,
since all entries outside this sub-matrix are zeros. Accordingly, it
is conventional to omit the rightmost D − r columns of U (corre-
sponding to omitted rows of Σ), and the rightmost V −r columns of
V. The cost of computing the SVD is then reduced from O(V D2)
to O(V r2). This way of representing the SVD is known as com-
pact SVD. This is shown in Equation 3.2 below and graphically in
Figure 3.2

WD×V = UD×VΣr×r(VV×r)
′ (3.2)

Figure 3.2: Singular value decomposition.
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Low-rank approximation Given a Document Term Matrix W
and a scalar k we wish to find a matrix Wk ∈ RD×V of rank k such
that the quantity

‖W −Wk‖F=

())*
D"

i=1

V"

j=1

W 2
ij (3.3)

is minimized. The Singular Value Decomposition is one solution
to this problem 1.

The error that is obtained by this appoximation is given by

min
Z|rank(Z)=k

‖W − Z‖= ‖W −Wk‖F= σk+1

Thus, the larger is k the lower is the approximation error.

Definition 1 (Trucated SVD) Let k ≪ r then the Truncated
SVD of W is defined as

UD×kΣk×k(VV×k)
′ (3.4)

thus, it gives the best least square approximation of W by a matrix
of rank W.

Computing LSI Given a Document Term Matrix of dimension
D × V representing documents in term space, LSI is obtained by
choosing a rank k and computing the Truncated-SVD of W. So
that the quantity

W ≈ Wk = UD×kΣk×k(VV×k)
′ := UkΣkV

′
k (3.5)

LSI has the advantage over other matrix factorisation algo-
rithms in text mining (like Non-Negative Matrix Factorisation [Lee
and Seung, 1999]) that columns of Uk provide the top k-basis for
the column space of W while columns of V provide the top k-basis
for its row space (see Figure 3.1). Rows of Uk and Vk relates doc-
uments and terms to topics, respectively. Therefore, right singular
vectors show how much a topic is dominated by the words in the
vocabulary. Likewise, left singular vectors map between topic and
documents. The higher the weight the higher the predominance.
Note that entries of such matrices need not to be positive, thus
leaving the interpretation of negative signs unclear. Instead, the
magnitude of each singular value represents the relative importance
of the corresponding topic in the collection of documents.

1under some constraints
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3.2 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a model for text data where
documents are considered as mixtures of topics and each topic is
defined as a probability distribution over the vocabulary. As LSI,
the model assumes the number of topics to be specified before any
data has been generated. The data generating process for each
document is as follows:

1. Draw topics βk ∼ Dir(φ), k = 1, ..., K

2. For each document

(a) Draw topic proportions θ|α ∼ Dir(α)

(b) for each word

i. draw topic assignment zn|θ ∼ Mult(θ)

ii. draw word wn|zn; β ∼ Mult(βzn)

Figure 3.3 illustrates this process as a graphical model. Rect-
angles are plate notation, and denote replication. Each node is a
random variable and is labeled according to its role in the gener-
ative process. The hidden nodes for topics, topic proportions and
assignments are unshaded. The shaded nodes correspond to ob-
served data. The N plate denotes words within documents while
the D plate denotes documents within the collection. Figure 3.4
illustrates its geometric interpretation for a vocabulary of size 3
and a 3 topic model. The word simplex represents the space of all
possible probability distributions on the three words, so that each
topic is represented as a point in this simplex. Consequently, being
mixture of topics, document are represented as points in the topic
simplex.

α θ z w β φ

N

D

K

Figure 3.3: The graphical model for Latent Dirichlet Allocation
Blei et al. [2003]

.
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Figure 3.4: Geometric interpretation of LDA [Blei et al., 2003].

Therefore, for each topic k = 1, ...K, βk is a distribution over the
vocabulary representing word probabilities under topic k. The topic
proportions for the d-th document are denoted by θd , where θ(d,k) is
the proportion of topic k in document d. The topic assignments for
the d-th document are zd, where z(d,n) is the topic assignment for
the n-th word in document d. Finally, the observed words are wd,
where w(d,n) is the n-th word in document d.Under this model, the
joint distribution of both the observed and the unobserved variables
is

p(β1:K , θ1:D, z1:D, w1:D) =
K+

k=1

p(βk)
D+

d=1

p(θd)

Nd+

n=1

p(zd,n|θd)p(wd,n|zd,n, β1:K)

(3.6)
where the : notation indicates the whole collection of random

variables, for example β1:K = {β1, . . . , βK}. Inference for LDA
involves computing the posterior distribution of the latent variables
conditional on the observed word counts

p(β1:K , θ1:D, z1:D|w1:D) =
p(β1:K , θ1:D, z1:D, w1:D)

p(w1:D)
(3.7)

It is worth noting from Equation 3.6 that LDA makes use of the
"bag-of-words assumption" that the order of the words in docu-
ments can be neglected and that the order of the documents can
be neglected as well.

Algorithms for an approximation of Equation 3.7 fall into two
categories: sampling based algorithms [Steyvers and Griffiths, 2007]
and Variational Methods [Blei et al., 2003, Wainwright et al., 2008].
Algorithm 2 sketches the Gibbs sampler for LDA assuming simmet-
ric dirichlet priors with parameters α,φ. The interpretation is as
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follows: the first factor in 3.8 expresses the probability of word wi

under topic j. It is approximately the ratio of the number of times
the word wi have been assigned to topic j (nwi

−i,j), over the sum of
the word assignments, excluding the current instance, The second
factor represents the probability of topic j in document di, where
ndi
−i,j denotes the number of times topic j have been assigned to

some words in document di excluding the current instance.
In this study, we will use the Gibbs sampler proposed by Steyvers

and Griffiths [2007] as we believe to provide more accurate approx-
imations to the posterior. Variational Methods put an alternative
family of distributions - called variational - over the posterior and
then find the set of parameters that minimize the Kullback-Leibler
(KL) divergence between the variational distribution and the true
posterior. In brief, instead of computing samples from the posterior
distribution, say, p(θ|y), variational inference (VI) fixes a family of
densities Q and finds the member q∗ such that the KL divergence
with the true posterior is minimized. Thus is equivalent to max-
imise the so called Evidence Lower Bound (ELBO) defined as:

ELBO(q) =

,

Θ

(log p(θ, y)− log q(θ))dθ

The variational algorithm underlying LDA builds on the so-
called mean field variational family where it is further assumed
that:

q(θ) =
+

i

q(θi)

This produces very fast estimates that scale for huge collections
of data but loosing accuracy [Blei et al., 2017]. Indeed, the KL
divergence is minimized when q(θ) = p(θ|y).

Figure 3.5i and Figure 3.5ii illustrate these methods with a brief
simulation study. In the simulation in Figure 3.5i we created a
collection of 800 documents from vocabulary of V = 300 words
with K = 3 latent topics. For each document, its length is drawn
from a Pois(140). This setting is to better resemble the data that
we shall be consider in the data analysis. Also, parameter2 α is set
equal to 1/K in order to have documents uniformly spread over the
topic simplex. Eventually, as each topic is a mixture of words, we
set φ < 1/V in order to have topics defined by few words with high
probability and the remaining with a low one. It is well evident that
both Gibbs sampling and VI underestimate the true proportions of

2we are sampling from a symmetric Dirichlet distribution
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topics within each document (the θd-s in Figure 3.3). However, VI
tends to spread these proportions too evenly among documents.

In Figure 3.5ii we generate another corpus such that (D =
8000, V = 500) and we estimated a LDA model using VI and Gibbs
sampling. We notice that, in this setting, VI tends to be very in-
accurate.

However, some studies, not directly connected to LDA, have
shown that despite providing approximate posteriors, point esti-
mates can still have good properties [Yao et al., 2018]. Extensions
like Black-Box VI [Ranganath et al., 2014] show that in relatively
short computational times, variational algorithms can provide bet-
ter predictive densities that Gibbs sampling.

In the forthcoming applications we will use Gibbs sampling since
the size of the data that we are trying to model allows to have results
in an affordable time window.

Algorithm 2: Gibbs sampling for LDA [Steyvers and Grif-
fiths, 2007]

1. For each word in vocabulary

(a) for each topic

i. sample topic assigment using

p(zi = j|z−i, w) ∝
nwi
−i,j + η

n.
−i,j + V η

×
ndi
−i,j + α

ndi
−i,. +Kα

(3.8)

(b) compute word topic probabilities

β̂w
j =

nw
j + η

n
(.)
j + V η

(3.9)

(c) compute document topic proportions

θ̂
(d)
j =

n
(d)
j + α

n(d)
. +Kα

(3.10)
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Figure 3.5: Black line: True Proportions. Blue line: proportions
with Gibbs sampling. Red line: proportions under VI.
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3.3 Supervised Topic Modeling via Par-
tial Least Squares

Both LSI and LDA can be regarded as unsupervised methodologies.
Broadly speaking, this means that while one has data {(xi, yi)}ni=1,
where xi is the usual vector of features or covariates and yi is an
outcome, they use only the set xi, i = 1...n. Conversely, a method-
ology that makes use of response y to infer some traits about the
xi-s is regarded as supervised. Partial Least Squares (PLS) is a
supervised dimensionality reduction technique that seeks a linear
combination of the input variables {x1,x2, ...,xV } to find directions
in the data with larger variation that are most correlated with the
response y. To briefly sketch the algorithm, suppose that covari-
ates xj, j = 1, .., V have been centered, the first PLS direction is
z1 =

!
v〈xv,y〉xv (where 〈.〉 denotes inner product) . The response

vector y is then regressed on z1 giving coefficient estimate β̂PLS
1 .

The remaining covariates are orthogonalized with respect to z1 and
the process is repeated until K ≤ V directions are obtained. Typ-
ically, the number of PLS direction is chosen by cross-validation
(see Section 3.8). This is described in more details in Algorithm 3
(Friedman et al. [2001]). The m-th PLS direction ψ̂m solves the
following optimization problem:

max
α

Corr2(y,Xα)Var(Xα)

subject to ‖α‖= 1, α′Sψ̂l = 0, l = 1, ...m− 1
(3.11)

where S is the sample covariance matrix. Thus, PLS in perform-
ing a dimensionality reduction of the original data matrix driven by
a response variable. Suppose that we have availability of a collec-
tion of documents and some quantitative variables associated with
each.

In order to make explicit the connection of PLS, text data and
topic modeling, suppose that some text has been processed so as to
obtain its vector space representation in the DTM matrix and let
{(pd,wd)

D
d=1} be the data to model. For example, in this study pd is

the price for a product sold in an e-commerce website and wd is the
vector space representation of the description that is provided by
the vendor. If we applied PLS to this data then what we obtain is
a topic model that uses the information contained in the response
to drive the discovery of the topics. This is more evident if we
established the connection existing between PLS, Principal com-
ponents (PC) and LSI. If we omitted the Corr term in 3.11 then
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the resulting minimization would be Principal Components. To
establish the connection between PC and LSI, an alternative way
to compute principal components is to use the truncated singular
value decomposition of the data matrix after that it has been cen-
tered, then, principal components are then obtained by projection
XVk = UkΣk.

Algorithm 3: Partial Least Squares

1. standardize each xj such that
!

i xij = 0 and ‖xj‖2= 1. Set
ŷ0 = ȳ1 and x0

j = xj, j = 1, ...p

2. for m = 1, 2, ...p

(a) zm =
!

j ψ̂mjx
(m−1)
j , where ψ̂mj = 〈x(m−1)

j , y〉

(b) θ̂m = 〈zm, y〉/〈zm, zm〉
(c) ŷ(m) = y(m−1) + θ̂mzm

(d) Orthogonalize each x
(m−1)
j w.r.t. zm:

x
(m)
j = x

(m−1)
j − [〈zm, x(m−1)

j 〉/〈zm, zm〉]zm, j = 1, ..., p

3. Output the sequence of fitted vectors {ŷ(m)}p1. Since the
{zl}m1 are linear in the original xj, so is y(m) = Xβ̂pls(m).
These linear coefficients can be recovered from the sequence
of PLS transformations.

3.4 Regression models

3.4.1 OLS

Let us consider the hedonic model introduced in 2.13, which we
reformulate in matrix notation as p = Wβ + ε. The first estima-
tor that we may consider for this model is - of course - the OLS
estimator

β̂ols = argmin‖p−Wβ‖22.

Therefore, the hedonic value of the description - and thus the
estimate of the price for the i-th item - is given by

[OLS]: p̂i = w′
iβ̂

ols (3.12)
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However, the dimensionality of the model depends heavily on
the size of the vocabulary and usually a large number of features
can be extracted from just few lines of text. Proper pre-processing
can help to reduce the size of the vocabulary - and consequently
the set of features that can be extracted - but even in those cases
where V < D, OLS estimation can be undesired especially when the
goal is to use the hedonic model for prediction [Monson, 2009]. In
fact, if the model is too complex and overfits the data, predictions
using OLS estimates are approximately unbiased but they will suffer
from large variance. This is illustrated with a simple simulation
in Figure 3.6 where we simulated data from the model y = x2 +
ε, ε ∼ N(0, 1). It is clear that the more variables we add to the
model using higher order polynomials, the more the bias reduces
at a price of an increasing variance. In some situations, the size
of the vocabulary may exceed the available sample size, especially
if one considers richer representation of documents (as n-grams)
other than that provided by words. If V > D, then Ordinary Least
Squares (OLS) would be unfeasible since the solution to the normal
equations

(W′W)β = W′y (3.13)

would not be unique. In fact, if V > D then rank(W′W) ≤
min(D, V ) ≤ D, so there exists a vector in the nontrivial nullspace
N of W′W, v ∈ N (W′W) - such that if β∗ is a solution of the
normal equations then β∗ + v would also be a solution.

3.5 Sparse models

Another issue in regression with text data that was raised in Sec-
tion 2.6 is that the most common procedure for variable selection
(like best subset selection) cannot be applied because the num-
ber of variables is almost always too large. Thus, we need to rely
on statistical methodologies based on constrained estimators which
are computationally less expensive and provide sparse estimates
of the vector of regression coefficients. The advantage of using a
constraint based approach is that these estimators will work also
in high-dimensional scenarios - when V > D - thus reducing the
importance of pre-processing text.

In sparse modeling it is assumed that the true coefficient vec-
tor β ∈ RV is sparse, meaning that it contains k < V non-zero
coefficients with support denoted by
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Figure 3.6: Prediction error at test point x0 = 0.9.

S = support(β) ⊂ {1, ..., V } (3.14)

Many statistical learning algorithms have been developed to ob-
tain sparse coefficients estimates, see as example [Tibshirani, 1996,
Zou and Hastie, 2005, Bogdan et al., 2015, Bondell and Reich, 2008].
These methods minimize the residual sum of squares plus a penalty
term - also called the regularization term - which causes the solution
to be sparse. The coefficient vector that is obtained is such that
non-zero entries will hopefully correspond to words that resemble
important attributes of prices. Of course, perfect variable selection
is achievable under some conditions and assumptions - which we
will briefly introduce - that are specific to each method. An ad-
ditional advantage of penalty-based methods is that of improving
predictive accuracy by reducing overfitting. This is accomplished
by introducing a source of bias which is compensated by a reduction
of the variance that leads to a lower mean squared prediction error.
This is known as bias-variance tradeoff [Friedman et al., 2001] and
was illustrated in Figure 3.6. In the figure, a model fit with 50
degree polynomial at test point x0 = 0.9 yields MSE=0.2 which be-
comes 0.07 when a Lasso-type penalization is added. Remarkably,
predictions made with the Lasso are clearly biased but show much
less variance.
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3.5.1 The Lasso

The Lasso [Tibshirani, 1996] is probably the most known shrinkage
estimator that produces sparse coefficient estimates in regression
problems. Let us consider the hedonic regression model in Equa-
tion 2.13. The Lasso solution is

β̂Lasso ∈ argmin
β

D"

i=1

-
pi − β0 −

V"

j=1

wijβj

.2

subject to
V"

i=1

|βj|≤ t

(3.15)
which can be rewritten in lagrangian or penalized form as

β̂Lasso ∈ argmin
β

D"

i=1

-
pi − β0 −

V"

j=1

wijβj

.2

+ λ
V"

i=1

|βj| (3.16)

It can be shown that the two sets of solutions are equivalent
for some specific values of λ and t. It can be noticed by look-
ing at 3.15 that the Lasso is minimizing the same residual sum of
squares as OLS subject to a specific constraint given by some ℓ1
norm cone. This is why the Lasso can be seen as biased estimator.
If the solution to the unconstrained problem is the same as is the
constrained, meaning that the constraint is inactive at the optimal
point, then both the Lasso and OLS will have the same solution.
On the contrary, if the constraint is active then the solution would
lie somewhere on the boundary of the constraint set. The shape of
the constraint set, the ℓ1 diamond, causes the solution to be sparse.
Although there is no closed form solution for the Lasso in general,
it can be reported as

β̂Lasso = Sλ(W
′(p−Wβ)) (3.17)

Where Sλ is a soft-thresholding operator and λ is a tuning pa-
rameter that is chosen using cross-validation by picking the value
that attains the lowest prediction error. The higher the value of
the tuning parameter λ the higher will be the weight put on the
penalization term in Equation 3.16 so that the solution will con-
verge to 0. Conversely, for small lambdas, little effect is given to the
penalization so that if λ = 0 the OLS fit is obtained. This means
that as long as the value of λ varies we obtain different estimates
of β̂Lasso ≡ β̂Lasso(λ). This is called the Lasso path of solutions
and several algorithms have been proposed to retrieve it. In what
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follows we will use the Least Angle Regression (LARS) algorithm
by Tibshirani et al. [2004] which is illustrated in Algorithm 4.

Algorithm 4: Least Angle Regression (Lasso Modifica-
tion)

1. standardize predictiors such that
!

i wij = 0 and ‖wj‖2= 1.
Start with the residual r = p− p̄, β1, β2, ..., βp = 0.

2. Find the predictor wj most correlated with r

3. move βj from 0 towards its least square coefficient 〈wj, r〉,
until some other competitor wk has much correlation with
the current residual as does wj.

(a) if a non-zero coefficient hits zero, drop its variable from
the active set of variables and recompute the current
joint least squares direction

4. move βj and βk in the direction defined by their joint least
squares coefficient of the current residual on (wj,wk), until
some other competitor wl has much correlation with the
current residual

5. Continue in this way until all V predictors have been
entered.

The fit for a Lasso model is given by

[LASSO]: p̂i = w′
iβ̂(λcv) (3.18)

Where β̂(λcv) is a sparse vector tuned with cross-validation (see
Section 3.8).

The variable selection properties of the Lasso are illustrated in
[Tibshirani et al., 2015]. In brief, they rely on a irrepresentability
condition that requires the variables belonging to the complement
of the set S to be well separated3 from the columns of the data
matrix whose columns are in S.

3.5.2 Sorted L-One Penalized Estimation

To increase the accuracy of the estimation of large signals and
to eliminate some false discoveries, the adaptive and re-weighted

3Ideally, if these were orthogonal then this condition will be satisfied.
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versions of the Lasso were introduced in Candes et al. [2008] and
Zou [2006]. In these procedures the smoothing parameters are ad-
justed to the unknown signal magnitudes based on some previous
estimates of coefficients. The idea is to take penalties inversely
proportional to the estimated magnitudes so that large regression
coefficients suffer from less shrinkage than small ones. In some situ-
ations, this selection of variables outperforms that provided by the
Lasso [Zou, 2006].

The idea behind Sorted L-One Penalized Estimation (SLOPE)
[Bogdan et al., 2015] is different in the sense that while in the adap-
tive Lasso the penalty tends to decrease, in SLOPE the exact op-
posite happens. This is because SLOPE tries to adapt to the signal
sparsity by controlling the False Discovery Rate (FDR)[Benjamini
and Hochberg, 1995] at some nominal level α. Indeed, the simula-
tions carried out in Bogdan et al. [2015] show that the Lasso has no
control over FDR. In fact, tuning the value of λ by cross-validation
has revealed to select too many variables thus including many false
discoveries along the Lasso path [Su et al., 2017]. For this reason,
SLOPE is somehow preferable if one looks for a variable selection
procedure that hinges more in favour of controlling false discoveries
- as may be the case of hedonic modeling - other than on finding
the best predictions.

SLOPE is the solution to the following convex optimization
problem

min
β

‖p−Wβ‖22+λ1|β|(1)+λ2|β|(2)+...+ λV |β|(V ) (3.19)

where λ1 ≥ λ2 ≥ ... ≥ λV and β(1) ≥ |β|(2)≥ ... ≥ |β(V ). The
sequence of λ values is selected according to different scenarios de-
pending on whether there exists some correlations between regres-
sors and whether the variance is known or unknown. In general,
they are all based on some modification of the Benjamini-Hochberg
sequence λBH(i) := Φ−1(1− qi), qi = iq/2V, q ∈ (0, 1) to control the
false discovery rate.

The solution of the problem in 3.19 is obtained via proximal
gradient methods with variations that allows for correlation in pre-
dictors and variance of the error term. A simple proximal algorithm
is reported in Algorithm 5 where Jλ(β) = λ1|β|(1)+λ2|β|(2)+... +
λV |β|(V ) and the prox can be calculated either via standard Quadratic
Programming or following the algorithm proposed by the authors.
The variation of the algorithm for correlated predictors and un-
known variance is sketched in Algorithm 6. For further details and
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algorithms on the implementation of slope we refer the reader to
Bogdan et al. [2015].

The fit that is obtained with SLOPE is

[SLOPE]: p̂i = w′
iβ̂

slope (3.20)

where β̂slope is a sparse coefficient allowing for false discoveries.

Algorithm 5: Proximal gradient algorithm for SLOPE
3.19

1. Require β0 ∈ RV

(a) for k = 0, 1, ... do

(b) βk+1 = proxJλ
(βk − tkW

′(Wβk − p))

(c) end for

Algorithm 6: Iterative SLOPE fitting when σ is unknown

1. Input: p,W and initial sequence λS.

2. Initialize: S+ = ∅

3. Repeat:

(a) S = S+

(b) compute the RSS obtained by regressing p onto
variables in S

(c) set σ̂ = RSS/(D − |S|−1)

(d) compute the solution β̂ to SLOPE with parameter
sequence σ̂λS

(e) set S+ = supp(β̂)

4. Until S+ = S.

3.6 Aggregated Predictors
In a study on gene expression data, Park et al. [2007] prove that,
under some conditions on the sample covariance structure of pre-
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dictors, identifying and consolidating predictors into groups can
yield a lower prediction error compared to an OLS model with no
grouping. This results is given in the following theorem

Theorem 2 Let x1,x2, ...,xm be columns of design matrix X with
sample covariance structure cor(xi,xj) = ρ > 0 for j ∕= k. Sup-
pose that yi =

!
m βmxim + εi where εi are i.i.d with mean 0 and

variance σ2. Without loss of generality assume that covariates are
standardized so that X′X has 1 on the diagonal and ρ elsewhere.
Let

β̂ = (X′X)−1X′y.

Let β̂A be the OLS coefficient when response y is regressed onto
the sum of the m predictors. β̃ denotes the corresponding vector of
estimates for the original predictors

β̃ = (β̂A, ..., β̂A)′,

where

β̂A =

!
i x.iyi!
i x

2
.i

and x.i =
"

j

xji

then
Ey|x[‖β̃ − β‖22] < Ey|x[‖β̂ − β‖22]

if and only if

ρ > 1− σ2

!
m(βm − β̄)2/(m− 1)

, where β̄ =
"

m

βm/m

The theorem claims that if the true coefficients of the predictors
are similar, so that the ratio

!
m(βm − β̄)2/σ2 is small, then the

range of ρ to improve the fit by averaging is large. This is shown
in Figure 3.7.

Although β̃ yields a larger bias than β̂, the former is more accu-
rate due to a lower variance. The authors provide a two step proce-
dure to identify significant group of genes to predict a quantitative
outcome and refer to this groups as supergenes. This procedure is
reported in Algorithm 7,

The similarities existing between dealing with gene expressions
and text data have been discussed for example in [Lee and Seung,
1999]. We begin by considering again the model in 2.13

pi = β0 + β1wi1 + · · ·+ βVwiV + εi.
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Figure 3.7: From [Park et al., 2007]. If the true coefficients of the
predictors are similar,

!
m(βm − β̄)2/σ2 is small and the range of ρ

to improve the fit is large. Improvements are expected in the upper
left region

Suppose that there exists some words that have the same marginal
effect on price. For example, we may suppose that the marginal ef-
fect of synthetic materials is approximately the same regardless of
these being elastan or polyester. Let (Gi)

G
i=1 be a partition of indices

{1, 2, ..., V }, where there exists a one-to-one relation between this
set and each word in the vocabulary V . Then, the model can be
re-formulated as

pi = β0 +
G"

g=1

βg

V"

j=1

xij1{j∈Gg} + εi. (3.21)

In this way, each covariate that belong to the same set Gg =
{j1, ..., j|Gg |} has the same coefficient βg. This approach substitutes
the original covariates with a new attribute set each being the sum
of the weights of the words in the group. We refer to groups of
words as superwords. The issue is how to select such groups. To this
purpose we refer to same algorithm used in Park et al. [2007] but
with a slight modification. We leverage the dual interpretation of
the vector space of text, that is words in document space, to define
the set of words to be clustered. This dual representation is given by
the Term-Document Matrix. Also, we use cosine similarity instead
of euclidean distance for clustering. Cosine similarity is widely used
in text mining literature for measuring similarities between words
for text clustering [Berry and Kogan, 2010],[Berry and Castellanos,
2004],[Aggarwal, 2018]. Cosine similarity between two word vectors
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Algorithm 7: Hierarchical clustering and averaging for
regression [Park et al., 2007]

1. Let (yi,xi)
n
i=1 denote pairs of gene expression profiles

(xi ∈ Rp) and response variable

2. Apply hierarchical clustering of the genes to yield the nested
correlation structure

3. At each level of hierarchy, create supergenes by averaging
gene expressions inside each cluster. This gives p different
sets of genes and supergenes that represent each level

4. For every set of predictors (genes and supergenes) fit Lasso
using y as response variable

5. Using cross-validation (see 3.8) find the optimal degree of
shrinkage and level of hierarchy

v1,v2 ∈ RD is defined as v′
1v2/(‖v1‖‖v2‖). In this way we obtain

a new design matrix WG of dimension D × G whose columns are
aggregated term weights. The vector wG

i denotes to to the i-th row
of this matrix. The fit for the aggregated predictors hedonic model
is therefore given by

[APG]: p̂i = wG
i β̂

ols
G (3.22)

Differently from [Park et al., 2007], given that we aim at identi-
fying just few groups of words, we fit just simple OLS predictions.

3.7 Reduced regression

So far, the hedonic models that we discussed use the bag of words
model to obtain the set of product attributes. As said, these models
predict prices by estimating the hedonic value of the description
that is provided to a product. Alternative models for text data like
LSI and LDA represents documents as points in a lower dimensional
latent space defined by the topics discovered in the collection. Using
this lower dimensional representation, we can define a hedonic text
regression models as

pi = β0 + β1zi1 + β2zi2 + · · ·+ βkzik + εi (3.23)
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Algorithm 8: Aggregating predictors for grouped hedonic
text regression

1. Let (pi,wi)
D
i=1 denote pairs of (featurized) documents

(wi ∈ RV ) and prices

2. Use the dual representation of words in doc space given by
the Term-document Matrix

3. Apply hierarchical clustering of terms and find the desired
level of hierarchy to find words and group of words. This
gives a partition (G)Gi=1 with G groups.

4. Using this partition create superwords by summing word
counts in the original DTM, to obtain a new DTM with G
columns

5. Regress using p as response variable

where zik is the representation of a given description in its latent
topic space that is estimated either by LSI or LDA. The hedonic
values of the topic content of the descriptions - equivalently the
predicted prices under 3.23 - by means of the methods illustrated
in Sections 3.1-3.3 are the following

[LSI]: p̂i = u′
iβ̂

ols (3.24)

[LDA]: p̂i = z′
iβ̂

ols (3.25)

[PLS]: p̂i = w′
iβ̂

pls (3.26)

There are two main reason to use such hedonic models. The
first is practical: we want to predict the price of a given item based
on the topic content of its description. Suppose that we wanted
to predict the price of a t-shirt based on its description and that
we estimated a k = 3 dimensional topic representation for that.
Suppose also that we can interpret these topics as quality of ma-
terials, appealing design and comfort. To estimate the model in
Equation 3.23, conditional on this estimated representation of doc-
uments, corresponds to estimate the marginal effect of each topic
on prices. In this way, the model in 2.13 is simplified - the number
of covariates is reduced from V to k << V and its interpretation
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may be improved. The second reason is technical, that is, to use a
dense matrix of covariates instead of a sparse one.

In the case of LSI, we can think of the k-th topic zk as a linear
combination of the columns of W so that zk =

!V
i=1 wivik. This

means that we can set Z = WVk, Z = WVkΣk or Z = Uk [Foster
et al., 2013] in 3.24. In LDA, a topic is not a linear combination
of word columns but one sample from a V dimensional Dirichlet
distribution. This means that each word is given higher or lower
probability under the topic in the data generating process. To
estimate an LDA model means to derive posterior probabilities of
assignments for each topic given the observed DTM. Conditioning
on a specific document, each word is assigned to a topic so that
for each document i, we can collect into a matrix of counts Z of
dimension D×k the number of words in documents that have been
assigned to a specific topic. For what regards PLS instead the
latent representation of supervised topics is learned naturally by
Algorithm 3.

For all these models the number of latent topics k needs specifi-
cation. For consistency with other methods, we treat it as a tuning
parameter, therefore we look for the value of k in correspondence
of the lowest cross-validation estimate of prediction error. This
procedure is akin to that of principal components regression. Al-
ternatively, we may choose a value of k after which the singular
values in 3.5 become too small or some criterion like perplexity
[Blei et al., 2003]. However, these criterions do not consider the in-
formation provided by prices but only that contained in the DTM.
Given that the value of k may be large we add a Lasso penalty to
the model in Equation 3.23 to allow for bias-variance tradeoff, so
that we reformulate 3.24 and 3.25 to obtain the following fits

[LSI-LASSO]: p̂i = u′
iβ̂(λcv) (3.27)

[LDA-LASSO]: p̂i = z′
dβ̂(λcv) (3.28)

The rationale of this approach is as follows. Both LSI and LDA
perform an unsupervised dimensionality reduction, so that not all
the latent topics need to be significant predictors of the response, on
the contrary they try to obtain the best approximation of the DTM.
This is much more clear in LSI if we assume that only a subset of
topics K ⊂ {1, 2, ..., k} is significant in predicting the response.

Consider the following minimization task
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β̂ = argmin
β

1

2
‖y −Ukβ‖2+λ‖β‖1 (3.29)

The solution to 3.29 is unique since the objective is strictly
convex. From first order optimality conditions we have

u′
j(y −Ukβ) = λsj j = 1, . . . , K (3.30)

Where sj is a subgradient of the function f(x) = ‖x‖1 evaluated
at βj being equal to sign(βj) if βj ∕= 0 and some value in [−1, 1] if
βj = 0. Given that U′

kUk = I we can obtain a closed form solution
to solution to Equation 3.29 in terms of each coefficient so that

β̂j =

/
01

02

u′
jy + λ if u′

jy < −λ

0 if |u′
jy|< λ

u′
jy − λ if u′

jy > λ

(3.31)

That is, if the strength of linear dependence between uj and y

measured by its OLS coefficient β̂OLS = u′
jy exceeds the value of λ

then the j-th topic is included in the model with shrunk coefficient.
In order to select the model corresponding to best values of {λ, k},
we proceed via grid search by defining a grid of potential values of
k,λ and applying for each the minimization as in Equation 3.29.
Therefore, we obtain estimates as in Equation 3.31 and choose the
model achieving the lowest estimate of prediction error. Thus:

(k∗,λ∗) = argmin
k

argmin
λ

CVErr(f̂λ,k) (3.32)

The same intuition holds also for LDA where the number of
topics needs to be tuned accordingly to the values of hyperparam-
eters {α,φ}. This can be done using the same supervised selection
strategy used for LSI. Again, the goal is to look for some form
of supervision to maximize predictive accuracy. Let A,B denote
respectively a set of values for LDA (hyper) parameters α,φ (as-
suming symmetric Dirichlet distributions). For each value of k, let
H = A× B, then we look for

(α∗,φ∗,λ∗) = argmin
h∈H

argmin
λ

CVErr(f̂λ,α,φ) (3.33)

where the search for the best h∗ = (α∗,φ∗) ∈ H is carried
out via grid search. Tuning for different values of α and φ allows
us to encourage different doc-topic and word-topic distributions.
That is, we can encourage topics to be uniformly distributed across
documents or we can encourage sparsity. In the same way we can
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encourage a topic to be a sparse distribution over words, uniformly
distributed or putting its mass around its expected value. Figure 3.8
explains this arguments by showing different samples from three
symmetric Dirichlet distributions according to different values of
parameter α for a K = 3 topic model.
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Figure 3.8: Samples from different symmetric Dirichlet Distribu-
tion

3.8 Performance Evaluation
This section provides details on prediction error and its estimation.
Given that the response variable for hedonic regression is continu-
ous, the results reported are specific for continuous outcomes. Tra-
ditional hedonic regression modeling relies on goodness of fit to
select the best functional form of the model [Cassel and Mendel-
sohn, 1985]. Results from statistical learning literature [Friedman
et al., 2001] show that this measure is not the most appropriate for
model selection when the number of covariates is large, as is the
case of the model in 2.13. Therefore, in this work model selection
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is performed by selecting the model that achieves the lowest pre-
diction error for the price of new, unseen, observations based on a
given set of covariates.

The generic setting is as follows. Suppose that the goal is to
predict a continuous outcome y given some inputs x. Suppose that,
we estimated a predictive model f̂(x) based on some training data
F . Define a squared error loss function L() as the loss that one has
to pay each time y is predicted using f̂(x). Some widely used loss
functions are the following [Friedman et al., 2001]:

L(y, f̂(x)) =

3
(y − f̂(x))2 squared error loss
|y − f̂(x)| absolute error

(3.34)

Of course many other loss functions have been proposed in the
literature. Some of these are more used in the field of engineering
and computer science (see [Boyd et al., 2004] for more details).
Given a loss function we can define the following quantities:

Definition 2 (Test error) Test error is defined as the expected
prediction error over an independent test sample (y,x) drawn from
some joint probability distribution p(y,x)

ErrF = E[L(y, f̂(x))|F ]

This leads to the definition of Prediction Error which is Test
Error averaged over all possible training sets that can be drawn
from p(y,x)

Definition 3 (Prediction Error)

Err = E[L(y, f̂(x))] = E[EF ]

Bias-Variance decomposition Assume the following model to
hold for the population

y = f(x) + ε, E[ε] = 0, Var(ε) = σ2
ε

Suppose that we want to assess predictive fit at input x0. Then

Err(x0) = EFEy|x0 [L(y, f̂(x0))]

= Ey|x0 [(y − f(x0))
2] + EF [(f(x0)− f̂(x0))

2]

= σ2
ε + Bias2[f̂(x0)] + Var[f̂(x0)]

(3.35)
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This decomposition suggests two distinct facts. The first is that
perfect prediction is not possible, even if one correctly specify the
true model there always be a source of error σ2

ε which is irreducible.
Second, biased estimators can be preferred to unbiased if their vari-
ance compensate for this loss. This is known as bias variance trade-
off and it was illustrated in Figure 3.6.

Cross-Validation In this section we discuss the most common
way to estimate exptected prediction error. A first guess would to
estimate it using training data

En[L(y, f̂(x))] = En[(y − f̂(x))2] (3.36)

where En denotes expectation with respect to the empirical mea-
sure. Broadly speaking, this estimate can be regarded as being too
optimistic since f̂ is chosen so as to fit well to the data. Cross-
validation is a widely used procedure that provides good estimates
of the expected test error. There are two main versions of cross-
validation: exhaustive cross-validation and non-exhaustive cross-
validation. What is common to both approaches is the subdivision
of the available data into a training and a test set. The training
set is always used to learn/estimate a certain model while the test
set is used to have an estimate of the test error. We first consider
non-exhaustive cross-validation. Among the many variants of this
methods, the most diffused is K-fold cross-validation. Here, The
original sample is partitioned into almost equal sized K subsam-
ples. Of these subsamples K − 1 are retained to form the training
set and the remaining to form the test set. This procedure is re-
peated K times with each of the K subsamples used once as test
set. The estimate of prediction error is obtained by averaging the
estimates obtained using each test set. Algorithm 9 illustrates how
it works. Popular choices for K are K = 5, 10, N . The latter is
called leave one out cross-validation because prediction is done just
on one observation. The choice is usually arbitrary but some in-
sights can be derived. For a small sample size, the choices K = 5, 10
yield estimates of prediction error being bit further - on average -
from the true value. On the contrary the variance is reduced since
these estimates f̂−k are obtained using less overlapping data. This
is because the variance of the sum of highly correlated quantities
is larger than that of mildly correlated quantities. On the con-
trary, leave one out cross-validation usually provides better point
estimates. Other variants of K-fold cross-validation including the
holdout method or monte-carlo cross-validation and are discussed
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in [Dubitzky et al., 2007, Arlot et al., 2010]. Exhaustive cross-
validation [Celisse et al., 2014] involves using M observations as
test set and the remaining as the training set. This is repeated on
all ways to cut the original sample on a test set of M observations
and a training set. This procedure is not particularly adopted as
it is non-exhaustive cross-validation since it becomes computation-
ally infeasible for moderate sample size. Remarkably for M = 1
this procedure and leave-one-out cross validation coincide.

Algorithm 9: K-Fold Cross-validation

1. Divide training set F into K folds {F1, ...,Fk} such that
∪kFk = F and Fi ∩i ∕=j Fj = ∅

2. For each k = 1, ..., K

(a) Estimate f̂−k using F\Fk

(b) Compute

CVk(f̂
−k) = n−1

k

"

i∈Fk

(yi − f̂−k(xi))
2

3. Obtain estimate

CVErr(f̂) = K−1

K"

k=1

CVk(f̂
−k) (3.37)

Cross-validation is also an important tool for model selection.
In fact, suppose that we estimated a certain number of different
models. To select the best model - in terms of predictive accuracy -
it is sufficient to apply cross-validation and select the one with the
lowest estimate of prediction error. This holds also for selecting a
model that depends on some tuning parameter as those that shall
be proposed afterwards. Let {λ}Mm=1 be a finite sequence of tuning
parameters and let {f̂λ1 , ..., fλM

} a sequence of models. Then we
have

λ∗ = argmin
λ∈{λ1,....,λM}

CVErr(f̂λ) (3.38)

and the selected model will be f̂ ∗
λ . Alternatively, a one standard

error rule [Friedman et al., 2001] is often used with cross-validation,
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in which we choose the most parsimonious model whose error is no
more than one standard error above the error of the best model.
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CHAPTER

4

EMPIRICAL ANALYSIS

This chapter offers an application of the hedonic pricing models
proposed in the previous chapter to fashion products. Before delv-
ing into the empirical analysis, it is appropriate to provide a brief
description of the fashion industry that we consider for this appli-
cation. Cachon and Swinney [2011] define four different systems of
firms that operate in the fashion market, namely traditional, en-
hanced design, quick response and fast-fashion. The distinction is
straightforward; traditional firms are characterized by long produc-
tion lead times and standard product design abilities. This system
closely resemble a newsvendor model. An Enhanced Design (ED)
system employs enhanced design capabilities - thus a greater con-
sumers’ willingness to pay - but maintains long production lead
times. Enhanced Design focuses on product design while avoiding
the kind of radical supply chain overall necessary to achieve lead
time reduction. A quick response system does not employ enhanced
design capabilities, but does yield significantly reduced production
lead times. Eventually, Fast-Fashion systems employ both quick
response and enhanced design capabilities. For this application, we
collected public available data from the Italian websites of five fash-
ion brands, namely Zara (Z), H&M, Pinko (P), Patrizia Pepe (PP)
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and Elisabetta Franchi (EF)1. For each retailer, we developed an
apposite crawler to scrape the whole apparel section of the website.
The crawling routine started from October to January 2016 on a
weekly basis. This choice has been made for two practical reasons.
The first was to avoid the discount period when due to special offers
the effect of the attributes on prices is not the real one. In fact, our
interest is on the level of prices during the regular winter-autumn
season. The second one is that after this period new collections
come out (spring, summer..) so that data would not be coherent
for hedonic pricing as the set of attributes that determines prices
completely changes. We decided to work on two sub-categories:
trousers and dresses collections for women.

4.1 Preliminary data processing

In Chapter 2, we outlined that pre-processing is usually useful to
have a proper vector space representation of text data. Here, we
applied some of the procedures described therein. Preliminarily,
we tidied-up and cleaned the data. As first step, we merged the
data from each website to form a whole data-set. In addition, we
enriched the product descriptions by attaching the name of the
item - like white t-shirt - in order to use as much text data that
we had at disposal. Afterwards, we proceeded by removing dupli-
cated records. As we saw in Chapter 3, hedonic models are usually
specified in terms of a dummy time variable. While we collected
data on a weekly basis we observed that prices in websites remained
unchanged and that items followed a sort of lifecycle. Sometimes
items were dropped and other came out but the prices remained
constant for the whole season (excluding the sales period). Since
each crawling routine makes a copy of the whole website, the result-
ing data set contains severe overlaps of data. Thus, we discarded
records that had the same price and description, keeping just one
record for each.

The pre-processing steps that we adopted are as follows. First,
we removed punctuation and substituted accented letters with non-
accented. Also, we removed special characters and numbers. We re-
moved the latter since we found out that they refer to details about
the models (i.e. ...the model is 160cm height..., or ...the model is
wearing size 40... etc..). The second step was to remove stopwords.

1These brands are at the same time both producers and retailers. Therefore,
the terms brand, retailer and producers can be considered synonyms.
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To this purpose we use the italian list of stopwords provided inside
the rpackage tm [Meyer et al., 2008]. We added to this list words
like model, size, cm, wears referring again to the model and not
providing any detail on the products. The final step was stemming,
which is nothing else but reducing each word to its root. This step
need not to produce meaningful words in general. For this step
we again used the tm R package which builds over the Snowball
stemmer.

Table 4.1 reports the number of observations and the number of
features from text after we went through the pre-processing step.

Table 4.1: Data after pre-processing

Category Sample size Number of features

Trousers 692 302
Dresses 814 309

We are not left with much sample size. While this is some-
how obvious since we are bounded by the effective stock of items
showed by the websites for a given collection, to keep on scraping
data would not have been a good choice for the reasons illustrated
above; sales period approaching and new collections about to come.
However, the methods that will be using are in some sense robust
to limited sample size. As example, the Lasso and SLOPE are de-
signed to work also when the number of covariates is much greater
than the sample size so that the ratio of number of variables over
sample size never constitute a serious issue.

4.2 Results

The results for the Lasso and SLOPE are obtained using R packages
glmnet [Hastie and Qian, 2014] and slope [Bogdan et al., 2015],
respectively. To run LDA we used the R-package text2vec. The
presentation of the results is separated for each of the two categories
that we consider.

4.2.1 Trousers

Descriptive statistics It is well evident from Figure 4.1 that two
couples of fashion brands, namely, (ZZ and HM) and (P,PP) have
similar, nearly overlapping, price distributions. On the contrary
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EF looks like a stand alone reality. In fact, the mean price for ZZ
and HM are respectively 33.92 and 34.41 (median respectively 29.95
and 34.99). The mean price for P and PP are respectively 188.81
and 182.06 (median 185 and 182 respectively) while the mean price
for EF is 250.7. Further details on the distribution of prices is
reported in Table 4.2. Kernel density estimates in Figure 4.1 show
that both ZZ and HM have peaked distributions. This is because
their pricing strategy is to concentrate prices in classes rather than
spreading over a certain range.
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Figure 4.1: Distribution of prices of trousers.

Table 4.2: Trousers. price distribution descriptive statistics

Brand n Min 1st Q. Mean Med. 3rd Q. Max

EF 58 155 207.75 250.65 238 289 400
HM 114 14.99 24.99 34.41 34.99 39.99 99
P 76 130 150 188.81 185 220 280
PP 65 98 158 182.06 182 198 278
ZZ 379 12.95 25.95 33.92 29.95 39.95 69.95

Figure 4.2 provides a graphical view of the Document-Term ma-
trix obtained from the descriptions of trousers. It is well evident
that counts are sparse and most features are present just once across
documents. The wordcloud in Figure 4.3 is a graphical representa-
tion that reports the most frequent words in the trousers’ descrip-
tions. The size of the font is directly proportional to the frequency
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of the word. The most frequent words are associated with the fit,
like tight (aderent), low waist (bass) and the design: classic and
bell-shaped (campan). For each retailer, Figure 4.4 displays the
distribution of word counts that are used to describe each item.
We used regular expressions to split each string in correspondence
of white-spaces between words. Few differences outstand between
brands: for E, H and PP the distributions are very similar while Z
is the one that shows greater variability. On average approximately
146 words are used to form a description of an item.
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Figure 4.2: Document Term Matrix for descriptions of trousers

Figure 4.3: Worcloud of the most common words in the collection
of trousers’ descriptions
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Figure 4.4: Conditional word count distribution

Figure 4.5 reports the pairwise correlations between word fre-
quencies in the DTM. It can be noticed that while there are some
groups of words that exhibit high correlations, these are very low
in general.
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Figure 4.5: Correlation matrix of terms in trousers DTM

Hedonic Text Regression Modeling While most variables come
with a natural measurement scale, the "measure" of a text feature
depends on the weighting scheme that has been used to obtain
the vector space representation. The most common ways to define
weights wij-s were introduced in Chapter 2. To the purpose of this
analysis, we believe term presence and term frequency to be the
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most appropriate schemes to weight text features in this context.
For example, if we used term presence, the coefficients would be
interpreted as the shift in the average level of price associated with
the presence of the word in the description. In the example given
in Figure 2.1i, the value of the coefficient related to the word silk
would give the average price difference of apparels containing silk,
all else equal. If we used term frequency, each coefficient would give
the marginal effect on prices for an additional count of the word in
the description. This could emphatize the importance of the at-
tribute given by the producers. The more the counts the more the
importance of the word-attribute in the description. In this appli-
cation - and in general - when the documents are short, there is
little difference between the two as most words are used just once.
On the contrary, the marginal effect on prices due to variation in tf-
idf has not a straightforward interpretation. Therefore, if we used
this scheme parameter estimates would not correspond to shadow
prices.

Table 4.3 reports our results for in-sample goodness of fit and
predictive accuracy for each of the model that were introduced in
Chapter 3. The values of adjusted R2 and RSE are defined respec-
tively as 1−[(1−R2)(n− 1)/(n− k − 1)] and

!
i(yi − ŷi)

2/
!

i(yi − ȳ)2

. We will refer to RMSEcv as the estimate of Prediction Error ob-
tained under a squared loss function using cross-validation. Addi-
tionally, we will refer to MAE (Mean Absolute Error) as the es-
timate of prediction error based on a loss function measuring the
absolute value of deviation. In the first part of the table, the base
fit has to be intended as p̂i = p̄ = n−1

!
i pi while it is the least

squares fit using brand fixed effects for the brand case - taking EF
as a baseline - in the second part.

Clearly, the brand is an important determinant of prices. Cross-
Validation shows that this model provides also a good out-of-sample
predictive accuracy with RMSEcv = 26.707. The hedonic text re-
gression model yields adjusted-R2 = 0.947. It is interesting to ob-
serve that OLS attains the highest value of adjusted R2 while pro-
viding the worst predictive accuracy among all the proposed fits.
This result is likely due to the fact that we are fitting a model with
a high number of covariates and that we are overfitting the data. It
can be noticed from first part of Table 4.3 that while text features
enhances predictive power from BASE to OLS they deteriorates it
if combined with the brand. A F-test (F = 7.567 > F 0.05(301, 386)
rejects the hypothesis that the effect of the words is insignificant at
level α = 0.05.
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Table 4.3: Results of hedonic text pricing models for
trousers category

No brand

Fit nvar* adj-R2 RMSEcv RSE MAEcv

BASE 1 - 83.339 1 70.069

Text

OLS 302 0.947 70.056 0.701 30.502
Sparse
LASSO 82 0.901 35.428 0.181 21.813
SLOPE 85 0.913 34.193 0.168 -

Dim.red

LSI-LASSO 96 0.884 32.167 0.149 22.139
LDA-LASSO 58 0.855 33.529 0.162 22.160
PLS 4 0.902 27.629 0.110 19.127

Aggregated

AP10 10 0.698 46.753 0.315 30.544
AP20 20 0.793 39.212 0.221 25.721

Brand

Fit nvar* adj-R2 RMSEcv RSE MAEcv

BASE 5 0.897 26.707 0.103 70.069

Text

OLS 306 0.947 60.205 0.552 34.970
Sparse
LASSO 122 0.928 20.948 0.063 24.447
SLOPE 59 0.906 22.055 0.070 -

Dim.red

LSI-LASSO 138 0.961 21.221 0.065 14.255
LDA-LASSO 84 0.936 23.002 0.076 14.946
PLS 8 0.902 15.653 0.035 19.127

Aggregated

AP10 10 0.919 25.919 0.097 16.700
AP20 20 0.922 24.535 0.087 15.546
* refers to the number of selected variables in the model.
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As expected, regularization with the Lasso reduces the out-of-
sample prediction error. In the no-brand effect scenario, the CV
estimate of Prediction Error drops from 70.056 to 35.428 (approxi-
mately 50% lower) with 82 non zero coefficients. With brand effects,
the estimated RMSE drops from 60.205 to 20.948 (66% lower - with
122 non zero coefficients). The fit obtained using SLOPE provides
very similar results compared to that of the Lasso in the no-brand
scenario. The estimate of prediction error is slightly better and the
two models select approximately the same number of variables. The
situation is different when we consider also the brands. The Lasso
retains a greater number of variables, on the contrary the selection
made by SLOPE is more strict. The reason may rely on the fact
that SLOPE has a higher control of false discoveries, specially if we
add a strong signal like the brand, while the Lasso tends to select
too many irrelevant variables, since the tuning parameter is selected
to minimize prediction error. In fact, the estimated prediction error
is a bit lower if compared to SLOPE.

The results obtained using dimension reduction show good pre-
dictive performances. In the case of LSI with brand effects, cross-
validation suggests to select a model with 200 left singular vec-
tors. Among these, the Lasso selects 138 left singular vectors and
brand dummies yielding adj-R2 = 0.96 and RMSEcv = 21.221.
This value is selected in correspondence to a low value of the tun-
ing parameter λ equal to 0.019. Thus, prediction error should
be close to what would be obtained without adding the penaliza-
tion. The same tuning procedure omitting the brand effect yields
adj-R2 = 0.884 and RMSEcv = 32.167 which improves the Lasso
prediction by 10%. Regression on lower dimensional representa-
tion of documents provided by LDA and brand effects yields adj-
R2 = 0.936, RMSEcv = 23.002 (k = 80,α = 0.009,φ = 0.019).
The same procedure excluding brand effect yields adj-R2 = 0.855,
RMSEcv = 33.529, (k = 80,α = 0.01,φ = 0.02) which is approxi-
mately 1% lower than what we obtained applying the Lasso on the
OLS model plus brand. Comparing our model selection procedure
with that proposed in [Taddy, 2013] we noticed better predictive
performances. For example, Taddy [2013] sets β = 1/K,α = 1/V
to run a regression using LDA. With this setting, the lowest es-
timate of out-of-sample prediction error that we achieve is 38.62
for the model with no brand effects and 24.06 with brand effects.
Thus, tuning over β and α can effectively achieve better predictive
results. (see Figure 4.6).
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(i) Brand (ii) No brand

Figure 4.6: a) Cross-validated Root MSE using the grid search
optimization. b) Cross-validated Root MSE using α = 1/V, β =
1/K.

In terms of predictive accuracy, we obtained the best results us-
ing PLS. For a regression without brand dummies we get RMSEcv =
27, 629. This estimate is 56% lower than what we obtained with
OLS and 21% lower than that obtained with the Lasso. Plugging
these directions into an OLS model with brand dummies we get
RMSEcv = 15, 653 which improves OLS and Lasso CV estimate of
Root-MSE respectively by 72% and 37%.

The results of hedonic pricing using aggregated predictors ob-
tained with Algorithm 8 show that prediction is worse if compared
to other methods. Still, our results confirms empirically the results
in Park et al. [2007] that aggregating predictors can provide some
benefit in terms of predictive accuracy with respect to ordinary
least squares. In particular, the prediction error is, on average,
approximately 40% lower than OLS in the specification with no
brand effects and almost 60% lower including brand effects. Fig-
ure 4.7 illustrates the hierarchical hidden structure of words. Words
corresponding to the same group are given the same color. The val-
ues g = 10, 20 have been selected arbitrarily to avoid a clustering
structure too dependent on brand effects that may have prevailed
for values close the effective number of brands available.
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Figure 4.7: Hierarchical Clustering of word vectors for trousers
DTM

Regarding the interpretability of our results, the variable selec-
tion procedures that we adopted have screened out many irrelevant
terms. Plus, the interpretation is straightforward as each variable
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corresponds to a single word. Unfortunately, the approach of di-
mension reduction led to a too large number of topics to be correctly
interpreted, meaning that our pricing algorithm is nearly a black-
box. We suspect this behaviour to be related to a low variance in
the word frequencies. While one could expect that the reason is
that description are short, we notice by looking at the Gibbs up-
date in Algorithm 2 that the length of the description it is not a
determinant of the topic assignments. Indeed, topic assignments
depend on the number of times that a given words is assigned to
a specific topic, thus, if descriptions were to spend words each on
a given topic then a properly specified topic model should be able
to find good topics. On the contrary, if words were evenly spread
along documents then we would not be able to estimate a good
topic model from data, because latent topics will not emerge from
text. Eventually, we notice that some superwords have a nice prac-
tical interpretation. For example, in Figure 4.7i, Group 1 gathers
the effect of tencel (tencel, tencelyoce, fiber), Group 2 gather words
like combine (abbin), outfit, wardrobe (guardarob) and look which
value of the item when paired with others. Group 3 contains fea-
tures related to maintenance (rottur, lavaggio, trattamento). Group
8 collects words regarding trousers with skinny fit.
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4.2.2 Dresses

descriptive statistics The disposable data consists of 814 obser-
vations and 309 textual features from descriptions (Table 4.1). The
Document Term Matrix obtained by preprocessing the descriptions
is displayed in Figure 4.8. The main difference that emerges from
that observed for dresses (Figure 4.2) is that few words have larger
frequencies in the collection.

word

do
c

counts

0

1

2

3

4

5

6

Figure 4.8: Document Term Matrix for descriptions of dresses.

The wordcloud in Figure 4.9 shows the most frequent words
in the collection. Interestingly, in this category the most common
words regard materials: poliester (poliestere), viscosa, elastan, cot-
ton, (cotone), wool (lana).

Figure 4.9: Wordcloud of most common words in dresses descrip-
tions

Figure 4.10 shows the distribution of the length of the descrip-
tions for each brand. As observed for trousers, Z and HM show
similar distributions as well as PP and EF. Retailer P is the one
that spends more words in describing its products.
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Figure 4.10: Conditional word count distribution.

Figure 4.11 suggests that few groups of words show high corre-
lations albeit in general words are not highly correlated.

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.11: Correlation matrix of terms in dresses DTM.

Figure 4.12 shows the price distribution of each brand. It is clear
that prices for fast fashion retailers like HM and Z have much lower
average and median prices with respect to the other competitors.

Hedonic Text Regression Modeling Results in Table 4.4 sug-
gest similar concerns as those noticed for trousers, the OLS models
are probably overfitting the data. In fact, in front of high values of
R2, they provide very inaccurate predictions. For OLS plus brand
effects, the estimate of prediction error is 199.851, which is higher
compared to 150.270 of the OLS model with only brand dummies.
Opposed to what observed for trousers, we notice that in this cat-
egory the effect of the brands explains much less proportion of the
total variability - even though it is still a high percentage.

The effect of regularization is to reduce dramatically the out of
sample prediction error, regardless of the specification of brand ef-
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Table 4.4: Results of hedonic text pricing models for
dresses category

No brand

Fit nvar* adjR2 RMSEcv RSE MAEcv

BASE 1 - 219.709 1 -

Text

OLS 309 0.923 236.437 1.158 108.846
Sparse
LASSO 99 0.9 113.256 0.266 63.109
SLOPE 87 0.897 108.935 0.246 -

Dim.red

LSI-LASSO 154 0.863 119.996 0.293 72.367
LDA-LASSO 9 0.554 148.203 0.455 86.018
PLS 14 0.785 101.994 0.216 68.329

Aggregated

AP10 10 0.433 166.792 0.576 97.279
AP20 20 0.548 156.697 0.509 95.807

Brand

Fit nvar* adjR2 RMSEcv RSE MAEcv

BASE 4 0.499 150.27 0.468 78.398

Text

OLS 313 0.928 199.851 0.827 113.591
Sparse
LASSO 117 0.905 112.094 0.26 57.52
SLOPE 68 0.904 102.127 0.216 -

Dim.red

LSI-LASSO 121 0.829 112.094 0.26 71.664
LDA-LASSO 32 0.652 132.069 0.361 71.283
PLS 18 0.933 53.367 0.059 36.125

Aggregated

AP10 10 0.521 154.009 0.491 78.932
AP20 20 0.630 141.643 0.416 81.137
* refers to the number of variables in the model.
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Figure 4.12: Price distributions for dresses

fects. Adding a Lasso regularization to the hedonic text regression
model with no brand effects yields an estimate of RMSE approxi-
mately 52% lower. The same regularization applied to the model
with brand effects yields a CV estimate of RMSE 44% lower. This
lower reduction with respect to what we observed for trousers is
likely due to the fact that within this category the brand has much
lower explanatory power.

Opposed of what observed for trousers, dimensionality reduction
via LSI or LDA led to higher prediction errors than sparse modeling.
In particular, the prediction error that we attained with dimension-
ality reduction using LSI is approximately 5% higher than that ob-
tained using the Lasso and 9% higher compared to SLOPE without
allowing for brand effects. Allowing for brand effects improved the
overall predictive accuracy, but did not change the relative order
of the methodologies. The effect of additional regularization pro-
vided by the Lasso is more evident here than observed in trousers,
since the values of λ are not close to zero. The prediction error
that is attained using the lower dimensional representation pro-
vided by LDA is higher if compared to sparse modeling, LSI and
PLS. In particular LDA yields the lowest value of adj-R2. This is
somehow surprising given the good performance that we observed
for trousers. Figure 4.13 compares the optimal prediction error for
LDA obtained via grid search with the setting α = 1/k,φ = 1/V .
We notice that with this strategy we are able to explore a wider
range of models in which to select the one with the best predictive
accuracy. As observed for the category of trousers, we reach the
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best results using PLS hedonic text-regression.

Figure 4.13: a) Cross-validated Root MSE using the grid search
optimization. b) Cross-validated Root MSE using α = 1/V, β =
1/K.

Again, hedonic regression based on aggregated predictors pro-
vides the worst fit. The fit with brand specification, attains adjR2 =
0.521 and RMSEcv = 154.008 using 10 superwords, while adjR2 =
0.630 and RMSEcv = 141.543 using 20 superwords. The fit with no
brand specification instead attains adjR2 = 0.433 and RMSEcv =
166.792 using 10 superwords, while adjR2 = 0.548 and RMSEcv =
156.697 using 20 superwords. However, the predictive accuracy of
this fit is better than that obtained with ordinary least squares even
if the model explains less variance in data. This is again consistent
with the theoretical results provided by Park et al. [2007].

Regarding the interpretability of the results, our findings are
the same as those observed in the first category. The variable selec-
tion procedures are more interpretable, on the contrary dimension
reduction does not give clear enough results to be interpreted. The
interpretation of groups is made simpler with aggregating predic-
tors. For example, in Figure 4.14i, we see that group 2 collects
words that are associated with synthetic materials (elastic, elas-
tan, poliammide, viscosa). This means that each word that be-
longs to this group will have the same marginal effect on price.
Group 9 gathers words that remind to salopettes so that these at-
tributes of this subcategory will contribute to prices in the same
amount. In Figure 4.14ii, group 20 denotes a superword collecting
attributes concerning fur coats (pellicce) and and leather finishes
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(leather, snake). Group 14 contains clearly high quality attributes
denoted by the words mohair, premium, cashmere, galles.
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Figure 4.14: Hierarchical Clustering of word vectors for dresses
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4.2.3 The role of the brand

In the models that we have considered so far, the choice of including
brand effect seemed reasonable as clothes’ prices are known to be
heavily influenced by brands. However, given that we are modelling
web data, we should also ask what would happen if items from a
new brand became available and we wanted to estimate their prices
based on their descriptions. A model that is not including brand
effects should be more able to generalize to new data from a previ-
ously unseen brand. Suppose that new data from one new fashion
brand become available and we wanted to model this data using a
previously estimated hedonic-text regression model. If the model
contained brand effects, then the price for these new observations
would be predicted by a model fitted on a training set that does not
know the marginal effect for this new brand. On the contrary, if the
model is specified without brand effects it will use only the marginal
prices of the features from text. However, if brand effects were im-
portant determinant of prices then these coefficients will be biased
due to omitted variables. The extent such that it affects prediction
accuracy depends on bias-variance decomposition of prediction er-
ror. We conducted a test using the available data. We estimated
a series of OLS text-regression models excluding each time a given
brand - the test brand - and used the estimates obtained to predict
prices of the test brand. Estimates prediction errors are reported
in Table 4.5.

Table 4.5: Predicting a new brand.

Test Brand Brand No brand

Trousers Dresses Trousers Dresses

ef 292 1760 360 1496
hm 267 31665 241 38178
pinko 129 3081 136 2913
pp 341 371 550 572
zara 8154 314 5025 262

These results suggest that it is not clear which strategy is the
best. In the category of trousers, allowing for brand fixed effects
turns out to perform better for predicting three out of five brands
(EF, P and PP). On average though, no brand pricing is signifi-
cantly better, specially when Z is used as test retailer. This could
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be due to the fact that Z’s items constitute a wide portion of data
available. For dresses, the opposite holds. Predicting using brand
effect yields better results only in two out of five scenarios. On the
contrary the mean prediction error is 7438 when using brand and
8684 when not used.

Therefore, one possible strategy would be to use brand fixed
effects, which turned out to have better prediction properties in
terms of CV estimates of prediction error (see Tables 4.4-4.3), and
re-estimate the model in case new massive data from a previously
unobserved brand become available. However, this approach may
be not particularly useful if data from multiple brands would be-
come available at different time stamps, as we should re-estimate
the model each time. For this reason, we believe that hedonic model
that do not incorporate fixed effect may be easier to scale to new
products.
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CHAPTER

5

DISCUSSION

In this study we built hedonic pricing models of italian fashion
products using the internet as a source of data. To this purpose,
we web-scraped publicly available data from the websites of five
famous fashion brands. In order to obtain a set of attributes, we
text mined the descriptions of the items.

In fact, descriptions contain information on attributes, such as
the composition of materials, that can be turned into a set of fea-
tures via text-mining procedures. A study by Archak et al. [2011]
claims that working with descriptions shall not be recommended
since the text that is contained is too static and gives little empha-
sis on characteristics of the goods. On the contrary, our findings
provided empirical evidence that this is not necessarily true. In
fact, compared to the baseline models, the set of attributes that we
obtained from the descriptions improved dramatically the predic-
tive performance of the model. This is an outstanding result since
clothes are well known to be heavily influenced by brand names -
which was also confirmed empirically by our analysis.

A potential drawback of working with text data is that descrip-
tions can contain lots of noisy variables but, interestingly, the vari-
able selection procedures that we proposed in our analysis gave
coefficients with expected sign. As example, in the category of
trousers, the presence of synthetic materials (sintet, poliest) leads
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on average to lower prices while high-quality materials like virgin
wool (vergin) leads to higher. Also, words relating to details and
to particular trousers’ shapes lead to higher prices, as is the case
of palazzo style trousers and attributes denoting minimal design.
Among dresses, the red color, furs, leather, georgette, lightweight
and embroideries are all attributes that reflect into higher prices,
as well as evening dresses, while low quality materials like elastan
reflect to lower. Remarkably, some of these effects would not have
been considered if we did not text-mined the descriptions.

The attempt to use text mining techniques for dimensional-
ity reduction and topic modelling provided good predictive per-
formances (especially the usage of PLS) but unfortunately did not
provide interpretable topics. The advantage of aggregating predic-
tors over dimensionality reduction is that one can easily understand
the marginal price of each word in a given group. This is because
each word is assigned just to one group while in topic modelling
each word can contribute to different topics with different weights.
Indeed, the majority of the groups of words that we identified ag-
gregating predictors have a meaningful interpretation as well as
expected sign.

Throughout this study, while setting up different pricing models,
we also explored a variety of solutions to estimate high-dimensional
linear models applied to text data. This analysis may be of practical
use in many real world problems even beyond the fashion industry.
As example, the ultimate interest for a selling company like Mer-
cari is to have a model that suggests the right price regardless of
interpretability and consistency of results. For this reason, among
the proposed models, Mercari would probably opt for a topic model
based on PLS. However, this framework may also be of much prac-
tical use for brands themselves. Consider for example the launch
of a new product. The brand management could just type in a de-
scription of what he wants to produce and the model would predict
the price, or, he could predict the price for his competitors. This is
certainly a great advantage for pricing strategies.

Eventually, a model that hinges in favour of interpretability can
be of much interest from a consumers’ perspective. In fact, while
providing a fair price to pay, it would give also the fair contribution
of each attribute. For example, if used in online shops, consumers
can be made aware of the marginal markups for a given brand,
colour, or design, all else equal. In this use case, probably a sparse
hedonic model estimated with SLOPE may be preferable since the
selection of variable is made as much as possible to control false
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discoveries. From an economic point of view, this would reduce
the asymmetry in information available to sellers and consumers
and balance the amount of total surplus by reducing the seller’s in
favour of the consumer’s.

As outline of future analysis we plan to experiment with non-
parametric techniques like random forest or ensemble learning. Also,
an interesting approach would be to create word features using
word-embeddings like word2vec [Mikolov et al., 2013b]. These meth-
ods have become very popular in text mining over the last years. In
addition, to further check the consistency of our results, we plan to
apply the proposed models to newer datasets in the fashion industry
and, eventually, we plan to experiment with other industries.
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