
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Dottorato di R icerca in

COMPUTER SCIENCE AND ENGINEERING

C iclo 32°

Settore Concorsuale di afferenza : 09/H1

Settore Scientifico -D isciplinare : ING-INF/05

L E A R N I N G T O U N D E R S TA N D T H E
W O R L D I N 3 D

Presentata da : R iccardo Spezialetti

Coordinatore dottorato Relatore

Chiar .mo Prof . Chiar .mo Prof .

Davide Sangiorgi Luigi D i Stefano

Esame finale anno 2020

Riccardo Spezialetti: Learning to understand the world in 3D, Dottorato di
ricerca in Computer Science and Engineering, © 2020

supervisor:
Luigi Di Stefano

location:
Bologna, Italy

To the CVLab family

A B S T R A C T

3D Computer vision is a research topic gathering even increasing attention
thanks to the more and more widespread availability of off-the-shelf depth
sensors and large-scale 3D datasets. The main purpose of 3D computer
vision is to understand the geometry of the objects in order to interact
with them. Recently, the success of deep neural networks for processing
images has fostered a data driven approach to solve 3D vision and graphics
problems. Inspired by the potential of this field, in this thesis we will address
two main problems: (a) how to leverage machine/deep learning techniques
to build a robust and effective pipeline to establish correspondences between
surfaces, and (b) how to obtain a reliable 3D reconstruction of an object
using RGB images sparsely acquired from different point of views by means
of deep neural networks.

At the heart of many 3D computer vision applications, such as 3D object
recognition, surface registration, and SLAM, lies surface matching, an effective
paradigm aimed at finding correspondences between points belonging to
different shapes. To this end, it is essential to first identify the characteristic
points of an object and then create an adequate representation of them. We
will refer to these two steps as keypoint detection and keypoint description,
respectively. A variety of algorithms for keypoint detection and description
exists in the scientific literature, and the majority of them are based on differ-
ent ways to exploit and encode the geometric properties of a given surface.
Despite the huge effort made, surface matching still represents an open
problem because of challenging nuissances occurring in real world environ-
ments, such as sensor noise, change of view point, clutter and occlusions.
As a first contribution (a) of this Ph.D thesis, we will propose data driven
solutions to tackle the problems of keypoint detection and description. To
validate our proposals, we will address two main tasks such as 3D object
recognition and surface registration.

As a further interesting direction of research, we investigate the problem
of 3D object reconstruction from RGB data only (b). If in the past this
application has been addressed by SLAM and Structure from motion (SfM)
techniques, this radically changed in recent years thanks to the dawn of deep
learning. Indeed, learning-based solutions have shown promising results in

v

challenging condition, where SLAM and SfM generate bad reconstructions,
e.g. when input images exhibit large baselines. Following this trend, we
will introduce a novel approach that combines traditional computer vision
techniques, like visual hull and voxel carving, with deep learning to perform
a view point variant 3D object reconstruction from non-overlapping RGB
views.

vi

A C K N O W L E D G E M E N T S

I would like to thank my supervisor Prof. Luigi Di Stefano, for all the trust,
the precious advice, and for always believing in me, even in the most critical
moments. Reaching this target would not have been possible without his
baggage of enthusiasm and his guidance.

I would also like to thank Federico Tombari for always being there and
for the endless opportunities for growth, one above all: offering me the
possibility to spend six month as Visiting Researcher at Google Zurich, a
beautiful period that I consider essential for my growth as a researcher. My
thanks extend to Samuele Salti, his friendship and scientific advice in the
years was invaluable.

A special thanks goes to the members of Computer Vision Laboratory in
Bologna: Alessio Tonioni, Alioscia Petrelli, Matteo Poggi, Fabio Tosi, Filippo
Aleotti, Stefano Mattoccia, Daniele De Gregorio, Pierluigi Zama Ramirez,
Gianluca Berardi, Tommaso Cavallari, Marlon Marcon, Paolo Galeone. Our
insightful talks and discussions about scientific and non-scientific related
topics have made the past years unforgettable. Another thanks goes to David
Joseph Tan for the patience and the shouts while he mentored me.

Finally, I would like to thank my family and friends (it is impossible to
list them all) for always supporting me during all my Ph.D. years.

Last but not least thanks goes to my girlfriend Elisa for bringing back
color to my life.

vii

C O N T E N T S

1 introduction 1

1 .1 Summary of contributions . 5

1 .2 Background . 6

I learning to detect 3d keypoints

2 initial remarks 11

2 .1 Related Work . 12

2 .1 .1 ISS: Intrinsic Shape Signature . 12

2 .1 .2 Harris3D . 13

2 .1 .3 NARF: Normal Aligned Radial Feature 13

3 learning to detect good 3d keypoints 15

3 .1 Related Work . 17

3 .2 Training Set to Learn Good 3D Keypoints 19

3 .2 .1 Definition of the training set . 19

3 .2 .2 Validation of the training set . 22

3 .3 Design of the Classifier . 24

3 .4 Adaptive-scale Keypoint Detection 26

3 .5 Experimental Results . 28

3 .5 .1 Hyperparameter optimization 31

3 .5 .2 Results on the Laser Scanner dataset 32

3 .5 .3 Transfer learning on the Random Views dataset 35

3 .5 .4 Training and testing a universal detector 38

3 .5 .5 Kinect dataset . 40

4 performance evaluation of learned 3d features 43

4 .1 Related Work . 44

4 .2 Keypoint Learning . 45

4 .3 Evaluation Methodology . 46

4 .3 .1 3D object recognition . 46

4 .3 .2 Surface Registration . 48

4 .3 .3 Implementation . 49

4 .4 Experimental Results . 51

4 .4 .1 3D object recognition . 51

4 .4 .2 Surface Registration . 53

5 conclusions 55

ix

II learning to describe 3d keypoints

6 initial remarks 61

6 .1 Related Work . 63

6 .1 .1 3D Shape Context . 63

6 .1 .2 Unique Shape Context . 64

6 .1 .3 Rotational Projection Statistics 64

6 .1 .4 Point Feature Histogram . 65

6 .1 .5 Fast Point Feature Histogram . 66

6 .1 .6 SHOT: Unique Signatures of Histograms for Local Surface
Description . 66

6 .1 .7 Spin Images . 68

6 .1 .8 3DMatch . 69

6 .1 .9 PPFNet: Point Pair Feature NETwork 70

6 .1 .10CGF: Compact Geometric Features 71

6 .1 .11PPF-FoldNet . 73

6 .1 .123D-SmoothNet . 75

7 learning an effective equivariant 3d descriptor without

supervision 77

7 .1 Related Work . 79

7 .2 Learning an equivariant 3D descriptor from spherical signals . . 80

7 .2 .1 Background on Spherical CNNs 80

7 .2 .2 Learning from Spherical Signals 82

7 .2 .3 Rotation-Equivariant Descriptor 84

7 .2 .4 Invariant Feature Descriptor . 86

7 .2 .5 Decoder and Loss . 88

7 .2 .6 Network and training parameters 89

7 .3 Experimental Results . 89

7 .3 .1 Experimental setup . 89

7 .3 .2 Evaluation methodology . 91

7 .3 .3 Quantitative results . 91

7 .4 A more effective equivariant embedding 93

7 .4 .1 Experimental setup . 94

7 .4 .2 Results on 3DMatch dataset . 95

7 .4 .3 Transfer learning on ETH dataset 96

7 .4 .4 Qualitative results for surface registration 97

8 conclusions 101

x

III establishing and learning a robust local reference

frame

9 initial remarks 105

9 .1 Related Work . 107

9 .1 .1 Mian . 107

9 .1 .2 SHOT . 107

9 .1 .3 ROPS . 108

9 .1 .4 EM . 109

9 .1 .5 Board . 109

9 .1 .6 FLARE . 109

9 .1 .7 TOLDI . 110

10 gradient-based local reference frame for 3d shape

matching 113

10 .1 Related Work . 114

10 .2 Establishing a Gradient-based local Reference Frame 115

10 .2 .1Background . 116

10 .2 .2GFrames . 118

10 .3 Properties of GFrames . 120

10 .4 Experimental Results . 121

10 .4 .1LRF repeatability and rigid shape matching 122

10 .4 .2Deformable shape matching . 124

11 learning to orient surfaces by self-supervised spher-
ical cnns 131

11 .1 Related work . 133

11 .2 Learning to orient from spherical signals 134

11 .2 .1Background . 134

11 .2 .2Compass . 134

11 .3 Experimental results . 138

11 .3 .1LRF repeatability . 138

11 .3 .2Rotation-invariant Shape Classification 142

12 conclusions 147

IV learning to reconstruct 3d objects

13 initial remarks 151

13 .1 Related Work . 153

13 .1 .1Single-view 3D object reconstruction 153

13 .1 .2Multi-view 3D object reconstruction 153

xi

14 a divide et impera approach for 3d object reconstruc-
tion from non-overlapping views 155

14 .1 Related Work . 157

14 .1 .1Shape and pose recovering . 157

14 .2 PoseIDoNet . 157

14 .2 .1Pose estimation . 158

14 .2 .2Pose optimization . 161

14 .2 .3Identity Reconstruction from an Occupancy grid 162

14 .3 Experimental Results . 164

14 .3 .1Relative Pose Estimation . 164

14 .3 .23D object reconstruction . 167

15 conclusions 177

V final remarks

16 conclusions 181

xii

1
I N T R O D U C T I O N

We live in a three-dimensional world and a proper cognitive understanding
of the 3D structures of the objects and the environments surrounding us is
crucial to accomplish our daily tasks. Lifting this knowledge from humans to
machines is a fundamental challenge to face when operating in many robotic
and computer vision contexts such as grasping, navigation, augmented
reality, 3D object recognition, surface registration and shape classification,
to mention a few. In this thesis, we will focus on two particular tasks,
3D object recognition and surface registration. The goal of the former is
to identify an object from a gallery of models within a scene in order to
estimate its 6D pose. Differently, surface registration aims at recreating the
shape and appearance of objects by registering a set of partial views. We
will address these two applications considering as representation for 3D
data point clouds or meshes. As a further contribution, we will also explore
the feasibility of reconstructing 3D objects from RGB images.

The core component of many 3D computer vision applications is the
estimation of similarity between surfaces, typically tackled by establishing
correspondences. Surface matching methods analyze the geometry surround-
ing each point in the surface to extrapolate the most distinctive properties.
These properties are called features and can be seen as a compact but rich
representation of 3D data designed to be robust to the set of nuisances that
can affect 3D data like clutter, view-point variations, self-occlusions, etc.
Once features are computed, they are matched across surfaces to build point-
to-point correspondences, this paradigm being referred to as feature-based
matching. An illustration is shown in Fig. 1.1.

A feature-matching pipeline consists of three stages:

• feature-detection: the goal is to identify points of a surface particularly
prominent with respect to a given saliency function computed on a
local neighborhood. The aim is to look for geometric properties that
characterize the given object. These points are called keypoints.

• feature-description: a descriptor is a compact representation of geomet-
ric properties of a point. Descriptors are usually designed to encode

1

essential characteristic of points and to be invariant to nuisances like
variations of point density and viewpoint. To speed up the overall
feature matching process, typically just the keypoints of an object are
described.

• feature-matching: the last phase of the pipeline verifies that similar
descriptors belong to the same physical 3D point. Several metrics
can be used, the most popular being the Euclidean distance in the
descriptors space.

Figure 1.1: Feature-based matching paradigm in the context of 3D object recog-
nition. Green lines correspond to correct correspondences, while red
lines correspond to mismatches, e.g. different 3D points with similar
descriptors.

The centrality of this task has boosted an intensive research in the field in
the past years, as a consequence a plethora of detection and description
solutions has been proposed in literature. A key trait of most keypoint
detection algorithms is the definition of a saliency function adopted as a
criterion to select a point as a keypoint or not. Usually these functions
study the geometric properties of the surface aiming at discovering points
with distinctive traits. However, their handcrafted nature makes them less
flexible to operate in different application domains with heterogeneous
datasets. As mentioned in [99], that happens for two main reasons: on the
one hand different tasks may require different keypoints, in some cases it
is required that these are highly precise, in others, easily identifiable. On
the other hand, geometric methods start from the assumption that points
showing high signal variation are keypoints but, in reality, they could be
due to noise or local minimuma / maximuma. As an effective solution

2

to the above mentioned issues, in Chap. 3, we will propose a machine
learning framework to learn a descriptor-specific keypoint detector aimed
at optimizing the end-to-end performance of the feature matching pipeline.
Accordingly, we cast 3D keypoint detection as a classification problem
between surface patches that can or cannot be matched correctly by a given
3D descriptor, i.e. those either good or not in respect to that descriptor. Our
proposal will be validated mainly in the context of 3D object recognition. In
spite of the promising results achieved in Chap. 3, there is of course the open
question of the choice of the most suited descriptor to operate in a specific
scenario. As a possible answer to this question, in Chap. 4 we will report a
performance evaluation of the detector-descriptor pairs obtained by learning
a paired 3D detector, following the methodology proposed in Chap. 3, for
the most popular 3D descriptors. In addition to 3D object recognition, we
will also address experimental settings dealing with surface registration.

After having discussed how keypoint detectors can benefit from data-
driven algorithms, in Chap. 6 we will focus on the description of 3D key-
points. Problems similar to those highlighted for detection algorithms arise
also when working with descriptors. Indeed, it is difficult to identify the
geometric characteristics that are most suitable to describe the geometry
surrounding a point in order to create a representation that is compact and
distinctive. The advances in deep learning have lead to data driven methods
for the task that have shown promising results. Yet, the only explored way
to learn rotation-invariant descriptors has been to feed neural networks
with highly engineered and invariant representations provided by existing
handcrafted descriptors, a path that goes in the opposite direction of end-
to-end learning from raw data so successfully deployed for 2D images. In
Chap. 7, we will explore the benefits of taking a stepback in the direction
of end-to-end learning of 3D descriptors by disentangling the creation of
a robust and distinctive rotation equivariant representation, which can be
learned from unoriented input data, and the definition of a good canonical
orientation, required only at test time to obtain an invariant descriptor. To
this end, we will leverage two recent innovations: Spherical Convolutional
Neural Networks (Spherical CNNs) to learn an equivariant descriptor and
plane folding decoders to learn without supervision. The effectiveness
of the proposed approach will be experimentally validated on a standard
benchmark, where our method outperforms both handcrafted and learned
descriptors.

3

Achieving invariance to rotation is crucial to the performance of a 3D
descriptor as highlighted in [63]. A common adopted solution is to rely on
the definition of a stable and robust local reference frame (LRF). This task is
commonly addressed by handcrafted algorithms exploiting geometric cues
deemed as distinctive and robust by the designer. However, the nuisances
present in 3D scenarios, make the state-of-the-art methods hardly repeatable,
especially when matching partial views. In Part III, we will investigate on
the definition of a stable and repeatable local reference frame, by formulat-
ing two different proposals. In Chap. 10, we will present an handcrafted
approach based on the computation of the intrinsic gradient of a scalar
field defined on top of the input shape to define a repeatable tangent direc-
tion of the local frame. In the experimental results, we will showcase how
existing local descriptors can directly benefit from our repeatable frames
by increasing the descriptor matching performance with data affected by
rigid as well as non rigid transformations. Differently, in Chap. 11 we will
show the feasibility of learning a robust canonical orientation exploiting the
equivariance property of Spherical CNNs [160]. In the experimental session,
we will prove the effectiveness of our proposal on several public datasets by
orienting local surface patches as well as whole objects.

In the last part of this thesis, we will tackle the problem of 3D object
reconstruction from RGB images. In spite the diffusion of low cost depth
sensors, cameras still remain a cheaper and more widespread acquisition
source in many computer vision contexts where the information about the
3D structures of the object is mandatory to accomplish the desired goals.
The advances in deep learning have dramatically boosted the process of
estimating the 3D shape of an object from a single or multiple images. These
leverage on learned models to regress the full object shape in a canonical
pose, extrapolating the occluded parts based on learned priors. However,
their viewpoint invariant technique discards the detailed structures visible
from different input images, often resulting in oversimplified shapes. In
Chap. 14, we will introduce a two steps pipeline to perform viewpoint
variant object reconstructions by merging the details from non-overlapping
images of the object. Our approach combines deep learning techniques with
traditional 3D computer vision wisdom. To validate the proposed method,
we will perform a comprehensive experimental evaluation on the synthetic
reference benchmark for shape generation.

4

1 .1 summary of contributions

To summarize, the research work carried out during the development of
this thesis focused on the adoption of machine/deep learning techniques
to address the main building blocks of feature matching pipeline as well as
3D object reconstruction from sparse RGB images. Specifically, in Chap. 3

we will begin with the presentation of a 3D keypoint detector based on
machine learning aimed at maximizing the feature matching performance
when coupled with a specific 3D keypoint descriptor. Then in Chap. 4, we
will combine the just introduced detector with most of the state-of-the-art
3D keypoint descriptors presenting a performance evaluation on both 3D
object recognition and surface registration. In Chap. 7, we will go deeper in
the learning process and exploit deep neural networks to cover the second
stage of the feature matching pipeline and learn a local feature descriptor. In
Chap. 10, we will show how to build a robust and repeatable local reference
frame relying on handcrafted geometric function, whilst in Chap. 11, we
will deploy a deep learning model to canonically orient both local as well
as global point clouds. As last contribution of this dissertation, in Chap. 14,
we will focus on the problem of reconstructing a 3D object from sparsely
captured images combing deep learning knowledge with classical computer
vision techniques. Finally, in Chap. 16, we will wrap up the contributions of
this thesis and draw concluding remarks.

5

1 .2 background

Before we go into this thesis, we provide some background definitions for a
better understanding. We will start talking about the data structures most
commonly used to represent 3D data, then introduce the basic concepts
related to the computation of local features, and finally conclude with some
definitions about the most widespread noise sources that can be observed in
3D data.

• Point cloud: A point cloud is a set of points, that describes the shape
of 3D object, characterized by their position in a coordinate system
expressed with euclidean coordinates. In addition to the single co-
ordinates, it is also possible to store information about the color of
the points, triple RGB, and their intensity (alpha channel). Cloud of
points are unorganized data structures, i.e. simple data collections,
whose closeness in the data structure does not imply closeness in the
observed space. The main limitation of this data structure is the high
cost of searching for neighbours for a point in the 3D coordinate space.

• Polygon Mesh: A polygon mesh is a collection of vertices, edges and
faces that defines the shape of 3D object. The faces usually consist
of triangles, quadrilaterals, or other simple convex polygons. Unlike
points clouds, meshes are organized data structures.

• Feature point: A feature point, denoted by p, is a point belonging to a
3D shape M, for which the descriptor or the local reference frame is
being computed. Typically feature points coincide with keypoints.

• Support: A support of a feature point p, is the set of neighboring
points lying within a spherical ball of radius r > 0 centered at p,
denoted by Br(p) = {s ∈M : ‖p− s‖2 < r}. Alternatively, the support
can be made up of a fixed number of neighbours. Usually to the search
for nearby points, a space-partitioning data structure for organizing
points in a k-dimensional space like k-trees [5] is utilized.

• Clutter and cluttered scene: The concept of clutter is relate to 3D
object recognition. In this context we want to recognize a certain
number of well-known objects within a scene. A clutter object is a
distracting object that is not part of the set of known objects but can

6

be present in the scene. Similarly, a scene containing a clutter object is
defined as a cluttered-scene.

• Missing part: Once scanned, objects may present missing parts due
to the sensor’s limited field of view or the shadow generated by the
presence of other objects in the scene.

7

Part I

L E A R N I N G T O D E T E C T 3 D K E Y P O I N T S

2
I N I T I A L R E M A R K S

3D Keypoint detection represents the first stage in the majority of modern 3D
computer vision applications that need to establish automatic correspond-
ences between surfaces. One of the main reason to focus just on keypoints,
and not consider all the points within the object, is computational efficency.
Unfortunately, provide a general and meaningful definition of a keypoint is
not straightforward. Indeed, the criterion for determining whether a point
is a keypoint or not, is strongly related to the application domain. From a
very broad perspective, a keypoint can be defined as a point with a high
degree of saliency with respect to a saliency function. Therefore, the standard
paradigm for extracting 3D keypoints from point clouds or meshes relies
on maximizing a handcrafted saliency function computed within a local
neighborhood of each data point and then use that score as a discriminant.
The algorithms that deal with keypoint extraction are called detectors. When
designing a detector, two critical properties should be taken into account:

• repeatability: a keypoint should be easy to identify also when the input
data are affected by different sources of noise such as: occlusions,
missing parts, sensor noise and change in point density.

• distinctiveness: the area surrounding each keypoint should be highly
descriptive and easy to discriminate. Satisfying this property is critical
to the performance of descriptor matching.

In the past years, several 3D keypoint detection algorithms have been de-
velopped and, all the proposals differ substantially for the saliency function
adopted. The purpose of these functions is to identify points where the
surface has significant and easy to detect topological and geometric charac-
teristics. Some of them use the Gaussian or the mean Curvature to identify
areas in the surface with maximum concavity or convexity, as well as areas
where the variation of the position of the points, within the size of the
support, is significant in the three main dimensions through the Eigen Value
Decomposition, up to less elegant but effective techniques, which discriminate
saliency on the basis of empirical parameters. One of the main problems of

11

the aforementioned proposals, is the lack of generalization across heterogen-
eous datasets. Handcrafted saliency functions based on geometric cues often
ensure good performance only on data that exhibit certain characteristics. To
overcome these shortcomings, in Chap. 3 we are going to propose a general
framework to learn a keypoint detector so as to optimize the end-to-end
performance of the feature matching pipeline, when the detector is coupled
with a predefined descriptor. The promising results obtained, encouraged
us to learn an optimal detector for most of the state-of-the-art descriptors.
Hence, in Chap. 4 we are going to investigate the effectiveness of the many
possible combinations between state-of-the-art descriptors and the detector
proposed in Chap. 3, so as to identify optimal pairs taking into account two
applications: 3D object recognition and surface registration.

Before we go in there, in Sec. 2.1 we are going to revise some of the related
works in 3D keypoint detection field.

2 .1 related work

The purpose of this section is to present the latest proposals at the state
of the art for keypoint detection, highlighting how the different proposals
differ in terms of saliency function.

2 .1 .1 ISS: Intrinsic Shape Signature

Intrinsic Shape Signature (ISS) was developed to work on unstructured 3D
data and proposed in [48]. As far as the computation of the saliency function
is concerned, ISS identifies points of the surface characterized by significant
variations based on the Eigenvalue Decomposition of the scatter-matrix M(p)

computed on the points belonging to its support Br(p):

M(p) =
1

N

∑
q∈N(p)

(q− µp)(q− µp)
T µp =

1

N

∑
q∈N(p)

q (2.1)

In order to eliminate keypoints in areas of the surface where the distribu-
tion of points is similar along the main directions, ISS uses two thresholds,

12

Th1,2 Th2,3, together with the eigenvalues of the scatter-matrix in descending
order, λ1, λ2, λ3:

λ2(P)

λ1(P)
< Th1,2 ∧

λ3(P)

λ2(P)
< Th2,3 (2.2)

Points which pass this first stage of selection are assigned as a salience
value λ3. The last phase of the algorithm foresees a Non Maxima Suppression
(NMS).

2 .1 .2 Harris3D

Sipirian et al. in [65] extended to 3D data the Harris operator proposed in
[9] by Harris and Stephen for 2D interest point detection. In this regard, for
each point p on the surface a plane is fitted using the points in its support.
Subsequently, the points within the support are rotated aligning the normal
of the plane to the ẑ axis of a new reference system. The purpose of this
transformation is to have points with maximum degree of variation along the
x̂ and ŷ axes, hence the derivatives will be calculated along these directions.
Once the Harris operator response has been computed for each point, the
following two criteria can be applied to obtain the final set of keypoints:

• Select a constant number of points corresponding to the points with
maximum response.

• Cluster the points and select the cluster representative.

In order to have points evenly distributed along the surface it is recommen-
ded to use the second approach.

2 .1 .3 NARF: Normal Aligned Radial Feature

NARF is a method for interest point detection on range images proposed
in [57]. It has been designed taking into account two specific goals: select
points in positions where the surface is stable in order to compute a robust
normal and there are sufficient changes in the immediate neighbourhood,
and make use of the object borders. The detection phase of NARF involves
the search of the borders in the range image, where a border means a
non-continuous traversals from foreground to background, by looking for

13

substantial increases in the 3D distances between neighboring image points.
For each point, NARF looks at the local neighborhood and determines a
score that represents how much the surface change at this position and a
dominiant direction for this change, adding the information about borders.
The saliency function is computed looking at the dominant directions and
calculates a score that represents how much these directions differ from each
other and how much the surface in that point is stable. Once the salience
score has been calculated, a NMS is performed to find the final interest
points.

14

3
L E A R N I N G T O D E T E C T G O O D 3 D K E Y P O I N T S

Keypoint detection is an important computer vision task pursuing extraction
of repeatable and distinctive local structures from visual data. Matching
keypoints across images has come forth as a well-established and successful
procedure throughout the last 20 years, with most best known approaches,
such as e.g. SIFT [28] and SURF [32], consisting of methods to both detect
interest points as well as describe their local neighbourhood. Similarly to
image matching, detection of keypoints from 3D data represented as point
clouds or meshes is conducive to establishing correspondences between
3D surfaces, which has proven effective in pairwise and multi-view 3D
registration, 3D object recognition and pose estimation, 3D shape retrieval
and categorization. However, 3D keypoint detection is a far more recent and
open research topic [89], most algorithms dating back to the last 5-7 years.
Besides, unlike image features, many relevant proposals in the field of 3D
features are focused on description of the local 3D neighbourhood and do
not address keypoint detection. By the way of example, the reader might
wish to consider Spin Images [18], arguably the most influential paper in the
field, as well as later popular methods such as SHOT [98] and FPFH [45].

According to the taxonomy in [89], 3D keypoint detectors can be cat-
egorized into fixed-scale and adaptive-scale, depending on whether the
size of the local support is fixed and provided as input parameter to the
detector (fixed-scale), or it is automatically determined by the algorithm at
each keypoint by means of a scale-space analysis (adaptive-scale). Among
fixed-scale approaches, Intrinsic Shape Signatures (ISS) [48] is a widely-used,
fast and effective proposal; the fixed-scale detector introduced by Mian et al.
in [55] is a slower alternative, particularly robust to point density variations;
NARF[57] is a method specifically conceived for 2.5D data such as range im-
ages. Among adaptive-scale detectors, MeshDoG [80] is an extension of the
popular Difference of Gaussian detector [28] to scalar functions defined over
a manifold approximated by a mesh; the adaptive-scale variant proposed
in [55] maximizes the saliency function across scales to adaptively define
the neighborhood size; [39] is another proposal aimed at extending the

15

DoG operator to meshes. Performance of 3D keypoint detectors is usually
measured in terms of repeatability [89].

The ultimate goal of the feature detection/description/matching pipeline
is to identify correct correspondences across visual data, which requires
distinctiveness and robustness to nuisances of the description computed at
the detected local regions. State-of-the-art 3D detectors, however, rely on
hand-crafted saliency functions designed to maximize repeatability rather
than "end-to-end" feature matching performance. In other words, 3D de-
tectors are conceived to find repeatedly the same regions although these
may not yield the best performance when encoded and matched according
to the given descriptor. It is worthwhile highlighting how, in the context
of visual tracking, the importance of pursuing the feature matching goal
directly within the detection stage was pointed out by the popular work of
Shi and Tomasi [13], where "good" features to be detected are those likely to
yield correct matches between consecutive frames.

Based on the above considerations, we propose to cast 3D keypoint de-
tection as a classification problem between the classes of points that can or
cannot be effectively encoded and matched by a pre-defined 3D descriptor.
In its simplest formulation, our approach is modeled as a binary classifica-
tion problem, where a 3D point is classified as either "good" (i.e. a keypoint)
or "bad" (i.e. not a keypoint) according to the likeliness of providing a cor-
rect match when represented by a given 3D descriptor computed at a fixed
scale, this yielding a learned fixed-scale detector. Furthermore, we extend
the methodology to learn an adaptive-scale detector: we cast the problem as
a multi-class classification, where the different classes are associated with
different characteristic scales; thereby, each 3D point may be classified either
as a keypoint endowed with its characteristic scale or as not a keypoint. As
discussed in [89], detecting 3D keypoints at multiple scales helps gathering
important features that might be missed if saliency is measured at a fixed
scale only.

Key to our fixed-scale and adaptive-scale detectors is a framework to
define the training set required by our supervised learning approach. This
is accomplished by sifting out from the training data those 3D points that
can be matched successfully across multiple views based on the chosen
descriptor, these good features providing the positive samples to learn the
classification function. Automatic learning of such classification function
enables to adaptively identify those points more likely to provide correct
correspondences for a given dataset and descriptor, without being bound

16

to the specific geometric structures which would fire a chosen handcrafted
detector. The ability to learn a descriptor-specific detector is particularly
relevant to the domain of 3D features as many state-of-the-art descriptors
lack a companion detector [18, 45, 83, 98]. In particular, throughout our
experimental evaluation, we will consider descriptors as diverse as SHOT
[98], FPFH [45] and Spin Images [18] in order to show how their matching
pipelines can be enhanced significantly by deploying a companion detector
learned by our method rather than state-of-the-art hand-crafted detectors.

Moreover, in 3D computer vision applications a variety of different sensors
can be deployed, such as e.g. laser scanners and consumer depth-cameras,
which allow for acquiring data quite diverse as regards resolution and/or
noise. Such variability mandates careful tuning of a detector’s parameters to
extract meaningful keypoints across diverse datasets, possibly rendering a
method useless when applied to data that differ from those it was originally
conceived for. Hence, automatically learning the detector from representative
training samples holds the potential to provide higher adaptiveness to the
diverse kinds of data delivered by 3D sensors than handcrafted detectors.
To this end, we show experiments dealing with learning our detector from
a vast number of 3D models to attain a higher degree of generalization to
unseen shapes and avoid the necessity of retraining on each new dataset.

3 .1 related work

A few researchers investigated the use of machine learning techniques for
keypoint detection. As far as images are concerned, the most important
contribution is probably FAST [41], which is based on the Accelerated
Segment Tests to detect corner-like features: the order of the tests is learned
in a tree from a training set to speed-up detection time. This approach lays
at the core of several recent and successful keypoint detectors, such those
deployed in BRISK [60] and ORB [64]. Another research line deals with
refining the set of keypoints extracted by a standard detector to improve
the overall performance in a particular task. In [95], Hartmann et al. apply
machine learning algorithms to learn which keypoints are likely to be
discarded in the descriptor matching stage among those extracted by a
standard keypoint detector (i.e. DoG). By using a Random Forest [23]
to learn such "matchability", they show that their approach can improve
and speed-up considerably the feature matching stage of a Structure-from-

17

Motion pipeline. Similarly, in [46], the authors show how higher repeatability
can be achieved by instructing a WaldBoost classifier to sift out only the
keypoints known to be useful in a given scenario among those extracted by a
standard detector. As an exemplar application, they demonstrate improved
image matching in an urban environment, the classifier learning to focus
on stable man-made structures while ignoring objects that undergo natural
changes such as vegetation and clouds. A different approach is proposed
in [115], where the most repeatable DoG keypoints across a set of training
images are used to define the positive samples to train a saliency function
able to highlight the same image points under drastic illumination changes
caused by weather, season and time of day.

In contrast with the machine learning approaches proposed so far to
refine or robustify 2D detectors [46, 95, 115], we directly use our classifier
as a keypoint detector, thus avoiding the need to select a specific hand-
crafted detector as a pre-processor. This holds the potential to yield higher
adaptiveness to diverse input data, which otherwise may be limited by the
suitability to the specific dataset of the geometric structures highlighted
by the selected detector. Moreover, the choice of such preliminary 3D
detector would turn out problematic as there exists not yet an established
and generally applicable algorithm for 3D data as it may be considered DoG
in the case of images.

Leveraging on datasets that already include the definition of the points of
interest, a few papers have proposed to pursue 3D keypoint detection within
a machine learning framework [81, 99, 127]. In particular, [81] investigates on
the use of linear (LDA) and non-linear (AdaBoost) classifiers to detect facial
landmarks in 3D meshes. Similarly, the authors of [99] propose to learn a
classification forest to better cope with the high variability of the structures
annotated as salient within the dataset proposed in [72], the evaluation
task concerning detection of the points indicated as salient by human users
rather than extraction of generic repeatable keypoints. Within the same
settings as in [99], the authors of [127] advocate the use of a deep neural
network consisting of three stacked auto-encoders to regress a saliency
function suitable to detect the manually annotated landmarks defined in
[72]. Differently, Holzer et al. [73] propose to speed up and improve the
repeatability of curvature-based detectors by learning the saliency function
by a regression forest that deploys binary depth comparisons as features.

Differently, we propose to learn a classification function that acts as a
3D keypoint detector aimed at identifying points likely to generate correct

18

matches when encoded by a given descriptor and, accordingly, we define
a method to generate automatically the data corpus required to train the
classifier. Therefore, with our approach, the definition of the interest points
needs neither to be available together with the dataset, as in [81, 99, 127],
nor approximate a hand-crafted criterion, as in [73]. Instead, it is peculiarly
data-driven and attained automatically based on the ability to match specific
descriptors, thereby generating a descriptor-specific keypoint detector.

3 .2 training set to learn good 3d keypoints

The goal of our approach is to learn to detect 3D keypoints that can yield
good correspondences along with a given 3D descriptor. The definition of
the training set, and, in particular, of positive examples, is therefore crucial.
We exploit a set of partially overlapping 2.5D views of the 3D objects that
are of interest in a particular dataset and, for each such object, select those
points that can be matched correctly across different views in the chosen
descriptor space. In this Section, we delineate a framework to learn a fixed-
scale 3D keypoint detector given a generic 3D descriptor. As such, we fix the
support of the descriptor so that the positive samples to train the detector
are identified at a specific scale only. In Section 3.4, then, we extend the
methodology to learn adaptive-scale detectors.

3 .2 .1 Definition of the training set

Let {V i}, i = 1, . . . ,N, be a set of calibrated 2.5D views of an object belonging
to a 3D dataset (Fig. 3.1).

The term calibrated views is used here to signify knowledge of the ground-
truth roto-translations to bring each pair of views into a common reference
frame. Should the object be provided within the dataset as a 3D model, the
2.5D views would be gathered by performing synthetic renderings, as also
done, e.g., in [50, 67]. For instance, we deploy the method in [67], where
2.5D views are rendered from the nodes of an icosahedron centered at the
centroid of the 3D model. For each point p belonging to each view V i, we
compute the given 3D descriptor, denoted as Dip. For each V i, we select the
subset:

Vi = {V j|V i ∩ V j > τ, j = 1, . . . ,N, j 6= i} (3.1)

19

d

f

a

b

d

a

f

views V1...VN 2nd step

positive
samples

Pi
jk1st stepacquisition

Vi , Vi
Vj ϵVi : Vk ϵVi \Vj :

b

d

a

e

f

c

Figure 3.1: From left to right: if not provided within the dataset, a set of calibrated
2.5D views is attained by simulating a 3D sensor in N uniformly dis-
tributed vantage points around the object; for each view Vi, those other
views exhibiting a sufficient overlap are selected; correspondences are
established between Vi and each overlapping view Vj, such that points
yielding correct matches are kept as candidate positive samples (e.g.,
a,b,c,d) while those either wrongly matched (e.g. e) or laying close to
another one yielding a better correct match (e.g. c) are discarded; by
matching every other overlapping view Vk, the set of candidate positive
samples is refined by dismissing points yielding wrong matches (e.g. b).

i.e., the views partially overlapping with V i according to a chosen threshold,
τ. Then, for each V j ∈ Vi, we carry out the two-step point selection procedure
exemplified in Fig. 3.1.

In the first step, we match each point p ∈ V i to a point q ∈ V j by
finding the nearest neighbour descriptor according to the Euclidean distance
||Dip −D

j
q||2 in the descriptor space. All pairs of matching points, (p,q), are

then sorted ascendantly based on the computed Euclidean distances between
descriptors. Starting from the first element of the list of matching pairs, we
check whether the match is indeed correct or not, i.e. if the points in the two
views correspond to the same point of the 3D model. To make the learned
detector robust to small shifts, we regard a match as correct if the Euclidean
distance between p and q turns out smaller than a threshold ε once V i and
V i are brought into the same reference frame by application of the known
ground-truth roto-translation between the views. It is worth pointing out
that this type of check also allows for discarding wrong matches dealing with
points that do not belong to the region of overlap between the two views. If
the match is found correct, we remove (p,q) from the sorted list of matching
pairs and insert p into a set of candidate positive samples, which is referred
to as Pji to denote that it includes the points in V i that yield good matches
when seen in V j. To mimic the effect of the spatial non-maxima suppression
usually performed by hand-crafted detectors to prevent multiple responses

20

around salient structures, upon insertion of p in Pji we also remove all the
entries that include its neighbors from the list of matching pairs. More
precisely, we remove all the pairs (p ′,q), with p ′ ∈ V i and q ∈ V j, such that
the Euclidean distance between p ′ and p is smaller than a threshold referred
to as εNMS. Conversely, pair (p,q) is simply removed from the list in case
the match turns out wrong. The procedure is then repeatedly executed until
the sorted list becomes empty.

Hence, the first step provides a set of candidate positive samples, Pji,
consisting in the points of V i that yield good matches when seen from the
vantage point associated with V j. To robustify the selection by alleviating
the dependence on the specific viewpoint change between V i and V j, in the
second step we refine the list of positive samples by seeking for those points
that may be matched correctly also in other views overlapping with V i that
we did not use for the definition of Pji. More precisely, for each Vk ∈ Vi \ {V j},
i.e., every view partially overlapping with V i other than the already used
V j, we perform the second step as follows. First, we select the points in Pji
that belong to the area of overlap between V i and Vk. This is accomplished
by transforming each point in Pji according to the ground-truth rotation
and translation from V i to Vk and checking if the transformed item has
a neighbour in Vk within a distance ε. For every point in Pji that lies in
the common area between the views, we find the nearest neighbor in the
descriptor space among all descriptors computed on Vk so as to then check
if the match is correct according to the same criterion as used in the first step
to validate matches from V i to V j. Thus, given Pji, for each Vk we obtain a
refined set of positive samples, referred to as Pjki , by retaining only those
points in Pji that yield correct matches also towards Vk, that is those points in
V i that are good to be matched by the given descriptor when seen from the
vantage points of both V j and Vk. The final refined set of positive samples,
P̃
j
i, is given by the union of sets Pjki across all views Vk:

P̃
j
i =

|Vi|⋃
k=1
k 6=i,j

P
jk
i (3.2)

which implies that any point in Pji, i.e. a point in V i that gets correctly
matched in V j, is kept within the final set P̃ji in case it can be matched
correctly in at least one of the other overlapping views Vk.

21

The final set of positive samples extracted from V i, i.e. Pi, is the union of
the refined sets of positive samples across all the overlapping views V j:

Pi =

|Vi|⋃
j=1
j 6=i

P̃
j
i (3.3)

Eventually, the set of positive samples extracted from the object, P, is
given by the union of all the positive samples obtained by its N views :

P =

N⋃
i=1

Pi (3.4)

and the set of positive samples obtained from a dataset is the union of the
sets extracted from all the objects belonging to the dataset.

To obtain the negative samples, for each object of the dataset we randomly
sample from all the views a set of points which have not been included
in P. To ensure getting points scattered across all the areas unfavorable to
surface matching by the given descriptor, upon sampling a new negative
sample from a view we also remove from the set of candidate negatives
all its neighbours lying within a distance threshold εneg. Fig. 3.2 depicts
exemplar positive and negative training samples extracted from two views
dealing with two different objects. It is worthwhile pointing out how positive
samples are unevenly distributed across surfaces and do not necessarily
appear on the intuitively prominent structures, such as e.g. the knees and
elbows of the right object or the tail of the left object, which would be
extracted by most hand-crafted detectors engineered to capture geometric
saliency. Indeed, although geometrically salient, such structures do not turn
out amenable to matching by the given descriptor under viewpoint changes.
Eventually we use the threshold parameter εneg as the main knob to create
a globally balanced training set featuring negative samples gathered from
all the object belonging to the dataset.

3 .2 .2 Validation of the training set

Before addressing the issue of how to realize a classifier trained to detect
3D keypoints by the previously defined training set, we investigate on
the effectiveness of the proposed approach in sifting out good regions to

22

Figure 3.2: Exemplar positive (green) and negative (red) training samples obtained
by the proposed method on two views dealing with different objects
using SHOT [98] as the given 3D descriptor.

be encoded and matched with the given 3D descriptor. In other words,
we aim at assessing whether, should a perfect classifier be available, the
classification function defined by the training set would allow for detecting
regions yielding more correct correspondences than those found by standard
detectors designed to highlight geometric saliency. We rely on the matching
performance measured by finding nearest neighbours in the descriptor
space between the reference view Vi and the partially overlapping views
Vk deployed in the second step of the procedure described in Section 3.2.1.
More precisely, we compare the correct correspondences obtained when
matching 3D descriptors computed at the points belonging to the set of
candidate positive samples yielded by the first step of the procedure in
Section 3.2.1, i.e. Pji, versus that achieved by matching descriptors computed
at keypoints extracted by standard 3D detectors available in the Point Cloud
Library (PCL) 1 such as, in particular, ISS [48] and Harris3D [67].

This experimental study is focused on comparing the quality of the regions
highlighted by our novel proposal and the standard approaches concerned
with maximizing geometric saliency, regardless of the repeatability of the
actual keypoint detection process. Therefore, to determine which corres-
pondences turn out correct, we mimic an ideal detector by transforming the
keypoints extracted in Vi, i.e. those in Pji for our method as well as those
extracted by ISS and Harris3D, according to the ground-truth rigid motion
from Vi to Vk and, for each keypoint, check if the point in Vk associated
with the nearest neighbor in the descriptor space lies closer than a distance
ε from its transformed 3D coordinates. Accordingly, in Fig. 3.3 we rely on
SHOT [98] to determine the keypoints extracted in a view by our method
as well as to match descriptors computed at the regions found by all con-
sidered methods, and report both the average number and percentage of

1www.pointclouds.org

23

www.pointclouds.org

correct correspondences obtained on 35 views extracted from all the models
belonging to the Kinect dataset [98].

0

5

10

15

20

25

30

35

40

45

8 6

C
o

rr
e

ct
 m

at
ch

e
s

Views

Reference View 07

H3D ISS KPL

Figure 3.3: Number of correct matches obtained by computing the SHOT descriptor
[98] on the regions selected by Harris3D, ISS and our proposed approach
(referred to as KPL).

Results in Fig. 3.3 show how the local structures highlighted by our
method hold the potential to improve the matching performance significantly
with respect to the standard detectors built upon the notion of geometric
saliency.

3 .3 design of the classifier

We rely on Random Forest [23] to learn the 3D keypoint detector from the sets
of positive and negative training samples collected through the procedure
described in Sec. 3.2.1. Indeed, Random Forests have been employed quite
successfully to tackle a number of computer vision problems [71], including
3D keypoint detection [99]. Moreover, Random Forests are among the fastest
classifiers as regards run-time prediction, even when dealing with complex
classification functions, unlike, e.g., SVMs with non-linear kernels. This is
relevant when using a classifier as a keypoint detector, as the prediction
must be carried out at every single point of the input cloud. Finally, a
Random Forest performs multi-class classification straightforwardly, which
makes this classification approach amenable to generalize our framework in
order to handle multiple support sizes, thereby attaining an adaptive-scale
descriptor-specific detector, as illustrated in Section 3.4.

As far as features are concerned, we propose features inspired by SHOT
[98] but able to achieve rotation invariance without computing the Local
Reference Frame (LRF). In Fig. 3.4 provides a graphical overview of the
feature computation process.

24

cos θ

C
o

u
n

t

p q

θq

q

𝒓𝒇𝒆𝒂𝒕

p

cos θ

C
o

u
n

t

cos θ

C
o

u
n

t

cos θ

C
o

u
n

t

cos θ

C
o

u
n

t +

wq

Figure 3.4: Overview of the feature computation process. In the example, Nr = 4
subdivisions along the radial coordinate are used to split the spherical
support around p into equally many sectors (for ease of visualization, a
2D representation of the 3D spherical support is portrayed). For each
sector (i.e. spherical shell), a histogram of orientations is obtained by
accumulating the cosines of the angles between the normals at the points
q falling within the sector and the normal at p, weighted according to a
bilinear interpolation (wq).

In particular, given the point under consideration, p, for every of its
neighbours, q, within a spherical support of radius rfeat, we calculate the
cosine of the angle between the normal at p and the normal at q and quantize
such values into a set of histograms according to a subdivision into sectors
of the support around p. In SHOT, the sectors are obtained by dividing
the spherical support evenly along the radial, elevation, and azimuth polar
coordinates of the LRF centered at p. To avoid computation of the LRF, we
change here the shape of the sectors within the support so as to consider
only Nr subdivisions along the radial dimension and compute a histogram
with Nb bins for each spherical shell thus obtained. As the histograms are
computed within spherical shells, the features turn out inherently rotation
invariant so that calculation of a LRF is not needed. To avoid quantization
artifacts, bilinear interpolation is performed upon casting a vote into a
histogram. Finally, the histogram of every shell is normalized to have
unitary Euclidean norm to improve robustness with respect to point density
variations. We set rfeat to half the radius used to compute the descriptor.

Thus, given all the objects within a dataset, we obtain the positive and
negative training samples as described in Sec. 3.2.1. Then, for all training
samples, we extract the features described in this Section and train a Random
Forest comprising T trees. To detect keypoints on an unseen point cloud,
we apply the trained Random Forest classifier at each point, p, and count
the number of trees, Tp, that predict p as a keypoint. The saliency, s(p),
associated with p, is given by the ratio Tp/T , the point being detected
as a keypoint if it turns out a local maximum of the saliency function

25

within a neighborhood of radius rnms and its saliency is sufficiently high,
i.e. s(p) > smin.

We would like to highlight that simple features derived from pairwise
pixel comparisons have been usually deployed together with intensity and
depth images so as to best leverage the inherent efficiency of Random
Forests [71, 73]. However, taking repeatable pairwise comparisons within 3D
neighborhoods subject to arbitrary 3D rotations would require the definition
of an LRF, as done by most 3D descriptors, e.g. SHOT [98], MeshHoG [80],
ROPS [83]. This can be a quite expensive step of the algorithm, sometimes
accounting for the largest fraction of the overall time needed to compute the
descriptor. Unlike 3D descriptors, though, which are typically calculated at
a very small subset of salient points of the cloud, establishing a LRF for the
sake of keypoint detection would require such costly computation at every
point of the cloud, and that is the reason why our feature has been designed
to avoid it.

3 .4 adaptive-scale keypoint detection

In this Section, we describe how the proposed method can be extended to
perform descriptor-specific adaptive-scale keypoint detection. The number
of detectable scales S is finite and predefined. In this case, the detection
problem becomes a multi-class classification problem, with S+ 1 classes: the
classifier has to assign each input point to either the "negative" class, if the
point is not a keypoint, or to one of the remaining "positive" S classes, if the
point is a keypoint, the class defining the scale of the keypoint. At training
time, one of the scales is associated to each positive sample by probing all of
them as described below. No scale has to be assigned to negative training
samples. At test time, each keypoint found in a cloud is associated with one
single scale only.

To define the training set, we first extract positive samples from the
models at each predefined scale following the same procedure as described
in Sec. 3.2.1. Two refinements are then performed, in order to associate
a point only to one class and to obtain a balanced training set. In both
refinements we use the mean Euclidean distance between the descriptor at
the keypoint and those matched in the overlapping views, davg, so as to
choose which keypoints to keep in the training set: such distance help us
identifying those keypoints whose descriptors remain more similar under

26

viewpoint changes. In the first refinement, if a point is considered a positive
training sample for different scales, we use it only for the scale at which
davg is minimal. For example, let us consider again Fig. 3.1 and assume
point a in view V i (i.e. the top-most green dot in the orange cloud) to be
a positive sample for two scales: it would then be kept in the training set
only for the scale featuring the lowest mean Euclidean distance between the
descriptor computed at a and those at the matching points in views V j,Vk

(corresponding green dots in the blue clouds). In the second refinement,
to obtain a balanced training set, we remove from the training set for the
larger classes the positive samples which have higher davg so as to reach
approximately the same number of samples per class. Negative training
examples are extracted randomly from the model point clouds according
to the procedure already outlined in Sec. 3.2.1. We set εneg such that the
overall distribution of samples per class in the training set is balanced, i.e.
the number of negative samples is approximately the same as the number
of samples in each positive class.

We use the same feature proposed for the fixed-scale detector (Sec. 3.3)
and the same number of histogram binsNb. rfeat andNr are instead adapted
to the new scenario. In particular, the radius of the spherical support rfeat
to compute the feature is set to half the size of the largest predefined scale,
coherently with the choice made for the fixed scale detector where rfeat
was set to half the size of the support used to compute the 3D descriptor.
The number of spherical subdivisions Nr for the adaptive-scale detector is
instead defined so that the metric width of each spherical subdivision is
approximately the same used in the fixed-scale algorithm. For instance, let
assume in the fixed-scale case for a dataset the descriptor support is 40 and
Nr = 5. We then get rfeat = 20 and the width of each subdivision in the
fixed-scale case is 20/5 = 4. If the range of detectable scales in the adaptive-
scale case is then S = [40, 50, 60], we get rfeat = 30 and Nr = b30/4c = 7 for
the adaptive-scale detector.

When the feature is extracted at test time, the scale assigned to each point
is unknown. Therefore, the size of the feature support rfeat used at training
time is the same for all the points regardless of their scale, and is the same
used at test time. As the random forest inherently performs feature selection
at training time, we expect the forest to analyze different entries of the
feature vector to detect different scales, i.e. to use the entries computed
within closer subdivisions to reach the leaves assigned to smaller scales and
those computed for more distant shells for larger scales.

27

When detecting keypoints on a cloud, each point p is classified by the T
trees of the forest as belonging to a certain class, namely a keypoint and
a characteristic scale or a negative. For each such class, c, we compute a
prediction confidence as Pc(p) = Tc/T , with Tc the number of trees that
classify p as belonging to c, the final class predicted for p given by that
yielding the highest confidence. In case a positive class is predicted, a
saliency score equal to the prediction confidence is also assigned to the
point: s(p) = Pc(p). Eventually, a point belonging to a positive class is
detected as a keypoint if the saliency is above a threshold, s(p) > smin, and
it turns out a local maximum of the saliency while considering the points
predicted to belong to the same class within a neighbourhood of radius
rnms.

The computational complexity of the proposed adaptive-scale detector is
similar to that of the fixed-scale algorithm, both boiling down to traversing
the trees of a random forest having the same structure (Sec. 3.5.1). In practice
the run-time of the adaptive-scale detector turns out slightly, i.e. about 20%,
higher due to the time spent in neighbor-search operations within the larger
support deployed to compute the features.

As discussed in [89], the main benefit brought in by an adaptive-scale
3D detector concerns the ability to gather more features than a fixed-scale
approach, as more scales are probed by the former and some surface patches
might show up as salient at certain scales rather than others. Moreover, as 3D
surfaces are most often matched under the assumption of Euclidean motion,
i.e. rotation and translation without any size change, scale information
in metric units may be deployed to reduce the search space within the
feature matching process. Accordingly, while deploying an adaptive-scale
detector, one would conveniently compare in the descriptor space only those
keypoints that share the same scale in the considered views, as those detected
at different scales are likely to correspond to patches having different sizes.
This allows for speeding up the matching process and holds the potential
to improve precision, as wrong matches caused by similar descriptors at
different scales may be avoided.

3 .5 experimental results

Since we deal with improving feature matching performance by learning
a descriptor-specific detector, rather than gathering descriptor-agnostic re-

28

peatability measurements (as, e.g., in [89]) we validate our proposal through
descriptor matching experiments. In particular, we deploy both hand-crafted
saliency-based detectors as well as our learned detector within a standard
3D feature matching pipeline in order to compare their performance.

Regarding hand-crafted fixed-scale detectors, we evaluate those available
in PCL, namely ISS, Harris3D and NARF [57], alongside with the algorithm
proposed by Mian et al. [55] and referred to as KPQ in [89], which, together
with ISS, turned out particularly effective in the experiments carried out
in [66]. We also consider uniform sampling of points, as this baseline 3D
detector is often used within 3D feature matching pipelines. As for scale-
adaptive detectors, we test the scale-adaptive version of KPQ (see again
[55]) and MeshDoG [80]. To realize our proposal, hereinafter also referred
to as KeyPoint Learning (KPL), we used the Random Forest implementation
provided by OpenCV2. In the experiments related to the adaptive-scale
formulation of our method, denoted as KPL-AS, we consider a set of three
scales (i.e. radius sizes), which we found appropriate to demonstrate the
effectiveness of the proposed multi-class classification approach without
slowing down the training stage exceedingly.

We tested all detectors on four publicly available datasets, three of which
had already been used to compare 3D detectors in [89]: the Laser Scanner
dataset introduced by Mian et al. [55], the Random Views dataset, based on
the Stanford 3D scanning repository3, and the Kinect dataset proposed in
[98]. The fourth, referred to here as Venezia 3D dataset4, was introduced
in [87]. Each dataset includes a list of models, which we used to train our
detector, and several scenes, where we performed keypoint detection. When
the models are full 3D, as it is the case of Laser Scanner and Random Views,
to apply our learning algorithm we render 42 equally spaced 2.5D views
from the nodes of an icosahedron using the implementation of the method
proposed in [67] available in PCL. The scenes are 2.5D views acquired
independently from the models and depicting a variety of arrangements
concerning models and other objects (clutter). Therefore, the views extracted
from the models to train the detector are unrelated to the views of the
models appearing in the scenes. Moreover, this evaluation methodology
mimics the likely use of the technique in a real application, with the models

2opencv.org
3http://graphics.stanford.edu/data/3Dscanrep/
4http://www.dsi.unive.it/~rodola/data.html

29

opencv.org
http://graphics.stanford.edu/data/3Dscanrep/
http://www.dsi.unive.it/~rodola/data.html

either known beforehand or acquired at initialization time and scenes being
unseen data.

As for descriptors, we use SHOT [98], which has been reported to obtain
good results in a number of comparative evaluations addressing object
recognition [67, 69], 3D object classification and retrieval [79], semantic
segmentation of point clouds [70], localization of medical landmarks [78].
Moreover, we learn to detect good 3D keypoints for Spin Images[18] and
FPFH[45], two other prominent algorithms in the field of 3D descriptors, both
relying on different design choices than SHOT. As the features used to train
our Random Forest classifier are inspired by SHOT, successful application
of the same methodology and features to three different descriptors such
as SHOT, FPFH and Spin Images would vouch for the general validity of
the novel concept advocated in this chapter. We rely on the implementation
available in PCL for all descriptors.

Table 3.1 and Table 3.2 report the parameters used at test and training
time on each dataset in the experiments pursuing fixed-scale and adaptive-
scale detection, respectively. As it can be observed from the Tables, we use
the same support size for all evaluated descriptors (SHOT, FPFH and Spin
Images) across all datasets. Similarly, we rely on the same support size to
compute both the features for our learned detector as well as the saliency
function for the considered handcrafted methods.

Table 3.1: Parameters related to fixed-scale detection experiments. Some paramet-
ers concerning the training process of our method are not specified for
Random Views as we did not learn a new forest on this dataset.

Dataset rdesc [mm] rfeat [mm] τ ε [mm] εnms [mm] εneg [mm] rnms [mm] smin Nb Nr

Laser Scanner 40 20 0.85 7 4 2 4 0.8 10 5

Random Views 40 20 - 7 - - 4 0.8 10 5

Kinect 40 20 0.24 10 20 15 20 0.8 10 5

Venezia 40 20 0.50 7 4 5 4 0.95 10 5

Table 3.2: Parameters dealing with adaptive scale detection experiments. Some para-
meters concerning the training process of our method are not specified
for Random Views as we did not learn a new forest on this dataset.

Dataset rdesc [mm] rfeat [mm] τ ε [mm] εnms [mm] εneg [mm] rnms [mm] smin Nb Nr

Laser Scanner [40, 50, 60] 30 0.85 7 4 3.20 4 0.5 10 7

Random Views [40, 50, 60] 30 - 7 - - 4 0.5 10 7

Kinect [40, 50, 60] 30 0.24 10 20 6 20 0.5 10 7

30

3 .5 .1 Hyperparameter optimization

Model selection with Random Forests deals with specifying a few self-
explanatory hyperparameters. However, the impact on performance of
parameters such as the tree depth and the minimum number of samples
to stop splitting a node is somehow unclear: e.g., Breiman [23] suggests
to grow a tree until just 1 sample is left in a node, whereas Criminisi et
al. [71] rely on a higher number of samples so to estimate the posterior
distribution at each node. Therefore, we chose the number of trees, the
maximum tree depth, and the number of samples to stop node splitting by
a cross-validation procedure. In particular, we carried out a three-fold cross
validation where 2/3 of the N views of each model form the training set
while the remaining one are deployed for testing.

As regards the considered hyperparameter ranges, we varied the number
of trees from 10 to 100, the tree depth from 10 to 40 and the number of points
to stop splitting from 1% of the training samples down to just 1 sample.
Fig. 3.5 deals with the Kinect dataset and shows that performance of the
classifier does not improve when relying on more than 50 trees.

Even more evidently, there is no advantage in letting the tree grow deeper
than 25 levels and we get the best generalization results by stopping to
split when 5 or less samples are left in a node. With the Laser Scanner
dataset, which features a significantly larger quantity of training data (i.e.
100K positive samples compared to the 8000 positive samples of Kinect), we
found that best performance are achieved by 100 trees, the same maximum
depth as with Kinect and 1 node per sample to stop splitting. As for the
Venezia dataset, where we trained a detector on almost 60 different models
with a final number of samples per class of about 12,5M, the optimum
number of trees and maximum tree depth remain unchanged, while the
minimum number of samples to stop splitting a node should be as large as
7

5. Eventually, as we found that the hyperparameters chosen to realize fixed
scale detectors on the considered datasets do work well also when pursuing
adaptive-scale detection, we did not carry out any further model selection
procedure for the multi-class random forest classifiers.

5The increased minimum number of samples was motivated also by limitations con-
cerning memory management by the OpenCV "io" module which we used to save and load
the forest to and from disk. Indeed, the adopted implementation cannot handle correctly
forests that are too large: increasing the minimum number of samples reduced the average
depth of each tree in the forest and, thereby, the final file size of the forest.

31

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

ER
R

O
R

NUMBER OF TREES

Training Error Test Error

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

5 10 15 20 25 30 35 40

ER
R

O
R

TREE DEPTH

Training error Test error

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

34 29 24 21 16 11 10 9 8 7 6 5 4 3 2 1

ER
R

O
R

SAMPLES

Training error Test error

Figure 3.5: Hyperparameter optimization on the Kinect dataset.

3 .5 .2 Results on the Laser Scanner dataset

This dataset introduced by Mian et al. [55] consists of 4 full 3D models and
50 scenes wherein models significantly occlude each other. To create some
clutter, scenes contain also an object which is not included in the model
gallery. As scenes are scanned by a Minolta Vivid 910 scanner, they are
corrupted by real sensor noise.

To carry out the descriptor matching experiment concerning fixed-scale
detectors, firstly we detect keypoints on all views of all models, compute
descriptors and create one kd-tree containing all model descriptors. We
then run detectors on scenes, and for each scene keypoint compute the
associated descriptor and establish a match with the Nearest Neighbor
model descriptor via the kd-tree. To perform descriptor matching with
adaptive-scale detectors, first we detect keypoints on all views of all models
at all scales, compute descriptors according to the found characteristic scales

32

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

(a) (b)

Figure 3.6: Results provided on the Laser Scanner dataset by the keypoint detector
learned for SHOT. Precision-Recall curves (a), Mean True Positives vs.
Mean False Positives(b).

and create one kd-tree for each scale, so that each kd-tree contains all model
descriptors computed at that scale. We then run detectors on scenes, and
for each scene keypoint establish a match with the Nearest Neighbor model
descriptor via the kd-tree associated with the same scale as that found for
the scene keypoint.

In both cases, for each match we can check if it is correct based on the
available ground-truth, and increment the true positives or false positives
accordingly. By varying the threshold on the maximum distance between
descriptors to accept a match, we obtain Precision-Recall curves, as shown,
e.g., in Fig. 3.6 (a). According to the same methodology, we also compute
Mean True Positive versus Mean False Positive curves (e.g., Fig. 3.6(b)),
as proposed in [89] in order to compare descriptor matching performance
for different detectors. These curves complement Precision-Recall curves
because they highlight the differences in the number of keypoints extracted
and matched correctly, which is an important trait when using detectors in
practice as well as a possible source of bias when comparing Precision-Recall
figures between algorithms yielding quite different quantities of extracted
keypoints. Indeed, should a detector extract just one keypoint which then
gets matched correctly, its Precision-Recall performance would be deemed
as perfect though a single correct correspondence would hardly turn out
useful in any practical setting.

Fig. 3.6 shows how, when using the SHOT descriptor together with hand-
crafted detectors, the best performance according to Precision-Recall curves
is provided by KPQ. This is somewhat not surprising, as this detector was
originally proposed for the Laser Scanner dataset. ISS also yields reasonable

33

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

(a) (b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

20

40

60

0 100 200 300

(c) (d)

Figure 3.7: Results provided on the Laser Scanner dataset by the keypoint detector
learned for Spin Images (a-b) and FPFH (c-d). Precision-Recall curves
(a)-(c), Mean True Positives vs. Mean False Positives (b)-(d).

results, whereas NARF and Harris3D perform similarly to the baseline
uniform sampling approach. However, our learned detectors (KPL, KPL-
AS) are able to identify the best regions to be described and matched by
SHOT, even more effectively than the detector specifically designed and
tuned for this kind of data (i.e. KPQ), which substantiate our intuition
that saliency-based detectors cannot select the best regions to optimize the
performance of the overall detector-descriptor pipeline. Moreover, the use
of the adaptive-scale variant of our proposal (KPL-AS) can provide higher
Recall values than the fixed scale algorithm (KPL), especially in the lower
precision region. Fig. 3.6 (b) highlights that KPL-AS can provide consistently
a substantially higher number of correct correspondences than KPL given
the same number of mismatches, and that the former detector provides the
highest number of correct matches between all considered methods. This
confirms the ability of the proposed methodology to learn to detect also
the best scale at which the descriptor should be computed as well as the
practical relevance of the adaptive-scale formulation.

34

Fig. 3.7 (a) and (b) shows that KPL and KPL-AS exhibit the best descriptor
matching performance also when using the Spin Images descriptor, our
adaptive-scale proposal delivering again the highest number of correct
matches between all considered methods. Similarly, Fig. 3.7 (c) and (d)
show that, when using FPFH, KPL and KPL-AS outperform, respectively, all
fixed-scale and adaptive-scale detectors. Overall, the results in Fig. 3.7 vouch
for the generality of the methodology proposed in this chapter. Indeed,
the features deployed in our random forest classifier, although inspired by
SHOT, do not force the use of learned detectors to this particular descriptor
and, instead, turn out effective to learn to detect good surface patches for
other descriptors alike. This can be observed also in the qualitative res-
ults reported in Fig. 3.8: though based on the same features, the saliency
functions learned by our method for the three descriptors are different and,
as such, fire at different regions, e.g. in the scene from the Laser Scanner
dataset, i.e. (a) and (b), the chicken belly seems more amenable to establish
good correspondence with Spin Images, whereas SHOT is apparently more
effective across the neck. Moreover, in the scene from Random Views, i.e.
(c) and (d), the saliency function learned for SHOT fires more on the body
of the snake compared to that of FPFH which, in turn, seems much more
effective on the body of the statuette.

3 .5 .3 Transfer learning on the Random Views dataset

The Random Views dataset is based on the Stanford 3D scanning repository 6

and originally proposed in [89]. This dataset comprises 6 full 3D models and
36 scenes obtained by synthetic renderings of random model arrangements.
Scenes feature occlusions but no clutter. Moreover, scenes are corrupted by
different levels of synthetic noise. In the experiments we consider scenes
with Gaussian noise equal to σ = 0.1 mesh resolution units.

The performance assessment protocol is the same as described in Sec. 3.5.2.
As Random Views presents a level of detail and noise comparable to that
of the Laser Scanner dataset, in the experiments described in this section
we do not train new classifiers in order to pursue keypoint detection but,
rather, just apply those already learned on Laser Scanner. This allows us
to investigate on the ability of our method to transfer the concepts learned
from a set of representative objects to previously unseen shapes. In fact, a

6
3 http://graphics.stanford.edu/data/3Dscanrep/

35

(a) (b)

(c) (d)

Figure 3.8: Exemplar keypoints extracted by the detectors learned for SHOT (a) (c),
Spin Images (b) and FPFH (d) on scenes of the Laser Scanner dataset
(a-b) and Random Views dataset (c-d).

detector able to learn to detect good local features likely to appear across
different datasets sharing similar traits may be conveniently trained on
just one dataset and then successfully applied also to the others, thereby
diminishing the overall training time vastly. Moreover, there exist relevant
surface matching scenarios, such as, e.g., point cloud registration and 3D
reconstruction, where a training set in the form required by our method is
typically not available.

The results concerning SHOT are reported in Fig. 3.9 and show that,
overall, KPL provides again the best performance. However, it is interest-
ing to note that the gap between our proposal and KPQ widens and the
ranking of saliency-based detector changes, with MeshDoG providing more
distinctive regions than KPQ for this dataset: saliency-based detectors, in
fact, exhibit more difficulties in maintaining a similar performance level
across different datasets. Moreover, these results show that the way we
create the training set, the features we propose, and the selected hyperpara-
meters for the classifier are effective in learning a classification function with

36

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

(a) (b)

Figure 3.9: Results on Random Views by the keypoint detector learned for SHOT
on Laser Scanner. Precision-Recall curves (a), Mean True Positives vs.
Mean False Positives (b).

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

20

40

60

80

100

120

0 50 100 150 200 250 300

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

(a) (b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

M
ea
n
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS

0

20

40

60

0 200 400 600 800

(c) (d)

Figure 3.10: Results on Random Views by the keypoint detector learned for Spin
Images (a-b) and FPFH (c-d) on Laser Scanner. Precision-Recall curves
(a-c) , Mean True Positives vs. Mean False Positives (b-d).

37

(a) Laser Scanner (b) Random Views (c) Queen’s 3D (d) Venezia 3D (model) (e) Venezia 3D (scene)

Figure 3.11: Universal detector: some models used to for training (a-d) and keypo-
ints detected on a scene of the Venezia 3D dataset (e).

high generalization abilities, a very useful trait in practical deployments of
learning-based algorithms which, in our settings, allows our proposal to
learn to detect good local features across different datasets. On this dataset,
KPL-AS is less effective than KPL: it is interesting to note that the same
trend is shown by the two variants of KPQ, which may be interpreted as
a symptom of an inherent ambiguity of descriptions at the selected scales
for this dataset. Nonetheless, even in this more challenging experiment
dealing with transferring the concepts learned from one dataset to another
one, KPL-AS can yield a much larger quantity of correct correspondences
than any other method at any given level of false positives (Fig. 3.9 (b)).

Similar considerations on the effectiveness of our proposal with respect
to hand-crafted detectors may be drawn from the results dealing with Spin
Images and FPFH (Fig. 3.10). Moreover, as for the results dealing with Spin
Images, it is interesting to note how ISS turns out to be now as effective as
KPQ while MeshDoG performance drops. This confirms that, in general, it
is quite hard to know beforehand the best detector for a given descriptor and
vouches in favor of the inherent adaptability offered by our learning-based
approach. Finally, Fig. 3.9 and Fig. 3.10 provide additional support to our
claim concerning the general validity of our proposal, due to the very same
learning framework leading to superior performance with respect to hand-
crafter detectors when deploying descriptors as diverse as SHOT, FPFH and
Spin Images.

3 .5 .4 Training and testing a universal detector

We present a different kind of experiment, which highlights another ap-
proach to leverage on our keypoint learning framework. In particular, rather
than learning a specific detector for a given dataset (Sec. 3.5.2) or transferring
a learned detector from one dataset to another (Sec. 3.5.3), we try to learn

38

the best possible saliency function for a given sensing modality and 3D
descriptor based on all available datasets. We refer to the detector thus
achieved as to universal detector.

Both the training procedure and the classifier implementation concerning
the universal detector are the same as described in Sec. 3.2 and Sec. 3.3, the key
difference consisting in the higher number and variety of models deployed to
define the training set. Although we pursue here training of the fixed-scale
instance of the universal detector only, its adaptive-scale counterpart may be
obtained without additional conceptual effort by applying the methodology
described in Sec. 3.4 to a similarly large and varied corpus of training data.
To create the training set we deployed 59 different models coming from 4

lidar-based datasets (namely, Laser Scanner, Random Views, Queen’s 3D
[36] and Venezia 3D). Fig. 3.11 (a-d) shows four of the models used to
train the universal detector, one for each dataset. About 1250000 positive and
negative samples were used to create a mixed dataset that includes a large
part of the 3D structures in the models.

We expect the function learned by the universal detector to be able to
detect better keypoints than the variant trained only on one dataset, the
main reason being that the models from other datasets allow to sample
different types of surface patches that may be present in the unseen scenes
of the test dataset. It is interesting to note that, with this kind of training, a
generalization of the samples is implicitly performed by the random forest.
For example, points belonging to different models but exhibiting similar
neighborhoods are grouped together at the level of the leaves of each tree - in
other words, each leaf can be seen as a cluster of visually similar 3D points.
Also worth pointing out, the use of a high number of samples and different
models forces the detector to create positive leaves that are less specific of a
given object, hence producing a more general description of what is a good
keypoint. Moreover, the use of a large training corpus pushes the detector
to learn how to recognize more 3D structures than those trained on specific
models. For this reason, during the detection stage, the universal detector
would tend to classify a larger number of good surface patches as possible
keypoints, thereby increasing the potential number of good matches.

The results achieved by testing the universal detector learned for SHOT on
the scenes of Venezia 3D are reported in Fig. 3.12, in addition a qualitative
example is also shown in Fig. 3.11(e). To verify our intuition that a large and
varied training set leads to a better detection function than using the models
from a dataset alone, in Fig. 3.12 we compare the universal detector (denoted

39

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF KPL-UD

0

20

40

60

80

100

120

140

0 50 100 150 200 250

M
e
an
-T
P

Mean-FP

KPL ISS H3D US KPQ NARF KPL-UD

(a) (b)

Figure 3.12: Results on Venezia 3D for the universal detector trained for SHOT.
Precision-Recall curves (a), Mean True Positives vs. Mean False Posit-
ives (b).

as KPL-UD) to the detector trained only on the models belonging to the
Venezia 3D dataset (denoted as KPL, coherently with previous experiments).
While KPL obtains performance similar to KPQ, the use of a larger and more
varied training set allows the Random Forest to learn a far better saliency
function, which enables KPL-UD to outperform all other detectors by a large
margin, both in terms of Precision-Recall, as well as, even more evidently, in
terms of absolute number of correct correspondences.

3 .5 .5 Kinect dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

R
ec
al
l

1-Precision

KPL ISS H3D US KPQ NARF MeshDOG KPL-AS KPQ-AS KPL-UD

Figure 3.13: Results on the Kinect dataset by the keypoint detector learned for
SHOT.

The Kinect dataset comprises 7 models provided in the form of 2.5D views
together with 17 scenes where the models are acquired under heavy clutter

40

and occlusions. Due to acquisition by means of a low-cost consumer depth
camera, the data is also quite noisy.

To compare detectors on Kinect we follow the evaluation protocol de-
scribed in the paper that introduced this dataset [98]. Accordingly, first key-
points are extracted and described from all model views. Then, descriptors
are extracted from scenes, both at the locations of model keypoints as well
as from clutter. Every descriptor computed from the scene is then matched
against the set of model descriptors by the ratio criterion [28] and checked
for geometric correctness. Varying the threshold of the ratio test, allows for
drawing Precision-Recall curves as in Fig. 3.13.

The Kinect dataset is particularly challenging, such that, as also found
in a recent experimental evaluation [124], the performance of the feature
matching pipelines decreases dramatically with respect to previous datasets
(see also Fig. 5 in [124]). It is worth noticing how, in the results dealing with
matching SHOT descriptors reported in Fig. 3.13, the relative ordering of
hand-crafted detectors does change: on the one hand, the baseline uniform
sampling approach performs better than KPQ, ISS, and Harris3D; on the
other hand, NARF, whose performance was quite unsatisfactory on previous
datasets, turns out the best hand-crafted detector on Kinect. Again, our
learned detectors (KPL, KPL-AS) clearly surpass existing proposals, which
vouches for the better ability to adapt to different sensing modalities of the
machine learning approach advocated in this chapter.

Given that the training set for the Kinect dataset consists of fewer points
compared to the other datasets, e.g. ∼ 8000 positive samples versus ∼ 100000

in Laser Scanner, and motivated by the results obtained with the lidar-based
universal detector (Sec. 3.5.4), we have carried out another experiment aimed
at training our detector by a larger number of models. In particular, we have
created a fixed-scale training set using the models from the Kinect and the
TUW[91] datasets, both including real 2.5D calibrated views acquired by
low-cost consumer depth camera, so as to obtain ∼ 70000 positive training
samples and to train the Random Forest according to the standard method-
ology and parameters (Table 3.5). Fig. 3.13 shows that this new classifier,
referred to as KPL-UD, provides slightly superior performance with respect
to KPL on the scenes of the Kinect dataset. This is consistent with the
finding of Sec. 3.5.4 about training with more models turning out beneficial
to learning the keypoint detection function, even though these additional
models are not going to appear within the actual scenes used for testing,

41

which, in essence, vouches for a machine learning framework amenable to
generalize well rather than overfit.

42

4
P E R F O R M A N C E E VA L UAT I O N O F L E A R N E D 3 D
F E AT U R E S

In Chap. 3, we have proposed a novel machine-learning framework to
address the problem of 3D keypoint detection. In this chapter, instead,
we want to go one step further and investigate how the state-of-the-art
proposals for 3D detectors and descriptors can be coupled to create an
effective pipeline. Indeed, unlike the related field of local image features,
methods to either detect or describe 3D features have been designed and
proposed separately, alongside with specific application settings and related
datasets. Hence, so far, it is yet unclear how to effectively combine a 3D
keypoint detector with a 3D keypoint descriptor. This is also vouched
by the main performance evaluation papers in the field, which address
either repeatability of 3D detectors designed to highlight geometrically
salient surface patches [89] or distinctiveness and robustness of popular
3D descriptors [124]. In the object recognition experiment in Sec. 3.5.2 we
have shown that, with the considered descriptors (SHOT [98], Spin Image
(SI) [18], FPFH [45]), learning to detect specific keypoints leads to better
performance than relying on existing general-purpose handcrafted detectors
(ISS [48], Harris3D [65], NARF [57]). By enabling an optimal detector to
be learned for any descriptor, we sets forth a novel paradigm to maximize
affinity between 3D detectors and descriptors. This opens up the question
of which learned detector-descriptor pair may turn out most effective in
the main application areas. This chapter tries to answer this question by
proposing an experimental evaluation of learned 3D pipelines. In particular,
we address 3D object recognition and surface registration and compare the
performance attained by learning a paired feature detector for the most
popular handcrafted 3D descriptors (SHOT [98], SI [18], FPFH [45], USC[58],
RoPS [83]) as well as for a recently proposed descriptor based on deep
learning (CGF-32 [143]).

43

4 .1 related work

Within this section we briefly review state-of-the-art handcrafted and learned
methods for description of 3D local features. For a more exhaustive discus-
sion please refer to Sec. 6.1.

Many hand-crafted feature descriptors represent the local surface by com-
puting geometric measurements within the supporting patch and then
accumulating values into histograms. Spin Images (SI) [18] relies on two
coordinates to represent each point in the support: the radial coordinate,
defined as the perpendicular distance to the line trough the surface normal
at the keypoint, and the elevation coordinate, defined as the signed distance
to the tangent plane at the keypoint. The space formed by this two values is
then discretized into a 2D histogram.

In 3D Shape Context (3DSC) [27] the support is partitioned by a 3D spher-
ical grid centered at the keypoint with the north pole aligned to the surface
normal. A 3D histogram is built by counting up the weighted number of
points falling into each spatial bin along the radial, azimuth and elevation
dimensions. Unique Shape Context (USC) [58] extends 3DSC with the intro-
duction of a unique and repeatable canonical reference frame borrowed from
[98].

SHOT [98], alike, deploys both a unique and repeatable canonical reference
frame as well as a 3D spherical grid to discretize the supporting patch into
bins along the radial, azimuth and elevation axes. Then, the angles between
the normal at the keypoint and those at the neighboring points within each
bins are accumulated into local histograms. Rotational Projection Statistics
(RoPS) [83] uses a canonical reference frame to rotate the neighboring points
on the local surface. The descriptor is then constructed by rotationally
projecting the 3D points onto 2D planes to generate three distribution
matrices. Finally, a histogram encoding five statistics of distribution matrices
is calculated. Fast Point Feature Histograms (FPFH) [45] operates in two
steps. In the first, akin to PFH [42], four features, refereed to as SPFH, are
calculated using the Darboux frame and the surface normals between the
keypoint and its neighbors. In the second step, the descriptor is obtained as
the weighted sum between the SPFH of the keypoint and the SPFHs of the
neighboring points.

The success of deep neural networks in so many challenging image re-
cognition tasks has motivated research on learning representations from 3D
data. One of the pioneering works is 3D Match [159], where the authors

44

deploy a siamese network trained on local volumetric patches to learn a
local 3D descriptor. The input to the network consists of a Truncated Signed
Distance Function (TSDF) defined on a voxel grid. In [143], the authors de-
ploy a fully-connected deep neural network together with a feature learning
approach based on the triplet ranking loss in order to learn a very compact 3D
descriptor, referred to as CGF-32. Their approach does not rely on raw data
but on an hand-crafted input representation similar to [27], canonicalized by
the local reference frame presented in [98].

4 .2 keypoint learning

In order to carry out the performance evaluation proposed in this chapter,
we extend the framework proposed in Chap. 3 for most local descriptors
reviewed in Sec. 4.1. We consider only the case of fixed-scale detector. Hence,
before we go any further, we briefly recall the methodology and refer the
reader to [113, 181] and Sec. 3.2 for a detailed description.

The idea behind keypoint learning is to learn to detect keypoints that can
yield good correspondences when coupled with a given descriptor. To this
end, keypoint detection is cast as binary classification, i.e. a point can either
be a good candidate or not when used to create matches by means of the
given descriptor, and a Random Forest is used as classifier. Training of the
classifier requires to define the training set, i.e. both positive (good) and
negative (not good) points, as well as the feature representation.

As for positive samples, the method tries to sift out those points that,
when described by a chosen descriptor, can be matched correctly across
different 2.5D views of a 3D object. Thus, starting from a set of 2.5D views
{Vi}, i = 1, . . . ,N of an object from a 3D dataset, each point p ∈ Vi in each
view Vi is embedded by the chosen descriptor. Then, for each view Vi, a
subset of overlapping views is selected based on an overlap threshold τ. A
two-step positive samples selection is performed on Vi and each overlapping
view Vj. In the first step, a list of correspondences between descriptors
is created by searching for all descriptors d ∈ Vi the nearest neighbor in
the descriptor space between all descriptors g ∈ Vj. A preliminary list of
positive samples Pji for view Vi is created by taking only those points that
have been correctly matched in Vj, i.e. the points belonging to the matched
descriptors in the two views correspond to the same 3D point of the object
according to threshold ε. The list is then filtered removing non-maxima local

45

extrema within εnms using the descriptor distance as saliency. In the second
step, the list of positive samples is refined by keeping only the points in Vi
that can be matched correctly also in those others overlapping views that
have not been used in the first step. Negative samples are then extracted
on each view, sampling random points among those points which are not
included in the positive set. A distance threshold εneg is used to avoid a
negative being too close to a positive and to other negative samples, and
also to balance the size of the positive and negative sets.

As far as the representation input to the classifier is concerned, the method
relies on histograms of normal orientations inspired by SHOT [98]. However,
to avoid computation of the local Reference Frame while still achieving
rotation invariance, the spherical support is divided only along the radial
dimension so as to compute a histogram for each spherical shell thus ob-
tained.

4 .3 evaluation methodology

The performance evaluation here proposed aims to compare different learned
detector-descriptor pairs while addressing two main application settings,
namely 3D object recognition and surface registration. In this section, we
highlight the key traits and nuisances which characterize the two tasks,
present the datasets and performance evaluation metrics used in the experi-
ments and, finally, provide the relevant implementation details.

4 .3 .1 3D object recognition

An introduction about 3D object recognition settings has already been
provided in Sec. 3.5. However, to make the chapter self-contained we discuss
in details the methodology adopted. In typical 3D object recognition settings,
one wishes to recognize a set of given 3D models into scenes acquired from
an unknown vantage point and featuring an unknown arrangement of such
models. Peculiar nuisances in this scenario are occlusions and, possibly,
clutter, as objects not belonging to the model gallery may be present in the
scenes. In our experiments we rely on the two popular object recognition
datasets: Laser Scanner and Random Views introduced in Sec. 3.5. Two
examples of scenes are showed in Fig. 4.1.

46

 Figure 4.1: Scene from the Laser Scanner (left) and Random Views (right) datasets.

To evaluate the effectiveness of the considered learned detector-descriptor
pairs we rely on descriptor matching experiments. Specifically, for both
datasets, we run keypoint detection on synthetically rendered views of all
models. Then, we compute and store into a single kd-tree all the corres-
ponding descriptors. Keypoints are detected and described also in the set
of scenes provided with the dataset, {Sj}, j = 1, . . . ,NS. Eventually, a cor-
respondence is established for each scene descriptor by finding the nearest
neighbor descriptor within the models kd-tree and thresholding the distance
between descriptors to accept a match as valid. Correct correspondences
can be identified based on knowledge of the ground-truth transformations
which bring views and scenes into a common reference frame and checking
whether the matched keypoints lay within a 3D distance ε. Indeed, denot-
ing as (kj,kn,m) a correspondence between a keypoint kj detected in scene
Sj and a keypoint kn,m detected in the n-th view of model m, as Tj,m the
transformation from Sj to model m, as Tn,m the transformation from the
n-th view and the canonical reference frame of model m, the set of correct
correspondences for scene Sj is given by:

Cj = {(kj,kn,m) : ‖Tj,mkj − Tn,mkn,m‖ 6 ε} (4.1)

From Cj, we can compute True Positive and False Positive matches for
each scene and, by averaging them across scenes, for each of the considered
datasets. The final results for each dataset are provided as Recall vs. 1-
Precision curves, with curves obtained by varying the threshold on the
distance between descriptors.

47

4 .3 .2 Surface Registration

The goal of surface registration is to align into a common 3D reference
frame several partial views (usually referred to as scans) of a 3D object
obtained by a certain optical sensor. This is achieved through rather complex
procedures that, however, typically rely on a key initial step, referred to as
Pairwise Registration, aimed at estimating the rigid motion between any two
views by a feature-matching pipeline. Thus, in surface registration, 3D feature
detection, description and matching are instrumental to attain an as good as
possible set of pairwise alignments between the views which then undergoes
further processing to get the final global alignment. Differently from object
recognition scenarios, the main nuisances deal with missing regions, self-
occlusions, limited overlap area between views and point density variations.
In our experiments we rely on the following surface registration dataset:

• CGF-Laser Scans dataset, recently proposed in [143]. This dataset in-
cludes 8 public-domain 3D models, i.e. 3 taken from the AIM@SHAPE
repository (Bimba, Dancing Children and Chinese Dragon), 4 from the
Stanford 3D Scanning Repository (Armadillo, Buddha, Bunny, Stanford
Dragon) and Berkeley Angel According to the protocol described in [143],
training should be carried out based on synthetic views generated from
Berkeley Angel, Bimba, Bunny and Chinese Dragon, while the test data
consists of the the real scans available for the remaining 3 models
(Armadillo, Buddha and Stanford Dragon).

Thus, given a set of M real scans available for a test model, we compute
all the possible N =

M(M−1)
2 view pairs {Vi,Vj}. For each pair, we run

keypoint detection on both views. Due to partial overlap between the views,
a keypoint belonging to Vi may have no correspondence in Vj. Hence,
denoted as Ti and Tj the ground-truth transformations that, respectively,
bring Vi and Vj into a canonical reference frame, we can compute the set Oi,j
that contains the keypoints in Vi that have a corresponding point in Vj. In
particular, given a keypoint ki ∈ Vi:

Oi,j = {ki : ‖Tiki −NN(Tiki, TjVj)‖ 6 εovr} (4.2)

where NN(Tiki, TjVj) denotes the nearest neighbor of Tiki in the trans-
formed view TjVj. If the number of points in Oi,j is less than 20% of the
keypoints in Vi, the pair (Vi,Vj) is not considered in the evaluation experi-

48

ments due to insufficient overlap. Conversely, for all the view pairs (Vi,Vj)
exhibiting sufficient overlap, a list of correspondences between all the key-
points detected in Vi and all the keypoints extracted from Vj is established
by finding the nearest neighbor in the descriptor space via kd-tree matching.
Then, given a pair of matched keypoints (ki,kj), ki ∈ Vi,kj ∈ Vj, the set
of correct correspondences, Ci,j, can be identified based on the available
ground-truth transformations by checking whether the matched keypoints
lay within a certain distance ε in the canonical reference frame:

Ci,j = {(ki,kj) : ‖Tiki − Tjkj‖ 6 ε} (4.3)

Then, the precision of the matching process can be computed as a function
of the distance threshold ε [143]:

precisioni,j(ε) =

∣∣Ci,j∣∣∣∣Oi,j∣∣ (4.4)

The precision score associated with any given model is obtained by aver-
aging across all view pairs. We also average across all test models so as to
get the final score associated to the Laser Scanner dataset.

Table 4.1: Parameters for object recognition datasets.
Dataset rdesc(mm) rdet(mm) τ ε(mm) εnms(mm) εneg(mm) rnms(mm) smin(mm)

Laser Scanner 40 20 0.85 7 4 2 4 0.8
Random Views 40 20 - 7 - - 4 0.8

Table 4.2: Parameters for surface registration dataset.
Model Name rdesc(mm) rdet(mm) τ ε(mm) εnms(mm) εneg(mm) εovr rnms(mm) smin(mm)

Angel 40 20 0.85 7 4 2 - - -
Bimba 40 20 0.85 7 4 2 - - -
Bunny 40 20 0.65 7 4 2 - - -
Chinese Dragon 40 20 0.65 7 4 2 - - -
Armadillo 40 20 - 7 - - 2 4 0.5
Buddha 40 20 - 7 - - 2 4 0.5
Stanford Dragon 40 20 - 7 - - 2 4 0.5

4 .3 .3 Implementation

For all handcrafted descriptors considered in our evaluation, we use the
implementation available in the PCL library. For CGF-32, we adopt the

49

public implementation made available by the authors [143]. As for the KPL
framework we keep all the hyperparameters to the same values used in
Sec. 3.5.1. Accordingly, each forest consists of 100 trees of maximum depth
equal to 25 while the minimum number of samples to stop splitting a node is
1. During the detection phase, each point of a point cloud is passed through
the Random Forest classifier which produces a score. A point is identified as
a keypoint if it exhibits a local maximum of the scores in a neighborhood of
radius rnms and the score is higher than a threshold smin. For each descriptor
considered in our evaluation, we train its paired detector according to the
KPL framework. As a result, we obtain six detector-descriptor pairs, referred
to from now on as KPL-CGF32, KPL-FPFH, KPL-ROPS, KPL-SHOT, KPL-SI,
KPL-USC.

In object recognition experiments, the training data for all detectors are
generated from the 4 full 3D models present in the Laser Scanner dataset.
According to the KPL methodology [113], for each model we render views
from the nodes of an icosahedron centered at the centroid. Some of the
generated views are presented in Fig. 4.2.

Figure 4.2: A 3D model and some rendered views from Laser Scanner.

Then, the detectors are used in the scenes of the Laser Scanner dataset as
well as in those of the Random Views dataset. Thus, similarly to Sec. 3.5.3
we do not retrain the detectors on Random Views in order to test the ability
of the considered detector-descriptor pairs to generalize well to unseen
models in object recognition settings. A coherent approach was pursued
for the CGF-32 descriptor. As the authors do not provide a model trained
on the Laser Scanner dataset, we trained the descriptor on the synthetically
rendered views of the 4 Laser Scanner models using the code provided by
the authors and following the protocol described in the paper in order to
generate the data needed by their learning framework based on the triplet
ranking loss. Thus, KPL-CGF32 was trained on Laser Scanner models and,

50

like all other detector-descriptor pairs, tested on both Laser Scanner and
Random Views scenes.

In surface registration experiments we proceed according to the protocol
proposed in [143]. Hence, detectors are trained with rendered views of the
train models provided within the CGF-Laser scans dataset (Angel, Bimba,
Bunny, Chinese Dragon) and tested on the real scans of the test models
(Armadillo, Buddha, Stanford Dragon). As CGF-32 was trained exactly on
the abovementioned train models [143], to carry out surface registration
experiments we did not retrain the descriptor but used the trained network
published by the authors1.

The values of the main parameters of the detector-descriptor pairs used
in the experiments are summarized in Tab. 4.1 and Tab. 4.2. As it can
be observed from Tab. 4.1, train parameters for Random Views dataset
are not specified as we did not train KPL detectors on this dataset. For
surface registration, since models belong to different repositories, we report
parameters grouped by model. Test parameters for Angel, Bimba, Bunny
and Chinese Dragon are not reported as they are only used in train. Similarly,
we omit train parameters for Armadillo, Buddha and Stanford Dragon. Due
to the different shapes of the models in the dataset, τ is tuned during the
train stage so that the number of overlapping views remains constant across
all models.

4 .4 experimental results

4 .4 .1 3D object recognition

Results on the Laser Scanner dataset are shown in Fig. 4.3. First, we wish to
highlight how the features based on descriptors which encode just the spatial
densities of points around a keypoint outperform those relying on higher
order geometrical attributes (such as, e.g., normals). Indeed, KPL-CGF32,
KPL-USC and KPL-SI yield significantly better results than KPL-SHOT
and KPL-FPFH. These results are coherent with the findings and analysis
reported in the performance evaluation by Guo et al. [124], which pointed
out the former feature category being more robust to clutter and sensor
noise. It is also worth observing how the representation based on the spatial
tessellation and point density measurements proposed in [27] together with

1https://github.com/marckhoury/CGF

51

the local reference frame proposed in [98] turn out particularly amenable to
object recognition, as it is actually deployed by both features yielding neatly
the best performance, namely KPL-CGF32 and KPL-USC. Yet, learning a
dataset-specific non-linear mapping by a deep neural network on top of this
good representation does improve performance quite a lot, as vouched by
KPL-CGF32 outperforming KPL-USC by a large margin. Indeed, the results
obtained in this chapter by learning both a dataset-specific descriptor as well
as its paired optional detector, i.e. the features referred to as KPL-CGF32,
turn out significantly superior to those previously obtained on Laser Scanner
object recognition dataset in Sec. 3.5.2.

In Sec. 3.5.3, the results achieved on Random Views by the detectors
trained on Laser Scanner prove the ability of the KPL methodology to
learn to detect general rather than dataset-specific local shapes amenable
to provide good matches alongside with the paired descriptor, and even
more effectively, in fact, than the shapes found by handcrafted detectors.
Thus, when comparing the different features, we can assume here that
descriptors are feed by detectors with optimal patches and focus on the
ability of the former to handle the specific nuisances of the Random Views
dataset. As shown in Fig. 4.3, KPL-FPFH and KPL-SHOT perform slightly
better than KPL-USC, KPL-CGF32 and KPL-SI. Again, this is coherent
with previous findings reported in literature (see [124] and [181]), which
show how descriptors based on higher order geometrical attributes turn
out more effective on Random Views due to the lack of clutter and real
sensor noise. As for KPL-CGF32, although it performs still overall better
than the other descriptors based on point densities, we observe quite a
remarkable performance drop compared to the results on the Laser Scanner
dataset, much larger, indeed, than that observed for KPL-USC, which shares
with KPL-CGF32 a very similar input representation. This suggests that the
non-linear mapping learned by KPL-CGF32 is highly optimized to tell apart
the features belonging to the objects present in the training dataset (i.e. Laser
Scanner) but turns out quite less effective when applied to unseen features,
like those found on the objects belonging to Random Views. This domain
shift issue is a peculiar wick trait of learned features, which may cause them
to yield less stable performance across diverse datasets than handcrafted
representations.

52

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

R
ec
al
l

1-Precision

KPL-CGF32 KPL-FPFH KPL-ROPS KPL-SHOT KPL-SI KPL-USC

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

R
ec
al
l

1-Precision

KPL-CGF32 KPL-FPFH KPL-ROPS KPL-SHOT KPL-SI KPL-USC

(a) (b)

Figure 4.3: Quantitative results on 3D object recognition. Column a: Laser Scanner
dataset. Column b: Random Views dataset.

4 .4 .2 Surface Registration

First, it is worth pointing out how, unlike in object recognition settings, in
surface registration it is never possible to train any supervised machine
learning operator, either detector or descriptor, on the very same objects that
would then be processed at test time. Indeed, should one be given either
a full 3D model or a set of scans where ground-truth transformations are
known, as required to train 3D feature detectors (i.e. KPL) or descriptors
(e.g. CGF-32), there would be no need to carry out any registration for that
object. Surface registration is about stitching together several scans of a new
object than one wishes to acquire as a full 3D model. As such, any learning
machinery is inherently prone to the domain shift issue.

As mentioned in Sec. 4.3.2, our experiments rely on the CGF-Laser Scans
dataset [143] and follow the split into train and test objects proposed by the
authors. As shown in Fig. 4.4, when averaging across all test objects, the
detector-descriptor pair based on the learned descriptor CGF-32 provides
the best performance. This validates the findings reported in [143], where
the authors introduce CGF-32 and prove its good registration performance
on CGF-Laser scans, also in our experimental setting where an optimal
detector is learned for every descriptor. This last experiment is particularly
interesting due to CGF-32 consisting in a non-linear mapping learnt on top
of the input representation deployed by USC. Unlike in object recognition,
though, this mapping can only be learnt on different objects than those seen
at test time and, hence, because of the domain shift, may not always turn
out beneficial.

53

0

0,05

0,1

0,15

0,2

0,25

P
re
ci
si
o
n

Pair

KPL-CGF32 KPL-FPFH KPL-ROPS KPL-SHOT KPL-SI KPL-USC

Figure 4.4: Surface registration results on the CGF-Laser scans dataset.

54

5
C O N C L U S I O N S

In this part, we have extensively addressed the problem of 3D keypoint
detection, first by presenting a general methodology that extends [113]
(Chap. 3), and then by coupling the learned detector with some of the
state-of-the-art proposal for 3D keypoint description in two challenging
applications, 3D object recognition and surface registration. In particular in
Chap. 3, we have shown how a Random Forest can learn to detect interest
regions on which a given 3D descriptor yields a higher number of good
matches compared to keypoints extracted by maximizing a geometric and
descriptor-agnostic saliency function. Key to the approach is the procedure
to define the positive training samples, which incorporates knowledge of the
chosen descriptor to allow the classifier to learn a descriptor-specific saliency
robust to both viewpoint variations as well as nuisances peculiar to the 3D
sensor. The proposed approach is conducive to both fixed-scale and adaptive
scale keypoint detection. The latter is realized by leveraging on the ability
of Random Forests to handle multi-class classification seamlessly, thereby
empowering the learned detector with the capacity of selecting the optimal
support size to compute the chosen descriptor and increasing the quantity
of correct correspondences provided by the 3D feature matching pipeline.
Although the features deployed by the Random Forest classifiers resemble
the 3D representation introduced by SHOT [98], the proposed keypoint
learning methodology is by no means bound to work with this specific
descriptor only. Indeed, in the evaluation proposed in Chap. 4 we show how
it may be leveraged successfully with any 3D descriptor. As a promising
direction for future work concerns deformable shape matching [47, 62].
Although in this domain dense point-to-point correspondences between
surfaces are typically sought for, keypoint detection has proven effective
to determine global similarities between non-rigid shapes. This is the case,
for example, of [47], that proposes a method to robustly extract keypoints
in order to detect persistent structures across a large set of deformable
models, as well as to recognize the symmetric structure of a certain model.
Also interestingly, in [62] keypoint detection is deployed to drive the dense
matching process, so to match first distinctive keypoints to reduce the

55

number of potential candidates for the remaining points. This relies on
the idea that a few reliable keypoint correspondences can constrain the
space of possible solutions and, thus, vastly diminish matching ambiguity.
Our keypoint learning methodology may be applied in deformable shape
matching scenarios by leveraging existing datasets endowed with ground-
truth point-to-point correspondences in order to sift out as positive samples
those points that may be matched successfully by the chosen descriptor
despite isometric shape deformations, topology changes and varying point
density.

As another fundamental contribution of this chapter, the performance
evaluation in Chap. 4 offers an interesting discussion about the adoption
of learning-based methods in computer vision applications. Therefore, we
found out how 3D object recognition settings turn out quite amenable to
deploy learned 3D features. Indeed, one can train upon a set of 3D objects
available beforehand, e.g. due to scanning by some sensor or as CAD models,
and then seek to recognize them into scenes featuring occlusions and clutter.
These settings allow for learning an highly specialized descriptor alongside
its optimal paired detector so to achieve excellent performance. In particular,
the learned pair referred to in this chapter as KPL-CGF32 sets the new state
of the art in descriptor matching on the Laser Scanner benchmark dataset.
Although the learned representation may not exhibit comparable perform-
ance when transferred to unseen objects, in object recognition it is always
possible to retrain on the objects at hand to improve performance. An open
question left to future work concerns whether the input parametrization
deployed by CGF-32 may enable to learn an highly effective non-linear map-
ping also in datasets characterized by different nuisances (e.g. CGF-Laser
Scans) or one should better try to learn 3D representations directly from raw
data, as vouched by the success of deep learning from image recognition.
Features based on learned representations, such as KPL-CGF32, are quite ef-
fective also in surface registration, although this scenario is inherently more
prone to the domain shift issue and, indeed, features based on handcrafted
descriptors, like in particular KPL-SHOT and KPL-USC, turn out very com-
petitive. We believe that these findings may pave the way for further research
on the recent field of learned 3D representations, in particular in order to
foster addressing domain adaptation issues, a topic investigated more and
more intensively in nowadays deep learning literature concerned with image
recognition. Indeed, 3D data are remarkably diverse in nature due to the
variety of sensing principles and related technologies and we wittness a lack

56

of large training datasets, e.g. at a scale somehow comparable to ImageNet,
that may allow learning representations from a rich and varied corpus of
3D models. Therefore, how to effectively transfer learned representations to
new scenarios seems a key issue to the success of machine/deep learning in
the most challenging 3D computer vision tasks. Finally, KPL has established
a new framework whereby one can learn an optimal detector for any given
descriptor. In Chap. 4 we have shown how applying KPL to a learned
representation (CGF-32) leads to particularly effective features (KPL-CGF32),
in particular when pursuing object recognition. Yet, according to the KPL
methodology, the descriptor (e.g. CGF-32) has to be learned before its paired
detector: one might be willing to investigate on whether and how a single
end-to-end paradigm may allow learning both component jointly so as to
further improve performance.

57

Part II

L E A R N I N G T O D E S C R I B E 3 D K E Y P O I N T S

6
I N I T I A L R E M A R K S

In Part I we widely discussed about 3D keypoint detection, the first stage
in the feature matching pipeline. In this chapter, instead, we are going
to focus on the second step: 3D keypoint description. This stage consists
in creating a compact but distinctive representation of the geometry of
the surface involved, referred to as descriptor. In order to correctly match
features across shapes, descriptors are designed to be invariant or robust to a
large set of nuisances that are often encountered in 3D vision applications,
like rotation, point density variations, sensor noise, view point changes,
occlusions and clutter. These challenging working conditions make offering
an effective solution to the problem of 3D keypoint description far from
being an easy task. Moreover, it is not obvious which are the most suited
geometric attributes of the surface to encode in order to produce a robust
and descriptive descriptor, as highlighted in the most recent evaluation in the
field [124]. According to [124], two key aspects for a 3D local descriptor are:

• descriptiveness: referred to as the capacity to capture predominant traits
of the surface.

• robustness: referred to as the ability to obtain a similar descriptor in the
presence of disturbances that can affect the data.

Choosing the descriptor offering the right descriptiveness/robustness trade-
off for a specific 3D computer vision application is a crucial step and still
an open issue: usually a few prominent alternatives are tested and the
best performing one is used in the given application [124]. Depending on
the surface area deployed as support, we can classify descriptors as either
global or local. Global methods encode the entire 3D model in the descriptor
[24, 56, 68] and are usually applied after a segmentation step to limit the
influence of clutter. Local descriptors, instead, encode a small part of the
surface, i.e. a patch around the feature point [18, 45, 82, 94, 98]. The main
advantage of using local descriptors versus global ones is higher robustness
to partial occlusions of the surface and to the presence of clutter. For this
reason, the latter are currently the dominant approach and, as a result, a
variety of methods have been proposed in literature. Before the advent of

61

the deep learning revolution, scholars have handcrafted their descriptors
through the extraction of features computed over the points of the surfaces.
Once extracted, the distribution of the feature were discretized according
to a domain of quantization and approximated by means of histograms.
The resulting descriptor is a collection of scalar values arranged into a
multidimensional vector. Handcrafted local 3D descriptors can be grouped
in spatial distribution histogram and geometric attribute histogram [124]. Spatial
distribution histogram count the number of points falling in each histogram
bin taking into account the spatial distribution of the points on the surface.
Conversely, geometric attribute histogram generate histograms exploiting
geometric properties of the surface like normals or curvatures. Recently,
data-driven approach to learn descriptive features from 3D data by means of
deep neural network have been proposed [159, 161, 162, 191]. Hence, a more
appropriate classification deals with: those encoding handcrafted traits of
the support and those obtained as output of a (deep) learning algorithm. In
the latter case, typically a deep neural network is trained purposely to infer
the 3D descriptor given a portion or the entire surface as input. However,
3D data representations sharply differ from the images. In particular, the
unorganized structure of point clouds makes the adaptation of popular
deep learning techniques, e.g. CNNs, to the 3D domain not straightforward.
Another critical issue for robustness of learned 3D descriptors is achieving
rotation invariance by only means of data augmentation. While the former
may be solved by parameterizing the input data by voxel grid or high-
dimensional representation, for the latter two possible solutions have been
explored: the points within the support of a feature point can be either
parametrized with rotation invariant features or canonically oriented w.r.t. a
local reference frame, before being sent as input to a deep neural network.
To address these problems, in Chap. 7, we are going to present a 3D local
descriptor learned in an unsupervised way from raw point clouds data. We
employ a Spherical CNNs encoder to learn an equivariant embedding that
can be turned into an invariant descriptor a test time with the help of an
off the shelf local reference frame. But first in Sec. 6.1, we are going to
provide an extensive review of the main proposals in the literature of 3D
local descriptors and the way they have evolved from handcrafted proposals
to those based on deep learning.

62

6 .1 related work

In Fig. 6.1 we show a temporal evolution of the main proposals for 3D
descriptors. A large body of work has been dedicated to define new and
more effective solutions to the surface matching problem based on local
3D descriptors in the last 20 years: Point Signature [17], Spin Images [18],
3D Shape Context [27], Local Surface Patch [35], Point Feature Histograms [42],
Scale-Dependent Local Shape Descriptor [40], Heat Kernel Signature [47], Fast
Point Feature Histograms [45], Intrinsic Shape Signature [48], MeshHog [80], 3D
Surf [54], SHOT [98], Unique Shape Context [58], Rops [94], Trisi [82], Toldi
[157], 3D Match [159], CGF [143], PPF-Net [162] and PPF-FoldNet [161].

Figure 6.1: Temporal evolution of 3D feature descriptors.

6 .1 .1 3D Shape Context

3D shape context (3DSC) [27] directly extends the 2D shape context descriptor
[22] to three dimensions. The descriptor captures the local shape of a point
cloud at a feature point p using the distribution of points in a spherical grid
support. The normal n at p serves as reference axis to align the north pole
of the grid. Within the support region, a set of bins is constructed by equally
dividing the azimuth and elevation dimensions, while the radial dimension
is logarithmically spaced. Due to this binning scheme the descriptor is more
robust to distortions in shape with distance from the feature point. Each
point pi in the support is mapped to its corresponding bin using spherical
coordinates, and the bin corresponding to them accumulates a weighted
sum of local point density. The local point density for pi is estimated as the
number of the points in a sphere of radius δ around pi. Relying only on a
reference axis and not on a full 3D reference frame, the descriptor is invariant
up to a rotation along the north pole. Therefore, multiple descriptors for a
single feature point have to be described and matched across different views
of a surface, which significantly slows down the performance of the overall

63

pipeline. The size of the final descriptor is da× de× dr, where da, de and dr
are respectively the numbers of bins along the azimuth, elevation and radial
axes, and the number of descriptors to be computed for a feature point is
equal to da.

6 .1 .2 Unique Shape Context

Unique Shape Context (USC) [58] improves 3DSC by leveraging a definition
of repeatable and unambiguous Local Reference Frame. One of the main
drawbacks of 3DSC is the computation of multiple descriptors at a given
feature points. Indeed, to take into account the degree of freedom on
azimuth direction, a vector on the tangent plane at the normal n at the
feature point p is randomly chosen and the grid support is then rotated
about its north pole in to da positions. Each rotation defines a unique Local
Reference Frame used to orientate the sphere grid and to computed the
associated descriptor. As a consequence, da descriptors are estimated and
stored for each feature point. Differently from 3DSC, in USC the authors
first estimate a Local Reference Frame using the same approach presented in
Sec. 9.1.2 and proposed in [58], then construct the descriptor likewise 3DSC.
Thanks to the adopted unique and repeatable Local Reference Frame, USC
improves efficiency in terms of both performance and memory footprint
with respect to 3DSC. The size of the final descriptor is the same as 3DSC.

6 .1 .3 Rotational Projection Statistics

Rotational Projection Statistics (RoPS) [94] is a local 3D descriptor designed
to operates on meshes. The first contribution of RoPS is the definition of a
novel Local Reference Frame which rely on the eigenvalue decomposition
of the covariance matrix. Differently from pre-existing approaches, the
covariance matrix for a given feature point p is estimated by aggregating
covariance matrices computed for every single triangle within the support.
Each single matrix is weighted differently to mitigate the effect of mesh
resolution variations and enhance the robustness to clutter and occlusion.
The obtained x̂ and ẑ axes are disambiguated in order to achieve a unique
and repeatable canonical orientation. The third axis ŷ, is derived as ẑ× x̂. As
for the histogram computation, given the x̂ axis the points within the support
are rotated around it by a given angle, and projected onto three planes xy,

64

yz and xz. For each projection a distribution matrix D is built by partitioning
the plane into L× L bins and counting up the number of points falling into
each bin. The number of bins represents the matrix dimension and is a
parameter of the method. The distribution matrix D contains information
about the local surface from a particular viewpoint. Hence, five statistics,
including the central moments [2, 20] and Shannon entropy [1] are extracted
from each distribution matrix. Different rotations along the same axis are
taking into account to capture information from various viewpoints. The
above mentioned process is repeated again for the ŷ and ẑ axes. The final
descriptor is obtained by concatenating the statistics of all rotations. The
size is 3× 3× 5× drot, where drot is the number of rotations around each
axis.

6 .1 .4 Point Feature Histogram

Point Feature Histogram (PFH) [42] is designed to capture the surface vari-
ations based on the relationships between points in the local neighborhood
and directions of the estimated normals. Hence, the performance is closely
related to the quality of the surface normal estimations at each point. For
every pair of points pi and pj, in the neighborhood of p, a Darboux frame is
built by choosing one point as source ps, and the other as target pt:

u = ns, v = u× pt − ps
‖pt − ps‖

, w = u× v (6.1)

Next, using the frame defined above, three angular features, expressing
the relationship between normals nt and ns, and between normals and the
difference vector between pt and ps are computed for each pair of points:

α = 〈v, nt〉,φ = 〈u, pt−ps〉/d, θ = arctan(〈w, nt〉, 〈u, nt〉),d = ||pt − ps| |

(6.2)

Also the length of the difference vector d can be used as feature, although
it is usually not considered as the distance between neighboring points
increases with the distance from the viewpoint with standard 3D sensors.
The PFH descriptor is obtained by binning each feature range with b bins
and counting the occurrences for each bin. The final dimension is b4, or b3

if distance d is ignored.

65

6 .1 .5 Fast Point Feature Histogram

The computation of features for each pair of points makes PFH computation-
ally expensive and not suitable for real-time application. Therefore, Rusu et
al. introduced Fast Point Feature Histogram in [45]. FPFH is a simplified
variant of PFH and operates in two steps. First a Simplified Point Feature
Histogram (SPFH) is constructed using three angular features α, φ and θ,
for each points within support of and its own neighbors. The computed
features are then binned into three separate histograms and concatenated
to form the SPFH descriptor for each point. Secondly the FPFH descriptor
for p is obtained by summing up the SPFH descriptors belonging to each
point within the support. The sum is weighted by the distance between the
query point and a neighbor in the support region. The FPFH descriptor can
reduce the computational complexity from O(nk2) to O(nk), where k is the
number of neighboring points.

6 .1 .6 SHOT: Unique Signatures of Histograms for Local Surface Description

The SHOT descriptor [98] can be used both for surface description, as origin-
ally presented in [58], and for combined shape and texture description [66],
if RGB information are available. The approach is based on the observation
that local 3D descriptors can be categorized into signatures and histograms:

• signatures: these descriptors use one or more geometric attributes
computed separately at each point within the support to describe
the surface. The computed measurements are encoded according to
the local coordinates defined by an invariant local reference frame.
Signatures are highly descriptive but small errors in the definition of
the local reference frame or small perturbations in the encoded trait
can substantially modify the final descriptor;

• histograms: these descriptors use histograms to capture different char-
acteristics of the surface. A specific domain of quantization (e.g. point
coordinates, curvatures, normal angles), is discretized and topolo-
gical entities (e.g. vertices, mesh triangle areas) are accumulated into
each spatial bin. If the descriptor domain is based on coordinates,
the definition of a local reference frame is again required to obtain a
pose-invariant descriptor. Histogram-like descriptors loses descriptive

66

power due to the quantization error but offers greater robustness to
noise.

Based on this taxonomy, SHOT was proposed to combine the advant-
ages of signature-based methods with those of histogram-based methods.
Hence, the name Signature of Histograms of OrienTations (SHOT). This
design choice makes SHOT representation operate at a good trade-off point
between descriptiveness and robustness to noise. Shot is equipped with
a local reference, for which we will provide an exhaustive description in
Sec. 9.1. SHOT descriptor encodes the histograms of the surface normals
at different spatial locations. This choice stems from the related field of 2D
descriptors. According to the authors, there are two major reasons behind
SIFT effectiveness [28], the most successful proposal among 2D descriptors.
Firstly, SIFT computes a set of local histograms on specific subsets of pixels
defined by a regular grid superimposed on the patch. Secondly, the elements
of these local histograms are based on first order derivatives describing the
signal of interest, i.e. intensity gradients. Following these considerations,
SHOT computes a set of local histograms over the 3D volumes defined by a
3D spherical grid superimposed on the support. As for the signature struc-
ture, the spherical grid is partitioned uniformly along the radial, azimuth
and elevation axes. The grid is aligned with the axes given by the estimated
local reference frame. Each local histogram counts the number of points
falling into each bin according to the cosine of the angle, θi, between the
normal at each point ni and the local ẑk axis. The choice of cosine is mainly
motivated by two aspects. The first is computational efficiency, as it can be
computed as cosθi = ẑk ·ni. The second one is related to the descriptiveness
of the algorithm. With an equally spaced binning on cosθi, small differences
in orthogonal directions to the normal, i.e. presumably the most informative
ones, cause points to be accumulated in different bins leading to different
histograms. Moreover, in the presence of quasi-planar regions (i.e. not very
descriptive ones), this choice limits histogram differences due to noise by
concentrating counts in a smaller number of bins. Since the SHOT descriptor
is generated by appending all the local histograms, the cardinality of the
descriptor is related to the number of partitions. The authors indicate that
32 is a proper number of volumes, resulting from 8 azimuth divisions, 2

elevation divisions and 2 radial divisions. While the number of bins for
the internal histograms is 11, leading to total descriptor length of 352. The
use of histograms could render the description very sensitive to boundary

67

effects. Furthermore, due to the spatial subdivision of the support, boundary
effects may also occur due to perturbations of the local reference frame. A
commonly adopted solution is to perform linear interpolation between the
point being accumulated into a specific local histogram bin and its neighbors,
i.e. the neighboring bin in the local histogram and the bins having the same
index in the local histograms corresponding to the neighboring subdivisions
of the grid. In SHOT, this results in a quadri-linear interpolation, where each
bin is incremented by a weight of 1− d for each dimension. As for the local
histogram, d is the distance of the current entry from the central value of
the bin. As for elevation and azimuth, d is the angular distance of the entry
from the central value of the volume. Along the radial dimension, d is the
Euclidean distance of the entry from the central value of the volume. Along
each dimension, d is normalized by the distance between two neighbor bins
or volumes.

6 .1 .7 Spin Images

The Spin Images is a surface representation technique that was initially
introduced in [18]. The name gives an intuitive description about how the
algorithm works. The term image means that a point is described using
a 2D array, while spin mimics the process of constructing the image that
can be thought as a 2D plane spinning around the normal at the keypoint
and collecting counts of points of the support in the entries of the array.
Differently from descriptors based on a local reference frame, Spin Images
achieves rotation invariance using a reference axis. The surface normal
at each point can be used to compute a 2D oriented basis. We define an
oriented point O on the surface of an object using the 3D position of the
point p and the surface normal n at the point. An oriented point allows
us to define a partial system of cylindrical coordinates centered at the
point. Only two coordinates are used: α is the radial coordinate defined
as the perpendicular distance to the line through the surface normal, and
β represents the elevation coordinate defined as the signed perpendicular
distance to the tangent plane defined by n at p. The polar angle coordinate
is omitted because it cannot be defined robustly and unambiguously using
just surface position and normal.

68

Using an oriented point basis, we can define a function called spin-map
So : R

3 → R2 that projects a 3D point x to the 2D cylindrical coordinates of a
particular basis (p, n) corresponding to the oriented point O:

So(x)→ (α,β) = (
√
‖(x− p)‖2 − (n · (x− p))2,n · (x− p)) (6.3)

In order to create a spin image for an oriented point p, the space α-β
is then discretized into a 2D array. Then, for each point xi in the support
region the coordinates α and β are computed as in (Eq. 6.3) and the bin
indexed by (α,β) is incremented. Given a fixed bin size (b), the size of the
resultant spin-image (imax, jmax) can be calculated as:

imax =
2βmax

b
+ 1 jmax =

αmax

b
+ 1 (6.4)

where αmax and βmax are the maximum α and |β| values for all the
oriented points within support region. The elevation coordinate β can be
both positive and negative, this is the reason why the size of the spin-image
in the β direction is twice βmax. Finally, the mapping between cylindrical
coordinates α,β and the spin image is computed as:

i = b2βmax −β
b

c j = bα
b
c (6.5)

The discretization of the α-β domain makes the result of the spin image
very sensitive to noise. Therefore, the contribution of the point is bi-linearly
interpolated to the four surrounding bins in the 2D array.

6 .1 .8 3DMatch

One of the first methods that learns a 3D local feature descriptor by means
of deep learning algorithms is 3DMatch [159].

Early work [112, 128] in this field constructed voxel grid in the form of a
binary-occupancy grid to represent sparse unstructured 3D data. 3DMatch
extends this idea to more informative encoding based on the Truncated
Signed Distance Function (TSDF) [61, 133]. In 3DMatch a standard Siamese
3D ConvNet is trained with a contrastive loss function [33] that minimizes

69

the l2 distance between descriptors generated from matching points, and
maximizes l2 distance between non-corresponding points. The architecture
of the network is inspired from AlexNet [74]. The train set consists of RGB-D
images of indoor scenes collected from existing popular datasets [88, 90,
97, 125, 133]. During the train stage, a local region is extracted around a
randomly sampled interest point and voxelized with a grid of size 0.01m3.
Every voxel in the 30× 30× 30 grid thus obtained stores a TDF value that
indicates the distance between the center of that voxel to the nearest 3D
surface. Since TsDF can be computed from meshes, point clouds or depth
maps, anyone of these 3D data structures can be used as input to the network.
The size of the final descriptor is 512.

6 .1 .9 PPFNet: Point Pair Feature NETwork

Point Pair Feature NETwork [162] aims to learn a local descriptor by work-
ing directly on point coordinates augmented with handcrafted features.
PPFNet combines the permutation invariant characteristic of PointNet [148]
together with the high descriptive capacity of Point Pair Features (PPF) [52].
The network is fed by geometries containing information about the local
neighborhood of a 3D point such as raw point coordinates, normals and
PPFs. PPFNet architecture consists of three parts. A first cluster of mini-
PointNets, a concatenation block and a final group of MLPs. The cluster of
mini-PointNets processes N local patches uniformly sampled from a point
cloud and extracts local features. Weights and gradients are shared within
the cluster. With the aid of a max pooling layer acting on local features, a
global context information is created and then concatenated to every local
features. Max pool operation encapsulates the distinct local information
capturing the global context of the whole point cloud. Finally, a group of
MLPs merges the global and local features and creates the learned local
descriptor.
PPFNet extends contrastive loss to N-patches by introducing a novel N-tuple
loss, it operates on a set of partial scans belonging to the same environment
where the ground truth transformation T between scans is known. The
distance between learned features of corresponding patches is minimized

70

acting on two distance matrices: a correspondence matrix M ∈ RN×N, built
on the points of the aligned scans, M = (mij) with

mij = 1(‖xi − Tyj‖2 < τ) (6.6)

and 1 is the indicator function; and a feature-space distance matrix D ∈
RN×N, D = (dij) with:

dij = ‖f(xi) − f(yj)‖2. (6.7)

By defining the operator
∑∗(·) as the sum of all the elements in a matrix,

the N-tuple loss can be formulated as:

L =
∑∗

(
M ◦D
‖M‖22

+α
max(θ− (1−M) ◦D, 0)

N2 − ‖M‖22

)
(6.8)

where ◦ is the Hadamard product (element-wise multiplication), α is a
hyper-parameter balancing the weight between matching and non-matching
pairs, and θ is the lower-bound on the expected distance between non-
correspondent pairs. PPFNet is trained using real data scenes from 3DMatch
benchmark [159]. Each of the 62 different real-words scenes in the dataset
contains a variable number of fragments, i.e. partial views, whose registration
reconstructs the full scene. Rather than randomly detecting keypoints in
each fragment, mini-batches in PPFNet are created by randomly extracting
the fragments and each point in a fragment acts as a keypoint. To reduce
the amount of training data each fragment is down-sampled to 2048 sample
points. A radius search of 30 cm around each keypoints is performed
to extract a local patch. Then, to increase robustness against point density
variations each patch is down-sampled to 1024 points. If a patch contains less
than 1024 points, points are randomly repeated. Due to memory limitations,
each batch contains 2 fragment pairs with 8192 local patches. Number of
combinations for the network at per batch is 2× 20482.

6 .1 .10 CGF: Compact Geometric Features

Compact Geometric Features [143] learns a mapping f : RN → Rn from high-
dimensional handcrafted representations to a very low-dimensional feature
space. The authors try to overcome the point cloud representation problems
by using an hand-crafted approach to represent the raw local geometry

71

around points. The neural networks performs a dimensionality reduction
in order to compute compact embedding. Thanks to its low dimensionality,
CGF enables faster nearest-neighbor queries during the matching stage. The
network is trained using the triplet embedding loss [106]. In this regard,
CGF is coupled with an effective negative sampling strategy which produces
a highly discriminative embedding. Before CGF, the standard way to adapt
point clouds to deep learning algorithms was to discretize the input into a
uniform voxel grid. However, such representation is not efficient due to the
high number of empty cells [14]. CGF captures the local geometry around
each point into a handcrafted feature called spherical histogram. Inspired by
3DSC [27], a spherical histogram encodes the distribution of points in a local
neighborhood with a non uniform binned radial grid. To obtain rotational
invariance, the local neighborhood is aligned to the axes of a local reference
frame computed as in Sec. 9.1.2. Considering the ẑ axis of the estimated lrf
and the normal n at point p, if the dot product 〈n, ẑ〉 < 0, the signs of all
three vectors in the local reference frame is flipped. The volume bounded
by the spherical support is divided into bins along the radial, elevation, and
azimuth directions. The azimuth direction is split into A = 12 bins, each of
extent 2π/A. The elevation direction is subdivided into E = 11 bins, each of
extent π/E. The radial direction, which has total span r, is logarithmically
subdivided into 17 bins using the following thresholds:

ri = exp
(

ln rmin +
i

R
ln
(

r

rmin

))
(6.9)

Subdividing the radial direction in this fashion makes the histogram more ro-
bust to changes in shape near the center p. The resulting spherical histogram
has a size of 2,244 bins. The value inside each bin reflects the point density of
the local neighborhood around p. Let N ⊂ P be the set of neighboring points
that lie inside the sphere S. Each point q ∈ N, is converted from euclidean
to spherical coordinates and the corresponding bin that contains q is incre-
mented. The final histogram is normalized by dividing each bin by |N|. CGF
deep network maps supports from the high-dimensional space of spherical
histograms to a very low-dimensional Euclidean space. The architecture is a
fully-connected network with 5 hidden layers. Each hidden layer contains
512 nodes and is followed by a ReLU non-linearity. Weights are initialized
from a normal distribution with mean 0 and standard deviation 0.1. The
mini-batch size is 512 and Adam [96] is used as optimizer. The dimension
of the learned embedding which is then used as descriptor is 32. As far

72

as the loss function is concerned, a standard triplet loss [106] tries to keep
similar features together while pushing dissimilar features apart. Starting
from a mini-batch of triplets of input histograms T = {(xai , xpi , xni)}i. Vector
xai is referred to as the anchor of triplet i, vector xpi is a positive example and
vector xni is a negative example. Given such a set of triplets, triplet loss is
written as:

L(θ) =
1

|T|

|T|∑
i=1

[
‖f(xai ;θ) − f(xpi ;θ)‖2

− ‖f(xai ;θ) − f(xni ;θ)‖2 + 1
]
+

, (6.10)

where θ are the learned parameters and [·]+ denotes max(·, 0). Triplet loss
is often used to learn discriminative features. During training, a triplet of
input histograms, T = {(xai , xpi , xni)}i is fed into the model as a single sample.
The idea behind this is that distance between the learned embedding of
anchor and positive should be smaller than that between anchor and negative
embedding. In order to achieve this, it is essential to samples negatives
accurately. A common choice is to draw as negative, random points that
are pretty far from the anchor. Khoury et al. use a smarter strategy. Given
a set of point clouds {Pi}i that describe overlapping scans of a 3D object or
scene, let {Ti}i be a set of rigid transformations that align the point clouds
{Pi}i in a common coordinate frame. Consider the set O of overlapping
pairs of point clouds from {Pi}i. Each point p ∈ Pi in each pair (Pi,Pj) ∈ O

generates 40 triplets. These 40 triplets use as anchor point p ∈ Pi, while
positives are grabbed from the local neighborhood of p in TjPj. With that
in mind, we can denote as N

j
p,τ in Pj the set of neighbors points that are at

distance at most τ from p. In addition consider N
j
p,2τ, the set of points in

Pj that are at distance at most 2τ from p. While the points in N
j
p,τ are good

correspondences for p in Pj, the set Njp,2τ \ N
j
p,τ contains difficult negative

examples for p. They have similar local geometries of p, but are far enough
from it. Hence, 15 triplets are constructed by sampling negatives from Np,2τ

and 25 are constructed by randomly sampling negatives from other scans.

6 .1 .11 PPF-FoldNet

PPF-FoldNet [161] is an extension of Sec. 6.1.9. The main limitations of
learned 3D descriptors are the big amount of labeled data required, sensitiv-

73

ity to rotations and the use of hand crafted input preparation. PPF-FoldNet
improved upon these limitation by proposing an unsupervised rotation
invariant local descriptor. FoldingNet [186] introduced the idea of deforming
a 2D grid to decode a 3D surface as a point set, given a latent codeword en-
coding the 3D surface, and offered an interesting paradigm for unsupervised
learning with point clouds. Similarly, PPF-FoldNet uses folding operation
to reconstruct the point pair feature [52, 102] of a support. The local patch
of a feature point p is represented by a collection of pair features, computed
between p and the neighboring points:

F˙ = { f(p, p1) · · · f(p, pi) · · · f(p, pN) } ∈ R4×N−1 (6.11)

As far as Point Pair Features (PPFs) are concerned, for two points x1 and x2
the features are defined as:

ψ12 = (‖d‖2,∠(n1, d),∠(n2, d),∠(n1, n2)) (6.12)

where d denotes the difference vector between points, n1 and n2 are the
surface normals at x1 and x2, ‖·‖ is the Euclidean distance and ∠ is the angle
operator computed in a numerically robust manner as in [102]:

∠(v1, v2) = atan2

(
‖v1 × v2‖ , v1 · v2

)
(6.13)

∠(v1, v2) is guaranteed to lie in the range [0,π). The main motivation
behind the use of PPFs is their invariance to rotations. Indded, PPFs are
invariants under Euclidean isometry as distances and angles are preserved
between every pair of points. PFF-FoldNet leverages on an encoder-decoder
architecture, to reconstructs a set of PPFs computed on a local patch around
a given feature point p. The encoder is composed by a three-layer, point-
wise Multi Layer Perceptron (MLP) followed by a max-pooling layer that
aggregates individual point features into a global one similar to [148, 186].
After the concatenation with skip-links, a two-layer MLP compress these
features to the encoded codeword.

The decoder takes inspiration from FoldingNet [186], and try to deform
a low-dimensional grid structure using the information encoded in the
codeword learned by the encoder. Differently from [186], the decoder uses a
deeper architecture, each folding operation rely on a 5-layer MLP. This choice

74

is mainly due to higher dimensional of the reconstructed set, 4D vs 3D. The
loss involved is the Chamfer distance between PPFs:

d(F, F̂) = max

{
1

|F|

∑
f∈F

min
f̂∈F̂
‖f − f̂‖2,

1

|F̂|

∑
f∈F̂

min
f∈F
‖f − f̂‖2

}
(6.14)

where F is computed as in 6.11 and the ˆ operator refers to the reconstructed
set. The learned latent dimensional vector is called codeword and used as local
descriptor of the underlying geometry around which the patch is extracted.
The weights of the network are initialized using Xavier initialization [53].
The loss is minimized by ADAM Optimizer [96]. Batch size is 32, while the
size of the final descriptor is 512. Thanks to the unsupervised approach,
the network is trained by random sampling points from the fragments of
the 3DMatch dataset. For each keypoint the PPFs are computed using its
neighboring points in a 30 cm vicinity. Since the number of points in a
local patch is not fixed, each local patch is downsampled to an arbitrary
number of points, thereby facilitating the train by organizing the data into
regular batches, and increasing the robustness to noises and different point
densities.

6 .1 .12 3D-SmoothNet

3D-SmoothNet (3DSN) [191] is a compact 3D descriptor learned by training
a supervised deep learning network in a siamese fashion-way [30]. This
work proposes as main novelty a smoothed density value voxelization (SDV),
to employ as point cloud representation prone to be adopted in deep learn-
ing convolutional architectures. As another key contribution, to achieve
invariance to rotation, the authors present an improved version of the LRF
proposed by TOLDI et al. in [157]. Differently, from [157], where only 1

3 of
the points within the support contribute to the computation of the covari-
ance matrix, the authors of 3DSN rely on all the points within the support.
Moreover, during the computation of the covariance matrix, the centroid
is replaced with the feature point p. A detailed explanation about TOLDI
LRF will be provided in Sec. 9.1.7. Once canonically oriented, the coordin-
ates of the points in the local 3D patches are converted into a voxel grid
represented as a three dimensional matrix XSDV ∈ RW×H×D, where each

75

cell (XSDV)jkl =: xjkl stores a scalar value computed using the Gaussian
smoothing kernel with bandwidth h:

xjkl =
1

njkl

njkl∑
i=1

1√
2πh

exp
−||cjkl − pi||

2
2

2h2

s.t. ||cjkl − pi||2 < 3h

(6.15)

where njkl denotes the number of points pi within the support that lie within
the distance 3h from the voxel centroid cjkl. To robustly managed the point
cloud densities variations, all the values of XSDV are normalized such that
they sum up to 1. Similarly to CGF, 3SDN minimizes a triplet loss during
learning, but with a more effective negative sampling strategy. Instead of
pre-sampling negative examples before training, the negative samples are
picked on the fly according to the hardest-in-batch method [141]. A feature
descriptor is considered a negative sample for a triplet, if is the hardest
non-corresponding positive sample in the mini-batch, i.e. a positive sample,
across all the positives in the mini-batch, with the minimum distance in the
space of the learned features from the positive of the triplet. Thanks to this
strategy, 3DSN is able to create a distinctive and robust representation for
3D keypoints, using only 32 values for each descriptor.

76

7
L E A R N I N G A N E F F E C T I V E E Q U I VA R I A N T 3 D
D E S C R I P T O R W I T H O U T S U P E RV I S I O N

We started this part by explaining the primary issues to overcome when
designing a local or global feature descriptor for 3D data. In particular we
have seen how, the adoption of deep learning techniques in this field requires
interesting challenges to face, such as the creation of a parameterization for
input data and a robust strategy to achieve invariance to rotation, above
all. Moreover, the extensive and detailed section of related work, Sec. 6.1,
has brought to light how state-of-the art proposals do not actually learn
new local 3D descriptors from the input data but from existing handcrafted
3D descriptors, which are already rotation-invariant by design: e.g., CGF
[143] starts from a high-dimensional input parameterization which closely
resembles the Unique Shape Context (USC) descriptor [58], 3DSmoothNet
[191] computes a smoothed voxel grid, while PPF-FoldNet [161] relies on
the well-known Point Pair Features (PPF) [52]. In other words, due to the
difficulty of feeding neural networks with unorganized input data [143],
these approaches create new descriptors by actually learning how to robustly
compress a specific invariant handcrafted descriptor. We argue that the
drawbacks of relying on invariant handcrafted descriptors as input data
to feed neural networks are twofold. On one hand, there not exist an
optimal handcrafted descriptor across applications and datasets, as vouched
by recent evaluations [124]. Therefore, for instance, performance of PPF-
FoldNet are limited on some scenarios and datasets by the handcrafted
design decision of using PPF as input representation. On the other hand, to
achieve rotation invariance, existing handcrafted descriptors used in deep
learning pipelines rely either on the normal at the point as a reference
axis [161] or on a LRF [143] to express point coordinates and angles with
respect to a canonically oriented reference frame. As we will show in
Part III, repeatability of the axes or the LRF directly affects the invariance
and robustness of the input descriptor [63, 75] and, in turn, of the descriptor
learned from such representations. However, parameters used to obtain
such canonical orientation (e.g. the number of neighbours to estimate the
normals, how to establish a reference direction on the tangent plane in a LRF,

77

etc.) are again handcrafted design decisions and are not optimized during
training.

Reliance on rotation-invariant handcrafted descriptors as input repres-
entations deviates significantly from the end-to-end learning paradigm so
successfully applied to images. Therefore, in this chapter we investigate
on whether leaving the model free to learn an optimal descriptor from a
non-canonically oriented input representation may unleash the untapped
potential of deep learning also in this scenario. To this end, we exploit
the paradigm recently proposed in FoldingNet [186] and AtlasNet [165] to
realize unsupervised learning of an embedding space from 3D data, which
learns to deform, according to the latent representation, points sampled
from a plane so as to reconstruct the input surface. This concept has already
been deployed to obtain an invariant 3D descriptor by reconstructing the
Point Pair Features of the input data [161]. In the proposal we are going
to describe in this chapter, however, the learned latent space has to encode
pose information in order to be able to reconstruct the input under arbitrary
poses, as it will be shown later (Sec. 7.2.3). We argue that the ability to learn
an embedding equivariant with respect to rotations of the input is the most
sound approach to include pose information in the latent space. To this end,
we leverage recent work on Spherical CNNs [160, 163], which have enhanced
the deep learning machinery by enabling it to learn also rotation-equivariant
representations from 3D spherical signals by means of correlations defined
for the SO(3) group of rotations. Hence, in our architecture, a Spherical
CNN encoder learns to summarize the geometry around a feature point into
a rotation-equivariant embedding and a decoder warps a 2D grid in order to
reconstruct the raw input data. This enables learning of an equivariant em-
bedding without using noisy and arbitrary canonical orientations at training
time.

To perform pose invariant descriptor matching at test time, we have in-
vestigated two alternative ways to orient our equivariant descriptor: we can
again exploit the peculiar nature of the Spherical CNN output, which is a
signal living in SO(3), to define a canonical orientation directly from the
computed embedding; or we can orient the descriptor according to a ca-
nonical orientation provided by an external local reference frame computed
on the input data. While the first approach enables end-to-end learning of
the descriptor and the LRF, we have so far obtained better results with the
second one. In particular, we have validated our claim on the superiority of
learning a local descriptor from raw unoriented input data by comparing

78

the two variants against handcrafted and learned methods, presentend in
Sec. 6.1, on the popular 3DMatch benchmark data set [159]. Our proposal
improves the state-of-the art by a remarkable margin, outperforming the
method based on the same unsupervised learning framework, but applied
to an invariant descriptor, by more than 0.23 points of fragments registation
recall (31% increase).

Before starting, we give an overview about the current approaches used
to learn features from 3D data as well as a briefly recap of the concepts
exposed in Sec. 6.1.

7 .1 related work

Hand-crafted 3D local descriptors collects geometric or topological measure-
ments into histograms. Approaches such as Spin Images [18], Unique Shape
Context [58] and RoPs [83] rely on the spatial distribution of the points on
the surface, while others like FPFH [45] and SHOT [98] exploit geometric
properties of the surface such as normals or curvatures. Rotation invariance
is achieved using either a LRF or a Reference Axis. On the other hand,
learned 3D local descriptors learn a representation of the geometry from 3D
data. As a consequence of the unorganized nature of point clouds, several
parallel tracks regarding the representation of the input data have emerged.
Early works represent a 3D object as a collection of 2D views [114, 134].
Another approach concerns dense 3D voxel grids, with voxels containing
either a binary occupancy grid [112, 155] or an alternative representation
of the surface [159, 191]. To limit the memory occupancy of voxel grids,
researchers either rely on coarse spatial resolutions, which, however, intro-
duce artifacts and hinder the ability to learn fine geometric structures, or on
space partition methods like k-d trees or octrees [144, 151]. Other methods,
differently, deploy high-dimensional hand-crafted features to parameterize
the input point cloud and then use deep learning to project it into lower
dimensional spaces [143, 161].

Several approaches, not directly related to the 3D local descriptor field,
exist to do learning from raw 3D data. PointNet [148] and PointNet++ [149]
are pioneering works presenting a general framework to learn features dir-
ectly from raw point clouds data. Although yielding excellent performance
in point cloud segmentation and classification tasks, these architectures
have not been used yet to perform local surface description, likely due to

79

Figure 7.1: Architecture of the proposed method. The points within the local
support of a given feature point p are converted into a spherical signal
representation, and then sent through the spherical encoder to get an
equivariant descriptor. The numbers below the spherical signal indicate
the number of cells along α, β and d. The decoder reconstructs the
original point cloud deforming sampled 2D points according to the
descriptor. Operations in the encoder are implemented through the
Generalized Fourier Transform with signals discretized according to
a bandwidth parameter [160]. The triplets below the encoder layers
indicate input bandwidth, output bandwidth and number of channels.
As for the decoder, the pairs indicate the number of input and output
channels, respectively.

the inability of providing rotation invariance. Nonetheless, PointNet is the
core building block of PPFNet [162], which relies on raw point coordinates,
normals and Point-Pair Features in order to learn a local feature descriptor.
Indeed, due to the reliance on the PointNet architecture, PPFNet is not
rotation invariant.

7 .2 learning an equivariant 3d descriptor from spherical

signals

In this section we present the whole pipeline of our method, graphically
illustrated in Fig. 7.1. Please note that our encoder only contains correlation
layers, i.e. it does not include a max pooling layer at the end to learn a pose-
invariant descriptor, which is instead present in the architectures proposed
in [160].

7 .2 .1 Background on Spherical CNNs

As we rely on Spherical CNNs, we provide a brief overview of the mathem-
atical model behind it. For more details, please refer to [160].

80

The basic intuition behind Spherical CNNs can be grasped by analogy
with the classical planar correlation used by traditional CNNs. As explained
in [160], the value of the output feature map at x ∈ Z2 in a planar correlation
can be understood as the inner product between the input feature map and
the learned filter shifted by x. By analogy, the value of the output feature
map at R ∈ SO(3) in a spherical correlation can be understood as the inner
product between the input feature map and the learned filter, rotated by R.

A source of confusion when switching from traditional to spherical CNNs
is that the space where input signals, for instance point clouds, and feature
maps live is different: the former live in R3, while the latter live in SO(3).
Therefore, when we read the value of a feature map, we are getting the
response of the filter for a specific rotation, not for a location in the input
cloud. This is not the case with traditional correlations, where both the input
images and the feature maps live in Z2, and the concept of receptive field of
a feature map is more intuitive.

Some useful definitions to understand spherical CNNs also from a formal
point of view are given below.
The Unit Sphere S2 can be defined as the set of points x ∈ R3 with norm 1.
It is a two-dimensional manifold, which can be parameterized by spherical
coordinates α ∈ [0, 2π] (azimuth) and β ∈ [0,π] (inclination).
Spherical Signals the kernels of our Spherical encoder are designed as
continuous K-valued functions: f : S2 → RK, where K is the number of
channels.
Rotations A rotation in three dimensions lives in a three-dimensional mani-
fold called SO(3), the “special orthogonal group“. As in [160] the rotation
group SO(3) can be parameterized by ZYZ-Euler angles α ∈ [0, 2π],β ∈ [0,π],
and γ ∈ [0, 2π]. Rotations can be represented by 3× 3 matrices that preserve
distance (i.e. ‖Rx‖ = ‖x‖) and orientation (det(R) = +1). If we represent
points on the sphere as 3D unit vectors x, a rotation can be performed by
using the matrix-vector product Rx.
Rotations of Spherical Signals The spherical correlation operator needs
to rotate the filters on the sphere. For this purpose, [160] introduces the
operator LR that takes a function f and produces a rotated function LRf by
composing f with the rotation R−1:

[LRf](x) = f(R
−1x) (7.1)

81

Spherical Correlation Denoting with 〈ψ, f〉 the inner product on the vector
space of spherical signals defined as in [160], the correlation between a
K-valued spherical signal f and a filter ψ, f,ψ : S2 → RK can be formalized
as:

[ψ ? f](R) = 〈LRψ, f〉 =
∫
S2

K∑
k=1

ψk(R
−1x)fk(x)dx. (7.2)

This is the operation performed by the first layer of our encoder (Fig. 7.1).
Unlike the standard definition of spherical convolution [11], which gives as
output a function on the sphere S2, the spherical correlation yield a signal
on SO(3). The use of a conventional convolution definition would limit the
expressive capacity of the network due to the symmetry along the Z axis of
the learned filters.
Rotation of SO(3) Signals Similarly to what has been defined for spherical
correlation in Eq. 7.2, to define a correlation in SO(3) the operator in Eq. 7.1
must be generalized so that it can act on SO(3). For a signal h : SO(3)→ RK,
and R,Q ∈ SO(3):

[LRh](Q) = h(R−1Q). (7.3)

The term R−1Q in Eq. 7.3 denotes the composition of rotations.
Rotation Group Correlation Likewise in Eq. 7.2, we can define the correla-
tion between a signal and a filter on the rotation group, h,ψ : SO(3)→ RK,
as follows:

[ψ ∗ h](R) = 〈LRψ, f〉 =
∫

SO(3)

K∑
k=1

ψk(R
−1Q)hk(Q)dQ. (7.4)

This is the operation performed by the all the layers of our encoder but the
first one (Fig. 7.1). The integration measure dQ is the invariant measure on
SO(3), which may be expressed in ZYZ-Euler angles as dα sin(β)dβdγ/(8π2).
Please note that unlike in [160] for better clarity we denote as ? the spherical
correlation Eq. 7.2 while with ∗ the rotation group correlation Eq. 7.4.

7 .2 .2 Learning from Spherical Signals

Our feature encoder operates on signals defined in a spherical domain.
Hence, the local geometry surrounding a feature point p needs to be con-

82

0 40 80 120 160 200 240 280 320 360
0

0.2

0.4

0.6

0.8

1

Angle in degrees

D
es

cr
ip

to
rs

di
st

an
ce

Network Rotation Invariance

Spherical CNNs Encoder
PointNet Encoder

Figure 7.2: Comparison between PointNet and Spherical CNN used as encoders in
our framework.

verted into a spherical representation. A common strategy adopted by [160,
163] is to project a 3D mesh onto an enclosing discretized sphere using a
raycasting scheme. Since our input data is not a regular watertight mesh, but
a point cloud corresponding to the neighborhood of the point we wish to
describe, we first convert 3D points into a spherical coordinate system and
then construct a quantization grid in this new coordinate system, similarly
to [187]. The i-th cell in the quantization is identified with three spherical
coordinates (α[i],β[i],d[i]) ∈ S2 ×D where α[i] and β[i] represent the azi-
muth and inclination angles of its center and d[i] is the distance from the
sphere center. The K-valued spherical signal f : S2 → RK is then composed
by K concentric spheres corresponding to the number of subdivisions along
the distance axis, each sphere encoding the density of the points within each
cell (α[i],β[i]) at a given distance d[k]. To take into account the non-uniform
spacing in the spherical space, cells near the south or north pole are wider
in spherical coordinates, as discussed in [187].

A spherical signal is computed on the support of every keypoint. The
signal then goes through our architecture to learn an equivariant bottleneck
layer, which can then be used as a descriptor of the local geometry around
the keypoint.

83

7 .2 .3 Rotation-Equivariant Descriptor

The main novelty of our approach is the use of Spherical CNNs as encoder
to learn an equivariant bottleneck layer.

Learning an equivariant bottleneck removes the requirement to have
invariant representations as input to the network at training time as the
only way to achieve rotation invariance, the standard approach in existing
proposals [143, 161]. In our framework, instead, we can delay the choice on
how to canonically orient the descriptor at test time, which brings in two
important benefits. On one hand, we do not have to choose a specific way
to orient the input, e.g. a specific LRF, at training time, which means that
we can train the network to learn the descriptor from less pre-processed
input data than existing proposals, moving a step closer toward end-to-end
descriptor learning. On the other hand, not using a LRF at training time
frees our method from unavoidable errors of the LRF itself, which in turn
inject noise in the training process. We expect both benefits to concur to
increase the effectiveness of the learned descriptor.

Moreover, from a practical point of view, being able to train our descriptor
without tying it to a specific LRF enables us to choose the best way to
define a canonical representation at test time without training the network
from scratch. Finally, it also opens up the possibility to use different LRFs
for different test data, although we have not explored this property in the
reported experimental results.

Please note that a truly rotation-equivariant CNN like Spherical CNNs
is mandatory in our framework, as anticipated in the introduction. Indeed,
only a descriptor that lives in SO(3) can be rotated after having been com-
puted, i.e. only the output of a Spherical CNN to date. All the other standard
representations, e.g. the output of a Multi Layer Perceptron (MLP) as used
in PointNet, cannot be rotated after having been computed. Therefore, if
we want to use them in our framework where the input is not canonically
oriented for the reasons discussed above, we can only hope the network
learns to obtain directly a rotation-invariant descriptor by observing ro-
tated versions of the same neighborhood during training without explicit
supervision, which is however a harder task in our setup than learning an
equivariant descriptor.

We have validated how harder this is experimentally, by using a standard
PointNet encoder instead of the spherical one to learn an invariant descriptor.
Results of the comparison are shown in Fig. 7.2. Please note that equivariance

84

is a theoretical property of a Spherical CNN, regardless of whether it is
trained or not. Indeed, in the results in Fig. 7.2, the Spherical encoder
has not been trained, while the PointNet encoder has been trained on the
3DMatch Benchmark presented in Sec. 7.3.1. Given a neighborhood, we
rotate it around a random axis by a growing angle, whose value is reported
along the horizontal axis of the chart. For every rotation, we pass the
rotated neighborhood through a Spherical CNN encoder and a PointNet
encoder. The output of the Spherical CNN is then rotated by the inverse of
the applied rotation (simulating the availability of a perfect LRF) and the
distance between the descriptor obtained from the rotated neighborhood
and the descriptor obtained from the un-rotated neighborhood is plotted.
We can clearly see that PointNet fails to learn an invariant descriptor in our
setup, while the equivariant representation provided by a Spherical CNN
can achieve almost perfect invariance when properly rotated.

Input Equivariant Invariant

Figure 7.3: Comparison between the reconstructions obtained when using the Spher-
ical CNN encoder to learn an equivariant versus an invariant bottleneck.
Results after 10K training iterations.

Moreover, even if PointNet were able to learn a perfectly invariant bottle-
neck, we have found experimentally that this would result in low quality
reconstructions. The reason is that it is not possible for frameworks like
FoldingNet/AtlasNet to converge to sensible reconstructions if the learned
bottleneck does not contain any pose information, i.e. it is almost perfectly
invariant. This is shown in Fig. 7.3. where we compare the quality of the
reconstructions produced by our framework when using an equivariant
bottleneck layer versus an invariant one. The invariant one in this case is
obtained by removing the last SO(3) correlation layer from our encoder,
which produces the equivariant descriptor in our architecture, and adding a

85

max pooling layer selecting the maximum of each one of the now top-level
40 feature maps, followed by a fully connected layer to expand the codeword
dimensionality to 512. As shown in the figure, if the encoder produces an
invariant descriptor, the decoder doesn’t have enough information to know
in which pose it should reconstruct the input so as to minimize the loss.
The best it can do is to produce reconstructions trying to account for all
possible rotations of the input, e.g. the atom-like structures depicted in the
last column, almost ignoring the invariant bottleneck layer.

7 .2 .4 Invariant Feature Descriptor

To obtain an invariant descriptor at test time, which can be matched across
poses, we have to compute a canonical orientation for the equivariant
descriptor. We have investigated two ways of doing it.

The first is the most intellectually satisfying, and leverages again the
peculiar properties of Spherical CNNs. Indeed, every bin of a feature map
in a Spherical CNN represents an element of SO(3), i.e. a potential LRF.
This has been already exploited to align full shapes in [163], by finding the
argmax of the correlation between two feature maps. Note that we cannot
use the same approach in the context of invariant descriptor matching, as
this would require a costly computation to compute the distance between
every pair of source and target descriptors.

However, because of the equivariance property, we can recover an aligning
pose by processing the two descriptors separately. Let [ψ ∗ h](R) be the
descriptor, i.e. a feature map, obtained when processing the input signal f,
and let [ψ ∗m](R) the one obtained when we process a rotated version of
f, g(x) = [LQf](x) = f(Q

−1x). Due to equivariance, the same rotation exists
between inner feature maps h and m, i.e. m(R) = [LQh](R) = h(Q

−1R), and
recursively between descriptors, i.e.

[ψ ∗m](Rm) = [ψ ∗ [LQh]](Rm)

= 〈LRmψ,LQh〉

= 〈LQ−1Rm
ψ,h〉

= [ψ ∗ h](Q−1Rm) := [ψ ∗ h](Rh) (7.5)

In other words, chosen an entry in a descriptor [ψ ∗ h] obtained when
processing f, e.g. Rh, if, when the input is rotated by Q, we are able to find

86

α
β γ

α
β γ

α

γ

α

γβ

β

𝑄
−
1

rotate

rotate

[𝜓 ∗ ℎ]

[𝜓 ∗ 𝑚]

𝑅ℎ
−1

𝑅ℎ

𝑅𝑚

𝑅𝑚
−1

Figure 7.4: Self-orienting property of the learned equivariant descriptor. Every bin
of our bottleneck layer corresponds to three Euler angles which define
a rotation. If the descriptor is computed starting from a rotated input
(second row), the values shifts in the feature maps. By finding two
corresponding bins in the two descriptors and rotating them by the
inverse of the corresponding rotations, the descriptors can be aligned,
i.e. become pose invariant.

the same entry independently in the rotated descriptor [ψ ∗m], we will find
it at rotation Rm = QRh.

Therefore, given the two descriptors, we can align them to a common
pose by applying the inverse of such rotations

[L
R−1
m
[ψ ∗m]](R) = [ψ ∗m](RmR)

= [ψ ∗ [LQh]](RmR)

= [ψ ∗ h](Q−1RmR) (7.6)

[L
R−1
h
[ψ ∗ h]](R) = [ψ ∗ h](RhR)

= [ψ ∗ h](Q−1RmR) (7.7)

as shown by last terms of the transformations being equal (and graphically
in Fig. 7.4). Please note that all transformations are applied to the descriptor
(which is a feature map) obtained from the unrotated input and not to the
input itself, i.e. we can rotate the descriptor computed from an unoriented
input to achieve rotation invariance. The dimensionality of ours descriptor
does not change under rotations, as it is rotated by remodulating the spher-
ical harmonics functions resulting from its Fourier transform. A through
treatment of this topic can be found in [16].

87

The problem of defining a repeatable LRF then translates into that of
finding the same bin under rotations given a feature map. A simple choice
could be the maximum of the feature map. Under perfect equivariance, the
maximum would provide a repeatable anchor point across rotations, and
therefore a repeatable rotation to obtain invariant descriptors. However,
the network is not perfectly equivariant, due to numerical approximations
and the use of non linearities (ReLUs) between layers, and also the feature
map of the same keypoint seen in two different views changes due to other
nuisances (occlusions, clutter, sampling). We have verified experimentally
that the maximum of a feature map alone is not robust enough to define a
repeatable LRF.

We have investigated several strategies to identify the same location of
the feature map under rotations. The one that has given the best results so
far starts by analyzing only the k bins corresponding to the top k values
of the feature map, including the maximum. We then compute the density
of top values in a 3× 3× 3 neighborhood of every such bin. The bin with
the maximum density is used to compute the required rotation. In the case
of ties, we select the neighborhood with the largest value within it. Once
we have selected a neighborhood, we average all the bins corresponding to
the top values within it to get the final rotation. By means of the proposed
algorithm, we have been able to define a self-orienting descriptor, an original
trait of our method.

As our tests indicate the repeatability of the above defined LRF to be far
from the optimal performance attainable with the equivariant descriptor, we
have also assessed its performance when we make it invariant at test time
by computing the canonicalizing rotation with the help of an external local
reference frame extracted from the input cloud. We stress here that, although
we compute an LRF on the input data, we again rotate the computed
descriptor and not the input data. Moreover, even in this case, we perform
LRF extraction only at test-time, as discussed above, so the chosen LRF
algorithm does not affect the quality of the training data.

7 .2 .5 Decoder and Loss

Differently from [162], our goal is to reconstruct the whole set of points
representing the local neighborhood of a given feature point p. Inspired by
[165] and [186], our decoder will try to deform points in R2 to surface points

88

in R3 according to the learned descriptor. Given a feature representation d
for a 3D surface, let A be a set of points sampled in the unit square [0, 1]2, the
descriptor d is concatenated with the sampled point coordinates (ax,ay) ∈ A

and then forwarded through a stack of MLP layers as shown in Fig. 7.1. We
then minimize the Chamfer loss between the set of generated 3D points and
the input points.

In particular, let S be the set of 3D input points belonging to the neigh-
bohood of p and S? the set of points reconstructed by the decoder. During
training, we minimize the following loss

L(S, S?)θ =
1

|S|

∑
x∈S

min
x?∈S?

‖x − x?‖2+

1

|S?|

∑
x?∈S?

min
x∈S
‖x? − x‖2.

(7.8)

The term minx?∈S? ‖x − x?‖2 enforces that any 3D point x in the original
point cloud has a matching 3D point x? in the reconstructed point cloud,
and the term minx∈S ‖x? − x‖2 enforces the matching viceversa. The overall
loss is the sum of the two terms to enforce that the distance from S to S?

and the distance viceversa have to be small simultaneously.

7 .2 .6 Network and training parameters

To learn our descriptor, we use one S2 convolution layers and three SO(3)

convolution layers with constant number of channels, 40, while the band-
widths is set to 24 for the first three layer and 4 for the last one, which results
in a descriptor with 512 entries. The architecture of our decoder is made of
4 fully-connected layers, with ReLU non-linearities on the first three layers
and tanh on the final output layer. The network is trained with mini-bacthes
of size 32 by using ADAM [96]. The starting learning rate is set to 0.001 and
is decayed every 4000 iterations. We train the network for 14 epochs.

7 .3 experimental results

7 .3 .1 Experimental setup

To test our proposal, we use the standard benchmark for the evaluation of
learned 3D descriptors, the 3DMatch benchmark [159]. This benchmark

89

Table 7.1: Results on the 3DMatch benchmark. Test data are from SUN3D [90],
except for Red Kitchen data which is from 7-scenes [88]. Best result on
each row is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average
FPFH 0.7391 0.7885 0.6442 0.8142 0.7115 0.8889 0.7432 0.7013 0.7539

Spin Images 0.6561 0.7564 0.6731 0.6770 0.6346 0.7407 0.4692 0.4545 0.6327

SHOT 0.8893 0.8974 0.8221 0.9336 0.8750 0.8889 0.8630 0.8312 0.8751

USC 0.9308 0.9103 0.7788 0.9204 0.8462 0.8889 0.8664 0.8052 0.8684

3DMatch 0.5810 0.7244 0.6154 0.5442 0.4808 0.6111 0.5171 0.5065 0.5726

CGF 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776

PPFNet 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231

PPFFoldNet 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

3DSmoothNet 0.9700 0.9550 0.8940 0.9650 0.9330 0.9820 0.9450 0.9350 0.9474
Ours SO 0.8854 0.9487 0.8654 0.9204 0.8462 0.9630 0.8870 0.8182 0.8918

Ours LRF 0.9763 0.9615 0.8942 0.9823 0.9519 0.9815 0.9178 0.8701 0.9420

Table 7.2: Results on the rotated 3DMatch benchmark. Test data are from SUN3D
[90], except for Red Kitchen data which is from 7-scenes [88]. Best result
on each row is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average
FPFH 0.7451 0.7949 0.6587 0.8142 0.7212 0.9259 0.7260 0.7530 0.7674

Spin Images 0.6502 0.7628 0.6635 0.6903 0.6635 0.7222 0.4692 0.4935 0.6394

SHOT 0.8794 0.8910 0.8317 0.9425 0.8654 0.9074 0.8493 0.8312 0.8747

USC 0.9170 0.9103 0.7548 0.9292 0.8558 0.9074 0.8836 0.8571 0.8769

3DMatch 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113

CGF 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987

PPFNet 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026

PPFFoldNet 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

3DSmoothNet 0.9720 0.9620 0.9090 0.9650 0.9230 0.9820 0.9450 0.9350 0.9491
Ours SO 0.8893 0.9423 0.8413 0.9204 0.8558 0.9074 0.8733 0.7922 0.8778

Ours LRF 0.9763 0.9679 0.8894 0.9779 0.9615 0.9815 0.9110 0.8442 0.9387

addresses registration of unordered 3D views and the dataset has been put
together by merging a large part of the publicly available datasets such as
Analysis-by-Synthesis [133], 7-Scenes [88], SUN3D [90], RGB-D Scenes v.2
[97] and Halberand Funkhouser [139]. It contains 62 scenes in total, and,
following [161], we use 54 for training and validation, while 8 scenes are
used only at test time to run comparisons. The dataset already provides
so-called fragments, i.e. the point clouds resulting from the fusion of 50

consecutive depth frames, for the test scenes, and we obtained the training
fragments generated by the same methodology as the authors of [161]. We
also consider the rotated version of the 3D Match benchmark, generated by
the same authors by rotating all the fragments in the 3DMatch benchmark
with randomly sampled axes and angles over the whole rotation space.

We use the same setup as proposed in [161]: we downsample the fused
fragments with a voxel grid filter of size 2 cm and compute surface normals

90

using [10] a 17-point neighborhood; we consider a radius of 30 cm to define
the neighborhood of a keypoint.

7 .3 .2 Evaluation methodology

We test our proposal in the context of surface registration following the
evaluation methodology proposed by [161]. This protocol build fragments
pairs like the methodology exposed in Sec. 4.3.2. Only fragments with at least
30% overlap are picked during the evaluation. With regard to the metrics
involved, here the recall refers to the fragment recall introduced in [161] that
is the standard metric for this benchmark. A pair of fragments is considered
correctly registered if the number of correctly matched keypoints is greater
than the inlier ratio threshold τ2, set to 5% of the extracted keypoints. Two
keypoints are considered a matched couple if their l2 distance is below a
threshold τ1 = 10 cm. For each fragment, the descriptors are computed on
5000 uniformly sampled points, provided with the benchmark [159]. For
handcrafted descriptors we used the implementation in PCL [67], while for
learned descriptors results were taken from [161].

7 .3 .3 Quantitative results

Results of the tests on the 3D Match benchmark in terms of recall are reported
in Tab. 7.1. With Ours SO we refer to the self orienting descriptor introduced
in Sec. 7.2.4, while with Ours LRF we refer to the descriptor oriented with
an external local reference frame. In particular for this experiments we have
used the LRF algorithm proposed in [75], which we will denote as FLARE
according to the acronym used in its PCL implementation [67].

The first outcome of our experiments is that the use of an external LRF
outperforms the self-orienting variant of our algorithm. Note that the two
rows describe exactly the same equivariant descriptor under two different
ways to compute a canonical orientation. Hence, the highest one is indicative
of the quality of the learned descriptor itself. Although the performance of
the self-orienting variant of our method is inferior to our descriptor oriented
by an external LRF, it is remarkable that it delivers the third best recall
on the dataset, i.e. it would provide state-of-the-art performance, between
unsupervised approach, if we were not to orient our equivariant descriptor
also with an external LRF. Our self-orienting variant is closely followed

91

0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

Inlier ratio threshold

R
ec

al
l

3D MatchBenchmark

Ours LRF
Ours SO
FPFH
SHOT
Spin Images
USC
3D Match
CGF
PPFNet
PPF-FoldNet
3DSmoothNet

Figure 7.5: Results under varying inlier ratio threshold τ2.

by SHOT and USC, i.e. two handcrafted descriptors, while the other tested
methods, other than 3DSmoothNet, deliver significantly lower recalls. The
best learned approach is 3DSmoothNet, which is performing similar to
our proposal with external LRF, but being supervised. Hence, unlike ours,
it requires labeled data to be trained. The better performance of SHOT
and USC with respect to PPFFoldNet offers support to the inspiring ideas
behind this work: deep learning alone, if constrained to learn from highly
engineered representations, cannot guarantee superior performance. It is
also interesting to analyze these results in light of our main claim: to learn
an equivariant descriptor and then orient it to achieve invariance instead
of learning directly an invariant one boosts its quality. If we compare the
performance of our method when oriented with both tested variants against
methods learning from invariant representations, like PPFFoldNet and CGF,
we can interpret the large gap in performance (0.23 and 0.47 points of
recall from the external LRF variant, respectively), as a validation of the
drawbacks of existing learned descriptors discussed in the introduction. In
Fig. 7.5, we report results when varying the threshold τ2 on the percentage
of correct matches to consider a pair as correctly registered, as done in
[161]. Our proposal oriented with an external LRF is performing similar to
3DSmoothNet for all thresholds, whilst, our self-orienting variant attains
again recall values similar to SHOT, and slightly inferior to USC at the
largest thresholds.

Finally, results of the tests on the rotated 3D Match benchmark are reported
in Tab. 7.2. The dataset was proposed in [161] to test robustness against large
rotations, not present in the original benchmark. As expected, all rotation-
invariant methods obtain performance similar to the results reported in

92

Tab. 7.1, and our equivariant descriptor oriented with the external LRF
performs similar to 3DSmoothNet that exhibits the best results.

7 .4 a more effective equivariant embedding

As a further contribution of this chapter, we perform an ablation study on
the architecture of our spherical encoder in order to improve the results
presented in Sec. 7.3.3. For this study, we focus only on the descriptor
oriented at test time with the external LRF, i.e. Ours LRF. As a design choice
of Spherical CNNs [160] architecture, two distinct types of spherical grids
are available, both for S2 and SO(3) convolutions: the near identity and
equatorial grids. The former define spatially localized kernels, initialized on
the north pole and rotated over the sphere via the action of SO(3), while the
latter, define a ring-like kernels around the equator. Together with the grids,
we vary the number of SO(3) layers which follow the first S2 layer, the input
bandwidth and the number of channels at each layer. To validate our design
choices, we compare the architecture adopted so far, i.e. Sec. 7.2.6, in terms of
recall and description time against the new configurations obtained changing
the values of the parameters specified above. Thus, for each configuration
we trained a new network and then, test the resulting descriptor on the test
split of 3DMatch benchmark, following the protocol presented in Sec. 7.3.2,
but with a reduced number of keypoints, 500 instead of 5000. The result of
the ablation study is shown in Tab. 7.3, with configuration A referring to
the architecture and parameters adopted so far and described in Sec. 7.2.6.
To improve the selection criteria, we also consider the computational time
for description, considering a mini-batch size equal to 25. The best trade
off configuration is selected according to the Pareto analysis, presented
in Fig. 7.6. It turns out that the configuration N presents the best recall
performance on the Pareto frontier with a significant reduction in processing
time. Hence, we train a new network with this configuration following the
training protocol described in Sec. 7.2.

Network and training parameters

Based on the ablation study in Sec. 7.4, we train a new network according the
the configuration N in Tab. 7.3. The spherical encoder has a S2 convolution
layer and four SO(3) convolution layers with a constant number of channels,
40. The input bandwidths of these five layers are respectively, 24, 16, 12, 8

93

Table 7.3: Ablation study results on the 3DMatch benchmark. Networks on the
Pareto frontier on the column Network, best values on recall and Nor-
malized time in bold. Tests performed for a subset of 500 keypoints.

Network Grid SO(3)

layers
Input
BW

Channels Recall Time
Eq. NI

A X 3 [24, 24, 4] 40 0.924 1.000

B X 3 [24, 24, 4] 40 0.922 1.025

C X 3 [24, 24, 24] 40 0.922 1.238

D X 3 [24, 24, 24] 40 0.929 1.253

E X 2 [24, 24] 40 0.919 1.025

F X 3 [12, 8, 6] 40 0.922 0.636

G X 3 [16, 12, 8] 60 0.899 0.679

H X 3 [16, 12, 8] 40 0.915 0.632

I X 3 [16, 12, 8] 40 0.924 0.634

J X 3 [16, 12, 8] 30 0.902 0.611

K X 3 [16, 12, 8] 20 0.916 0.587
L X 2 [16, 8] 40 0.920 0.604

M X 4 [16, 12, 8, 6] 40 0.908 0.637

N X 4 [16, 12, 8, 6] 40 0.929 0.632

and 6. After the layers we apply a BatchNorm step and ReLU non-linearities.
The last layer of the encoder outputs the descriptor, with 512 entries. For the
decoder we use the same configuration as in Sec. 7.2.6. Finally, we trained
the network using ADAM [96] and a learning rate of 0.001.

7 .4 .1 Experimental setup

To stress the ability of our method to generalize to geometric varieties not
seen during training, we add to the evaluation a new outdoor dataset: the
ETH dataset [76]. Hence, we first train a network on the training split of
3DMatch dataset and then we test it on ETH, 3DMatch and 3DMatch rotated.
The ETH dataset [76] is a challenging outdoor dataset, which presents 8

sequences with semistructured and unstructured environments, repetitive
and dynamic elements. The dataset is acquired with a laser scanner sensor
and contains partially overlapping scans of sparse and dense vegetation
(e.g., trees and bushes). To test our approach, we used, as in [191], a subset
of four scenes named: Gazebo-Summer, Gazebo-Winter, Wood-Autumn and
Wood-Summer. We test our proposal on the 3DMatch dataset following the
protocol and the same settings illustrated in Sec. 7.3.1, whilst for ETH, we

94

0.6 0.8 1 1.2

0.9

0.91

0.92

0.93

Normalized Time

R
ec

al
l(
τ
=
5
%

)

A B C D E F G
H I J K L M N

Figure 7.6: Ablation study comparing the different configurations in terms of regis-
tration recall and normalized description time. For more detail of each
configuration refer to Tab. 7.3. The light gray area shows the Pareto
frontier of the test. The computational time is expressed in term of
percentage of increase or decrease compared to the time of our baseline
(A), e.g. the configuration N is 40% faster than A.

adhere to the setup proposed in [191]. To take into account the different
scales of the two dataset, in ETH we describe the support of a feature point
p within a radius of 1.0m.

7 .4 .2 Results on 3DMatch dataset

We report results of the experimental evaluation on the 3D Match bench-
mark in terms of recall in Tab. 7.5. With Ours we refer to our equivariant
embedding trained with the configuration explained in Fig. 7.4 and oriented
at test time with FLARE LRF. Our descriptor achieves an average recall of
95.84% outperforming all state-of-the-art 3D local descriptors on the stand-
ard registration benchmark, surpassing the most challenging competitor,
3DSmoothNet [191]. Finally, we report the results for fragment registration
recall on the rotated 3D Match benchmark in Tab. 7.5, which, again, confirms
how a proper design choice of the architecture can significantly improve the
quality of the learned descriptor.

As a further proof of the effectiveness of our approach, we compare the
number of correct correspondences generated by our descriptor against the
state-of-the-art methods. To establish the set of correspondences between
descriptors of two fragments, we use a nearest neighbor query, then the

95

Table 7.4: Results on the 3DMatch benchmark. Test data are from SUN3D [90],
except for Kitchen data which is from 7-scenes [88]. Best result on each
column is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average
FPFH 0.7391 0.7885 0.6442 0.8142 0.7115 0.8889 0.7432 0.7013 0.7539

Spin Images 0.6561 0.7564 0.6731 0.6770 0.6346 0.7407 0.4692 0.4545 0.6327

SHOT 0.8893 0.8974 0.8221 0.9336 0.8750 0.8889 0.8630 0.8312 0.8751

USC 0.9308 0.9103 0.7788 0.9204 0.8462 0.8889 0.8664 0.8052 0.8684

3DMatch 0.5810 0.7244 0.6154 0.5442 0.4808 0.6111 0.5171 0.5065 0.5726

CGF 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776

PPFNet 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231

PPFFoldNet 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

3DSmoothNet 0.9700 0.9550 0.8940 0.9650 0.9330 0.9820 0.9450 0.9350 0.9474

Ours 0,9901 0.9808 0.9135 0.9956 0.9808 0.9815 0.9418 0.8831 0.9584

Table 7.5: Results on the rotated 3DMatch benchmark. Test data are from SUN3D
[90], except for Kitchen data which is from 7-scenes [88]. Best result on
each column is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average
FPFH 0.7451 0.7949 0.6587 0.8142 0.7212 0.9259 0.7260 0.7530 0.7674

Spin Images 0.6502 0.7628 0.6635 0.6903 0.6635 0.7222 0.4692 0.4935 0.6394

SHOT 0.8794 0.8910 0.8317 0.9425 0.8654 0.9074 0.8493 0.8312 0.8747

USC 0.9170 0.9103 0.7548 0.9292 0.8558 0.9074 0.8836 0.8571 0.8769

3DMatch 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113

CGF 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987

PPFNet 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026

PPFFoldNet 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

3DSmoothNet 0.9720 0.9620 0.9090 0.9650 0.9230 0.9820 0.9450 0.9350 0.9491

Ours 0.9921 0.9744 0.8990 0.9956 0.9712 0.9815 0.9452 0.9221 0.9601

matched keypoints are aligned using the ground-truth rigid motion matrix
between the fragments. We consider a correspondence correct if the l2
distance between two keypoints is smaller than τ1 = 10cm. As can be seen
in Tab. 7.6, also using this direct measurement our descriptor compares
favourably to the other methods on the scenes of the benchmark, as well as
on the average.

7 .4 .3 Transfer learning on ETH dataset

To check if ours proposal generalizes to in outdoor environments, we tested
the learned descriptor on the ETH dataset. We get our model trained on
the 3DMatch training set and perform a transfer learning on this dataset.
The results are show in Tab. 7.7. Our descriptor achieves by far the best
performance on this very challenging dataset with 97.5% average recall,
outperforming all the state-of-the-art techniques by almost 20%. These

96

Table 7.6: Average number of correct correspondences on the 3DMatch benchmark.
Best result on each column is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average
FPFH 89 142 125 86 94 119 56 74 98

SHOT 154 206 182 131 124 159 84 121 145

SI 120 145 152 102 91 111 51 71 105

USC 150 216 175 147 120 159 97 161 153

3DMatch 103 134 125 73 64 64 64 84 88

CGF 125 156 142 90 94 130 55 78 108

3DSmoothNet 274 324 318 272 238 276 171 246 264

Ours 273 336 314 307 277 310 226 290 292

Table 7.7: Results on the ETH data set.

Method Gazebo Wood Average
Summer Winter Summer Autumn

FPFH 0.3860 0.1420 0.1480 0.2080 0.2210

SHOT 0.7450 0.4530 0.6170 0.6320 0.6118

3DMatch 0.2280 0.0830 0.1390 0.2240 0.1685

CGF 0.3750 0.1380 0.1040 0.1920 0.2023

3DSmoothNet 0.9130 0.8410 0.6780 0.7280 0.7900

Ours 0.9239 0.9862 1.0000 0.9913 0.9753

results show that our unsupervised approach is very flexible and could
present remarkable results on a very challenging dataset, such as ETH
without being trained on it.

7 .4 .4 Qualitative results for surface registration

To verify the quality of registrations provided by the proposed method,
we wrap up our descriptor in a surface registration pipeline. Hence, after
the descriptor matching stage, we use RANSAC [8] to retrieve the aligning
motion matrix T ∈ SE(3) between a pair of fragments. We follow the ex-
perimental setup of [159] for RANSAC parameters. We present qualitative
reconstructions in Fig. 7.7 for the 3DMatch dataset and in Fig. 7.8 for the
ETH dataset. We compare the registration results of our descriptor against
the 3DMatch descriptor [159], as the baseline method for this dataset, and
with 3DSmoothNet [191], both being supervised approaches. The examples
show that the rigid motion matrix produced by matching our descriptors
can successfully align two fragments better than our competitors and, some-
times present result qualitatively better than those obtained by registration

97

transformations provided as ground-truth, as we can see on the Home 2 and
Hotel 2 scenes.

98

K
itc

he
n

H
om

e
1

H
om

e
2

H
ot

el
1

H
ot

el
2

H
ot

el
3

St
ud

y
M

IT
La

b

Fragment 1 Fragment 2 3DMatch [159]3DSmoothNet [191] Ours Ground Truth

Figure 7.7: Registration results on the 3DMatch Benchmark after RANSAC.

99

G
az

eb
o

Su
m

m
er

G
az

eb
o

w
in

te
r

W
oo

d
A

ut
um

n
W

oo
d

Su
m

m
er

Fragment 1 Fragment 2 3DMatch [159]3DSmoothNet [191] Ours Ground Truth

Figure 7.8: Registration results on the ETH Benchmark after RANSAC.

100

8
C O N C L U S I O N S

In Chap. 6, we have shown how the problem of learning an effective
descriptor can be disentangled into the orthogonal problems of learning a
robust equivariant representation and defining a good canonical orienta-
tion to make it invariant at test time. Our proposal to learn an equivariant
representation in an unsupervised way leverages as encoder the recently
proposed Spherical CNNs and turns out highly effective in tackling the
first problem. When coupled with a robust algorithm to compute a local
reference frame from the input cloud, it significantly advances the state of
the art on a challenging benchmark.

We have also shown how the very same framework could be used to
define a canonical orientation by exploiting the peculiar nature of the feature
maps computed by the Spherical CNNs. Although this approach delivers
performance on par with the state of the art, it is inferior to the use of an
external LRF.

In the last part of this chapter, we have presented a detailed ablation
study concerning the parameters of the Spherical CNNs encoder adopted.
With a more effective architecture, we are able to set the new state-of-the-art
performance for fragment registration recall on 3DMatch dataset and on
ETH as well.

We hope that the proposed method fosters for further studies along this
line of research, with the aim of defining an end-to-end learned solution to
the problem of invariant 3D description.

101

Part III

E S TA B L I S H I N G A N D L E A R N I N G A R O B U S T

L O C A L R E F E R E N C E F R A M E

9
I N I T I A L R E M A R K S

The experimental results of the previous chapter, exposed in Sec. 7.3.3,
have highlighted the strong link between the performance of the descriptor
and the quality of the algorithm involved to achieve invariance to rotation.
Indeed, as can be seen from Tab. 7.1, Ours SO and Ours LRF report the results
for exactly the same descriptor, but with two different methods to compute
a canonical orientation. We can thus point out that, the effectiveness of the
descriptor directly depends on the reliability of its underlying LRF; in turn,
the quality of the latter is determined by its invariance to transformations
that can be observed in the data. However, this is a well-known problem
in the literature of 3D local descriptors. In [63], Petrelli and Di Stefano
have shown that the performance of a local descriptor is strongly tied to the
repeatability of the LRF adopted.

Recently, there has been a significant increase in the interest around the
topic, mainly because the new deep-learned local 3D descriptors rely either
on a Reference Axis (RA) or on a LRF in order to be rotation-invariant [143,
161, 162, 191]. Objects under different rotations induce different features in
the network as pointed out in [130], thus, the geometry of an object, or a
local patch, has to be canonically oriented before being sent to the network.
Based upon these considerations, we argue that the definition of a robust
and repeatable LRF is still an open and challenging problem that underpins
many existing approaches and is ubiquitous in many applications. For
this reason, part of this dissertation will be concerned with the problem of
the construction of a stable and repeatable local reference frame. A local
reference frame, can be defined as a local system of Cartesian coordinates
defined at each point, with respect to which the local geometric structure
around that point is canonically oriented. For a given 3D shape M, an LRF
L(p) at point p ∈M is an orthogonal set of unit vectors:

L(p) = {x̂(p), ŷ(p), ẑ(p)} (9.1)

satisfying the right-hand rule ŷ = ẑ× x̂. LRFs algorithms are designed to be
as repeatable as possible. To this end, they leverage geometric properties of

105

the surface to define cues that can be easily detected when the input data is
affected by noise. In this sense, one of the main issues to be addressed is the
robustness to self-occlusion or missing part, that may occur when an object or
scene is captured from multiple points of view. According to [185], LRFs can
be subdivided into two categories, LRFs based on covariance analysis and
LRFs based on geometric attributes. The former family includes methods
that define the axes of the LRF, for a given point p, as the eigenvectors of
the 3D covariance matrix computed on the local support of p. Due to the
ambiguity of the sign of the eigenvectors [37], is hard to define a repeatable
directions, thus, efforts within these methods, have largely concentrated
on the reliable disambiguation of the axes sign. As for the methods based
on geometric attributes, they use as ẑ axes the normal at point p and then
determine x̂ by identifying a reference point q in the support region. The
difference vector q−p is then projected on the tangent plane at p. While the
methods of the first category suffer from ambiguity of the sign, it is difficult
for the latter to highlight geometric attributes that can be easily identified
on heterogeneous dataset acquired with different type of sensors.

This brief introduction on the world of LRFs is mandatory to better
understand the two fundamental contributions that we are going to expose
in the next chapters. Indeed, the problems outlined above, have prompted
us to formulate two different ways to establish a robust and repeatable LRF.
In Chap. 10, we present an handcrafted method that exploits the intrinsic
properties of the surface to define a repeatable orientation. Particularly, the
x̂ axis of the proposed LRF is determined according to the computation of
the intrinsic gradient of a scalar field defined on top of the input surface,
while for the ẑ axis, we adopt the surface normal n at the feature point p.
In a different way, in Chap. 11, we introduce a self-supervised method that
exploits the equivariance property of Spherical CNNs to learn a canonical
orientation from raw point clouds data. The latter proposal extends the
intuition behind the self-orienting descriptor described in Sec. 7.2.4, but differs
significantly since we learn a canonical orientation instead of obtaining it as
a by-product when learning a descriptor.

Before starting, in Sec. 9.1 we will cover most of the related work in the
field of local reference frame.

106

9 .1 related work

A wide variety of different LRFs have been proposed in the literature, in
this section we list the most important ones in terms of the influence they
had on research and of the achieved performances.

9 .1 .1 Mian

The unit axes of the LRF proposed in [55] are given by the normalized
eigenvectors of the covariance matrix of the 3D coordinates of the points, pi,
in a spherical support of radius r centered at the feature point p:

C(p) =
1

k

k∑
i=0

(pi − p̂)(pi − p̂)T (9.2)

where p̂ indicates the barycenter of the points lying within the support:

C(p) =
1

k

k∑
i=0

(pi − p̂)(pi − p̂)T (9.3)

As clearly discussed in [37], although the eigenvectors of Eq. 9.2 define the
principal directions of the data, their sign is not defined unambiguously.
Hence, this approach lacks of uniqueness of the signs of the axes of the
estimated LRF.

9 .1 .2 SHOT

The SHOT descriptor proposes a LRF estimation that employs a slightly
modified covariance matrix. The contributions of the points within support
are weighted by their distance from p:

Cw(p) =
1∑

i:di6r

(r−di)

∑
i:di6r

(r− di)(pi − p)(pi − p)T (9.4)

with di = ‖pi−p‖2. By using a weighted covariance matrix the repeatability
in cluttered scenes in object recognition scenario is improved. Furthermore,
to reduce computational complexity the centroid p̂ in (Eq. 9.2) is replaced by
the feature point p. Then, similarly to [37], sign ambiguity is addressed by

107

reorienting the sign of each eigenvector of Cw(p) so that its sign is coherent
with the majority of the vectors it is representing. This procedure is applied
to both x̂ and ẑ. So, if we refer to the eigenvector corresponding to the
largest eigenvalue as the x+ axis and we denote as x− the opposite vector,
the sign ambiguity is removed according to:

S+x =̇
{
i : di 6 r ∧ (pi − p) · x+ > 0

}
(9.5)

S−x =̇
{
i : di 6 r ∧ (pi − p) · x− > 0

}
(9.6)

x̂ =

x+, |S+x | > |S−x |

x−, otherwise
(9.7)

This results in the x̂ axis pointing in the direction of greater sample density.
The same procedure is used to disambiguate the ẑ axis, while the third unit
vector is computed via the cross-product ŷ = ẑ× x̂.

9 .1 .3 ROPS

ROPS descriptor has been proposed in [83] and works on meshes. To com-
pute the associated LRF, rather than calculating a single covariance matrix
over the entire spherical support, covariance matrices are computed per-
triangle and aggregated in a weighted sum. The weights are designed to
counteract the variations in mesh resolution, and provide robustness to
clutter and occlusions. The three axes are obtained via eigenvalue decom-
position of the resulting covariance matrix. In order to eliminate the sign
ambiguity, similarly to Sec. 9.1.2, the x̂ and axis is made to point in the
direction of greater mesh density as follows:

x̂ = x̂ · sign(h) (9.8)

where (·) returns the sign of a real number and h is defined as:

h =
∑

T∈Br(p)
w1w2

(1
6

3∑
i=0

(pi
T − p)x̂

)
. (9.9)

Where Br(p) indicates the support of p and T the single triangle within it.
The same procedure is applied to the ẑ axis. Since the ŷ axis is defined via
ẑ× x̂, the LRF defined by ROPS is unique and unambiguous.

108

9 .1 .4 EM

In the method proposed by Novatnack and Nishino [40], the ẑ axis is given by
the normal n at the feature point p. As regards to the x̂ axis, the eigenvector
of Eq. 9.2 associated with the largest eigenvalue is projected onto the tangent
plane defined by n. Then, the ŷ axis is given by ẑ× x̂.

9 .1 .5 Board

Board LRF [63] follows [40] in using the normal vector n at point p as the
ẑ axis. To compute a robust normal vector, a tangent plane is fitted to the
entire Br(p), then its normal vector ẑ = ±n is disambiguated by taking the
sign yielding a positive inner product with the average normal of the points
in Br(p). Since normals prove repeatable, the intuition for the estimation
of the x̂ axis rely again on surface normals. Hence, the method searches
for a reference point, q, considering all the pi points within the support,
and selects the one with the largest angular deviation with respect to n.
Then the x̂ axis is pointed towards q. For the sake of robusteness, instead
of considering ni as normal vector, a more robust normal is computed by
averaging normals over a small neighborhood of pi. Through experimental
results, the authors have demonstrated that q lies close to the margin of
the support. To speed up the computation, only the points having distance
greater than (0.85× r) from p, are considered when searching for q.

9 .1 .6 FLARE

The follow up work of Sec. 9.1.5 is referred to as FLARE [75]. The authors
follow a similar approach whereas q is selected as the point within the
periphery of the support exhibiting the largest signed distance (rather than
angle) to the tangent plane. Thus, it computes the ẑ axis as in Sec. 9.1.5,
but for the x̂ axis it uses the signed distance instead of the cosine with the
normal. The signed distance of a point pi is defined as:

dSD(pi) = ppi · ẑ (9.10)

with ppi being the vector going from p to pi. The algorithm selects the
point with the largest signed distance, which is the point whose component

109

parallel to the ẑ axis is the largest, meaning the most distant point from the
tangent plane at point p. As in Sec. 9.1.5, the projection of this point to the
tangent plane is normalized and taken as the x̂ axis.

9 .1 .7 TOLDI

TOLDI [157] proposes a new local reference frame together with a method
for local shape description. As regards the LRF, it computes the ẑ axis similar
to covariance analysis methods, presented in the initial remarks of this part,
as it computes the covariance matrix (using the barycenter) and considers as
z+ the unit eigenvector with the smallest eigenvalue. The first novelty is that
this covariance is computed using only 1

3 of the points within the support
instead of using all of them. The other novelty is in the disambiguation of
the sign, that follows the rule:

ẑ =

z+ if z+ ·
∑

pi∈Br(p) pip > 0

−z+ otherwise
(9.11)

The x̂ axis will lie in the tangent plane of p with respect to the normal ẑ, but
finding an orientation for such plane is more difficult than finding ẑ.
The first step is the computation of the projections of the support points on
the plane. For each pi ∈ Br(p),

vi = ppi − (ppi · ẑ(p)) · ẑ(p) (9.12)

The x̂ axis is then computed as a weighted sum:

x̂ =
1∥∥∥∥ k∑

i=0
wi1wi2vi

∥∥∥∥
2

k∑
i=0

wi1wi2vi (9.13)

In this sum, wi1 is related to the distance of the point and is designed to
improve robustness to clutter, occlusion and incomplete border regions,
while wi2 is set to make the points with larger projection distance contribute
more to the x̂ axis, since such distance feature is a distinctive cue and can
provide high repeatability on flat regions. They are defined as follows:

wi1 = (r−
∥∥p − pi

∥∥
2
)2 (9.14)

110

wi2 = (ppi · ẑ(p))
2 (9.15)

As usual, the ŷ axis is computed by cross product.

111

10
G R A D I E N T- B A S E D L O C A L R E F E R E N C E F R A M E F O R 3 D
S H A P E M AT C H I N G

In the initial remarks of this part, we have discussed about the main limit-
ations of state-of-the-art algorithms for LRF estimation and how they are
sensitive to different sources of noise. In this chapter, we propose a novel
LRF that is demonstrably robust to severe sampling artifacts, vertex noise,
and object deformation. Key to our method is the definition of the tangent
component as the intrinsic gradient of a scalar function defined on the 3D
object. Thus, we dub it GFrames. We will also consider dataset with non
rigid-transformations, depicting, thus, a challenging experimental setup.
The choice of the function directly determines the invariance classes of the
resulting LRF; by doing so, we crucially shift the key difficulties of directly
dealing with the object geometry to the simpler manipulation of a vector
space of real-valued functions. The intrinsic construction further makes our
LRF a natural choice in the more challenging non-rigid setting (see Fig. 10.1).
GFrames can be used as-is to improve existing descriptors and provide a
robust choice in applications requiring a repeatable LRF. An example on the
dog shape is shown in Fig. 10.1, where the LRF obtained with our approach
turns out to be more robust in comparison to a de-facto standard LRF (SHOT
[98], Sec. 9.1.2). We introduce a novel, theoretically principled LRF for 3D
shapes that is remarkably robust to sampling, and that can be made prov-
ably invariant to non-rigid near-isometric transformations. Our algorithm
is simple and effective, as we are going to demonstrate benchmarking on
datasets addressing deformable matching of meshes as well as rigid point
cloud registration. In order to provide a more in-depth study on the link
between the repeatability of the LRF and the performance of the descriptors,
we make a special effort of comparing on benchmarks which include tasks
such as deformable matching of complete meshes and registration of partial
point clouds, demonstrating in both cases the effectiveness of our approach.
The results obtained prove that our method can be used broadly across the
board.

113

SHOT

Ours

1

0

Figure 10.1: Comparison of LRF repeatability measured as mean cosine error on
two non-rigid poses of the dog shape. We compare with the de-facto
standard SHOT [98]. Left: The error is encoded as a heat map, grow-
ing from white (perfectly aligned LRFs) to red (gross misalignment).
Right: The computed LRFs; we only show the x̂ axes for visualization
purposes.

10 .1 related work

We briefly recap the proposals already explained in Sec. 9.1. A robust
and repeatable LRF is a key component for most handcrafted 3D local
descriptors, such as fast point feature histograms [45], exponential map-
ping [40], SHOT [98], ROPS [83], unique shape contexts [58], and point
signatures [17], to name just a few. Furthermore, robust local frames have
a crucial role in the recent geometric deep learning approaches [120], con-
structing non-Euclidean analogies of CNNs on meshes through local patch
operators [111, 118, 146]. Local descriptors that do not exploit an LRF are
either not distinctive enough [49], costly to compute [44], or suffer from
poor performance in the presence of noise and missing parts [47]. Cov-
ariance analysis family includes methods that define the axes in L(p) as
eigenvectors of the 3D covariance matrix between points lying within the
spherical support Br(p). Inherent to such methods is the sign ambiguity of
eigenvectors, making it hard to define repeatable directions; thus, efforts
have largely concentrated on the reliable disambiguation of the axes sign.
In [40], no disambiguation takes place, and the axis x̂ is simply defined as
the principal eigenvector projected onto the tangent plane defined by the
normal n (assumed to be given as input). In [55], all the three axes are given

114

directly by the eigenvectors; however, here ±ẑ is disambiguated by evaluat-
ing the two inner products 〈n,±ẑ〉 and keeping the sign yielding a positive
number. Axis x̂ nevertheless remains ambiguous. The LRF proposed with
the SHOT descriptor [98] employs a different covariance matrix, where the
contributions of the points in Br(p) are weighted by their distance to p. Sign
ambiguity is addressed by choosing the sign that makes the eigenvector con-
sistent with the majority of the measurements [37]; in practice, this results
in the x̂ axis pointing in the direction of greater sample density. Similarly,
in the ROPS descriptor [83] the axis x̂ is made to point in the direction of
greater mesh density. Methods based on geometric attributes determine x̂
by identifying a reference point q ∈ Br(p) within the support region. As an
early example, point signatures [17] first fit a plane to the boundary path
γ = M ∩ Br(p); the reference is then selected as the point q ∈ γ with the
largest positive distance to the fitted plane. In [63], a tangent plane is fitted
to the entire Br(p); its normal vector ẑ = ±n is disambiguated by taking the
sign yielding a positive inner product with the average normal of the points
in Br(p). The reference is then taken as the point q ∈ Br ′>r(p) having the
largest angular deviation with respect to n. The method of [75] follows a
similar approach, whereas q is selected as the point exhibiting the largest
signed distance (rather than angle) to the tangent plane. Finally, several
deep learning-based 3D descriptors have been proposed in recent years, with
most of them relying upon fixed LRFs in order to achieve rotation invariance.
This is the case of proposals like CGF-32 [143], PPFNet [162], and metric
learned SHOT [122] which all deploy the LRF proposed in [98]. In ACNN
[118, 119] and MoNet [146] architectures, the local patches are oriented using
the principal curvature direction. Differently, the PointNet architecture [148]
uses a spatial transformer network [107] to predict a rigid transformation
to canonically align the input data, while PCPNet [166] applies the spatial
transformer locally.

10 .2 establishing a gradient-based local reference frame

In this section, we present our proposal, but first we start with a description
of the mathematical background necessary to better understand how we for-
mulate and compute the gradient. Since our method can work on 3D shapes
represented as meshes or point clouds. We first open with a continuous
mathematical model and then discuss the discretization.

115

+1

0

-1

Figure 10.2: A scalar field on shape M, and its intrinsic gradient ∇f.

10 .2 .1 Background

Manifolds: We assume that our shapes arise from the sampling of 2-
dimensional Riemannian manifolds (surfaces) M, possibly with boundary
∂M, embedded into R3. Locally around each point x ∈ M, the manifold
is homeomorphic to the tangent plane TpM; the disjoint union of all such
planes forms the tangent bundle TM. We further equip the manifold with a
Riemannian metric, defined as an inner product 〈·, ·〉TpM : TpM× TpM → R

on the tangent plane depending smoothly on p. Functions of the form
f : M → R and F : M → TM are referred to as scalar- and (tangent) vector
fields, respectively. Properties expressed solely in terms of the metric are
called intrinsic. In particular, isometric deformations of the manifold (such as
a change in pose) preserve all intrinsic structures.

Intrinsic gradient: In classical calculus, derivatives describe how a func-
tion f changes with an infinitesimal change of its argument x. Due to the
lack of vector space structure on the manifold (meaning that we cannot
add two points, i.e., an expression like “p+ dp ′′ is meaningless), one needs
to define the differential of f as an operator df : TM → R acting on tan-
gent vector fields. At each point p, the differential is a linear functional
df(p) = 〈∇f(p), · 〉TpM acting on tangent vectors F(p) ∈ TpM, which mod-
els a small displacement around p. The change of the function value as
the result of this displacement is given by applying the differential to the
tangent vector, df(p)F(p) = 〈∇Mf(p), F(p)〉TpM. This can be thought of as
an extension of the notion of the classical directional derivative, where the
linear operator ∇Mf : L

2(M)→ L2(TM) is called the intrinsic gradient, and is
similar to the classical notion of the gradient defining the direction of the
steepest change of the function at a point, with the only difference that the
direction is now a tangent vector; see Fig. 10.2 for an example.

116

Figure 10.3: Gradient estimation on a triangle mesh (left) and on a sparse point
cloud representing a partial scan of the object (right). Our approach
only needs a notion of a tangent space to be applicable to any given
representation.

Discretization: Let us now assume the manifold is sampled at n points
p1, . . . ,pn, being the most basic representation of the shape called a point
cloud. Equipping it further with a simplicial structure with edges E and
triangular faces F yields a triangular mesh, which we assume to be a (dis-
crete) manifold. Scalar functions f : M → R are represented as vectors
f = (f(p1), . . . , f(pn))> encoding the value of f at each point. Following
standard practice, functions are assumed to behave linearly between neigh-
boring points (within each triangle in the case of meshes).

On meshes, the discrete intrinsic gradient ∇f yields tangent vector fields
defined on the mesh triangles; on each triangle tj, it is computed as a 3D
vector

∇f(tj) =
(

e21 e31
)E F

F G

−1f(p2) − f(p1)
f(p3) − f(p1)

 (10.1)

where E = ‖e21‖2, F = 〈e21, e31〉, and G = ‖e31‖2 (see the inset for the
notation).

p1

p2
p3

tje21 e31

On point clouds, intrinsic gradient is discretized as
follows. For each point p, we first estimate its tangent
space by locally fitting a plane to points within radius
r around p. These points are projected onto the plane,
where they are locally meshed into a triangle patch P

using Delaunay triangulation. We then take the weighted average ∇f(p) =
1∑
A(tj)

∑
tj∈PA(tj)∇f(tj), where A(tj) denotes the area of triangle tj.

We remark that this procedure is not equivalent to applying Eq. 10.1 to
a surface reconstruction of the point cloud: only a local reconstruction is

117

Figure 10.4: The x̂ axis of our LRF on different hand poses. In this example, re-
peatability is almost ideal due to the repeatability of the chosen scalar
function f(pi) = 1

n

∑n
j=1 d(pi,pj) equal to the average geodesic dis-

tance [31] from each point to all the others.

carried out at each point p, and then thrown away once ∇f(p) is estimated.
This brings additional robustness and efficiency in the presence of clutter or
large point clouds; see Fig. 10.3 for an example.

Finally, normals on point clouds are estimated via standard total least
squares [26]; for triangle meshes, the normal n(p) at a vertex p is computed
as the area-weighted average of the triangle normals of the triangles sharing
the vertex p.

10 .2 .2 GFrames

Our technique is based upon the construction of tangent vector fields as
gradients of scalar functions f : M→ R. We compute the average gradient of f
around p as:

x(p) :=
1∑

tj∈Nr(p)
A(tj)

∑
tj∈Nr(p)

A(tj)∇f(tj) (10.2)

where Nr(p) is the set of triangles within distance r from p.
While it brings resilience to noise, the averaging process does not guaran-

tee orthogonality to the normal vector n(p). We thus project x(p) onto the

118

plane identified by n(p) and rescale the projection to unit norm, leading to
the reference frame Lf(p) = {x̂(p), ŷ(p), ẑ(p)}:

x̂(p) := (x(p) − (x(p)>n(p))n(p))‖ ‖ (10.3)

ŷ(p) := ẑ(p)× x̂(p) (10.4)

ẑ(p) := n(p) (10.5)

where (·)‖ ‖ denotes vector normalization and the notation Lf emphasizes
that the definition of the LRF depends on the choice of the scalar function f.

Being defined on top of a gradient ∇f, our frames
are guaranteed curl-free (i.e., they never behave like local
vortices, see inset). This is desirable, since vortex-like pat-
terns lead to strong LRF inconsistency. Eq. 10.2 requires
f to be differentiable; this is always true in our case, due
to the assumption of piecewise-linearity. A separate question concerns the
presence of singular points (where ∇f(p) = 0). In the particular case of
closed (genus zero) surfaces, these are unavoidable due to the Poincaré-
Hopf (“Hairy Ball”) Theorem stating that the only surface with nowhere
vanishing tangent vector field is torus-like (genus 1); as we will show in
our experiments, however, such points are rare and do not affect the overall
quality of the LRF.

The choice of the function plays a role in determining the invariance class
induced by the LRF. A specific choice thus depends on the task: for instance,
in order to achieve invariance to 3D rotations, it is sufficient that the function
does not depend on the position of the object in space (an example is mean
curvature). We will provide several possible choices in the experimental
Sec. 10.4.

From a different perspective, constructing local descriptors d : M→ Rk

on top of a smooth frame field Lf can be seen as “steering” the descriptor
field d along a given flow. For shape matching and surface registration
applications, this fact can be exploited by designing flows that make use of
prior knowledge (in the form of sparse input correspondence). Specifically,
given a single point-wise match (x∗,y∗) ∈ M×N, the simple Euclidean
distance from x∗ (resp. y∗) to all other points in M (resp. N) have compatible
gradients (see Fig. 10.3), making our LRFs an ideal choice in correspondence
pipelines.

119

+f
∇f

−f

M N
Figure 10.5: Sign flips of f (top row) lead to reversed axes in our LRF. In the bottom

row, two high-frequency functions which are not exactly repeatable on
M and N lead to local axis flips.

10 .3 properties of gframes

We list some of the key properties that make our proposed LRFs suitable
for challenging settings. Additional properties depend on the choice of the
underlying function, and will be explored in the experimental section.
Invariance properties depend on the choice of the scalar function f; for
example, mean curvature endows the LRF with rotation invariance, and
Gaussian curvature with invariance to isometric deformations. If available,
it is also possible to use color texture as f. The chosen function must be
repeatable only up to a global scale, since ∇αf = α∇f for any α ∈ R and
the normalization Eq. 10.3 make all options automatically scale-invariant;
see Fig. 10.4 for an example.
Sign ambiguity is arguably the key issue of existing LRFs (see Sec. 10.1),
with a direct impact on their reliability. Our frames do not suffer from sign
ambiguity unless the sign of f is flipped (Fig. 10.5, top), or if f contains high
frequency oscillations (Fig. 10.5, bottom).
Robustness to sampling is another central weakness of many state-of-the-
art LRFs [75, 98]. To the best of our knowledge, none of the existing methods
is able to deal with strong differences in sampling (arising, for example,
when matching a CAD model to a 2.5D scan) or severe subsampling. We
run a full quantitative comparison with such methods in Fig. 10.6, using
the repeatability measure defined in Sec. 10.4.1; for these and the following
tests, we average over a representative dataset of six different shape classes
(cat, centaur, dog, hand, human, squirrel) of varying resolution (ranging
from 6K to 28K vertices).

120

0 0.2 0.4 0.6 0.8 0.98

0

0.2

0.4

0.6

0.8

1

Subsampling

M
ea

n
co

s

0.02 0.04 0.08 0.16

Local radius (% diameter)

Ours
FLARE [75]
SHOT [SHOT]

20% 80% 98%

Figure 10.6: Top left: LRF repeatability under increasing subsampling, from 0% (no
subsampling) to 98% (severe). We report results obtained with local
radius r = 0.02 (dashed) and r = 0.16 (solid); all shapes have unit
diameter. Top right: Comparisons at increasing radius, averaged over
all subsampling levels. Bottom: example of subsampled shapes used in
these tests.

Robustness to noise is achieved by averaging the gradient over a local
neighborhood (10.2), similar to existing approaches. A crucial difference,
however, is that our LRFs also leverage the smoothness of the function
f : M→ R in contrast to the smoothness of the 3D object M itself. This way,
we shift the problem of dealing with a noisy geometric domain to a far easier
task of choosing a smooth enough function on top of it. In Fig. 10.7 we show
a full quantitative evaluation at increasing amounts of surface noise.
Symmetry disambiguation is another property unique to our method. Choos-
ing an asymmetric f (e.g., distance to a point) directly endows descriptors
constructed on top of Lf with symmetry-awareness. The lack of such prop-
erty is considered a crucial drawback in shape analysis applications, leading
to ambiguous solutions in most top-performing shape matching pipelines.

10 .4 experimental results

We evaluate GFrames in different applications and settings, including rigid
surface registration and deformable matching.

121

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Noise level

M
ea

n
co

s

Ours
FLARE [75]
SHOT [SHOT]

noise
x1.5

noise
x4

Figure 10.7: LRF repeatability at increasing surface noise (expressed as a multiplier
of mesh resolution), obtained with radius r = 0.02 (dashed) and r =
0.16 (solid). Our results are better than FLARE and comparable with
SHOT while using a much smaller radius; for comparison, on the top
hand we plot the neighborhood at r = 0.02 (in blue) and r = 0.16 (in
red). Due to the use of much smaller radius, our LRFs are much more
robust to clutter and partiality.

10 .4 .1 LRF repeatability and rigid shape matching

Datasets

We use real scans of 4 objects (Armadillo, Bunny, Buddha and Dragon), from
the Stanford 3D Scanning Repository [15], we refer to this dataset as Stanford
Views. Some views of these objects are depicted in Fig. 10.8. Ground-truth
transformations are available for all the scans.

Problem formulation

We evaluate the proposed method through the repeatability of the LRF
and the efficiency of the descriptor built on the LRF. LRF repeatability at
corresponding points on different shapes is assessed via the MeanCos and
ThCos metrics [75]. The former represents the alignment error of both the
x̂ and ẑ axes, while the latter indicates whether the two reference systems
are aligned or not. More specifically, ThCos is the percentage of LRFs with
a MeanCos value above a certain threshold (we used the value of 0.97). To
evaluate the LRFs at corresponding keypoints we build point cloud pairs, as
in Sec. 4.3.2 and in Sec. 7.3.2. For the sake of completeness we recapitulate
the process. For each of M scans for a given test model, we extract a set
of uniformly distributed keypoints, and take all possible N =

M(M−1)
2 view

122

Gaussian curvaturemean curvature STED FLARE function

Armadillo Dragon Bunny Buddha

Figure 10.8: Example views from the Stanford repository. On each object we plot
one of the four scalar functions used for the rigid matching experiments.
Note how, despite baseline curvatures appear almost constant, they
still exhibit enough gradient to outperform the SHOT LRF in most of
our tests (compare with Fig. 10.9).

pairs (Vi,Vj). Due to partial overlap, a keypoint belonging to Vi may have
no correspondence in Vj. Hence, given the ground-truth transformations
Gi,Gj bringing Vi,Vj into a canonical frame, we compute the set:

Oi,j = {ki : ‖Giki −N(Giki, GjVj)‖ 6 εovr} , (10.6)

containing the keypoints in Vi that have a corresponding point in Vj. Here,
N(Giki,GjVj) denotes the nearest neighbor of Giki in the transformed view
GjVj, and εovr is set to 2.5ρ1. If the number of points in Oi,j is less than 20% of
the keypoints in Vi, the pair (Vi,Vj) is discarded due to insufficient overlap;
otherwise, keypoint correspondences are established via nearest neighbor
search in R3. Then, given a pair of corresponding keypoints (ki,kj) ∈ Vi×Vj,
we compute their LRFs and evaluate their repeatability according to the
MeanCos and ThCos metrics.

Choice of the scalar function

The freedom of choosing f is a big advantage, allowing us to better adapt
to the task at hand. As baseline choices, we use the aforementioned mean
(Ours mean) and Gaussian (Ours Gauss) curvature. In addition, we use the
following two functions:

STED (sum of total Euclidean distances) is simply defined as the sum
f(xi) =

∑n
j=1 ‖xi − xj‖2.

1Point cloud resolution ρ is the average Euclidean distance from each point to its nearest
neighbor.

123

FLARE originally proposed in [75], it is computed at each point p as the
average of the signed distances to the tangent plane defined by the normal
n(p), computed only on a subset of points lying at the periphery of the
support region. An example of each scalar function is shown in Fig. 10.8.

Results

In Fig. 10.9, we compare our LRF construction to that used in the state-of-the-
art SHOT [98] and FLARE [75] methods. Our scalar functions result effective
in achieving a repeatable LRF. Ours FLARE is consistently better than SHOT
and FLARE LRFs on both metrics, while Ours STED outperforms them in
terms of MeanCos. Note how Ours FLARE always outperforms the original
FLARE method, highlighting the usefulness of relying on gradient-based
LRFs for better repeatability. Ours STED tends to be less repeatable in terms
of ThCos; the STED function is more sensitive to scan overlap, as we noticed
a significant improvement with the increase of the overlap. A qualitative
comparison on two views of a room from the RGB-D SLAM dataset [77] is
further shown in Fig. 10.11, confirming the large improvement produced
by our approach also on this type of real-world data. Finally, Fig. 10.10

reports a comparison in terms of descriptor matching, where the SHOT
descriptor is used on top of each LRF. These results confirm the trend of the
previous tests; Ours STED and Ours FLARE exhibit best accuracy, with the
former having larger error on the Buddha model, which has smaller overlap
compared to the other objects.

10 .4 .2 Deformable shape matching

Datasets

We adopt real-world as well as synthetic datasets: TOSCA [38] (seven classes
of synthetic animal and human meshes undergoing non-rigid deformations),
FAUST [92] (100 meshes from scans of ten different human subjects in
different poses), TOPKIDS [126] (15 synthetic human meshes in different
poses, with severe topological artifacts in areas of self-contact). Examples
of shapes used in our experiments are shown in Fig. 10.12. All datasets
come with ground-truth correspondence; for cross-dataset experiments,
the ground-truth is estimated using the state-of-the-art shape registration
method FARM [177].

124

Problem formulation

We applied the descriptors constructed using LRF to the problem of deform-
able shape matching. Pointwise correspondence is established by nearest
neighbors in descriptor space. The obtained correspondences are then eval-
uated according to the Princeton protocol [59], computing the percentage
of matches that fall into geodesic radius r (represented as a fraction of the
shape geodesic diameter) from the ground truth correspondence.

Choice of the scalar function

We adopt the same baseline as the rigid setting (mean and Gaussian curvature)
plus two functions specific to this task (see examples in Fig. 10.13):
Fiedler vector is the first non-constant eigenfunction of the Laplace-Beltrami
operator of the surface. Except for a sign ambiguity (simply solved by
taking the square of the function), it is fully intrinsic and thus invariant to
isometries.
Discrete Time Evolution Process (DEP) is a recent intrinsic point descriptor
that is stable to non-isometric distortions, missing parts, and topological
noise [178].

Results

We consider four different settings of deformable shape matching (see
Fig. 10.14):
Isometric deformations: We test on 8 pairs of deformable animals (TOSCA,
dog and horse categories) and 20 scans of a human subject in different poses
(FAUST intra). We report an improvement of ∼ 10% over the de-facto LRF.
Non-isometric deformations: We test on 20 pairs of different poses and
different subjects (FAUST inter), demonstrating similar performance to the
previous setting.
Topological noise: We evaluate on 15 poses of a synthetic human subject
undergoing severe topological variations, e.g., gluing hands to the body
(TOPKIDS). In this challenging setting, the advantage of our model (Ours
DEP and Ours Fied) over the baseline is even more pronounced.
Different connectivity and resolution: We compose a hybrid dataset of
human shape pairs from SMPL [110], TOSCA and SPRING [101]; see the
last three columns of Fig. 10.12 for examples. This experiment is particularly
challenging due to the differences in mesh connectivity and density among

125

the various models. Such as setting is a notoriously tough nut for existing
LRFs and local descriptors, and is not frequently considered in existing
benchmarks. Nevertheless, we still outperform the baseline.

In Fig. 10.15 we show the matching error in one standard (FAUST) and
one challenging (TOPKIDS) case. Finally, on TOSCA we also evaluate the
LRF repeatability (MeanCos) over all 64 pairs of the dog and horse classes.
SHOT achieves an average score of 0.76, while Ours Fied reaches up to 0.90
(close to ideal). A qualitative evaluation of this result is shown for a dog
pair in Fig. 10.1 using Ours DEP.

126

ArmadilloBuddha Bunny DragonAverage
0

0.2

0.4

0.6

0.8

1
M

ea
nC

os
FLARE SHOT Ours Gauss
Ours mean Ours STED Ours FLARE

ArmadilloBuddha Bunny DragonAverage
0

0.1

0.2

0.3

0.4

Th
C

os

Figure 10.9: LRF repeatability on the Stanford Views dataset (the higher the better).
Here, SHOT denotes the LRF of the SHOT descriptor.

127

ArmadilloBuddhaBunnyDragonAverage
0

0.1

0.2

0.3

%
C

or
re

sp
on

de
nc

es

SHOT Ours Gauss Ours mean
Ours STED Ours FLARE

Figure 10.10: Descriptor matching results using the SHOT descriptor computed
on different LRFs (among which the SHOT LRF itself). The y-axis
denotes the percentage of matches whose Euclidean distance from
the ground truth is less than 7mm.

SHOT Ours

1

0

Figure 10.11: LRF repeatability on two views of a room (depicted on the left; their
alignment is on the bottom). MeanCos error is encoded as a heat map,
growing from white to red. Most of the error of our LRFs comes from
incomplete overlap of the two views.

128

TOPKIDS SMPL SPRING TOSCA

Figure 10.12: Representative data used in the deformable matching tests. TOPKIDS
exhibit topological gluing at self-contacts (arm touching the body).
Shapes from SMPL, SPRING, and TOSCA are used in cross-dataset
matching experiments; the zoom-ins highlight the difference in mesh
density and connectivity.

Gaussian curv. mean curv. DEP Fiedler squared

Figure 10.13: The four scalar functions used in the deformable setting. Their gradi-
ent has few singular points, which do not strongly affect the quality
of the resulting LRF.

Figure 10.14: Error rates for deformable matching on different datasets. The y-axis
represents the percentage of matches for which the geodesic distance
from the ground truth is less than the value reported on the x-axis.
The numbers in the legend denote the AUC.

129

1

0

TOPKIDSFAUST intra

SHOT Our Fied SHOT Our Fied

Figure 10.15: Qualitative comparisons on a standard (left) and challengin (right)
case. Pointwise matching error is encoded as a heatmap, growing
from white to dark red.

130

11
L E A R N I N G T O O R I E N T S U R FA C E S B Y S E L F - S U P E RV I S E D
S P H E R I C A L C N N S

Humans naturally develop the ability to mentally portray and reason about
objects in what we perceive as their neutral, canonical pose, and this ability is
key for correctly recognizing and manipulating objects as well as reasoning
about the environment. Indeed, mental rotation abilities have been extens-
ively studied and linked with motor and spatial visualization abilities since
the 70s in the experimental psychology literature [4, 6, 108].

In chapter Chap. 10, we investigated a possible solution to achieve pose
invariance for surface matching, because, similar to humans, many robotic
and computer vision systems require neutralizing pose variations when
processing 3D data and images in many important applications such as
robotic grasping and manipulation, scene understanding for augmented
reality, obstacle avoidance and path planning for driver-less cars, to mention
a few. In these domains, two main approaches have been pursued so to
define pose-invariant methods to process 3D data: pose-invariant operators
and canonical pose estimation. Pioneering work applying deep learning to
point clouds, such as PointNet [148, 149], achieved invariance by sampling
the range of all possible poses at training time through data augmentation.
This approach, however, does not generalize to poses not seen during
training. Hence, invariant operators like rotation-invariant convolutions
were introduced, allowing to train on a reduced set of poses (ideally one,
the unmodified data) and test on the full spectrum of rotations [111, 163,
187, 196, 201, 202]. Canonical pose estimation, instead, follows more closely
the human path to invariance and exploits the geometry of the surface to
estimate an intrinsic 3D reference frame which rotates with the surface.
Transforming the input data by the inverse of the 3D orientation of such
reference frame brings the surface in a pose-neutral, canonical coordinate
system wherein pose invariant processing and reasoning can happen. While
humans have a preference for a canonical pose matching one of the usual
poses in which they encounter an object in everyday life, in machines this
paradigm does not need to favour any actual reference pose over others: as

131

illustrated in Fig. 11.1, an arbitrary one is fine as long as it can be repeatably
estimated from the input data.

a cb

Figure 11.1: Canonical poses in humans and machines. Randomly rotated mugs
are depicted in (a). To achieve rotation-invariant processing, e.g. to
check if they are the same mug, humans mentally neutralize pose
variations preferring an upright canonical pose, as illustrated in (b). A
machine may instead use any canonical reference pose, even unnatural
to humans, e.g. like in (c).

Despite mental rotation tasks being solved by a set of unconscious abilities
that humans learn through experience, and the huge successes achieved
by deep neural networks in addressing analogous unconscious tasks in
vision and robotics, the problem of estimating a canonical pose is still solved
solely by the handcrafted proposals, that we have thoroughly discussed in
Chap. 10 [63, 68, 83, 98, 157, 191]. This may be due to convnets, the standard
architectures for vision applications, reliance on the convolution operator
in Euclidean domains, which possesses only the property of equivariance to
translations of the input signal. However, the essential property of a canon-
ical pose estimation algorithm is equivariance with respect to 3D rotations
because, upon a 3D rotation, the 3D reference frame which establishes the
canonical pose of an object should undergo the same rotation as the object.
We also point out that, although, in principle, estimation of a canonical refer-
ence frame is suitable to pursue pose neutralization for whole shapes, in past
literature it has been intensively studied mainly to achieve rotation-invariant
description of local surface patches. In this chapter, we explore the feasibility
of using deep neural networks to learn to pursue rotation-invariance by
estimating the canonical pose of a 3D surface, be it either a whole shape or
a local patch. Purposely, we leverage our insights in defining the concept
of self-orienting descriptor, Sec. 7.2.4, and rely on Spherical CNNs which
possess the property of equivariance w.r.t. 3D rotations by design to build
Compass, a self-supervised methodology that learns to orient 3D shapes. As
the proposed method computes feature maps living in SO(3), i.e. feature
map coordinates define 3D rotations, and does so by rotation-equivariant

132

operators, any salient element in a feature map, e.g. its argmax, may readily
be used to bring the input point cloud into a canonical reference frame.
However, due to non-linear activations and discretization artifacts, Spherical
CNNs turn out to be not perfectly rotation-equivariant [160]. Moreover, the
input data may be noisy and, in case of 2.5D views sensed from 3D scenes,
affected by self-occlusions and missing parts. To overcome these issues, we
propose a robust end-to-end training pipeline which mimics sensor nuis-
ances by data augmentation and allows the calculation of gradients with
respect to feature maps coordinates. In the experimental results, we adopt
dataset with rigid-transformation and compare the repeatability of the LRFs
computed by Compass, against several challenging baseline considering as
benchmarks many of the datasets presented until now such as: 3DMatch,
ETH and Stanford Views. Furthermore, we showcase that Compass can be
adopted to solve the task of rotation-invariant global shape classification.

11 .1 related work

The main state-of-the-art methods for LRF have been covered in Sec. 9.1.
Compass differs sharply from these methods because it learns the cues ne-
cessary to canonically orient a surface without making a priori assumptions
on which details of the underlying geometry may be effective to define
a repeatable canonical pose. Thus, we consider some of the learned ap-
proaches adopted to achieve invariance to rotation, especially in the context
of rotation-invariant shape classification. PointNets [148, 149] employ a
transformation network to predict an affine rigid motion to apply to the
input point clouds in order to correctly classify global shapes under rigid
transformations. In [163], Esteves et al. prove the limited generalization of
PointNet to unseen rotations and define the Spherical convolutions to learn
an invariant embedding for mesh classification. In parallel, Cohen et al.
[160] use Spherical correlation to map Spherical inputs to SO(3) features
then processed with a series of convolutions on SO(3). Similarly, PRIN [187]
proposes a network based on Spherical correlations to operate on spherically
voxelized point clouds. SFCNN [196] re-defines the convolution operator
on a discretized sphere approximated by a regular icosahedral lattice. Dif-
ferently, in [202], Zhang et al. adopt low-level rotation invariant geometric
features (angles and distances) to design a convolution operator for point
cloud processing. Deviating from this line of work on invariant convolutions

133

and operators, we show how rotation-invariant processing can be effectively
realized by preliminary transforming the shape to a canonical pose learned
by our method.

11 .2 learning to orient from spherical signals

In this section, we recap some concepts about the Spherical CNNs, followed
by a detailed description of our method.

11 .2 .1 Background

All the background concepts about Spherical CNNs are exposed in Sec. 7.2.1.
For more details, we point readers to [160, 163].

11 .2 .2 Compass

Our problem can be formalized as follows. Given the set of 3D point clouds,
P, and two point clouds V,T ∈ P, with V = {pVi

∈ R3 | pVi
= (x,y, z)T } and

T = {pTi ∈ R3 | pTi = (x,y, z)T }, we indicate by T = RV the application
of the 3D rotation matrix R ∈ SO(3) to all the points of V. We then aim at
learning a function, g : P→ SO(3), such that:

Vc = g
−1(V) ·V (11.1)

g(T) = R · g(V). (11.2)

We define the rotated cloud, Vc, in (11.1) to be the canonical, pose-neutral
version of V, i.e. the function g outputs the inverse of the 3D rotation matrix
that brings the points in V into their canonical reference frame. (11.2) states
the equivariance property of g: if the input cloud is rotated, the output of
the function should undergo the same rotation. As a result, two rotated
versions of the same cloud are brought into the same canonical reference
frame by (11.1). Due to the equivariance property of Spherical CNNs layers,
upon a rotation of the input signal each feature map does rotate accordingly.
This means that one could just track any distinctive feature map value
to establish a canonical orientation satisfying (11.1) and (11.2). Indeed,
defining as Φ the composition of S2 and SO(3) correlation layers in our
network, if the last layer produces the feature map [Φ(fV)] when processing

134

the spherical signal fV for the cloud V, the same network will compute the
feature map [LRΦ(fV)] = [Φ(LRfV)] = [Φ(fT)] when processing the rotated
cloud T = RV, with spherical signal fT = LRfV. Hence, if for instance we
select the maximum value of the feature map as the distinctive value to
track, and the location of the maximum is at QmaxV ∈ SO(3) in Φ(fV), the
maximum will be found at QmaxT = RQmaxV in the rotated feature map. Then,
by letting g(V) = QmaxV , we get g(T) = RQmaxV , which satisfies (11.1) and
(11.2). Therefore, we realize function g by a Spherical CNN and we utilize
the argmax operator on the feature map computed by the last correlation
layer to define its output. In principle, equivariance alone would guarantee
to satisfy (11.1) and (11.2). Unfortunately, while for continuous functions the
network is exactly equivariant, this does not hold for its discretized version,
mainly due to feature map rotation, which is exact only for bandlimited
functions [160]. Moreover, equivariance to rotations does not hold for altered
versions of the same cloud, e.g. when a part of it is occluded due to view-
point changes. We tackle these issues using a self-supervised loss computed
on the extracted rotations when aligning a pair of point clouds to guide
the learning, and an ad-hoc augmentation to increase the robustness to
occlusions. Through the use of a soft-argmax layer, we can back-propagate
the loss gradient from the estimated rotations to the positions of the maxima
we extract from the feature maps and to the filters, which overall lets the
network learn a robust g function. Unlike in Sec. 7.2.4, where we averaged
all the neighboring rotations near the maximum value of the feature map,
here we provide an end-to-end learned pipeline to tackle the problem.
From point clouds to spherical signals: Spherical CNNs require spherical
signals as input. We adopt the same approach we used when learning a
descriptor from spherical signals, Sec. 7.2.2. We transform point coordin-
ates from the input Euclidean reference system into a spherical one and
then constructing a quantization grid within this new coordinate system
[187]. The i-th cell of the grid is indexed by three spherical coordinates
(α[i],β[i],d[i]) ∈ S2 ×R where α[i] and β[i] represent the azimuth and in-
clination angles of its center and d[i] is the radial distance from the center.
Then, the K cells along the radial dimension with constant azimuth α and
inclination β are seen as channels of a K-valued signal at location (α,β)
onto the unit sphere S2. The resulting K-valued spherical signal f : S2 → RK

measures the density of the points within each cell (α[i],β[i]) at distance
d[i].

135

𝛼
d

𝛽

𝛼
d

𝛽

Spherical Signal
24, 24, 4 24, 24, 40 24, 24, 20 24, 24, 10 24, 24, 1

24, 24, 40 24, 24, 20 24, 24, 10 24, 24, 1
Spherical Signal

24, 24, 4

Figure 11.2: Training pipeline. We illustrate the pipeline for local patches, but the
same apply for point clouds representing full shapes. During training
we apply the network on a randomly extracted 3D patch, V, and on its
augmented version, T, in order to extract the aligning rotation RV and
RT , respectively. At test time only one branch is involved. The numbers
below the spherical signal indicate the number of cells along α, β and
d, while the triplets under the layers indicate input bandwidth, output
bandwidth and number of channels.

Training pipeline: An illustration of the Compass training pipeline is shown
in Fig. 11.2. During training, our objective is to strengthen the equivariance
property of the Spherical CNN, such that the locations selected on the feature
maps by the argmax function vary consistently between rotated versions of
the same point cloud. To this end, we train our network with two streams
in a Siamese fashion [30]. In particular, given V, T ∈ P, with T = RV and R a
known random rotation matrix, the first branch of the network computes
the aligning rotation matrix for V, RV = g−1(V), while the second branch
the aligning rotation matrix for T, RT = g−1(T). Should the feature maps
on which the two maxima are extracted be perfectly equivariant, it would
follow that RT = RRV = R?T. For that reason, the degree of misalignment
of the maxima locations can be assessed by comparing the actual rotation
matrix predicted by the second branch, RT, to the ideal rotation matrix that
should be predicted, R?T. We can thus cast our learning objective as the
minimization of a loss measuring the distance between these two rotations.
A natural geodesic metric on the SO(3) manifold is given by the angular
distance between two rotations [84]. Indeed, any element in SO(3) can
be parametrized as a rotation angle around an axis. The angular distance
between two rotations parametrized as rotation matrices R and S is defined
as the angle that parametrizes the rotation SRT and corresponds to the length

136

along the shortest path from R to S on the SO(3) manifold [43, 84, 145, 203].
Thus, our loss is given by the angular distance between RT and R?T:

L(RT,R?T) := cos−1
(
(tr(RT

TR?T) − 1)

2

)
. (11.3)

Soft-argmax: The result of the argmax operation on a discrete SO(3) feature
map returns the location i, j,k along the α,β,γ dimensions corresponding
to the ZYZ Euler angles, where the maximum correlation value occurs. To
optimize the loss in (11.3), the gradients w.r.t. the i, j,k locations of the
feature map where the maxima are detected have to be computed. To render
the argmax x operation differentiable we add a soft-argmax operator [51,
167] following the last SO(3) layer of the network. Let us denote as Φ(fV)

the last SO(3) feature map computed by the network for a given input point
cloud V. A straightforward implementation of a soft-argmax layer to get the
coordinates CR = (i, j,k) of the maximum in Φ(fV) is given by

CR(V) = soft-argmax(τΦ(fV)) =
∑
i,j,k

softmax(τΦ(fV))i,j,k(i, j,k), (11.4)

where softmax(·) is a 3D spatial softmax. The parameter τ controls the
temperature of the resulting probability map and (i, j,k) iterate over the
SO(3) coordinates. A soft-argmax operator computes the location CR =

(i, j,k) as a weighted sum of all the coordinates (i, j,k) where the weights
are given by a softmax of a SO(3) map Φ. Experimentally, this proved not
effective. As a more robust solution, we scale the output of the softmax
according to the distance of each (i, j,k) bin from the feature map argmax.
To let the bins near the argmax contribute more in the final result, we
smooth the distances by a Parzen function [3] yielding a maximum value in
the bin corresponding to the argmax and decreasing monotonically to 0 .
Learning to handle occlusions: In real-world settings, rotation of an object
or scene (i.e. a viewpoint change) naturally produces occlusions to the viewer.
Recalling that the second branch of the network operates on T, a randomly
rotated version of V, it is possible to improve

137

Figure 11.3: Local support of a keypoint depicting the corner of a table, divided in
3 shells. Randomly selected point in black; removed points in red.

robustness of the network to real-world occlusions and missing parts
by augmenting T. A simple way to handle this problem is to randomly
select a point from T and delete some of its surrounding points. In our
implementation, this augmentation happens with an assigned probability. T
is divided in concentric spherical shells, with the probability for the random
point to be selected in a shell increasing with its distance from the center of
T. Additionally, the number of removed points around the selected point is
a bounded random percentage of the total points in the cloud. An example
can be seen in Fig. 11.3.
Network Architecture: The network architecture comprises 1 S2 layer fol-
lowed by 3 SO(3) layers, with bandwidth B = 24 and the respective number
of output channels are set to 40, 20, 10, 1. The input spherical signal is
computed with K = 4 channels.

11 .3 experimental results

We evaluate Compass on two challenging tasks. The first one is the estima-
tion of LRFs for local surface patches, whilst in the second task, the canonical
pose provided by our method is instead used to perform highly effective
rotation-invariant shape classification by leveraging a simple PointNet clas-
sifier.

11 .3 .1 LRF repeatability

Datasets

We conduct experiments on three heterogeneous datasets: 3DMatch Sec. 7.3.1,
ETH Sec. 7.4.1 and Stanford Views Sec. 10.4.1.

138

Problem formulation

We follow a similar protocol to the one we used in Sec. 10.4.1 to compute
the repeatability of the local reference frame estimated at corresponding
keypoints in different views of the same scene. Unlike in GFrames, where
the main novelty was the proposal of a stable x̂ axis direction, with Compass
we produce a set of three orthogonal unit vectors, thus we need to consider
ẑ in the ThCos metric as well. All the datasets provide several 2.5D scans,
i.e. fragments, representing the same model, i.e. an object or a scene depend-
ing on the dataset, acquired from different viewpoints. All N fragments
belonging to a test model can be grouped into pairs, where each pair (Fs,Ft),
Fs = {psi ∈ R3} and Ft = {pti ∈ R3}, has an area of overlap. A set of cor-
respondences, Cs,t, can be computed for each pair (Fs,Ft) by applying the
known rigid ground-truth transformation, Gt,s =

[
Rt,s|tt,s

]
∈ SE(3), which

aligns Ft to Fs into a common reference frame. Cs,t is obtained by uniformly
sampling points in the overlapping area between Fs and Ft. Finally, the per-
centage of repeatable LRFs, Reps,t, for (Fs,Ft), can be calculated as follows:

Reps,t =
1

|Cs,t|

|Cs,t|∑
k=1

I
((

x̂(psk) ·Rt,sx̂(ptk) > ρ
)
∧
(
ẑ(psk) ·Rt,sẑ(ptk) > ρ

))
,

(11.5)

where I(·) is an indicator function, (·) denotes the dot product between two
vectors, and ρ is a threshold on the angle between the corresponding axes,
0.97 radians in our experiments. Rep measures the percentage of reference
frames which are aligned, i.e. differ only by a small angle along all axes,
between the two views. The final value of Rep for a given model is computed
by averaging on all the pairs.

Test-time adaptation

Due to the self-supervised nature of Compass, it is possible to use the test
set to train the network without incurring in data snooping, since there is
no external ground-truth information involved. This test-time training can
be carried out very quickly, right before the test, to adapt the network to
unseen data and increase its performance, especially in transfer learning
scenarios. This is common practice with self-supervised approaches [204].

139

Table 11.1: LRF repeatability on the 3DMatch dataset. Best result for each row in
bold.

LRF Repeatability (Rep ↑)
SHOT [58] FLARE [75] TOLDI [157] 3DSN [191] Compass

Kitchen 0.189 0.330 0.171 0.181 0.315

Home 1 0.251 0.354 0.243 0.236 0.397
Home 2 0.226 0.339 0.213 0.214 0.365
Hotel 1 0.194 0.385 0.213 0.216 0.370

Hotel 2 0.193 0.405 0.223 0.226 0.393

Hotel 3 0.240 0.407 0.261 0.276 0.446
Study 0.186 0.351 0.195 0.192 0.356
Lab 0.220 0.310 0.198 0.223 0.361
Mean 0.212 0.360 0.215 0.220 0.375

Experimental setup

We train Compass on 3DMatch following the standard procedure of the
benchmark, with 48 scenes for training and 6 for validation. From each
point cloud, we uniformly pick a keypoint every 10 cm, the points within
30 cm are used as local surface patch and fed to the network. Once trained,
the network is tested on the test split of 3DMatch. The network learned on
3DMatch is tested also on ETH and Stanford Views, using different radii to
account for the different sizes of the models in these datasets: respectively
100 cm and 1.5 cm. We also apply test-time adaptation on ETH and Stanford
Views: the test set is used for a quick 2-epoch training with a 20% validation
split, right before being used to assess the performance of the network. We
use Adam [96] as optimizer, with 0.001 as the learning rate when training
on 3DMatch and for test-time adaptation on Stanford Views, and 0.0005

for adaptation on ETH. We compare our method against the same baseline
we used for GFrames in Sec. 10.4.1 plus two recent and established LRFs
proposals: TOLDI [157] and a variant of TOLDI recently proposed in [191]
that here we refer to as 3DSN. Unfortunately, our current implementation of
GFrames could not process the large point clouds of 3DMatch and ETH due
to memory limits, and we can show results for GFrames only on Stanford
Views.

Quantitative results

Tab. 11.1 reports Rep on the 3DMatch test set. Compass outperforms the
most competitive baseline FLARE, with larger gains over the other baselines.

140

Table 11.2: LRF repeatability on the ETH dataset. Best result for each row in bold.
LRF Repeatability (Rep ↑)

SHOT [58] FLARE [75] TOLDI [157] 3DSN [191] Compass Compass (adapted)
Gazebo Summer 0.293 0.345 0.241 0.241 0.337 0.330

Gazebo Winter 0.266 0.268 0.170 0.196 0.292 0.303
Wood Autumn 0.253 0.210 0.157 0.174 0.288 0.307
Wood Summer 0.279 0.236 0.171 0.198 0.314 0.329
Mean 0.273 0.264 0.185 0.202 0.308 0.317

Table 11.3: LRF repeatability on the Stanford Views dataset. Best result for each
row in bold.

LRF Repeatability (Rep ↑)
SHOT [58] FLARE [75] TOLDI [157] 3DSN [191] GFrames Compass Compass (adapted)

Armadillo 0.127 0.185 0.156 0.141 0.168 0.340 0.359
Buddha 0.134 0.194 0.202 0.192 0.181 0.312 0.344
Bunny 0.106 0.379 0.232 0.172 0.426 0.440 0.463
Dragon 0.161 0.207 0.201 0.188 0.251 0.352 0.384
Mean 0.132 0.241 0.197 0.173 0.256 0.361 0.388

Results reported in Tab. 11.2 for ETH and in Tab. 11.3 for Stanford Views
confirm the advantage of a data-driven model like Compass over hand-
crafted proposals: while the relative rank of the baselines changes according
to which of the assumptions behind their design fits better the traits of the
dataset under test, with SHOT taking the lead on ETH and our previous
proposal GFrames on Stanford Views, Compass consistently outperforms
them. Remarkably, this already happens when using pure transfer learning
for Compass, i.e. the network trained on 3DMatch: in spite of the large
differences in acquisition modalities and shapes of the models between
training and test time, Compass has learned a robust and general notion
of canonical pose for a local patch. This is also confirmed by the slight
improvement achieved with test-time augmentation, which however sets the
new state of the art on these datasets.

Qualitative results

We provide qualitative results to show the effectiveness of Compass at
computing the canonical pose for local surface patches. Given a pair of
fragments, we visualize in both fragments at each point the accuracy of the
estimated LRF using two different metrics. In particular, in Fig. 11.4 we show
the repeatability of the estimated LRFs, in Fig. 11.5 the angular distance
between two rotations used as loss to train out network. In both figures, we
visualize the results yielded by Compass alongside FLARE, which offers
high performance across all datasets and is the second best on 3DMatch.

141

(a) Compass (b) FLARE

Figure 11.4: Visualization of repeatability at corresponding points of two fragments,
with repeatable LRFs in green, non-repeatable ones in red and non-
overlapping areas in gray. First row: a pair of fragments from Stanford
Views, second row: a pair of fragments from 3DMatch. (a) and (b):
results yielded by Compass and FLARE, respectively.

We can observe how Compass tends to yield larger areas in which the
LRFs are accurately estimated, i.e. either green or blue ones, depending
on the considered metric. It is worth pointing out how this is particularly
evident across those challenging fragment areas affected by large missing
parts in one of the two views, like, e.g. the left ear of the Bunny in the
fragments taken from the Stanford Views dataset.

11 .3 .2 Rotation-invariant Shape Classification

Datasets

We test our model on the ModelNet40 [117] shape classification benchmark.
This dataset has 12,311 CAD models from 40 man-made object categories,
split into 9,843 for training and 2,468 for testing. In our trials, we actually
use the point clouds sampled from the original CAD models provided by
the authors of PointNet. We also performed a qualitative evaluation of the
transfer learning performance of Compass by orienting clouds from the
ShapeNet [104] dataset.

142

(a) Compass (b) FLARE

Figure 11.5: Visualization of the angular error between the LRFs estimated at cor-
responding points of two fragments, with lower errors in blue, higher
errors in red and non-overlapping areas in gray. First row: a pair
of fragments from Stanford Views. Second row: a pair of fragments
from 3DMatch. (a) and (b): results yielded by Compass and FLARE,
respectively.

Problem formulation

Object classification is a central task in computer vision applications, and the
main nuisance that methods processing 3D point clouds have to withstand is
rotation. To show the general applicability of our proposal and further assess
its performance, we wrap Compass in a shape classification pipeline. Hence,
in this experiment, Compass is used to orient full shapes rather than local
patches. To stress the importance of correct pose neutralization, as shape
classifier we rely on a simple PointNet [148], and Compass is employed at
train and test time to canonically orient shapes before sending them through
the network.

Experimental setup

We train Compass on ModelNet40 using 8,192 samples for training and
1,648 for validation. Once Compass is trained, we train PointNet following
the settings in [148], disabling t-nets, and rotating the input point clouds
to reach the canonical pose learned by Compass. We followed the protocol
described in [187] to assess rotation-invariance of the selected methods: we
do not augment the dataset with rotated versions of the input cloud when
training PointNet; we then test it with the original test clouds, i.e. in the

143

canonical pose provided by the dataset, and by arbitrary rotating them. We
use Adam [96] as optimizer, with 0.001 as the learning rate.

Table 11.4: Classification accuracy on the ModelNet40 dataset when training with
no rotation augmentation. NR column reports the accuracy attained
when testing on the cloud in the canonical pose provided by the dataset
and AR column when testing under arbitrary rotations. Best result for
each column in bold.

Classification Accuracy (Acc. %)
Method NR AR
PointNet [148] 88.45 12.47

PointNet++ [149] 89.82 21.35

Point2Sequence [193] 92.60 10.53

Kd-Network [144] 86.20 8.49

Spherical CNN [160] 81.73 55.62

DeepSets [158] 88.73 9.72

LDGCNN [201] 92.91 17.82

SO-Net [173] 94.44 9.64

PRIN [187] 80.13 70.35

Compass + PointNet 80.51 72.20

Quantitative results

Results are reported in Tab. 11.4. Results for all the baselines come from
[187]. PointNet fails when trained without augmenting the training data
with random rotations and tested with shapes under arbitrary rotations.
Similarly, in these conditions most of the state-of-the-art methods cannot
generalize to unseen rotations. If, however, we first neutralize the pose by
Compass and then we run PointNet, it gains almost 60 points and achieves
72.20 accuracy, outperforming the state-of-the-art on the arbitrarily rotated
test set. This shows the feasibility and the effectiveness of pursuing rotation-
invariant processing by canonical pose estimation. In Fig. 11.6, we present
some models from ModelNet40, randomly rotated and then oriented by
Compass. The models estimate a very consistent canonical pose for each
object class, despite the large shape variations within the classes.

Finally, to assess the generalization abilities of Compass for full shapes
as well, we performed qualitative transfer learning tests on the ShapeNet
dataset, reported in Fig. 11.6. Even if there are different classes, the model
trained on ModelNet40 is able to generalize to an unseen dataset and
recovers similar canonical poses for the same object.

144

(a) ModelNet40
(b) ShapeNet

Figure 11.6: Qualitative results on ModelNet40 and ShapeNet in transfer learning.
Top row: randomly rotated input cloud. Bottom row: cloud oriented
by Compass.

Qualitative results

We add more qualitative results on the ShapeNet dataset, which complement
those reported in Fig. 11.6. We stress the generalization capability of our
model by adopting three different configurations to generate the training
data. For this experiment, we consider only three categories: airplane, chair
and lamp. The results of this study are shown in Fig. 11.7. In the first column,
(a), we present results for a category-specific training, i.e. learning to orient
only one category. Thus, we train one network for each category and then
we test on the test split of the same category. In (b), we present results for a
category-agnostic network, i.e. a single model trained on samples from the
three categories. Finally, in (c) we show the orientation results of transferring
to ShapeNet a model trained on the ModelNet40 dataset. From these results,
we observe how the canonical pose can be often correctly recovered under
random rotations, and how for each triplet of rotated objects (colored in
yellow) the estimated canonical pose (in blue) is consistent, even in a transfer
learning strategy. Interestingly, looking at the fourth and sixth row of the (b)
and (c) cases, where the model has to define a canonical orientation for more
than one category at once, the canonical pose learned by the network seems
to be similar across the chair and lamp categories, which have as the first
principal direction the direction of gravity. This suggests that our network
may generalize the concept of canonical pose across objects of different
categories that share a similar geometric structure.

145

(a) Category-specific training (b) Category-agnostic training (c) Transfer learning

Figure 11.7: Qualitative results on ShapeNet dataset under different training
strategies. Clouds in yellow represent randomly rotated input clouds
and the blue ones represent those oriented by Compass. In (a), we
present orientation results after training Compass with examples be-
longing only to a specific category from ShapeNet; in (b), the orient-
ation results after training Compass with a training set comprising
airplanes, chairs and lamps together; and, in (c) the orientation results
from the model trained on the ModelNet40 dataset and tested on the
ShapeNet dataset.

146

12
C O N C L U S I O N S

In this part, we have proposed two different procedures to establish a robust
local reference frame. In Chap. 10, we introduced a LRF suitable for rigid
and non rigid 3D shape matching applicable to meshes and point clouds.
The latest study on LRF repeatability was carried out in [75] and to get a
more comprehensive overview of the problem, in Chap. 10, we have shown
the limits of the de-facto standard LRF, SHOT, on datasets with rigid and
non rigid transformations in the context of shape matching. As main novel
contribution, we designed the tangent component of the LRF as the intrinsic
gradient of a scalar function defined on the surface; different designs are
possible depending on the task at hand, as we showcased in the experimental
results session Sec. 10.4. On the one hand, the flexibility of our approach
lies in the freedom of choosing a scalar function on top of which a stable
LRF, and in turn repeatable descriptors, can be constructed. On the other
hand, the main limitation is to be found in the requirement for the chosen
function to have limited high frequency content, which may lead to unstable
gradients; this excludes, for instance, the adoption of highly detailed texture
or oscillatory functions obtained, e.g., by wave propagation. To overcome
the problematic design choice of picking the most suitable scalar function
for a given task, we envision the adoption of our LRF construction in deep
learning pipelines, where the scalar function itself may be learned in an
end-to-end fashion.

In Chap. 11, we tackled the same problem but by a data-driven solution.
Thus, we realize the first end-to-end learned pipeline that defines and recov-
ers a canonical orientation for 3D surfaces. Unlike our proposal in Chap. 10,
where we relied on intrinsic properties of the shape, in Chap. 11, instead, we
leveraged the equivariant property of Spherical CNNs and, avoiding explicit
supervision, we let the network define the best-suited canonical pose for the
underlying geometry of the surfaces. Another important contribution of the
work carried out in Chap. 11, is definition of an ad-hoc data augmentation
that can be adopted to robustly handle occlusions in the real world 3D vision
scenarios. Without having to be tied to local surface properties, e.g. surface
normals, we were able to expand the range of experimental setup and, we

147

have thus demonstrated the ability of Compass to successfully orient global
shapes in the task of rotation-invariant shape classification. Moreover, the
effectiveness of our learned approach has allowed us to set the new state-
of-the-art performance on the challenging Stanford Views dataset, where
we outperformed our previous proposal, e.g. GFrames. For the future, we
would like to investigate the possibility to deploy a unified Spherical CNN
architecture acting as both descriptor, e.g. Chap. 7, and LRF estimator, e.g.
Chap. 11, for a deep learning feature matching pipeline.

We hope that the research in the field of canonical orientation accom-
plished in this part will raise the interest and stimulate further studies about
this topic.

148

Part IV

L E A R N I N G T O R E C O N S T R U C T 3 D O B J E C T S

13
I N I T I A L R E M A R K S

This dissertation is about lifting the knowledge on the 3D geometry present
in our world from humans to machines. A robot needs more than 2D visual
perception to complete a simple task such as opening a jar of peanut butter.
The 3D structure of the jar has to be recognized and possibly segmented in
its functional parts to accomplish the task. So far, we have dealt with 3D
object reconstruction, surface registration and shape classification, which
assume as input 3D data such as point clouds and meshes. However, an
intelligent system may be equipped with only a single camera and acquire
2D visual information as RGB images. Moreover, as technology became
more compact and affordable, the popularity of smartphones in the world
grew exponentially facilitating the spread of high-resolution devices at very
low cost. As a consequence, in our mobile phones there is a plethora of
applications based on complex computer vision algorithms. Based on these
considerations, in this last part, we will tackle a different problem, where
3D data will become the outcome of our algorithm, instead of the input, as
in the previous parts. In this regard, we will propose a method to perform
3D object reconstruction given as input a set of non-overlapping images of
an object. The goal of 3D object reconstruction from RGB data is to recover
the 3D structure of an object from one or multiple 2D images. This is a long
standing ill-posed problem and providing an effective solution can have a
key role for applications being developed, or just envisioned, in the field
of virtual and augmented reality, robot manipulation and grasping, rapid
prototyping/reverse engineering and autonomous driving. Existing works
in the field can be categorized into two main categories: single-view 3D object
reconstruction and multi-view 3D object reconstruction. While the latter is a well-
known traditional computer vision problem taking into account overlapping
views around the same object, the former has only been recently addressed
successfully thanks to the availability of large 3D CAD model repositories
[86, 100, 104, 180] and to the introduction of deep learning based methods.
Multi-view 3D object reconstruction has been addressed in the past by a
long line of geometry-based techniques such as structure from motion (SfM)
[147], multi-view/photometric stereo (MVS) [25], simultaneous localization and

151

mapping (SLAM) [105] and shape-from-X methods, i.e. shape-from-silhouette, or
shape-by-space-carving [12].

Multi-view methods try to recover the lost information about the depth
in 2D images by leveraging the insight that seeing the same point of an
object or a scene from different perspectives let us understand its underlying
geometry. Thus, effective solutions typically require a large set of images
acquired with a high-precision system made up by perfectly-calibrated
cameras or large overlap areas between the images. Although these methods
resulted to high quality 3D reconstructions, require operative conditions
that are not always feasible.

The recent breakthroughs powered by deep learning, have led to a new
generation of methods that are able to estimate the 3D shape of an object
from a single or multiple RGB images [192]. The intuition behind this line of
works leverages the prior knowledge about geometric structures of an object
to guess the invisible part of it, similarly to as how we humans do. Indeed,
recent proposals rely on a neural network to reconstruct the entire shape of
an object given a single image [136, 164, 179, 183, 194]. These methods use
the expressive power of neural networks to guess the occluded part of objects
and reconstruct the full object in a canonical pose. Due to the viewpoint
invariant reconstruction, the structures visible from different input images
are often discarded. As a result, the output shapes suffer from a lack of
realistic details. Even though the shape predicted are visually compelling
as examined in [184], different regions can correspond to the occluded part
of the object, hence the real 3D shape cannot be determined given only a
single-view. Recent works have investigated if what is performed is shape
reconstruction or shape retrieval [197].

The work that we are going to present in Chap. 14, tries to create a
bridge between classic computer vision techniques and the more recent
deep learning methods. Starting from sparse views of the object, we first
align them into a common coordinate system by estimating the relative pose
between all the pairs. Then, inspired by the traditional voxel carving, we
generate an occupancy grid of the object taken from the silhouette on the
images and their relative poses. Finally, we refine the initial reconstruction
to build a clean 3D model which preserves the details from each viewpoint.

152

13 .1 related work

In this section we provide a brief overview of the main methods aimed at
inferring the 3D structure of objects from one or multiple RGB image, we
considering mainly deep learning approaches.

13 .1 .1 Single-view 3D object reconstruction

Single-view object reconstruction methods hallucinate the invisible parts of
a shape by implicitly memorizing the statistical distribution of the training
data. A central role for the quality of the estimated shape is played by the
representation chosen to encode it. One of the more common choice is to
produce a shape as 3D voxel volume [109, 121, 123, 135, 136, 140, 152, 156].
While other 3D parametrization are indeed possible: octrees [150, 151, 154],
point clouds [138, 168, 174, 175], mesh [164, 170, 183, 188], depth images
[131, 137, 179], classification boundaries [189, 194] and signed distance
function [195]. Generation approaches were also explored for single-view
reconstruction including geometric primitive deformation [132, 164, 169,
172, 183], combination of Generative Adversarial Networks (GANs) [93] and
Variational Autoencoders (VAEs) [85] in [135] and re-projection consistency
[136, 152, 171, 182]. However, all the above mentioned works are based on the
assumption that invisible part of an object can be safely hallucinated given
the shape priors learned from training data. Unfortunately, the occluded
part of an object can not have a deterministic shape, as examined in [184, 198].
As a result, the inferred shapes tend to suffer from over smoothed surfaces
without fine details. Single-view reconstruction methods can achieve good
results, especially when used on the ShapeNet dataset due to the high
presence of symmetric shapes.

13 .1 .2 Multi-view 3D object reconstruction

Extracting 3D geometry from multiple views is a well researched topic in
computer vision. Methods based on multi-view stereo (MVS) [25], structure
from motion (SfM) [7, 29, 34, 147] and SLAM [105], require to match features
among images. Unfortunately, the matching process becomes difficult when
the viewpoints are separated by wide baselines and the images are poorly
textured. The dawn of deep learning has fostered several methods for multi-

153

view 3D reconstruction. Multi-view geometry cues can be exploited during
the training of single-view prediction systems as a supervisory signal [129,
136, 168, 174, 182], or during training and inference of multi-view systems to
enrich the learned representation by capturing view-dependent details [121,
142, 198, 199]. Kar et al. in [142] learn a machine for multi-view stereopsis
[21]. In [199], a coarse shape generated as in [183] is refined iteratively by
moving each vertex to the best location according to the features pooled from
multiple views. Unfortunately, both methods require exact groundtruth
camera poses. A different way of avoiding the need for camera poses, is to
reconstruct the object from each view in a canonical reference system and
let the net learn view-dependent shape priors. Choy et al. in [121] propose a
unified framework to create a voxelized 3D reconstruction from a sequence
of images, or just a single image, captured from uncalibrated viewpoints.
As soon as more views are provided to the network, the reconstruction
is incrementally refined by means of Recurrent Neural Networks (RNNs).
However, due to the permutation-variant nature of RNNs, the produced
results might be inconsistent, and, in addition, are time-consuming. An
alternative way, explored in [153], is to pool only maximum values. To
overcome these limitations in [200] Xie et al. introduce a learned context-
aware fusion module that acts on coarse 3D volumes generated on each input
images in parallel. In [198], Wei et al. propose to learn a generative model
conditioned by multiple random input vectors. With different random inputs,
they can predict multiple plausible shapes from each view to overcome the
ambiguity of the invisible parts. The final model is obtained by taking the
intersection of the predicted shapes on each single-view image.

154

14
A D I V I D E E T I M P E R A A P P R O A C H F O R 3 D O B J E C T
R E C O N S T R U C T I O N F R O M N O N - O V E R L A P P I N G V I E W S

The knowledge of the three-dimensional structure of objects in our surround-
ings is a paramount information for perception systems to accomplish tasks
such as object interaction and modeling. Although humans can guess the 3D
shape of an object of a known category from a single glance, this is a quite
complicated task for a machine that requires the ability to estimate the pose
of an object and to reconstruct its 3D shape. In this chapter, we are going to
introduce our solution to infer the 3D geometry of an object from multiple
RGB images. Multi-view 3D object reconstruction such as i.e. SfM, MVS and
SLAM are successful in handling many scenarios, but they all rely on feature
matching between images that can be difficult when multiple viewpoints
are separated by large baselines and the amount of textured regions in the
images is low. Recent deep learning based methods have been proposed
to overcome these limitations [131, 137, 142, 198–200]. Notably, most of
them rely on the unrealistic assumption of employing ground-truth camera
poses while inferring shapes [131, 137, 142, 199] or predicting models only
oriented in a canonical reference frame [190, 200]. Indeed, the CAD models
available in the public datasets to operate in the field, such as ShapeNet
[103] and ModelNet40 [116] share the same canonical reference frame so
that the up direction is aligned with the the gravity, i.e. all the chairs are
upright.

A less explored task in literature is the reconstruction of the 3D shape
of an object observed from multiple non-overlapping views [121, 198, 200].
This task has several important practical applications since it relaxes the
need of acquiring images around an object as a temporal sequence or ac-
cording to a predefined set of viewpoints. In practice, this can simplify the
acquisition skills of robots or humans when reconstructing the 3D model
of an object. Moreover, the presence of several, sometimes non-overlapping
images sparsely taken from an object is a common situation in scenarios
such as e-commerce, where products are advertised with a few images and
large database already exist.

155

(1) (2) (4)(3)

Set of Views Occupancy Grid Reconstruction

A
lg

eb
ra

ic

Po
se

O
pt

im
iz

at
io

n

Pa
ir

w
is

e
Po

se

Es
tim

at
io

n

O
cc

up
an

cy

G
rid

Re
fin

em
en

t

Figure 14.1: Given a set of views of the object, our framework (1) estimates the rel-
ative poses between pairs of images; (2) algebraically optimize the pose
of each image; (3) build an occupancy grid from poses and silhouettes;
and, (4) refine the occupancy grid to reconstruct the full model.

A reason why this direction has not been explored much in literature
is that, as mentioned, the majority of traditional multi-view approaches
require overlap among view pairs in order to, e.g. match keypoints or apply
photometric constraints. At the same time, for single-view completion
methods to be applied for this task, they would require the estimation of the
6D pose of each viewpoint, which is currently missing. Hence, our proposal
in this chapter addresses the problem of multi-view object reconstruction
with unknown camera poses and in arbitrary reference systems. We relax
the assumption of previous methods that views must be overlapping and
propose a two-stage learned pipeline for shape generation using color images
captured from a limited number of views. A schematic overview of our
reconstruction pipeline is shown in Fig. 14.1. In the first stage, we focus on
estimating the pose of each view. To do so, we construct a set of all possible
pairwise views and estimate the relative poses between them through a CNN-
based pose estimation. Then, we rearrange the pairs in a fully-connected
graph and convert it to a overdetermined system that can be further refined
by an algebraic pose optimization stage. In the second step, we rely on
the estimated poses to build a first rough approximation of the 3D object
reconstruction by projecting the object silhouettes from every views to a
shared occupancy grid. Finally, we refine the initial occupancy map with
a 3D CNN to produce the final voxelized model estimation. The clear
separation between the pose estimation and the identity estimation by means
of 3D object reconstruction motivates the name PoseIDoNet. To break up the
complexity of multi-view object reconstruction, we adopt a well-established
strategy in computer science and develop small independent pieces that
individually solve simpler problems. We rely both on deep learning models,
but also on geometrical constraints to effectively solve different steps of a
full 3D reconstruction pipeline and propose a method for multi-view 3D

156

object reconstruction from non-overlapping views without the need of poses
or without relying on a canonical orientation of the model. We show a
comprehensive experimental session dealing with relative pose estimation
between pairs of images and the 3D object reconstruction on the reference
benchmark ShapeNet.

14 .1 related work

Considering the classification of state-of-the-art methods for 3D object re-
construction made in Sec. 13.1, our work can be included in the multi-view
category. However, contrary to these methods, we propose a viewpoint-
variant modelling in order to enrich the learned representation grabbing the
visible geometry from each current viewpoint which is challenging if the
camera poses are unknown. Moreover, while several works targeting multi
view object reconstruction from sparse views exist, importantly, our method
can deal with both overlapping and non overlapping images and as such
represents a first step towards this scenario. Before we go any further, we
briefly expose methods aimed at recovering both the shape and the pose of
an object.

14 .1 .1 Shape and pose recovering

Researches have also proposed methods for simultaneous 3D shape re-
construction and camera pose estimation from single-view [168, 180, 182].
Tulsiani et al. [182] regress multiple poses hypothesis for each sample, for-
cing the learnt distribution to be similar to a prior distribution to deals with
the ambiguity of unsupervised pose estimation. In contrast Insafutdinov et
al. [168] train an ensemble of pose regressors and use the best model as a
teacher for knowledge distillation to a single student model. Finally, in [180]
the pose estimation is treated as a classification problem by discretizing the
azimuth and elevation angles.

14 .2 poseidonet

Given a set of N images acquired each from a different viewpoint around
the same object I = {Ii}

N
i=1, the objective is to reconstruct the 3D shape of the

object. To do so, we need to estimate the pose of each view so to orient the

157

images with respect to each other. The method is composed of two main
tasks: relative poses estimation and shape reconstruction. We solve this two
tasks with three independent components: (1) the relative pose estimation,
that takes every permutation of image pairs in I by means of a task-specific
neural architecture (see Sec. 14.2.1); (2) the graph-based rectification of the
bidirectional relative poses, aimed at refining the previously computed set
of pairwise poses, as well as to calculate the absolute poses with respect to a
reference image (see Sec. 14.2.2); and, (3) the reconstruction pipeline, that
starts from building an occupancy grid from the image silhouettes and poses
then refines it through a 3D CNN (see Sec. 14.2.3). Influenced by classical 3D
reconstruction frameworks, we predict relative poses instead of the absolute
ones to avoid aligning the 3D CAD models within an object class into a
single canonical coordinate system. In addition, we can easily deal with
different object classes without requiring a common reference alignment.

14 .2 .1 Pose estimation

From a set of images of an object, recovering its 3D geometry requires the
images to be correlated either through their relative or absolute pose. The
absolute poses have the disadvantage of requiring a canonical reference
coordinate for every object. The canonical system is usually handpicked,
which imposes a strong constraint to the system that might not be optimal
for many use cases. On the other hand, predicting the relative poses between
all pairs of views removes this constraint. Due to this, the first stage of the
pipeline relies on the relative pose estimation. We first arrange the set of input
images in a fully connected graph by establishing the links of all the possible
permutations of the image pairs. Unlike classical 3D reconstruction, our
approach does not require overlapping regions between two images. Thus,
we can effectively leverage all the permutations. After connecting all the
pairs, we estimate the relative pose transformation considering one image as
source Is and the other as target It. In general, the 6D camera pose can be
decomposed into a 3D rotation R and a 3D translation t. In our scenario, we
consider that the distance between the camera and the object is fixed and we
teach a neural network to regress only the rotation. Nevertheless, the same
method can be easily extended to regress also a translation. We rely on unit
quaternions to parameterize the regressed rotation and denote it as q̃ ∈ R4.
Therefore, we aim at learning a function Pose : (Is, It)→ R4.

158

Set of Views

Source

Target

ResNet-18

ResNet-18

Shared

10
24

25
6 425
6

Source Target
Apply the predicted
pose to the source

Figure 14.2: Schematic representation of our pose estimation architecture. A ResNet-
18 based encoder extracts a view-point invariant image descriptor on
both the source and target image. These two embeddings are then
concatenated and examined by a fully-connected based network that
will outputs the relative rotation between the input images.

Particularly, we approximate this function as a deep neural network N

that takes the source and target images (Is and It, respectively) and regress
a unit quaternion as q̃ = N (Is, It). A schematic representation of the
architecture is depicted in Fig. 14.2 where we employ a siamese ResNet-18 to
extract a 1024-dimensional deep embedding from each view independently.
Then, we concatenate the two representations and elaborate the resulting
2048-dimensional vector with a stack of fully connected layers to finally
regress the unit quaternion at the last layer.

Contour loss

We generate the training set for the network starting from the 3D model of
the object. A pair of images is created by rendering the model according to
the camera projection matrix π from random views with a fixed t∗, producing
the ground truth relative pose q∗ from Is to It. We adapt the contour loss
from [176] to supervise the regression of the pose of the network. Here,
to find the contours, we project the point cloud to the target image and
sample a sparse set of points on the image boundaries. The set of 3D points
on the contours is denoted as Vt := {v ∈ R3}. Using the contours on the
target image, we build the distance transform Dt. Consequently, with the
predicted pose q̃, we define the loss as:

Lcontours(q̃,Dt,Vt) :=
∑
v∈Vt

Dt

[
π
(
q̃q∗

−1(v− t∗)q∗q̃−1 + t∗
)]

(14.1)

with q−1 being the conjugate quaternion. The function measures the con-
tours alignment after transforming the points from the target to source using
the ground truth and from the source to the target using the prediction.

159

(a) Input Views (b) Lcontours only (c) Lcontours +Langular

Figure 14.3: A failure case of the contour loss, we show on the left (a) a couple
of input views and on the right (b-c) the ground truth contour (in
green) and the contour oriented according to the pose estimated by
the network (in red) drawn over the corresponding distance transform.
The network trained only with Lcontours (b) outputs a completely wrong
pose due to ambiguity in the distance transform. Adding Langular (c)
solves the ambiguity and align the contours well.

Although one can argue that we can simply take the contour points on the
source in order to avoid transforming back and forth, we need to consider
that there are instances when the source and the target have a large relative
pose. In this case, the contour from the source and the distance transform
from the target do not match.

Angular loss

Despite being very effective, we found out that learning a relative pose by
aligning the object contours can easily fall into local minima for objects with
an ellipse-like structure, e.g. cars. Unlike [176] that uses the contour loss for
small pose changes between two images, i.e. between 4◦ and 45◦, the relative
pose estimation in our work requires to handle large pose differences. An
example of such local minima is depicted in Fig. 14.3 with a rotation of
almost 180◦. The contour loss then have problems in distinguishing the front
and back side of the car by just looking at the contours.

Taking advantage of the ground truth pose q∗, we can directly supervised
the network with the angular difference between rotations thus establishing:

Langular(q
∗, q̃) := 1− Re

(
q∗q̃−1

‖q∗q̃−1‖

)
(14.2)

where Re denotes the real part of the quaternion.

160

Complete loss

The loss to train the network is a weighted combination of Eq. 14.1 and
Eq. 14.2

Lpose = α ·Langular +β ·Lcontours (14.3)

Later in Tab. 14.2, we show the relative contribution of the two components
to our pose estimation.

14 .2 .2 Pose optimization

Based on the predictions from Sec. 14.2.1, we can build a fully-connected
graph that connects all the images through the relative poses. For every pair
of images, we have a bi-directional link since we can predict the pose with
one of them as the source while the other as target and vice versa. However,
errors introduced from the prediction hinders us from directly using these
poses for reconstruction. Even when investigating a pair of images, there is
no guarantee that the pose of one direction is the inverse of the other.

To solve this problem, we propose to optimize the entire graph and
imposing one relative pose per pair. Taking the inspiration from the bundle
adjustment [19] to fix the poses using least-squares, we optimize the algebraic
solution of:

arg min
q̂i

N∑
i=1

N∑
j=1
j 6=i

∥∥∥R(q̂j) ·R(q̂i)
−1 − R(q̃i,j)

∥∥∥2 (14.4)

to find q̂i which is the absolute pose of a the i-th view. Here, q̃i,j is the
prediction where the i-th image is the source and the j-th as the target. We
also convert the quaternions to rotation matrix through the function R(·) and
assume that q̂1 is the identity rotation that signifies the reference coordinate
system of the absolute poses. Geometrically, we can interpret the difference
in rotation matrices in Eq. 14.4 as the distance between the vectors pointing
towards x-, y- and z-axis of the two rotations.

161

(a) Silhouette (b) Visual Cone (c) Rotated Visual Cone

Figure 14.4: Ray casting for a single view. We show (a) the silhouette and (b-c) two
visualization of the same visual cones – (b) one oriented according
to the camera view point and (c) the other according to a different
viewpoint.

14 .2 .3 Identity Reconstruction from an Occupancy grid

At this point, we have the set of images I = {Ii}
N
i=1 as input and the corres-

ponding set of absolute poses Q = {q̂i}
N
i=1 from the optimization in Sec. 14.2.2

with q̂1 as the identity rotation. Now, we have all the data to reconstruct the
object.

Similar to visual hull or voxel carving [12], we want to exploit the idea
of shape-from-silhouette, wherein, given a 3D grid, the voxels outside the
silhouette of at least one image is carved out of the grid, ending up with
the shape of object. However, using this method is not feasible for two
reasons. First, these methods usually require a large number of views of
the object to achieve a good reconstruction. For instance, the problem of
the reconstruction from a single view is illustrated in Fig. 14.4 where the
effects of ray casting become visible when the grid is rotated. The shape
of the object becomes more detailed only when we increase the number of
views. In our case, we must be able to also handle a handful of input images.
The second is that the errors introduced from the pose estimation generate
small misalignment among the images, removing more voxels that are on
the object. Note that one of the applications of visual hull is a multi-camera
studio where all the cameras are professionally calibrated.

Instead of the hard thresholding in visual hull, we propose to utilize an
occupancy grid to serve as the input to a network which then refines the
initial reconstruction. We denote the set of silhouette as S = {Si}

N
i=1, where

the pixel values are either 0 if it is outside the object and 1 if it is on the

162

Refiner

Occupancy grid
32 x 32 x32

Refined Volume
32 x 32 x32

43 ×
 3

2
C

on
v3

D

43 ×
 6

4
C

on
v3

D

43 ×
 1

28
 C

on
v3

D

43 ×
 6

4
C

on
v3

D

43 ×
 3

2
C

on
v3

D

43 ×
 1

 C
on

v3
D

Fu
lly

 c
on

ne
ct

ed

20
48

Fu
lly

 c
on

ne
ct

ed

81
92

23 ×
 M

ax
 P

oo
l

23 ×
 M

ax
 P

oo
l

23 ×
 M

ax
 P

oo
l

Si
gm

oi
d

Figure 14.5: Architecture of the occupancy grid refiner network that predicts the
final model.

object. Therefore, we compute the values of the voxels in the occupancy grid
are calculated as the weighted average:

V(x) =

∑N
i=1wi · Si

(
π
(
q̂ · x · q̂−1 + t∗

))∑N
i=1wi

(14.5)

where x is the centroid of the specified voxel andwi is the weight assigned to
the i-th view. Every voxel in the grid ranges from 0 to 1 where 0 corresponds
to a voxel that is not visible from any view and 1 corresponds to a voxel that
fall within the silhouette of all views. In our implementation, we assume
that the sum of all weights is one and w2 = w3 = · · · = wN while only w1
changes. The motivation behind this assumption is to give more importance
to the first view, the reference one, since the output of the model needs to
be aligned to this one. Therefore, w1 is generally weighted higher than the
other weights. The dimension of the occupancy grid is 32× 32× 32.

This coarse representation of the occupancy grid can be refined with the
help of deep learning. Inspired by [200], we use the 3D CNN sketched in
Fig. 14.5 to refine the raw occupancy map and predict the reconstruction. To
generate the ground truth voxels, we reorient the 3D model with respect to
the reference view and then discretize it to a grid of 323 voxels. The value of
the voxels in the ground truth occupancy map is either 0 (free) or 1 (full),
which is denoted as p∗i . This is differentiated from the predicted occupancy
map p̃i.

The network is trained to minimize the mean value of the voxel-wise bin-
ary cross entropies between the predicted occupancy map and the reoriented
ground truth model

Lrefiner =
1

nv

nv∑
i=1

[p∗i log(p̃i) + (1− p∗i) log(1− p̃i)] (14.6)

163

where nv = 323 is the number of voxels. At test time, the occupancy map
predicted by the network can be binarized with a simple 0.3 threshold to
obtain the final reconstructed 3D model.

14 .3 experimental results

In this section, we evaluate our relative pose estimation network as well as
the overall pipeline in 3D object reconstruction from multiple views.
Dataset: The experiments are conducted using the 3D models from the
ShapeNetCore.v1 [104] dataset the standard reference benchmark. Similar
to [168, 182], we focus on the three most challenging categories: airplanes,
cars and chairs. To render the images for each object, we use the toolkit
provided by [182] following the same data generation procedure. For each
model, we render five random views with random light source positions and
random camera azimuth and elevation, sampled uniformly from [0◦, 360◦)
and [−20◦, 40◦], respectively. To conduct a fair comparison, we use the same
train and test split provided in [168, 182] for the pose estimation part, while
the split provided by [121, 200] for the shape estimation.

14 .3 .1 Relative Pose Estimation

Problem formulation

To measure the pose error, we use the same metrics as Tulsiani et al. [182]:
(1) the accuracy, defined as the percentage of samples for which the error
between the predicted pose and the ground truth is less than 30◦; and, (2) the
median error. The error between two rotations represented with quaternions
is calculated through the angular difference:

θ(q∗, q̃) = 2 acos
(
q∗q̃−1

‖q∗q̃−1‖

)
, (14.7)

where q̃ and q∗ are the predicted and ground truth quaternion, respectively.
To evaluate the accuracy of estimated poses, we compute the relative poses
of every possible pairs of views given the ground truth absolute poses. Then,
we directly compare the predicted relative poses with the ground truth one.

164

Method Airplane Car Chair Mean

GT poses [182] 0.79 10.70 0.90 7.40 0.85 11.20 0.85 9.77

MVC [182] 0.69 14.30 0.87 5.20 0.81 7.80 0.79 9.10

DPCD [168] 0.75 8.20 0.86 5.00 0.86 8.10 0.82 7.10

Ours 0.79 6.49 0.92 3.32 0.85 7.18 0.86 5.66

Ours optimized 0.79 6.40 0.93 3.10 0.85 7.00 0.86 5.50
Ours one net all categories 0.77 6.80 0.90 3.40 0.82 6.80 0.83 5.70

Table 14.1: Quantitative evaluation for pose prediction, for each category we report
on the left the accuracy and on the right the median error. The best
results are highlighted in bold.

Experimental setup

The pose estimation network and refiner models are independently trained.
To train the pose network, for each model we render five views, compute
all the possible permutations of two views, and use each pair as a training
example. The network is trained with 224× 224 RGB images and batch
size of 24. Then, the loss functions are weighted by α = 0.1 and β = 0.9.
We used a fixed learning rate of 0.001 and the Adam optimizer [96]. We
compare our relative pose estimation against Tulsiani et al. (MVC [182]), as
well as Insafutdinov and Dosovitskiy (DPCD [168]). Both methods regress
the absolute camera pose from a collection of images of the same object using
a category-specific network. We use the results reported by the authors in
their respective papers. As for MVC, we also report the upper bound of the
method when trained with supervision (GT poses). Notably, both methods
need to align the canonical pose learned by the network to the canonical
orientation of the dataset before starting the evaluation while we don’t.
Moreover, both methods use different solutions to handle the problem of the
shape similarity when looked from different camera views. By formulating
the problem as relative pose regression, our network can easily handle this
situations without using a specific mechanism.

Quantitative results

In Tab. 14.1, we report both the accuracy (on the left) and the median error
(on the right) per category and averaged across all categories. Ours denotes
the result achieved by the raw predictions of our relative pose estimation
network without any kind of optimization. Even considering just the raw

165

Langular Lcontours Accuracy Median

7 3 0.45 78.23

3 7 0.84 8.24

3 3 0.86 5.50

Table 14.2: Ablation study on angular and contour losses. The best results are
highlighted in bold.

predictions, we are already able to achieve performance better than all the
considered competitors both in terms of averaged scores and per-category
performances. We ascribe this result to our choice of regressing relative
poses between views rather than the absolute pose of a single view with
respect to an implicit reference. The advantage of regressing relative poses
is particularly evident when comparing the median error where our method
without optimization improves the state of the art by −1.44◦. Applying the
pose optimization described in Sec. 14.2.2 (Ours optimized), we increase the
performance even more obtaining the best overall results. In the last row of
Tab. 14.1, we report the performance of our pose estimation model when
training a category agnostic network rather than a different model for each
category and applying the pose optimization. The network needs to solve a
much harder task in this case as testified by the small drop in performance
(−0.03 in accuracy and +0.2 in the median error). However, even in this
case, our proposal remains competitive in terms of accuracy or lower in
median error with respect to any competitor with the advantage of having
a single class-agnostic model. In Tab. 14.2, we report an ablation study
on the contribution of the two loss functions described in Sec. 14.2.1 when
training the relative pose estimation model. When training with Lcontours

only, our model unfortunately is not able to achieve satisfactory performance
while training with Langular only can already provide relatively good results.
However, by mixing the two loss functions, we are able to achieve the best
overall results increasing the accuracy by +0.02 and especially decreasing
the median error by −2.77◦.

Qualitative results

We provide in Fig. 14.6 the qualitative results to show the effectiveness of our
pose estimation network. We compare the results obtained by estimating the
relative pose for pairs of images taken from the objects belonging to different

166

categories in different poses. Given the input pairs shown in the first and
second columns of Fig. 14.6, the third column in the figure compares the
point clouds of the CAD model aligned according to the ground truth pose
and the predicted one, in green and red, respectively. Here, the alignment
between the two point clouds verifies the accuracy we achieved in Tab. 14.1.
To provide a better visualization of the quality of the estimated poses, the
figures in the last column encode the misalignment error computed as the
per point Euclidean Distance between the point cloud rotated according to
the ground truth matrix and the point cloud oriented with the predicted one.
Note that the errors are normalized according to the maximum error. From
these results, we can observe that our network produces good alignments
even in cases where the rotation between the source and target image is
large such as the first, fourth and fifth row. This is clearly evident in the
point clouds in column (c) where they are almost completely overlapping
and the misalignment error in column (d) which is consistently low for most
points.

14 .3 .2 3D object reconstruction

Problem formulation

For the shape estimation, we employ two different metrics: (1) the Intersec-
tion Over Union (IoU) and (2) the Chamfer Distance. The former provides
an evaluation of the goodness of the output volume while the latter is highly
correlated to the human judgment [180]. To compute the IoU, we binarize
the predicted occupancy maps using a fixed threshold th and compute:

IoU =

∑
i,j,k I(p̃i,j,k > th) I(p∗i,j,k)∑

i,j,k I
[
I(p̃i,j,k > th) + I(p∗i,j,k)

] (14.8)

where p̃i,j,k and p∗i,j,k are the occupancy probability of the predicted and
ground truth voxel at (i, j,k), respectively, while I(·) is an indicator function.
Note that higher IoU values indicate better reconstruction results. The
Chamfer Distance dChamfer compares two point clouds. Given a ground
truth P∗ = {x∗n} and a predicted P̃ = {x̃n} point clouds, this metric is defined
as:

dChamfer(P
∗, P̃) =

1

|P̃|

∑
x̃∈P̃

min
x∈P∗
‖x̃ − x∗‖2 +

1

|P∗|

∑
x∗∈P∗

min
x̃∈P̃
‖x∗ − x̃‖2 (14.9)

167

0.0

1.0

0.5

a b c d

a b c d

0.0

1.0

0.5

0.0

1.0

0.5

a b c d

Figure 14.6: Qualitative results for the pose estimation network. We show on the
left (a, b) the source and target input image, on the right (c) the CAD
model point cloud, in green, oriented according to the ground truth
pose, and the same point cloud, in red, oriented with the pose predicted
by our method. In the last column (d), we visualize the misalignment
error between the two models as a heat map ranging from blue (perfect
alignment) to red (maximum misalignment).

In Eq. 14.9, the first term measures the precision of the predicted point cloud
by measuring the average distance between the predicted point and the
closest ground truth one while the second measures how well the predicted
point cloud covers the ground truth by measuring the average distance
between a ground truth point and the closest predicted one. We binarize

168

the output of the refiner network using a threshold th = 0.3. Then, for the
IoU, the ground truth voxel grid is computed using the point cloud of the
3D model oriented by the ground truth pose from the canonical view to
the reference view. For the Chamfer Distance computation, we convert the
predicted voxel grid into a point cloud and compute the error against the
reoriented ground truth cloud uniformly sampled according to [174].

Experimental setup

To train the refiner network we use the ground truth pose and silhouettes
extracted from the images. We take a set of 5 views and poses per model,
we randomly select one view as reference, then perturb the ground truth
poses by a maximum of 10◦ and finally build the occupancy grid. The refiner
network take as input an occupancy grid of 32× 32× 32 and outputs a same
sized grid. We train the model with batch size 16, fixed learning rate of
0, 001 and the Adam optimizer [96]. Given an unconstrained set of views
our method is able to reconstruct the 3D model of an object aligned with
one of the views provided as input. Unfortunately, there isn’t any work
in the literature that addresses the same exact settings, as structure from
motion methods rely on the assumption of having overlapping views, while
most 3D reconstruction methods reconstruct a model only in an arbitrary
reference view. Therefore, to provide some insightful comparison, we have
chosen the most similar work in the literature as competitors: multi-view
reconstruction solutions that do not require overlapping views or pose as
inputs, but reconstruct the model only in a canonical reference view in form
of a voxel grid. Thus, we compare against Pix2Vox [200] and 3D-R2N2

[121]. We use the public available implementations kindly provided by the
authors. To have a fair comparison, all methods take the same number of
input images. Both the pose estimation and the refiner networks are trained
using one model for all the categories.

Quantitative results

In Tab. 14.3, we compare our full pipeline against Pix2Vox and 3D-R2N2.
We evaluate three variants of our method: PoseIDoNet denotes the full
reconstruction pipeline, PoseIDoNet GT Poses denotes the 3D reconstruction
part of our pipeline evaluated with input occupancy grid built according
to ground truth poses, finally, PoseIDoNet Canonical extends the previous
by taking as input and producing as output an occupancy grid oriented

169

Method Airplane Car Chair Mean

3D-R2N2 [121] 0.585 3.77 0.851 3.58 0.575 4.21 0.670 3.86

Pix2Vox [200] 0.723 3.20 0.876 3.54 0.612 3.77 0.737 3.50

PoseIDoNet 0.538 4.81 0.627 3.93 0.510 4.75 0.559 4.50

PoseIDoNet GT poses 0.654 3.85 0.659 3.63 0.592 4.06 0.635 3.85

PoseIDoNet Canonical 0.732 2.92 0.874 3.51 0.648 3.39 0.751 3.28

Table 14.3: Quantitative evaluation for shape prediction, for each category we report
the average IoU on the left and the Chamfer distance between normal-
ized point clouds multiplied by 100. The best results are highlighted in
bold.

according to the dataset canonical orientation. Comparing the performance
of PoseIDoNet to the competitors we can see how for the harder task we
picked we are not able to reconstruct models as accurately as the competitors
that assume a canonical view. This is true also when considering the variants
of our model that takes ground truth poses as input, even if the performance
increases and get closer to those of the competitors we still perform slightly
worse.

We argue that this slightly inferior performance are not due to an inferior
3D reconstruction pipeline but due to the task that we are trying to solve
being harder than the one the competitors are addressing (i.e., arbitrarily
aligned reconstruction vs canonically aligned reconstruction). To verify
this claim we train an additional variant of our pipeline that reconstruct
the 3D model in a fixed canonical reference frame (PoseIDoNet Canonical)
to have a fairer comparison with the competitors. In this settings our 3D
reconstruction strategy achieves clearly better results and surpasses the
current state of the art proving that our solution has the ability to achieve
very detailed and refined reconstructions. Unfortunately relying on the
assumption of having a canonical orientation for all the objects we wish to
reconstruct works well for academic datasets, but does not scale to real world
applications. For this reason we believe that our reconstructions from an
arbitrary viewpoint provide a way more valuable output even if sacrificing
a little accuracy in the 3D reconstruction. In Fig. 14.7, we report a visual
comparison between the reconstruction obtained by different methods on
the three classes of the ShapeNet test set. Our reconstructions are obtained
by PoseIDoNet and correspond to a model aligned to one of the input views.
To ease the visualization and the comparison with the other methods, we

170

Ground Truth 3D-R2N2 Pix2Vox Ours

Figure 14.7: Comparison of multi-view reconstructions methods on the ShapeNet
test set. On the left we show the 5 RGB views used as input for every
model. Ours refers to PoseIDoNet.

manually re-aligned the model to the reference frame. Our reconstructions
can better keep some of the fine details present in the views, for example
the hole in the chair back or the smooth shapes of the car. However, since
we are reconstructing a shape aligned to one of the view instead of using
a canonical reference, we might lose some precision if straight surfaces do
not align well with the voxel grid. This might result in aliasing like artifacts
(i.e., staircase effect in 3D) like the back of the chair and its front legs in our
reconstruction.

Qualitative results

We show more qualitative results of the reconstruction obtained by our
pipeline for the three categories considered: airplanes in Fig. 14.8, cars in
Fig. 14.9 and chairs in Fig. 14.10. Due to the view-dependent reconstruction,
the voxel grid obtained to supervise our model in training has a lower spatial
resolution compared to the voxel grid available in the ShapeNet dataset.
Indeed, to get a voxel grid w.r.t. the reference view, we first align the point
cloud of the CAD model to the reference view, then we voxelize it in a
32× 32× 32 grid. As a result, the predicted shapes have a smaller spatial
resolution since they need to be aligned with the input RGB images, and
therefore our refiner model outputs a shape with the same lower spatial
resolution. This difference is even more clear if we look at the reconstruction
in Fig. 14.11 where PoseIDoNet Canonical is trained using the voxel grid
available in ShapeNet. Considering the chair reconstructed by our method

171

Views GT Pix2Vox-A 3D-R2N2 Ours

Figure 14.8: Comparison of multi-view reconstructions methods on the ShapeNet
test set for the airplane category. On the left we show the 5 RGB views
used as input for every method. We also report the results for the two
main competitors Pix2Vox [200] and 3D-R2N2 [121]. Ours refers to
PoseIDoNet.

Views GT Pix2Vox-A 3D-R2N2 Ours

Figure 14.9: Comparison of multi-view reconstructions methods on the ShapeNet
test set for the car category. On the left, we show the 5 RGB views
used as input for every method. We also report the results for the two
main competitors Pix2Vox [200] and 3D-R2N2 [121]. Ours refers to
PoseIDoNet.

in Fig. 14.10, we show that we are able to maintain the fine details of the
models that the other reconstruction solutions are completely discarding

172

Views GT Pix2Vox-A 3D-R2N2 Ours

Figure 14.10: Comparison of multi-view reconstructions methods on the ShapeNet
test set for the chair category. On the left we show the 5 RGB views
used as input for every method. We also report the results for the two
main competitors Pix2Vox [200] and 3D-R2N2 [121]. Ours refers to
PoseIDoNet.

or incorrectly reconstructing. Considering the second row, our method is
the only one to correctly reconstruct the arm rests and legs of the chair,
while the competing methods either produce detached parts in the models
or fill parts that should be empty. The same holds for the unusual shape
of the legs of the chair in the third row. Our method is the only one to
produce a correct reconstruction while the competitors either reconstruct
a more canonical shape with four legs or result in detached parts. Similar
consideration holds for the reconstruction of planes in Fig. 14.8 and trucks
in Fig. 14.9. Our method correctly approximate the shape of the models
while, at the same time, keeps some of the fine details like the flash light
and the rear floor for the truck in the first row.

Qualitative results using the canonical orientation

This section compares the generated shapes of two variants of our recon-
struction pipeline – the standard one reconstructing in an arbitrary reference
frame aligned with one of the input views, i.e. PoseIDoNet; and, the one that
always reconstruct a model in a canonical reference frame, i.e. PoseIDoNet
Canonical. The purpose of this comparison is to clarify the performance
of the second stage of our method, which is composed of building the

173

occupancy grid and the refiner network. For PoseIDoNet Canonical, we
first build an occupancy grid oriented as the canonical orientation of the
ShapeNet dataset, then we refine this volume using the refiner network. As
already pointed out in 14.3.2, to supervise our network, for PoseIDoNet Ca-
nonical, we use as ground truth the voxel grid available from the ShapeNet
dataset. When comparing the reconstruction of PoseIDoNet Canonical to
PoseIDoNet, we can see how the reconstruction on a fixed reference frame
results in more detailed and smooth models. We ascribe this difference to the
task learned being simpler than reconstruction w.r.t. an arbitrary viewpoint.
When comparing the reconstructions of PoseIDoNet Canonical to those of
the competing methods, we can see once again how our method is able to
obtain a similar quality of the reconstructed shape, while, at the same time,
maintaining the fine details like: the legs and arm rests in the chair, the ex-
haust pipes in the truck or the propellers in the plane. We believe that these
results clearly show how our 3D reconstruction from silhouettes projected
in an occupancy grid is as effective (or more) than the alternatives proposed
in the literature. However, reconstruction w.r.t. an arbitrary reference frame
is a much harder task and this is reflected in slightly less detailed models
for PoseIDoNet pipeline without the canonical frame reconstruction. We

GT Pix2Vox-A 3D-R2N2 Ours Ours Canonical

Figure 14.11: Comparison of multi-view reconstructions methods on the ShapeNet
test set. On the left, we show the ground truth voxel grid. We also
report the results for the two main competitors Pix2Vox [200] and
3D-R2N2 [121]. Ours and Ours Canonical refer to PoseIDoNet and
PoseIDoNet Canonical, respectively.

174

will provide more details on how the reconstruction change with respect to
the view choose as reference in 14.3.2.

Qualitative results with changing reference view

In Fig. 14.12 we show how our pipeline is able to reconstruct different
models with respect to the reference view considered when building the
occupancy grid. First of all, we would like to point out that our method can
correctly reconstruct a model that is nicely aligned to each of the views when
it is selected as reference. Secondly, we want highlight how the fine details
on the reconstructions depends on how well the corresponding details are
visible in the original reference image. For example the reconstruction of
the legs of the first chair is more detailed when selecting as reference view
one of the two rightmost one where the geometrical structure of the leg is
cleanly visible. The same consideration can be extended to the second chair
where the shape that mostly highlights the peculiar shape of the backrest is
the one obtained when considering as reference the third view.

175

Figure 14.12: Comparison of multi-view reconstructions methods on the ShapeNet
test set for the chair category performed by PoseIDoNet. In each
column, we depict the voxel grid produced using a different reference
view.

176

15
C O N C L U S I O N S

In the concluding part of this thesis, we have tackled the problem of recover-
ing the geometry of an object from RGB images. Thus, in Chap. 14 we de-
scribed a novel approach for 3D object reconstruction from non-overlapping
images sparsely taken from an object. Contrarily to state-of-the-art propos-
als, our solution is the first to propose a 3D reconstruction pipeline that
does not require training models from a dataset with a predefined canonical
orientation and is able to reconstruct them aligned to any arbitrary input
view. This characteristic is crucial both to scale to real datasets as well as
to apply this technology to augmented reality applications. Our pipeline is
built by stand alone components that address common problems in com-
puter vision and can be easily reused for different tasks. In the future, we
plan to continue the development of our solution following two main paths:
end-to-end optimization of the whole pipeline for a specific class of objects
and extension to different 3D representations. Moreover, we also plan to
test our standalone components with different solutions taken from the
recent literature in this field, for example we can combine our relative pose
estimation network with the 3D multi view reconstruction from [142, 199].

177

Part V

F I N A L R E M A R K S

16
C O N C L U S I O N S

This thesis has been concerned with the topic of understanding the 3D
structures of objects and environments present in the real world through
3D computer vision. An autonomous agent moving inside an environment
needs a proper knowledge of the space in order to navigate it and interact
with objects. We have mainly discussed two problems: how to effectively
deploy machine/deep learning methods to improve each of the step of the
3D feature matching pipeline, a crucial building block for many applications
that rely on automatic estimation of similarity between shapes, and 3D
object reconstruction from images, a traditional computer vision problem
that is increasing in popularity thanks to the progress of deep learning.
We have started this dissertation approaching the problem of 3D keypoint
detection. In Chap. 3, we have shown how casting keypoint detection as
binary classification has proven to be a successful and effective approach.
In particular, the definition of a saliency function aimed at maximizing the
overall performance of the feature matching pipeline turned out to be a
valid strategy to increase the number of correctly matched descriptors in the
context of 3D object recognition. Moreover, the experimental results proved
that the keypoint learning framework can be successfully coupled with 3D
descriptors that encodes different properties of the surface. Based on these
results, we then tried to answer the long-standing problem of the definition
of the best 3D descriptor-detector pair considering two 3D computer vision
applications, 3D object recognition and surface registration. For most of the
state-of-the-art proposals in the field of local 3D descriptors, we learned
the corresponding detector and investigated how different pairs behave
on datasets addressing the two above mentioned applications. As main
outcome of this performance evaluation, we have shown that using a pair of
learned descriptor-detector can achieve state-of-the-art performance on the
Laser Scanner dataset in 3D object recognition.

Following the pattern defined by the feature matching pipeline, in Chap. 7,
we then moved to the problem of describing local 3D keypoints and, we
tackled it with a more modern deep learning based approach. Specifically,
we combined two recent innovations, i.e. Spherical CNNs and plane folding

181

decoders, to learn a local equivariant embedding that can be oriented only
at test time to achieve invariance to rotation. To this end, we have explored
two possible directions. The first one, relies on leveraging the peculiar
properties of Spherical CNNs to define a self-orienting descriptor, while
the other consists in using an off-the-shelf LRF. Despite the elegance of the
former, the latter turned out to be the most powerful. When used in the
context of surface registration, our method is particularly effective. Indeed,
we outperformed all the learned unsupervised 3D descriptors, and obtained
competitive results against the latest supervised method, i.e. 3DSmoothNet.
Through a deeper study of the design choices of the Spherical CNNs archi-
tecture, we demonstrated the power of our method to generalize both in
indoor and outdoor environments, reaching the state-of-the-art results on
both the 3DMatch and ETH datasets.

Moving on to Part III, we have shown how local descriptors suffer from a
huge drop in performance when the LRF is not repeatable. We address this
issue in Chap. 10, by proposing a novel LRF and comparing the performance
of the original SHOT descriptor, Sec. 6.1.6, against to SHOT descriptor
constructed on top of our proposed LRFs. In the experimental setup, we
addressed rigid as well as deformable shape matching. In Chap. 11, we
tackled a similar problem, but we solved it in a more effective way the by
leveraging the equivariant property of Spherical CNNs. Thus, we realized
the first learned framework to canonically orient local as well as and global
shapes. As a result, we outperformed our previous proposal on the Stanford
Views dataset and obtained a more repeatable and robust LRF. The state-
of-the-art results on 3DMatch, ETH and Stanford Views in terms of LRF
repeatability, together with the results presented in Chap. 7, reinforced the
claim that Spherical CNNs are a very effective deep learning machinery for
point cloud processing.

Finally, in Chap. 14 we have explored the idea of reconstructing 3D objects
from multiple views by designing a two steps pipeline. Our solution consists
in a pipeline that does not require known camera poses to aggregate the
geometric structures present in the different images in the final reconstructed
model, neither requires training models from a dataset with a predefined
canonical orientation. The latter aspect proved crucial for the reconstructions,
as evidenced by the results presented in Sec. 14.3.2. Thanks to having
separated the 3D object reconstruction into two smaller problems, relative
pose estimation between non-overlapping images and a occupancy grid
refinement, each component of our pipeline can be reused as a plug-and-

182

play module for many different computer vision applications. Although in
the experimental setup we relied on strong assumptions, e.g. the relative
poses are rotation-only without any translations and images are required
to feature a clean background, our proposal has set a new baseline on the
ShapeNet dataset for view dependent 3D object reconstruction from multiple
views without ground-truth camera poses.

In this thesis, we have analyzed how to apply data-driven approaches
to solve 3D computer vision problems. Although the use of deep learning
algorithms has boosted the performance of the feature matching pipeline, we
believe there are still many questions that deserve to be answered. Differently
from the images field, it is not yet clear what is the best parameterization
to adopt while learning on 3D data in order to extract effective features.
Moreover, robustness to geometric transformation and noise is an important
issue, especially because most of the labeled datasets for 3D deep learning
are made up of synthetic CAD objects. In our opinion data scarcity could
obstacle the spread of deep learning in 3D computer vision, although, the
wide spread solution of adopting synthetic datasets to train neural networks
may help, the problem of domain shift when working on point clouds is
critical and no valid proposal has yet addressed it in literature. The creation
of huge sets of labeled point clouds or meshes is cumbersome. For this
reason, we believe that the future of 3D deep learning is unsupervised. An
additional open problem that scholars will have to face in forthcoming years
is the scalability towards large datasets (e.g. large scenes, many objects) and
in general computational efficiency, especially considering the higher and
higher relevance that mobile applications (such as, e.g., robotics, autonom-
ous driving, augmented reality) are assuming in the context of 3D data
processing.

All these problems to overcome describe a research field that needs new
solutions to effective deploy deep learning models able to operate in real
world settings. We hope that the work carried out in this thesis will provide
useful insights to future researchers in the field.

183

L I S T O F F I G U R E S

Figure 1.1 Feature-based matching paradigm in the context of 3D
object recognition. Green lines correspond to correct
correspondences, while red lines correspond to mis-
matches, e.g. different 3D points with similar descriptors. 2

Figure 3.1 From left to right: if not provided within the dataset,
a set of calibrated 2.5D views is attained by simulat-
ing a 3D sensor in N uniformly distributed vantage
points around the object; for each view V i, those other
views exhibiting a sufficient overlap are selected; cor-
respondences are established between V i and each
overlapping view V j, such that points yielding correct
matches are kept as candidate positive samples (e.g.,
a,b,c,d) while those either wrongly matched (e.g. e)
or laying close to another one yielding a better cor-
rect match (e.g. c) are discarded; by matching every
other overlapping view Vk, the set of candidate posit-
ive samples is refined by dismissing points yielding
wrong matches (e.g. b). 20

Figure 3.2 Exemplar positive (green) and negative (red) training
samples obtained by the proposed method on two
views dealing with different objects using SHOT [98]
as the given 3D descriptor. 23

Figure 3.3 Number of correct matches obtained by computing
the SHOT descriptor [98] on the regions selected by
Harris3D, ISS and our proposed approach (referred
to as KPL). 24

185

Figure 3.4 Overview of the feature computation process. In the
example, Nr = 4 subdivisions along the radial co-
ordinate are used to split the spherical support around
p into equally many sectors (for ease of visualization,
a 2D representation of the 3D spherical support is
portrayed). For each sector (i.e. spherical shell), a
histogram of orientations is obtained by accumulating
the cosines of the angles between the normals at the
points q falling within the sector and the normal at
p, weighted according to a bilinear interpolation (wq). 25

Figure 3.5 Hyperparameter optimization on the Kinect dataset. . 32

Figure 3.6 Results provided on the Laser Scanner dataset by
the keypoint detector learned for SHOT. Precision-
Recall curves (a), Mean True Positives vs. Mean False
Positives(b). 33

Figure 3.7 Results provided on the Laser Scanner dataset by the
keypoint detector learned for Spin Images (a-b) and
FPFH (c-d). Precision-Recall curves (a)-(c), Mean True
Positives vs. Mean False Positives (b)-(d). 34

Figure 3.8 Exemplar keypoints extracted by the detectors learned
for SHOT (a) (c), Spin Images (b) and FPFH (d) on
scenes of the Laser Scanner dataset (a-b) and Random
Views dataset (c-d). 36

Figure 3.9 Results on Random Views by the keypoint detector
learned for SHOT on Laser Scanner. Precision-Recall
curves (a), Mean True Positives vs. Mean False Posit-
ives (b). 37

Figure 3.10 Results on Random Views by the keypoint detector
learned for Spin Images (a-b) and FPFH (c-d) on Laser
Scanner. Precision-Recall curves (a-c) , Mean True
Positives vs. Mean False Positives (b-d). 37

Figure 3.11 Universal detector: some models used to for training
(a-d) and keypoints detected on a scene of the Venezia
3D dataset (e). 38

Figure 3.12 Results on Venezia 3D for the universal detector trained
for SHOT. Precision-Recall curves (a), Mean True Pos-
itives vs. Mean False Positives (b). 40

186

Figure 3.13 Results on the Kinect dataset by the keypoint detector
learned for SHOT. 40

Figure 4.1 Scene from the Laser Scanner (left) and Random Views
(right) datasets. 47

Figure 4.2 A 3D model and some rendered views from Laser
Scanner. 50

Figure 4.3 Quantitative results on 3D object recognition. Column
a: Laser Scanner dataset. Column b: Random Views
dataset. 53

Figure 4.4 Surface registration results on the CGF-Laser scans
dataset. 54

Figure 6.1 Temporal evolution of 3D feature descriptors. 63

Figure 7.1 Architecture of the proposed method. The points
within the local support of a given feature point p
are converted into a spherical signal representation,
and then sent through the spherical encoder to get
an equivariant descriptor. The numbers below the
spherical signal indicate the number of cells along
α, β and d. The decoder reconstructs the original
point cloud deforming sampled 2D points according
to the descriptor. Operations in the encoder are imple-
mented through the Generalized Fourier Transform
with signals discretized according to a bandwidth
parameter [160]. The triplets below the encoder lay-
ers indicate input bandwidth, output bandwidth and
number of channels. As for the decoder, the pairs
indicate the number of input and output channels,
respectively. 80

Figure 7.2 Comparison between PointNet and Spherical CNN
used as encoders in our framework. 83

Figure 7.3 Comparison between the reconstructions obtained
when using the Spherical CNN encoder to learn an
equivariant versus an invariant bottleneck. Results
after 10K training iterations. 85

187

Figure 7.4 Self-orienting property of the learned equivariant
descriptor. Every bin of our bottleneck layer cor-
responds to three Euler angles which define a ro-
tation. If the descriptor is computed starting from a
rotated input (second row), the values shifts in the
feature maps. By finding two corresponding bins in
the two descriptors and rotating them by the inverse
of the corresponding rotations, the descriptors can be
aligned, i.e. become pose invariant. 87

Figure 7.5 Results under varying inlier ratio threshold τ2. . . . 92

Figure 7.6 Ablation study comparing the different configura-
tions in terms of registration recall and normalized
description time. For more detail of each configura-
tion refer to Tab. 7.3. The light gray area shows the
Pareto frontier of the test. The computational time
is expressed in term of percentage of increase or de-
crease compared to the time of our baseline (A), e.g.
the configuration N is 40% faster than A. 95

Figure 7.7 Registration results on the 3DMatch Benchmark after
RANSAC. 99

Figure 7.8 Registration results on the ETH Benchmark after RANSAC.100

Figure 10.1 Comparison of LRF repeatability measured as mean
cosine error on two non-rigid poses of the dog shape.
We compare with the de-facto standard SHOT [98].
Left: The error is encoded as a heat map, growing
from white (perfectly aligned LRFs) to red (gross mis-
alignment). Right: The computed LRFs; we only show
the x̂ axes for visualization purposes. 114

Figure 10.2 A scalar field on shape M, and its intrinsic gradient ∇f.116

Figure 10.3 Gradient estimation on a triangle mesh (left) and on
a sparse point cloud representing a partial scan of
the object (right). Our approach only needs a no-
tion of a tangent space to be applicable to any given
representation. 117

188

Figure 10.4 The x̂ axis of our LRF on different hand poses. In
this example, repeatability is almost ideal due to the
repeatability of the chosen scalar function f(pi) =
1
n

∑n
j=1 d(pi,pj) equal to the average geodesic dis-

tance [31] from each point to all the others. 118

Figure 10.5 Sign flips of f (top row) lead to reversed axes in our
LRF. In the bottom row, two high-frequency functions
which are not exactly repeatable on M and N lead to
local axis flips. 120

Figure 10.6 Top left: LRF repeatability under increasing subsampling,
from 0% (no subsampling) to 98% (severe). We report
results obtained with local radius r = 0.02 (dashed)
and r = 0.16 (solid); all shapes have unit diameter.
Top right: Comparisons at increasing radius, averaged
over all subsampling levels. Bottom: example of sub-
sampled shapes used in these tests. 121

Figure 10.7 LRF repeatability at increasing surface noise (expressed
as a multiplier of mesh resolution), obtained with ra-
dius r = 0.02 (dashed) and r = 0.16 (solid). Our
results are better than FLARE and comparable with
SHOT while using a much smaller radius; for com-
parison, on the top hand we plot the neighborhood
at r = 0.02 (in blue) and r = 0.16 (in red). Due to the
use of much smaller radius, our LRFs are much more
robust to clutter and partiality. 122

Figure 10.8 Example views from the Stanford repository. On each
object we plot one of the four scalar functions used for
the rigid matching experiments. Note how, despite
baseline curvatures appear almost constant, they still
exhibit enough gradient to outperform the SHOT LRF
in most of our tests (compare with Fig. 10.9). 123

Figure 10.9 LRF repeatability on the Stanford Views dataset (the
higher the better). Here, SHOT denotes the LRF of
the SHOT descriptor. 127

189

Figure 10.10 Descriptor matching results using the SHOT descriptor
computed on different LRFs (among which the SHOT
LRF itself). The y-axis denotes the percentage of
matches whose Euclidean distance from the ground
truth is less than 7mm. 128

Figure 10.11 LRF repeatability on two views of a room (depicted on
the left; their alignment is on the bottom). MeanCos
error is encoded as a heat map, growing from white
to red. Most of the error of our LRFs comes from
incomplete overlap of the two views. 128

Figure 10.12 Representative data used in the deformable match-
ing tests. TOPKIDS exhibit topological gluing at self-
contacts (arm touching the body). Shapes from SMPL,
SPRING, and TOSCA are used in cross-dataset match-
ing experiments; the zoom-ins highlight the difference
in mesh density and connectivity. 129

Figure 10.13 The four scalar functions used in the deformable set-
ting. Their gradient has few singular points, which
do not strongly affect the quality of the resulting LRF. 129

Figure 10.14 Error rates for deformable matching on different data-
sets. The y-axis represents the percentage of matches
for which the geodesic distance from the ground truth
is less than the value reported on the x-axis. The num-
bers in the legend denote the AUC. 129

Figure 10.15 Qualitative comparisons on a standard (left) and chal-
lengin (right) case. Pointwise matching error is en-
coded as a heatmap, growing from white to dark
red. 130

Figure 11.1 Canonical poses in humans and machines. Randomly
rotated mugs are depicted in (a). To achieve rotation-
invariant processing, e.g. to check if they are the same
mug, humans mentally neutralize pose variations pre-
ferring an upright canonical pose, as illustrated in (b).
A machine may instead use any canonical reference
pose, even unnatural to humans, e.g. like in (c). 132

190

Figure 11.2 Training pipeline. We illustrate the pipeline for local
patches, but the same apply for point clouds rep-
resenting full shapes. During training we apply the
network on a randomly extracted 3D patch, V, and
on its augmented version, T, in order to extract the
aligning rotation RV and RT, respectively. At test time
only one branch is involved. The numbers below the
spherical signal indicate the number of cells along α,
β and d, while the triplets under the layers indicate
input bandwidth, output bandwidth and number of
channels. 136

Figure 11.3 Local support of a keypoint depicting the corner of a
table, divided in 3 shells. Randomly selected point in
black; removed points in red. 138

Figure 11.4 Visualization of repeatability at corresponding points
of two fragments, with repeatable LRFs in green, non-
repeatable ones in red and non-overlapping areas
in gray. First row: a pair of fragments from Stan-
ford Views, second row: a pair of fragments from
3DMatch. (a) and (b): results yielded by Compass
and FLARE, respectively. 142

Figure 11.5 Visualization of the angular error between the LRFs
estimated at corresponding points of two fragments,
with lower errors in blue, higher errors in red and
non-overlapping areas in gray. First row: a pair of
fragments from Stanford Views. Second row: a pair of
fragments from 3DMatch. (a) and (b): results yielded
by Compass and FLARE, respectively. 143

Figure 11.6 Qualitative results on ModelNet40 and ShapeNet in
transfer learning. Top row: randomly rotated input
cloud. Bottom row: cloud oriented by Compass. . . . 145

191

Figure 11.7 Qualitative results on ShapeNet dataset under differ-
ent training strategies. Clouds in yellow represent
randomly rotated input clouds and the blue ones rep-
resent those oriented by Compass. In (a), we present
orientation results after training Compass with ex-
amples belonging only to a specific category from
ShapeNet; in (b), the orientation results after train-
ing Compass with a training set comprising airplanes,
chairs and lamps together; and, in (c) the orientation
results from the model trained on the ModelNet40

dataset and tested on the ShapeNet dataset. 146

Figure 14.1 Given a set of views of the object, our framework
(1) estimates the relative poses between pairs of im-
ages; (2) algebraically optimize the pose of each im-
age; (3) build an occupancy grid from poses and sil-
houettes; and, (4) refine the occupancy grid to recon-
struct the full model. 156

Figure 14.2 Schematic representation of our pose estimation ar-
chitecture. A ResNet-18 based encoder extracts a
view-point invariant image descriptor on both the
source and target image. These two embeddings are
then concatenated and examined by a fully-connected
based network that will outputs the relative rotation
between the input images. 159

Figure 14.3 A failure case of the contour loss, we show on the
left (a) a couple of input views and on the right (b-c)
the ground truth contour (in green) and the contour
oriented according to the pose estimated by the net-
work (in red) drawn over the corresponding distance
transform. The network trained only with Lcontours (b)
outputs a completely wrong pose due to ambiguity
in the distance transform. Adding Langular (c) solves
the ambiguity and align the contours well. 160

Figure 14.4 Ray casting for a single view. We show (a) the sil-
houette and (b-c) two visualization of the same visual
cones – (b) one oriented according to the camera view
point and (c) the other according to a different view-
point. 162

192

Figure 14.5 Architecture of the occupancy grid refiner network
that predicts the final model. 163

Figure 14.6 Qualitative results for the pose estimation network.
We show on the left (a, b) the source and target input
image, on the right (c) the CAD model point cloud,
in green, oriented according to the ground truth pose,
and the same point cloud, in red, oriented with the
pose predicted by our method. In the last column
(d), we visualize the misalignment error between the
two models as a heat map ranging from blue (perfect
alignment) to red (maximum misalignment). 168

Figure 14.7 Comparison of multi-view reconstructions methods
on the ShapeNet test set. On the left we show the 5

RGB views used as input for every model. Ours refers
to PoseIDoNet. 171

Figure 14.8 Comparison of multi-view reconstructions methods
on the ShapeNet test set for the airplane category. On
the left we show the 5 RGB views used as input for
every method. We also report the results for the two
main competitors Pix2Vox [200] and 3D-R2N2 [121].
Ours refers to PoseIDoNet. 172

Figure 14.9 Comparison of multi-view reconstructions methods
on the ShapeNet test set for the car category. On the
left, we show the 5 RGB views used as input for every
method. We also report the results for the two main
competitors Pix2Vox [200] and 3D-R2N2 [121]. Ours
refers to PoseIDoNet. 172

Figure 14.10 Comparison of multi-view reconstructions methods
on the ShapeNet test set for the chair category. On
the left we show the 5 RGB views used as input for
every method. We also report the results for the two
main competitors Pix2Vox [200] and 3D-R2N2 [121].
Ours refers to PoseIDoNet. 173

193

Figure 14.11 Comparison of multi-view reconstructions methods
on the ShapeNet test set. On the left, we show the
ground truth voxel grid. We also report the results
for the two main competitors Pix2Vox [200] and 3D-
R2N2 [121]. Ours and Ours Canonical refer to Pos-
eIDoNet and PoseIDoNet Canonical, respectively. . . 174

Figure 14.12 Comparison of multi-view reconstructions methods
on the ShapeNet test set for the chair category per-
formed by PoseIDoNet. In each column, we depict
the voxel grid produced using a different reference
view. 176

194

L I S T O F TA B L E S

Table 3.1 Parameters related to fixed-scale detection experi-
ments. Some parameters concerning the training
process of our method are not specified for Random
Views as we did not learn a new forest on this dataset. 30

Table 3.2 Parameters dealing with adaptive scale detection ex-
periments. Some parameters concerning the training
process of our method are not specified for Random
Views as we did not learn a new forest on this dataset. 30

Table 4.1 Parameters for object recognition datasets. 49

Table 4.2 Parameters for surface registration dataset. 49

Table 7.1 Results on the 3DMatch benchmark. Test data are
from SUN3D [90], except for Red Kitchen data which
is from 7-scenes [88]. Best result on each row is in bold. 90

Table 7.2 Results on the rotated 3DMatch benchmark. Test data
are from SUN3D [90], except for Red Kitchen data
which is from 7-scenes [88]. Best result on each row
is in bold. 90

Table 7.3 Ablation study results on the 3DMatch benchmark.
Networks on the Pareto frontier on the column Net-
work, best values on recall and Normalized time in
bold. Tests performed for a subset of 500 keypoints. . 94

Table 7.4 Results on the 3DMatch benchmark. Test data are
from SUN3D [90], except for Kitchen data which is
from 7-scenes [88]. Best result on each column is in
bold. 96

Table 7.5 Results on the rotated 3DMatch benchmark. Test data
are from SUN3D [90], except for Kitchen data which
is from 7-scenes [88]. Best result on each column is in
bold. 96

Table 7.6 Average number of correct correspondences on the
3DMatch benchmark. Best result on each column is
in bold. 97

Table 7.7 Results on the ETH data set. 97

195

Table 11.1 LRF repeatability on the 3DMatch dataset. Best result
for each row in bold. 140

Table 11.2 LRF repeatability on the ETH dataset. Best result for
each row in bold. 141

Table 11.3 LRF repeatability on the Stanford Views dataset. Best
result for each row in bold. 141

Table 11.4 Classification accuracy on the ModelNet40 dataset
when training with no rotation augmentation. NR
column reports the accuracy attained when testing
on the cloud in the canonical pose provided by the
dataset and AR column when testing under arbitrary
rotations. Best result for each column in bold. 144

Table 14.1 Quantitative evaluation for pose prediction, for each
category we report on the left the accuracy and on
the right the median error. The best results are high-
lighted in bold. 165

Table 14.2 Ablation study on angular and contour losses. The
best results are highlighted in bold. 166

Table 14.3 Quantitative evaluation for shape prediction, for each
category we report the average IoU on the left and the
Chamfer distance between normalized point clouds
multiplied by 100. The best results are highlighted in
bold. 170

196

B I B L I O G R A P H Y

[1] CE Shannon. ‘A Mathematical Theory of Communication, Bell System

Technical Journal, vol.’ In: 27(1948) (1948) (cit. on p. 65).

[2] Ming-Kuei Hu. ‘Visual pattern recognition by moment invariants’. In: IRE
transactions on information theory 8.2 (1962), pp. 179–187 (cit. on p. 65).

[3] Emanuel Parzen. ‘On estimation of a probability density function and

mode’. In: The annals of mathematical statistics 33.3 (1962), pp. 1065–1076

(cit. on p. 137).

[4] Roger N Shepard and Jacqueline Metzler. ‘Mental rotation of three-

dimensional objects’. In: Science 171.3972 (1971), pp. 701–703 (cit. on

p. 131).

[5] Jon Louis Bentley. ‘Multidimensional binary search trees used for associative

searching’. In: Communications of the ACM 18.9 (1975), pp. 509–517 (cit. on

p. 6).

[6] Steven G Vandenberg and Allan R Kuse. ‘Mental rotations, a group test of

three-dimensional spatial visualization’. In: Perceptual and motor skills 47.2

(1978), pp. 599–604 (cit. on p. 131).

[7] Shimon Ullman. ‘The interpretation of structure from motion’. In: Proceed-
ings of the Royal Society of London. Series B. Biological Sciences 203.1153 (1979),

pp. 405–426 (cit. on p. 153).

[8] Martin A Fischler and Robert C Bolles. ‘Random sample consensus: a

paradigm for model fitting with applications to image analysis and auto-

mated cartography’. In: Communications of the ACM 24.6 (1981), pp. 381–395

(cit. on p. 97).

[9] Christopher G Harris, Mike Stephens et al. ‘A combined corner and edge

detector.’ In: Alvey vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10–5244

(cit. on p. 13).

[10] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald and Werner

Stuetzle. Surface reconstruction from unorganized points. Vol. 26. 2. ACM, 1992

(cit. on p. 91).

[11] James R Driscoll and Dennis M Healy. ‘Computing Fourier transforms and

convolutions on the 2-sphere’. In: Advances in applied mathematics 15.2 (1994),

pp. 202–250 (cit. on p. 82).

197

[12] Aldo Laurentini. ‘The visual hull concept for silhouette-based image under-

standing’. In: IEEE Transactions on pattern analysis and machine intelligence
16.2 (1994), pp. 150–162 (cit. on pp. 152, 162).

[13] Jianbo Shi et al. ‘Good features to track’. In: 1994 Proceedings of IEEE
conference on computer vision and pattern recognition. IEEE. 1994, pp. 593–600

(cit. on p. 16).

[14] Takayuki Itoh and Koji Koyamada. ‘Automatic Isosurface Propagation Using

an Extrema Graph and Sorted Boundary Cell Lists’. In: IEEE Transactions on
Visualization and Computer Graphics 1.4 (1995), pp. 319–327 (cit. on p. 72).

[15] Brian Curless and Marc Levoy. ‘A volumetric method for building complex

models from range images’. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques. ACM. 1996, pp. 303–312 (cit. on

p. 122).

[16] Torben Risbo. ‘Fourier transform summation of Legendre series and D-

functions’. In: Journal of Geodesy 70.7 (1996), pp. 383–396 (cit. on p. 87).

[17] Chin Seng Chua and Ray Jarvis. ‘Point signatures: A new representation

for 3d object recognition’. In: International Journal of Computer Vision 25.1

(1997), pp. 63–85 (cit. on pp. 63, 114, 115).

[18] Andrew E. Johnson and Martial Hebert. ‘Using spin images for efficient

object recognition in cluttered 3D scenes’. In: IEEE Transactions on pattern
analysis and machine intelligence 21.5 (1999), pp. 433–449 (cit. on pp. 15, 17,

30, 43, 44, 61, 63, 68, 79).

[19] Bill Triggs, Philip F McLauchlan, Richard I Hartley and Andrew W Fitzgib-

bon. ‘Bundle adjustment—a modern synthesis’. In: International workshop
on vision algorithms. Springer. 1999, pp. 298–372 (cit. on p. 161).

[20] Marcello Demi, Marco Paterni and Antonio Benassi. ‘The first absolute

central moment in low-level image processing’. In: Computer Vision and
Image Understanding 80.1 (2000), pp. 57–87 (cit. on p. 65).

[21] Kiriakos N Kutulakos and Steven M Seitz. ‘A theory of shape by space

carving’. In: International journal of computer vision 38.3 (2000), pp. 199–218

(cit. on p. 154).

[22] Serge Belongie, Jitendra Malik and Jan Puzicha. ‘Shape context: A new

descriptor for shape matching and object recognition’. In: Advances in neural
information processing systems. 2001, pp. 831–837 (cit. on p. 63).

[23] Leo Breiman. ‘Random forests’. In: Machine learning 45.1 (2001), pp. 5–32

(cit. on pp. 17, 24, 31).

198

[24] Robert Osada, Thomas Funkhouser, Bernard Chazelle and David Dobkin.

‘Shape distributions’. In: ACM Transactions on Graphics (TOG) 21.4 (2002),

pp. 807–832 (cit. on p. 61).

[25] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003 (cit. on pp. 151, 153).

[26] Niloy J Mitra and An Nguyen. ‘Estimating surface normals in noisy point

cloud data’. In: Proc. Symp. Computational Geometry. 2003 (cit. on p. 118).

[27] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow and Jitendra

Malik. ‘Recognizing objects in range data using regional point descriptors’.

In: European conference on computer vision. Springer. 2004, pp. 224–237 (cit. on

pp. 44, 45, 51, 63, 72).

[28] David G Lowe. ‘Distinctive image features from scale-invariant keypoints’.

In: International journal of computer vision 60.2 (2004), pp. 91–110 (cit. on

pp. 15, 41, 67).

[29] Matthew Brown and David G Lowe. ‘Unsupervised 3D Object Recognition

and Reconstruction in Unordered Datasets.’ In: 3DIM. Vol. 5. 2005, pp. 56–

63 (cit. on p. 153).

[30] Sumit Chopra, Raia Hadsell and Yann LeCun. ‘Learning a similarity metric

discriminatively, with application to face verification’. In: 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05).
Vol. 1. IEEE. 2005, pp. 539–546 (cit. on pp. 75, 136).

[31] Eugene Zhang, Konstantin Mischaikow and Greg Turk. ‘Feature-based

Surface Parameterization and Texture Mapping’. In: ACM Trans. Graph. 24.1

(Jan. 2005), pp. 1–27 (cit. on p. 118).

[32] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. ‘Surf: Speeded up robust

features’. In: European conference on computer vision. Springer. 2006, pp. 404–

417 (cit. on p. 15).

[33] Raia Hadsell, Sumit Chopra and Yann LeCun. ‘Dimensionality reduction by

learning an invariant mapping’. In: null. IEEE. 2006, pp. 1735–1742 (cit. on

p. 69).

[34] Noah Snavely, Steven M Seitz and Richard Szeliski. ‘Photo tourism: explor-

ing photo collections in 3D’. In: ACM transactions on graphics (TOG). Vol. 25.

ACM. 2006, pp. 835–846 (cit. on p. 153).

[35] Hui Chen and Bir Bhanu. ‘3D free-form object recognition in range images

using local surface patches’. In: Pattern Recognition Letters 28.10 (2007),

pp. 1252–1262 (cit. on p. 63).

199

[36] Babak Taati, Michel Bondy, Piotr Jasiobedzki and Michael Greenspan. ‘Vari-

able dimensional local shape descriptors for object recognition in range

data’. In: 2007 IEEE 11th International Conference on Computer Vision. IEEE.

2007, pp. 1–8 (cit. on p. 39).

[37] Rasmus Bro, Evrim Acar and Tamara G Kolda. ‘Resolving the sign ambi-

guity in the singular value decomposition’. In: Journal of Chemometrics: A
Journal of the Chemometrics Society 22.2 (2008), pp. 135–140 (cit. on pp. 106,

107, 115).

[38] Alexander M Bronstein, Michael M Bronstein and Ron Kimmel. Numerical
Geometry of Non-Rigid Shapes. Springer Science & Business Media, 2008

(cit. on p. 124).

[39] Umberto Castellani, Marco Cristani, Simone Fantoni and Vittorio Murino.

‘Sparse points matching by combining 3D mesh saliency with statistical

descriptors’. In: Computer Graphics Forum. Vol. 27. 2. Wiley Online Library.

2008, pp. 643–652 (cit. on p. 15).

[40] John Novatnack and Ko Nishino. ‘Scale-dependent/invariant local 3D shape

descriptors for fully automatic registration of multiple sets of range images’.

In: European conference on computer vision. Springer. 2008, pp. 440–453 (cit. on

pp. 63, 109, 114).

[41] Edward Rosten, Reid Porter and Tom Drummond. ‘Faster and better: A

machine learning approach to corner detection’. In: IEEE transactions on
pattern analysis and machine intelligence 32.1 (2008), pp. 105–119 (cit. on p. 17).

[42] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton and Michael Beetz.

‘Aligning point cloud views using persistent feature histograms’. In: Intelli-
gent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. IEEE. 2008, pp. 3384–3391 (cit. on pp. 44, 63, 65).

[43] Du Q Huynh. ‘Metrics for 3D rotations: Comparison and analysis’. In:

Journal of Mathematical Imaging and Vision 35.2 (2009), pp. 155–164 (cit. on

p. 137).

[44] Helmut Pottmann, Johannes Wallner, Qi-Xing Huang and Yong-Liang Yang.

‘Integral Invariants for Robust Geometry Processing’. In: Computer Aided
Geometric Design 26.1 (2009), pp. 37–60 (cit. on p. 114).

[45] Radu Bogdan Rusu, Nico Blodow and Michael Beetz. ‘Fast point feature

histograms (FPFH) for 3D registration’. In: 2009 IEEE International Conference
on Robotics and Automation. IEEE. 2009, pp. 3212–3217 (cit. on pp. 15, 17, 30,

43, 44, 61, 63, 66, 79, 114).

200

[46] Christoph Strecha, Albrecht Lindner, Karim Ali and Pascal Fua. ‘Training

for task specific keypoint detection’. In: Joint Pattern Recognition Symposium.

Springer. 2009, pp. 151–160 (cit. on p. 18).

[47] Jian Sun, Maks Ovsjanikov and Leonidas Guibas. ‘A concise and provably

informative multi-scale signature based on heat diffusion’. In: Computer
graphics forum. Vol. 28. 5. Wiley Online Library. 2009, pp. 1383–1392 (cit. on

pp. 55, 63, 114).

[48] Yu Zhong. ‘Intrinsic shape signatures: A shape descriptor for 3d object

recognition’. In: 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops. IEEE. 2009, pp. 689–696 (cit. on pp. 12, 15, 23,

43, 63).

[49] Andrea Albarelli, Emanuele Rodolà and Andrea Torsello. ‘Loosely distinct-

ive features for robust surface alignment’. In: Proc. ECCV. 2010 (cit. on

p. 114).

[50] Prabin Bariya and Ko Nishino. ‘Scale-hierarchical 3d object recognition in

cluttered scenes’. In: 2010 IEEE computer society conference on computer vision
and pattern recognition. IEEE. 2010, pp. 1657–1664 (cit. on p. 19).

[51] Olivier Chapelle and Mingrui Wu. ‘Gradient descent optimization of

smoothed information retrieval metrics’. In: Information retrieval 13.3 (2010),

pp. 216–235 (cit. on p. 137).

[52] Bertram Drost, Markus Ulrich, Nassir Navab and Slobodan Ilic. ‘Model

globally, match locally: Efficient and robust 3D object recognition’. In: 2010
IEEE computer society conference on computer vision and pattern recognition. Ieee.

2010, pp. 998–1005 (cit. on pp. 70, 74, 77).

[53] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of training

deep feedforward neural networks’. In: Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics. 2010, pp. 249–256 (cit. on

p. 75).

[54] Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte and Luc Van Gool.

‘Hough transform and 3D SURF for robust three dimensional classification’.

In: European Conference on Computer Vision. Springer. 2010, pp. 589–602

(cit. on p. 63).

[55] Ajmal Mian, Mohammed Bennamoun and Robyn Owens. ‘On the repeat-

ability and quality of keypoints for local feature-based 3d object retrieval

from cluttered scenes’. In: IJCV 89.2-3 (2010), pp. 348–361 (cit. on pp. 15, 29,

32, 107, 114).

201

[56] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux and John Hsu. ‘Fast

3d recognition and pose using the viewpoint feature histogram’. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2010,

pp. 2155–2162 (cit. on p. 61).

[57] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige and Wolfram Burgard.

‘NARF: 3D range image features for object recognition’. In: Workshop on
Defining and Solving Realistic Perception Problems in Personal Robotics at the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Vol. 44. 2010

(cit. on pp. 13, 15, 29, 43).

[58] Federico Tombari, Samuele Salti and Luigi Di Stefano. ‘Unique signatures of

histograms for local surface description’. In: European conference on computer
vision. Springer. 2010, pp. 356–369 (cit. on pp. 43, 44, 63, 64, 66, 77, 79, 114,

140, 141).

[59] Vladimir G Kim, Yaron Lipman and Thomas Funkhouser. ‘Blended Intrinsic

Maps’. In: TOG 30.4 (2011), p. 79 (cit. on p. 125).

[60] Stefan Leutenegger, Margarita Chli and Roland Siegwart. ‘BRISK: Binary

robust invariant scalable keypoints’. In: 2011 IEEE international conference on
computer vision (ICCV). Ieee. 2011, pp. 2548–2555 (cit. on p. 17).

[61] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,

David Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve

Hodges and Andrew Fitzgibbon. ‘KinectFusion: Real-time dense surface

mapping and tracking’. In: 2011 IEEE International Symposium on Mixed and
Augmented Reality. IEEE. 2011, pp. 127–136 (cit. on p. 69).

[62] Maks Ovsjanikov, Qi-Xing Huang and Leonidas Guibas. ‘A condition

number for non-rigid shape matching’. In: Computer Graphics Forum. Vol. 30.

5. Wiley Online Library. 2011, pp. 1503–1512 (cit. on p. 55).

[63] Alioscia Petrelli and Luigi Di Stefano. ‘On the repeatability of the local

reference frame for partial shape matching’. In: 2011 International Conference
on Computer Vision. IEEE. 2011, pp. 2244–2251 (cit. on pp. 4, 77, 105, 109,

115, 132).

[64] Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary R Bradski. ‘ORB:

An efficient alternative to SIFT or SURF.’ In: ICCV. Vol. 11. 1. Citeseer. 2011,

p. 2 (cit. on p. 17).

[65] Ivan Sipiran and Benjamin Bustos. ‘Harris 3D: a robust extension of the

Harris operator for interest point detection on 3D meshes’. In: The Visual
Computer 27.11 (2011), p. 963 (cit. on pp. 13, 43).

202

[66] Federico Tombari, Samuele Salti and Luigi Di Stefano. ‘A combined texture-

shape descriptor for enhanced 3D feature matching’. In: 2011 18th IEEE
International Conference on Image Processing. IEEE. 2011, pp. 809–812 (cit. on

pp. 29, 66).

[67] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari, Walter Wohlkinger,

Christian Potthast, Bernhard Zeisl, Radu Bogdan Rusu, Suat Gedikli and

Markus Vincze. ‘Tutorial: Point cloud library: Three-dimensional object

recognition and 6 DoF pose estimation’. In: IEEE Robotics & Automation
Magazine 19.3 (2012), pp. 80–91 (cit. on pp. 19, 23, 29, 30, 91).

[68] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu and Markus Vincze.

‘OUR-CVFH–oriented, unique and repeatable clustered viewpoint feature

histogram for object recognition and 6DOF pose estimation’. In: Joint DAGM
(German Association for Pattern Recognition) and OAGM Symposium. Springer.

2012, pp. 113–122 (cit. on pp. 61, 132).

[69] Luıs A Alexandre. ‘3D descriptors for object and category recognition:

a comparative evaluation’. In: Workshop on Color-Depth Camera Fusion in
Robotics at the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal. Vol. 1. 3. 2012, p. 7 (cit. on p. 30).

[70] Jens Behley, Volker Steinhage and Armin B Cremers. ‘Performance of his-

togram descriptors for the classification of 3D laser range data in urban

environments’. In: 2012 IEEE International Conference on Robotics and Auto-
mation. IEEE. 2012, pp. 4391–4398 (cit. on p. 30).

[71] Antonio Criminisi, Jamie Shotton, Ender Konukoglu et al. ‘Decision forests:

A unified framework for classification, regression, density estimation, mani-

fold learning and semi-supervised learning’. In: Foundations and Trends® in
Computer Graphics and Vision 7.2–3 (2012), pp. 81–227 (cit. on pp. 24, 26, 31).

[72] Helin Dutagaci, Chun Pan Cheung and Afzal Godil. ‘Evaluation of 3D

interest point detection techniques via human-generated ground truth’. In:

The Visual Computer 28.9 (2012), pp. 901–917 (cit. on p. 18).

[73] Stefan Holzer, Jamie Shotton and Pushmeet Kohli. ‘Learning to efficiently

detect repeatable interest points in depth data’. In: European Conference on
Computer Vision. Springer. 2012, pp. 200–213 (cit. on pp. 18, 19, 26).

[74] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘Imagenet classi-

fication with deep convolutional neural networks’. In: Advances in neural
information processing systems. 2012, pp. 1097–1105 (cit. on p. 70).

203

[75] Alioscia Petrelli and Luigi Di Stefano. ‘A repeatable and efficient canonical

reference for surface matching’. In: 2012 Second International Conference on
3D Imaging, Modeling, Processing, Visualization & Transmission. IEEE. 2012,

pp. 403–410 (cit. on pp. 77, 91, 109, 115, 120–122, 124, 140, 141, 147).

[76] François Pomerleau, Ming Liu, Francis Colas and Roland Siegwart. ‘Challen-

ging data sets for point cloud registration algorithms’. In: The International
Journal of Robotics Research 31.14 (2012), pp. 1705–1711 (cit. on p. 94).

[77] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard and

Daniel Cremers. ‘A benchmark for the evaluation of RGB-D SLAM systems’.

In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE. 2012, pp. 573–580 (cit. on p. 124).

[78] Federico M Sukno, John L Waddington and Paul F Whelan. ‘Comparing

3D descriptors for local search of craniofacial landmarks’. In: International
Symposium on Visual Computing. Springer. 2012, pp. 92–103 (cit. on p. 30).

[79] Walter Wohlkinger, Aitor Aldoma, Radu B Rusu and Markus Vincze. ‘3dnet:

Large-scale object class recognition from cad models’. In: 2012 IEEE interna-
tional conference on robotics and automation. IEEE. 2012, pp. 5384–5391 (cit. on

p. 30).

[80] Andrei Zaharescu, Edmond Boyer and Radu Horaud. ‘Keypoints and local

descriptors of scalar functions on 2D manifolds’. In: International Journal of
Computer Vision 100.1 (2012), pp. 78–98 (cit. on pp. 15, 26, 29, 63).

[81] Clement Creusot, Nick Pears and Jim Austin. ‘A machine-learning approach

to keypoint detection and landmarking on 3D meshes’. In: International
journal of computer vision 102.1-3 (2013), pp. 146–179 (cit. on pp. 18, 19).

[82] Yulan Guo, Ferdous Ahmed Sohel, Mohammed Bennamoun, Min Lu and

Jianwei Wan. ‘TriSI: A Distinctive Local Surface Descriptor for 3D Modeling

and Object Recognition.’ In: GRAPP/IVAPP. 2013, pp. 86–93 (cit. on pp. 61,

63).

[83] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu and Jianwei

Wan. ‘Rotational projection statistics for 3D local surface description and

object recognition’. In: International journal of computer vision 105.1 (2013),

pp. 63–86 (cit. on pp. 17, 26, 43, 44, 79, 108, 114, 115, 132).

[84] Richard Hartley, Jochen Trumpf, Yuchao Dai and Hongdong Li. ‘Rotation

averaging’. In: International journal of computer vision 103.3 (2013), pp. 267–

305 (cit. on pp. 136, 137).

[85] Diederik P Kingma and Max Welling. ‘Auto-encoding variational bayes’. In:

arXiv preprint arXiv:1312.6114 (2013) (cit. on p. 153).

204

[86] Joseph J Lim, Hamed Pirsiavash and Antonio Torralba. ‘Parsing ikea objects:

Fine pose estimation’. In: Proceedings of the IEEE International Conference on
Computer Vision. 2013, pp. 2992–2999 (cit. on p. 151).

[87] Emanuele Rodolà, Andrea Albarelli, Filippo Bergamasco and Andrea

Torsello. ‘A scale independent selection process for 3d object recognition in

cluttered scenes’. In: International journal of computer vision 102.1-3 (2013),

pp. 129–145 (cit. on p. 29).

[88] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio

Criminisi and Andrew Fitzgibbon. ‘Scene Coordinate Regression Forests

for Camera Relocalization in RGB-D Images’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2013, pp. 2930–2937

(cit. on pp. 70, 90, 96).

[89] Federico Tombari, Samuele Salti and Luigi Di Stefano. ‘Performance evalu-

ation of 3D keypoint detectors’. In: International Journal of Computer Vision
102.1-3 (2013), pp. 198–220 (cit. on pp. 15, 16, 28, 29, 33, 35, 43).

[90] Jianxiong Xiao, Andrew Owens and Antonio Torralba. ‘SUN3D: A Database

of Big Spaces Reconstructed Using SfM and Object Labels’. In: Proceedings
of the IEEE International Conference on Computer Vision. 2013, pp. 1625–1632

(cit. on pp. 70, 90, 96).

[91] Aitor Aldoma, Thomas Fäulhammer and Markus Vincze. ‘Automation of

“ground truth” annotation for multi-view RGB-D object instance recognition

datasets’. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2014, pp. 5016–5023 (cit. on p. 41).

[92] Federica Bogo, Javier Romero, Matthew Loper and Michael J Black. ‘FAUST:

Dataset and Evaluation for 3D Mesh Registration’. In: Proc. CVPR. 2014

(cit. on p. 124).

[93] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. ‘Generative

adversarial nets’. In: Advances in neural information processing systems. 2014,

pp. 2672–2680 (cit. on p. 153).

[94] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu and Jianwei

Wan. ‘3D object recognition in cluttered scenes with local surface features:

a survey’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
36.11 (2014), pp. 2270–2287 (cit. on pp. 61, 63, 64).

[95] Wilfried Hartmann, Michal Havlena and Konrad Schindler. ‘Predicting

matchability’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 9–16 (cit. on pp. 17, 18).

205

[96] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic optim-

ization’. In: arXiv preprint arXiv:1412.6980 (2014) (cit. on pp. 72, 75, 89, 94,

140, 144, 165, 169).

[97] Kevin Lai, Liefeng Bo and Dieter Fox. ‘Unsupervised feature learning for 3D

scene labeling’. In: Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE. 2014, pp. 3050–3057 (cit. on pp. 70, 90).

[98] Samuele Salti, Federico Tombari and Luigi Di Stefano. ‘SHOT: Unique

signatures of histograms for surface and texture description’. In: Computer
Vision and Image Understanding 125 (2014), pp. 251–264 (cit. on pp. 15, 17, 23,

24, 26, 29, 30, 41, 43–46, 52, 55, 61, 63, 66, 79, 113–115, 120, 124, 132).

[99] Leizer Teran and Philippos Mordohai. ‘3d interest point detection via dis-

criminative learning’. In: European Conference on Computer Vision. Springer.

2014, pp. 159–173 (cit. on pp. 2, 18, 19, 24).

[100] Yu Xiang, Roozbeh Mottaghi and Silvio Savarese. ‘Beyond pascal: A bench-

mark for 3d object detection in the wild’. In: IEEE winter conference on
applications of computer vision. IEEE. 2014, pp. 75–82 (cit. on p. 151).

[101] Y. Yang, Y. Yu, Y. Zhou, S. Du, J. Davis and R. Yang. ‘Semantic Parametric

Reshaping of Human Body Models’. In: Proc. 3DV. 2014 (cit. on p. 125).

[102] Tolga Birdal and Slobodan Ilic. ‘Point pair features based object detection

and pose estimation revisited’. In: 3D Vision (3DV), 2015 International
Conference on. IEEE. 2015, pp. 527–535 (cit. on p. 74).

[103] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,

Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao

Su, Jianxiong Xiao, Li Yi and Fisher Yu. ShapeNet: An Information-Rich 3D
Model Repository. Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford University

— Princeton University — Toyota Technological Institute at Chicago, 2015

(cit. on p. 155).

[104] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,

Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao

Su et al. ‘Shapenet: An information-rich 3d model repository’. In: arXiv
preprint arXiv:1512.03012 (2015) (cit. on pp. 142, 151, 164).

[105] Jorge Fuentes-Pacheco, José Ruiz-Ascencio and Juan Manuel Rendón-

Mancha. ‘Visual simultaneous localization and mapping: a survey’. In:

Artificial Intelligence Review 43.1 (2015), pp. 55–81 (cit. on pp. 152, 153).

[106] Elad Hoffer and Nir Ailon. ‘Deep metric learning using triplet network’. In:

International Workshop on Similarity-Based Pattern Recognition. Springer. 2015,

pp. 84–92 (cit. on pp. 72, 73).

206

[107] Max Jaderberg, Karen Simonyan, Andrew Zisserman et al. ‘Spatial trans-

former networks’. In: Proc. NIPS. 2015 (cit. on p. 115).

[108] Petra Jansen and Jan Kellner. ‘The role of rotational hand movements

and general motor ability in children’s mental rotation performance’. In:

Frontiers in Psychology 6 (2015), p. 984 (cit. on p. 131).

[109] Abhishek Kar, Shubham Tulsiani, Joao Carreira and Jitendra Malik.

‘Category-specific object reconstruction from a single image’. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,

pp. 1966–1974 (cit. on p. 153).

[110] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll and

Michael J. Black. ‘SMPL: A Skinned Multi-person Linear Model’. In: TOG
34.6 (2015), 248:1–248:16. doi: 10.1145/2816795.2818013 (cit. on p. 125).

[111] J. Masci, D. Boscaini, M. Bronstein and P. Vandergheynst. ‘Geodesic convo-

lutional neural networks on Riemannian manifolds’. In: Proc. 3dRR. 2015

(cit. on pp. 114, 131).

[112] Daniel Maturana and Sebastian Scherer. ‘Voxnet: A 3D convolutional neural

network for real-time object recognition’. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 922–928

(cit. on pp. 69, 79).

[113] Samuele Salti, Federico Tombari, Riccardo Spezialetti and Luigi Di Stefano.

‘Learning a descriptor-specific 3D keypoint detector’. In: Proceedings of the
IEEE International Conference on Computer Vision. 2015, pp. 2318–2326 (cit. on

pp. 45, 50, 55).

[114] Hang Su, Subhransu Maji, Evangelos Kalogerakis and Erik Learned-Miller.

‘Multi-view convolutional neural networks for 3D shape recognition’. In:

Proceedings of the IEEE international conference on computer vision. 2015,

pp. 945–953 (cit. on p. 79).

[115] Yannick Verdie, Kwang Yi, Pascal Fua and Vincent Lepetit. ‘TILDE: a

temporally invariant learned detector’. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015, pp. 5279–5288 (cit. on p. 18).

[116] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,

Xiaoou Tang and Jianxiong Xiao. ‘3D shapenets: A deep representation for

volumetric shapes’. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 1912–1920 (cit. on p. 155).

[117] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang

and J. Xiao. ‘3D ShapeNets: A deep representation for volumetric shapes’.

In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015, pp. 1912–1920 (cit. on p. 142).

207

https://doi.org/10.1145/2816795.2818013

[118] Davide Boscaini, Jonathan Masci, Emanuele Rodolà and Michael Bronstein.

‘Learning shape correspondence with anisotropic convolutional neural net-

works’. In: Advances in Neural Information Processing Systems. 2016, pp. 3189–

3197 (cit. on pp. 114, 115).

[119] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M Bronstein

and Daniel Cremers. ‘Anisotropic diffusion descriptors’. In: Computer
Graphics Forum 35.2 (2016), pp. 431–441 (cit. on p. 115).

[120] M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst. ‘Geomet-

ric deep learning: going beyond Euclidean data’. In: arXiv:1611.08097 (2016)

(cit. on p. 114).

[121] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen and Silvio

Savarese. ‘3d-r2n2: A unified approach for single and multi-view 3d object

reconstruction’. In: European conference on computer vision. Springer. 2016,

pp. 628–644 (cit. on pp. 153–155, 164, 169, 170, 172–174).

[122] Luca Cosmo, Emanuele Rodolà, Jonathan Masci, Andrea Torsello and

Michael M Bronstein. ‘Matching deformable objects in clutter’. In: Proc.
3DV. 2016 (cit. on p. 115).

[123] Rohit Girdhar, David F Fouhey, Mikel Rodriguez and Abhinav Gupta.

‘Learning a predictable and generative vector representation for objects’. In:

European Conference on Computer Vision. Springer. 2016, pp. 484–499 (cit. on

p. 153).

[124] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, Jianwei Wan

and Ngai Ming Kwok. ‘A comprehensive performance evaluation of 3D

local feature descriptors’. In: International Journal of Computer Vision 116.1

(2016), pp. 66–89 (cit. on pp. 41, 43, 51, 52, 61, 62, 77).

[125] Maciej Halber and Thomas Funkhouser. ‘Structured global registration of

rgb-d scans in indoor environments. arXiv preprint’. In: arXiv preprint
arXiv:1607.08539 2.3 (2016), p. 9 (cit. on p. 70).

[126] Z. Lähner, E. Rodolà, M. M. Bronstein, D. Cremers, O. Burghard, L. Cosmo,

A. Dieckmann, R. Klein and Y. Sahillioğlu. ‘Matching of Deformable Shapes

with Topological Noise’. In: Proc. 3DOR. 2016 (cit. on p. 124).

[127] Xinyu Lin, Ce Zhu, Qian Zhang and Yipeng Liu. ‘3d keypoint detection

based on deep neural network with sparse autoencoder’. In: arXiv preprint
arXiv:1605.00129 (2016) (cit. on pp. 18, 19).

[128] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan and

Leonidas J Guibas. ‘Volumetric and multi-view cnns for object classification

on 3d data’. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 5648–5656 (cit. on p. 69).

208

[129] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia,

Max Jaderberg and Nicolas Heess. ‘Unsupervised learning of 3d structure

from images’. In: Advances in Neural Information Processing Systems. 2016,

pp. 4996–5004 (cit. on p. 154).

[130] Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri and Thomas

Brox. ‘Orientation-boosted voxel nets for 3d object recognition’. In: arXiv
preprint arXiv:1604.03351 (2016) (cit. on p. 105).

[131] Maxim Tatarchenko, Alexey Dosovitskiy and Thomas Brox. ‘Multi-view

3d models from single images with a convolutional network’. In: European
Conference on Computer Vision. Springer. 2016, pp. 322–337 (cit. on pp. 153,

155).

[132] Shubham Tulsiani, Abhishek Kar, Joao Carreira and Jitendra Malik. ‘Learn-

ing category-specific deformable 3d models for object reconstruction’. In:

IEEE transactions on pattern analysis and machine intelligence 39.4 (2016),

pp. 719–731 (cit. on p. 153).

[133] Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet Kohli, Philip

Torr, Shahram Izadi and Cem Keskin. ‘Learning to navigate the energy

landscape’. In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE.

2016, pp. 323–332 (cit. on pp. 69, 70, 90).

[134] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga and Hao Li.

‘Dense human body correspondences using convolutional networks’. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2016, pp. 1544–1553 (cit. on p. 79).

[135] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman and Josh Tenenbaum.

‘Learning a probabilistic latent space of object shapes via 3d generative-

adversarial modeling’. In: Advances in neural information processing systems.

2016, pp. 82–90 (cit. on p. 153).

[136] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo and Honglak Lee. ‘Per-

spective transformer nets: Learning single-view 3d object reconstruction

without 3d supervision’. In: Advances in Neural Information Processing Sys-
tems. 2016, pp. 1696–1704 (cit. on pp. 152–154).

[137] Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D Kulkarni and

Joshua B Tenenbaum. ‘Synthesizing 3d shapes via modeling multi-view

depth maps and silhouettes with deep generative networks’. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2017, pp. 1511–

1519 (cit. on pp. 153, 155).

209

[138] Haoqiang Fan, Hao Su and Leonidas J. Guibas. ‘A Point Set Generation

Network for 3D Object Reconstruction From a Single Image’. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). July 2017

(cit. on p. 153).

[139] Maciej Halber and Thomas Funkhouser. ‘Fine-to-coarse global registration

of RGB-D scans’. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 1755–1764 (cit. on p. 90).

[140] Christian Häne, Shubham Tulsiani and Jitendra Malik. ‘Hierarchical surface

prediction for 3d object reconstruction’. In: 2017 International Conference on
3D Vision (3DV). IEEE. 2017, pp. 412–420 (cit. on p. 153).

[141] Alexander Hermans, Lucas Beyer and Bastian Leibe. ‘In defense of the

triplet loss for person re-identification’. In: arXiv preprint arXiv:1703.07737
(2017) (cit. on p. 76).

[142] Abhishek Kar, Christian Häne and Jitendra Malik. ‘Learning a multi-view

stereo machine’. In: Advances in neural information processing systems. 2017,

pp. 365–376 (cit. on pp. 154, 155, 177).

[143] Marc Khoury, Qian-Yi Zhou and Vladlen Koltun. ‘Learning compact geo-

metric features’. In: Proceedings of the IEEE International Conference on Com-
puter Vision. 2017, pp. 153–161 (cit. on pp. 43, 45, 48–51, 53, 63, 71, 77, 79, 84,

105, 115).

[144] Roman Klokov and Victor Lempitsky. ‘Escape from cells: Deep kd-networks

for the recognition of 3D point cloud models’. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 863–872 (cit. on pp. 79,

144).

[145] Siddharth Mahendran, Haider Ali and René Vidal. ‘3d pose regression

using convolutional neural networks’. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops. 2017, pp. 2174–2182 (cit. on p. 137).

[146] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda and M. M. Bronstein.

‘Geometric deep learning on graphs and manifolds using mixture model

CNNs’. In: Proc. CVPR. 2017 (cit. on pp. 114, 115).

[147] Onur Özyeşil, Vladislav Voroninski, Ronen Basri and Amit Singer. ‘A

survey of structure from motion*.’ In: Acta Numerica 26 (2017), pp. 305–364

(cit. on pp. 151, 153).

[148] Charles R Qi, Hao Su, Kaichun Mo and Leonidas J Guibas. ‘PointNet:

Deep Learning on Point Sets for 3D Classification and Segmentation’. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2017, pp. 652–660 (cit. on pp. 70, 74, 79, 115, 131, 133, 143, 144).

210

[149] Charles Ruizhongtai Qi, Li Yi, Hao Su and Leonidas J Guibas. ‘PointNet++:

Deep hierarchical feature learning on point sets in a metric space’. In:

Advances in Neural Information Processing Systems. 2017, pp. 5099–5108 (cit.

on pp. 79, 131, 133, 144).

[150] Gernot Riegler, Ali Osman Ulusoy and Andreas Geiger. ‘Octnet: Learning

deep 3d representations at high resolutions’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 3577–3586

(cit. on p. 153).

[151] Maxim Tatarchenko, Alexey Dosovitskiy and Thomas Brox. ‘Octree gen-

erating networks: Efficient convolutional architectures for high-resolution

3D outputs’. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 2088–2096 (cit. on pp. 79, 153).

[152] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros and Jitendra Malik. ‘Multi-

view supervision for single-view reconstruction via differentiable ray con-

sistency’. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 2626–2634 (cit. on p. 153).

[153] Meng Wang, Lingjing Wang and Yi Fang. ‘3DensiNet: A robust neural

network architecture towards 3D volumetric object prediction from 2D

image’. In: Proceedings of the 25th ACM international conference on Multimedia.

2017, pp. 961–969 (cit. on p. 154).

[154] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun and Xin Tong.

‘O-cnn: Octree-based convolutional neural networks for 3d shape analysis’.

In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 72 (cit. on p. 153).

[155] Chao-Yuan Wu, R Manmatha, Alexander J Smola and Philipp Krahenbuhl.

‘Sampling matters in deep embedding learning’. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2840–2848 (cit. on

p. 79).

[156] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman and Josh

Tenenbaum. ‘Marrnet: 3d shape reconstruction via 2.5 d sketches’. In:

Advances in neural information processing systems. 2017, pp. 540–550 (cit. on

p. 153).

[157] Jiaqi Yang, Qian Zhang, Yang Xiao and Zhiguo Cao. ‘TOLDI: An effective

and robust approach for 3D local shape description’. In: Pattern Recognition
65 (2017), pp. 175–187 (cit. on pp. 63, 75, 110, 132, 140, 141).

[158] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ

R Salakhutdinov and Alexander J Smola. ‘Deep sets’. In: Advances in neural
information processing systems. 2017, pp. 3391–3401 (cit. on p. 144).

211

[159] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao

and Thomas Funkhouser. ‘3DMatch: Learning Local Geometric Descriptors

from RGB-D Reconstructions’. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 1802–1811 (cit. on pp. 44,

62, 63, 69, 71, 79, 89, 91, 97, 99, 100).

[160] Taco S Cohen, Mario Geiger, Jonas Köhler and Max Welling. ‘Spherical

CNNs’. In: arXiv preprint arXiv:1801.10130 (2018) (cit. on pp. 4, 78, 80–83,

93, 133–135, 144).

[161] Haowen Deng, Tolga Birdal and Slobodan Ilic. ‘PPF-FoldNet: Unsupervised

Learning of Rotation Invariant 3D Local Descriptors’. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 602–618 (cit. on

pp. 62, 63, 73, 77–79, 84, 90–92, 105).

[162] Haowen Deng, Tolga Birdal and Slobodan Ilic. ‘PPFNet: Global Context

Aware Local Features for Robust 3D Point Matching’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 195–205

(cit. on pp. 62, 63, 70, 80, 88, 105, 115).

[163] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia and Kostas

Daniilidis. ‘Learning SO(3) Equivariant Representations with Spherical

CNNs’. In: Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 52–68 (cit. on pp. 78, 83, 86, 131, 133, 134).

[164] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell and

Mathieu Aubry. ‘A Papier-Mâché Approach to Learning 3D Surface Gen-

eration’. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2018 (cit. on pp. 152, 153).

[165] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell and

Mathieu Aubry. ‘A Papier-Mâché Approach to Learning 3D Surface Gen-

eration’. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 216–224 (cit. on pp. 78, 88).

[166] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov and Niloy J Mitra. ‘PCPNet

Learning Local Shape Properties from Raw Point Clouds’. In: Computer
Graphics Forum 37.2 (2018), pp. 75–85 (cit. on p. 115).

[167] Sina Honari, Pavlo Molchanov, Stephen Tyree, Pascal Vincent, Christopher

Pal and Jan Kautz. ‘Improving landmark localization with semi-supervised

learning’. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 1546–1555 (cit. on p. 137).

212

[168] Eldar Insafutdinov and Alexey Dosovitskiy. ‘Unsupervised learning of

shape and pose with differentiable point clouds’. In: Advances in Neural
Information Processing Systems. 2018, pp. 2802–2812 (cit. on pp. 153, 154, 157,

164, 165).

[169] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros and Jitendra Malik.

‘Learning category-specific mesh reconstruction from image collections’.

In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,

pp. 371–386 (cit. on p. 153).

[170] Hiroharu Kato, Yoshitaka Ushiku and Tatsuya Harada. ‘Neural 3D Mesh

Renderer’. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2018 (cit. on p. 153).

[171] Hiroharu Kato, Yoshitaka Ushiku and Tatsuya Harada. ‘Neural 3d mesh

renderer’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 3907–3916 (cit. on p. 153).

[172] Andrey Kurenkov, Jingwei Ji, Animesh Garg, Viraj Mehta, JunYoung Gwak,

Christopher Choy and Silvio Savarese. ‘Deformnet: Free-form deformation

network for 3d shape reconstruction from a single image’. In: 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE. 2018,

pp. 858–866 (cit. on p. 153).

[173] Jiaxin Li, Ben M Chen and Gim Hee Lee. ‘So-net: Self-organizing network

for point cloud analysis’. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 9397–9406 (cit. on p. 144).

[174] Chen-Hsuan Lin, Chen Kong and Simon Lucey. ‘Learning efficient point

cloud generation for dense 3D object reconstruction’. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018 (cit. on pp. 153, 154, 169).

[175] Priyanka Mandikal, Navaneet Murthy, Mayank Agarwal and R Venkatesh

Babu. ‘3D-LMNet: Latent Embedding Matching for Accurate and Diverse

3D Point Cloud Reconstruction from a Single Image’. In: arXiv preprint
arXiv:1807.07796 (2018) (cit. on p. 153).

[176] Fabian Manhardt, Wadim Kehl, Nassir Navab and Federico Tombari. ‘Deep

model-based 6d pose refinement in rgb’. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 800–815 (cit. on pp. 159,

160).

[177] Riccardo Marin, Simone Melzi, Emanuele Rodolà and Umberto Castellani.

FARM: Functional Automatic Registration Method for 3D Human Bodies. 2018

(cit. on p. 124).

213

[178] Simone Melzi, Maks Ovsjanikov, Giorgio Roffo, Marco Cristani and Um-

berto Castellani. ‘Discrete Time Evolution Process Descriptor for Shape

Analysis and Matching’. In: TOG 37.1 (Jan. 2018), 4:1–4:18. issn: 0730-0301

(cit. on p. 125).

[179] Stephan R. Richter and Stefan Roth. ‘Matryoshka Networks: Predicting 3D

Geometry via Nested Shape Layers’. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2018 (cit. on pp. 152, 153).

[180] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai

Zhang, Tianfan Xue, Joshua B Tenenbaum and William T Freeman. ‘Pix3d:

Dataset and methods for single-image 3d shape modeling’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,

pp. 2974–2983 (cit. on pp. 151, 157, 167).

[181] Alessio Tonioni, Samuele Salti, Federico Tombari, Riccardo Spezialetti and

Luigi Di Stefano. ‘Learning to detect good 3D keypoints’. In: International
Journal of Computer Vision 126.1 (2018), pp. 1–20 (cit. on pp. 45, 52).

[182] Shubham Tulsiani, Alexei A Efros and Jitendra Malik. ‘Multi-view con-

sistency as supervisory signal for learning shape and pose prediction’. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018, pp. 2897–2905 (cit. on pp. 153, 154, 157, 164, 165).

[183] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu and Yu-Gang

Jiang. ‘Pixel2mesh: Generating 3d mesh models from single rgb images’.

In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,

pp. 52–67 (cit. on pp. 152–154).

[184] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T

Freeman and Joshua B Tenenbaum. ‘Learning shape priors for single-view

3d completion and reconstruction’. In: Proceedings of the European Conference
on Computer Vision (ECCV). 2018, pp. 646–662 (cit. on pp. 152, 153).

[185] Jiaqi Yang, Yang Xiao and Zhiguo Cao. ‘Toward the Repeatability and

Robustness of the Local Reference Frame for 3D Shape Matching: An

Evaluation’. In: IEEE Transactions on Image Processing 27.8 (2018), pp. 3766–

3781 (cit. on p. 106).

[186] Yaoqing Yang, Chen Feng, Yiru Shen and Dong Tian. ‘FoldingNet: Point

Cloud Auto-Encoder via Deep Grid Deformation’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 206–215

(cit. on pp. 74, 78, 88).

[187] Yang You, Yujing Lou, Qi Liu, Lizhuang Ma, Weiming Wang, Yuwing Tai

and Cewu Lu. ‘PRIN: Pointwise Rotation-Invariant Network’. In: arXiv
preprint arXiv:1811.09361 (2018) (cit. on pp. 83, 131, 133, 135, 143, 144).

214

[188] Zhiqin Chen, Andrea Tagliasacchi and Hao Zhang. ‘BSP-Net: Generat-

ing Compact Meshes via Binary Space Partitioning’. In: arXiv preprint
arXiv:1911.06971 (2019) (cit. on p. 153).

[189] Zhiqin Chen and Hao Zhang. ‘Learning implicit fields for generative shape

modeling’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 5939–5948 (cit. on p. 153).

[190] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hin-

ton and Andrea Tagliasacchi. ‘Cvxnets: Learnable convex decomposition’.

In: arXiv preprint arXiv:1909.05736 (2019) (cit. on p. 155).

[191] Zan Gojcic, Caifa Zhou, Jan D Wegner and Andreas Wieser. ‘The perfect

match: 3d point cloud matching with smoothed densities’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,

pp. 5545–5554 (cit. on pp. 62, 75, 77, 79, 94, 95, 97, 99, 100, 105, 132, 140,

141).

[192] Xianfeng Han, Hamid Laga and Mohammed Bennamoun. ‘Image-based 3D

Object Reconstruction: State-of-the-Art and Trends in the Deep Learning

Era’. In: IEEE transactions on pattern analysis and machine intelligence (2019)

(cit. on p. 152).

[193] Xinhai Liu, Zhizhong Han, Yu-Shen Liu and Matthias Zwicker.

‘Point2Sequence: Learning the Shape Representation of 3D Point

Clouds with an Attention-based Sequence to Sequence Network’. In:

Thirty-Third AAAI Conference on Artificial Intelligence. 2019 (cit. on p. 144).

[194] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin

and Andreas Geiger. ‘Occupancy networks: Learning 3d reconstruction in

function space’. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 4460–4470 (cit. on pp. 152, 153).

[195] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe and

Steven Lovegrove. ‘Deepsdf: Learning continuous signed distance functions

for shape representation’. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 165–174 (cit. on p. 153).

[196] Yongming Rao, Jiwen Lu and Jie Zhou. ‘Spherical fractal convolutional

neural networks for point cloud recognition’. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 452–460

(cit. on pp. 131, 133).

[197] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen

Koltun and Thomas Brox. ‘What Do Single-view 3D Reconstruction Net-

works Learn?’ In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 3405–3414 (cit. on p. 152).

215

[198] Yi Wei, Shaohui Liu, Wang Zhao and Jiwen Lu. ‘Conditional Single-view

Shape Generation for Multi-view Stereo Reconstruction’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,

pp. 9651–9660 (cit. on pp. 153–155).

[199] Chao Wen, Yinda Zhang, Zhuwen Li and Yanwei Fu. ‘Pixel2mesh++: Multi-

view 3d mesh generation via deformation’. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 1042–1051 (cit. on

pp. 154, 155, 177).

[200] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou and Shengping

Zhang. ‘Pix2Vox: Context-Aware 3D Reconstruction From Single and Multi-

View Images’. In: The IEEE International Conference on Computer Vision
(ICCV). Oct. 2019 (cit. on pp. 154, 155, 163, 164, 169, 170, 172–174).

[201] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de Silva and Chenglong

Fu. ‘Linked dynamic graph CNN: Learning on point cloud via linking

hierarchical features’. In: arXiv preprint arXiv:1904.10014 (2019) (cit. on

pp. 131, 144).

[202] Zhiyuan Zhang, Binh-Son Hua, David W Rosen and Sai-Kit Yeung. ‘Ro-

tation invariant convolutions for 3D point clouds deep learning’. In: 2019
International Conference on 3D Vision (3DV). IEEE. 2019, pp. 204–213 (cit. on

pp. 131, 133).

[203] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang and Hao Li. ‘On the

continuity of rotation representations in neural networks’. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,

pp. 5745–5753 (cit. on p. 137).

[204] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen and Johannes

Kopf. ‘Consistent Video Depth Estimation’. In: 39.4 (2020) (cit. on p. 139).

216

	1 Introduction
	1.1 Summary of contributions
	1.2 Background

	 Learning to detect 3D Keypoints
	2 Initial remarks
	2.1 Related Work
	2.1.1 ISS: Intrinsic Shape Signature
	2.1.2 Harris3D
	2.1.3 NARF: Normal Aligned Radial Feature

	3 Learning to detect Good 3D Keypoints
	3.1 Related Work
	3.2 Training Set to Learn Good 3D Keypoints
	3.2.1 Definition of the training set
	3.2.2 Validation of the training set

	3.3 Design of the Classifier
	3.4 Adaptive-scale Keypoint Detection
	3.5 Experimental Results
	3.5.1 Hyperparameter optimization
	3.5.2 Results on the Laser Scanner dataset
	3.5.3 Transfer learning on the Random Views dataset
	3.5.4 Training and testing a universal detector
	3.5.5 Kinect dataset

	4 Performance Evaluation of Learned 3D Features
	4.1 Related Work
	4.2 Keypoint Learning
	4.3 Evaluation Methodology
	4.3.1 3D object recognition
	4.3.2 Surface Registration
	4.3.3 Implementation

	4.4 Experimental Results
	4.4.1 3D object recognition
	4.4.2 Surface Registration

	5 Conclusions

	 Learning to describe 3D Keypoints
	6 Initial remarks
	6.1 Related Work
	6.1.1 3D Shape Context
	6.1.2 Unique Shape Context
	6.1.3 Rotational Projection Statistics
	6.1.4 Point Feature Histogram
	6.1.5 Fast Point Feature Histogram
	6.1.6 SHOT: Unique Signatures of Histograms for Local Surface Description
	6.1.7 Spin Images
	6.1.8 3DMatch
	6.1.9 PPFNet: Point Pair Feature NETwork
	6.1.10 CGF: Compact Geometric Features
	6.1.11 PPF-FoldNet
	6.1.12 3D-SmoothNet

	7 Learning an Effective Equivariant 3D Descriptor Without Supervision
	7.1 Related Work
	7.2 Learning an equivariant 3D descriptor from spherical signals
	7.2.1 Background on Spherical CNNs
	7.2.2 Learning from Spherical Signals
	7.2.3 Rotation-Equivariant Descriptor
	7.2.4 Invariant Feature Descriptor
	7.2.5 Decoder and Loss
	7.2.6 Network and training parameters

	7.3 Experimental Results
	7.3.1 Experimental setup
	7.3.2 Evaluation methodology
	7.3.3 Quantitative results

	7.4 A more effective equivariant embedding
	7.4.1 Experimental setup
	7.4.2 Results on 3DMatch dataset
	7.4.3 Transfer learning on ETH dataset
	7.4.4 Qualitative results for surface registration

	8 Conclusions

	 Establishing and Learning a robust Local Reference Frame
	9 Initial remarks
	9.1 Related Work
	9.1.1 Mian
	9.1.2 SHOT
	9.1.3 ROPS
	9.1.4 EM
	9.1.5 Board
	9.1.6 FLARE
	9.1.7 TOLDI

	10 Gradient-Based Local Reference Frame for 3D Shape Matching
	10.1 Related Work
	10.2 Establishing a Gradient-based local Reference Frame
	10.2.1 Background
	10.2.2 GFrames

	10.3 Properties of GFrames
	10.4 Experimental Results
	10.4.1 LRF repeatability and rigid shape matching
	10.4.2 Deformable shape matching

	11 Learning to Orient Surfaces by Self-supervised Spherical CNNs
	11.1 Related work
	11.2 Learning to orient from spherical signals
	11.2.1 Background
	11.2.2 Compass

	11.3 Experimental results
	11.3.1 LRF repeatability
	11.3.2 Rotation-invariant Shape Classification

	12 Conclusions

	 Learning to reconstruct 3D Objects
	13 Initial remarks
	13.1 Related Work
	13.1.1 Single-view 3D object reconstruction
	13.1.2 Multi-view 3D object reconstruction

	14 A divide et impera Approach for 3D object reconstruction from Non-Overlapping Views
	14.1 Related Work
	14.1.1 Shape and pose recovering

	14.2 PoseIDoNet
	14.2.1 Pose estimation
	14.2.2 Pose optimization
	14.2.3 Identity Reconstruction from an Occupancy grid

	14.3 Experimental Results
	14.3.1 Relative Pose Estimation
	14.3.2 3D object reconstruction

	15 Conclusions

	 Final Remarks
	16 Conclusions

