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“There are more things in heaven and eart, Horatio,

than are dreamt of your phylosophy”. . .

William Shakespeare (Hamlet, scene V)



Introduction

Literary texts, images, biological signals such as DNA or protein sequences,

ECG (Electrocardiogram)... there are many things in real life that can be

represented by symbolic sequences.

Some sequences hide more information in them beyond the single char-

acters that make them up: a Shakespeare text, for example, can be stored

in a long sequence of twenty-six or more alphabetic characters (including

punctuation, spaces and so on), but the semantic sense is not directly gained

from the simple character by character reading. Each character forms words

that all together create the phrases.

Similarly for biological sequences: the alphabet of proteins is formed by

the twenty amino acids that, according to hidden rules, bind together to

generate the phrases (secondary structures) founding the tertiary structure

(and hence its meaning, i.e. its functionality).

In particular, in the field of biological signals, where the information nec-

essary to build the final objects seems hidden in the sequence itself, the

analysis of the sequence through mathematical instruments able to capture

the building rules of the strings (or “complexity” of the strings) seems very

promising. The use of distances or similarity measures, can be seen as an-

other useful instrument for extracting some kind of information from signals.

i
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Which kind of information is captured depends, clearly, by the signals under

observation and by the task that is fixed from time to time.

In case of biological signals, these procedures may have a meaningful

exploitation. Just to name a few cases, if we consider cardiological signals,

the relevance of having methods that are able to make a clustering of patients

according to some pathology is evident. While, for protein sequences it can be

useful the automatic classification of the proteins according to their structural

classes.

Each of the two worlds, mathematics and biology, interacting can provide

ideas, questions and new possible research directions to each other. The

biology request for tools, for istance, that are able to analyze the huge amount

of data available nowdays, or the need to have algorithms of attribution,

classification and clustering, leads to develop new mathematical methods or,

sometimes, to readjust methods/theorems coming out of different fields.

On the other hand, a deeper comprehension of the methodologies used

in biological signals analysis may take us to a better comprehension of the

achieved results and, finally, to a greater contribution to the solution of the

starting biological problem.

By the way: “Living things are too beautiful for there not to be a math-

ematics that describes them”! (Tom Schneider)

In this thesis both the study of the mathematical properties of some

complexity indicators and of similarity metrics are faced, with main focus on

the applications to biological signals.

A series of results coming from the Information Theory, Dynamical Sys-

tems, and from the Statistical field have been re-elaborated, studied thor-

oughly and compared from the mathematical point of view.

For what concerns the complexity measures, this thesis is principally fo-

cused on the parsing of strings, a particular kind of rule for cutting the string

in substrings.

Little adaption of these parsings, combined with suitable coding of the

words, leads to the very well known compression programs used daily for



iii

zipping files on the computer.

In Chapter 1 we analyze in detail the exhaustive parsing (or LZ com-

plexity) of a string S following the approach of Lempel and Ziv in [72] that

examines the concept of complexity as related to the rate of vocabulary

growth. The relations between the exhaustive parsing and more known pars-

ings (LZ77, LZ78) are investigated, and it is shown the optimality of the

exhaustive parsing for ergodic sources.

In Chapter 2 we analyze similarity metrics related to different teoretical

approaches. The first part of the chapter concerns the so called “Information

Distances”, based on the Kolomogorov complexity: the main features and

properties, following the Vitany approach [77], are recalled, togheter with

the approximation of this uncomputable distance using the compressor algo-

rithms, namely the Normalized Compression Distance (NCD) or Universal

Similarity Metric (USM) [76, 24].

The LZ-distance [90], mainly used in our applications, is shown in this

section and it is very similar to the NCD distance: instead of the compression

of a string, the quantity involved in this distance is the number of components

obtained with the exhaustive parsing on a string.

The second part of this chapter analyzes the distances related to the

Relative Entropy (or Kullback-Leibler divergence), an indicator of the dis-

crepancy between two different sources. We face the pratical problem of

estimating it showing different approximation approaches, based on parsing

[115], compression procedure [3] or the BWT transformation [9].

Finally it is shown a distance (the n-gram distance), based on the n-gram

frequencies of two sequences that, togheter with the LZ distance, will be used

in our applications.

The last two chapters are devoted to the biological sequences.

In Chapter 3 the methods previously shown are applied on cardiological

signals. The main results of this chapter are taken from two pubblications

of us ([27, 28]).

On this kind of sequences we used the exhaustive parsing for exploring if
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the LZ complexity of a cardiological signal is able to capture some features

owned by a signal and not by another with the goal of classifying/clustering

patients according different pathologies.

Having seen a real discriminatory capability connected to this indicator,

we moved on using the LZ distance based on such exhaustive parsing where

an improvement in the attributions has been noticed.

We are also focused on wheter the choice of coding the ECG signal in the

bynary HRV is really optimal, exploring different possible codes.

Finally, in the last section of the chapter are shown new results achieved

on the same data with the use of the n-gram distance.

For what concerns the protein sequences, this is a very recent field in

which we are moving. Primary protein sequences are without a doubt a very

intersting kind of sequences in which are probabily hidden useful information

for the folding of the protein itself.

Several computational methods that try to classify proteins according to

their structural class (and finally to give some answers to the folding problem)

have been developed in the last years.

In Chapter 4, after the introduction of some biological concepts, we

show some of these alignment free methods, underling mathematical equiva-

lences/differences between some methods and trying to compare the results.

The comparison is done using the results given in the literature with the

purpose of understanding the state of the art in structural class prediction

methods and find out the promising methods and codes of the primary se-

quence that are able to capture some protein’s features playing a bigger role

in the protein folding.

The analysis done in this chapter has shown that the comparison of the

results is very hard: different methods are tested on different datasets, some

datasets are statistically poorly significant, different procedures are used for

measuring the prediction (classification) quality of sequences into structural

classes, and so on.

However, a comparison of the results is the main way we have for test-
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ing the methods or distances: contingent mathematical equalities (proved

on markov sequences or assumption of gaussian distributions), do not auto-

matically imply an equivalence in the real experimental results. The protein

sequences, indeed, are not markov sequences nor variables with gaussian dis-

tribution, so in the real case the try and see approach is the real test.
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Chapter 1

Parsing of a symbolic sequence

Parsing techinques are directly connected to creation of a vocabulary

of recurrent subwords within the sequence.

The information stored in these parsings can have several and related

applications, such as compression, quantitative estimate of (absolute)

complexity and, most important for us, implementation of heuris-

tic conditional entropy/information estimators or similarity (pseudo-

)distances between different strings or different classes/sources of strings.

In this section we analyze in detail the exhaustive parsing, following

the approach of Lempel and Ziv in [72] that examines the concept of

complexity as related to the rate of vocabulary growth.

With the auxilio of the definition of eigenvalues and eigenvocabularies,

the relations between the exhaustive parsing and more known parsings

(lz77, lz78) are investigated.

Finally, the optimality of the exhaustive parsing for ergodic sources is

shown.

1.1 Production and Reproduction processes

We start by fixing some notations. A will denote a finite alphabet, An all

possible words of length n and we let A∗ =
⋃

n∈NAn. For some of the

applications and for all the mathematical results we will assume w.l.g. A =

{0, 1}, but sometimes it will be useful to consider the ASCII alphabet or

the DNA nucleotides set A = {A,C,G, T}. For any x ∈ An, we denote by

Dic(x) all distinct substrings of x.

1
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Given any finite string x = x1x2 · · ·xn, a parsing P (x) of x is any given

ordered partition of x into small words: 0 · 10 · 111 and 0 · 1 · 0 · 11 · 1 are two

different parsing of the string x = 010111. A parsing into different words is

called a distinct parsing.

In the following, we shall refer to an (information) source as to any dy-

namical system (AN, T, µ), where T is the usual shift on the space of infinite

sequences AN with probability measure µ and entropy h = h(µ).

The methods we are going to review are not directly based on the global

statistics of words, but they focus on the string as a direct result of an ordered

sequence of elementary production processes generating the string.

Definition 1.1.1. Given a sequence x of length n and any i < j 6 n,

let us denote the substring xi . . . xj−1xj by x(i, j); a sequence x is (strictly)

producible by its proper prefix x(1, j), if x can be obtained by concatenating

x(1, j) with the results of a sequential copying process starting at position k,

k < j − 1, plus an additional character of new information at the end of the

string. We denote this process by x(1, j) ⇒ x.

A sequence x of length n is reproducible by its proper prefix x(1, j),

when exists a position k in x(1, j) such that x(k, l(x(j + 1, n) + k − 1) =

x(j + 1, n) (where l(x(j + 1, n) is the length of the suffix of x). We denote

this process by x(1, j) −→ x,

For instance, if x = 01001001001, then x(1, 5) reproduces x with pointer

k = 3: x(1, 5) −→ x. Instead, if x = 01001001000, then x(1, 5) produces x

with pointer k = 3: x(1, 5) ⇒ x.

Remark 1.1.1. From the definition (1.1.1), producibility implies reproducibil-

ity. Infact, if a string x = x(1, n) is producibile by its proper prefix x(1, j)

than the string x(1, n− 1) is reproducibile by its proper prefix. The contrary

implication is not true: Reproducibility does’nt imply the producibility.

According to the above example, if x = 01001001001 then

x(1, 5) −→ x(1, n− 1) = 0100100100
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Definition 1.1.2. A history H(x) of x is a parsing of the string which

describes a sequence of legal production processes: H(x) = x(1, j1)x(j1 +

1, j2) · · ·x(jk + 1, n), such that x(1, jm) ⇒ x(1, jm+1), that is:

∃ Q ∈ Dic(x(1, hi+1 − 2)) s.t. x(1, hi+1 − 1) = x(1, hi)Q .

We denote by cH(x) the number of phrases in a history H(x)

1.2 The exhaustive parsing

Definition 1.2.1. [72] The LZ- complexity of the string x is the least pos-

sible number of steps in which x can be generated according to the rule of a

production process:

c(x) = min
H history of x

cH(x)

Definition 1.2.2. A production step from x(1, hi−1) to x(1, hi) is exhau-

stive if x(1, hi) is producible but not reproducible from x(1, hi−1). We denote

by E(x) the exhaustive parsing of x, that is the history H(x) = x(1, j1)x(j1 +

1, j2) · · ·x(jk +1, n) where each step is exhaustive, with the possible exception

of the last one.

In the following theorem we resume the principal properties of this parsing

Theorem 1.2.1. (i) Every nonnull sequence x has a unique exhaustive his-

tory

(ii) For each x ∈ A∗, c(x) = cE(x), where E(x) is the unique exhaustive

history of x

(iii) (Subadditivity of exhaustive parsing) ∀x, y ∈ A∗, xy denotes the con-

catenation of the two strings and:

c(xy) 6 c(x) + c(y)
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(iv) For any x ∈ An,

c(x) <
n

(1− εn) log n
, εn = 2

1 + log log (n|A|)
log n

Proof. (i) By definition, an exhaustive production process always exists.

Suppose H(x) and K(x) are two distinct exhaustive parsings of se-

quence x. Then, there is an index i such that{
x(1, hj) = x(1, kj) ∀j < i (i)

x(1, hi) ⊂ x(1, ki) AND x(1, hi) 6= x(1, ki) (ii)
(1)

(The second assumption may be taken without loss of generality)

By assumption, the two parsings H(x) and K(x) are exhaustive, then

at step i we have:

• x(1, hi) is producible but not reproducible from x(1, hi−1)

and similarly

• x(1, ki) is producible but not reproducible from x(1, ki−1).

Since i − 1 < i, from property (i) of the theorem 1 we know that

x(1, hi−1) = x(1, ki−1). Therefore, x(1, hi) is not reproducible from

x(1, ki−1).

But by property (ii) of the theorem 1, we have that x(1, hi) ⊂ x(1, ki)

and x(1, hi) 6= x(1, ki), from which we have that

x(1, hi) ⊆ x(1, ki − 1) . (2)

Finally, notice that the assumtpion of producibility of x(1, ki) from

x(1, ki−1) means that x(1, ki−1) is reproducible from x(1, ki − 1). The

latter is in contrast with (2):

• if x(1, hi) = x(1, ki − 1) the absurd is trivial

• if x(1, hi) 6= x(1, ki−1), since up to hi−1 the two parsings coincide,

then x(1, hi) ⊂ x(1, ki − 1) and it is not possible that x(1, hi) is

not reproducible from x(1, ki − 1).
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Thus, the exhaustive parsing is unique.

(ii) (This is Theorem 1 of [72]).

(iii) (This is Theorem 4 of [72]) Let E(x) and E(y) be the exhaustive

histories of x and y respectively.

Now, we consider the concatenation of the two histories E(x) ∧ E(y)

that is a history H(xy) of the string x ∧ y. Infact

H(xy) = x(1, j1)x(j1+1, j2) . . . x(jk+1, n)y(1, i1)y(i1+1, i2)1 . . . y(ik+1, n)

It is easy to see that all the components in x are such that x(1, jm) ⇒
x(1, jm+1) (because they are components of the exhaustive historyE(x)).

When we begin to read the string y, as well, all (or none of) the charac-

ters in the component y(1, im) may have already appeared in x. In the

second case (all the characters in y(1, im) haven’t already appeared in

x) the components of the history H(xy) are equal to the components

of the exhaustive component of the history H(x) +H(y); while, in the

first case, for constructing the exhaustive component in xy we must

go on reading y until we find a new character that has not previously

appeared. The component so formed is longer than the component

y(1, im) from which we started.

Then, it is clear that the number of components obtained with the ex-

haustive parsing on xy is smaller or equal to the number of components

obtained summing those from x and y separately.

This implies:

c(xy) = cE(xy) 6 cH(xy) = cE(x) + cE(y) = c(x) + c(y)

(iv) This is Theorem 2 of [72].
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1.3 Eigenvocabulary, Eigenvalue, Eigensequence

We now want to quantify the production of new information along the se-

quence: a word of a vocabulary e ∈ Dic(x) is called an eigenword if it is

not contained in the vocabulary of any proper prefix of x. More formally,

following [72], we denote by xπj = x(1, n− j), where n is the length of x and

0 6 j 6 n, xπ0 = x and xπn is the empty word. Then, Dic(xπj) ⊆ Dic(xπk)

for all 0 6 k 6 j 6 n and e ∈ Dic(x) is an eigenword if and only if

e ∈ Dic(x) \Dic(xπ).

Using these notations, it is possible to redefine the production and repro-

duction processes [72]:

Definition 1.3.1. If j < n, then a prefix x(1, j) produces x = x(1, n) if there

is a word w ∈ Dic(xπ2) such that xπ = x(1, j)w, that is w = x(j + 1, n −
1) ∈ Dic(xπ2). Since the producibility is a generalization of the so-called

reproducibility, a sequence z is reproducible from its proper prefix y if there

is a sequence w such that z = yw and w ∈ Dic(zπ).

Definition 1.3.2. The set λDic(x) = Dic(x) \ Dic(xπ) is called eigenvo-

cabulary and its cardinality 1 6 λ(x) 6 n is the eigenvalue of the string

x ∈ An.

The eigensequence (λx(i))i=1,...,n of x(1, n) is the sequence of the eigenvalues

at each site i = 1, . . . , n in x(1, n): λx(i)
.
= λ(x(1, i)).

For example, for the string x = 0010 we obtain:

Dic(x) = {0, 1, 00, 01, 10, 001, 010, 0010}

Dic(xπ) = {0, 1, 00, 01, 001}

λDic(x) = {10, 010, 0010}

λ(x) = 3
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λx(i) = (1, 1, 3, 3)

Given the eigenvalue of x, the eigenwords (elements in λDic(x)) are iden-

tified as follows (Theorem 6 in [72]):

e(x) = {x(j, n)| 1 6 j 6 λ(x)},

Moreover, it is easy to see that (Lemma 4 in [72]):

λ(xπ) 6 λ(x)

The growth rate of the eigenvocabulary indicates the effective new words

produced along the string and it will be used as a natural index either of

the complexity of the single string or (asymptotically when n → ∞) of the

entropy of the (ergodic) source emitting x.

Remark 1.3.1. In an innovative history each step produces a larger eigen-

vocabulary w.r.t. the previous step, i.e. the eigensequence (λx(hi))16i6m of

the eigenvalues at the parsing cut sites is strictly increasing.

Definition 1.3.3. A history component x(hi−1 + 1, hi) is primitive if hi

is the least integer s.t. the eigenvalue of x(1, hi) is greater than that of

x(1, hi−1). We denote by prim(x) the primitive parsing of x, where each

of its components, with the possible exception of the last one, is primitive.

The following theorem provides a useful alternative definition of the above

histories, using the characterization with the eigenvalues. The proof is in ref.

[72].

Theorem 1.3.1 (Theorem 8, [72]). LetH(x) = x(1, h1)x(h1+1, h2) . . . x(hm−1+

1, hm) be some history of x.

(i) H(x) is primitive if and only if, for i = 1, 2, . . . ,m− 1

hi = min{h ∈Mx(i− 1)}

where

Mx(i− 1) = {j | j > hi−1 andλx(j) > λx(hi−1)} .
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(ii) H(x) is exhaustive if and only if, for i = 1, 2, . . . ,m− 1

hi = min{h ∈ Nx(i− 1)}

where

Nx(i− 1) = {j | j > hi−1 and λx(j) > hi−1} .

Notice that, as in the standard definitions, the last history step may be or

not be either primitive or exhaustive.

With this notation we can now prove the point (ii) of theorem1.2.1 [72]:

c(x) = minHcH(x) = cE(x)

Proof. Let Hx = {h1, h2, . . . , hm} with cH(x) = m and Ex = {e1, e2, . . . , ek}
with cE(x) = k and 1 = h1 < h2z . . . < hm = `(x), 1 = e1, e2, . . . ek = l(x).

Let η be a mapping from Ex into Hx, defined by:

η(ei) = max{h ∈ Hx|h 6 ei} i = 1, 2, . . . , k

We have that η(e1) = h1 and η(ek) = hm = l(x). When k > 2 consider

any i such that 2 6 i 6 k − 1 and let η(ei) = hj. Then, it is clear that

j < m and, according to the definition, hj is the bigger h such that hj 6 ei,

hj+1 > hj must be such that hj+1 > ei.

Then ei−1 < hj = η(ei). Moreover, always from the definition of η(ei), we

have that η(ei) = hj 6 ei.

Hence, for each i such that 1 6 i 6 k − 1 we have ei−1 6 η(ei) 6 ei,

therefore η(ei) is a one to one mapping from the set Ex onto a subset of Hx

Remark 1.3.2. Theorem 1.2.1 (ii) states that if f(x) is the complexity of

either LZ77 [114] or LZ78 [113] or primitive parsing and c(x) is the LZ-

complexity, then

c(x) 6 f(x) .
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1.4 Eigenvalues of different parsings

In this section we present some properties of different parsings according to

the notation introducted in the above section.

Exhaustive and primitive parsings are not the only parsings generated by

legal production processes. Here and in the following we refer to LZ77 algo-

rithm in the so-called infinite-window version. It is a self-parsing procedure

of a sequence into m(x) distinct phrases such that each phrase is the shortest

string which is not appeared in the past.

Proposition 1.4.1. The parsings induced by LZ77 [114] and LZ78 [113] are

histories of input sequence x.

Proof. Let us denote any history component x(hi−1, hi) of an m-step parsing

by wi, the i-th word in the parsing, for i = 1, . . . ,m and h0 = 1. Therefore,

x(1, hi+1) = x(1, hi)wi+1 and to prove that the parsing is a history, we have

to prove that wi+1π ∈ Dic(x(1, hi+1 − 2)), where wi+1π denotes the word

wi+1 without its last symbol.

1. A new word in LZ77 parsing is wi+1 s.t. wi+1π ∈ Dic(x(1, hi)). With

the possible exception of the alphabet words and of the last one, we

can say that Dic(x(1, hi)) ⊂ Dic(x(1, hi+1 − 2)), then this parsing is a

history.

2. A new word in LZ78 parsing is wi+1 s.t. wi+1π ∈ {w1, . . . , wi}, then

again wi+1π ∈ Dic(x(1, hi+1 − 2)) and the parsing is a history.

Example 1.4.1. In the following tables, different parsings and complexities

are shown for two binary sequences S1 and S2 of length 20. Sequence S1 is

periodic, whereas sequence S2 is patternless.

We considered the exhaustive parsing, the LZ77 parsing, the LZ78 parsing

and the primitive parsing. We recall that the complexity is defined as the

length of the parsing.
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S1 = 01010101010101010101 = (01)10

PARSING COMPLEXITY

exhaustive 0 · 1 · 010101010101010101 LZ-complexity 3

LZ77 0 · 1 · 010 · 10101 · 0101010101 LZ77-complexity 5

LZ78 0 · 1 · 01 · 010 · 10 · 101 · 0101 · 0101 LZ78-complexity 8

primitive 0 · 1 · 010101010101010101 prim-complexity 3

S2 = 01111000110110111010

PARSING COMPLEXITY

exhaustive 0 · 1 · 1110 · 001 · 101 · 10111 · 010 LZ-complexity 7

LZ77 0 · 1 · 11 · 10 · 00 · 1101 · 1011 · 1010 LZ77-complexity 8

LZ78 0 · 1 · 11 · 10 · 00 · 110 · 1101 · 11010 LZ78-complexity 8

primitive 0 · 1 · 1110 · 0 · 01 · 10 · 1 · 10111 · 01 · 0 prim-complexity 10

The following summarizes some properties of innovative, exhaustive and

primitive parsings.

Theorem 1.4.1. The following hold.

(i) Exhaustive and primitive parsings are innovative.

(ii) LZ77 and LZ78 parsings are not innovative.

(iii) For each x ∈ A∗

cprim(x) = max

H innovative

history of x

cH(x)

Proof. (i) As showed in Theorem 1.3.1 (ii), a production step from hi to hi+1

is exhaustive if and only if hi+1
.
= min{h > hi | λx(h) > hi}, where
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λx(h) is the eigenvalue relative to x(1, h). As previously seen in the

definition of the eigenvalue of the string x of length n, 1 6 λ(x) 6 n.

Similarly, if we take into account the sequence x(1, hi) of length hi, we

obtain that 1 6 λx(hi) 6 hi, than λx(hi+1) > hi > lx(hi). Therefore

the exhaustive history is innovative. Primitive parsing is innovative by

definition.

(ii) Usually, the eigenvalues of two subsequent parsing steps (generated by

either LZ77 or LZ78) are not strictly increasing. For instance, consider

the two strings S1 and S2 defined above. In the following, we show

the sequence of eigenvalues of the strings. The eigenvalue at site k is

underlined (k) if the site corresponds to an LZ77 cut, while it has a

hat (k̂) in case of an LZ78 cut.

Eigensequence of S1 :

1̂ 2̂ 2 2̂ 2 2 2̂ 2 2̂ 2 2 2̂ 2 2 2 2̂2 2 2 2

Eigensequence of S2 :

1̂ 2̂ 2 2̂ 2 5̂ 6 6̂ 7 7 8̂ 10 10 10 1̂0 10 13 14 15 1̂7

(3)

In either strings S1 and S2, both LZ77 and LZ78 show eigensequences

that are not strictly increasing. Therefore, neither LZ77 nor LZ78

parsing is innovative.

(iii) By definition given in Theorem 1.3.1 (i), a history step x(hi, hi+1) is

primitive if hi+1
.
= min{h > hi | λx(h) > λx(hi)}. Therefore, primitive

parsing is the longest innovative parsing because it takes into account

any possible innovative step and each primitive step is the shortest

possible innovative step.

Remark 1.4.1. Notice that from properties (ii) and (iv) of theorem1.2.1

follows that, among all possible histories of a given string x, the exhaustive

parsing is the parsing into maximally long production steps, whereas from
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property (iii) of theorem1.4.1 follows that the primitive parsing is the pars-

ing into minimally long production steps only among all possible innovative

histories of x.

Indeed, we have

cE(x) = min
H history of x

cH(x) = min

H innovative

history of x

cH(x) .

In this sense the primitive parsing is a refinement of exhaustive parsing,

since

cprim(x) = max

H innovative

history of x

cH(x) .

Corollary 1.4.1. Let x and y belong to A∗.

If Dic(x)
⋂

Dic(y) = ∅ then

c(xy) =



c(x) + c(y)

if the last step of the exhaustive history of x is

exhaustive

c(x) + c(y)− 1

if the last step of the exhaustive history of x is

not exhaustive

and

cprim(xy) =



cprim(x) + cprim(y)

if the last step of the primitive history of x is

primitive

cprim(x) + cprim(y)− 1

if the last step of the primitive history of x is

not primitive
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Proof. First, notice that the assumption on the vocabularies is realistic for

sequences built on alphabets with more than 3 letters (e.g. DNA sequences

are written in {A,C,G, T} alphabet and wide parts of them are separately

binary).

Now, for each 1 6 h 6 l(y), let xy(1, h) denote the joint sequence made

of x followed by y(1, h). The dictionary of this joint sequence may be written

as

Dic(xy(1, h)) = Dic(x) ∪ Dic(y(1, h)) ∪

∪ {x(j, l(x))y(1,m) | 1 6 j 6 l(x) and 1 6 m 6 h} .

Since by assumption Dic(x) and Dic(y(1, h)) are disjoint, then for every

1 6 j 6 l(x) and 1 6 m 6 h, the word x(j, l(x))y(1,m) does not belong

to Dic(x) ∪ Dic(y(1, h)). For instance, if x(j, l(x))y(1,m) ∈ Dic(x) then

y(1,m) ∈ Dic(x), which may not happen.

Hence, the eigenvocabulary of the joint sequence is

λDic(xy(1, h)) = Dic(xy(1, h)) \Dic(xy(1, h− 1)) =

= λDic(y(1, h)) ∪ {x(j, l(x))y(1, h) | 1 6 j 6 l(x)} .

Consequently, the eigenvalue of the joint sequence xy(1, h) equals

#λDic(xy(1, h)) = λy(h) + l(x) (4)

for every 1 6 h 6 l(y).

Now the theses may be easily derived thanks to Theorem 1.3.1, as follows.

We shall adopt the following notations, also to be consistent with the

above formula (4):

− the sites of the exhaustive or primitive cuts in the joint sequence xy are

h1, . . . , hc(xy);

− the sites of the exhaustive or primitive cuts in the individual sequence x

are k1, . . . , kc(x);
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− the sites of the exhaustive or primitive cuts in the individual sequence y

are `1, . . . , `c(y).

The proof shall be shown in several steps.

(a) The last step of the exhaustive parsing of x is exhaustive.

For i = 1, . . . , c(x) the cut sites of the joint sequence coincide with the

cut sites of x: hi = ki.

We now show by induction that for i > c(x) + 1 the cut sites of the

joint sequence also coincide with the cut sites of y in the sense that:

if i = j + c(x) then hi = `j + l(x). The shift is necessary because the

sites for y start from `1 = 1, while y1 is the (l(x) + 1)-th symbol in the

joint sequence. The first step is trivial.

By definition of Theorem 1.3.1, when i > c(x)+1 for the primitive cut

hi we have

hi = min{h | λxy(h) > hi−1} =

use formula (4)

= min{h | λy(h− l(x)) + l(x) > hi−1} =

use inductive hypothesis: hi−1 = `j−1 + l(x)

= min{h | λy(h− l(x)) + l(x) > `j−1 + l(x)} =

= `j + l(x) .

(5)

(b) The last step of the exhaustive parsing of x is not exhaustive.

The cut sites of xy coincide with the cut sites of x only up to the

(c(x)−1)-th step. Hence, due to the fact that the dictionaries of x and

y are disjoint, the c(x)-th cut site is always in y1. The following steps

coincide with the cut sites in pure y and this may be proved as above.

(c) The last step of the primitive parsing of x is primitive.
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The proof is the same as in case (a), with the exception of formula (5),

that changes as follows.

hi = min{h | λxy(h) > λxy(hi−1)} =

use formula (4)

= min{h | λy(h− l(x)) + l(x) > λy(hi−1 − l(x)) + l(x)} =

use inductive hypothesis: hi−1 = `j−1 + l(x)

= min{h | λy(h− l(x)) > λy(`j−1)} =

= `j + l(x) .

(6)

(d) The last step of the primitive parsing of x is not primitive.

The proof is the same as in case (b).

Remark 1.4.2. The primitive parsing is not subadditive on A∗

Proof. We show here two strings for which is possible to see that the primitive

parsing is not subadditive. Given S1 = 101011 and S2 = 1001 we have:

Eigenvalues S1 1 2 2 2 2 5

Sequence S1 1| 0| 1 0 1 1| cprim(S1) = 3

Eigenvalues S2 1 2 2 3

Sequence S2 1| 0| 0 1| cprim(S2) = 3

where with the symbol | we underline the positions where the cuts happen.

When we append the two sequences, we obtain:
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Eigenvalues S1 ∧ S2 1 2 2 2 2 5 5 6 8 8

Sequence S1 ∧ S2 1| 0| 1 0 1 1| 1 0| 0 1| cprim(S1 ∧ S2) = 5

Eigenvalues S2 ∧ S1 1 2 2 3 4 4 5 6 6 7

Sequence S2 ∧ S1 1| 0| 0 1| 1| 0 1| 0| 1 1| cprim(S2 ∧ S1) = 7

Then, we have that 7 = cprim(S2 ∧ S1) > cprim(S1) + cprim(S2) = 6

1.5 Optimality of the Exhaustive Parsing

In this section we want to report a central result of [72] about the convergency

of the exhaustive entropy to the entropy.

Theorem 1.5.1. For an ergodic source with positive entropy h and for every

ε > 0 it holds:

lim
n→+∞

Prob

{
c(xn) <

nh

log(n)
(1− ε)

}
= 0 .

Proof. We follow the proof of the analogous theorem in [72], which was valid

assigning the same probability measure 1
|A|n to each element of An..

Let [r]− denote the largest integer not exceeding the real number r and

[r]+ denote the least integer not smaller than r.

Consider x ∈ AN. For its truncated xn, consider a parsing

L(xn) = x(1, `)x(`+ 1, 2`) . . . x(k`+ 1, n)

of xn where all words (but at least the last one) have length 1 6 ` 6 n and

k = [n
`
]−. Let

δxn(i) =

 0 if x(1, (i− 1)`) → x(1, i`)

1 otherwise
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and let x(1, `i) be the sequence obtained in a single exhaustive production

step from x(1, (i− 1)`).

Let now compare the word (or block) obtained from an exhaustive pro-

duction step respect to the word obtained with an uniform segmentation;

If δxn(i) = 1, then the block obtained is not reproducible from the previ-

ous block; this means:

a) that the block is equals to the previous block plus some new character;

or

b) that the whole block is different from the previous block.

Let xu(1, il) denote the block obtained with uniform parsing under the

condition δxn(i) = 1.

Respect to the case a) the component obtained with the exhaustive pars-

ing xE(1, li) can be equals (in the case that there is only one new character)

or less than xu(1, il) (if there are more than one new character)

In the case b) the exhaustive component is surely shorter than xu(1, il),

according to the rule construction of the exhaustive parsing (there is always

a cut after a new character).

Example 1.5.1. Let’s try to explain this with an example: Let x = AATATTACTGHN

be a string. Suppose to divide it in blocks of length l = 3

A A T A T T A C P G H N

Block1 Block2 Block3 Block4

Block2, Block3, and Block4 are examples of the three cases blocks previ-

ously seen. In particular, the exhaustive parsing of the characters in Block2

(we suppose now that the Block1 is fixed) is equal to components obtained

with the uniform parsing (case a) with only one new character):

Fixed ExhComponent

A A T A T T

Block1 Block2
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If after the Block1 we had the Block3, the exhaustive parsing on the Block3

(Block1 always fixed) obtains two components:

Fixed ExhComponents

A A T A C | P

Block1 Block3

This is equivalent to the case a) where the uniform component have more

than one new character.

Otherwise, if Block1 was followed by the Block4, we are in the case b) (all

the character in the Block3 did not appeared previously) and three components

are made up by the exhaustive parsing:

Fixed ExhComponents

A A T G| H | N |
Block1 Block4

Therefore, in both the two cases (case a) and case b)) the length of the

exhaustive block li is less than the length of the uniform block li or, otherwise,

δxn(i) = 1 if and only if il > `i.

Hence

c(xn) = cE(xn) >
k∑

i=1

δxn(i) .

Now we consider the expectation of the complexity over the ensemble An

and obtain:

c(xn) =
∑

xn∈An

µ(xn)c(xn) >

>
∑k

i=1 δxn(i) =
∑k

i=1 δxn(i) .

According to the well-known Shannon-Mc Millan theorem, for every ε >

0, there is δ > 0 such that sequences of sufficiently large length n from an

ergodic stationary source with alphabet size α and entropy 0 < h 6 1 may

be partitioned into two particular subsets.
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A first subset T contains “typical” sequences that are almost uniformly

distributed: for each xn ∈ T

∣∣ logα(µ(xn))

n
+ h
∣∣ < ε .

A second subset R is made of “rare” sequences and it is negligible:

∑
xn∈R

µ(xn) < δ .

Notice that

δxn(i) = Prob {x(1, (i− 1)`) 9 x(1, i`)} =

= 1− Prob {x(1, (i− 1)`) → x(1, i`)} >

> 1−
(i−1)`∑
j=1

Prob {x((i− 1)`+ 1, i`) = x(j, `+ j − 1)}

Now, if an `-long word x((i − 1)` + 1, i`) is rare, then Prob {x((i − 1)` +

1, i`) = x(j, `+j−1)} is negligible. Otherwise, since typical words are almost

uniformly distributed, then at least definitely for `→ +∞ we have that

Prob {x((i− 1)`+ 1, i`) = x(j, `+ j − 1)} = e−`h + ε1

where for the Shannon-Mc Millan theorem the probability of a typical se-

quence of length ` is almost e−`h

From which

δxn(i) > 1− `(i− 1)e−`h + ε2 ∀ i . (7)
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Hence

c(xn) >
k∑

i=1

δxn(i) >

>
k∑

i=1

O(1− `(i− 1)e−`h) =

= O

(
k − `e−`hk(k − 1)

2

)
=

by definition, k = [n
`
]− ∼ n

`
for big n and `

= n
`
− n

2

(
n
`
− 1
)
e−`h =

= (n
l
− 1)− n

2

(
n
`
− 1
)
e−`h + 1

= (n
l
− 1)(1− n

2
e−`h) + 1

>
(

n
`
− 1
) (

1− n
2
e−`h

)
If we choose:

` =

[
1

h
(log(n) + log log(n))

]+

we may conclude that:

c(xn) >
nh

log(n)

(
1−O

(
log log(n)

log(n)

))
(8)

As already remarked by the authors of [72], by a slight modification of

the proof of their Theorem 2 in the light of Shannon-Mc Millan Theorem, it

may be easily proved that

c(xn) 6
hn

log(n)
(9)

The last inequalities (8) and (9) imply the conclusion of this proof.

This proof is essentially based on the count of the average number of the

parsing blocks, and this count is done comparing with the average number

of the uniform parsing blocks.

Remark 1.5.1. A result analogous to Theorem 1.5.1 is also true when the

complexity is that of LZ77 (see Theorem II.2.1 from [97]):

c77(x
n) log(n) −→ nh for n→ +∞
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almost surely when x drawn from an ergodic process with entropy h.

An alternative proof of the optimality (related to the Dinamical System

Theory) is obtained by Ornsteinn and Weiss. They show an interesting

connection between entropy and partitions of a finite-alphabet stationary

process into variable-length blocks; in [88] they prove two theorems concerned

with two different kind of parsing:

a) parsings where the blocks are pairwise distinct

b) parsings where each block has already been “essentially” seen somewhere

to the left

The first teorem (Theorem A) shows that eventually almost surely, for

any partition into distinct words, most of the sample path is covered by

blocks whose length is at least log n
h
. The second theorem (Theorem B) shows

that for any partition into words that have been seen in the past, most of

the sample path is covered by blocks whose length are at most log n
h
.

This second theorem is proved also in the case that each block occurs

somewhere to the left only after a fixed number of symbols at the beginning

and the end of the block have been deleted.

So, respect to a parsing c(xn) ∼ n
lmax

, from theorem A it is possible to

prove that

lim sup
n→∞

c(xn) log n

n
6 h a.s

while, from theorem B:

lim inf
n→∞

c(xn) log n

n
> h a.s

Now, from these two theorems, any parsing that satisfy the two condition

a) and b), will have most of its blocks with lengths approximately equal to
log n

h
.

In the particular case of theorem B where is not required that the blocks

lie completely to the left, the lempel ziv parsing (exhaustive parsing but also

the LZ77 parsing and other varianti) satisfies both condition a) and b) and
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it is possible to apply the combination of the two theorem to the Lempel-Ziv

parsing, as decribed by the theorem 4 in [88]:

Theorem 1.5.2. If {xn}∞1 is a finite valued stationary ergodic process with

entropy h, almost surely for an output {ηn}∞1 , given ε > 0, for all n > Nε

and any “old” parsing of η1 . . . ηn into distinct blocks Ii, we have that∑
Ii:

1
h+ε

log n6|Ii|6 1+ε
h

log n

|Ii| > (1− ε)n (10)

This theorem can get upper and lower bounds on the number of intervals

in the parsing, but the information that it gives is more precise.



Chapter 2

Similarity metrics

In this chapter we analyze similarity metrics related to different teo-

retical approaches: the first part of the chapter concerns the so called

“Information Distances” based on the Kolomogorov complexity. The

second part analyzes the distances related to the Relative Entropy (or

Kullback Leibler divergence), an indicator of the discrepancy between

two different sources.

Due to the uncomputability of both two theoretical distances, differ-

ent approximation methods are developed; here we show those related

to the compressor theory, parsing and the BWT transformation.

2.1 Information Distance

The Kolmogorov complexity, or algorithmic entropy, K(x) of a string x is

the length of the shortest binary program x∗ to compute x on a universal

computer (such as a universal Turing machine) [77]. Thus, K(x) = |x∗|,
the length of x∗, denotes the number of bits of information from which x

can be computationally retrieved. This way of seing the complexity of a

string as absolute quantification of the amount of information in it, leads to

a theory of absolute information contents of individual objects in contrast

to classical information theory of Shannon Entropy wich deals with average

information to transmit objects produced by a random source. With this

definition of complexity of strings, it is possible to study the question of

an information distance metric between individual objects, rather than the

23
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measure of the statistical remoteness between two stocastic sources through

the approximation of the relative entropy

We need a notion of distance that takes into account the problem of clus-

tering objects. Numerous and non equivalent distances have been developed

in the statistical field (see for example [115]), or following other approaches

include various types of edit distances between pairs of strings (Hamming

distance [46]). A priori it is not obvious what is the “best” measure of dis-

tance between two strings. “Best” could be intended as the minimal amount

of energy needed to traslate between x and y.

The answer to this request is the Information Distance, formally defined

as the length E(x, y) of a shortest binary program that computes x from y

(as well as computing y from x.)

What quantities defines this Information Distance? In [4] it is shown that

E(x, y) = max{K(y|x), K(x|y} up to an additiveO(log max{K(y|x), K(x|y)})
term, whereK(x|y) is the conditional Kolomogorov complexity, later defined.

We resume now the main steps of their arguments.

Definition 2.1.1 (Distance and Metric). A distance is a function D with

non negative values, defined on the Cartesian product X × X of a set X . It

is called a metric on x if for every x, y, z ∈ X :

• D(x, y) = 0 iff x = y (the identity axiom);

• D(x, y) = D(y, x) (the symmetry axiom);

• D(x, y) +D(y, z) > D(x, z) (the triangle inequality).

Definition 2.1.2 (upper semi-computable function). A real valued function

f(x, y) is upper semi-computable if there exists a rational valued recursive

function g(x, y, t) such that

i) g(x, y, t+ 1) 6 g(x, y, t);

ii) limt→∞ g(x, y, t) = f(x, y)



2.1. INFORMATION DISTANCE 25

It is lower semi-computable if −f(x, y) is upper semi-computable.

At last, f(x, y) is computable if it is both upper and lower semi-computable.

Definition 2.1.3 (admissible distance). Let Ω = {0, 1}∗, D : Ω × Ω → R+

is an admissible distance if it is symmetric, upper semi-computable distance

function and such that, for every pair of objects x, y ∈ Ω, D(x, y) is the

length of a binary prefix code-word that is a program computing x from y,

and vice-versa.

From the definition D must satisfy the following Kraft inequality which

gives some natural restriction on the density of the neighbor of any given

x ∈ {0, 1}∗: ∑
y∈{0,1}∗

2−D(x,y) 6 1. (1)

Remark 2.1.1. It is easy to see that the function K(x) and K(y|x∗) are

upper semi-computable, but they are not computable.

Morever, it is possible to see that K(y|x) has the property that for each x∑
y

2−K(y|x) 6 1.

Indeed, when we use the K(y|x) we are building a subset of the length set of

a prefix-code (or instantaneous code), and we know that the codeword lengths

of prefix-code must satisfy the Kraft inequality (1) (vice-versa: for the set of

codewords lengths that satisfy the Kraft inequality it does exist a prefix-code

with these word lenghts) [25].

Finally we observe that, with respect to this normalization property, the

conditional complexity K(x|y) is minimal. That is, for every upper semi-

computable function f(x, y)

K(y|x)
+
< f(x, y).

(with
+
< we denote an inequality to within an additive constant)

Following the idea of identification of the Kolmogorov complexity K(x)

as the information content of x we want to define the complexity of a string x
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referred to a string y as the information distance. This brings to, the need of

introducing the conditional descriptional complexity KF (y|x) := min{l(p) :

F (p, x) = y}, where with F we denote a partial recursive function computed

by a prefix Turing machine. Denoted with U the universal self-delimiting

Turing machine with the property that KU(y|x) 6 KF (y|x) + cF , with cF a

constant depending on F, we write

K(y|x) := KU(y|x)

and call K(y|x) the conditional Kolmogorov complexity of x with respect to

x.

After the preceding considerations, it seems natural to choose K(y|x)
as a possible canditate to satisfy our initial request of discovery the ”best”

distance. Unfortunately, the conditional complexity K(y|x) is unsuitable

as information distance because it is asymetric; this asymetry can be solved

with the sum K(y|x)+K(x|y). However, even in this case we have a problem:

the resulting metric will overestimate the information required to traslate

between x and y in case there is some redundancy between the information

required to get to y from x and the information required to get to x from y.

Definition 2.1.4. [4] The max distance between x and y is defined by

E(x, y) := max{K(x|y), K(y|x)}

In [4] it has been accurately proved that the E(x, y) so defined is equal

to the information distance E0(x, y) := min{l(p) : U(p, x) = y, U(p, y) = x}.
Clearly, E(x, y) is simmetric and then, recalling that K(·|·) satisfies both

the upper semi-computable property and Kraft’s inequality, we can say that

E(x, y) is an admissible distance.

Theorem 2.1.1. [76] The Information Distance E(x, y) is an admissible

distance that satisfies the metric inequalities up to an additive constant, and

it is minimal in the sense that for every admissible distance D(x, y) we have

E(x, y) 6 D(x, y)+O(1). The E(x, y) is defined as a universal admissible

metric.
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Proof. How we have previously underlined, the nonnegativity and symmetry

properties follow easily from the property of K(y|x), as well as the normal-

ization and the minimal property.

It remains to prove the triangle inequality: we assume, without loss of

generality, that E(x, z) = K(z|x). Then:

E(x, z) = K(z|x)
+
< K(y, z|x)

+
< K(y|x) +K(z|x, y)

+
< K(y|x) +K(z|y) 6 E(x, y) + E(y, z)

An important observation at this point is that every specific feature of

objects induces a distance, and every specific distance measure can be viewed

as a quantification of an associated feature difference. The above theorem

states that among all features that correspond to upper semicomputable

distances, satisfing the density condition (1), the information distance is

universal in that among all such distances it is always smallest up to constant

precision. That is, it accounts for the dominant feature in which two objects

are alike.

A useful consideration, at this point, could be that the notion of in-

formation content of individual objects can only be useful if the quantity of

information is only an attribute of the object and is indipendent of the means

of description [77].

2.1.1 Normalized Information Distance (NID)

Now, we have a definition of Information Distance E(x, y) and we know,

from Theorem 4.2 in [4], that this distance is also a metric, up to an additive

fixed finite constant. This is an absolute distance, but, if we are interested in

investigating the similarity of strings, then we are more interested in relative

distances. Using the information distance now defined, indeed, it could hap-

pen that a sequence x results nearer to sequences y only because the length

of y is almost equal to one of x.
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We need, thus, of a notion of normalized distance:

Definition 2.1.5 (normalized distance or similarity distance). A normalized

distance or similarity distance, is a function d : Ω × Ω → [0, 1] that is

symmetric d(x, y) = d(y, x), and for every x ∈ {0, 1}∗ and every constant

e ∈ [0, 1]

|{y : d(x, y) 6 e 6 1}| < 2eK(x)+1 (2)

Remark 2.1.2. The density requirement (2) is implied by a “normalized”

version of the Kraft inequality (Lemma IV in [76]):∑
y

2−K(x) d(x,y) 6 1.

Finally, we can give the definition of Normalized Information Distance:

Definition 2.1.6. Given two sequences x and y, define the function

dK(x, y) =
max{K(x|y∗), K(y|x∗)}

max{K(x), K(y)}
(3)

(where x∗ and y∗ are defined as in section 2.1)

Remark 2.1.3. As discussed in [76], there are several different alternatives

for the denominator, but they turn out to be all wrong.

In particular, if we divide by max{|x|, |y|} the corresponding metric will

not satisfy the triangle inequality and its universal property is lost.

If instead it is used K(x, y) as denominator, then dK(x, y) = 1/2 for any

pair of independent and fully random sequences.

Note that , if K(y) > K(x) then we can write

dK(x, y) =
K(y)− I(x : y)

K(y)
= 1− I(x : y)

K(y)
.

In [76] is proved that this dK takes values in the range [0, 1+O( 1
max{K(x),K(y)})]

and it can be showed that it is a normalized distance (or similarity distance),

that is, it can be proved the density condition of (2) [76]. Morever, this func-

tion satisfies the metric properties up to an additive precision O( 1
K

), where
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K is the maximum of the Kolmogorov complexities of the objects involved

in the equality. Then, this dK(x, y) is a similarity metric.

Finally we are interested in the fact that this NID is universal in the sense

that every metric expressing similarity according to some feature, that can be

computed from the objects concerned, is included (in the sense of minorized)

by the universal metric. This should be understood in the sense that if two

files are similar (that is, close) according to particular metric, then they are

also similar (that is close) in the sense of the normalized information metric.

Theorem 2.1.2. [76] The normalized information distance d(x, y) minorizes

every upper semi-computable normalized distance f(x, y) by d(x, y) 6 f(x, y)+

O( 1
K

) where K = min{K(x), K(y)}.

For this universality property we call the function dK(x, y) as “the”

similarity metric.

2.1.2 Normalized Compression Distance (NCD)

Now we want develop an analogue of the NID based on real world compres-

sors, called the “Normalized Compression Distance” (NCD). The main issue

related to this approximation is intrinsic factor of the notion of Kolmogorov

complexity; the Kolmogorov complexity is indeed a noncomputable function,

thus, K(x) is, in last analysis, the lower bound of what a real world com-

pressor can possibly achieve. It is very important to stress again that in

any practical approximation of the Kolmogorov complexity K(x) of a given

string, we will not be able to determine how fast in the length of x our esti-

mate converges to its true value, besides few asymptotic results for ergodic

sources. Moreover, we will never consider or discuss the (usually divergent)

time needed for our algorithm to produce a final output.

Definition 2.1.7. The approximation of NID is called the Normalized Com-

pression Distance (NCD) and is defined by:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(4)
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where with C(xy) we denote the compressed size of the concatenation of x

and y, C(x) is the compressed size of x, and C(y) that of y. The NCD is a

non negative number 0 6 NCD 6 1 + ε and shows how much the two files

are different.

Note that, while in [4, 76] only the boundary case K(x) = C(x) has

been discussed, a more general theory of normalized compression distance

has been developed in [24] based on the notion of a normal compressor.

Definition 2.1.8 ([24]). A compressor C is normal if the following axioms

are satisfied up to an additive O(log n), where n is the maximal binary length

of the elements involved in the inequalities:

1. Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is the empty

string.

2. Monotonicity: C(xy) > C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) + C(z) 6 C(xz) + C(yz).

Remark 2.1.4. While the first two axioms, idempotency and monotonicity,

are usually satisfied by any real-world compressor, the simmetry property is

much more subtle: usually this property is not satisfied by Lempel-Ziv type

compressors such as gzip and pkzip, and also the predictive PPM family,

like PPMZ, are possibly not exactly symmetric. This fact is clearly related

to the stream-like mechanism of these compressors. On the other hand, the

block-coding like compressor, such as bzip2, implement a global analysis of

the string (through the Burrows-Wheller transform) and are to a great extent

symmetric.

Finally, the distributivity properties listed here (the proof follow from the

monotocity property) is a weaker form of a strong property satisfied by the

Kolmogorov complexity K(xyz) + K(z) 6 K(xz) + K(yz) and it is usually

satisfied by real-word compressor, at least up to the required precision.
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If C(y) > C(x) the NCD become equal to:

NCD(x, y) =
C(xy)− C(x)

C(y)
= 1− C(y)− C(y|x)

C(y)
= 1− I(x, y)

C(y)

Theorem 2.1.3. [24] If the compressor is normal, then NCD is a similarity

metric.

Let’s see now the NCD approximation in detail. The numerator of (3)

can be rewritten as max{K(x, y)−K(x), K(y, x)−K(y)}, within logarithmic

additive precision by the additive property of Kolmogorov complexity (see

[77]). The term K(x, y) represents the length of the shortest program for

the pair (x, y). The joint Kolmogorov complexity K(x, y) of two sequences

x, y ∈ {0, 1}n is log-equivalent to their concatenated Kolmogorov complexity

K(xy). In order to prove this fact we need to introduce some definitions.

Definition 2.1.9. A pairing function is any function < ·, · >: N × N → N.

The pairing is said total if it is defined for each (x, y) and it is said prefix

code if its range is a prefix-free subset of N.

We recall that every binary sequence may be read as a natural number

via the standard mapping σ of {0, 1}∗ onto N (see [77]). Therefore we can

say that any pairing associates a binary string to a pair of binary strings:

(x, y) ∈ {0, 1}∗ × {0, 1}∗ 7→ σ−1 < (x, y) >
.
= σ−1 < σ(x), σ(y) >∈ {0, 1}∗ .

If the pairing is total, one-to-one and it is a prefix code, then for any pair

(x, y) of binary strings in {0, 1}∗×{0, 1}∗ we can unambigously read the pair

as a unique binary sequence, i.e. every prefix code is a uniquely decodable

code. The converse is not true (see [42]).

Theorem 2.1.4. Total and one-to-one pairings that are also prefix codes do

exist.

Proof. Let E : N −→ {0, 1}∗ be a total, one-to-one, prefix code. For instance,

let M : {0, 1}∗ −→ {0, 1}∗ s.t. M(x)
.
= 1l(x)0x. Let M̂(x)

.
= M(l(x))x, where

l(x) is interpreted as a binary string according to the standard identification
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of N to {0, 1}∗. Then E defined as E(M̂(x)) = x is a total, one-to-one prefix

code, when the binary string is interpreted as a natural number.

Then the mapping defined by < x, y >
.
= E(x)E(y) is a total (trivial) and

one-to-one pairing and it is a prefix code.

Now, we are ready to prove that joint Kolmogorov complexity K(x, y)

of two sequences x, y ∈ {0, 1}n is log-equivalent to their concatenated Kol-

mogorov complexity K(xy), in the following sense.

Theorem 2.1.5. K(x, y) = K(xy) up to a logarithmic term.

Proof. By definition, K(x, y)
.
= K(< x, y >) where < ·, · > is a standard

invertible prefix code pairing. Intuitively, the prefix code E defined in The-

orem 2.1.4 may be used to define both a concatenation of x and y and a

product string (x, y), as follows.

Concatenation program:

 Write x, for instance via prefix code E

Write y, for instance via prefix code E

Product program:


Write x, for instance via prefix code E

newline or similar separator after l(E(x)) written bits

Write y, for instance via prefix code E

Since l(E(x)) = l(x) + 2 log(l(x)) + 1, then any two minimal programs

defining either the concatenation or the product of sequences differ from

about log(l(E(x))) = O(log(l(x))).

Corollary 2.1.1. For any x, y ∈ {0, 1}n

K(x, y) = K(y, x)

up to a logarithmic term of the order of max{log(l(x)), log(l(y))}.
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Summarizing: from the theory: K(x, y) = K(xy) = K(yx). But, when we

deal with real-life compressors, the quantity C(xy) is different from C(yx); we

take the smaller of the two because this is clearly the closest approximation

to K(x, y). Then:

max{K(x, y)−K(x), K(x, y)−K(y)} = K(xy)−min{K(x), K(y)}

≈ min{C(xy), C(yx)} −min{C(x), C(y)}

≈ C(xy)−min{C(x), C(y)} (5)

where with C(xy) we denote the min{C(xy), C(yx)} (from the previous

observation the compressors are not always simmetric, unless C is a normal

compressor.)

As we have seen, if C is a normal compressor then dC(x, y) + O(1) is an

admissible distance, where

dC(x, y) = C(xy)−min{C(x), C(y)}.

If, instead of the result of some real compressor, we substitute the Kol-

mogorov complexity for the lengths of the compressed files in the NCD for-

mula, the result is a similarity metric, and it is called Kolmogorov metric.

Note that when we use the real compressor we deal with sequence of finite

length and the claimed universality of the Kolmogorov metrics holds only for

indefinitely long sequences x, y. Moreover, there is always the problem that

the Kolmogorov complexity is not computable, so we cannot know how well

we are doing using the NCD, because we cannot compute how far the NCD

is from the Kolmogorov metric.

While better compression of a string will always approximate the Kol-

mogorov complexity better, this may not be true for the NCD, because the

formula involves subtraction and division, and the improvement for single

items is not necessarily the same for all items.

Moreover, the approximation of the quantity K(x, y) = K(xy) with the

compression of two appended sequences C(xy) is not proved, it is an heuris-

tically approximation, assumed as a necessary condition for having the uni-
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versality of NCD;1 so the NCD is quasi universal metric in the sense that

NCD(x, y) minorizes any metric d(x, y) under a strong condition given by

the following theorem:

Theorem 2.1.6. Let d be a computable similarity metric. Given a constant

a > 0, let objects x, y be such that C(xy)−K(xy) 6 a. Then NCD(x, y) 6

d(x, y) + (a+O(1))
k

where k = max{C(x), C(y)}

Beside this approximation of NID, we recall also another compression

distance that is used on DNA sequences to compare genomes and construct

evolutionary trees. In [16], [75] is defined a distance:

dGenCompress(x, y) = 1− K(x)−K(x|y)
K(xy)

(6)

that is the same normalized information distance defined in equations (V.1)

and (V.2) of [76]. Using the definition of mutual information, it is possible

to rewrite (6) as:

dGenCompress = 1− I(y : x)

K(xy)
.

This distance satisfies the triangle inequality, up to a small error term, and

universality, but only within a factor of 2 (see for proofs [75]). In [16] K(x)

is heuristically approximated with Compress(x), where Compress indicates

the use of compression algorithm GenCompress, and use Compress(x|y) to

heuristically approximate K(x|y). For counting the conditional kolmogorov

complexity, it is needed to convert the GenCompress program into the con-

ditional version.

Now we introduce an approximation of the NID whit another tool that

is different from compressor approach.

2.1.3 LZ-metric

The metric that will be shown now, was discussed for the first time in [90].

It can be seen as another approximation of the Information Distance above

1this problem about the compression of two appended sequences is faced in section

2.2.4
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discussed but instead of the compressor as in [24], the approximator is the

exhaustive parsing defined in section 1.2.

The idea that moves us to considering the parsing for a construction

of a distance between sequences is the following: given two sequences x

and y consider the sequence xy and its exhaustive history. Rewriting the

subadditivity property of the ehxaustive parsing (c(xy) 6 c(x) + c(y)) as

c(xy)− c(x) 6 c(y), we say that the number of component needed to build y

when concatenated to x will be lower than or equal to c(y) and this, in turn,

would reduce the number of exhaustive components.

Clearly, the more the two sequences x and y are similar, the lower the

quantity c(xy) − c(x) is referred to c(y). How great is the difference will

depend on the degree of similarity between x and y. Given a third string z,

if a sequence x is closer to z than to y then we would expect c(xz)− c(x) to

be smaller than c(xy)− c(x).

Example 2.1.1. Let x = ATCATGCTAGTACGT, y = AATCGTATACGTCG

and z = AGTACGTTCATGCT The exhaustive histories of these sequences

are:

HE(x) = T.C.A.TG.CT.AG.TAC.GT

HE(y) = A.AT.C.G.TA.TAC.GTC.G

HE(z) = A.G.T.AC.GTT.CA.TG.CT

yelding C(x) = C(y) = C(z) = 8. The exhaustive histories of the appended

sequences XY and Y Z are:

HE(xy) = T.C.A.TG.CT.AG.TAC.GT.|AA.TC.GTAT.ACGTC.G

HE(xz) = T.C.A.TG.CT.AG.TAC.GT.|AGTACGTT.CATGCT

where C(xy) = 13 and C(xz) = 10. Note that it takes two steps to build z

from xz while five steps are necessary to generate y from xy. The reason is

because z and x have more common patterns than x and y.
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The quantity c(xy) − c(x) is therefore an indicator of the similarity be-

tween the building rules of the two strings. On this indicator it is possible

to construct a distance measure between sequences.

Four distances are proposed from [90], each using the notion of complexity

of LZ. We recall only the normalizated versions of these:

Definition 2.1.10. For any x, y ∈ A∗ we define the LZ-metric

dLZ(x, y) =
max{c(xy)− c(x), c(yx)− c(y)}

max{c(x), c(y)}
(7)

For approximating the information distance defined in equations (V.1)

and (V.2) of [76] the authors use:

d∗LZ(x, y) =
c(xy)− c(x) + c(yx)− c(y)

1
2
[c(xy) + c(yx)]

(8)

The function dLZ(·, ·) (and also d∗LZ(x, y))is a distance metric. Indeed,

by the definition, dLZ(·, ·) satisfies the simmetry property. The identity

condition is satisfied up to an error term of O( 1
c(x)

). For the proof of the

triangle inequality is needed the following Lemma:

Lemma 2.1.1.

c(xy)− c(x) 6 c(xz)− c(x) + c(zy)− c(z) (9)

that, in turn, uses the following property:

c(xyz)− c(xy) 6 c(yz)− c(y) (10)

This last equation says that the number of components z would have,

if parsed using xy, in less than the number of components z would have, if

parsed using y. Infact, we know, from the subadditivity that:

c(xyz)− c(xy) 6 c(z)

c(yz)− c(y) 6 c(z)
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then

c(xyz)− c(xy)− c(yz) + c(y) 6 0

c(xyz)− c(xy) 6 c(yz)− c(y)

Noting (10) and that

c(xz)− c(x) 6 c(xyz)− c(x) (11)

we obtain

c(xz)− c(x) 6 c(xyz)− c(x) 6 c(yz)− c(z) + c(xy)− c(x)

that is the proof of lemma 2.1.1.

Note that if we replace c with K we obtain

K(xyz)−K(xy) = K(z|x, y)

≈ K(x, z|y)−K(x|y)

6 K(x, z|y) 6?K(z|y)

The proof of the triangle property of the formula (7) follows the proof

of triangle property for the NCD metric and it is given in [90] using the

subadditivity of the exhaustive parsing. We write the proof in the case of

the formula (8), that is the formula used in our experiments as well. We

can note that by definition the (8) satisfies the symmetry condition (up to

a logarthmic factor) while the identity factor is satisfied up to an additive

error term of O( 2
c(S)

) dependig on wheter the last component of the sequence

S is exhaustive or not (if the last component is exhaustive the parsing of x

appended to itself is equal to the parsing of x plus a component equal to the

whole string x previoulsy seen). To prove the triangle inequality for (8) it is

sufficient to show the two inequalities (the quantity 1
2

in the denominator of

(8) is omitted in this proof):

c(xz)− c(x)

c(xz)
6

c(xy)− c(x)

c(xy)
+
c(yz)− c(y)

c(yz)

c(zx)− c(z)

c(xz)
6

c(yx)− c(y)

c(xy)
+
c(zy)− c(z)

c(yz)
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we prove the first one only (the second is simmetric to the first one). Let

δ = c(yz)− c(y) + c(xy)− c(x)− (c(xz)− c(x)); this quantity is positive for

the lemma (2.1.1), then we can write:

c(xz)− c(x)

c(xz)
6

c(xz)− c(x) + δ

c(xz) + δ

=
c(xy)− c(x) + c(yz)− c(y)

c(xy) + c(yz)− c(y)

6
c(xy)− c(x)

c(xy)
+
c(yz)− c(y)

c(yz)

since c(xy)+ c(yz)− c(y) > 1c(xy)+ c(y)− c(y) > c(xy) and c(xy)+ c(yz)−
c(y) > c(xy) + c(y) − c(y) > c(yz) As the second inequality is proved

symmetrically we have proved the triangle inequality.

2.2 The Relative Entropy

In this section we want to analyze distances between distributions. We recall

the notion of the Relative Entropy (or Kullback-Leibler divergence) for two

markovian sources. In realistic situations, namely in working with concrete

finite realizations of ergodic unknown sources with unknown memory length,

we face the pratical problem of estimating the Kullback-Leibler divergence.

In this chapter we show different approaches to estimate the divergence

between two sources given the sequences: one using the parsing procedure,

and another using the BWT transformation. Finally, we show a different

type of distance, named n-gram distance, based on the n-gram frequencies

of the two sequences.

1this follows for the property that says that c(y) 6 c(yz). guarda dove l’hai messa e

come si chiama
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2.2.1 The Relative Entropy between two Markov sources

Given two positive probability mass function p(x) and q(x), the Relative

Entropy (or the Kullback-Leibler Divergence) is defined as follows:

D(q ‖ p) =
1

n

∑
x∈X

q(x) log
q(x)

p(x)
(12)

When the sequence x is a sequence emitted from an unknown lth-order

stationary Markov process p(·) over a finite alphabet A, we know that the

probability mass function p is defined as:

p(x) = p(xl
1)

n∏
i=l+1

p(xi|si−1) (13)

where si = xi
i−l+1 = (xi−l+1, xi−l+2, . . . , xi) for i > l and si = (s0, x1, x2, . . . , xi)

for i < l, s0 being the initial state.

Now, let p(·) and q(·) be two Markov probability measure, each of order

no larger than same positive integer l.

Let x be a realization of p(.) and let z be a realization of q(.)

We have:∑
x∈An

q(x) log
q(x)

p(x)
=

∑
al
1∈Al

q(al
1) log

q(al
1)

p(al
1)

+(n− l)
∑

a∈A;s∈Al

q(s, a) log
q(a|s)
p(a|s)

where the state s is the previous l letters.

Then, the Relative Entropy between these two mass functions is defined

in the following way:

D(q ‖ p) = Dl(q ‖ p) = lim sup
n→∞

∑
x∈An

q(x) log
q(x)

p(x)

=
∑

a∈A;s∈Al

q(s, a) log
q(a|s)
p(a|s)

(14)
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while the entropy respect to q is:

H(q) = −
∑
A;Al

q(s, a) log
q(s, a)

q(s)

= −
∑
A;Al

q(s, a) log q(a|s) (15)

Rougly speaking, the relative entropy measures the distance between two

different distributions, estimating the inefficiency of assuming that the dis-

tribution of a sequence x is p when the true distribuition is q. It is not a true

distance in mathematical sense (it is not simmetric and does’nt satisfy the

triangle inequality), but it is a usefull indicator for estimating the statistical

differences between sequences belonging to different sources [25].

The estimate of the distribution of the source from a single realization x

is a computational hard problem, so we need to approximate the quantities

of the relative entropy.

2.2.2 The Merhav and Ziv theorem

In the chapter 1 we have seen an important result that connects the number

of compenents of an exhaustive parsing to the entropy (see theorem 1.5.1).

Analogously, in [115] the authors define a kind of procedure that uses

the parsing on a string to estimate the cross entropy C(q ‖ p) between the

realizations z and x of two sources with probability q and p respectively.

The cross entropy between two sources is defined as

C(q ‖ p) = −(D(q ‖ p) +H(q)) (16)

(in the case of bernoullian sequences C(q ‖ p) = q log p+ (1− q) log(1− p))

The idea is to estimate the cross entropy term by building the parsing of

z using the string x . With c(z|x) the authors indicate the number of phrases

obtained with the parsing procedure in z with respect to x . Practically one

has to find the largest integer m such that the sub-sequence (z1, . . . , zm) =

(xi, xi+1, . . . , xi+m−1) for some i. The string (z1, . . . , zm) is defined as the first
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phrase of z with respect to x . Then one starts from zm+1 and find, in a

similar manner the longest sub-sequence (zm+1, . . . , zn) which appears in x ,

and so on. The procedure ends once the entire sequence z has been parsed

with respect to x .

From the definition of Cross Entropy, it is evident that approximating

this term we can approximate also the relative entropy (in section 1.5 we

have seen, indeed, that the number of words obtained with the parsing of a

string is an approximator of its entropy).

We resume brefly the steps in [115] that lead to the definition of the

quantity that approximates the relative entropy.

From (12) (13) and (14) it is possible to obtain:

− log p(z) = nH(q) + nD(q ‖ p) (17)

(the term log p(z) is equivalent to the cross entropy defined above).

Defined Q(z ‖ x) = 1
n
c(z|x) log n, the main point of the article of Merhav

and Ziv [115] is the proof of the following limit:

lim
n→∞

[
− 1

n
log p(z)−Q(z ‖ x)

]
= 0 (18)

for almost every pair (x, z) relative to the product probability p(x)q(z), for

every finite memory l and every finite A.

Proved this point, we can use the parsing of a string z based on the string

x for estimating the probability that the sequence z is emitted by p.

For estimating the relative entropy, it is necessary to prove that the quan-

tity ∆(z ‖ x) = Q(z ‖ x) + Hz is an estimation of the relative entropy

D(qz ‖ p), i.e.

lim
n→∞

[∆(z ‖ x)−D(qz ‖ p)] = 0 (19)

Then, the quantity ∆(z ‖ x) is an indicator of the relative entropy with

the use of the LZ parsing.

The idea to use the parsing of the string z respect to the string x for

estimating the probability px(z) can be understood in the simple case of two

bernoullian sequences.
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Let x be a sequence generated by a bernoulli source with probability p

for 0 and (1-p) for 1, and let z be a sequence generated with probability q

for 0 and (1-q) for 1, both sequence of length N.

Consider in x a segment of length n : in this subsequence 0 will appear

approximately pn times while 1 will appear approximately (1− p)n.

The probability to find a subsequence of this kind in the string x of length

N is:

Pn = pnp(1− p)n−np = pnp(1− p)(1−p)n (20)

The logarithm of this quantity:

logePn = log pnp + log(1− p)(1−p)n

= n[p log p+ (1− p) log(1− p)]

= −nH(p)

and then

Pn = exp−nH(p) (21)

(We remember that this is also the Shannon Mc-Willey theorem [25])

The typical length of a sequence with probability Pn is 1
Pn

2, and then, the

maximal length of the substring that we can find in x is

1

Pn

= expnH(p) ∼ N (22)

we obtain that:

nH(p) ≈ logN (23)

or rather, the average length of a subsequence is

n =
logN

H(p)
(24)

Remark 2.2.1. from this average length it is possible to prove also the op-

timality of the exhaustive parsing, infact:

c(x) ∼ N

n
=

N
log N

H

=
N

logN
H (25)

2Kac Theorem [60]
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and then

c(x)
logN

N
∼ H (26)

Come back to our original sequences x and z ; in z a subsequence of

length n has probability qnq(1− q)n(1−q), where nq and n− nq = n(1− q) is

the number of 0 and 1 respectively that we can find in the subsequence of

length n. Let wz be such subsequence. The probability to find wz in x must

be equal to that of finding a subsequence of length n with the number of 0

and 1 equal to the distribution in the subsequence wz. Then, the probability

of finding the subsequence wz of length n in x is given by:

pnq(1− p)n(1−q) = exploge(p
nq(1−p)n(1−q)

= explog pnq+log(1−p)n(1−q)

= expn(q log p+(1−q) log(1−p))

= exp−n(D(q‖p)+H(q))

where the last equality follows from.the definition of relative entropy for

bernoulian sequences:

D(q ‖ p) = q log
q

p
+ (1− q) log

(1− q)

1− p)

= q log q + (1− q) log(1− q)− q log p− (1− q) log(1− p)

= −H(q)− q log p− (1− q) log(1− p)

⇒ q log p+ (1− q) log(1− p) = −(D(q ‖ p) +H(q))

Then we have calculated the probability of a subsequence of length n in

x with the number of zero and ones given by the distribution of the sequence

z , or, in other words, the probability that wz is generated from the source

with distribution p.

Following the notations of [115], this quantity is written as px(wz).

Even in this case we can calculate the max length of the match subse-

quence:

1

p(z)
= expn(D(q‖p)+H(q)) ∼ N (27)

n(D(q ‖ p) +H(q)) ∼ logN (28)
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then the max length of the subsequence wz is equal to: nmax = log N
H(q)+D(q‖p)

=
log N

C(q‖p)

Similarly to the case of the single entropy:

c(z|x) ∼ N

nmax

=
N

logN
(D(q ‖ p) +H(q)) (29)

or, similarly:
logN

N
c(z|x) →N→∞ C(q ‖ p) (30)

where C(q ‖ p) is equal to − log p(z) from equation (17)

The statistical properties of the quantity Q(z ‖ x) are described by the

following theorem (Theorem 1 of [115]):

Theorem 2.2.1. Let p(.) be a stationary Markov source of order l and let µ

be an arbitrarily small number. Let x be a realization of p(.). Then we have

the following

a) For every fixed z ∈ An for which p(z) > 0,

p

[
x : − 1

n
log p(z)−Q(z ‖ x) < 2µ log

1

δ

]
6 exp−( nµ

log n
)K(δ,`)+o( nµ

log n
)

(31)

where

δ = min
a`+1∈A`+1:p(a`+1)>0

p(a`+1) (32)

K(δ, `) = δ`+1 log
1

1− δ
(33)

b) For every z ∈ An for which p(z) > 0

p

[
x : − 1

n
log p(z)−Q(z ‖ x) > 2µ log

1

δ

]
6 n−

µ
2 + 0(n−

µ
2 ) (34)

c) let z be a realization of a stationary Markov source of order `
′
with an un-

derlying probability measure q(.). then (34) can be replaced by a tighter
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bound for almost every z ∈ An (relative to the probability measure q(.)

) as follows:

p

[
x : − 1

n
log p(z)−Q(z ‖ x) > 2µ log

1

δ

]
6 exp

− 1
2
( µ2

log2 n
)nK

′
(δ,δ

′
)[1−o(n−µ2

)]

(35)

for every z ∈ An − B for which p(z) > 0, where B is a subset with the

property.

q(z ∈ B) 6 exp−K
′′
(δ,A,µ) nµ

′

log n
+o( nµ

′

log n
) (36)

and

δ
′

= min
a`+1∈A`+1:q(a`+1)>0

q(a`+1) (37)

K
′

=
1

4

log 1
1−δ′

log 1
δ

(38)

K
′′
(δ, δ

′
, µ) =

µ

2(1 + µ)

log 1
1−δ

log 1
δ

log
1

1− δ′
(39)

µ
′

= 1− 1

4
log

1

1− δ′
/ log 1δ (40)

The point a) of the theorem says that Q(z ‖ x) exceeds − 1
n

log p(z) signif-

icantly with probability that decays being “almost exponentially”. While the

point b) says that the Q(z ‖ x) is significantly smaller than − 1
n

log p(z) with

probability that decays only polynomially with n. However, from point c), if

z belongs to some subset of high probability under q(.), the latter probability

decays “almost exponentially” as well.

The limit (18) is obtained from the point a), b) and the Borell-Cantelli

Lemma, while from point a) and b) of the theorem, we have:

lim
n→∞

p{x : | − 1

n
log p(z)−Q(z ‖ x)| > ε} = 0

2.2.3 The compressor method

The compression algorithm applied to a sequence emitted by an ergodic

source X is able to encode the sequence almost optimally. This optimal
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coding will not be the optimal one for another sequence emitted by the

ergodic source Z.

The number of bits per character wasted to encode the sequence emitted

by Z with the coding optimal for X is the relative entropy of X and Z.

This idea to use the optimal coding for a given source to encode the

sequences of another source is fundamental for the distance used in [3].

In order to define the relative entropy between two sources X and Z they

extract two long sequences x and z from the sources X and Z, respectively,

and a short sequence z from the source Z. They append the sequence z to

x and zip this new sequence x∧ z with an everyday compressor such as gzip.

Intuitively, the quantity ∆xz = Lx+z−Lx (Li is the length of the compressed

sequence i) measures the length of z in the coding optimized for x , and the

relative entropy SXZ per character between X and Z will be estimated by

SXZ =
∆xz −∆zz

|z|
(41)

where ∆zz

|z| = Lz∧z−Lz

|z| is an estimation of the entropy of the source Z.

SXZ is a heuristic compression-based algorithm for D(· ‖ ·) and there is

no claim that the algorithm converges to D(· ‖ ·).
This idea to use compressors based on the LZ77 algorithm (such as gzip)

for estimating the relative entropy can also be seen as an implementation of

the Merhav and Ziv method, where the parsing of the string is replaced by

the compression of the string itself. In this analogy, the cross parsing term

c(x|z) is given by ∆xz while the entropy is estimated by ∆zz.

Intuitively, the compression algorithm when works out the string x ∧z

first of all encodes the sequence x , then it begins encoding the file z .

After having compressed the sequence x , the algorithm starts compress-

ing sequence z using the dictionary that it has learned from x . After a while,

however, the dictionary starts to become adapted to the sequence z , and

after a long fraction of z already analyzed, the dictionary tends to depend

only on the specific features of z .

When this appens, it is clear that we are not doing a parsing of the
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sequence z with respect to the only sequence x , then we are not doing the

Merhav-Ziv method.

From these considerations it derives the necessity to use the short se-

quence emitted by the Z source in the calculation. But, how much “short”

must be a z sequence?

In [94] the authors analyze accurately this problem and show that it exists

a crossover length for the sequence z , which depends on the relative entropy

between x and z , below which the compression algorithm does not learn the

sequence z (measuring in this way the cross entropy between x and z ) and

above which it starts learning z , i.e. optimizing the compression using the

specific features of z .

Then, when we use the adaptive compressors such as those based on the

LZ parsing, the implementation of the Merhav and Ziv method needs some

care. To implement exactly the Merhav and Ziv method with the compres-

sors implies the necessity to study this crossover length for the sequence z

(appended to x ).

Following the same discussion we made in Merhav and Ziv theorem for

two bernoullian sequences, a string of length nz in z has a probability of

occurrence equal to e−nzhz , while the probability of occurrence of the same

string in the string x is equals to the probability of the string respect to the

measure p and is asymptotically given by e−nz [hz+D(q‖p)]. 3

As already discussed, the typical distance between two occurrences of the

same substring is inversely proportional to the probability of the substring

itself.

Then, if we look for the length nz of the longest match found in z :

Lz ∼
1

probability of a typical sequence in z of length nz

= enzhz

from which we obtain the value of

nz =
logLz

hz

3this results is based on the Shannon-McMillan theorem plus the theory of types [25]

pag281
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Otherwise, if we want the length nx of the longest subsequence of z in x

Lx ∼
1

e−nx[hz+D(q‖p)]
= enx[hz+D(q‖p)]

from which we get:

nx ∼
logLx

hz +D(q ‖ p)
Now, intituively, if nz � nx then the longest match will be found in x

rather than in z .

Rewriting the condition nz � nx respect to the lengths of the two se-

quences, we obtain:
logLz

logLx

� hz

hz +D(q ‖ p)
(42)

According this condition, we can use the compressor algorithms for im-

plemeting the idea of the Merhav and Ziv (because we expect that the longest

match will be found in x ), and so, we can use the compressor algorithms for

estimate the relative entropy between two different sources.

Moreover, in [94] there is also a conjecture about a scaling function which

rules the way in which the compression algorithms learn the sequence z

after having zipped the sequence x ; this scaling function is connected to an

analysis of the fluctuations on the transient region (i.e. the region where the

sequence z starts and the compressor begins a sort of learning process).

The conjecture says that, when the lengths of the two sequences x and

z go to infinity, the probability of the learning function P (x, z) (i.e. the

probability that, once the zipper starts scanning the z part of the x +z file,

it finds a matching in the x part rather than in the z part) converges to a

unique function:

P (x, z) →x,z→∞ f

(
x− αz√
x + z

)
where α = hz

hz+D(q‖p)
and

√
x + z is the random fluctuations around its aver-

age.

Otherwise, it is not evident (and perhaps neither true) that with the

compression of two appended sequences x +z minus the compression of the

file x we are estimating the cross entropy of two files.
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2.2.4 The compression of two appended sequences

The difficulty to understand the teoretical quantities involved in the com-

pression of two appended files is due to the use of adaptive LZ compressors.

These algorithms belong to the class of Universal Code, that works with-

out a priori knowledge of the statistics of the sequences, converging anyway,

and quickly to the sequence entropy itself.

In the case of statistical compressor algorithms, it is possible to detect

the quantities involved in the compression of two appended files.

We remember that the algorithms based on statistic coding work in two

steps: first it is constructed the histogram representing the frequency of each

byte and is constructed an optimal code so that the probability of a symbol

has a direct bearing on the length of its representation (a sequence is modeled

as an i.i.d. Bernoulli process). In the second step, the algorithm reads again

the file and encodes it using the code it has constructed.

Consider two files x and y with empirical distribution px and py given

by:

px(i) =
Nx(i)

Lx

; py(i) =
Ny(i)

Ly

(43)

where with Nx(i) we indicate the occurrence of i in x , and Lx Ly are

the length of x and y respectively.

Then z = x ∧ y has empirical distribution equal to:

pz(i) =
Nx(i) +Ny(i)

Lx + Ly

(44)

The number of bits needed to encode the file z with a static coder, for

example an arithmetic coder C, is the size of the built histogram (|hist|) and
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the entropy of pz times the number of simbols:

C(z) = |hist|+ (Lx + Ly)H(pz)

= |hist|+ (Lx + Ly)
∑
i∈A

−pz(i) log pz(i)

= |hist| − (Lx + Ly)
∑
i∈A

Nx(i) +Ny(i)

Lx + Ly

log
Nx(i) +Ny(i)

Lx + Ly

= |hist| −
∑
i∈A

(Nx(i) +Ny(i)) log
Nx(i) +Ny(i)

Lx + Ly

(45)

This quantity can be rewritten as following (we omitted the term about

the histogram frequencies):

C(z) = −
∑
i∈A

Lx
Nx(i)

Lx

log
Nx(i) +Ny(i)

Lx + Ly

+ Ly
Ny(i)

Ly

log
Nx(i) +Ny(i)

Lx + Ly

Summing and subtracting the quantities
∑

i∈A
Nx(i)

Lx
log Nx(i)+Ny(i)

Lx+Ly
and∑

i∈A
Ny(i)

Ly
log Nx(i)+Ny(i)

Lx+Ly
we obtain:

C(z) = LxH(px) + LyH(py) + LxD(px ‖ pz) + LyD(py ‖ pz) (46)

So, in this case, the compression of two appended files calculates the

entropy of the single files plus the total Kullback-Leibler Divergence to the

“mean” distribution pz.

The quantity D(px ‖ pz) +D(py ‖ pz) is also named as the Jensen diver-

gence and it is equal to H(px + qz)−H(px)−H(qz).

On the other hand, with real data, not generated as any finite order chain

and modern compressors based on the lempel ziv procedure, it is not clear

whether an analogue of (46) still holds. Some conjectures [62], and numer-

ical results [94] seem to indicate that the compression of two concatenated

sequences can be related to the relative entropy; nevertheless, as seen in the

previous section, the use of compressor algorithms for estimating the relative

entropy is justified only when we “force” the compression of z on x (when

we try to implement the Merhav and Ziv theorem) otherwise, we don’t have
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theorems or results showing us where the compression of two appended files

go, when n → ∞. Moreover, also in [24], the construction of the NCD dis-

tance from the NID distance, suggests the use of the compression of two

sequences correlated to an estimation of the joint entropy, but also this fact

is not evident in the case of real adattive compressor algorithms.

2.2.5 BWT

The distance that now we show is proved to be a good estimator of the

relative entropy. The core of this distance is a transformation on strings

(BWT).

The Burrows Wheeler Transform (BWT) [8] acts as a permutation on

any given finite string and this reversibile sequence transformation is used in

data compression techniques such as bzip2.

In the case of a sequence generated by an unknown markov source, the

BWT tends to group together characters sharing the same state: in particu-

lar, the BWT converts any given markovian sequence into a piecewise i.i.d.

memoryless sequence. In this way we can obtain a string BWT (w) that can

be compressed in a more efficient way through traditional statistical com-

pressors.

Briefly, these are the steps of the algorithm:

• first it is necessary to construct a matrix M which consists of all cyclic

shifts of w; for example: If w = abraca then the matrix M will be:

a b r a c a

b r a c a a

r a c a a b

a c a a b r

c a a b r a

a a b r a c

• then the rows of the matrix M are sorted lexicographically keeping

track of the position I of the original string w in the new matrix:



52 CHAPTER 2. SIMILARITY METRICS

0 a a b r a c

I → 1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b

• the last column of the matrix obtained represents BWT (w) (in the

example BWT (w) = caraab and I = 1 since the original sequence

appears in row 1)

The Burrows-Wheeler is a reversibile transformation, indeed. GivenBWT (w)

and the index I, it is possible to recover the original string w. For the interest-

ing asymptotic properties and combinatorial results on this transformation

refer to [8, 9].

Few years ago it has been realized that this transformation is not only

useful for data compression, but that it can be turned into a very efficient

entropy estimator for any given unknown Markov source [31] as well.

The proof of this convergence is very rigously in [31] and [10]. Here, using

the definition of empirical entropy given in [68], we want to show how this

transformation allows the entropy estimation using the definition of empirical

entropy given in [68].

Let s be a string of length N over the alphabet A = {α1, α2, . . . , αh}, and

let ni denote the number of occurrences of the symbol αi inside s.

The zeroth order entropy is defined as

H0(s) = −
h∑

i=1

ni

N
log

ni

N
(47)

where, as usually, we assume 0 log 0 = 0.

For any string w and αi ∈ A, let nwαi
denote the number of occurrences

in s of the string w when followed by αi. Let nw =
∑h

i=1 nwαi
. Then, the kth
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order entropy is defined as:

Hk(s) = − 1

|s|
∑

w∈Ak

(
h∑

i=1

nwαi
log

nwαi

nw

)
(48)

It is possible to rewrite this formula in the following way [79]: for any

length-k word w ∈ Ak let ws denote the string consisting of the characters

following w inside s, or otherwise, the string of the characters with the same

context.

The length of ws is equal to the number of occurrences of w in s.

Then, the zero order empirical entropy for the string ws is H0(ws) =

−
∑h

i=1
nis

|ws| log nis

|ws| where with nis we denote the frequency of the αi char-

acter in the string ws. But the frequency of the character αi in ws is equal

(according the construction rule of ws) to the frequency of the character αi

with the previuos context equals to w, denoted with nwαi
. Then: H0(ws) =

−
∑h

i=1

nwαi

|ws| log
nwαi

|ws| that, substituted in (48) and multiplying for |ws| we

obtain the following formulation of the k−order empirical entropy:

Hk(s) = − 1

|s|
∑

w∈Ak

|ws|H0(ws) (49)

In this last formulation of the empirical entropy is more evident the con-

nection with the BWT. If we take the string s and we apply the BWT trans-

formation, the BWT (s) has the following remarkable property, indeed: for

each substring w in s, the characters following w in s are grouped together

inside BWT (s). Then, if we cut the BWT (s) where the context changes,

each result of this cuts is a substring such as the previous ws.

Then, the BWT transforms the string s in another string BWT (s) for

which the computation of the k−order empirical entropy is more easily.

An important results in [10] proves that the BWT output sequence is

close to a piecewise stationary memoryless source, then we can segment the

output sequence and estimate the probabilities in each segment.

However, these transition points depend on the unknown memory struc-

ture of the underlying source. How to segment the string then? A natural
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approach is an adaptive segmentation, that tries to base the segmentation

on the empirical distribution of the BWT output in order to detect the tran-

sitions.

However, from experimental results, always in [10] is showed that a simple

Uniform segmentation method performs almost as well as the more complex

adaptive method in most case.

Very recently Cai at al. in [9] developed these ideas and constructed an

efficient relative entropy (Kullback-Leibler Divergence) indicator.

The core of this task is always the approximation of the quantity log2 px(z
n),

as already seen in the Merhav and Ziv section.

In [9] they run the BWT on the reversed concatenation of files x and z ,

and then partition the BWT (x∧ z) according to the symbols in x . Usually

a uniform segmentation strategy is chosen, i.e. the BWT (x ∧ z) is divided

into segments so that each segment contains an equal number of symbols

from the sequence x . Clearly, the segments of the BWT (x∧z) that contain

both symbols belonging to x and z may be different in length because the

numbers of symbols from z can be different.

Given the segmentation of the BWT (x∧ z) according to x one estimates

the first order distribution (with respect to x ) within each segment j:

px(A, j) =
N j(A) + ∆∑

B∈χN j(B) + |χ|∆
(50)

where A is a character from an alphabet χ, N j(A) denotes the number of

occurrences of symbol A from x in the jth segment and ∆ is just a suitable

bias (due to the uniform segmentation choice).

The contribution of the jth segment to the approximation of log2 px(z
n)

is: log2 px(j) =
∑

a∈χN j(a) log2 px(A, j) where with the lower case notation

we indicate characters from the sequence z . Finally, the approximation of

our initial cross term is given by an average across the Tx segments:

C(qz‖px) = − 1

n

Tx∑
j=1

log2 px(j) (51)
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where C(qz‖px) is the usually cross entropy also defined in equation (16).

Even if the uniform segmentation is not, in general, the optimal one (in

principle one should cut the sequences at the (unknown) state transition

point), in the case of uniform segments of length of order ≈ |x| 12 one can

prove a convergence (in probability) of the estimator for sequences emitted

by finite-alphabet finite-state Markov sources [9, 31]; moreover, the rate of

convergence appears quite fast in respect of other empirical relative entropy

indicators.

For estimating the term H(qz) it is then enough to repeat the similar

segmentation procedure on the BWT (z).

In this way, we have an estimation of the relative entropy via Burrows

Wheeler Transform:

D(qz‖px) = C(qz‖px)−H(qz) (52)

2.2.6 The n-gram distance

The distance shown now is based on the computing of the ngram probability

distribution.

Given a sequence S with each character belonging to an alphabet A, a

n-gram of the sequence is a subsequence of length n. The ith n-gram of S is

the sequence (si, si+1, . . . , si+n−1).

In a string of length N there are N − n − 1 n-grams; the distinct n-

grams found the Dictionary DS of the sequence. The max cardinality of the

dictionary can be equal to ](A)n, if ](A)n < |S| (where |S| is the length of

S).

Given a sequence, S = (s1, s2, . . . , sN), for fixed n, we can calculate the

frequency fS(wi) of n-grams wi = (si, si+1, . . . , si+n−1) that appears in the

sequence S (i = 1, . . . , N − n− 1).

In [65] the authors, following the approach of Bennet in [5] with the bi-

grams, use the n-grams frequencies in sequences for constructing a similarity
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distance between sequences:

dn(S1, S2) =
∑

w∈DS1
∪DS2

(
fS1(w)− fS2(w)

fS1
(w)+fS2

(w)

2

)2

where DSk
is the set of all possible words of length n in the string Sk (the

dictionary), and fSk
(w) = 0 if w /∈ DSk

. This distance has been used in the

authorship attribution in literary texts with quite positive results. We refer

to [65] for the details.

In our experiments, we use a suitable normalized version of the above

formula as a useful indicator of the similarity between two sequences:

dα
n(S1, S2) =

1

(]DS1)
α−1 + (]DS2)

α−1
×

∑
w∈DS1

∪DS2

(
(fS1(w)− fS2(w))2

(fS1(w) + fS2(w))α
(53)

In the applications presented in the next chapters we also make use of

another (pseudo) distance, again introduced by Keselj in studing DNA se-

quences [105]. More precisely, given the frequencies vectors of the n-grams

in two symbolic strings, we define the “geometric formula” as:

dgeo
n (S1, S2) =

1

2

∑
w∈DS1

∪DS2

| fS1(w)− fS2(w) |√
fS1(w)fS2(w) + 1

(54)



Chapter 3

Heartbeat Signals

In this chapter we introduce and describe a recent approach to heuris-

tic estimation of similarity between symbolic sequences.

While these methods have been already applied to various classes of

sequences (such as DNA sequences and literary texts), we want here

to suggest the possibility of using this approach also for information

extraction and classification of heart rate variability (HRV) sequences.

Most of the results showed in this chapter are published in [27], [28].

3.1 The time serie ECG

ECG signal is a paradigmatic example of non-linear, non-stationary noisy

process. This 1-dimensional time series reflects the net results of an enormous

number of interactions between the cardiovascular system, the autonomous

nervous system and the external environment; nevertheless they still contains

valuable information concerning the clinical/pathological state of the source

[47].

Various and quite sophisticated techniques are presently available for

extracting useful information out of the ECG signal. These approaches

range from non-linear methods developed in the theory of finite dimensional

dynamical systems to time-domain and frequency-domain spectral analysis

[103], as the recent stimulating paper [80] shows. Interesting tools out of

linguistic analysis have recently been used to study human heartbeat [111].

Heart rate, defined in terms of the number of myocardial contractions, is

57
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a complex entity and lays under a plethora of regulatory factors (i.e.: auto-

nomic nervous system, endocrine setting, circuitry resistance, cell membrane

plasticity, etc.[36, 12, 33, 56]) some of which acts even during chaotic func-

tional states like fibrillation [108].

Althought physiology and medicine have investigated for years the dy-

namics behind its functionality and ”behavior”, it still remains largely un-

known the weight to assign to each single factor (these weights may probably

change too [112]) or to what extent stochastic phenomena may account for

them. With such premises it is interesting to discuss the nature of a widely

known investigation method: Heart Rate Variability (HRV), defined as the

difference, in time, between two following heart beat lags. HRV accounts

for a large portion of the homeostatic efforts of the individual, it is an es-

sential part of stress: it is quickly changing to grant adaptation to every

life-compatible circumstances/stimuli, and furthermore it also shows long-

range correlations [63].

This is an interesting way to investigate and understand HRV. Neverthe-

less while HRV analysis, introduced in clinical practice in the late ’sixties in

obstetrics, has been used in many studies to investigate the most different

functional parameters in human beings (even the effects of geomagnetism on

health [89]) and has yield to the development of an incredible huge number

of analytical methods [47] dedicated to its investigation, little light has been

shed on its foundation. HRV has proved to be a fantastic tool to evalu-

ate autonomic system function [40], in particular when it is studied through

quite elementary use of the Fourier Analysis [47], and it has proven to be an

independent gauge of life expectancy [95], when undergone an even simpler

elaboration (i.e. statistical evaluation of the time series distribution)[47].

Unfortunately when it comes to investigate deeper properties of an individ-

ual, the real effectiveness of HRV is still unclear, and this posed a challenge

to many researchers to built more and more complex and efficient methods

for extracting valuable information out of HRV data [61, 81].
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3.1.1 Symbolic ECG analysis: RR, HRV and HkV

In our experiments we considered 24 h. Holter ECG signals, obtained from

[43] and also from [80].

For applying our methods on these kind of signals we need to code an

ECG time series in a simbolic sequence.

The necessary coding procedure is the following: first of all we extract RR

interval sequence (Rj) from the full ECG signals, losing in particular all the

information contained between these two events, such as the P wave, QRS

complex, ST segment, ecc...Then we perform an elementary binary coding

by looking at the sign of variability, i.e. we construct a new 0, 1 sequence

by setting wj = 0 if Rj − Rj−1 > 0, and wj = 1 otherwise. We obtain the

so-called HRV binary sequences representing the sign of the (discrete) first

derivative of the RR interbeat time series.

It is important to remark that after this process the original information

has been hugely reduced: an original 24 hours ECG signal of few Mega byte

(Mb) is reduce to a binary file of about 100 Kb.

In our opinion it is remarkable that even after this tremendous and el-

ementary reduction of the signals, our distance is still capable of capturing

common features in the signals as our positive and consistent results in all

the classification experiments shown.

In other words, this binary coding based on the decreasing or increasing

of two consecutive RR intervals is the most elementary one.

More refined coding, for example based on the magnitudes of variabil-

ity explored in the PNNx statistics [84] are currently under investigation.

A small increasing of the vocabulary used in coding of the RR sequences

should bring to a better performance, while still keeping the computational

complexity into practical affordable limits.

We explored also different ways to encode ECG signals, for testing whether

the choice of the symbolic coding HRV extracted from the full ECG is re-

ally optimal or - on the contrary - whether the use of some coarse graining

on the plain RR interbeat sequence may be sufficient to some classification
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purposes. We also explore the possibility of using longer time correlations of

the RR signal, called HkV series, based on the observation and the coding

of the signal variability over a wider time-window.

Every full ECG signal was preprocessed in order to extract the RR normal

interbeat sequence (Rj)j>1.

First, a symbolic string over a finite alphabet was associated to each

RR signal, as follows. Given some graining size 2 6 g 6 200, we consid-

ered a uniform partition of the interval [Rmin, Rmax]. In the symbolic string

RR[g] -representing the numerical series RR at graining g- there is symbol

k ∈ {1, 2, . . . , g} at site j if Rj belongs to the k−th interval of the uniform

partition.

Subsequently, we extracted the HRV coding of the RR series by looking

at the sign of variability, i.e. we built a new binary sequence (the HRV series)

by setting wj = 0 if Rj −Rj−1 > 0 and wj = 1 otherwise.

This binary coding can be generalized to higher order by defining the

corresponding natural coding that gather information about k consecutive

RR intervals [14, 13]. This coding will be denoted by HkV coding and it is

defined as follows. Let k > 1 be a positive natural number, and fix a labelling

of the space of permutation on k object Sk through a given alphabet A of

size |Sk| = k!. Given any arbitrary RR sequence (R1, R2, R3, . . . , Rn) and any

1 6 j 6 n− k, we let wj ∈ A corresponding to the unique partition π ∈ Sk

that orders the k consecutive RR intervals (Rj+1, Rj+2, . . . , Rj+k). Notice

that for k = 1, the new sequence (ω1, ω2, . . .) coincide with the previously

defined binary HRV coding.

3.1.2 Entropy saturation

For each graining size g, we calculated the exhaustive parsing of RR[g] and

its corresponding complexity c(RR[g]). As already stated, let us define the

corresponding entropy by hE(RR[g]) = c(RR[g]) log2(L)
L

, where L is the length

of the RR series. Note that for i.i.d. Rj’s uniformly distributed in [0, 1], we

would have hE ≈ log g, and we will use this normalization later on.



3.2. CLUSTERING RR AND HRV VIA ENTROPY 61

Numerical experiments on our set of data show the following saturation

effect: the entropy hE(RR[g]) increases in g logarithmically up to some g∗.

For g exceeding this critical value g∗, the entropy hE remains constant and

that saturation value may be read as the entropy h of the RR series. Figure

3.1 shows two examples of saturation for patients belonging to the gk-nk

dataset (see next section 3.2.1).
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Figure 3.1 � Two examples of saturation hE(RR[g]): an healthy patient

(gk 11) and a hospitalized patient (nk 13). The plots are compared with the

i.i.d. behaviour log(g). The two patients belong to the gk-nk dataset (see

later)

3.2 Clustering RR and HRV via entropy

In this section we evaluate if the singol value of complexity for a sequence

is able to discriminate between different groups. The dataset used in this

section is the gk-nk dataset which description is given in the section 3.2.1.

The saturation value h of RR sequences depends on the patient such as

the critical value g∗, which always lies between 100 and 200. To obtain com-
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parable symbolic sequences, we chose to fix the graining to g = 200. Here-

after, when we refer to RR sequences, it will mean that we are considering

numerical series RR at graining size equal to 200 symbols, with the entropy

normalized by a factor log2(200). Thus, for each patient from the two data

sets, we have analysed the two sequences RR[200] and HRV and computed

the corresponding entropies h ∈ [0, 1]: h = c(x) log2 n
n log2(200)

for RR[200], while

for HRV h = c(x) log2 n
n

.

This experiment has two main aims. First, comparing the amount of

information that can be achieved from either RR or HRV concerning the

physical status of the patient. Second, verifying whether individual entropies

could be sufficient to discriminate among the different classes of ECG signals.

We ordered both families gk and nk of files with respect to the increasing

values of the entropy. The following points are straightforward and true for

the complete database. For the sake of simplicity, we shall include tables and

plots only for 20 subjects (10 gk and 10 nk), randomly chosen. Table 3.1

shows entropy values for that sample subset of data.

(i) As we already know from standard statistical and nonlinear methods ap-

plied on HRV data, variability is decreased in the case of heart failure.

This feature is confirmed by the entropy calculation even in the case of

plain RR analysis. In fact, let σnk(RR) be the mean values of the en-

tropy of RR[200] over all the hospitalized patients and σgk(RR) be the

mean value over the complete set of healthy patients. Let σnk(HRV )

and σnk(HRV ) be defined similarly for HRV signals. We have that

σnk(RR) = 0.46 < σgk(RR) = 0.51

and

σnk(HRV ) = 0.82 < σgk(HRV ) = 0.87

The entropy values of both RR and HRV sequences corresponding to

gk subjects are on average higher than the corresponding sequences

coming from nk subjects.
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(ii) After ordering the RR files it is not useful to distinguish the two classes.

The sets are definitely mixed up and a borderline can not be identified.

Figure 3.2 (bottom graph) shows what happens for the sample subset

of patients.

(iii) The individual HRV sequences allow some kind of discrimination be-

tween classes, even if a certain number of mismatches occurs (see an

example on Figure 3.2, top graph). This performance may be improved

by taking into consideration pairwise differences between sequences and

discussing the classification reached by means of the similarity distance

d(·, ·) induced by the exhaustive parsing, as we will later discuss.

(iv) even if the individual entropies deviate a little bit less around their

mean value, these pointwise quantities are still not sufficient to achieve

a good classification performance also for higher k’s (usually, in the

experiments we have performed on our data with k = 1, 2, 3, 4)

3.2.1 The datasets description

We resume here the description of the principal datasets used in our experi-

ments. We will refer to the dataset used from time to time, according to the

different tasks faced.

The data used come from two main sources: the Physionet archive [43]

and data of [80] and available upon request.

1. Healthy Unhealthy dataset:

(a) gk-nk dataset:

As described in [80] and repeated here, two main groups of patients

have been used:

nk group made of 90 patients hospitalized during 2001-2004 in

the 1st Department of Cardiology of Medical University in

Gdańsk, Poland (9 women, 81 men, the average age is 57 ±10)



64 CHAPTER 3. HEARTBEAT SIGNALS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

triangles = gk

squares = nk

HRV

RR[200]

Figure 3.2 � A plot of the classification via entropy h for a sample subset of

20 subjects. The results referred to healthy patients are plotted by triangles,

the ones to hospitalized patients by squares. HRV signals brought to two

classification errors (top graph), while the same analysis on the RR[200]

signals is not able to discriminate at all (bottom graph).

in whom the reduced left ventricular systolic function was

recognized by echocardiogram due to the low left ventricular

ejection fraction (LVEF 6 40%, mean LVEF = 30, 2±6, 7%);

gk group made of 40 healthy individuals (4 women, 36 men, the

average age is 52 ± 8) without past history of cardiovascular

disease, with both echocardiogram and electrocardiogram in

normal range.The left ventricle ejection fraction was normal

(mean LVEF = 68, 0± 4, 7%).

(b) nsr-chf dataset: These data belong to the Physionet archive

[43].

chf group (Congestive Heart Failure) This database includes beat

annotation files for 29 long-term ECG recordings of subjects

aged 34 to 79, with congestive heart failure (NYHA classes I,
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II, and III), plus other 15 subjects (11 men, aged 22 to 71, and

4 women, aged 54 to 63) with severe congestive heart failure

(NYHA class 3-4)

nsr group (Normal Sinus Rhythm) This database includes beat

annotation files for 30 long-term ECG recordings of subjects

in normal sinus rhythm (30 men, aged 28.5 to 76, and 24

women, aged 58 to 73) plus 18 long-term ECG recordings of

5 men, aged 26 to 45, and 13 women, aged 20 to 50.

Both original ECG recordings were digitized at 128 samples per

second, and the beat annotations were obtained by automated

analysis with manual review and correction.( i 15 della classe III

e IV 250 samples per second...)

(c) nsr w-chf w dataset: In our experiment we will use also only

the 5 hours portion of the signals that correspond in general to

the patients being awake (denoted by nsr w and chf w). These

last kind of signals come from [80].

nsr wake group : these are 13 healthy subjects belonging to [52]

from which the wake parts of the signals have been extracted

chf wake group : wake part of the signals corresponding to 13

subjects with congestive heart failure

2. young-old dataset:

(a) old gk-young nsr dataset: From the previously datasets of

healthy patients, we have extracted a subset:

old group 13 healthy subject belonging to gk previously de-

scribed.

young group 13 healthy and rather young people (age between

20-40 years). These patients (3 men, 10 women) show no

significant arrhythmias. The corresponding ECG recordings



66 CHAPTER 3. HEARTBEAT SIGNALS

are available from the Physionet archive [52] 1

(b) nsr old-nsr young dataset: Another dataset of young and old

patients is extracted from the dataset [53]:

nsr old: numero healthy individuals of age from 60 to 68 years

nsr young: numero healthy individuals of age from 28 to 40 years

(c) fantasia dataset: Moreover, we have used data from physionet

[43]:

f y Twenty young (21 - 34 years old)

f o twenty elderly (68 - 85 years old)

both rigorously-screened healthy subjects underwent 120 minutes

of continuous supine resting while continuous electrocardiographic

(ECG), and respiration signals were collected; in half of each

group, the recordings also include an uncalibrated continuous non-

invasive blood pressure signal(f2). Each subgroup of subjects in-

cludes equal numbers of men and women.

3. NYHA classification: class of individual patients with classified con-

gestive heart failure. Various Holter ECG’s files were downloaded from

[51] and consists of patients belonging to class I,II and III of the NYHA

classification.

3.2.2 The attribution methods

The application of a distance on a dataset gives a distance matrix with all

the values of the distances between the sequences. For each distance formula

we construct a distance matrix of dimension N×N where N is the number of

the sequences under analysis. In each row, then, it is stored the value of the

distance of a sequence Xi from all other sequences Xj, with i, j = 1, . . . , N.

1The original physionet database consists of 18 nsr records, from these we have removed

patients with age greater than 40 years
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Given the distance matrix, we used different methods to assign a sequence

to a specific class:

• Mean: a given test sequence t is attributed to the class with minimal

average distance

• k−Nearest Neighbor Method (here with k = 1): a sequence is classified

by a majority vote of its neighbors, with the object being assigned the

class most common among its k nearest neighbors.

• vertical voting: this is a kind of weighted average: taken a test sequence

t, all other training sequences belonging to the two classes are sorted

according the value distance from the test file t. The vote is calculated

only on the files position; in the case of two classes, class A and class

B, for example, we calculate: vA(t) =
∑nA

i=1
kj

j
where, kj is the position

of j−th file of class A in the sorted list and nA is the number of the

training sequences for the class A. Similarly we can define the vote vB(t)

for the class B and if v(t) = vA(t)−vB(t)
vA(t)−vB(t)

is positive then the sequence t

is attributed to the class A otherwise to the other class.

We finally want to stress that in all attribution methods we have examined

the prediction quality in two ways: the first one is based upon resubstitution

test and the other upon the jacknife test. The use of these methods is on one

side for testing the self consistency of the distance, and on other for testing

the results by cross-validation.

3.3 Clustering RR and HRV via exhaustive

distance

As the previous analysis shows, the individual complexity and entropy of the

sequences are not enough to discriminate in a satisfactory way the healthy

from the hospitalized patients. We then turn to consider a method of clus-
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tering based on the exhaustive distance, or LZ-distance dLZ(·, ·) defined in

section 2.1.3.

3.3.1 The gk-nk dataset

In this section we describe the numerical experiments performed with our

method on several ECG’s from different groups of subjects, where the ECG’s

signals have been coded as previously described.

Initially, we have analyzed and used the data obtained from the group of

research from Gdańsk University (Poland) (the gk-nk dataset), with the aim

of comparing our results with the ones obtained by them using multifractal

analysis [80]. In particular, they performed classification tasks by calculating

the local exponents of the spectrum associated to the RR series with the use

of the Wavelet Transform Modulus Maxima Method and also with the use of

the Multifractal Detrended Fluctuation Analysis ([93, 55, 82] and references

in [80]).

Our first simple task is to detect if the distance is able to discriminate

between the two groups. In order to fully answer to this question, for all

RR and HRV signals from the complete datasets gk = {gk1, . . . , gk40} and

nk = {nk1, . . . , nk90} we have computed the distance matrix whose entries

are given by the pairwise distances between any two sequences. Classification

of any given patient is then performed in two steps. First, by removing them

from the complete set (such obtaining two classes denoted by gk group and

nk group). For instance, for patient gki we have gk group(gki) = {gkj|j 6= i}
and nk group(gki) = {nkj|j = 1, . . . , 90}. Second, by taking the minimum

over the averaged distance from both remaining groups, denoted by dgk and

dnk, respectively. In formulas on the example above:

dnk(gki) =< d(gki, nkj) >j=1,...,90

and

dgk(gki) =< d(gki, gkj) >
j = 1, . . . , 40

j 6= i
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The patient is predicted either healthy or hospitalized accordingly to the

resulting minimum distance.

As also emerges from the entropy analysis, ECG signals of healthy people

are more complex than those of hospitalized ones, which show some order

due to the limitated variability. Thus, intuition suggests that for a similarity

measure it should be easier to clusterize two hospitalized signals to each other

than two healthy series. Notwithstanding, the distance between two healthy

patients may be smaller than that between two hospitalized ones.

Going into details concerning the results of the classification, in the RR

signals, the lack of order already observed in the entropy values within the

same class is even emphasized when observing the distances. In our exper-

iments on all 40 gk and 90 nk sequences, there were 87 badly classified

patients and they all were hospitalized subjects selected as healthy. Roughly

speaking, the predictive method answers to the question whether a patient

is hospitalized with a sensitivity (how many predicted not healthy are really

hospitalized) of 3.3%. Definitely, one cannot be confident in the classification

over plain RR series, even if the specificity (how many predicted healthy are

really healthy) of the test is of 100%.

The landscape concerning distance classification on HRV signals is much

more pleasant. Quantitatively, the improvement achieved w.r.t. RR codings

is remarkable: there were only 21 incorrect classifications over the complete

dataset. In this case, the sensitivity is Sn = 77.8% and the specificity is

Sp = 97.5%.

For what concern the HkV encoded data, when the distance d(·, ·) is

used for data clustering, no appreciable improvements in the performance

are observed for k > 1 (data not shown). For instance, in the case of H3V

the test about hospitalized patients’prediction on the complete gk and nk

datasets gives a sensitivity Sn = 68.9% and a specificity Sp = 100%, thus

confirming that just taking the first discrete derivative k = 1 seems to be the

optimal procedure

After realizing that our method works quite well and consistently on the
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full 24 hours ECG files, we then tested the distance on much shorter portion

of the signals. In particular, using again the data from [80], we repeated the

same experiments on the two 5 hours portion of the signals that correspond

in general to the patients being awake (nk w, and gk w group) or at sleep

(nk s, and gk s group), respectively.

The results obtained using the signals belonging to the wake state groups

(nk w, gk w) are basically identical (if not better) to those obtained previ-

ously using the whole signal (see Table 3.3(b) where the subjects are the same

of those in Table 3.3(a)). It is important at this point to remark that the

binary sequences corresponding to these 5 hours interval are very small (few

K bytes), which clearly implies a very limited set of words created during

the parsing rule. In our opinion, the good performance of the method also

on these very short sequences represents a clever indication of its consistency

and efficacy.

To visualize the clustering property of our distance, we show in Fig. 3.10

the tree generated by the distance matrix computed using the group gk w

and 39 patience randomly chosen from the other group. It is important to

remark that we use the tree to present our data only for exposition purposes

and qualitative preliminary considerations. Quantitative and statistical fea-

tures of our method have been in fact directly extracted from the numerical

values of the distance matrix.

According to our expectations, the same experiments on the sleeping part

of the data (nk s, gk s groups) give sometimes worst results, confirming that

the wake part of the signal is evidently the most significant one.

3.3.2 The nsr-chf dataset

We proved the task of detecting healthy from unhealthy patients, with a

different dataset of gk-nk.

We used the nsr-chf dataset described in section 3.2.1

As a common feature to all the experiments, also in this case we can

note significant differences in the distances starting from the second digit.
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Furthermore, we can also remark that the gap in the second digits become

smaller when relative distances between healthy subjects (nsr) are computed,

rather than relative distance between patients of the second group (chf). To

say differently, healthy patients signals are more similar to one another than

patients with past cardiac events.

In this case the sensitivity with the mean method attribution, is Sn = 74%

and the specificity Sp = 85%.

Moreover, also for these experiments is remarkable to note that the whole

24 hours signals of both groups could be substituted by the 5 hours corre-

sponding to the wake period without degrading the final results (the nsr w

and chf w dataset).

The final outcome of this experiment on wake signals are shown in Table

3.5 and in Fig. 3.11 where we can see that all the attributions are right.

3.3.3 The young-old dataset

A second kind of experiment that we have performed consists in clustering

old patients from young patients, again by measuring the relative distances

between the binary HRV coding extracted from the ECG signals. We have

considered the old gk-young nsr dataset group (see section 3.2.1)

Also in this case, we consistently got correct results: a single young (old)

patient has an averaged distance from the whole group of young (old) con-

sistently smaller than the other group.

In order to give a visual presentation of part of the results, we again show

a table with the averaged distances from the two groups (Table 3.5(a)).

We have then repeated the same experiment with the data downloaded

from [53], where we have chosen some healthy individuals of age from 60 to

68, and other from 28 to 40 years (the nsr old-nsr young dataset). On this

dataset we obtain only an error, the old patient nsr042 is attributed to the

young class, but the significant differences in the distances starting from the

fourth digit; infact d(nsr042, old group) = 0, 9496 while d(nsr042, young group) =

0, 9494. It is possible to observe this fact also from Fig. 3.12. Again, even if
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the statistical significance of the results can be disputed due to the non high

numbers involved, the portion of successes is very high and strongly support

the validity of the method.

Finally, we use the last dataset of young-old problem: the fantasia

dataset (see always section 3.2.1).

We remark that these signals are very short (about 14 K), but also in this

case the discrimination with the method is able to distinguish in a satisfactory

way the olds from youngs, obtaining an accuracy=75%.

3.3.4 The NYHA classification

In the last experiment we tried to recognize the NYHA class of individual

patients with classified congestive heart failure. The NYHA (New York Heart

Association) classification is a functional and therapeutic classification for

prescription of physical activity for cardiac patients. The four classes are

characterized in the follow way:

Class I: patients with no limitation of activities; they suffer no symptoms

from ordinary activities.

Class II: patients with slight, mild limitation of activity; they are comfort-

able with rest or with mild exertion.

Class III: patients with marked limitation of activity; they are comfortable

only at rest.

Class IV: patients who should be at complete rest, confined to bed or chair;

any physical activity brings on discomfort and symptoms occur at rest.

After the usual binary coding, we repetitively chose few signals out of

each class and use them as reference data for classification. We then picked

randomly other unknown HRV strings and used the minimum averaged dis-

tance from the previously defined sets to attribute the NYHA classification.

Our method is able to distinguish quite well the subjects in class I and III,
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whereas quite often it consistently attributes to class III patients that were

classified in class II. Because of the small number of trials, the numerical

results are not statistical significant and are not presented here. In any case

this classification is quite subjective, being related to the general conditions

of the patience, and it is not surprising if it will turns out to be difficult to

detect a sharp boundary between class II and III of the NYHA classification

using our or others statistical methods.

3.4 Comparison with standard analysis

We now briefly compare our methods with standard discrimination analysis

techniques. It is worth mentioning, as already addressed by others in [111],

that even if sometimes the similarity distance used here seems to reach a

slightly better performance than other standard techniques in discriminating

the two groups patients, this is not the main point we want to address here.

We believe that in any case this or other similarity measures offer new meth-

ods for quantitative estimates of the relative information content between

groups of symbolic strings (not only coded ECG), allowing data clustering

or phylogenetic tree construction in a novel way with respect more traditional

approaches.

The aim is to compare our results with the ones obtained by implementing

standard discriminant techniques analysis, along the lines of [45].

More precisely, for each RR signal we calculate the mean and variance

over the interbeat times and we try to see whenever these pair of indicators

are robust for classification into the two groups.

We show here the results on the gk-nk dataset. First of all, the mean by

itself is not sufficient to discriminate efficently beetween the two groups, as

qualitatively indicated in Fig.3.4, where the distributions of the mean along

the two groups are shown.

Furthermore, in Fig.3.3 we plot all the data in the plane, where we have

put the mean and the variance on the x and y axes respectively.
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In figure 3.5 we have plotted the mean and variance for the gk and a

subset of nk, the more difficult to clustering (as we can seen from the figure

3.3 there is a subset of the 90 nk for which the values of mean and std are

visibly different from those of the gk dataset)

In figures 3.6 the result of the PCA analysis on the same patients of figure

3.5. We can see that the PCA does not change considerably the clusteritazion

task.

From the quantitative point of view, standard discrimination analysis

performed on this set of data reach a quite positive performance but overall,

at least for our dataset, the similarity distance allows to reach a slightly

better performance.
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Figure 3.3 � Plot of the mean (x-axis) and variance (y-axis) for the

RR sequences in the gk (triangle) and nk (square) group.

Figure 3.4 � Distribution of the mean values of interbeat times (in

milliseconds on the x axis) for the RR sequences in the gk (left) and

nk (right) group.
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Figure 3.5 � Plot of the mean (x-axis) and variance (y-axis) for the

RR sequences in the gk (star) and some patients of the nk (square)

group.
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Figure 3.6 � PCA analysis on the gk group and share of the nk group.
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3.5 n-gram distance on heart signals

In this last section we apply the n-gram distance (defined in section 2.2.6)

on the sequences belonging to the gk-nk dataset, and also to some of the

previously datasets.

From each HRV sequence S, we can fixe a value of n and calculate all

distinct words of length n that can be founded in the sequence. Our original

sequence S now can be written as a vector

S = {{w1, fS(w1)}, {w2, fS(w2)}, . . . , {wN , fS(wN)}}, where wi is the i-th

word of length n in S, and fS(wi) is the frequency of this word in the whole

sequence.

As have already argumented Yang at al. in [111], the idea is that the

occurence of these n−words reflects the underlying dynamics of the original

time series. Different types of dynamics thus produce different distributions

of these n−words.

3.5.1 Attribution Methods

Also in this case we have used the attribution methods defined in the previous

section (see section 3.2.2). We have tested the performance of the n-gram

distance also with another standard indicator of the sensitivity and specificity

of an algorithm: the ROC curve [83].

In a Receiver Operating Characteristic (ROC) curve the true positive

rate (Sensitivity= TP
TP+FN

) is plotted in function of the false positive rate

(= FP
FP+TN

=1-specificity) for different cut-off points. Alternatively, one can

also display the sensitivity versus the specificity (= TP
TP+FP

). Each point on

the ROC plot represents a sensitivity/specificity pair corresponding to a par-

ticular decision threshold. A test with perfect discrimination (no overlap in

the two distributions) has a ROC plot that passes through the upper left

corner (100% sensitivity, 100% specificity). Therefore the closer the ROC

plot is to the upper left corner, the higher the overall accuracy of the test.

The accuracy of the test depends on how well the test separates the group
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being tested into those with and without the disease in question. Accuracy is

measured by the area under the ROC curve (AUC). An area of 1 represents

a perfect test; an area of 0.5 represents a worthless test.

For applying the ROC analysis to our distance matrices we must convert

a matrix of dimension n× n in a vector of length n× n and used this vector

as prediction. The class label is obtained putting in a vector the similarity

matrix with entries 1 if the two protein domains belong to the same group,

0 otherwise.

Moreover, we have used a cluster algorithm on our matrices in order

to asses the performance of the n-gram based classification. The cluster

algorithm used is PAM a version of the K-means algorithm, as implemented

in R-package [104].

We have performed the ROC Analysis using the ROCR package [100],

while, for the PAM algorithm we have used the CLUSTER package [104].

The use of the ROC analysis follows the more standard way for assessing

the intrinsic ability of the metodology to discriminate and classify cardiolog-

ical sequences. The cluster algorithm on the matrix is, insteed, a classical

procedure applied to similarity matrices.

3.5.2 Results

In Table 3.3 and Table 3.2 we resume the outcomes obtain with the geometric

formula (54), the LZ-distance and the rank formula, according the three

different attribution method explained in section 3.2.2. The dataset used is

the gk-nk dataset.

The results that we will show are obtained using the geometric formula

(54) with n = 10, but with n from 6 to 12 we can obtain similar results.

This values of n agrees also with the results of [111] where they use words of

length equal to 8.
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Following the authors in [111, ?], we remember the rank distance:

Dn(S1, S2) =
1

2n − 1

2n∑
k=1

| R1(wk)−R2(wk) | F (wk) (1)

where F (wk) = 1
Z
[−p1(wk) log p1(wk)−p2(wk) log p2(wk)], and p1(wk), R1(wk)

represents probability and rank of a specific word.

Respect to the formula in [111], our distances consider shared and no

shared words: we believe, that a word present in a signal and not in another

is a word indicanting a peculiarity for the signal indeed. The high percentage

of success that we can have also for values of n > 10 (while the formula in

[111] have a decrease in performance) is an indicator of the existence of long

pattern in the sequences that can characterize the sequence of an healthy

subject rather than an unhealthy subject. So, the not shared words become

“discriminant” words between a group and another.

In figure 3.7, infact, we can see that similar results are obtained for n <

10. After this value, the rank formula (1) have an abrupt decrease in success,

while our formulas continue to have good results untill n = 20.

About the ROC and CLUSTER analysis, in figure 3.8(a) we have plotted

the AUC values for different values of n and different formulas:

• the formula (53) with α = 1

• the formula (53) with α = 2

• the formula (53) without the normalization factor, equivalent to the

Euclidean Distance

• the geometric formula (54)

In these analyses we have included also other two dataset, beyond the

gk-nk dataset: the nsr-chf dataset and the nsr w chf w dataset, other

datasets of healthy/unhealthy patients (see figures 3.8(b) and 3.8(c)).

Otherwise, in figure 3.9 we plotted the percentages of achievement ob-

tained with the above formulas on the clusterization task, for the same tree

different datasets.
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We can observe that the behavior of the formula (53) with α = 1 is

similar to that of the geometric formula. The Eulidean distance has a poor

performance respect to the other distances, while the formula (53) with α = 2

has different behavior according different datasets.

For the gk-nk dataset we can see an improvment in the percentage for

values of n bigger than 15; if we analyze the dictionary of the signals, we can

see that, in average, this value of n is the same for which appear words in

the dictionary of healthy patients that does not appear in the dictionary of

unhealthy signals.
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Figure 3.7 � Comparison of the geometric formula and the rank formula;

in the x axis the value of n in the y axis the percentage obtained by the

distances with the nearest neighboor method
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RR200 n c(x) h

gk28 w 200 27770 6252 0,412964

gk30 w 200 25377 5475 0,416421

nk13 w 200 24558 5360 0,434764

gk19 w 200 27634 6738 0,439458

nk11 w 200 26050 6246 0,459744

gk03 w 200 25863 6202 0,459868

gk11 w 200 25795 6283 0,460132

nk35 w 200 23392 5414 0,466981

gk17 w 200 23761 5974 0,47064

nk19 w 200 23516 6153 0,478126

gk36 w 200 22769 6096 0,493595

gk09 w 200 23340 6443 0,497071

nk32 w 200 21401 5747 0,505378

gk13 w 200 24390 7618 0,506991

nk15 w 200 22033 6293 0,510834

gk37 w 200 20669 5630 0,520561

nk09 w 200 19712 5213 0,524032

nk10 w 200 17169 4289 0,531983

nk22 w 200 19223 5493 0,539087

nk38 w 200 18706 5245 0,595519

HRV n c(x) h

nk09 w 19711 1128 0,81644

nk22 w 19222 1103 0,816575

nk11 w 26049 1469 0,827236

nk13 w 24557 1409 0,836773

nk38 w 18705 1108 0,840619

nk35 w 23391 1366 0,847577

nk32 w 21400 1275 0,857069

nk19 w 23515 1399 0,863929

nk15 w 22032 1320 0,864381

gk09 w 23339 1391 0,86482

gk37 w 20668 1248 0,8656

nk10 w 17168 1059 0,867743

gk28 w 27769 1634 0,868587

gk30 w 25376 1512 0,871782

gk11 w 25794 1540 0,874944

gk17 w 23760 1441 0,881596

gk03 w 25862 1570 0,889874

gk19 w 27633 1679 0,896469

gk36 w 22768 1412 0,897677

gk13 w 24389 1520 0,908294

Table 3.1 � Entropy values h, in increasing order, for a subset of 20 pa-

tients (see text), together with corresponding complexity c(x) and length n

of RR[200] (top table) and HRV codings (bottom table), respectively.
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(a) Mean

Rank 87,18%

LZ 88,46%

10Geo 89,74%

(b) Nearest Neighbor

Rank 85,90%

LZ 79,49%

10Geo 83,33%

(c) Vertical Voting

Rank 85,90%

LZ 91,03%

10Geo 87,18%

Table 3.2 � Percentages of achievement obtained with the above distances:

Rank is the distance defined in [111] with n=8, LZ is the distance seen in

section 2.1.3, 10Geo is the distance in equation (54) with n=10. The dataset

(cardiological signals) has 40 healthy patients and 40 unhealthy ones.

(a) Mean

Rank 85,16%

LZ 84,38%

10Geo 85,94%

(b) Nearest Neighbor

Rank 81,25%%

LZ 85,16%

10Geo 86,72%

(c) Vertical Voting

Rank 85,16%

LZ 85,94%

10Geo 86,72%

Table 3.3 � Comparison of the percentages of achievement obtained with

the same distances of the above tables. The dataset is composed by 40 gk

and 90 nk (cardiological signals)
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(a) In the x-axis the value of n and in the y-axis the

AUC value obtained by different n-grams formulas on

the gk-nk dataset
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(b) In the x-axis the value of n and in

the y-axis the AUC value obtained by

different n-grams formulas on the nsr-

chf dataset
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(c) In the x-axis the value of n and in the

y-axis the AUC value obtained by dif-

ferent n-grams formulas on the nsr w-

chf w dataset

Figure 3.8 � Plots of the AUC values for different datasets. In all graphics

the formulas in legend are: Geom= Geometric formula (54), NormAlfa1 =

the formula (53) with α = 1, the NormAlfa2= the formula (53) with α = 2

and StdAlfa0= the formula (53) without the normalization factor and with

α = 0 (the euclidean formula)
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(a) In the x-axis the value of n and in the y-axis the

percentage of success obtained by the clustering pro-

cedure with different n-grams formulas on the gk-nk

dataset
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(b) In the x-axis the value of n and in

the y-axis the percentage of success ob-

tained by the clustering procedure with

different n-grams formulas on the nsr-

chf dataset
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(c) In the x-axis the value of n and in the

y-axis the AUC value obtained by dif-

ferent n-grams formulas on the nsr w-

chf w dataset

Figure 3.9 � Plots of the percentage of success obtained with the PAM

clustering algorithm for different datasets. In all graphics the formulas in

legend are: Geom= Geometric formula (54), NormAlfa1 = the formula (53)

with α = 1, the NormAlfa2= the formula (53) with α = 2 and StdAlfa0= the

formula (53) without the normalization factor and with α = 0 (the euclidean

formula)



84 CHAPTER 3. HEARTBEAT SIGNALS

(a) full 24 hours ECG signals

gk group nk group

gk02 nn 0,950977 0,955649

gk03 nn 0,9512 0,959749

gk04 nn 0,951591 0,957155

gk05 nn 0,949889 0,953167

gk06 nn 0,949679 0,958141

gk07 nn 0,951273 0,962977

gk08 nn 0,951308 0,962828

gk09 nn 0,949684 0,95644

gk10 nn 0,950085 0,959365

gk11 nn 0,949688 0,954517

gk13 nn 0,94936 0,95906

gk14 nn 0,949817 0,957204

gk15 nn 0,951751 0,964054

gk16 nn 0,949499 0,952967

gk17 nn 0,950058 0,956208

gk18 nn 0,951352 0,958267

gk19 nn 0,950012 0,957825

gk20 nn 0,953429 0,965333

gk21 nn 0,950678 0,959302

gk22 nn 0,950278 0,958852

nk10 nn 0,953073 0,952105

nk11 nn 0,955284 0,950414

nk12 nn 0,951612 0,954686

nk13 nn 0,955527 0,950697

nk14 nn 0,95358 0,958575

nk15 nn 0,952657 0,950346

nk16 nn 0,95545 0,952969

nk17 nn 0,975155 0,969354

nk18 nn 0,976497 0,964703

nk19 nn 0,952482 0,950202

nk20 nn 0,960154 0,955664

nk21 nn 0,960711 0,95591

nk22 nn 0,956478 0,95132

nk23 nn 0,961284 0,959017

nk24 nn 0,949156 0,956412

nk25 nn 0,959659 0,957893

nk26 nn 0,966242 0,958213

nk27 nn 0,960459 0,952844

nk28 nn 0,950147 0,953585

nk29 nn 0,953256 0,953296

nk30 nn 0,95347 0,953471

(b) wake part of ECG signal

gk group nk group

gk02 w 0,944999 0,949697

gk03 w 0,942169 0,949849

gk04 w 0,94477 0,949449

gk05 w 0,946066 0,947472

gk06 w 0,943874 0,953748

gk07 w 0,945075 0,960126

gk08 w 0,94387 0,955866

gk09 w 0,943006 0,951416

gk10 w 0,941327 0,954052

gk11 w 0,942418 0,945749

gk13 w 0,940751 0,948664

gk14 w 0,942632 0,954633

gk15 w 0,943504 0,956356

gk16 w 0,94459 0,947752

gk17 w 0,940355 0,949688

gk18 w 0,944521 0,950204

gk19 w 0,942666 0,946773

gk20 w 0,944984 0,960437

gk21 w 0,943947 0,955633

gk22 w 0,944009 0,95303

nk10 w 0,94555 0,94192

nk11 w 0,950804 0,942961

nk12 w 0,94292 0,943463

nk13 w 0,950983 0,941804

nk14 w 0,949428 0,952428

nk15 w 0,947493 0,944664

nk16 w 0,950896 0,944168

nk17 w 0,970349 0,962885

nk18 w 0,964134 0,948842

nk19 w 0,946231 0,942469

nk20 w 0,948818 0,946029

nk21 w 0,966554 0,953678

nk22 w 0,953546 0,942596

nk23 w 0,960295 0,954839

nk24 w 0,943758 0,952151

nk25 w 0,953903 0,949325

nk26 w 0,961058 0,949702

nk27 w 0,966069 0,951091

nk28 w 0,944156 0,947916

nk29 w 0,949629 0,948452

nk30 w 0,945028 0,942885

Table 3.4 � Averaged distances of each patient from gk group =(gk30,

gk31,· · · , gk39) and nk group=(nk30, nk31,· · · , nk39), respectively.

Wrong classifications are marked in red.
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chf nsr

chf01 w 0,988736 0,993407

chf02 w 0,992512 0,994858

chf03 w 0,971186 0,996126

chf04 w 0,980403 0,991931

chf05 w 0,980736 0,992299

chf06 w 0,979843 0,9914

chf07 w 0,974151 0,993553

chf08 w 0,994647 0,99748

chf09 w 0,969402 0,994815

chf10 w 0,966486 0,992431

chf11 w 0,979891 0,99794

chf12 w 0,981962 0,992295

chf13 w 0,973136 0,996432

nsr01 w 0,994181 0,925976

nsr02 w 0,993675 0,928663

nsr03 w 0,993803 0,923911

nsr04 w 0,994018 0,935523

nsr05 w 0,994254 0,925418

nsr06 w 0,994561 0,930583

nsr07 w 0,993325 0,922587

nsr08 w 0,994585 0,938982

nsr09 w 0,994489 0,923555

nsr10 w 0,994857 0,926272

nsr11 w 0,994628 0,92443

nsr12 w 0,994004 0,931252

nsr13 w 0,994587 0,923272

Table 3.5 � Averaged distances obtained by comparing non healthy patients

(chf), with healthy subjects (nsr). For any single individual, the average is

calculated among all the other patients in each group. Wrong classifications

are marked in red.



86 CHAPTER 3. HEARTBEAT SIGNALS

(a) Averaged distances obtained by com-

paring young patients [53] ( recorded with

numbers) against old individuals (gk).

Young Old

16272 0,948901182 0,94897375

16273 0,949356636 0,952352833

16420 0,951251364 0,95512975

16483 0,957391273 0,95428375

16539 0,955175818 0,9531345

16773 0,954099182 0,952232333

16786 0,951502545 0,953977667

16795 0,949578455 0,9527505

17052 0,950846545 0,955799333

17453 0,949297455 0,950581

18177 0,951735364 0,953157417

18184 0,954342545 0,951167333

gk11 nn 0,952366167 0,949516818

gk12 nn 0,951272333 0,949272273

gk13 nn 0,950989583 0,9476455

gk14 nn 0,950517167 0,9487745

gk15 nn 0,955528917 0,9496472

gk16 nn 0,948811833 0,9510059

gk17 nn 0,95274075 0,9486855

gk18 nn 0,955450167 0,9518555

gk19 nn 0,953471583 0,9502753

gk20 nn 0,95707775 0,9512193

gk21 nn 0,952414667 0,9481727

gk22 nn 0,95289925 0,9486232

(b) Averaged distances ob-

tained by comparing young

patients (recorded with

f$y) against old individuals

(f$o). The signals came

from the fantasia dataset
old young

f1o01 0,944046 0,944339

f1o02 0,939766 0,949769

f1o03 0,940316 0,94514

f1o04 0,939967 0,947402

f1o05 0,944787 0,953999

f1o06 0,951369 0,954935

f1o07 0,941646 0,940002

f1o08 0,936127 0,943446

f1o09 0,936086 0,94228

f1o10 0,937588 0,945268

f1y01 0,958599 0,948916

f1y02 0,943743 0,939759

f1y03 0,950451 0,948954

f1y04 0,953413 0,961138

f1y05 0,944913 0,947495

f1y06 0,940887 0,938414

f1y07 0,941744 0,93958

f1y08 0,938182 0,938462

f1y09 0,941773 0,939439

f1y10 0,943689 0,938555

f2o01 0,952783 0,947364

f2o02 0,952353 0,954606

f2o03 0,943765 0,953155

f2o04 0,964909 0,958742

f2o05 0,94226 0,951906

f2o06 0,93807 0,938358

f2o07 0,939695 0,944959

f2o08 0,944708 0,948949

f2o09 0,942533 0,951044

f2o10 0,944294 0,946527

f2y01 0,944858 0,944622

f2y02 0,95231 0,944257

f2y03 0,958638 0,962726

f2y04 0,954157 0,952182

f2y05 0,946311 0,945123

f2y06 0,943546 0,947424

f2y07 0,958203 0,950327

f2y08 0,9534 0,955053

f2y09 0,943919 0,944201

f2y10 0,948729 0,943685

Table 3.6 � Results on young-old task. For any single individual, the average

is calculated among all the other patients in each group. Wrong classifications

are marked in red.
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Figure 3.10 � Tree generated by the distance matrix computed using the

group gk w and 38 patience randomly chosen from the nk w group.
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Figure 3.11 � Distance tree out of subjects from the chf and nsr groups.
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Figure 3.12 � Distance tree based on two groups of old and young subjects.

The patients are the ones of the nsr old-nsr young dataset





Chapter 4

Protein sequences

In this chapter we introduce some of the methods used on protein se-

quences in order to classify proteins according to their structural class

and to give, finally, some answers to the folding problem.

In the first part of the chapter some biological notions are recalled,

principally those related to the protein similarity concept.

After describing some of the most known methodologies, in the final

part of the chapter the introduced methods wil be compared by ana-

lyzing both their formulas and the literature’s results.

This is done for the sake of finding the state of the art of methodolo-

gies that try to point out features marking a certain fold rather than

others, starting from protein sequence analysis.

4.1 Biological concepts

Proteins are the main building blocks and functional molecules of the cell,

taking up almost 20% of a eukaryotic cell’s weight, the largest contribution

after water (70%).

The building blocks for proteins are the amino acid molecules: there are

20 different amino acids that differ in the R side chains which determine their

properties. As a convention each amino-acid is denoted by a letter in Latin

alphabet. In figure 4.1 is shown the characteristic structure of an amino

acid. The central carbon atom is called Cα to which are attached an atom

of hydrogen, amino group, a carboxylic group and the R-group or side chain

91
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C COOH

NH

R

H

α

2

Figure 4.1 � amino acid

(see figure 4.1). The Proline is an exception to this structure because its side

group links to the amino group.

The most peculiar features of the R-group are polarity and steric site,

basically related to size and mobility of the residue. In table 4.1 are shown

the 20 amino acid with their codes.

Two or more amino acids can be joined with a peptide bound that is a

chemical bound formed between two molecules when the carboxylic group of

one molecule reacts with the amino group of the other molecule, releasing a

molecule of water (H2O). Polypeptides and proteins are chains of amino acids

held together by peptide bonds, whereas the atoms joined by the peptide

bonds without the amino acid side chains are named backbone of the protein.

The sequence of the amino acid is known as the primary structure and

it can be represented as a string of 20 different symbols. The length of the

protein molecules can vary from few up to many thousands of amino acids.

Although the primary structure of a protein is linear, the molecule is not

straight, and the sequence of the amino acids affects the folding. Precisely,

the backbone of a protein is all laid on a plane: only 2 bonds can freely

rotate, the Cα − N bond along the angle φ and Cα − C(O) bond along the

ψ angle (see figure 4.2). The possible φ and ψ values are constrained by the

structure of the adjacent amino acid residues.

According to the values of the angles φ and ψ, the protein can assume a
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Amino Acid 3-letters code 1-letter code

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V

Table 4.1 � List of standard amino acids

different configuration in the space, that is named the secondary structure.

There are two common substructures often seen within folded chains: alpha-

helices and beta-strands. They are typically joined by less regular structures,

called loops.

Both these structures constitute around 50% of the protein structure. It

is important to note how the α helix is really stabilized by local sequence

interactions, typically between a radical and its 4th neighbour. On the other

hand β strand gives hydrogen bounds with β strand being spatially close
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Figure 4.2 � amino acid chain

(but they may be quite far in the sequence).

There are striking regularities in the ways secondary structures are as-

sembled [17]. These regularities arise from the intrinsic physical and chemical

properties of proteins and provide the basis for the classification of the pro-

tein folds.

As a matter of fact, the different folds are usually grouped into classes

(also named structural classes) on the basis of the secondary structures which

they are composed of. In the SCOP dataset1, for example, the folds are

grouped in five classes:

• all alpha: for proteins whose structure is essentially formed by α−helices

• all beta: for those whose structure is essentially formed by β−sheets

• alpha and beta: for proteins with α−helices and β−strands argely

interspersed

• alpha plus beta: for those in which α−helices and β−strands are largely

segregated

• multi-domain: for those with different folded domains and for which

no homologues are known at present time.

As the results of the folding, parts of a protein molecule chain come into

contact with each other and various attractive or repulsive forces (hydrogen

1we cite this dataset because it is used in most of the methods that we will see later.

More information on this dataset will be given later on
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bonds, disulfide bridges, attractions between positive and negative charges,

hydrophobic and hydrophilic forces) between such parts cause the molecule to

adopt a fixed relatively stable 3D structure, that is called tertiary structure.

The generation of the secondary structures previously described is a step

in this folding process: every secondary structure can be seen as building

block made up of a small number of amino acids that are close to one another,

which then, in turn, interact, fold and coil to produce the tertiary structure

that contains its functional regions (called domains).

At least, when a protein is formed from more than one chain of amino

acids, it is said to have the quaternary structure (for example haemoglobin

is made up of four chains).

4.2 Protein Similarity

In this section we want to clarify some concepts and biological terms that we

will use later on.

First of all, the concepts of similarity and homology. Protein sequences,

fold into unique three-dimensional (3D) structures. However, proteins with

similar sequences adopt similar structures. Indeed, most protein pairs with

more than 30 out of 100 identical residues were found to be structurally

similar. This high robustness of structures with respect to residue exchanges

explains partly the robustness of organisms with respect to gene-replication

errors, and it allows for the variety in evolution.

As we have seen in the previous section, the function of a protein is

strictly related to its structure. Two proteins are similar when they have

similar structures. Rougly speaking, two structures of proteins are similar

when we can overlap one on the other.

It is evident that it is necessary to decide a measure for quantify this

similarity concept. In the section 4.2.2 we will show which kind of measures

are used for this scope. Similarly to the procedure used in the assignment of

similarity between sequences, once it is decided the procedure to align the
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two structures it is even possible to define a score to quantify the difference

in the alignments.

Proteins that share similar structures, may also have similar sequences.

Usually, similarity between a pair of aligned biological sequences is measured

as sequence identity : the number of aligned positions where the matching

characters (e.g. amino acids in proteins) are identical. A more accurate

analysis of the alignment sequence methods in the case of protein sequences is

given in section 4.2.1. Nevertheless, as already underlined above, there exist

proteins that have similarity in structure but a low percentage of sequence

identity that indicates a poor sequence similarity.

From biological point of view, proteins that share similar structures (to

which often similar functions are related) and a common ancestor are said

homologus proteins. The existence of a common ancestor can be detected

by the analysis of their sequences: an evolutionary relationship between a

pair of sequences is usually inferred on the basis of high sequence identity

between them. Moreover, common fold means that sequence identity can be

used to identify proteins with similar three-dimensional structures. Then,

while the common structures can be detected by using alignment structures

algorithms, it is also necessary to use some alignment sequences algorithms

for searching a common evolutionary origin.

Therefore, whenever two proteins sequences or protein structures seem

very similar, the similarity can be explained by two different alternative: the

two proteins are similar because they are homologous, i.e. both are descen-

dants from a common ancestor, or the proteins are not related, i.e. they

are similar because some set of structural or functional constraints caused

them to converge from independent origins to the observed similarity. If the

observed similarity is sufficiently great that it seems unlikely for it to occur

several times independently then this can be considered as a discriminating

factor between homologous and analogous sequences. The inference of ho-

mology, is based on both the degree of similarity that they share (measured

by the alignment score or the percentage of identity sequence) and some sense
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of how unlikely it is that this similarity could have arisen independently [92].

Therefore, proteins with similar structures can be classified in two groups:

1. homologous proteins: these are proteins with similar structure likely

to be the result of evolutionary divergence. So, they have also simi-

larity in sequences. In particular these proteins are divided in remote,

medium and close homology, sub-division based on the percentage se-

quence identity.

2. analogue proteins: are proteins with similar three-dimensional struc-

tures (same SCOP classification, and Topology in CATH) but little

evidence of common ancestor (different SCOP superfamily classifica-

tion).

The structure alignments, that we will introduce in section 4.2.2, unam-

biguously distinguish between protein pairs of similar and non-similar struc-

ture when the pairwise sequence identity is high (> 40% for long alignments).

At the same time, accuracy of secondary structure prediction based on mul-

tiple sequence alignments, drops significantly when low homology sequences

are considered.

The term homologous protein families, 15-20 years ago meant clusters

of homologous proteins. Nevertheless, the greater sensibility of the compar-

ison methods for amino acid sequences and the major number of tertiary

structures discovered, has shown the evolutionary relationship between a lot

families previously known.

Usually, the belonging of a protein to a particular family implies a specific

biological function, whereby the name of the family is given.

Actually the number of known families is around ten thousand, for ex-

ample in the Pfam dataset [39], there is a list of 8183 families.

Large families of homologous proteins are commonly subdivided in sub-

families, according to the comparison of the similarity level of their amino

acid sequences. The evolutionary related families can be collected in su-

perfamilies (or clans). In the Pfam dataset, for example, in 206 clans are
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contained 1396 families.

A problem related to the distinction between families can be the complex

structure of the domain in many proteins. Different regions along a single

polypeptide chain can act as independent units, to the extent that they can

be excised from the chain, and still be shown to fold correctly, and often still

exhibit biological activity. These independent regions are termed domains.

Domains of proteins can be detected through the analysis of the tertiary

structure; the existence of experimental data on 3 dimensional structures

allows to single out the number of domains and the border lines between them

in the protein structure. Different domains have different biological functions;

the domains are also called functional domains. The protein domain is the

basic classification unit for the SCOP (Structural Classification of Proteins)

database [85], a comprehensive ordering of all proteins of known structures,

according to their evolutionary and structural relationships. Small proteins,

and most of those with medium size, have a single domain and are, therefore,

treated as a whole. The domains in large proteins are usually classified

individually, indeed. Most of the datasets used in the methods that we will

see later are subset of the SCOP [85] or CATH [87] databases.

The very first step for both these databases is to separate the proteins

into domains. It is difficult to produce an unequivocal definition of a domain

and this is one area in which CATH and SCOP differ.

Structural Classification of Proteins, or SCOP, was among the earliest

efforts to classify protein structures into folds. Protein domains with no ob-

vious sequence homology to other domains are defined and classified manually

[85]. This database has been considered the standard for protein structure

classification in many ways.

Class Architecture Topology Homologous (CATH ) superfamily makes use

of a combination of manual and automated procedures in defining and clas-

sifying protein domains. CATH relies on the consensus of three automated

classification methods to break protein chains into domains. This approach

is effective in defining the domains of 53% of the chains. The domains of
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chains for which consensus is not reached are defined manually. Homology

is defined largely in terms of sequence, but distant sequences matching with

high structural similarity may be defined as being homologous.

4.2.1 Sequence similarity algorithms: BLOSUM and

PAM matrices

The measure of similarity between two protein sequences used in the aligment

algorithms is a kind of a generalization of the Hamming distance, since the

similarity is proportional to a certain score computed by summing up the

partial scores associated to the one-to-one pairwise alignment of the two

sequences. In the Hamming case the partial score is binary: 1 when we have

the same amino acid in the same position of the two sequences, 0 otherwise.

As already observed above, the concept of similarity between proteins

involve the research of a sort of common origin from which the two proteins

have evolved under the phylogenetic pressure that, via deletions, insertions

and substitutions, may create the differences between the two proteins. So,

we have to find out sequences that are not only identical to the assigned

probe, but are also “similar” in a suitable sense. Here lies the need to use a

more flexible score than a binary evaluation (hamming distance), and that

evaluates the substitution of the amino acid i with j.

Rougly speaking, the alignment of proteins starts as the alignment of

DNA sequences, putting the sequences seq1 and seq2 one over the other

seq1

seq2
. However, the score is not computed directly by the matches and

mismatched between the two sequences but it is inferred by an a priori

model (the substitution matrix) that tries to take into account of the possible

common origin.

The basic idea for building this reference model is to measure the corre-

lation between two sequences; given a pair of “correlated” sequences we can

measure the substitution frequency of i → j (assuming symmetry) pij, i.e.

the probability that the amino acid i can be change with the amino acid j,
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and compare it with the null hypotesis (random correlation or indipendent

events) pipj.

The score associated to the pair i, j of amino acids belonging to two

proteins X and Y respectively, is defined as:

s(X(k), Y (k)) = s(i, j) = log
pij

pipj

(1)

Following this idea several substitution matrices have been derived. Their

main difference is relative to the alignment types used for computing the

frequencies.

The PAM (Point Accepted Mutation)[26] matrices are based on global

alignments of closely related proteins. The PAM matrix M, relating each

amino acid to each of the other 19, with an evolutionary distance of 1, would

have entries m(i, j) that indicates the probability of change from one amino

acid i to another amino acid j in homologous protein sequences with at least

85% identity during short-term evolution. One PAM matrix corresponds to

an average change in 1% of all amino acid positions.

An Mk matrix, which estimates the expected probability of changes at

a distance of k evolutionary units, is then obtained by multiplying the M

matrix by itself k times. Each Mk matrix is then associated to the scoring

matrix PAMk, whose entries are obtained on the basis of the log ratio:

s(i, j) = log
mk(i, j)

p(i)p(j)

where p(i) and p(j) are the observed frequencies of the amino acid.

An alternative approach to estimate target frequencies, and the corre-

sponding log-odds matrices, has been advanced by Henikoff and Henikoff

[48] with the BLOSUM Matrix (BLOck SUbstitution Matrix). They exam-

ine multiple alignments of distantly related protein regions directly.

In these multiple alignments they look at “blocks” of conserved sequences

(that are assumed to be of functional importance within related sequences).

Then the target and background frequencies p(i, j) and p(i)p(j) are calcu-

lated using the database Blocks which contain sets of proteins with a con-
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trolled maximum rate of percent identity θ that defines the BLOSUM matrix,

so that BLOSUM-62 refers θ = 62% and so forth.

The i, j entry of the BLOSUM matrix is given by:

s(i, j) = log
p(i, j)

p(i)p(j)
(2)

and the global score of two sequences X and Y of length n is given by

summing up the scores relative to each position:

S(X, Y ) =
n∑

k=1

s(xk, yk) =
∑
i,j

n(i, j) log
p(i, j)

p(i)p(j)
= n

∑
i,j∈A

f(i, j) log
p(i, j)

p(i)p(j)

(3)

where n(i, j) is the number of occurrences of the pair i, j inside the aligned

sequences, and fij =
nij

n
is the relative frequency of the pair i, j.

We underline that, due to the different methods used to build the matri-

ces, for very correlated sequences we must use PAM with low numbers and

BLOSUM with large numbers. The opposite holds for distant sequences.

Once the substitution matrix is obtained, the score of the alignment of

two sequences is given by this matrix.

For example: let seq1 = V DSCY and seq2 = V ESLCY.

Then the score between these two sequences is obtained bringing them

into alignment:

seq1 V D S − C Y

seq2 V E S L C Y

and looking for the corrisponding score for the pair i, j in the blosum

matrix.

From the BLOSUM matrix as in figure 4.3 we obtain:

seq1 V D S − C Y

seq2 V E S L C Y

4 2 4 −11 9 7

and the final score is 15.
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Figure 4.3 � Blosum62 amino acid substitution matrix. In the boxes the

values corrisponding to the pair i, j in our example (see above).
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4.2.2 Structure similarity algorithms

Differently from the sequences comparison, the similarity measures on protein

structures take into account the coordinates of atoms. 2

When comparing two protein structures, the algorithms search the simi-

larity between the backbone geometries. As mentioned above, the backbone

is a concatenation of atom triplets (N, Cα and C
′
), one for each residue in the

protein. Due to the planarity of the peptide bond and the small variance of

bond lengths and angles, the backbone geometry is completely determined

by the positions of the Cα atoms. Therefore the protein structure can be

represented as a sequence of 3-D points, specifying the centers of all Cα

atoms.

The most direct approach to the comparison of two protein structures

is to move the set of points representing one structure as a rigid body over

the other, and look for equivalent residues. We can speak of a ’geometric’

alignment. Here the problem of finding the optimal structural alignment

between two protein structures is open, that is a NP-hard problem. The

existing structural alignment algorithms use some simplification and reach

out a reasonable, if not optimal, alignment. For a review of the most popular

protein structure alignment we refer to [99].

There are also other approaches in wich the 3D geometry is ignored and

the structures are compared using only the 3D profiles [102, 59]. For other

references we refer to [69].

Two metrics are commonly used for the comparison [69]:

• Coordinate root mean square deviation: Given two sequence of

points in 3D-space describing the Cα position of two protein structures

X = (x1, . . . ,xn) and Y = (y1, . . . ,yn), the root mean square deviation

(RMS) between the coordinates of the corresponding Cα (cRMS) is

2All the information on the coordinates of atoms are contained in the PDB files. The

Protein Data Bank (PDB) [6] is a repository for 3-D structural data of proteins and nucleic

acids. These data are typically obtained by X-ray crystallography or NMR spectroscopy.
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defined as:

cRMS(X, Y ) = min
T

√√√√ 1

n

n∑
i=1

(||xi − Tyi||2) (4)

where ‖ · ‖ is the Euclidean L2-norm and T is a rigid body transfor-

mation (rotation and translation). A closed form solution for T yelds

the optimal tranformation.

• Distance root mean square deviation: Another common RMS

shape similarity measure is based on comparing intra-molecular dis-

tances matrices, i.e., the matrix of distances between all Cα atoms in

each structure. For a point X, this matrix is defined as

dX
ij =‖ xi − xj ‖ (5)

The distance matrix RMS deviation (dRMS) of X and Y is then

defined as:

dRMS(X, Y ) =

√√√√ 1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(dX
ij − dY

ij)
2 (6)

Remark 4.2.1. The cRMS measure is used after optimal superposition of

equivalent positions of two structures, while in the dRMS measure, by using

the internal distances, the need to optimally align the two conformations

is removed. However the computation time of the dRMS measure becomes

quadratic in the length of the correspondence between the two proteins.

Given the matrix D of all pairwise distances within the molecule, where

the distances are defined as in formula (5), it is possible to compute a binary

matrix C, called contact map, for the protein as a symmetric n × n array

such that:

C(xi,xj) =

{
1 if dX

ij < t;

0 otherwise.
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where t is a given threshold value (a common value is t = 7Å). Thus,

there exists a contact between residues x i and x j if and only if they are

within a given distance t from one another in the protein structure.

The contact map of a protein is a particularly useful representation of

protein structure that provides also useful information about the protein’s

secondary structure [54]. For example, cluster of contacts represent certain

secondary structures: α-helices appear as bands along the main diagonal

since they involve contact between amino acids and its four successors; β-

sheets are thick bands parallel or anti-parallel to the main diagonal.

The overlap of two contact maps, as defined by the number of contacts

between equivalent residues in two proteins that are simultaneously present

in both structures, can be used as a measure of similarity between two protein

structures ([41] and references in [70]).

Remark 4.2.2. As we can see in [41], the method of contact map overlap

is very useful when we have a low identity sequence. Indeed, contact map

overlap between sequentially unrelated proteins is clearly distinguishable from

the random overlap and quite close to the overlap between close sequential

homologues. This makes this measure of structural similarity different from

the cRMS between core residues, which was shown to increase rapidly with

changes in sequence [73, 74].

4.2.3 Universal Similarity Metric on contact maps

Recently, other methods to compare protein structures based on the so called

Universal Similarity Metric (USM) have been shown.

It is the quantity defined by Li and Vitany in [76, 24] and described in

section 2.1.1 (there named Normalized Information Distance):

d(x, y) =
max{K(x|y∗), K(y|x∗)}

max{K(x), K(y)}
(7)

The value K(x) is approximated by the size (i.e. number of bytes) of the

compressed string zip(x). (in particular the compression algorithm used was
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Linux’s compress version 4.2.4. Other compression algorithms were tested

without significant changes.)

As the contact map method previously described, USM have no need for

the optimal structural alignment.

In [70] the authors measure similarity between protein structures in the

following way:

• choose a protein dataset

• extract from each pdb file the first chain3 (if other than chain A is

used from the PDB files this is shown in the name of protein with the

letter of the chain, for example 1babB indicates that has been taken

the chain B)

• produce a contact map for each of the pdb files in the dataset (the

contact maps used have a distance threshold of 6.5 Å and distances are

measured from Cα atoms)

• for each pair of protein contact maps c1, c2, compute d(c1, c2) using the

d in equation (7) to obtain the similarity distance between them. Store

all inter-distances in a matrix.

• use an off-the-shelf software to cluster together proteins based on the

inter-distances matrix (http://www2.biology.ualberta.ca/jbrzusto/cluster.php)

The results of the clustering are represented by a tree.

The contact map used by Krasnogor and Pelta is written in a file of two

columns: one for the position of the amino acid i and the second for the

position of the amino acid j with a distance from i (distance between the Cα

atoms) under the 6.5 Å.

We can see below an example of these kind of files.

3we remember that a protein can be composed by more than one polipeptide chain:

the single chains are usually considered as a single unit.
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2 4

2 5

2 6
...

...

From their results, the USM distance seems to be capable of capturing

protein similarities that encompass a variety of other, more euristic, crite-

ria in a fully automated way [70]. Nevertheless, the results are considered

controversial in [96], where the authors use a much larger and representative

protein dataset than Krasnogor-Pelta datasets. The dataset is that used by

Sierk and Pearson to evaluate seven protein structure comparison methods

and two protein sequence comparison methods [98].

The data are composed by 2771 proteins, subset of CATH domains, and

86 of these are prototype proteins belonging to 86 different domain (according

to CATH classification). Of the 2771 proteins, only 1120 belong to the 86

families of the 86 prototypes (so there is a maximum of 1120 correct hits).

These 86 proteins will be used from [38] too using a distance based on

the compressor algorithms as well, and the results are comparable with those

obtained with the alignment algorithms.

4.3 From primary sequence to structure

The methods that now we want to analyze can be seen as a step towards an-

swering the folding problem: given the amino acid composition of a protein,

how may one predict its folding type?
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So far the rules bringing a protein to fold in its own ways are not clear.

The idea that from the primary sequence it is possible to detect the prin-

ciples that govern the folding of the protein chain is based on the thermo-

dynamic hypoteis or Anfinsen Principle. This hypotesis states that “the

three-dimensional structure of a native protein in its normal physiological

milieu (solvent, pH, ionic strength, presence of other components such as

metal ions or prosthetic groups, temperature, etc.) is the one in which the

Gibbs free energy of the whole system is lowest; that is the native conforma-

tion is determined by the totality of interatomic interactions and hence by

the amino acid sequence, in a given enviroment” [2].

Mutation and natural selection allowed a high degree of freedom during

the evolution of species, or during accidental mutation, but a limited number

of residues, destined to become involved in the internal, hydrophobic core of

proteins, must be carefully conserved, or replaced with other residues with a

close similarity in bulk and hydrophobicity.

These different mutations may sometimes bring to very different sequences

still similar in strucure, and so in functions (homologous sequences). In more

similar sequences it seems that even amino acid composition alone may be

useful to assign a protein to a certain structural class, while, in this case of

low identity sequences, it is evident that the regolatory rules are still more

hidden. So, what are a sequence features regulating a protein folding in a

precise way?

The primary structure is currently publicly known for hundreds of thou-

sands of proteins, while the secondary and tertiary structure is known for

a relatively small number of proteins (in the Protein Data Bank (PDB) [6]

currently there are 49760, out of which only a small portion have correct sec-

ondary structure and tertiary structure information, while the SWISS-PROT

database [50] store 359942 protein sequences). Experimental methods for the

discovery of secondary and tertiary structure such as X-ray crystallography

and nuclear magnetic resonance spectroscopy are time consuming, labor ex-

pensive, and cannot be applied to some proteins. Computational methods
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perform prediction of the tertiary structure with an intermediate step of

predictiong the secondary structure.

Computational methods for the prediction of secondary structure from

the primary sequence aim to close the existing gap between the number of

known primary sequences and higher structures.

Predictive methods based on probabilistic methods (such as Neural Net-

work or HMM [34, 35], for example) use the informations in the amino acid

sequence, coded as a symbolic string, to predict for each amino acid the

possible secondary structure conformation. The tertiary structure prediction

problem can be seen as a problem of mapping, i.e. the problem to try the

mapping rules between the string representing the protein sequence and the

symbolic string representing the structural feature that must be predicted.

The methods that will be shown now, instead, are more concentrated on

trying to cluster proteins belonging to different classes, usually according the

subdivision of SCOP dataset, and in case, to get from the good clusterization

the rules that are typical for a group rather than another one.

In the next sections for each method we explain how it works and which

kind of datasets are used. The analysis of these methods and of their results

will be given in section 4.6.

4.3.1 Mahalanobis Distance and Coupled Method

In the years 80-90 the principal methods used in the prediction of struc-

tural classes for protein sequences worked on the aminoacid composition. In

[22] the authors first, take into account the correlative effect among different

amino acids and measure the similarity between two proteins with the Ma-

halanobis distance rather than the ordinary intutitive geometric distances,

such as the Minkowski’s distance or the Euclidean distance.

In the Mahalanobis Distance, indeed, the correlative effect among differ-

ent amino acids can be automatically incorporated by the correlation matrix.

Among all the information in an amino acid sequence, it is decided to en-

code the amino acid sequence alone: so a protein molecule can be represented
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by a vector or point in a 20-dimensional space [22].

Owing to the normalization of amino acid components, only 19 are in-

dipendent. Therefore, the Mahalanobis distance based on the 20-dimensional

amino acid composition space must be divergent and meaningless. To over-

come the divergence difficulty, the Mahalanobis distance is defined in a 20-

1=19-dimensional space. An invariance theorem given in [20] states that the

values of the Mahalanobis distance will remain the same regardless of which

one of the 20 components is left out for forming the reduced 19-dimensional

space.

Suppose the 20 amino acids are alphabetically ordered according to their

single-letter code.

A kth protein in a given protein set of cardinality N can be rappresented

by

Xk =


xk,1

xk,2

...

xk,19

 (8)

with k = 1, . . . , N where xk,i is the frequency of amino acid i in the sequence

k.

The mean of the protein set concerned is defined by

µX =


µ1

µ2

...

µ19

 (9)

where

µi =
1

N

N∑
k=1

xk,i (10)

(i = 1, . . . , 19).

When the N proteins in (9) are all α proteins, µX becomes the mean of

α protein set, denoted by µXα . Similarly, it is possible to define the mean of
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the other protein sets β, α + β and α/β, when the N proteins in equation

(9) are all β or α+ β or α/β proteins respectively.

The Mahalanobis Distance between two proteins take into account the

correlations between them with the use of the 19× 19 covariance matrix:

Σ =


σ1,1 σ1,2 . . . σ1,19

σ2,1 σ2,2 . . . σ2,19

...
...

. . .
...

σ19,1 σ19,2 . . . σ19,19

 (11)

where

σi,j =
N∑

k=1

1

N − 1
[xk,i − µi][xk,j − µj](i, j = 1, 2, . . . , 19) (12)

Suppose now that X is a protein whose folding type is to be predicted.

It can be either one of the N proteins in equation (8) or a protein outside of

them.

The Mahalanobis Distance, D2
M(X, µX), between the mean µX defined in

equation (9) and X in the 19-D space is given by:

D2
M(X, µX) = (X− µX)tΣ−1(X− µX)

where Σ−1 is the inverse matrix of the covariance matrix.

When N in equations (10) and (12) is equals to the number of all α

proteins or all β or α+β or α/β proteins, then the covariance matrix becomes

the covariance matrix of each protein set, denoted by Σξ with ξ ∈ FoldSet =

{α, β, α+ β, α/β}
In this case, we denote the distance between a sequence and a specific

group with

D2
M(X,Xξ) = (X− µξ)

tΣ−1
ξ (X− µξ) (13)

When D2
M(X,Xξ) is smaller, meaning that the protein X is closer to the

ξ protein set, and hence the likelihood of it belonging to the ξ folding type
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is higher. Thus, the protein X will be predicted to be the folding type for

which D2
M has the least value (Least Mahalanobis algorithm).

Incorporation of the component-coupled effects by introducing Maha-

lanobis distance and other advanced geometry distances was one big step

forward in this area that significantly improved the prediction quality. How-

ever, the power of the least Mahalanobis distance algorithm was manifested

only when the training subset sizes Nξ, i.e. the number of proteins in the

subsets of the training dataset, were the same or approximately the same;

otherwise, poor predictions would result.

When the subset sizes are different, as shown in [21], it is like better to

use the Mahalanobis Discriminant Factor, defined as following:

F (X,Xξ) = D2
M(X,Xξ) + log

20∏
i

λξ
i − 2 log Ψξ + Λ log(2π) (14)

where log
∏20

i λξ
i is the product of all positive eigenvalues of Σξ, Ψξ is

the a priori probability of the subset ξ and Λ is the dimension of the amino

acid composition space. The authors use a short version of this indicator,

where the two last terms are not taken into account. Indeed, the last term

is costant for all proteins and can be ignored. Since the prior probabilities

Ψξ are unknown, a common practice is to assume that they are equal. Then

the term 2 log Ψξ can also be ignored and the equation (14) is reduced to

F (X,Xξ) = D2
M(X,Xξ) + log

20∏
i

λξ
i (15)

Respect to previous distances, such as Minkowsky or Euclidean distances,

the Covariant Discriminant Algorithm is not based on a distance scale but

on a function that has incorporated both the component coupled effect and

the subset size factor [19].

The use of the Mahalanobis Discriminant is also named Coupled Method.

(In the following sections we will use this name for indicating this method).

The Mahalanobis distance algorithm can be seen as an approximation of

the component-coupled algorithm, and sometimes equation (13) is named
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1st-Order Component-Coupled Method, while for equation (15) it is used the

2nd-Order Component-Coupled Algorithm. When the matrix Σξ is equal to

the identity matrix, the mahalanobis distance becomes the Euclidea distance

also named 0th-Order Component-Coupled Algorithm [18].

Different ways of using this Mahalanobis Discriminant Function are re-

lated to the different ways to code the protein sequence. In the two next

sections we will see other codes that take into account other features of the

proteins, not only the amino acid composition.

Datasets used in [22] and [21] We give a name to those datasets that

will be used by more than two authors. The dataset that are used only in

an article are named with the number of proteins that are in the dataset.

In [22] the Mahalanobis distance is used on a dataset originally used in

[86]:

Nakashima Dataset: a dataset of 131 proteins choosen from the original

dataset of 135 proteins in [86], where the irregular folding type proteins

have been left out because their number is only four, too small to have

any statistical significance. No informations on the livel of homology

is given.

In [21] the Coupled Method is used mainly on five datasets:

138 a dataset of 138 protein domains extracted from SCOP database [85].

36 of them are all-α domains, 29 all-β domains, 32 α/β domains and

41 α+ β domains.

253 a dataset of 253 protein domains extracted from SCOP dataset with 63

all-α domains, 58 all-β domains, 61 α/β domains and 71 α+β domains

510 a dataset of 510 protein domains extracted from SCOP dataset with

109 all-α domains, 130 all-β domains, 135 α/β domains and 136 α+ β

domains
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Chou Dataset: a dataset of 359 higly homologous protein domains ex-

tracted from SCOP dataset with 82 all-α domains, 85 all-β domains,

99 α/β domains and 93 α+ β domains

Moreover, for testing the prediction among seven structural classes (in ad-

diction to the usually four, are considered also the µ (multi), σ (small) and ρ

(peptides) domains) is used a dataset of 2438 protein domains extracted from

SCOP dataset with 398 all-α domains, 704 all-β domains, 509 α/β domains,

608 α+β domains, 46 multi µ domains, 158 small protein σ domains and 20

peptide ρ domains.

No information on the level of homology is given for these datasets, but

for the Chou Dataset in [57] are found some homologous sequences (that

would lead to overestimate the predictive accuracy of jacknife test).

4.3.2 Auto-correlation function-based approach (ACF)

Prediction of the protein structural classes is usually performed as a two step

procedure. First, sequences of different length are represented by a fixed

length feature vector and next the feature values are fed into a classification

algorithm.

In the previous section it was observed that the structural class of a

protein is related to its amino acid composition and its prediction improves

by including the coupling effect among different amino acid components.

Although the amino acid composition is very suitable to calculate, the full

information contained in the primary sequence is reduced considerably.

Bu et al. in [7] developed the Auto-correlation function-based approach

(ACF) to deal with this problem: for coding the protein sequence, instead of

the amino acid composition, it here are taken into account various physico-

chemical and biochemical properties of amino acids through the use of amino

acid index. An amino acid index is a set of 20 numerical values representing

any of the different physicochemical properties of the 20 amino acid. In the

article it is used the index of Oobatake and Ooi that is an indicator of the
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average nonbonded energy per residue (see references in [7]).

In this method the protein is represented by a vector X = (r1, r2, . . . , rm)t

where ri are the autocorrelation functions between amino acid indexes. For

calculating the auto-correlation functions, first each residue in the primary

sequence is replaced by its amino-acid index, so that each protein sequence

becomes a numerical sequence h1, . . . , hN , where hi is the amino acid index

for the ith residue and N is the length of the protein sequence.

The auto correlation rn is so defined:

rn =
1

N − n

N−n∑
i=1

hihi+n

with n = 1, 2, . . . ,m and m is the number of the auto-correlation functions

used. The optimal value of m is dependent on the kind of amino acid index

used; in the case of amino acid index of Oobatake and Ooi used in this article,

the appropriate value for m is 30.

Datasets used in [7] The datasets used in [7] are:

138 the same dataset described in the previous section (used in [21])

510 the same dataset described in the previous section (used in [21])

Chou Dataset: the same dataset of 359 proteins described in the previous

section and used also in [21]

4.3.3 Pseudo Amino Acid Composition

In other articles this idea of using the autocorrelation function in the code

of the original aminoacid sequence, is taken into account in order to im-

prove the prediction quality for protein structural classification by effectively

incorporating some kind of sequence-order effects.

Indeed, when we use the conventional amino acid composition to represent

the sample of a protein, all its sequence order and length effects are lost.
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To include these effects, the concept of pseudo amino acid composition was

introduced in [20].

The core of using pseudo amino acid composition is, on the one hand, to

include the main feature of amino acid composition, but, on the other hand,

to include information beyond amino acid composition.

In [20], a protein chain of L amino acid residues: R1, R2, . . . , RL, is rapp-

resented by a 20 + λ dimensional vector, where the first twenty components

are the aminoacid frequencies and the others are autocorrelation functions

that reflect the sequence order correlation between all the ith most contigu-

ous residues.

In [20] are defined the following order-correlated factors:



θ1 = 1
L−1

∑L−1
i=1 Θ(Ri, Ri+1)

θ2 = 1
L−2

∑L−2
i=1 Θ(Ri, Ri+2)

θ3 = 1
L−3

∑L−3
i=1 Θ(Ri, Ri+3)
...

θλ = 1
L−λ

∑L−λ
i=1 Θ(Ri, Ri+λ) (λ < L)

(16)

where θi is the ith correlation factor that reflect the sequence order cor-

relation between all the ith most contiguous residues and the correlation

function in (16) is given by

Θ(Ri, Rj) =
1

3
{[H1(Rj)−H1(Ri)]

2 +[H2(Rj)−H2(Ri)]
2 +[M(Rj)−M(Ri)]

2

where H1, H2,M are respectively the hydrophobicity value, hydrophilicity

value and side-chain mass of the amino acid. So, instead of using a 20-

dimensional vector to represent a protein, it is used a 20 + λ-D vector:
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X =



x1

x2

...

x20

x20+1

...

x20+λ


where

xu =


fuP20

i=1 fi+ω
Pλ

j=1 θj
(1 6 u 6 20)

ωθu−20P20
i=1 fi+ω

Pλ
j=1 θj

(20 + 1 6 u 6 20 + λ)

where fi is the normalized occurrence frequency of the 20 amino acids in

the protein X, θj is the j-th sequence correlation factor and ω is the weight

factor for the sequence order effect (in the article ω = 0.05).

Although the incorporation of correlation functions in the pseudo amino

acid seems to give good results in subcellular location problems [37], in the

structural class problem is not so used.

In general, to further improve the prediction quality, the pseudo amino

acid composition should be optimized by reducing the number of its ad-

ditional components and increasing the sequence-order information in the

remaining components.

This is gained in [109] introducing the complexity measure factor into the

pseudo amino acid composition. In this way a protein X can be expressed

by a 21-dimensional vector, where the first 20 components are the frequency

occcurrences of the amino acids in the protein, the last component is the

complexity value calculated according the lz procedure (see section1.2). On

this code of proteins it is applied the usual methodology of the covariant

discriminant algorithm [21].

Datasets used in [109] In [109] it is used a single dataset originally cre-

ated by Chou in [18]:
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204 non homology-dataset : a dataset of 204 entire protein chains (no

domains) extracted from the SCOP dataset. It consists of 52 all α, 61

all-β, 45 α/β and 46 α+ β.

We recall that the SCOP dataset is based on the domain proteins, but the

authors in [18] constructed this dataset such that any protein in the new

dataset must, as a whole, clearly and unambiguously belong to one of the

four structural classes. In this dataset, the level of homolgy is under the

30%.

4.3.4 Discriminant Analysis with peptides

We will see in the results section 4.6 that the use of codes that try to capture

also the residue order along sequence gives an improvement. The other meth-

ods here shown, are based on the comparison of subsequence distributions.

Indeed, the set of subsequence distributions of a protein domain involves the

residue order along the sequence; therefore they incorporate more informa-

tion of the sequence than its amino acid composition does.

In [78] these subsequences (or peptidi) are chosen with a stepwise discrim-

inant analysis in multivariate statistics. Starting from the set of amino acid

T (1), the first step constructs a subset of T (1), denoted by T0(1) with the

use of a discriminant analysis where the variables are the frequency vectors

of the amino acids in the different groups involved in the attribution (these

frequency variables are denoted by the vector X(i)). The set of di-peptides

T (2) is constructed from T0(1) add each of the 20 elements in T (1) in front

and at the end of the elements in T0(1). Before applying another discriminant

analysis on the new set, obtaining a subset T0(2) with only ”significant” di-

peptides, some variable are left out if their mean on each set is lower than a

threshold. The discriminant results are checked while polypeptides are taken

into account: step by step all the variables X(1), X(2), . . . , X(i + 1) cho-

sen by the discriminant procedure are put togheter for performing another

stepwise discriminant analysis with a discriminant result R(i + 1). If none
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of X(i + 1) enters the model for discrimination, or if R(i + 1) < R(i) than

the process stops. The variables obtained from X(1), X(2), . . . , X(i + 1) by

stepwise discrimination are the desired variables in final prediction and R(i)

is the highest predictive accuracy. These variables can be further on used for

the classification with other datasets.

The results of [78] are compared with those obtained on the same datasets

with the coupled method, and their accuracy is considerably better.

Nonetheless, an observation is necessary: as usual the accuracy of the

method is valueted by the jackknife and resubstitution test. For what con-

cerns the jackknife procedure, the polypeptides chosen in the stepwise dis-

crimination are used in the jackknife manner but the polypeptides were com-

puted using the entire dataset, which means that information about the

tested protein was used to perform its prediction. So the results obtained

require more detailed attention (see [71]).

Datasets used in [78] In [78] three datasets are taken into account:

PDB40-b: 1054 proteins extracted from SCOP [85] with the pairwise se-

quence identity less than 40%. The proteins belong to the first four

major structural classes: 220 are in all-α class, 309 are in all-β class,

285 are in α/β class and 240 are in α+ β class.

758 a datset of 758 proteins (in the article named PDB40-j) extracted from

SCOP with the pairwise sequence identity less than 40%. 162 are in

all-α class, 209 re in all-β class, 222 are in α/β class and 165 are in

α+ β class.

372 : a dataset of 372 sequences (in the article named PDB40-j1) obtained

excluding from PDB40-j the 386 identical sequences between PDB40-b

and PDB40-j.

Chou Dataset the same dataset of 359 proteins also used in [21]
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4.3.5 Discrepancy measure on polypeptides

In [57] given a protein sequence S with L residues, it is calculated the subse-

quence distribution of S with the subsequence length equal to `, and on this

distribution is calculated a measure of information discrepancy.

The number of all different contiguous sequences formed from an alphabet

A = {a1, a2, . . . , am} with length `, is m(`) and it is equal to m`.

Let be n`
i the number of the i contiguous subsequences in S of length `.

The total number of subsequences of length ` in S is L−`+1 for each ` 6 L.

Define p`
i =

n`
i

L−`+1
, we obtain the distribution:

U l
S = (pl

1, p
l
2, . . . , p

l
m(l))

t

Any sequence can be uniquely recognized by increasing the length of the

subsequence. Given a set of distribution of s sequences, the FDOD (Function

of Degree of Disagreement) measure is defined as:

B(U l
S1
, U l

S2
, . . . , U l

Ss
) =

s∑
k=1

m(l)∑
i=1

pl
ik log

pl
ik∑s

k=1

pl
ik

s

(17)

Bk(U
l
S1
, U l

S2
, . . . , U l

Ss
) =

m(l)∑
i=1

pl
ik log

pl
ik∑s

k=1

pl
ik

s

(18)

where 0 log 0 = 0 and 0 log 0
0

= 0. B(U l
S1
, U l

S2
, . . . , U l

Ss
) denotes a mea-

surement of the discrepancy among s sequences; while Bk(U
l
S1
, U l

S2
, . . . , U l

Ss
)

denotes a measurements of the discrepancy between the k− sequence and all

other sequences in the group.

As usual, if we suppose that a set T is the union of four subsets of

sequences: T = Tα∪T β∪Tα/β∪Tα+β and denote the discrepancy of Tα andX

by Bα
X (similarly for the other groups), the query protein X will be assigned

to class R when BR
X = min{Bα

X , B
β
X , B

α/β
X , Bα+β

X } (R = α, β, α/β, α + β)

The better results, are achieved with ` = 3. This is also the value consid-

ered in the results shown in our tables.
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In [64] the authors show that the high prediction accuracy obtained with

the FDOD measure on a low homology dataset is an artifact of improper im-

plementation that falsifies the results obtained with the jaccknife test; indeed

the average distribution used in the denominator of (18) is pre-calculated us-

ing the whole dataset. Following a right implementation of the method, the

results considerably decrease (see table 1 in [64])

Datasets Used in [57] The mainly chosen datasets by [57] are focused on

the value of sequence redundancy The proteins taken from the SCOP dataset

are filtered according to percentage sequence redundancy with a HMM library

and genome assignments server named Superfamily [44]. In [57] the datasets

are:

Chou Dataset: the dataset of 359 proteins described above

T30-1401 Dataset: a dataset of 1401 proteins (domains) extracted from

the SCOP dataset, derived from the Superfamily sequence list under

the limits of 30% sequence redundancy. This dataset consists of 298 all-

α proteins (domains), 341 all-beta proteins (domains), 438 α/β proteins

(domains) and 324 α+ β proteins (domains).

1530 a dataset of 1530 protein domains (in the article named T10-1530)

with no more than 10% redundancy.

1564 a dataset of 1564 protein domains (in the article named T10-1530)

with no more than 20% redundancy.

3998 a dataset of 3998 protein domains (in the article named T90-3998)

with no more than 90% redundancy.

4.3.6 Compression-based distance measures to protein

sequence classification

In the last years, other authors use the compression based distance measures

for the classification of protein sequences. Respect to the previous methods,
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the data on which these methods work is the amino acid sequence itself, the

primary sequences without coding other features.

These techniques are also indipendent from the resolution of the sequence,

i.e. they do not involve segments of fixed length.

Combination of the CBM and the BLAST score

In [67] the authors make a combination of the BLAST score and compression-

based measures in the following formula:

F (X, Y ) =

(
1− S(X, Y )

S(X,X)

)
CBM(X, Y ) (19)

where S(X, Y ) is a BLAST score computed between a query X and a

subject Y, S(X,X) is the BLAST score of the query compared with itself.

With CBM the authors denote the compression based distance measures (the

NCD measure of section 2.1.2):

CBM(X, Y ) =
C(XY )−min{C(X), C(Y )}

max{C(X), C(Y )}
(20)

where C denotes a compressor such as the Lempel-Ziv with the exhaustive

parsing [72] or the PPMZ compression algorithms. The term in parenthesis

of (19) is used to transform the BLAST score into a normalized distance

measure that ranges between zero and one.

The performance of this CBM+BLAST method is compared with other

alignment algorithms, in particular they note that it is close to that of the

Smith-Waterman algorithm (in some cases, even slightly better).

For this comparison the authors use nearest neighbour or support vector

machine classification schemes. In the SVM method, a sequence X is rep-

resented by a feature vector FX = fx1, fx2, . . . , fxn, n is the total number

of proteins in the training set and fxi is a similarity/distance score, such as

BLAST score, the Smith-Waterman score or a CBM, between sequence X

and the i−th sequence in the training set.
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Datasets used in [67] The datasets used are four:

Dataset1: consisting of 4352 protein domain sequences selected from the

SCOP database, belonging to 54 different superfamilies. This dataset

is an example of distant protein similarity

Dataset 2: 131 sequences of the 3-phosphoglycerate kinase obtained from

15 archean, 83 bacterial and 33 eukaryotic species. This dataset is

an example of evolutionarily related sequences. (similar proteins that

make the same biological function. Example of homology sequences)

Dataset 3: artificial sequences designed to study the behaviour of CBMs.

Each of the 4352 sequences in Dataset 1 were random shuffled and

compared with its original counterpart

Dataset 4: sequences of high and low complexity.

The results on the dataset 1, 2 are comparable to those obtained with

the Smith-Waterman algorithm. From the dataset 3 we can obtained that a

reshuffling on the domains has a smaller effect on the compression distance

than on the BLAST score. But there is a problem: similarities are more

difficult to detect on short sequences than on long ones, so the method is

strongly dependent on the sequence length.

On the last dataset, they observed that the distribution of CBM values

on low and high complexity proteins were not markedly different (see [67])

The goal of the authors is to compare their measure with the results ob-

tained with the alignment-based method. The alignment-based comparison

of biological sequences plays a fundamental role in most areas of computa-

tional genomics. Although the most popular alignment-algorthm is BLAST

[1], this doesn’t achieve the best alignment between two or more sequence,

as an exhaustive algorithm such as the Smith and Waterman algorithm does

[101]. But, considered the computational complexity of the Smith Algorithm,

it is preferred the use of an heuristic algorithm such as BLAST.
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The results in [67] show that the method (19) is comparable with the

Smith-Waterman Algorithm and, sometimes, better than BLAST alone.

Compressor Algorithms

An exhaustive use of the measure (20) and other similar with different com-

pression algorithms, is given in [38].

They used twenty different compression algorithms on five different pro-

tein datasets with three different metrics (all on the basis of the CBM); their

accurracy is valueted with the ROC analysis and the corrisponding AUC

value, while in order to assess the performance of compression-based classi-

fication, via UPGMA or NJ, they computed the F-measure.

The comparison of these methods is done with the alignment method

BLAST

Datasets used in [38] In [38] mainly two dataset are used. For each

dataset different ways to code the proteins are chosen, obtaining in total five

datasets:

CK Dataset the Chew-Kedem dataset, already studied in [70], consists of

36 protein domains drawn from the PDB entries of three classes (alpha-

beta, mainly alpha, mainly beta)

1. CK-36-PDB: Chew-Kedem dataset of 36 proteins domains, amino

acid sequences in FASTA format

2. CK-36-REL: Chew-Kedem dataset of 36 proteins domains, com-

plete TOPS strings with contact map

3. CK-36 SEQ: Chew-Kedem dataset of 36 proteins domains, TOPS

strings of secondary structure elements

SP Dataset the Sierk-Pearson dataset [98], consists of a non redundant

subset of 2771 protein families and 86 non-homologous protein families

from the CATH proteins domain database [91].
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4. SP-86-PDB: Sierk Pearson dataset of 86 protein domains, amino

acid sequences.

5. SP-86-ATOM: Sierk-Pearson dataset of 86 protein domains, ATOM

lines from PDB entries

4.4 Our (very) preliminary experiments: LZ

distance and n-gram distance

We repeated the experiment on one of the datasets used by Krasnogor and

Pelta in [70]; in particular we take the Chew-Kedem dataset, where there are

36 proteins.

We recall that the authors in [70] used the USM distance on proteins

rappresented by files of contact couples (see section 4.2.3).

The distances used in our experiments are the two distances that we

have already used in the heart experiments: the LZ-distance and the n-gram

distance (go to the sections 2.1.3 and 2.2.6 for the formulas).

The contact maps are obtained from the first chain of the PDB files: two

amino acids i and j are in contact when the distance between their Cα atoms

is below 6.5 Å.

The contact map in [70] was coded as a file of two column where the first

column is the position of amino acid i and in the second column the position

of the amino acid j with which i is in contact.

We have used this kind of code for the contact map with our distances,

but we have also constructed the whole contat map reading for lines, along

the bias or choosing a window of reading.

All the matrices obtained with different methods and different value of

n (for the n-gram methods) are evaluated by the three attribution methods

already explained in section 3.2.2: the mean method, the nearest neighboor

and the vertical voting.

We have also used these attribution methods on the matrix obtained by
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Krasnogor and Pelta using the USM distance.

The results are summarized in table 4.2: for the n-gram method we show

the value of n for which we obtained the best results. As you can see from

the table, our methods, on this dataset and with these ways of attribution,

reached better results than those with the USM method; the best result

(91%) is achieved with the method of n-gram, with the formula with α = 2,

an n = 9−10, and reading the contact map for lines. With the same reading

of the contact map used in [70] (named CMP in the table), we obtained

higher percentages than those of Krasnogor and Pelta, for each attribution

method.

In order to asses the performance of our methods on the classification,

following [38] we have applied the UPGMA clustering algorithm on our dis-

tances, and then we have computed the F-measure by using the clustering

solution and the gold standard division of proteins in groups according to

CATH class (we have used the same procedures used by [38]. See the refer-

ence in the article for the suplementary material web page).

In this case, the LZ-distance and n-gram distance are used on the amino

acid sequences, and the results are compared with those shown in [38] by the

compressors, and also with the alignment methods (see table 4.3).

Among all the results of Ferragina at al. we show only the better results

for each kind of compressors. Better results compared to F-measure are ob-

tained only for the PPMd algorithm (an adaptive statistical data compression

technique based on context modeling and prediction): all other compressor

algorithms have values lower than our results. As we will observe in one

of the following sections (see section 4.6), the alignment algorithm performs

very well on this dataset that, probably it contains homologous proteins.

An intersting dataset is the SP-dataset used also in [38] that contains

86 non homologous proteins. In this case we can observe an abrupt decrease

in the performance of the alignment algorithms.

In [38] the compressor algorithms are used on this dataset with results

that sometimes are slightly better than what we get with the allignment.
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With our distances we obtain results comparable to those in [38]; in this case

the LZ distance performs like the n-gram distances.

Moreover, in both the two datasets the best formula is the geometric

formula (see tables 4.3 and 4.4).

4.5 Considerations on some of the previous

methods

In this section we want to analyze differences and similarities between some

of the methods shown in the previous section. The analysis is made on

variables with normally gaussian distribution.

Rewriting some of the previous methods under the assumption that the

variables have normally gaussian distribution, brings to the need of managing

formulae with joint and conditional probability in it. For the sake of clearness

we recall here in the forth coming the formulas relative to those involving

two (both) gaussian variables probability.

4.5.1 Gaussian distributions

The general multivariate normal density is written as

p(X) =
1

(2π)
d
2 |Σx|

1
2

exp

[
−1

2
(X − µx)

tΣ−1
x (X − µx)

]
(21)

where X is a d−component column vector, µx is the d−component mean

vector, Σx is the d×d covariance matrix, and, as usual, the Σ−1
x is the inverse

of Σx, (X − µx)
t is the transpose of (X − µx) and |Σx| is the determinant of

Σx.

Let :

µ = E[X]

and

Σ = E[(X − µ)(X − µ)t]
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The same for p(Y ).

The joint probability is:

p(X, Y ) =
1

(2π)
d+d
2 |Σz|−

1
2

exp

[
−1

2
(Z − µz)

tΣ−1
z (Z − µz)

]
(22)

where Z = (X, Y )t.

From these formulas we can get the conditional probability density:

p(X|Y = y) =
p(X, y)

p(y)

=
1

(2π)
d+d
2 |Σz |

1
2

(2π)
d
2 |Σy |

1
2

exp

[
−1

2

(
(Z − µz)

tΣ−1
z (Z − µz)− (y − µy)

tΣ−1
y (y − µy)

)]

=
1

(2π)
d
2
|Σz |

1
2

|Σy |
1
2

exp

[
−1

2

(
(Z − µz)

tΣ−1
z (Z − µz)− (y − µy)

tΣ−1
y (y − µy)

)]

The conditional probability can also be directly written as follows:

p(x|y) =
1

(2π)
d
2 |Σx|y|

1
2

exp

[
−1

2
(X − µx|y)

tΣ−1
x|y(X − µx|y)

]
(23)

The mean and covariance of the conditional distribution of X given a

realization of Y (that has normal distribution itself) are:

Σx|y = Σx − ΣxyΣ
−1
y Σyx (24)

µx|y = µx + ΣxyΣ
−1
y (y − µy) (25)

This result can be obtained directly comparing the two equations (22)

and (23) and using the properties of the gaussian distribution.

Here, following [58], we show an indirect proof.

Proof. Take a matrix A of dimension equal to 2d× 2d:

A =


I −ΣxyΣ

−1
y

0 I
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so

A(Z − µZ) = A


X − µx

Y − µy

 =


X − µx − ΣxyΣ

−1
y (Y − µy)

Y − µy


is jointly normal with covariance matrix AΣzA

t given by:


I −ΣxyΣ

−1
y

0 I




Σx Σxy

Σyx Σy




I 0

−ΣxyΣ
−1
y I

 =


Σx − ΣxyΣ

−1
y Σyx 0

0 Σy


The variable X−µx−ΣxyΣ

−1
y (Y −µy) has normal distribution N(0,Σx−

ΣxyΣ
−1
y Σyx). Moreover, if we consider the two variables X−µx−ΣxyΣ

−1
y (Y −

µy) and Y−µy, they have zero covariance and then they are indipendent. This

means that when Y = y then conditional distribution of X−µx−ΣxyΣ
−1
y (y−

µy) is the same as the unconditional distribution of X−µx−ΣxyΣ
−1
y (Y −µy).

Since the term µx + ΣxyΣ
−1
y (y − µy) is a constant when Y = y, the variable

X is distributed as N(µx + ΣxyΣ
−1
y (y − µy),Σx − ΣxyΣ

−1
y Σyx)

4.5.2 Coupled Method vs. Bayes decision rule

We have seen that in the protein structural class prediction, the most used

is a method based on Mahalanobis Distance, the Coupled Method.

As already observed in [116], the use of the coupled method for protein

structural class predicition can be rewritten by the use of Bayes decision rule.

The Bayes’ decision theory forms the basis of statistical pattern recogni-

tion. The theory is based on the assumption that the decision problem can

be specified in probabilistic terms and that all of the relevant probability

values are known.

Suppose there are M possible pattern classes ξ1, ξ2, . . . ξM and an ar-

bitrary pattern x = x1 . . . xd belongs to class ξi with a priori probability
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P (ξi). With the posterior probability P (ξi|x) or the class-conditional prob-

ability density p(x|ξi) and the prior probability P (ξi) we can write Bayes’

decision rule as:

P (ξi|x) > P (ξj|x) (i 6= j) (26)

that is, the pattern class ξi with the higest posteriori probability is chosen

as the assignment for x.

Using the Bayes’theorem, it is possible to write:

P (ξi|x) =
P (ξi)P (x|ξi)

P (x)

and the Bayes decision rule becomes:

P (ξi)P (x|ξi)

where P (x) has been eliminated since it does not depend on i. 4

Usually, in pattern recognition problems, it is used a gaussian classifier

that uses Bayes’ decision theory where the class-conditional probability den-

sity p(x|ξi) is assumed to have a Gaussian distribution for each class ξi; let

P (x|ξi) ∼ N(µi,Σi), [29] then:

P (x|ξi) =
1√

(2π)d|Σi|
exp{−1

2
(x− µi)

tΣ−1
i (x− µi)} (27)

where µi is the d−component mean vector and Σi is the d × d covariance

matrix.

Let’s take the logarithm of the decision function:

di(x) = ln[P (ξi)P (x|ξi)] = lnP (ξi) + lnP (x|ξi) (28)

Substituting equation (27) in equation (28) yelds:

di(x) = lnP (ξi)−
d

2
ln 2π − 1

2
ln |Σi| −

1

2
[(x− µi)

tΣ−1
i (x− µi)] (29)

4It can be verified that the decision rule (26) minimizes the average of classification

error probability
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As shown in [116], multiplying by factor −2 both sides of equation (29),

we get:

Di(x) = −2di(x) = −2 lnP (ξi)+d ln 2π+ln |Σi|+[(x−µi)
tΣ−1

i (x−µi)] (30)

that, reorganizing the order of terms, becomes:

Di(x) = [(x− µi)
tΣ−1

i (x− µi)] + ln |Σi| − 2 lnP (ξi) + d ln 2π (31)

We see that, when we assume an equal distribution for all class ξi, the

formula (31) is identical to the Discriminant Mahalanobis Factor, also named

Coupled Method described in the previous section.

Therefore, the decision process uses the squared Mahalanobis distance

and it is equivalent to the Coupled Method (in the Gaussian assumption)

[107].

4.5.3 Information distances

All the methods that we have seen relate the similarity to the probability of

two items belonging to the same cluster.

The idea of the Coupled method, estimating the p(x|ξi), is to use a dis-

tance between a single item and the probability of the class (estimated with

a group of items of which we know the class attribution). Other approaches,

such as those correlated to the information distance, use the same concept

of similarity but estimate the p(x|y) where x and y are two different items

instead of p(x|ξi). The distances used in the compressor methods are pair-

wise distances that try to estimate the similarity (or not) directly by the

information that one item conveys about the other.

The quantity used in the theory of the information distance for estimat-

ing the shared features, as underlined in section 2.1, is the joint distribution

p(x, y); the ratio of this quantity from the indipendent hypotesis is an indi-

cator of how much the two variables x and y are similar.
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We consider the logaritmic form:

log
p(x, y)

p(x)p(y)
= log

p(x, y)

p(y)
− log p(x)

= log p(x|y)− log p(x) (32)

Following [49], we can write (32) for gaussian distributions under two

simplifying Gaussian assumptions:

1. p(x, y) is gaussian in R2d

2. p(z) =
∫

x
p(x, z)dx =

∫
y
p(z, y)dy

(From the first assumption follows that p(x) is also Gaussian in Rd.)

Assuming that the data’s mean is 0 (otherwise, we can substract it from

the data), the quantities in equation (24) become:

Σx|y = Σx − ΣxyΣ
−1
y Σyx (33)

µx|y = ΣxyΣ
−1
y y

and then, the equation (32) becomes:

1

2

[
log

|Σx|
|Σx|y|

+ xtΣ−1
x x− (x−My)tΣ−1

x|y(x−My)

]
(34)

where, M = ΣxyΣ
−1
y and Σx|y is given in (33)

This last formula, freed from multiplicative and additive constants, is

the formulation of the coding similarity between two variables with gaussain

distribution (GCS) and depends only on the data covariance matrix and the

covariance between pairs from the same sources.

In [49] it is also proved that GCS, when the two points x and y are con-

ditionally indipendent given the hidden source, is strongly related to Fisher

Linear Discriminant (FLD) proving that the matrices employed in its com-

putation are the within-class (Σx) and between-class (Σxy) scatter matrices

involved in FLD. 5

5we remeber that the Fisher-LDA considers maximizing the objective J(w) = wtSBw
wtSW w

where SB is the “between classes scatter matrix” and SW is the “within classes scatter

matrix” as defined in [30]
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Morever, when the points in all pairs are very close to each other, we can

prove the convergence of the GCS to the Coupled Method (equation (15)).

The theorem is an analogous of Therem 2 in [49], where the multiplicative

and additive constants are not removed:

Theorem 4.5.1. Let x be a point generated with probability p(x) and y sam-

pled from a small neighborhood of x. Denote ∆ = (x−y)
2

. Assume that the

covariance matrix Σ∆ < εΣx, where ε > 0 and A 6 B stands for “B − A is

a positive semi defined matrix”. Then

equation (34) →ε→0 −
1

2
[(x− y)(4Σ∆)−1(x− y) + log |4Σ∆|] (35)

where the limit g(x) → f(x) means g(x)
f(x)

→ 1

Proof. The proof of the theorem follow from that of Theorem 2 in [49]. Here

are retrieved the main steps:

Denote with µ = x+y
2

; then we can rewrite x and y as following:

x = µ+ ∆ and y = µ−∆ (36)

First, we rewrite the covariance matrix for x (that for the initally as-

sumption 2. is equal to the covariance matrix of y):

Σy = Σx =
1

2
E[xxt] +

1

2
E[yyt] = (37)

=
1

2
E[(µ+ ∆)(µ+ ∆)] +

1

2
E[(µ−∆)(µ−∆)] (38)

= Σµ − Σ∆ (39)

The Σxy becomes:

Σxy = E[xyt] = E[(µ+ ∆)(µ−∆)] = Σµ − Σ∆ (40)

= Σx − 2Σ∆ (41)
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Moreover:

M = ΣxyΣ
−1
x = (Σx − 2Σ∆)Σ−1

x (42)

= I − 2Σ∆Σ−1
x (43)

Σx|y = Σx − ΣxyΣ
−1
y Σxy = Σx − (Σx − 2Σ∆)Σ−1

y (Σx − 2Σ∆) (44)

= Σx − (I − 2Σ∆Σ−1
x )(Σx − 2Σ∆) (45)

= 4Σ∆ − 4Σ∆Σ−1
x Σ∆ (46)

Using the hypotesis, we get:

I − 2ε 6 M 6 I (47)

4Σ∆(I − ε) 6 Σx|y 6 4Σ∆ (48)

from which

M = I +O(ε)) (49)

Σx|y = 4Σ∆(I +O(ε)) (50)

Then:

log |Σx| − log |Σx|y| + xtΣ−1
x x− (x−My)tΣx|y(x−My)

≈ −(x− (I +O(ε))y)t[4Σ∆((I +O(ε))]−1(x− (I +O(ε))y)

− log |4Σ∆I +O(ε))|+ log |Σx|+ xtΣxx

→ε→0 −(x− y)4Σ∆(x− y)− log |4Σ∆|

where xtΣ−1
x x is negligible with respect to the other terms for ε → 0

(because 0 6 xtΣ−1
x x 6 εxyΣ−1

∆ ) and log |Σx| is constant for every y

The matrix Σ∆ = Ep(x,y)[x−(x+y
2

)] is the inner chunklet covariance matrix

as defined in the Mahalnobis Distance, and then, under the conditions of the

theorem 4.5.1 we obtain again the Coupled Method.
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In the general case, otherwise, the formula that we get is different from

the Mahalanobis Distance:

(x−My)tΣ−1
x|y(x−My) = (x− µx|y)

tΣ−1
x|y(x− µx|y) (51)

The matrix M can be seen as a transformation that work on point y

before applying the matrix Σ−1
x|y.

In the case of the theorem, for example, M was close to the identity

matrix (when the points in all pairs are very close to each other, the identity

matrix is the best regression from one to the other), and the matrix distance

was the Mahalanobis matrix.

To apply a transformation on data before using some distances for clas-

sifing or clustering, is a common procedure used in data analysis.

4.5.4 BLOSUM Score

In [32] the Blosum score (equation (3)) is analyzed from a mathematical

perspective using the quantities of the Information Theory. We recall that

in the formula (3) the fij corresponds to the observed relative frequency of

amino acids inside the sequences of given proteins, while the probabilities pij,

pi and pj need to be deduced from the population of proteins, and become a

typical feature for this population.

Formula (3) is very similar to the formula of mutual information but here

the frequencies fij are mixed with the a priori probabilities.

Rewriting the formula (3) to obtain the term I(X, Y ) (the mutual in-

formation between two protein X and Y ), we gain factors relative to prob-

abilities of the population. In particular, multiplying the argument of the

logarithm by
fij

fij

fifj

fifj
the normalized score can be split:

S(X, Y ) = I(X, Y )−D(FXY ‖ PAB) +D(FX ‖ PA) +D(FY ‖ PB) (52)

where D(· ‖ ·) is the Kullback Leibler Divergence, or Relative Entropy,

FXY is the joint frequency distribution of the amino acids pairs in the se-

quences (observed target frequencies), while FX and FY respectively, are
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the distributions of the amino acids inside X and Y (observed background

frequencies). PAB instead is the joint probability distribution associated to

the Blocks database, and is the vector of target frequencies. Note also that

PA = PB = P is the probability distribution of the amino acids inside the

same database Blocks (they are equal because p(i, j) = p(j, i)).

The set {I(X, Y ), D(FXY ‖ PAB), D(FX ‖ PA), D(FY ‖ PB)} is named in

[32], BLOSUM Spectrum (BLOSpectrum).

As already underlined in [32], this decomposition becomes important

when we consider sequences for which the BLOSUM score indicates a weak

or no correlation: when we use the BLAST program for comparing two se-

quences, indeed, the result of our research is the corresponding score value

(plus additional information such as the E-value, etc). If the score value of

the two sequences is too low, the program returns a phrase that say: “No

significant similarity was found”.

From the analysis of the BLOSpectrum, otherwise, we can understand

the reasons of the low score: the high value of the term D(FXY ‖ PAB)

togheter with low values for the D(FX ‖ PA), D(FY ‖ PB)} terms, for exam-

ple, indicates that the joint frequencies are not typical, i.e. are not close to

the background distribution. This can be due also to a wrong choice of the

model (the BLOSUMθ matrix) and the knowledge of the target frequency

divergence may be of some help in identifying the best scoring matrix, that

is the one tailored for the correct evolutionary distance.

If, on the other hand, changing the θ parameter does not affect D(FXY ‖
PAB), but the background amino acid frequencies (D(FX ‖ PA) and D(FY ‖
PB)) are always low, then the large target frequency divergence indicates

some nonstandard evolutionary process (we are probably in the twilight zone:

weakly correlated sequences with a very old common ancestor, or portions

of proteins with strong structural properties that do not require the conser-

vation of the entire sequence).

A more exhaustive analysis of different possible cases according to the

different values of the BLOSpectrum is given in [32]
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We only want to underline that this analysis compared with the previously

described methods, shows the power of the alignment algorithms that not

only use the information about the correlation between sequences (with the

factor I(X, Y )) but also capture the evolutionary relations of the sequences

using the divergence factor.

4.6 Results and Comparison

In this section we want to resume the results obtained using the main meth-

ods previously described.

We resume the results in the following tables; we construct a table for

each of the datasets into which different methods have been applyed, while

all the datasets processed by a single method are resumed in another single

table.

The prediction quality of the different methods is usually examined by

the resubstitution and jackknife methods. The use of these methods is on the

one hand for testing the self consistency of the method, on the other hand

for testing the results by cross-validation.

In general, the jackknife procedure (also called the leave one-out test)

consists of removing a sequence from the training set, training the model with

the remaining sequences and performing the test on the sequence removed.

This process is tandemly repeated for all sequences in the training set, and

the final prediction accuracy summarizes the outcome of all indipendent tests.

Thus this procedure is considered the most appropriate for the assesment of

a prediction method based on indipendent training and test data. Anyway,

it is possible to use also a 10-fold cross-validation test that is statistically not

so different from the jackknife procedure and less computational expensive

[71].

If we want to test the self consistency of the distance, we must include in

our method of attribution the reference sequence itself, otherwise, for testing

the results, we must exclude that sequence from the calculation.
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As can be seen from the tables, all the methods have overall rates of

correct prediction higher than those of the simple geometry distance algo-

rithms. To take into account the component coupled effect allowed the first

real improvement in the class prediction problem.

Of course, the results by the resubstitution test are always higher than

those by the jackknife procedure. Nonetheless, from the results in tables,

it is possible to observe a decrease in the rate of correct predictions from

the resubstitution to the jacknife test. This decrease is more remarkable for

the component-coupled algorithm than for the simple geometry-distance al-

gorithm, especially for small datasets (see for example table 4.8 and 4.9 for

the two datasets of 138 and 253 proteins). This is because the component

coupled algorithm needs more training data to make its prediction. There-

fore, the information loss due to jackknifing will have a greater impact on

the predicted results than those by the simple geometry-distance algorithm.

Nonetheless, sometimes low accuracy is obtained also in large dataset (see

table 4.13). In [106] the authors have shown that the prediction of the four

SCOP classes (all-α, all-β, α/β and α+β) using Bayesian classification (that

in section 4.5.2 we have seen to be equivalent to the Coupled Method) on

non homologous sets of proteins is limited by 60%.

Although these results are considered controversial by some authors [116],

it is possible to observe that low accuracy should be expected in non-homologous

datasets. The higher results obtained with method different from the Cou-

pled Method, sometimes are due to an incorrect procedure or implementation

(see [71]).

According to the classification of protein structures in SCOP, all protein

domains with more than 30% identity belong to the same protein family and

must have the same structural class. Therefore, as already underlined by

other researcheres (see [106] [71]) the structural class assignment of a new

protein domain with homology > 30% to a protein of known structure can

be also performed by sequence alignment. Any prediction method for the

protein structural classes should only address those proteins for which low
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homologous proteins are found in the Protein Data Bank.

A comparison with alignment algorithms is not done in these articles,

except for [38] and [67]. In [38] two datasets of proteins are taken into ac-

count, as we have already described above: a dataset named Chew-Kedem

dataset of 36 proteins belonging to five different families and another dataset

of 86 non homologous protein families (SP-86 dataset).

The prediction quality is estimated by the ROC curves and corresponding

AUC (Area Under the ROC curve) value or directly on a linearized matrix

(see [38]) or on the output of some classifier algorithm (see [67]). In [38]

in order to assess the performance of compression-based classification, via

UPGMA and NJ under various compression algorithms, they have computed

the F-measure against a gold standard.

The results show that the use of the USM methodology has the same per-

formance and limitations as more standard methods such as global and local

alignments and the linear correlation coefficient between the 20k dimensional

vectors of k−mer frequencies for k = 1, 2, 3. This seems to indicate that the

main advantage of the USM methodology is its scalability with data size [38].

In particular, on the SP-86 dataset, every methods perform poorly on

all classification tasks (class, architecture, topology, according to the CATH

classification), a further example of low results obtained on non homologous

dataset.

Low values of AUC are obtained also in [67] on the Dataset I, a selected

dataset designed to evaluate distant sequence similarities.

In tables 4.5 and 4.6 we show some of the results in [38]. In [38] different

kind of compressors are used, they can be divided into three group:

1. three state of the art tools for general purpose: Gzip, Bzip2 and PPMd

algorithm

2. the memoryless compressors based on Huffman and Arithmetic Coding

3. the compressor based on the bwt transformation
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We show only the higher F-measures achieved by each compressor belonging

to the three group, in comparison with the alignment algorithms and the

k-mer frequency correlation method.

In table 4.7 are shown the results of [22] on the Nakashima Dataset

of 131 proteins choosen from the original dataset of 135 proteins in [86] (the

irregular folding type proteins have been left out because their number is

only four, too small to have any statistical significance). No information on

the homology level is given.

The percentages are refererred to the self consistency of the methods.

The Mahalanobis Distance is compared with the usual geometric distances

(Euclidean Distance, Minkowski’s Distance) and the Discriminant Analysis.

As we can see, the accuracy obtained with the Mahalanobis Distance is higher

than that obtained by the other methods.

The only result regarding the jacknife procedure on this dataset known

in literature is given in [106] where the Bayes decision rule equivalent to the

Coupled Method, is used. The resubstitution procedure on this dataset is

equal to 99.2%, confirming the better results with the use of the discriminant

factor respect to the Mahalanobis Distance alone (94.7%), but the jacknife

procedure gives a significantly lower prediction accuracy (42.7%). A plausible

motivitation of this gap is given in [106] and is connected to the size and the

low homology of the dataset. The authors in [106] use a dataset of 1189

proteins with identity level under 40% for constructing datasets of different

sizes. On these non homologous datasets, they observe a rise in the accuracy

of jackknife test with the size of the dataset and at the same time a decrese

in the resubstitution value to a common value of 60% (see Fig 1 and table

IV in [106]).

In table 4.8 and 4.9 we show the results obtained with the resubstitu-

tion and jacknife procedure respectively, on the datasets 138, 253 and 510.

The Coupled Method is compared with the use of Hamming Distance and

Euclidean Distance always on the aminoacidic composition vector. Only for

the dataset 510 and 138 we have the comparison, even using the Coupled
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Method, with the vector of autocorrelation functions [7].

The improvement in accuracy of jackknife test observed with the different

datasets is explained in [21] by the dataset increase, while in [106] the cause is

better attributed to the homologous proteins. Indeed, the 138 , 253 domains

in these tables and the 359 domains in table 4.10 belong to 102, 129 and

130 protein families, respectively, i.e., in the dataset of 128 proteins, 36 are

homologous, while in the other two, 124 and 229 respectively.

As already noted in [7] the use of the autocorrelation function method on

small datasets gives a lower predictive accuracy (for both the resubstitution

and jackknife tests) than that of the Coupled Method on the amino acid

frequency vectors. This happens because the length of the attribute vector

is equal to the appropriate number of autocorrelation functions, 30 in the

article, whereas the number of the amino acid frequencies is only 20. They

suggest an empirical minimal size of the training database of 200 proteins

for applying their algorithm.

For the Chou dataset of 359 proteins the results are obtained, other

than by the geometric distances and the Coupled Method on the aminoacidic

composition vectors, also with the Coupled Method on the autocorrelation

functions of [7], with the use of discriminant analysis on the polypeptidi [78]

and with the use of discrepancy measure [57] (results in table 4.10, 4.11).

The best accuracy is reached by the Discrepancy Measure [57], but we

remember that these results are criticized in [64] for an improper imple-

mentation; with a right implementation the accuracy decreases both in the

resubstitution and in jackknife test (see table 4.10, and 4.11).

The proteins come from the SCOP dataset and are highly homologous,

and authors in [71] say that the high accuracy in this case is due to high

homology (or improper procedure in the case of the discrepancy measure),

while low accuracy shoul be expected for low homology sets, in agreement

with [106].

Nonetheless, another dataset seems to controvert this claim. The accu-

racy values on the 204 non homologous-dataset [18] are shown in table
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4.12

This is a singular dataset on which other kind of methods are tested

(such as SVM on pseudoaminoacid [15] or boosting algorithm [11]). We

can see that the lower results are achieved by the Coupled Method on the

amino acid frequencies (although under the hypotetical thereshold of 60% in

[106]). The best results are obtained with the use of the Coupled Method on

the pseudoaminoacid representation with aminoacid frequency and LZ value

[110].

In general, all the good performing methods on this dataset, work on

pseudoaminoacid rappresentations.

Low homology datasets are used in [57] and [78], but the results (shown

in table 4.13) are probably due to improper procedure (see [71]). Finally, in

table 4.13 we show the results for the remaining datasets described above.

The results on datasets PDB40-j and PDB40-j1 by the Discriminant Anal-

ysis on the polipeptidi composition [78] are obtained using the composition of

the peptides selected from the discriminant analysis on the dataset PDB40-b.

4.6.1 Conclusions

From the results we can see that the use of the correlation matrix in the

Mahalanobis Distance and also the incorporation of the eigenvalues in the

coupled method allows a significant improvment respect to the traditional

distances such as the euclidean or hamming distance on the aminoacid fre-

quency vectors. These results show that the structural class is related to the

amino acid composition of the corresponding sequences.

The other successfully applied representations are based on the polypep-

tides [78] [57] and auto-correlation functions computed for individual amino

acid [7]. In particular, the results on homologous datasets, seem to point

the ACF [7] as the best method (it takes into account the autocorrelation

functions between amino acid index indicating various physicochemical and

biochemical properties of amino acids). Nevertheless, using the autocorre-

lations with datasets containing low homology sequences resulted in signifi-
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cantly worse results [71].

As already observed above, indeed, sequence homology is found to signif-

icantly affect prediction accuracy.

Promising results can be gained by the use of the coupled method with

the pseudoaminoacid representation, in particular, we see as intersting the

best result obtained on the 204 non homologous dataset with the Coupled

method on the pseudoaminoacid of 21 dimension given by the amino acid

frequencies and the LZ complexity value of the protein.

The combination of the LZ complexity or compressor value of the proteins

with other methods or codes seems to give promising results [67].

The comparison of the results is very hard either because different meth-

ods are tested on different datasets, and therefore no reliable and comprehen-

sive comparison between different methods can be performed, or, when the

datasets are the same, they are very small and characterized by unknown and

most likely high sequence homology, which is shown to have significant impact

on the prediction accuracy. Moreover, some algorithms use different proce-

dures for measuring the quality of prediction (classification) of sequences into

structural classes.

If we want to use these methods for extracting the significant features that

allow a particular fold for a protein, the most intersting results are those on

the non homologus dataset, for which also the alignment algorithms does

not obtain good results, and for which it is more evident that the rules that

regulate the fold of a protein are still unknown.

More promising methods on non homologous datasets in table 4.13 are

those working on a significative peptides search. Though these results are

criticized in [71], we think that this kind of code for the protein d (for clearly

computational problems that this kind of coding involves for some methods,

as, for istance, the coupled method).

We think that the use of a measure as the discrepancy [57], though a

correct implementation of the method seems to cause succes fractions to

decreas markably[64], has to the further investigated as well; from the split of
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the BLAST score in the BLOSpectrum, we have seen that also the alignment

algorihtms take into account the evolutionary divergence using the divergence

between pair of amino acids in different sequences.

It would be very interesting to compare this methods with alignment

algorithms and may be to develop other methods based on the extimation of

the divergence of different sources, as the methods introduced in chapter 2.

In conclusion, over the last three decades many attempts were made to

the prediction of protein structural classes task obtaining a progress in the

resolution of the problem. At the same time, there was no comprehensive

study that would point out some of the existing problems, which include

testing standardization, introduction of new classification algorithms, and

alternative sequence representations.

A good attempt in this direction has been made in [71], where it is shown a

comprehensive, multigoal study that addresses comparison of different meth-

ods on datasets of homologous and non homologous proteins. In particular,

eight different classification algorithms are used to perform structural class

prediction: they include Bayesian classification, nearest neighbor, support

vector machine, decision trees, rule based algorithms, neural networks, and

logistic regression.

From the analysis made here, we think that the first intersting thing

to do would be to compare the aforementioned methods, in particular those

working on amino acid frequencies correlations (coupled method) or peptides

frequencies or those taking into account of the amino acid order working on

sequence amino acid correlations (compressors).

Both the methods should be compared with alignment algorithms based

on BLOSUM score calculation.

BLOSUM score decomposition into its spectrum points out that align-

ment algortihms are constructed in such a way as to take into account cor-

relations or divergence of sequences from a given evolution model based on

known belonging structure sequences. The knowledge of this BLOSpectrum

may be useful for the comparison of the alignment algorithms with the other
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alignment-free methods, most of which, are based on similar quantities.

A full comparison between the aforementioned methods on a given non

homologous dataset could be useful in finding a protein’s features playing a

bigger role in the protein fold.

The discovery of orthogonal methods could be useful in thinking of a

methodologies combination.
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Geometric Formula Mean Nearest Neighboor Vertical Voting

N=1 N=6-7 N=1

CMP 82.35% 91.18% 85.29%

Alpha=2 Formula Mean Nearest Neighboor Vertical Voting

N=1 N=5-13 N=1

82.35% 88.24% 82.35%

Geometric Formula Mean Nearest Neighboor Vertical Voting

N=2-16 N=2-3 N=2

Diagonal 88.24% 88.24% 88.24%

Alpha=2 Formula Mean Nearest Neighboor Vertical Voting

N=4 N=2 N=2

73.53% 88.24% 91.18%

Geometric Formula Mean Nearest Neighboor Vertical Voting

N=5 N=5-20 N=3, N=5-20

Rows 88.24% 82.35% 82.35%

Alpha=2 Formula Mean Nearest Neighboor Vertical Voting

N=9 N=10-19 N=2

91.18% 91.18% 85.29%

USM formula Mean Nearest Neighboor Vertical Voting

[70] 66.7% 86.11% 83.33%

Table 4.2 � Comparison of the n-gram formula with the USM formula on

the database Chew-Kedem [70].
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Methods F-measure

Gzip 0.8196

PPMd4/8/16 0.9605

Rc slow/med 0.8447

BwtRleHuff/BwtRleRc fast 0.8778

Geometric Formula N=4 0.8866

Alpha=2 Formula N=3 0.8788

LZ distance 0.80

salign-BLOSUM62-local 0.9849

salign-PAM120-global 0.9533

Table 4.3 � F-measure on the CK-dataset. The trees are calculated via

UPGMA cluster algorithm.

Methods F-measure

Gzip 0.5450

PPMd2 0.5528

Rc slow 0.5461

BwtRleAc fast 0.5593

Geometric Formula N=3 0.5491

Geometric Formula N=6 0.5507

Alpha=2 Formula N=2 0.5425

Alpha=2 Formula N=6 0.5409

LZ distance 0.5433

salign-BLOSUM62-local 0.5391

salign-PAM120-global 0.5488

Table 4.4 � F-measure on the SP-dataset. The trees are calculated via

UPGMA cluster algorithm.
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Ref. Method Dataset F-measure

Size Homology

Sequences

[38] NCD with PPMd8 36 (CK-36-PDB) Unknown

but homol-

ogous

0.9605%

NCD with RC Slow 36 (CK-36-PDB) Unknown

but homol-

ogous

0.8447%

NCD with BwtRleRc fast 36 (CK-36-PDB) Unknown

but homol-

ogous

0.8778%

Tops Strings of secondary structure elements

[38] NCD with PPMd8 36 (CK-36-PDB) Unknown

but homol-

ogous

0.9030%

NCD with RC Slow 36 (CK-36-PDB) Unknown

but homol-

ogous

0.9030%

NCD with BwtRleRc fast 36 (CK-36-PDB) Unknown

but homol-

ogous

0.8706%
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Tops Strings with contact map

[38] NCD with PPMd8 36 (CK-36-PDB) Unknown

but homol-

ogous

0.9030%

NCD with Ac Med 36 (CK-36-PDB) Unknown

but homol-

ogous

0.8881%

NCD with BwtRleRc slow 36 (CK-36-PDB) Unknown

but homol-

ogous

0.8881%

[70] USM on contact map 36 (CK-36-PDB) Unknown

but homol-

ogous

0.92%

Sequences

salign-BLOSUM62-local 36 (CK-36-PDB) Unknown

but homol-

ogous

0.9849%

cor-word-2 36 (CK-36-PDB) Unknown

but homol-

ogous

0.5837%

Table 4.5 � Some F-measure via UPGMA of [38]. For the description of

methods see [38]
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Ref. Method Dataset F-measure

Size Homology

Sequences

[38] NCD with PPMd2 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5528%

NCD with RC Slow 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5461%

NCD with BwtRleRc fast 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5593%

Atom Line from PDB file

[38] NCD with Bzip2 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5779%

NCD with RC Fast 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5625%

NCD with BwtMtfRleRc fast 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5791%

salign-PAM120-global 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5488%

cor-word-1 86 (SK-86-PDB) Unknown

but homol-

ogous

0.5447%

Table 4.6 � Some F-measure via UPGMA of [38]. For the description of

methods see [38]
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Ref. Method Dataset Accuracy

Size Homology

Resubstitution

[106] Bayes decision rule 131 Unknown 99.2%

(equivalent to Coupled Method)

[22] Mahalanobis Distance 131 Unknown 94.7%

[23] Minkowski’s Distance 131 Unknown 79.7%

[66] Discriminant Analysis 131 Unknown 76.5%

[86] Euclidean Distance 135 Unknown 70.2%

Jacknife

[106] Bayes decision rule 131 Unknown 42.7%

(equivalent to Coupled Method)

Table 4.7 � Comparison of results on the Nakashima Dataset (see previous

section for the description)



152 CHAPTER 4. PROTEIN SEQUENCES

Resubstitution Test

Ref. Method Dataset Accuracy

Size Homology

[21] Coupled Method 138 Unknown 97.3%

Euclidean Distance 138 Unknown 57.25%

Hamming Distance 138 Unknown 55.80%

[7] Coupled Method on the 138 Unkown 63.8%

autocorrelation functions

[21] Coupled Method 253 Unknown 95.26%

Euclidean Distance 253 Unknown 53.36%

Hamming Distance 253 Unknown 52.57%

[7] Coupled Method on the 510 Unkown 98.2%

autocorrelation functions

Table 4.8 � Results on three different datasets with the Resubstitution test.

The reppresentations of the proteins are the AA composition vector (except

that in [7]).



4.6. RESULTS AND COMPARISON 153

Jackknife Test

Ref. Method Dataset Accuracy

Size Homology

[21] Coupled Method 138 Unknown 63.77%

Euclidean Distance 138 Unknown 46.38%

Hamming Distance 138 Unknown 48.55%

[7] Coupled Method on the 138 Unkown 57.2%

autocorrelation functions

[21] Coupled Method 253 Unknown 79.05%

Euclidean Distance 253 Unknown 50.20%

Hamming Distance 253 Unknown 48.62%

Mahalanobis Distance 253 Unknown 64.82%

[7] Coupled Method on the 510 Unkown 91.8%

autocorrelation functions

[21] Coupled Method 510 Unknown 86.47%

Euclidean Distance 510 Unknown 47.25%

Hamming Distance 510 Unknown 47.06%

Table 4.9 � Results on three different datasets with the jacknife procedure.

The reppresentations of the proteins are the AA composition vector (except

that in [7] where the autocorrelation functions are used).
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Resubstitution test

Ref. Method Dataset Accuracy

Size Homology

[21] Coupled Method 359 Unknown but homologous 94.43%

Euclidean Distance 359 Unknown but homologous 52.37%

Hamming Distance 359 Unknown but homologous 55.15%

[7] Coupled Method on the 359 Unknown but homologous 96.7%

autocorrelation functions

[78] Discriminant Analysis 359 Unknown but homologous 99.7%

on the polipeptide composition

[57] Discrepancy measure (l=3) 359 Unknown but homologous 100%

[64] Criticated Discrepancy measure 359 Unknown but homologous 76.51%

Table 4.10 � Results of the Resubstitution test obtained with different meth-

ods on the homologous Chou Dataset of 359 proteins. In the last row the

results show in [64] respect to that obtained in [57]
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Jackknife Test

Ref. Method Dataset Accuracy

Size Homology

[21] Coupled Method 359 Unknown but homologous 84.12%

Euclidean Distance 359 Unknown but homologous 41.22%

Hamming Distance 359 Unknown but homologous 52.37%

[7] Coupled Method on the 359 Unknown but homologous 90.5%

autocorrelation functions

[57] Discrepancy measure (l=3) 359 Unknown but homologous 95.8%

[64] Criticated Discrepancy measure 359 Unknown but homologous 57.23%

Table 4.11 � Results of the jackknife procedure obtained with different meth-

ods on the homologous Chou Dataset of 359 proteins. In the last row the

results show in [64] respect to that obtained in [57]

Jackknife Test

Ref. Method Dataset Accuracy

Size Homology

[110] Coupled Method on pseudoamin 204 < 30% 89.7%

(AA compos. vector and LZ)

[15] SVM on pseudoamin 204 < 30% 85.3%

(with AA compos. and corr. functions)

[11] boosting algorithm 204 < 30% 83.8%

[110] Mahalanobis Distance with 204 < 30% 80.9%

correlation analysis approach

[18] Coupled Method 204 < 30% 77%

Table 4.12 � Results of the jackknife procedure on the 204 non homologous

dataset
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Jacknife Test

Ref. Method Dataset Accuracy

Size Homology

[78] Discriminant Analysis 758 (PDB40-j) < 40% 85.8%

on polipeptide composition

Discriminant Analysis 372 (PDB40-j1) < 40% 82.3%

on polipeptide composition

[78] Discriminant Analysis 1054 (PDB40-b) < 40% 75.2%

on polipeptide composition

[21] Coupled Method 1054 (PDB40-b) < 40% 55.8%

on AA composition

[57] Discrepancy measure (l=3) 1401 (T30-1401 Dataset) < 30% 75.02%

[64] Discrepancy measure (critica) 1401 (T30-1401 Dataset) < 30% 63.88%

[57] Discrepancy measure (l=3) 1530 (T10-1530 Dataset) < 10% 70.1%

[57] Discrepancy measure (l=3) 1564 (T20-1564 Dataset) < 20% 72.4%

[57] Discrepancy measure (l=3) 3998 (T90-3998 Dataset) < 90% 71.3%

Resubstitution Test

[78] Discriminant Analysis 1054 (PDB40-b) < 40% 91.7%

on polipeptide composition

[21] Coupled Method 1054 (PDB40-b) < 40% 66.2%

on AA composition

[57] Discrepancy measure (l=3) 1401 (T30-1401 Dataset) < 30% 99.46%

[64] Discrepancy measure(critica) 1401 (T30-1401 Dataset) < 30% 95.86%

Table 4.13 � Results of the jackknife and resubstitution test on differents

datasets
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