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1. Abstract 

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data 

from clinical images able to offer information about prognosis of cancer patients. The radiomics process 

relies on a multi-step path that ends in the construction of a predictive model, tailored on specific outcomes. 

The main steps of the radiomics process are: image acquisition and reconstruction, segmentation, features 

extraction, model building. Each of these steps shows its own challenges to make the final model robust and 

reliable.  

Patients with Non-small cell lung cancer (NSCLC) have baseline computed tomography (CT) and/or 

fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging for 

diagnosis and staging.  

The aim of this study was to evaluate whether a model based on radiomic and clinical features may be 

associated with lymph node (LN) status and overall survival (OS) in NSCLC patients. Patients with a 

pathological stage up to T3N1 were retrospectively selected and divided into training and validation sets. For 

the prediction of positive LNs and OS, the Least Absolute Shrinkage and Selection Operator (LASSO) logistic 

regression model was used; univariable and multivariable logistic regression analysis assessed the association 

of clinical-radiomic variables and endpoints. All tests were repeated after dividing the groups according to the 

CT reconstruction algorithm. p-values < 0.05 were considered significant.  

270 patients were included and divided into training (n = 180) and validation sets (n = 90). Transfissural 

extension was significantly associated with positive LNs. For OS prediction, high- and low-risk groups were 

different according to the radiomics score, also after dividing the two groups according to reconstruction 

algorithms. In conclusion, a combined clinical–radiomics model was not superior to a single clinical or single 

radiomics model to predict positive LNs. A radiomics model was able to separate high-risk and low-risk 

patients for OS. 

 

2. Introduction 

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data 

from clinical images. The radiomic process is a multi-step process with definable inputs and outputs, such as 

image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, 

and model building [1]. Each step needs careful evaluation for the construction of robust and reliable models 

to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and 

evaluation of disease response to treatment. Reproducibility and clinical value of parameters should be 

tested with internal cross-validation and then validated on independent external cohorts.  

Studies published in the last few years have demonstrated that quantitative imaging features, extracted from 

routine medical imaging, have prognostic value and may predict clinical outcomes or allow for treatment 

monitoring in different cancer types. 

Non-small cell lung cancer (NSCLC) accounts for more than 85 % of all lung cancer cases, with the main 

histological subtype consisting of adenocarcinoma.  
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Patients with NSCLC have baseline computed tomography (CT) and/or fluorodeoxyglucose positron emission 

tomography/computed tomography (FDG PET/CT) imaging for diagnosis and staging. Regular follow-up 

imaging is also performed to evaluate treatment response and monitor for recurrence. 

In clinical practice, the radiologic evaluation of treatment response largely relies on tumour size, 

supplemented with a qualitative assessment of other tumour characteristics such as homogeneity and shape. 

From a quantitative viewpoint, this approach is not comprehensive of a substantial amount of information 

within the medical image. The radiomics approach has the potential to identify quantitative markers of 

treatment response earlier in the course of treatment. This can enable treatment to be adapted, intensified 

or altered earlier in the course of disease in order to improve patient outcomes [2]. 

 

3. Radiomics: a multi-step process 

The radiomics process can be divided into the following distinct steps: image acquisition and reconstruction; image 

segmentation; features extraction and qualification; analysis and model building [3,4]. 

CT Image acquisition and reconstruction 

Routine clinical imaging shows a wide variation in acquisition parameters, such as image resolution (pixel size, matrix 

size, slice thickness), contrast-enhancement, as shown in Figure 1, energy (kV), tube current (mA) and exposure (mAs) 

(Figure 2).  

 

Figure 1. 
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Figure 2. 

 

Different combinations of these parameters may hinder comparisons of radiomic features obtained across institutions 

with different scanners and different patient populations, and within the same institution using different acquisition 

protocols [3]. Indeed, all the variables occurring during image acquisition and reconstruction affect image noise, and 

hence its texture and the value of radiomic features. As a result, differences in features extracted may not be due to 

different biology, but to different image parameters.  

Standard CT phantoms, like the one proposed by the American Association of Physicists in Medicine, aim to evaluate 

imaging performance. There are sections for evaluating the true slice thickness and variation of Hounsfield Units (HU), 

looking at small variations in density (low contrast detectability) and assessing spatial resolution and HU variations 

showing high contrast detectability within a region of uniform medium. Such phantoms serve to assess how far image 

quality depends on the imaging technique. For example, decreasing the slice thickness reduces the photon statistics 

within a slice (unless mAs or kVp are increased accordingly), thereby increasing image noise. The axial field of view 

and reconstruction matrix size determine the pixel size and hence the spatial sampling in the axial plane, which has an 

impact on the description of heterogeneity. Reducing the pixel size increases image noise when the other parameters 

are kept unchanged, but increases spatial resolution. Pitch is a manufacturer-dependent parameter, so noise can only 

be compared between different scanners and vendors on images acquired using axial (not helical or spiral) 

acquisitions. Likewise, clinical conditions, such as the presence of artifacts due to a metallic prosthesis, may 

significantly affect image quality and impair quantitative analysis [5]. Furthermore, HU may also vary with the 

reconstruction algorithm [6] or scanner calibration. More sophisticated phantoms may therefore be required to match 

the effects of acquisition settings and reconstruction algorithms on radiomic features. For example, the Credence 

Cartridge Radiomics phantom, including different cartridges each exhibiting a different texture, was developed to test 

interscanner, intrascanner and multicentre variability in CT radiomic features [7], and the effect of different 

acquisition and reconstruction settings on feature robustness [8]. Many authors have investigated radiomic feature 

robustness and stability directly on clinical images by undertaking test-retest studies [9], or comparing the results 

obtained with different imaging settings or image processing algorithms [10]. All these studies call for dedicated 

investigations to select radiomic features with sufficient dynamic range among patients, intrapatient reproducibility 

and low sensitivity to image acquisition and reconstruction protocols [11]. 
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Image segmentation. 

Segmentation is a critical step of the radiomics process because data are extracted from the segmented volumes. This 

is challenging because many tumours show unclear borders. It is also contentious because there is no consensus on 

the need to seek either the ground truth or reproducibility of image segmentation [1]. Indeed, many authors consider 

manual segmentation by expert readers the ground truth despite high inter-reader variability. This method is also 

labour intensive (Figure 3) and hence not always feasible for radiomics analysis requiring very large data sets [3].  

                                          

Figure 3 

Many automatic and semiautomatic segmentation methods have been developed across imaging modalities and 

different anatomical regions. Common requirements include maximum automaticity with minimum operator 

interaction, time efficiency, accuracy and boundary reproducibility. Many segmentation algorithms rely on region-

growing methods that require an operator to select a seed point within the VOI [12]. These methods work well for 

relatively homogeneous lesions, but show many limits and the need for intensive user correction for inhomogenous 

lesions. For example, most Stage I and Stage II lung tumours present as homogenous high-intensity lesions on a 

background of low-intensity lung parenchyma [13,14] and therefore can be automatically segmented with high 

reproducibility and accuracy. However, partially solid, ground glass opacities, nodules attached to vessels and nodules 

attached to the pleural wall or mediastinum remain difficult to segment automatically and show low reproducibility, 

especially for Stage III and Stage IV disease [15].  

Other segmentation algorithms include level set methods that represent a contour as the zero level set of a higher 

dimensional function (level set function) then the method formulates the motion of the contour as the evolution of 

the level set function [16]. Graph cut methods construct an image-based graph and accomplish a globally optimal 

solution of energy minimization functions. Since graph cut algorithms try to identify a global optimum, they are 
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computationally expensive [17] and may lead to over-segmentation [18]. Active contour (snake) algorithms work like a 

stretched elastic band. The starting points are drawn around the lesion to then move through an iterative process to a 

point with the lowest energy function value. These algorithms may lead the snake to undesired locations because they 

depend on an optimal starting point and are sensitive to noise [19]. Semi-automatic segmentation algorithms, like 

livewires, do a graph search through local active contour analysis, while their cost function is minimized using dynamic 

programming. Nonetheless, the semi-automaticity still requires multiple human interactions [20].  

As the above-mentioned examples show, there is still no universal segmentation algorithm that can work for all 

medical image applications, and some features may show stability and reproducibility using one segmentation 

method, but not another.  

Feature extraction and qualification. 

Classic semantic features are those commonly used in the radiology lexicon to describe a lesion [21]. Agnostic features 

are descriptors mathematically extracted by different software [8], with different levels of complexity, such as 

features describing lesion shape, intensity, texture and wavelet. First order statistics features describe the distribution 

of individual voxel values without concern for spatial relationships. These are generally histogram-based methods and 

reduce a region of interest to single values for mean, median, maximum, minimum, and uniformity or randomness 

(entropy) of the intensities on the image, as well as the skewness (asymmetry) and kurtosis (flatness) of the histogram 

of values. Shape features describe the shape of the traced ROI and its geometric properties, such as volume, 

maximum diameter or the three diameters along the three orthogonal directions, maximum surface, tumour 

compactness and sphericity. For example, the surface-to-volume ratio of a spiculated tumour will show a higher value 

than that of a round tumour of similar volume.  

Second order statistics features generally describe textural features [22,23], meaning the statistical inter-relationships 

between voxels with similar (or dissimilar) values and take into account the spatial arrangement of the values. Texture 

analyses in radiomics can readily provide a measure of intratumoral heterogeneity. Examples of these features belong 

to the category of the grey level co-occurrence matrix (GLCM) and grey level run length matrix (GLRLM). GLCM 

quantifies the incidence of voxels with the same intensities by a predetermined distance and angle within the 3D 

structure. Within this category, features extracted may describe autocorrelation, contrast, correlation, cluster 

prominence, cluster shade, cluster tendency, dissimilarity, energy, homogeneity, maximum probability, sum of 

squares, sum average, sum variance, sum entropy or difference entropy.  GLRLM indicates the length, in number of 

pixels, of consecutive pixels with the same grey level value on a raw. Within this category, features extracted may 

describe short and long run emphasis, grey level non-uniformity, run length non-uniformity, run percentage, low grey 

level run emphasis and high grey level run emphasis [24]. 

As a result, extraction of textural features may generate hundreds of variables, some of which may be redundant and 

require co-variance evaluation [14]. 
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Analysis and model building. 

Not all extracted features are useful for a particular task: most of them are in fact redundant. Therefore, it is crucial to 

select information useful for a specific purpose to ensure good radiomics performance. Initial efforts should focus on 

identifying appropriate findings with a potential clinical application. 

Radiomics analysis usually includes two main steps: 1) dimensionality reduction and feature selection, usually 

obtained via unsupervised approaches, and 2) association analysis with one or more specific outcome(s) via 

supervised approaches. Different methods of dimensionality reduction/feature selection and model classification have 

been compared. The two most commonly used unsupervised approaches in radiomics studies are cluster analysis 

[11,25] and principal component analysis (PCA) [26,27]. Cluster analysis aims to create groups of similar features 

(clusters) with high intracluster redundancy and low intercluster correlation. A single feature could then be selected 

by each cluster as representative and used in the following association analysis with the outcome(s) [11]. PCA aims to 

create a smaller set of maximally uncorrelated variables from a large set of correlated variables, and to explain as 

much as possible of the total variation in the data set with the fewest possible principal components. All selected 

features considered reproducible, informative and non-redundant can then be associated with specific outcome(s) 

and/or phenotype(s). An important caveat for univariate analysis is multiple testing, which is often not accounted for 

in radiomics studies. The commonest way to overcome the multiple testing problem is to use Bonferroni or the less 

conservative false discovery rate corrections.  

Supervised multivariate analysis consists of building a mathematical model to predict an outcome or response 

variable. The many different analysis approaches depend on the purpose of the study and the outcome category, 

ranging from statistical methods to data mining/machine learning approaches, such as random forests, to neural 

networks, linear regression, logistic regression, least absolute shrinkage and selection operator (LASSO), and Cox 

proportional hazards regression [28-32]. Unquestionably, the stability and reproducibility of the model must be 

assessed before applying a predictive model in a clinical setting. Indeed, it is well known that model fitting is optimal 

in the training set used to build the model, while validation in an external cohort provides more reliable fitting 

estimates [32]. The first step in model validation is internal cross-validation, but the reference standard to assess the 

reproducibility of a model is validation with prospectively collected independent cohorts, ideally within clinical trials 

[4].  

Finally, it is important to establish whether potential radiomic predictors significantly increase the accuracy of existing 

clinical models. Addressing the influence of patient parameters in radiomics research using epidemiologic and 

biostatistical approaches will minimize spurious relationships and lead to more accurate and reproducible results [33]. 

4. Radiomics and radiogenomics of lung cancer: first evidences 

Recent practice guidelines in oncology and pathology recommend that all locally advanced and metastatic NSCLC 

undergo testing for the most common targetable genetic abnormalities, such as epidermal growth factor receptor 

gene (EGFR) mutations, anaplastic lymphoma kinase gene (ALK) rearrangements, and non-targetable such as Kirsten 

rat sarcoma viral oncogene homolog (KRAS) mutations. 
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In order to assess the association between CT features and EGFR, ALK, KRAS mutations in NSCLC, we retrospectively 

selected patients who underwent chest CT and testing for the above gene mutations. Qualitative evaluation of CTs 

included: lobe; lesion diameter; shape; margins; ground-glass opacity; density; cavitation; air bronchogram; pleural 

thickening; intratumoral necrosis; nodules in tumour lobe; nodules in non-tumour lobes; pleural retraction; location; 

calcifications; emphysema; fibrosis; pleural contact; pleural effusion. Statistical analysis was performed to assess 

association of features with each gene mutation. ROC curves for gene mutations were drawn; the corresponding area 

under 

the curve was calculated. The final cohort consisted of 285 patients, of which 60/280 (21.43 %) were positive for EGFR 

mutation; 31/270 (11.48 %) for ALK rearrangement; 

64/240 (26.67 %) for KRAS mutation. EGFR mutation was associated with air bronchogram, pleural retraction, females, 

non-smokers, small lesion size, and absence of fibrosis. ALK rearrangements were associated with age and pleural 

effusion. KRAS mutation was associated with round shape, nodules in non-tumour lobes, and smoking [34]. 

 

5. External validation 

As mentioned in the radiomics section, the validation of a model is able to test its reproducibility and reobustness. In 

order to validate the abovementioned associations between radiological features and clinical features with Epidermal 

Growth Factor Receptor (EGFR)/ Kirsten RAt Sarcoma (KRAS) alterations in an independent group of patients with 

Non-Small Cell Lung Cancer (NSCLC), we performed an external validation. A total of 122 patients with NSCLC tested 

for EGFR/KRAS alterations, retrospectrively collected at the Department of Radiation Oncology (MAASTRO), GROW-

School for Oncology and Developmental Biology, Maastricht University Medical Center, were included. Univariate 

analysis of clinical and radiological features were performed to look at the associations of the studied features with 

EGFR/KRAS alterations. Previously calculated composite model parameters for each gene alteration prediction were 

applied to this validation cohort. ROC (Receiver Operating Characteristic) curves were drawn using the previously 

validated composite models, and also for each significant individual characteristic of the previous training cohort 

model.  

At univariate analysis, EGFR+ confirmed an association with an internal air bronchogram, pleural retraction, 

emphysema and lack of smoking; KRAS+ with round shape, emphysema and smoking. The AUC (95%CI) in the new 

cohort was confirmed to be high for EGFR+ prediction, with a value of: 0.82 (0.69-0.95) vs. 0.82 in the previous cohort, 

whereas it was smaller for KRAS+ prediction, with a value of 0.60 (0.48-0.72) vs. 0.67 in the previous cohort. Looking 

at single features in the new cohort, we found that the AUC for the models including only smoking was similar to that 

of the full model (including radiological and clinical features) for both gene alterations [35]. 

Since it was demonstrated that CT radiomic features have prognostic information in stage I-III NSCLC patients [36], we 

also aimed to validate a prognostic radiomic signature in stage IV adenocarcinoma patients undergoing 

chemotherapy. For this purpose, we selected patients from two datasets of chemo-naive stage IV adenocarcinoma 

patients: the first one (n=285) was the one dataset used for the radiogenomics study [34]; the second (n=223) was the 

one of a multicenter clinical trial [37]. In total CT scans from 195 patients were eligible for analysis. Patients having a 
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prognostic index (PI) lower than the signature median (n=92) had a significantly better OS than patients with a PI 

higher than the 

median (n=103, HR 1.445, 95% CI 1.07–1.95, p=0.02, c-index 0.576, 95% CI 0.527–0.624). Thus we showed that the 

radiomic signature, derived from daily practice CT scans, has prognostic value for stage IV NSCLC, although the 

performance was lower than the one  previously described for stage I-III NSCLC stages [38].  

6. Association of radiomics features with lymph nodal metastases and overall survival  in patients with lung 

cancer staged up to pT3N1 

Objectives.  

The objective of this doctorate study was to evaluate whether a model based on quantitative CT radiomic and clinical 

features of lung cancer patients may be associated with LN status and with overall survival (OS). 

Methods. 

Patients’ selection. 

The Institutional Review Board approved this retrospective study (UID 2172), with waiver of informed consent. The 

study population was retrospectively selected from a database of patients with lung cancer staged up to T3 N1, 

operated on between 01/01/2012 and 01/08/2016. Preoperative staging was performed by whole body CT and 

Fluorodeoxyglucose Positron Emission Tomography (FDG PET) scan; in the event of suspected cN2 disease, 

preoperative endobronchial ultrasound trans bronchial needle aspiration (EBUS TBNA) was performed to rule out or 

to confirm lymph node involvement. Inclusion criteria were: availability of pre-surgical CT after contrast medium 

injection, with helical mode, 120 kVp, 2.5 mm slice thickness, 2.5 mm spacing; reconstruction performed with “Body” 

filter and “Standard” convolution kernel; surgery performed at our Institution; availability of histology, pathological 

node status (pN0; pN1), grading. Exclusion criteria were: CT performed with parameters different to those specified 

above; pre-operative chemotherapy. 

CT imaging.  

CT scans were randomly performed on the following CT scanners: Lightspeed Ultra, Lightspeed 16; Optima 660; 

Discovery CT750 HD (all GE Healthcare, Milwaukee, WI, USA). All scans were acquired in the portal venous phase and 

segmentations were performed on that series. All scanners implemented current modulation; Light speed 16 and Light 

Speed Ultra were equipped only with longitudinal z-axis modulation, while Optima 660 and Discovery CT750 also had 

angular xy modulation. 

Clinical and radiological data recording. 

The following clinical and radiological data were recorded: age; gender; grading; side; site (upper, medium, lower, 

mixed); axial nodule size; pT; pN; CT scanner; CT reconstruction algorithm (Filtered Back Projection, FBP, or Iterative 

Reconstruction, IR); exposure (mAs); status (alive or deceased); date of last contact or death. 
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Lesion segmentation. 

On each axial CT image including the lung nodule, a radiologist traced free-hand 2D regions of interest, resulting in a 

3D volume of interest (VOI) that was converted into a DICOM RT Structure format (AW Server 2.0 workstation, GE 

Healthcare). 

Radiomic features extraction.  

CT images and VOI were imported into the IBEX V 1.0 β tool (Imaging Biomarker Explorer Software [24]) for the 

extraction of radiomic features. The “Resample_VoxelSize” pre-processing was used to resample images to the same 

pixel size, chosen as the value most frequently observed in the dataset (0.7 × 0.7 mm2, the values in patient images 

ranging from 0.59 × 0.59 mm2 to 0.98 × 0.98mm2). “Threshold_Image_MaskXF” pre-processing, that excludes voxels 

on the ROI edge having intensity outside a user-defined range, was used to exclude parenchyma voxels erroneously 

included during manual delineation (threshold: −400 Hounsfield Units). All the features available in IBEX for the 

following categories were extracted: Shape, Intensity Histogram (IH), Intensity Direct (ID), Grey Level Co-occurrence 

Matrix (GLCM) 2.5, Grey Level Run Length Matrix (GLRLM) 2.5, Neighbour Intensity Difference (NID) 2.5, and Gradient 

Orient Histogram (GOH). GLCM and GLRLM were calculated comparing voxel intensities along 8 different directions 

(0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) and with three different offsets between voxels (1, 4 and 7 voxels). The full 

list of features calculated by IBEX for each category is reported in [24], also including references for feature definition 

and formula. The [0-4096] HU interval was discretized in 256 bins for GLCM2.5 calculation, and 64 bins for the other 

categories. 

Statistical analysis 

Repeatability and reproducibility: In order to select the most stable and reproducible radiomic features, we first 

selected stable features with Overall Concordance Correlation Coefficient (OCCC) >0.95 based on the test-retest 

experiments on a phantom, where identical measures in different tests are expected. We then used one-way ANOVA 

to assess the features’ reproducibility according to contrast medium, scanner, reconstruction algorithm, and 

exposure. Features with significantly different means according to at least one of the abovementioned parameters 

were considered not robust and excluded. 

Training and validation datasets: We randomly selected 2/3 of the patients as a training dataset, and 1/3 as a 

validation dataset. This allocation proportion is commonly used to ensure the model is trained on a sufficient number 

of patients, in order to obtain precise parameter estimates. From a previously published paper, this commonly used 

strategy was demonstrated to be close to optimal for reasonably sized datasets (n ≥ 100) with strong signals (i.e., 85% 

or greater full dataset accuracy) 

Positive LN prediction: The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression model was 

used to select radiomic features associated with positive LNs. We combined selected features into a radiomics score. 

We assessed the predictive accuracy of the radiomics score for positive LNs by calculating the Area Under the Curve 

(AUC). The association of clinical variables (age, gender, side, site, and nodule size) with positive LNs was assessed 

with univariable and multivariable logistic regression analysis. A clinical score was obtained as a linear combination of 

the selected clinical variables weighted by their respective coefficients; the corresponding AUC was then calculated for 

both datasets. Finally, a radiomics–clinical score was obtained by applying a logistic regression multivariable model to 
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the above-mentioned scores, and the corresponding AUC was calculated for both datasets. The AUC for the radiomics, 

clinical and clinical–radiomics models were compared with the DeLong test [25]. We replicated all the analyses 

separately on the two subgroups of patients with CT images reconstructed with FBP or IR algorithms. For each 

subgroup, AUCs for the radiomic, clinical and clinical–radiomics models were compared with the DeLong test [25]. 

Overall survival prediction: OS was calculated from the date of CT to the date of death or last follow-up, whichever 

occurred first. The LASSO Cox regression model was used to select the radiomic features predicting OS. We combined 

the selected features into a radiomics score as a linear combination of the selected features weighted by their 

respective coefficients. The association of the radiomics score with OS was assessed in the training and validation 

datasets by using Kaplan–Meier survival analysis. For this, the patients were classified into high-risk or low-risk groups 

according to the radiomics score, by using the third quartile as the threshold. The difference in the survival curves of 

the high-risk and low-risk groups was evaluated by using the Log–Rank test. The predictive accuracy of the radiomics 

score for OS was assessed in both datasets [26]. The association of clinical variables (age, gender, side, site, nodule 

size, histological type, grading, pT and pN) with OS was assessed with univariable and multivariable analysis. A clinical 

score was obtained as a linear combination of the clinical variables weighted by their respective coefficients. Finally, a 

combined radiomics–clinical score was obtained by applying a Cox regression multivariable model to the above-

mentioned scores, and the corresponding C-index was calculated for the clinical–radiomics model in both datasets. 

p-values < 0.05 were considered statistically significant. The analyses were performed using SAS software (SAS 

Institute Inc., Cary, USA), version 9.4 and R software (http://www.Rproject.org), version 3.5.3. (R Core Team, R 

Foundation for Statistical Computing, Vienna, Austria). 

Results. 

A total of 270 patients were enrolled and randomly divided into training (n= 180) and validation datasets (n= 90). 

Baseline characteristics of the cohort are shown in Table 1. 

Table 1 

Characteristic 
All Patients (N = 270) 

N (%) 

Training Set 

(N = 180) 

N (%) 

Validation Set 

(N = 90) 

N (%) 

Age (years) ^ 67.4 (61.0–72.6) 66.6 (60.7–72.2) 68.4 (62.3–72.8) 

Gender    

Female 103 (38%) 74 (41%) 29 (32%) 

Male 167 (62%) 106 (59%) 61 (68%) 

Grading    

1 30 (13%) 21 (14%) 9 (12%) 

2 82 (36%) 56 (37%) 26 (33%) 

3 117 (51%) 74 (49%) 43 (55%) 

Missing 41 29 12 

Side    

Right 153 (57%) 102 (57%) 51 (57%) 
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Left 117 (43%) 78 (43%) 39 (43%) 

Site    

Upper 154 (57%) 101 (56%) 53 (59%) 

Medium 12 (4%) 9 (5%) 3 (3%) 

Lower 93 (34%) 65 (36%) 28 (31%) 

Mixed 11 (4%) 5 (3%) 6 (7%) 

Nodule size (mm) ^ 31 (18–45) 28 (17–45) 36 (22–46) 

pT    

0 3 (1%) 1 (1%) 2 (2%) 

1 97 (36%) 74 (41%) 23 (26%) 

2 124 (46%) 76 (42%) 48 (53%) 

3 46 (17%) 29 (16%) 17 (19%) 

pN    

pN0 199 (74%) 139 (77%) 60 (67%) 

pN1 71 (26%) 41 (23%) 30 (33%) 

Algorithm type    

FBP 187 (69%) 130 (72%) 57 (63%) 

IR 83 (31%) 50 (28%) 33 (37%) 

Status    

Alive 202 (75%) 140 (78%) 62 (69%) 

Deceased 68 (25%) 40 (22%) 28 (31%) 

Follow-up (months) ^ 46.1 (29.8–63.3) 47.0 (32.0–65.2) 45.5 (22.7–59.6) 

 

A total of 881 radiomic features was calculated for each patient.  

Lymph Nodes 

The radiomics score obtained for the prediction of positive LNs on the training dataset consisted of three radiomic 

features: ClusterShade from GLCM25 category calculated along 135° direction with four voxels offset (GLCM25135, 

4_CIusterShade), 70th percentile of the intensity values in the cumulative histogram (IH_70PercentileArea), and the 

maximum diameter evaluated on the 3D lesion volume (Shape_Max3DDiameter). Coefficients of the Least Absolute 

Shrinkage and Selection Operator (LASSO) logistic regression model for the calculation of the radiomics score are 

shown in Figure 4.  
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Figure 4 

Among clinical variables, univariable analysis in the training set showed that mixed site (meaning that the tumour 

showed a transfissural growth into two lobes) and nodule size (the larger, the worse) were significantly associated 

with positive LNs. Multivariable analysis confirmed the importance of the site (Table 2).  

Table 2 

Variable 
Univariable Analysis Multivariable Analysis * 

OR (95%CI) p-value OR (95%CI) p-value 

Age (years) 1.02 (0.98–1.06) 0.38 - - 

Gender (females vs males) 0.78 (0.38–1.61) 0.50 - - 

Side (left vs right) 0.61 (0.29–1.26) 0.18 - - 

Site     

Medium vs. Upper 0.42 (0.05–3.67) 0.14 0.35 (0.04–3.20) 0.13 

Lower vs. Upper 0.85 (0.39–1.82) 0.22 0.79 (0.36–1.72) 0.27 

Mixed vs. Upper 13.57 (1.44–127.43) 0.01 10.94 (1.13–105.40) 0.02 

Nodule size (mm) 1.01 (1.00–1.02) 0.07 1.01 (1.00–1.02) 0.12 

 

Receiving Operating Characteristic (ROC) curves for prediction of positive LNs showed no significant differences in 

performance of the combined clinical–radiomics model, as compared to a single radiomics or single clinical model in 

the training and validation sets (Figure 5). 
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Figure 5 

Overall Survival. 
Looking at OS prediction, the Cox regression LASSO model selected six radiomic features for the radiomics score 

(Figure 6). 

 

 

Figure 6 

Parameters associated with OS in high-risk and low-risk patients, defined according to the third quartile of the 

radiomics score are shown in Table 3.  

Table 3 

 Training Data Set Validation Data Set 

 High-Risk Group 
* 

Low-Risk 
Group Total High-Risk Group 

* 
Low-Risk 
Group Total 
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No. of patients 45 (25%) 135 (75%) 180 (100%) 20 (22%) 70 (78%) 90 (100%) 

 

Follow-up time       

Median (IQR) 37.0 (19.3-62.2) 49.0 (35.5–
68.4) 

47.0 (32.6–
66.1) 33.0 (17.2–56.4) 47.0 (28.9–

61.6) 
46.0 (23.6-
60.6) 

Shortest 
(months) 0.8 0.9 0.8 1.6 0.2 0.2 

 

No. of events       

At 1 year 8 (18%) 3 (2%) 11 (6%) 3 (15%) 3 (4%) 6 (7%) 

At 3 years 17 (38%) 14 (10%) 31 (17%) 7 (35%) 13 (19%) 20 (22%) 

At 5 years 20 (44%) 19 (13%) 39 (22%) 9 (45%) 16 (23%) 25 (29%) 

 

The percentage of deaths at the second and third years in the validation set for high-risk patients was almost double 

that of the low-risk patients (respectively, 35% vs. 19% and 45% vs. 23%). As shown in Figure 7, a significant difference 

in OS for the high- and low-risk groups according to the radiomics score was observed in the training set and 

confirmed in the validation set. 

 

Figure 7 

 
Discussion. 
In this series, selected clinical and radiomic features showed association with the positivity of LN, although the 

combined radiomics–clinical model did not perform better than a single clinical or radiomics model. Among the clinical 

features, the mixed site was significant in the univariate and multivariate analysis. The importance of this feature is 

recognized by its role in Tumor-Nodes-Metastasis (TNM) staging, where the invasion of the visceral pleura makes the 

tumour belong to the T2 category, despite its size [41]. This result is concordant also with Li et al., who demonstrated 
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a significant association between adjacent lobe invasion through pleural fissure and LN positivity [42]. The size of the 

tumour, measured on an axial image, was borderline-significant in the univariable and multivariable analysis. Size is a 

well-known feature for prognosis, as demonstrated by the sub-division of tumours in the T category according to size 

[41]. Its importance is confirmed in our series by the better performance of the single clinical model, after the 

inclusion of size as a feature. Likewise, the importance of size as a prognostic factor for LN positivity is demonstrated 

by one radiomic feature included in the score, the Shape_Max3DDiameter. This feature represents a measure of the 

maximum dimension of the lesion, evaluated in 3D, not directly related to the volume and is more precise than the 

maximum axial diameter. This may also account for the slightly better performance of the radiomics model compared 

to the clinical model, where the Max3DDiameter radiomic feature may provide a more precise definition of size than 

the maximum axial diameter. Other significant features in the radiomics score for LN positivity prediction were 

IH_70PercentileArea and GLCM25135, 4_ClusterShadeClShade. IH_70PercentileArea belongs to the Intensity 

Histogram category and roughly indicates that the mean HU number within the lesion is associated with LN status. 

GLCM25135, 4_ClusterShade, belonging to the GLCM category, is a measure of the global skewness. When the Cluster 

Shade parameter is high, the distribution of HU values is asymmetric. In our series, low values of this feature, that may 

be associated with intratumoral necrosis, were more frequently associated with positive LNs, whereas high values, 

encountered in lesions with calcifications and ground-glass opacities, were associated with negative LNs. 

Despite the abovementioned associations, the combined clinical and radiomics model did not perform better than a 

single clinical or radiomics model. This result is discordant with Tan et al., who demonstrated that, in patients with 

resectable oesophageal carcinoma, a radiomics nomogram provided a good risk estimation of LN metastasis and 

outperformed size criteria [43]. However, unlike these authors, we did not evaluate LN radiomic features, because our 

purpose was to predict the presence of positive LNs according to the characteristics of the primary tumour. 

Conversely, Yang et al. [44] demonstrated a good performance of a radiomics-based nomogram extracted from lung 

tumour to predict LN metastases. Although we used a similar method, by performing the radiomics analysis on the 

lung tumour volume, our results may be different because Yang et al. included patients with CT examinations acquired 

with the same parameters and reconstructed with the same algorithm [44]. In this regard, our entire sample is less 

homogeneous, because we included CTs obtained from different scanners and reconstructed with two different 

algorithms. However, it must be pointed out that from a methodological point of view, we tried to take this into 

account by performing a preliminary selection with ANOVA to choose features that were not significantly affected by 

the use of different scanners or reconstruction algorithms. This is important because reproducibility and differences in 

acquisitions and reconstructions are frequent issues in retrospective studies, which currently represent the majority of 

radiomics studies. 

As a consequence, the poor performance of our predictive model, including radiomic and clinical parameters, as 

compared to the model based on clinical variables alone, could be due to the fact that feature selection with ANOVA 

may have eliminated features which potentially carry relevant predictive information, but are significantly affected by 

the scanner or reconstruction algorithm. It is possible that, in a more homogeneous dataset, such features would 

survive the feature selection process and would enter the predictive model with a significant improvement in terms of 

performance. 
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The analysis of association between clinical and radiomic features with OS showed a very good performance of the 

radiomics score, that significantly separated patients into high-risk and low-risk groups (p < 0.0001 in the training set; 

p = 0.012 in the validation set). Among radiomic features, GLCM25180, 1_InformationMeasureCorrelation1, 

GLRLM25_LongRunLowGrayLevel Emphasis, GOH_Kurtosis and Shape_Max 3DDiameter were included in the score. 

GLCM25180, 1_InformationMeasureCorrelation1 belongs to the GLCM category and quantifies the degree of 

randomness within the tumour, in terms of entropy and statistical disorder. GLRLM25_LongRunLowGrayLevel 

Emphasis belongs to the GLRLM category, and quantifies runs, intended as consecutive pixels with the same grey 

level. GOH_Kurtosis indicates the flatness of the curve of values, without concern for spatial relationships. A prevalent 

direction for the voxel intensity gradient indicates that structures within the 3D volume of interest (VOI) develop along 

a precise direction (e.g., an intratumoral vessel). Shape_Max 3DDiameter (see features of the radiomics score for LN) 

was associated with OS, with high values (large lesions) associated with worse OS. 

This study has some limitations. The number of patients with malignant lymph nodes (pN1) in our group was relatively 

small (71/270; 26%) and this may account for different results compared to previous papers. However, the inclusion of 

patients with pN2 introduced a bias related to the neo-adjuvant chemotherapy. The CT examinations included in this 

study were performed over quite a long period of time (four years), and this may have affected the acquisition 

protocols. However, we specifically performed a preliminary ANOVA test to select stable and reproducible radiomic 

features.  

Conclusions 

In conclusion, a combined clinical–radiomics model was not superior to a single clinical or radiomics model in 

predicting LN metastases in lung cancer patients, whereas a radiomics score was able to significantly separate high-

risk and low-risk patients for OS. 
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8. Tables and figures legends 

Table 1. Baseline characteristics of the study population 

Table 2. Univariable and multivariable Odds Ratios for the association between clinical variables with positive lymph 

nodes (training set). 

Table 3. Overall Survival in high-risk and low-risk patients according to the radiomics score. 

Figure 1. Axial CT images showing differences in the same acquisition plane between a contrast-enhanced and non-

contrast enhanced image 

Figure 2. Axial CT images showing the same acquisition plane with different radiation doses (lower in A, higher in B). 

Figure 3. An example of manual segmentation of lung cancer. Although manual segmentation is often considered 

ground truth, this image shows red and black regions of interest delineated by two different readers on the same 

tumour 

Figure 4. Values of the coefficients of the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression 

model for the prediction of positive lymph nodes according to radiomic features (training set). The plot shows the 

model coefficients of the three radiomic features selected as significantly associated with lymph node status. These 

coefficients were used to calculate the radiomics score used to predict lymph node status in the validation set. 
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Figure 5. ROC curves for prediction of positive lymph nodes in (a) the training set and (b) the validation set according 

to clinical, radiomics and clinical–radiomics models. The plots show the ROC curves of the three models and the 

associated values of the Area under the Curves (AUC). 

Figure 6. Values of the coefficients for Cox regression LASSO model for prediction of overall survival according to 

radiomic features (training set). The plot shows the model coefficients of the six radiomic features selected as 

significantly associated with overall survival. These coefficients were used to calculate the radiomic score used to 

predict overall survival in the validation set. 

Figure 7. Kaplan–Meier curves and Log–Rank test for high-* and low-risk groups according to the radiomics score (* 

Radiomics score higher than the third quartile,q3). 

 


