
Alma Mater Studiorum – Università di Bologna
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Abstract

A High-Performance Computing (HPC) job dispatcher is a critical software
that assigns the finite computing resources of a system to the jobs submitted by
users, who request some of such computing resources to execute their software.
This assignment over time is known as the on-line job dispatching problem in
HPC systems. The fact the problem is on-line means that solutions, generated
by a job dispatcher, must be computed in real-time, and the required time to
generate them cannot exceed some threshold to do not affect the normal system
functioning. In addition, the job dispatcher must deal with a lot of uncertainty:
unknown submission times, an unknown quantity of requested resources, and
unknown (actual) duration of jobs. Heuristic techniques have been broadly used
in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time.
These heuristics are composed of two separate elements, the scheduling part,
and the resource allocation part, thus generate a decoupled decision being the
major culprit of performance loss. Optimization techniques are less used for
this problem, although they can significantly improve the performance of HPC
systems at the expense of higher computation time.

Nowadays, HPC systems are being used for modern applications, such as
big data analytics and predictive model building, that employ, in general, many
short jobs. Usually, HPC users tend to overestimate the duration of jobs, making
it challenging to identify short jobs at dispatching time. However, prediction
methods may be useful to improve the accuracy of the expected duration and
classify jobs correctly. Therefore, HPC job dispatchers need to process large
numbers of short jobs quickly and make decisions on-line while ensuring high
Quality-of-Service (QoS) levels and meet demanding response times to generate
dispatching decisions. Constraint Programming (CP) has been shown to be
an effective approach to tackle job dispatching problems. However, state-of-
the-art CP-based job dispatchers are unable to satisfy the challenges of on-
line dispatching, such as generate dispatching decisions in a brief period and
integrate current and past information of the housing system. Both limitations
jeopardize achieving high QoS levels and thus impede the adoption of CP-based
dispatchers in HPC systems.

Given the previous reasons, the purpose of this work is to propose a class of
CP-based dispatchers that are more suitable for HPC systems running modern
applications. To identify the class of jobs, we propose a method to predict job
durations, allowing to include more online information in dispatchers. The job
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dispatchers we propose are able to reduce the time required for generating on-
line dispatching decisions significantly, and are able to make effective use of job
duration predictions to decrease waiting times and job slowdowns, especially for
workloads dominated by short jobs.
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Resumen

Un job dispatcher de un sistema computación de alto rendimiento – High Per-
formance Computing (HPC) es un software cŕıtico que asigna los recursos com-
putacionales finitos del sistema a los jobs enviados por sus usuarios, quienes
solicitan algunos de dichos recursos para ejecutar sus programas. Esta asig-
nación a lo largo del tiempo se conoce como el on-line job dispatching problem
en sistemas HPC. El hecho de que el problema sea on-line significa que las solu-
ciones, generadas por un job dispatcher, deben calcularse en tiempo real, y el
tiempo requerido para generarlas no puede exceder algún umbral para no afectar
el funcionamiento normal del sistema. Además, el job dispatcher debe lidiar con
mucha incertidumbre: tiempos de env́ıo desconocidos, una cantidad desconocida
de recursos solicitados y una duración desconocida (real) de los trabajos. Las
técnicas heuŕısticas se han utilizado ampliamente en los sistemas HPC, a costa
de lograr soluciones (sub) óptimas en poco tiempo. Estas heuŕısticas se compo-
nen de dos elementos separados, la parte de scheduling y la parte de resource
allocation, por lo que generan una decisión desacoplada que es el principal culpa-
ble de la pérdida de rendimiento. Las técnicas de optimización se utilizan menos
para este problema, aunque pueden mejorar significativamente el rendimiento
de los sistemas HPC a expensas de un mayor tiempo de cálculo.

Actualmente, los sistemas HPC se utilizan cada vez más para aplicaciones
modernas, como el análisis de big data y la construcción de modelos predictivos,
los cuales emplean generalmente muchos jobs de corta duración. En general, los
usuarios de HPC tienden a sobreestimar la duración de los jobs, por lo que es
dif́ıcil identificar jobs de corta duración al momento del despacho. Sin embargo,
los métodos de predicción pueden ser útiles para mejorar la precisión en la
duración esperada y clasificar los jobs correctamente. En estos escenarios de
aplicación, los job dispatchers de HPC necesitan procesar grandes cantidades de
jobs de corta duración rápidamente y tomar decisiones on-line al mismo tiempo
que garantizan altos niveles de calidad de servicio y cumplir con los exigentes
tiempos de respuesta para generar decisiones de despacho. La Programación con
Restricciones – Constraint Programming (CP) ha demostrado ser un enfoque
eficaz para abordar los problemas de job dispatching. Sin embargo, los job
dispatchers de última generación basados en CP no pueden satisfacer los desaf́ıos
del despacho on-line, como generar decisiones de despacho en poco tiempo e
integrar información actual y pasada del sistema. Ambas limitaciones ponen en
peligro el logro de altos niveles de QoS y, en consecuencia, impiden la adopción
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de job dispatchers basados en CP en los sistemas HPC.
Por estas razones, el propósito de este trabajo es proponer una clase de job

dispatchers basados en CP que son más adecuados para sistemas HPC que eje-
cutan aplicaciones modernas. Para identificar la clase de trabajos, proponemos
un método para predecir la duración de los jobs, lo que permite incluir más
información on-line en los job dispatchers. Los job dispatchers que proponemos
pueden reducir el tiempo requerido para generar decisiones de despacho on-
line de manera significativa, y pueden hacer un uso efectivo de las predicciones
de duración de los jobs para disminuir los tiempos de espera y sus slowdown,
especialmente para workloads dominadas por jobs de corta duración.
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Riassunto

Un job dispatcher di un sistema di calcolo ad elevate prestazioni – High Perfor-
mance Computing (HPC) è un software critico che alloca le risorse di calcolo
finite del sistema ai jobs inviati dagli utenti, che richiedono alcune di questi
risorse per eseguire il proprio software. Questa assegnazione nel tempo è nota
come on-line job dispatching problem sui sistemi HPC. Il fatto che il problema
sia on-line significa che: le soluzioni, generate da un job dispatcher, devono
essere calcolate in tempo reale e il tempo necessario per generarle non può
superare una determinata soglia in modo da non influire sul normale funziona-
mento del sistema. Inoltre, un job dispatcher deve affrontare molte incertezze,
quali: tempi di spedizione sconosciuti, una quantità sconosciuta di risorse richi-
este e una durata (effettiva) sconosciuta dei lavori. Le tecniche euristiche sono
state ampiamente utilizzate nei sistemi HPC, al costo di raggiungere soluzioni
(sub-) ottimali in breve tempo. Queste tecniche sono composte da due elementi
separati, la parte di scheduling e la parte di resource allocation, fattori che pos-
sono generare una decisione scollegata che è la principale causa della perdita
di prestazioni. Le tecniche di ottimizzazione, sebbene possano migliorare signi-
ficativamente le prestazioni dei sistemi HPC a spese di un tempo di calcolo più
lungo, sono meno utilizzate per questo problema.

Attualmente, i sistemi HPC sono sempre più utilizzati per applicazioni mod-
erne, come l’analisi di big data e per la costruzione di modelli predittivi, che
impiegano di solito molti jobs a breve termine. In generale, gli utenti HPC
tendono a sovrastimare la durata di jobs, quindi è difficile identificare jobs di
breve durata al momento della spedizione. Tuttavia, i metodi di previsione pos-
sono essere utili per migliorare l’accuratezza nella durata prevista e classificare
correttamente i jobs. In questi scenari applicativi, un HPC job dispatcher deve
spedire rapidamente grandi quantità di jobs a breve termine e prendere deci-
sioni on-line garantendo alti livelli di qualità del servizio (QoS). Inoltre, dovrà
soddisfare i tempi di risposta impegnativi per generare decisioni di spedizione.
La Programmazione a vincoli, Constraint Programming (CP), ha dimostrato
di essere efficace per affrontare i problemi di job dispatching. Tuttavia, i job
dispatchers di ultima generazione basati su CP, non possono far fronte alle
sfide di invio on-line, come la generazione di decisioni di invio in breve tempo
e l’integrazione delle informazioni di sistema attuali e passate. Entrambe le
limitazioni potrebbero ostacolare il raggiungimento di alti livelli di QoS e, di
conseguenza, impedire l’adozione di job dispatcher basati su CP nei sistemi
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HPC.
Per i motivi precedenti, lo scopo di questo lavoro è quello di proporre una

classe di job dispatcher basati su CP che siano più adatti ai sistemi HPC che
eseguono applicazioni moderne. Per identificare il tipo di lavoro, proponiamo
un metodo per prevedere la durata dei jobs, che consente di includere più in-
formazioni on-line nei job dispatcher. I job dispatcher che proponiamo possono
ridurre significativamente il tempo necessario per generare decisioni di invio on-
line e possono fare un uso efficace delle previsioni di durata jobs per diminuire
timeout e loro slowdown, in particolare per workloads dominati da jobs di breve
durata .
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Chapter 1

Introduction

Nowadays, scientific research is enhanced by the processing of large volumes of
data or heavy computations. Most of these activities are carried out in High-
Performance Computing (HPC) systems, which are complex machines composed
of many interconnected and independent processing units to allow a greater com-
putation through different software techniques and/or hardware. Such systems
allow studying complex problems, which in traditional computers are not feasi-
ble to be executed, such as physico-chemical simulations of drugs at the atomic
level through heavy simulations, or genetic studies through large calculations,
or big data analytics through mass data processing. However, there are still
problems that require a higher computation magnitude, and it will be possible
only to solve them on exascale systems, This means that current HPC systems
require a 50-fold increase in their performance, together with an improvement
in their energy efficiency [10]. The progress in hardware design is the major
contributor towards these goals, including more computing nodes to achieve
higher computational power, where each computing node is accompanied by
newer, numerous and powerful processing units to achieve a high computational
power. This is witnessed in Figure 1.1, which shows the size of the TOP500
HPC systems1. This ranking collects information about outstanding HPC sys-
tems around the world, and rank the systems based on the High-Performance
Linpack (HPL) benchmark. Although this trend had changed in the last years
because some HPC facilities have been bet for heterogeneous computing ar-
chitectures. Thus, newer systems have a fewer number of computing nodes in
order to reduce electrical consumption which in turn maintain or, even bet-
ter, increase the computing power. Such architectures include extra computing
resources different from CPU-core units, such as GPU and MIC accelerators,
which additionally are efficient to execute specific floating-point arithmetic op-
erations that are mainly used in different HPC application scenarios. Indeed,
as is depicted in Figure 1.1, the first two HPC systems of the TOP500 rank-
ing, both having a computing heterogeneous architecture, have less computing

1TOP500 Supercomputers sites: https://www.top500.org/
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CHAPTER 1. INTRODUCTION 2

nodes as the third system, which has a CPU-based computing architecture.
This means that more computing power is delivered by heterogeneous nodes
than the homogeneous ones. Still, the number of nodes is high, 73% of the HPC
systems in the ranking have between 500 and 10,000 computing nodes. The rest
of the increase of the performance has to come from software techniques used in
the computing processes, and their management together with the computing
resources. Indeed, the management of the computing process and computing
resources is not trivial and inefficient management may impact the performance
of a system.

Figure 1.1: Size of TOP500 HPC systems.

In an HCP context, the execution of a computing process is known as a job,
and corresponds to a set of instructions that allows running an (unattended)
computing software on an HPC system. If a job is as a serial program, it runs
on a specific node in a unique CPU-core. Instead, if a job is parallel, it may run
on different “portions” of the system, and in behalf of the user requirements,
it can run on thousands of processors, and use use co-processors, terabytes of
memory, and storage system through a high-speed network. In general, since an
HPC system is a big machine composed of numerous physical parts, and it needs
to be carefully orchestrated to execute numerous jobs at the same time. The
management software in charge of orchestrating jobs and resources is known as
Workload Resource Management system, and the fundamental component that
manages jobs is known as the job dispatcher. A job dispatcher decides which
jobs to run next among those waiting in the queue (scheduling) and on which
resources to run them (allocation), and this problem is known as the on-line job
dispatching problem. Ideally, dispatching decisions, i.e. solutions to different
instances of the problem, should complete all jobs in the shortest amount of time
possible while keeping the system utilization high. Thus this component become
critical for keeping system utilization high while keeping waiting times low for
jobs that are competing for HPC system resources. So, a dispatching decision
can achieve a certain level of Quality of Service (QoS) by handling multiple
issues at the time, such as the administrator rules, system size, usage limits,
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software limitations, etc. Therefore, also distinct QoS levels may be reached
with different dispatchers and goals.

In general, many dispatching methods currently employed in HPC systems,
theoretically assume perfect knowledge of the system and its workloads. For in-
stance, the duration of a job is unknown until it completes its execution, despite
this, many dispatchers whose objective is based on the duration, rely on this
attribute generating wrong dispatching decisions. Additionally, most of the dis-
patching methods used in HPC systems have their basis in traditional scheduling
heuristics such as First-In-First-Out, Shortest-Job-First, even advanced algo-
rithms, such as Backfilling ; and suffer from making isolated decisions without
considering the allocation aspect because the resource allocation is performed
as a secondary process. Yet, the exact duration of a job is crucial for generating
dispatching decisions to guarantee high QoS levels. Dispatchers often use the
expected job duration, which is the maximum time a job is allowed to execute
on the system. In the above mentioned dispatchers, the expected duration is the
default value assigned by the system, which is typically the default wall-time of
the queue where the job is submitted, unless the job owner supplied her own
expected duration. Even in the latter case, however, users tend to use the max-
imum wall-time and user estimations are acknowledged to be overestimated in
general [47, 34, 79]. A dispatcher that relies on overestimated durations is likely
to schedule fewer jobs than possible at dispatching time, and consequently, is
likely to cause unnecessary delays.

Even, if a queued-based scheduling integrates the actual duration of jobs
still may not generate (near-)optimal dispatching decisions. Because, queued
jobs are considered by such dispatchers one at a time, and generate uncoupled
decision generating additionally fragmentation of the system. To tackle this
issue, it is necessary to consider the entire queue at once, and generate a dis-
patching decision that satisfies the system stakeholders’ expectations. This can
be done using optimization-based dispatching, because dispatchers generate a
dispatching decision based on a plan considering the present and future of the
system, so all queued jobs will be scheduled between the current time and some
time horizon. Every submitted job is planned immediately, and if a running job
ends before it was estimated to end, a new dispatching decision is generated.

While the on-line job dispatching problem in HPC systems is NP-hard [14],
it can be formulated as a job scheduling and resource allocation problem for
which Constraint Programming (CP) has produced good results throughout
its history [7]. The first CP-based HPC dispatcher with job waiting times
as a measure of QoS was introduced in [9] and shown to obtain better solu-
tions compared to a Priority Rule-Based (PRB) dispatcher [26, 62], which is
widely adopted in commercial HPC workload management systems such as Al-
tair PBS Professional [3] and SLURM Workload Manager [113]. The dispatcher
was later embedded as a plug-in within the software framework of PBS profes-
sional [25]. Subsequently, another CP-based dispatcher with a similar measure of
QoS with the additional feature of limiting system power consumption was pre-
sented in [18, 17] and proved to outperform a PRB dispatcher on the instances
with tight power capping values. Despite the potential of these state-of-the-art
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CP-based job dispatchers, certain limitations hinder their adoption for modern
HPC systems, specially in the first dispatcher, such as inflexibility to deal with
heavy workloads — workloads where resource requests greatly exceed available
resources, and the CP-model is dependant on the system architecture, which
causes undesirable increments in the required time by this dispatcher in gener-
ating a dispatching decision. Similar to the majority of HPC dispatchers, the
expected duration corresponds to either the default wall-time or the user ex-
pected duration, which as we already said may schedule fewer jobs than possible
at dispatching time, and consequently, to cause unnecessary delays.

Since HPC systems are increasingly being used for modern applications such
as big data analytics and predictive model building. The jobs that run these ap-
plications correspond mainly to short-duration jobs [102]. Thus to identify such
class of jobs in these application scenarios is important because HPC systems
need to execute a large number of short jobs quickly. In addition, the deci-
sions must ensure high QoS levels and meet demanding timing requirements
in the on-line context, so as to minimize both waiting times and slowdown
(the ratio between the total job duration including waiting time and the ac-
tual job duration during runtime). These measures of QoS are particularly
important when HPC systems are used to provide real-time services, such as
big-data visualization [106, 133, 94], where response times are critical for ac-
ceptable user experience. Prediction of actual runtime durations using simple
heuristics or more sophisticated machine learning techniques is an active area
of research [129, 52, 42]. Recent studies show that the use of job duration pre-
dictions when generating dispatching decisions can substantially improve QoS
levels in backfilling-based dispatchers [128, 52, 42], which, in general, can be
applicable to any dispatcher which bases its decisions on an important attribute
such as the job duration.

1.1 Motivations

Heuristic-based dispatchers used in HPC systems may not generate (near-) opti-
mal solutions nor cover many aspects of the problem. Thus CP-based dispatch-
ers have been proposed to address these issues as a whole. Yet, the state-of-
the-art CP-based job dispatchers are unable to satisfy the challenges of on-line
dispatching. As reported in [25], the first CP-based dispatcher is not resilient
to heavy workloads, where resource requests greatly exceed available resources.
The time spent by this dispatcher in generating a dispatching decision increases
dramatically as more jobs requiring high system utilization arrive to the system.
Another issue is the difficulty to scale properly to big systems (which includes
hundreds to thousands of computing nodes), which are the most common HPC
systems architectures. This dispatcher models the on-line job dispatching prob-
lem in a unified model, that is, considers the scheduling and allocation problem
in a single CP model, however, it may not scale well on big systems due to
how its decision variables are modeled. The number of decision variables de-
pends on the number of queued jobs and all of their possible allocations on
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each computing node, thus the model of this dispatcher is highly dependant on
the system size, the availability and the request of resources, which we detail
later in Chapter 2.3. In an effort, to improve the previous issues, a hybrid dis-
patcher [18, 17] is proposed. However, it was initially employed in off-line mode
[18], and later also in on-line mode [17] but on workloads of maximum 1,000
jobs submitted in a time window of half an hour. A more realistic scenario
where jobs arrive continuously and many of them end up waiting in a queue due
to unavailable computational resources increases greatly the difficulty of gen-
erating dispatching decisions. In addition, these dispatchers use the expected
duration as the default value assigned by the system, which is typically the de-
fault wall-time of the queue where the job is submitted, unless the job owner
supplied her own expected duration. Therefore, such dispatchers may schedule
fewer jobs than possible at dispatching time causing unnecessary delays. These
limitations jeopardize achieving high QoS levels, and consequently impede the
adoption of CP-based dispatchers in HPC systems.

We believe CP-based dispatchers should be adapted to generate high-quality
dispatching decisions independently of the architecture and size of the systems,
specially CP-based dispatchers that model the scheduling and allocation prob-
lems together in a unified model, because they may incorporate additional re-
strictions, such as power management in the broad sense (power capping, switch-
ing idle nodes, reduce power consumption base on job allocation, etc.), which is
a must of future HPC systems, and could provide better dispatching decisions
for current and future HPC systems.

Together with improving the models of the dispatchers, it is important to
define the optimization criteria for this problem. Currently, these two state-of-
the-art CP-based dispatchers uses a metric which is not job specific feature that
can be decided on-line at the time of dispatching. So, such a value may not be
informative on the current job submission status so as to generate a dispatching
decision of high quality. Therefore, by studying different openly available work-
loads 2, as well as other system workloads that we had access to, we have been
able to distinguish an interesting trend that can be a perfect representative at-
tribute of jobs. This trend has been mentioned in various studies [112, 101, 102]
but that has not taken enough advantage to improve the performance of HPC
systems. We already know that workloads of current HPC systems tend to be
a mix of many jobs that run for less than one hour, with fewer longer jobs,
resulting in a heavy-tailed job duration distributions [102].

Figure 1.2 shows this clear trend in more than 12 HPC systems used in
different parts of the world, America, Asia, and Europe; more than 60% of the
jobs last less than 1 hour of these systems. Indeed, due to recent developments
in big data analytics and new programming paradigms such as map-reduce,
put further emphasis on short jobs, with jobs being split into tasks with inter-
dependencies [32]. Hence, in these application scenarios, HPC job dispatchers
need to rapidly process a large number of short jobs in making on-line decisions

2Parallel Workloads Archive https://www.cse.huji.ac.il/labs/parallel/workload/

logs.html.

https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
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Figure 1.2: Distribution of durations of jobs on different HCP systems.

so as to improve the QoS metrics. Waiting so long for the execution of a short
job is not well perceived by users, thus this class of jobs should be treated
with higher priority. An interesting metric to consider given this observation
is the job slowdown, which is the normalization of the waiting time. The job
slowdown has been considered as a good QoS metric since it matches the user
expectations that a job’s response time, which is the time that passes between
the submission time and the completion time, will be proportional to its running
time. Indeed, 50 years ago, in [60] was suggested that job slowdowns should be
used to prioritize jobs for scheduling. Thus, we propose the use of job slowdown
as optimization criteria, where the objective function will be the minimization
of the slowdown of queued jobs. However, using the job slowdown requires
knowing the duration of the job, that we already mentioned is not available,
instead, only an upper bound of this value is known. In addition, identifying the
actual duration of jobs is not a straightforward task because users, in general,
tend to overestimate the expected duration of jobs. Although a user repeats
a job with the same or similar features, and she already knows an estimated
duration based on the previous one, she, typically, will still request more time
than the required one [47, 34, 79]. Since duration is an important asset in job
scheduling, different prediction methods have been proposed in the literature,
from a simple average of the duration of the last jobs to complex support vector
machines that try to find a correlation between distinct job features [121]. Our
motivation is to study whether transforming the log data produced by an HPC
system into useful knowledge about its workload may produce better dispatching
decisions. Given that HPC systems produce large amounts of data in the form of
logs tracing resource consumption, errors and various other events during their
operation. Data science can transform this raw data into knowledge through
models built from historical data capable of anticipating unseen or future events.
We believe that predictive computational models obtained through data-science
tools will be indispensable for the operation and control of future HPC systems.
Therefore, relying on predictive models to obtain useful knowledge about the
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workload from the log data of an HPC system can be a good option to increase
the knowledge of the workload, with the purpose of making better dispatching
decisions. Given that we want to use the job slowdown to priorize short jobs,
we focus on job duration predition.

One of the challenges of job dispatching research is the intensive experimen-
tation necessary for evaluating and comparing dispatchers in a controlled envi-
ronment because using an actual HPC system for experimenting is not realistic.
Therefore, simulating a WMS is essential for conducting controlled dispatching
experiments. Such a simulator must simplify the evaluation of multiple dis-
patchers across multiple workloads with different formats, which may contain
thousands to millions of jobs. If workloads contain millions of jobs, it must
handle the workload efficiently to avoid affecting the performance of the dis-
patcher. Thus, a simulator that efficiently can process heavy workload dataset
with a low memory footprint, fast processing, and easy customization is a must
in dispatching research. However, existing simulators lack of different features
that we require to conduct our experiments.

1.2 Goals

The main goal of this dissertation is to propose CP-based dispatchers that are
capable of processing heavy workload datasets of systems of any size and take
advantage of job duration prediction methods to achieve high Quality of Service
levels. To achieve this main goal, it is required to propose adaptations to the
model and search control mechanisms of state-of-the-art CP-based dispatchers
so as to make them resilient to heavy workloads and applicable to on-line dis-
patching. Additionally, we reuse these mechanisms in a new class of CP-based
dispatchers which are composed of fewer decision variables than the utilized in
the model of the pure state-of-the-art CP-based dispatchers and do not depend
proportionally with the size of the system. We believe such models due to this
independence may scale better to big systems.

Given that we want to improve the quality of dispatching decisions in work-
loads that runs modern applications, which are mainly composed of short jobs,
it will be required to identify such a class of jobs. So, as a secondary goal, we
study and develop a job duration prediction method, which can be integrated
with any dispatcher to provide useful information regarding the estimated job
duration, so as to improve the quality of the dispatching decisions. Another
secondary goal is the development of a simulator of a Workload Management
System which will easy the simulation task by defining the proper framework
to carry out our job dispatching research activities.

Thus, based on our goals and motivations the thesis statement of this dis-
sertation corresponds to:
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Jobs and resources of HPC systems can be efficiently and ef-
fectively managed using job dispatchers based on the Constraint
Programming paradigm, independent of the size and workload
density of the system.

This research work is based on simulation on a restricted number of workload
logs of actual systems, therefore dispatchers and predictors presented here must
be tested on the resource configuration and using an actual workload dataset
of the target system before putting in them in production. This research used
only one Constraint Programming system for all the experimental study, there-
fore the performance of the models presented here exclusively depends on the
experimental settings.

1.3 Contributions

The main contribution of this dissertation is to establish CP-based dispatchers
as a choice for current HPC systems. However, the state-of-the-art CP-based
job dispatchers are unable to satisfy the challenges of on-line dispatching and
take advantage of job duration predictions. Thus, we propose a class of CP-
based dispatchers that take these considerations to be suitable for HPC systems
running modern applications. The proposed dispatchers are able to reduce the
time required for generating on-line dispatching decisions significantly, and are
able to make effective use of job duration predictions to decrease waiting times
and job slowdowns, especially for workloads dominated by short jobs. In spite of
the improvement presented with the new class of dispatchers, there are still is-
sues regarding big systems for the pure CP-based dispatchers, that is, CP-based
dispatchers that model the scheduling and allocation problem as a whole. We
focus only on pure CP-based dispatchers because such dispatchers can handle
more restrictions meanwhile solve the on-line job dispatching problem. Indeed,
we believe that such a class of dispatcher will be necessary to cope with new
challenges on actual HPC systems, such as power consumption restrictions, the
anticipation of failures of resources, among others. So, we propose a new class
of pure CP-based dispatchers which has to scale well on big systems and also
provide significant results on the small and medium systems.

A part of the main contribution was published in [50].
To achieve our main contribution, this dissertation also provides secondary

contributions:

AccaSim, a Workload Management System simulator for job dis-
patching study This simulator resulted in an open-source library, imple-
mented in Python, which is freely available for any major operating system,
and works with dependencies reachable in any distribution. AccaSim is scalable
to large workload datasets and provides support for easy customization, allow-
ing to carry out experiments across different workload sources, resource types,
and dispatching algorithms. Moreover, AccaSim enables users to develop novel
advanced dispatchers by exploiting information regarding the current system
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status, which can be extended for including custom behaviors such as energy and
power consumption and failures of the resources. Thus, AccaSim can be used
to mimic any real system, including those possessing heterogeneous resources,
develop advanced dispatchers using for instance power and energy-aware, fault-
resilient algorithms, and test and evaluate them in a convenient way over a wide
range of workload sources by using real workload traces or by generating them.
This work was published in [48, 49].

A data-driven job duration prediction We propose two heuristics that
construct job profiles from the available workload data. For the first heuristic,
we identified different attributes that can be useful to classify similar jobs, and
then we predict the job duration based on specific similarity rules. The second
heuristic maintains the same ideas that in the first one, and, besides, introduces
a ‘rewarding methodology’ to deal with users that request the wall-time accu-
rately. These heuristics are very simple; thus, they do not produce any overhead
during the prediction and yet proved to be very effective on job dispatchers that
actively use the wall-time as the expected job duration. A part of this work was
published in [51].

1.4 Organization of the dissertation

The rest of this dissertation is organized as follows.
Chapter 2, Background. We give an overview of the main concepts

addressed in this dissertation. We focus on the High-Performance Computing
(HPC) concept, with a special emphasis on the on-line job dispatching problem.
Next, we introduce the Constraint Programming (CP) paradigm because most
of the proposals presented in this dissertation are based on this technology, so
we explain how it works and how problems are solved. Finally, we formally
introduce state-of-the-art CP-based dispatchers on which this proposal aims to
improve or come up with new models.

Chapter 3, Accasim: A Workload Management System simulator.
Since it is required to execute dispatchers under the same conditions, and the
available tools were not able to customize as needed, we developed a neces-
sary tool to conduct our experiments. This tool was used to carry out all the
experiments which require job submission simulation through this dissertation.

Chapter 4, Job duration prediction in HPC systems. The job
duration is a valuable asset to make efficient dispatching decisions, however,
this value is unknown and users tend to overestimate this value which affects
duration-based decisions. To tackle this issue, we propose a job duration predic-
tion method aimed to improve well-known dispatchers without interfering with
their main algorithms.

Chapter 5, Active usage of job duration prediction on scalable
to heavy workloads CP-based dispatchers for HPC systems. Since
state-of-the-art CP-based dispatchers, especially the dispatcher that models the
allocation and scheduling problems together, a pure CP-based dispatcher, do
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not scale well on some dispatching instances we propose some significant im-
provement to their model and search control. In addition, we propose an active
integration of job duration prediction to improve the quality of service of HPC
systems.

Chapter 6, Towards system size-independent CP-based dispatch-
ers for HPC systems. Although in the previous chapter we made CP-based
dispatchers scalable to heavy workloads, still there are some issues related to the
size of systems, which has an impact on the performance of the pure state-of-
the-art CP-based dispatchers. We focus on such a dispatcher class, i.e. with a
model that considers both the allocation and the scheduling problem as a whole,
because it can incorporate better additional constraints to deal with complex
scenarios than hybrid dispatchers, which decision may be overridden due to
incompatibilities. Thus, we propose two new pure models which are less and
completely independent of the size of the systems.

Chapter 8, Conclusions and future work. We present our conclusions
of this dissertation and describe future work.



Chapter 2

Background

Before presenting contributions, we introduce in this chapter key concepts re-
lated to this dissertation. We divided this chapter into three principal sections.
In Section 2.1, we introduce the key concepts of High-Performance Computing
to know the operations of such systems and to witness of the needs that they
require to achieve a high Quality of Service by handling efficiently the on-line
job dispatching problem. Next, in Section 2.2, we introduce the key concepts of
Constraint Programming, which are required to understand how the proposed
dispatchers work. Finally, in Section 2.3, we describe the state-of-the-art CP-
based dispatchers used to tackle the on-line job dispatching problem in HPC
systems.

2.1 High performance computing

High-performance computers (HPC), also known as Supercomputers, and their
usage are part of the current trends of the last technological improvements,
playing a crucial role in doing research and improving the business capabilities
thanks to their vast computing power. This modern computing has been pow-
ered by continuous and significant technology advances and achieved through
innovations in computer architecture, programming models, and needs of end-
user goals that could only be addressed by computational means. Classical
scientific and engineering problems, which are usually studied on computers,
has been extended across all branches of industry, commerce and, government
thanks to the high processing power of HPC. Covering such areas generate an
impact on almost every aspect of daily life: energy, transportation, communi-
cations, medicine, infrastructure, finance, business management, and the man-
ufacture of both new and traditional consumer products [41]. In general, HPC
systems have become fundamental tools to solve complex, compute-intensive,
and data-intensive problems, enabling new scientific discoveries, innovation of
more reliable and efficient products and services, and new insights in an in-
creasingly data-dependent world. This can be witnessed for instance in the

11



CHAPTER 2. BACKGROUND 12

annual reports3 of PRACE and the recent report4 by ITIF which accounts for
the importance of HPC to the global economic competitiveness.

HPC is a complex set of technologies that involves multiple disciplines of
the Information and Communications Technology domain to take advantage of
the computing hardware using the available software to solve complex compu-
tational problems through computer modeling, simulation, and data analysis.
A problem is defined as a software application, which runs during a specific
time on such a system, and once it completes its execution, it gives answers to
research questions. How fast a problem can be solved depends on how complex
it is and how fast is the machine where the application is executed (and how
good it is coded).

Thanks to the improvement in the technology, architecture, programming
techniques, algorithms, and system software, the computing power has been
increased over the years with an exponential growth, passing from thousands
of basic operations during the 40s to over 100 petaFLOPS 5 in the last years6.
A FLOPS is a performance metric which measures “floating-point operations
per second” and is widely used to compare HPC systems. A widely used HPC
benchmark is the “highly parallel Linpack” (HPL), which solves a set of linear
equations in dense matrix form, which are selected by the HCP community.

Since 1993, TOP500 gather the HPL benchmark results to compare the most
outstanding HPC systems. From the available data, a simple conclusion emerge,
the performance is incremented almost 90% each year. So, HPC systems may
reach the exascale performance during this year (2020) according to TOP500,
if the development continues its exponential growing, as depicted in Figure 2.1
(Source: https://www.top500.org/statistics/perfdevel/). The last up-
date of the fastest HPC systems, corresponding to June 2019, shows as Summit
in the first place. Summit, in Figure 2.2 is an IBM-built supercomputer housed
at the Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL),
which has a performance of 122.3 petaflops on the HPL. This supercomputer
has 4,356 nodes, each one equipped with two 22-core Power9 CPUs, and six
NVIDIA Tesla V100 GPUs. The nodes are linked together with a Mellanox
dual-rail EDR InfiniBand network.

In general, an HPC machine appears as rows upon rows of many racks taking
up thousands of square feet and consuming potentially multiple megawatts of
electrical power. An increase of at least one order of magnitude of computing
power is also translated in a higher power consumption, this means that the
development of new techniques and architectures aimed at improving the energy
efficiency and sustainability of HPC systems is now necessary more than ever.

An HPC system has basic functionality and subsystems in common with the
personal computer, however its organization, interconnectivity, and scale of the
component resources and the ability of the supporting software to manage the
operation of the system at a high degree of logical and physical parallelism. A

3http://www.prace-ri.eu/praceannualreports/
4http://www2.itif.org/2016-high-performance-computing.pdf
5petaFLOPS corresponds to 1015 Floating Point Operations Per Second
6According to the data of TOP500 http://www.top500.org.

https://www.top500.org/statistics/perfdevel/
http://www.prace-ri.eu/praceannualreports/
http://www2.itif.org/2016-high-performance-computing.pdf
http://www.top500.org
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Figure 2.1: TOP500: Projected performance development of HPC systems.

CPU socket in a personal computer incorporates some parallelism, whereas an
HPC system is structured in far more levels with specific methods to coordinate
and solve a shared problem.

In spite of HPC systems are composed of many nodes, sometimes this quan-
tity is not enough to cover the users needs. When two or more requests are made
at the same time, or are in the queue at the same time, to be serviced by the
same single resource, either hardware or software, only one can proceed. The
other(s) must wait until the first request is retired and the required resource
is freed. If this postponing is extended in time, taking longer to process the
entire queue. In addition, this has a cascading effect on the following requests,
and some resources may be blocked and its potential capability wasted for the
duration of the delay. Such events occur unpredictably and create uncertainty
during the execution.

2.1.1 Workload Management Systems

A Workload Management System (WMS), also known as Resource and Job
Management System (RJMS), resource and task manager, or batch scheduler,
is a middleware software which in general manages jobs and resources, by check-
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Figure 2.2: IBM Summit HPC system at Oak Ridge National Laboratory,
United States of America.

ing, monitoring, profiling, accounting job submissions and system utilizations in
order to distribute the available resources to jobs. To do so, a WMS incorporates
a scheduling and allocation algorithm to choose where and when jobs will run.
From a point of view of resources management, a WMS is responsible to collect
and provide all information concerning the system resources. This information
has to be available to the dispatcher to initiate the job dispatching and to the
user or administrator to inform about the availability and the state of the sys-
tem. From a point of view of job management, a WMS provides the means for
definition, submission, and monitoring of jobs. Considering both points of view
emerges the dispatcher. Its main role is to assign jobs according to the users
needs and predefined rules and policies, upon available computational resources
that match the demands.

Well-known WMS are:

• PBS Pro 7

• SLURM 8

• OAR 9

• Torque 10

• Flux 11

• Condor 12

• LSF 13

7http://www.pbsworks.com
8http://slurm.schedmd.com
9https://oar.imag.fr/

10https://www.adaptivecomputing.com/products/torque/
11https://arc-ts.umich.edu/flux/
12https://research.cs.wisc.edu/htcondor/
13https://www.ibm.com/us-en/marketplace/hpc-workload-management

http://www.pbsworks.com
http://slurm.schedmd.com
https://oar.imag.fr/
https://www.adaptivecomputing.com/products/torque/
https://arc-ts.umich.edu/flux/
https://research.cs.wisc.edu/htcondor/
https://www.ibm.com/us-en/marketplace/hpc-workload-management
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Figure 2.3: WMS in an HPC system.

Therefore, a WMS is an important software of an HPC system, being the
main access for the users to exploit the available resources for computing. A
WMS manages user requests and the system resources through critical services.
A user request consists of the execution of a computational application over
the system resources. Such a request is referred to as job and the set of all
jobs are known as workload. The jobs are tracked by the WMS during all their
states, i.e. from their submission time, to queuing, running, and completion.
Once a job is completed, the results are communicated to the respective user.
Figure 2.3 depicts a general scheme of a WMS.

A WMS offers distinct ways to users for job submission such as a GUI and/or
a command line interface. A submitted job includes the executable of a com-
putational application, its respective arguments, input files, and the resource
requirements. An HPC system periodically receives job submissions. Some jobs
may have the same computational application with different arguments and
input files, referring to the different running conditions of the application in de-
velopment, debugging and production environments. When a job is submitted,
it is placed in a queue together with the other pending jobs (if there are any).
The time interval during which a job remains in the queue is known as wait-
ing time. The queued jobs compete with each other to be executed on limited
resources.

We recall that a job dispatcher decides which jobs waiting in the queue
to run next (scheduling) and on which resources to run them (allocation) by
ensuring high system utilization and performance. The dispatching decision
is generated according to a policy using the current system status, such as the
queued jobs, the running jobs and the availability of the resources. A suboptimal
dispatching decision could cause resource waste and/or exceptional delays in
the queue, worsening the system performance and the perception of its users.
A (near-)optimal dispatching decision is thus a critical aspect in a WMS.
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The dispatcher periodically communicates with a resource manager of the
WMS for obtaining the current system status. The resource manager updates
the system status through a set of active monitors, one defined on each resource
which primarily keeps track of the resource availability. The WMS systemat-
ically calls the dispatcher for the jobs in the queue. An answer means that
a set of jobs are ready for being executed. Then the dispatching decision is
processed by the resource manager by removing the ready jobs from the queue
and sending them to their allocated resources. Once a job starts running, the
resource manager turns its state from “queued” to “running”. The resource
manager commonly tracks the running jobs for giving to the WMS the ability
to communicate their state to their users through the interface, and in a more
advanced setting to (let the users) submit again their jobs in case of resource
failures. When a job is completed, the resource manager turns its state from
“running” to “completed” and communicates its result to the interface to be
retrieved by the user.

2.1.2 The on-line job dispatching problem in HPC sys-
tems

Since a CPU-core can only do one thing at a time and one of the goals of high-
performance computing is to reduce the time for computations, jobs must be
managed correctly. Therefore a job dispatcher must ensure that each job has
dedicated access to the resources it needs, by deciding the start time of sub-
mitted jobs and the resources on which the jobs will be allocated, by providing
an efficient dispatching plan which covers all users’ needs and obeys the system
rules. This process is known as job dispatching, job scheduling and allocation,
or simple job scheduling, and it has been studied for a long time with the aim of
improving the system performance [45, 134, 65, 108, 70]. From a optimization
point of view this process is modeled as a dispatching problem, also named as
scheduling and allocation problem, which has been widely studied [35, 21, 22, 99]
given the challenges of an NP-hard problem [14].

However, some discrepancies are observed between a (off-line) job dispatch-
ing problem applied to an on-line context such as the on-line job dispatching
problem in HPC systems. In an off-line dispatching problem, it is assumed that
jobs and their requested resources are known beforehand, as well as the avail-
able resources to allocate those jobs, therefore both elements in the problem
are static. Nevertheless, in an on-line context, there is a much higher uncer-
tainty. During unknown times, a system may receive job submissions from HPC
users. After some events are triggered (specific time intervals, after a jobs end
and there are queued jobs, or every time a job is queued, among others), the
WMS calls the job dispatcher to generate a dispatching decision. During such
a call, the WMS provides information about current running jobs together with
their allocated resources, in addition to the queued jobs to be dispatched with
their requested resources. There is a possibility that the system may not have
enough availability to allocate all queued jobs, so only a subset of them will be
dispatched, the remaining ones will be re-queued until the dispatcher is called
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again. The previous workflow is repeated unlimited meanwhile the system is on
and accepting job submissions.

A dispatching decision (solution to an specific instance) is obtained accord-
ing to a policy using the current system status, such as the queued jobs, the
running jobs and the availability of the resources. However, the overall system
performance cannot be determined by a single dispatching decision, we em-
phasize this problem occurs on-line, i.e., there are many dispatching problems
during the lifetime of an HPC system. Further, if a dispatching decision of
an instance is to dispatch a subset of jobs, different dispatchers may generate
distinct solutions, so later instances during the system operation and may show
distinct performances.

� + 5

�

� + 1

� +2

� +3

� + 4

Current time: �

Node 1 Node 2 Node 3

Figure 2.4: A dispatching decision.

Analyzing the on-line job dispatching problem in HPC systems, we realize
that jobs are the main actors in the problem. Considering the two types of jobs,
queued and running, and knowing the capacity of the system, it is possible to
establish the consumed and the available resources, where the last ones are key
to dispatch the queued jobs. As we mentioned in the previous section, a job
is only a user request, which consists of a script to execute a computational
application over some system resources. From an optimization point of view,
there is another important attribute of jobs, which is the expected job duration
and corresponds to the maximum time a job is allowed to execute on the system.
The expected duration is the default value assigned by the system, which is
typically the default wall-time of the queue where the job is submitted, unless
the job owner supplied her own expected duration. Figure 2.4 illustrates how
jobs (the colored boxes) can be allocated to certain resources (cores on different
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nodes) of a HPC system at certain times.
Formally speaking, the on-line dispatching problem in an HPC system takes

place at a specific time t for the queued jobs Q. A typical HPC system is
composed of N nodes, with each node n ∈ N having a capacity capn,r for each
of its resource type r ∈ R, giving the total amount of available resource. The
system may not be completely available, because some resources may be already
allocated to the running jobs in G during some intervals.

Each job i ∈ Q has the arrival time qi ≤ t to the queue, which is unknown
before the arrival, and a demand reqi,r giving the amount of resources required
from r. Each job g ∈ G has been allocated previously to some resources, there-
fore those resources are already occupied and cannot be shared with other jobs.
Allocated resources of a job g are freed once the execution of g ends, sg + drg
where sg is the starting time and drg the runtime or actual duration. Once a
running job end, the WMS marks the occupied resources as available again.

The on-line dispatching problem at time t consists in scheduling each job i
by assigning it a start time si ≥ t, and allocating i to the requested resources
during its expected duration di, such that the capacity constraints are satisfied:
at any time in the schedule, the capacity capn,r of a resource r is not exceeded
by the total demand reqi,r of the jobs i allocated on it, taking into account the
presence of jobs already in execution G.

Once the problem is solved, only the jobs with si = t are dispatched. The
remaining jobs with si > t are queued again with their original qi. It is the
workload management system software that decides the dispatching time t and
the subsequent dispatching times. A typical objective is to minimize the sum
of the waiting times si − qi, which is a metric that can be easily perceived by
HPC users.

In actual HPC systems, the dispatching problem is mainly addressed by
heuristics methods to find feasible solutions, instead of optimal ones, even
though a (near-)optimal solution is a critical requirement in HPC systems. A
sub-optimal dispatching decision solution could cause exceptional delays in the
queue, affecting the QoS. Most WMS include the well-known FCFS (First Come
First Served) algorithm, where jobs are process in order as they arrive in the
queue until a job cannot be started. Other dispatchers based on the user ex-
pected duration are also available, such as Short Job First, or more advanced
dispatchers like backfilling scheduling algorithms [119]. We give an overview of
those algorithms in Section 2.1.3.

In general, dispatchers based on systematic complete search methods, such
as Constraint Programming (CP), are not well accepted in actual systems, given
the required time to generate a dispatching decision or to scale properly to big
systems. Despite this, we believe such dispatchers will be necessary to cover
many and different aspects during a dispatching decision, given that CP takes
advantage of the integration of local consistency and propagation techniques
inside the search algorithm. We describe state-of-the-art CP-based dispatchers
in Section 2.3.
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2.1.3 Job dispatchers in HPC systems

The purpose of a job dispatcher is to reserve resources for users’ jobs to ensure
jobs run at their highest performance. It keeps a given compute node from
being overloaded, and places jobs on hold until resources are available. So, the
job dispatcher must decide when and where execute each submitted job. Since
it is a hard problem [14], most of the proposed solutions are heuristic-based
methods, which are fast but do not guarantee optimality.

In addition, such methods are a combination of scheduling and allocation
methods, which together generate a dispatching decision. In a progressive man-
ner, queued jobs are sorted by the scheduling method and, then in that order
jobs are allocated, however, a selected job may not be always allocated to the
requested resources, so, the dispatching method, as a whole, decides to continue
or stop processing the queue.

We examine five scheduling methods and two allocation methods reported in
the literature. In the following, we give intuitions for the algorithms underlying
these scheduling methods:

First In, First Out First In, First Out (FIFO) dispatch jobs in the order in
which they enter the queue. This is a very simple strategy to implement, and
works acceptably in system with a low job load.

Shortest job first, longest job first Shortest Job First (SJF) and Longest
Job First (LJF) use the estimated duration at dispatching time, sorting all jobs
that have to be dispatched in ascending (or descending) order, and then mapping
the shortest job (or the longest job) to a resource [124]. Both algorithms continue
moving through the sorted list until no available resources remain for allocating
to the current job. The aim of SJF is to reduce the waiting time of the short
jobs, thus causing delays for the execution of the long jobs. Conversely, LJF
reduces the waiting time of the long jobs, causing slowdown for short jobs.

EASY-Backfilling A key element of many commercial dispatchers is the
backfilling algorithm [136] which starts scheduling jobs stepping through a pri-
ority list such as FIFO, SJF or LJF. If a job cannot be dispatched due to lack
of available resources (blocked job), backfilling calculates the time in the future
when enough resources will be released to run the blocked job, based on the
estimated duration of running jobs. While the blocked job is waiting, the dis-
patcher maps other jobs in the queue over the available resources. If, however,
the durations have been underestimated, the resources for the blocked job will
not be available when needed, which can force termination of the running jobs.
In such a case, EASY-Backfilling (EBF) [136] does not terminate the running
jobs but instead delays the starting time of the blocked job.

Priority rule-based As an extension of the first-in-first-out policy, many
dispatchers sort the set of jobs to be scheduled by certain priority, running those
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with higher priorities first. This algorithm is referred to as Priority Rule-Based
(PRB) [62, 26] and is widely used in commercial HPC dispatchers14,15.

Next, we describe the idea of the allocation methods:

First Fit First Fit or all-requested-computers-available policy for resource al-
location [136]. For each scheduled job, this policy searches sequentially the nodes
in an attempt to find resources available for running the job, and if succeeds, it
maps the job onto those nodes.

Best Fit Best Fit sorts the nodes in non-decreasing order of the number of
available resources after each successful allocation, For each scheduled job, this
policy searches sequentially the nodes in an attempt to find resources avail-
able for running the job, and if succeeds, it maps the job onto those nodes.
Thus, it tries to fit as many jobs as possible on the same node, to decrease the
fragmentation of the system

2.1.4 HPC workloads

This section contains information regarding the workloads on HPC systems used
through this dissertation. As we motivated in the introduction, our work de-
pends on workload datasets to evaluate our contributions in HPC job dispatch-
ers. These workloads datasets have been provided (Eurora system) or are freely
available online 16 with some restrictions in the data available (Gaia system,
KIT system). The freely available workloads datasets are part of various paral-
lel systems in production use in various places around the world collected and
submitted by people of their own IT facilities. Since the original logs come in dif-
ferent formats, the administrators of the website unified the workload datasets
under the Standard Workload Format (SWF) 17 [30]. The SWF in its last ver-
sion (2.2) includes the following data for each job entry, the field starting with *
corresponds to an optional field and may not be present in the workload dataset:

1. Job number: just a counter, starting from 1.

2. Queued time: Corresponds to the submitted time.

3. Waiting time: The difference between the job’s submit time and the
time at which it actually began to run in seconds.

4. Duration: It is the runtime in seconds, i.e. the wall clock time the job
was running (ending time minus starting time).

5. Number of allocated processors: The number of processors the job
uses.

14Altair PBS Works (http://www.pbsworks.com/).
15SLURM Workload Manager (https://slurm.schedmd.com/).
16The parallel workload archive (https://www.cse.huji.ac.il/labs/parallel/workload/)
17The Stantard Workload Format ( https://www.cse.huji.ac.il/labs/parallel/

workload/swf.html)

http://www.pbsworks.com/
https://slurm.schedmd.com/
https://www.cse.huji.ac.il/labs/parallel/workload/
https://www.cse.huji.ac.il/labs/parallel/workload/swf.html
https://www.cse.huji.ac.il/labs/parallel/workload/swf.html
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6. *Average CPU time used: The average over all processors of the CPU
time used in seconds, and may therefore be smaller than the duration
clock runtime.

7. *Used memory: The average usage per processor in kilobytes.

8. *Requested number of processors: The requested number of proces-
sors the job will use.

9. *Expected duration: The user runtime estimate.

10. *Requested memory: The average memory requested per processor in
kilobytes.

11. Status:

• 0: Job failed.

• 1: Job completed.

• 5: Job cancelled.

12. User ID: Identifier of the user.

13. *Group ID: Identifier of the group. Some WMS control resource usage
by groups rather than by individual users.

14. *Executable (application) number: The number of different applica-
tions appearing in the workload.

15. Queue number: The number of different queues in the system.

16. *Partition number: The number of different partitions in the systems.

17. *Preceding job number: The number of a previous job in the workload,
such that the current job can only start after the termination of this
preceding job.

18. *Think Time from preceding job: The number of seconds that should
elapse between the termination of the preceding job and the submission
of this one.

We note that workloads datasets using the SWF not consider different in-
teresting aspects that we cover in this dissertation such as name of jobs (for a
privacy issue), job allocation, more information about the job requests, etc; so
experiments involving these datasets cannot be so detailed with regard of the
experiments using the Eurora workload dataset. We highlight that in an actual
system all attributes used in this dissertation will be available and provided at
dispatching time by the WMS.
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Eurora and its workload dataset The Eurora system [28] was hosted at
CINECA18, the largest datacenter in Italy, and was ranked first on the Green500
list in July 2013. Eurora had a modular architecture based on nodes (blades).
Each node had 2 octa-core CPUs (Intel Xeon E5) and 2 expansion cards that
can be configured to host an accelerator module. Of the 64 nodes, half of them
hosted 2 powerful NVidia GPUs (Nvidia Tesla Kepler), meanwhile the other half
were equipped with 2 Intel MIC accelerators (Intel Xeon Phi Knights Corner).
Each node had 16GB of RAM. These 64 nodes were dedicated exclusively to
computation, with the user interface was managed by a separate node. The
resulting system is highly heterogeneous, making allocation of resources to jobs
nontrivial. Eurora was used by scientists across Italy to perform simulation
studies from different fields, hence the workload is also heterogeneous, in the
sense of request of resources and durations.

The workload data includes logs for over 400,000 jobs submitted between
March 2014 and August 2015. For each job, we have information on the sub-
mission, start and end times, queue, wall-time, user and job name, together
with resources used and their allocation on the various nodes. The workload
data was collected through a dedicated monitoring system [10].

Figure 2.5 shows the distribution of job duration of the workload. 92.15%
of the jobs in the workload based corresponds to short jobs (under 1 hour),
7.07% are medium jobs (between 1 and 5 hours) and 0.78% are long jobs (over
5 hours). Considering these classes together, the Eurora system executed jobs
during 121,885 hours in total, where the medium jobs used most of the resources,
with 70.43% of the total while short and long jobs use only 8.94% and 20.63%,
respectively. Hence, the workload is quite varied from this point of view. The
figure demonstrates the existence of many short jobs and fewer longer jobs,
with a long-tailed distribution of job duration, which is typical to HPC [112]
and cloud systems [101].

Figure 2.5: Distribution of job durations on the Eurora system.

18The Italian Inter University Consortium for High Performance Computing (http://www.
cineca.it).

http://www.cineca.it
http://www.cineca.it
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We further divide jobs into three classes based on the computing resources
that they require: CPU-based jobs use CPUs only, while MIC-based and GPU-
based jobs use MIC or GPU accelerators, respectively, in addition to CPUs.

Job class Share Count
Average duration

[hh:mm:ss]

All 100% 404,866 00:18:03
CPU-based 24.56% 99,431 00:49:19
MIC-based 0.69% 2,810 00:55:42
GPU-based 76.75% 302,625 00:07:26

Table 2.1: Frequency and average duration of all jobs and the three classes
CPU-based, MIC-based and GPU-based in the Eurora workload.

Table 2.1 shows statistics for each computing resource class in the workload.
We observe that GPU-based jobs are the most numerous, followed by CPU-
based jobs, while MIC-based jobs are relatively few. In terms of duration, we
observe that CPU-based jobs are on average longer than GPU-based jobs, con-
suming significantly more resources. This heterogeneity of job classes increases
the difficulty of allocation decisions. Since CPU-based jobs are longer, they may
keep nodes that have accelerators busy for longer periods, during which their
accelerators are not available for other jobs. Given that GPU-based jobs are
the most frequent, this can cause bottlenecks to form in the system.

Figure 2.6: Distribution of job durations on the Gaia system.

Gaia and its workload dataset The Gaia cluster is one of the 4 clusters
operated by the University of Luxembourg HPC Center 19 (ULHPC). ULHPC
operates a total of 690 computing nodes for a total cumulative capacity of
1,263 TFlops (11,228 CPU cores) and a shared storage capacity of 8,742 TB

19https://hpc.uni.lu

https://hpc.uni.lu
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(+ 1020 TB for backup). The Gaia system is a heterogeneous cluster that has
been upgraded several times after its release in 2011. The workload dataset of
the Gaia system spans from May to August 2014 with 51,987 jobs, and it was
used mainly by biologists working with large data problems and engineering
people working with physical simulations. The system configuration, during
this period featured 151 nodes, manufactured by Bull and Dell, with a total of
2004 cores. 20 nodes had NVidia Tesla-class GPUs accelerators. Full details
about its configuration and history are available in the University of Luxemburg
Gaia Cluster site. 20.

The Gaia workload is composed by 66.45% of short jobs, 17.70% of medium
jobs, and 15.85% of long jobs, as depicted in Figure 2.6. Similar to the job
duration distribution of the Eurora workload dataset, the Gaia workload dataset
also shows a long-tailed distribution of job duration, which enforces the idea of
giving priority to jobs regarding their duration. The total CPU time employed
by Gaia during these 3 months corresponds to 206,815 hours, where long jobs
where used most of the resources with 86.81% of the total, whereas 9.97% and
3.21% corresponds to medium and short jobs, respectively.

Figure 2.7: Distribution of job durations on the KIT system.

KIT and its workload dataset The Karlsruhe Institue of Technology ForHLR
II System 21, shortened as KIT, is a HPC system located at the Karlsruhe In-
stitue of Technology in Germany. The KIT system has two types of computing
nodes: thin and fat. There are 1152 thin nodes with 20 cores and 64 GB memory
each, and 21 fat nodes with 48 cores, 4 NVIDIA GeForce GTX980 Ti graphics
cards, and 1 TB memory each.

The workload dataset contains 114,355 submitted jobs for one and a half
years, from June 2016 to January 2018. Similar to the previous workloads
datasets, as showed in Figure 2.7, short jobs prevail with 66.26% of the total

20https://hpc.uni.lu/systems/gaia/
21https://www.scc.kit.edu/dienste/forhlr2.php

https://hpc.uni.lu/systems/gaia/
https://www.scc.kit.edu/dienste/forhlr2.php
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number of jobs in the job duration distribution, followed by long jobs 22.55%
and medium with 11.19%. The CPU time executed by all jobs in the workload
rises to 562,772 hours, where long jobs represent the maximum resource usage
with 92.08% of the total CPU time, 5.88% and 2.04% corresponds to medium
and short jobs, respectively.

Figure 2.8: Distribution of job durations on the Seth system.

Seth and its workload dataset The Seth cluster22 which was part of the
High Performance Computing Center North of the Swedish National Infrastruc-
ture for Computing. Seth was composed of 120 nodes, each node contained two
dual-core processors and 1 GB of RAM. The total system peak performance
was 800 Gflops. Therefore, 480 cores and 120 GB of RAM in total. The work-
load dataset contains 202,871 jobs spanning through 4 years, from July 2002 to
January 2006.

As shown in Figure 2.8, most of the half of jobs, specifically 57%, are short
jobs, followed by long jobs representing 24%, and the remaining 19% belong to
medium jobs. The total core hours are 953,912, and contributed mainly by long
jobs, which represents the 87% of the total.

RICC and its workload dataset The RIKEN Integrated Cluster of Clus-
ters, named RICC, is an HPC system located at RIKEN 23, an independent
scientific research and technology institution of the Japanese government. The
workload data corresponds to the massively parallel cluster, one of four of the
clusters of RIKEN, which has 1024 nodes, each with 12 GB of memory and two
4-core CPUs, for a total of 12 TB RAM and 8,192 cores.

The workload dataset contains 447,794 submitted jobs from May 2010 to
September 2010, so many jobs were submitted in a short period. This workload
dataset also enforces the statement that short jobs prevail on HPC systems,

22https://www.hpc2n.umu.se/resources/hardware/seth
23http://www.riken.jp/

https://www.hpc2n.umu.se/resources/hardware/seth
http://www.riken.jp/
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Figure 2.9: Distribution of job durations on the RICC system.

which is observable in Figure 2.9, 66.22% of the total number of jobs corresponds
to this classification. Instead, 19.86% and 13.92% corresponds to medium and
long jobs, respectively. The total CPU time is 1,473,652 hours, mainly executed
by long jobs with a 83.20%, 12.64% and 4.16% corresponds to medium and short
jobs, respectively.

MetaCentrum and its workload dataset The MetaCentrum system 24 is
the national grid of the Czech republic. The workload dataset contains 5,731,100
jobs spanning through 2 years, from Jan 2013 to Apr 2015. During the recorded
period, it was composed of 19 clusters with 495 nodes, 8412 cores and 10 TB of
RAM in total. The current hardware of MetaCentrum is available online in its
website. 25

This workload dataset is, again, mainly composed of short jobs and follows
a heavy-tailed distribution, see Figure 2.10: 79% of short jobs, 13% of medium
jobs and 9% of long jobs. The total core hours reach to 18,444,716, where long
jobs represents 89% of the total.

Workload datasets available in the Parallel Workload Archive In spite
of Gaia, KIT, and MetaCentrum systems have GPU resources in their config-
uration, the workload does not contain information about the request of such
a resource, therefore we cannot give these details either simulate them based
on the available data. However, detailed information of the job request will be
available in an actual system and will be provided by the WMS at dispatching
time.

24https://metavo.metacentrum.cz/en/index.html
25https://metavo.metacentrum.cz/pbsmon2/hardware

https://metavo.metacentrum.cz/en/index.html
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Figure 2.10: Distribution of job durations on the Metacentrum system.

2.2 Constraint Programming

This section is important to understand the nature of the dispatchers proposed
in this dissertation. We briefly introduce Constraint Programming (CP) and
present relevant concepts which will be used throughout the dissertation.

CP is a powerful paradigm for solving combinatorial search problems based
on feasibility, that is finding feasible solutions, by focusing on the constraints
and variables. CP bases its technology primarily on logic programming, graph
theory, artificial intelligence, and operations research. To solve a problem using
CP, it must be formulated as a Constraint Satisfaction Problem (CSP) by the
process of modeling. A problem may have different alternatives for defining de-
cision variables and constraints, which may affect the efficiency of the solution
method. Therefore, an effective model for a given problem is a challenging task
before to solve it. To find solutions, CP combines search and constraint propa-
gation (See Section 2.2.2 and 2.2.3 respectively). In detail, a search algorithm
searches in the space of possible assignments, while the constraint propagation
keep all constraints consistent by reducing the domains of the variables, thus,
reducing the effort during the search.

2.2.1 Constraint Satisfaction and Optimization Problems

Constraint Satisfaction Problems (CSPs) are a standard, structured, and very
simple representation of problems, where search algorithms can take advantage
of the structure of the problem and use, in general, general-purpose heuristics
to solve them. A CSP has a set of decision variables and a set of constraints.
Each variable has a domain, which defines the possible values from a finite set
that the variable can take, whereas each constraint restricts the possible values
that the involved variables can at the same time take. Therefore, a solution to
a CSP is an assignment of values to the variable such that all constraints are
satisfied simultaneously.
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Definition 2.2.1. CSP. A Constraint Satisfaction Problem (CSP) consists of a
set of variables X = {x1, . . . , xn}; a set of values, D = {a1, . . . , an}, where each
variable xi ∈ X has an associated finite domain dom(xi) ⊆ D of possible values;
and a collection of constraints C1, . . . , Cm. Each constraint Ci involves some
subset of variables and specifies the possible combinations of values for that
subset. A state of the problem is defined by an assignment of values to a subset
of variables. An assignment on which all constraints are satisfied simultaneously
is called a consistent assignment. A solution is found to a CSP when a complete
assignment is performed, i.e. all variables have an assigned value. If no solution
exists, the CSP is said to be inconsistent or unsatisfiable. Some CSPs require a
solution that maximizes or minimizes an objective function.

We use the map-coloring problem as an example. In this problem, the aim
is to color each region of a map in a way that neighbor regions are not col-
ored with the same color. Consider the problem instance of coloring the map
of comumas of the Región de Coquimbo, Chile; as depicted in Figure 2.11a.
Following, we will define the corresponding CSP of this map. The comunas are
represented by X = {x1, . . . , x15}. We can consider 6 available colors based on
the maximum number of neighbors of all comunas, max |dom(X)|, as to ensure
a feasible solution. The domain for each xi is dom(xi) = {1, 2, 3, 4, 5, 6}, where
each number represents a specific color. For instance, 1 is gray, 2 is blue, and
so on.

(a) Comunas (administrative divisions)
of Región de Coquimbo, Chile.

(b) Constraint graph of the map-coloring
problem.

Figure 2.11: Representing the Región de Coquimbo map as a constraint graph.

Regarding to the restrictions of the problem, i.e. neighboring regions require
to have distinct colors, so we define an inequality constraint for each pair of
neighbor comunas. We use a constraint graph, in this case Figure 2.11b, to
visualize the CSP easily. The nodes correspond to variables of the problem
and the arcs correspond to neighbor regions. Following, we consider x1 as an
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example to define its constraints:

x1 6= x2 x1 6= x3 x1 6= x11

x1 6= x13 x1 6= x14

For the remaining comunas, X − {x1}, we define the remaining inequalities
as to complete all restrictions of the problem. Each constraint Ci is a relation
(a set of tuples) over some set of variables, denoted by vars(C). In general,
the size of the set vars(C) is called the arity of the constraint. In the previous
case, we defined binary constraints, which is a constraint of arity two, but also
there are the unary constraint which is a constraint of arity one, and a non-
binary constraint which is a constraint of arity greater than two. Up to here
the modeling process is finalized.

From now, solutions are obtained by using a Constraint Solver. A Con-
straint Solver finds assignments to all the variables that satisfies the problem
constraints. Constraint Solvers are extended to involve, for example, finding
optimal solutions according to one or more optimization criterion, finding all
solutions, replacing (some or all) constraints with preferences, and considering
a distributed setting where constraints are distributed among several agents.
Constraint solvers search the solution space systematically or use forms of lo-
cal search which may be incomplete (see Section 2.2.2). Search is interleaved
with constraint propagation, which consists of propagating the information con-
tained in one constraint to the neighboring constraints (see Section 2.2.3). Such
inference reduces the parts of the search space that need to be visited.

Figure 2.12 depicts a solution of our example instance of the graph-coloring
problem, which is an assignment of values to the variables such that all con-
straints are satisfied simultaneously:

x7

x10x8

x15
x6 x9x5

x12x13

x14 x11

x1 x2

x4x3

x1 ← 1 x2 ← 2 x3 ← 3
x4 ← 1 x5 ← 1 x6 ← 2
x7 ← 1 x8 ← 3 x9 ← 6
x10 ← 2 x11 ← 3 x12 ← 5
x13 ← 3 x14 ← 2 x15 ← 4

Figure 2.12: A solution for the Región de Coquimbo instance
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A CSP usually may contain multiple solutions, even when all the constraints
are satisfied, however at this point there is no way to discriminate among them
and such solutions appear equally good. To find the optimal solution to the
CSP a function f must be either maximized or minimized depending on the
requirements of the problem.

A Constraint Satisfaction Optimization Problem (CSOP) is defined as a
CSP with an optimization function f which maps every solution to a numerical
value. The task in a CSOP is to find the solution T such that the value of f(T )
is, without loss of generality, minimized. Therefore, in addition to problem
constraints, an objective function f must be optimized. To do so, a variable c
constrained to be equal to the objective function, c = f(X), is included in the
model. Then, a objective constraint, c < f(T ), is posted excluding solutions
which are not better than the current T solution. The search continues until
the entire search-tree is traversed. Therefore, the last solution found is proved
optimal.

Therefore, getting back on track with the map-coloring problem, we can
also find a solution using the minimum number of available colors, if the CSP
is turned into an optimization problem. To do so, we consider an objective
function defined as:

min z = max
xi∈X

xi

Therefore, each variable xi ∈ X takes the minimum value of the colors for
which all the constraint are satisfied. Figure 2.13 depicts the optimal solution
for optimization version of the example with z = 4.

x7

x10x8

x15
x6 x9x5

x12x13

x14 x11

x1 x2

x4x3

x1 ← 1 x2 ← 2 x3 ← 3
x4 ← 1 x5 ← 1 x6 ← 2
x7 ← 1 x8 ← 3 x9 ← 1
x10 ← 2 x11 ← 3 x12 ← 1
x13 ← 3 x14 ← 2 x15 ← 4

Figure 2.13: Coloring the Región de Coquimbo map with the minimal number
of available colors
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2.2.2 Search

A systematic search algorithm, also known as a complete search algorithm, is
the most simple way to find solutions to CSPs, and to guarantee (i) a solution
if it exists, or (ii) to show that a CSP does not have a solution or to find an (iii)
optimal solution. Conversely, a non-systematic search algorithm, also known as
an incomplete search algorithm, is useful at finding a solution, without guarantee
if one exists, in a large search space.

Backtracking search algorithms are the most relevant systematic algorithm
in literature [130], and they have been studied different ways of improving their
efficiency, including branching strategies, heuristics for variable and value or-
dering, randomization and restart strategies, among others.

The term Backtracking (BT) search is used for a depth-first search that
chooses values for one variable at a time and backtracks when a variable has
no values left to assign. This can be seen also as a depth-first traversal of a
search tree, which is generated as the search progresses and represents alterna-
tive choices examined to find solutions. Extending a node in the search tree is
called branching, and corresponds to select a variable and a value. Constraints
are used to simplify the remaining subproblem and to check whether a node
may possibly lead to a solution of the CSP and to prune subtrees containing
no solutions. A node in the search tree is a dead-end if it does not lead to a
solution.

So far, we assumed search works by posting an assignment, propagating and
backtracking in case of failure to try another value. The previous scheme is called
enumeration, or d -way branching, and tries all possible values. Another strategy
is called bisection or domain splitting which posts two inequality constraints (≤
and >) on each branch. Finally, the last branching strategy often used is the
2-way branching, also known as binary choice points, which corresponds to post
an equality (=) and an not equality ( 6=) constraints for the assignment. The
last two strategies improves the search process since some values of the domain
are deleted after posting the unary constraint which starts the propagation and
detecting inconsistencies. All these strategies are identical if the domains are
binary. Later, in Section 2.2.4, we describe in more detail a search strategy for
scheduling problems which uses binary choice point strategy.

Branches are often ordered using heuristics, heuristic for variable and value
selection. A variable ordering heuristic can be from one of two categories: do-
main size-based and CSP structure-based [130] heuristics. The first category
of heuristics base their ordering on the current domain sizes of the unassigned
variables [56, 61, 23, 13, 19]. Instead, CSP structure-based heuristics are based
on the graph representation of a problem. These heuristics have some limi-
tations which hinder they adoption like break down in the presence of global
constraints, or because they are static or nearly static [8].

A value ordering heuristic choose the next value for a selected variable, and
can be a simple heuristic such as picking the smallest value first and step-wise
increase it to more complex, dynamic variable orderings evaluate information
about the current node in the search tree to heuristically choose a promising
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value [39, 53, 54].
However, to identify which is the best strategy for a problem sometimes

is a complex task, because among its instances different strategies may have
different performances. Autonomous search [59] is a modern approach used to
allow solvers to automatically re-configure their strategy to improve the search
process when poor performances are detected via indicators gathered during
the search. This is carried out using a hyperheuristic, which is a method to
choose heuristics. This problem can be seen as an optimization problem, so
as to improve the selection of heuristics simple metaheuristics are used [36, 37,
116, 117]. Autonomous Search is specially useful for users not having any expert
knowledge for efficiently solving problems.

When a dynamic scheme for variable and value selection is used, randomiza-
tion and restart strategies take a principal role during search. These techniques
have been proposed to take advantage of a dynamic selection of variable or value
ordering heuristic during the search, due to such heuristics perform a different
number of mistakes, and during different stages during the search, then a large
variability in performance between them. A periodically restarting with differ-
ent variable orderings could eliminate the problem of “early mistakes” [57, 86].

2.2.3 Constraint Propagation

Constraint propagation, also known as constraint relaxation, filtering algo-
rithms, narrowing algorithms, constraint inference, simplification algorithms,
label inference, local consistency enforcing, rules iteration, chaotic iteration; is
a very general concept which embeds any reasoning to explicitly forbid values or
combinations of values for some variables of a problem because a given subset
of its constraints cannot be satisfied otherwise [12].

Definition 2.2.2 (Constraint). A constraint c is a relation defined on a se-
quence of variables vars(c) = (xi1 , . . . , xi|vars(c)|), where vars(c) is called the
scheme of c and |vars(c)| is the arity of c. Constraint check is the process of
testing if a tuple τ ∈ Z|vars(c)| satisfies c. The set of tuples rel(c), called the
constraint relation, specify the allowed variable-value combinations.

Therefore, the original problem is reduced to an equivalent but smaller prob-
lem, where a backtracking search commits into less inconsistent instantiations by
detecting inconsistency earlier. Inconsistencies are detected by inference which
can be global or local, however in practice, only local consistency is verified, i.e.
individual constraints are examined because verifying global consistency is NP-
Complete. Constraints of arity one are called unary constraints, those of arity
two are binary and of a greater arity are non-binary. There are also constraints
defined on an independent arity called Global constraints.

Different properties of consistency exists depending on the arity of the con-
straint. We describe here some of them, a more complete list can be found
in [38, 12]:
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• node consistency : A simple consistency property concerning unary con-
straints. We say a constraint c, with |vars(c)| = 1, is consistent if for all
a ∈ dom(x1) satisfy c.

• arc-consistency : The most widely used local consistency for binary con-
straints. We say a constraint c, with |vars(c)| = 2, is arc-consistent for its
variables if for every a ∈ dom(x1) there is some value b ∈ dom(x2) such
that rel(c) with var(c) = (x1, x2) is satisfied.

• generalized arc-consistency (GAC): This consistency is not restricted to bi-
nary constraints, indeed it is a extension of arc-consistency with |vars(c)| =
n. Then, for all variables x ∈ var(c) and for all values a ∈ dom(x) can
be extended to all the other variables of the constraint in such a way the
constraint is satisfied. GAC is one of the most commonly enforced forms
of consistency in constraint programming.

In general, these properties are not sufficient conditions for obtaining so-
lutions for CSPs, because more constraints are part of the same problem and
the consistency is only checked locally. Therefore, constraint propagation is in-
terleaved with search. Before searching, the problem is preprocessed to prune
the domains of the uninstantiated variables, which at the beginning are all the
variables of the problem. As the search continues, the domains of the uninstan-
tiated variables shrink, as well as the size of the search tree, because of the local
consistency must be maintained during all the search.

As the domain of a variable changes, each constraint which uses that variable
is examined and the local consistency needs to be established if necessary. The
local consistency is maintained through a systematic process called constraint
propagation. We recall the constraint propagation is also due to variable assign-
ments. The constraint propagation may result in the reduction of the domains
of variables with filtering algorithms.

Global Constraints A global constraint is a constraint that captures a rela-
tion between a non-fixed number of variables. Usually, this kind of constraint
can be expressed as the conjunction of several simpler constraints, but ease the
modeling part is not one key aspect, they include specific filtering algorithms
which capture better the structure of the problem. A complete list of global
constraint can be found in the Global Constraint Catalog 26, which presents a
list of 348 global constraints issued from the literature in CP and from popular
constraint systems.

A well-known global constraint is the alldifferent constraint, which spec-
ifies that the values assigned to the variables must be pairwise different. As an
example, we can consider the Sudoku problem, which consists of completing the
assignment of a board using numbers from 1 to n2 such that the entries in each
row, each column, and each n× n sub-square are pairwise different. This prob-
lem can be easily modeled with 3n2 alldifferent constraints instead of using

26https://web.imt-atlantique.fr/x-info/sdemasse/gccatold/

https://web.imt-atlantique.fr/x-info/sdemasse/gccatold/
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pairwise differences for each region (rows, columns and sub-squares), which is
more tedious and may not achieve a strong propagation. Many Sudoku instances
can be solved using propagation [110, 115] showing the importance of this step.

We will introduce another well-known global constraints in Section 2.2.4
which are used in scheduling problems.

2.2.4 Scheduling in CP

Solving scheduling problems have been widely studied over the years by using
CP, indeed such discipline is named Constraint-Based Scheduling, and is one
of the most successful applications areas. This success is given by a virtuous
circle originated by nature of CP, i.e. the integration of Artificial Intelligence
and Operations Research. A detailed explanation of this synergy can be found
in [6]. A general scheduling problem corresponds to allocate scarce resources to
a given set of activities over time.

There exists different types of activities depending on the class of the prob-
lem: Non-preemptive scheduling, preemptive scheduling, and elastic scheduling.
We focus on the first type of the scheduling problem, because it corresponds to
the most similar class to model the job dispatching problem for HPC systems.
A non-preemptive scheduling problem includes only activities which are started
without interruption. An activity ai can be easily encoded with three integer
variables:

• si: Start time of the activity ai.

• ei: End time of the activity ai.

• di: Duration of the activity ai.

Since we are considering activities of a non-preemptive scheduling problem,
these three variables must satisfy si+di = ei. In scheduling problems, activities
are usually restricted to starting and ending limits:

• Earliest Start Time (ESTi) of ai: min(dom(si))

• Latest Start Time (LSTi) of ai: max(dom(si))

• Earliest End Time (EETi) of ai: min(dom(ei))

• Latest End Time (LETi) of ai: max(dom(ei))

We can see that many constraints will emerge only for the definition of only
one activity, for instance si ∈ [ESTi, LSTi]. Using constraint language, we
introduce the concept Conditional Interval Variable (CIV) [76] to encapsulate
all variables and constraints belonging to an activity. A CIV τi represents
an activity ai and defines the time interval during which ai is executed. The
properties s(τi) and d(τi) correspond respectively to the start time and the
duration of the activity ai. EST and LET are usually constrained by users
to specify the release and deadline times of activities. CIVs allows to specify
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temporal relations either for unary (τi ends after t, τi ends at t, ...) and binary
(τj ends after taui ends, τj ends after taui starts, ...) constraints. Another
interesting feature is its execution status x(τi). An executed CIV, x(τi) = 1, has
a special meaning. Informally speaking, it corresponds to an interval variable
which is concerned by all the constraints or expressions on variables on which
it is involved in. Conversely, for a non-executed, x(τi) = 0, it start, end and
duration are meaningless.

Scheduling problems vary also depending on the type of scarce resources.
These resources can be disjunctive and/or cumulative. In a disjunctive schedul-
ing problem, all resources have capacity 1, i.e. only one activity can be executed
at a time, as in Figure 2.14a. Whereas, in a cumulative scheduling problem,
several activities can be executed in parallel without exceeding the resource ca-
pacity over time, as in Figure 2.14b. We represent the need for resources by
activities over time through resource constraints. Given an activity ai and a
resource r, whose capacity is cap(r), we represent the need of r by activity ai
as req(ai, r).

(a) A disjunctive resource. (b) A cumulative resource.

Figure 2.14: Types of resources in scheduling problems

Disjunctive constraint In case of resources that can handle one activity at
the time, the disjunctive constraint, disjunctive(τ), restricts the overlapping
of two or more activities in time, i.e. e(τi) > s(τj) ∧ s(τi) < e(τj) ∀i, j, i 6=
j. Such a situation is, of course, common in disjunctive scheduling but also
occurs in cumulative scheduling, when the sum of the capacities required by
two activities exceeds the capacity of the resource. This constraint has two
main versions. The first one corresponds when the duration of the activities
are fixed and the goal is to perform as many tasks as possible within their
respective due-dates [7]. The second version deals with unbound duration, for
which different propagation techniques have been proposed, such as constructive
disjunction [64, 137], edge-finding [27, 132, 98], and the most popular, the time-
tabling method [78].

Cumulative constraint The capacity constraints are enforced via the global
cumulative constraint for all activities i ensuring that at each point in time
the total req(ai, r) of the activities i using k that overlap at any point does not
exceed caprk . Formally,
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cumulative(τ, reqA,r, cap(r))

which holds iff
∑
i|s(τi)≤u<s(τi)+d(τi)

reqai,r ≤ cap(r) for all u in time. Where

τ is the set of CIVs, reqA,r are the resource requirements and cap(r) is the
capacity of r.

Similar to the disjunctive constraint, the most commonly used propagation
technique for the cumulative constraint is based on time-tables. This technique
compute and maintain during the search the sum of every activity requirement
reqA,r at each time interval t. This information allows to restrict the domains of
the start and end times of activities by removing the times that would necessarily
lead to an over-consumption of the resource.

Alternative constraint The execution status of a CIV (x(τi)) takes a special
meaning with this constraint. Given a set of alternative possibilities {τi,1, . . . , τi,n}
of a given τi, the alternative constraint ensures that if τi is executed, that is
x(τi) = 1, exactly m of the optional intervals are also executed and have the
same duration, starting and ending times as τi. The signature of this constraint
is:

alternative(τi, {τi,1, . . . , τi,n},m)

which holds iff
∑n
j x(τi,j) = mx(τi) and s(τi, j) = s(τi), e(τi, j) = e(τi),

(τi, j) = d(τi) ∀j ∈ n.

Non-Overlapping Boxes Constraint The Non-Overlapping Boxes Con-
straint, also known as diffn constraint, was introduced in CHIP [11] to tackle
multi-dimensional placement problems. In general, the diffn constraint holds
if the set of objects defined in an n-dimensional space do not overlap, so there
exists at least one dimension where two pairs of objects are disjunctive. For
instance consider the example of four boxes which must be placed in a 6 × 7
space. The coordinates (x, y) and dimensions (dx, dy) of the boxes are:

box1: x1 ∈ [1, 3] dx1 ∈ [2] y1 ∈ [1, 3] dy1 ∈ [3]
box2: x2 ∈ [1, 3] dx2 ∈ [3] y2 ∈ [1, 3] dy2 ∈ [2]
box3: x3 ∈ [1, 2] dx3 ∈ [1] y3 ∈ [1, 4] dy3 ∈ [4]
box4: x4 ∈ [1, 6] dx4 ∈ [4] y4 ∈ [1, 2] dy4 ∈ [1]

Using the example, we redefine the data of the boxes in four sets, X =
[x1, . . . , x4] and Y = [y1, . . . , y4], that correspond to the sets of the x and y
coordinates, respectively; and DX = [dx1, . . . , dx4] and DX = [dx1, . . . , dx4],
to the sets of the x and y dimensions, respectively. Finally, we set the maximum
values of the space as Xmax = 6 and Ymax = 7.

To restrict the overlapping we post a diffn constraint as follows:

diffn((X,DX, Y,DY,Xmax, Ymax)
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Figure 2.15 shows all solutions of the example. 27

Figure 2.15: Possible solutions for the diffn example.

Search in scheduling Search strategies presented in Section 2.2.2 do not
utilize any information specific to scheduling problems, tending to show a very
slow performance. Therefore, specific search strategies for scheduling problems
has been proposed in literature [97, 107, 55, 84]. The Set Start Times (SST) is a
widely-used search strategy solving scheduling problems also known as Schedule
Or Postpone, which is based on Priority Rules-Based scheduling, thus finds good
solutions early, and implicitly makes ordering decisions. The algorithm of the
SST is presented in Algorithm 1.

Algorithm 1: The Set Start Times algorithm

1 solution or failure ← SST (assignment, CSP)
2 begin
3 var ← SELECT INTERVAL(assignment, CSP)
4 if var <> NULL then return solution or failure
5 return SST(ScheduleOrPostpone(var))

6 end

At each node of the search-tree this strategy selects the interval τi with
the minimal EST and minimal LET to break ties. Create a choice point
(ScheduleOrPostpone) to allow backtracking: on the left branch s(τi) =
ESTi, and on the right branch τi is marked as non-selectable until its earliest
start time is modified by propagation, i.e. postponed.

27Source: https://sofdem.github.io/gccat/gccat/Cdiffn.html

https://sofdem.github.io/gccat/gccat/Cdiffn.html
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2.3 CP-based online job dispatchers for HPC
systems

We already introduced Constraint Programming (CP), however we did not men-
tion why using it to solve the job dispatching problem in HPC system may be
an interesting option. CP is a declarative programming paradigm for modeling
and solving constraint satisfaction and optimization problems [105]. While it
has its roots in artificial intelligence, the last decades have witnessed its suc-
cessful cross-fertilization with related disciplines such as operations research,
metaheuristics, SAT, and more recently, machine learning. [89, 131] provide
some perspectives on what has been achieved in the last twenty years of CP
research in tackling constraint optimization problems. CP has been widely used
for scheduling problems, in various contexts such as transportation [107, 104],
staff scheduling [135], sports competition scheduling [100], etc.

Since the job dispatching problem can be naturally framed as resource allo-
cation and scheduling problem, CP-based job dispatchers have been proposed
given that the promising application of CP in the scheduling and allocation
area [6]. All this success is due to specific types of decision variables, global
constraints, optimization functions and search algorithms dedicated to the dis-
patching domain. There are two main state-of-the-art CP-based dispatchers
for HPC systems available in the literature. The first CP-based dispatcher [9],
the entire dispatching problem is modeled and solved using a CP solver. The
second dispatcher [18] instead relies on a hybrid method. While the scheduling
problem is modeled and solved in a CP solver, the allocation problem is solved
separately using a heuristic search algorithm. We will refer to them as PCP and
HCP, respectively, to mean the use of a Pure CP and a Hybrid CP method in
their dispatching algorithms.

Scheduling In both PCP and HCP, the scheduling problem is modeled with
interval variables [75]. An interval variable τi ∈ τ represents a job i and defines
the time interval during which i runs. At a certain dispatching time t, there
may already be jobs in execution which were previously scheduled and allocated.
We refer to such jobs as running jobs. The scheduling model considers in the
τ variables both the running jobs and the queued jobs in Q. The properties
s(τi) and d(τi) correspond respectively to the start time and the duration of
the job i. Since the actual runtime duration dri of a running or queued job i is
unknown at the modeling time, PCP and HCP rely on an estimation and use the
expected duration di for d(τi). Thus we have d(τi) = di for the queued jobs and
d(τi) = s(τi) + di − t for the running jobs. While the start time of the running
jobs have already been decided, the queued jobs have s(τi) ∈ [t, eoh], where eoh
is the end of the worst-case makespan calculated as t +

∑
τi
d(τi). Expected

durations di are supplied by the users. In the absence of this information, the
dispatchers use the default wall-time of the queue. It is important to note that
even user-supplied values tend to be equal to the wall-time of the queue, which
is indeed the maximum allowed value for di. We will refer to the use of such di
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to define d(τi) as the wall-time approach.
Unlike PCP, HCP searches for a start time for the first m jobs in Q (referred to

as Q̄). The remaining jobs in Q\Q̄ are still in the model, but they are postponed
to the end of the makespan by fixing their start time as s(τi) = eoh− d(τi).

The capacity constraints in PCP are enforced via a cumulative constraint as

∀n ∈ N ∀r ∈ R cumulative(τ, reqr, capn,r)

which holds iff
∑
i|s(τi)≤u<s(τi)+d(τi)

reqi,r ≤ capn,r for all u in the makespan.
Thus, for all n ∈ N and for all r ∈ R, it is ensured that at any given time
in the makespan the total reqi,r of the jobs i using r does not exceed capn,r.
In HCP, resources of the same type across all nodes are considered as a pool of
resources, hence the cumulative constraints are posted for each r ∈ R with the
total capacity CapTr =

∑
n∈N capn,r. Any infeasibility that may be introduced

due to this modelling choice is fixed during the allocation phase. Moreover, HCP
considers also power as a resource type r with its own total capacity CapTpower,
which is a user-defined power cap, and the cumulative constraint ensure that
the total power consumed by the jobs cannot exceed CapTpower.

Both dispatchers consider the objective function which minimizes the sum
of the waiting times of the jobs. In PCP, the objective function is formalized as:∑

τi

max(0,
s(τi)− qi − ewti

ewti
)

which is a weighted sum so as to give priority to the jobs that stay in the
queue longer than their ewti. The ewti value is the average waiting time of the
queue where i is submitted, and is obtained by analyzing the execution traces
of the workload dataset. Originally, these values where obtained by analyzing
the Eurora workload dataset which was collected by the PBS dispatcher [63].

In the objective function of HCP, the weights are slightly different, giving
priority to the jobs of the queues with lower expected waiting times:∑

τi

max(ewti)

ewti
∗ (s(τi)− qi)

We will explain later how the corresponding scheduling models are solved
by PCP and HCP.

Allocation In PCP, the total amount of requested resources reqi,r of a job i
is divided into rni identical jobs units ui,j , where rni is the maximum number
of requested nodes for i and is supplied by the user during job submission.
Each job unit ui,j requires reqi,r/rni amount of resources for each r ∈ R. The
units of a job can be allocated on the same or different nodes, depending on
the availability in the system. The number of ui,j which can be allocated on
a node n is calculated as pi,n = min(rni,minr∈R b capn,r

reqi,r/rni
c). We denote with

[ui,j,n] the sequence of pi,n possible allocations of the jobs units ui,j of i on n,
where each element in the sequence is a Conditional Interval Variables (CIVs)
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[75]. So, the allocation problem is modelled using CIV, which has an interesting
property, if a CIV is set as non-executed, it is not considered by any constraint
or expression on interval variables it is involved in. Conversely, interval variables
used in the scheduling model are always executed, thus, are always considered
and have always a starting time.

Thus, ui,j,n represents the utilization of the reqi,r/rni amount of resources
of a node n during [s(τi), s(τi) + d(τi)]. The fact that rni allocations among
[ui,j,n] should be chosen is enforced as:

∀τi alternative(τi, [ui,j,n], rni)

which ensures rni CIVs in [ui,j,n] to have s(ui,j,n) = s(τi) and d(ui,j,n) = d(τi)
i.e. ui,j,n ≡ τi, if s(τi) is assigned a value.

Instead in HCP, it is solved by a PRB algorithm for the jobs which have
s(τi) = t after the scheduling model is solved. This heuristic algorithm itera-
tively tries to allocate each scheduled job using the best-fit allocation strategy.
The jobs are chosen based on their priority. The jobs that have been waiting
the longest at time t have the highest priority. Such a priority is calculated in
line with the priority of the jobs in the objective function:

max(ewti)

ewti
∗ (t− qi)

.
As a tie breaker, job demand is used, which is the job’s resource requirements

multiplied by job duration d(τi). Hence, among the high priority jobs, those
that have requested fewer resources and have shorter durations have further
priority. Since the scheduling decision may contain some inconsistencies due to
considering the resources of the same type as a pool, a job may not be allocated,
in which case it is postponed to the next dispatching time.

Search To solve the scheduling and the allocation model altogether, PCP uses
the self-adapting large neighborhood search algorithm [74] which is the default
search available in the solver where PCP is implemented [77]. HCP instead uses a
custom search algorithm derived from the schedule-or-postpone algorithm [96]
to solve the scheduling model. The criteria used to select a job among all the
available ones at each decision node follows the priority rule used in the PRB
allocation algorithm, thus preferring the jobs that can start first and whose
priority are highest. Note that the priorities are calculated once statically at
the dispatching time t before search starts. Due to problem complexity, search
in both PCP and HCP is bounded by a time limit δ. Thus, the best solution
found within the limit is the dispatching / scheduling decision. If, however, no
solution is found within the limit, the search is restarted with an increased time
limit 2 ∗ δ. This procedure continues while no solution is found and δ ≥ δmax,
where δmax is the maximum time available to generate a decision.

Scalability of the models For a given instance of the on-line job dispatching
problem, PCP will use |Q| decision variables to model the scheduling problem
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and
∑
i∈Q̄

∑
n∈N pi,n decision variables to model the allocation problem, where

pi,n = min(rni,minr∈R b capn,r

reqi,r/rni
c), and, rni and reqi,r are the number of

requested nodes and the number of requested r resources by i, respectively;
capn,r is the capacity of the resource r in n. To illustrate the number of decision
variables employed in the PCP model, let us consider a simple serial job i, i.e.
rni = 1, so the decision variables to model i will be 1 + |N |, with N as the
set of computing nodes. If the system is small, such as Eurora which has 64
nodes, with half of them corresponds to nodes with GPU and the other half
MIC nodes, the model will use 65 decision variables in the worst case, instead,
if the job requests MIC or GPU resources, it will be 33 decision variables. Thus,
this model in a bigger system will use more decision variables, even more, if jobs
are highly parallel (rni > 2) and still more if many jobs are in |Q|. Thus, this
model may not be suitable on a system with a higher number of nodes due
to the increment of decision variables and consequently requiring more time to
generate a dispatching decision.

Conversely, HCP presents a simpler model with only |Q| decision variables,
being suitable for any-size of HPC systems. However, since the allocation prob-
lem is uncoupled, the generated solution is loosely generated in relation to the
actual availability of the system, which may produce low-quality solutions.



Chapter 3

Accasim: A Workload
Management System
simulator

HPC systems have become fundamental tools to solve complex, compute-intensive,
and data-intensive problems in different research and business fields. As the de-
mand for HPC technology continues to grow, a typical HPC system receives a
large number of variable requests by its end users. These precedents call for the
efficient management of the submitted workload and system resources. To study
the impact of different configurations in such management, in this chapter, we
introduce a workload management simulator named AccaSim.

One of the challenges of job dispatching research is the intensive experimen-
tation necessary for evaluating and comparing various dispatchers in a controlled
environment. The experiments differ under a range of conditions with respect to
the workload, the number and the heterogeneity of resources, and the dispatch-
ing algorithms. Using a real HPC system for experiments is not realistic for
the following reasons. First, researchers may not have access to a real system.
Second, it is impossible to modify the hardware components of a system, and
often unlikely to access its Workload Management System (WMS) for any type
of alterations. And finally, even with a real system permitting modifications
in its WMS, it is inconceivable to ensure that distinct dispatchers process the
same workload, which hinders fair comparison. Therefore, simulating a WMS
is essential for conducting controlled dispatching experiments. However, sim-
ulators present also limitations because they fail to capture all the dynamic,
variety, and complexity of real-life conditions. Instead, simulators are dedicated
to cover one specific aspect, which in case of AccaSim is the study of scheduling
and allocation (dispatching) methods. In spite of this, AccaSim allows users to
extend the basic behavior focused on dispatching research, as to include distinct
aspects and cover more conditions of real systems.

In the following sections, we give details of Accasim, which is characterized

42
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Figure 3.1: AccaSim architecture.

by being a simulator scalable to large workload datasets, with easy customiza-
tion allowing users to carry out experiments across different workload sources,
resource types, and dispatching algorithms. In addition, it allows to include
custom behaviors, such as power and energy consumption and failures of re-
sources. AccaSim allows users to easily represent various real HPC systems,
develop novel advanced dispatchers, and evaluate them in a convenient way
across different workload sources.

This chapter belongs to [48], a conference publication, and [49], an extended
version published in the Cluster Computing Journal.

3.1 Architecture and Main Features

AccaSim enables to simulate the WMS of any real HPC system with minimum
effort and facilitates the study of various issues related to dispatchers, such
as feasibility, behavior, and performance, accelerating the dispatching research
process. In this section, we present the architecture and highlight the main
features of AccaSim.

AccaSim is designed as a discrete event simulator. The simulation is guided
by certain events that belong to a real HPC system. These events are mainly
collected from the workload and correspond to the job submission, starting and
completion times, referred to as Tsb, Tst and Tc, resp. The architecture of
AccaSim is depicted in Figure 3.1. Since there are no real users for submitting
jobs nor real resources for computation during simulation, the first step for
starting a simulation is to define the synthetic system with its jobs and resources.
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Job submission. This component mimics the job submission of users. The
main input data is the workload dataset provided in the form of a file which
includes job descriptions. The default reader subcomponent reads the input file
in Standard Workload Format (SWF)[46] and passes the parsed data to the job
factory subcomponent for creating the synthetic jobs for simulation, keeping
the information related to their identification, submission time, duration and
request of system resources. The job factory can extend this basic information
with additional attributes for the synthetic jobs, such as job duration estima-
tion which is a useful information for many dispatching algorithms [51]. The
synthetic jobs are then mapped to the event manager component, simulating
the job submission process. The main data input is customizable in the sense
that any workload dataset file can be used. This is possible thanks to the reader
which can be easily adapted to parse any workload dataset file format. Con-
sequently, AccaSim can be employed with any workload source corresponding
to an existing workload dataset or to a synthetic one produced by a workload
generator.

Event manager. This is the core component of the simulator, which mimics
the behavior of the synthetic jobs and the presence of the synthetic resources,
and manages the coordination between the two. Differently from a real WMS,
the event manager tracks the jobs during their artificial life-cycle by maintaining
all their possible states “loaded”, “queued”, “running” and “completed” via
certain events. During simulation, at each time point t:

• the event manager checks if t = Tsb for some jobs. If the submission
time of a job is not yet reached, the event manager assigns the job the
“loaded” state meaning in the real context that the job has not yet been
submitted. If instead the submission time of a job is reached, the event
manager updates its status to “queued”;

• the dispatcher component gives a dispatching decision on (the subset of)
the queued jobs, assigning them an immediate starting time. The event
manager reveals that t = Tst for some waiting jobs and consequently
updates their status to “running”;

• the event manager checks if t = Tc for currently running jobs. Since
these jobs were dispatched in a previous time point, their starting and
completion times are known. The completion time of a job is the sum of
its starting time and duration, which are known from the workload data.
If the completion time of a job is reached, the event manager updates its
status to “completed”.

The resource manager subcomponent of the event manager defines the synthetic
resources of the system using a system configuration file as input, and then
mimics their allocation and release at the job starting and completion times.
Hence, at a time point t, if a job starts, the resource manager allocates for the
job the resources decided by the dispatcher ; and if it completes, the resource
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manager releases its resources. The system configuration file can be customized
according to the needed types of resources, which renders the simulation of a
system possessing heterogeneous resources possible.

AccaSim is designed to maintain a low consumption of memory for scalability
to large workload datasets, therefore job loading is performed in an incremental
way, loading only the jobs that are near to be submitted at the corresponding
simulation time, as opposed to loading them once and for all. Moreover, com-
pleted jobs are removed from the system so as to release space in the memory.

Dispatcher. This component, responsible for generating a dispatching deci-
sion, interacts with the event manager for retrieving the current system status
regarding the queued jobs, the running jobs, and the availability of the resources.
Note that the dispatcher is not aware of job durations. This information is
known only by the event manager to stop the jobs at their completion time in a
simulated environment. Therefore, the dispatching decision can be solely based
on job duration estimations which are supplied as a job attribute. This has no
impact on the execution of jobs, which are always allowed to run for their en-
tire duration, despite the presence of estimation errors. The scheduler and the
allocator subcomponents of the dispatcher are customizable according to the al-
gorithms of interest. Currently implemented and available schedulers are: First
In First Out (FIFO), Shortest Job First (SJF), Longest Job First (LJF) and
Easy Backfilling with FIFO priority (EBF) [136]; and allocators are: First-Fit
(FF) which allocates to the first available resource, and Best-Fit (BF) which
sorts the resources by their current load (busy resources are preferred first),
thus trying to fit as many jobs as possible on the same resource, to decrease the
fragmentation of the system.

Additional data. It has been shown in the last decade that system per-
formance can be enhanced greatly if the dispatchers are aware of additional
information regarding the current system status, such as energy and power con-
sumption of the resources [138, 4, 15, 18], resource failures [81, 20], and the
heating/cooling conditions [127, 5]. The additional data component of AccaSim
provides an interface to integrate such extra data to the system which can then
be utilized to develop and experiment with advanced dispatchers which are for
instance energy and power-aware, fault-resilient and thermal-aware. The inter-
face lets receive the necessary data externally from the user, make the necessary
calculations together with some input from the event manager, all customizable
according to the need, and pass back the result to the event manager so as to
transfer it to the dispatcher.

Output. The output file contains two types of data. The first regards the
execution of the dispatching decision for each job, such as the starting time, the
completion time and its resource allocation, which gets updated each time a job
completes its execution. This type of data can be utilized to contrast the quality
of the dispatching decisions from different perspectives. An example is the effect
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on synthetic system resource utilization: how many and which resources are used
in the system, and how they are distributed over the nodes. Another example
is the impact on system performance. With the increasing trend in employing
HPCs for real-time applications which cannot tolerate delays [90], some critical
aspects of system performance are job response times and system throughput.
The second type of output data regards the simulation process, specifically the
CPU time required by the simulation tasks like job loading, generation of the
dispatching decision, and the total amount of memory used during simulation,
which gets updated at each simulation time point. This type of data can be
used, for instance, to evaluate the performance of the simulator, as well as the
performance of the dispatchers in terms of the time they incur for generating a
decision.

Tools. The tools let users follow the simulation process and facilitate their
dispatching experimentation. We will demonstrate their utility in Section 3.5.
The monitoring subcomponent includes the system status and system utilization
subcomponents. The system status allows tracking the current system status,
such as the number of queued jobs, the running jobs, the completed jobs, the
availability of the resources, etc. The system utilization instead shows in a GUI
a representation of the allocation of resources by the running jobs during the
simulation.

The results visualization subcomponent renders the automatic generation
of different types of plots for evaluating the quality of dispatching decisions as
well as the performance of the dispatchers. The experimentation subcomponent
instead renders the automation of complex experiments. After configuring the
simulator with a workload dataset, a system to simulate, and a set of dispatch-
ers, the experimentation performs a simulation for each dispatcher and then
produces comparative plots through the results visualization.

When doing dispatching research with a real workload dataset, users could
face issues such as the dependency on the real system configuration which hin-
ders testing with other system configurations, the small size of the dataset pre-
venting scalability tests, or the unavailability of certain data in the dataset for
testing specific cases. To tackle this, AccaSim provides a workload generator
subcomponent which produces a synthetic workload dataset. This subcom-
ponent exploits the data contained in a real workload dataset by mimicking,
through statistical methods, its distributions for job submission times, jobs re-
source requests, and job durations. The generated dataset is written to a file in
the SWF format. Other file formats can as well be considered by customizing
its subcomponents.

To highlight the main features, (i) AccaSim is designed to be scalable to
large workload datasets; (ii) AccaSim is customizable in its workload source,
resource types, and dispatching algorithms, providing maximum flexibility in
representing a WMS; (iii) AccaSim enables users to develop novel advanced dis-
patchers by exploiting information regarding the current system status, which
can be extended for including custom behaviors such as energy and power con-
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Figure 3.2: AccaSim class diagram.

sumption and failures of the resources; (iv) Accasim provides output data and
automated tools to analyze the results, to follow the simulation process and
facilitate dispatching experimentation.

3.2 Implementation, Customization, and Instan-
tiation

In this section, we briefly describe AccaSim’s implementation and customiza-
tion, and show its various instantiations. This not only serves to depict the
internal organization of AccaSim, but also provides evidence on how easy it is
to use and customize.

AccaSim is implemented in Python which is an interpreted, object-oriented,
high-level programming language, freely available for any major operating sys-
tem, and is widely used in academia and industry.28 All the dependencies used
by AccaSim are part of Python 3.5 and newer versions, except the matplotlib,
scipy, sortedcontainters and psutil packages which can be easily installed using
the pip management tool. The source code is available under MIT License.
User and API documentations can be found on the AccaSim website.29 A re-
lease version is available as a package in the PyPi repository.30 Customization

28https://www.python.org/events/python-events/
29http://accasim.readthedocs.io/en/latest/
30https://pypi.org

https://www.python.org/events/python-events/
http://accasim.readthedocs.io/en/latest/
https://pypi.org
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1 from accasim.base.simulator class import Simulator
2 from accasim.base.scheduler class import FirstInFirstOut
3 from accasim.base.allocator class import FirstFit
4 from accasim.utils.plot factory import PlotFactory
5

6 workload = 'workload.swf'
7 sys cfg = 'sys config.json'
8

9 allocator = FirstFit()
10 dispatcher = FirstInFirstOut(allocator)
11 simulator = Simulator(workload, sys cfg, dispatcher)
12 output file = simulator.start simulation()
13

14 plot factory = PlotFactory('decision', sys cfg)
15 plot factory.set files(output file, 'my plot')
16 plot factory.produce plot('slowdown')

Figure 3.3: A basic AccaSim instantiation.

is driven by the abstract classes and the inheritance capabilities of Python. The
UML class diagram of the main classes is shown in Figure 3.2 where the abstract
classes associated to the customizable components are highlighted in bold.

The simulator. A basic AccaSim instantiation is detailed in Figure 3.3. A
simulator object is created in line 11 by instantiating the Simulator class. It
receives as arguments a workload dataset file in, for instance, SWF, a system
configuration file in JSON format, and a dispatcher object, with which the
synthetic system is generated and loaded with all the default features.

The workload dataset file is handled by an implementation of the abstract
Reader class, which is the SWF-based DefaultReader by default. The file is read
and parsed by the read() and parse() methods. By implementing the Reader
class appropriately, AccaSim can be customized to read any workload dataset file
format beyond SWF, or to read workloads from any source, not necessarily from
a file. The system configuration file, which is processed by the ResourceManager
class, defines the synthetic resources. The file has two main contents. The first
specifies the resource types and their quantity in a node belonging to a group,
which is useful for modeling HPC systems possessing heterogeneous resources.
The second, instead, defines the number of nodes of each group. See Figure 3.6
for an example. The user is free to mimic any real system by customizing this
configuration file suitably.

The dispatcher object is composed by implementations of the abstract Sched-
ulerBase and AllocatorBase classes. Both classes must implement their main
methods, schedule() and allocate() respectively, to deal with the scheduling
and the allocation decisions of the dispatching. This illustrative instantiation
exemplifies a specific instance of the Simulator class, using as scheduler the
FirstInFirstOut class, which implements SchedulerBase with FIFO, and as al-
locator the FirstFit class, which implements AllocatorBase using FF. Both the
FirstInFirstOut and FirstFit classes are available in the library for importing,
as done in lines 2-3 of Figure 3.3. AccaSim can be customized in its dispatch-
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5 [...]
6 from accasim.base.scheduler class import ShortestJobFirst
7 from accasim.experimentation.experiment import Experiment
8

9 experiment = Experiment('my experiment', workload, sys cfg)
10 sched list = [FirstInFirstOut, ShortestJobFirst]
11 alloc list = [FirstFit]
12 experiment.gen dispatchers(sched list, alloc list)
13 experiment.run simulation()

Figure 3.4: An AccaSim instantiation using the experimentation tool.

ing algorithm by implementing the abstract SchedulerBase and AllocatorBase
classes as desired.

In line 12, the start simulation() method launches the simulation with the
following optional arguments:

simulator.start simulation(
system status=True,
system utilization=True,
additional data=None)

which serve to require the use of the system status, the system utilization, and
the additional data tools of the simulator. The additional data argument is
an array of objects where each object is an implementation of the abstract
AdditionalData class, giving the possibility to customization in terms of the
extra data that the user may want to provide to the system for dispatching
purposes. After the simulation is finished, the output data file is returned.

The last three lines in Figure 3.3 serve to use the automated plot generation
tool. In line 14, the PlotFactory class is instantiated using two arguments. The
first indicates the plot type to be produced, as a decision-related or performance-
related type. A decision-related plot shows metrics related to the quality of
the dispatching decision, such as the job slowdown [43] or queue size, while
a performance-related plot serves to show metrics related to the performance
of the dispatcher, such as the average CPU time at a simulation time point.
Examples of such plots will be shown in Section 3.5. The second argument is
instead the system configuration file which is necessary for the resource specific
plots. In line 15, the output file of the simulator is set to be analyzed through
the set files() method, together with a label to be used in the plots. Finally, the
produce plot() method produces the desired plot as specified in its argument.

The experimentation tool. In Figure 3.4, an AccaSim instantiation that
uses the experimentation tool is detailed. The first 4 lines related to imports
and assignment statements are the same as lines 2, 3, 6 and 7 in Figure 3.3 and
are therefore omitted. An experiment object is created in line 9 by instantiat-
ing the Experiment class which takes as arguments the name of the experiment
(which is used to name the output directory as well), the workload dataset
file, and the system configuration file, along with the the optional arguments
supported by the Simulator class. In line 12, the dispatchers of interest are
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1 from accasim.experimentation.workload generator import WorkloadGenerator
2

3 workload = 'real workload.swf'
4 sys cfg = 'sys config.json'
5 performance = {'core': 1.667}
6 request limits = {'min': {'core': 1, 'mem': 256}, 'max': {'core': 8, 'mem': 1024}}
7

8 gen = WorkloadGenerator(workload, sys cfg, performance, request limits)
9 jobs = gen.generate jobs(500000, 'new workload.swf')

Figure 3.5: A basic workload generator instantiation.

generated through the gen dispatchers() method, which accepts as arguments
a list of scheduler and allocator classes. In this illustrative instantiation of the
Experiment class, we use the FirstInFirstOut and the ShortestJobFirst classes
which implement FIFO and SJF scheduling, as well as the FirstFit class which
implements the FF allocation. All these classes are available in the library for
importing, as done in lines 6-7 of Figure 3.4. The gen dispatchers() method then
automatically creates the dispatchers corresponding to all possible combinations
between the schedulers and the allocators, facilitating greatly the conduction of
experiments on large sets of dispatchers. If users wish to experiment with a
specific dispatcher, it can be formed by instantiating the corresponding imple-
mentation of SchedulerBase and then passing the object to the add dispatcher()
method, similarly to what we have shown in the lines 9-11 in Figure 3.3 when
instantiating the Simulator class. Finally in line 13, the experiment is launched
with the run simulation() method which performs simulations for all configured
dispatchers and produces all the available plots.

The workload generator tool. The workload dataset file can refer to a real
workload dataset extracted from an HPC system, or to a synthetic one gener-
ated through an external workload generator such as AccaSim’s own workload
generator tool. Figure 3.5 shows its basic instantiation. A generator object
is created in line 8 via the WorkloadGenerator class which is available in the
library for importing, as done in line 1. It receives as arguments a real workload
dataset file to be mimicked, a system configuration file, and variables regard-
ing performance and request limits. The performance variable is a dictionary
storing the performance of each processing unit as a unit-value pair. The re-
quest limits variable instead defines the minimum and maximum request of each
resource type available in the system. Finally, the jobs are generated in line 9
using the generate jobs() method, which receives as arguments the number of
jobs and the name of the output file in which the generated workload dataset is
saved.

As in the case of the simulator, the input workload dataset file is parsed by
an implementation of the abstract Reader class, which is DefaultReader and im-
plements an SWF reader by default. The output file is instead written through
an implementation of the abstract WorkloadWriter class, which is the SWF-
based DefaultWriter by default. Similar to the Reader, the output file format
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can be customized by implementing the WorkloadWriter suitably. It is also
possible to customize the job generation process via the optional arguments of
the WorkloadGenerator constructor, as detailed in the AccaSim documentation.

3.3 Related Work

HPC systems have been simulated from distinct perspectives, for instance to
model their network topologies [1, 69, 91] or storage systems [114, 95]. There
also exist simulators dealing with the duties of a WMS, as in our work, which are
mainly focused on job submission, resource management and job dispatching.

To the best of our knowledge, the WMS simulators most similar to Ac-
caSim are ScSF, Batsim, and Alea. The ScSF simulator [103] emulates a real
WMS, Slurm Workload Manager31, which is popular in many HPC systems.
In [87, 122] Slurm is modified to provide synthetic job submission, resource
management and job dispatching through distinct daemons which run in di-
verse virtual machines and which communicate over RPC calls, and a dedicated
simulator is implemented. ScSF extends this simulator with automatic genera-
tion of synthetic job descriptions based on statistical data, but does not give the
possibility to read real workload datasets. The dependency on a specific WMS
complicates the customization, and together with the additional dependency on
virtual Machines and MySQL, the set up of ScSF is rather complex. More-
over, ScSF requires a significant amount of resources in the machines where the
simulation will be executed.

Batsim [40] is developed on top of the SimGrid simulation framework.32

Batsim decouples the dispatcher from the simulator and allows it to be imple-
mented in any programming language, yet both the simulator’s and the dis-
patcher’s source code and binaries are available only for GNU/Linux. Batsim
takes as input a file in a JSON-based format, and provides a script to translate
from SWF with which it is possible to read real workload datasets. However, all
jobs are loaded in memory at the beginning of simulation which can hinder the
performance when experimenting with a large number of jobs. While users can
define different resource types as supported by SimGrid, the concept of a single
node possessing heterogeneous resources is not natively implemented in the sim-
ulator. This calls for significant effort when users wish to model a system using
heterogeneous resources. The dispatchers need to be adapted as well in order
to take into account the new representation of a system. Similar to AccaSim,
additional data regarding the current system status can be used in Batsim for
instance, to model the energy consumption of the system. The type of data,
however, depends exclusively on the capabilities of SimGrid. And finally, while
Batsim includes a workload generator, it is simple, useful for testing purposes
only, and is not intended for dispatching research.

Alea [73] is developed on top of the GridSim simulation framework.33 Job

31https://slurm.schedmd.com/
32http://simgrid.gforge.inria.fr/
33http://www.cloudbus.org/gridsim/

https://slurm.schedmd.com/
http://simgrid.gforge.inria.fr/
http://www.cloudbus.org/gridsim/
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submission, resource management and job dispatching are driven by the pre-
defined workload format, resource types, and dispatchers. The implementation
in Java is open-source and cross-platform. However, any customization to the
simulator needs to be done at the source code level, which can be complicated
and error-prone. PYSS [83, 80, 92] and OCS [52] have similar characteristics
to Alea, but provide less advanced WMS features as they are developed pri-
marily for a specific research work in dispatching. In general, simple simulators
like PYSS and OCS hinder the design of novel advanced dispatchers and their
evaluation which requires a more flexible way to represent a WMS.

In [58], an energy aware WMS simulator, called Performance and Energy
Aware Scheduling (PEAS) simulator is described. With the main aim being to
minimize the energy consumption and to increase the throughput of the system,
PEAS uses predefined dispatchers and workload dataset file format, and the
system power calculations are based on fixed data from SPEC benchmark34

considering the entire processor at its max load. PEAS is available only as
GNU/Linux binary, therefore it is not customizable in any of these aspects.

Brennan et al. [24] define a framework for WMS simulation, called Cluster
Discrete Event Simulator (CDES), which uses predefined scheduling algorithms
and relies on specific resource types. Although CDES allows reading real work-
load datasets for job submission, it loads all jobs in memory at the beginning of
the simulation, like Batsim does. Moreover, the implementation is not available
which prevents any form of customization.

In [66], a WMS simulator based on a discrete event library called Omnet++35

is introduced. Similar to ScSF, only automatically generated synthetic job de-
scriptions are accepted for job submission. Since Omnet++ is primarily used
for building network simulators and is not devoted to workload management,
there exist issues such as the inability to consider different types of resources as
in CDES. Moreover, due to lack of documentation, it is hard to understand to
what extent the simulator is customizable.

The main issues presented in the existing WMS simulators w.r.t. to Ac-
caSim can be summarized as complex set up and need of many virtual machines
and resources, inflexibility in the workload source and resource types, limited
support for additional data, potential performance degrade with large work-
load datasets, difficulty or the impossibility of the customization of the WMS,
platform restriction, and unavailable or undocumented implementation. As Ac-
caSim is developed for facilitating job dispatching research in HPC systems, it
is designed to be scalable to large workload datasets and provides maximum
flexibility in representing a WMS in terms of workload source, resource types,
and dispatchers. It is open-source and cross-platform, simple to install and use,
and is easy to customize via abstract class implementations without having to
touch the source code.

34https://www.spec.org/power_ssj2008/
35http://www.omnetpp.org/

https://www.spec.org/power_ssj2008/
http://www.omnetpp.org/
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3.4 Comparison of Simulators

In this section, we contrast AccaSim with a critical attention against ScSF,
Batsim and Alea which are the most similar simulators to AccaSim.

3.4.1 Comparison to ScSF

ScSF36 is a complex framework which needs an entire testing environment for
running. The environment should have at least two real or virtual machines
with dedicated resources, enough hard disk space for the simulator and its com-
ponents, and external applications such as a database. The network connection
is also a key point in the simulation, since it is required to have a low latency
in order to maintain a fast link between its components. We do not compare
AccaSim to ScSF experimentally for the following reasons. First, the physical
resources needed for experimentation with ScSF are much more than those re-
quired by AccaSim. Second, the processes involved in a simulation are more
complicated, and they are not encapsulated in a single parent process, as in
AccaSim, which hinders a fair comparison. For instance, there are processes
that are executed in the MySQL database or that depend on ssh connections,
which can affect the performance evaluation. Third, job submission in ScSF is
performed only by its own workload generator which restricts the experiments
to the synthetic jobs generated by ScSF itself.

3.4.2 Comparison to Batsim and Alea

AccaSim Alea Batsim

Workload sources Customizable Only SWF
Only JSON
(derived from SWF)

Heterogeneous
Resources

Customizable Not possible Not possible

Dispatchers Customizable
Customizable at
source-code level

Customizable on
any programming language

Aditional data Customizable Not possible
Customizable
(restricted to SimGrid)

Cross-platform
Any supporting
Python >= 3.5

Any supporting
Java 2

GNU/Linux

Table 3.1: Summary of simulators features.

In Table 3.1, we recall the main differences between AccaSim, Alea and Bat-
sim presented in the related work. Following, we conduct an experimental study
to compare the performance of AccaSim to Batsim and Alea using three real

36http://frieda.lbl.gov/download

http://frieda.lbl.gov/download
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workload datasets, which are freely available in SWF. The study is performed
on an Ubuntu 16.04 machine with an Intel Core i7-2600 CPU, 16 GB of RAM
and a WD10EZEX HDD with 1 TB of capacity. The software used for each
simulator experiment are AccaSim 1.0 with Python 3.6.5, Batsim 2.0.0 with
Batsched 1.2.0, and finally Alea 4.0 with OpenJDK 1.8.0 171 and 4 GB of max.
heap size. All the scripts used to setup and run to experiments, and to evaluate
their results are available on the AccaSim GitHub repository.37

Workload datasets It is important to compare the simulators’ performance
on datasets diverse in terms of size and time span, so as to derive robust con-
clusions on their behavior, especially on how they scale up to large workload
datasets. The three datasets on which the experiments are based differ in these
aspects. They range from medium-size to very large-size, and they are created
in time periods ranging from a decade ago to recent years. We utilized three
workload datasets presented in Section 2.1.4. The first workload dataset cor-
responds to the SETH system, which contains 202,871 jobs. The system was
composed of 120 nodes, with 480 cores and 120 GB of RAM in total. The
second dataset belongs to the RICC system and contains 447,794 jobs. RICC
was composed of 1,024 nodes, 8192 cores and 12 TB of RAM in total. The last
workload dataset is based on a workload trace collected from the MetaCentrum
system, and it contains 5,731,100 jobs. MetaCentrum was composed by 495
nodes, 8412 cores and 10 TB of RAM in total.

Experimental setup Each experiment corresponds to the simulation of one
of the three workload datasets using one of the three simulators. In order to
isolate the core actions of a simulator from external factors, such as non-optimal
dispatcher implementations, we use a dispatcher which rejects any submitted
job. While the rejecting dispatcher is available in AccaSim and Batsim, we
implemented it ourselves in Alea. We evaluate the simulators’ performance
in terms of the total CPU time required to run an experiment and memory
footprint. To do so, we use a script which sequentially runs each experiment
and repeats it 10 times as a child program in a new process so as to obtain
reliable and representative results. The script records each experiment’s start
and ending time, and gathers the memory consumption every 10ms by using
the Python psutil library.38

Batsim39 is conveniently packaged in the Nix package manager for an easy
and clean installation on any Linux distribution with superuser privileges. Bat-
sim does not accept SWF in input, and instead provides a script to convert
SWF into the required format. This script also works as a workload prepro-
cessor which removes jobs with incomplete or erroneous data. The CPU time
and memory consumption of this preprocessing phase is not considered in the
Batsim performance result. Instead in AccaSim and Alea, a similar preprocess-

37https://git.io/fhmbM
38https://pypi.org/project/psutil/
39https://github.com/oar-team/batsim

https://git.io/fhmbM
https://pypi.org/project/psutil/
https://github.com/oar-team/batsim
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Workload
Simulator

AccaSim Batsim Alea

Seth

Total time µ 00:15 00:34 00:15
(MM:SS) σ 0.2 0.5 0.5

Mem. Avg.
µ 18 596 161

(MB)
σ 0.1 2.5 5.4

Max.
µ 18 964 209
σ 0.1 0.2 23.7

RICC

Total time µ 00:27 01:03 00:24
(MM:SS) σ 0.5 0.7 0.2

Mem. Avg.
µ 21 1,220 162

(MB)
σ 0.1 5.4 5.6

Max.
µ 26 2,072 272
σ 0.1 0.1 52.3

MC

Total time µ 06:23 29:29 09:08
(MM:SS) σ 4.1 14.2 3.7

Mem. Avg.
µ 19 12,647 195

(MB)
σ 0.1 137.2 17.4

Max.
µ 19 15,431 1,165
σ 0.2 6.7 234.4

Table 3.2: Performance comparison of AccaSim, Batsim and Alea.

ing is carried out during job submission, therefore the corresponding CPU time
and memory consumption are included in the AccaSim and Alea performance
results.

Alea40 is distributed as a Netbeans Java project in which the entire source
code is available. All dependencies and a sample simulation configuration are
provided. As opposed to Batsim, Alea accepts SWF in input. However, Alea
needs the number of expected jobs in the simulation. Since the number of jobs
in the workload may reduce during the preprocessing step, a mismatch with
the workload size may crash the job submission process. We indeed faced the
problem with the Seth dataset and worked around it by using a number of
jobs (200,500), obtained by trial and error, lower than the size of the workload
(202,871). Another issue in Alea is that it includes hardcoded instructions for
specific datasets or systems which may have to be modified for recent or custom
datasets. This kind of implementation makes Alea rather difficult to use.

Experimental results We present the results in Table 3.2, where the Meta-
Centrum dataset is abbreviated as MC, the total CPU time spent in an ex-
periment is expressed in MM:SS, and the memory usage is expressed with its
average and maximum values in MB. The reported values of an experiment are
aggregated across all the 10 iterations, and both mean (µ) and standard devi-

40https://github.com/aleasimulator/alea/

https://github.com/aleasimulator/alea/
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ation (σ) are shown. Across the same dataset and metric, the best results are
indicated in bold.

It is clear to see that AccaSim uses up much less memory than the other
simulators due to its incremental job loading and job removal capability. This
approach is shared by Alea which shows better performance than Batsim. As
was discussed in Section 3.3, Batsim loads in memory the preprocessed data
from the workload at the beginning of the simulation, which clearly hinders the
performance when experimenting with a large workload dataset. As for the to-
tal CPU time, AccaSim and Alea show competitive results. Despite AccaSim’s
more general and costly approach in creating synthetic jobs that can have addi-
tional attributes with respect to Alea, the results are close with the medium-size
Seth and large-size RICC datasets. AccaSim shows the best results with the
very large-size MetaCentrum dataset. Batsim’s performance worsens, as the
workload size increases. This can be explained by its high memory consump-
tion. In general, when an application requires high amount of memory, the OS
has to employ auxiliary data structures at the expense of reduced performance.
In addition, Batsim is not optimized for fixed-length job execution models, but
rather for models which take into account network and CPU contention.

We can conclude that, Accasim is scalable to large workload datasets, and
overall it performs much better than the similar simulators Batsim and Alea.

3.5 Case Study

In this section, we present a case study to illustrate’s AccaSim use in job dis-
patching research. We here focus primarily on dispatcher evaluation and syn-
thetic workload generation. AccaSim can as well be used to develop advanced
dispatchers, see [51] for an example. We leave further examples of dispatcher
development in AccaSim to future work.

The experimental study conducted in this section is performed on a Cen-
tOS 7.3 machine with two Intel Xeon E5-2630 v3 CPUs, 128GB of RAM, using
Python 3.6.5 and Accasim 1.0. All the scripts used to setup and run the ex-
periments, and to evaluate their results are available on the AccaSim GitHub
repository. 41

3.5.1 Experimental setup for dispatcher evaluation

To conduct the experimental study regarding dispatcher evaluation, we use the
Seth dataset introduced in Section 3.4, given its reasonable size for proof of
concept. The corresponding synthetic system configuration is shown in Figure
3.6. Since multiple jobs can co-exist on the same node, we consider a better
representation of the system, made of cores instead of processors. We note that
AccaSim can as well be used to simulate an HPC system possessing heteroge-
neous resources, such as the Eurora system, as was shown in [93].

41https://git.io/fhmba

https://git.io/fhmba
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{
”system name”: ”Seth − HPC2N”,
”start time”: 1027839845,
”equivalence”: {

”processor”: {
”core”: 2

}
},
”groups”: {

”g0”: {
”core”: 4,
”mem”: 1000000

}
},
”resources”: {

”g0”: 120
}

}

Figure 3.6: System configuration of Seth.

As for dispatchers, we employ all the implemented and available dispatchers
of AccaSim which are composed of all combinations between the schedulers:
First In First Out (FIFO), Shortest Job First (SJF), Longest Job First (LJF)
and Easy Backfilling with FIFO priority (EBF); and the allocators: First Fit
(FF) and Best Fit (BF). To run the experiments, we conveniently use the ex-
perimentation tool of AccaSim, as was shown in Figure 3.4. Each experiment
corresponds to the simulation of the Seth workload using a specific dispatcher,
and is repeated 10 times so as to obtain reliable and representative results.

3.5.2 Dispatcher evaluation

> python status-sim.py -h

Usage: status-sim.py [-h] [-usage] [-progress] [-all] [-ip

HOSTIP]

AccaSim System Status

optional arguments:

-h, --help  show this help message and exit

-usage      Request current virtual resource usage.

-progress   Request current local progress.

-all        Request all previous data.

-ip HOSTIP  IP of server machine.

> python status-sim.py -all

- Current test instance: workloads/HPC2N-2002-2.2.1-cln.swf

Completion percentage: 0.97%

Current simulated time : 2002-09-19 10:59:18

Loaded 11, Queued 0, Running 19, and Finished 710 Jobs

Resource Utilization: core: 90.83%, mem: 14.61%

Real elapsed time : 12.70 secs

(a) System status.
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(b) System visualization.

Figure 3.7: Monitoring tools.

Dispatchers can be evaluated and compared from different perspectives thanks
to AccaSim’s tools and output data. In Figures 3.7a and 3.7b, sample snap-
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shots taken by the two components of the monitoring tool at certain time points
during the FIFO-FF experiment are shown. The system status tool receives
command line queries to show a variety of information regarding the current
synthetic system status, such as the queued jobs, the running jobs, the com-
pleted jobs, resource utilization, the current simulation time point, as well as
the total CPU time elapsed by the simulator. The system visualization tool
summarizes the allocation of resources by the running jobs each indicated with
a different color, using an estimation (such as wall-time) for job duration. The
display is divided by the types of synthetic resources. In our case study, the
core and memory usage are shown separately.

The experimentation tool automatically generates plots to compare the dis-
patchers according to their effect on system utilization, job response times,
system throughput, and their performance in terms of the time they incur for
generating a decision. For job response times and system throughput, two
metrics are used. The first is the job slowdown, a common indicator for eval-
uating job scheduling algorithms [43], which quantifies the effect of a dispatch-
ing method on the jobs themselves and is directly perceived also by the HPC
users. The slowdown of a job j is a normalized response time and is defined as
slowdownj = (Tw,j + Tr,j)/Tr,j where Tw,j is the waiting time and Tr,j is the
duration of job j. A job waiting more than its duration has a higher slowdown
than a job waiting less than its duration. The second metric is the queue size,
which counts the number of queued jobs at a certain dispatching time. This
metric is a measure of the effects of dispatching on the computing system it-
self. The lower these two metrics are, the better job response times and system
throughput are.

FIFO-FF FIFO-BF LJF-FF LJF-BF SJF-FF SJF-BF EBF-FF EBF-BF
Dispatching method

100

101

102

103

104

105

106

Sl
ow
do
wn

(a) Distributions for job slowdown.
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(b) Distributions of queue size.

Figure 3.8: QoS evaluation.

In Figures 3.8a and 3.8b, we present the automatically-generated box-and-
whisker plots showing the distributions of the slowdown and the queue size for
each experiment. We can see that SJF and EBF-based dispatchers achieve the
best results, independently of their allocators probably due to the homogeneous
nature of the synthetic system. Their slowdown values are mainly lower than
the median of the FIFO and LJF-based dispatchers. SJF maintains overall lower
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slowdown values than the others, but a higher mean than the EBF. SJF main-
tains also slightly higher mean in the queue size than the EBF. The scheduling
algorithm of EBF does not sort the jobs, like SJF, instead it tries to fit as many
jobs as possible into the system, which can explain the best average results
achieved in terms of slowdown and queue size.

In Figure 3.9a, we present the automatically-generated plot which shows the
average CPU time required at a simulation time point for each dispatcher. The
average CPU time of an experiment is obtained by aggregating the data from
all its 10 iterations. The time spent in simulation, other than generating the
dispatching decision, is constant (around 0.2 ms) across all the experiments,
and the EBF-based dispatchers spend much more time in generating a decision
than the others. In Figure 3.9b, we instead present the automatically-generated
plot that analyzes the scalability. Specifically, it reports for each queue size the
average CPU time spent at a simulation time point in generating a dispatching
decision. Also in this case, we considered the data related to all 10 iterations of
the experiments. While all the dispatchers scale well, the EBF-based dispatchers
require more CPU time for processing bigger queue sizes, due to their scheduling
algorithm which tries to fit as many jobs as possible into the system.
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time point to generate a dispatching de-
cision w.r.t. queue size.

Figure 3.9: Timing of the dispatchers.

AccaSim users are free to analyze the output data as they wish to evaluate
the dispatchers further. For instance, to compare in more detail the dispatchers’
performance, they can extract the total usage of CPU time and memory of each
experiment, as reported in Table 3.3. In the table, the time columns correspond
to the total CPU time spent by the simulator and the time spent in generating
the dispatching decision; whereas the memory columns give the average and the
maximum amount of memory utilized over the entire simulation time points.
The reported values of an experiment are aggregated across all the 10 iterations,
and both mean (µ) and standard deviation (σ) are shown.

Most of the experiments took around 8 minutes. The exceptions are the
EBF-based experiments which require around 22 minutes because the underly-
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Dispatcher
Time (MM:SS) Memory (MB)

Total Disp. Avg. Max.
µ σ µ σ µ σ µ σ

FIFO-FF 08:01 2.6 07:15 2.3 76 0.2 82 0.3
FIFO-BF 08:05 1.8 07:18 1.6 79 0.1 85 1.1
LJF-FF 08:13 2.4 07:24 2.1 80 0.7 86 0.9
LJF-BF 08:17 2.3 07:27 2.1 81 0.8 86 0.9
SJF-FF 07:46 2.2 07:04 2.0 82 0.8 86 0.5
SJF-BF 07:49 1.7 07:06 1.5 82 0.4 86 0.6
EBF-FF 22:24 2.9 21:41 2.7 82 0.6 85 0.7
EBF-BF 22:19 4.6 21:36 4.2 82 0.6 84 0.8

Table 3.3: Total CPU time and memory usage during the simulation.

ing dispatching algorithms are computationally more intensive. In accordance
with Figure 3.9a, the time spent by the simulator, other than generating the dis-
patching decision, is constant (around 40 seconds) across all the experiments.
The total CPU usage is thus highly dependent on the complexity of the dis-
patcher. The average memory usage is around 80MB with a peak at 86MB
across all the experiments.

Our analysis restricted to the considered dataset reveals that, while the EBF-
based dispatchers give the best results in terms of response times and through-
put, they are much more costly in generating a dispatching decision. Simple
dispatchers based on SJF are valid alternatives with their excellent scalability
and with their comparable results in response times and throughput.

3.5.3 Synthetic workload datasets

In order to generate synthetic workload datasets, and later for comparison pur-
poses, we utilize the Seth and RICC datasets introduced in Section 3.4. With
each, we generate four datasets using different configurations in terms of re-
source type, processing unit performance, and the number of jobs. The first
dataset includes 50,000 jobs and a 1.5x improvement in core performance. The
second includes 100,000 jobs with double number of nodes. The third includes
200,000 jobs, two GPU accelerator cards for a quarter of the nodes with a per-
formance of 933 GFLOPS per second. Finally, the last includes 500,000 jobs,
two GPU accelerator cards for a half of the nodes with a performance of 933
GFLOPS per second and a 1.5x improvement in the core performance. The im-
proved performance and the change in the number of nodes are relative to the
system that the workload dataset in consideration belongs to. In the following,
we first briefly describe the generation process, and then show the similarity
between the real and the generated datasets.

Synthetic workload dataset generation. The first aspect to compare be-
tween a real and a synthetic workload dataset is the job submission cycle which
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refers to the job submission times and reflects the usage of the system by its
users. The cycles could be represented by certain periods of working time to
reflect better the real usage of the system. The WorkloadGenerator calculates
the submission time of a job j based on a daily cycle model proposed in [85]. In
the original algorithm, named Slot Weight Method, a day is represented by 48
slots of 30 minutes each (s). Thus, the first slot starts at midnight, the next one
at 00:30, and so on. Each slot has a specific weight which is the ratio between
the number of jobs belonging to the time slot and the total number of jobs in the
real workload dataset, which represents a measure for selecting a slot for j. The
algorithm generates a random value v between 0 and 5 to represent the maxi-
mum number of days that can elapse between j and its predecessor, based on
the statistical distribution of the interarrival times of the real workload dataset.
For selecting a slot, the algorithm starts from the slot of the predecessor of
j. The slots are considered as a circular list. For each considered slot, if v is
greater or equal to the slot weight, v is updated by subtracting the slot weight.
Update continues with the next slot, otherwise, the algorithm stops and selects
the current slot. Then, the job submission time of j is calculated by summing
the half hours of all the surpassed slots plus the remaining amount of v.

We modify this algorithm in two aspects so as to assimilate a real job submis-
sion cycle. First, we modify the fixed upper-bound vmax of v to the maximum
value of the interarrival times of the dataset. Second, we add a dynamic process
that modifies vmax during a job submission time generation. For this purpose,
we calculate the ratio between the number of the currently generated jobs and
the required jobs in three different ways in relation to the last submitted hour,
the last submitted day, and the last submitted month. This allows to keep the
generation of values as similar to the real data as possible. Then, we calculate
the progress ratio of each ratio by dividing it by the respective ratios in the
real data. The overall progress ratio is the multiplication between all progress
ratios (pr). Finally, vmax is dynamically adapted at each job submission time
generation as follows:

vmax ← vmax − (vmax − s) ∗ (1− pr)

If pr = 1, the job submission time generation of the predecessor reached the
real ratios, thus for j, we use vmax. In addition, when the real data does not
include specific months, pr has only hourly and daily ratios.

The second aspect to compare is the theoretical computed FLOPs for each
job during its execution in the system, which depends on, among others, its
duration and resource requests in terms of resource type restricted to the pro-
cessing units (e.g., cores, GPU, MIC, etc.) and quantity. These features of a
job are generated in three phases. The first phase is based on an algorithm
from [85] to select the job type, serial or parallel, and the number of requested
nodes. Since this algorithm considers a job parallel if it runs on multiple nodes,
we modify it to create parallel jobs on a single node, i.e. when the number of
required cores is greater than one. In the second phase, the resource request is
defined by randomly choosing among the available resource types and assigning
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them a quantity, using a uniform distribution and considering the request limits
passed as an argument during the WorkloadGenerator instantiation, as shown
in Figure 3.5. Finally, in the third phase, the job duration is calculated as the
division between (i) a random FLOP value and (ii) the dot product of the re-
source requests and their corresponding theoretical performance, multiplied by
the number of required nodes.
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Figure 3.10: Workload datasets

Comparison to the real workload datasets. Figures 3.10a and 3.10b show
the the hourly, daily, monthly job submission distributions of the real and the
generated workload datasets. The introduced modifications generate submis-
sions that took place mainly during the working hours, weekdays, and working
months, resulting in a more realistic scenario. The generated datasets look very
similar to the real datasets, except in the case of the monthly distribution of
the RICC dataset. The reason is that the RICC job submissions span to five
months, not to an entire year.
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Figure 3.11: Workload datasets
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Figures 3.11a and 3.11b show the distributions of the computed theoreti-
cal FLOPS, here represented in GFLOPS, between the real and the generated
workload datasets. We observe a similar pattern also here. The usage of the
FLOPS calculation for the generation of the jobs’ features allows maintaining a
distribution similar to the real workload dataset, independent of the configura-
tion of the real system. In this way, the real dataset can be tested with other
system configurations using the generated dataset.

3.6 Summary

We introduced AccaSim, a library for simulating WMS in an HPC system,
which offers to the researchers an accessible tool to facilitate their job dispatch-
ing research. The library is open-source, implemented in Python, which is
freely available for any major operating system, and works with dependencies
reachable in any distribution. It is executable on a wide range of computers
thanks to its lightweight installation and light memory footprint. AccaSim is
scalable to large workload datasets and provides support for easy customiza-
tion, allowing to carry out experiments across different workload sources, re-
source types, and dispatching algorithms. Moreover, AccaSim enables users to
develop novel advanced dispatchers by exploiting information regarding the cur-
rent system status, which can be extended for including custom behaviors such
as energy and power consumption and failures of the resources. Last but not
least, AccaSim aids users in their experiments via automated tools to generate
synthetic workload datasets, to run the simulation experiments and to produce
plots to evaluate dispatchers. The researchers can thus use AccaSim to mimic
any real system, including those possessing heterogeneous resources, develop
advanced dispatchers using for instance power and energy-aware, fault-resilient
algorithms, and test and evaluate them in a convenient way over a wide range
of workload sources by using real workload traces or by generating them.

In order to highlight the main contributions of AccaSim, we discussed the
existing related simulators, presented a critical comparison to the most similar
simulators, and showcased AccaSim’s use in job dispatching research, specifically
in dispatcher evaluation and synthetic workload generation. In future work, we
plan to use AccaSim to develop advanced dispatchers using power and energy-
aware, fault-resilient algorithms.



Chapter 4

Job duration prediction in
HPC systems

The duration of jobs was introduced as an essential asset to improve the quality
of dispatching decisions. However, this value is unknown at dispatching time.
Instead, usually a highly overestimated prediction in place of the actual duration
is known. Dispatchers often use this value as the expected job duration, which
can be either the user expected duration or the default wall-time of the queue.
From a system management point of view, this value is the maximum time of a
job is allowed to be executed on the system.

Therefore, in order to improve the quality of decisions, we try to improve
the expected job duration using a better prediction method. Our motivation is
to study whether transforming the log data produced by an HPC system into
useful knowledge about its workload may produce better dispatching decisions.
Thus, in Section 4.1, we propose a data-driven job duration prediction that
uses historical data to construct user-job profiles. In addition, we analyze the
effect of different prediction approaches in making dispatching decisions. Next,
in Section 4.2, we propose a possible improvement of the previous prediction
method, maintaining its simplicity but based on other observations. Both pre-
diction methods aim to improve dispatchers who base their algorithms on job
durations.

Section 4.1 corresponds to the publication [51].

4.1 Data-driven job dispatching in HPC systems

Duration of jobs is an important consideration in dispatching decisions and
knowing them at job submission time clearly facilitates better algorithms. Dis-
patching algorithms are often developed with the assumption that job durations
are known [47, 29]. Even if this is not practical, in some cases it may be pos-
sible to rely on user-provided estimates of job duration [47, 18]. Many HPC
systems allow users to define a wall-time value, and use a default value when

64
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users fail to provide one. This wall-time can be considered a crude prediction
of job duration, which in the case of Eurora is set on a per-queue basis.

It has been shown that in general user estimations are not reliable [47],
while predefined wall-times are inflexible to account for all user needs. In these
conditions, prediction of job duration through other means may prove to be an
important resource. Here, we describe a simple data-driven heuristic algorithm
that relies on user histories to predict job duration. The data-driven approach
is particularly useful when user data can be stored for longer periods of time,
which is increasingly feasible through modern Big Data tools and techniques.

Algorithm 2: Data-driven prediction method.

1 d
′

i ← DD-Prediction 1(user, jobi, database)
2 wtime ← jobwtime
3 if user /∈ database then return wtime
4 matched job j ← Rules(user, jobi, database)
5 if matched job j <> NULL then
6 drj ← d(matched job j)

7 return min(wtime, drj)

8 end

Our heuristic constructs job profiles from the available workload data. The
profile includes job name, queue name, user-declared wall-time, and the number
of resources of each type (CPU, GPU, MIC, nodes) requested. Each user is
analyzed separately.

Prediction is based on the observation that jobs with the same or similar
profiles have the same duration for long periods of time — there is a temporal
locality of job durations. Then, at some point, the duration changes to a new
set of values, which are again stable in time. This could be due for instance
to changes in user behavior: a user first tests the code with short runs, then
decides to run the real simulation which may last longer, then may decide to
test again after having made changes, and so on. Another explanation could be
switching between input datasets: the user performs repeated runs on one set
of data, then moves to another.

Algorithm 2 shows the pseudo-code of our proposal for the data-drive pre-
diction method. For each job i, our heuristic searches for the last job j with a
similar profile, and uses the duration of that job djr to predict the duration d

′

i

of the new one. In line 3, the algorithm verifies if the user already exists in the
database, if it does not exists it return the requested wall-time. The database
is updated after each job completion, inserting the job data required by the
profiles, identical profiles are updated.

We analyze users separately in line 4. The similar profile is identified using
a set of consecutive rules. First, a full profile match is searched for, then if this
does not exist in the user history, a profile where the job name has the same
prefix is looked up. This follows from the observation that users often name
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jobs with similar durations with the same job name followed by a number (e.g.
“job1”,“job2”). If this is unsuccessful, we allow for resources used to differ, as
long as the full job name, queue and wall-time are the same. If also this search
fails, we look for the same match but with the name prefix rather than the exact
name. If none of these rules give a match, we look for the last job with the same
name, or, as a last resort, the same name prefix. If all rules fail, then we take
the wall-time as the predicted duration. In all cases, the prediction is capped
by the wall-time as defined in line 7.

Machine learning techniques may not be satisfactory in comparison with our
simple heuristic. We believe this is due to the temporal locality observed in the
data, and also due to the fact that jobs with the same profile may have several
different durations depending on when they were submitted. This means that a
regular regression model would try to fit a wide range of values with the same
features, resulting in an averaging of the observed durations.

4.1.1 Experimental study

We perform two experiments regarding the use of the job duration prediction.
First, we evaluate the accuracy of the prediction based on the Eurora workload
dataset (Section 2.1.4), i.e. performed off-line using the dispatching decision
of its original dispatcher. Second, we perform an extensive experimental study
to evaluate the usage of the previous prediction in a simulated environment.
The simulated environment is provided by AccaSim, Chapter 3, to simulate
the Eurora system with the workload trace described in Section 2.1.4. This
study considered five dispatching methods described in Section 2.1.3. Since in
an HPC system, scheduling goes hand in hand with allocation in order to per-
form job dispatching, we combined Shortest Job First (SJF), Longest Job First
(LJF), and Easy Backfilling (EBF) with the First-Fit allocation policy. Instead
for Priority Rule-Based (PRB) and Hybrid Constraint Programming dispatcher
(HCP), we combined with the Best-Fit allocation policy. In all methods, the
objective of the dispatcher is to minimize the total waiting time of the submit-
ted jobs. The waiting time of a job is the time passed between its submission
and its starting time. Therefore, for each of the five dispatching methods, there
are three estimations of job duration, resulting in 15 combinations (e.g., for
the SJF method we have SJF-W, SJF-D and SJF-R corresponding to wall-time
prediction, data-driven prediction and real duration, respectively).

The dispatchers are used together with three estimations of job duration:
prediction based on wall-time (W), data-driven prediction presented in Sec-
tion 4.1 (D) and real duration (R). The real duration was included to provide a
baseline to which the other two predictions are compared.

AccaSim library already includes the implementations of the SJF, LJF and
EBF dispatching methods. The PRB and HCP implementations are available for
download in the AccaSim website 42. All experiments were ran on a CentOS
machine equipped with Intel Xeon CPU E5-2640 Processor and 15GB of RAM.

42http://accasim.readthedocs.io/en/latest/

http://accasim.readthedocs.io/en/latest/
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4.1.2 Prediction performance results

We evaluate the mean absolute error (MAE), which is a common measure of
forecast error in time series analysis. The MAE is an average of the absolute

errors
∑n
i=1

|ei|
n = |yi−xi|

n , where yi is the prediction and xi is the true value.
The MAE of the heuristic and the wall-time approach with respect to the real
duration were shown to be 40 mins and 225 mins, respectively. The heuristic
prediction shows thus an improvement of 82% over the wall-time approach. In
Figure 4.1, we show the empirical cumulative distribution function (ECDF)
of the prediction accuracy A = dri /d(τi), the ratio between the real and the
predicted duration of a job, of all the three methods. The empirical ECDF
shows the proportion of scores that are less than or equal to each score of A
on Eurora. When A = 1, the duration d(τi) matches the real duration dri . We
have underestimation when A > 1, overestimation when A < 1. In theory, we
should not have underestimation with the wall-time approach because in a real
system a job is killed if it takes longer than its di. However, a system requires
extra time after a job is killed or completed to bring the resources on-line again
and this extra time is reflected to the dataset. Therefore, in some cases we have
A > 1 in Figure 4.1. We have 0.75 ≤ A ≤ 1.25 for about 50% of the workload
with the heuristic, and for less than 10% with the wall-time approach. On the
other hand, the heuristic introduces considerable underestimation. The exact
under and overestimation rates are 3.6% and 96.3% for the wall-time and 25.8%
and 53.7% for the heuristic, respectively.

Figure 4.1: The distribution of the accuracy of the three prediction methods.

Figure 4.2 shows the distribution of the absolute errors for wall-time and the
data-driven prediction, showing that in the data-driven case, these are concen-
trated towards small values, while in the case of the wall-time the distribution
peaks at errors over 1 hour. The plot shows clearly that our data-driven pre-
diction produces much better results compared to wall-time prediction.

4.1.3 Dispatching performance results

To compare the quality of the dispatching decisions of the 15 combinations,
we have selected two criteria. The first is job slowdown, a common metric
for evaluating job scheduling algorithms[43], which quantifies the effect of each
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Figure 4.2: Absolute data-driven prediction error, compared to wall-time pre-
diction.

method on the jobs themselves and is directly perceived also by the HPC users.
Slowdown of a job j is a normalized waiting time and is defined as slowdownj =
(Tw,j + Tr,j)/Tr,j where Tw,j is the waiting time and Tr,j is the duration of job
j. A job waiting more than its duration has a higher slowdown than a job
waiting less than its duration. The second criterion is the number of queued
jobs at a given time. This metric is a measure of the effects of dispatching on
the computing system itself, being directly related to system throughput: the
lower the number of waiting jobs, the higher the throughput.

To analyze the effects of prediction on job dispatching, we plot the distribu-
tion of our evaluation criteria for all 15 combinations of the dispatching methods
and duration predictions. For easy visualization of distributions, we use box-
plots that show the minimum and maximum values (top and bottom horizontal
lines), the range between the 1st and 3rd quartiles (the colored box), the me-
dian (horizontal line within the box) and the mean (the triangles). Note that
with the logarithmic scale on the vertical axis, some of these elements may be
missing from the plots, meaning their value is zero.

Effects of prediction on jobs. The first analysis looks at job slowdown
for all 372,321 jobs dispatched. Figure 4.3 shows the distribution of slowdown
achieved by each dispatching method with each prediction type. For better
visualization, we plot only the jobs where slowdown is different from 1 in at
least one method-prediction combination. The removed jobs are those that are
dispatched immediately as they arrive in the system, so are not relevant for
our comparison. As the figure shows, the dispatching methods displaying best
performance when the most basic and least effective prediction is used (wall-
time) are PRB and CPH, while the methods performing worst are LJF and
SJF. This is understandable since the latter methods are quite simple while the
former employ more sophisticated reasoning.

An interesting effect when using real duration is that not all dispatching
methods show a clear benefit. While we observe a clear decrease in slowdown in
SJF, EBF and HCP, for LJF a significant increase in slowdown is present, while
for PRB no change is observed. We understand that prediction does not always
help the dispatching methods. One possible explanation is that the incomplete
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Figure 4.3: Distribution of job slowdown for each method.

nature of the dispatching methods tends to lead to suboptimal decisions which
can sometimes be compensated by underestimation of job durations, which will
not be possible anymore with a (perfect) prediction.

When using our data-driven prediction in the dispatching methods, we ex-
pect the performance to stay between the wall-time prediction and the real job
duration. Figure 4.3 shows that this is true for most methods. In the cases of
SJF and EBF, the real job duration improves the results, so does our prediction,
albeit less effectively. In the case of LJF, real job duration worsens the results,
so does our prediction, but less severely. PRB, which already does not benefit
from real job duration, does not benefit from our prediction either. The only
dispatching method where the performance improves with perfect prediction
but decreases with our prediction is HCP. We believe this is because our data-
driven prediction may sometimes underestimate job duration, which is never
the case for wall-time and the real duration. HCP is not resilient to job duration
underestimation, hence an imperfect prediction can actually be detrimental.

Even if PRB and HCP provide the best overall results, we observe that SJF
comes in very close, with comparable slowdown, when adding prediction. How-
ever, the first two methods are more sophisticated and incur an overhead when
building the dispatching decisions, while SJF is a very simple strategy. Hence,
in the presence of predictions, one may prefer to use a simple method such as
SJF over the heavier methods such as PRB and HCP.

To better understand the effects of prediction, we also look at the different
job classes. Figure 4.4 shows box-plots of slowdown distributions for short,
medium and long jobs. When prediction is beneficial, we see that the jobs that
benefit most are the short ones. This is good news, given that a large number
of our jobs are short, as we saw in Section 2.1.4. Some smaller differences are
also visible on medium jobs, while on long jobs the methods seem to be quite
comparable, with slightly larger slowdown values in HCP and SJF compared to
the rest.

Effects of prediction on the system. Besides effects on individual jobs, it
is important to understand prediction’s role in improving system-level behav-
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Figure 4.4: Distribution of job slowdown for short, medium and long jobs for
each method.

ior. For this, we look at the size of the waiting queue. Figure 4.5 shows the
distribution of the number of jobs in the queue at every second. We removed
from the plot those time points where there were no jobs in the queue for any
of the 15 combinations, because these corresponded to low system utilizations
and have no value for our comparison. The figure shows that the effect on the
system is similar to the performance measured by the slowdown. In particular,
SJF and EBF are improved by prediction (both data-driven and real durations).
PRB shows no difference, however queue size is already the shortest among all
dispatching methods. LJF does not benefit from prediction, while HCP seems to
be improved only by perfect and not by our data-driven prediction.
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Figure 4.5: Distribution of number of jobs waiting at every second, for each
method.

4.2 Improving the data-driven job duration us-
ing the user confidence

In the previous Section 4.1, we showed that the throughput of a system, specif-
ically on Eurora, but theoretically applicable for all systems, can be improved
by incorporating a job duration prediction method to be used in place of the
wall-time as the expected duration of jobs. Previously, we mentioned that, in
general, users tend to overestimate the duration of jobs and request more time
(wall-time) than the required. Although it is a general observation, almost all
users do that. However, some users request just the necessary wall-time, prob-
ably because they have the expertise to predict better the duration of jobs, and
the data-driven heuristic, from Section 4.1, punishes their knowledge. In this
section, we propose an enhancement for the data-driven heuristic, on which we
consider the user confidence as a valuable asset during prediction.

It is worth mentioning, although the results are promising, in the later chap-
ters, we do not use this new version because this enhancement was proposed
after concluding the experiments of the last chapter. Besides, we do not com-
pare against any dispatcher because we already know that a dispatcher that can
be benefited by accurate prediction present better results.

The workload dataset from the Eurora system has 360 users with at least
one submission to the system, of which 92% made multiple submissions. For
those users, we evaluated their accuracy in terms of requested wall-time (di)
with respect of the real duration dri (dri /di). In Figure 4.6, we show the first 20
users sorted incrementally by the median of their accuracy in percentages. Red
lines represents an interval between the perfect prediction dri ± 25%, i.e. when
di = dri .

In spite of medians neither averages are in the ±25% interval, some wall-time
requests are in that interval, thus presenting a good accuracy. It is worth to
mention that medians and averages are around 50%, meaning di ± 50% ≈ dri ,
and we can assume at some point users improve their accuracy on the wall-time
requests. With this assumption, we propose to benefit users with accurate wall-
time requests by considering the record of accuracy in our prediction method.
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Figure 4.6: Distribution of the accuracy regarding wall-time requests of 20 users
of the Eurora system.

Algorithm 4.2 presents the new modifications to the original one. Line 6,
returns immediately the requested wall-time if the user with a mean accu-
racy record greater or equal than the threshold. We notice that in addition
to keep the data regarding of completed jobs, also will be necessary to maintain
the accuracy record for each user.

So after a job is completed, the data required by the rules is stores in the
database, and the stack of the user accuracy is updated:

accuracy recordu = accuracy recordu ∪ dri /di

Algorithm 3: Data-driven prediction with the user confidence method.

1 d
′

i ← DD-Prediction 2(user, jobi, database, accuracy record)
2 wtime ← jobwtime
3 if user /∈ database then
4 return wtime
5 else
6 if mean(accuracy record) ≥ threshold then return wtime
7 end
8 matched job j ← Rules(user, jobi, database)
9 if matched job j <> NULL then

10 drj ← d(matched job j)

11 return min(wtime, drj)

12 end

4.2.1 Experimental study

To evaluate the significance of the proposed modifications to our data-driven
prediction method, we conducted an experimental study. We evaluate our data-
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driven prediction with the user confidence method using the entire Eurora work-
load, considering 404,881 jobs. No dispatcher will be used in this experiment,
so we will recreate the PBS decisions. We will consider the last three accuracy
records to calculate the mean, and the threshold value is 80%.

We evaluate the MAE and the prediction accuracy A, previously defined
in Section 4.1.2, to compare the accuracy of the new prediction method (D2)
with respect two others: the wall-time prediction (W), our original version of
the prediction method (D1) and the last two prediction method [129] (L2). L2
proposes a model that uses the run times of the last two jobs to predict the
duration of the next job.

4.2.2 Accuracy of predictions

Next, we evaluate the accuracy of predictions generated by the user with her
requested wall-time (W), our first version of the data-driven prediction (D1),
the last two prediction method (L2) and our new proposal (D2). We measure
of difference between two paired variables using the MAE metric, the actual
duration of a job dri and the predicted one di, detailed in Table 4.1.

Predictor MAE
W 225 min.
D1 39 min.
D2 10 min.
L2 227 min.

Table 4.1: MAE results of W, D1, D2 and L2 prediction methods.

The MAE of the D1 and the W approach with respect to the real duration
were shown to be 39 mins and 225 mins, respectively. The D1 shows thus
an improvement of 82% over the W, whereas D2 presents an increment of its
previous version of 96% with a MAE of 10 min. Instead, L2 increments the
MAE with respect to W. Since MAE is an average of the absolute errors, o
differentiate better the gains, we show the empirical cumulative distribution
function in Figure 4.7.

L2 slightly improves the W predictions, as opposed to the MAE results, by
reducing the underestimation (A > 1) and overestimation (A < 1). D2 shows
an improvement of its prior version, with a higher overestimation reduction,
only 10% of the predictions are below of di ≈ dri + %50, and a small reduction
in the underestimation. Meaning that more predictions are closer to the perfect
prediction (A = 1); thus, in general, the results are highly improved.

The user confidence at job submissions seems to be a valid option, at least
for the Eurora system, to consider when predicting job durations especially for
those that request only the necessary time for running their jobs.
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Figure 4.7: The ECDF of the accuracy of W, L2, D1 and D2.

4.3 Summary

A job duration predictor seems to be a necessary resource to develop intelligent
dispatchers, given that, in general, dispatchers assume job durations are known
in advance and their decisions rely on the expected duration of jobs. Our data-
driven job duration predictors are simple and do not produce overhead neither
needs big datasets to operate and principally improve user estimations. The first
version of the job duration prediction was studied in conjunction with five dif-
ferent dispatching methods, showing and improvement specially for short jobs.
Given the prominent presence of short jobs in typical HPC [112] and cloud sys-
tem [101] workloads, our conclusions should apply to large-scale computational
infrastructures in general.

Nevertheless, we improved the results obtained by applying our first version
of the data-driven job prediction method to the Eurora workload, we realize that
we cannot generalize the user behavior, therefore we incorporate the confidence
of users. Thus, users that show a high accuracy in their wall-time request
should be rewarded. This new version of our data-driven job prediction method
maintains its simplicity and low overhead by including only the data regarding
users’ accuracy. Given that we improved the accuracy of our predictions, the
performance of dispatchers that use our new version of the predictor may also
improve their results.



Chapter 5

CP-based dispatchers for
heavy and short
job-dominated workloads in
HPC systems

In this chapter, we propose new dispatchers, which are able to reduce the time
required for generating on-line dispatching decisions significantly, and can make
effective use of job duration predictions to decrease waiting times and job slow-
downs, especially for workloads dominated by short jobs. We build on PCP

and HCP, introduced in Chapter 2.3, and redesign their main components as to
tackle their issues introduced in this dissertation. First, we revisit their model
and search control mechanism so as to make them resilient to heavy workloads
and applicable to on-line dispatching. Second, we study the use of job dura-
tion prediction, instead of the expected duration, when generating dispatching
decisions. We discuss why naively replacing the expected duration with a pre-
dicted duration may be ineffective, if not detrimental for QoS. Consequently,
we adapt the model and search algorithm of our dispatchers to the use of job
duration predictions to obtain high QoS levels in terms of job waiting times and
slowdown.

We conduct a simulation study on workload traces collected from HPC sys-
tems containing large numbers of short jobs. We use predictions with different
accuracy, underestimation and overestimation rates on the dataset. Our results
demonstrate that with our approach, the CP-based dispatchers can: (i) sig-
nificantly reduce the time required to generate dispatching decisions; and (ii)
benefit from good job duration predictions and considerably decrease the wait-
ing times and the slowdown of the jobs, especially for workloads dominated by
short to medium jobs.

In Sections 5.1 and 5.2, we describe our approach. In Sections 5.3 and 5.4,

75
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we detail our experimental study and present our results. We summarize our
contribution in Section 5.5.

This chapter corresponds mainly to the publication [50].

5.1 Resiliency to heavy workloads

We revisit the model and search control of the CP-based dispatchers in an effort
to make the dispatchers resilient to heavy workloads and applicable to on-line
dispatching by reducing the model size and the time to look for a good quality
solution.

At a dispatching time t, PCP searches for a solution for all the jobs in Q which
can be very time consuming when many jobs are waiting. While this problem is
tackled in HCP by searching for a solution for the jobs in Q̄ and postponing the
remaining jobs in Q \ Q̄ to the end of the makespan, there raises another issue:
when many jobs are postponed in the same way, they are likely to overlap and
create excess demand for the system resources at a given time in the schedule.
It may therefore not be possible to find a feasible solution that satisfies the
resource constraints, consequently the entire Q may be postponed to the next
dispatching time t+ 1. To address this problem, we remove the remaining jobs
jobs in Q \ Q̄ from the model and place them in the queue with their original
qi.

During the typical operation of an HPC system, job submission by users
has a stochastic nature and actual runtime durations are known only when jobs
terminate. Additionally, at a dispatching time t, only the jobs with s(τi) = t
are dispatched. Thus, it is not fruitful to generate a dispatching decision for
the entire schedule makespan [t, eoh]. We therefore remove from the model
all the jobs requiring more amount of resources than available at time t and
queue them again with their original qi. In addition to reducing the model size
in terms of decision variables, we also eliminate the unnecessary variables and
constraints in the model of a given problem instance. Specifically, for a given
resource type r (in a node n), if none of the jobs in the model require it, we
remove the corresponding cumulative constraint from the model. Moreover, in
PCP, if we have rni >

∑
n∈N pi,n for a job i, this means that there is no avail-

ability to allocate i in the system resources, we remove i and its corresponding
alternative constraint from the model, and queue it again with its original qi.
Note that removing jobs from the model and putting them back in the queue
does not cause any starvation problem. As we will argue in Section 5.2 and
confirm experimentally in Section 5.4, their priority grow with their slowdown
and eventually they are all dispatched.

During search for a solution, both solvers of PCP and HCP use a time limit
δ to interrupt the search and return the best solution found. If, no solution
is found within the limit, the search is restarted with an increased time limit
2 ∗ δ. In the latter case, the dispatchers cannot distinguish an unsatisfiable
problem instance from a difficult instance that is not solved yet. This has the
consequence of searching for a solution again and again for an instance known
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to be unsatisfiable. To address this problem, we add the solver state to the
search control. Consequently, if the solver proved unsatisfiability, this will be
known when the search is interrupted by the time limit, and the subsequent
restart will be avoided by placing the jobs in the queue for the next dispatching
time. Finally, we avoid a restart if the solution quality did not change after k
consecutive restarts.

In the following, we refer to the versions of PCP and HCP whose model and
search control are built as described here as PCP1 and HCP1.

5.2 Incorporation of job duration prediction

A straightforward way to incorporate the duration prediction ddi of a job i into
our dispatchers is to use it for defining the duration d(τi) as d(τi) = ddi for
the queued jobs and d(τi) = s(τi) + ddi − t for the running jobs, without any
other changes to the dispatchers. In this section, we argue that this naive use
may be ineffective, if not worsen the QoS, thus we adapt the model and search
algorithm of both dispatchers to the use of job duration predictions in order to
obtain high QoS levels in terms of job waiting times and slowdown.

A duration prediction ddi of a job i may be perfectly accurate (ddi = dri ),
underestimated (ddi < dri ), or overestimated (ddi > dri ). If a running job i is
underestimated, at a certain dispatching time t, we will have s(τi) + ddi < t and
thus d(τi) = s(τi)+ddi −t < 0. That is, the duration of a running job will have a
negative value even if the job is still running. A negative d(τi) for a running job
directly affects the calculation of the makespan

∑
τi
d(τi) of the queued jobs.

With a reduced makespan, it may not be possible to find a schedule and/or
allocation for the queued jobs, consequently they may all be postponed to the
next dispatching time t + 1, worsening the QoS. If instead, a running job is
overestimated at t, we will surely have s(τi) + ddi > t and d(τi) > 0, thus the
makespan will not be shorter than necessary.

To address the problem of duration prediction underestimation, we extend
the duration d(τi) of a running job i which has d(τi) < 0 at time t. Specifically,
we redefine it as d(τi) = 1, assuming that the job i needs at least one more
unit of time as of t. This value is necessary and sufficient. It is the minimum
value necessary to prevent a feasible problem instance from turning into an
unfeasible one, as the makespan will be large enough to fit all the queued jobs
in a schedule. To show that it is sufficient, we remind that at t, only the jobs
for which the dispatcher decides that s(τi) = t are dispatched (the remaining
are queued again). The allocation decision made for such jobs is valid until the
next dispatching time t+ 1 and is not affected by the actual runtime durations
of the running jobs even if they are underestimated. By using the minimum
possible value for the duration of the underestimated running jobs, we keep the
search space size compact. Our initial experiments confirm that higher values of
d(τi) make the problem more difficult. In the following, we refer to this version
of PCP1 and HCP1 as PCP2 and HCP2.

Even if the job duration prediction is accurate, resulting in ddi ∼ dri for all
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Enhancement PCP1 HCP1 PCP2 HCP2 PCP3 HCP3

Reduced model size, improved
search control.

X X X X X X

Addressing duration prediction un-
derestimation.

X X X X

Job durations in the obj. function
and search.

X X

Table 5.1: Dispatcher versions.

jobs, the dispatchers may still not be able to exploit them fruitfully for targeting
low job waiting time s(τi)− qi and slowdown (s(τi)− qi + dri )/d

r
i . As we saw in

Section 2.3, both dispatchers assign a priority to the jobs that should not wait
long. Then the jobs with higher priority are forced to be scheduled first via the
objective function, as well as in the custom search of the scheduling problem
and in the heuristic search of the allocation problem of the HCP dispatcher.
However, job duration d(τi) is ignored in the priority. It is used only as a
tie breaker among the jobs having the same priority during the search of the
scheduling and the allocation problems of HCP. The priority instead focuses on
a relation between the current waiting time t− qi of the job i and its expected
waiting time ewti. The problem is that ewti is not a job specific feature that
can be decided on-line at the time of dispatching. It is a feature of the queue
where the job is submitted and is calculated offline. Such a value may not be
informative on the current job submission status so as to generate a dispatching
decision of high quality.

We tackle this limitation by involving job durations in the objective function
and in the search of the scheduling and allocation, via the use of job slowdown
as job priority. Thus, the new objective function and the priority of a job i at a

dispatching time t become
∑
τi

s(τi)−qi+d(τi)
d(τi)

and (t − qi + d(τi))/d(τi), respec-

tively. This is the normalization of the job waiting time, which has a higher
value for jobs waiting more than their duration than for jobs waiting less than
their duration. We foresee the following benefits. First, since it gives priority
to short jobs, the dispatcher will aim at lowering both the total job waiting
times and the total job slowdown, as required by modern HPC applications.
Our experimental results in Section 5.4 show that by giving priority to short
jobs, we never penalize the medium and long jobs. Second, it prioritizes the
jobs based on a job specific feature d(τi) which can be calculated on-line and
which can reflect better the current job submission status. Finally, integrating
d(τi) in the objective function and search of the dispatchers paves the way to
exploit job duration predictions.

In the following, we refer to the versions of PCP2 and HCP2 whose model
and search algorithms are adapted as described here as PCP3 and HCP3. Table
5.1 summarizes all the dispatcher versions. We note that, similar to HCP, the
HCP3 dispatcher uses the job priorities in the custom search of the scheduling
problem and in the heuristic search of the allocation problem, and calculates
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the priorities once statically at the dispatching time t before search starts. Our
initial experiments revealed that updating them dynamically during search is
not beneficial. As we described in Section 2.3, the search of PCP relies on
the default search of the underlying solver and does not exploit priorities. We
observed in our initial experiments that the custom search of the scheduling
model in HCP is valuable also for PCP to solve the entire scheduling and allocation
problem, hence we adopt that kind of search and exploit priorities also in PCP3.

5.3 Experimental study

To evaluate the significance of our approach, we conducted an experimental
study, by simulating on-line job submission to an HPC system.

HPC systems and their workload dataset Our study is based on two
workload traces collected from the Eurora and the Gaia system 2.1.4.

We remind some information about the workload datasets used here. Eurora
is an HPC system with a heterogeneous architecture composed of 64 nodes. The
workload dataset consists of logs for over 400,000, and it is dominated by short
jobs (under 1 hour), making up 93.14% of all jobs, while the remaining 6.10%
are medium jobs (between 1 and 5 hours) and 0.75% are long jobs (over 5
hours). Whereas Gaia is an HPC system is a system with more nodes than
Eurora, reaching 151 nodes, although it include some resource heterogenity, the
workload dataset format does not allow to distinguish different request than
core or RAM. It almost has 52,000 jobs, also leading short jobs with 66.5%
of the total, and more medium and long jobs than in Eurora, with 17.7% and
15.8%, respectively.

Job duration prediction To derive job durations, we used three prediction
methods with varying accuracy levels, and underestimation and overestimation
rates: (i) the wall-time approach, with a high overestimation rate and low un-
derestimation rate, (ii) a data-driven prediction heuristic (Section 4.1), and is
more accurate than the wall-time approach, with considerable underestimation
and overestimation rates, and as a baseline (iii) the actual runtime (real) du-
rations which provide the most accurate prediction with zero underestimation
and overestimation rates.

The next results for the Eurora workload dataset are from Section 4.1, al-
though we provide extra analysis to it. The mean absolute error (MAE) of
the heuristic and the wall-time approach with respect to the real duration were
shown to be 40 mins and 225 mins, respectively. The heuristic prediction shows
thus an improvement of 82% over the wall-time approach. The time locality of
job durations for individual users is not specific to the Eurora workload. We
observed it also in other workload traces, such as Gaia, which was collected by
the OAR Batch Scheduler.43 Applying the data-driven heuristic to this work-

43http://oar.imag.fr/
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Workload Prediction method Under. rate Over. rate
Eurora wall-time 3.6% 96.3%
Eurora heuristic 25.8% 53.7%
Gaia wall-time 3.0% 97.0%
Gaia heuristic 40.63% 58.8%

Table 5.2: Underestimation and overestimation rates of the wall-time approach
and the prediction heuristic on the Eurora and Gaia workload datasets.

load, we obtained the MAE of 423 mins, while the wall-time approach achieves a
MAE of 2,913 mins. Although the dataset has been pre-processed the accuracy
of the prediction is improved. The pre-processing removed attributes like job
names and replaced them with a number representing the application that the
job runs. We note this may occur only in a simulation scenario, where not all
workload data is available, whereas in a real system can be accessible.

Table 5.2 gives the underestimation and overestimation rates of both predic-
tion methods on each dataset. The heuristic prediction cuts down significantly
the overestimation with respect to the wall-time approach on both datasets,
especially on the Eurora dataset. On the other hand, the heuristic introduces
considerable underestimation in both datasets, especially on the Gaia one. We
note that on Eurora, the heuristic prediction increase the perfect prediction from
0.1% to 20% with respect to wall-time. Where as on Gaia from 0% to 0.6%.
We remark the low improvement of the prediction accuracy of the heuristic ap-
proach on the Gaia dataset, with respect to Eurora, is due to its less availability
of the job attributes of the workload dataset. The Gaia dataset has been pre-
processed and therefore attributes like job names are not available, instead, a
job is identified by the number of the application it runs.

Next, we evaluate the intensity of the underestimation and overestimation.
In Figure 5.1, we show the empirical cumulative distribution function (ECDF)
of the prediction accuracy A = dri /d(τi), the ratio between the real and the
predicted duration of a job, of all the three methods. The empirical ECDF
shows the proportion of scores that are less than or equal to each score of A
on Eurora and Gaia datasets. When A = 1, the duration d(τi) matches the
real duration dri . We have underestimation when A > 1, overestimation when
A < 1. In theory, we should not have underestimation with the wall-time
approach because in a real system a job is killed if it takes longer than its di.
However, a system requires extra time after a job is killed or completed to bring
the used resources on-line again and this extra time is reflected to the dataset.
Therefore, in some cases we have A > 1 in Figures 5.1. In the Eurora dataset,
we have 0.75 ≤ A ≤ 1.25 for about 50% of the workload with the heuristic, and
for less than 10% with the wall-time approach. Whereas in the Gaia dataset is
only 35%.

Experimental setup We used the open-source discrete event simulator Ac-
caSim (Chapter 3) to simulate the HPC systems with their workload datasets.
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(a) Eurora dataset. (b) Gaia dataset.

Figure 5.1: The distribution of the accuracy of the three prediction methods
applied to Eurora and Gaia datasets.

Each job submission is simulated by using its available data, for instance, the
owner, the requested resources, and the real duration, the execution command
or the name of the application executed. AccaSim uses the real duration ex-
tracted from the workload dataset to simulate the job execution during its entire
duration despite the presence of underestimation of the job duration. Therefore
job duration prediction errors do not affect the running time of the jobs with
respect to the real workload data. The dispatchers under study are implemented
using the AccaSim directives to allow them to generate the dispatching decisions
during the system simulation.

With the heuristic prediction, as opposed to calculating the predictions off-
line as in Section 4.1, we calculate them on-line during the simulation and update
the knowledge base upon job terminations. The accuracy of the heuristic thus
depends on the generated dispatching decisions. As a CP modelling and solving
toolkit, we used Google OR-Tools44 version 6.7 and ported it to Python 3.6 to
implement the dispatchers in AccaSim.

to small values to keep the dispatcher overhead low. We keep m = 100 as
in HCP. Both dispatchers need in some of their versions the estimated waiting
time ewtQ = 1

|Q|
∑
i∈Q si − qi of each queue Q in the system. These values were

calculated for the Eurora workload in [9, 18] and reused here. We calculated
the values of the Gaia by analyzing the workload data which was collected when
Gaia was using the OAR Batch Scheduler.45

All experiments were performed on a dedicated server with a 16-core Intel
Xeon CPU and 8GB of RAM, running Linux Ubuntu 16.04. The source code
of the CP-based dispatchers is available at https://git.io/fjia1.

5.4 Experimental results

In this section, we report our experimental results. While the best and the final
versions of the dispatchers are PCP3 and HCP3, all the previous versions (PCP,
PCP1, PCP2, HCP, HCP1, HCP2) appear in the experiments in order to evaluate
each of our contributions. To refer to a dispatcher using a certain job duration

44https://developers.google.com/optimization/
45http://oar.imag.fr/

https://git.io/fjia1
https://developers.google.com/optimization/
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prediction method, we append -W, -D or -R to the name of the dispatcher for
the Wall-time approach, the Data-driven heuristic and the Real duration, resp.

5.4.1 Dispatcher performance and problem size

We first assess the impact of reducing the model size and improving the search
control of the dispatchers for resiliency to heavy workloads. Following the orig-
inal dispatchers PCP and HCP, we use the wall-time approach in PCP1 and HCP1

for job duration prediction, and compare the performance of and the problem
size in PCP and PCP1-W, as well as HCP and HCP1-W.

Eurora

We report in Table 5.3 the mean CPU time spent in generating a dispatching
decision over all dispatcher invocations, including the time for modeling the dis-
patching problem instance and searching for a solution. We also report the total
simulation time from the first job submission until the last job completion, and
the average problem size: number of intervals, number of requested resources,
number of available resources.

We cannot report the results of PCP since it crashes due to a memory alloca-
tion problem before the completion of the entire workload, demonstrating that
it this dispatcher is not resilient to heavy workloads.

Dispatcher PCP PCP1-W PCP3-R PCP3-D HCP HCP1-W HCP3-R HCP3-D

Avg. disp. time [ms] ∞ 743 692 701 1,014 703 523 575
Total pred. time [s] - - - 289 - - - 308
Total sim. time [s] ∞ 262,436 261,985 262,764 374,788 245,663 201,223 215,814
Avg. # of intervals - 145 94 115 379 100 51 63
Avg. # of req. res. - 853 142 584 6,267 1,292 258 571
Avg. # of avl. res. - 1,476 1,471 1,473 1,487 1,477 1,473 1,474

Table 5.3: Times and problem sizes.

We therefore underline the improvement reached by the PCP1-W dispatcher
which is now able to process the workload. Compared to HCP, the HCP1-W

dispatcher reduces the total time by around 34% and reduces the problem size
and time required for dispatching significantly.

These results demonstrate that our approach has significantly better perfor-
mance, making the dispatchers applicable to heavy workloads and paving the
way to the use of CP-based dispatchers for HPC on-line dispatching.

Gaia

Similarly to the Eurora results, we report in Table 5.4 the mean CPU time spent
in generating a dispatching decision over all dispatcher invocations, and the total
simulation time from the first job submission until the last job completion, and
the average problem size.
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Dispatcher PCP PCP1-W PCP3-R PCP3-D HCP HCP1-W HCP3-R HCP3-D

Avg. disp. time [ms] ∞ 78 99 89 103 82 85 84
Total pred. time [s] - - - 102 - - - 110
Total sim. time [s] ∞ 6,380 8,155 7,445 8,561 6,781 7,016 7,090
Avg. # of intervals - 260 260 261 2 2 2 2
Avg. # of req. res. - 2 2 2 13 13 13 13
Avg. # of avl. res. - 1,091 1,092 1,092 1,089 1,090 1,089 1,092

Table 5.4: Times and problem sizes.

These results strengthen our results of Eurora experiments, confirming that
rebuilding the model and search control of both dispatchers, has significantly
better performance, significantly cuts down the time spent in generating dis-
patching decisions and the problem size, making thus the dispatchers applicable
to heavy workloads and paving the way to the use of CP-based dispatchers for
HPC on-line dispatching.

5.4.2 Quality of the dispatching decisions

Next, we evaluate the value of adapting the model and search algorithm of the
dispatchers to the use of job duration predictions by comparing the quality of
the decisions made by PCP, PCP1, PCP2, PCP3, as well as by HCP, HCP1, HCP2, HCP3.
Since we are aiming at reducing both the slowdown and waiting time of jobs,
we consider both of these metrics to evaluate the quality of the dispatching
decisions. We calculate the waiting time and slowdown of a job after it is
dispatched and completed, respectively.

We first study the effectiveness of PCP, PCP1, PCP2, and PCP3 with each job
duration prediction method. Then, we analyze HCP, HCP1, HCP2, and HCP3. We
show the results of PCP2 and HCP2 only in conjunction with the data-driven
heuristic. This is because on our workload datasets the heuristic has a consid-
erable underestimation rate while the other prediction methods have negligible
or no underestimation, so the behaviour was very similar to PCP1 and HCP1.

Eurora

We also compare the various dispatchers with the performance of PBS in the
original system, by calculating the slowdown and waiting time from the workload
data.

PCP results Figure 5.2 shows the slowdown and waiting times obtained by
various versions of the dispatchers, compared to PBS. PCP is missing from the
plot due to the fact that it is not able to process the workload, hence we consider
PCP1-W as a baseline, which is the enhancement most similar to the original
algorithm. Additionally, we do not report the results of PCP1-D on Eurora
because the simulation was too heavy and did not terminate in more than two
weeks, so we interrupted it. We believe the long simulation time is due to
the fact that PCP1-D does not deal with underestimation, so it tends to use



CHAPTER 5. CP DISPS. FOR HEAVY & SHORT JOB-DOM. WKLDS 84

the maximum time limit for the instances in which jobs are underestimated,
generating long queues.

Figure 5.2: Average and error bars showing one standard deviation of slowdown
and waiting times [s] using the PCP dispatchers.

A first observation is that, our best dispatcher coupled with the best duration
predictor (PCP3-R) and the heuristic predictor (PCP3-D) always outperform PBS.
PCP3-W has lower performance compared to PCP1-W. This is probably because the
wall-time approach has a high overestimation rate, which is not beneficial when
the dispatcher involves job durations in dispatching decisions. However, if we
look at the dispatchers using real durations, we observe a significant increase in
performance compared to PCP1-W but also when moving from PCP1-R to PCP3-R.
The reduction in the slowdown and waiting time from PCP1-R to PCP3-R reach
up to 58% and 13%. This is due to the accuracy of the prediction method which
does not present any underestimation nor overestimation. This proves that our
approach is essential when a good quality prediction is available.

On a more realistic prediction, the results confirm that great care needs to
be taken when integrating predictions. A straightforward integration of the
predictions in previous algorithms is not helpful at all: PCP1-D takes too long.
By handling underestimation as in PCP2-D, we are able to improve the results
compared to PCP1-W. Further improvement is observed when moving to PCP3-D,
demonstrating again the benefits of including predictions, albeit imperfect, into
the model and search algorithm. Specifically, we observe 37% and 29% reduction
in the average slowdown and the average waiting time.

HCP results Figure 5.3 shows the performance of HCP, HCP1, HCP2 and HCP3

compared to PBS. Unlike the PCP case, here the original dispatcher HCP is able
to process the entire workload so we can compare our results directly with the
state-of-the-art method, besides PBS. We observe that in general, if we include
predictions with good accuracy and take into account also the underestimation
problem, our algorithms can improve the quality of the dispatching decisions
significantly (see HCP3-D and HCP3-R compared to HCP and PBS).

In more detail, we observe that simply moving from HCP to HCP1-W, with an
approach aimed at reducing the CPU time for dispatching, we also improve the
quality of the solutions. HCP3-W does not improve HCP1-W, since the accuracy
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Figure 5.3: Average and error bars showing one standard deviation of slowdown
and waiting times [s] using the HCP dispatchers.

Figure 5.4: Average and error bars showing one standard deviation of slowdown
and waiting times [s] on medium and long jobs using all the dispatchers on the
Eurora workload.

of predictions using wall-time is rather low. We observe the most significant
improvements over HCP with HCP3-R, proving again the importance of our ap-
proach when a good quality prediction is available. The decreased performance
of HCP1-D compared to all other algorithms confirms again that naively includ-
ing predictions can be detrimental. The gains obtained by HCP2-D with respect
to HCP1-D support again the need of dealing with underestimated jobs. We note
that, while HCP1-D performs worse than the original HCP, HCP2-D becomes better
than HCP and HCP3-D further improves HCP2-D, demonstrating again the benefits
of including predictions, albeit imperfect, into the model and search algorithm.
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Gaia

We also compare the same dispatchers by calculating the slowdown and waiting
time. We cannot calculate the performance of OAR in the original system be-
cause the workload dataset is not in line with the simulation (initial submissions
show a delayed start).

Figure 5.5: Average and error bars showing one standard deviation of slowdown
and waiting times [s] on Gaia using the PCP and HCP dispatchers.

Figure 5.5 shows the results of PCP and HCP dispatchers applied to the Gaia
system. The results are very similar regarding the Eurora ones, although on
a lower scale. This scale is due to the size of the workload, and probably to
the fewer possibilities to optimize the decisions because, during less time, the
system is fully occupied. Despite this, the results showed in a different system
that our approach is also valid.

5.5 Summary

The state-of-the-art CP-based dispatchers [9, 18] are unable to satisfy the chal-
lenges of on-line dispatching and to take advantage of job duration predictions,
which impede their adoption in HPC systems. We have introduced a class of
novel CP-based dispatchers by building on [9, 18] and redesigning their main
components. We made them resilient to heavy workloads and applicable to on-
line dispatching, as well as adapted them to the use of job duration predictions
to obtain high QoS levels in terms of job waiting times and slowdown. We eval-
uated the significance of our approach on two workload traces collected from
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two HPC systems, Eurora and Gaia systems, using predictions with different
accuracy and underestimation and overestimation rates on the datasets.

We can conclude that suitable incorporation of job duration predictions in
PCP and HCP, such as PCP3 and HCP3, can lead to significantly higher levels of
QoS in terms of job waiting times and slowdown, especially for workloads dom-
inated by short jobs. To benefit from this potential, durations should rely on
predictions with acceptable levels of accuracy, going beyond the standard wall-
time approach. The quality of the decisions generated by PCP1-W and HCP1-W is
much worse than PCP3-R and HCP3-R. On the other hand, PCP3-D and HCP3-D

offer valid alternatives to PCP1-W and HCP1-W with further reductions in prob-
lem size (as reported in Table 5.3 and Table 5.4) and with QoS measures closer
to those of PCP3-R and HCP3-R. The gains offered by PCP3-D and HCP3-D are
prominent especially on the Eurora dataset, while on the Gaia dataset the major
advantage is in reducing the waiting times. Yet, there is still room for improve-
ment in the QoS of PCP3-D and HCP3-D, as can be witnessed by comparing them
with PCP1-R and HCP1-R in all the figures. It seems thus necessary to reduce
the underestimation and overestimation of the prediction as much as possible.
At the same time, as shown in Table 5.3, PCP3-D and HCP3-D decrease in most
of the cases the average time incurred to generate a dispatching decision with
respect to PCP1-W and HCP1-W. Table 5.3 shows also the time cost of this gain.
While PCP3-D and HCP3-D come each with a cost of prediction, the total simu-
lation times of PCP3-D and PCP1-W are similar, and HCP3-D reduces notably the
time with respect to HCP1-W. The fact that the new dispatchers give priority to
short jobs does not penalize the medium and long jobs, as can be witnessed in
Figures 5.4. Finally, our approach does not affect the system utilization. We
did not observe any major differences between the various dispatchers probably
because all the dispatchers are using the best-fit allocation strategy.



Chapter 6

Towards system
size-independent CP-based
job dispatchers for HPC
systems

So far, we tested our improvements regarding the scalability to heavy workloads
in two systems that are far from most of HPC systems in the TOP500 list that, in
general, have more than 500 computing nodes. Eurora and Gaia, in Figure 6.1,
have 64 and 151 computing nodes, respectively, so, how our PCP3 and HCP3

dispatchers may scale to bigger systems?

Figure 6.1: Size of Eurora, Gaia and KIT, and TOP500 HPC systems.

HCP3 may scale well on big systems because it is independent of the size of
the system, and only uses Q̄ decision variables to model the scheduling prob-
lem. Despite this, the dispatching decision may be weak given its uncoupled

88
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approach. For this reason, we believe CP-based dispatchers that model the
scheduling and allocation problems together in one model, may incorporate ad-
ditional restrictions and provide better dispatching decisions for current and
future HPC systems.

In the previous chapter, PCP3 showed outstanding results in small systems
and mediums systems such as Eurora and Gaia. However, PCP3 may not scale
well on big systems due to how its decision variables are modeled. The num-
ber of decision variables depends on the number of queued jobs and all of their
possible allocations on each computing node, thus the PCP3 model is highly de-
pendant on the system size. In detail, for a given instance of the on-line job
dispatching problem, PCP3 uses |Q̄| decision variables to model the scheduling
problem and

∑
i∈Q̄

∑
n∈N pi,n decision variables to model the allocation prob-

lem, where pi,n = min(rni,minr∈R b capn,r

reqi,r/rni
c), and, rni and reqi,r are the

number of requested nodes and the number of requested r resources by i, re-
spectively; capn,r is the capacity of the resource r in n. To illustrate the number
of decision variables employed in the PCP3 model, let us consider a simple serial
job i, i.e. rni = 1, so the decision variables to model i will be 1 + |N |, with N
as the set of computing nodes. If the system is small, such as Eurora, the model
will use 65 decision variables in the worst case, instead, if the job requests MIC
or GPU resources, it will be 33 decision variables. Thus, this model in a bigger
system will use more decision variables, even more, if jobs are highly parallel
(rni > 2) and still more if many jobs are in |Q̄|. Thus, this model may not be
suitable on a system with a higher number of nodes due to the increment of de-
cision variables and consequently requiring more time to generate a dispatching
decision.

Therefore, in this chapter, we propose new dispatchers to deal with the on-
line job dispatching problem, which are composed of fewer decision variables
than the utilized in PCP3 and do not depend proportionally with the size, in
terms of the number of nodes, of the system and the allocation possibilities of
the job units. We believe such models due to this independence may scale better
to big systems.

This chapter is structured as follows. In Section 6.1, we present a new
job dispatcher, named PCP4, which models the on-line job dispatching using
|Q̄| +

∑
i∈Q̄ |N | decision variables in its model. This model is inspired in the

PCP3 model, however, it changes the type of allocation variables from intervals
to integer variables. Instead, in Section 6.2, we present another job dispatcher,
named PCP5, which is a new model and uses |Q̄|+

∑
i∈Q̄ rni∗|R| decision variables

to model the same problem. Both models put more emphasis in the allocation
problem, leaving the scheduling problem as a subordinated one. Therefore,
advanced allocation decisions can be implemented, as the allocation strategies
proposed in [93] for heterogeneous resource architectures. Next, in Section 6.3,
we describe a possible search for both models. Similar to PCP3, this search puts
emphasis to short jobs via slowdown prioritization. In the remaining sections,
we describe our experiments and analyze the results them in Section 6.4 and 6.5,
respectively. Finally, we summarize our contribution in Section 6.6.
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6.1 PCP4 model: Variable number of job units
assignments

We model every job i as a Non-Optional Fixed Interval Variable τi, so each job
in the model has a fixed duration and must be scheduled at s(τi) ≥ t. A problem
instance at time t may include running jobs, for which the start time s(τi) < t
was already decided, so only start times for queued jobs in Q̄ are unknown with
D(s(τi)) = [0, . . . , eoh]. During the execution of a job i, reqi,r resources of types
r are consumed by rni job units (number of requested nodes).

Identically to PCP3, PCP4 incorporates the duration prediction ddi of a job i
by defining the duration d(τi) as d(τi) = ddi for the queued jobs and d(τi) =
max(s(τi) + ddi − t, 1) for the running jobs.

A job i may be allocated to different nodes depending on rni and the number
of times the job units (reqi,r/rni) can fit on the system nodes N . We model
the allocation variables using integer variables for each job i, for each node
n ∈ N , as ai,n and whose domain is D(ai,n) = [0, pi,n] for queued jobs, where
pi,n = min(rni,minr∈Rbcapn,r/reqi,rc). Instead, we use the actual allocation
for running jobs, which are constant.

We define a set of constraints to ensure a feasible scheduling and allocation
decision. First, we post a constraint for each queued job i to limit the number
of allocated resources to the nodes:∑

n∈N
ai,n = rni

We use a similar idea from HCP model to model the capacity constraints,
i.e. we use a relaxed version of the problem and on top of it, we define the
corresponding cumulative constraint for each r resource type. In addition, we
define a mirrored version (inverting the axes) of the previous constraint. In
detail, we post the first cumulative constraint for each r ∈ R, which is defined
as

cumulative(τi, reqi,n ∗ reqi,r, capr)
Instead, the mirrored version corresponds to

cumulative(τ
′

i , d(τ
′

i ), eoh)

where τ
′

i = [0, capr] and d(τ
′

i ) = reqi,n ∗ reqi,r.
We also use energetic reasoning to detect anticipatedly infeasible states.

The energy is defined as the duration multiplied by a resource quantity. This
gives an aggregate amount comparable to a surface, avoiding the specification
of other parameters. For each pair of jobs if at least one of them is a queue
job, we post a disjunctive constraint if the sum of both energies exceeds the
energy of the system for a given r. The energy of a job i is evaluated as d(τi) ∗∑
n∈N rni ∗ reqi,r, and the energy of the system is calculated asmax(τi, τj)∗capr

with i 6= j.
At this point, we only ensured the scheduled jobs will not exceed the capacity

of the system at each time on the makespan. In order to ensure feasible job
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allocations, we use the Non-Overlapping Boxes constraint [11], also known as
diffn, for all n ∈ N and for all r ∈ R. We consider both running jobs consuming
r and queued jobs demanding r and can be allocated on n. In this constraint,
a box represents a job unit running in the system, consuming ai,n ∗ reqi,r/rni
resources on n during its execution, and it is defined as:

xi = s(τi) origin of the box (x-axis)

dxi = d(τi) box width

yi = [0, capn,r] origin of the box (y-axis)

dyi = ai,n ∗ reqi,r/rni box height

Figure 6.2 presents a graphical interpretation of a box. We remark that for
this model the assignment of yi is irrelevant.

resource �
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�� + 
��

��
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Figure 6.2: Graphical interpretation of a box.

6.2 PCP5 model: Variable job units positions

Similarly to PCP4, we model every job i, running and queued job in Q̄, using
a Non-Optional Fixed Interval Variable τi. This model is principally based
on the usage of the diffn constraint, and jobs are represented by their job
units. Conversely to job units defined in PCP3 and PCP4where depends on the
configuration of each node n, in PCP5 job units are defined differently and are
independent of the configuration of nodes. rni job units ui =< reqi/rni > of
a job i are identical in terms of requested resources, and the number of each
elements in the tuple depends on the requested resources. As we described in
the previous model, for each box two assignments should be found: the origin
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of boxes in the x-axis and the height of the box for a given origin in the y-
axis. However, in the previous model implies to post a diffn constraint for
each r ∈ R in n ∈ N . Instead, in this new model, we place together the same
class of resources as a single pool of resources, following the order of the nodes.
Figure 6.3 represents the pool of resources definition of the Eurora system as
example. We recall its architecture; it is composed of 64 nodes. The first 32
nodes were configured with 16 cores, 2 GPU accelerator cards, and 16 GB of
memory each one, instead the other half has 2 MIC accelerator cards instead of
the GPU ones.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Core

GPU

MIC

Mem

Node 1 Node 2 Node 33 Node 34… …

Figure 6.3: Resource modeling of the Eurora system.

Therefore, for each y of each box of job units ui,r of i, from now yi,j,r, we
need to find an assignment corresponding to the origin of the job unit j for
a given resource r. However, this is not straight forward because assignments
can be performed on different nodes. To ensure that the assignments of a job
unit j of a job i of different resources r are performed on the same node, we
define an auxiliary mapping matrix to link the yi,j,r positions to a given node n.
Considering the data from Figure 6.3, we define this mapping matrix as detailed
in Figure 6.4.

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 41 40 40 39 39 38 38 37 37 36 36 35 35 34 34 33 33

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Core

GPU

MIC

Mem

Node 1 Node 2 Node 33 Node 34… …

Figure 6.4: Node mapping of the Eurora system.

We employ two classes of constraints using the node mapping matrix map.
The first one corresponds to allocate a job unit j of a job i on the same node
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for all the requested resources reqi,r > 0.

element(mapr1 , yi,j,r1) = element(mapr2 , yi,j,r2) ∀r1, r2 ∈ R̂ | r1 6= r2

where R̂ is the subset of requested resources of the job i. The second class
of constraints is to ensure that a job unit j will not exceed the position of the
allocated node for each r, that is j is constrained to be allocated in a unique
node and it will be placed entirely on a single node. Thus the origin yi,j,r of a
job unit j of i and the consumption of a resource dy = reqi,r/rni are constrained
to be on the same node:

element(mapr, yi,j,r) = element(mapr, yi,j,r + dyi,r − 1) ∀r ∈ R̂

Because of job units of a job i cannot overlap among them, their origins
should be different, so we force that all yi,r to be different with respect to each
resource r.

alldifferent([yi,r]) ∀r ∈ R̂

To ensure feasible job unit allocations, we use the diffn constraint for all
r ∈ R. We consider both running jobs consuming r and queued jobs demanding
r. In this model, we represent boxes as:

xi = s(τi) origin of the box (x-axis)

dxi = d(τi) box width

yi = [0, T capr] origin of the box (y-axis)

dyi = reqi,r/rni box height

where Tcapr =
∑
n capn,r.

6.3 A possible search for the new models

Both models are composed of two types of decision variables, each one regarding
both sub-problems of the dispatching problem, i.e., scheduling and allocation
variables. Using the available search methods on OR-Tools, we can combine two
sequential searches, as sketched in Figure 6.5, one for the scheduling variables
and another for the allocation variables. However, experiments showed this
approach is not suitable for online dispatching because the time required for
solving the dispatching problems grows with respect to the size of the problem.

Therefore, to tackle efficiently the problem we decided to interleave schedul-
ing and allocation assignments of individual jobs considering jobs’ priority. To
do so, we dispatch, i.e. schedule and allocate, a job i at a time. This is because,
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Search tree of the 1st set 
of decision variables

Search tree of the 2nd 

set of decision variables

Figure 6.5: Composed searches.

once the start time of a τi, is assigned to its earliest starting time, the underly-
ing constraint propagation mechanism of the capacity constraints guarantees a
systematic update of the remaining scheduling variables in τ and the allocation
variables belonging to τi. The capacity constraints guarantee that the start time
and during entire execution of τi are consistent with the resource requirements
of “scheduled” activities, i.e. jobs for which the start time have been fixed. Jobs
are selected based on their job priority, i.e. jobs with higher slowdown value are
preferred.

This new search algorithm is described in Algorithm 4. NewSearch receives
as argument a set of scheduling and allocation variables, S and A respectively.
In addition, a variable l to store the last scheduled variable or NULL. Line
1 the UpdateSelectableVariables function returns a tuple of 4 elements.
The first element correspond to a flag, which is true if all allocations and jobs
variables have fixed values, otherwise is false. The second and third elements of
the tuple correspond to the set of unassigned scheduling and allocation variables
in S and A, respectively. The last element in the tuple corresponds to the l
variable which is updated to l := NULL if A′(l) = ∅.

Lines 3-7 perform a scheduling decision. This decision is based on the Se-
lectJob function in line 9, which returns the job with the highest priority and
the minimum start time. Jobs are selected based on a priority scheme calcu-
lated before the search starts. However, if S = ∅, the solver will backtrack to the
most recent choice point. Choice points are performed in lines 5 and 13, where
an assignment of a variable is performed. Later, 11-14 perform an allocation
decision for the scheduling variable l. The allocation decision is based on the
Best Fit approach, the assignment of allocation variables A belonging to l, will
be executed until A(l) = ∅.

The NewSearch is initialized with S := τ and A := X, i.e. the complete
set of scheduling and allocation variables respectively.
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Algorithm 4: NewSearch(S,A,l)

1 <SOLVED, S′, A′, l > := UpdateSelectableVariables(S,A, l)
2 if SOLVED then return
3 if S 6= ∅ then
4 l := SelectJob(S)
5 D(l) := Min(l)
6 return NewSearch(S,A,l)

7 else
8 return Fail
9 end

10 if l 6= NULL then
11 a := MinDomain(A′, l)
12 D(a) := MaxValue(a)
13 return NewSearch(S′, A′, l)

14 end

6.4 Experimental design

Dispatching evaluation on a big-size system We evaluated if the new and
previous CP-based dispatchers, PCP3, PCP4 and PCP5, are able to work in big
systems by simulating on-line job submission to an HPC system. We simulated
the on-line job submission to the KIT system. Similar to the experiments in
the Chapter 5, we use three prediction methods with different accuracy levels,
i.e. underestimation and overestimation rates: the job’s wall-time (-W), which
can be user estimates or system default wall-times, the last two method [129]
(-L2), and as a baseline the actual runtime durations (-R). We cannot use -D

as in our experiments in previous chapter because the workload dataset of the
KIT system does not contain any mean of job identification (name of the job,
application identification, etc.), so we opted to use -L2, which is very a simple
heuristic which uses the runtimes of the last two jobs to predict the duration of
the next job.

Dispatching evaluation on small/medium-size systems Additionally to
the the performance analysis of the dispatchers on a big system, we need to eval-
uate how the new dispatchers behave with respect PCP3 on small and medium
systems. From Chapter 5, we already know that PCP3 is a very good alter-
native for small and medium systems, such as Eurora and Gaia. We skip the
experimental study on the Gaia system because its workload dataset is not
heavy and the results tend to be very similar. In this second experiment, we
compare how the proposed dispatchers behave regarding the same instance us-
ing the same objective function during the same time limits. This experiment
will allow discovering different conditions for which dispatcher is better for a
given instance. Each instance is obtained by the simulation of the entire Eurora
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workload dataset with PCP3 as dispatcher and using -R and -D job duration
predictors. We skip -W because its inaccuracy affects decisions based on the du-
ration of jobs. An instance of the on-line job dispatching problem corresponds
to a state of the simulated system, that is, running jobs and their specific allo-
cations and queued jobs. Thus, an instance is generated every time the WMS
calls the job dispatcher during the simulation. To evaluate the dispatchers, we
compare the value of the objective function and the required time of each in-
stance solved with the proposed dispatchers, i.e. PCP4 and PCP5, with respect
to PCP3. All dispatchers under study use attempt to minimize the same objec-
tive function, which corresponds to the jobs’ slowdown.We consider the time
spent in modeling and solving as the required time for generating a dispatching
decision.

Workloads used in the experimental study The KIT ForHLR II system
has 1,152 thin nodes with 20 cores and 64 GB memory each one; and 21 fat
nodes with 48 cores, 4 GPU accelerator cards, and 1 TB memory each one. Its
workload dataset consists in almost 115,000 jobs. The KIT workload dataset is
freely available on the Parallel Workloads Archive 46, however, as well as other
workload datasets available on the same website, sensitive data, such as job
names, were removed. The Eurora system consists of 64 nodes, each equipped
with 2 8-core GPUs, 16GB of RAM memory, and 2 accelerators cards: GPUs
and MICs – half of nodes has GPUs, the other half MICs; its workload dataset
consists of over 400,000 jobs. Further details of both systems are available in
Section 2.1.4.

Experimental setup The simulation of the entire workloads and single in-
stances were executed using our AccaSim (Chapter 3) simulator. As a CP
modelling and solving toolkit, we used a custom version of Google OR-Tools47

based on its version 7.3 and ported it to Python 3.6. The OR-Tools implementa-
tion of the diffn constraint does not include the limits of the placement space,
instead, it infers the limits using lower and upper bounds of the real place-
ment space, xmin = min(x) and ymin = min(y); xmax = max(x) + max(dx) and
ymax = max(y) + max(dy) respectively. Due to the lengths and heights of boxes
are unbounded, the possibility of a higher propagation is reduced. Therefore, we
propose a new version of the diffn constraint in the OR-Tools framework which
considers the actual limits of the placement space. These limits are xmin = 0,
xmax = eoh, ymin = 0, and ymax = capn,r. Given the previous limits, we can
post xi + dxi ≤ eoh and yi + dyi ≤ capn,r for each box i to ensure it will be
placed inside of the placement space, which corresponds to an feasible allocation
on each node during a feasible time.

The OR-Tools implementation of the diffn also adds redundant cumulative
constraints with the aim of performing a finer energy based reasoning to do more
propagation. However, the value of the capacities corresponds to the upper

46https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
47https://developers.google.com/optimization/

https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
https://developers.google.com/optimization/
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bound of the real placement space, so we replace them with the actual placement
limits. We also modify the propagator called FailWhenEnergyIsTooLarg. This
propagator makes the solver fails if the minimum area of a given box plus the
area of its neighbors is greater than the area of a bounding box that necessarily
contains all these boxes. The minimum area and bounding box is computed
incrementally, adding the neighbor values once at the time. The bounding box
is calculated using the upper bounds of the boxes, so this propagator may not
fail in some cases. Therefore, we use the actual limits to calculate the bounding
box.

All experiments were ran on a CentOS machine equipped with Intel Xeon
CPU E5-2640 Processor and 15GB of RAM.

6.5 Experimental results

6.5.1 On-line job dispatching on a big system: The KIT
system

As we introduced this chapter, PCP3 is not able to deal with big systems. Indeed,
PCP3 stopped dispatching jobs after a while and started to queue incrementally
without dispatching a job although the system was empty, i.e. with all the
resources of the system available. Looking at the traces of the simulation,
PCP3 is not able to handle certain jobs within the time limit, blocking later
dispatching decisions. Therefore, we cannot compare either the quality or the
spent time by generating dispatching decisions. The jobs that PCP3 cannot deal
with are mainly highly parallel jobs, that is job that requests to run on many
nodes, setting a very complex allocation scenario. As we introduced, this is a
drawback for this dispatcher which relies on the number of nodes of the system
and the frequency of its job unit can fit in a node.

Dispatcher PCP3-W PCP3-R PCP3-L2 PCP4-W PCP4-R PCP4-L2 PCP5-W PCP5-R PCP5-L2

Avg. disp. time [ms] ∞ ∞ ∞ 823 782 807 523 575 537
Total pred. time [s] - - - - - 0.5 - - 0.5
Total sim. time [s] ∞ ∞ ∞ 165,490 156,823 162,564 57,851 108,541 56,196

Table 6.1: Times.

Table 6.1 shows that, in general, both dispatchers can handle big systems
efficiently where PCP3 cannot. In detail, PCP5 shows the best performance,
it reduces 54% in average the total simulation time with respect to PCP4 on
KIT. Further, PCP5 presents the minimum average dispatching time using all
predictors, however, both dispatchers generate dispatching decisions in less than
1 sec on average, which is valuable given the size of the system. Although, PCP5

presents the best timings, we realized that during the simulation at different
complex instances, that is when the system usage and the number of running
and queued jobs are high, PCP5 employs up to 20x memory RAM than PCP4,
during the simulation of KIT . Therefore, PCP5 is limited by the capacity of the
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actual system on which runs or the capacity of the CP solver to manage the
underlying data structures to deal with complex instances.

Looking at the quality of the dispatching decision, in terms of slowdown and
waiting time, in Figure 6.6, their trends are similar as the results presented in
the Chapter 5. PCP4 and PCP5 improve the quality of their dispatching decision
of good predictors, in this case of -R with respect to -W. -L2 seems to put the
quality of decisions at risk, since their results are worst than -W. We recall we
use this prediction method because -D cannot be used given the available data
from the workload dataset. The results obtained by PCP4 and PCP5 on the KIT
system are similar, however, the dispersion of the first dispatcher is lower using
-W and -R, whereas using -L2 seems to be equal.

Figure 6.6: Average slowdown and waiting time of PCP4 and PCP5 on the KIT
system.

6.5.2 PCP4 and PCP5 on the Eurora system

We already know that the proposed dispatchers can manage the job requests
on big systems, however, we need to evaluate how these dispatchers behave
on small systems, for which PCP3 presents outstanding results. One important
aspect is the number of decision variables involved in the model, for which, we
claimed that PCP4 and PCP5 reduce them with respect to those used in by PCP3.
Using the same instances across PCP3, PCP4 and PCP5, we show in Figure 6.7, the
ratio of the number of decision variables used in a proposed dispatcher regarding
PCP3. In total there are instances 624,564, which corresponds to the simulation
of the Eurora workload dataset using PCP3 with -D and -R prediction methods.
We placed together the results of both simulations because we are interested
in a value which is independent of the dispatching quality. This figure shows
a reduction in the number of decision variables of 2% of the total instances
of PCP4 with respect to PCP3. Instead, PCP5 reduces the number of variables
considerably for almost 99% of the instances. So, the reduction of the number
of decision variables may explain the reduction in the total dispatching time
presented in the previous experiments, for which PCP5 showed the best results
in terms of a fast response.
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Figure 6.7: Ratio of the number of decision variables.

Incurred time to generate dispatching decisions We evaluate the re-
quired time for generating a dispatching decision, which corresponds to the in-
curred time of a dispatcher for modeling and solving an instance. The incurred
time to generate a dispatching decision is a fundamental feature of HPC job
dispatchers, for the same reason that heuristics are used, thus a job dispatcher
must ensure a quick response with a an high quality decision.

Figure 6.8 shows the ratio between the incurred time for generate a dispatch-
ing decision for an instance between PCP4 and PCP3, and PCP5 and PCP3. We use
the ratio of the incurred time between a proposed dispatcher and the PCP3, so a
ratio less than 1 means the required time for generating a dispatching decision
was reduces, otherwise it is increased. The figure shows a high improvement by
the PCP5 dispatcher, which reduces the incurred time to generate a dispatching
decision regarding PCP3for more than 95% of the instances. The results obtained
by PCP4 are not conclusive because for 50% of the instances it reduces the in-
curred time and for the other half it increases using -R instead -D presents a
reduction for 70% of the instances.

We believe that using the real duration presents a more complex scenario
because the variability of job durations is higher, which presents more options
to elaborate a dispatching decision, whereas -D in some cases use similar dura-
tions reducing the number of possible solutions because the minimization of the
objective function depends on this job feature.

Quality of dispatching decisions In Figures 6.9 and 6.10, we compare the
quality of dispatching decisions in terms of the value objective function of the
best solution found for each instance solved by PCP4 and PCP5 both regarding
PCP3, respectively. In the figures, each point corresponds to the value of the
objective function of an instance solved by one of the new proposed dispatchers
(x value) and PCP3 (y value). In addition, each color has a specific meaning:
A green point corresponds to an instance on which the proposed dispatcher
beats PCP3. A blue point represents an identical objective function value of
both solutions. Red points correspond to instances on which PCP3 is better.
We recall the objective function of the dispatchers is the minimization of the



CHAPTER 6. SYSTEM SIZE-INDEP. CP-BASED JOB DISPATCHERS 100

Figure 6.8: Ratio of the required time to generate a dispatching decision on the
Eurora system.

jobs’ slowdown, so the minimum value is 1.0 ∗ |Q̂|. Although the results seem
to benefit PCP3, the percentage of the colored points present in Table 6.2 shows
a different scenario. Green points, i.e. better O.F., correspond to twofold the
red ones, that is worse O.F., for both comparisons and using -D and -R.

For a given instance, if there is no solution given the time limit, the dis-
patcher does not provide a dispatching decision and continues with the next
one, therefore the instance is considered as not solved. In general, the instances
not solved by PCP3 are highly reduced by PCP4 and increased by PCP5.

(a) PCP4-D vs PCP3-D (b) PCP4-R vs PCP3-R

Figure 6.9: Comparison of the quality of the solution of instances of PCP4 w.r.t
PCP3.

We compare the quality of the solution for each instance using the ratio of
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(a) PCP5-D vs PCP3-D (b) PCP5-R vs PCP3-R

Figure 6.10: Comparison of the quality of the solution of instances of PCP5 w.r.t
PCP3.

PCP4-D PCP3-D PCP4-R PCP3-R PCP5-D PCP3-D PCP5-R PCP3-R

Total instances 311,506 312,488 311,178 311,763
Better O.F. 23,427 (8%) 21,498 (7%) 23,734 (8%) 20,403 (7%)
Equal O.F. 275,457 (88%) 279,513 (89%) 275,158 (88%) 279,662 (89%)
Worse O.F. 12,622 (4%) 11,477(4%) 12,286 (4%) 11,698 (4%)

Not solved 6 254 38 302 381 254 823 302

Table 6.2: Comparison of the quality of the decisions of the instances solved by
PCP4-R and PCP5-R with respect to PCP3-R on the Eurora system.

the value of the objective function of the best solution found between a proposed
dispatcher and PCP3. Given that the dispatchers are intended to minimize the
objective function, a ratio below 1 corresponds to an improvement in the qual-
ity of the solution for a given instance, whereas a ratio above 1 corresponds to
the opposite case. Using the ratio of quality, we can easily appraise the im-
provement or diminishment of the quality of the solutions for each individual
instance. Figure 6.11 combines the ratios using both dispatchers with the two
prediction methods. The figure on the left shows the instances for which PCP4

and PCP5 improved the quality of solutions generated by PCP3. The improve-
ment of PCP4-R and PCP5-R is at least 50% for 2% of the total instances, instead
PCP4-D and PCP5-D dispatchers reached the same improvement for 1.5% of the
total instances. Since the objective function is based on the job duration, the
proposed dispatchers show the importance of the accuracy of the prediction of
job durations, as we described in Chapter 5. Conversely, worsening the solution
50% or more only occurs on 1% for the PCP4-R and PCP5-R, instead 2% for
PCP4-D and PCP5 regarding PCP3-D. The PCP5-R / PCP3-R shows a marginal im-
provement in the results with respect to the PCP4-R / PCP3-R ratio by reducing
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the gap in the results of the figure on the right.

Figure 6.11: Ratio of the value of the O.F. between a proposed dispatcher and
PCP3 with -D and -R of all instances on the Eurora system.

Characterization of instances We analyzed previously the quality and the
incurred time to generate dispatching decisions, however, both evaluations were
analyzed separately. We already know, that on average, 88% of the instances
present the same quality and at least 50% of the instances reduced the incurred
time to generate a dispatching decision, but which are those instances?

We characterized the instances in order to determine when the proposed
dispatchers are a good alternative to PCP3, considering two important aspects of
an instance such as number of jobs (y-axis) and the ratio between the requested
and the available resources (x-axis); and, in addition, the combination of the
following indicators using a color: Better OF, Same OF, and Worse OF; and
Better time, Same time and Worse time. We mean for OF as the value of the
objective function for the best solution found and time as the required time
generating the dispatching decision, both for a given instance. Therefore, an
indicator is the result of the comparison of a proposed dispatcher with PCP3 in
terms of OF and time. Some indicators are grouped as defined in Table 6.3. For
instance, if the result of a given instance is Better OF and Better time, given
both indicators, this result corresponds to Group 1. Each group has a specific
meaning and represents in which scenario a proposed dispatcher or PCP3 should
be selected as the system dispatcher. Group 1 includes all possible combinations
on which the proposed dispatcher represents to be the better alternative as the
job dispatcher of the system. Instead, group 2 consists of all combinations for
which one indicator should be sacrificed, either the quality of the solution or time
to generate a dispatching decision. Finally, group 3 includes all combinations
for which the proposed dispatcher should not be used.

Figure 6.12 shows the results of PCP4-D regarding PCP3-D in the figure on the
left, whereas in the right one, the results obtained by PCP4-R regarding PCP3-R.
In general, PCP4 presents more instances in Group 1, which means that PCP4 out-
performs in quality and time PCP3. Although PCP4-R shows lower performance
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Indicators PCP4-D
PCP3-D

PCP4-R
PCP3-R

PCP5-D
PCP3-D

PCP5-R
PCP3-R

Group 1
Better OF and time, Better OF and same time,
same OF and better time, and same OF and time

67.1% 49.6% 95.5% 95.0%

Group 2
Better OF and worse time, and worse OF and
better time

3.9% 3.8% 3.9% 3.8%

Group 3
Worse OF and time, same OF and worse time,
worse OF and equal time

29.0% 46.6% 0.6% 1.2%

Table 6.3: Percentage of instances from the Eurora system grouped by perfor-
mance indicators

than PCP4-D, the results still are better than PCP3-R. The lower performance is
explained by the required time for generating a dispatching decision which is
slightly higher than the one required by PCP4-D(we showed previously in Fig-
ure 6.8). The main disadvantage of PCP4 with respect PCP3 appears on instances
in which the number of requested resources is less than the available, i.e. when
the system is not fully loaded, and when the number of queued jobs is higher
than 30, which is represented in the area where more red points (Group 3) are
concentrated on the figures. Conversely, if the number of queued jobs is re-
duced, or the requested resources go towards the availability of the resources
PCP4 shows its better performance (Group 1). Group 2 instances seem to be very
complex instances, many jobs, and more requested resources than the available
ones, however these instances represent a small percentage of the total.

(a) PCP4-D vs PCP3-D (b) PCP4-R vs PCP3-R

Figure 6.12: Characterization of the performance of PCP4 regarding PCP3 on all
instances

Figure 6.13 shows the results of PCP5 regarding PCP3. The results are cat-
egorical, PCP5 presents the best results regarding quality of dispatching and
time to generate a dispatching overall all instances with respect to PCP3. De-
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spite there are some results of instances that fall into Group 3, these instances
represent in average 0.9% of the total. Most of the results of the instances corre-
sponds to Group 1, which represent in general, a very fast response with a high
quality dispatching decision. Finally, the percentage of results of the instances
corresponding to Group 2 are similar to those achieved by PCP4. Although PCP5

seems to be the best dispatcher to work with Eurora, in average 4.5% of the
instances corresponds to a ‘sacrifice area’, where a dispatcher can be good to
achieve a good quality with a slow response or the contrary, thus, we believe
that a future HPC dispatcher should be capable to decide which model to use
based on different attributes of the instance to tackle it. The instances in Group
3, around 0.9% in average, are characterized by the symmetry of the request
and availability of resources, increasing the size of the search tree by revisiting
equivalent states. Proper symmetry breakers may be used to potentially reduce
the search space and improve the performance of the dispatchers, and conse-
quently, find the same solutions in less time, nicer still find better solutions in
the same time limit.

(a) PCP5-D vs PCP3-D (b) PCP5-R vs PCP3-R

Figure 6.13: Characterization of the performance of PCP5 regarding PCP3 on all
instances

6.6 Summary

We proposed two new CP-based dispatchers that use a single CP model for the
on-line job dispatching problem in HPC systems. Such models may allow the in-
tegration of more restrictions on real-world HPC systems, which will be needed
to cope with the current needs of jobs and resources management. A single CP
model also allows the generation of solid dispatching decisions and also the inte-
gration of better allocation strategies. We studied the proposed dispatchers and
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compared them with the best dispatcher from Chapter 5 of this single CP model
class. However, we showed that PCP3 could not handle jobs in a big system, for
which PCP4 and PCP5 could. Therefore, we evaluated the proposed dispatch-
ers in a small system such as Eurora, where PCP3 showed good performance.
The results were also categorical, especially with the PCP5 dispatcher, beating
in terms of QoS and reducing the time to generate a dispatching decision with
respect to the results obtained the PCP3 dispatcher. It is worthwhile to mention
that we significantly reduced incurred time for generating decisions with both
proposed dispatchers. In addition, PCP4 and PCP5 can be used as a dispatcher
on big systems, and do not suffer from scalability issues in such systems.

Although PCP5 may be a valid alternative to deal with the on-line dispatching
problem on almost any-size systems, there are still instances for which it does not
present the best results and the higher number of non-solved instances. There-
fore, PCP5 should be improved at least to reduce the high number of non-solved
instances by improving the search strategy or including the proper symmetry
breakers. Even though PCP5 is improved, we believe a dispatcher should be com-
posed of many single CP models, and during dispatching time a model should
be selected based on the instance features. This would lead to cover many more
instances during runtime, for which the performance of a single CP model is un-
known and can be replaced by alternative models that can show better results
during runtime. Thus, as future work, we plan to develop a “hyper-dispatcher”,
which based on the features of an instance, selects a specific model to use, for
which it has a track of success on such class of instance.



Chapter 7

Related work

This chapter gives an overview on the existing research related to two concepts
treated in Chapters 4, 5, and 6. Section 7.1 explores different approaches to
predict different attributes of jobs on HPC systems. Instead, Section 7.2 presents
different approaches used to solve the (on-line) job dispatching problem in HPC
systems.

7.1 Prediction on HPC workloads

A number of previous efforts have developed techniques for predicting interesting
aspects of workloads such as power consumption and job duration [109, 123].
Borghesi et al. [16] propose a machine learning approach to forecast the mean
power consumption of HPC applications using only information available at
scheduling time, such as the resources requested, the maximum duration, the
user, etc. Sirbu et al. [112] present a support vector machine model to predict
the power consumption of jobs, taking also into account their variability.

Predicting the durations of HPC jobs have also been considered in previ-
ous research works, especially in relation to job dispatching [88, 31]. Tsafrir et
al. [129] propose a model that uses the run times of the last two jobs to pre-
dict the duration of the next job. This prediction is then used for scheduling
purposes. Their approach is lightweight and efficient, however, the prediction
accuracy can be improved using more complex techniques like the ones proposed
in this paper. Gaussier et al. [52] show the importance of estimating the dura-
tion of HPC jobs with backfilling schedulers. Their results clearly suggest that
a backfilling policy benefits from accurate duration predictions, indeed, a simple
linear model can improve the slowdown of backfilling techniques by 28%.; the
only limitation is that their work focuses exclusively on a particular scheduling
algorithm.

Recently, machine learning methods were applied to predict job duration [67,
118], including metadata such as job names as features. However, it require
model training and the prediction were not integrated within a dispatcher for

106



CHAPTER 7. RELATED WORK 107

testing to understand the overhead during execution.
Underestimation of job duration is a problem that appears often in the

literature, since it negatively affects dispatcher performance, more than over-
estimation. Recently, [42] proposed a predictive method based on a censored
regression model, which could minimize underestimation. Although promising,
it requires heavier computations.

The heuristic methods for job duration prediction proposed in this work
relied on matching the metadata of a current job with similar metadata of
finished jobs. Similar to [129], which bases the prediction of previous durations,
we associate different matching rules and use a previous duration. The heuristic
methods proposed here are simpler, and they do not require model training.

7.2 HPC job dispatchers

A job dispatcher is composed of two main tasks, the job scheduler and the job
allocator, which selects queued jobs to be allocated and allocate it to the system
resources. Queue-based scheduling is the most common way in which jobs are
scheduled. Commercial systems such as SLURM or PBS use this approach
together with different queues for which a priority, restrictions of the requests,
or other properties are assigned. The objective of a queue-based scheduler
is to select waiting jobs following the queue order. A well-known strategy is
First Come, First Served (or First-In, First-Out), FCFS, which selects jobs
according to their submission times [2]. Other strategies assign priorities based
on certain job attributes, such as, the expected duration, e.g. Short Job First
(SJF) or Longer Job First (LJF), however, these strategies rely on the job’s wall-
time [2]. However, these job schedulers suffer from starvation when a job in the
queue cannot be dispatched (blocked job), the other queued job will remain in
the queue until the blocked job is dispatched, which may cause a low system
utilization [44].

An improved version of simple schedulers such as FCFS, SJF or LJF, is
the Backfilling scheduler [82]. Backfilling tries to increase the utilization while
maintaining the queue order prioritization (FCFS, SFJ, etc.). In general, it
allows small jobs to move ahead and utilize the system that would otherwise
remain idle. Backfilling has been considered as the best queue-based scheduling
algorithm, and many efforts has been put on it [126, 134, 68, 33, 120]. De-
spite all this effort, all backfilling algorithms consider the queued jobs one at a
time, and together with an allocation algorithm, try to dispatch them, which
may cause fragmentation of the system. To tackle this issue, it is necessary
to consider the entire queue at once, and generate a dispatching decision that
satisfies the system stakeholders’ expectations. This can be done using plan-
based dispatching. Such dispatchers generate a dispatching decision based on a
plan considering the present and future of the system, so all queued jobs will be
scheduled between the current time and some time horizon. Every submitted
job is planned immediately, and if a running job ends before it was estimated to
end, a new dispatching decision is generated. Plan-based dispatchers are based
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on optimization methods, so the job management is treated as a optimization
problem, where it is necessary to optimize the HPC system, minimizing or maxi-
mizing one of its many objectives or performance criteria. There are dispatchers
based on metaheuristics, such as Global Optimising Resource Broker and Allo-
cator (GORBA) [125] which uses an Evolutionary Algorithm to solve the on-line
job dispatching problem in Grid Environments. Klusacek et At. [72] proposes a
combination an heuristic to build a starting solution which later is tried to be
improved using the Tabu search metaheuristic. In general, metaheuristics have
been shown that can provide efficient dispatching results than traditional dis-
patching algorithms [71, 111]. State-of-the-art dispatchers based on Constraint
Programming (CP) has been also shown outstanding results regarding tradi-
tional dispatching algorithms [25, 18]. CP-based dispatchers are present in two
different approaches (i) a pure CP model and (ii) a hybrid CP model, where the
first approach models with a single model the scheduling and allocation problem,
the second one models only the scheduling problem and integrates it with a well-
known resource allocation strategy, named Best-Fit, using prioritization rules,
which later was improved using other allocation strategies [93]. Hybrid models
were proposed to improve the scalability to heavy workloads because pure CP
models tend to require higher CPU-times concerning queue-based scheduling
algorithms; however, the synergy of a single model is lost.

None of these works combine job duration prediction with a CP-based job
dispatcher as the presented in this research work. We did it initially with the
hybrid CP model, HCP, however, it was done naively by replacing the expected
durations with predicted durations, and the results were not satisfactory, lead-
ing to worse performance compared to the wall-time approach. Analyzing the
results, we realized an issue related to the underestimation. Later, we applied
again to HCP, and to a pure CP model, PCP, adapting the model and search
of both dispatchers to deal with duration underestimation and to the use of
predictions. The results showed an improvement of the QoS in terms of slow-
down and waiting time of HCP regarding the use of the wall-time. Instead, the
simulations using PCP showed some issues regarding the scalability to heavy
workloads, where this dispatcher could not process the queue during a limited
time to generate a dispatching decision. So new dispatchers HCP3 and PCP3,
based on top HCP and PCP respectively, were proposed to make them suitable to
heavy workloads and showed improvements regarding their former versions.

Despite this, PCP3 still presented issues on big systems (systems with hun-
dreds of nodes). We identified the main issue as to how PCP3 models the decision
variables because they increase in number with respect to the number of nodes
of the system. Thus, we proposed PCP4 and CPyvar which are less dependant
on the number of nodes of a system. Thus these new dispatchers are more suit-
able for big systems. PCP4 and PCP5 handled the job submission on big systems,
and in addition, these dispatchers presented competitive results also on smaller
systems, where PCP3 presented outstanding results.



Chapter 8

Conclusions and future
work

HPC systems are closer to reach the exascale computation (1018 operations per
sec.), while we can expect progress in hardware design to be a major contributor
towards these goals, rest of the increase has to come from software techniques
and from massive parallelism employing millions of processor cores, hence a
Workload Management System is a fundamental software available on any HPC
system. Major improvements in the system performance are generated by the
definition of better components, especially in the job dispatcher. Job dispatch-
ing strategies become critical for keeping system utilization high while keeping
waiting times low, even better if the slowdown is also low, for jobs that are
competing for HPC system resources.

As we have shown, CP-based dispatchers proved to be an outstanding al-
ternative to classic queued-based dispatchers. However, doing research in this
field is not trivial because a lot of experimentation should be carried to cover
all aspects of HPC systems that occur on-line. We mean for online in the sense
that decisions are made during real-time and there is no knowledge about the
future, and a current decision alters the state of later decisions. To control the
experiments and be able to repeat, we developed a WMS simulator, which was
used in the context of our research. We developed Accasim, a simulator that
scales well to large workload datasets and is easy to customize, so allowing to
carry out experiments across different workload sources, resource types, and
dispatching algorithms.

Ideally, dispatching decisions should complete all jobs in the shortest amount
of time possible, and maintaining high Quality of Service (QoS) levels while
keeping the system utilization high. The job slowdown is a very important QoS
metric used in HPC systems. We recall this metric is the normalization of the
waiting time of a job regarding its job duration, and the waiting time is the
time that passes between a job is submitted to the system and when it starts
to run. Therefore, this metric is highly valuable by HPC users, that do not
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want to wait long if the jobs are short. This metric turns more interesting, after
analyzing all the available workloads datasets that we had access to. All of
these workloads are mainly composed of short jobs. However, maintaining high
QoS levels is achievable only with complete a priori knowledge of the workload,
which is impossible with the nature of the on-line dispatching problem, and the
actual duration of a job seems to be an important asset. Indeed, most of the dis-
patchers available on literature assume that job durations are known in advance,
whereas, in reality, the requested wall-time, which is only an upper bound for
this value is known. For those dispatchers, the requested wall-time is often used
as the expected duration. Thus, in order to improve the QoS of a system that
uses a dispatcher that bases its goals on job duration metrics, we had to improve
the expected durations based on wall-time because users tend to overestimate
it, and an overestimation may cause inconsistent decisions. An accurate pre-
diction may improve substantially dispatching decisions, thus improving system
performance. Therefore, we proposed two data-driven approaches which showed
to be more effective predictions than the estimates based on wall-time. The use
of our data-driven job duration predictors showed higher QoS levels in terms of
job waiting times and slowdown regarding the use of the wall-time.

Even if the durations are known, current dispatchers do not take advantage
of it nor explore all possible solutions searching for the optimum. CP-based dis-
patchers have been proposed to address these issues, however, they are unable to
satisfy the challenges of on-line dispatching. Therefore, we built on top state-of-
the-art CP-based dispatchers and redesign their main components. We revisited
their model and search control mechanism so as to make them resilient to heavy
workloads and applicable to on-line dispatching. Moreover, we integrated and
adapted the model and search algorithm of our dispatchers to the use of job
duration predictions to obtain high QoS levels in terms of job waiting times and
slowdown. This improvement is achieved especially for workloads dominated by
short jobs, and only if expected durations rely on predictions with acceptable
levels of accuracy, going beyond the standard wall-time approach. The quality
of the decisions generated by the proposed CP-based dispatcher, PCP3 and HCP3,
are prominent and also most of them showed a reduction of the average time
incurred to generate a dispatching decision. We also showed that giving priority
to short jobs does not penalize, in general, medium and long jobs.

However, PCP3 and HCP3 have been analyzed with respect a small and medium
system. Therefore, we asked ourselves the following question: How these dis-
patchers will behave on a bigger system? Analyzing the models, we know that
HCP3 may scale well on big systems because it only considers one variable for
each queued job in Q̄. Despite this, its hybrid structure may hideout all the
CP potential by generating weak dispatching decisions based on an uncoupled
approach. Instead, CP-based dispatchers must be structured into a single CP
model that consider the scheduling and allocation problems together, which may
be easier to incorporate additional restrictions and provide better dispatching
decisions for current and future HPC systems. However, the single CP model
of PCP3, presented a scalability issue in big systems. Thus, we proposed two
new CP-based dispatchers, PCP4 and PCP5, that use a single CP model to model
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the on-line job dispatching problem. These new dispatchers reduce the number
of decision variables with respect to PCP3, thus are more suitable to model in-
stances of big HPC systems. We obtained outstanding results regarding PCP3,
especially PCP5which beat in terms of QoS and reducing the time to generate
a dispatching decision on a small system and moreover can handle job requests
in a big system. Although PCP5 may be a valid alternative to deal with the
on-line dispatching problem on almost any-size systems, there are still instances
for which it does not present the best results and the higher number of non-
solved instances regarding PCP3. Instead, PCP4 shows less number of unsolved
instances than PCP5 but overall showed a similar performance that PCP3 on the
solved ones.

The contribution of this research is a step forward to the adoption of CP-
based dispatchers in actual HPC systems thanks to reducing the timings and
improving the QoS in terms of slowdown and waiting time. We believe that
selecting a CP model for a system is not a answer for actual HPC systems,
instead, a CP-based dispatcher should be composed of many CP models, and
depending on the features of the instances, a CP model should be selected.
This is because users on HPC systems change during time, as well as their
submissions, also systems are modified or are affected by disruptions of their
components. A dispatcher for future HPC systems should be able to auto-
reconfigure their parameters and strategies given the instances and learn from
past decisions. Thus, as future work, we plan to develop a “hyper-dispatcher”,
which based on the features of an instance, selects a specific model to use, for
which it has a track of success on such class of instance. Current and future HPC
systems require to optimize more objectives and support more constraints than
currently considered in this work, such as power management and computational
overhead. We believe such constraints can be completely adopted in a single
CP models, such as the proposed here, to lead to the efficient management of
jobs and resources.
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Constraint programming-based job dispatching for modern HPC applica-
tions. In Thomas Schiex and Simon de Givry, editors, Principles and Prac-
tice of Constraint Programming - 25th International Conference, CP 2019,
Stamford, CT, USA, September 30 - October 4, 2019, Proceedings, vol-
ume 11802 of Lecture Notes in Computer Science, pages 438–455. Springer,
2019.
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